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Abstract

Substantial investments are being made in health research to support the conduct of

large cohort studies with the objective of improving understanding of the relationships

between diverse features (e.g. exposure to toxins, genetic biomarkers, demographic vari-

ables) and disease incidence, progression, and mortality. Longitudinal cohort studies are

commonly used to study life history processes, that is patterns of disease onset, progres-

sion, and death in a population. While primary interest often lies in estimating the effect

of some factor on a simple time-to-event outcome, multistate modelling offers a conve-

nient and powerful framework for the joint consideration of disease onset, progression, and

mortality, as well as the effect of one or more covariates on these transitions.

Longitudinal studies are typically very costly, and the complexity of the follow-up

scheme is often not fully considered at the design stage, which may lead to inefficient

allocation of study resources and/or underpowered studies. In this thesis, several aspects

of study design are considered to guide the design of complex longitudinal studies, with

the general aim being to obtain efficient estimates of parameters of interest subject to cost

constraints. Attention is focused on a general K state model where states 1, . . . , K − 1

represent different stages of a chronic disease and state K is an absorbing state representing

death.

In Chapter 2, we propose an approach to design efficient tracing studies to mitigate

the loss of information stemming from attrition, a common feature of prospective cohort

studies. Our approach exploits observed information on state occupancy prior to loss-to-

followup, covariates, and the time of loss-to-followup to inform the selection of individuals

to be traced, leading to more judicious allocation of resources. Two settings are considered.

In the first there are only constraints on the expected number of individuals to be traced,

v



and in the second the constraints are imposed on the expected cost of tracing. In the latter,

the fact that some types of data may be more costly to obtain via tracing than other types

of data is dealt with.

In Chapter 3, we focus on two key aspects of longitudinal cohort studies with inter-

mittent assessments: sample size and the frequency of assessments. We derive the Fisher

information as the basis for studying the interplay between these factors and to identify fea-

tures of minimum-cost designs to achieve desired power. Extensions which accommodate

the possibility of misclassification of disease status at the intermittent assessments times

are developed. These are useful to assess the impact of imperfect screening or diagnostic

tests in the longitudinal setting.

In Chapter 4, attention is turned to state-dependent sampling designs for prevalent

cohort studies. While incident cohorts involve recruiting individuals before they experience

some event of interest (e.g. onset of a particular disease) and prospectively following

them to observe this event, prevalent cohorts are obtained by recruiting individuals who

have already experienced this event at some point in the past. Prevalent cohort sampling

yields length-biased data which has been studied extensively in the survival setting; we

demonstrate the impact of this in the multistate setting. We start with observation schemes

in which data are subject to left- or right-truncation in the failure-time setting. We then

generalize these findings to more complex multistate models. While the distribution of state

occupancy at recruitment in a prevalent cohort sample may be driven by the prevalences

in the population, we propose approaches for state-dependent sampling at the design stage

to improve efficiency and/or minimize expected study cost.

Finally, Chapter 5 features an overview of the key contributions of this research and

outlines directions for future work.
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Chapter 1

Introduction

1.1 Cohort Studies for Life History Processes

Investigating the association between risk factors such as exposure to toxins, genetic

biomarkers, and demographic variables and disease incidence, progression, and mortal-

ity is of great interest in health research. Cohort studies where individuals are followed-up

over time are particularly well suited to studying questions of this nature. Birth cohorts

are typically directed at measuring the impact of maternal exposures on neonatal and early

life outcomes [Kobayashi et al., 2016], whereas studies in infants and young children may

be directed at the impact of early diet and care on cognitive and physical development

[Lakshman et al., 2015]. The Canadian Longitudinal Study on Aging [Raina et al., 2009]

focuses on disease processes in later life; 50,000 individuals aged 45-85 were recruited and

are to be followed for 20 years to gain insight into the complex relationships between be-

haviour, biomarkers and disease incidence. The EPIC Norfolk study [Riboli, 1992] and

many others have broadly similar objectives. In other settings attention may be directed

at diseased individuals and interest lies in studying the incidence of complications or co-

morbidities in affected individuals; studies in diabetics are particularly ubiquitous [Early

1



Treatment Diabetic Retinopathy Study Research Group, 1991]. While interest may lie pri-

marily in biomarkers and their effect on the development of complications from disease and

the onset of comorbidities, mortality rates may be appreciable and joint models incorpo-

rating survival times are required for valid inferences. Multistate models offer a convenient

and powerful framework for the joint consideration of disease incidence, progression, and

mortality.

We consider the setting in which individuals are recruited and followed prospectively to

learn about the disease process and identify risk factors for the occurrence of disease compli-

cations and the development of comorbidities; retrospective information about the course

of disease prior to recruitment may be available in some situations. Clinically important

events are often self-evident (e.g. strokes, heart attacks, and death) but their observation

times are subject to right censoring. Some complications, however, are asymptomatic and

so will only be detected at the time of clinical examination or radiographic assessment.

For example, asymptomatic fractures among individuals with osteoporosis are only de-

tected upon radiographic examination [Kreiger et al., 1999], progression in retinopathy in

diabetics is only detected upon examination by an ophthalmologist [Diabetes Control and

Complications Trial Research Group, 1993], and progression in fibrosis of the liver among

individuals with hepatitis C infection is only assessable by biopsy [Sweeting et al., 2006].

In settings where interest lies in the development of conditions or complications which

are not self-evident, data become available at periodic clinic visits, giving rise to so-called

panel data [Kalbfleisch and Lawless, 1985] where transition times are subject to interval

censoring. Multistate models for such data are generally based on the Markov assumption

and likelihoods can be easily constructed which accommodate a mixture of right-censored

and interval-censored transition times [Zeng et al., 2018].

The cost of conducting a longitudinal study is often appreciable, in great part due
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to the expense of repeatedly assessing individuals, often via in-person examination by a

physician and/or expensive clinical tests; as such, there is great interest in the design

of longitudinal studies which allocate resources most efficiently [Moskowitz et al., 2017,

Timmons and Preacher, 2015, Collins and Graham, 2002, Singer and Willett, 1991]. Design

considerations are very much dependent on the objectives of the study, and in particular on

the response of interest and which features of its distribution are key. At the planning stage,

it is natural to consider the effect of various design factors on efficiency, such as sample

size, duration of follow-up, assessment schedule, and the distribution of states occupied at

recruitment. Albert and Hendricks Brown [1991] consider different sampling schemes and

schedules for the assessments in a two-state process. Cook [2000] assessed the impact of the

assessment schedule on the precision of estimates of transition intensities and occupancy

probabilities; Lawless and Rad [2015] studied this and more general three-state processes.

Mehtälä et al. [2015] consider sample size and the optimal scheduling of assessments for

time-homogeneous two-state Markov processes; Hwang and Brookmeyer [2003] consider

similar issues for strictly progressive K−state processes. In each chapter of this thesis, we

consider different aspects of design in the context of prospective cohort studies aiming to

collect data with which to model multistate life history processes.

1.2 Multistate Models

Over the course of an individual’s lifetime, many attributes are subject to variation over

time (e.g. disease status, physiological markers, etc). The space of all possible combinations

of such attributes can be partitioned into a possibly infinite set of states Ω = {0, 1, 2, . . .}

where each state is defined by combinations of attribute values; in this thesis, we will restrict

our attention to finite state spaces. The attributes characterizing these states are typically
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Dead - Cause 3

Dead - Cause 2
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1

Dead
2

(c) Illness-death model

Figure 1.1: Examples of multistate models

time-varying so individuals can transition between states over time. Directed graphs are

used to depict multistate processes as they conveniently display the state space and the

permissible transitions between these states. Figure 1.1 shows three examples of common

multistate models: (a) the standard time-to-event survival model, (b) the competing risks

model where a transition to one of two or more states precludes transitions to other states,

and (c) the illness-death model modelling progression from a healthy state to death, with

possible onset of some disease of interest prior to death. For more examples of multistate

processes, see Hougaard [1999] and Cook and Lawless [2018]. States in a multistate process

can be characterized in terms of features of the process. States from which no transitions

are possible (e.g. all ‘Death’ states in Figure 1.1) are called absorbing states while states

from which it is possible to move to one or more other state (e.g. ‘Alive’ and ‘Diseased’

states in Figure 1.1) are called transient states [Ross, 2014].

Multistate models are a natural way to characterize chronic disease processes with

multiple stages. Let {Z(t), t > 0} be a continuous time stochastic process with state space

Ω = {0, 1, 2, . . . , K}. Let H(t) = {Z(s), 0 ≤ s ≤ t} be the history for the multistate

process, with the intensity for k → ` transitions defined as

lim
∆t↓0

P (Z((t+ ∆t)−) = `|Z(t−) = k,H(t−))

∆t
= λk`(t|H(t−)) ,
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where k 6= ` ∈ Ω. Markov models are among the most commonly used types of multistate

models. Under such models, all dependence of transition intensities on the history of the

process is encompassed in the current state, that is λk`(t|H(t−)) = λk`(t). The transition

probabilities pk`(s, t) = P (Z(t) = `|Z(s) = k) are obtainable from the intensities via the

Kolmogorov forward differential equation

∂

∂t
P(s, t) = P(s, t)A(t) s < t , (1.1)

where P(s, t) is the transition probability matrix with entries [P(s, t)]k` = pk`(s, t), and

A(t) is the transition intensity matrix with entries [A(t)]k` = λk`(t) for k 6= ` ∈ Ω and

[A(t)]kk = −
∑
6̀=k λk`(t) [Cox and Miller, 1965]. A time-homogeneous model in which

transition intensities are independent of t (i.e. λk`(t) = λk` for all k 6= `) is the simplest

model to consider. In this case, the transition probability matrix is written as a matrix

exponential of the constant intensity matrix A(t) = A0,

P(s, t) = exp{(t− s)A0} =
∞∑
n=0

An
0 (t− s)n/n! .

Non-homogeneous Markov models can be adopted by specifying piecewise-constant

transition intensities so that A(t) = Ar if t ∈ Br = [br−1, br), r = 1, . . . , R, with a se-

quence of pre-defined cut-points 0 = b0 < b1 < . . . < bR−1 < bR =∞. Under such models,

probabilities pk`(s, t) can be obtained by multiplying a sequence of transition probabilities

over the constant segments of the interval [s, t) and then summing over the unobserved

disease status at the cut-points. More specifically, if rs = {r; s ∈ Br, r = 1, . . . , R} and

rt = {r; t ∈ Br, r = 1, . . . , R}, then

P(s, t) =
rt∏

r=rs

P
(

max{s, br−1},min{t, br}
)

=
rt∏

r=rs

exp
{(

min{t, br} −max{s, br−1}
)
Ar

}
(1.2)
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0 1 2 . . . K-1

K

Figure 1.2: Progressive model with transient states 0, . . . , K − 1 and one absorbing state
K

where the matrix exponential is used to obtain transition probabilities within each piece

intersecting the interval of interest (s, t).

Multiplicative intensity-based models can be used to characterize the effect of prognostic

variables on the dynamics of the disease process. Modulated Markov models are obtained

by specifying

λk`(t|X) = λk`0(t) exp(X ′βk`), k < ` ∈ Ω,

where λk`0(t) is the baseline transition intensity, X = (X1, . . . , Xp)
′ is a p × 1 covariate

vector, and βk` = (βk`1, . . . , βk`p)
′ is a vector of regression coefficients specific to k → `

transitions. We let θ be the vector of parameters indexing all baseline intensity functions

and regression coefficients.

1.3 Incomplete Observations

1.3.1 Observations in Continuous Time

Incomplete observations are a common feature of studies where individuals contribute

information over time, whether it be a time-to-event response or a multistate process ob-

served intermittently. Time-to-event responses (in survival analysis or as part of a more

general multistate process) are generally subject to two right censoring mechanisms: ad-

ministrative censoring and loss-to-follow-up. A response T is administratively censored if
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the event of interest has not yet occurred by the end of the follow-up period τ , that is

if T > τ ; this is sometimes also referred to as type I censoring [Kalbfleisch and Prentice,

2011]. Alternatively, individuals may also withdraw from the study at some random time

C < τ after which no information about their responses is available. In general, we let

T † = min(T, τ, C) be the right-censored observation and δ = I(T = T †) a non-censoring

indicator. Suppose f(t; θ) and g(c; ρ) are the probability densities for the time-to-event re-

sponse and censoring time respectively. The censoring process is said to be non-informative

if the parameters in f(t; θ) and g(c; ρ) are functionally independent; in this case we can

factor the joint likelihood and inference for θ is solely based on the observed right-censored

observations through

L(θ) ∝
n∏
i=1

f(ti; θ)
δiP (Ti > t†i ; θ)

1−δi (1.3)

without modelling the censoring process. This assumption is reasonable if it can be ar-

gued that individuals withdraw from the study for reasons unrelated to the severity of

their disease and/or their prognosis, resulting in a non-censored subpopulation which is

representative of the whole population of interest. When this assumption fails to hold,

censoring is deemed informative and inference based on (1.3) is incomplete as it fails to

incorporate the censoring contributions; methods to handle informative right-censoring

involve accounting for the censoring distribution explicitly.

1.3.2 Intermittent Observations

In some settings, it is only possible to observe the disease process at discrete times {a0 <

a1 < a2 < · · · }; let Z(aj) = Zj be the state occupied at assessment time aj. In such panel

data [Kalbfleisch and Lawless, 1985, Hwang and Brookmeyer, 2003], the exact time of

transitions are unknown, and thus interval censored. Indeed, for non-progressive processes
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it is not even known how many transitions may have occurred between assessment times.

For longitudinal studies with intermittent assessments, ‘incompleteness’ in the responses

may take different forms. If the assessments are regular (that is, scheduled in advance at

times a0 < · · · < aJ), the notion of ‘missing’ a visit is natural; individuals may miss visits

occasionally or withdraw from the study entirely. The latter is similar to the idea of right

censoring discussed above, and loss-to-follow-up in a discrete assessment scheme may be in-

duced by an underlying censoring time C in continuous time, where responses are observed

at times {aj : aj < C} and missing otherwise. Alternatively, an under-observation indica-

tor Yj = I(Zj is observed) may be defined to allow for (potentially) more flexible missing

data patterns. A common assumption in this setting is the sequential missing at random

(SMAR) assumption [Hogan et al., 2004], which states that when we condition on the past

history Hj−1 = (Z̄j−1, Ȳj−1, X) where Z̄j−1 = (Z1, . . . , Zj−1), Ȳj−1 = (Y1, . . . , Yj−1), and X

is a covariate vector, then Yj is independent of the future responses {Zj, . . . , ZJ}, that is

P (Yj = 0|Ȳj−1, Z̄K , X) = P (Yj = 0|Ȳj−1, Z̄j−1, X).

When disease status is assessed intermittently at irregular intervals, particularly when

the scheduling of these visits is patient-driven, it is much more difficult to define what

is meant by a ‘missing’ observation. Cook and Lawless [2018] propose an analogue to

the SMAR assumption, namely that of a conditionally independent visit process (CIVP),

by which a random visit time Aj is assumed to be conditionally independent of the dis-

ease process since the last assessment at time Aj−1, given the observed history Hj−1 =

{(Z(A1), A1), . . . , (Z(Aj−1), Aj−1), X}. Violations of the CIVP assumption are common

when visits are patient-driven rather than pre-scheduled. Registry data are an extreme

example of this, where patient data is only available when they interact with the health

care system (e.g. hospital visits, insurance claims) at which time disease status is inferred
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[Farzanfar et al., 2017].

1.4 Response-dependent Recruitment Schemes

Response-dependent sampling arises when selection probabilities depend on responses, for

example when individuals may only be observed if some recruitment condition is satisfied.

In his paper discussing the nonparametric estimation of incomplete data, Turnbull proposes

a useful unifying framework for censoring and truncation [Turnbull, 1976]. Let T be a

time-to-event response and X a covariate vector. An observation (Ti, Xi), i = 1, . . . , n

is truncated by a set Bi if Ti follows the conditional distribution F (t;Bi, Xi) = P (T ≤

t|T ∈ Bi;Xi). If Bi = (0,∞) the observation is not truncated, while Bi = (0, Ri) and

Bi = (Li,∞) correspond to right- and left-truncation respectively. Further, if we only

know Ti belongs to some set Ai ⊂ Bi we say Ti is censored into Ai. If Ai contains a single

value, the value of Ti is known exactly (so Ti is uncensored), while other choices of Ai ⊂ Bi
can lead to right-, left-, and interval-censoring. Using this notation, the information about

an observation (Ti;Xi) can equivalently be described by (Ai,Bi;Xi). Note that the sets Ai
and Bi can be fixed or random, depending on the sampling scheme and study design.

Left truncation is the most well-studied type of response-dependent sampling. For ex-

ample, let T be age at death and consider recruiting a sample of individuals for prospective

follow-up to estimate the intensity for mortality. An individual recruited at age A nec-

essarily must satisfy T ∈ (A,∞), as individuals must be alive to be recruited. Failing

to account for the left truncation recruitment condition T ≥ A in the subsequent anal-

ysis leads to an overestimation of survival time. It is likely due to the great interest in

length-biased data from prevalent cohort samples in the medical sciences [Wolfson et al.,

2001, Gladman et al., 2005, Keiding, 1991, Simon, 1980, Duffy et al., 2008, Shen et al.,
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2017, Shen and Cook, 2013] as well as in other fields such as economics [Lancaster, 1992],

and manufacturing [Blumenthal, 1967] that the development of methods for the analysis

of truncated data has mostly focused on left truncation.

Time-to-event data, as shown in Figure 1.1(a), can be cast into the multistate frame-

work. As discussed above, in this case left truncation amounts to recruiting individuals

who are still in the ‘alive’ state at recruitment (or equivalently, who have not yet entered

the ‘dead’ state). Consider a more general multistate model, such as the K+1 state model

in Figure 1.2 which is the primary focus of this thesis. It is possible to restrict recruitment

efforts to a subset S ⊆ {0, . . . , K − 1} ⊂ Ω of the non-fatal states, representing particular

stages of disease. If, as in the simple length-biased case, the selection probability for a

given individual is proportional to their sojourn time in S, then this recruitment condition

must be considered in analyses. Prospective cohort studies intending to estimate disease

incidence or related covariate effects would involve recruiting disease-free individuals at

age A and following them prospectively over some duration τ to monitor disease onset,

progression, and death. While analysis of such data is straightforward, estimability may be

a concern if the disease of interest is rare or if progression is slow relative to the duration of

the study (τ). Rather, prevalent studies may be considered, where individuals at different

disease stages may be sampled. Considerations related to the choice of stages at accrual

S in this case and the mechanisms by which individuals are screened from the population

are discussed by Cook and Lawless [2018], but little work has been done on this topic.

In practice, if interest lies in estimating all transition intensities in a multistate model,

it may be necessary to employ auxiliary data to estimate some of these intensities (e.g.

retrospective estimation of intensities for disease onset if prevalent sample is drawn), this

is discussed in Keiding et al. [1989].
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1.5 Motivating Studies

1.5.1 Research Program in Psoriatic Arthritis

Psoriatic arthritis (PsA) is a form of inflammatory arthritis associated with psoriasis, a

condition characterized by inflammation of the skin [Eder et al., 2011a]. Estimates of the

prevalence of psoriasis and psoriatic arthritis vary widely, from 0.5% to 11% [Michalek

et al., 2017] and 0.05% to 0.25% [Ogdie and Weiss, 2015] respectively. The problems

considered in this thesis are motivated by a research program in psoriasis and psoriatic

arthritis at the Toronto Western Hospital and the University of Toronto.

Since 1976, the Centre for Prognosis Studies in Rheumatic Disease at the Toronto

Western Hospital has maintained a registry of patients with psoriatic arthritis, the Toronto

Psoriatic Arthritis Cohort [Gladman and Chandran, 2010], with the objective to treat

patients and increase understanding of disease incidence and the course of progression.

Patients in this cohort were monitored prospectively to identify progression in the severity

of the disease; one such type of progression is arthritis mutilans, characterized by severe

inflammation of joints in the hand and feet leading to deformity [Gladman et al., 1987].

More recently, the Toronto Psoriasis Cohort, established in 2006, began enrolling patients

with psoriasis but not psoriatic arthritis, with a view to following them prospectively

to assess the impact of demographic and environmental factors as well as biomarkers on

the risk of developing psoriatic arthritis [Eder et al., 2011a]. particular interest lies in

estimating the effect of key genetic markers (e.g. HLA-B27) on

(i) the incidence of psoriatic arthritis among individuals with psoriasis and

(ii) the incidence of arthritis mutilans among individuals with psoriatic arthritis
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while accommodating the full disease process, including death. Patients in the Toronto

Psoriasis Cohort provide information through prospective follow-up, while individuals in

the Psoriatic Arthritis cohort provide retrospective information on psoriasis onset times

and prospective data on arthritis mutilans and mortality.

