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Abstract 

An improved understanding of the distribution and habitat requirements for mountain stream 

populations of Arctic Grayling (Thymallus arcticus) is necessary to assess their vulnerability to 

environmental stressors, establish thresholds for development activities, and evaluate population 

distribution trends over time. Life stage-specific habitat use may be a particularly sensitive 

indicator of environmental change, but baseline data is lacking, especially for young-of year 

(YOY) Arctic Grayling. Occupancy-based survey methods were used in the Little Nahanni River 

watershed in 2015 to quantify Arctic Grayling occupancy across the landscape. Data on a suite of 

associated habitat variables were also collected to explain YOY occupancy, and to relate to 

detection efficiency during field surveys, as detection efficiency is an often-neglected aspect of 

field sampling that affects our understanding of species-habitat relationships. Occupancy 

modelling has revealed that stream temperature (>8°C) and elevation (<1150 masl) best explain 

YOY occupancy in the Little Nahanni River. Increasing percent boulder substrate and percent 

riffle decreased the detection efficiency during surveys. By accounting for imperfect detection, 

my research helps to better quantify habitat that is important for a sensitive life stage of Arctic 

Grayling and establishes a baseline against which results from future monitoring efforts can be 

compared. Similar occupancy methods can be used by industry and regulatory organizations to 

increase standardization and efficiency of sampling in remote areas, and assess changes in Arctic 

Grayling distribution that may reflect changes in water quality and stream features. 

Abiotic and biotic habitat features can also affect bioaccumulation of contaminants, such as 

mercury, which have increased in remote northern regions since industrialization, 

bioaccumulating in fish tissues consumed by northerners.  Given that mercury bioaccumulation 

is habitat-specific, differences in life history type and associated habitat features may affect 
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mercury concentrations in populations of Arctic Grayling. I assessed differences in mercury 

bioaccumulation between fluvial Arctic Grayling in mountain streams and adfluvial Arctic 

Grayling in barrenland tundra streams. Overall, mercury bioaccumulation was higher in adfluvial 

Arctic Grayling from tundra barrenland streams compared to fluvial, mountain populations. 

Differences in mercury concentration between these populations of Arctic Grayling may be due 

to differences in methylation rates caused by a number of habitat factors, such as increased water 

temperatures, as well as differences in baseline methyl-mercury (MeHg) concentrations that may 

reflect a difference in foraging strategies by each respective population. As well, trophic 

interactions and the role of terrestrial prey items may influence mercury concentrations in fish 

tissue, however; further investigation is required to quantify these potential effects. All mercury 

concentrations in Arctic Grayling sampled during my study were below guidelines for human 

consumption of fish.   
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Chapter 1 

Introduction 

 

1.1 General Introduction 

Northern Canada contains vast, intact freshwater ecosystems that are undergoing rapid 

environmental change (IPCC, 2007). Stressors, such as climate change, land use, and 

contaminant deposition, are altering northern aquatic ecosystems, and effects are revealing the 

complexity of interactions that result in altered ecosystem function (Schindler et al., 1995; Ficke 

et al., 2007; Post et al., 2009). For example, the accelerated warming that is predicted for 

northern regions will likely have profound effects on Holarctic aquatic ecosystems (Rouse et al., 

1997; IPCC, 2007), including effects on distribution, habitat use, and life history of fishes (e.g., 

Reist et al., 2006). Fish species can be particularly useful for detecting and assessing changes in 

aquatic environments, because they are susceptible to human-induced stressors (Whitney et al., 

2016), and are valued by a variety of stakeholders. Fishes of the family Salmonidae, including 

Arctic Grayling, are often considered to be useful sentinel species, because they are sensitive to 

changes in the environment and typically require specialized habitats to complete specific life 

stages (Beer & Anderson, 2011).  

Arctic Grayling (Thymallus arcticus, Pallas 1776) is a cold-water, stenothermic fish species 

within the Thymallus genus (Salmonidae family). Arctic Grayling are best known for their sail-

like dorsal fin (Figure 1.1) and their sensitivity to changes in water quality (e.g., turbidity; 

Birtwell et al., 1984). Growing to a maximum length of approximately 50 cm, the body is 

covered in large scales that are often perceived as having a blue hue, with black circular 

markings occurring most often on the cheek and trailing behind the gill plate toward the caudal 
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fin (Scott & Crossman, 1973). Arctic Grayling are iteroparous and show spawning site fidelity 

(Northcote, 1995; Deegan et al., 1999). Habitat use and life history characteristics vary among 

populations, and seasonal migrations can be complex. Arctic Grayling can use riverine and 

lacustrine waterbodies to complete different life stages - adfluvial, fluvial, and lacustrine 

populations have been described (Vincent, 1962; Scott & Crossman, 1973; de Bruyn & McCart, 

1974; Kaya, 1991).  

 

 
 

Figure 1.1. Illustration of an adult male Arctic Grayling from Baker 

Creek, Northwest Territories (NWT; Paul Vecsei, 2008). 
 

 

1.2 Arctic Grayling Distribution  

Fishes in the genus Thymallus span North America and Eurasia, with Grayling, Thymallus 

thymallus, distributed throughout European countries and Arctic Grayling distributed across 

Holarctic regions of Canada, Alaska, and Asia (Scott & Crossman, 1973). Arctic Grayling 

colonized North America between 3-5 MYA, after migrating through the Bering land bridge 

from their origin in eastern Siberia (Stamford & Taylor, 2004).  Current distributions in North 

America originated from three glacial refugia: North Beringia, South Beringia and Nahanni 

refuges. This separation in refugia led to distinct genetic lineages (Stamford & Taylor, 2004). 
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Historically, the distribution of Arctic Grayling stretched southward from the eastern Lake 

Superior in Ontario to the Missouri River basin. However, major extirpations due to 

overexploitation and habitat disturbance have led to significant range retraction (Buhl & 

Hamilton, 1991; Kaya, 1991). Canadian populations are currently only found in the western 

provinces, from Manitoba to British Columbia, and the three Canadian territories (Northcote, 

1995; Stewart et al., 2007). Most populations occur in sub-Arctic or Arctic ecoregions.  

Populations of Arctic Grayling have also been introduced to various cold-water lakes and rivers 

across Canada and the US, mainly for sport fishing purposes (Beauchamp, 1990; Peterson & 

Ardren, 2009).  Adaptations to a variety of aquatic ecosystem types and plasticity in life history 

have allowed the species to populate cold-water lakes, and, barrenland and mountain streams in 

boreal, mountain and tundra environments.  

  

1.3 Life History 

Like many species within the family Salmonidae, Arctic Grayling display plasticity in life 

history traits. This plasticity allows them to inhabit a variety of aquatic ecosystems, including 

lakes, rivers and streams (Jones et al., 2010). Similar to other Salmonids, Arctic Grayling require 

different habitats for spawning, rearing, feeding, and overwintering. Three different life history 

strategies have been described for Arctic Grayling, according to habitats utilized during different 

life stages: lacustrine, adfluvial and fluvial (Scott & Crossman, 1973).  

Lacustrine populations of Arctic Grayling are strictly lake-dwelling for all life stages. 

Though relatively less common, lacustrine populations of Grayling, including European and 

Arctic Grayling, have been documented across their distributional range (Peterman, 1972; 

Northcote, 1995; Peterson & Ardren, 2009; Amundsen et al., 2010). There is no geographic 
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pattern to lacustrine population distribution; however, new populations have been introduced as 

part of stocking efforts for sport-fishing in the United States (Peterson and Ardren, 2009).   

Adfluvial populations of Arctic Grayling utilize a combination of lentic and lotic 

environments to complete various life stages (Watry & Scarnecchia, 2008). Adults use lake 

habitats for feeding in summer and as a refuge from ice formation during winter (West et al., 

1992). Mature adfluvial Arctic Grayling also use lotic environments - rivers, streams or stream 

outlets - for spawning in the spring and during seasonal migrations in spring and fall (Buzby & 

Deegan, 2004). Less is known about habitat use and seasonal migrations for young-of-year 

(YOY) and juvenile Arctic Grayling. YOY and juvenile Arctic Grayling use spawning streams as 

rearing habitat, since lotic environments provide drift-feeding opportunities and may provide 

refuge from predators (Schlosser, 1987; Hughes, 1999). Important habitat characteristics have 

been identified for YOY in adfluvial, barrenland populations of Arctic Grayling. Preferred 

habitat characteristics include shallow depths (< 30cm for small YOY), presence of midstream 

cover (for YOY > 25mm) and reduced water velocity (< 0.2m/s; Jones & Tonn, 2004; Baker et 

al., 2017). Evidence suggests that YOY Arctic Grayling show high fidelity to natal streams 

(Craig & Poulin, 1975; Buzby & Deegan, 2000), migrating to overwintering areas after 

completing their first summer feeding season (Craig & Poulin, 1975). However, our 

understanding of habitat use during the overwintering stage of Arctic Grayling life-history is 

lacking.  

Fluvial Arctic Grayling populations have been documented in Alaska, Montana, and Canada 

(McPhail & Lindsey, 1970; Scott & Crossman, 1973; Jessop & Lilley, 1975; Kaya, 1991; Lohr, 

1996). Fluvial populations of Arctic Grayling remain in lotic systems for all life stages, often 

migrating between streams and rivers with differing environmental characteristics to carry out 
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different life stages (Watry & Scarnecchia, 2008). Fluvial populations typically migrate in spring 

to streams dominated by gravel or silt substrate for spawning; these streams can vary in water 

velocity (0.34 – 1.50 m/s; Tack 1971; Stewart et al., 2007).  Streams used by adult fluvial Arctic 

Grayling for feeding in summer have similar velocities (0.61 – 1.08 m/s) with greater water 

depths (1.10 – 1.52 m) than spawning streams (Evans et al., 2002). In feeding streams, Arctic 

Grayling disperse in an ordered manner with larger, dominant, Arctic Grayling maintaining 

feeding territories in lower-order (higher elevation) streams (Hughes, 1999). Fluvial populations 

of Arctic Grayling use higher order and lower elevation streams and rivers for overwintering 

(West et al., 1992). In general, fish populations in remote regions of the sub-Arctic are 

understudied, and as such there is limited quantifiable information about habitat use by fluvial 

Arctic Grayling in this area, particularly for YOY.   

 

1.4 Fluvial Reproduction and Early Development  

Adult Arctic Grayling are iteroparous and reach sexual maturity between 3 and 8 years of 

age (Craig & Poulin, 1975; Buzby & Deegan, 2004). Similar to other iteroparous Salmonids, 

such as Bull Trout (Salvelinus confluentus) and Atlantic Salmon (Salmo salar), Arctic Grayling 

may skip reproductive events to conserve bioenergetic resources (Fleming, 1998; Buzby & 

Deegan, 2004). Skipped spawning can improve survivorship and protect against year class 

failure (Johnston & Post, 2009). Long migrations, sometimes over 100 km in length, between 

overwintering and spawning streams can contribute to lowered individual fitness and thus result 

in skipped reproduction (West et al., 1992). Migration events are driven by Arctic Grayling 

preference for natal spawning streams, which can vary slightly across their geographic range 

depending on population, regional stream morphology and climatic events (Craig & Poulin, 
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1975; Northcote, 1995; Buzby & Deegan, 2000). However, general trends in suitable spawning 

habitat have been documented across many North American populations of Arctic Grayling.  

Arctic Grayling are spring spawners that can begin migrations under the river ice, 

completing their spawning event when water temperatures reach between 4 to 5 °C in May or 

early June (Peterman, 1972; Jones et al., 2003a). Spawning streams contain clear water with 

small gravel and sand substrates and a water velocity typically less than 1.50 m/s (Stewart et al., 

2007). Males migrate into lower-order streams, two weeks in advance of females, and defend 

spawning territories (Beauchamp, 1990). Females deposit their adhesive negatively-buoyant eggs 

over clean gravel where flowing water moderate’s temperature for optimized egg development. 

Eggs fall into interstitial spaces of the substrate where they incubate for two to four weeks before 

the eggs hatch as alevins in time for the summer feeding period (Kaya, 1991; Mantua et al., 

2010).  

The alevin stage is considered an embryonic stage of fish development; newly hatched 

Arctic Grayling are supported by their yolk-sac and emerge from the substrate after 3 – 5 days 

(McPhail & Lindsey, 1970; Deegan et al., 2005). Alevins use an inflated air bladder to emerge to 

the surface during evening hours and become free-swimming fry (Bardonnet & Gaudin, 1990).  

Free-swimming fry can be as small as 2 mm in length and are referred to as YOY during their 

first year of life (Kreuger, 1981). YOY are particularly susceptible to changes in the environment 

(e.g., temperature and velocity), and as such, the YOY age class is a critically sensitive life stage. 

Fry generally feed in shallow slack water, along the periphery of streams. They prey on small 

invertebrates, and prey size gradually increases as the YOY grow larger (McPhail & Lindsey, 

1970; Deegan et al., 2005). Adfluvial and fluvial Arctic Grayling populations show different 

behavioural tendencies as early as three weeks old; adfluvial/lacustrine populations start moving 
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downstream to seek refuge in still waters whereas fluvial Arctic Grayling show upstream 

rheotaxis (Kaya, 1991).  

Habitat preferences exhibited by fluvial populations of Arctic Grayling vary across tundra, 

coastal, boreal, and mountain ecosystems (Table 1.1). YOY habitat is better characterized for 

Arctic Grayling in inland mountain systems than in tundra, coastal and boreal regions. Inland 

mountain fluvial systems differ from coastal or tundra ecosystems, in that they consist of high 

gradient, cold-water streams that are not in coastal habitats and often show high variability in 

substrate type among streams. Qualitative descriptions of YOY habitat in mountain coastal 

drainage populations include shallow, calm side pools and channels with coarse sand and gravel 

(de Bruyn & McCart, 1974). Although data are limited, YOY Arctic Grayling in mountain 

streams have been found in water velocities < 0.16m/s (Krueger, 1981), and in association with 

in-stream boulder cover and shallow pool habitats (Stuart & Chislett, 1979; Kreuger, 1981). 

Achieving sufficient growth in the first year is critical for Arctic Grayling, for holding 

position in flowing environments and achieving migrations between habitats used during 

different life-history stages. Stream characteristics, such as presence of groundwater, may play a 

role in growth and help moderate stream temperatures in cold-water mountain streams. 

Currently, the role of groundwater and how it influences YOY Arctic Grayling habitat choice is 

poorly understood, but groundwater can provide important warm-water refugia for fish species in 

cold-water mountain streams (Dunmall et al., 2016). Studies suggest that YOY Arctic Grayling 

may out-migrate from natal streams to downstream riverine habitats in order to find flowing 

water over winter months (West et al., 1992). Other studies suggest that groundwater may play a 

significant role by providing flowing, oxygenated water for overwintering in natal streams (Craig 

& Poulin, 1975; Ford et al., 1995). 
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Table 1.1 Quantifiable habitat characteristics preferred by YOY Arctic Grayling identified in previous 

scientific literature. 

Population 

Type 
Location Life Stage Variable Value Source 

fluvial Montana, 

mountain/agricultural 

streams 

all age 

classes 

depth 

width 

velocity 

temperature 

0.284 m 

12.21 m 

0.21m/s 

13.7°C 

Liknes & 

Gould, 1987 

adfluvial Montana, mountain 

stream 

YOY substrate silt/sand 

(0.062 – 

2.0m) 

Deleray, 

1991 

fluvial Montana, artificial 

stream 

YOY depth < 0.31m McClure & 

Gould, 1991 

Unknown Alaska, tundra 

stream 

YOY velocity 

temperature 

0.15-0.25m/s 

<12°C 

Deegan et 

al., 2005 

adfluvial NWT, barrenland 

stream 

small 

YOY (15-

21mm) 

depth 

velocity 

~0.10-0.20m 

<0.10m/s 

Jones & 

Tonn, 2004 

adfluvial NWT, barrenland 

stream 

large 

YOY (38-

57mm) 

depth 

substrate 

~0.25-1.0m 

fines 

Jones & 

Tonn, 2004 

adfluvial NWT, barrenland 

stream 

YOY water 

velocity 

      depth 

0.05-0.20m/s 

 

< ~ 0.5m 

Baker et al., 

2017 

 

Habitat use and migration of YOY Arctic Grayling in northern mountain fluvial systems is 

poorly understood. Qualitative descriptions are often used in the literature, with little reference to 

quantifiable habitat characteristics. Quantifying habitat use by YOY is critical to the 

development of effective monitoring and conservation plans in the face of increasing 

anthropogenic threats.   
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1.5 Threats 

Arctic Grayling are considered secure globally; however, this species is vulnerable at more 

regional and local levels (NatureServe, 2016). Arctic Grayling populations can become locally 

sensitive to various pressures, such as overfishing, habitat disturbance, habitat degradation, and 

habitat fragmentation (Kaya, 1991; Clark, 1992; Northcote, 1995). Effects of stressors are most 

profound when they alter habitats important for critical life stage events, such as spawning, 

rearing and overwintering (Reist et al., 2006).   

