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Abstract 

The continuity of power supply is affected by numerous factors, one of which is related to the 

weather conditions to which power system components are exposed. Bad weather conditions have 

been noticed to be one of the major causes of failure for power system components. Moreover, the 

severity of weather conditions plays a considerable role in the determination of both commencement 

and duration of repair activity for failed components. Thus, the effect of weather on both component 

failure behaviour and repair process imperatively necessitates highlighting that effect on the 

reliability analysis and the developing of weather-based reliability assessment methodologies in order 

to help mitigate any associated risks in the short- and long-terms. 

As a result, this thesis proposes a new weather-based reliability philosophy that is primarily 

concerned with studying the effect of weather on power system reliability through the introduction of 

a new reliability analysis approach called forecasted power system reliability analysis approach 

(FOPRA). Unlike the conventional reliability indices that are considered statistical quantities, 

reliability indices developed by the proposed FOPRA approach reflect the actual performance of the 

system. The FOPRA approach is comprised of two main concepts: 1) weather-based predictive 

reliability assessment method (PRAM); and 2) weather-based decision-making repair model 

(DMARM). The application of FOPRA approach on distribution systems is discussed in this thesis.  

The PRAM method aims to develop a new weather-based methodology for predicting the 

performance of a distribution system in a short-term future study period by considering the effects of 

the weather. The methodology takes many factors into account, most important of which are 

historical weather-based performance of the system and possible future changes in weather patterns 

that may occur in a different manner from that of the past. Conventional component reliability 

indices, failure rate and repair time, are modified to represent the actual variations in component 

behaviour. A set of analytical equations and Monte Carlo Simulation algorithms are introduced.  

The DMARM model, on the other hand, aims to develop a new methodical weather-based decision-

making repair model for distribution system components. The proposed model investigates from a 

financial point of view the reliability improvement due to the reduction of the outage duration 

resulting from performing repair activities during bad weather for potential weather-related failures 

and then assigns repair tasks accordingly. The investigation process entails developing an 
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optimization problem to define the most cost-effective repair decision, where the genetic algorithm 

(GA) is utilized. 

The proposed FOPRA approach is numerically illustrated using a typical distribution system. The 

results obtained demonstrate the significance of evaluating reliability indices and assigning repair 

activities according to the methodologies introduced in this thesis on the power system behaviour 

during bad weather conditions.  
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Chapter 1 

Introduction 

1.1 Motivation 

Providing power with a satisfactory level of reliability is an essential operational goal for utilities in 

today’s‎competitive‎power‎market.‎The‎rapid‎increase‎in‎demand‎and‎globally‎noticeable‎change‎in‎

weather conditions present a strong challenge to achieve this goal. Power system components are 

exposed to constantly changing weather conditions. Statistics show that some unfavourable weather 

conditions have considerably affected the overall reliability level of power system. This effect is 

attributed to the sharp increase of failure rate value during these unfavourable conditions as well as 

the longer period of outages usually associated with restoring weather-related failures. Most power 

system components operate outdoors and are exposed to a variety of weather conditions. The 

occurrence of these weather conditions are outside the control of utilities. Therefore, it is important to 

pay more attention to this issue and introduce new reliability evaluation techniques to incorporate the 

effect of weather on reliability assessment in order to mitigate its associated risk. 

According to the author's best knowledge, most research on reliability in the literature focuses on 

measuring the historical performance of system components under different weather conditions. In 

fact, this practice is vital for the assessment purposes, yet it cannot be relied on to predict the 

reliability performance as this practice overlooks the possible variations of weather pattern in the 

future. Climate change plays a considerable role in changing weather patterns which makes predicting 

future‎ changes‎ in‎ weather‎ conditions‎ difficult.‎ ‎ Moreover,‎ to‎ the‎ author’s‎ best‎ knowledge,‎ repair‎

processes under unfavourable weather conditions have not received enough attention in the literature. 

Most research introduced general techniques to evaluate the repair time based upon weather 

conditions. Solely from a reliability perspective, components should be repaired as soon as they have 

failed; nevertheless, the case is completely different when the effect of bad weather exists, as the 

restoration process usually takes longer time because of the severity and risk associated with 

performing the repair in bad weather conditions. Regardless of the techniques introduced in the 

literature to evaluate the repair time considering the effect of weather, the essential question that has 

not been answered is: Should failed component be repaired as soon as it failed even if failure occurred 

in unfavourable weather or should the repair crew wait until weather improves? The answer of this 

question should be economically justified. Therefore, there is an imperative need to introduce a new 
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weather-based‎ reliability‎ analysis‎ approach‎ which‎ can‎ respond‎ to‎ the‎ ongoing‎ changes‎ in‎ Earth’s‎

climate system and incorporate its effect into reliability assessment as well as develop a repair 

planning model that can determine the appropriate time to repair weather-related failed components in 

a cost-effective manner.   

1.2 Research Objectives 

The main objectives of this thesis are as follows: 

 Development of a new weather-based predictive reliability assessment method that can predict 

the performance of a distribution system over an upcoming short-term study period in the future, 

taking into account the historical performance of the system in the past and the potential variation 

of the weather that may occur within a specific time period in the future. The achievement of this 

objective can offer utilities a good indication on how the system would behave in the future, 

which in turn, can help utilities make the appropriate necessary operational and planning 

decisions. 

 Development of a new methodical weather-based decision-making repair model to determine the 

most cost-effective repair decision for distribution system components over an upcoming short-

term study period. The developed model should investigate the cost-effectiveness of performing 

repair activities during bad weather conditions for system components taking into account the 

forecast of the weather during which the repair is performed as well as the reliability importance 

of the components to the whole system. In essence, this investigation would help utilities develop 

a weather-based crew dispatch management scheme that can enable utilities to optimally allocate 

repair resources in advance and can help define the optimal system reliability level that a utility 

should target. 

1.3 Thesis Outline 

This thesis is comprised of seven chapters. Chapter 1 is an introductory chapter presenting the 

motivation, main objectives, and organization of the thesis. The remaining chapters are organized as 

follows:  

Chapter 2 introduces some background principles for reliability engineering. The evaluation methods 

used in reliability engineering to evaluate reliability indices for any engineering system are discussed 

firstly. Then, the applications of these techniques on power systems are presented. 
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Chapter 3 reviews the prominent research efforts in the literature to study the effect of weather on the 

reliability of power systems. The author categorized these efforts into two main investigations, the 

core research works of each are discussed in detail.   

Chapter 4 introduces the new proposed weather-based reliability analysis approach which is called 

forecasted power systems reliability analysis (FOPRA) approach. FOPRA approach comprises two 

new concepts: 1) weather-based predictive reliability assessment method (PRAM) and; 2) weather-

based decision-making repair model (DMARM). The methodologies of PRAM and DMARM are 

discussed in detail in Chapter 4 and Chapter 5 respectively. 

Chapter 6 numerically illustrates the application of the proposed approach using a typical urban 

distribution system. A base case study is presented followed by a sensitivity analysis for two more 

case studies. 

Chapter 7 concludes the thesis and presents the main contributions. In additions, some future research 

works are suggested. 

1.4 Summary 

This chapter is an introductory chapter for the thesis. The motivation for the research and the main 

objectives are pointed out, and the organization of the rest of thesis is outlined.  
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Chapter 2 

Principles of Reliability 

2.1 Introductory Background 

Academics and reliability engineers have made great efforts to introduce a comprehensive definition 

to the term of reliability; however, a commonly accepted definition for reliability can be broadly 

stated as the probability of a component or system performing a required function for a given period 

of time (e.g., during a component’s physical lifetime) under specific operating conditions (e.g., within 

a certain degree of temperature or level of voltage). Thus, the term of reliability can be used as a 

measure index of success for a component or system in fulfilling the intended function without failure 

[1]–[4]. 

Conducting reliability assessment for engineering systems is of vital significance to ensure designing, 

manufacturing, and operating the system in relatively free-from-failure state. The reliability 

assessment could be performed using two main assessment methods: qualitative and quantitative. The 

qualitative assessment is dependent on the subjective experience of reliability engineers. In this 

method of assessment, general engineering judgment is often utilized to determine whether a 

component is likely to fail or whether the system is reliable. The main drawback of this method is the 

lack of quantitative representation that numerically describes the failure likelihood of a component or 

the reliability level of a system under specific operating criteria. Moreover, the qualitative assessment 

is not appropriate and cannot help when comparing different operational alternatives or performing 

risk cost analysis, for instance. Therefore, a reliability assessment of engineering systems must be 

expressed in quantitative terms where reliability parameters are evaluated and measured on a 

numerical basis [5]–[7]. Quantitative assessment could be used for two main purposes: 

 Assessment of past performance; and 

 Prediction of future performance. 

Assessment of past performance, referred to as historical assessment, measures the actual 

performance of the system during a specific time period in the past using appropriate sets of 

reliability indices. Historical assessment requires the collection and analysis of historical data 

(e.g., frequency of failures, duration of failures, and causes of failures) in order to perceive the past 

behaviour of the system. Historical assessment is important for the following reasons: 
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1. To identify the vulnerable and weak areas of the system that need improvement and 

reinforcement; 

2. To serve as a guide to set a system reliability target for an acceptable threshold in future 

reliability assessment; 

3. To compare previous prediction with actual system behaviour; and 

4. To assess the response of the system to a reinforcement project. 

The future performance of the system, on the other hand, can be measured by conducting a predictive 

assessment. Predictive assessment combines both historical assessment and mathematical models to 

predict the behaviour of the system during a time period in the future. Predictive assessment is 

important to predict the behaviour of the system in the future and to predict the response of the 

system to different alternative plans [5]–[8]. The vast majority of research work conducted on 

predictive reliability assessment in the literature involves three main steps, as follows [5]–[8]: 

1. Evaluate historical reliability indices of the system. 

2. Evaluate reliability indices of different alternative plans for the system. These alternative plans 

could be called reliability projects and may include, for example: 

o Alternative system configuration including reinforcement and expansion plans; and 

o Alternative system operational conditions and maintenance/repair activities. 

3. Quantify the effect of reliability improvement for each project by conducting reliability 

cost/worth analysis to determine the most cost-effective project. 

The quantitative historical and predictive reliability indices of any engineering system can be 

obtained either analytically using mathematical models or using Monte Carlo Simulation (MCS). In 

the analytical method, a mathematical model is typically developed to evaluate reliability indices 

whereas the reliability indices are estimated in the MCS by simulating the actual process and the 

random behaviour of the system [5], [9]–[13]. The main features of both analytical and MCS methods 

can be summarized as follows [5], [9], [12], [14]: 

1. Numerical results obtained using analytical method are always the same for the same system, the 

same model, and the same input data; however, results obtained from simulation method are 

dependent on the random numbers generated as well as the stopping criteria considered. 

2. Analytical method may necessitate simplifying large and complicated systems and approximating 

the results due to the difficulty of studying the whole system together whereas MCS has the 
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capability of simulating the actual process of the system and its components’ random behaviour, 

which in turn better describes the system’s behaviour. 

3. Generally speaking, MCS may take a longer computing time to obtain the results compared to 

analytical methods. However, the ongoing development of computational facilities helps to 

relatively reduce the extensive computing time. 

4. A wide range of output parameters can be obtained using MCS, including for example probability 

density functions and their respective parameters, whereas analytical method provides only 

average values. 

2.2 Reliability Assessment of Engineering Systems 

Engineering systems usually consist of a number of components installed to perform intended 

functions. Every single component is susceptible to experiencing a failure incident during its physical 

lifetime. Some components are non-repairable and should be replaced upon failure; most engineering 

system components are repairable where the process of repairing failed components usually directly 

follows the occurrence of failure. Therefore, two main states are typically associated with component 

operational behaviour:‎operating‎state‎“up”‎and‎failure‎state‎“down”. Hence, two primary reliability 

indices can be introduced to quantitatively describe the transitions between these two states: failure 

rate and repair time. In this section, the analytical equations of evaluating these primary reliability 

indices for a single component are introduced followed by a discussion of the evaluation techniques 

used to evaluate the reliability indices of a complex system containing a group of components. 

2.2.1 Reliability Indices of System Components 

2.2.1.1 Failure Rate 

The failure rate of a component can be defined as the number of failures per unit that the component 

experienced in a given time period, denoted as λ, and it can be found using the following equation: 

 

timeoperatingtotal

timeofperiodgivenainfailuresofnumber
  (2.1) 

 

The failure rate is usually expressed by the number of failures per year for most reliability studies; 

nonetheless, the failure rate could be expressed over any given period of time. A component failure 

rate value changes over its physical lifetime; this change can be represented using the well-known 
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concept of bathtub curve. The bathtub curve depicts the relationship between component failure rate 

and lifetime. The bathtub curve consists of three distinct periods: infant mortality period, useful life 

period, and wear-out period [15]. Fig. 2-1 shows a typical bathtub curve of an electrical power system 

component. 

For the bathtub curve presented in Fig. 2-1, the infant mortality period represents the first and shortest 

lifetime period of a component. Although the component is still new during this period, the failure 

rate value during this period is relatively high due to the possibility of failure because of 

manufacturing defects, shipping damages, or incorrect installation. If the component survives this 

infant mortality period, it enters the useful life period where failure events may occur randomly and 

independently of age. The failure rate during this period can be modelled by a constant failure rate 

which usually follows the exponential probability distribution. The useful life period terminates once 

the component starts to wear out, at which point the number of failures increases as the component 

ages. During the wear-out period, the failure rate becomes dependent on age and it exponentially 

increases. It should be mentioned that most reliability studies, including the proposed approach of this 

thesis, deal with the useful life period. From now on, the failure rate term in this thesis will be 

generally referred to as the failure rate during the useful life period.  

 

 

Fig. ‎2-1: Component Failure Rate vs. Lifetime 

The reciprocal value of component failure rate is designated as component mean time to failure 

(MTTF). The term MTTF represents the average time for a failure to occur, and it is only applied to 

the useful life period when the failure rate is constant. Thus, the MTTF in hours for a component that 

has a failure rate λ expressed in failures per year can be found as: 
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

1
8760MTTF  (2.2) 

2.2.1.2 Repair Time  

The second primary component in the reliability indices is the repair time, denoted as r and usually 

expressed in hours. The repair time of a component is also known in most reliability references as 

mean time to repair (MTTR), which can be defined as the average time required for restoring the 

component‎from‎the‎failure‎state‎“down”‎to‎the‎operating‎state‎“up”.‎The‎replacement‎time‎to‎install‎a‎

new component can also be considered a repair time [8]. Therefore, the operational process of a 

component can be generally modelled using a chronological up-down-up operating cycle as shown in 

Fig. 2-2. When a component is installed in a system, it is expected to operate for time-to-failure 

(TTF1) time units before it fails, is repaired for time-to-repair (TTR1) time units, and is returned to 

operate for (TTF2) time units, and so on. The summation of all TTF values represents component total 

operating time which can be substituted in equation (2.1). 

 

UP

DOWN

TTF1 TTF2 TTF3

TTR1 TTR2

 

Fig. ‎2-2:  Up-Down-Up Process of a Repairable Component 

 

Thus, component repair time in hours can be evaluated as follows: 

timeofperiodgivenainrepairsofnumber

repairedbeingwascomponentthetimeofperiodtotal
MTTR   (2.3) 

 

The numerator of equation (2.3), total period of time the component was being repaired, signifies the 

summation of all TTR values. Similar to failure rate, a repair rate, μ, is the reciprocal of MTTR and is 

usually expressed in number of repairs per year. Thus, the repair rate in number of repairs per year for 

a component that has a MTTR expressed in hours is given by: 
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MTTR

1
8760  (2.4) 

2.2.1.3 Availability and Unavailability 

In addition to failure rate and repair time, the percentage of time that the component was not 

operating (unavailable) can also be evaluated, which is referred to as unavailability and denoted as U. 

Thus, component unavailability is expressed as: 











MTTRMTTF

MTTR
U  (2.5) 

The complement of component unavailability is availability, and it can also be evaluated as: 

U
MTTRMTTF

MTTF
U 





 1




 (2.6) 

The unavailability and availability equations of (2.5) and (2.6) represent probability values. The 

unavailability, U, can also be evaluated in terms of hours per year to express the average annual 

outage time, as follows: 

rU    (2.7) 

It should be noted that the units of λ and r in equation (2.7) determine the unit of U. If λ and r have 

the same units of time, then the value of U is a probability value; however, if λ and r have different 

units of time, then the value of U is expressed in a unit associated with the units of λ and r. For 

example, if λ is expressed in failures per hour and r is expressed in hours, then the value of U 

represents component unavailability, i.e., a probability value; however, if λ and r are expressed in 

failures per year and hours respectively, then the value of U represents component annual outage time 

expressed in hours per year. 

The values of component λ, r, and U are not deterministic values; they are average values of a 

probability density function (usually exponential distribution for useful life period) representing long-

run average values [10].  
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2.2.2 Reliability Indices of Complex Engineering System  

A complex system may be referred to as either a radial or a meshed system containing NC number of 

components. A system is said to be radial if it consists of a set of series components. The components 

in a set are considered series, from a reliability point of view, if all components are available and in 

an operating state for system success or if only one component needs to fail for system failure. On the 

other hand, a meshed system usually consists of a combination of series and parallel components. The 

components in a set are considered parallel if at least one must work for system success or if all must 

fail for system failure [7], [10]. 

The evaluation of reliability indices of complex systems necessitates finding the total equivalent 

reliability indices for the components that the complex system is made of. Many evaluation 

techniques can be used to evaluate reliability indices for complex systems, including Markov model 

and approximate equation techniques [7]. 

2.2.2.1 Markov Model 

The transition between component operational states can be described by the Markov model, which is 

commonly used to describe the transitional process between states of a wide range of reliability 

problems [7]. In Markov model, the states in which the system can reside are represented by a so-

called state space diagram. State space diagram is a descriptive construction of the possible transitions 

that occur between all possible states within the system despite system configuration. The state space 

diagram of a single component is shown in Fig. 2-3 where the component can either be in operating 

state (UP) or failure state (DOWN). 

 

UP State DOWN State

λ 

µ  

Fig. ‎2-3: State Space Diagram of Single Repairable Component 

Where the failure rate, λ, and repair rate, μ, represent the transition rates between the states. The 

steady state probabilities of residing in a given state can be found as follows: 






0P  (2.8) 
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




1P  (2.9) 

Where P0 represents the probability that a component is in the operating “up”‎state (availability) and 

P1 represents the probability that a component is in the failed “down” state (unavailability). The 

MTTF and MTTR of a one-component system can be deduced using equations (2.2) and (2.4), 

respectively.  

Markov model can be extended to any number of states as long as the transition rates between states 

are known. For instance, the state space diagram of a two-component repairable system can be 

illustrated as shown in Fig. 2-4. 

 

Both units UP
Unit 1 DOWN

Unit 2 UP

λ1 

µ1 

Unit 1 UP

Unit 2 DOWN

Both units 

DOWN

λ1 

µ1 

λ2 µ2 µ2 λ2 

 

Fig. ‎2-4: State Space Diagram of Two-Component Repairable System 

Where λk and μk are failure rate and repair rate of component k respectively. Given that the transition 

rates between the individual states are known, the system stochastic transitional probability matrix 

(STPM) can be constructed. The STPM is a matrix whose elements represent the transitional 

probabilities of the stochastic process. The STPM is used to deduce the steady state probabilities, 

overall system transition rates, and mean state durations of a multi-state system. More details about 

constructing the stochastic transitional probability matrix and deducing the relevant parameters can be 

found in [7]. Nevertheless, it should be noted that the process of obtaining the primary reliability 

indices (e.g. MTTF, MTTR, and U) for a multi-state system is not as straightforward as that of a 

single component system as it may involve complex mathematical analysis due to the increased 
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number of states. Fig. 2-5 shows the state space diagram of a three-component system in which each 

component has two‎states,‎where‎U‎and‎D‎represent‎the‎“up”‎and‎“down”‎states‎respectively. 

1 U

2 U

3 U

1 U

2 D

3 U

1 U

2 D

3 D

1 D

2 D

3 D

µ1

λ1

1 D

2 U

3 U

1 D

2 D

3 U

1 U

2 U

3 D

1 D

2 U

3 D

λ2λ3

λ1

λ2 λ3 λ1

λ2
λ1 λ3

λ2

λ3

µ3µ1

µ2

µ3

µ2

µ1µ2

µ3

µ1 µ2
µ3

 

Fig. ‎2-5: State Space Diagram of a Three-Component Repairable System 

It can be clearly shown from Fig. 2-4 and Fig. 2-5 that the more components that the system consists 

of, the more complicated and cumbersome the model becomes. Thus, the evaluation process of 

reliability indices for a complex system with a large number of components using Markov model 

would be unmanageable; therefore, further techniques are used to simplify the evaluation of reliability 

indices for such complex systems. As a result, approximate equation techniques have been introduced 

in the literature for this purpose [7]. The principles of these techniques are discussed in the following 

subsections. The application of these techniques on a distribution system are presented thereafter in 

Section 2.5.  
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2.2.2.2 Approximate Series Systems 

Consider the system shown in Fig. 2-6 (a) with two components connected in series. These two 

components can be combined to give the equivalent component shown in Fig. 2-6 (b). 

 

λ1 µ1 λ2 µ2 λS µS

 (a) Two Series-Component System                      (b) Equivalent System 

Fig. ‎2-6: Representation of Two Components Connected in Series 

Since the failure of any component would result in a failure of the whole system, the overall failure 

rate of the series system, λs, is equal to the summation of both component failure rates. 

21  s  (2.10) 

 

Thus, a generalized formula for the overall failure rate of a system containing NC number of 

components connected in a series can be deduced as follows:  





NC

k

ks

1

  (2.11) 

 

The repair time of the series system, rs, can be approximated to: 

s

NC

k

kk

s

r

r







 1
 

(2.12) 

 

The unavailability/annual outage time of the series system, Us, can thus be found as follows: 





NC

k

kksss rrU
1


 

(2.13) 
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2.2.2.3 Approximate Parallel Systems 

The system shown in Fig. 2-7 (a) represents a two-component system whose components are 

connected in parallel. 

 

λ1 µ1

λ2 µ2

λP µP

 

(a) Two Parallel-Component System           (b) Equivalent System 

Fig. ‎2-7: Representation of Two Components Connected in Parallel 

This system is considered to be in a failure state if both components are simultaneously found to be in 

a failure state for a certain period of time. The failure event caused by the failure of component 1 and 

component 2 is referred to as an overlapping failure event.  

The equivalent system of the two parallel-component system is shown in Fig. 2-7 (b), where the 

overlapping failure rate, λp, and overlapping repair time, rp, are given by:  

 

)( 2121 rrp    (2.14) 

21

21

rr

rr
rp




  (2.15) 

 

Similar to equation (2.13), the overlapping unavailability, Up, of a system with two parallel 

components is: 

2121 rrrU ppp    (2.16) 

 

The overlapping failure rate, λp, overlapping repair time, rp, and overlapping unavailability, Up, of a 

system containing three components are given by equations (2.17), (2.18), and (2.19) respectively.  
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)( 323121321 rrrrrrp    (2.17) 

323121

321

rrrrrr

rrr
rp




  (2.18) 

321321 rrrrU ppp    (2.19) 

 

Unlike the equations of approximate series systems, the equations used to obtain reliability indices of 

parallel systems cannot be easily extended to a generalized formula with NC number of parallel 

components. Nevertheless, the overlapping reliability indices for a system with a large number of 

components connected in parallel can be evaluated by combining two components at a time using 

equations (2.14) to (2.16). 