1.5.2 Canadian Longitudinal Study on Aging

The Canadian Longitudinal Study on Aging (CLSA) [Raina et al., 2009] is another large

study currently underway, involving the recruitment of 50,000 Canadians aged 45-85 and

follow-up over a period of 20 years. All CLSA participants furnish baseline information and

are to be followed-up every three years; participants are directed into one of two subcohorts,

‘tracking’ and ‘comprehensive’. Individuals in the tracking cohort of ≈ 20,000 individu-

als, follow-up is done via telephone interviews, while individuals in the comprehensive

cohort undergo in-person interviews and examinations and provide biological specimens

(e.g. blood and urine) every three years.

The objective of the CLSA is broad: to study the interplay between biological, physical,

psychosocial, and societal factors affecting aging in Canada [Raina et al., 2009]. The study

has already led to a number of research outputs, including a report on health and aging in

Canada [Raina et al., 2018] and a study on cognitive measures using CLSA data [Tuokko

et al., 2017]; an additional 100 projects related to the CLSA have also been approved

[CLSA] and are ongoing

Because of the large scale of cohort studies such as the CLSA, improvements in study

design can lead to meaningful savings and this motivates the work in this thesis. For

example, due to the long duration of intended follow-up, the CLSA is likely to feature a high

proportion of loss-to-follow-up as individuals move away, lose interest in participating in
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the study, etc., so approaches for cost-effective design of tracing studies in Chapter 2 would

be well suited in this setting. If interest lies in constructing sub-cohorts of individuals for

more intensive examination and data collection for the study of particular disease processes,

the state-dependent sampling schemes of Chapter 4 could also be useful.

1.6 Outline of Thesis

The remainder of this thesis is organized as follows.

1.6.1 Tracing Studies in Cohorts with Attrition

Attrition is a common and generally unavoidable occurrence when conducting a cohort

study. When the time to withdrawal from the cohort is conditionally independent of the

disease process, the primary consequence is a loss of precision for the estimation of model

parameters. This loss can sometimes be mitigated by the conduct of tracing studies in

which a subsample of individuals lost to follow-up are contacted and some information is

obtained on their disease and survival status. In Chapter 2, we describe the use of selection

models to sample individuals for tracing, which will yield more efficient estimators and/or

more cost-effective subsampling than simple random sampling.

1.6.2 Cohort Study Designs for Markov Processes

In Chapter 3, we focus attention on the design of longitudinal cohort studies with a set

number of intended assessments over the study period, at which times disease status is

to be ascertained; here we assume the exact time of deaths occurring over the study

period are available. Both sample size and the frequency of assessments are drivers of

precision in estimates of transition intensities and/or covariate effects on these intensities,
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and we present a framework to evaluate this tradeoff by taking into account expected

study cost. We present a closed form expression for the Fisher information, allowing for

misclassification in the observed disease status.

1.6.3 State-dependent Sampling Designs for Prevalent Cohort
Studies

In Chapter 4, we consider the impact of state-dependent sampling on efficiency in the

time-to-event and multistate settings. We first demonstrate the bias induced by length-

biased sampling on transition probabilities in an illness-death model. We then compare the

efficiency of estimators of a regression coefficient on a time-to-event response, subject to a

cost constraint. Finally, we consider the design of prevalent cohort studies in the multistate

framework. We consider two approaches: in the first we consider selecting individuals for

follow-up on the basis of the state they occupy at the time of recruitment, and in the second

we assume a population is screened until desired state-specific sample sizes are recruited

for follow-up. In the latter setting, all individuals who are screened furnish current-status

data and this is exploited in the estimation procedure. In both cases, we derive the Fisher

information and use this as the basis for study design. minimum-cost designs achieving

a desired level of power are also defined and the relationship between disease process

parameters and features of these designs are studied.
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Chapter 2

Tracing Studies in Cohorts with
Attrition: Selection Models for
Efficient Sampling

2.1 Introduction

Attrition is a common feature of longitudinal cohort studies, wherein some of the individ-

uals initially recruited into the study become lost to follow-up before the planned end of

the study. Failing to account for attrition at the design stage may result in significantly

underpowered studies; this can be counteracted by increasing the size of the initial sample

size for follow-up, although this may not be feasible in cases where the rate of loss to

follow-up is higher than was expected. Rather, tracing studies may be conducted, where

individuals who have been lost to follow-up are tracked down, or ‘traced’, to recover some

information about their course of disease.

This work is particularly motivated by a research program at the Centre for Prognosis

Studies in Rheumatic Diseases at the Toronto Western Hospital; see Section 1.5.1. Re-

cruitment in the Toronto Psoriatic Arthritis Cohort has been ongoing since 1976 and while
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assessments are intended to occur on an annual basis, a large proportion of individuals

have not been seen for 2+ years and hence deemed to be lost to follow-up. Tracing studies

have been done on an ad-hoc basis in the past, and the work in this chapter aims to provide

a rigorous framework to design cost-effective tracing studies.

We consider the setting in which disease or vital status is determined at intermittent

pre-scheduled visit times until death or loss-to follow-up. At the planned study endpoint,

a subset of individuals who have been lost to follow-up are selected for tracing at which

their disease status is obtained.

Likelihood inference based on available data yield consistent but less efficient estimators

when data satisfy the sequential missing at random (SMAR) assumption [Hogan et al.,

2004]. The loss of efficiency can be mitigated somewhat through the conduct of tracing

studies whereby a subset of the individuals who have withdrawn from the cohort are

contacted to obtain information on their survival and disease status [Farewell et al., 2003].

Despite the considerable appeal of enhancing information from such efforts, relatively little

attention has been given to the design of tracing studies. We address this here by sampling

individuals who are lost to follow-up using selection models which exploit information

in the observed history prior to withdrawal from the cohort. Within a given class of

selection models, sampling probabilities can be chosen to increase efficiency of estimators

of parameters of primary interest (e.g. incidence rates for complications or comorbidities,

marker effects, etc.). Such models are appealing when resource constraints mean that not

all individuals lost to follow-up can be traced.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce the

multistate model of interest and the likelihood for panel data with attrition under a SMAR

mechanism, define the tracing selection model, and describe the idea of optimal selection for

tracing. Asymptotic calculations demonstrating the efficiency gains from optimal tracing
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compared to simple random sampling are also given. When the cost of securing information

on disease progression status is different from the cost of simply obtaining survival status,

the cost implications of optimal tracing are also provided. In Section 2.3, a more general

optimization process is described with cost constraints, which leads to different optimal

selection models; the efficiency gains are also illustrated in this setting based on asymptotic

results. An application of the proposed methodology to data collected from a cohort study

conducted at the University of Toronto Psoriatic Arthritis Clinic is presented in Section

2.4 and general remarks are given in Section 2.5.

2.2 Model Formulation and Design of Tracing Studies

2.2.1 A Multistate Markov Model for Disease Progression

Consider a progressive multistate model as in Figure 1.2, where states {0, . . . , K − 1}

represent increasingly severe stages of disease progression and state K represents death.

We assume the process is Markov, so the intensity of a transition from state k to state ` is

lim
∆t↓0

P (Z((t+ ∆t)−) = `|Z(t−) = k,H(t))

∆t
= λk`(t), k = 0, . . . , K − 1, ` ∈ {k + 1, K}.

As in Section 1.2, we assume covariates X have a multiplicative effect on the intensities,

with λk`(t|X) = λk`0(t) exp(X ′βk`) where λk`0(t) is the baseline transition intensity, X =

(X1, . . . , Xp)
′ a p × 1 covariate vector, and βk` = (βk`1, . . . , βk`p)

′ a vector of regression

coefficients for the k → ` transition. Let θ be the vector of parameters indexing all

baseline intensities and regression coefficients.
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2.2.2 Intermittent Assessment with Dropout

It is often not possible to monitor disease status continuously in cohort studies but rather

only examine individuals at periodic assessment times. Consider an inception cohort of

individuals recruited and examined at the time of disease onset (t = 0, say), and let

a0 = 0 and aj, j = 1, . . . , J represent common planned assessment times measured from

the time of disease onset; in this case aJ = τ is a common administrative censoring time.

To simplify the notation we consider the contributions from a generic individual and let

Zj = Z(aj) denote the state occupied at the jth assessment, where Z0 = Z(a0) = Z(0) = 0.

Let Z̄j = {Z0, Z1, . . . , Zj} denote the history of the process up to the jth assessment,

j = 0, 1, . . . , J ; Z̄J then represents the complete response vector we aim to observe.

Let Yj = I(Zj is observed) be an under-observation indicator and Ȳj = {Y0, Y1, . . . , Yj}

be the history of the missing data process up to and including the jth assessment. Our

focus here is on the loss of data due to early withdrawal which corresponds to a monotone

missing data pattern whereby Yj = 1 implies Y1 = · · · = Yj−1 = 1 and Yj = 0 implies

Yj+1 = · · · = YJ = 0. Let C = max{j : Yj = 1, j = 0, . . . , J} record the last assessment at

which the individual was observed so Z̄C represents the observed part of the full response

vector Z̄J . The likelihood function of the observed data (Z̄C , ȲJ , X) from a single individual

is

P (Z̄C , ȲJ | X; θ, γ) =
∑

ZC+1,...,ZJ

P (Z̄J | X; θ)P (ȲJ | Z̄J , X; γ)

=
∑

ZC+1,...,ZJ

[
J∏
j=1

P (Zj | Z̄j−1, X; θ)
C+1∏
j=1

P (Yj | Ȳj−1, Z̄J , X; γ)

]
(2.1)

where P (ȲJ | Z̄J ;X; γ) is the conditional probability of the under-observation indicators

ȲJ given the full response vector Z̄J and covariate vector X, parameterized in terms of γ.
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Note that if ZC = K then the process has been observed to completion and the sum in (2.1)

is degenerate. With a monotone SMAR mechanism [Hogan et al., 2004] the probability of

becoming lost to follow-up at a given assessment only depends on an individual’s disease

status and covariates observed at the previous assessments, that is

P (Yj|Ȳj−1, Z̄J , X; γ) = P (Yj|Yj−1 = 1, Z̄j−1, X; γ) .

In other words, under a SMAR mechanism, the probability of dropout at the jth visit

depends only on the observed data up to and including the (j− 1)th visit. However, under

a more general MAR mechanism as described by Rubin [1976] and Little and Rubin [1987],

the probability of failing to make an observation at time aj may depend on all observed

data, both before and after aj. In the event that death occurs over (aj−1, aj), the individual

will by definition not be present at visit j, but his/her vital status could still be ascertained,

either from family members or other sources (e.g. death registries/newspapers). We assume

here that the probability that vital status is ascertained is governed by a SMAR mechanism,

in which case (2.1) can be factored as the product of two terms of the form

P (Z̄C , ȲJ |X; θ, γ) =
C∏
j=1

P (Zj|Z̄j−1, X; θ)
C+1∏
j=1

P (Yj|Yj−1 = 1, Z̄j−1, X; γ),

where the first term involves only disease process parameters θ and the second term only

missing data parameters γ. If θ and γ are functionally independent then the withdrawal

process is non-informative and inference about θ can be based solely on the likelihood

constructed using the first term,

L1(θ) =
C∏
j=1

P (Zj|Z̄j−1, X; θ) , (2.2)

where P (Zj|Z̄j−1, X; θ) = P (Zj|Zj−1, X; θ) under a Markov model. These imply that

standard likelihood methods based on the observed multistate data for the cohort, {Z̄C , X},
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will result in consistent estimation of θ when the loss-to-follow-up process is ignored. We

use the subscript 1 on this likelihood because we think of this data as arising from phase

I of a two-phase study where phase I involves routine approach to follow-up and data

collection; additional data are obtained in phase II by tracing selected individuals and we

describe how this is done next.

Let D = {Z̄C , ȲJ , X, C,∆} represent the observed phase I data obtained from the

regular follow-up process where ∆ = I(C = J) indicates that follow-up was complete.

Individuals with incomplete follow-up (i.e. with ∆ = 0) are eligible to be selected for a

phase II tracing study which we take to be conducted at time aJ . Let R = 1 indicate

that an eligible individual is selected for tracing which happens according to the selection

model

P (R = 1|D,∆ = 0) = P (R = 1|Z̄C , X, C,∆ = 0; ρ) , (2.3)

indexed by ρ. We presume that individuals who are traced furnish information on the state

occupied at aJ but alternative formulations may be considered in which retrospective data

are collected as well. Conditional on the phase I data, the likelihood contribution from

phase II is then[
P (ZJ |R,D)RP (R|D)

]1−∆

=
[
P (ZJ |R, Z̄C , ȲJ , X, C,∆)RP (R|Z̄C , ȲJ , X, C,∆; ρ)

]1−∆

.

We assume

P (ZJ |R, Z̄C , ȲJ , X, C,∆) = P (ZJ |Z̄C , X, C; θ) , (2.4)

so the disease status at the time of tracing (ZJ) is conditionally independent of the attrition

time and tracing selection outcome given the observed responses. This enables us to write

the above likelihood as a product of a term involving response parameters θ only and a

term involving selection model parameters ρ only. If parameters θ and ρ are functionally
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independent, then we can restrict attention to the partial likelihood pertaining to θ from

a traced individual, which takes the form

L2(θ) = P (ZJ |Z̄C , X; θ)R(1−∆) . (2.5)

We can then augment the likelihood L1(θ) in (2.2) by incorporating data from the tracing

study and use

L(θ) = L1(θ)L2(θ) . (2.6)

The incorporation of extra information obtained from the tracing study through L2(θ)

enables one to enhance the efficiency of estimation for θ. We discuss next how tracing can

be done to ensure a large gain in efficiency for parameters of key interest.

2.2.3 Optimal Designs for Tracing

Now consider a sample of size n where we use the subscript i to label individuals, i =

1, . . . , n. Let Di = {Z̄iC , ȲiJ , Xi, Ci,∆i} denote the observed data from individual i from

the regular follow-up process in phase I and D = {Di, i = 1, . . . , n} denote the phase I

data. Then we write L1(θ) =
∏n

i=1 Li1(θ) where Li1(θ) =
∏Ci

j=1 P (Zij|Z̄i,j−1, Xi; θ) as in

(2.2) and let θ̃ be the MLE of θ obtained by maximizing the likelihood L1(θ) from the

phase I data. The observed information matrix from phase I is

I1(θ̃) =
n∑
i=1

Ii1(θ̃) =
n∑
i=1

(
−∂

2 logLi1(θ)

∂θ∂θ′

) ∣∣∣
θ=θ̃

.

If Li2(θ) = P (ZiJ |Z̄iC , Xi; θ)
Ri(1−∆i) is the contribution from individual i from (2.5), then

conditioning on their phase I data, their contribution to the expected information matrix

from tracing is

I†i2(θ, ρ) = E

[
− ∂2 logLi2(θ)

∂θ∂θ′

∣∣∣Di,∆i = 0

]
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which over all n individuals gives expected information matrix

I†2(θ, ρ) =
n∑
i=1

(1−∆i)P (Ri = 1|Z̄iC , Xi, Ci,∆i = 0; ρ)

×
K∑

ZiJ=1

[
P (ZiJ | Z̄iC , Xi; θ) ·

(
− ∂2 logP (ZiJ |Z̄iC , Xi; θ)

∂θ∂θ′

)]
under the assumption in (2.4). Consider a hybrid information matrix defined as the sum

of the observed information matrix from the phase I data, and the expected information

matrix arising from a phase II tracing study, given by

IH(θ, ρ) = I1(θ) + I†2(θ, ρ) . (2.7)

We propose to use (2.7) with θ replaced by the estimate θ̃ from phase I to set the value of

ρ for the selection model. If interest lies in making inference for a particular parameter θk,

for example, the so-called ‘optimal’ tracing selection parameters ρopt may be obtained by

minimizing [I−1
H (θ̃, ρ)]kk, the (k, k) element of the inverse of (2.7), subject to a constraint

on π = P (R = 1|∆ = 0), the overall proportion of individuals lost to follow-up who are

traced. This can be implemented by minimizing

[
I−1
H (θ̃, ρ)

]
kk

+ ζ
[ ∑
i:∆i=0

P (Ri = 1|Di,∆i = 0; ρ)/(n− ∆̇)− π
]

(2.8)

with respect to ρ to get ρopt, where ζ is a Lagrange multiplier, the first term in square

brackets is the empirical expectation of the selection probabilities averaging over the ob-

served data with ∆̇ =
∑n

i=1 ∆i, and the entire term in square brackets is a constraint which

ensures the expected proportion of individuals lost to follow-up to be traced is satisfied.

The delta method may be used to consider situations when estimation of a function g(θ) is

the focus. The optimality criterion in (2.8) can be generalized to involve any linear function

h(·) of the elements of IH(θ̃, ρ). In particular analogs of A-optimality and C-optimality
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[Emery and Nenarokomov, 1998] can be achieved, but we do not pursue this here as we

focus on the case the tracing study is conducted with a specific scientific question in mind.

Let θ̂ denote the final estimates obtained based on the augmented likelihood (2.6) once

the tracing study is completed. The asymptotic variance of θ̂ is thus asvar(
√
n
(
θ̂ − θ)

)
=

I−1(θ, γ, ρ) where

I(θ, γ, ρ) = E
[
− ∂2 logLi(θ)

∂θ∂θ′

]
= E

[
Ii1(θ)

]
+ E

[
(1−∆i)I†i2(θ, ρ)

]
. (2.9)

The above expectation is taken with respect to the phase II tracing information by first

conditioning on the phase I (incomplete) data and then taking the unconditional expec-

tation. Note that to determine ρopt in applications, as in the analysis of Section 2.4, we

use (2.8); but for the calculation of the asymptotic relative efficiency that follows we use

(2.9) in lieu of IH(θ̃, ρ) in (2.8) for computational efficiency; the results agree extremely

well with the more computationally demanding results based on (2.8).

2.2.4 Assessing the Efficiency Gains from Optimal Tracing

We now study the properties of estimators obtained following the proposed tracing proce-

dure, highlighting the efficiency gains over selection models involving simple random sam-

pling (SRS). We consider a time-homogeneous three-state illness-death model with K = 2

and Ω = {0, 1, 2}. We assume a binary covariate X with P (X = 1) = 0.25 modulates the

0 → 1 transition intensity, which gives a parameter vector θ = (λ010, λ020, λ120, β01)′. For

an inception cohort, without loss of generality we consider the period of observation [0, τ ]

with τ = 1. We let N01(τ) indicate that a 0 → 1 transition occurred over [0, τ ]. We set

β01 = log 1.5 and the values of the baseline intensities to satisfy the following constraints:

(i) P1 = P (N01(τ) = 1|X = 0) = λ010/(λ010 + λ020){1− e−(λ010+λ020)τ} = {0.25, 0.75};
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(ii) λ120/λ020 = 1.5; and

(iii) P2 = P (Z(τ) = 2|X = 0) = {0.1, 0.5}.

We assume the progression status is assessed intermittently at J = 5 equally spaced

scheduled assessments over [0, τ ]. For the dropout process, we set the under-observation

indicator Y0 = 1 at baseline (e.g. time V0) for all individuals and generate Yj given (Yj−1,

Zj−1) sequentially for j = 1, 2, . . . , J . As described in Section 2.2.2, P (Yj = 1|Yj−1 =

0) = 0 and P (Yj = 1|Yj−1 = 1, Zj−1 = 2) = 1. For the SMAR mechanism, we set

logitP (Yj = 0|Yj−1 = 1, Z̄j−1, X; γ) = γ0 + γ1I(Zj−1 = 1), that is the odds of drop-out

at a given assessment depends on the disease status at the previous assessment. The

value of the parameters (γ0, γ1) are set to achieve an overall percentage of dropout of

P (∆ = 0) = {0.4, 0.8} and an odds ratio of dropout for individuals with previous disease

status Zj−1 = 1 vs Zj−1 = 0 of exp(γ1) = 2.