Mineral and hydrocarbon exploration and development are altering the remote landscape of 

northern Canada and are becoming more common as initiatives to promote economic growth in 

the region (see Cott et al., 2015). Valuable resources, such as natural gas and metals, are driving 

development further into pristine areas, and effects of these developments can impair natural 

ecosystem function. Mining developments often include landscape disturbances such as road 

construction, aggregate removal, and water diversion that can negatively affect sensitive fish 

species (Cott et al., 2015). Natural resource development can affect fish habitat by increasing 

water temperature (Kondolf, 1997), turbidity (McLeay et al., 1987) or altering natural stream 

flow (see Poff & Zimmerman, 2010). Fish species, like Arctic Grayling, that show fidelity to 

streams for various life stages and are more vulnerable to anthropogenic impacts than transient 

(Buzby & Deegan, 2000). As cold-water stenotherms, Arctic Grayling are particularly sensitive 

to changes in stream temperature and water clarity during sensitive life stages. YOY Arctic 

Grayling require temperatures below 16°C to avoid increases in their metabolic rate (Deegan et 

al., 2005). Turbidity greater than 20 NTU that results from upstream mining operations or road 

construction can greatly reduce the ability of adult Arctic Grayling to detect prey and can force 

juvenile and YOY Arctic Grayling to migrate out of suitable habitat to avoid turbid water 
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(Birtwell et al., 1984; Scannell, 1988; Kemp et al., 2011). Mining operations may also affect 

water discharge regimes by diverting or modifying stream flow, which can interfere with fish 

migrations (Mitchell & Cunjack, 2007). Lower baseline discharges can also increase water 

temperatures and alter fish behaviour (Daufresne et al., 2003). Such effects of mining and other 

natural resource development may be further compounded by climate change, creating 

cumulative stressors on Arctic Grayling populations.    

Contiguity of migratory pathways for fluvial populations of Arctic Grayling are threatened 

by land use changes (West, 1992). Arctic Grayling show high site fidelity for all life stages 

(spawning, rearing feeding and overwintering), which make them especially vulnerable to habitat 

alteration (Buzby & Deegan, 2000). Stream characteristics, like riparian vegetation, can be 

important habitat for Arctic Grayling and their prey (Kawaguchi & Nakano, 2001). Arctic 

Grayling, like other Salmonids, also show affinity for particular sediment size and types for 

spawning and rearing. Stream bed alternation and sedimentation from logging activities has been 

implicated for extirpations of Arctic Grayling in Ontario and Michigan (Stewart et al., 2007). 

Although land use changes occur at a significantly lower rate in the NWT than in southern parts 

of their range, Arctic Grayling should be considered vulnerable to development-induced habitat 

alteration, especially in areas with road or trail access.  

Overfishing is a growing concern for government organizations such as Parks Canada and 

Fisheries and Oceans Canada (DFO) in more remote regions of northern Canada. Overfishing 

has been partly responsible for declines and extirpations of Arctic Grayling populations in 

several watersheds in Alaska (Buzby & Deegan, 2000), Alberta (Berry, 1998), Michigan 

(Vincent, 1962) and Ontario (Scott & Crossman, 1973). Overfishing has also reduced stocked 

populations and impeded stocking efforts in the Chena River, Alaska (Buzby & Deegan, 2004). 
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Arctic Grayling is considered a prized sport fish associated with northern regions, and the 

species attracts fish enthusiasts and promotes tourism in the NWT (McPhail & Lindsey, 1970; 

Scott & Crossman, 1973). Newly developed roads and increased access to remote areas as a 

result of natural resource development can expose Arctic Grayling to increased fishing pressure 

leading to overfishing.  

Air temperatures are increasing, and more frequent extreme weather events are projected, 

with effects of climate change being even more pronounced at northern latitudes (IPCC, 2007). 

The effects of climate change on northern fishes are unclear, however projections suggest that 

cold-water fishes, including most Salmonids, will experience some of the greatest changes in 

environmental conditions. Climate change can influence stream thermal regimes (Reist et al., 

2006; Dallas, 2016), alter benthic invertebrate abundance and diversity (Wrona et al., 2006), as 

well as disrupt migratory cues for fish (Swanberg, 1997; Reist et al., 2006).  In high elevation 

streams, climate change has the potential to shift elevational thresholds because of warming 

temperatures, creating opportunities for other competing species (Wiens, 2016). Presumably, 

cascade effects on food web structure involving Arctic Grayling can occur as a result of climate 

change, although effects are difficult to predict. Regardless of uncertainty, cold-water Salmonids 

are among the most-likely organisms to reflect impacts from climate change, and more baseline 

information for inland freshwater ecosystems is needed to help predict and characterize impacts.  
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1.6 Study Rationale 

The impetus for this research stems from existing knowledge gaps about Arctic Grayling, 

specifically what habitat characteristics are associated with critical life stages of the fluvial life 

history type of the species. Literature about YOY Arctic Grayling and associated habitat use is 

sparse and is often associated with adfluvial populations in coastal (West et al., 1992) or 

barrenland habitats (Jones et al., 2003b; Baker et al., 2017). Aquatic ecosystems in inland 

mountainous regions can be markedly different in terms of terrain and climatic characteristics 

when compared to coastal or barrenland regions, as such YOY Arctic Grayling in mountainous 

regions may have different habitat requirements. It has been implied that Arctic Grayling in 

mountain streams remain fluvial for all life-stages (Liknes & Gould, 1987).  

Arctic Grayling have been proposed as an indicator species for both biotic and abiotic 

changes in northern aquatic systems (Stewart et al., 2007; Wedekind & Küng, 2009). This 

research will strengthen our understanding of YOY Arctic Grayling habitat use. Improved 

knowledge regarding habitat use of Arctic Grayling will assist resource managers determine if 

habitat and/or habitat use is changing over time in response to natural resource development or 

climate change. Due to the scarcity of literature on this topic, decision makers in government, 

industry and First Nations are often under-informed about ecological consequences of 

development projects. Developing our understanding of habitat use by Arctic Grayling in 

mountainous regions will help further the scientific knowledge about this sensitive fish species 

and will allow more effective conservation and monitoring plans. Parks Canada and Fisheries 

and Oceans Canada have expressed interest in refining their monitoring guidelines and protocols 

for northern Salmonids, using Arctic Grayling as a sentinel species.  
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Arctic Grayling occupy many ecoregions and habitats, and this diversity in habitat use 

results in variability in contaminant accumulation. In addition to assessing habitat use, my 

research will examine the bioaccumulation of mercury in Arctic Grayling from two distinct 

remote northern regions. Bioaccumulation of mercury varies in response to location and habitat 

use of fish species (Chételat et al., 2015) and thus, understanding habitat use by Arctic Grayling 

can enable better understanding of mercury bioaccumulation in this species. Mercury is a 

bioaccumulating neurotoxin that is harmful for humans if exposure is high enough (see AMAP, 

2011).  The subsistence diet of Indigenous communities in the interior of NWT is largely 

comprised of wild game and fish, with fish supplementing the diets of approximately 40% of the 

NWT population (GNWT, 2014). Further, 25% of the population of the NWT participates in 

recreational fishing (Fisheries and Oceans Canada, 2012), where the Arctic Grayling is a prized 

game fish. Informing Indigenous communities and the general public about potential mercury 

bioaccumulation is important for maintaining human and wildlife health. It would benefit these 

groups to understand if mercury accumulation in Arctic Grayling is a human health concern. Co-

management boards, such as the Sahtu Renewable Resources Board and Dehcho Consensus 

Team have shown interest in better understanding the fish and freshwater health in their regions 

to determine if mining will impact bioaccumulation of contaminants in the region.  
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1.7 Habitat Characterization using Occupancy Analysis 

Little work has been done to quantify YOY habitat use northern mountain streams in a 

manner that also allows for effective, replicable survey methods for future monitoring. Research 

and modelling completed for sub-Arctic barrenland, adfluvial populations of YOY Arctic 

Grayling have identified specific habitat characteristics, such as water velocity (~2-10 cm/s), 

depth (~10 – 50 cm), stream slope (> 2 degrees) and greater amount of adjacent wetland that are 

preferred (Jones et al., 2003b; Baker et al., 2017). By applying similar survey and modelling 

methods to mountain systems, habitat use can be directly compared between ecoregions 

(barrenland versus mountainous) and life history types of YOY Arctic Grayling (fluvial versus 

adfluvial populations).  

A common method for assessing habitat use is distribution modelling. Distribution models 

relate a given species presence to corresponding habitat features and can be useful for predicting 

species distribution in relation to habitat features. This can be especially useful in remote 

regions, where cost of work and time requirements often limit study (Albanese et al., 2007). 

Occupancy analysis is a type of distributional modelling used for quantifying species’ 

habitat use while accounting for imperfect detection (MacKenzie et al., 2002). With previous 

modelling approaches (e.g., resource selection functions), it was impossible to discern whether 

absence of a species truly meant the spatial unit of study was unoccupied (species absence) or 

whether the species simply was not detected (false absence). Typical occupancy modelling is 

based on a two-state model (presence-absence) and detection efficiency (i.e., probability of 

detection), which is most traditionally determined using temporally replicated surveys 

(MacKenzie et al., 2002). Results from occupancy models provide estimates of probability of 

occupancy (ψ), as well as probability of detection (p), which is less than 1 (1 represents a perfect 



15 

 

method of detection). Environmental covariates, either abiotic or biotic, can be related to both 

probability of occupancy and detection (MacKenzie & Royle, 2005). By accounting for 

imperfect detection, more realistic habitat use can be predicted from model outputs (MacKenzie 

et al., 2002; Kéry & Schmidt, 2008).  

There are several advantages to using an occupancy model approach for assessing habitat 

use in remote regions. First, presence-absence data are quicker to produce than abundance data. 

In addition, although the occupancy model approach most commonly uses temporal replicates to 

generate estimates of detection probability, spatial replicates can also be used. Using spatial 

replicates can maximize efficiency in regions that are difficult to access (Charbonnel et al., 

2014), and if a species is sparse, sampling more sites with less temporal replication can produce 

more robust results (MacKenzie & Royle, 2005). Spatial replication in remote areas can also be 

highly effective when the study species is restricted to linear transects of habitat, such as streams 

(Hines et al., 2010; Parry et al., 2013; Charbonnel et al., 2014).  

 

Occupancy modelling requires that four assumptions be met:  

i) Closure – sites must remain occupied or unoccupied for a defined sampling 

period. Individual fish may move in or out of the sampling unit, but overall the 

state of the sampling unit (unoccupied or occupied) cannot change during a user-

defined ‘season’ of sampling.  

ii) Site independence – a site is not occupied as a result of being in close proximity 

to another occupied site. If this assumption is violated, an auto-correlation 

structure can be implemented into the model.  
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iii) Proper species identification – ensures that data collected in the field does not 

lead to false presence or absence of a target fish species, which would 

inaccurately inform model outputs. 

iv) No unmodeled heterogeneity – ensures that all variability in fish occupancy and 

detectability is explained by environmental variables collected and included in the 

model. To avoid violating this assumption, practitioners must select hypothesis-

driven and scientifically relevant covariates to measure.  

 

1.8 Linking habitat use and life history with mercury bioaccumulation  

Mercury is a contaminant of particular concern in northern regions. Fish are the biggest 

source of mercury to humans, and many northerners rely on fish as a subsistence food source 

(e.g., AMAP, 2011; see Wheatley & Paradis, 1995). Concentrations of mercury increase up the 

food chain and can cause harmful neurotoxic effects for humans (see AMAP, 2011). Data from 

this study will allow a comparison of mercury concentrations in adfluvial Arctic Grayling from a 

barrenland system to fluvial Arctic Grayling from a mountainous system. Mercury 

concentrations in fish are affected by a variety of variables that should vary between barrenland 

and mountainous ecosystems, and between adfluvial and fluvial Arctic Grayling, including: 

water temperature, dissolved oxygen, dissolved organic carbon, primary productivity, fish 

growth rates, and fish trophic position (see AMAP, 2011). 

Mercury is deposited in remote, northern environments via long-range atmospheric transport 

from industrialized areas, but point sources from development operations, such as mining, also 

contribute (Fitzgerald et al., 1998; Morel et al., 1998; Stern et al., 2012). Despite a reduction in 

anthropogenic emissions of mercury in recent decades (AMAP, 2011), permafrost thaw 
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(Rydberg et al., 2010) and increased forest fire activity (Kelly et al., 2006) may contribute to 

increased mercury deposition in northern aquatic ecosystems. Upon deposition into aquatic 

ecosystems, mercury can be reduced and methylated from Hg (II) to MeHg. Methyl mercury is 

the organic form of mercury that accumulates in fish tissue by binding to amino acid groups. 

MeHg biomagnifies in food chains with each trophic transfer (Morel et al., 1998; Hoffman et al., 

2002) and comprises a high percentage of total mercury (THg) in most fish (Bloom, 1992; 

Forsyth et al., 2004). THg can, therefore, be used as a surrogate for measuring MeHg, as 

laboratory analysis for THg is more time and cost-effective than MeHg analysis (Bloom, 1992). 

Higher MeHg concentrations tend to occur more often in northern ecosystems as a result of the 

longer-lived and slow-growing fishes typical of the region (see Morel et al., 1998; Evans et al., 

2005). Mercury concentrations in stream systems, as in lake environments, increase with higher 

trophic position in biota (Evans et al., 2005; Chasar et al., 2009). However, direct comparisons of 

mercury concentrations in fluvial vs. adfluvial or barrenland vs. mountain populations Arctic 

Grayling have not been undertaken. Trophic position, as well as mechanisms within the 

biogeochemical cycle of mercury, may affect differences in mercury concentrations between the 

two life history and landscape types.  
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1.9 Objectives 

Objective 1: 

To better understand and quantify young-of-year habitat use in mountain stream 

ecosystems using occupancy modelling.  

Due to the remoteness of mountainous regions of NWT and the consequent high costs of 

performing field research, data on habitat use by fluvial Arctic Grayling in northern mountain 

systems are largely unavailable. To address this knowledge gap, an occupancy modelling 

approach was used to quantify YOY habitat use in stream habitats in the Nahanni Mountains of 

the NWT. Following MacKenzie et al. (2002), the probability of YOY Arctic Grayling 

occupying streams was assessed using the occupancy modeling estimation and information 

theoretic approach. Ecological covariates were selected a priori to explain habitat occupancy and 

detection efficiency and were based on previous literature and personal knowledge of stream fish 

habitat use in mountain ecosystems.  

Hypothesis: 

YOY Arctic Grayling presence is dependant on landscape-level habitat characteristics that 

promote survival in cold-water mountain ecosystems and will vary with life-stage.  

Predictions:  

i) YOY Arctic Grayling have limited swimming ability and as such their habitat use in mountain 

systems will be best predicted by characteristics that determine water flow such as stream slope 

and elevation. 

ii) Stream-specific habitat variables that explain flow dynamics (e.g., water velocity) and in-

stream cover (e.g., overhanging vegetation) will negatively affect detection efficiency during 

surveys in mountain systems. 
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Objective 2:  

To quantify and compare mercury concentrations in Arctic Grayling from fluvial 

mountain populations to concentrations in adfluvial barrenland tundra populations.   

Mercury concentrations can vary within species in response to landscape variables that 

affect methylation, food web structure, habitat use, and bioaccumulation rates, and between 

populations with different life histories and growth rates. Linear statistical models were used to 

compare THg concentration between a mountain fluvial and barrenland adfluvial populations of 

Arctic Grayling. Fish captured in two ecosystems: Little Nahanni River and Kennady Lake, 

representing a mountain fluvial tundra adfluvial populations respectively.   