2.2.2.4 Approximate Series-Parallel System  

Most systems consist of a combination of series and parallel components. Fig. 2-8 shows an example 

of a system containing a combination of series and parallel components. 

 

1 2

5

3

4

 

Fig. ‎2-8: Representation of Series-Parallel System 

Several evaluation techniques can be used to obtain system reliability indices for series-parallel 

systems. The techniques most frequently used in most engineering reliability problems are network 

reduction technique and minimal cut set technique, both of which are discussed herein. 
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2.2.2.4.1 Network Reduction Technique 

The principle of this technique is to reduce the complexity of the configuration by combining 

appropriate series and parallel components until an equivalent component is obtained, the reliability 

indices of which represent the equivalent reliability indices of the original configuration. For 

example, the reduction steps of Fig. 2-8 are shown in Fig. 2-9, where the process of deducing 

equivalent reliability indices starts by combining components 3 and 4, connected in parallel, to give 

equivalent component 6. 

 

1 2

5

6 7

5

8

       (a) First Reduction       (b) Second Reduction  (c) Third Reduction 

Fig. ‎2-9: Reduction Process of Series-Parallel Systems Using Network Reduction Technique 

Reliability indices of components 3 and 4 are substituted in equations (2.14) to (2.16) to obtain the 

reliability indices of equivalent component 6. Next, components 1 and 2 are combined with 

equivalent component 6, all of which are connected in series, using equations (2.11) to (2.13) to give 

equivalent component 7. Finally, equivalent component 7 is combined with component 5 using 

approximate parallel equations to give the system equivalent component 8. The reliability indices of 

equivalent component 8 represent system equivalent reliability indices. 

2.2.2.4.2 Minimal Cut Set Technique 

This technique aims to identify a number of minimal cut sets, each of which contains a set of system 

components that causes system failures when all of the components in the set fail. That is, a set of 

components is said to be a minimal cut set if all of its components must fail to cause system failure. 

The process starts by identifying all possible minimal cut sets in the system. After that, the 

appropriate series or parallel equations are used to obtain reliability indices for each minimal cut set. 

Then, the overall system reliability indices can be evaluated using equations (2.11) to (2.13). 

Referring to Fig. 2-8, three minimal cut sets can be easily identified: (1 and 5), (2 and 5), and (3 and 4 

and 5). The first minimal cut set, for instance, signifies that the whole system will experience a failure 

if components 1 and 5 fail at the same time irrespective of the states of the other components. The 
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equivalent reliability indices of the first cut set can be evaluated using equations (2.14) to (2.16) since 

components 1 and 5 are connected in parallel. The components of both second and third minimal cut 

sets are connected in parallel. Likewise, reliability indices of second and third minimal cut sets are 

evaluated. After that, equations (2.11) to (2.13) are used to evaluate system reliability indices using 

the reliability indices of each minimal cut set. 

2.2.3 Illustrative Example 

To numerically illustrate the process of evaluating reliability indices of a complex system, reconsider 

Fig. 2-8 to evaluate system reliability indices, given that all components have a failure rate value of λ 

= 0.05 f/yr and repair time of r = 20 h. The data of this example are obtained from [7]. 

A. Network Reduction Techniques 

Following the process explained in Subsection 2.2.2.4.1, reliability indices of equivalent component 6 

are: 

0000114.08760/)2020(05.005.06   f/yr; 

10
2020

2020
6 




r h. 

The reliability indices of equivalent component 7 are: 

10.00000114.005.005.07   f/yr; 

20
1.0

100000114.02005.02005.0
7 


r h. 

The reliability indices of equivalent component 8 which represent system indices are evaluated as 

follows: 

0000228.08760/)2020(10.005.08   f/yr and; 

10
2020

2020
8 




r h 

000228.0100000228.08 U  h/yr. 

B. Minimal Cut Set Technique 

The process of identifying minimal cut sets and evaluating reliability indices for each minimal cut set 

is discussed in Subsection 2.2.2.4.2. The reliability indices of each minimal cut set and the system are 

tabulated in Table 2-1. 
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Table ‎2-1: System and minimal cut sets reliability indices 

Cut set λ (f/yr) r (h) U (h/yr) 

1 and 5 0.0000114 10 0.000114 

2 and 5 0.0000114 10 0.000114 

3 and 4 and 5 1.95 × 10
-9

 6.667 1.30 × 10
-8

 

System 0.0000228 10 0.000228 

 

2.3 Reliability Assessment of Power Systems 

The main function of a power system is to supply customers with electrical energy as economically as 

possible and with an acceptable degree of reliability. The assessment of power system reliability can 

be divided into two basic aspects of system adequacy and system security, as presented in Fig. 2-10. 

 

System Reliability

System Adequacy System Security

 

Fig. ‎2-10: Subdivisions of Power System Reliability 

Adequacy relates to the existence of sufficient facilities within the system to satisfy load demand, 

including generation facilitates to generate sufficient energy as well as associated transmission and 

distribution facilities to transport the energy to the customers. Therefore, system dynamic and 

transient disturbances that may arise in the system are not involved under the assessment of adequacy. 

Security, on the other hand, relates to the ability of the system to respond to dynamic and transient 

disturbances arising within the system, including conditions associated with both local and 

widespread disturbances and the loss of major generation and/or transmission facilities that may lead 

to dynamic, transient, or voltage instability of the system. However, most reliability assessment work 

focuses on the assessment of system adequacy [9], [12]. 
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2.4 Functional Zones and Hierarchical Levels of Power System 

A power system can be divided into three main functional zones: generation, transmission, and 

distribution. For reliability adequacy assessments, these zones can be illustrated in hierarchical levels 

(HL) as depicted in Fig. 2-11. The reliability assessment at the first hierarchical level (HL1) is 

concerned only with generation facilities whereas at the second hierarchical level (HL2) the reliability 

assessment is concerned with both generation and transmission facilities. In addition to the generation 

and transmission facilities, the distribution facilities are included in the reliability assessment at the 

third hierarchical level (HL3). Nevertheless, it is not easy to conduct a reliability assessment for the 

complete system at HL3; instead, reliability assessment is performed at HL3 for the distribution zone 

only using the indices of HL2 as input data [10], [12]. 

 

 

Fig. ‎2-11: Power System Hierarchical Levels 

In the first hierarchical level (HL1), an adequacy assessment is performed to examine generation 

system adequacy to meet the required load demand which is quite important in power system 

planning-related studies. This adequacy assessment is referred to as the generation capacity reliability 

assessment, with the main objective to estimate the necessary generating capacity required to supply 

the load demand and to examine the system adequacy upon the unavailability of generation facilities 

Generation 

Facilities 

Transmission 

Facilities 

Distribution 

Facilities 

HL1 

HL2 

HL3 
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due to taking the generating facilities out of service for planned maintenance activities or unplanned 

forced failures. The reliability assessment of the transmission system is not involved at HL1; hence, 

the generation-load model illustrated in Fig. 2-12 is typically used as a system model at HL1. The 

generation system in Fig. 2-12 represents the total available generation capacity while the total load 

demand is represented by the total system load. From a reliability perspective, the generation system 

should have a capacity reserve exceeding the required load demand. 

 

 

Fig. ‎2-12: Hierarchical Level HL 1 Model 

The adequacy of the generation system to meet the total load requirement can be expressed by using 

some expectation risk indices such as loss of load expectation (LOLE) and loss of energy expectation 

(LOEE). The adequacy assessment at HL1 consists of three main parts: generation model, load 

model, and risk model as shown in Fig. 2-13. 

 

Risk model

Generation model Load model

 

Fig. ‎2-13: A Conceptual Illustration of the Reliability Assessment Tasks at HL1 

The generation model can be formed by creating a capacity outage probability table (COPT). The 

COPT represents all possible capacity outage states of the generation system and the associated 

probability of each state. The load model can be represented by different models such as the daily 

peak load variation curve (DPLVC) or the load duration curve (LDC). The DPLVC contains the peak 

loads of each day whereas the LDC represents the hourly variation of the load. The generation and 
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load models are combined to form the risk model, which is represented by a set of risk indices 

calculated using generation and load models. The DPLVC is utilized to calculate the LOLE while the 

LDC is utilized to calculate the LOEE [9]–[12]. 

In the second hierarchical level (HL2), the generation-load model shown in Fig. 2-12 is extended to 

include a transmission system. The main function of the transmission system is to transport generated 

energy to specific geographical areas at HL3. The adequacy assessment at HL2 is referred to as a 

composite system assessment, in which the primary aim is to assess the adequacy of an existing or 

proposed system by examining the effect of several reinforcement alternatives for both generation and 

transmission systems. A sample composite system is shown in Fig 2-14. 

 

 

Fig. ‎2-14: A Sample Composite System 

The adequacy assessment at HL2 is assessed by evaluating two sets of complementary indices: load-

point indices and overall system indices. The load point indices assess the effect of reinforcement 

alternatives at each load point in the system and provide input values for system indices [9]–[12]. 

The third hierarchical level (HL3) involves all power system facilities starting from generation units 

and ending at individual customers. However, due to the complexity of evaluating the adequacy of all 

hierarchical levels together, only the adequacy assessment of the distribution system is performed at 

HL3 using the load-point indices obtained from HL2 as input values. The distribution system mainly 

distributes the energy to individual consumers within a specific geographical area. There are two 
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basic configurations for conventional distribution systems: radial or meshed [9]–[12]. Based on the 

configuration of the distribution system, the approximate evaluation techniques introduced in Section 

2.2.2 can be used to obtain load-point distribution reliability indices. More details about the reliability 

assessment of the distribution system are discussed in the following section. 

2.5 Reliability Assessment of Distribution Systems 

Distribution system is quite important in power grid as it represents the final link between the bulk 

power system and customers. Unlike generation and transmission systems where the reliability 

assessment is usually system-oriented, the reliability assessment of a distribution system is customer-

oriented. Many studies in the literature have reported that more than 80 per cent of all customer 

interruptions occurred because of failures in distribution system components due to the radiality of 

structure associated with most distribution circuits [16]. 

In terms of system construction, a conventional distribution system could be considered either radial 

or meshed based on the way that the distribution system components are arranged. A radial 

distribution system consists of a set of series components between the supply point and a customer. 

On the other hand, a meshed distribution system usually consists of a combination of series and 

parallel components [7], [10]. The reliability assessment of a distribution system starts by evaluating 

the primary reliability indices for each component in the distribution system. Then, component 

reliability indices are used to evaluate load-point indices which in turn are used as input data to 

evaluate the overall reliability indices of the distribution system.   

2.5.1 Component Primary Reliability Indices  

The same equations introduced in Section 2.2.1 for engineering system components are used to 

evaluate the primary reliability indices of distribution system components. Distribution system 

components may include lines, cables, disconnects, isolators, transformers, busbars, etc.  

2.5.2 Load-Point Reliability Indices 

A conventional distribution system usually consists of a distribution substation supplying one or more 

distribution feeders. Customers (loads) could be supplied directly from a feeder or through laterals 

that are branched from one of the feeders. Reliability data of customers supplied from the same feeder 

or lateral are analyzed together as one load point, taking into account the number of customers for 

each load type at every load point (e.g., percentage of residential customers in comparison to the 
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whole number of customers). Similar to component reliability indices, three basic reliability indices 

can be evaluated for each load point: load-point failure rate (λL), load-point repair time (rL), and load-

point outage time (UL). Based on the configuration of the distribution system (i.e., radial or meshed), 

these load-point indices can be evaluated using the evaluation techniques of complex engineering 

systems discussed in Section 2.2.2. The protection scheme of the system plays an important role in 

the evaluation of load point indices. The processes of evaluating load-point indices for both radial and 

meshed distribution systems are discussed in the subsequent subsections using typical distribution 

systems.   

2.5.2.1 Radial Distribution System 

As pointed out previously, a radial distribution system usually consists of a set of series components. 

Load-point indices, consequently, can be evaluated using the approximate series systems technique 

discussed in Subsection 2.2.2.2. Consider the simple radial distribution system shown in Fig. 2-15. 

The main feeder of the distribution system has three sections (sections 1, 2, 3) feeding three load 

points (loads A, B, C). Feeder sections are referred to as distribution system components. Any short 

circuit on the feeder will cause the main breaker installed at section 1 to immediately open; however, 

if the faulted point is located at sections 2 or 3, then the relevant Normally Closed (N.C.) disconnect 

will open, thereby allowing the main breaker to re-close. The average time of switching and isolation 

is 60 minutes.  

 

A B C

1 32Supply
×

 

/ / 
N.C.N.C.

 

Fig. ‎2-15: Simple Radial Distribution System 

For the sake of illustration, all distribution system components are assumed to have the same failure 

rate and repair time values of λ = 0.5 f/yr; and r = 4 h respectively. Table 2-2 shows a detailed 

evaluation of load-point indices using the principles of series systems. 
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Table ‎2-2: Reliability load-point indices  

Component failure 
Load A Load B Load C 

λ (f/yr) r (h) U (h/yr) λ (f/yr) r (h) U (h/yr) λ (f/yr) r (h) U (h/yr) 

1 0.5 4 2 0.5 4 2 0.5 4 2 

2 0.5 1 0.5 0.5 4 2 0.5 4 2 

3 0.5 1 0.5 0.5 1 0.5 0.5 4 2 

Total 1.5 2 3 1.5 3 4.5 1.5 4 6 

  

2.5.2.2 Meshed Distribution System 

The second common configuration of conventional distribution systems is meshed network, which 

usually consists of a combination of series and parallel components. Fig. 2-16 shows a typical meshed 

network with two lines (C1 and C2) and two transformers (C3 and C4) feeding one load point. The 

network of Fig. 2-16 could be a part of a distribution system containing one or more radial and/or 

meshed networks. The reliability data of Fig. 2-16 components are shown in Table 2-3. 

 

 

Fig. ‎2-16: A Typical Meshed Network 

 
 

Table ‎2-3: Component reliability data  

Component λ (f/yr) r (h) 

C1, C2 0.5 4 

C3, C4 0.015 11 

   

C1
C3

C2
C4 Load 
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The network reduction technique or minimal cut set technique can be used to evaluate load-point 

indices. Components C1 and C3 are connected in series; and components C2 and C4 are connected in 

series as well. Thus, using the network reduction technique, components C1 and C3 can be combined 

to give equivalent component C5; similarly, components C2 and C4 are combined to give equivalent 

C6. The failure event caused by equivalent components C5 and C6 represents an overlapping failure 

event. Combining equivalent components C5 and C6 in parallel gives equivalent component C7, the 

λ, r, and U of which represent the load-point indices. These indices are tabulated in Table 2-4. 

Table ‎2-4: Reliability indices of equivalent components 

Component λ (f/yr) r (h) U (h/yr) 

C5, C6 0.515 4.2 2.165 

C7 0.000255 2.1 0.000535 

Similarly, the minimal cut set can be used to evaluate the load-point indices of Fig. 2-16. The process 

of identifying the minimal cut sets of a network is discussed in Section 2.2.2.4.2. Table 2-5 shows the 

minimal cut sets of the network and the respective indices. 

Table ‎2-5: System and minimal cut sets reliability indices  

Cut set λ (f/yr) r (h) U (h/yr) 

C1 and C2 0.000228 2 0.000457 

C1 and C4 0.000013 2.93 0.000038 

C3 and C2 0.000013 2.93 0.000038 

C3 and C4 5.65×10
-7

 5.5 0.000003 

System 0.000255 2.1 0.000535 

 

2.5.3 Distribution System Reliability Indices 

Load-point reliability indices are essential to evaluate the reliability of the distribution system at each 

load point in the distribution system. However, these indices are system-oriented and cannot reflect 

system behaviour in terms of customer effect. Therefore, additional customer-oriented indices are   

required to enrich the reliability evaluation of a distribution system by taking into account further 

considerations including, for instance, the number of customers connected to every load point and 
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their average load demand. The most commonly used distribution reliability indices that can be used 

are defined and calculated as follows [10]: 

 System average interruption frequency index, SAIFI (interruption/customer yr); 

 System average interruption duration index, SAIDI (h/customer yr); 

 Customer average interruption duration index, CAIDI (h/customer interruption); 

 Energy not supplied index, ENS (kWh/yr).  
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Where 

j  Failure rate for load point j (f/yr); 

Nj Number of customers connected to load point j; 

NP Number of load points in the distribution system; 

jU  Annual outage time for load point j (h/yr); and 

Lj Average load connected to load point j (kW). 
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The unavailability of the system can be measured based on the average service unavailability index 

(ASUI), as follows: 
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(2.24) 

The complement of ASUI, the average service availability index (ASAI), is given by: 
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(2.25) 

To numerically illustrate the evaluation of customer-oriented indices, reconsider the radial 

distribution system shown in Fig. 2-15 with customer data presented in Table 2-6. 

Table ‎2-6: Customer data 

Load point Number of customers Average load (kW) 

A 500 2000 

B 300 1100 

C 200 800 

Total 1000 3900 

The customer-oriented distribution system indices are evaluated using equations (2.20) to (2.25) and 

shown in Table 2-7. 
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Table ‎2-7: Customer-oriented reliability indices  

SAIFI 

(interruption/customer yr) 

SAIDI 

(h/customer yr) 

CAIDI 

(h/customer interruption) 

1.5 4.05 2.7 

ASUI ASAI 
ENS 

(kWh/yr) 

0.000462329 0.999537671 15750 

2.6  Summary 

Reliability is introduced in this chapter as an important engineering term used to measure the success 

of an engineering system to perform the task it has been designed to do. The term engineering 

reliability is broadly defined. Then, the importance of conducting reliability assessment for 

engineering systems and the main assessment methods are addressed. The commonly used reliability 

indices used to assess the reliability of engineering systems are outlined. A general discussion follows 

about the functional zones of power system and the methodology to conduct reliability assessment at 

each zone. Since the focus of this thesis is on the distribution system, the reliability assessment in the 

distribution system is discussed in detail.  
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Chapter 3 

Inclusion of Weather Effect on Power System Reliability: A 

Literature Review 

3.1 Introduction 

Providing customers with a satisfactory level of power continuity has been a primary goal for electric 

utilities in the deregulated and competitive environment of today’s power industry. The achievement 

of this goal necessitates assuring that power system is designed and operated within an adequate and 

acceptable level of reliability; however, a variety of conditions and challenges hinders achieving this 

noble goal including bad weather. Although the probability of the occurrence of most bad weather 

events is generally low compared to that of prevailing normal weather conditions, such weather 

events have been observed to have a profound impact on the reliability of power grid. Several 

statistics clearly show that power system as a whole is vulnerable to the effects of unfavourable 

weather. For example, SaskPower, the electric utility that serves the Canadian province of 

Saskatchewan, has revealed that 31 per cent of the forced outages that occurred between 2013 and 

2017 were caused by bad weather [17]. In the United States, between 2003 and 2012 bad weather was 

responsible for approximately 80 per cent of all power outages in the country, affecting more than 

147 million customers [18].‎Furthermore,‎the‎ongoing‎changes‎in‎Earth’s‎climate‎system‎are projected 

to worsen in the future [19]–[21], potentially aggravating the effect of weather on many sectors, 

including the electricity sector. Consequently, researchers have realized the imperative need to 

highlight the effect of weather on reliability. The effect of weather should be incorporated into 

reliability assessment in order to mitigate the associated risk through both operational and 

development planning. Numerous studies published in the literature have devoted significant effort to 

discussing the effect of weather on power system reliability; these efforts can be categorized into two 

main weather-based reliability-centred investigations: 

1. Investigate the weather-based failure behaviour of power system components upon exposure to 

different weather conditions and the associated consequences affecting the reliability level of the 

system; and 

2. Investigate the weather-based repair process for failed power system components, specifically the 

commencement and duration of performing repair activity.  
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This chapter discusses firstly the modelling of weather states in the context of reliability. Secondly, a 

general discussion is presented about how the exposure to varying weather conditions may affect 

component failure rate and repair time. Thirdly, this chapter presents an overview of the most 

prominent research efforts which have tackled the main weather-based reliability-centred 

investigations. Finally, this chapter concludes by highlighting the main drawbacks and limitations of 

the core weather-based reliability studies in the literature. 

3.2 Weather State Modelling 

The first step to studying the effect of weather on power system reliability is to define and classify the 

states of weather in terms of their effect on the continuity of power. Consequently, weather conditions 

can be generally divided into three states: normal, adverse, and major storm disaster [22]. 

Normal weather includes all weather conditions not designated as adverse or major storm disaster 

[22]. 

Adverse weather is defined as weather condition which causes an abnormally high 

rate of forced outages for exposed components during the periods that such 

conditions persist, but do not qualify as major storm disasters. Adverse weather 

conditions can be defined for a particular system by selecting the proper values and 

combinations of weather conditions reported: thunderstorms, tornadoes, wind 

velocities, precipitation, temperature, and so on [22]. 

Major storm disaster is designated in [22] as weather conditions which produce stresses in the electric 

component that exceed its design limits and satisfy all of the following: 

 Extensive mechanical damage to facilities; 

 More than a pre-set specified percentage of customers out of service; and 

 Service restoration time longer than a pre-set specified duration. 

It should be noted that this classification is general and can be modified according to each utility’s 

environmental circumstances. Reference [23] shows different types of weather state modelling where 

weather conditions are modelled in two-, three-, and multi-weather states. Weather classification is 

dependent on its effect on component failure rate [10]. 

Chronological variation of a three-state weather model is depicted in Fig. 3-1. However, adverse and 

major adverse can be merged into one bad weather state, which is commonly considered for most 

weather-based reliability analyses. 
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Fig. ‎3-1: Chronological Variation of Weather States 

The transitions between weather states can be represented using Markov model [24], [25]. The 

principle of Markov model is discussed in Section 2.2.2 to describe the transitions between 

component operational states. However, Markov model can also be used to describe the transitions 

between weather states using the same logic. For example, a weather model with three states – 

normal, adverse, and major adverse – is shown in Fig. 3-2. 

 

Normal Weather

Major Adverse 

Weather
Adverse Weather

an

na

mn

nm
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am

 

Fig. ‎3-2: Three-State Weather Model 

Where 

an Transition rate from adverse weather state to normal weather state; 

na Transition rate from normal weather state to adverse weather state; 

ma Transition rate from major adverse weather state to adverse weather state; 

am Transition rate from adverse weather state to major adverse weather state; 

nm Transition rate from normal weather state to major adverse weather state; and 

mn Transition rate from major adverse weather state to normal weather state. 
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The mean durations of individual states are the average durations of normal weather state (TN), the 

average durations of adverse weather state (TA), and the average durations of major adverse weather 

state (TMA). These average values can be evaluated as follows [24], [25]: 
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The steady state probabilities of residing at normal, adverse, and major adverse weather states are PN, 

PA, and PMA respectively. In other words, PN, PA, and PMA represent the probabilities of having normal, 

adverse, and major adverse weather states respectively [24], [25]. 
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Similarly, the state space diagram of a two-state weather model is shown in Fig. 3-3. The relevant 

probabilities and average durations are evaluated using equations (3.8) – (3.11). 
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Fig. ‎3-3: Two-State Weather Model 
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Where 

nb Transition rate from normal weather state to bad weather state; 

TB Average duration of bad weather state; 

bn Transition rate from bad weather state to normal weather state; and 

PB Probability of bad weather state. 