We adopt the following model for the selection of individuals for tracing

logitP (R = 1|ZC , X,∆ = 0; ρ) = ρ0 + ρ1I(ZC = 1) + ρ2X + ρ3I(ZC = 1)X (M1)

where X is the same binary covariate related to the 0 → 1 transition. To illustrate

the magnitude of potential efficiency gains from tracing as well as influential factors, we

compare the asymptotic variance of estimates of response parameters based on an optimal

design versus a simple random sampling (SRS) design (which is equivalent to setting the

tracing model parameters to be ρsrs = (ρ0, 0, 0, 0)). The optimal tracing parameter ρopt

results in the minimal asymptotic relative efficiency

ARE(θ̂k) =
[I−1(θ, γ, ρopt)]kk
[I−1(θ, γ, ρsrs)]kk

, (2.10)

subject to a pre-specified proportion of tracing π = P (R = 1|∆ = 0).
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(a) P (∆ = 0) = 0.4 (b) P (∆ = 0) = 0.8

(c) P (∆ = 0) = 0.4 (d) P (∆ = 0) = 0.8

Figure 2.1: Asymptotic relative efficiency (2.10) of the estimator β̂01 (top panels) and

log(λ̂120/λ̂020) (bottom panels) with a tracing study under an optimal design versus a SRS
design of the same expected size; P1 = P (N01(τ) = 1 | X = 0), P2 = P (Z(τ) = 2 | X = 0),
λ120/λ020 = 1.5, β01 = log 1.5, P (X = 1) = 0.25, and J = 5
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As expected, the optimal tracing designs lead to more precise estimates than the SRS

designs across all scenarios. This is depicted in Figure 2.1 for the estimation of covariate

effect β01 (top panels) and log(λ120/λ020) (bottom panels). Across all parameter configura-

tions considered, the gain in efficiency increases with the probability of dropout P (∆ = 0).

The magnitude of the gain in efficiency also varies as a function of the parameters of the

disease process (as represented by the multiple curves in each panel) and the marginal

tracing probability π. While these relationships are complex and dependent on properties

of the disease process, we describe some general trends apparent in the present examples.

When interest lies in estimating the covariate effect modulating the 0→ 1 transition (β01),

the smaller the percentage of progression by the administrative censoring time τ (i.e. P1),

the greater the gain in efficiency achieved by the optimal tracing scheme relative to the

SRS approach. This is due to the fact that the optimal design for estimation of β01 priori-

tizes tracing progression-free individuals (ZC = 0) over those who have already progressed

(ZC = 1) as the former may potentially provide new information on the 0 → 1 transition

directly; this can be seen in panels (a) and (b) of Figure 2.1 when contrasting the solid

(P1 = 0.25) and dashed (P1 = 0.75) lines of the same colours with the fixed P2. This trend

is much clearer for estimating the relative risk of death log(λ120/λ020) as shown in Figure

2.1 (c) and (d). The percentage of death observed by the administrative censoring time

(i.e. P2) also has some impact on the estimation of a covariate effect on progression, β01.

The lower P2 is (e.g. 0.1 versus 0.5) the bigger the gain in efficiency by adopting the opti-

mal design for tracing, although such a difference is only appreciable when the percentage

of progression is high (P1 = 0.75) as shown in Figure 2.1 (a) and (b). Interestingly, P2

seems to have a different impact on efficiency gain for the estimation of the relative risk

of death log(λ120/λ020). When the drop-out rate is high (P (∆ = 0) = 0.8), Figure 2.1 (d)

shows slightly greater benefit of the optimal tracing scheme over SRS as the percentage of
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death P2 increases, but such a pattern is only noticeable if the percentage of tracing is low

to moderate (e.g. π < 0.4).

In summary, efficiency gains for the estimation of both a covariate effect on progression

β01 and the relative risk of death log(λ120/λ020) are primarily driven by observing instances

of disease progression, e.g P1. The probability of death during the follow-up period, P2,

has some additional impact depending on which quantity is of interest for estimation.

Slightly larger gains in efficiency for the estimation of β01 can be obtained when P2 is low,

because as P2 increases the likelihood of gaining information about progression at the time

of tracing decreases. However, when interest lies in estimating log(λ120/λ020), observation

of death events are more informative and so larger gains in efficiency are achieved by the

proposed approach when P2 is higher.

Figure 2.2 focuses on the setting with P1 = 0.25, P2 = 0.1, and P (∆ = 0) = 0.8 (e.g. the

solid red line in the right-hand panels of Figure 2.1), again considering estimation of β01 and

log(λ120/λ020) in the top and bottom panels respectively. The left-hand panels contain plots

of the joint probability P (R = 1, ZC , X|∆ = 0) against the marginal probability of tracing

π under an optimal design. As will be discussed in Section 2.3, it is generally reasonable

to assume that the cost of tracing individuals for vital status (Cs) is substantially lower

than that of assessing disease status (Cd), so ξ = Cd/Cs ≥ 1. In the right-hand panels

of Figure 2.2 we fix ξ = 100 and observe that the expected cost of the proposed optimal

tracing scheme (solid line) is greater than that of a SRS tracing scheme (dashed line) for

the estimation of β01, whereas it is lesser for the estimation of log(λ120/λ020). This follows

directly from the patterns exhibited in the left-hand panels: the optimal tracing scheme

for β01 preferentially selects individuals with ZC = 0 (more expensive) over those with

ZC = 1 (less expensive), while the optimal scheme for log(λ120/λ020) prioritizes individuals

with ZC = 1 over those with ZC = 0. It is interesting to note that for the latter case, the
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(a) Optimal designs for estimation of β01

....................
(b) Expected cost under designs for estimation

of β01, with cost ratio ξ = 100

(c) Optimal designs for estimation of
log(λ120/λ020)

(d) Expected cost under designs for estimation
of log(λ120/λ020), with cost ratio ξ = 100

Figure 2.2: Optimal tracing design (left-hand panels) and expected cost (right-hand panels)
under an optimal vs a SRS design for the estimation of β01 (top panels) and log(λ120/λ020)
(bottom panels), with P1 = 0.25 and P2 = 0.1, λ120/λ020 = 1.5, β01 = log 1.5, P (X = 1) =
0.25, J = 5, and P (∆ = 0) = 0.8
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optimal design not only leads to substantial gains in efficiency, but is also more economical

than the SRS design of the same size. In addition, the optimal scheme for β01 sequentially

draws upon individuals with (ZC = 0, X = 1), (ZC = 0, X = 0), (ZC = 1, X = 1), and

(ZC = 1, X = 0); preferring the former subgroups to the exclusion of the latter, as the

marginal probability of selection for tracing (π) increases. However, this is not true to the

same extent in the optimal scheme for log(λ120/λ020); in this case, the proposed tracing

scheme allows for the optimal equilibrium to be identified, which would not otherwise be

possible. The results of extensive simulation studies (not shown) demonstrate excellent

agreement between the asymptotic and empirical efficiency gains.

2.2.5 Selection Incorporating the Time of Study Withdrawal

When constructing selection models for tracing it is desirable to balance the inclusion of

key factors with the need for parsimony in order to minimize the computational burden

at the optimization step of the selection model. Here we illustrate the potential gains in

efficiency from adopting a more general class of selection models compared to (M1), which

included only the information on the state occupied at the last assessment (denoted ZC)

and a binary covariate X. Specifically here we consider a selection model of the form

logitP (R = 1|ZC , X,∆ = 0; ρ) = ρ0 + ρ1I(ZC = 1) + ρ2X + ρ3I(ZC = 1)X + ρ4D (M2)

to allow tracing selection probabilities to further depend on D = τ−AC , the time from loss-

to-follow-up to tracing. Since the tracing selection model in (M1) is nested in (M2), greater

efficiency gains may be realized under the latter model. The benefit of including time since

loss-to-follow-up in the tracing selection model is most appreciable for the estimation of

relative risk of death with, versus without, progression given by log(λ120/λ020). A summary

of results comparing asymptotic efficiency gains under these two tracing selection models
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Size Constraint (π) Cost Constraint (ξ)

Estimand Tracing Model 0.05 0.25 0.50 5 20 100

β01 M1 0.908 0.803 0.838 0.836 0.852 0.951
M2 0.881 0.787 0.811 0.795 0.800 0.918

log(λ120/λ020) M1 0.620 0.571 0.721 0.664 0.487 0.418
M2 0.543 0.570 0.719 0.664 0.487 0.418

Table 2.1: Asymptotic relative efficiency (2.10) of estimators (optimal versus SRS tracing
design) under tracing selection models in (M1) and (M2); π = P (R = 1 | ∆ = 0) is the
marginal probability of selection for tracing and ξ = Cd/Cs is the relative cost of determin-
ing disease status compared to survival status; with P1 = 0.25, P2 = 0.1, λ120/λ020 = 1.5,
β01 = log 1.5, and P (∆ = 0) = 0.8

is presented in the left-hand columns of Table 2.1 under the heading Size Constraint; we

defer the discussion of the right-hand side under the heading Cost Constraint to Section

3.2. Here we find the efficiency gains can be appreciable for both β01 and log(λ120/λ020).

We also see a non-monotonic trend in relative efficiency of “optimal” versus simple random

sampling when viewed as a function of the marginal selection probability for tracing, which

are similar to the trends of the red solid curves in Figure 2.1 (b) and (d).

2.3 Design with a Budgetary Constraint

2.3.1 Formulation of the Optimization Problem

In general, the cost associated with tracing individuals known to be diseased before loss-

to-follow-up (i.e. those with ZC = 1) is lower than that for individuals without the disease

(i.e. ZC = 0); in this section we exploit this fact to design optimal tracing schemes subject

to more realistic budget constraints. For the former group, the only information that we

can learn is the survival status at the time of tracing, but for the latter group, disease status
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may also be ascertained for individuals who are still alive at tracing. Let Cs and Cd denote

the cost for tracing survival status and disease status respectively, and let ξ = Cd/Cs be

the cost ratio; we assume ξ ≥ 1 in general.

Suppose we have a fixed budget for conducting the tracing study where we plan to

trace the survival status among all the selected individuals first, and then the disease

status among those who were disease-free at their last assessment and are alive at tracing.

Based on a Poisson sampling process with a tracing selection model, the expected cost of

tracing is

Ċ(ρ;Cs, ξ) = nP (∆ = 0)
∑
ZJ ,D

P (D|∆ = 0)P (R = 1 | D,∆ = 0; ρ)

× P (ZJ |R = 1,D,∆ = 0; θ)Cs

[
1 + ξI(ZJ 6= K,ZC = 0)

]
.

Note that the right side of this equation depends on the parameter ρ in the tracing selection

model, whereas the expected number of individuals eligible for tracing, nP (∆ = 0), and

the distribution of observed data among the eligible individuals, P (D|∆ = 0), are known

after collection of phase I data. In addition, under the assumption (2.4) the probability

P (ZJ |R,D,∆ = 0; θ) can be estimated by P (ZJ | Z̄C , X; θ̃) where θ̃ is the MLE obtained

from phase I. This implies that if one is interested in precise estimation of θk, for a given

fixed total budget B, cost Cs and ratio ξ, we can optimize the selection model by minimizing

[
I−1
H (θ̃, ρ)

]
kk

+ ζ
[
Ċ(ρ;Cs, ξ)−B

]
(2.11)

which is like (2.8) but with a cost constraint in place of a constraint simply on the expected

sample size.
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2.3.2 Efficiency Gains from Optimal Tracing with Cost Con-
straints

The study setting here parallels that of Section 2.2.4, with the exception that the constraint

is imposed on the budget rather than the size of the sample selected for tracing. We set

the maximum budget B = Ċ(ρ;Cs, ξ = 1) to equal the expected cost of tracing all eligible

individuals when ξ = 1. The budget constraint in (2.11) then becomes

Ċ(ρ;Cs, ξ)−B ∝
∑
ZJ ,D

P (D|∆ = 0)P (R = 1 | D,∆ = 0; ρ)

× P (ZJ |R,D,∆ = 0; θ)(ξ − 1)I(ZJ 6= K,ZC = 0)]

which only depends on the cost ratio ξ and the selection parameter ρ. We consider values

of ξ from 1 to 200 and the same values of (θ′, γ′)′ as in Section 2.2.4, where θ = (λ′, β′)′ .

Figure 2.3 displays the patterns of relative efficiency exhibited by the optimal tracing

selection probabilities under a cost constraint with selection model (M1), which are similar

to those observed under the size constraint in the previous section (see Figure 2.1). In

fact, in some sense this cost constraint amounts to a transformation of the size constraint.

That is, due to the choice of budget constraint B, setting ξ = 1 implies that all eligible

individuals may be traced (e.g. π = P (R = 1|∆ = 0) = 1); thus, the left-most points in

each panel of Figure 2.3 correspond to the right-most points in the analogous panels of

Figure 2.1. On the other hand, as ξ → ∞, the cost of tracing individuals with ZC = 0

becomes prohibitively expensive, and limξ→∞ P (R = 1|∆ = 0, ZC = 0) = 0. Thus, if

individuals with ZC = 0 furnish more information upon tracing, as is the case for β01

(see Figure 2.4 (a)), then limξ→∞ P (R = 1|∆ = 0) = 0. On the other hand, if the optimal

scheme prioritizes tracing individuals with ZC = 1, as is the case for log(λ120/λ020) (see

Figure 2.4 (b)) , limξ→∞ P (R = 1|∆ = 0) = P (ZC = 1|∆ = 0).
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(a) P (∆ = 0) = 0.4 (b) P (∆ = 0) = 0.8

(c) P (∆ = 0) = 0.4 (d) P (∆ = 0) = 0.8

Figure 2.3: Asymptotic relative efficiency (2.10) of estimators for biomarker effect β̂01 (top

panels) and log(λ̂120/λ̂020) (bottom panels) with a tracing study under an optimal design vs
a SRS design of the same expected cost; P1 = P (N01(τ) = 1 | X = 0), P2 = P (Z(τ) = 2 |
X = 0), λ120/λ020 = 1.5, β01 = log 1.5, P (X = 1) = 0.25, J = 5, and cost ratio ξ = Cd/Cs
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(a) Optimal Design for Estimation of β01

......................
(b) Optimal Design for Estimation of

log(λ120/λ020)

Figure 2.4: Optimal tracing design under a fixed budget constraint for the estimation of
β01 (left panel) and log(λ120/λ020) (right panel), with P1 = 0.25, P2 = 0.1, λ120/λ020 = 1.5,
β01 = log 1.5, P (X = 1) = 0.25, J = 5, and P (∆ = 0) = 0.8.

To compare the two selection models (M2) and (M1), the right-hand columns of Table

2.1 contain the asymptotic relative efficiencies under both models with the cost constraints.

We see that using either of these two models results in appreciable efficiency gains, where

the gain decreases as the cost ratio ξ increases from 5 to 100 for β01 but it increases as ξ

increases for log(λ120/λ020). These are consistent with the red solid curves showed in Figure

2.3 (b) and (d). We also see the efficiency gains under (M2) are greater than those under

(M1) for the estimation of β01 in most cases and they are very similar for log(λ120/λ020).

This is because for the latter, the optimal tracing scheme prioritizes tracing individuals with

ZC = 1, and the optimal selection probability of those is 1 under the settings considered

here. As the cost for tracing disease status becomes more expensive (e.g. ξ increases),

the optimal selection probability for individuals with ZC = 0 quickly approaches 0. As a
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consequence the time from loss-to-follow-up to tracing has very little room to influence the

selection probabilities under the optimal design, leading to comparable results under the

two selection models.

2.4 Application to the University of Toronto Psoriatic

Arthritis Cohort Study

Scientists at the University of Toronto Psoriatic Arthritis Clinic have created and main-

tained a registry of individuals with psoriatic arthritis which continues to be an invaluable

resource in deepening understanding of the progression of psoriatic arthritis and related

comorbidities; see Section 1.5.1. A scientific question of primary interest is in estimating

the incidence of arthritis mutilans in individuals with psoriatic arthritis, and estimating

the effect of the marker HLA-B27 on the disease progression taking into account the full

disease process including death. This process may be viewed as an illness-death process

as in Figure 1.1(c) where states 0, 1, and 2 represent psoriatic arthritis, arthritis mutilans,

and death respectively.

The cohort we focused on consists of 870 individuals with psoriatic arthritis and they

are scheduled to come to the clinic for assessments on an annual basis. We take December

2016 as the end of phase I follow up, and use the patients records until then as phase

I data. While variability arises in practice, this protocol informs the decision to view

individuals who have not been seen for 2+ years as being lost to follow-up; this leads to

72% of the cohort being eligible for tracing. In total 152 (17.5%) are observed to develop

arthritis mutilans and 147 deaths are recorded (16.9%), including 36 among individuals

whose disease progressed. Further, 56 individuals (6.4%) are positive for the HLA-B27

marker. Phase-I maximum likelihood estimates were obtained using the R package msm
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[Jackson, 2011]. We assume the visit times are uninformative and that data are missing

sequentially at random. The proposed approach is applied to demonstrate possible optimal

designs for a tracing study conducted in January 2017.

Table 2.2 reports the optimal tracing probabilities P (R = 1|ZC , X,∆ = 0) arising from

selection model (M1) under the constraint of a fixed sample size or cost respectively. It is

apparent that if interest lies in estimating β01 one should first select all individuals who

were not observed to progress before they withdrew from the study in phase I (i.e. ZC = 0)

and then individuals who have progressed (i.e. ZC = 1), as long as the fixed sample size

permits; this trend also holds when the budget is constrained. On the other hand, when

interest lies in estimating log(λ120/λ020), it always prioritizes individuals known to have

progressed (e.g. with ZC = 1) under both the sample size and budget constraints, since

only survival status, which is less expensive, needs to be determined. We also considered

using tracing selection model (M2), which leads to very similar gains in efficiency as when

using model (M1). We did not report the optimal tracing probability here as it varies

continuously with respect to time since loss-to-follow-up, D = τ − aC . For the psoriatic

arthritis cohort, the proposed optimal tracing study design can lead to gains in efficiency

of 10-30% relative to using a SRS design.
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2.5 Discussion

In this chapter we consider the framework of an inception cohort study with regularly

scheduled assessments. We consider the implications of loss-to-follow-up and the idea

of conducting a tracing study to track down individuals who have withdrawn to obtain

updated information on their health; this is planned at the end of phase I of a study.

We discuss the utility of attempts to optimally select individuals lost to follow-up for the

tracing study in order to maximize the value of the information gained. In our multistate

setting, the optimization may be carried out with a view to maximizing the precision of

transition intensities, state occupancy probabilities, or the effects of fixed (e.g. genetic)

markers on disease progression. Less focused criteria can also be employed which minimize

functions of information matrices. We have focused on progressive processes, but settings

with reversible or alternating processes are also common and the methods can in principle

be extended to deal with these types of data. Due to the complexity of the function to

be optimized (e.g. the inverse of the information matrix), we suggest that care be taken

to select several plausible initial values for the ρ vector to ensure the global minimum is

identified. For example, when some of the strata induced by the tracing selection model

are small, it is advisable to set ρ corresponding to tracing all and none of the individuals

in the strata as initial values; this is due to the fact that variation in the corresponding ρ

values are unlikely to have a large effect on the target of optimization, which may make

optimization challenging.

We have assumed a time-homogeneous Markov model with regularly scheduled assess-

ment times. Tracing studies can of course be designed for non-homogeneous Markov mod-

els using piecewise-constant baseline intensities. The regularity of scheduled assessments

makes it reasonably straightforward to determine which individuals are lost to follow-up
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and therefore eligible for tracing. In settings where assessment times are less regular and

left to the discretion of patients, it is more challenging to define the set of individuals

who are lost to follow-up and eligible for tracing. One can discretize time in such settings

and declare individuals not seen in several potential periods as lost to follow-up. We also

assumed a progressive disease process in which all states can only be entered once. It is

well-known that transition intensities involving recurring states are more poorly estimated

under panel observation schemes [Lange and Minin, 2013, Ma et al., 2016]. Moreover when

assessments are far apart in time (relative to dynamic features of the process of interest)

estimates of transition intensities are less efficient compared to when the assessments are

closer in time; the effect of widely spaced assessment times is smaller on other features such

as state occupancy probabilities. These issues pertain to the conduct of tracing studies for

non-progressive processes so one should expect a smaller gain in efficiency from “optimally”

tracing individuals in reversible processes.

The likelihood we constructed presumes that individuals selected for tracing do, in

fact, furnish the required information. With respect to survival status, death records

can be searched and so this can be acquired independently of family engagement, but

it may ultimately not be possible to determine even survival status for individuals who

have moved away. In such situations the realized gain in precision may be less than

anticipated. Information on progression status, which is more dependent on individual

participation, may not be readily available because of initial refusals, or may require a

number of attempts to secure data. In such cases it may be necessary to build and integrate

more elaborate models for the tracing process which characterize the data acquisition

process. Interestingly, even if a SMAR mechanism governs attrition, data may become

missing not at random if the individuals responding to tracing comprise a biased subset of

those selected for tracing. Thus if tracing is incompletely executed, modelling the success
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of the tracing process may be important to make suitable adjustments to the likelihood.