Hypothesis: 

Ecosystem processes will influence nutrient availability and ecosystem productivity that will, in 

turn, affect fish growth rates and ultimately mercury bioaccumulation in Arctic Grayling.  

Prediction: 

i) Arctic Grayling mercury concentrations will be higher in Kennady Lake than the 

Little Nahanni River as adfluvial populations feed in a more complex lentic 

environment, resulting higher trophic position for fish from Kennady Lake.   
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Chapter 2 
 

Young of year (YOY) Arctic Grayling occupancy in the Little Nahanni River, 

NWT 
 

2.1 Introduction 

Resource development and climate-related impacts are predicted to alter aquatic ecosystem 

function in remote northern regions at a rate that may outpace resource management and 

mitigation efforts (Lemly, 1994; Schindler, 2001). This is concerning for northern residents, 

especially northern Indigenous communities, who rely on healthy aquatic ecosystems for 

subsistence hunting and fishing (Berkes, 1990). To enable better long-term management 

outcomes, regulators, industry, and communities alike are looking to better understand past and 

current ecological conditions, so as to better predict what may happen in future. Currently, 

quantitative baseline data are lacking for many northern aquatic ecosystems, making it difficult 

to determine and predict changes in ecosystem function (Reist et al., 2006).  

Research in remote northern streams has been limited, mostly due to the logistic difficulties 

and high cost of northern research. These high latitude ecosystems are projected to experience 

intensified impacts from climate change and other anthropogenic stressors at a faster rate than 

the global average (Prowse et al., 2006). In northern Canada natural resource development is 

increasing at a rapid pace and these activities can impact northern fishes (Cott et al., 2015). 

Anthropogenic activities, such as resource extraction, can alter biotic and abiotic characteristics 

in northern streams, and are predicted to negatively affect northern fishes by altering habitat use 

and restricting distribution (Reist et al., 2006). Northern stream fishes are dependent on specific 

habitat characteristics, such as in-stream cover as flow refugia to lower energetic costs and 

maximize fitness (e.g. Jones & Tonn, 2004). Alterations of critical habitat features that result 
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from natural resource development, and temperature alterations from climate change can have 

significant effects on stream fish populations (Allan & Flecker, 1993; Wood & Armitage, 1997). 

For example, increased sedimentation and turbidity from placer mining can significantly 

decrease feeding opportunities and affect gill function of Arctic Grayling in Yukon Territory 

(McLeay et al., 1987). Climate and development-induced increases in stream temperatures can 

also negatively affect cold-water fishes by increasing mortality over extended warming periods 

(Becker & Genoway, 1979; Mantua et al., 2010). Stream fishes with migratory life histories, 

such as Arctic Grayling (Thymallus arcticus Pallas 1776), may be especially vulnerable to 

habitat alteration, as these fishes require multiple intact habitats and migratory corridors (Reist et 

al., 2006).  

Arctic Grayling is a freshwater salmonid species that is found in remote regions of northern 

North America. The distribution of Arctic Grayling ranges west from the Hudson Bay coast 

throughout the mainland Canadian territories and Alaska to the western coast of British 

Columbia, and south to Montana (Scott & Crossman, 1973). This cold-water fish inhabits 

streams, rivers, and lakes, mainly in Arctic and sub-Arctic regions of Canada (Vincent, 1962; 

Scott & Crossman, 1973; de Bruyn & McCart, 1974; Kaya, 1991). Residents of northern 

communities value Arctic Grayling as an opportunistic food source and recreational sport fish. 

Arctic Grayling are considered a sentinel species that have specific habitat requirements and are 

sensitive to changes in their environment, particularly during the young-of-year (YOY; Age-0) 

life stage (Birtwell et al., 1984, Deegan et al., 1999). Streams associated with YOY Arctic 

Grayling often have high invertebrate production, which promotes rapid growth and lipid storage 

in developing fishes that is necessary for over-winter survival (Deegan et al., 2005; Heim et al., 

2016). After their first summer, YOY Arctic Grayling typically migrate and overwinter in larger 
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streams, rivers or lakes that remain unfrozen during winter periods (Buzby & Deegan, 2004). It 

is not currently known whether groundwater inputs play a role in providing overwintering habitat 

for YOY Arctic Grayling, providing young fish with a warm-water thermal refuge during winter 

months.  

Arctic Grayling have three history strategies: lacustrine (lake-dwelling), adfluvial (move 

between rivers and lakes) and fluvial (live in streams and rivers), with the latter to strategies 

being most prevalent (de Bruyn & McCart, 1974). Adfluvial populations use lentic environments 

for feeding and overwintering, and lotic environments for spawning, rearing and juvenile 

development (Beauchamp, 1990; West, 1992; Jones & Tonn, 2004; Baker et al., 2017). Habitat 

preferences for adfluvial Arctic Grayling have been studied in Alaska, Montana, and in Canadian 

barrenland tundra ecosystems (Table 2.1). Habitats used by fluvial YOY Arctic Grayling have 

been described as shallow, low-flow environments with fine sand or gravel sediments, and the 

use of side channels or wet, grassy areas has also been noted (de Bruyn & McCart, 1974; 

Northcote, 1995; Stewart et al., 2007). Quantitative data regarding habitat use by fluvial YOY 

Arctic Grayling is sparse (Table 2.1), and this is particularly true for northern mountain 

environments, which are difficult and expensive to sample.   
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Table 2.1. Quantified habitat characteristics for YOY Arctic Grayling identified in previous scientific 

literature. 

Population 

Type 
Location Life Stage Variable Value Source 

fluvial Montana, 

mountain/agricultural 

streams 

all age 

classes 

depth 

width 

velocity 

temperature 

0.284 m 

12.21 m 

0.21m/s 

13.7°C 

Liknes & 

Gould, 1987 

adfluvial Montana, mountain 

stream 

YOY substrate silt/sand 

(0.062 – 

2.0mm) 

Deleray, 

1991 

fluvial Montana, artificial 

stream 

YOY depth < 0.31m McClure & 

Gould, 1991 

adfluvial NWT, barrenland 

stream 

small 

YOY (15-

21mm) 

depth 

velocity 

~10-20cm 

<0.10m/s 

Jones & 

Tonn, 2004 

adfluvial NWT, barrenland 

stream 

large 

YOY (38-

57mm) 

depth 

substrate 

~25-100cm 

fines 

Jones & 

Tonn, 2004 

Unknown Alaska, tundra 

stream 

YOY velocity 

temperature 

0.15-0.25m/s 

<12°C 

Deegan et 

al., 2005 

adfluvial NWT, barrenland 

stream 

YOY water 

velocity 

      depth 

0.05-0.20m/s 

 

< ~ 0.5m 

Baker et al., 

2017 

 

Arctic Grayling are particularly vulnerable during their YOY life stage compared to adults, 

when the young fish are more susceptible to environmental perturbations such as high turbidity 

and have limited sustained swimming ability to avoid adverse conditions (Birtwell et al., 1984; 

McLeay et al., 1987; Deegan et al., 2005). Developing quantitative models of YOY Arctic 

Grayling habitat use is critical for long-term management and conservation of the species. While 

these models exist for adfluvial Arctic Grayling in barrenland systems (Jones et al., 2004; Baker 

et al., 2017), quantitative descriptions of habitats used by fluvial, YOY Arctic Grayling are 

lacking, particularly at larger landscape scales.  
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Various models can be used to relate presence or abundance of an organism to habitat 

characteristics. Distribution models associate presence of an animal with habitat characteristics, 

making it easier to search, monitor or manage a species by identifying habitat preferences 

(Guisan & Zimmermann, 2000).  Distribution models have added value in areas where animals 

are sparse and abundance measures are unfeasible. One such family of models - resource 

selection functions - are useful in assessing habitat use (Jones & Tonn, 2004). A shortcoming of 

these models is that it is assume that if an organism is present there is a 100% probability that it 

will be detected - they lack the ability to account for imperfect detection. Models that fail to 

account for imperfect detection may not allow for valid inferences about true habitat use 

(MacKenzie et al., 2002; Kéry & Schmidt, 2008). Occupancy models are a type of distribution 

model that explicitly accounts for probability of detection, and variables that affect detection.  

Occupancy models assess the proportion of an area used by a given organism or community 

of organisms, account for imperfect detection, and relate probability of occupancy and detection 

to user-specified covariates (MacKenzie et al., 2002). Occupancy models can allow for 

inferences on habitat use and population trends in habitats where abundance measures are not 

feasible (Bailey et al., 2004). The basic framework for occupancy modeling relies on 

presence/absence data for an organism from a given population in a defined spatial area 

(MacKenzie, 2005). Environmental (e.g., glare, flow) and methodological (e.g., sampler, 

sampling equipment) covariates can be related to both the probability of occupancy and detection 

efficiency during occupancy analysis (MacKenzie & Royle, 2005). The most basic occupancy 

models are two-state models (presence-absence) where detection efficiency (i.e., probability of 

detection) is estimated using temporally replicated surveys.  Spatial replication can also be used 

to estimate detection efficiency. In spatially replicated occupancy studies, multiple, spatially 
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discrete sites are surveyed once. Detection efficiency is then estimated by grouping multiple sites 

into larger units, and assuming that probability of occupancy among sites is equal (Charbonnel et 

al., 2014). In remote regions, spatial replication can help reduce time and cost of sampling 

programs, because the need to re-visit sites (as required for temporal replication) is eliminated 

(Charbonnel et al., 2014). To avoid effects of auto-correlation in spatially replicated models, 

sites must be randomly selected and separated by some biologically relevant distance, and the 

distance should incorporate knowledge of the mobility of the study species. Alternatively, an 

auto-correlation structure can be incorporated into the model (Kendall & White, 2009). 

The main objective of this research was to quantify fluvial YOY Arctic Grayling habitat use 

in a remote mountain stream ecosystem in the Northwest Territories (NWT), Canada. My aim 

was to use an occupancy-based approach that would allow creation of a repeatable, reliable 

survey method that was efficient and feasible for resource managers and other stakeholders to 

use in future. I predict that YOY Arctic Grayling habitat use in mountain systems will be best 

predicted by characteristics that determine water flow such as stream slope and elevation. 

Landscape level characteristics, like elevation, have explained habitat use by Bull Trout 

(Salvelinus confluentus) in similar ecosystems (Dunham et al., 2003). Better scientific 

understanding of YOY Arctic Grayling habitat use will help inform decision makers, promote 

conservation efforts, inform monitoring strategies, and provide baseline data for rehabilitation of 

fish habitat. By using spatial replication and accounting for imperfect detection in an occupancy 

framework, I aim to establish a baseline against which can be used as a time and cost-effective 

method to measure changes in habitat use by YOY Arctic Grayling in sensitive mountain stream 

ecosystems. The results presented herein are specific to the YOY life stage of Arctic Grayling, 

and to northern mountain streams. This research focuses on one mountainous watershed as a 
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representation of habitat use by YOY Arctic Grayling across a broader range of northern 

mountain ecosystems.  

 

 

2.2 Methods 

 

2.2.1 Study area 

The study area encompasses the Little Nahanni River watershed, which is located in a sub-

Arctic region in the NWT, along the southwestern border with Yukon Territory (Fig 2.1). The 

Little Nahanni watershed is part of the headwater system for the South Nahanni River, which 

drains into the larger Mackenzie River Basin (Ootes et al., 2013). The watershed falls within 

Sahtu and Dehcho First Nations traditional territories and is partially protected by both the 

Nahanni and Nááts'ihch'oh National Park Reserves (Irwin, 1993).  

The mountainous, sub-Arctic region of the Little Nahanni watershed is part of the 

Mackenzie and eastern Selwyn mountain ranges, which are considered the northernmost extent 

of the Canadian Rockies (Ootes et al., 2013). The watershed varies in elevation from 

approximately 800 to 2200 meters above sea level (masl), and is categorized as the Taiga 

Cordillera Ecozone, consisting of wetland, boreal forest and alpine tundra (Ponomarenko & 

Quirouette, 2015). Vegetation across the landscape is determined by elevation, topography and 

substrate. At higher elevations (approximately > 1700 masl), common alpine vegetation, such as 

lichen (Cladonia rangiferina) and mountain avens (Dryas octopetala) dominates, but at lower 

elevations (between 800 – 1700 masl) stands of stunted white spruce (Picea glauca), alpine fir 

(Abies lasiocarpa), willow (Salix sp.) and dwarf birch (Betula nana) dominate the landscape 

(Ponomarenko & Quirouette, 2015). Temperatures for the Selwyn mountain range can range 

from -51°C in winter to 28°C in summer (Environment Canada). The region receives 644 mm of 
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precipitation annually, with most precipitation falling as rain in the summer months (Jackson, 

1987). As with much of the Yukon and NWT, the watershed does not have a defined dry period 

of the year, resulting in summer stream flows that are highly variable and influenced by montane 

climate patterns.   

Stream characteristics vary considerably in Little Nahanni River watershed. High elevation 

and steep grades in the region lead to a matrix of well-defined stream channels in mountainous 

terrain. Summer stream temperatures vary based on contributions from surface-water, 

groundwater, glaciers, and springs (Mochnacz et al., 2013). Sandstones, shale and granite each 

add complexity to stream geomorphology (Jackson, 1987). Gravel-bottomed habitats in the 

streams play an important role in facilitating spawning for many northern fishes, including Arctic 

Grayling (Evans et al., 2002). Overall, variability in stream temperature, morphology, substrate, 

and vegetation result in different stream habitats that Arctic Grayling use during various life 

stages.  

Habitat conditions and the distribution of fishes in tributaries of the Little Nahanni River 

were poorly documented prior to this study. As a result, reconnaissance surveys were conducted 

in 2014 to determine the feasibility of research planned for 2015. Four sub-watersheds of varying 

catchment size were chosen for further study based on the reconnaissance work: Dozer (497 

km2), Fork (341 km2), Guthrie (275 km2) and March (263 km2) creeks were surveyed in 2015 

(Fig. 2.1). Species of fish found in the tributaries included Arctic Grayling (most abundant), 

Slimy Sculpin (Cottus cognatus), Burbot (Lota lota), Lake Trout (Salvelinus namaycush) and 

Lake Chub (Couesius plumbeus).   
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Figure 2.1. The Little Nahanni River watershed, NWT Canada. Four sub-watersheds contain sites that 

were surveyed for YOY Arctic Grayling in June-August 2015. 

 

2.2.2 Occupancy terms and considerations 

In occupancy modeling, spatial or temporal replication in surveys facilitates the estimation 

of detection efficiency (MacKenzie & Royle, 2005). Spatial replicates – sites in contiguous 

stream sections with similar habitat characteristics – were used in this study for several analytical 

and practical reasons. Spatial replication reduces survey costs by eliminating the need to revisit 

the same site multiple times (temporal replication), increases space-for-time efficiency, and 

improves our understanding of fish distribution and habitat use across a broader landscape 

(MacKenzie & Royle, 2005; Charbonnel et al., 2014).  In this study, spatial replicates (‘sites’) 

were randomly assigned within ‘patches’. A ‘patch’ was defined as a contiguous and 

homogeneous section of stream with similar environmental characteristics (substrate size etc.), 

consistent water discharge, and constant Strahler stream order. Patches ranged in size from 

approximately 500 m to 3000 m, depending on in-flow and out-flow of other streams, or if 

impassable barriers were encountered. Sites were 100 m in length and embedded within patches. 
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Since sites were used as spatial replicates to assess detection efficiency, and patches are 

considered a homogeneous section of stream, occupancy could only be assessed at the patch 

level (Charbonnel et al., 2014). The rationale for site size (100 m) was to capture fish movement 

and dispersal patterns (Dunham et al., 2003) that are typical of Arctic Grayling (Armstrong, 

1986), and to allow for sufficient habitat categorization of the patches.  