3.3 The Effect of Weather on Component Failure Rate and Repair Time 

The failure behaviour and repair process of power system components are affected by the weather 

condition to which the component is exposed. Regarding the failure behaviour, outdoor components 

are usually exposed to a wide range of weather conditions and are more likely to experience a failure 

event when operating in bad weather conditions compared to components that operate in favourable 

weather conditions. During some unfavourable weather conditions, the failure rate value of certain 

components significantly increases and thus the probability of failure accordingly increases [10], [26], 

[27]. Therefore, the effect of weather should be demonstrated by incorporating weather effect in 

component failure rate calculations. 

To demonstrate the effect of weather, the failure rate should be evaluated as the average number of 

failures per weather state instead of the commonly used method that expresses the failure rate as the 

average number of failures per calendar year. In fact, such a demonstration will guarantee manifesting 

the contribution of weather to the failure rate value. Nevertheless, expressing failure rate in terms of 

weather state requires identifying the appropriate and sufficient environmental and relevant failure 

data. That is, utilities should allocate failure events to their own weather state classification as well as 

identify the starting and finishing times of each weather state even if no failure event has occurred 
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[10]. Nonetheless, practically speaking, most utilities used the total average number of failures per 

calendar year in their reliability studies and overlooked recognizing the failure rate in terms of 

weather state [10]. Indeed, this practice could be due to two main reasons: 

1. Bad weather events add only a small contribution to the total average failure rate. Bad weather is 

generally brief in duration and infrequent in occurrence, which make its probability of occurrence 

low compared to the probability of occurrence of normal weather. This concept can be elucidated 

using the principle of expected value, in which the average failure rate considering the relation of 

weather states can be generally given by: 

 
wall

wwavg P  (3.12) 

Where 

λavg Component average failure rate per calendar year;  

λw Component average failure rate per year of weather state w; and 

Pw Probability of weather state w. 

It can be seen from equation (3.12) that the total average failure rate is dependent on the value of 

the failure rate during a particular weather state and the associated probability of having that 

particular weather sate. Although the failure rate in bad weather is much greater than that in 

normal weather, the low probability of occurrence of bad weather makes the contribution of bad 

weather events to the average failure rate value relatively small and hence makes the failure rate 

value in normal weather very close to the total average failure rate. An illustration of the 

relationship between average failure rate and failure rate values in normal and bad weather is 

shown in Fig. 3-4 for a two–state weather model [10].  

Time

λN

λavg

λB

 

Fig. ‎3-4: Failure Rate Profile 
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Where, λN and λB represent failure rates in normal (N) and bad (B) weather conditions 

respectively. 

It can be noticed from Fig. 3-4 that the value of failure rate in bad weather is much higher than 

that in normal weather although bad weather duration is shorter and less frequent. This high value 

of failure rate sharply increases the probability of component failure during this period, especially 

for overlapping failures of multiple components. Therefore, evaluating the failure rate as the 

number of failures per weather state instead of merely considering the average failure rate value 

is vital to manifest the effect of weather on component reliability indices. In addition, average 

failure rate cannot give an accurate representation of the actual performance of the component 

during a specific weather condition as it is a statistical quantity that gives the average failure 

performance of a component irrespective of the weather conditions to which the component was 

exposed [10].  

2. There is difficulty associated with collecting sufficient failure data in bad weather conditions. 

Normal weather is the prevailing weather condition and the proportion of failures occurring 

during its duration is usually less than the proportion of failures occurring in bad weather, thus 

recognizing that the failure rate value in normal weather is simple and straightforward. However, 

the failure rate value in bad weather is challenging in most cases as several historical operating 

cycles in bad weather states may be required to recognize the failure rate value in bad weather 

[10].  

With regards to the repair process, the effect of weather is not limited to the failure behaviour of 

power system components but also includes the repair process. The condition of weather while repair 

activity is performed plays an important role in determining the actual duration of restoring failed 

components. In some bad weather conditions, the repair process may take longer than it usually takes 

in prevailing favourable weather conditions. Therefore, the effect of weather on the repair process 

should be incorporated in repair time calculations.  

3.4 Overview of Weather-based Reliability-centred Investigations in the 

Literature 

3.4.1 Investigation 1: Failure Behaviour 

The significance of recognizing the component failure rate in terms of the weather condition instead 

of the widely used average failure rate is highly emphasized in [10]. The average failure rate is a 
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statistical quantity obtained by using historical failure data regardless of the failure causes; hence, the 

average failure rate does not represent the real behaviour of the component during specific weather 

conditions. Therefore, much of the work reported in the literature has been directed at tackling the 

impact of weather on component failure behaviour through the introduction of methodologies for 

incorporating its effect into failure rate calculations [10], [23]–[25], [28]–[36]. The approximate 

equation technique and the Markov model [7] were used in [10], [23]–[25], [31], [32] as a means of 

evaluating the overall system failure rate while taking into account the phenomenon of failure 

bunching (overlapping failure) due to the effect of bad weather on parallel redundant components. 

Researchers have derived a set of approximate equations for assessing the failure rate for a two-state 

weather model, as presented in [10], and for a three-state weather model, as explained in [24]. In 

[23]–[25] and [31], the Markov model was employed for illustrating the impact of weather on system 

components for different weather states; this method was combined with the effect of a common 

mode failure event in [32]. The primary method reported in [10], [23]–[25], [31], and [32] is the 

probability of the occurrence of normal and bad weather states as a means for incorporating weather 

effects into failure rate equations. The concept of a weather-based time-varying failure rate was 

introduced in [33] and further developed by the authors of [34] and [35]. The weather-related failure 

rate of overhead lines has been modelled using Poisson regression and Bayesian network models, as 

described in [36], and has been based on a fuzzy model of weather conditions, as presented in [28]. 

The effects of weather and the inherent aging of the components have been considered together for 

the modelling of the failure rate introduced in [29] and [30]. 

To assess the reliability performance of transmission and distribution systems, other reliability 

evaluation approaches have been introduced with the goal of incorporating the effects of weather into 

system reliability indices [37]–[41]. From the perspective of reliability worth, the authors of [37] 

discussed the impact of failures caused by bad weather with respect to the well-being of a 

subtransmission system. In the work presented in [38]–[41], the effect of weather was incorporated 

into customer-orientated distribution reliability indices in order to assess the reliability performance 

of a variety of distribution system configurations. The researchers of [42] and [43] introduced a 

method that can include the effects of weather in the evaluation of composite system adequacy when 

transmission lines traverse several geographical regions and are exposed to different weather 

conditions. 

Several studies have discussed measuring the effects of weather conditions on system reliability 

performance to find a correlation between the occurrence of particular weather conditions and the 
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level of reliability in regional systems. Examples of this work include examinations of the effects of 

lightning on transmission lines in Croatia, Bosnia, and Herzegovina [44]; of storms on the Kansas 

City Power and Light system in Missouri [45]; of temperature and relative humidity on the 

Bangladesh power system [46]; and of snowfall on central areas of the United States [47]. Some 

researchers have investigated the effect of a variety of specific weather variables on the reliability of a 

particular system [48]–[50]. Reference [48] investigated the statistical relationship between some 

weather variables (lightning, wind, temperature, and rainfall) and system outages for a utility in 

South-East Queensland in Australia. The correlations between rainfall, relative humidity, wind speed, 

and protection trips of transmission lines in southern Brazil were studied in [49]. In Florida, a higher 

degree of correlation was observed between outages and lightning than between outages and either 

wind speed or precipitation [50]. Another report [51] compared the effects of lightning on system 

reliability for three different systems: the Detroit Edison system, the Carolina Power and Light 

system, and the Florida Power system.  

3.4.2 Investigation 2: Repair Process 

Timely restoration of failed components is a fundamental and essential activity to reduce the outage 

time associated with a failure event. Reducing the outage time is of paramount importance to improve 

the overall level of system reliability. Solely from a reliability perspective, a component of a power 

system should be repaired once it experiences a failure event. Nevertheless, the repair decision is 

governed by several factors that may defer the commencement of performing repair activity, most 

importantly of which are the availability of repair resources at the time of failure occurrence as well 

as the severity of bad weather condition during which repair activity is performed. Both of these 

factors have been discussed in numerous studies in the literature [10], [25], [33]–[35], [52]–[54]. 

Having adequate repair resources available at the time of failure plays a key role in reducing the 

duration of outage. However, most electric utilities have limited resources, which therefore make the 

need to properly and efficiently allocate these resources crucial. References [52] and [53] introduced 

a commendable risk-based strategy to optimally allocate maintenance resources for distribution 

system components. However, the introduced strategy did not consider the effect of weather in the 

risk analysis nor did it show how the severity of bad weather might influence the allocation of 

resources. 

On the other hand, the time required to restore a failed component during bad weather conditions 

might be longer than that required during prevailing favourable weather conditions, which makes this 
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factor absolutely vital upon evaluating the repair time. This factor has been tackled in the literature 

from two main perspectives. The first perspective, as described in [10], [25], and [54], introduced two 

weather-based repair scenarios: 1) repair can be performed during bad weather; and 2) repair cannot 

be performed during bad weather. The associated repair time is evaluated based on the repair scenario 

considered. In the second perspective, the repair time is evaluated as a time-varying value using 

certain weight factors obtained from past repair experience in order to express the variation of 

weather, as presented in [33]–[35]. 

3.5 Core Weather-based Reliability Research Works 

This section discusses the key research works that have tackled the inclusion of weather effect on the 

reliability assessment of a power system, particularly of a distribution system. These research works 

can be classified into two main weather-based reliability assessment studies:  

 Historical weather-based reliability assessment; and 

 Predictive weather-based reliability assessment. 

The methodologies and the associated introduced equations for both assessment methods on a 

distribution system are presented in detail in this section. 

3.5.1 Historical Weather-Based Reliability Assessment 

The inclusion of weather effect on historical reliability assessment of a power system has been 

investigated by many studies in the literature [10], [23]–[25], [33], [40], where the first step is to 

incorporate the effect of weather into component reliability indices, i.e. component failure rate and 

repair time. Historical assessment necessitates the collection of reliability data including frequency 

and duration of failures as well as weather data including frequency and duration of bad weather 

conditions. Accordingly, two main approaches have been developed in the literature: 

1. Probabilities of Weather Conditions Approach; and 

2. Time-Varying Weight Factor Approach. 

3.5.1.1 Probabilities of Weather Conditions Approach 

This approach mainly focuses on studying the overlapping failures of parallel redundant components 

caused by bad weather. Since failure rate value sharply increases during some bad weather 

conditions, the probability of overlapping failures during these periods increases. This phenomenon is 
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referred to as failure bunching due to bad weather. The principle of approximate parallel systems 

discussed in Subsection 2.2.2.3 is used to evaluate the overall reliability indices. 

However, it should be emphasized that the phenomenon of failure bunching due to bad weather for 

parallel components should be handled as an independent failure event, not as a common cause 

failure. A common cause failure mode involves simultaneous failure events of multiple components 

due to a common cause whereas failure bunching is an independent failure event in a common 

environment where the failure of one component does not influence the failure of the other 

component(s). 

The first step in the Probabilities of Weather Conditions Approach is to find the failure rate values in 

normal and bad weather conditions for each component in the parallel-component system and then 

obtain the respective weather probabilities.        

Component average failure rate can be expressed in terms of weather-related failures and associated 

weather probabilities using the concept of expected value, as indicated in equation (3.12). For a two–

state weather model, the average failure rate can be written as: 

 

BBNNavg PP    (3.13) 

 

The probabilities of normal weather, PN, and bad weather, PB, of a two-state weather model can be 

easily evaluated from equations (3.10) and (3.11) respectively, where the average duration of normal 

weather, TN, and average duration of bad weather, TB, can be obtained from the appropriate weather 

centre. The main concern in equation (3.13) is the difficulty associated with the evaluation of failure 

rate in bad weather, λB. Generally speaking, normal weather is the predominant and prevailing 

weather in which a component operates; thus, sufficient failure data during normal weather are 

usually available which makes λN typically capable of being evaluated. However, the evaluation of λB 

requires sufficient data of several calendar years of operation in bad weather, which may not be 

statistically available due to the short duration and infrequency of bad weather. Therefore, the concept 

of proportion of failures occurring in bad weather (PoFB) has been introduced in the literature in order 

to facilitate the evaluation of λB. The PoFB term helps to allocate failure events based on the weather 

conditions in which failures have occurred and to identify the percentage of failures in every bad 

weather condition. 

Recall and rearrange equation (3.13) to evaluate the failure rate in normal weather [10]: 
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BBavgNN PP    (3.14a) 

BB

N

avg

N

N P
PP

 
11

 
(3.14b) 

)1(
1

avg

B
Bavg

N

N P
P 


   

(3.14c) 

Finally, component failure rate in normal weather, expressed in failures per year of normal weather, 

can be written as [10]: 
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Similarly, the failure rate in bad weather can be derived from equation (3.13) as follows [10]: 
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Substituting (3.16) in (3.17c) gives: 
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Thus, component failure rate in bad weather, expressed in failures per year of bad weather, is given 

by: 
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(3.17e) 

If PoFB is unknown or cannot be estimated, then a sensitive analysis for 0 ≤‎PoFB ≤‎1 is carried out to 

study the effect of different failure proportions in bad weather. If PoFB = 0, this means that no failures 

occurred in bad weather whereas PoFB = 1 means that all failures occurred in bad weather. 

Equations (3.14d) and (3.17e) are used to express failure rate values of a component in normal and 

bad weather conditions respectively in the studies of failure bunching for a two-state weather model. 

However, the concept can be extended to a larger number of weather states by deducing the 

appropriate set of equations using the same basic logic. 

The summation of proportions of failures occurring in each bad weather state will give the total 

proportion of failures occurring in all bad weather states. Thus, equations (3.14d) and (3.17e) can be 

generalized to evaluate component weather-based failure rates of multi-state weather model with NB 

number of bad weather states. The failure rate in normal weather in a multi-state weather model can 

then be expressed as:  
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Where PoFBi is the proportion of failures occurring in bad weather Bi.  

The average failure rate in bad weather Bi can be evaluated using the probability of having that 

particular bad weather occur, as follows:   

i
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i B
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avgB PoF
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1

  (3.19) 

In the literature, two fundamental evaluation techniques have been used to evaluate the overlapping 

failure rate of parallel redundant components considering the phenomenon of failure bunching due to 

bad weather, namely Markov model and the approximate equations technique, the principles of both 

of which are discussed in detail in Section 2.2.2. 

3.5.1.1.1 Markov Model 

The outage model of repairable components and transitional model of weather states using state space 

diagram are discussed in Subsection 2.2.2.1 and Section 3.2 respectively. These two models could be 

combined into a composite state space model to represent independent failure events with weather 

states model. Fig. 3-5 and Fig. 3-6 show how the state space diagram of a two-component system can 

be constructed considering the inclusion of weather. The state space diagrams of two components in 

two-state weather and in three-state weather are shown in Fig. 3-5 and Fig. 3-6 respectively. As 

evident in these figures, both composite models assume that no repair is performed except under 

normal weather conditions; however, the model can be modified to include performing repair 

activities during bad weather conditions. 
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Fig. ‎3-5: Two-Component Failure Events with Two-State Weather Model 
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Fig. ‎3-6: Two-Component Failure Events with Three-State Weather Model 
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The probabilities of each weather state can be obtained by using equations (3.4) – (3.7) for three-state 

weather model or by using equations (3.10) – (3.11) for two-state weather model. The proportion of 

failures in each weather state is identified either from historical record or through establishing 

sensitivity analysis for different proportion values. As discussed in Subsection 2.2.2.1, the system 

stochastic transitional probability matrix (STPM) is used to evaluate the failure rates and repair times.     

3.5.1.1.2 Approximate Equations Technique 

As pointed out in Subsection 2.2.2.1, a large number of states cannot be easily modelled using 

Markov model due to the complexity associated with constructing the state space diagram and 

evaluating transitional rates of large models. Although any Markovian model can theoretically be 

extended to multi-state model, the combination of two separate Markovian models (component 

outage model and weather state model) together makes the combined model extremely intractable — 

particularly for a large number of states. Therefore, the approximate equations technique has been 

used in the literature as an alternative method to the Markov model to evaluate overlapping failure 

rate considering the phenomenon of failure bunching in bad weather. Based on whether the 

configuration of the system is series or parallel, a set of approximate equations can be derived [7], 

[10], [24]. The analysis starts by identifying all possible failure modes in all possible weather states. 

Then, the equivalent failure rate is evaluated by summing up the failure rate values of all failure 

modes. For instance, a two-parallel component system with two weather states has four mutually 

exclusive failure modes: 

a) The first component fails in normal weather and the second component fails in normal weather. 

b) The first component fails in normal weather and the second component fails in bad weather. 

c) The first component fails in bad weather and the second component fails in normal weather. 

d) The first component fails in bad weather and the second component fails in bad weather. 

The second failure mode, for example, means that the first component fails in normal weather. While 

it is in an outage state, the weather condition changes to bad and then the second component fails. 

The consequence of the second failure mode is a failure of two-parallel component systems due to 

overlapping failures of both components in different weather conditions. 

As described above, the second failure occurs during the outage time of the first component. This 

outage time could be one of two situations: 1) the repair time in which the component is being 

repaired; or 2) the wait time until bad weather improves as well as the repair time during which the 

component is being repaired. The first situation leads to a repair scenario that assumes repair can be 
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performed during any weather condition, either normal or bad. The second situation leads to another 

repair scenario where repair cannot be performed during bad weather. Both repair scenarios are 

considered to deduce the failure rate equations. 

o Repair can be performed during bad weather 

The failure rate value of each failure mode can be calculated using equations (3.20) – (3.23), as 

discussed in [7], [10], [24]: 
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Where r1 and r2 are the average repair durations of component 1 and component 2 respectively. Thus, 

the overall failure rate is: 

dcbap  
 

(3.24) 

 

o Repair cannot be performed during bad weather 

The failure rate equations of the failure modes are given by (3.25) – (3.28), as discussed in [7], [10], 

[24]: 
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The total average failure rate is: 

dcbap  
 

(3.29) 

 

Similarly to the Markov model, the overlapping failure analysis using approximate equations 

considering the effect of weather can be extended to any number of weather states. 

With regards to the incorporation of weather effect into the evaluation of repair time using the 

Probabilities of Weather Conditions Approach, two main repair scenarios have been considered in the 

literature. The first repair scenario is repair can be performed during bad weather whereas the second 

repair scenario is repair cannot be performed during bad weather. The substantial difference between 

the two scenarios is the outage time. The outage time is longer when the repair cannot be performed 

in bad weather because the outage time would involve both actual average repair time as well as the 

duration of bad weather. 

As pointed out previously, the probabilities of Weather Conditions Approach is used to evaluate 

overlapping failure rate and repair time caused by failure bunching in bad weather for parallel 

redundant components. These overlapping indices can be used as part of a network reduction process 

or minimal cut set analysis to evaluate load-point indices and then distribution system indices. 

3.5.1.2 Time-Varying Weight Factor Approach 

The concept of time-varying weight factors has been introduced in the literature to incorporate the 

effect of weather conditions into component failure rate and repair time [33]. Since the Probabilities 

of Weather Conditions Approach focuses on the evaluation of overlapping reliability indices for a 

parallel redundant system, the Time-Varying Weight Factor Approach has been introduced to 

evaluate reliability indices for both series and parallel connected components. A number of time-

varying weight factors are introduced to represent the time-varying nature of component behaviour 

during different weather conditions. The failure rate is calculated in this approach as a time-varying 

value obtained using the average failure rate in normal weather weighted by a weather factor [33]. 

Thus, component time-varying failure rate (TVFR), λt, can be evaluated as follows:  
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Ntt w    (3.30) 

Where wt is the time-varying weather weight factor and λN is the failure rate in normal weather.  

The weather factor, wt, is obtained from past experience during different seasons. 

Similarly, the effect of weather on the repair process has been addressed considering the time-varying 

nature. The restoration time is considered to be varying in terms of time and weather in which repair 

is being performed. The restoration time is weighted by weather and time weight factors obtained 

from past repair experience. The weather weight factor is obtained for different weather conditions 

whereas the time weight factor represents the variations in days and hours. Considering the effect of 

weather, the time-varying repair time (TVRT), rt, is obtained by multiplying the average repair time 

by the appropriate values of weather and time weight factors as follows: 

rwwwr hdtt   (3.31) 

Where the factors wd and wh are the daily time-varying weight factor and the hourly time-varying 

weight factor respectively. Fig. 3-7 depicts an example of an hourly time-varying weather weight 

factor representation for a typical day. 

 

Fig. ‎3-7: Hourly Time-Varying Weather Weight Factor 

0.95

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
e

ig
h

t 
F

a
ct

o
r 

Hour 



 

 48 

The failure rate and repair time for each component are evaluated and then used in subsequent 

reliability analysis to evaluate load-point and distribution system indices. 

3.5.2 Predictive Weather-Based Reliability Assessment 

The prediction of system performance entails the assessment of historical reliability behaviour of the 

system in the past in addition to the assessment of alternative projects, as discussed in the 

introductory background of Section 2.1. In the context of inclusion of weather effect, the alternative 

projects are assessed in the literature by the evaluation of reliability indices in alternative weather 

state models [31], [39]. All core studies that predict reliability indices have used the Probabilities of 

Weather Conditions Approach to assess historical weather-based reliability performance. Reference 

[31] evaluated overall failure rate and repair time for a two-redundant-component transmission line 

incorporating the effect of two weather state models. The first model considered two weather states of 

normal and adverse weather conditions whereas the second model was extended to incorporate three 

weather states of normal, adverse, and major adverse weather conditions. System overlapping failure 

rate and repair time were evaluated for both alternative weather models and for different proportions 

of failures using Markov model. Reference [39] presented a reliability index segmentation method to 

evaluate weather-based distribution reliability indices for a distribution system incorporating the 

effect of a three-weather-states model: normal (N), adverse (A), and major adverse (MA). The method 

used the concept of expected value to predict system indices. The first step of prediction is to evaluate 

overall failure rate, repair time, and outage time for every load point in each weather state. For 

instance, the failure rate, repair time, and outage time values of load point j in normal weather state, 

N, is denoted as λj
N
, rj

N
, and Uj

N
 respectively. The process of obtaining these load point indices is 

similar to the process discussed in Section 2.2.2; however, only respective weather-related reliability 

data are used upon the evaluation of weather-based load point indices in particular weather states.    