Data on the outcome of each attempt to contact individuals should be recorded to facilitate

fitting of models for the response process in tracing studies. Similar modelling exercises

have been done in settings where the tracing selection mechanism is non-ignorable due to

truncation in the cohort using likelihood and pseudo-likelihood approaches [Titman et al.,

2011].
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Chapter 3

Cohort Study Designs for Markov
Processes

3.1 Introduction

In the previous chapter, we considered the design of tracing studies to recover information

on individuals lost to follow-up. We now turn attention to the initial stage of design for

longitudinal studies, prior to recruitment and prospective follow-up. We develop design

criteria for a longitudinal study with a three-state illness-death process (see Figure 1.1(c))

in which individuals are under intermittent observation according to a protocol. We con-

sider the case in which disease progression status is observed intermittently, but transitions

into the death state are observed subject to right censoring. The proposed methods can

be applied to a more general framework of multistate processes, as shown in Figure 1.2.

The remainder of this chapter is organized as follows. In Section 3.2, we consider the

design of such cohort studies, examine the interplay between the design factors such as the

sample size and the frequency of assessments and disease process parameters, and study

their effect on statistical power. We also define minimum-cost designs which achieve a

desired level of power for the estimation of a regression coefficient, and look at the rela-
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tionship between features of the disease process and of minimum-cost designs. In Section

3.3, we derive the form of the Fisher information matrix for longitudinal studies in which

there is misclassification in the states recorded at inspection times and use this to evaluate

the impact of misclassification on study design subject to cost constraints. In Section 3.4

we discuss extending the proposed approach to more response-adaptive protocols, where

the assessment protocol may vary as a function of the observed longitudinal responses.

Concluding remarks are made in Section 3.5.

3.2 Prospective Cohort Studies

3.2.1 Maximum Likelihood Estimation for Markov Models

Prospective cohort studies are commonly employed to collect data on life history processes.

This involves acquiring a sample of size n from a population of individuals and tracking the

occurrence of the event of interest (generally referred to as disease event) longitudinally

over a certain follow-up period. It is generally infeasible to monitor individuals’ disease

status continuously, thus assessments are made intermittently at J specified time points

0 = a0 < a1 < · · · < aJ = τ over the study period (0, τ ] although the exact event times are

not available. On the other hand, the vital status is often tracked in continuous time and

the exact death time is typically known or subject to right censoring if the participants

become lost to follow-up at time C before the end of study. As such, the multistate data

arising from longitudinal cohort studies may be mixed in its nature: disease status data

may be available under a panel observation scheme, along with exact or right-censored

death data. Let T1 be the time to disease progression, T2 be the time to death, T † =

min(T2, C, τ) denote the minimum of the time to death and censoring and δ = I(T † = T2)

indicate that death is observed (see Figure 3.1). Let Z̄j = (Z(a1), . . . , Z(aj)) denote the
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// //
a0 a1 aj−1 T1

aj T2
aJ = τ

[ ]
Censoring interval

for T1

Disease progression Death

Figure 3.1: Schematic for mixed observation scheme, where the time of disease progression
(T1) is subject to interval-censoring and the time of death (T2) is subject to right censoring.

history of the observed disease status up to and including assessment j, j = 1, . . . , J and

M = max{j ; aj < T †, j = 0, . . . , J} be the random number of assessments for an individual

prior to right censoring or death. Under a Markov model indexed by the parameter vector

θ in general, the likelihood contribution from a single subject is written as

L(θ) = P (Z̄m, t
†, δ) =

m−1∏
j=0

P
(
Z(aj+1) | Z(aj)

) 1∑
`=0

P
(
Z(t†) = ` | Z(am)

)
λδ`2(t†) (3.1)

where the summation accounts for the fact that the disease status right before death or

censoring may not be known due to the intermittent observation scheme. The estimates

of θ can be obtained by maximizing the product of terms having the form of (3.1) over a

sample of independent subjects. Instead of using a Newton-Raphson algorithm, a simple

Fisher scoring method was proposed by Kalbfleisch and Lawless [1985] for obtaining the

MLEs in which only first derivatives are required; this can be adapted to deal with observed

times of death as shown by Zeng et al. [2018].

We assume censoring is independent of the disease processes. We let Yk(t) = I(Z(t) =

k) indicate that an individual is in state k at time t, Y †(t) = I(t ≤ T †) indicate they

are under observation (i.e. alive and uncensored), and Y †k (t) = Y †(t)Yk(t) indicate that

they are under observation and in state k at time t, k < 2. For an individual who is

under observation at aj−1 with Z(aj−1) = k (i.e. Y †k (aj−1) = 1), the partial log-likelihood

contribution pertaining to the disease process for the jth interval Aj = [aj−1, aj) is
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`kj =
1∑
`=0

Y †` (aj) log
[
pk`(aj−1, aj)

]
+
(
1− Y †(aj)

)
log

[
1∑
`=0

pk`(aj−1, t
†)λδ`2(t†)

]
,

where k < 2. The Fisher information matrix thus takes the form

I =
1∑

x=0

J+1∑
j=1

∫ aj

aj−1

j∑
q=1

1∑
k=0

E

[
Yk(aq−1)

∂`kj
∂θ

∂`kj
∂θ′
| C = c,X = x

]
dG(c)P (X = x) (3.2)

where G(·; ρ) is the distribution function for censoring time C indexed by parameter ρ

and G(t) = 1 − G(t). The calculation details of the conditional expectation in the inner

summation of (3.2) can be found in Zeng et al. [2018]. Note that the construction of the

Fisher information relies on transition probabilities and their first derivatives. Under the

piecewise-constant model, the transition probability matrix can be obtained using (1.2),

and its first derivatives can be taken in a straightforward manner. For the illness-death

process for example, suppose the derivatives are taken with respect to the vector of constant

transition intensities associated with the rth piece Br, λ(r) = (λ
(r)
01 , λ

(r)
02 , λ

(r)
12 )′. Then we will

simply have

∂

∂λ(r)
pk`(s, t)

∑
zr−1,zr

pk,zr−1(s, vr−1)

[
∂

∂λ(r)
pzr−1,zr(vr−1, vr)

]
pzr−1,`(vr, t)

where vr−1 = max{s, br−1}, vr = min{t, br}, and pk`(vr−1, vr) = 0 if vr−1 > vr. The time-

homogeneous model can be viewed as a special case with constant transition intensities

over the whole time span, and the above calculations can be much further simplified.

3.2.2 Design Choices: Sample Size and Number of Assessments

Prospective cohort studies are generally very costly, so careful consideration should be

given to the design of such studies in multiple dimensions such as sample size, frequency
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of assessments, timing of the assessments and duration of follow-up. These design factors

jointly affect both the estimation precision and the cost of the study itself. In practice,

the choices for these design factors are often driven by logistical reasons. While several

authors have suggested that the assessment frequency should be justified carefully [Collins

and Graham, 2002, Nesselroade, 1991], this is not commonly done in the clinical literature

[Timmons and Preacher, 2015]. In the present framework, we present a more formal ap-

proach to choose the sample size and frequency of assessments, by deriving the asymptotic

variance of the estimates of interest and using this as the basis for study design.

Suppose the primary interest of a cohort study lies in the estimation of the effect of

a covariate on the 0 → 1 transition (e.g. disease progression). As described in Section

1.2, we assume a binary covariate X has a multiplicative effect on the 0 → 1 transition,

with intensity λ01(t) = λ010(t) exp(X ′β) under a Markov model. The estimator obtained

from fitting the Markov models described in Section 3.2.1 has the following asymptotic

distribution
√
n(β̂ − β) ∼ N

(
0, Iββ(θ, ρ, J, τ)

)
, (3.3)

where n is the sample size, Iββ(θ, ρ, J, τ) = [I−1(θ, ρ, J, τ)]ββ is the asymptotic variance of

β̂, which is the (β, β) element of the inverse of the Fisher information I(θ, ρ, J, τ) given

in (3.2). The asymptotic variance depends on parameters θ and ρ from the disease and

censoring processes respectively, as well as on the design factors including the number of

assessments (J), the assessment times (aj, j = 1, . . . , J), and the administrative censoring

time (τ). The dependence on the actual assessment times is suppressed for convenience

since we assume here that the assessment times are fixed and evenly scheduled over the

interval (0, τ ]. It is straightforward to extend this work to irregular assessment times

as long as the visit process is independent of the disease process. Response-dependent

assessment processes and their impact on estimation and study design are further discussed
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in Section 3.5. The parameters (θ, ρ, J, τ) have an impact on the power when the asymptotic

distribution (3.3) is used for inference. Following the argument of Demidenko [2007], the

power for a two-sided Wald-test of H0 : β = β0 vs H1 : β 6= β0 at a significance level of α1

for detecting an effect of size β = βA is

power(β) = Φ

−zα1/2 −
β0 − βA√

IββA (θ, ρ, J, τ)/n

+Φ

−zα1/2 +
β0 − βA√

IββA (θ, ρ, J, τ)/n

 (3.4)

where IββA (·) is the asymptotic variance evaluated at β = βA, and Φ(·) is the cumulative

distribution function of a standard normal distribution. Clearly, power is a function of all

the design factors namely

(i) sample size (n),

(ii) number of evenly scheduled assessments (J),

(iii) maximum duration of follow-up (τ).

When we restrict attention to the situation where the duration of follow-up τ is fixed and

assessments are evenly scheduled, the study design in terms of (i) sample size n and (ii)

the frequency of assessments J can be determined for different desired levels of power for

testing a parameter of interest, and different pairs of design factors (n, J) may achieve

the same power. Furthermore, if either n or J is fixed, the other can be solved by using

(3.4). For example, if the number of assessments J is fixed the required sample size for a

Wald-test at significance level α1 and power 1− α2 to detect an effect β = βA is then

n =

(
zα1/2 + zα2

βA

)2

IββA (θ, ρ, J, τ). (3.5)

We provide empirical examples of the sample size calculation and relationship between

power, sample size and the number of scheduled assessments for prospective cohort studies
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targeting the estimation of the effect of a binary covariate X on disease incidence. We

assume all subjects are in state 0 (i.e. progression-free) at the time origin (i.e. Z(0) =

0), disease status is determined at J equally spaced assessments, and survival status is

monitored continuously over the study period (0, τ ] subject to random right censoring.

Without loss of generality, we let τ = 1. For simplicity, we consider a time-homogeneous

disease process with transition intensities λjk(t|X) = λjk exp{Xβjk} where λ01, λ02, and

λ12 are baseline transition intensities and there is a covariate effect on disease progression

denoted by β01 but no covariate effect on death (i.e. β02 = β12 = 0). Let β01 = log 0.75

indicate a preventive covariate effect on disease progression, and P (X = 1) = {0.05, 0.25}.

The values for parameters (λ01, λ02, λ12) are set to satisfy the following constraints:

(i) P1 = P (T1 < τ | X = 0) =
∫ τ

0
p00(0, t;x)λ01(t;x)dt = {0.10, 0.25, 0.50},

(ii) P2 = P (T2 < τ | X = 0) =
∫ τ

0
p02(0, t;x)dt = {0.10, 0.25, 0.50}, and

(iii) λ12/λ02 = {1.10}.

We assume individuals may become lost to follow-up at a random time C which follows

an exponential distribution with a rate ρ and the value of ρ is set to satisfy P (T2 <

min(C, τ)|X = 0) = {0.05, 0.20}, where

P (T2 < min(C, τ)|X = 0) = P (T2 < τ | X = 0)(1−G(τ))+

∫ τ

0

P (T2 < c | X = 0)g(c)dc .

In Table 3.1, we report the sample size n for testing H0 : β01 = 0 vs HA : β01 6= 0

calculated using formula (3.5), when the frequency of the assessments is fixed at J =

{5, 10}, power at {80%, 90%}, significance level α1 = 0.05, P1 = {0.1, 0.25}, P2 = 0.25,

P (X = 1) = {0.25, 0.05}, β01 = log 0.75, λ12/λ02 = 1.1, and P (T2 < min(C, τ)|X = 0) =

0.2. To validate these sample size calculations, for each scenario we simulate 2, 000 datasets
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P (X = 1) = 0.25 P (X = 1) = 0.05

Power P1 J n EP% n EP%

80% 0.10 5 8,442 81.3 35,025 82.0
10 8,102 82.0 33,615 81.9

0.25 5 3,290 82.0 13,601 81.0
10 3,157 82.1 13,052 82.5

90% 0.10 5 11,301 90.8 46,888 91.4
10 10,846 91.4 45,001 90.5

0.25 5 4,405 91.7 18,208 92.1
10 4,227 92.1 17,472 92.2

Table 3.1: Empirical power (EP%) for detecting an effect of covariate X on disease pro-
gression at the significance level α = 0.05, when β01 = log 0.75, λ12/λ02 = 1.1, P2 = P (T2 <
τ | X = 0) = 0.25, P (T2 < min(C, τ)|X = 0) = 0.2, and P (X = 1) = {0.05, 0.25}, based
on 2, 000 simulated datasets of size n and sample sizes n are calculated as in (3.5)

following Cook and Lawless [2018, Appendix B], get point estimates β̂01 and their variance

estimates using the msm package in R [Jackson, 2011], and report the empirical power.

The empirical power achieves the nominal level across all scenarios, thereby validating the

formula and computations.

The figures in the remainder of this section are based solely on the asymptotic variance.

Figures 3.2, 3.3, and 3.4 display power curves to illustrate the impact of features of the

process (P1 and P2) and of the study design (n and J) on power; these three figures feature

P1 = {0.10, 0.25, 0.50} respectively, while the three panels within each figure contain the

results for P2 = {0.10, 0.25, 0.50} respectively. Across all three figures, we have β01 =

log 0.75. As before, these figures focus on testing H0 : β01 = 0 vs HA : β01 6= 0, a two-sided

test at a significance level of α = 0.05. As expected, the power increases monotonically

with the frequency of scheduled assessments over [0, τ ]. More generally, the power for

detecting a covariate effect on progression is also higher when more precise information
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about disease progression is available, which, by comparing across the plots, can be seen to

be driven by factors such as the proportion of disease progression events (P1) and deaths

(P2) over [0, τ ]. As the proportion of deaths over [0, τ ] increases, the number of realized

clinical visits (M) decreases, and with it the extent of information on disease progression

is reduced which leads to a large reduction in power; this can be seen by comparing across

the three panels from left to right. For example, when β01 = log 0.75 and P1 = P2 = 0.10, a

sample of size n = 15, 000 with J = 5 planned assessments over (0, τ ] yields approximately

80% power for rejecting H0 : β01 = 0 vs HA : β01 6= 0, but if P2 increases to 0.25 and

0.50, the power decreases substantially to 30% and 10% respectively. When interest lies

in estimating the effect of a covariate on disease progression (β01), we intuitively expect

that an increase in the probability of progression should lead to an increase in power and

these figures confirm this. When P2 is fixed at 0.10, prospectively following a sample of

n = 5, 000 individuals for J = 5 planned assessments over (0, τ ] leads to approximately

40% power when P1 = 0.10, and this increases to 80% and 95% for P1 = 0.25 and 0.50

respectively (comparing across analogous panels in Figures 3.2, 3.3, and 3.4).
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3.2.3 Cost Effective Design

Cost is a very important factor to consider when it comes to the design of prospective

cohort studies. The effort of recruiting a subject into the study and assessing disease

status may differ with the former being more expensive than the latter in many practical

applications, therefore designs defined by different pairs (n, J) achieving the same power

may lead to substantially different study costs. We consider the expected cost of cohort

study designs, with a view to identify the one with the minimum cost.

Let C0 be the cost for recruiting a subject into the study, C1 be the cost of each follow-up

assessment, and assume the assessment times are common to all individuals. The expected

total cost of recruitment and follow-up of n subjects each with J intended visits over a

period of τ years is then

E[C] = n
[
C0 + C1E(M)

]
= n

[
C0 + C1

1∑
x=0

J∑
j=1

jP (M = j|X = x)P (X = x)
]
.

Recall M is the random number of assessments for an individual; M = j implies T † ∈

Aj+1 = [aj, aj+1) and

P (M = j|X = x) =



1∑
k=0

p0k(0, aj|x)
1∑
l=0

{∫ aj+1

aj

pkl(aj, t|x)λl2(t;x)dt (1−G(aj+1)) if j < J

+

∫ aj+1

aj

[
pkl(aj, c|x) +

∫ c

aj

pkl(aj, t|x)λl2(t;x)dt

]
dG(c)

}
∑1

l=0 p0l(0, τ |x)(1−G(τ)) if j = J

A minimum-cost design is a design which minimizes expected total cost among all the

designs (n, J) that achieve the same desired power to detect an effect of size β01 = log 0.75.

Figure 3.5 shows the relative expected cost of a design (n, J) versus the optimal one

(nopt, Jopt) represented by the dot on each line, when the power is fixed at 80%. The lines
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correspond to different values of cost ratio C1/C0 = {0.50, 0.20, 0.05} and we set C0 = 1

without loss of generality. As expected, the optimal frequency of assessments Jopt increases

as the cost of conducting a follow-up assessment (C1) decreases. As the probability of death

over [0, τ ] increases (comparing across columns in Figure 3.5), minimum-cost designs are

achieved by scheduling more visits (e.g. increasing Jopt); this is sensible given that death

terminates the observation process, and hence limits expected costs even when assessments

are frequent. This observation is consistent with the power profile plots in Figures 3.2, 3.3,

and 3.4. On the other hand, the probability of progression (P1) has little effect on the

determination of the frequency of assessment Jopt in minimum-cost designs, as can be seen

by comparing across rows in Figure 3.5. While Figures 3.2, 3.3, and 3.4 demonstrated the

large effect of P1 on power for testing H0 : β01 = 0 vs HA : β01 6= 0, Jopt is far less sensitive

to it. However, this does imply an increase in nopt as P1 decreases, which would in turn

lead to an increase in expected study cost. Finally, note that the above discussion extends

to any desired (fixed) level of power, as we can easily show that

n0.8(J1)

n0.8(J2)
=
n0.9(J1)

n0.9(J2)
,

where np(J) is the sample size obtained from (3.5) to achieve 100p% power with J regular

assessments over (0, τ ]. This implies that given the cost of follow-up assessments C1, the

value Jopt minimizing the expected total study cost does not change as a function of power.
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Figure 3.5: Ratio of expected study cost (to achieve 80% power for testing H0 : β01 = 0
vs HA : β01 6= 0 at a significance level of α = 0.05 when β01 = log 0.75 ) given J and
the expected cost of the minimum-cost design; minimum-cost designs identified by dots
for C1/C0 = {0.5, 0.2, 0.05}, λ12/λ02 = 1.1, and P (T2 < min(C, τ)|X = 0) = 0.05, and
P (X = 1) = 0.25
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3.3 Imperfect Assessment of Disease Status

3.3.1 Likelihood and EM Algorithm

In the previous section, we assumed that the ascertainment of disease status was always

made without error, which is not often the case in practice. For example medical tests

may yield false positives or false negatives, and diagnosis of many diseases may be based

on subjective criterion leading to error. In some instances, while a gold standard test may

exist to diagnose a condition, cost and patient burden may render the test impractical to

administer in standard practice. In this section, we propose an EM algorithm [Dempster

et al., 1977] for estimation in this framework and derive the Fisher information to use as

the basis for investigation of study design implications, taking into account the expected

cost.

Let W (aj) denote the misclassified disease status obtained from an error-prone assess-

ment tool at assessment j, and W̄j = (W (a1), . . . ,W (aj)) be the classification history. The

true disease status vector Z̄m is latent and missing and the vital status is ascertained in

continuous time up to min(C, τ) without error so T † = min{T2, C, τ} and δ are observed.