Occupancy modelling has four main assumptions that must be considered in the study 

design and analysis: (i) closure; (ii) site independence; (iii) proper species identification; and, 

(iv) no unmodeled heterogeneity. ‘Closure’ means that the habitat units of interest maintain their 

occupancy status, either occupied or unoccupied, throughout the entirety of the defined sampling 

period (Rota et al., 2009). In the context of this spatially replicated occupancy design, ‘closure’ 

means that fish should be available for detection over all sites within a patch, given that one site 

within the patch is occupied (Charbonnel et al., 2014). With site independence, I assumed that a 

site was not occupied as a result of being near another occupied site, and that occupancy was 

purely related to habitat variables present, rather than proximity to an occupied site (MacKenzie 

& Royle, 2005; Canessa et al., 2015). I further assumed that all fish were correctly identified to 

species. The assumption that there is no unmodeled heterogeneity means that all variability in 

fish occupancy and detectability is explained by covariates that are assessed in the model. It is 

unreasonable to expect this assumption to be completely fulfilled, however, biological theories 

and hypothesis-driven decisions should be made to conform with this assumption (Dorazio et al., 

2006).  To meet occupancy model assumptions: i) stream patches were long enough (500 m – 

3000 m) to accommodate within-patch summer movement by YOY Arctic Grayling (Buzby & 

Deegan, 2000); ii) site independence was maintained using a downstream-to-upstream sampling 

technique in combination with a 10 m buffer between sites; iii) team members were trained at 
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identifying YOY Arctic Grayling; and, (iv) the 29 habitat variables chosen for assessment best 

represented habitat characteristics that previous authors found to be important for determining 

YOY Arctic Grayling habitat use (de Bruyn & McCart, 1974; Liknes & Gould 1987; Deleray, 

1991; McClure & Gould 1991; Northcote, 1995; Jones & Tonn, 2004; Deegan et al., 2005; Baker 

et al., 2017). 

 

2.2.3 Survey design 

 

This study was conducted in 2015 during the summer season. Three sampling periods 

were used to evaluate YOY Arctic Grayling distribution and habitat use in the region (Table 2.2). 

Sampling periods were not designed as a form of temporal replication, but rather resulted from 

timing constraints on field work (e.g., helicopter availability). I assumed that all sites had equal 

probability of being occupied in each of the three sampling events during the summer period. 

Arctic Grayling show variability in YOY emergence timing based on environmental factors, 

such as temperature, which controls egg development (Kaya, 1991; Mantua et al., 2010). In the 

Little Nahanni River, larval emergence can occur from late June to early August (Mochnacz, 

Fisheries and Oceans Canada, pers. comm.), making it plausible that YOY Arctic Grayling 

would occupy natal streams in all of the three sampling periods. Data from all three sampling 

periods were used in the occupancy analysis.  
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Table 2.2. Three sampling periods and range of dates for 

surveys conducted to detect YOY Arctic Grayling in the Little 

Nahanni River, NWT in 2015.   

Sampling 

Period Start Date End Date 

1 July 5, 2015 July 10, 2015 

2 July 27, 2015 August 5, 2015 

3 August 27, 2015 August 31, 2015 

 

The four sub-watersheds included in this study, Dozer, Fork, Guthrie and March creeks, 

were subdivided based on habitat criteria, and categorized into 35 patches (Table 2.3). One 

hundred and eighty-three sites were randomly distributed throughout the 35 patches (Fig. 2.1). 

Sites were assigned using a pre-defined suite of broad-scale stream characteristics that have been 

identified by Fisheries and Oceans Canada (DFO) as providing potentially suitable habitat for 

YOY Arctic Grayling (Mochnacz, Fisheries and Oceans Canada, pers. comm.). The criteria for 

selecting sites included: stream catchment area > 400 ha, stream grade <15%, stream Strahler 

Order < 4 and elevation <1600 m above sea level. Sample sites were randomly distributed using 

a Generalized Random Tessellation Stratified design (GRTS; Stevens & Olsen, 2004). GRTS 

uses a randomized-hierarchical grid that arrays sites throughout a stream network to achieve 

spatial representation. The GRTS design was conducted by an independent contractor for DFO, 

as part of a larger salmonid monitoring program in northern Canada. Each site was subsequently 

sampled one time to determine fish occupancy and evaluated for habitat characteristics (see 

below).  
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Table 2.3. The four sub-watersheds of Little Nahanni River, NWT that were 

sampled in 2015 and the corresponding number of patches and sites sampled 

across three sampling periods. 

Sub-

watershed 

Number of 

Patches 

Number of sites 

per sub-

watershed 

Mean number 

of sites per 

patch 

Guthrie 14 64 4.6 

Fork 9 47 5.2 

Dozer 6 36 6.0 

March 6 36 6.0 

    
 

Sampling for YOY Arctic Grayling at each site was achieved by electrofishing.   A Smith-

Root Inc. LR-24 Electrofisher was used with a standard 11” anode ring. Netters used a standard 

16” x 16” electrofishing dipnet. A pulsed DC waveform with a frequency of 30Hz and a 12% 

duty cycle was used. Voltages ranged from 185 to 475 v, and were adjusted based on the quick-

set function of the unit, which assessed the conductance of the stream and adjusted the voltage 

setting accordingly. Each survey team consisted of two personnel wearing polarized glasses; one 

crew member operated the backpack electrofisher while the other netted. Fishers began at the 

downstream end of the 100 m site and moved towards the upstream extent of the site. Surveys 

were conducted in a ‘zig-zag’ pattern from downstream to upstream. The dipnet was placed on 

the downstream side of the anode to capture shocked fish that were flowing downstream (as per 

Kimmel & Argent, 2006). All in-stream habitat types (e.g., riffle, pools) were sampled equally 

(Meador et al., 2003). Fish that were observed outside of the effective shock range (1 to 2 

meters) or that were shocked but not captured were considered a positive detection if both survey 

personnel could positively identify that it was an Arctic Grayling. On average, 411 seconds of 

electrofishing were employed at each site. Fish processing in the field included species 

identification and fork length measurements (mm).  
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2.2.4 Covariates 

 

Habitat features at each site were assessed at the same time that fishing was conducted (Table 

2.4).  In occupancy models, habitat characteristics are used to explain variation in fish 

occupancy, and in this study these variables were collected and/or aggregated at the ‘patch’ 

scale. Habitat and other covariates used to explain detection efficiency were collected and 

analyzed at the ‘site’ scale.  Some habitat variables were assessed for effects on both fish 

occupancy and detection efficiency (e.g., % boulder).  

For further information on covariate collection, please refer to Appendix A, where 

detailed field methods are outlined.   
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Table 2.4. Habitat variables assessed as potential covariates to explain YOY Arctic Grayling habitat use 

and detection efficiency in the Little Nahanni River. 

Variable Occupancy Detection 

efficiency 

Model 

Abbreviation 

Units Method of 

measurement1 

photoperiod yes no photoperiod minutes n/a 

air temperature yes no air_temp oC point 

water temperature yes no water_temp oC point 

YSI water temperature yes no ysi_temp oC point 

wetted width yes yes width cm point 

average depth yes yes depth cm point 

average velocity yes yes velocity m/s point 

discharge yes no discharge (m3/s) point 

slope yes no slope na point 

elevation yes no elevation masl point 

stream order yes no order strahler n/a 

boulder yes yes boulder % site 

cobble yes yes cobble % site 

gravel yes no gravel % site 

sand/silt yes no fines % site 

overhanging riparian 

vegetation 

yes yes rip._veg. % site 

run yes no run % site 

riffle yes yes riffle % site  

pool yes no pool % site 

cascade yes no cascade % site 

aquatic vegetation yes yes aq._veg % site 

coarse woody debris yes yes cwd % site 

undercut banks yes yes ucb % site 

boulder cover yes no bld._cov. % site 

eddies yes yes eddies % site 

pH yes no ph pH units point 

specific conductivity yes no sp.con. μS/cm point 

dissolved oxygen yes no do mg/L point 

efisher no yes efisher personnel n/a 

netter no yes netter personnel n/a 

efisher settings no yes volts voltage n/a 

visibility no yes VisObs 0-3 site 

cloud cover no yes CloudCov % site 

effort no yes effort seconds site 

effort area no yes effort_per_sq._m seconds/m2 site 

previous knowledge no yes prev.knowledge 0-2 rank n/a 
1 Point measurement: the covariate of interest was measured at one lateral transect that spanned the wetted width of 

the stream, perpendicular to the flow; this was considered representative of the site or patch (e.g., discharge). Site 

measurement: the covariate of interest was assessed throughout the entire site and then an estimate was assigned 

based on the surveyor evaluation (e.g., substrate cover). Habitat covariates were evaluated after the site was fished to 

avoid disturbing fish in the stream and to allow surveyors to observe all habitat heterogeneity throughout a site prior 

to habitat evaluations. 
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2.2.5 Statistical analysis 

There are two occupancy (ψ) states: presence (ψ = 1) and absence (ψ = 0). Detection 

efficiency (p) can theoretically vary between 0 (fish are never detected when they are present) 

and 1 (fish are always detected when they are present). Following methods in MacKenzie et al. 

(2002), the probability of occupancy for YOY Arctic Grayling was assessed using the occupancy 

modeling estimation and information theoretic approach. The Akaike Information Criterion 

(AIC) was used to find the most parsimonious model that linked occupancy and detection 

efficiency parameters to non-random explanatory variables using the logit-link function 

(MacKenzie et al., 2006). Models in an a priori model set were ranked using AIC (Burnham & 

Anderson, 1998; MacKenzie et al., 2006). Model fit, occupancy parameters, detection efficiency 

parameters, habitat covariates and ultimately final model selection were assessed using the 

occupancy modelling software PRESENCE (v10.7).  

 

2.2.6 Global model selection 

An a priori model set was prepared that adequately addressed competing hypotheses I had 

about Arctic Grayling habitat use. There are several parameterizations of occupancy models, 

including: simple-single season, correlated detections with fixed detection efficiency, staggered 

entry, multi-method, and standard correlated detection models. A chi-square (χ2) goodness of fit 

test was conducted to examine overdispersion (ĉ; variance inflation factor calculated using 

parametric bootstrapping (n=1000)) for each model type, and these results, when combined with 

AIC rankings, were used to select the global model best suited for further analysis (Cooch, 

2012). 
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2.2.7 Variable collinearity 

Hypothesized covariates of detection efficiency and occupancy were normalized using z-

scores (Burnham & Anderson, 2004). Pearson product moment correlations were then performed 

to identify collinear variables. Keeping collinear habitat and detection variables in the model can 

lead to overdispersion (Berry & Feldman, 1985; Haynes et al., 2014). Correlations were 

performed using R Studio and Microsoft Excel, and covariates were ranked as highly correlated 

(i.e., |𝑟| ≥ 0.70, p ≤ 0.05; Berry and Feldman 1985), moderately correlated (0.60 ≤ |𝑟| ≥ 0.70, p ≤ 

0.05) or less correlated (|𝑟| ≤ 0.60, p ≥ 0.05). If variables were colinear, one of the variables was 

removed from further analysis based on biologically informed decision making or if one variable 

was nested in another. Moderately correlated variables were used in the analysis but were 

considered for removal later during the modelling process - dependent on AIC ranking. All less 

correlated variables were further considered in models of occupancy and detection efficiency.  

 

2.2.8 Detection-specific model variables 

Normalized detection efficiency covariates were added to the global model to determine 

their influence on detection efficiency (one covariate in each model). AIC rankings were then 

compared amongst models and to the original psi(.),p(.) model (no covariates). Variables that 

were in the top 50% of AIC rankings were selected for future model-building activities, and all 

iterations of two and three covariate combinations were considered. A maximum of three 

detection efficiency covariates were used to avoid overparameterization of the model, as 

assessed by the numerical convergence feature in the program PRESENCE. 
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2.2.9 Occupancy-specific model variables 

Normalized occupancy variables were added (one in each model) to the top AIC-ranked 

model fitted with detection efficiency covariates. As described above, occupancy covariates were 

measured or calculated at the patch scale using predominantly mean values. Minimum values 

were used when ecologically relevant (e.g., elevation). AIC was used to determine the best 

predictive model. Variables present in the top models were then further investigated with a 

sequential model building technique that used all iterations of two and three covariate 

combinations to avoid overparameterization. Models were then evaluated using AIC rankings 

and weights.  

 

2.2.10 Final model selection 

AIC weights, slopes (β coefficients), and standard errors were investigated for models with 

AIC < 2 (Burnham & Anderson, 2002). ‘Pretending’ variables were then identified as those 

with a β coefficient and standard error that overlapped with zero (MacKenzie 2006; Arnold, 

2010; Dextrase et al., 2014) – indicating that the covariate in question had low predictive power. 

Additionally, some model β values could not “numerically converge”, meaning that models were 

over parameterized or the standard errors for the β coefficients were too high for the model to 

predict. Models that did not converge and pretending variables were removed from the model 

selection process. Model-averaging was employed using all models that were within delta AIC 

<2 (with pretending variables and non-converged models removed). Model averaging requires 

the estimation of unconditional standard error and 95% confidence intervals using weighted 

averages (wi) (Buckland et al., 1997). Unconditional standard error and confidence intervals were 

calculated for occupancy and detection efficiency covariates using the delta transformation 
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method (Cooch, 2012; Falke et al., 2012). The delta transformation allows for standard error and 

95% confidence intervals to be transformed from the linear (logistic scale) value to the parameter 

value. 

 

 

2.3 Results 

 

2.3.1 Fish collection 

Five hundred and forty (540) Arctic Grayling were detected during the course of this study 

(Table 2.5). Arctic Grayling YOY were captured in seven patches within Dozer (n=1) and 

Guthrie (n=6) sub-watersheds. No Arctic Grayling YOY were captured in either the Fork or 

March sub-watersheds. Overall, the mean number of fish per patch was highest in Dozer Creek, 

despite only one patch being occupied in that creek.  

 

 Table 2.5. Number of Arctic Grayling caught per patch in four sub-watersheds of the Little Nahanni 

River, NWT in 2015. 

 

 

 

 

 

 

Sub-

watershed 

Total fish per 

sub-

watershed 

Number of 

patches 

occupied 

Mean number 

fish (± SD) per 

patch 

Minimum 

number of 

fish per 

patch  

Maximum 

number of fish 

per patch 

Dozer 377 1 63 (± 154) 0 377 

Fork 0 0 0 0 0 

Guthrie 163 6 12 (± 22) 0 70 

March 0 0 0 0 0 
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2.3.2 Selection of global model 

To determine the best global model structure for this dataset, a variety of potential model 

types were evaluated strictly using occupancy (presence/absence) data without habitat covariates. 

Two global models, simple single season and multi-method, sufficiently fulfilled requirements of 

the goodness-of-fit test (ĉ = 1.21) (Table 2.6). The simple single season model had a 

considerably lower AIC value than the multi-method model (ΔAIC = 5.48); thus, a simple season 

model was used for all further model-building and analysis. Other global model choices did not 

numerically converge, because the occupancy data were sparse or over parameterized for the 

global model type (Table 2.6).  

 

Table 2.6. Global model types were investigated using ĉ to assess global model fit to the occupancy data 

collected for YOY Arctic Grayling in the Little Nahanni River, NWT, in 2015. ψ represents the 

probability of occupancy, p represents the probability of detection, and theta represents the probability of 

occupancy by accounting for differences in occupancy as a function of how spatial unit occupancy relates 

to each other (e.g., are occupied sites correlated in adjacent sites).  

 

 

 

 

 

 

Model Type Model Name ĉ AIC deltaAIC 

AIC 

wgt 

Model 

Likelihood 

Simple single 

season ψ(.),p(.) 1.21 76.23 0 0.9393 1 

Multi-method ψ(.),theta(.),p(m) 1.31 81.71 5.48 0.0646 0.0646 

Correlated 

detections with 

fixed p 

ψ, 

th(),th1(),p(0.25),th0pi() 

Convergence 

not achieved NA NA NA NA 

Correlated 

detections ψ, th(),th1(),p(),th0pi() 

Convergence 

not achieved NA NA NA NA 

Staggered entry ψ(.),e(.),d(.),p(full) 

Convergence 

not achieved NA NA NA NA 
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2.3.3 Covariates 

Data for 28 a priori occupancy covariates were collected in the field (Table 2.7). As 

described above, covariates were removed from further analysis if the variable exhibited a 

Pearson correlation value greater than 0.70 (Appendix A; Table A1) or if they were not included 

in the top 50% of models (using AIC rankings) tested to explain occupancy. Dissolved oxygen 

and pH were removed as occupancy variables because of unreliable YSI readings at a subset of 

sites, which was likely a result of calibration issues in the field. Interestingly, neither sampling 

period nor date influenced where fish were caught, as assessed using calendar day and 

photoperiod as covariates in the occupancy analysis. In total, 15 occupancy and 10 detection 

efficiency variables were removed from further analysis (Appendix A; Table A1). Variables that 

remained in the analysis are listed in (Table 2.8).  
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Table 2.7. Occupancy covariates associated with YOY Arctic Grayling in the Little Nahanni River, NWT 

in 2015.  Italicized values were removed from further analysis based on model performance and 

collinearity with other variables. 