Then, using the respective weather probability, distribution system indices are evaluated in each 

weather state. For example, SAIFI in normal weather, SAIFI
N
, can be evaluated using the concept of 

expected value as follows: 
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Similarly, SAIDI in normal weather is given by:  
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System indices are similarly evaluated in each weather state. The summation of system indices in 

each weather state presents the expected indices, which are given by: 

MAAN SAIFISAIFISAIFISAIFI   (3.34) 

MAAN SAIDISAIDISAIDISAIDI   (3.35) 

Using the indices of equations (3.34) and (3.35), the performance of the system is predicted for 

alternative proportions of failures. 

3.6 Main Limitations and Drawbacks in the Literature 

Indeed, all of the core weather-based reliability research efforts described in this chapter are 

commendable in terms of inclusion of weather effects on reliability. Nonetheless, the author has 

observed some opportunities for further development in these studies to overcome some limitations 

and drawbacks, which can be summarized and compiled as follows: 

1. Weather conditions have been classified in most studies into two or three weather states. In fact, 

the restriction to only a few weather states may result in placing different weather conditions into 

one weather state if their effect on reliability is relatively close. However, the effect of weather 

conditions on reliability should be carefully identified based on which weather conditions should 

be distinguished and accordingly placed in the appropriate weather states even if two or more 

weather conditions have close but different effects. 

2. The evaluation of failure rate in both historical and predictive weather-based reliability 

assessment methods introduced in the literature is usually obtained from long-run historical 

weather and failure data by looking back at the past failure behaviour of the component during 

specific weather conditions. Historical data may include component average failure rate, 

proportion of failures occurring during each bad weather condition, and average durations of bad 

and normal weather conditions. The historical failure behaviour of a component during every 



 

 50 

weather condition is represented by a set of failure rate values, each of which is expressed as the 

number of failures per year of the respective weather condition. That is, the failure behaviour 

during any given weather condition is modelled over a whole year of that particular weather. This 

practice of evaluation is mathematically valid for the purpose of developing a historical weather-

based statistical failure model for system components and conducting historical reliability 

assessment for the system; nonetheless, this practice may not help conduct a predictive weather-

based reliability assessment for two practical reasons: 

 Future weather patterns are subject to continual unpredictable variations due to globally 

observed climate-related changes [21]. Weather conditions that have occurred in the past 

cannot be guaranteed to happen again in the future with the same duration, frequency, or 

probability of occurrence. The sole dependence upon historical weather data while 

overlooking the fact that weather patterns may change in the future may result in inaccurate 

evaluation for reliability indices, and consequently may lead to misleading operational and 

planning decisions. Potential variations in weather patterns should therefore also be included 

as a feature of weather profiles. 

 The predictive weather-based reliability assessment method introduced in the literature used 

the concept of expected value to predict weather-based distribution reliability indices in 

different weather state models, where primary reliability indices in a particular weather state 

are multiplied by the respective weather probabilities. In fact, this practice of evaluation for 

weather-based predictive assessment could be considerably misleading. Most weather events 

that have profound effect on failure rate value are generally infrequent and of a short duration 

compared to prevailing normal weather conditions, which means low probability of 

occurrence for bad weather. When these low probabilities are multiplied by the very high 

value of failure rates, the outcome of multiplication is relatively small and does not reflect the 

effect of the very high value of failure rate. That is, the instantaneous stress that a bad 

weather condition may pose on the failure rate value during the actual duration of that 

particular bad weather condition in the future may not be clearly recognized and manifested. 

Therefore, it is imperative to develop a new predictive method to attentively highlight the 

instantaneous effect on failure rate value that low-probability-of-occurrence weather events 

may cause in the future. 

3. The weight factors introduced in the Time-Varying Weight Factor Approach are derived using 

rule-of-thumb principle. Inaccurate estimation to these weights would definitely result in 
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misleadingness in reliability assessment and consequently in operational and planning decision-

making. Therefore, instead of using qualitative judgment to estimate the effect of weather on 

failure rate and repair time, a quantitative assessment of the severity level of every bad weather 

condition should be developed.  

4. In terms of evaluating the repair time of a failed component, two weather-based repair scenarios 

have been introduced in the literature: 1) repair can be performed during bad weather; and 2) 

repair cannot be performed during bad weather. These two repair scenarios need further 

development to resolve three fundamental flaws. 

 First, the research works that discuss these scenarios have not introduced a methodology to 

determine which repair scenario should be chosen. 

 Second, no research works in the literature have demonstrated the effect of longer duration of 

repair performed during some improbable bad weather conditions. The time required to repair 

a failed component during bad weather might be longer than the time required during 

prevailing and favourable weather conditions. Since an average repair time index is typically 

obtained using long-run historical repair data, this longer duration of repair activity during 

bad weather represents a piece of outlier data compared to the other durations of repair in 

normal weather due to the infrequency of most bad weather events. As a result, when 

historical repair durations are averaged over large-sized data, the effect caused by bad 

weather on repair duration could not be clearly reflected on the average repair time index. 

The sole reliance on average repair time while overlooking actual repair time during 

improbable bad weather events may not help to give utilities a clear perception of the actual 

repair time or resources required to perform repair activities during such bad weather 

conditions that may occur in the future. This point is significant since most utilities recognize 

only the average repair time in most repair-related decisions. The necessity to demonstrate 

the significant effect of such outlier data has not been tackled in the literature. 

 Third, it is assumed that only one repair scenario can be applied to all components in the 

system. In fact, the limitation to only one repair decision for all components overlooks the 

reliability importance of a component (the risk) to the whole system since all components do 

not have the same level of importance in terms of repair decision. Indeed, the consequence of 

failure for some components in the system may result in higher risk than that caused by some 

other components which in turn entails giving the higher risk components higher priority for 
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repair during bad weather. This point becomes even more vital when the limitation of repair 

resources issue is considered. 

5. No studies in the literature have discussed the costs associated with performing the repair during 

bad weather conditions, nor have they investigated its cost-effectiveness. The commencement of 

performing repair activity for weather-related failed components once the failure has occurred 

rather than waiting until weather improves would definitely help reduce the outage time and 

consequently improve the reliability; nonetheless, the costs of performing the repair during bad 

weather could be higher than that incurred during normal weather and hence such reduction in 

outage time should be economically justifiable. 

3.7 Summary 

This chapter reviews the research efforts that address the effect of weather on reliability studies. First, 

the weather state models used in the literature are introduced. Second, the effect of varying weather 

conditions on component failure rate and repair time is discussed. Third, the author of this thesis 

categorizes the main efforts to address the effect of weather on reliability studies into two main 

investigations, both of which are outlined. Fourth, the author elucidates the core weather-based 

reliability research works in the literature. Finally, some opportunities for further development in the 

research work of these core weather-based reliability studies are pointed out.  
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Chapter 4 

The Proposed Weather-based Predictive Reliability 

Assessment Method 

4.1 Introduction 

The continuity of power supply is liable to inevitable power interruptions due to a range of 

interruption causes, including unfavourable weather conditions. Although most power systems are 

usually designed to sustain operation in varying weather conditions, the statistics presented in Chapter 

3 show that a power system as a whole is vulnerable to the effect of bad weather. Researchers and 

technical engineers have devoted great efforts in the area of weather-based reliability analysis to 

studying the effect of weather on reliability and developing several techniques to incorporate this 

effect into reliability assessment. However, further development efforts are still needed in this 

research area, particularly in the process of overcoming the limitations and drawbacks outlined in 

Section 3.6. Consequently, an imperative need exists to respond to these limitations and drawbacks 

effectively through the introduction of new short-term, medium-term, and long-term weather-based 

reliability analysis approaches.  

Short-term approaches should conduct a predictive reliability assessment for the power system so that 

it can predict the reliability behaviour of the system on a yearly basis and enable the appropriate 

necessary operational planning decisions to be made in advance. Medium- and long-term approaches, 

on the other hand, should facilitate the creation of a sustainable development planning strategy 

capable of mitigating and adapting to the risk associated with weather implications related to the 

reliability level of the power grid over a time horizon of 7 to 30 years. It should be emphasized that 

these approaches must take into consideration all the limitations and drawbacks presented earlier. The 

work introduced in this thesis is focused primarily on addressing the effects of weather on reliability 

over a short time horizon, and thus proposes a new weather-based reliability analysis approach called 

forecasted power system reliability analysis (FOPRA) approach. 

4.2 The New FOPRA Approach 

The FOPRA approach is a new reliability philosophy which is primarily concerned with studying the 

impact of weather on power system reliability. The focus in this thesis is on the application of 
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FOPRA approach on distribution systems. The fundamental objectives of the proposed FOPRA 

approach are as follows: 

1. Develop a new weather-based method to predict the performance of distribution systems in the 

future; and 

2. Develop a new methodical weather-based decision-making repair model for distribution system 

components. 

Thus, FOPRA approach comprises two new concepts: 

1. The concept of weather-based predictive reliability assessment method (PRAM); and 

2. The concept of weather-based decision-making repair model (DMARM). 

The PRAM method aims to predict the reliability level of the distribution system by taking into 

consideration the effect of future weather forecast and different repair scenarios. The DMARM model 

aims to allocate repair resources for distribution system components in a cost-effective manner. The 

implementation process of the proposed FOPRA approach is shown in Fig. 4-1. 

 

Data Initialization

Historical Reliability Assessment

Effective Predictive Reliability Assessment

Weather Forecast

Risk Cost Analysis

Optimization Optimal System Reliability Level

 

 

Fig. ‎4-1: Implementation Process of FOPRA Approach 

The methodology of the weather-based predictive reliability assessment method (PRAM) is discussed 

in this chapter while the methodical weather-based decision-making repair model (DMARM) is 

introduced in Chapter 5. 



 

 55 

4.3 The Concept of Weather-based Predictive Reliability Assessment Method 

The objective of this new PRAM method is to develop a new methodology to incorporate the effect of 

weather into reliability indices. The new methodology is essentially developed to help predict the 

weather-based reliability behaviour of a distribution system by taking into account the forecast of the 

weather conditions to which distribution system components will be exposed over a particular future 

period as well as the historical system reliability behaviour under a variety of past weather conditions. 

The achievement of this objective can offer utilities an indication of how the system would behave in 

the future, which in turn could help utilities make appropriate necessary operational and planning 

decisions. The introduced PRAM method involves four main stages: 

1. Data Initialization; 

2. Historical Reliability Assessment; 

3. Weather Forecast; and 

4. Effective Predictive Reliability Assessment. 

Two sets of data are initialized in the first stage, which are subsequently used to evaluate some 

reliability parameters in the second stage. In the second stage, a historical reliability assessment is 

conducted including decomposition of the component’s average failure rate value obtained from 

historical data into two sets of segmented values in terms of: 1) the number of failures occurring 

during every weather condition; and 2) the number of failures occurring during every month. A 

predictive reliability assessment is conducted in the fourth stage over a future time horizon of one 

year. The first month of that year (the first month to be considered in the calculation) is called the 

forecasted month and is designated as FM. The determination of this month among the forecasted 

year’s‎months‎is‎a‎utility‎decision.‎The‎FM‎could‎be‎identified‎as‎the‎first‎month‎of‎the‎calendar year 

(i.e., January), the month that has been historically observed to have a higher number of failures, or 

the month that has the least amount of historical recognized weather-based failure data. The rule of 

determining the FM may differ from one utility to another. For a typical day (24 hours) from the FM, 

weather forecast data are imported to be used in evaluating a new proposed set of component 

reliability indices. The new proposed indices, which measure the predicted performance of the 

component during that particular day, are subsequently normalized to represent the predicted 

performance of the component during the FM. The predictive reliability indices of the component 

during the FM are used in conjunction with the historical reliability indices during the other eleven 

months to evaluate a new set of proposed component effective reliability indices, which represents the 
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predicted performance of the component over a future year. The new PRAM method introduced in 

this thesis satisfies the main steps of predictive reliability assessment outlined in Section 2.1. 

More details about the implementation of PRAM stages are discussed in the subsequent sections. 

4.3.1 Stage 1: Data Initialization 

The first stage of the proposed PRAM method involves identifying a set of historical weather, outage, 

and customer data. Weather and outage data are used to develop statistical failure and repair models 

for each component in the system and to develop historical weather models. Customer data are used 

upon the evaluation of distribution system indices and reliability cost/worth indices. Fig. 4-2 depicts 

the required data to be initialized. 

Start

Weather Data

Identify all recorded bad 

weather conditions

Identify average duration 

of each historical bad 

weather condition

Identify average duration 

of historical normal 

weather condition

Outage Data

Identify average failure 

rate and average repair 

time of each component

Identify proportion of 

failures occurring in every 

bad weather condition 

Identify proportion of 

failures occurring in every 

month 

 Customer Data

Identify number of 

customers at each load 

point

Identify type of customers 

and their average load 

demand

Stage 2
 

Fig. ‎4-2: Data Initialization Process 
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4.3.1.1 Weather Data 

In FOPRA approach, weather conditions are broadly classified from a reliability perspective into two 

main categories: normal (N) and bad (B) weather conditions. Normal weather is defined as the 

favourable and prevailing weather conditions to which a component is usually exposed or under 

which it normally operates, and whose contribution to the forced failure of the component is either 

none or negligible. In contrast, any weather condition proven to cause noticeable forced failure for the 

component is classified as bad weather condition. Thus, based on this classification, historical data for 

the weather conditions to which each component in the distribution system was exposed should be 

collected and processed to yield the following information: 

 The number and average durations of all historically recorded bad weather conditions; and 

 The average duration of normal weather. 

In FOPRA approach, every bad weather condition is modelled as a separate weather state, which 

gives the reliability assessment more insight into and a deeper understanding of bad weather’s effect 

upon reliability. The collection of weather statistics must consider all historical periods of normal and 

bad weather conditions regardless of the number of failure events occurring during any given period, 

as emphasized in [10]. While historical weather data could be obtained from governmental weather 

centres, utilities are recommended to develop their own weather-related reliability-based records. 

4.3.1.2 Outage and Customer Data 

The outage data are records of historical reliability data collected for each component in the system 

and include the following:  

1. The average failure rate (λ) per year; 

2. The average repair time (r) in hours; 

3. The proportion of failures (PoFBi) occurring in every bad weather Bi; and 

4. The proportion of failures (PoFm) occurring in every month m. 

The concept of proportion of failures (PoFB) occurring in bad weather B was introduced in the 

literature to facilitate the evaluation of the failure rate in bad weather conditions. The aim is to find 

the percentage of failures occurring during every bad weather condition, as discussed in detail in 

Section 3.5. Similarly, the proposed FOPRA approach extends the concept of proportion of failures to 

involve the allocation of failure events according to the month in which the failures occurred. Thus, 

the concept of proportion of failures (PoFm) occurring in month m is introduced in this thesis in order 
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to identify the percentage of failures occurring in every month m. The proportion of failures occurring 

in every month is identified for each component in the system from historical failure records, 

regardless of failure causes. Monthly failure data are usually available in most utilities; however, a 

sensitive analysis for 0 ≤‎PoFm ≤‎1 could be carried out if PoFm cannot be identified or estimated. 

More details about the identification of PoFm are discussed in Section 4.3.2.3. 

Customer data include number of customers at each load point as well as customer type (e.g., 

residential, industrial, etc.) and customer average load demand. 

4.3.2 Stage 2: Historical Reliability Assessment 

The primary goal of this stage is to assess the historical reliability performance of the distribution 

system components by evaluating a set of historical parameters. For all distribution system 

components, the available historical data are analyzed to evaluate historical failure rates during 

normal and bad weather conditions, to assess the seriousness of the recorded bad weather with respect 

to component failure, and to evaluate historical failure rates during every month. The steps of the 

historical reliability assessment stage are depicted in Fig. 4-3. 

Stage 1

Evaluate historical failure rate in normal weather 

for each component   

Evaluate historical failure rate(s) in bad weather 

for each component   

Evaluate bad-weather severity weight of failure of 

each component for every bad weather condition

Evaluate historical failure rates during every month 

for each component   

Stage 3
 

Fig. ‎4-3: Historical Reliability Assessment Process 
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4.3.2.1 Evaluate historical failure rates in normal and bad weather conditions   

As pointed out at the beginning of Section 4.3, historical component average failure rate is 

decomposed into two sets of segmented values. The first segment is expressed in terms of the number 

of failures occurring during every historical weather condition. The evaluation of these historical 

weather-based failure rate values is discussed in Section 3.5 through equations (3.14d) and (3.17e). 

The Probabilities of Weather Conditions Approach, discussed in Section 3.5, is used in this thesis to 

evaluate component failure rates in normal and bad weather conditions. Thus, component failure rates 

in normal weather N and in bad weather Bi can be evaluated using equations (4.1) and (4.2) 

respectively. 
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Terms and symbols of equations (4.1) and (4.2) have already been defined in Chapter 3; however, for 

the sake of coherence, they are redefined in this chapter as follows: 

λN Component average failure rate during normal weather (f/year of normal weather); 

λ Component average failure rate (f/year); 

TN Average duration of normal weather (h); 

TBi Average duration of bad weather Bi (h); 

NB Total number of recorded bad weather conditions; 

PoFBi Proportion of failures that occurred during bad weather Bi; and 

λBi Component average failure rate during bad weather Bi (f/year of bad weather Bi). 

4.3.2.2 Evaluate the severity level of bad weather on component failure 

The severity level of bad weather with respect to component failure should be evaluated for every 

recorded bad weather condition in order to perceive the effect that a bad weather condition may cause 

to the failure rate value. Thus, a new bad-weather severity weight of failure wf is introduced in this 

thesis, and is given by: 
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(4.3) 

Where the weight wfBi represents the multiplier increase that a bad weather condition Bi contributes to 

the value of component failure rate in normal weather, and it is valid for λN > 0. 

4.3.2.3 Evaluate historical failure rates during every month 

FOPRA approach introduces a new representation of the component average failure rate value. In this 

step, the average failure rate is decomposed into a set of segmented failure rate values, each of which 

is expressed as the number of failures per month. The representation of failure rate on a short-term 

basis (monthly basis in this thesis) can help to demonstrate the effect of low-probability-of-

occurrence failure causes, especially those related to bad weather events. According to [31], the effect 

of extremely adverse weather conditions on the long-term system reliability indices is negligible due 

to the infrequency and the short duration of these weather conditions. Since it is extremely difficult to 

categorize and set apart historical weather-related failures into a monthly basis, all failures, 

irrespective of their causes, are allocated on a monthly basis. 

Component failure rate in month m, expressed in failures per month (λm), can be derived using the 

concept of expected value from the average component failure rate value expressed in the number of 

failures per year, the number of days of that particular month (NDm), and the total number of days in 

the year (TND). An average component failure rate expressed in the number of failures per year can 

be given as:  
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Equation (4.4a) can be expanded to the whole year as: 
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Thus, component failure rate in the month of January can be expressed by the number of failures per 

month as follows: 
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(4.4e) 

Finally, component failure rate during the month of January can be written as: 
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Where the proportion of failures that occurred during the month of January (PoFJan.) is given by: 
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Thus, component failure rate at any given month m, in terms of number of failures per month, can be 

expressed in a generalized form as:  

m
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By the end of Stage 2, the following reliability parameters are identified for each component: λN, λBi 

for all Bi, wfBi for all Bi, and λm for all m. 
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4.3.3 Stage 3: Weather Forecast 

The determination of the FM is followed by the determination of a typical day from the FM, the 

weather of which is presumed to represent the common and prevailing weather of the whole month of 

FM. This day is called the forecasted day and is denoted as FD. The determination of the FD could be 

identified based on historical weather data or based on long-term weather forecasting.The objective of 

this stage is to forecast the state of the atmosphere during the FD for the geographic areas where 

distribution system components are located. The purpose of the forecast is to check whether any of 

the recorded bad weather conditions that caused component failure in the past are expected to occur 

within a specific window of time in the future. This window of time is referred to as the forecast 

period which represents the duration of the FD, designated as TF, and expressed in hours. 

Several forecasting methods are employed by meteorologists to forecast weather conditions 

including, for instance, persistence, trends, climatology, analog, and numerical weather prediction 

(NWP). The choice of forecasting method is dependent on the application for which the weather 

forecast is required and the degree of accuracy that is needed [55]. The NWP method is considered 

the most accurate method, especially for the short-term prediction of major weather conditions [55], 

[56]. 

The NWP is a computer-based forecasting model whose fundamental concept is the use of the 

physical laws that govern the atmosphere to express current atmospheric observations as 

mathematical models for predicting the future evolution of the atmosphere [56]–[58]. The extreme 

complexity of this process requires supercomputers that are available only at meteorological centres 

and some research centres, such as the Canadian Meteorological Centre (CMC). These centres 

produce weather forecast maps and statistics, and provide local commercial weather forecast 

companies, such as AccuWeather, with raw data [59]. 

A weather pattern is typically chaotic and unpredictable, which consequently makes forecasting 

weather patterns over the long range less accurate [60]. For this reason, the forecast period in this 

thesis has been chosen to be short in order to obtain weather data with a high degree of spatial 

resolution. Using short-term weather forecasts also helps to highlight any changes in historical 

weather patterns and facilitates recognition of improbable weather incidents. According to [60], a 

short-range forecast period can be defined as extending up to 48 hours. Bad weather events are 

assumed to be mutually exclusive events. That is, if a bad weather condition is forecasted to occur at 

a specific hour t, then all other bad weather conditions are precluded at that particular hour. Thus, for 

the designated locations and over the forecast period, the following real-time weather forecasted data 
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are imported once at the beginning of the forecast period from the appropriate local weather forecast 

centre: 

 The frequency and interval of normal and bad weather conditions; and 

 The probability of occurrence of bad weather conditions at every forecasted bad-weather hour. 

For safety purposes, if a bad weather condition is forecasted to occur over a particular period of time 

but the probability of occurrence is not available or cannot be accurately estimated, then the 

probability of occurrence of that bad weather condition is considered unity during every hour of that 

particular period of time.   