The likelihood of the observed data {W̄m, t
†, δ, x} can be written as

Lo ∝
∑
Z̄m

P (Z̄m, t
†, δ | x)P (W̄m | Z̄m, t†, δ, x). (3.6)

Note that the first term within the summation above only depends on the disease process,

and the event time T1 uniquely determines the true disease history Z̄m, so it is equal to

P (t1 ∈ Aj, Z̄m, t†, δ | x; θ) =

 p00(0, aj−1|x)p01(aj−1, aj|x)p11(aj, t
†|x)λδ12(t†;x) j ≤ m

p00(0, am|x)
[∑1

k=0 p0k(am, t
†|x)λδk2(t†;x)

]
j = m+ 1

,

where Aj = [aj−1, aj) is the jth intermittent observation interval as before but an extra

interval is defined as Am+1 = [am,∞). For the misclassification process, we assume W (aj)
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depends only on the current true state Z(aj) but not on the classification history or the

true disease status in the past and future, thus the second term in (3.6) becomes

P (W̄m | t1 ∈ Aj, Z̄m, t†, δ, x; π) =

j−1∏
`=1

π
1−W (a`)
0 (1− π0)W (a`)

m∏
`=j

π
W (a`)
1 (1− π1)1−W (a`) ,

where π = (π0, π1) with π1 = P (W (aj) = 1|Z(aj) = 1), π0 = P (W (aj) = 0|Z(aj) = 0); the

misclassification rates FP = 1− π0 and FN = 1− π1 are often assumed to be known [Ma

et al., 2016]. Given the above, the observed likelihood (3.6) can now be expressed as

Lo(θ, π) =
m+1∑
j=1

P (t1 ∈ Aj, Z̄m, t†, δ|x; θ)P (W̄m|t1 ∈ Aj, Z̄m, tδ, x; π). (3.7)

For the estimation of disease process parameters θ, direct maximization of the observed

likelihood (3.7) is difficult in general. Rather, an EM algorithm can be implemented by

casting matters in the missing-data framework, where the time of entry into state 1, T1, is

viewed as missing. Define the complete log-likelihood as

`c(θ) =
n∑
i=1

log f(ti1, t
†
i , δi | xi; θ)

where subscript i is used to index the individuals. At each iteration of the EM algorithm,

an E-step computes the expected complete data log-likelihood given the observed data

D = {W̄mi
, t†i , δi, xi; i = 1, . . . , n} and the current parameter estimates θ̂(r), that is

E
[
`c(θ) | D; θ̂(r)

]
=

n∑
i=1

∫ ∞
0

log
[
f(ti1, t

†
i , δi | xi; θ)

]
f(ti1|W̄Mi

, t†i , δi, xi; θ̂
(r), π) dti1 (3.8)

where the conditional distribution of T1 given the observed data {W̄m, t
†, δ, x} takes the

form

f(t1|W̄m, t
†, δ, x; θ, π) =

f(t1, t
†, δ | x; θ)P (W̄m|t1, t†, δ, x)∫∞

0
f(t1, t†, δ | x; θ)P (W̄m|t1, t†, δ, x)dt1

.
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The M-step then requires maximizing the conditional expectation in (3.8) to get updated

estimates of θ, and the iteration between the E- and M-steps continues until convergence.

Variance estimation for the estimates θ̂ from the EM algorithm is done by calculating the

observed information via Louis’ formula [Louis, 1982]. The details of an EM algorithm pro-

cedure for the estimation of a time-homogeneous three-state model with observed disease

status subject to misclassification is provided in Appendix A.

3.3.2 Fisher Information and Design

Obtaining the Fisher information matrix with misclassified disease status requires taking

derivatives of the logarithm of the observed likelihood Lo(W̄M , T
†, δ,X) given in (3.6). Let

`o = logLo(W̄M , T
†, δ,X) and So = ∂`o/∂θ be the vector of first-order derivatives. In

general, the form of the observed-data score So may be complicated due to taking the

logarithm of a sum. It is helpful to write it as an expectation of the complete-data score

given the observed data,

So =
∂

∂θ
logLo(W̄M , T

†, δ,X) = E

[
∂

∂θ
logLc(T1, T

†, δ,X)
∣∣∣W̄M , T

†, δ,X

]
.

Under the assumption of non-informative censoring, the Fisher information E[SoS
′
o] is

then obtained by taking the expectation of SoS
′
o with respect to {W̄M , T

†, δ,X}.

I(θ) =
1∑

x=0

J∑
j=0

∫ aj+1

aj

E
[
SoS

′
o

∣∣∣C = c ∈ Aj, X = x
]
dG(c)P (X = x) (3.9)

=
1∑

x=0

J∑
j=0

∫ aj+1

aj

[
H(j,min(c, τ), 0, x) +

j∑
q=1

∫ min(aq ,c)

aq−1

H(q, t2, 1, x)dt2

]
dG(c)P (X = x)
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where

H(m, t†, δ, x) = E

[
∂

∂θ
`o(W̄m, t

†, δ, x)
∂

∂θ′
`o(W̄m, t

†, δ, x)
∣∣∣t†, δ, x] f(t†, δ|x)

=
∑
W̄m

(
∂

∂θ
`o(W̄m, t

†, δ, x)
∂

∂θ′
`o(W̄m, t

†, δ, x)

)
P (W̄m|t†, δ, x)f(t†, δ|x)

=
∑
W̄m

(
So(W̄m, t

†, δ, x)S ′o(W̄m, t
†, δ, x)

)
Lo(W̄m, t

†, δ, x)

and m satisfies am ≤ t† < am+1 and t† = min(t2, c, τ).
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We validate the asymptotic variance obtained from the Fisher information (3.9) by

comparing it to the empirical variance and average estimated variance of MLEs obtained

via the EM algorithm for each of 2, 000 simulated datasets. These results are reported in

Table 3.2; the parameter settings mirror those in Section 3.2.2, MIS= 1−π = {0, 0.10, 0.20}

and π = π0 = π1. Note the excellent agreement between the empirical standard error and

the asymptotic standard error, as well as the coverage achieving the nominal level of 95%,

even in presence of slight and moderate misclassification.

Intuitively, it is clear that the scheduling of more frequent assessments mitigates, to

some degree, the loss of information due to potential state misclassification. However,

when considering both the cost of increasing the sample size (C0) and the cost of follow-

up assessments (C1), it is not obvious whether it would be more cost-effective to increase

n or J to achieve a desired level of power. In Figure 3.6, we see that as the degree of

misclassification increases, the minimum-cost design is achieved by increasing the frequency

of assessments over [0, τ ]. This is particularly apparent when disease progression is rare in

the cohort (i.e. when P1 is low), in which case even a modest rate of false positives/negatives

has a significant impact on Jopt.

Finally, we consider the differential impact of false positive and false negative errors on

features of the minimum-cost design (see Figure 3.7). For example, when P1 is low (that

is when progression events are rare in the cohort) and interest lies in detecting a covariate

effect on disease progression, an increase in the rate of false positives (FP = 1 − π0) has

a much larger impact on Jopt than does an increase in the rate of false negatives (FN =

1− π1).
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(a) P1 = 0.1, P2 = 0.1 (b) P1 = 0.5, P2 = 0.1

Figure 3.6: Ratio of expected study cost (to achieve 80% power for testing H0 : β01 = 0
vs HA : β01 6= 0 at a significance level of α = 0.05 when β01 = log 0.75 ) given J and the
expected cost of the minimum-cost design; minimum-cost designs identified by dots for
different degrees of misclassification where we assume equal false positive (FP) and false
negative (FN) rates; C1/C0 = 0.5, λ12/λ02 = 1.1, P (T2 < min(C, τ)|X = 0) = 0.05, and
P (X = 1) = 0.25
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(a) P1 = 0.1, P2 = 0.1 (b) P1 = 0.5, P2 = 0.1

Figure 3.7: Ratio of expected study cost (to achieve 80% power for testing H0 : β01 = 0
vs HA : β01 6= 0 at a significance level of α = 0.05 when β01 = log 0.75 given J and
the expected cost of the minimum-cost design; minimum-cost designs identified by dots for
various combinations of false positive rate (FP= 1−π0) and false negative rate (FN= 1−π1);
C1/C0 = 0.5, λ12/λ02 = 1.1, P (T2 < min(C, τ)|X = 0) = 0.05, and P (X = 1) = 0.25
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3.4 Response-adaptive Designs for Prospective Co-

hort Studies

In the previous section, we proposed a framework for the design of prospective cohort

studies where the assessment schedule is pre-determined; in practice this assumption is

generally violated. Departures from the scheduled assessment times are common: if these

are random and relatively modest, they may not have a large impact on design. When

the timing of assessments is respondent-driven (and possibly dependent on the responses

themselves), there exist methods for accounting for this dependence in estimation [Rad,

2014] although accounting for this is difficult at the design stage due to the strong assump-

tions required on the visit process. However, systematic protocol-driven dependence of the

visit process on observed responses, via repeated testing or referrals to specialists for more

advanced testing/examinations following a positive test result, can be considered at the

design stage.

Suppose there exist both a gold standard assessment tool to ascertain disease status

and an error-prone tool, where the former is more expensive and/or invasive than the

latter. Due to the increased burden of the gold standard assessment, the error prone tool

is employed at assessment times aj, j = 1, . . . , J . If W (aj) is positive (i.e. W (aj) = 1)) at

an assessment j, the gold standard assessment is administered to determine the true status

Z(aj) ∈ {0, 1}; if Z(aj) = 1, assessments of disease status terminate, and if Z(aj) = 0,

subsequent assessments again employ the error-prone assessment tool. In short, this study

eliminates false positives, although the possibility of false negatives remains.

Let Q be the index of the first visit at which disease progression is confirmed and

assessments are discontinued, Q ∈ {1, 2, . . . , J,∞}; if Q = ∞, then progression is not

confirmed by the end of the study. As before, for Q ≤ J we define Z̄Q = {Z(a1), . . . , Z(aQ)}
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and W̄Q = {W (a1), . . . ,W (aQ)}, while Z̄∞ = Z̄J and W̄∞ = W̄J . The observed data is

{W̄Q, Z̄
∗
Q, t
†, δ, x} where W̄Q = {W1, . . . ,WQ} is the observed (potentially misclassified)

disease status history up to visit Q and Z̄∗Q is the vector of true disease statuses confirmed

by gold standard assessment. Note that Z̄∗Q is a subset of the full true disease status history

Z̄Q. The observed-data likelihood is a modification of (3.6) and can be rewritten as

Lo(W̄Q, Z̄
∗
Q, t
†, δ, x) =

∑
Z̄Q\Z̄∗Q

P (Z̄Q, Z̄
∗
Q, t
†, δ|x)P (W̄Q|Z̄Q, Z̄∗Q, t†, δ, x)

where Z̄Q\Z̄∗Q is the set of unobserved true disease statuses, which needs to be summed

over to get the observed-data likelihood.

The Fisher information can then be obtained in a manner similar to that in Section

3.3.2. The outer expectations in (3.9), with respect to X and C, are taken in the same way

here. However, while previously the observation process was terminated after M visits by

the minimum of the death and censoring times, in the present adaptive design protocol it

is terminated earlier by Q ≤M if a positive diagnosis is obtained (i.e.if Z(aQ) = 1).

3.5 Discussion

We have developed a framework for the design of cohort studies in which interest lies

primarily in the effect of a covariate on the development of an intermediate event; this

event could represent the onset of a disease (e.g. diabetes) in a large cohort study or

the development of a complication if the cohort is comprised of disease individuals (onset

of kidney damage in a diabetes cohort). This work offers a theoretical underpinning of

the simulation-based study of Ma et al. [2016]. While we have examined the features

that most influence the sample size requirements for a three-state illness-death model, the

framework naturally accommodates progressive multistate processes with more than three
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states. Diseases such as dementia, hepatitis, retinopathy or nephropathy all represent

progressive conditions for which several intermediate states can be introduced for a more

detailed modelling of the progression. Sample size can be likewise determined if estimation

of a covariate effect on any particular transition in the disease process is of primary interest.

Ma et al. [2016] considered the impact of misclassification of a genetic marker when

the goal is to assess the power of a cohort study for detecting its effect. There is a large

literature on the impact of covariate measurement error or misclassification [Yi, 2016,

Carroll et al., 2006, Fuller, 1987] and likelihood methods can be employed to accommodate

this with either external or internal validation samples. A natural extension of our work

would be to base study design on a model accommodating covariate misclassification based

on a prior external validation sample.

We considered the setting in which the status of individuals may be misclassified at

examination times. We presumed that individuals would continue to be examined after

any positive assessments suggesting the intermediate event had occurred; this corresponds

to the setting in which the analysis might be done retrospectively upon completion of the

cohort study. In practice, if the assessments are made by treating physicians, individuals

testing positive would be referred immediately for definitive diagnostic checks. If they were

found to have experienced the event based on a gold standard test then the schedule for the

subsequent follow-up assessments may be modified. If they were subsequently found not

to have experienced the event, but the false positive assessment was suggestive of higher

risk, the subsequent assessment times might be more frequent. While this framework is

outlined briefly in Section 3.4, study designs accommodating such adaptive observation

schemes warrant further development.

More generally, longitudinal cohort studies are designed under idealized assumptions

which may not always be realized in practice; participants may not adhere to the visit
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schedule specified in the protocol, some may not take treatments as directed, and responses

may be misreported or missing. While some departures from design assumptions are

unavoidable, it is important to capture as many realistic features of the study as possible

at the design stage. In longitudinal studies where responses are collected on an individual

repeatedly over time, it is reasonable to expect that the schedule of assessments and/or the

treatment protocol may change over time, and this is an area that warrants future work.

For example, while we assumed the assessments were scheduled at regular intervals over

(0, τ ], this need not be the case. The asymptotic variance can be calculated with (3.9)

with unequally spaced assessment times, as long as they are scheduled in the protocol.

This allows for the assessment schedule to be optimized at the design stage; this may be

of particular interest if transition intensities are vary with time, for example via piecewise

constant intensities, and scheduling more frequent assessments for participants in high-

risk periods may lead to more cost-effective designs. Accommodating deviations from the

protocol at the design stage would involve modelling the visit time process which is, in

general, challenging; this is further discussed in Section 5.2.2.
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Appendix A: Misclassified Disease Status - EM algo-

rithm

For illustration purposes, we consider a time-homogeneous model, with λk`(t;x) = λk`(x) =

λk`e
βk`x for k < ` and assume the misclassification parameters π are known. The transition

probability matrix can be obtained via matrix exponential P(s, t) = exp
{(
t− s)A

}
and

A = [λk`(x)] is the constant transition intensity matrix; we obtain explicit expressions for

the individual transition probabilities

p00(t) = exp{−(λ01(x) + λ02(x))(t)} ,

p11(t) = exp{−λ12(x)(t)} ,

p01(t) = λ01(x)/[λ01(x) + λ02(x)− λ12(x)]
[

exp{−λ12(x)(t)} − exp{−(λ01(x) + λ02(x))(t)}
]
.

Under the time-homogeneous model with misclassified disease status, the likelihood func-
tion of the observed data D = {W̄m, T

†, δ,X} can be written in closed form

Lo(θ, π) =
λ01(x)λ12(x)δe−λ12(x)t†

λ∗(x)

m+1∑
j=1

(
e−λ

∗(x)aj−1 − e−λ∗(x) min{aj ,t†}
)
P (W̄m | t1 ∈ Aj , Z̄m, t†, δ, x;π)

+ λ02(x)δe−(λ01(x)+λ02(x))t†P (W̄m | t1 ∈ Am+1, Z̄m, t
†, δ, x;π), (3.10)

where λ∗(x) = λ01(x) + λ02(x)− λ12(x) and

P (W̄m | t1 ∈ Aj, Z̄m, t†, δ, x; π) =

j−1∏
`=1

π
1−W (a`)
0 (1− π0)W (a`)

m∏
`=j

π
W (a`)
1 (1− π1)1−W (a`) ,

(3.11)

where π = (π0, π1) with π1 = P (W (aj) = 1|Z(aj) = 1), π0 = P (W (aj) = 0|Z(aj) = 0) and

we have Aj = [aj−1, aj) for j = 1, . . . ,m and Am+1 = [am,∞).

The objective here is to estimate the disease process parameters θ, assuming the misclas-

sification parameters π are known. We discuss the steps of the EM algorithm considering
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a single subject only for convenience, but note that the generalization over all subjects is

straightforward.

E-step: For a time-homogeneous model, the joint distribution of the complete data

{T1, T
†, δ} is

f(t1, t
†, δ | x) =

[
p00(t1)λ01(t1)p11(t† − t1)λδ12(t†)

]I(t1<t†)[
p00(t†)λδ02(t†)

]I(t1>t†)
.

The complete log-likelihood then can be written as a linear function of event time T1 such

that

`c(θ) = log f(t1, t
†, δ | x)

= I(t1 < t†)
{

log λ01(x)− λ12(x)t† + δ log λ12(x)−
[
λ01(x) + λ02(x)− λ12(x)

]
t1

}
+ I(t1 > t†)

{
δ log λ02(x)−

[
λ01(x) + λ02(x)

]
t†
}
.

The conditional expectation Q(θ; θ̂(r)) = E
[
`c(θ) | D; θ̂(r)

]
becomes

Q(θ; θ̂(r)) = w
(r)
1

{
log λ01(x) + δ log λ12(x)− λ12(x)t†

}
− w(r)

2

{
λ01(x) + λ02(x)− λ12(x)

}
+
[
1− w(r)

1

]{
δ log λ02(x)−

[
λ01(x) + λ02(x)

]
t†
}

(3.12)

where w
(r)
1 = P (t1 < t† | D; θ̂(r), π) and w

(r)
2 =

∫ t†
0
t1f(t1 | D; θ̂(r), π)dt1. The weight

functions are calculated as follows:

w1(θ, π) =

∫ t†

0
f(t1 | D; θ, π)dt1 = 1−

[
λδ02e

−(λ01+λ02)t†P (W̄m|t1 ∈ Am+1, t
†, δ, x;π)

]
/Lo(θ, π)

w2(θ, π) =

∫ t†

0
t1f(t1 | D; θ, π)dt1 =

[
M+1∑
k=1

∫ min{ak,t†}

ak−1

t1f(t1, t
†, δ|x; θ)dt1P (W̄m|t1 ∈ Ak, t†, δ, x;π)

]
/Lo(θ, π)

where P (W̄m|t1 ∈ Ak, t†, δ, x; π) is given in (3.11), Lo(θ, π) is given in (3.10), and the

integration takes the form∫ b

a

t1f(t1, t
†, δ|x; θ)dt1 = λ01(x)λ12(x)δe−λ12t

†
{[
aλ∗(x) + 1

]
e−aλ

∗(x) −
[
bλ∗(x) + 1

]
e−bλ

∗(x)
}
/λ∗(x)2 ,
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here recall λ∗(x) = λ01(x) + λ02(x)− λ12(x).

M-step: The updated estimates of θ are obtained by maximizing the conditional expec-

tation Q(θ; θ̂(r)). Note that under time-homogeneous model, the Q(θ; θ̂(r)) function given

in (3.12) can be re-organized as

Q(θ; θ̂(r)) = w
(r)
1

[
log λ01(x)− v(r)λ01

]
+
(

1− w(r)
1

) [
δ log λ02 − t†λ02

]
+ w

(r)
1

[
δ log λ12 −

(
t† − v(r)

)
λ12

]
+
(

1− w(r)
1

) [
−t†λ01

]
+ w

(r)
1

[
−v(r)

1 λ02

]
(3.13)

Note that Q(θ; θ̂(r)) function resembles the sum of weighted log-likelihood function of Pois-

son observations with offsets. This implies that the maximization can be done by generating

a pseudo dataset and fitting log-linear Poisson models. More specifically for each subject

i, we create five pseudo responses yij (j = 1, . . . , 5), and we assume yij ∼ Poisson(λijuij)

with a pseudo offset uij and a log-linear model for the rate log λij = z
′
ijθ where zij is a

vector of pseudo covariates associated with yij. The conditional expectation (3.13) is then

equivalent to the weighted log-likelihood of a pseudo dataset

Q(θ; θ̂(r)) =
∑
i,j

ŵij log f(yij; θ) =
∑
i,j

ŵij

{
yij
[

log λij + log uij
]
− λijuij

}
where we let θ = (log λ01, β01, log λ12, β01, log λ02, β02)′, and the values of weights (i.e. ŵij),

responses (i.e. yij), covariates (i.e. zij) and offsets (i.e. uij) of this pseudo dataset are

given in Table 3.3

In other words, we can use the glm function in R to do the maximization by fitting a Poisson

log-linear model on a pseudo dataset where each individual in the original sample will

give rise to a number of ‘pseudo-individuals’ with their weights, responses, and associated

covariates and offsets generated as described in Table 3.3.
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ŵij yij z
′
ij uij log λij = z′ijθ

w
(r)
1,i 1 (1, 0, 0, x, 0, 0) w

(r)
2,i /w

(r)
1,i log λ01(x)(

1− w(r)
1,i

)
δ (0, 1, 0, 0, x, 0) t† log λ02(x)

w
(r)
1,i δ (0, 0, 1, 0, 0, x) t† − w(r)

2,i /w
(r)
1,i log λ12(x)(

1− w(r)
1,i

)
0 (1, 0, 0, x, 0, 0) t† log λ01(x)

w
(r)
1,i 0 (0, 1, 0, 0, x, 0) w

(r)
2,i /w

(r)
1,i log λ02(x)

Table 3.3: Pseudo-data for loglinear model

Observed Information: We calculate the observed information I(θ̂) by taking the ex-

pectation of derivatives of the complete data loglikelihood lc(θ) given the observed data

D = {W̄M , T
†, δ,X} as in [Louis, 1982]

I(θ̂) = E

[
∂2lc(θ)

∂θ∂θ′

∣∣∣D; θ̂

]
− E

[
∂lc(θ)

∂θ

∂lc(θ)

∂θ′

∣∣∣D; θ̂

]
+ E

[
∂lc(θ)

∂θ

∣∣∣D; θ̂

]
E

[
∂lc(θ)

∂θ′

∣∣∣D; θ̂

]
.