 YOY Arctic Grayling Observed YOY Arctic Grayling Not Observed 

Covariate Mean Min Max Mean Min Max 

calendar day 213.12 ± 21.79 186.00 243.00 212.39 ± 18.45 186.00 243.00 

photoperiod (mins) 1049.82 ± 103.79 873.00 1162.00 1043.37 ± 97.49 873.00 1172.00 

air temperature (°C) 12.80 ± 3.08 4.00 19.00 14.50 ± 5.15 1.50 24.00 

water temperature (°C) 9.17 ± 2.33 6.00 17.00 6.77 ± 1.95 2.48 13.00 

wetted width (cm) 439.61 ± 261.94 146.00 1064.00 428.56 ± 213.11 55.00 1432.00 

avg. depth (cm) 35.25 ± 14.51 11.63 68.50 29.08 ± 9.73 9.25 51.25 

avg. velocity (m/s) 0.70 ± 0.25 0.23 1.31 0.86 ± 0.30 0.11 1.93 

discharge (m3/s) 0.65 ± 0.46 0.12 1.39 0.92 ± 0.75 0.15 2.73 

boulder (%) 10.79 ± 15.80 0.00 70.00 29.21 ± 19.70 0.00 80.00 

cobble (%) 42.12 ± 24.50 0.00 85.00 49.45 ± 18.23 0.00 85.00 

gravel (%) 28.70 ± 19.37 1.00 70.00 15.95 ± 10.36 0.00 60.00 

sand/silt (%) 18.42 ± 23.65 0.00 89.00 5.51 ± 7.24 0.00 70.00 

run (%) 43.61 ± 37.73 0.00 100.00 13.59 ± 18.54 0.00 80.00 

riffle (%) 39.24 ± 36.19 0.00 100.00 55.69 ± 24.60 0.00 100.00 

pool (%) 14.24 ± 10.24 0.00 40.00 12.87 ± 7.57 0.00 60.00 

cascade (%) 2.94 ± 9.67 0.00 50.00 17.79 ± 22.03 0.00 100.00 

aquatic vegetation (%) 5.61 ± 11.51 0.00 50.00 4.75 ± 9.54 0.00 50.00 

overhanging riparian vegetation 

(%) 17.42 ± 18.70 1.00 70.00 21.78 ± 22.49 0.00 90.00 

woody debris (%) 6.09 ± 6.48 0.00 20.00 7.10 ± 10.00 0.00 60.00 

undercut banks (%) 50.30 ± 31.87 0.00 95.00 25.39 ± 20.89 0.00 95.00 

boulder cover (%) 4.61 ± 8.36 0.00 40.00 9.37 ± 8.63 0.00 40.00 

eddies (%) 5.82 ± 5.82 0.00 20.00 5.57 ± 5.25 0.00 25.00 

slope 0.03 ± 0.03 0.01 0.01 0.060 ± 0.029 0.010 0.135 

elevation (masl) 1046.80 ± 53.12 946.00 1143.00 1235.37 ± 140.56 914.00 1543.00 

stream order (strahler) 2.38 ± 0.82 1.00 3.00 2.02 ± 0.72 1.00 3.00 

YSI water temperature (°C) 8.38 ± 2.26 5.60 13.00 5.97 ± 1.57 2.48 10.60 

pH 8.20 ± 0.31 7.23 8.43 8.05 ± 0.21 7.43 8.37 

specific conductivity 271.06 ± 114.86 93.80 519.50 242.16 ± 64.04 113.70 366.70 

dissolved oxygen 10.71 ± 1.53 7.15 13.41 11.61 ± 1.36 9.78 14.31 

 

 

Sites with YOY Arctic Grayling present had water temperatures that were 2.4°C warmer on 

average than sites without Arctic Grayling (Table 2.7). Differences in variables that reflect flow 

dynamics (e.g., velocity) were negligible between sites where Arctic Grayling were present and 

not present. Silt and gravel were more dominant at sites where YOY Arctic Grayling were 
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observed, whereas cobble and boulder were more dominant in unoccupied streams. Run habitat 

was dominant at sites with YOY Arctic Grayling, whereas riffle habitat was dominant at sites 

without Arctic Grayling. In-stream habitat variables appeared to be similar between streams that 

did and did not contain YOY Arctic Grayling, except for undercut banks, which were more 

prevalent in streams with YOY Arctic Grayling. On average, elevation was approximately 200 

masl lower at sites with YOY Arctic Grayling than at sites without YOY Arctic Grayling. 

Elevation was moderately correlated with several flow dynamics variables like discharge (r = 

0.65), velocity (r = 0.60) and slope (-0.53) (Appendix A, Table A.5.). Alternatively, elevation 

was not correlated with water temperature (r = 0.03).  

 

 
Table 2.8. All occupancy and detection efficiency variables assessed in 

further simple single season occupancy analysis.  

Parameter type Variables Included Parameter type Variables Included 

occupancy air temperature detection efficiency avg. depth  
avg. depth 

 
avg. velocity  

avg. velocity 
 

boulder  
slope 

 
riffle  

elevation 
 

aquatic vegetation  
stream order 

 
eddies  

boulder 
 

efisher  
gravel 

 
cloud cover  

silt/sand 
 

effort  
% riffle 

 
previous knowledge 

 
aquatic vegetation 

  

 
coarse woody debris 

  

 
undercut banks 

  

 
boulder cover 

  

 
water temperature 

  

 
specific conductivity 
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2.3.4 Model building and selection 

The simple single season model identified a naïve occupancy estimate of 0.20.  If detection 

efficiency is 100%, then naïve occupancy = modeled occupancy; that is, naïve occupancy 

represents the proportion of sites that were known to be occupied by YOY Arctic Grayling. 

Naïve occupancy estimates were calculated using up to five spatially replicated surveys per 

patch.  

The top model for detection efficiency (occupancy was held constant (ψ(.)) included the 

following covariates: percent boulder, with beta value β = -2.807 ± 1.091, and percent riffle, 

beta value β = -1.122 ± 0.509 (Table 2.9). Detection efficiency was negatively related to both 

percent boulder (Figure 2.2) and percent riffle (Figure 2.3), and was highest in streams with no 

boulder substrate, and with no riffle habitat. For comparison purposes, the second top model 

(ΔAIC > 2) and the simple single season global model AIC values are also listed in Table 2.9. 

All other models performed poorly in comparison to the top model. A total of 55 models were 

assessed; 10 models with individual covariates, and 45 models using all combinations of two 

covariates.  

 

Table 2.9. Detection efficiency variables fit to simple single season occupancy analysis for YOY Arctic 

Grayling in the Little Nahanni River, NWT during the summer (July-August) of 2015.      

Model Name AIC AIC 

AIC 

wgt 

Model 

Likelihood no.Par. 

-

2*LogLike 

ψ(.),p(Boulder/Riffle)  51.98 0 0.4143 1.0000 4 43.98 

ψ(.),p(Boulder/AquaticVeg) 54.27 2.29 0.1318 0.3182 4 46.27 

ψ(.),p(.)  76.23 24.25 0 0.0000 2 72.23 
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Figure 2.2. Relationship between probability of detecting YOY Arctic Grayling 

and percent boulder substrate present in a stream in the Little Nahanni River, 

NWT during the summer (July-August) of 2015. Logistic curve represents the 

true relationship on a probability scale, with 95% confidence intervals.    

 

 

 

 
Figure 2.3. Relationship between probability of detecting YOY Arctic Grayling 

and percent riffle habitat present in a stream in the Little Nahanni River, NWT 

during the summer (July-August) of 2015. Logistic curve represents the true 

relationship on a probability scale, with 95% confidence intervals.    
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After important detection efficiency variables were identified, a model set that included 15 

covariates of occupancy was tested [ψ(.),p(Boulder/Riffle)] (Table 2.8). A maximum of three 

covariates was included in each model tested, which resulted in 575 models in the set. Individual 

occupancy covariates examined in the model [ψ(.),p(Boulder/Riffle)] were, from strongest 

predicting capability to weakest: elevation, water temperature, undercut banks, depth, slope, 

fines, boulder, air temperature, velocity, riffle, gravel, stream order, specific conductivity, 

boulder cover, aquatic vegetation, and coarse woody debris. Six models had delta AIC values ∆< 

2 relative to the top model (Table 2.10), and elevation was in all of these models. Water 

temperature was included in six of seven of the top models.  

 

Table 2.10. Seven of 575 models evaluated to explain and predict occupancy of YOY Arctic Grayling 

in the Little Nahanni River, NWT during summer 2015. All seven models included had ∆ AIC< 2. 

Model 

Rank Model AIC ∆AIC AIC wgt 

Model 

Likelihood K. 

1 ψ(elevation/watertemp), 

p(Boulder/Riffle) 39.56 0 0.2805 1 6 

2 ψ(elevation/watertemp/ucb), 

p(Boulder/Riffle) 41 1.44 0.1365 0.4868 7 

3 ψ(elevation/watertemp/velocity), 

p(Boulder/Riffle) 41.16 1.6 0.126 0.4493 7 

4 ψ(elevation/watertemp/slope), 

p(Boulder/Riffle) 41.18 1.62 0.1248 0.4449 7 

5 ψ(elevation/ucb), 

p(Boulder/Riffle) 41.19 1.63 0.1242 0.4426 6 

6 ψ(elevation/watertemp/depth), 

p(Boulder/Riffle) 41.54 1.98 0.1042 0.3716 7 

7 ψ(elevation/watertemp/boulder), 

p(Boulder/Riffle) 41.55 1.99 0.1037 0.3697 7 

 

Other covariates of occupancy that were included in the top seven models included 

percent undercut banks, velocity, slope, depth and percent boulder. To investigate whether these 

additional variables were ‘pretending’ variables (high standard error overlaps with 0 and negates 
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influence in modelling habitat use); (MacKenzie et al., 2006; Robles & Ciudad, 2012), model 

averaging was used to investigate beta values and unconditional standard error on the logit scale 

(Table 2.11). Beta values and unconditional standard errors overlapped for all covariates, 

indicating their poor predictive value for occupancy. As such, model averaging efforts were 

abandoned, and the top model [ψ(elevation/watertemp), p(Boulder/Riffle)] was selected for 

further interpretation and analysis.  

 

Table 2.11. Beta coefficient estimates on the logit scale with unconditional standard error 

calculated using model averaging for the top seven models representing YOY Arctic 

Grayling summer habitat use in the Little Nahanni River, NWT in 2015. Overlap beta and 

SE represents the standard error associated to covariates using model averaging and 

whether their variability overlaps with zero. Y=yes, N=no 

Model 

Rank Covariate 

Beta 

Coefficienct Uncond. SE 

Overlap Beta 

and SE 

1 elevation -6.15 13.05 Y 

2 elevation -5.96 13.05 Y 

3 elevation -6.91 13.05 Y 

4 elevation -8.35 13.05 Y 

5 elevation -8.36 13.05 Y 

6 elevation -6.27 13.05 Y 

7 elevation -6.27 13.05 Y 

1 water temp 4.87 7.98 Y 

2 water temp 3.68 7.98 Y 

3 water temp 4.52 7.98 Y 

4 water temp 6.01 7.98 Y 

6 water temp 4.86 7.98 Y 

7 water temp 5.02 7.98 Y 

1 ucb 1.31 2.75 N 

2 ucb 4.68 2.75 N 

1 velocity -0.97 0.63 N 

1 slope 0.86 0.68 N 

1 depth -0.19 2.12 Y 

1 boulder 0.21 0.22 Y 

 *ucb = undercut banks 
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Elevation and temperature were the best predictors of YOY Arctic Grayling occupancy in the 

Little Nahanni River watershed. Elevation was negatively related to occupancy of YOY Arctic 

Grayling with a beta value of β = -6.148 ± 3.957. Probability of occupancy of YOY Arctic 

Grayling decreased from lower to higher elevations (Figure 2.4; min elevation = 946 masl, max 

elevation = 1534 masl). Water temperature was positively related to occupancy of YOY Arctic 

Grayling with beta value β = 4.873 ± 3.104, and occupancy of YOY Arctic Grayling increased 

from lower to higher temperatures (Figure 2.5; min temp = 2.5°C, max temp = 17°C). Occupancy 

of YOY Arctic Grayling was, thus, highest in lower elevation streams (<1150 masl) with higher 

stream temperatures (> 8°C). Elevation had the highest beta value, suggesting that it is likely the 

best predictor of habitat use. The corresponding beta values were converted from the logit scale to 

the probability scale to produce Figures 2.4 and 2.5.  

 

Figure 2.4. Effects of elevation (masl) on the probability of occupancy for YOY 

Arctic Grayling in Little Nahanni River, NWT during the summer (July-August) 

of 2015. The logistic curve represents the true relationship on a probability scale, 

with 95% confidence intervals.    
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Figure 2.5. Effects of water temperature (°C) on the probability of 

occupancy by YOY Arctic Grayling in Little Nahanni River, NWT during 

the summer (July-August) of 2015. Logistic curve represents the true 

relationship on a probability scale, with 95% confidence intervals.    

 

 

To determine if the top model variables were explaining the same variation in the data, the 

relationship between stream temperature and elevation were evaluated, which was found to be not 

significant (simple linear regression, F(35) = 1.14, P = 0.29). 
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2.4 Discussion 

Results from this study improve our current knowledge and basic understanding of ecology 

of fluvial Arctic Grayling, specifically for the YOY life stage. Across their range, Arctic 

Grayling have complex life histories and use a variety of habitat types. In the mountain streams 

investigated in this study, there is a higher probability for habitat use by YOY Arctic Grayling at 

elevations less than 1150 masl, and at water temperatures greater than 8°C. These results support 

my hypothesis that YOY Arctic Grayling occupancy is affected by landscape scale habitat 

variables in fluvial mountain systems.  

Results from a recent study -using similar methods- on an adfluvial population of Arctic 

Grayling in a barrenlands landscape showed that stream occupancy by YOY Arctic Grayling was 

best predicted by water velocity and depth (Baker et al. 2017). While velocity and water depth 

were included in two of the top seven models in my study, effects of these parameters on 

occupancy were weak when compared to effects of elevation and temperature. Differences in 

predictor variables between my study and the Baker et al. (2017) study are perhaps not 

surprising. Barrenland tundra ecosystems show little change in elevation when compared to 

mountain systems, and in the Baker et al. (2017) study, water temperatures in all barrenlands 

streams were > 8C. Overall, my results help to clarify the differences in habitat use by Arctic 

Grayling in two populations with fluvial and adfluvial life history strategies, and that region or 

landscape-specific models are needed to better predict habitat use by Arctic Grayling across its 

distributional range.  
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2.4.1 Occupancy variables 

Occupancy of YOY Arctic Grayling increased with water temperature in the Little Nahanni 

River, and results indicated YOY Arctic Grayling did not occupy streams with water temperature 

< 8°C. Previous literature has not identified a lower temperature threshold for YOY Arctic 

Grayling, but upper temperature limits are reached around 12°C to 16°C (Deegan et al., 2005). In 

my study, streams occupied by YOY Arctic Grayling were on average 2.4°C warmer than 

streams that were not occupied. Previous studies have identified that YOY Arctic Grayling have 

faster growth rates in years when stream temperatures are higher in Arctic tundra ecosystems, 

but it is difficult to isolate temperature as the individual explanatory variable (Deegan et al., 

1999). It has also been shown that the metabolic rate of YOY Arctic Grayling significantly 

increases at temperatures above 12°C (Deegan et al., 2005). Modestly warmer water 

temperatures (2-3°C) may confer a bioenergetic advantage (Elliott & Elliott, 2010). YOY Arctic 

Grayling in Little Nahanni River may select habitats with water temperatures > 8°C to ensure 

bioenergetically favourable conditions that allow rapid growth in their first year. Faster growth 

would help YOY Arctic Grayling improve swimming performance in fast-flowing mountain 

streams, especially when Arctic Grayling may have to travel to reach suitable overwintering 

habitat (West et al., 1992). YOY Arctic Grayling in this study area usually reach a length of 75 

mm by the end of their first summer (M. McPherson, University of Alberta, unpublished data). 