It should be highly emphasized that if the probability of occurrence of a bad weather Bi at any hour t, 

PoBi,t, is greater than zero, then that hour is designated as a bad-weather hour even if Bi is forecasted 

to last for less than 60 minutes. The forecast period TF is thus defined as follows:  

 FT
 

(4.8) 

Where the weather parameters α and β denote the forecasted durations in hours of normal and all bad 

weather conditions respectively. The forecasted duration of all bad weather conditions, β, is given by: 
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Where βBi represents the forecasted duration in hours of bad weather condition Bi. Fig. 4-4 shows the 

main steps of this stage.  
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Stage 2

Identify the forecast period (TF)

Identify the frequency and interval of normal and bad 

weather conditions

Identify the probability of occurrence of bad weather 

conditions at every forecasted bad-weather hour

Stage 4
 

Fig. ‎4-4: Weather Forecast Process 

4.3.4 Stage 4: Effective Predictive Reliability Assessment 

The prediction of system reliability performance over a certain time period in the future necessitates 

combining historical reliability performance and mathematical models to predict the response of the 

system to alternative plans. The assessment of historical performance has been discussed in Stage 2 

while the mathematical models used to measure the response of the system are introduced in this 

stage through the introduction of new sets of predictive reliability indices. This stage is comprised of 

the following steps: 

1. Evaluation of component forecasted reliability indices; 

2. Evaluation of component effective reliability indices; 

3. Evaluation of load-point reliability indices; and 

4. Evaluation of distribution system reliability indices. 

In this stage, two new proposed sets of reliability indices are evaluated for each component in the 

distribution system. The first set of reliability indices include the new indices of forecasted failure 

rate (FFR) and forecasted repair rate (FRR), both of which are evaluated on a daily basis based on the 

weather forecast data of the FD and subsequently normalized on a monthly basis. The FRR is 

evaluated based on two repair scenarios: 1) repair can be performed during bad weather; and 2) repair 
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cannot be performed during bad weather. Since the FFR and FRR are evaluated for a typical day of a 

particular FM, their monthly-based normalized values are deemed to represent the forecasted 

reliability performance of the component during that particular month. The evaluation of FFR and 

FRR are presented using two evaluation techniques in this thesis: analytical and MCS. After the 

evaluation of component FFR and FRR during the FM, the historical monthly-based failure rates 

evaluated at Stage 2 are used to represent the reliability failure behaviour of the component during the 

respective remaining elven months. Then, the historical eleven monthly-based failure rates are 

combined with the FFR using a new mathematical model introduced in this thesis. Since data 

collection schemes of most utilities do not recognize the evaluation of repair time on a monthly basis, 

component average repair time identified at Stage 1 is combined with the reciprocal of FRR, which is 

the forecasted repair time (FRT), r
F
. The new combined reliability indices represent the second new 

proposed set of reliability indices, which are referred to as effective failure rate (EFR) and effective 

repair time (ERT). The EFR and ERT values for all components are thereafter used to evaluate 

reliability indices for load points and then distribution reliability indices.   

The methodologies of evaluating all of these indices are discussed in the following sections. 

4.3.4.1 Component Forecasted Reliability Indices (Analytical)  

The main goal of this step is to predict the performance of distribution system components upon 

exposure to the weather conditions that are forecasted to occur over a predetermined forecast period 

of a particular FD in the future. Based on the historical perception of component weather-based 

performance, weather forecasted data are interpreted into a reliability language that can describe in 

terms of reliability indices the predicted reliability behaviour of the component in the future. This 

prediction is measured using the proposed new set of forecasted reliability indices: FFR and FRT. 

The objective of introducing this new set of forecasted indices is to clearly identify the effect of 

weather on the prediction of component behaviour. 

The proposed forecasted indices are evaluated on a short-term basis, per every TF period of time, for 

two fundamental reasons:  

 To ensure a high degree of accuracy with respect to the incorporation of weather forecast data 

into the indices; and 

 To provide clear evidence of the effect of bad weather conditions, particularly those weather 

events associated with a low probability of occurrence in spite of their profound effects on system 

reliability. Because most weather events that affect system reliability are generally infrequent and 
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of a short duration [10], evaluating reliability indices on a long-term basis might not render their 

effects readily apparent. 

The operational states of a repairable distribution system component in the context of weather 

forecast variation can be represented using the two-state model depicted in Fig. 4-5, where λ
F
 and μ

F
 

are the forecasted failure rate (FFR) and the forecasted repair rate (FRR), respectively. The proposed 

FFR and FRR introduced in this thesis are functions of the forecasted weather conditions to which the 

component is exposed and are assumed to be constant for the designated forecast period TF. That is, 

FFR and FRR are evaluated per TF and are updated for every TF period. The inevitable uncertainty 

associated with weather forecast is taken into account in the evaluations of both FFR and FRR. The 

originality of the new forecasted indices lies in the mathematical combination of the historical failure 

behaviour and repair process of the system under specific weather conditions together with the 

forecasted weather conditions to which the system is expected to be exposed over a particular forecast 

period. 

UP DOWN

λF 

µF 
 

Fig. ‎4-5: Forecasted Two-State Component Outage Model 

The following subsections outline the process of obtaining FFR and FRR for each component in the 

system using analytical equations. The methodology introduced in this thesis to evaluate the 

forecasted reliability indices is described to a common weather environment; however, it is applicable 

to any type of varying weather condition. 

4.3.4.1.1 Forecasted Failure Rate (FFR) 

The proposed FFR, λ
F
, represents the component forecasted failure rate and is expressed as the 

number of failures per TF. The FFR varies in accordance with the variations of weather conditions to 

which the component is expected to be exposed. The FFR describes the forecasted failure behaviour 

of the component over the forecast period using a set of hourly weather-based discrete states. Each 

hourly state describes the component failure rate at that hour by considering the forecast of weather 

and the probability of bad weather occurrence at that particular hour. The FFR, λ
F
, of a component 

can be obtained from the following equation: 
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(4.10) 

This equation is explained in the following sentences. The concept of expected value is used to 

average the hourly variation of component failure rate over the forecast period TF. The process starts 

by evaluating the forecasted failure rate at every hour. If the weather forecasted data indicate that a 

historically recorded bad weather condition Bi is expected to occur at an hour t with a probability of 

occurrence PoBi,t, then the respective component historical failure rate in that particular bad weather 

condition is multiplied by the imported probability of occurrence PoBi,t. Moreover, for the same hour 

t that has been expected to have the bad weather Bi with the probability of occurrence PoBi,t, if the 

PoBi,t at that hour is less than 1, then the complement of PoBi,t (i.e., 1 – PoBi,t) is also multiplied by 

the historical failure rate in normal weather. Therefore, the forecasted failure rate of the component at 

any given hour is obtained using the PoBi,t multiplied by the respective λBi plus the complement of 

PoBi,t multiplied by the λN. As pointed out earlier, bad weather conditions are assumed to be mutually 

exclusive events at any given hour t. If the forecasted weather data indicate that no bad weather is 

forecasted to occur at an hour t, then the historical failure rate in normal weather is used to represent 

the failure rate of the component during that hour. This process is repeated for every hour over the 

forecast period where the occurrence of all NB historically recorded bad weather conditions should be 

checked. The failure rate values at each hour are summed up and the result is divided by the total 

number of hours in the year, 8760 hours. The same process is applied to all distribution system 

components.    

4.3.4.1.2 Forecasted Repair Rate (FRR) 

Any repairable component with a two-state outage model is generally in either an up or a down state. 

The time period during which the component is in a down state and being repaired is called 

downtime, and its average value represents component average repair time, r. When the effect of 

weather is considered in the repair process, two repair scenarios exist: the repair can be performed 

during bad weather, and the repair cannot be performed during bad weather. The evaluation of the 

proposed FRR considers both repair scenarios. However, it should be emphasized that when repair 

activity is assigned to be performed during a bad weather condition, then this assignment should 

adhere to safety rules and regulations developed and set by the governmental electricity regulatory 

authority.    
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 Repair can be performed during bad weather: 

The condition of weather at the time when repair activity is performed has a considerable effect 

on the repair process, mainly on the duration of repair. The time required to repair a failed 

component during bad weather is usually longer than that required during prevailing and 

favourable weather conditions. Nonetheless, this increase in repair duration is not clearly 

demonstrated in the average repair time index, as discussed in Section 3.6. Therefore, the severity 

of bad weather should be reflected in the evaluation of repair rate. This thesis proposes a new 

method to evaluate component repair rate where the duration of repair is proportional to the 

severity of weather. Assuming the repair is permissible during bad weather, the FRR, μ
F
, of a 

component, expressed as number of repairs per TF (repair/TF), can be given by: 
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Equation (4.11) is explained in the following sentences. The process of evaluating FRR is similar 

to the process of evaluating FFR. Likewise, the repair rate at any hour t is comprised of two parts. 

The first part represents the repair rate in bad weather multiplied by the appropriate probability of 

bad weather occurrence whereas the second part represents the repair rate in normal weather 

multiplied by the complement of probability of bad weather occurrence. To reflect the severity of 

bad weather on the evaluation of repair rate, if a bad weather condition Bi is forecasted to occur at 

an hour t with a probability of occurrence PoBi,t, then the average repair time in the first part is 

multiplied by the respective bad-weather severity weight of failure wfBi. 

 Repair cannot be performed during bad weather: 

The second repair scenario entails waiting until the bad weather conditions have ended before 

commencing the repair activity. This waiting time mainly corresponds to the bad weather 

duration β. However, if β is composed of small periods throughout the forecast period during 

which the duration of forecasted hours of normal weather that lie between the periods of β is 

shorter than the repair time r, then repair activity cannot be performed during these forecasted 

hours of normal weather because the full repair activity cannot be completed before the beginning 

of the next forecasted bad weather period. Consequently, the duration of such no-repair interval 

periods of forecasted hours of normal weather should also be involved in the waiting time, which 
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is‎ designated‎ as‎ γ‎ and‎ expressed‎ in‎ hours,‎ where‎ γ‎ ≤‎ α.‎ That‎ is,‎ the‎ term‎ γ‎ is‎ defined‎ as‎ the‎

summation of all interval periods of normal-weather hours with each period meeting the 

following conditions: 1) precedes and/or follows a bad-weather period(s); and 2) has a duration 

that is less than the time required for completing the full repair activity. Since the assessment is 

conducted on a short-term basis, this waiting time should be reflected in the repair rate 

calculations. Assuming that no repair is performed during the bad weather, the FRR, μ
F
, of a 

component is given by:  
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(4.12) 

The term FDT denotes the forecasted downtime expressed in hours, which can be determined as 

follows: 
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Where TPoB is the total probabilities of occurrences of bad weather conditions, evaluated as follows: 


 


FT

t

NB

i

tiPoBTPoB
1 1

,  
(4.14) 

Regardless of the repair scenario considered, the reciprocal of the forecasted repair rate designates the 

forecasted time required to restore the component, which is the forecasted repair time (FRT), r
F
. 

4.3.4.2 Component Forecasted Reliability Indices (Monte Carlo Simulation) 

The methodology used to obtain component FFR and FRT has been introduced in the previous 

subsection using a set of analytical equations, the main core of which is the novelty of evaluating 

these forecasted indices as predictive quantities that consider the historical reliability assessment and 

the future weather forecast data. This subsection presents the process of obtaining component FFR 

and FRT using MCS technique, which can be used as an alternative evaluation technique or to 

validate the results obtained from the analytical method.  

The process to evaluate component FFR and FRT using MCS are discussed herein. In the analytical 

technique, an hour t is designated as a bad-weather hour if the probability of occurrence of that bad 

weather at that hour, PoBi,t, is greater than zero. However, in this section the forecasted weather 
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condition for every hour is modelled by MCS using the imported PoBi,t. Thus, the process of 

evaluating component forecasted reliability indices can be summarized as follows:    

1. Initialize the duration of bad weather Bi (βBi = 0). 

2. Check the chance of having bad weather Bi at every hour t throughout the forecast period TF. If 

hour t is forecasted to have a bad weather Bi with PoBi,t > 0, then generate a uniform random 

number R in the interval (0,1). 

3. If R ≤‎PoBi,t, then this hour is deemed to be bad Bi and the duration of Bi is updated to be βBi = 

βBi+1; otherwise, this hour is deemed to be normal N (βBi = βBi+0). 

4. Repeat steps 1 – 3 for every hour t to find the total duration of bad weather Bi, βBi. 

5. Repeat steps 1 – 4 for all recorded NB number of bad weather conditions. 

6. Calculate the total duration of all bad weather conditions, β, in hours as follows: 
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7. Calculate the duration of normal weather, α, in hours as follows: 

  FT
 

(4.16) 

8. Evaluate the forecasted failure rate (f/TF) using the concept of expected value: 
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(4.17) 

The λ
F
 of the component over the forecasted period TF is evaluated by multiplying the forecasted 

duration of every weather condition by the respective historical failure rate of that particular 

weather divided by the 8760 duration hours of the year. 

9. If repair can be performed during bad weather, go to step 10; otherwise, go to step 12. 

10. The severity associated with performing repair activity during bad weather conditions should be 

reflected in the calculation of the repair rate equation. To make this calculation, the repair time 

required to repair a component during a bad weather condition should be expressed in terms of 

the severity weight of that particular bad weather condition. Therefore, the forecasted repair rate, 

μ
F
, (rep/TF) of a component is evaluated as follows: 
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The μ
F
 is found by summing up the multiplication of forecasted duration of normal weather by 

the reciprocal of the average repair time and the multiplication of forecasted duration of every 

bad weather condition by the reciprocal of the average repair time and the reciprocal of the 

respective bad-weather severity weight of failure wfBi. 

11. Go to step 14. 

12. Identify‎γ‎(h),‎which‎represents‎the‎total‎duration‎of‎all‎interval‎periods‎of‎normal-weather hours 

that lie between the interval periods of bad-weather hours where the duration of each individual 

interval period of those normal-weather hours is less than that of the repair time. 

13. Evaluate the forecasted repair rate, μ
F
, (rep/TF) as follows: 
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(4.19) 

14. Evaluate the forecasted repair time, r
F
, (h): 

FF

F Tr


1
  

(4.20) 

15. Repeat steps 1–14 for a desired number of simulations until acceptable values of λ
F
 and r

F 
are 

reached. 

16. Repeat steps 1–15 for each component in the system. 

4.3.4.3 Component Effective Reliability Indices 

As discussed in the literature review chapter, the major limitation of the conventional method to 

evaluate component average failure rate and repair time is that the conventional method cannot 

clearly demonstrate the effect of bad weather on these averaged indices. This incapability of 

demonstrating this effect is due to the infrequency and short duration of most improbable bad weather 

events. Therefore, the proposed FOPRA approach introduces the concept of effective failure rate 

(EFR) and effective repair time (ERT) to overcome the limitations of the conventional averaged 

values of failure rate and repair time. 

When the FM is identified and the associated FFR and FRT are evaluated for each component in the 

system, then the historical monthly basis reliability indices of the remaining eleven months are 

combined with the typical FFR and FRT in order to derive the new set of EFR and ERT. The EFR 

and ERT are evaluated on a yearly basis using equations (4.21) and (4.22), respectively. 
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Where  

λ
E
 Component effective failure rate (f/year); 

NDm
F
 Number of days of the FM. The weather forecast data for a typical day of this FM are 

imported from the weather forecast centre; 

r
E
 Component effective repair time (h); and 

rm Component average repair time during month m (h). 

In equation (4.21), the FFR, evaluated for a given typical FD in a given FM, is annualized to be 

expressed on a one-year basis. Likewise, the historical monthly basis failure rates are also annualized. 

The term rm is introduced in equation (4.22) to add more resolution to the evaluation of an equivalent 

repair time. Nevertheless, if rm is not available, which is the case in most utilities, then the average 

repair time r is used instead. 

Equations (4.21) and (4.22) show the significance of recognizing the evaluation of λm, λ
F
, rm and r

F
 to 

manifest their effects on λ
E
 and r

E
, which should be used in reliability analysis instead of the 

conventional λ and r. These effects are clearly demonstrated in the case study presented in Chapter 6. 

4.3.4.4 Load-Point Reliability Indices 

The EFR and ERT, evaluated for each component, are used to evaluate the basic indices of 

distribution system load points. These load point indices include effective failure rate, effective repair 

time, and effective outage time for each load point. The purpose of evaluating these indices is to 

measure the reliability level at each load point and identify critical customers. 

Based on the system configuration, a variety of evaluation techniques are available for evaluating the 

effective load point indices. Section 2.2.2 discusses in detail the principle of these techniques. 
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4.3.4.5 Distribution System Reliability Indices    

Load point indices can help measure the reliability level for system load points; however, additional 

distribution reliability indices are required to understand the complete behaviour of the system. These 

distribution reliability indices are referred to as customer- and energy-based indices. The evaluation 

of these indices, discussed in Section 2.5.3, is recalled in this chapter for the sake of coherence. The 

conventional load-point failure rate, repair time, and outage time used to evaluate the customer- and 

energy-based indices are replaced by their respective effective load-point indices, as follows: 

 System average interruption frequency index, SAIFI (interruption/customer yr); 

 System average interruption duration index, SAIDI (h/customer yr); 

 Customer average interruption duration index, CAIDI (h/customer interruption); 

 Energy not supplied index, ENS (kWh/yr); 

 Average service unavailability index, ASUI; and 

 Average service availability index, ASAI. 
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(4.28) 

Where 

E

j  Effective failure rate for load point j (f/yr); 

Nj Number of customers connected to load point j; 

NP Number of load points in the distribution system; 

E

jU  Effective annual outage time for load point j (h/yr); and 

Lj Average load connected to load point j (kW). 

The general process of Stage 4 is conceptually summarized in Fig. 4-6. 
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Stage 3

Component k

Evaluate forecasted failure rate (λF)

Repair in bad No 

Evaluate total probabilities of occurrences 

of bad weather conditions (TPoB) Yes

Evaluate forecasted repair rate (µF) 

using eq. (4.11)
Evaluate forecasted downtime (FDT)

Evaluate forecasted repair rate (µF) using 

eq. (4.13)
Evaluate forecasted repair time (rF)

Evaluate effective failure rate (λE)

Evaluate effective repair time (rE)

Another component

Yes

k = k +1

No

Evaluate effective load point 
reliability indices

Evaluate distribution system 

reliability indices   

End
  

Fig. ‎4-6: Process of Indices Evaluation 
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4.4 Summary 

This chapter introduces the proposed FOPRA approach and its two main concepts of PRAM method 

and DMARM model. The PRAM method has four main stages: data initialization, historical 

reliability assessment, weather forecast, and effective predictive reliability assessment; all of which 

are explained in detail. In the first stage, a set of historical weather, outage, and customer data is 

collected. The historical average failure rate value is decomposed into two sets of segmented failure 

rate values in the second stage. The new bad-weather severity weight of failure is evaluated in the 

second stage. The required weather forecast parameters are defined in Stage 3. In Stage 4, the new 

forecasted and effective reliability indices are introduced, and their evaluation methods are explained. 

The DMARM model is discussed in the next chapter. 
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Chapter 5 

The Proposed Weather-based Decision-making Repair 

Model 

5.1 Introduction 

The deregulation and competition of the power market have placed great pressure on utilities to 

supply customers with a satisfactory level of reliability, which in turn may lead to higher costs in both 

design and operation stages. Therefore, the need for utilities to strike a balance between fulfilling 

customer demand for reliably and managing the associated costs effectively has become a vital 

practice within utilities’‎asset‎management‎strategies. 

Restoration of failed components in a timely manner is an essential activity of a utility to reduce the 

outage time associated with a failure event. Reducing the outage time is of paramount importance to 

improve the overall level of system reliability. Solely from a reliability perspective, a component of a 

power system should be repaired once it experiences a failure event; nevertheless, the repair decision 

is governed by several factors that may defer the commencement of repair activity. Most important 

among these factors is the availability of repair resources at the time of failure occurrence as well as 

the severity of bad weather condition during which the repair activity is performed. The proposed 

FOPRA approach introduced in this thesis comprises two main concepts: the weather-based 

predictive reliability assessment method (PRAM) and the weather-based decision-making repair 

model (DMARM). The first concept is discussed in Chapter 4 while the second concept is introduced 

in this chapter. 

5.2 The Concept of Weather-based Decision-making Repair Model 

The previous chapter discusses the prediction of distribution system reliability performance over a 

future study period of one year through the introduced concept of PRAM using the newly proposed 

effective reliability indices. These effective reliability indices are evaluated by combining both 1) the 

forecasted reliability indices obtained for the future FM based on the forecast of the weather 

conditions of the predetermined typical FD; and 2) the historical reliability indices of the remaining 

eleven months. The forecasted reliability indices are FFR and FRR. The FRR is evaluated for two 

repair scenarios: 1) repair can be performed during bad weather; and 2) repair cannot be performed 
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during bad weather. Thus, effective reliability indices are evaluated twice for each repair scenario. 

The axiomatic question arising herein is: Which repair scenario should be chosen for each component 

to evaluate effective reliability indices that can be used in subsequent reliability analysis? In order to 

determine which repair scenario should be chosen, an exhaustive investigation should be carried out 

for all components in the system where the cost-effectiveness of both repair scenarios is examined. 

Therefore, this thesis proposes a new weather-based decision-making repair model (DMARM), the 

objective of which is to investigate the cost-effectiveness of performing repair activities for failed 

components during bad weather conditions and then determine the most cost-effective repair decision 

for all system components. The most cost-effective repair decision is the decision that achieves 

minimizing the total cost while the level of reliability is maximized. Thus, an optimization problem is 

developed to conduct a risk cost analysis, the goal of which is minimizing the total cost (TCOST). 

While several optimization techniques can be employed, the Genetic Algorithms (GA) is used as an 

optimization tool due to its powerful feature of avoiding multiple minima. In essence, this proposed 

repair model would help utilities develop a weather-based crew dispatch management scheme that 

can enable utilities to optimally allocate repair resources in advance. 

The proposed DMARM model involves the four stages of the PRAM method in addition to two 

additional stages. The additional stages involve: 1) conducting a risk cost analysis to find the optimal 

TCOST; and 2) defining the optimal system reliability level. The following steps describe the process 

of these stages. 

5.2.1 Risk Cost Analysis 

The terms risk and reliability are two sides of the same coin; that is, higher reliability means lower 

risk and vice versa. The risk cost analysis refers to the process of combining risk and economic 

factors into a unified scale of monetary value, as defined in [11]. The risk associated with a 

component failure and the effect of this failure on the system reliability as well as the associated costs 

are considered in the risk cost analysis conducted in this chapter. Particularly, the risk cost analysis 

aims to determine the most cost-effective repair decision with the lowest TCOST for distribution 

system components. The TCOST is a function of a set of reliability parameters, most important of 

which is the duration of repair which varies according to the repair scenario considered. Assuming 

that the repair activity during the forecasted bad weather conditions adheres to the safety rules and 

regulations developed by the governmental electricity regulatory authority, then the two scenarios of 

repair are considered for each component in this risk cost analysis. Thus, each component would have 
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two possible weather-based repair scenarios: repair can be performed during bad weather and repair 

cannot be performed during bad weather. These two repair scenarios are the main variables of the 

risk cost analysis. As a result, a system containing NC number of components would have a total of 

2
NC

 repair decisions. These entire 2
NC

 possible repair decisions are examined in terms of cost-

effectiveness by evaluating the TCOST for each repair decision until the repair decision that achieves 

the minimum TCOST is obtained.  

More details about the methodology of obtaining the optimal TCOST using the GA are explained in 

the next sections. 

5.2.1.1 Generating Population 

The GA has been commonly used as an optimization technique in a wide range of engineering 

problems that require identifying an optimal solution. The GA mimics the natural process of 

biological evolution. Biologically speaking, the human body is made up of many different kinds of 

cells. Each cell is composed of some parts, the control centre of which is called the nucleus. A 

chromosome, defined as threadlike structures located inside the nucleus, carries the genetic 

information in the form of genes. Thus, each chromosome contains many genes which contain the 

biological properties. The genes are responsible for passing on these biological properties from 

parents to children. Each possible value of the genes is called an allele. Alleles are variant forms of 

genes and they control some biological properties. 

In the risk cost analysis presented in this thesis, repair decisions are formed in terms of chromosomes. 