Evaluating the above amounts to calculating w1(θ) = P (t1 < t†|D; θ̂, π), w2(θ) = E
[
t1|t1 <

t†,D; θ̂, π
]
, and w3(θ) = E

[
t21|t1 < t†,D; θ̂, π

]
for each individual, where w1(θ) and w2(θ)

are as in the E-step of the EM algorithm and

w3(θ, π) =

[
M+1∑
j=1

∫ min{aj ,t†}

aj−1

t21f(t1, t
†, δ|x; θ)dt1P (W̄m|t1 ∈ Aj, t†, δ, π)

]/
Lo(θ, π)

where∫ b

a

t21f(t1, t
†, δ|x; θ)dt1 =

λ01(x)λ12(x)δe−λ12t
†

(λ∗)3

{[
(aλ∗)2 + 2aλ∗(x) + 2

]
e−aλ

∗(x) −
[
(bλ∗)2 + 2bλ∗(x) + 2

]
e−bλ

∗(x)
}
,

and λ∗(x) = λ01(x) + λ02(x)− λ12(x).
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Chapter 4

State-dependent Sampling Designs
for Prevalent Cohort Studies

4.1 Introduction

Incident cohort studies of disease involve the recruitment of individuals who are healthy

and their follow-up over time with the goal of observing the time of disease onset within

a specific follow-up period [Wang, 1999]. In contrast, prevalent cohort studies involve

the recruitment and follow-up of a sample of individuals who have already developed the

disease with the goal of learning about the course of a chronic disease [Armitage and

Colton, 2005]; for this goal prevalent cohort studies can result in significant cost savings

compared to incident cohort studies, where many individuals may not develop the disease

during the follow-up period. The effect of length-biased sampling in prevalent cohort

studies has been extensively studied for failure-time data [Asgharian et al., 2002], but

little attention has been given to the impact of such a sampling scheme on more general

multistate processes. State-dependent sampling designs and associated analyses which

account for the recruitment scheme can be exploited to optimize efficiency and/or minimize

expected study cost. We explore these and related issues in this chapter.
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In Section 4.2, we demonstrate the impact of ignoring length-biased sampling of mul-

tistate processes in data analyses. We find that the preferential sampling of individuals

with long survival times with disease induces a conservative bias in estimators of cumula-

tive transition intensities. This bias can be mitigated by constructing likelihood functions

which account for the selection conditions appropriately. With correctly formulated likeli-

hoods, one can then consider the impact of state-dependent selection criteria in construct-

ing samples of individuals from a population screened for recruitment. We consider first

a simple setting of a failure time process in Section 4.3. In Section 4.4 we derive a closed

form expression for the Fisher information for a general multistate process when data are

acquired under two reasonable sampling schemes: (i) state-dependent sampling in which

data are only available on selected individuals, and (ii) state-dependent sampling in which

additional current-status data are available from individuals screened but not recruited for

follow-up. In Section 4.5 we demonstrate the impact of the choice of state-specific sample

sizes on the precision of the estimates of interest (e.g. a biomarker effect), when subject

to a realistic cost constraint. In Section 4.6 we present empirical results confirming the

validity of the proposed designs. Concluding remarks are given in 4.7.

4.2 Length-biased Sampling of Multistate Processes

Consider a progressive multistate model as in Figure 1.2, with transient states 0, . . . , K−1

representing progressive stages of disease and an absorbing state K representing death.

We assume all individuals begin the process in state 0 at age 0 and let Tk denote the entry

time to state k, k = 1, . . . , K, so TK is the age at death.

A prevalent cohort sample is obtained by drawing a random sample of individuals from

a population satisfying a selection criterion Z(A) ∈ S where A is the age at contact,
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Z(A) indicates the state at the time of contact, and S is a subset of the state space

Ω = {0, 1, . . . , K}. For example, S = {0, . . . , K − 1} corresponds to the condition that

individuals must be alive to be sampled, whereas if S = {1, . . . , K−1}, healthy individuals

will be excluded from the sample.

4.2.1 Multistate Model Induced by Length-biased Sampling

Let ∆ = 1 indicate an individual is sampled into a prevalent study and ∆ = 0 otherwise.

Suppose S = {0, 1, . . . , K − 1} so that individuals may be sampled if they are alive at

the time the population is screened. Under the typical length-biased sampling scheme,

individuals are selected with a probability proportional to their lifetime. In the multistate

context, transition probabilities in such a length-biased sample are obtained by conditioning

on the sampling indicator, that is

Pjk(s, t|∆ = 1,H(s)) = P (Z(t) = k|Z(s) = j,∆ = 1,H(s)) (4.1)

=

(
P (∆ = 1|Z(t) = k, Z(s) = j,H(s))

P (∆ = 1|Z(s) = j,H(s))

)
P (Z(t) = k|Z(s) = j,H(s))

=

(
E[TK |Z(t) = k, Z(s) = j,H(s)]

E[TK |Z(s) = j,H(s)]

)
P (Z(t) = k|Z(s) = j,H(s)),

for j ≤ k and s ≤ t, since

P (∆ = 1|Z(t) = k, Z(s) = j,H(s))

= ETK

[
P
(
∆ = 1 |TK , Z(t) = k, Z(s) = j,H(s)

)∣∣Z(t) = k, Z(s) = j,H(s)
]

= cE[TK |Z(t) = k, Z(s) = j,H(s)]

under the assumption that sampling probabilities are proportional to the duration in S,

that is TK in the present setting. If the multistate process is Markov, (4.1) becomes

Pjk(s, t|∆ = 1) =

(
E[TK |Z(t) = k]

E[TK |Z(s) = j]

)
Pjk(s, t) (4.2)
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and it can be seen that the Markov property is preserved for the length-biased sample.

The intensity of a j → k transition at time t given recruitment in the sample is based on

(4.2) as

ρjk(t|∆ = 1) = lim
∆t↓0

P (Z(t+ ∆t−) = k|Z(t−) = j, Z(0) = 0,∆ = 1)

∆t
, (4.3)

for j ∈ S and k ∈ {1, . . . , K}, which can differ appreciably from

λjk(t) = lim
∆t↓0

P (Z(t+ ∆t−) = k|Z(t−) = j, Z(0) = 0)

∆t
,

the population Markov intensity.

4.2.2 Length-bias in the Three-state Illness-death Model

Here, we consider a three-state time-homogeneous illness-death process with K = 2 (see

Figure 1.2) to illustrate the difference between the population model and the model induced

by prevalent cohort sampling with S = {0, 1}. The transition probability matrix is

P(s, t) =


e−(λ01+λ02)(t−s) P01(s, t) 1− e−(λ01+λ02)(t−s) − P01(t− s)

0 e−λ12(t−s) 1− e−λ12(t−s)

0 0 1

 , (4.4)

where

P01(s, t) = λ01e
−λ12(t−s)(t− s)I(λ01+λ02=λ12)

(
1− e−(t−s)(λ01+λ02−λ12)

λ01 + λ02 − λ12

)I(λ01+λ02 6=λ12)

. (4.5)

The expected lifetime with disease is E[TK |Z(0) = 0] =
∫∞

0
P (TK ≥ t|Z(0) = 0)dt.

More generally, we can consider the expected lifetime given that Z(t) = k for some t > 0,

and

E[TK |Z(t) = k, Z(0) = 0] = t+

∫ ∞
t

P (TK ≥ u|Z(t) = k, Z(0) = 0)du.

75



For the illness-death model,

E[T2|Z(t) = k, Z(0) = 0] = t+

∫ ∞
t

1− Pk2(t, u)du

where Pk2(t, u) is the (k, 2) entry of (4.4). Specifically, we have

E[T2|Z(t) = 0, Z(0) = 0] = t+
1

λ01 + λ02

+
λ01

λ12(λ01 + λ02)

and

E[T2|Z(t) = 1, Z(0) = 0] = t+
1

λ12

.

We may derive the transition probability matrix for the sample obtained by prevalent

cohort sampling, P(s, t|∆ = 1), via (4.2) as
P00(s, t|∆ = 1) P01(s, t|∆ = 1) 1− P00(s, t|∆ = 1)− P01(s, t|∆ = 1)

0 1+λ12t
1+λ12s

e−λ12(t−s) 1− 1+λ12t
1+λ12s

e−λ12(t−s)

0 0 1

 , (4.6)

where

P00(s, t|∆ = 1) =

(
tλ12(λ01 + λ02) + λ01 + λ12

sλ12(λ01 + λ02) + λ01 + λ12

)
e−(λ01+λ02)(t−s),

P01(s, t|∆ = 1) =

(
t(λ12 + 1)(λ01 + λ02)

sλ12(λ01 + λ02) + λ01 + λ02

)
P01(s, t),

and P01(s, t) is given in (4.5).

Comparing (4.4) and (4.6), it is clear that the transition probabilities differ in the pop-

ulation and in the induced sample, but the magnitude of the difference, which is a function

of (s, t) and the population transition intensities λ01, λ02, and λ12, is not immediately ob-

vious. In Figure 4.1, we see the probability of entering state 2 at time t given that state

0 is occupied at time s; s = 0, 2, 4 are considered in the left, middle, and right panels

respectively. In each panel, the population-level probability (solid line) is overlaid with the
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Figure 4.1: P02(s, t) for the population and length-biased sample with S = {0, 1}, λ01 =
0.5, λ02 = 0.3, λ12 = 0.7

sample-level equivalent (dashed line). We see here that the cumulative distribution func-

tion is consistently lower in the sample than in the population as we vary s and t, which

agrees with the results from length-biased survival analysis [Wolfson et al., 2001]. The same

trends are exhibited in plots of the transition probability P12(s, t) vs P12(s, t|∆ = 1) which

are not shown in this thesis. This illustration demonstrates the necessity of conditioning

on recruitment criteria for the analysis of multistate data arising from prevalent cohort

studies to reflect the fact that the sample is not representative of the study population in

general.

We have shown here that the well-known impact of length-biased sampling arising from

prevalent cohort sampling has a corresponding effect on the transition intensities of a more

general multistate process. This means that for progressive conditions such as dementia

studied by Wolfson et al. [2001] if one were to model the progressive process via the decline

in cognitive ability naively, one would underestimate the progression rate of cognitive

decline if there were an association between cognitive ability and the risk of death. This

has important public health implications. Fortunately, the correct analyses are relatively

straightforward and we explore the use of biased sampling schemes in what follows with a

77



view to efficient design of observational studies.

In the remainder of this chapter we explore designs based on state-dependent sampling,

where samples are intentionally not representative, to improve efficiency and/or minimize

expected study cost.

4.3 State-dependent Sampling for Failure Times

Failure-time models are the simplest form of multistate processes (see Figure 1.1(a)); we

begin our discussion of state-dependent sampling by comparing the value of left- and right-

truncated failure-time data.

Truncation arises when subjects are sampled subject to pre-specified criteria based

on the response of interest. Left-truncation occurs when subjects must be at risk for a

particular event to enter the study, and so cannot have experienced this event prior to

a contact time. Right-truncation, a far less studied phenomenon, refers to the setting in

which subjects must have already experienced the event of interest prior to entering the

study.

As a motivating example, we consider the problem of characterizing the incidence of

psoriatic arthritis among individuals with psoriasis, introduced in Section 1.5.1. Recall

that two cohorts of individuals, one with psoriasis and one with psoriatic arthritis, have

been established. Both of these cohorts are within the purview of the Centre for Prognosis

Studies in Rheumatic Disease at the Toronto Western Hospital, and recruitment is ongoing.

As such, it is natural to consider the relative value of information per individual in each

cohort. Setting aside mortality, which is relatively low in both cohorts, the time from the

onset of psoriasis to psoriatic arthritis is left-truncated in the psoriasis cohort and right-

truncated in the psoriatic arthritis cohort. This idea will then be extended to more general
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state-dependent sampling schemes for multistate processes in Section 4.4.

4.3.1 Score and Information for Truncated Failure-time Processes

We derive the score vector and information matrix for a general truncated time-to-event

process, allowing for right- and/or left-truncation. Suppose time T can only be observed

if T ∈ W , where W = [L,R] is the truncation interval; note L = 0 and R > 0 for

right-truncated data and L > 0 and R = ∞ for left-truncated data; otherwise data are

interval-truncated. In this general setting with a sample of size n we can write the likelihood

function as

L(θ) =
n∏
i=1

f(ti|Ti ∈ Wi; θ) =
n∏
i=1

f(ti; θ)

P (Ti ∈ Wi; θ)

and the loglikelihood function

l(θ) =
n∑
i=1

{log f(ti; θ)− logP (Ti ∈ Wi; θ)}

Taking derivatives of the loglikelihood function with respect to a p× 1 parameter vector θ

indexing the survival function of the event time of interest, F(t; θ), yields the score vector

S(θ) =
∂l(θ)

∂θ
=

n∑
i=1

{
∂ log(f(ti; θ))

∂θ
− 1

P (Ti ∈ Wi; θ)

∂P (Ti ∈ Wi; θ)

∂θ

}
=

n∑
i=1

{
∂ log(f(ti; θ))

∂θ
+

1

P (Ti ∈ Wi; θ)

∂P (Ti ∈ W c
i ; θ)

∂θ

}
=

n∑
i=1

{
∂ log(f(ti; θ))

∂θ
+

[
P (Ti ∈ W c

i ; θ)

P (Ti ∈ Wi; θ)

]
∂ logP (Ti ∈ W c

i ; θ)

∂θ

}
. (4.7)

where W c
i denotes the complement of the truncation interval Wi.

Turnbull [1976] introduced the idea of ghosts, pseudo-individuals who are envisioned

as existing in the population but who are not sampled because they did not satisfy the
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respective truncation conditions. We can think of Ji as the number of such candidates,

similar to individual i but that were not selected for the sample because their event time

fell outside the truncation region Wi. It follows that Ji ∼ GEO(pi), where pi = P (T ∈

W c
i ; θ)/P (T ∈ Wi; θ). In light of this, we re-write (4.7) as

dl(θ)

dθ
=

n∑
i=1

{
∂ log f(ti; θ)

∂θ
+ E[Ji|Wi; θ]

∂ logP (Ti ∈ W c
i ; θ)

∂θ

}
. (4.8)

We may use (4.8) as the basis for implementing an EM algorithm to estimate θ. Note that

the first term in (4.8) is the score contribution for individuals who are observed to fail at

time ti, while the second term is the score contribution for ghosts whose failure times are

censored in the “complete” sample because all that is known is that their failure time is

in W c
i . If T follows a Weibull distribution, (4.8) can be easily maximized in R using the

survreg function, updating the estimates of θ at each iteration of the EM algorithm by

specifying a weight for the contribution of the second term based on E[Ji|Wi; θ
k−1] where

θk−1 is the estimate at the (k − 1)st iteration.

We can derive the information matrix by differentiating the expression in (4.8) as follows

I(θ) = −
n∑
i=1

{
∂2 log f(ti; θ)

∂θ2
+

[
P (Ti ∈W c

i ; θ)

P (Ti ∈Wi; θ)

]
∂2 logP (Ti ∈W c

i ; θ)

∂θ2
(4.9)

+

[
P (Ti ∈Wi; θ) ∂P (Ti ∈W c

i ; θ)/∂θ − P (Ti ∈W c
i ; θ) ∂P (Ti ∈Wi; θ)/∂θ

P (Ti ∈Wi; θ)2

]
∂ logP (Ti ∈W c

i ; θ)

∂θ

}
.

Alternatively, by casting truncation as a missing data problem, we can make use of

the approach from Louis [1982] for evaluating the observed information. Let S(θ;T ) and

U(x; θ) be the score functions based on the complete and observed data, respectively. Louis

[1982] notes that if U(θ;T ∈ W ) = ∂ logP (T ∈ W ; θ)/∂θ and S(θ;T ) = ∂ log f(T ; θ)/∂θ,
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one can write

U(θ;T ∈ W ) = ET [S(θ;T )|T ∈ W ].

Moreover, if I(θ;T ∈ W ) = −∂U(θ;T ∈ W )/∂θ′ and B(θ;T ) = −∂S(θ;T )/∂θ′, then

I(θ;T ∈ W ) = ET [B(θ;T )|T ∈ W ]−
(
ET [S(θ;T )S ′(θ;T )|T ∈ W ]−U(θ;T ∈ W )U ′(θ;T ∈ W )

)
.

(4.10)

4.3.2 Asymptotic Results

In this section, we illustrate the relative efficiency of estimates from left- and right-

truncated samples for a time-to-event response T with probability density function f(t; θ)

indexed by θ. Let V be the latent truncation time with density g(u; ρ) indexed by ρ; T and

V are assumed to be independent. Under a right-truncation sampling scheme, individuals

may only be recruited if T < V , while under a left-truncation scheme, T may be sampled

only if T > V . Let α be the probability of exclusion from the sample due to truncation,

such that for right truncation we have

α = P (T > V ) =

∫ ∞
0

g(u; ρ)P (T > u; θ)

and for left truncation we have

α = P (T < V ) =

∫ ∞
0

g(u; ρ)P (T < u; θ).

The special case of a common truncation time V for all individuals is achieved by setting

a degenerate distribution on V .

Suppose interest lies in estimating β, the effect of a covariate X on the failure-time

response T . A natural question arises: what is the value of recruiting a sample of left-

truncated individuals and following them prospectively for up to τ years relative to that
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of recruiting a sample of right-truncated individuals and retrospectively recording the re-

sponse. To explore this, we assume common truncation probabilities α for the left- and

right- truncated samples (in general these correspond to different truncation times V ). Let

C0 denote the cost of initial sampling and C the cost per year of follow-up. Let nL and nR

be the number of individuals in each of the left- and right-truncated samples. To facilitate

fair comparisons, we equate the costs of obtaining left- and right-truncated samples,

nL(C0 +DC) = nRC0.

The cost-effective asymptotic relative efficiency of left-truncated vs right-truncated samples

with the same expected cost is then

ARE =
[I−1
L (θ)]ββ / nL

[I−1
R (θ)]ββ / (1 + E[D]C/C0)nL

=
[I−1
L (θ)]ββ

[I−1
R (θ)]ββ

(
1 + E[D]C/C0

)
where IL(θ) and IR(θ) are the Fisher information matrices for left- and right-truncated

samples, obtained by taking the expectation of I(θ;T ∈ W ) from (4.9) with W = (V,∞)

and W = (0, V ) respectively, [I−1(θ)]ββ is the diagonal entry of I−1(θ) giving the variance

of β, and D = min(T − V, τ) is the duration of follow-up for an individual from a left-

truncated sample subject to administrative right censoring at τ . Let T ∼ WEI(λ, p),

where λ and p are the rate and shape parameters respectively, and X a binary covariate

with a multiplicative effect on the hazard , so h(t) = λptp−1eβX . We set p = 1.25, choose λ

such that the median of T is 15 years when X = 0 (e.g. P (T > 15|X = 0;λ, p) = 0.5), let

P (X = 1) = 0.5 and let β = log 1.5. We assume a fixed truncation time in each of the right-

and left-truncated samples, and consider truncation probabilities α = {0.10, 0.20, 0.30}.

For costs, we consider C/C0 = {0.50, 0.20, 0.01}.