Other Salmonids like Arctic Charr (Salvelinus alpinus) show preference for relatively colder 

water temperatures as fish age (Siikavuompio et al., 2013), which may be relevant for Arctic 

Grayling as well. Further research into size- and age-dependent temperature preferences of 

fluvial Arctic Grayling is required to help elucidate the role of temperature in structuring 

populations in mountainous fluvial landscapes.   
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Elevation best predicted occupancy of YOY Arctic Grayling in my study system, and it thus 

appears to be a useful landscape-level characteristic for modelling YOY Arctic Grayling habitat 

use in mountain streams. As remote sensing and digital elevation models provide accurate 

elevation estimates, remote predictions of YOY Arctic Grayling habitat use should be possible 

when designing future monitoring of these remote mountain populations. YOY Arctic Grayling 

were most associated with elevations less than 1150 masl, which is relatively low elevation for 

this region. While Arctic Grayling are known to partition feeding habitat based on an elevational 

gradient, in which larger Arctic Grayling use more upstream sites for feeding (Hughes, 1999), 

YOY Arctic Grayling have not explicitly been associated previously with low elevation natal 

streams. In a geographically similar system to Little Nahanni River, YOY Bull Trout in the 

nearby Prairie Creek watershed are most associated with low Strahler stream order at higher 

elevations (2nd and 3rd order reaches; Mochnacz, DFO, pers. comm.). Arctic Grayling are also 

present in the Prairie Creek watershed occupying lower elevation streams in the watershed. It is 

plausible that, in the areas where Bull Trout and Arctic Grayling overlap, these two species have 

co-evolved to occupy different elevational niches in order to spatially partition resources in 

oligotrophic streams. This has been observed in other Salmonids, where Cutthroat Trout 

(Oncorhynchus clarkii) and Bull Trout were found to be associated with higher elevation streams 

(>1500masl), whereas Brook Trout (Salvelinus fontinalis) and Rainbow Trout (Oncorhynchus 

mykiss) utilized lower elevation streams (<1500 masl) (Paul & Post, 2001), indicating a spatial 

partitioning of resources. Elevation-based partitioning of habitats by fish species and life history 

stages in the Little Nahanni River deserves further research attention.  

The river continuum concept explains that flowing water ecosystems sort in a particular 

manner and that abiotic and biotic characteristics can be predictably categorized into distinct 
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sections of streams (Vannote et al., 1980). Often, stream characteristics upstream can affect 

downstream attributes in a predictable manner based on the abiotic characteristics and biotic 

organisms that are present. Abiotic factors can be correlated to one another in a similar fashion. 

Traditionally, lower elevations have been associated with increased stream temperatures (e.g., 

Brunger Lipsey et al., 2005). However, this study found that elevation and temperature were not 

correlated significantly and that the negative relationship between the variables was not 

significant as observed in other studies. This suggests that each covariate is acting independent 

of eachother as predicting covariates for YOY Arctic Grayling. One potential explanation is the 

role of groundwater in the Little Nahanni River and how groundwater can provide warm-water 

refugia in an otherwise cold-water ecosystem.   

Influences of groundwater on spatial distribution of fishes in remote northern ecosystems are 

understudied, but groundwater may play a critical role in providing suitable habitat for Arctic 

Grayling. Although I did not address the role of groundwater directly, the warm stream 

temperatures (max= 17.5°C) that I observed indicate that some streams may be warmed by 

groundwater or thermal springs. Groundwater in northern regions helps to stabilize water 

temperatures in winter months, prevents ice formation and can help provide relatively warmer 

water temperatures for fish growth in cold, stream environments (Dunmall et al., 2016). Further 

investigation into the role of groundwater and thermal springs by YOY Arctic Grayling may 

reveal their dependency on groundwater-influenced streams for growth or as overwintering 

habitat between their first and second year of growth.  

While results of my study suggests that YOY Arctic Grayling are bound by a cold-water 

threshold (8°C) and occupy elevations <1150 masl, several other biological and sampling-related 

factors should be considered when making inferences with these data. For example, a number of 
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streams with elevation <1150masl were not sampled because they were inaccessible, for example 

due to fast flows that were unsafe to wade in. Thus, not all streams with an elevation <1150masl 

are necessarily suitable for YOY Arctic Grayling. However, utilizing elevation as a first-cut 

landscape-level predictor should help prioritize areas for more in-depth study and enable better 

predictions of suitable habitat for YOY Arctic Grayling.    

 

2.4.2 Detection efficiency 

Based on AIC ranking, modelled occupancy estimates for YOY Arctic Grayling better 

predicted suitable habitat when % boulder and % riffle were included as variables that affected 

detection efficiency. Visual obstructions and natural camouflage inherently make fish surveys 

difficult in some systems (Albanese et al., 2007), especially when looking for with small fish in 

lotic systems (King & Crook, 2002). Both % boulder and % riffle habitat reduced probability of 

detection of YOY Arctic Grayling, presumably by allowing fish to hide, avoid shock, or avoid 

capture.  

Percent boulder decreased probability of detection, likely by restricting netting ability and 

visibility during surveys. This is consistent with other electrofishing literature that identifies 

boulder and undercut banks as habitats that allow concealment and avoidance of capture 

(Peterson et al., 2004). Boulder substrate occurred in 95% of my study sites, including in lower 

elevation streams. Arctic Grayling seek boulder cover as a velocity refuge in flowing streams in 

a similar manner to other salmonids, which likely lowers energetic expenditures during drift 

feeding events (Quinn & Kwak, 2000).  

Percent riffle habitat also affected detection efficiency. Riffles are faster flowing, white 

water sections that are important for many biotic and abiotic process in streams, including 
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oxygenation of water and provision of habitat for specialized invertebrate and fish communities 

(Gorman & Karr, 1978). In riffle habitats, YOY Rainbow Trout use interstitial spaces for feeding 

and as refugia from flow, and this results in their concealment (Meyer & Griffith, 1997). YOY 

Arctic Grayling exhibit similar behaviour, especially when fry emerge (McPhail & Lindsey 

1970; Kaya, 1991). Ultimately, reduced visibility in riffle habitats results in lower detection 

efficiencies, which traditional distribution models fail to account for in their evaluations of 

habitat use (Bozek & Rahel, 1991; Elith & Leathwick, 2009).  

 

2.4.3 Occupancy modelling approach 

Remote areas of northern Canada are difficult to access and are logistically challenging 

environments for conducting field research. Using an occupancy modeling framework allowed 

greater spatial coverage than would have been possible using more traditional habitat models; 

sampling time was reduced by using presence/absence surveys, and by using spatial replication 

to determine detection efficiency (Charbonnel et al., 2014). Identifying landscape (elevation) and 

local (stream temperature) covariates can be useful for applying the model in a monitoring 

context (Dextrase et al., 2014). My results demonstrated the utility of spatial replication in 

occupancy studies, strengthening arguments by Charbonnel et al. (2014) that spatial replication is 

useful and provides meaningful model outputs for organisms in linear systems (e.g., streams). 

Other authors have expressed apprehension with respect to using spatial replication, and have 

found that strict adherence to assumptions in temporal replicate studies is necessary (e.g., Rota et 

al., 2009). However, results from my research and other studies (e.g., Baker et al., 2017) 

demonstrate that use of spatial replication mitigates constraints and limitations associated with 
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field research in remote landscapes, and that modifying assumptions can still produce 

statistically robust results.  

Making inferences from highly variable data is challenging in field studies and can be 

difficult to evaluate even with robust statistical methods, such as occupancy models. The top 

model that explained YOY Arctic Grayling occupancy produced two important habitat 

characteristics that independently predicted occupancy (temperature and elevation) and two 

habitat characteristics that affected detection efficiency (boulder and riffle). While more study is 

needed to improve the precision around the parameter estimates of each variable, the results of 

my study identify and narrow down variables that future research should further investigate in 

other populations of Arctic Grayling. Future research should also consider the other variables 

that were included in models within two delta AIC of the top model, including undercut banks, 

velocity, and slope. These variables were removed from further consideration in the present 

study because of high uncertainty associated with their effects (which reflected high variability 

in the data), but both the initial results from model ranking and results of previous studies 

indicate that these may be important habitat features, especially when considering smaller spatial 

scales. Undercut banks are important habitat features for other salmonid species, such as Bull 

Trout, which use them for predator and capture avoidance (Peterson et al., 2004). Velocity was 

also found to be a key habitat covariate in predicting occupancy of YOY Arctic Grayling in 

barrenland systems, as small fish are unable to maintain position in high water velocities 

(Pearsons et al., 1992; Jones & Tonn, 2004; Baker et al., 2017).  
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2.4.4 Research Implications 

Results from my research will help resource managers monitor and protect Arctic Grayling 

in sensitive northern mountain stream ecosystems. Habitat models, such as the one I created, can 

be especially useful in remote regions such as NWT, where data are sparse and difficult and 

expensive to obtain and maximizing time and cost efficiency of sampling is of paramount 

importance. The ecology of fishes at northern latitudes is less understood relative to southern 

latitudes. Broadly characterizing fish habitat use in northern mountain regions, using elevation, 

and refining models with stream-specific covariates, such as stream temperature, can be 

informative and useful for various resource management applications. However, the results of 

my models also identify further questions about how landscape and stream-specific habitat 

characteristics affect occupancy of YOY Arctic Grayling, because it is evident by study 

comparisons that habitat predictor variables for YOY Arctic Grayling differ between ecosystems 

(Baker et al., 2017). It is clear that Arctic Grayling show great plasticity and use a variety of 

habitats to complete life stages depending on life history type (i.e., adfluvial vs. fluvial) and such 

differences should be considered in management decisions.   

While elevation was highlighted as the most important predictor variable at the landscape 

scale, the importance of water temperature in cold-water systems was also highlighted through 

my findings. YOY Arctic Grayling showed affinity for warmer-water areas. Stream temperature 

can be monitored using passive methods such as autonomous temperature loggers. Use of 

continuously recording loggers can help establish baseline water temperatures, assess presence 

and/or importance of groundwater inputs, and identify changes in water temperature from natural 

resource development and climate change, all of which could directly affect YOY Arctic 

Grayling.  
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Results from this research can help resource managers, industry, researchers, and First 

Nations understand and monitor sensitive fish species and their habitats. Threats such as habitat 

disturbance or overfishing should be monitored closely for susceptible species like Arctic 

Grayling.  Degradation of spawning and rearing habitats can have negative consequences for 

future adult Arctic Grayling populations. An occupancy study design, that provides time- and 

cost-savings, may be useful to detect anthropogenic impacts that would otherwise be challenging 

to assess using conventional survey methods (e.g., abundance measures). As well, changes in 

fish occupancy can be useful for First Nations and government, to inform future fishery 

management decisions and can help indicate changes in freshwater health. Future monitoring and 

research on juvenile and adult Arctic Grayling can help continue to monitor habitat use and 

distribution of Arctic Grayling.   

 

2.4.5 Future directions 

Improved scientific understanding of YOY Arctic Grayling habitat can have significant 

bearing in determining critical habitat required by Arctic Grayling during sensitive life stages.  

Parks Canada and DFO are interested in applying results of this research directly into broad-scale 

monitoring programs. Both stakeholders are interested in identifying YOY Arctic Graying 

habitat because it is a life stage that is particularly vulnerable to anthropogenic impacts from 

development, increased park use, and climate change. Part of the impetus of this study was the 

stated interest of both Nahanni and Nááts'ihch'oh Park Reserves in identifying fish-bearing 

streams and habitats used in the Little Nahanni River watershed, to better understand and 

monitor the potential impacts of mine development on fisheries in the region.  Parks Canada 
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could use this modelling approach to assess changes in Arctic Grayling habitat and use these 

results as an ecological baseline for their monitoring program.  

Future research should assess whether landscape-level predictors, such as elevation and 

stream temperature, are important for other salmonid species in Arctic and sub-Arctic 

watersheds. Groundwater inputs may provide critical overwintering habitats for Arctic Grayling; 

however, little is known about the importance of groundwater in structuring habitat use for 

fluvial fishes in these mountain ecosystems. Expanding this framework of research to include 

other sensitive salmonid species will allow better understanding of the role of water temperature 

and other habitat covariates on distribution of other cold-water fishes and will overall contribute 

to conservation plans for salmonid populations in northern mountains.  DFO has expressed 

interest in incorporating findings from this model, to produce a wide-scaling northern salmonid 

model. 

As a result of this research, habitat requirements are now better understood for YOY Arctic 

Graying in mountain systems, which is important for territorial and federal regulators when 

assessing resource development projects. An additional concern, especially for northern 

residents, is how contaminants in freshwater organisms like Arctic Grayling and other 

subsistence fishes can be affected by development in the area. Heavy metal contaminants, such 

as Mercury, are already a concern in the north due to atmospheric transport and resource 

extraction industries. As northern communities become more accessible the exploration and 

subsequent development of base metal and hydrocarbon deposits will increase (Cott et al., 2015) 

and fossil fuel and mining activities increase, there is the potential for increasing 

bioaccumulation of contaminants in freshwater biota (Streets et al., 2011). Establishing a 
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baseline understanding of habitat use, contaminant concentrations and their interactions is critical 

for all stakeholders. 

 

2.4.6 Conclusion 

 Using an occupancy modelling approach, I have identified elevation and water 

temperature as important habitat characteristics for YOY Arctic Grayling in mountain system. 

My findings differ from the recent results presented by Baker et al. (2017), who showed that 

water velocity and depth are the most important predictors for occupancy of adfluvial YOY 

Arctic Grayling in barrenlands streams (Baker et al., 2017). This key finding highlights that life-

history type and ecoregion can play a role in determining important spawning and rearing habitat 

for Arctic Grayling. When applying predictive habitat models for monitoring, population 

information like life-history and ecoregion are critical for accurate prediction. Elevation may be 

particularly useful for resource managers to apply in predictive modelling because it can be 

remotely sensed. Using remote sensing to model elevation and its influence on Arctic Grayling 

distribution can help narrow search efforts and provide further cost-savings during monitoring 

and conservation efforts of YOY habitat. As well, using an occupancy-based approach can 

provide resource managers with the survey methods required to determine change in habitat use 

by YOY Arctic Grayling, while providing a feasible survey method required for working in 

remote northern environments.    
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Chapter 3 

Comparing mercury bioaccumulation in Arctic Grayling in two sub-Arctic 

ecosystems: mountain versus barrenland habitats 

 

 
3.1 Introduction 

Mercury point sources are rare in northern Canada, yet mercury concentrations in biota and 

the abiotic environment of Arctic and sub-Arctic ecosystems have increased since the 1940’s 

(see Lucotte et al., 1995; AMAP, 2011). Mercury released to the atmosphere in more southerly 

regions via coal combustion, mining and other anthropogenic activities, is subject to long-range 

atmospheric transport, and can be deposited in remote northern environments (see Fitzgerald et 

al., 1998; Morel et al., 1998; Durnford et al., 2010; Stern et al., 2012). Mercury transported to 

remote regions can ultimately be delivered to aquatic environments and undergo methylation to 

form methyl mercury (MeHg). MeHg can bioaccumulate and biomagnify in high-trophic level 

consumers such as fish (Kidd et al., 1995). Ingesting fishes with high levels of mercury can pose 

serious health risks to humans and wildlife (AMAP 2011).  