Each chromosome (repair decision) consists of a number of genes. The number of genes in every 

chromosome is equal to the NC number of components in the system. Each gene (component) has two 

biological properties (repair scenarios) represented by binary alleles. The alleles are represented by a 

value‎of‎“1”‎or‎“0”‎ for‎ repair‎can‎be‎performed‎during‎bad‎weather or repair cannot be performed 

during bad weather scenarios, respectively. An example of a possible chromosome (repair decision) 

for a system with nine genes (components) and binary alleles (repair scenarios) is represented in Fig. 

5-1: 

Component 

1 

Component 

2 

Component 

3 

Component 

4 

Component 

5 

Component 

6 

Component 

7 

Component 

8 

Component 

9 

1 1 0 1 0 1 0 0 1 

Fig. ‎5-1: An Example of a Repair Decision Structure 
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The repair decision shown in Fig. 5-1 indicates that components 1, 2, 4, 6, and 9 can be repaired 

during bad weather while components 3, 5, 7, and 8 cannot be repaired during bad weather. 

Thus, each repair decision represents a string of repair scenarios, which are considered the 

optimization variables. The GA can be used as a search tool [61]–[63] to randomly generate different 

repair decisions with a full search space of 2
NC

. To illustrate the construction of repair decisions using 

a small system, consider a system containing three components. The components are forecasted to be 

exposed to bad weather and all are eligible for both repair scenarios. The full search space of possible 

repair decisions for this three-component system is 2
3
=8 as shown in Table 5-1.   

Table ‎5-1: All possible repair decisions for a three-component system 

Repair Decision 
Repair Scenarios 

First Component Second Component Third Component 

1 1 1 1 

2 1 1 0 

3 1 0 1 

4 1 0 0 

5 0 1 1 

6 0 1 0 

7 0 0 1 

8 0 0 0 

 

To illustrate, repair decision 3, for instance, indicates that components 1 and 3 can be repaired during 

bad weather if any of them experienced a failure during a bad weather condition, while component 2 

can only be repaired during normal weather. Thus, the reciprocal of equation (4.11) gives the r
F
 

values of components 1 and 3 whereas the r
F
 of component 2 can be evaluated using the reciprocal of 

equation (4.12). Repair decision 1 indicates that all three components can be repaired during bad 

weather whereas repair decision 8 signifies that the repair crew cannot be dispatched to restore failed 

components during bad weather conditions as the repair can only be performed during normal 

weather. 

5.2.1.2 Problem Formulation 

The cost-effectiveness of all possible repair decisions is investigated by examining both repair 

scenarios for each component in the system. The investigation takes into account the effect that the 
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failure may cause on the system’s reliability and the associated costs. All repair-related decision costs 

that a utility may incur should be evaluated. Thus, a new reliability cost/worth index called total cost 

(TCOST) is introduced in this thesis. The TCOST is comprised of three reliability cost/worth indices: 

customer interruption cost (CIC), component repair cost (CRC), and lost revenue cost (LRC). 

LRCCRCCICTCOST   (5.1) 

The TCOST is evaluated for each repair decision, and the most effective repair decision has the 

lowest TCOST (fitness function). 

5.2.1.2.1 Customer Interruption Cost (CIC) 

The term CIC represents the costs incurred due to power outages. The evaluation of the CIC 

introduced in the literature has been based on two methods: 

1. Gross Domestic Product (GDP) method [64]: The CIC is evaluated by finding the ratio of the 

Gross Domestic Product (GDP) to the total annual electric energy consumption in dollar per 

kWh. This ratio could be obtained for a particular province or for the whole country. The CIC 

obtained using this method represents the average economic damage cost due to energy loss for 

the whole province or country. The GDP method reflects the average monetary loss for the 

province or country; nonetheless, this method does not take into consideration customer types and 

their contributed impact to the economy.  

2. Sector Customer Damage Function (SCDF) method [65]: The CIC is evaluated based on the 

estimated value of SCDF for different customer types. The concept of SCDF has been introduced 

based on a survey conducted in participation with the Power System Research Group at the 

University of Saskatchewan and all major Canadian utilities. The survey aimed to estimate the 

interruption loss per kW in terms of economic cost for different customer sectors. The SCDF 

represents the average social damage cost caused by power interruption, which varies according 

to both customer type and interruption duration. The concept of SCDF is used in this thesis to 

evaluate the CIC since the impact that every customer type may contribute to CIC is taken into 

consideration in this method.    

Table 5-2 shows the SCDF costs of five outage durations for different customer sectors where the 

outage durations represent the effective repair time values of system load points. 
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Table ‎5-2: SCDF for all sector types [65] 

Sector 
Interruption Duration (min.) and Cost ($/kW) 

1 min. 20 min. 60 min. 240 min. 480 min. 

Large users 1.005 1.508 2.225 3.968 8.240 

Industrial 1.625 3.868 9.085 25.16 55.81 

Commercial 0.381 2.969 8.552 31.32 83.01 

Agricultural 0.060 0.343 0.649 2.064 4.120 

Residential 0.001 0.093 0.482 4.914 15.69 

Governmental 0.044 0.369 1.492 6.558 26.04 

Small users 4.778 9.878 21.06 68.83 119.2 

The method of linear interpolation between two known points can be used to estimate the SCDF cost 

if the interruption duration lies between any two time slots of Table 5-2 for a given sector type. To 

explain the linear interpolation method, consider the straight line shown in Fig. 5-2 between the two 

known red points that are given by the coordinates (x1, y1) and (x2, y2). If the value of x in the blue 

point that belongs to the interval (x1, x2) is known, then the unknown value of y in the blue point can 

be obtained using the equation of slope, as follows: 
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(5.2) 

Thus, for any point along the straight line, the value of y can be found using the linear interpolation 

method as long as the value of x is known and within the known interval (x1, x2). Likewise, the value 

of x can be found if the value of y is known and within the known interval (y1, y2). 

 

Fig. ‎5-2: Linear Interpolation Illustration 
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The Y axis represents the SCDF values whereas the interruption duration is represented by the X axis. 

Thus, y represents a required SCDF value to be calculated for a given interruption duration x. The 

interruption duration x lies between interruption durations x1 and x2. The SCDF values of interruption 

durations x1 and x2 are y1 and y2 respectively. The right side of equation (5.2) represents the slope of 

the straight line whose starting and ending points are (x1, y1) and (x2, y2) respectively. If the 

interruption duration x is greater than 480 minutes, then the same slope of the straight line whose 

interruption duration values x1=240 minutes and x2=480 minutes are used to evaluate the respective 

SCDF value. The SCDF is evaluated for each load point and then substituted in equation (5.3) to find 

the CIC of the system. Thus, for a distribution system containing NP number of load points, the CIC 

of the system can be evaluated as follows: 


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(5.3) 

Where 

CIC Customer interruption cost ($); 

E

j  Effective failure rate for load point j (f/yr); and 

SCDFj Sector customer damage function of load point j. 

If a given load consists of several customer sectors, then the group customer damage function 

(GCDF) is used instead of the SCDF. The percentage of each sector u is identified [65], [66]. The 

GCDF of load point j is given by: 





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v

vjvjj uSCDFGCDF
1

,,  
(5.4) 

Where 

GCDFj Group customer damage function of load point j; 

NS Number of load sectors at load point j; 

SCDFj,v Sector customer damage function of load sector v at load point j; and 

uj,v Percentage of load sector v at load point j. 

As evident in Table 5-2, the longer the interruption duration lasts, the higher the SCDF (or GCDF) 

and the CIC become. For failures that may occur during bad weather, performing repair activity for 

those failures during bad weather would reduce the interruption duration, improve the level of 
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reliability, and consequently keep the CIC minimized. Nonetheless, this reduction in interruption 

duration should be economically justifiable since performing repair activity during bad weather 

conditions could be costlier than performing repair activity during normal weather conditions. 

Therefore, besides the CIC, the cost of repair should also be involved in the risk cost analysis.  

5.2.1.2.2 Component Repair Cost (CRC) 

The term CRC represents the cost paid to perform the repair activity for failed components. When a 

component experiences a failure incident, the environmental condition in which repair activity is 

performed has a certain effect on the cost of repair. Technically and logically speaking, performing 

repair activity for a failed component during bad weather conditions would be costlier than deferring 

the repair activity until the weather improves. The additional charge in repair cost caused by 

performing the repair during bad weather is because of the risk associated with sending out the repair 

crew in unfavourable weather. This thesis proposes a new method to evaluate component repair cost, 

which mainly aims to mathematically quantify the relationship between the cost of repair and the 

severity level of weather during which the repair activity is performed. The method introduced in this 

thesis to evaluate the CRC takes into consideration the contributed effect that the severity of bad 

weather may pose on the process of performing repair activity and expresses that effect in terms of 

monetary value. The CRC of component k is proposed to be calculated using (5.5) as follows: 
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(5.5) 

The CRCk represents component repair cost of component k. Factor a is a labour cost that varies 

depending on the duration of the outage whereas factor b is a constant amount of cost spent for every 

repair activity. The numerical values of these cost factors (a and b) are dependent on the accessibility 

of the component and its importance to the system. These factors are neglected when a component is 

in a switching state. The severity level associated with performing repair activity during bad weather 

is higher than that associated with normal weather; therefore, the severity level associated with the 

weather condition during which repair is performed should be expressed in terms of cost. Thus, a new 

bad-weather severity weight of repair wr is introduced in this thesis (shown in equation 5.5). The wr 

of a component, which is dependent upon the probability of bad weather occurrence and severity of 

failure during bad weather conditions, can be found as follows: 
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Repair cannot be performed 

during bad weather 

(5.6) 
 

Repair can be performed 

during bad weather 

For any given component in the system that may experience a failure during the FD, if a component 

cannot be repaired during bad weather conditions and the repair can only be performed during normal 

weather, there is no weather severity associated with performing the repair activity since the repair is 

performed in favourable weather. As a result, the bad-weather severity weight of repair, wr, is 

substituted in equation (5.5) by a unity value and consequently the CRC does not involve any 

weather-related extra charge. In contrast, if the component can be repaired during bad weather 

conditions, then additional charges are expected due to the risk associated with performing the repair 

activity during unfavourable weather. These additional charges are mathematically expressed by the 

bad-weather severity weight of repair, wr. For a given hour t, the probability of occurrence of bad 

weather Bi at that hour t, PoBi,t, is multiplied by the respective component bad-weather severity 

weight of failure of that particular bad weather Bi, wfBi. If PoBi,t is less than 100 per cent, then the 

complement of PoBi,t (i.e., 1- PoBi,t,) is also added to the multiplication outcome of PoBi,t by wfBi. 

This mathematical operation is repeated for every hour and the summation of all hourly wr values are 

averaged over the TF hours of the FD. The averaged value of wr is then substituted at equation (5.5) to 

evaluate CRC. This process is repeated for every component in the system using its own reliability 

and cost parameters. Next, the total CRC of all distribution system components is evaluated. The 

CRC of a distribution system containing NC number of components is thus given by: 


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
NC
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kCRCCRC
1

 
(5.7) 

Equestions (5.5) and (5.6) have introduced weather-based mathematical expressions to estimate the 

additional charges of performing repair activity during bad weather conditions and to evaluate the 

associated cost of repair. 
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5.2.1.2.3 Lost Revenue Cost (LRC) 

The LRC refers to the profit that the electric utility missed from selling energy to consumers due to 

power interruption. As interruption duration increases, the LRC will increase proportionally and vice 

versa. In other words, the decision to perform repair activity during bad weather would help reduce 

the interruption duration and consequently keep LRC minimized. However, the benefit of reducing 

the LRC by performing repair during bad weather should be investigated. The LRC of the system can 

be evaluated as follows: 

tariffENSLRC   (5.8) 

Where the tariff represents the price of energy consumption that the consumers pay, expressed in 

dollars per kWh. The tariff varies from country to country and may vary from utility to utility within a 

particular country. Beside energy consumption charge, the tariff could also involve some additional 

fixed charges including, for instance, delivery and regulatory charges. 

Equations (5.3), (5.7), and (5.8) are used to evaluate the TCOST of equation (5.1) for every possible 

repair decision. Possible repair decisions of a distribution system’s components are bound by two 

repair bounds: all components can be repaired during bad weather; and all components cannot be 

repaired during bad weather. These are referred to as lower bound of repair and upper bound of repair 

respectively. A comparison between these two bounds of repair in terms of CIC, CRC, and LRC can 

be viewed in Table 5-3. 
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Table ‎5-3: A comparison between lower and upper bounds of repair 

Cost 

Repair Decision 

Lower bound of repair: all components 

can be repaired during bad weather 

Upper bound of repair: all components 

cannot be repaired during bad weather 

Customer 

Interruption 

Cost (CIC) 

The lowest CIC among all repair 

decisions since this repair decision 

guarantees keeping the interruption at the 

shortest possible duration by sending the 

repair crew immediately regardless of the 

condition of weather 

The highest CIC among all repair 

decisions because all components may be 

left in a failure state until the weather 

improves and consequently result in a 

longer interruption duration 

Component 

Repair Cost 

(CRC) 

The highest CRC due to incorporating the 

risk associated with sending the repair 

crew in bad weather conditions as a cost 

factor in the repair cost equation 

The lowest CRC due to the absence of 

any weather-related repair risk; all 

components are repaired during 

favourable weather conditions 

Lost 

Revenue 

Cost (LRC) 

The lowest LRC as this repair decision 

has the shortest interruption duration and 

consequently keeps the system’s ENS 

minimized 

The highest LRC due to long interruption 

duration 

Referring to the example of repair decisions of a three-component system presented in Table 5-1, 

repair decision 1 represents the lower bound of repair for the system since all components can be 

repaired during bad weather whereas the upper bound of repair for the system is represented by repair 

decision 8 since all components cannot be repaired during bad weather. 

5.2.1.3 Selection, Crossover, and Mutation  

The procedure of finding the most cost-effective repair decision is outlined in the flowchart of Fig. 5-

3. The first iteration starts by randomly generating an initial population of repair decisions (individual 

chromosomes). The TCOST (fitness function) is evaluated for each repair decision. Then, repair 

decisions are ranked based on their fitness where repair decisions with higher fitness scores have a 

greater chance to be selected as parents. After that, the uniform crossover technique with a probability 

of 0.5 is used to generate the offspring chromosomes. A mutation rate of 0.1 is considered to preserve 

diversity where a random number between 0 and 1 is generated for each repair scenario (variable). 

The variable that has a random number less than or equal to the mutation rate will be mutated. The 
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mutation process entails changing a 1 to a 0 and vice versa. The stopping criterion of identifying the 

most cost-effective repair decision with optimal TCOST is the examination of all repair decisions 

where the maximum number of iterations has been reached. 

By identifying the most cost-effective repair decision, the solution of the problem is obtained and the 

utility is advised on which components can be repaired during bad weather and on which components 

must have their repair activities postponed until the weather improves. Accordingly, the utility can 

allocate the required repair resources in advance. 

Start

Generate random population

(repair decisions) 

Iteration = 0

Identify the cost factors (a and b) of 

each component

Evaluate the bad-weather severity 

weight of repair of each component

Evaluate CRC of each component

Evaluate SCDF (or GCDF) of each 

load point
Identify average tariff

Evaluate CIC of each load point

Evaluate CIC of the distribution 

system

Evaluate LRC of the distribution 

system

Evaluate TCOST of the distribution 

system 

Maximum iteration

Yes

Identify the optimal TCOST

Define the most cost-effective repair decision 

 No 
Selection, Crossover, 

and Mutation

Iteration = 

Iteration +1

Evaluate CRC of the distribution 

system

End

 

Fig. ‎5-3: The Procedure of Finding the Most Cost-Effective Repair Decision Using GA 
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5.2.2 Optimal System Reliability Level 

In addition to the benefit of effectively allocating repair resources, the DMARM model would also 

help determine the optimal system reliability level which the utility should target over the future time-

horizon of one year. According to the risk cost analysis introduced in this chapter and based on the 

results of the optimization process, components that can be repaired in bad weather during the FD are 

identified and their FRR values are evaluated using equation (4.11) whereas the FRR values for the 

remaining components are evaluated using equation (4.12). These values represent the optimal FRR 

of the components and are accordingly used to re-evaluate system reliability indices. Distribution 

reliability indices evaluated using optimal FRR values represent optimal system reliability level. 

5.3 Summary 

The concept of DMARM model is introduced in this chapter. In addition to the four stages of PRAM 

method, DMARM model is comprised of two more stages. The additional stages are risk cost analysis 

and optimal system reliability level. In the risk cost analysis, an optimization problem using GA is 

developed. The main objective of this optimization problem is to investigate the cost-effectiveness of 

performing repair activities for distribution system components that may experience failure events 

due to bad weather conditions. The outcome of the optimization represents the most cost-effective 

repair decision by identifying, in a cost-effective manner, which components can be repaired during 

bad weather and which components should wait to be repaired until the weather improves. Based on 

that repair decision, reliability indices are re-evaluated in order to identify the optimal reliability level 

of the system.    
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Chapter 6 

Application of FOPRA Approach on Distribution System 

6.1 Introduction  

In this chapter, the proposed FOPRA approach is numerically illustrated using a case study. In the 

case study, a comparison between the indices obtained using the proposed approach versus the indices 

obtained using the commonly used conventional method is presented. The application of FOPRA on a 

distribution system is described in this thesis for both weather-based predictive reliability assessment 

method (PRAM) and decision-making repair model (DMARM). A sensitivity analysis is conducted to 

show the impact of different weather forecast data on the evaluation of reliability indices and the 

decision of repair. 

6.2 Case Study 

This section describes a numerical illustration of the proposed approach using the urban distribution 

system connected to bus 2 of the Roy Billinton Test System (RBTS) [67] shown in Fig. 6-1. The 

system consists of four feeders: F1, F2, F3, and F4 feeding 22 load points. The total number of 

components NC = 56 components is comprised of 14 feeder sections (S), 22 lateral distributors (D), 

and 20 transformers (T). The feeders are operated as radial feeders; however, they can be meshed 

using the normally open points to recover a disconnected load in the case of a component failure. A 

load point could be disconnected as a result of the failure of the transformer at the load point, the 

lateral distributor, or any section in the feeder. Disconnect switches are installed in the feeders to 

isolate the faulted section, thus allowing the service in healthy sections to be restored. Fuses are 

installed at the tee-point in each lateral distributor to protect other load points from being interrupted 

in the case of a distributor failure. Faulted transformers are replaced and the associated replacement 

time is used to represent their average repair time. The average time for switching and isolation is 60 

minutes. 
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Fig. ‎6-1: A Typical Urban Distribution System 

6.2.1 Weather-based Predictive Reliability Assessment Method 

The PRAM method introduced in this thesis has four main stages, as explained in Chapter 4. The 

future month of the year in which the process of predictive reliability assessment starts is chosen in 

this chapter to be the month of December. As defined in Chapter 4, this month is referred to as the 

forecasted month, or FM. Thus, the FFR and FRT are evaluated for each component in the system 

based on weather forecast data of a typical forecasted day, FD, of December. The FFR and FRT are 

used in conjunction with the historical failure rate and repair time data of the months January through 

November to evaluate components EFR and ERT. Components EFR and ERT are used subsequently 

to evaluate load-point indices and distribution system indices.  

6.2.1.1 Data Initialization 

6.2.1.1.1 Weather Data 

Assume that two bad weather conditions B1 and B2 are historically recorded as causing weather-

related failures for system components and that their average durations are TB1 = 10 h and TB2 = 4 h, 

respectively, while the average duration of normal weather TN = 300 h. 
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6.2.1.1.2 Outage and Customer Data 

All failure rate and repair time data of the components are obtained from [67]. The average failure 

rate of a feeder section or a lateral distributor is 0.065 failures per year-km, whereas the average 

failure rate of a transformer is 0.015 failures per year. The average repair time of a feeder section or a 

lateral distributor is 5 hours and the average replacement time for a transformer is 10 hours. The 

lengths of line segments are given in Table 6-1. Based on the outage data, distribution system 

components can be categorized into four groups as shown in Table 6-2. The average failure rate and 

repair time values of the lines and transformers are presented in Table 6-3. For lines and transformers, 

the proportions of failures occurring during B1 and B2 as well as the proportions of failures occurring 

in every month are assumed and given in Table 6-4 and Table 6-5, respectively. Customer data are 

given in Table 6-6. 

Table ‎6-1: Line segment lengths 

Length (km) Feeder sections Lateral distributors 

0.75 
S1, S2, S3, S5, S7, S10, 

S12, S13. 
D6, D11, D13, D16, D21. 

0.60 S4, S6, S9, S14. D1, D4, D10, D15, D17, D18. 

0.80 S8, S11. D2, D3, D5, D7, D8, D9, D12, D14, D19, D20, D22. 

 

Table ‎6-2: System component groups 

Group Components 

Group 1 S1, S2, S3, S5, S7, S10, S12, S13, D6, D11, D13, D16, D21. 

Group 2 S4, S6, S9, S14, D1, D4, D10, D15, D17, D18. 

Group 3 S8, S11, D2, D3, D5, D7, D8, D9, D12, D14, D19, D20, D22. 

Group 4 All transformers 
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Table ‎6-3: Average failure rate and repair time data of lines and transformers 

Components λ (f/yr) r (h) 

Group 1 0.04875 5 

Group 2 0.039 5 

Group 3 0.052 5 

Group 4 0.015 10 

 

Table ‎6-4: Proportions of failures occurring in every bad weather condition  

Proportions of Failures (bad weather) Lines Transformers 

PoFB1 (%) 40 20 

PoFB2 (%) 30 15 

 

Table ‎6-5: Proportions of failures occurring every month  

Proportions of failures 

(monthly) 

Lines and 

transformers 

Proportions of failures 

(monthly) 

Lines and 

transformers 

PoFJanuary (%) 15 PoFJuly (%) 6 

PoFFebruary (%) 15 PoFAugust (%) 8 

PoFMarch (%) 4 PoFSeptember (%) 10 

PoFApril (%) 3 PoFOctober (%) 10 

PoFMay (%) 3 PoFNovember (%) 10 

PoFJune (%) 6 PoFDecember (%) 10 
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Table ‎6-6: Customer data 

Load point Number of customers Customer type 
Average demand 

(MW) 

1, 2, 3, 10, 11 210 Residential 0.535 

12, 17, 18, 19 200 Residential 0.450 

8 1 Small user 1.000 

9 1 Small user 1.150 

4, 5, 13, 14, 20, 21 1 Institutional 0.566 

6, 7, 15, 16, 22 10 Commercial 0.454 

 

6.2.1.2 Historical Reliability Assessment 

The historical failure rates in normal weather and bad weather for all components are evaluated on an 

annual basis using equations (4.1) and (4.2), respectively. The bad-weather severity weight of failure 

of B1 and B2 for each component can be found using equation (4.3). The results are tabulated in Table 

6-7.  