In both panels of Figure 4.2, we plot the cost-effective asymptotic relative efficiency

(ARE) of the regression coefficient β as a function of the administrative censoring time
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(a) C/C0 = 0.2 (b) 20% truncation

Figure 4.2: Cost-effective asymptotic relative efficiency (ARE) for the estimation of re-
gression coefficient β on a failure time T for a sample subject to left-truncation (with up
to τ years of follow-up) vs a sample subject to right-truncation (with retrospective as-
certainment of T ); T ∼ WEIB(λ, p) where λ = 1.5 and P (T > 15|X = 0;λ, p) = 0.5,
P (X = 1) = 0.5, β = log 1.5.

τ for the left-truncated sample. In Figure 4.2(a), costs are fixed at C/C0 = 0.2 and the

solid, dashed, and dotted lines represent increasing truncation probabilites, 0.10, 0.20, 0.30

respectively. Values of ARE > 1 indicate that estimates of β from a right-truncated

sample are more efficient than those from a left-truncated sample with the same expected

cost, while ARE < 1 indicates that estimates from the left-truncated sample are more

efficient. When τ is small, many of the responses T from left-truncated observations are

administratively censored so it is more cost-effective to obtain a right-truncated sample. As

expected, as τ increases, the relative value of left-truncated observations increases. Also,

when the extent of truncation is more severe (that is when a higher proportion of the

population is excluded from the sample due to the truncation mechanism), left-truncated

observations with prospective follow-up yield more efficient estimators of β than do right-

truncated samples. In Figure 4.2(b), the truncation probability is fixed (at 0.20) and the
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Figure 4.3: Course of disease for 10 individuals from a population; solid, dashed, and
dotted lines represent duration in states 0, 1, and 2 respectively; bolded lines correspond
to individuals eligible to be sampled at the time of accrual S1 due to having Z(S1) ∈ S =
{0, 1, 2}.

lines represent different costs of follow-up relative to that of initial recruitment, C/C0 =

0.01, 0.20, and 0.50 respectively. As expected, as the cost of follow-up decreases relative to

that of recruitment, left-truncated (and right-censored) samples yield increasingly efficient

estimates of β compared to those from right-truncated samples with the same expected

cost.

4.4 State-dependent Recruitment for Follow-up

We now return attention to sampling issues for the more general K + 1 state progressive

multistate model depicted in Figure 1.2.
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4.4.1 Likelihood and Fisher Information

Let A denote the (random) age at contact. Suppose m∗j individuals are recruited with

Z(A) = j, and for each recruited individual, we obtain the value of the covariate of

interest X, the exact time of transitions having occurred over (0, A) (retrospectively),

and the time of transitions over the prospective study period (A,A + τ), where τ is the

planned duration of follow-up. We do not consider the issue of random censoring but

the following results generalize easily to handle this. For example, Figure 4.3 depicts the

recruitment of individuals at calendar time S1 in states S = {0, 1, 2} from a population, and

prospective follow-up over a period (S1, S1 + τ); individuals with bolded paths are eligible

to be recruited into the study and the shaded gray box represents the prospective follow-up

period. Individuals who are still alive at the end of the follow-up period are considered

censored and no information about their trajectory beyond that point is known.

We adopt a Markov model with piecewise-constant intensities, a flexible model allowing

for transition intensities to vary with age. As presented in Section 1.2, if H(t) = {Z(s), 0 <

s < τ} then under a Markov assumption the baseline transition intensities are

lim
∆t↓0

P (Z(t+ ∆t−) = `|Z(t−) = k,H(t−))

∆t
= λk`(t) ,

for ` = {k + 1, K}, k = 0, . . . , K − 1. Under a piecewise-constant model for baseline

intensities λkl(t) and assuming a multiplicative effect of a covariate X, we write

λk`(t)e
x′βk` = λk`re

x′βk` = eαk`r+x′βk` , for t ∈ Br = [br−1, br), r = 1, . . . , R.

Let θ = (α′, β′) index this piecewise-constant multistate process (Figure 1.2), where α =

(α′1, . . . , α
′
K−1)′ with αk = (α′k,k+1, α

′
kK)′, k = 0, . . . , K − 2, αK−1 = α′K−1,K , and αk` =

(αk`1, . . . , αk`R)′ is the vector of baseline log transition intensities and β = (β′0, . . . , β
′
K−1)′
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is the vector of regression coefficients, with βk = (β′k,k+1, β
′
kK)′, k = 0, . . . , K − 2 and

βK−1 = βK−1,K .

Conditional on the age at screening and recruitment, the likelihood contribution from

a single subject takes the form

L(θ) =
∏
j∈S

P (Z(s), 0 < s < a+ τ |A = a,X = x, Z(A) = j; θ)I(Z(A)=j)

=
∏
j∈S

(
P (Z(s), 0 < s < a+ τ |A = a,X = x; θ)

P (Z(a) = j|A = a,X = x; θ)

)I(Z(A)=j)

. (4.11)

If nk`r = I
[
subject has a k → ` transition over [br−1, br)

]
and

wkr =

∫ min(br,a+τ)

br−1

I(Z(u) = k) du

is the duration that the subject is under observation in state k over [br−1, br), the loglike-

lihood is

logL(θ) =
∑
j∈S

I(Z(A) = j)

{
R∑
r=1

∑
k,`≤K

[
nk`r log λk`re

x′βk` − wkrλk`rex
′βk`
]
− logP0j(0, a|x; θ)

}
(4.12)

where m∗j is the sample size recruited from state j and m∗ =
∑

j∈S m
∗
j is the total sample

size. Maximum likelihood estimates of θ will be obtained by directly maximizing the

summation of the loglikelihood in (4.12) over all subjects in the sample.

To facilitate investigation of the impact of state dependent sample sizes on the precision

of estimates from a prevalent cohort study, we consider the Fisher information. When m∗j

individuals are directly recruited from each state j ∈ S this takes the form

I(θ) = E

[
−

m∗∑
i=1

∂2 logL(θ)

∂θu∂θv

]
=
∑
j∈S

m∗j E

[
−∂

2 logL(θ)

∂θu∂θv

∣∣∣∣Z(A) = j

]
. (4.13)
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This expectation is taken by conditioning on the state at enrollment (i.e. Z(A) = j) and

averaging over the distribution of (X,A) |Z(A) = j,

E

[
−∂

2 logL

∂θu∂θv

∣∣∣∣Z(A) = j

]
=
∑
x

∫ ∞
0

{[
R∑
r=1

K−1∑
k=0

E
(
Wkr|A = a, Y = j,X = x

)( K∑
`=0

∂2

∂θu∂θv
λk`re

x′βk`

)

+
∂2

∂θu∂θv
log

(∑
`∈S

P0`(0, a|x; θ)

)]
f(A = a|X = x, Z(A) = j)

}
da

× P (X = x|Z(A) = j) (4.14)

Assuming the birth process in the population is stationary and there are no trends in

the disease process over time, the probability of screening an individual and finding them

in state j (i.e. with Z(A) = j) is equal to the prevalence of being in state j among S in

the population. As shown in Zeng and Cook [2018], this probability is

P (Z(A) = j|Z(0) = 0) =

∑1
x=0

[ ∫∞
0
P0j(0, u|x)du

]
P (X = x)∑

x (P0j(0, u|x)du)P (X = x)
, (4.15)

the density for the age at sampling in state j given X = x is

fA(a|Z(A) = j,X = x) =
P0j(0, a|x)∫∞

0
P0j(0, u|x)du

, (4.16)

and

P (X = x, Z(A) = j|Z(0) = 0) =

[ ∫∞
0
P0j(0, u|x)du

]
P (X = x)∑

x (P0j(0, u|x)du)P (X = x)
. (4.17)
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Based on these results, under a piecewise-constant model we have

E[Wkr|A = a, Z(a) = j,X = x]

=



∣∣∣∣∣ ∫ abr−1

∑K−1
h=0 p0h(0,br−1|x)phk(br−1,u|x)pkj(u,a|x)

p0j(0,a|x)
du +

∫ min(br,a+τ)

a
pjk(a, u|x)du if a ∈ [br−1, br),∣∣∣∣∣∑K−1

h=0 pjh(a, br−1|x)
∫ min(br,a+τ)

br−1
phk(br−1, u|x)du if a < br−1∣∣∣∣∣ ∫ brbr−1

(
(
∑K−1

h,`=0 p0h(0,br−1|x)phk(br−1,u|x))(pk`(u,br|x)p`j(br,a|x))
p0j(0,a|x)

)
du if a ≥ br

,

(4.18)

Derivatives of P0j(0, a|x; θ) for j ∈ S can be taken analytically or using matrix formulations

as in Kalbfleisch and Lawless [1985] and Kosorok and Chao [1995, 1996].

4.4.2 Efficient Sampling with Expected Cost Constraints

Here we consider the cost of recruiting and following individuals in different states. In

reality, the duration of follow-up will be random and depend on the survival distribution.

The expected time at risk in state k over the study period for an individual sampled with

Z(A) = j is obtained by averaging over the age at enrollment A and covariate X. Thus

E
[
Wk

∣∣Z(A) = j; θ
]

is

1∑
x=0

{∫ ∞
0

[∫ a+τ

a

pjk(a, u|x)du

]
fA(a|Z(A) = j,X = x)da

}
P (X = x|Z(A) = j) (4.19)

where P (X = x|Z(A) = j) is given by the ratio of (4.17) to (4.15) from the previous

section.

Let C0j be the cost of initial accrual for an individual with Z(A) = j. In general, we

assume the cost of follow-up varies as a function of the state occupied (e.g. the cost may

be higher when physical examinations or testing is required to assess disease status than
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when only vital status is to be monitored); let C1k be the cost of one year of follow-up in

state k. The expectation of the total cost of recruiting and following up an individual with

Z(A) = j for up to τ years (denoted by Cj) is

E[Cj|Z(A) = j; θ] = C0j +
K−1∑
k=0

C1kE[Wk|Z(A) = j; θ], (4.20)

which depends on the planned follow up time τ , costs C0j and C1j for j = 0, . . . , K − 1,

and the disease process parameters.

4.4.3 Illustrative Design Setting

To examine the impact of the choice of state-specific sampling targets on the design of

prevalent cohort studies, we focus on a piecewise-constant model with R = 4 pieces to

accommodate different transition intensities for different age groups: 0-20 years, 20-50

years, 50-80 years, and greater than 80 years of age. This illustration is motivated by

the research program in psoriatic arthritis presented in Section 1.5.1. We focus on a four-

state model where states 0, 1, and 2 represent ‘healthy’, ‘psoriasis’, and ‘psoriatic arthritis’

states respectively, and state K = 3 represents death; see Figure 4.4. Only the individuals

who are either in state 1 (psoriasis) or state 2 (psoriatic arthritis) will be considered for

follow-up, so the set of sampling states is S = {1, 2}.

Constraints on mortality: There is little agreement in the literature regarding the

extent to which psoriasis and psoriatic arthritis affect mortality rates [Ogdie et al.,

2014, Gladman, 2008, Gelfand et al., 2007]; we assume here that the death intensity

in age interval r is independent of the state occupied so αj3r = γr for Z(A) =

j = 0, 1, 2. Values of γr are chosen to reflect mortality in the Canadian population

based on rates found in reports from Statistics Canada [2018] through the following
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Figure 4.4: Parameterization of four-state reduced model with R = 4, where λ01(t) =
exp(α011) for t < b2 and λ01(t) = exp(α013) otherwise, λj3(t) = exp(γ(t)) = exp(γr) for
t ∈ [br−1, br), r = 1, 2, 3, 4, and λ12(t|x) = exp(α12 + β12x).

constraints: P (Z(20) = 3) = 0.008, P (Z(50) = 3) = 0.036, P (Z(80) = 3) = 0.342,

and P (Z(100) = 3) = 0.997

Constraints on incidence of Ps: We assume α011 = α012 , α013 = α014, eα013/eα011 = 2,

and P (0→ 1 in lifetime) = 0.03 [Eder et al., 2011b].

Constraints on incidence of PsA: We assume the rate of psoriatic arthritis onset is

constant (i.e. α12r = α12 for r = 1, 2, 3, 4) and P (1 → 2 in lifetime) = 0.30 is the

probability that individuals with psoriasis develop psoriatic arthritis in their lifetime

[Eder et al., 2011b].

Covariate effects: Finally, we assume a binary covariate X has an effect on the

1 → 2 transition only, with β12 = log 2. We let P (X = 1) = {0.50, 0.05}, and there

are no covariate effects on the other transitions.

In this illustration, interest lies in estimating θ1 = (α12, β12), while assuming values for

θ2 = (α011, α013, γ1, γ2, γ3, γ4) are known and θ = (θ1, θ2); see Figure 4.4 for a graphical

representation of the parameters in this reduced mode. More generally, auxiliary data

could be used to aid in the estimation of these additional parameters; this will be discussed

further in Section 4.6.
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Figure 4.5: Asymptotic relative efficiency (ARE) of the estimator β̂12 given state 2 sampling
fractions m∗2/(m

∗) vs m∗2/m
∗ = 0, for a fixed sample of size m∗ when jointly estimating

θ1 = (α12, β12); Pobs = P (T2 < A + τ |Z(A) = 1), β12 = log 2, P (0 → 1) = 0.03, P (1 →
2) = 0.30, eα013/eα011 = 2, and P (X = 1) = 0.05

When the total sample size m∗ = m∗1 + m∗2 is fixed, the asymptotic variance of β̂12

is minimized when m∗ = m∗1, that is when a sample is drawn from state 1 and followed

prospectively for entry into states 2 and/or 3; this is shown in Figure 4.5. As β12 mod-

ulates the 1 → 2 transition, this demonstrates that prospective follow-up carries more

information than retrospective information (as would be provided by individuals with

Z(A) = 2). Further, as the probability of observing 1 → 2 during prospective follow-

up (e.g. Pobs = P (T2 < A+ τ |Z(A) = 1)) increases, the efficiency gap between prospective

and retrospective observation of 1→ 2 widens, as expected. Note that given θ, large values

of Pobs imply long durations of follow-up τ ; in Figure 4.5, values Pobs = {0.05, 0.10, 0.20}

map to τ = {4.5, 10.1, 29.1} years respectively. However, the cost of prospective monitor-

ing for disease progression is higher than that of retrospective inspection so comparisons

on the basis of a fixed sample size do not convey the whole picture. Figure 4.6 shows the
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(a) Pobs = 0.05 (b) Pobs = 0.20

Figure 4.6: Expected cost of studies designed given the state 2 sampling fraction π2 and
achieving 80% power for testing H0 : β12 = 0 vs HA : β12 6= 0 with α = 0.05, relative to
that of the design with m∗2 = 0, when jointly estimating θ1 = (α12, β12); C1k is the cost
of one year of follow-up in state k, C0k = 0 for all k, Pobs = P (T2 < A + τ |Z(A) = 1),
β12 = log 2, P (0→ 1) = 0.03, P (1→ 2) = 0.30, eα013/eα011 = 2, and P (X = 1) = 0.05

impact of the cost of prospective follow-up on expected study cost, when the sample sizes

(m∗1,m
∗
2) are chosen to achieve 80% power for testing H0 : β12 = 0 vs HA : β12 6= 0 with

significance level α = 0.05, while constrained to various values for the state 2 samping

fraction π2 = m∗2/(m
∗
1 + m∗2). We assume the cost of follow-up is lower for individuals in

state 2 than in state 1 (i.e. C12 < C11) as only vital status is to be monitored. In this

figure, the relative expected cost is plotted against the state 2 sampling fractions defining

these designs, where

RELATIVE COST =
m∗(π2)

[
(1− π2)E[C1] + π2E[C2]

]
m∗(π2 = 0)E[C1]

,

where m∗(π2) is the total sample size required to achive a desired power (for example, 80%)

for β12 with a sampling fraction π2 and the expectations in the numerator and denominator

92



are given in (4.20). Each line represents a family of designs (m∗, π2) achieving 80% power

for estimation of β12 with a given yearly follow-up cost ratio C12/C11; as π2 varies, the

expected study cost varies and we define the minimum-cost design (for β12) to be the

design which minimizes expected study cost while achieving 80% power for β12. For many

values of C12/C11, these minimum-cost designs have π2 = 0 or π2 = 1, the latter preferable

when the cost of prospective monitoring of vital status alone is much lower than that of

monitoring for entry into state 1 (e.g. when C12/C11 is small). However, in some instances

the minimum-cost design is achieved by sampling from both states 1 and 2. This can be

seen more clearly in Figure 4.7, where the state 2 sampling fraction π2 corresponding to

minimum-cost designs for β12 is plotted against the cost ratio C12/C11. Here we see that

within each panel (corresponding to increasing durations of follow-up τ), there is a range of

cost ratios C12/C11 for which the minimum-cost designs for β12 involve sampling from both

states. While it can be seen that minimum-cost designs feature m∗2 � m∗1 when C12 � C11,

it is important to note that due to the lower information ‘per-individual’ for those sampled

from state 2, the absolute sample sizes for these designs (to achieve 80% power for β12) are

much larger than those of minimum-cost designs when m∗1 � m∗2. For example, designs

(m∗1 = 965,m∗2 = 0) and (m∗1 = 0,m∗2 = 3152) both achieve 80% power for β12 when jointly

estimating θ1 = (α12, β12) with Pobs = 0.2, β12 = log 2, P (0→ 1) = 0.03, P (1→ 2) = 0.30,

and P (X = 1) = 0.05.

4.5 Screening and State-dependent Sampling

4.5.1 Likelihood and Fisher Information

The feasibility of the state-dependent sampling scheme presented in the previous section

relies on the assumption that there exist populations from which it is possible to directly
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(a) Pobs = 0.05 (b) Pobs = 0.20

Figure 4.7: Optimal sampling fraction π2 for minimum-cost designs achieving 80% power
for testing H0 : β12 = 0 vs HA : β12 6= 0, with C12/C11 ∈ (0, 1]; when jointly estimating
θ = (α12, β12); Pobs = P (T2 < A+ τ |Z(A) = 1), β12 = log 2, P (0→ 1) = 0.03, P (1→ 2) =
0.30, eα013/eα011 = 2, and P (X = 1) = 0.05

recruit individuals from each state. To do so, individuals must be screened from the popu-

lation at large until the desired number of individuals from each state has been identified.

Augmenting the likelihood L in (4.11) with current status information (Z(A), A,X) for all

screened individuals furnishes additional information about the multistate process. This

additional contribution from an individual simply screened and found to be in state j is

LA(θ) =
∏
j∈S

P (Z(a) = j|A = a,X = x, Z(a) ∈ S)I(Z(A)=j)

=
∏
j∈S

(
P (Z(a) = j|A = a,X, x)∑

`∈S P (Z(a) = `|A = a,X = x)

)I(Z(A)=j)

Let η = 1 for screened individuals who are selected for follow-up, and η = 0 otherwise,
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let m∗j the desired number of individuals to be recruited in state j ∈ S in the follow-up

sample, and M the total number of screened individuals (note m∗j =
∑M

i=1 I(Z(Ai) = j)ηi).

The full likelihood is

L2(θ) =
M∏
i=1

L(θ)ηi × LA(θ)

=
M∏
i=1

∏
j∈S

{(
P (Z(s), 0 < s < ai + τ |Ai = ai, Xi = xi)

P (Z(ai) = j|Ai = ai, Xi = xi)

)ηi

×
(

P (Z(ai) = j|Ai = ai, Xi, xi)∑
`∈S P (Z(ai) = `|Ai = ai, Xi = xi)

)}I(Z(Ai)=j)

For the Fisher information, we combine the contributions for individuals selected for

follow-up and those who are only screened, to write

E

[
−∂

2 logL2(θ)

∂θu∂θv

]
=
∑
j∈S

{
m∗jE

[
−∂

2 logL(θ)

∂θu∂θv

∣∣∣Z(A) = j

]
+E[Mj |m̄∗]E

[
−∂

2 logLA(θ)

∂θu∂θv

∣∣∣Z(A) = j

]}
(4.21)

where

E

[
−∂

2 logL(θ)

∂θu∂θv

∣∣∣Z(A) = j

]
= E

[
− ∂2

∂θu∂θv
log

(
P (Z̄(a+ τ)|A = a,X = x)

P (Z(a) = j|A = a,X = x)

)∣∣∣Z(A) = j

]
,

(4.22)

E

[
−∂

2 logLA(θ)

∂θu∂θv

∣∣∣Z(A) = j

]
= E

[
− ∂2

∂θu∂θv
log

(
P (Z(a) = j|A = a,X = x)∑
`∈S P (Z(a) = `|A = a,X = x)

) ∣∣∣Z(A) = j

]
,

(4.23)

and we let Z̄(t) = {Z(s), 0 < s < t} be the history of the disease process up to time t,

Mj the number of individuals screened and found to be in state j, and m̄∗ = {m∗j , j ∈ S}.