The effects of climate change on mercury biomagnification and bioaccumulation are 

complex. Northern ecosystems are especially vulnerable to climate change (IPCC, 2007) and 

climate change may be affecting mercury cycling in northern regions by mobilizing mercury, 

increasing methylation rates, and altering trophic transfer (AMAP 2011). Despite a reduction in 

anthropogenic emissions of mercury in recent decades, increased permafrost thaw (Rydberg et 

al., 2010) and forest fire activity (Kelly et al., 2006) are contributing to increased mercury 

deposition in some northern aquatic ecosystems. Recent models predict that northern permafrost 

contains almost twice the amount of MeHg found in other natural environments, such as the 

ocean and atmosphere (Schuster et al., 2018). Fish are the largest source of mercury to humans, 
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and many northerners rely on fish as a food source (e.g., AMAP, 2011; see Wheatley & Paradis, 

1995). In northern regions, Indigenous groups show an increased likelihood of being exposed to 

mercury through traditional harvesting of fish and mammals (Kuhnlein et al., 1995; Braune et al., 

1999). Causes of spatial variation in fish mercury concentrations among northern regions are 

poorly understood, and as such, current models cannot accurately predict what regions have high 

MeHg concentrations in fish, just that mercury is generally correlated positively with latitude 

(Evans et al., 2005; Lavoie et al., 2013). 

MeHg accumulation in fish reflects a complex interaction of several abiotic and biotic 

variables operating at spatial scales ranging from within-system habitats to landscapes. Along 

with many other variables, mercury concentrations in fish can respond to variability in water 

temperature, redox conditions, water chemistry, composition of the prey community, presence 

and distribution of methylating environments, lotic vs lentic habitat use, pelagic vs littoral habitat 

use, water residence times, and catchment sizes (see AMAP, 2011). Understanding how broad-

scale differences in habitat use affect mercury bioaccumulation in fishes that show plasticity in 

life history and ecology will enable better predictions of effects of climate change on fish 

mercury levels, and ultimately better inform northern residents and regulators.   

Arctic Grayling is a cold-water stenothermic fish species within the Thymallus genus 

(Salmonidae family). Habitat use and life history vary among populations, and seasonal 

migrations can be complex; Arctic Grayling use riverine and lacustrine waterbodies to complete 

different life stages (Vincent, 1962; Scott & Crossman, 1973; de Bruyn & McCart, 1974; Kaya, 

1991; see Chapter 2). Similar to other Salmonids, Arctic Grayling require different habitats for 

spawning, rearing, feeding, and overwintering. Arctic Grayling have adopted three different life 

history strategies: lacustrine, adfluvial and fluvial. Lacustrine populations use lakes for all life 
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stages (Vincent, 1962), adfluvial populations use streams for spawning and rearing and lakes for 

summer feeding and overwintering (de Bruyn & McCart, 1974), and fluvial populations use 

flowing stream environments for all life stages (Liknes & Gould, 1987).  As factors that affect 

methylation (e.g., redox conditions; Fleming et al., 2006; Hammerschmidt et al., 2010) and 

bioaccumulation (e.g., growth rates, feeding ecology; Jardine et al., 2015; Clayden et al., 2013) 

of mercury can differ among habitats, it is likely that mercury concentrations also differ among 

life history types of Arctic Grayling; however, these differences have not been directly 

investigated.  

Previous studies have generally found that mercury levels in Arctic Grayling are below 

human consumption guidelines (< 0.5 μg/g ww). Total mercury (THg) levels in adfluvial Arctic 

Grayling ranged from 0.078 to 0.264 mg/kg (wet weight) in two rivers in western Alaska (Jewett 

et al., 2003). Adfluvial Arctic Grayling were found to have lower THg than Lake Trout 

(Salvelinus namaycush) in four Alaskan lakes, which was thought to be partly due to differences 

in diet (Allen-Gil et al., 1997). Arctic Grayling fed primarily on surface invertebrates, whereas 

Lake Trout feed on a more complex diet including benthic invertebrates and fishes. Allen-Gil et 

al. (1997) inferred differences in feeding habits and diet between Arctic Grayling and Lake Trout 

that affected THg concentrations, and these authors suggested that surface-feeding Arctic 

Grayling were exposed to less THg in their diet than benthivorous and piscivorous Lake Trout.  

THg concentrations in fish are affected by a variety of variables that likely differ between 

adfluvial, barrenland tundra populations of Arctic Grayling and fluvial, mountain populations of 

Arctic Grayling. These variables include: water temperature, dissolved oxygen, dissolved 

organic carbon, primary productivity, fish growth rates, and fish trophic position (see AMAP, 

2011). In this study, I compared THg concentrations, age, and trophic position between adfluvial 



63 

 

and fluvial Arctic Grayling in barrenlands and mountain streams, respectively. I also compared 

MeHg concentrations in invertebrates between these two northern ecosystems. To achieve this, 

THg concentrations and stable isotope ratios of carbon and nitrogen in Arctic Grayling muscle 

tissue, as well as MeHg concentrations in benthic invertebrates, were compared between two 

ecosystems: Kennady Lake, representing the barrenland adfluvial population and Little Nahanni 

River, representing the mountain fluvial population. I hypothesized that THg concentration in 

Arctic Grayling would differ between Kennady Lake and Little Nahanni River as a function of 

differences life history strategies (adfluvial versus fluvial), trophic ecology (e.g., prey selection), 

and ecosystem processes (e.g., methylation rates). I predicted that barrenland, adfluvial Arctic 

Grayling would have higher mercury levels than mountain, fluvial Arctic Grayling, partially 

because of slower fish growth rates and higher rates of methylation in the former. I further 

predicted that at a similar life stage and size, adfluvial Arctic Grayling in the barrenlands would 

have higher THg levels due to feeding at a higher trophic position. The trophic food web in 

Kennady Lake is more complex than Little Nahanni River, providing an opportunity for Grayling 

to consume small prey fish and benthic invertebrates that may have increased mercury 

concentrations because of the lake environment that is more conducive to mercury methylation.    
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3.2 Methods 

3.2.1 Study sites 

The Kennady Lake watershed is a barrenland chain-lake ecosystem that supports an 

adfluvial life history type of Arctic Grayling.  Kennady Lake is a headwater lake located 

approximately 280 km northeast of Yellowknife, Northwest Territories (NWT), 63°26′04″N 

109°11′10″W (Fig. 3.1). It is considered part of the Mackenzie River basin, with the outflow 

running southwest into Great Slave Lake and ultimately into the Mackenzie River. Kennady 

Lake is currently the site of a diamond mining project (Gahcho Kue) operated by DeBeers 

Canada Inc., and is typical of larger lakes in the area, with a surface area of 11.8 km2 and a 

maximum depth of 18 m. Large areas of the lake have been dewatered for mine development, 

reducing downstream flow from Kennady Lake. Data used in this study were collected before 

mining commenced. Hydrological linkages in the watershed are representative of tundra systems, 

with meandering streams that flow through small, shallow ponds (<4m) and lakes (Baker et al., 

2017). The area surrounding Kennady Lake is low-relief, sub-Arctic tundra with low shrubs and 

sparse black spruce and dwarf birch in riparian areas. Kennady Lake is in the sub-Arctic tundra 

shield ecozone (Ecosystem Classification Group 2012). The watershed is comprised of 

hummocky glacial till covering continuous permafrost, except for deep lakes, such as Kennady 

Lake, where talik links the lake with groundwater (De Beers Canada 2010a). Kennady Lake has 

characteristics typical of an oligotrophic lake, with low nutrient concentrations, specific 

conductivity and total alkalinity (De Beers Canada 2010b) (Table 3.1). 

The Little Nahanni River supports the fluvial life history type of Arctic Grayling and is a 

mountain stream system located in southwest NWT along the border with Yukon Territory, 

(62°12′52.1″N 128°46′01.5″W) (Fig. 3.1). This watershed is part of the headwater system for the 
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South Nahanni River, which drains into the larger Mackenzie River Basin (Ootes et al., 2013). 

Approximately one-third of the Little Nahanni River watershed is protected by both the Nahanni 

and Nááts'ihch'oh National Park Reserves. There are numerous mineral claims in the area by 

various mining companies interested in the estimated 185 million tonnes of lead-zinc-tungsten 

deposits in the region (Ootes et al., 2013). 

The mountainous Little Nahanni watershed is part of the Mackenzie and eastern Selwyn 

Mountain range, which is considered the northern extent of the Canadian Rockies (Ootes et al., 

2013). The watershed varies in elevation from approximately 800 to 2200 meters above sea level 

(masl) and is categorized as a taiga cordillera ecozone, consisting of wetland, boreal forest and 

alpine tundra (Ponomarenko & Quirouette, 2015). Vegetation across the landscape is determined 

by elevation, topography and substrate. At higher elevations (approximately > 1700 masl), 

common alpine vegetation, such as lichen (Cladonia rangiferina) and mountain avens (Dryas 

octopetala), dominates, but at lower elevations (between 800 – 1700 masl) stands of stunted 

white spruce (Picea glauca), alpine fir (Abies lasiocarpa), willow (Salix sp.) and dwarf birch 

(Betula nana) dominate the landscape (Ponomarenko & Quirouette, 2015). Annual seasonal 

temperatures for the Selwyn mountain range can range from -51°C in winter to 28°C in summer. 

The region receives 644mm of precipitation annually, with most precipitation falling as rain in 

the summer months (Jackson, 1987). Most streams in the area are surface-water fed, although 

groundwater, glaciers, and springs also contribute to base stream flow (Mochnacz et al., 2013). 

Mountain streams in the Selwyn Mountain Range are generally faster-flowing systems than 

tundra, barrenland streams at Kennady Lake (Table 3.1).   
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Figure 3.1. Map of North America (Image: W. Ricketts 1999) depicting the sub-Arctic 

ecoregion (dark grey). Sub-Arctic mountain (left) and barrenland, tundra (right) streams 

contain fluvial and adfluvial populations of Arctic Grayling, respectively. Photo left, credit: 

Morag McPherson, photo right, credit: Sarah Lord.  
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Table 3.1. Range of values associated with habitat data collected from Kennady 

Lake and Little Nahanni River during summer months. The habitat data are 

representative of the different ecosystems, and do not represent the habitat preferred 

by adult Arctic Grayling.  

  Kennady Lake Little Nahanni River 

 Stream Parameter Range Range 

water temperature (°C) 8.60 22.40 2.48 17.00 

stream width (cm) 4.00 80.25 1.50 14.32 

avg. depth (cm) 1.00 100.00 9.25 68.50 

avg. velocity(m/s) 0.01 0.55 0.11 1.93 

discharge(m3/s) 0.01 0.31 0.12 2.73 

pH 6.45 7.45 7.23 8.43 

specific conductivity 

(μS/cm) 12.90 16.30 113.70 519.50 

dissolved oxygen (mg/L) 9.00 11.00 7.15 14.31 

 

 

 

3.2.2 Sample collection and preparation 

 

As part of the diamond mine project development at Kennady Lake, a partial fish-out was 

performed in 2014 and 2015. Adult Arctic Grayling were obtained opportunistically from these 

activities.  Using a lake fish-out protocol (Tyson et al., 2011), gill nets of varying mesh sizes 

were used to capture Arctic Grayling in Kennady Lake. In suitable conditions, dissections took 

place in the field, otherwise, fish were frozen, shipped and dissections were completed in 

university labs prior to further analyses. Arctic Grayling were captured in the Little Nahanni 

River during summers 2015 and 2016 with either a Smith-Root Inc. LR-24 electrofisher or 

angling. Fish were subsequently frozen whole, using a portable electric freezer, until they could 

be transported to a suitable laboratory for dissection.  

Ultimately, there were 27 and 24 adult Arctic Grayling (all > 148 mm fork length) collected 

from Kennady Lake and the Little Nahanni River, respectively. Fish were processed for fork 

length (mm) and wet weight (g). Sex (male/female) and maturity (immature/mature) were 

visually assessed for each fish. Sagittal otoliths were collected from Arctic Grayling at both sites 
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for aging analysis. Structures were removed, cleaned, dried, and frozen until analysis could be 

completed. Dorsal muscle tissue with skin removed was taken from fish. Samples were freeze-

dried for a minimum of 48 hours in a Labconco Freezone 2.5 Liter Freeze Dry System at -54 °C 

and 10 mTorr (Labconco, Kansas City, Missouri, USA). Freeze-dried tissue was then 

homogenized using a mortar and pestle, until a fine powder consistency was achieved. Between 

each sample grinding, equipment was rinsed with Milli-Q water and ethanol. Samples were 

stored in acid washed scintillation vials prior to being analyzed for THg and stable isotope ratios 

(N and C). Arctic Grayling from Kennady Lake were shipped directly to University of Waterloo 

for further processing. Whole Arctic Grayling from Little Nahanni River were sent to 

collaborators at the University of Alberta for further processing and then samples were shipped 

to University of Waterloo for THg and stable isotope analysis.  

In addition to Arctic Grayling, forage fishes and benthic invertebrates from Kennady Lake 

and Little Nahanni River were also collected, analyzed, and used in quantifications of 

biomagnification and food web dynamics in each study system. Prey fish species, including 

Slimy Sculpin (Cottus cognatus), Ninespine Stickleback (Pungitius pungitius) and Lake Chub 

(Couesius plumbeus) were caught using gill nets in Kennady Lake.  Prey fish in Little Nahanni 

River include Slimy Sculpin and juvenile Burbot (Lota lota), and were captured opportunistically 

during electrofishing surveys for Arctic Grayling. Prey fishes were frozen whole, and dissected 

in the lab at University of Waterloo. Samples were prepared by removing the head and 

gastrointestinal tract, in accordance with USGS prey fish preparation for THg analysis (Scudder 

et al., 2008).    

Invertebrate samples from both Little Nahanni River and Kennady Lake were collected at 

the same time as fishes.  Sampling was conducted using the kick and sweep method (D-net; 
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400μm mesh). An Ekman dredge was also used in Kennady Lake to obtain benthic samples from 

deeper areas of the lake. Invertebrates were sorted in the lab to the lowest feasible taxonomic 

level - family, suborder or order - depending on the taxa. Invertebrates selected for further 

analysis were chosen based on three factors: i) taxa occurred at both study sites, ii) sufficient 

mass available for both THg and stable isotope analysis, and, iii) the organism should represent 

the lowest possible trophic level, preferably a shredding, grazing or filtering organism. Two 

families of invertebrates were represented in samples collected from both the Little Nahanni 

River and Kennady Lake, Chironomidae (Diptera) and Phryhaneidae (Trichoptera). These 

samples were thus used to establish an isotopic baseline (e.g., Post, 2002), and to compare MeHg 

concentrations between study sites. When necessary, individual organisms and sub-sites were 

pooled to achieve adequate sample mass for laboratory analyses. Three sub-sites were combined 

for Chironomidae from the Little Nahanni River, and four sub-sites were combined for 

Chironomidae at Kennady Lake. In addition, three sub-sites were combined for Phryhaneidae at 

Kennady Lake. Invertebrates were freeze-dried whole for a minimum 24 hours in a Labconco 

Freezone 2.5 Liter Freeze Dry System at -54 °C and 10 mTorr (Labconco, Kansas City, 

Missouri, USA). Samples were then either homogenized using a mortar and pestle, or by 

grinding in the sample scintillation vial. Samples were stored in acid-washed vials prior to 

analyses for MeHg concentrations and stable isotope ratios (N and C).  
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3.2.3 Mercury 

 

MeHg comprises the majority of THg in fish (Bloom, 1992; Forsyth et al., 2004). THg is, 

therefore, often used as a surrogate for MeHg, as laboratory analysis for THg can yield 

comparable results using simpler laboratory analyses. Jewett et al. (2003) showed that 95% of 

THg in Arctic Grayling (N = 10) was in the MeHg form. All Arctic Grayling in this study were 

analyzed for THg concentration. THg analyses were completed at the Biotron Experimental 

Climate Change Research Centre at Western University. THg analysis was performed on a 

Milestone DMA-80 Direct Mercury Analyzer. A certified reference material (DORM-4: Fish 

protein certified reference material from the National Research Council, Ottawa, Ontario) was 

analyzed at the beginning of each run and after every 10 fish samples analyzed. Duplicate THg 

analyses were completed for approximately 10% of all samples to quantify machine precision 

(Mean Δ Hg = 0.0092 ± 0.016 SD, n = 28). 

Analyses for MeHg on 38 prey fish samples were achieved using cold vapour atomic 

fluorescence spectrophotometry (Tekran 2700; modified EPA method 1631). A certified 

reference material (DORM-4: fish protein certified reference material from the National 

Research Council, Ottawa, Ontario) was analyzed (~10% of samples, mean recovery rate = 87% 

± 3.04 SD). Duplicate MeHg analyses were completed for ~20% of prey fish analyzed (Relative 

percent difference (RPD) = 11% ± 9.4 SD, n = 8).  