Table ‎6-7: Data analysis for lines and transformers 

Components λ (f/yr of normal) λ (f/yr of B1) 1Bwf
 

λ (f/yr of B2) 2Bwf
 

Group 1 0.0153075 0.6123 40 1.1480625 75 

Group 2 0.012246 0.48984 40 0.91845 75 

Group 3 0.016328 0.65312 40 1.2246 75 

Group 4 0.010205 0.0942 9.23 0.176625 17.3 

 

The historical failure rates from each month for all components are evaluated on a monthly basis 

using equation (4.6) and presented in Table 6-8.  
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Table ‎6-8: Monthly failure rate values 

Months 
Number of 

days 

λ (f/month) 

Group 1 Group 2 Group 3 Group 4 

January 31 0.007174899 0.00574 0.007653 0.002208 

February 28 0.007943638 0.006355 0.008473 0.002444 

March 31 0.001913306 0.001531 0.002041 0.000589 

April 30 0.001482813 0.001186 0.001582 0.000456 

May 31 0.00143498 0.001148 0.001531 0.000442 

June 30 0.002965625 0.002373 0.003163 0.000913 

July 31 0.00286996 0.002296 0.003061 0.000883 

August 31 0.003826613 0.003061 0.004082 0.001177 

September 30 0.004942708 0.003954 0.005272 0.001521 

October 31 0.004783266 0.003827 0.005102 0.001472 

November 30 0.004942708 0.003954 0.005272 0.001521 

December 31 0.004783266 0.003827 0.005102 0.001472 

6.2.1.3 Weather Forecast 

A typical day in the month of December is chosen to represent the FD. The criteria of choosing the 

FD is discussed in Section 4.3. For illustrative purposes, hypothetical weather forecast data for an 

arbitrary FD are presented in this section. The forecast period TF is chosen to be 24 h (1 day), starting 

at midnight and ending at 11:59 p.m. on that particular FD. The weather forecast data can be obtained 

from the appropriate local weather forecast centre in order to determine whether B1 and/or B2 will 

occur during the designated 24 h window. For the sake of simplicity, the supposition is that all 

components are deemed to be exposed to the same weather conditions during any given time period. 

Weather forecast parameters and associated probabilities of occurrence are assumed and shown in 

Table 6-9. It can be seen from Table 6-9 for the particular 24 h time period that: α = 19 h, βB1 = 4 h, 

and βB2 = 1 h. It can also be noticed that γ‎=‎0. 
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Table ‎6-9: Weather parameters and probabilities of occurrence 

Time Period Weather Forecast PoB (%) 

10:00 a.m. – 10:59 a.m. B1 50 

11:00 a.m. – 11:59 a.m. B1 60 

12:00 p.m. – 12:59 p.m. B1 70 

01:00 p.m. – 01:59 p.m. B1 80 

02:00 p.m. – 02:59 p.m. B2 50 

Otherwise N Negligible 

6.2.1.4 Effective Predictive Reliability Assessment 

Component forecasted reliability indices, FFR and FRT, are evaluated for each component in the 

distribution system. A set of analytical equations and MCS algorithms, presented in Section 4.3.4, can 

be used to evaluate FFR and FRT indices. To avoid repetition, only the FFR and FRT values obtained 

using analytical equations of line S1 located at feeder section F1 are validated using MCS. The FFR 

and FRT of all other components in the system are evaluated using analytical equations only. 

6.2.1.4.1 Component Forecasted Reliability Indices 

The FFR and FRT of all components are evaluated analytically using equations (4.10) – (4.14). Table 

6-10 summarizes the calculations of component forecasted reliability indices. 

Table ‎6-10: FFR, FRR, and FRT for lines and transformers 

Components λ
F
 (f/day) 

Repair can be performed during 

bad weather 

Repair cannot be performed 

during bad weather 

μ
F
 (rep/day) r

F
 (h) μ

F
 (rep/day) r

F
 (h) 

Group 1 0.000283783 4.194 5.72 2.963 8.1 

Group 2 0.000227026 4.194 5.72 2.963 8.1 

Group 3 0.000302702 4.194 5.72 2.963 8.1 

Group 4 0.0000623878 2.121 11.32 1.832 13.1 

Table 6-10 shows that the FRT is longer when repair cannot be performed during bad weather with 

approximately 2 hours and 23 minutes for lines; and approximately 1 hour and 47 minutes for 
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transformers. This increase in FRT values is due to the incorporation of waiting time into the 

evaluation of repair time until the weather improves before the commencement of repair activity. If 

the bad weather conditions that are forecasted to occur during the FD of December are historically 

recognized as low-probability-of-occurrence weather events, then these actual increases in repair time 

values would not necessarily be clearly manifested using averaged repair time values. This reflects 

the importance of recognizing the effect of such weather events in the evaluation of reliability indices. 

Alternatively, MCS can be used to evaluate components FFR and FRT. Line S1 belongs to Group 1 

components whose forecasted reliability indices are λ
F
 = 0.000283783 f/day; r

F
 = 5.72 h if repair can 

be performed during bad weather; and r
F
 = 8.1 h if repair cannot be performed during bad weather. 

Using the MCS algorithms presented in Section 4.3.4.2, the simulated values for both λ
F
 and r

F
 of 

component S1 are depicted and compared with the analytical values in Fig. 6-2 and Fig. 6-3 

respectively. Scenario 1 represents a repair that can be performed during bad weather while Scenario 

2 represents a repair that cannot be performed during bad weather. Similarly, the λ
F
 and r

F
 of all other 

components can be deduced using MCS. 

 

Fig. ‎6-2: Variation of λ
F
 for Line S1 with Number of Simulations 

 

λ
F

 Analytical = 0.000283783 (f/day) 
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Fig. ‎6-3: Variation of r
F
 for Line S1 with Number of Simulations 

6.2.1.4.2 Component Effective Reliability Indices 

As previously determined at the beginning of this chapter, the month of December has been chosen to 

be the FM. Accordingly, the historical monthly basis failure rate values for the months of January 

through November for each component in the system are combined with their respective FFR and 

FRT to obtain the EFR and ERT for each component using equations (4.21) and (4.22) respectively. 

Line average repair time and transformer average replacement time values are used to represent their 

respective monthly repair time values. In Table 6-11, component EFR and ERT values are presented 

and compared with average failure rate and repair time values.    

r
F

 Analytical of Scienario 1 = 5.72 (h) 

r
F

 Analytical of Scienario 2 = 8.1 (h) 
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Table ‎6-11: EFR and ERT of lines and transformers 

Components 

Conventional method 

(average values) 
Proposed method (effective values) 

λ (f/yr) r (h) λ
E
 (f/yr) 

Repair can be 

performed during 

bad weather 

Repair cannot be 

performed during 

bad weather 

r
E
 (h) r

E
 (h) 

Group 1 0.04875 5.0 0.052840984 5.06 5.26 

Group 2 0.039 5.0 0.042272787 5.06 5.26 

Group 3 0.052 5.0 0.056363716 5.06 5.26 

Group 4 0.015 10.0 0.015471112 10.11 10.26 

It can be clearly observed in Table 6-11 that the effective reliability indices in this case are greater 

than that of conventional reliability indices due to including the evaluation of the effect of bad 

weather conditions that are forecasted to occur during the chosen FD of December. Nonetheless, 

effective reliability indices do not necessarily have to be greater than the conventional indices. In fact, 

they might be lesser or similar depending on the weather forecast data as they represent the effective 

weather-based prediction of component reliability behaviour. The EFR and ERT are used to evaluate 

load-point reliability indices. 

6.2.1.4.3 Load-Point Reliability Indices 

The approximate equation method for series systems, explained in Chapter 2, can be used in this case 

study to evaluate the load-point indices. Equation (2.11) can be used to evaluate load point failure rate 

whereas load point repair time and outage time can be evaluated using equations (2.12) and (2.13) 

respectively. For all load points, the EFR values are evaluated and compared with the average failure 

rate values obtained using the conventional method, as depicted in Fig. 6-4. It can be seen from Fig. 

6-4 that there is a noticeable increase in the load-point failure rate values for all load points when 

component EFR values are used compared to the conventional average failure rate. 
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Fig. ‎6-4: Load-Point Failure Rates (conventional vs. proposed) 

With regards to the evaluation of load point ERT, the two component repair scenarios are considered. 

The ERT values for each load point are evaluated for both repair bounds and compared with the 

conventional average repair time, as shown in Table 6-12. A slight increase in the ERT values is 

noticed in this case for all load points when repair can be performed during bad weather compared to 

the conventional repair time values. However, when components cannot be repaired during bad 

weather, the increase in the ERT values of load points is visible. For example, the proposed ERT 

value of load point 12 for the upper bound of repair indicates that a repair time that is 6 minutes 

longer than the conventional repair time might be required to restore the service for the 200 

residential customers connected to that load point. For the same bound of repair, the repair time 

would be more than 11 minutes and 10 minutes longer than the conventional repair time for load 

points 8 and 9 respectively.    
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Table ‎6-12: Load-point repair times (conventional vs. proposed) 

Load point 

Conventional method 

(average value) 

Proposed method (effective values) 

Lower bound of repair Upper bound of repair 

r (h) r
E
 (h) r

E
 (h) 

1 3.03 3.04 3.12 

2 3.13 3.14 3.23 

3 3.13 3.14 3.23 

4 3.03 3.04 3.12 

5 3.13 3.14 3.23 

6 3.11 3.12 3.20 

7 2.98 2.99 3.07 

8 3.88 3.93 4.07 

9 3.60 3.64 3.77 

10 3.00 3.01 3.09 

11 3.13 3.14 3.23 

12 3.16 3.17 3.26 

13 2.93 2.93 3.01 

14 2.95 2.96 3.04 

15 3.00 3.01 3.09 

16 3.13 3.14 3.23 

17 3.06 3.07 3.15 

18 3.00 3.01 3.09 

19 3.11 3.12 3.20 

20 3.11 3.12 3.20 

21 2.93 2.93 3.01 

22 2.95 2.96 3.04 

For all load points, the effective annual outage time, U
E
, is evaluated for both upper and lower bound 

of repairs and compared with conventional annual outage time, as illustrated in Fig. 6-5. Similar to 

the repair time, it can be noticed from Fig. 6-5 that for all load points the effective annual outage time 

obtained using the proposed method is higher than that of the conventional method for both bounds of 
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repair. For instance, the conventional annual outage time of load point 12 is 48.40 minutes per year; 

however, when the proposed method to evaluate the outage time is applied using the effective annual 

outage time, the outage time is predicted to increase to 52.50 minutes per year or 53.97 minutes per 

year for the lower bound of repair and the upper bound of repair respectively. That is, based on the 

weather forecast data of the FD and historical reliability data, the 200 residential customers connected 

to load point 12 are predicted to experience an increase in the annual outage time ranging from 8.47% 

to 11.52% compared to conventional outage time. This predicted change in the annual outage time 

would not have been noticed without the incorporation of weather forecast data into the evaluation of 

reliability indices. 

 

Fig. ‎6-5: Load-Point Annual Outage Time (conventional vs. proposed) 

6.2.1.4.4 Distribution System Reliability Indices 

These indices are evaluated using equations (4.23) – (4.28), and the results are compared with the 

results obtained using the conventional method, as shown in Table 6-13. In terms of comparison 

between conventional and proposed methods with regard to weather effect inclusion, the results 

clearly show that the indices are optimistic for the first method which, in turn, may result in 

misleading operational planning decisions. Indeed, the obtained results emphasize the significance of 

recognizing the effect of forecasted bad weather in the evaluation of overall system reliability indices. 

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A
n

n
u

a
l 

O
u

ta
g

e
 T

im
e

 (
m

in
/

y
r)

 

Load points 

Conventional method Lower bound of repair Upper bound of repair



 

 103 

In terms of comparing the results obtained for both repair scenarios of the proposed method, the 

benefit of reducing the outage time by allowing the repair to be performed during bad weather in the 

FD is obvious in most indices. For instance, the yearly ENS index could be reduced by up to 2.84% if 

all components can be repaired during bad weather conditions compared to postponing the repair 

activities until the weather improves. 

Table ‎6-13: Customer- and energy-based indices of distribution system 

Indices 
Conventional 

method 

Proposed method 

Repair can be performed 

during bad weather 

Repair cannot be performed 

during bad weather 

SAIFI 

(interruption/customer yr) 
0.2482 0.2683 0.2683 

SAIDI 

(h/customer yr) 
0.7656 0.8299 0.8527 

CAIDI 

(h/customer interruption) 
3.0844 3.0936 3.1788 

ENS 

(kWh/yr) 
8843.829 9598.9904 9871.6182 

ASAI 0.999912606 0.999905265 0.999902657 

6.2.2 Weather-based Decision-making Repair Model 

6.2.2.1 Risk Cost Analysis 

All components in the system are assumed to be eligible for both repair scenarios. Therefore, the full 

search space of all possible repair decisions is 2
56

. The labour cost factor a and the constant cost 

factor b are assumed to be 250 ($/h) and 1,500 ($/repair) respectively for all components. The 

methodology of finding the CIC, CRC, LRC, and TCOST is discussed in detail in Section 5.2.1. The 

most cost-effective repair decision for system components is shown in Table 6-14. According to the 

results presented in Table 6-14, the repair activity is immediately performed to the components that 

can be repaired during bad weather as soon as they experience a forced failure regardless of the 

forecasted weather condition in which the failure event might occur, whereas repair activity must be 

postponed until weather improves if any of the components that cannot be repaired during bad 

weather experience a forced failure as they can only be repaired during normal weather.   
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The costs of CIC, CRC, LRC, and TCOST for the most cost-effective repair decision are shown in 

Table 6-15 and compared with the costs of upper and lower bounds of repair. When comparing the 

costs of lower and upper bounds of repair, the lower bound of repair has higher CRC because of the 

extra cost incurred due to performing the repair activity during bad weather. This is represented in the 

CRC equation by the bad-weather severity weight of repair. The postponement of performing repair 

activity until weather improves results in a longer interruption time which interprets the higher CIC 

for upper bound of repair. The most cost-effective repair decision is the decision that has the lowest 

TCOST by striking a balance between CIC, CRC, and LRC. The most cost-effective repair decision is 

found in this case study to be $53,089.67. By defining the most cost-effective repair decision, utilities 

can plan the allocation of their repair resources in advance which in turn can help maintain higher 

system reliability level in a cost-effective manner. 

Table ‎6-14: Most cost-effective repair decision for system components 

Repair decision Feeder Components 

Repair can be 

performed during bad 

weather 

F1 S3, S4, D6, D7, T6, T7 

F2 S5, S6, D8, D9 

F3 S10, D15, T15 

F4 S11, S14, D16, D22, T16, T22 

Repair cannot be 

performed during bad 

weather 

F1 S1, S2, D1, D2, D3, D4, D5, T1, T2, T3, T4, T5 

F2 None 

F3 S7, S8, S9, D10, D11, D12, D13, D14, T10, T11, T12, T13, T14 

F4 S12, S13, D17, D18, D19, D20, D21, T17, T18, T19, T20, T21 
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Table ‎6-15: Cost comparison between upper and lower bounds of repair vs. optimal repair 

Repair decision CIC ($) CRC ($) LRC ($) TCOST ($) 

All components can be repaired in bad weather 

(lower bound) 
44,844.05 7,696.79 1,055.89 53,596.73 

All components cannot be repaired in bad 

weather (upper bound) 
46,175.51 6,443.23 1,085.87 53,704.618 

Optimal repair 45,096.99 6,918.97 1,073.70 53,089.67 

6.2.2.2 Optimal System Reliability Level 

The optimal system reliability level that the utility should target can be determined by re-evaluating 

the distribution system indices based on the results of the optimization process obtained. Referring to 

Table 6-14, the FRR of the components that are designated as repairable during bad weather are 

evaluated using equation (4.11) whereas equation (4.12) is used to evaluate the FRR of the remaining 

components; these values represent component optimal FRR values. In the case study presented in 

this chapter, all components are connected in series; therefore, components FFR and EFR, load point 

effective failure rates, and SAIFI do not change regardless of the repair decision. However, in the 

case of redesigning some feeders to involve parallel components, all of these failure reliability indices 

are subject to change according to the repair decision considered. The optimal FRR values are used to 

find the optimal FRT which can subsequently be used to evaluate the optimal ERT. Table 6-16 

presents the optimal FRT and ERT for system components. 

Table ‎6-16: Optimal components FRT and ERT 

Repair Decision Components 
Optimal 

FRT (h) 

Optimal 

ERT (h) 

All these components can 

be repaired during bad 

weather 

S3, S4, S5, S6, S10, S11, S14, D6, D7, D8, 

D9, D15, D16, D22. 
5.72 5.06 

T6, T7, T15, T16, T22. 11.32 10.11 

All these components 

cannot be repaired during 

bad weather 

S1, S2, S7, S8, S9, S12, S13, D1, D2, D3, 

D4, D5, D10, D11, D12, D13, D14, D17, 

D18, D19, D20, D21. 

8.1 5.26 

T1, T2, T3, T4, T5, T10, T11, T12, T13, 

T14, T17, T18, T19, T20, T21. 
13.1 10.26 

Based on the component optimal ERT, load-point and distribution system indices are re-evaluated. In 

Table 6-17, optimal distribution system indices that represent the optimal reliability level of the 
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system are tabulated and compared with those of the conventional method, and the lower and upper 

repair bounds of the proposed method. 

Table ‎6-17: Comparison for customer- and energy-based indices of the system 

Indices 
Conventional 

method 

Proposed method 

Repair can be 

performed 

during bad 

weather 

Repair cannot be 

performed 

during bad weather 

Optimal 

SAIFI 

(interruption/customer 

yr) 

0.2482 0.2683 0.2683 0.2683 

SAIDI 

(h/customer yr) 
0.7656 0.8299 0.8527 0.8509 

CAIDI 

(h/customer 

interruption) 

3.0844 3.0936 3.1788 3.1721 

ENS 

(kWh/yr) 
8843.829 9598.9904 9871.6182 9760.9431 

ASAI 0.999912606 0.999905265 0.999902657 0.999902862 

TCOST ($) N/A 53,596.73 53,704.618 53,089.67 

 

The first column of Table 6-17 lists the indices used in this thesis. The second column gives the 

results obtained using the conventional method, with the main concern being that these 

conventionally evaluated indices do not represent the real behaviour of the system upon exposure to 

weather conditions as well as cannot reflect on reliability level of the system the profound effect of 

infrequent and improbable severe weather conditions. This concern is because that these system 

indices are evaluated based on component average failure rate and average repair time, both of which 

are statistical quantities obtained using historical data where the effect of weather is not apparent. In 

this case study, the results obtained using the conventional method give more optimistic results than 

the results obtained using the proposed method. The third, fourth, and fifth columns give the results 

obtained using the method introduced by FOPRA approach. The third and fourth columns give the 

results of system indices for lower bound of repair (all components can be repaired during bad 

weather) and upper bound of repair (all components cannot be repaired during bad weather) 
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respectively whereas the fifth column gives the optimal results obtained from the risk cost analysis. 

The SAIFI does not change regardless of the repair decision due to the radiality configuration of the 

system in this case study. A significant improvement in terms of SAIDI, CAIDI, ENS, and ASAI can 

be seen when all components are assumed to be repairable during bad weather compared to the 

decision that all components cannot be repaired during bad weather. This improvement is due to the 

shortening of outage time by allowing the repair to be performed during bad weather. An 

investigation of the cost-effectiveness of repairing components during bad weather was conducted. 

The investigation involved examining all possible weather-based repair decisions using the GA in 

conjunction with the new concept of TCOST in order to determine the most cost-effective repair 

decision for system components. As pointed out in Chapter 5, the most cost-effective repair decision 

is the decision that has the lowest TCOST which is found to be as low as $53,089.67 and entails 

making the repair decisions presented in Table 6-14. Accordingly, the customer- and energy-based 

indices of the system are re-evaluated to determine the optimal reliability level of the system, 

represented in the fifth column of Table 6-17, that the utility should target in the future. 

6.3 Sensitivity Analysis 

In this section, the effect of weather forecast data on the evaluation of reliability indices and repair 

decision is examined. In addition to the base case study illustrated in the previous section, two 

additional case studies are presented in this section. While both of these case studies use the same 

data and assumptions given in the base case study, different weather forecast data of the FD are 

assumed. The base case study that has been illustrated in the previous section is referred to as Case 1 

whereas the two additional case studies that are illustrated in this section are referred to as Case 2 and 

Case 3. Regarding the weather forecast data used in these additional case studies, Case 2 assumes 

relatively modest weather forecast data whereas extremely adverse weather forecast data are assumed 

in Case 3. The hypothetical hourly meteorological weather forecast data for Case 2 and Case 3 are 

presented in Table 6-18 and Table 6-19 respectively. 

Table ‎6-18: Weather parameters and probabilities of occurrence (Case 2) 

Time Period Weather Forecast PoB (%) 

10:00 a.m. – 10:59 a.m. B1 20 

11:00 a.m. – 11:59 a.m. B1 30 

Otherwise N Negligible 
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Table ‎6-19: Weather parameters and probabilities of occurrence (Case 3) 

Time Period Weather Forecast PoB (%) 

10:00 a.m. – 10:59 a.m. B1 45 

11:00 a.m. – 11:59 a.m. B1 55 

12:00 p.m. – 12:59 p.m. B1 65 

01:00 p.m. – 01:59 p.m. B1 70 

02:00 p.m. – 02:59 p.m. B1 80 

03:00 p.m. – 03:59 p.m. B1 90 

04:00 p.m. – 04:59 p.m. B2 50 

05:00 p.m. – 05:59 p.m. B2 50 

06:00 p.m. – 06:59 p.m. B2 60 

07:00 p.m. – 07:59 p.m. B2 75 

08:00 p.m. – 08:59 p.m. B2 80 

Otherwise N Negligible 

Case 2 assumes weather forecast data of α = 22 h and βB1 = 2 h, as shown in Table 6-18, whereas 

weather forecast data of α = 13 h, βB1 = 6 h, and βB2 = 5 h are assumed for Case 3, as shown in Table 

6-19. Both case studies assume γ‎=‎0. 