The expectations in (4.22) and (4.23) are similar to that in (4.14), and details of E[Mj|m̄∗]

are given in Appendix A. Augmenting the follow-up study with current-status information

from screened but unselected individuals according to this scheme can greatly enhance
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precision of parameter estimates. In Figure 4.8, we revisit the example from Section 4.4.3

and plot reductions in the variance of β̂12 achieved when current status information from

screening a population in this manner is collected, that is

asvar(β̂12)− asvar2(β̂12)

asvar(β̂12)

where asvar2(β̂12) is obtained from (4.21) and asvar(β̂12) is obtained based on (4.13). In

this figure, 50-90% reductions in the variance of β̂12 are exhibited, depending on the state

3 sampling fraction. The magnitude of the gain in efficiency is driven by the expected

sample screened E[M ] and its component terms E[Mj], j ∈ S, examples of which will be

given in the next section.

4.5.2 Cost Considerations

The expected cost of a study where cost is incurred for screening individuals in the popu-

lation builds upon the cost framework in Section 4.4.2. The expected cost of a study with

recruitment targets m∗j for j ∈ S is

E[C] =
∑
j∈S

C0E[Mj|m∗1,m∗2; θ] +
∑
j∈S

m∗jE[Cj|Z(A) = j; θ]

where Mj is the number of screened individuals found to be in state j < K, C0 is the cost

of screening an individual from the population, Cj is the cost of prospective follow-up for

a recruited individual with Z(A) = j and E[Cj|Z(A) = j; θ] is as in (4.20)

4.5.3 Illustrative Design Setting

Again, we illustrate the effect of the state-specific recruitment targets (with screening) on

the design of prevalent cohort studies. The settings mirror those given in Section 4.4.3. In
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Figure 4.8: Percentage reduction in asymptotic variance of β12 by exploiting current sta-
tus information from the screened population, when state-specific follow-up sample sizes
(m∗1,m

∗
2) are chosen to achieve 80% power in the absence of follow-up; Pobs = P (T2 <

A + τ |Z(A) = 1), β12 = log 2, P (0 → 1) = 0.03, P (1 → 2) = 0.30, eα013/eα011 = 2, and
P (X = 1) = 0.05

Table 4.1, several designs (m∗1,m
∗
2) are presented, each achieving 80% power for testing H0 :

β12 = 0 vs HA : β12 6= 0 with α = 0.05 but corresponding to different values of Pobs. Across

all of these settings, the number of screened individuals, particularly from the ‘healthy’

state 0, is orders of magnitude larger than the number of individuals selected for prospective

follow-up, although certain state 2 sampling fractions π2 = m∗2/(m
∗
1 +m∗2) induce a smaller

expected screening sample, for example when Pobs = 0.20, (m∗1 = 450,m∗2 = 138) admits an

almost 50% reduction in the expected screened sample size relative to (m∗1 = 0,m∗2 = 268),

although both achieve the same power for β12. Due to the large number of screened

individuals in this sampling scheme, the per-individual cost of screening (C0) and the
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Design Expected # screened

Pobs m∗1 m∗2 E[M0] E[M1] E[M2]

0.05 0 268 84,941 869 268
600 191 61,716 631 195
667 0 65,213 667 206

0.10 0 268 84,941 869 268
550 158 54,365 556 172
587 0 57,392 587 181

0.20 0 268 84,941 869 268
450 138 45,573 466 144
482 0 47,126 482 149

Table 4.1: Designs with current-status augmentation achieving 80% power for testing
H0 : β12 = 0 vs HA : β12 6= 0 at a significance level of α = 0.05, with β12 = log 2,
P (0→ 1) = 0.03, P (1→ 2) = 0.30, eα013/eα011 = 2, P (X = 1) = 0.05, and Pobs = P (T2 <
A+ τ |Z(A) = 1) where T2 is the age of entry into state 2

number of individuals to be screened (E[M ]) drive the difference in patterns of expected

costs seen in Figure 4.9 as compared to Figure 4.6, when inference was based solely on the

follow-up sample and no cost was incurred for screening.

Minimum-cost designs, as discussed in the previous section, are better examined in

Figure 4.10. When screening is relatively expensive as compared to the cost of follow-up

(e.g. top row, with C0/C11 = 0.20) designs with π2 ≈ P (Z(A) = 2|Z(0) = 0)/P (Z(A) ∈

S|Z(0) = 0) are generally most cost effective as they induce smaller screening samples

(e.g. smaller E[M ]). However, as in the previous section we see that as the cost of

follow-up in state 2, C12/C11, increases, minimum-cost designs tend to feature smaller π2

sampling fractions. Also, as the duration of follow-up increases (e.g. as Pobs increases),

the information that can be gained from prospective follow-up of individuals in state 1

increases and this leads to smaller values π2 in the corresponding minimum-cost designs.
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(a) Pobs = 0.05, C0/C11 = 0.20 (b) Pobs = 0.20, C0/C11 = 0.20

(c) Pobs = 0.05, C0/C11 = 0.10 (d) Pobs = 0.20, C0/C11 = 0.10

Figure 4.9: Expected cost of studies with screening designed with state 2 sampling fraction
π2 and achieving 80% power for testing H0 : β12 = 0 vs HA : β12 6= 0 with α = 0.05 and
β01 = log 2, relative to that of the corresponding design with π2 = 0, when jointly estimating
θ1 = (α12, β12); C0 is the cost of screening, C1k the cost of one year of follow-up in state k,
Pobs = P (T2 < A + τ |Z(A) = 1), P (0 → 1) = 0.03, P (1 → 2) = 0.30, eα013/eα011 = 2, and
P (X = 1) = 0.05. 99



In contrast, when the cost of screening is lower (e.g. C0/C11 = 0.10, bottom row of Figure

4.10), a smaller penalty is paid for screening a larger population so minimum-cost designs

are achieved with larger π2 values which induce larger E[M ] values.

4.6 Empirical Validation, Estimability, and Auxiliary

Data

When fitting a multistate model, care must be taken to ensure the estimability of all

parameters. This can become of particular concern when considering piecewise-constant

models with several pieces. In practice, if estimability is a problem, either assumptions are

made to constrain the parameter space (e.g. by merging states, reducing the number of

pieces) or auxiliary data may be used to facilitate estimation.

In the present setting, due to the low rates of psoriasis onset (state 1) and mortal-

ity (state 3), especially in the younger age groups, it may be difficult to estimate re-

lated parameters for a given dataset. Even when particular interest lies in characterizing

progression from psoriasis to psoriatic arthritis, i.e. θ1 = (α12, β12, poor estimability of

θ2 = (α011, α013, γ1, γ2, γ3, γ4) can be problematic. In Table 4.2, we demonstrate the va-

lidity of designs based on the Fisher information based on 2,000 simulated datasets with

various combinations (m∗1,m
∗
2) chosen to achieve 80% power for testing H0 : β12 = 0 vs

HA : β12 6= log 2 when θ1 = (α12, β12) are estimated jointly and all other parameters in θ2

are assumed to be known and set to values as specified in Section 4.4.3.

In order to jointly estimate θ = (θ1, θ2), it may be helpful to employ auxiliary data. For

example, if mortality rates are assumed to be unrelated to the state occupied, γ may be

estimated from national population-level death records. To estimate the age-group specific

intensities for psoriasis onset, cross-sectional survey data from studies such as that by
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(a) Pobs = 0.05, C0/C11 = 0.20 (b) Pobs = 0.20, C0/C11 = 0.20

(c) Pobs = 0.05, C0/C11 = 0.10 (d) Pobs = 0.20, C0/C11 = 0.10

Figure 4.10: Optimal sampling fraction π2 for minimum-cost designs of studies with screening
achieving 80% power for testing H0 : β12 = 0 vs HA : β12 6= 0 with significance level α = 0.05;
when jointly estimating θ1 = (α12, β12); C0 is the cost of screening, C1k the cost of one year
of follow-up in state k, Pobs = P (T2 < A + τ |Z(A) = 1), β12 = log 2, P (0 → 1) = 0.03,
P (1→ 2) = 0.30, eα013/eα011 = 2, and P (X = 1) = 0.05.
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(m∗1,m
∗
2)

DESIGN PARAMETER TRUE BIAS ESE AVSE ASE ECP(%) POW(%)

Follow-up only
(292, 0) log λ12 -4.818 -0.020 0.202 0.200 0.196 95.0 100

β12 0.693 0.007 0.259 0.252 0.247 95.3 81.0
(280, 120) log λ12 -4.818 -0.015 0.210 0.201 0.198 94.2 100

β12 0.693 0.005 0.261 0.251 0.247 94.6 80.1
(265, 260) log λ12 -4.818 -0.010 0.210 0.203 0.201 95.0 100

β12 0.693 -0.010 0.258 0.250 0.247 94.8 80.6
Follow-up + current data augmentation

(139, 0) log λ12 -4.818 -0.020 0.199 0.198 0.194 95.4 100
β12 0.693 0.013 0.252 0.251 0.247 94.8 81.5

(0, 80) log λ12 -4.818 -0.001 0.197 0.195 0.194 95.0 100
β12 0.693 0.005 0.243 0.248 0.246 95.2 82.8

Table 4.2: Empirical validation (based on 2, 000 simulated datasets) of designs (m∗1,m
∗
2)

with 80% power for testing H0 : β12 = 0 vs HA : β12 6= 0 at a significance level of α = 0.05
when jointly estimating θ1 = (α12, β12), with β12 = log 2, P (0 → 1) = 0.03, P (1 → 2) =
0.30, P (X = 1) = 0.50, eα013/eα011 = 2, and Pobs = P (T2 < A+ τ |Z(A) = 1) = 0.20, where
T2 is the age of entry into state 2 and intensities for mortality are as in Section 3.2; ESE
is the empirical standard error, AVSE is the average standard error, ASE is the asympotic
standard error from the Fisher information, ECP(%) is the empirical coverage probability
expressed as a percentage with nominal level of 95%, and POW(%) is the empirical power
expressed as a percentage.

Gelfand et al. [2005] focusing on the United States and the Multinational Assessment of

Psoriasis and Psoriatic Arthritis (MAPP) survey [Lebwohl et al., 2014] involving screening

in North America and Europe, could be exploited.

4.7 Discussion

We have developed a framework for the design of prevalent cohort studies with state-

dependent recruitment, where the primary interest is to estimate the effect of a covariate on
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the occurrence of a non-terminal disease progression event, while accounting for mortality.

Our designs are based on the asymptotic Fisher information; the resulting variances are

shown to agree well with finite-sample variance estimates (see Table 4.2). We compare the

value of recruiting individuals from different states for prospective follow-up. When interest

lies in estimating a covariate effect on the j → k transition, recruiting from states j and k is

analogous to left and right truncation (with respect to the event of interest), although here

mortality is taken into account as well. The impact of augmenting this with current-status

information from screening the population on study design is also considered. Throughout,

attention is focused on identifying minimum-cost designs achieving given power, reflecting

the differing costs of follow-up in different states and recruitment for screening.

In this chapter, we considered the setting where retrospective transition times are avail-

able for individuals selected for follow-up, while transitions observed prospectively are sub-

ject to administrative censoring. In many settings, while it may be reasonable to assume

the above for some events (e.g. death), it is more appropriate to assume interval-censoring

for non-terminal events, due to the intermittent nature of assessments. Accommodating

loss-to-follow-up is straightfoward if dropout is non-informative, and if a large degree of

loss-to-follow-up is anticipated tracing studies may be considered to mitigate the resulting

loss of information [Moon et al., 2018]. It is much more challenging to account for de-

pendent missingness and loss-to-follow-up at the design stage, accounting for this at the

design stage would require assumptions about the missingness process.

Here we assumed individuals are recruited from a population screen, which induces a

distribution for the age at accrual given the state at accrual A|Z(A). If individuals are

obtained in a different manner, for example through direct referrals from physicians or from

existing registry data, the distribution of A would be different. Further, we assumed that

the value of X was available for all screened individuals; this is plausible for demographic
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variables, but less so for expensive genetic markers. In the latter case, the current-status

information would be {A,Z(A)} rather than {A,Z(A), X}. Estimation could still be

performed based on an EM algorithm, exploiting the distribution of X|(A,Z(A)), and the

Fisher information derived for the corresponding observed-data likelihood.
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Appendix A: Expectation of screened sample sizes Mj

Consider the 4-state illness-death model from Section 4.5, and suppose m∗0 = 0 to reflect the

assumption that individuals in the healthy state are not considered for prospective follow-

up. Given targets (m∗1,m
∗
2) for recruitment from states 1 and 2, the numbers Mj screened

from states j ∈ S = {0, 1, 2} are random. The marginal expectations of these counts,

E[Mj|m̄∗] are required for the Fisher information in (4.21), where m̄∗ = (m∗0,m
∗
1,m

∗
2) here.

Assuming a stationary birth process in the population, pj = P (Z(A) = j|Z(A) ∈ S) is the

prevalence of j (for j = 0, 1, 2) in the alive population. The probability πh that quota h is

satisfied last (for h = 1, 2) is

π1 =
∞∑
`=0

P (M2 ≥ m∗2|M −m∗1 = `)P (M −m∗1 = `)

π2 =
∞∑
`=0

P (M1 ≥ m∗1|M −m∗2 = `)P (M −m∗2 = `).

where (Mj|M −m∗h) ∼ BIN(M −m∗h, pj/(1 − ph)) for j 6= h ∈ {1, 2} and (M −m∗h) ∼

NBIN(m∗h, ph) for h ∈ {1, 2}. We then consider the marginal distribution of each of the

Mj given quota h is satisfied last, for j 6= h ∈ {0, 1, 2},

P (Mj = k|quota h satisfied last) =

[
∞∑
`=0

P (Mj = k|M−m∗h = `+k)P (M−m∗h = `+k)

]/
πh

for k ≥ m∗j , where m∗ =
∑2

h=1 m
∗
h and M =

∑
j∈SMj. Finally, we write the desired

marginal (unconditional) expectations

E[M1] = π1m
∗
1 + π2E[M1 | quota 2 is satisfied last ]

E[M2] = π2m
∗
2 + π1E[M2 | quota 1 is satisfied last ]

E[M0] = π1E[M0| quota 1 is satisfied last ] + π2E[M0| quota 2 is satisfied last ]
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where

E[Mj| quota h is satisfied last] =
∞∑
k=0

kP (Mj = k| quota h is satisfied last )
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Chapter 5

Conclusion and Future Work

In this thesis, several of aspects of study designs were considered in the context of longi-

tudinal studies to model the progression of chronic diseases via multistate processes. A

summary of key contributions is presented in Section 5.1 and an outline of future research

directions is given in Section 5.2.

5.1 Key Contributions

In Chapter 2, we look at impact of loss-to-follow-up in prospective cohort studies with

intermittent assessments on efficiency. We establish a framework for cost-effective selection

of a subset of lost individuals for tracing to recover information, where this selection is

informed by the data collected prior to dropout and considering the expected information

to be gained by tracing. We then demonstrate that meaningful gains in efficiency (in the

order of up to 60% in the scenarios considered) can be achieved relative to simple random

selection for tracing, at no additional cost; the implications of gains of this magnitude on

the conduct of potential tracing studies in large cohort studies such as the CLSA have the

potential to be quite large.
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In Chapter 3, we take a rigorous approach to investigate the relationship between the

frequency of assessments and sample size in design of prospective longitudinal studies with

intermittent assessments. We derive the asymptotic variance in the presence of misclas-

sification, and this serves as basis for accounting for misclassification of disease status at

the design stage. Our theoretical results are supported with several examples to illustrate

the interplay between design factors (e.g. frequency of intermittent assessments and sam-

ple size), the disease process, and the misclassification process and identify minimum-cost

designs to achieve a given level of power.

In Chapter 4, we consider the impact of prevalent cohort sampling in the context of

multistate processes. We evaluate the relative value of state-dependent sampling in the

failure-time setting, incorporating a measure of cost to account for the differential ease

of obtaining prospective and retrospective information in practice. This idea is extended

to the multistate framework by considering state-dependent sampling schemes where the

number of individuals to be recruited from each state may be pre-specified, and current

status information from screening the population to obtain these samples may be available

as well. As in the previous chapter, we identify minimum-cost designs under each of these

schemes which achieve a desired level of power.

5.2 Future Work

5.2.1 Misclassification in Assessment of State Occupancy

While the implications of misclassified disease assessments were discussed in chapter 3 in

the context of inception cohort studies with intermittent observation of disease status,

misclassification arises in other settings as well. For example, researchers at the Toronto

Centre for Prognosis Studies in Rheumatic Disease have developed a telephone screening
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tool, the Toronto Psoriatic Arthritis Screen (ToPAS [Gladman et al., 2009] and ToPAS-II

[Tom et al., 2015]) questionnaires, to identify potential cases of psoriatic arthritis among

individuals with psoriasis, as an alternative to the gold-standard Classification Criteria

for Psoriatic Arthritis (CASPAR) which requires evaluation by a rheumatologist [Taylor

et al., 2006]. Similar diagnostic tools have been developed by other groups: the Psoriatic

Arthritis Screening and Evaluation (PASE) [Husni et al., 2007], the Psoriasis Epidemiology

Screening Tool (PEST) [Ibrahim et al., 2009], and the Early Arthritis for Psoriatic Patients

(EARP) [Tinazzi et al., 2012]. When these four tools were compared in an independent

cross-sectional sample of 302 individuals with psoriasis, the sensitivities ranged from 44-

91% and specificities from 88-97% [Mishra et al., 2017], relative to CASPAR. The key value

of these diagnostic tools is their ease of use, as they can be administered easily and quickly

(e.g. via telephone). Such tools are well suited for use in a tracing study as the barriers to

obtaining a response are far lower [Tom et al., 2015]. In the present work it was assumed

that responses obtained through tracing were not subject to misclassification, but allowing

for misclassification at this stage would capture a more realistic perspective on tracing in

practice.

Accounting for misclassification can be done in a number of ways, for example (i)

using published values of the misclassification rates and treating them as fixed, (ii) using

a two-stage estimation procedure where estimates of misclassification rates are obtained

in stage one (using validation data) and large sample results enable the derivation of the

limiting variance of estimators of the disease process parameters in stage two, or (iii)

jointly modelling the disease process and misclassification process using validation data.

In Chapter 3, approach (i) was adopted, although in practice ignoring the variability in

misclassification estimates leads to underestimating the variance of the disease process

parameters. Incorporating approaches (ii) or (iii) to account for misclassification at the

109



design stage is an area warranting future development [Yi, 2016].

5.2.2 Respondent-driven Assessment Times

Throughout this thesis, we considered designing studies where the timing of planned assess-

ments was known in advance and we assumed that participants adhered to this schedule.

While this assumption may be reasonable in highly controlled settings such as clinical tri-

als, it is often untenable in prospective longitudinal studies carried out over an extended

period of time. A number of challenges arise when the timing of assessments is driven by

participants. Some work has been done to analyze longitudinal data with irregular assess-

ment times, Pullenayegum and Lim [2016] present a thorough review of a broad range of

existing methods and proposes some guidance for study design. In short, the authors sug-

gest attempting to minimize deviations from the protocol in assessment times, and barring

this, suggest carefully recording the reasons for these deviations when possible. Given this

information, it may be possible to account for potential irregularities in the visit process

at the design stage, by positing models for some degree of deviations from the scheduled

visit protocol; this remains an area for future work. Alternatively, tracing studies also offer

an avenue for recovering information when visit times deviate significantly from the initial

protocol, and may aid in understanding of mechanisms of dropout [Farewell et al., 2003].

5.2.3 Incorporating Auxiliary Data

When fitting multistate models, particularly if adopting piecewise constant intensity mod-

els with several pieces, the number of parameters to estimate can be large. In some situ-

ations, it may be necessary to augment data from a cohort study with additional sources

of auxiliary data to facilitate estimation. For example, external population-level mortality
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data may be necessary to fit illness-death models when the duration of follow-up does not

admit observation of enough deaths. As another example, the illustrations in Sections

4.4.3 and 4.5.3 focused on a four-state illness-death model with prospective follow-up of

individuals recruited from the diseased states {1, 2} only, not from the healthy state 0. In

this setting, estimation of the transition intensity into state 1 may be problematic, as all

instances of entry into state 1 in the sample are right-truncated; auxiliary data can serve

as a useful tool to augment the sample data and facilitate estimation of such transition

intensities. Augmenting the standard likelihoods as described in Chapters 2, 3, and 4 with

auxiliary data warrants future development.
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