6.3.1 Weather-based Predictive Reliability Assessment Method (Sensitivity 

Analysis) 

The FFR and FRT for all components are evaluated using equations (4.10) – (4.14) and tabulated in 

Table 6-20 and Table 6-21 for Case 2 and Case 3 respectively. It can be observed in Table 6-20 and 

Table 6-21 that components FFR and FRT change proportionally with the severity of weather 

conditions. That is, worse weather conditions mean higher FFR and longer FRT and vice versa.  
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Table ‎6-20: FFR, FRR, and FRT for lines and transformers (Case 2) 

Components λ
F
 (f/day) 

Repair can be performed during 

bad weather 

Repair cannot be performed 

during bad weather 

μ
F
 (rep/day) r

F
 (h) μ

F
 (rep/day) r

F
 (h) 

Group 1 0.0000760133 4.703 5.1 4.364 5.5 

Group 2 0.0000608106 4.703 5.1 4.364 5.5 

Group 3 0.0000810808 4.703 5.1 4.364 5.5 

Group 4 0.0000327531 2.355 10.19 2.286 10.5 

 

Table ‎6-21: FFR, FRR, and FRT for lines and transformers (Case 3) 

Components λ
F
 (f/day) 

Repair can be performed during 

bad weather 

Repair cannot be performed 

during bad weather 

μ
F
 (rep/day) r

F
 (h) μ

F
 (rep/day) r

F
 (h) 

Group 1 0.000725271 3.389 7.08 1.967 12.2 

Group 2 0.000580217 3.389 7.08 1.967 12.2 

Group 3 0.000773623 3.389 7.08 1.967 12.2 

Group 4 0.000126635 1.742 13.78 1.395 17.2 

 

Components EFR and ERT can be evaluated using equations (4.21) and (4.22) respectively. A failure 

rate comparison between the conventional method and the proposed method using the weather 

forecast data of Case 1, Case 2, and Case 3 for grouped components is depicted in Fig. 6-6. It can be 

observed that the EFR values for Case 3 are considered the highest values due to the worst weather 

conditions whereas EFR values obtained for Case 2 are considered the lowest values due to the 

relatively favourable weather conditions. The significance of incorporating the effect of forecasted 

weather conditions into reliability indices is quite obvious in Fig. 6-6 as the reliance on the 

conventional method could be misleading in some cases. The conventional method gives optimistic 

and over-optimistic failure rate values compared to the EFR values obtained for Case 1 and Case 3 

respectively; however, relatively pessimistic failure rate values are given using the conventional 

method compared to the EFR values of Case 2. The observation that can be made about these values 
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is that the evaluation of failure rate using the proposed method helps reflect the actual effect of 

weather on failure rate and consequently gives a more realistic indication to the failure behaviour of 

the component compared to the conventional method. The superiority of the proposed method over 

the conventional method to evaluate the failure rate is clearly identified by the inclusion of probable 

variability in weather condition into the evaluation of failure rate. 

 

Fig. ‎6-6: A Failure Rate Comparison for System Components (conventional vs. all cases) 

Likewise, a comparison between evaluation methods is conducted in terms of repair time (shown in 

Table 6-22). The main observation that can be seen from Table 6-22 is that the repair time increases 

as the weather worsens. When a bad weather condition is forecasted to occur, the conventional 

method always gives an underestimated indication of the actual repair time because incorporating the 

effect of forecasted weather is usually overlooked. For example, the effective repair time of Case 3 

when repair cannot be performed during bad weather is longer by 12% and 6% than that of 

conventional method for lines and transformers respectively. 
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Table ‎6-22: Repair time of lines and transformers (conventional vs. all cases)  

Components 

Repair time (h) 

Conventional 

method 

Proposed method (effective values) 

Repair can be performed 

during bad weather 

Repair cannot be performed 

during bad weather 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Group 1 5.0 5.06 5.01 5.17 5.26 5.04 5.6 

Group 2 5.0 5.06 5.01 5.17 5.26 5.04 5.6 

Group 3 5.0 5.06 5.01 5.17 5.26 5.04 5.6 

Group 4 10.0 10.11 10.02 10.31 10.26 10.04 10.6 

Using the approximate equation method for series systems, load-point reliability indices of Case 2 

and Case 3 are evaluated and compared with the load-point indices of the conventional method and of 

Case 1. The load-point failure rate values are depicted in Fig. 6-7. The load-point repair time values 

for lower and upper bounds of repair are tabulated and compared with conventional repair time values 

in Table 6-23. Similarly, the effective annual outage time values for load points considering lower 

and upper bounds of repair are depicted and compared with conventional annual outage time values in 

Fig. 6-8 and Fig. 6-9 respectively. 

The EFR values of load points evaluated using the proposed method are functions of the variation of 

weather conditions. Compared to the conventional load-point failure rate, Case 1 and Case 3 indicate 

a higher level of load-point failure rate while Case 2 indicates a lower level of load-point failure rate. 

Due to the extreme forecasted bad weather conditions that are assumed to occur during the FD in 

Case 3, the EFR values of the load points sharply increase compared to the values of the conventional 

method, Case 1, and Case 2. The conventional failure rate value of load point 12, for example, 

increases by approximately 36% in Case 3. 

For components connected in series, load-point failure rate is dependent only on the failure rate 

values of load point components; however, load-point repair time is dependent on both the failure rate 

and the repair time of load point components, as expressed in equation (2.12). This relation interprets 

the variation of some load-point repair time values for lower bound of repair (shown in Table 6-23). 

For example, the repair time of load-point 2 for lower bound of repair of Case 2 is relatively longer 
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than that of Case 1, although Case 2 has better forecasted weather conditions. For upper bound of 

repair, the repair time of load-point increases as the weather condition worsens and vice versa.  

With regards to annual outage time, as pointed out earlier, the conventional method used to evaluate 

load-point annual outage time may not reflect the predicted annual outage time upon the exposure of 

system components to varying weather conditions. For both bounds of repair, the conventional 

method gives an optimistic indication for load-point outage time compared to Case 1 and Case 3; 

however, it overestimates the annual outage time if the weather conditions assumed in Case 2 are 

forecasted to occur.   

 

Fig. ‎6-7: Load-Point Failure Rates (conventional vs. all cases) 
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Table ‎6-23: Load-point repair times (conventional vs. all cases) 

Load Point 

Repair Time (h) 

Conventional 

method 

Proposed method (lower bound of 

repair) 

Proposed method (upper bound of 

repair) 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

1 3.03 3.04 3.04 3.05 3.12 3.06 3.22 

2 3.13 3.14 3.15 3.16 3.23 3.16 3.34 

3 3.13 3.14 3.15 3.16 3.23 3.16 3.34 

4 3.03 3.04 3.04 3.05 3.12 3.06 3.22 

5 3.13 3.14 3.15 3.16 3.23 3.16 3.34 

6 3.11 3.12 3.12 3.13 3.20 3.14 3.31 

7 2.98 2.99 2.99 2.99 3.07 3.00 3.16 

8 3.88 3.93 3.89 4.01 4.07 3.91 4.32 

9 3.60 3.64 3.61 3.72 3.77 3.63 4.00 

10 3.00 3.01 3.02 3.02 3.09 3.03 3.19 

11 3.13 3.14 3.15 3.16 3.23 3.16 3.34 

12 3.16 3.17 3.17 3.18 3.26 3.18 3.37 

13 2.93 2.93 2.94 2.94 3.01 2.95 3.10 

14 2.95 2.96 2.97 2.97 3.04 2.98 3.14 

15 3.00 3.01 3.02 3.02 3.09 3.03 3.19 

16 3.13 3.14 3.15 3.16 3.23 3.16 3.34 

17 3.06 3.07 3.07 3.08 3.15 3.08 3.25 

18 3.00 3.01 3.02 3.02 3.09 3.03 3.19 

19 3.11 3.12 3.12 3.13 3.20 3.13 3.31 

20 3.11 3.12 3.12 3.13 3.20 3.13 3.31 

21 2.93 2.93 2.94 2.94 3.01 2.95 3.10 

22 2.95 2.96 2.97 2.97 3.04 2.98 3.14 
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Fig. ‎6-8: Load-Point Annual Outage Time (conventional vs. lower bound of repair for all cases) 

 

Fig. ‎6-9: Load-Point Outage Time (conventional vs. upper bound of repair for all cases) 
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In essence, overlooking evaluating the load-point reliability indices using the proposed method could 

result in overestimating or underestimating the reliability level of load points and hence may result in 

misleading identification of critical customers. 

Distribution reliability indices are evaluated for the new cases and presented in Fig. 6-10 through Fig. 

6-14. A conceptual representation to system SAIFI obtained using the conventional method and using 

the proposed method for all cases is depicted in Fig. 6-10. Since the effect of repair time is not 

incorporated in the evaluation of failure rate for series systems, there is no change in SAIFI level for 

any given case irrespective of the repair decisions. High SAIFI level can be noticed in Case 3 caused 

by extremely adverse weather conditions, whereas a noticeable improvement in SAIFI level can be 

seen in Case 2 due to the modest forecasted weather conditions. Regardless of the case study 

considered, SAIFI obtained using the conventional method does not reflect the real failure behaviour 

of the system. The conventional method gives a pessimistic indication when the system is forecasted 

to be exposed to the weather conditions of Case 2 whereas optimistic indications are given when Case 

1 and Case 3 are considered.  

 

Fig. ‎6-10: System SAIFI (conventional vs. all cases) 
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weather is extremely adverse and the repair cannot be performed during bad weather (Case 3: upper 

bound of repair). However, an improvement in SAIDI level is evident when repair can be performed 

during bad weather in the lower bound of repair in Case 3. Similar to SAIFI, SAIDI index obtained 

using the conventional method does not reflect the real interruption duration of the system due to the 

absence of incorporating into SAIDI the evaluation of the effect of weather as well as the effect of 

repair scenarios.  

 

Fig. ‎6-11: System SAIDI (conventional vs. all cases) 
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Fig. ‎6-12: System CAIDI (conventional vs. all cases) 
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of the annual outage time. That is, system ENS is affected by both the repair decision that could be 
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terms of system ENS is depicted in Fig. 6-13.     

 

Fig. ‎6-13: System ENS (conventional vs. all cases) 
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The availability of the system is clearly affected by the repair decision and the weather conditions to 

which the system components are exposed, as shown in Fig. 6-14 for system ASAI. Fig. 6-14 shows 

how the decision of performing the repair during bad weather could positively affect ASAI levels. An 

improvement in ASAI levels is observed for all cases when repair can be performed during bad 

weather. 

 

Fig. ‎6-14: System ASAI (conventional vs. all cases) 
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optimal distribution reliability indices obtained using FOPRA for all three cases and compared with 

the conventional indices.    

Table ‎6-24: Most cost-effective repair decision (Case 2) 

Repair Decision Feeder Components 

Repair can be 

performed during bad 

weather 

F1 S3, S4, D6, D7, T6, T7 

F2 S5, S6, D8, D9 

F3 S10, D15, T15 

F4 S11, S14, D16, D22, T16, T22 

Repair can only be 

performed during 

normal weather 

F1 S1, S2, D1, D2, D3, D4, D5, T1, T2, T3, T4, T5 

F2 None 

F3 S7, S8, S9, D10, D11, D12, D13, D14, T10, T11, T12, T13, T14 

F4 S12, S13, D17, D18, D19, D20, D21, T17, T18, T19, T20, T21 

 

Table ‎6-25: Cost comparison between both bounds of repair vs optimal repair (Case 2) 

Repair decision CIC ($) CRC ($) LRC ($) TCOST ($) 

All components can be repaired in bad weather 

(lower bound) 
39,228.82 5,754.54 928.07 45,911.43 

All components cannot be repaired in bad 

weather (upper bound) 
39,429.53 5,619.78 932.49 45,981.8 

Optimal repair 39,266.23 5,670.88 930.70 45,867.82 
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Table ‎6-26: Most cost-effective repair decision (Case 3) 

Repair Decision Feeder Components 

Repair can be 

performed during bad 

weather 

F1 T6, T7 

F2 S5, S6, D8, D9 

F3 T15 

F4 T16, T22 

Repair can only be 

performed during 

normal weather 

F1 S1, S2, S3, S4, D1, D2, D3, D4, D5, D6, D7, T1, T2, T3, T4, T5 

F2 None 

F3 
S7, S8, S9, S10, D10, D11, D12, D13, D14, D15, T10, T11, T12, 

T13, T14 

F4 
S11, S12, S13, S14, D16, D17, D18, D19, D20, D21, D22, T17, 

T18, T19, T20, T21 

 

Table ‎6-27: Cost comparison between both bounds of repair vs. optimal repair (Case 3) 

Repair decision CIC ($) CRC ($) LRC ($) TCOST ($) 

All components can be repaired in bad weather 

(lower bound) 
57,113.18 13,885.87 1335.29 72,334.34 

All components cannot be repaired in bad 

weather (upper bound) 
60,597.78 8,205.90 1415.45 70,219.13 

Optimal repair 58,796.90 8,891.88 1401.00 69,089.77 

 

It is evident that the components that are assigned for repair during bad weather in Case 1 are the 

same components that are assigned for repair during bad weather in Case 2, as shown in Table 6-14 

and Table 6-24. This observation signifies the vital importance of these components to the reliability 

of the system. Nevertheless, when the weather worsens in Case 3, it would be more beneficial to 

postpone repairing some of these components until the weather improves, as indicated in Table 6-26. 

In terms of cost, the same observations from Case 1 are pointed out herein for both Case 2 and Case 

3. Both CIC and LRC are high when repair cannot be performed during bad weather due to longer 



 

 121 

repair time whereas CRC is high when repair can be performed during bad weather due to the risk 

associated with performing the repair in unfavourable weather conditions. 

Table ‎6-28: Comparison of customer- and energy-based indices of the system (Case 2) 

Indices 
Conventional 

method 

Proposed method 

Repair can be 

performed 

during bad 

weather 

Repair cannot be 

performed 

during bad weather 

Optimal 

SAIFI 

(interruption/customer 

yr) 

0.2482 0.2359 0.2359 0.2359 

SAIDI 

(h/customer yr) 
0.7656 0.7307 0.7341 0.7338 

CAIDI 

(h/customer 

interruption) 

3.0844 3.0973 3.1116 3.1105 

ENS 

(kWh/yr) 
8843.829 8436.972 8477.175 8460.929 

ASAI 0.999912606 0.9999165 0.99991620 0.99991623 

TCOST ($) N/A 45,911.43 45,981.80 45,867.82 
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Table ‎6-29: Comparison of customer- and energy-based indices of the system (Case 3) 

Indices 
Conventional 

method 

Proposed method 

Repair can be 

performed 

during bad weather 

Repair cannot be 

performed 

during bad weather 

Optimal 

SAIFI 

(interruption/customer 

yr) 

0.2482 0.337 0.337 0.337 

SAIDI 

(h/customer yr) 
0.7656 1.0466 1.1075 1.1073 

CAIDI 

(h/customer 

interruption) 

3.0844 3.1056 3.2862 3.2857 

ENS 

(kWh/yr) 
8843.829 12138.95 12867.69 12736.35 

ASAI 0.999912606 0.999881 0.999874 0.999874 

TCOST ($) N/A 72,334.34 70,219.13 69,089.77 

 

Table ‎6-30: Comparison of customer- and energy-based indices of the system (all cases) 

Indices Conventional method 
Proposed method (optimal) 

Case 1 Case 2 Case 3 

SAIFI 

(interruption/customer yr) 
0.2482 0.2683 0.2359 0.337 

SAIDI 

(h/customer yr) 
0.7656 0.8509 0.7341 1.1073 

CAIDI 

(h/customer interruption) 
3.0844 3.1721 3.1116 3.2857 

ENS 

(kWh/yr) 
8843.829 9760.9431 8477.175 12736.35 

ASAI 0.999912606 0.999902862 0.99991620 0.999874 

TCOST ($) N/A 53,089.67 45,981.80 69,089.77 
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In terms of ENS, for instance, it can be seen from Table 6-30 that the conventional method gives 

optimistic indication compared to Case 3 when the weather is extremely adverse and pessimistic 

indication compared to Case 2 when the weather is modest. The conclusion that can be made herein is 

that reliability indices obtained using FOPRA represent the real behaviour of the system other than 

the conventional indices which are just statistical quantities. 

6.4 Summary 

The proposed FOPRA approach is numerically illustrated in this chapter through a case study 

followed by a sensitivity analysis for two additional case studies. The results obtained show the 

significance of evaluating distribution system reliability indices using the proposed method instead of 

the conventional method. As a concluding remark, conventional indices are statistical quantities 

obtained from historical data and cannot reflect the actual performance of the system during specific 

operating conditions; however, the indices evaluated using the FOPRA approach reflect the actual 

weather-based performance of the system. Maintenance budget and component scheduled repair are 

more accurately estimated and better serviced using the new proposed FOPRA approach.  
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Chapter 7 

Conclusion and Summary 

7.1 Thesis Summary 

This thesis proposed a new weather-based reliability analysis approach called forecasted power 

systems reliability analysis (FOPRA) approach. The proposed FOPRA approach aims to introduce a 

new philosophy to study the impact of weather on power system reliability. FOPRA approach is 

comprised of two main concepts: 

 Weather-based Predictive Reliability Assessment Method (PRAM); and 

 Weather-based Decision-making Repair Model (DMARM). 

The PRAM method aims to develop a new methodology to evaluate reliability indices that can be 

used to predict the performance of the distribution systems in the future. PRAM involves four main 

stages: 

1) Data Initialization: In this stage, a set of historical weather, outage, and customer data are 

identified. 

2) Historical Reliability Assessment: In this stage the development of the equations used in the 

reliability assessment is carried out. These equations are then used to evaluate, for each 

component, the historical failure rates in normal and bad weather, the bad-weather severity 

weight of failure(s), and the historical failure rates during every month.   

3) Weather Forecast: The weather forecast data that are forecasted to occur during the FD are 

collected and processed in this stage.  

4) Effective Predictive Reliability Assessment: Two new sets of component reliability indices are 

formulated in this stage: component forecasted reliability indices and component effective 

reliability indices. Component forecasted reliability indices are evaluated based on the weather 

forecast data identified in the previous stage. Component effective reliability indices are 

evaluated using a new mathematical model that combines the component’s forecasted reliability 

indices and both the component’s historical failure rates during every month and the component’s 

average repair time. Component effective reliability indices are used to evaluate load-point and 

distribution system indices.    

The developed reliability indices evaluation method proposed by PRAM method is capable of 

indicating how the reliability level of the distribution system might change according to the variation 
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of weather forecast data and the weather-based repair decision for system components. In other 

words, the reliability indices evaluated using the proposed PRAM method reflect the actual 

performance of the system.   

On the other hand, the second part of the FOPRA approach, the DMARM method, developed a new 

procedure to investigate the cost-effectiveness of performing repair activities during bad weather 

conditions for distribution system components that may experience weather-related failure incidents. 

In addition to the four stages of the PRAM method, two additional stages are involved in DMARM 

model: 

1) Risk Cost Analysis: An optimization problem was developed using the Genetic Algorithms (GA) 

to find the most cost-effective repair decision that achieves the minimum TCOST. Using the 

repair decision obtained from the optimization process, the allocation of repair resources can be 

made effectively.   

2) Optimal System Reliability Level: Component, load point, and distribution system reliability 

indices were re-evaluated based on the results obtained from the optimization process of the risk 

cost analysis. These re-evaluated indices of the distribution system represent the optimal system 

reliability level that the utility should target. 

7.2 Main Contributions 

This thesis proposes a new weather-based reliability philosophy through the new forecasted power 

system reliability analysis approach (FOPRA). The main contributions of FOPRA can be summarized 

in the following points: 

1. Extends the concept of predictive reliability assessment to involve predicting the benefit of 

reliability improvement for alternative weather-based repair decisions. 

2. Introduces a new model to classify historical bad weather conditions. Every unfavourable weather 

condition that has been historically observed to cause noticeable forced failure for the component 

is classified as a separate weather state. This classification gives the reliability assessment more 

insight into and deeper understanding of bad weather’s effect on reliability. 

3. Introduces the concept of proportion of failures (PoFm) occurring every month m. This new 

concept identifies the percentage of failures occurring every month which consequently can help 

to allocate historical failure events on a monthly basis. 
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4. Introduces the new term of bad-weather severity weight of failure (wf) to quantitatively express 

the severity level that a bad weather condition may pose on component failure rate. 

5. Introduces a new method to decompose component average failure rate into a set of segmented 

failure rate values, each of which is expressed as the number of failures per month. This 

representation of failure rate over a short-term basis helps to identify the effect of improbable 

failure causes, especially those related to bad weather events. The introduced method develops a 

generalized form to evaluate component average failure rate during any month of the year.   

6. Unlike all weather-based research works which have studied the effect of weather on reliability 

based on historical weather data, FOPRA approach takes into consideration the effect of both 

historical and forecasted weather data. Moreover, the uncertainty associated with weather forecast 

data is also considered. The incorporation of weather forecast data into reliability analysis helps 

to recognize the effect associated with ongoing changes to Earth’s‎ climate‎ system‎ and‎ the‎

consequent unpredictable variations in historical weather patterns. 

7. Develops a new set of component reliability indices called forecasted reliability indices including 

forecasted failure rate (FFR) and forecasted repair rate (FRR). The evaluation of FFR and FRR is 

presented using analytical equations and MCS. Components FFR and FRR are developed in order 

to predict the performance of distribution system components upon exposure to weather 

conditions that are forecasted to occur over a predetermined forecast period. The FFR can help 

attentively recognize and highlight the instantaneous weather effect on failure rate value, 

especially for those low-probability-of-occurrence weather events. 

8. Develops a new set of component reliability indices called effective reliability indices including 

effective failure rate (EFR) and effective repair time (ERT). Components EFR and ERT are 

evaluated using a new mathematical model that combines historical and forecasted component 

reliability indices. Unlike the conventional average failure rate and repair time, which are 

statistical quantities obtained from historical data, the new introduced indices of EFR and ERT 

help to demonstrate the actual weather-based performance of the component. Distribution system 

reliability indices evaluated using EFR and ERT represent the effective prediction of system 

performance. 

9. Proposes a new decision-making repair model to investigate the cost-effectiveness of performing 

repair activities for failed distribution system components during bad weather conditions and 
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finding the most cost-effective repair decision for all system components. The introduced model 

can help utilities develop a weather-based crew dispatch management scheme that enables 

utilities to optimally and effectively allocate repair resources in advance. 

10. Conducts a risk cost analysis through developing an optimization problem using Genetic 

Algorithms (GA). Instead of assigning one repair scenario to all components, the risk cost 

analysis conducted in this thesis helps to distinguish system components based on the 

contribution of each component to the reliability of the whole system which consequently results 

in the possibility of assigning different repair scenarios for the components. This provides the 

distribution system engineer at the utility the opportunity to schedule failed component repair in 

an intelligent and cost-effective manner.  

11. Introduces a new reliability cost/worth index called total cost (TCOST), which involves all repair-

related decision costs that the utility may incur. TCOST is comprised of three reliability 

cost/worth indices: customer interruption cost (CIC), component repair cost (CRC), and lost 

revenue cost (LRC). Both CIC and LRC have been already introduced in some references in the 

literature; however, they are modified by FOPRA approach to reflect the effect of effective 

reliability indices introduced in this thesis. 

12. Introduces a new method to evaluate CRC, which aims to mathematically quantify the 

relationship between the cost of repair and the severity level of weather during which repair 

activity is performed. 

13. Introduces the new term of bad-weather severity weight of repair (wr) to quantitatively express 

the severity level that a bad weather condition may pose on the process of performing repair 

activity and to express that effect in term of monetary value. 

14. Uses the results obtained from the risk cost analysis to determine the optimal system reliability 

level that the utility should target. 

7.3 Opportunities for Future Research  

In addition to considering weather variability, the proposed FOPRA approach could be extended to 

consider the effect of other causes of failure including inherent component aging, for example. Repair 

activity is assumed in this thesis to be capable of being performed during any bad weather condition; 

however, further development opportunities exist to modify forecasted reliability indices to include a 

repair decision that allows performing the repair during some bad weather conditions and prohibits 
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performing the repair during other bad weather conditions over the same forecast period. The major 

challenge associated with applying the FOPRA approach is obtaining accurate weather forecast data. 

Research developments in the science of meteorology would certainly be helpful in obtaining more 

accurate reliability indices. 
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