Invertebrates were analyzed for MeHg using a cold vapour atomic fluorescence 

spectrophotometer (Tekran 2700) at Western University - Analytical Service Lab in the Biotron 

Experimental Climate Change Research Centre. Duplicates were not available for MeHg 

analyses, as sample mass was limited.  
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3.2.4 Stable isotope ratios 

 

Homogenous powder from fish and invertebrate samples were transferred into an aluminum 

cup and weighed using a Mettler-Toledo Analytical Microbalance (model XPO5DR) (Mettler-

Toledo). The aluminum cup was weighed with powder, conformed into a cube necessary for 

stable isotope sample analysis, and weighed again to confirm sample weight. Sample weights 

ranged from 0.30-0.35 mg. Fish and invertebrate samples were analyzed for C and N stable 

isotope ratios at the Environmental Isotope Laboratory at the University of Waterloo. The 

equipment used was a 4010 Elemental Analyzer (Fisons Instruments) coupled to a Delta XL 

(Thermo Fisher Scientific) continuous flow isotope ratio mass spectrometer. Duplicates were run 

every 10th sample. Carbon and nitrogen values are reported as elemental isotope ratios in delta 

notation as δ13C and δ15N. Both are relative values to the reference materials Vienna Pee Dee 

Belemnite (VPDB) and atmospheric nitrogen, respectively, and are reported as parts per mil (‰). 

Analyses are quality controlled for instrument precision using international reference materials 

and in-house EIL standards, which are analyzed in each run. Ammonium sulfate (IAEA-N1 and 

IAEA-N2) is used as the laboratory international reference material for δ15N, in conjunction with 

in-house standard material ammonium sulfate (EIL-3 and JSEC-01). In the case of δ13C, 

international standard cellulose (IAEA-CH-3) and in-house standard cellulose (EIL-72) is used 

as a quality control standard. The standards are cross-calibrated to organic materials and the 

reference materials VPDB and atmospheric nitrogen. Standard reference materials were included 

as 20% of each analytical run and duplicate samples fell within quality control standards of 0.2‰ 

for δ13C and 0.3‰ for δ15N.   

Baseline corrected values of δ13C and δ15N for Arctic Grayling and prey fishes were 

achieved using δ13C and δ15N values for Chironomidae as the only in-common and most 
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abundant baseline invertebrate across both sites (see equation 3.1; e.g., Swanson et al., 2003). 

Other invertebrates that were collected in Kennady Lake and Little Nahanni River were used to 

assess biomagnification and trophic ecology in each respective system.  

 

3.2.5 Aging analysis 

Ages of Arctic Grayling for Kennady Lake and Little Nahanni River were evaluated using 

whole or thin sections of otoliths viewed under a microscope. Annuli appear as alternating 

opaque and translucent bands, which represent one summer and winter, respectively (see Panfili 

et al., 2002). For simplicity, fish ages are based on calendar year, assuming fish hatch January 1. 

Aging analysis was completed for Arctic Grayling from Kennady Lake (n = 21) and Little 

Nahanni River (n = 20). Some aging structures were either (a) not collected for each individual 

fish or (b) were not in suitable condition for aging analysis. Thus, sample sizes for age estimates 

are smaller than the total number of fish evaluated for THg concentration in tissue. Aging was 

completed at AAE Tech Services, with duplicate age estimates completed for 50% of the 

samples by two different aging technicians (duplicate age estimate rate = 100% agreement).  

 

3.2.6 Water Analysis 

 

Dissolved THg concentrations in water were compared between Kennady Lake and Little 

Nahanni River, “clean-hands dirty-hands” sampling techniques were used to collect water 

samples from three sites in the Little Nahanni River system in September 2016 (St. Louis et al., 

1994). Samples were preserved with 1% (by volume) ultra-trace HCl and transported to the 

Biotron at Western University. Water samples were analyzed using Cold Vapour Atomic 

Fluorescence - Digestion, Method Ref. modified from EPA 1631, Lab Method ID - TM.0811. 
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Initial and ongoing precision and recovery values ranged from 105% - 110% and 100% - 111% 

respectively. Concentrations of THg in water from Kennady Lake were evaluated as part of an 

Environmental Impact Statement at six sites between 1995 and 2010 (De Beers, 2010b).  

 

3.2.7 Statistical analyses 

 

Statistical analyses were completed using IBM SPSS Statistic software version 2.1 or 

Microsoft Excel 2016. All Arctic Grayling collected from Kennady Lake (n=27) and Little 

Nahanni River (n=24) were used during THg analysis. Significance level for analyses was set at 

α = 0.05. All THg concentrations for Arctic Grayling are converted and reported as wet weight 

(ww), which is consistent with THg literature. All THg data were log10 transformed prior to 

statistical analysis. A series of possible covariates for Hg in fish, including fork length, wet 

weight, age, condition factor, δ15N, δ13Cadj, condition factor, age and C:N ratio, were related to 

Arctic Grayling THg concentration and were compared between sites using general linear 

models (e.g., t-test, linear regression). Covariates that were compared among sites include: fork 

length, wet weight, age, condition factor, THg, δ13Cadj, δ
15N and C:N ratio. Because length and 

weight were highly correlated (r2 = 0.96), and fish weights were recorded at different stages (e.g., 

in field versus in lab), analyses relating fish THg concentrations to fish size were completed 

using fork length. When comparing differences in THg between systems, values of δ13C and 

δ15N were adjusted (δ13Cadj and δ
15Nadj) using the baseline benthic invertebrate Chironomidae, to 

account for differences in basal carbon and nitrogen in the system. Analyses involving age were 

completed using the reduced sample sizes available for analysis (Kennady Lake, n = 21; Little 

Nahanni River, n = 20).  

Relationships between fish weight and length provide important inferences about a fishes 

condition.  As well, weight-at-length relationships can be used to evaluate growth patterns in fish 
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species like Arctic Grayling (Le Cren, 1951). Based on a non-linear power line of fit, slopes of 

weight-length relationships indicated isometric growth for Arctic Grayling captured in Kennady 

Lake (slope = 2.86) and allometric growth for Arctic Grayling captured in Little Nahanni River 

(slope = 3.18). Condition factor was calculated using Fulton’s condition factor (K) (equation 

3.2).   

Analyses of covariance were used to compare THg levels in Arctic Grayling between sites; 

fork length was a covariate and least-squares means THg levels were compared at a fork length 

of 239 mm, as this was the estimated marginal mean common between populations. 

Heterogeneity of variance and normality of the residual assumptions were assessed. Associations 

between covariates and log10 THg concentration were then assessed using correlation matrices 

(r). General linear models, including analyses of covariance, were then used to further assess 

relationships between log10 THg concentration (wet weight) and covariates between the sites.   

 

3.3 Results 

On average, Arctic Grayling captured at Kennady Lake were approximately 68 mm longer 

and weighed 140 g more than Arctic Grayling from Little Nahanni River. Data were log-

transformed prior to analysis, with the exception of stable isotope values. Mean THg 

concentration was higher in Kennady Lake (mean = 0.06 ± 0.02) than Little Nahanni River 

(mean = 0.02 ± 0.01). All 51 Arctic Grayling collected from the study systems had THg 

concentrations that were well below the commercial sale guideline in Canada, which is 0.5 µg/g 

wet weight (Figure 3.2). 
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Table 3.2. Descriptive statistics derived from Arctic Grayling in Kennady Lake and Little Nahanni River 

to assess mercury concentration differences among sites. Unadjusted values are displayed for δ13C and 

δ15N.  

 Kennady Lake (n=27) Little Nahanni River (n=24) 

Covariate Mean (± St. Dev.) Min Max Mean (± St. Dev.) Min Max 

Length (mm) 288.07±47.02 188 370 220.38±76.39 148 369 

Weight (g) 318.04±137.48 77 650 177.92±193.94 35 610 

Age (years) 3.81±1.08 2 5 4.83±3.4 2 11 

THg (μg/g ww) 0.06±0.02 0.03 0.10 0.02±0.01 0.01 0.04 

δ13C (‰) -22.41±0.8 -23.95 -20.05 -31.91±1.72 -35.05 -28.42 

δ15N (‰) 8.06±0.42 7.10 8.82 8.11±1.53 6.48 11.20 

 

  
Figure 3.2. Box plot of total mercury (THg) concentrations (ww) in Arctic 

Grayling captured from Kennady Lake (KL), NWT in 2014 and Little 

Nahanni River (LNR), NWT, 2015 and 2016. All measured mercury 

concentrations are well below the Canadian commercial sale guideline 

(0.5μg/g ww). Arctic Grayling from Kennady Lake, NWT had significantly 

higher THg than Arctic Grayling from Little Nahanni River, NWT (Pooled 

samples t-test, t (49) = 9.579, P < 0.05). 
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THg in muscle tissue of adult Arctic Grayling was significantly higher in fish from Kennady 

Lake than in fish from Little Nahanni River (Figure 3.2; pooled samples t-test, t (49) = 9.579, P < 

0.05). A variety of covariates, listed in Table 3.3, were investigated as potential explanatory 

variables for the difference in mercury between sites.  

Fork length and weight of Arctic Grayling were highly correlated (r = 0.98) in both study 

systems. Fork length was used to estimate size-standardized THg concentrations in each of 

Kennady Lake and Little Nahanni River. Arctic Grayling at Kennady Lake were significantly 

longer than at Little Nahanni River (Pooled samples t-test, t (49) = 4.32, P < 0.05) (Figure 3.3). 

Log10 THg concentration was significantly related to fork length at Kennady Lake (linear 

regression, t (25) = 3.73, P < 0.05), but was not significantly related to fork length at Little 

Nahanni River (linear regression, t (22) = 1.77, P = 0.09) (Figure 3.4). 

 
Figure 3.3. Boxplot of adult Arctic Grayling fork length (mm; log10 

transformed). Arctic Grayling from Kennady Lake were significantly 

longer than those from Little Nahanni River (Pooled samples t-test, t (49) = 

4.32, P < 0.05).  Outliers are represented by black circles included in the 

t-test. Boxes represent the 25th, 50th, and 75th percentiles, and whiskers 

represent the 5th and 95th percentiles. 
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Figure 3.4. Linear regressions of Log10 total mercury (THg) 

concentration (ww) and log10 fork length (mm) for Kennady Lake (KL), 

NWT, 2014 and Little Nahanni River (LNR), NWT, 2015 and 2016. 

Log10 Total mercury (THg) was significantly and positively related to 

log10 fork length (mm) at Kennady Lake, NWT (t (25) = 3.73, P < 0.05) 

but not at Little Nahanni River, NWT (t (22) = 1.77, P = 0.09). At a fork 

length of 239 mm (log10 fork length (mm) = 2.38), Total mercury (THg) 

concentrations in Arctic Grayling were significantly higher at Kennady 

Lake, NWT than at Little Nahanni River, NWT.  

 

 

To investigate whether Arctic Grayling had higher THg at Kennady Lake because they were 

larger, I performed an analysis of covariance; site was the independent variable, Log10THg was 

the dependent variable, and log10 fork length was the covariate. Heterogeneity of slopes was not 

observed – i.e., the interaction term of site* Log Fork Length was not significant (ANCOVA, F 

(1, 47) = 2.54, P = 0.12). Mercury concentrations were significantly related to log fork length (mm) 

(ANCOVA, F(1, 48) = 10.89, P < 0.05) and differed significantly between sites (ANCOVA, F(1, 48) 

= 75.78, P < 0.05). Tests of normality, including the Kolmogorov-Smirnov test (test statistic (51) = 
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.09, P = 0.20), as well as qualitative assessments of Q-Q and residual*predicted plots, indicated 

normality of residuals from the ANCOVA analysis. Estimated least squares means using type III 

sum of squares produced an estimate of Log10 THg (wet weight) to be -1.28 (± 0.02 SE) and -

1.61 (± 0.03 SE) for Kennady Lake and Little Nahanni River, respectively. Estimates were made 

at the mean level of the covariate (log fork length of 2.39), and were significantly different (F (48) 

= 75.78, P < 0.05). That is, Arctic Grayling at Kennady Lake had higher THg than at Little 

Nahanni River, even when the effect of larger fish size at Kennady Lake was accounted for.  

To further investigate why Arctic Grayling at Kennady Lake had higher THg than at Little 

Nahanni River, correlations between THg and seven additional covariates were assessed (Table 

3.3). In general, correlations between THg and covariates were stronger for Kennady Lake then 

for Little Nahanni River.  

 

Table 3.3. Results of Pearson correlation analyses between log10 total mercury concentrations in 

Arctic Grayling and potential covariates at Kennady Lake, Little Nahanni River, and both sites 

combined. There is a reduced sample population for age-related covariates due to a limited number of 

aging structures available for analysis.   

Covariate (n) Kennady Lake 

Little Nahanni 

River 

Sites combined 

  r P r P r P 

fork length 51 0.57 < 0.05 0.36 0.08 0.88 < 0.05 

weight 51 0.72 < 0.05 0.30 0.16 0.85 < 0.05 

δ13Cadj 51 - 0.38 0.05 -0.08 0.70 - 0.35 < 0.05 

δ15N 51 0.47 < 0.05 0.17 0.43 -0.45 < 0.05 

C:N 51 - 0.18 0.37 0.16 0.47 - 0.036 0.82 

condition factor 51 0.36 0.06 0.07 0.73 0.65 < 0.05 

age 41 0.71 < 0.05 0.63 < 0.05 0.40 < 0 .05 

length-at-age 41 - 0.51 < 0.05 - 0.54 < 0.05 0.13 0.43 
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At Kennady Lake, Log10 THg concentration in Arctic Grayling was positively correlated 

with fork length, weight, age, and δ15N, and negatively correlated with length-at-age.  There was 

also a moderate correlation with δ13Cadj. Age and length-at-age were the only two covariates that 

correlated with THg concentration in Arctic Grayling from Little Nahanni River. Log10 THg 

concentration was not correlated to condition factor or C:N ratio at either Kennady Lake or Little 

Nahanni River, and these variables were thus excluded from analyses designed to further 

investigate why THg concentrations in Arctic Grayling were different between sites (Table 3.3). 

Log10 THg was significantly correlated with fork length, weight, δ13Cadj, condition factor and 

age.  

Age was significantly and positively related to THg concentration at both sites (simple linear 

regression, t (19) = 5.03, P < 0.05) and Little Nahanni River (simple linear regression, t (18) = 2.96, 

P < 0.05; Figure 3.5). In an ANCOVA in which site was the independent variable, Log10 [THg] 

was the dependent variable, and Log10 Age was the covariate, heterogeneity of slopes was not 

observed (age*site interaction was not significant (ANCOVA, F = 2.11, df = 37, P = 0.15)), 

[THg] was significantly related to age (ANCOVA, F(2, 37) = 20.89, df = 37, P = < 0.05), and 

[THg] differed significantly between sites (ANCOVA, F(1, 38) = 141.98, P < 0.05). Estimated LS 

means using type III sum of squares produced estimates of Log10 [THg] (wet weight) of -1.25 (± 

0.02 SE) and -1.63 (± 0.02 SE) for Kennady Lake and Little Nahanni River, respectively 

(derived at an average age of 3.5 years). Tests of normality, including the Kolmogorov-Smirnov 

test, as well as qualitative assessments of Q-Q and residual*predicted plots, indicated normality 

of residuals from the ANCOVA analysis. Mercury concentrations thus significantly differed 

between sites even after age correction, and therefore age differences cannot explain differences 

in mercury.   
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Fig. 3.5. Linear regression of Log10 total mercury (THg) concentration 

(ww) and age (years) in populations of Arctic Grayling in Kennady 

Lake and Little Nahanni River.  Log10 THg was significantly and 

positively related to age (years) at Kennady Lake (SLR, t (19) = 5.03, P 

< 0.05) and at Little Nahanni River (SLR, t (18) = 2.96, P < 0.05).  

 

 

Because length-at-age was significantly and negatively related to THg at both Kennady Lake 

and Little Nahanni River, an ANCOVA was used to assess whether length-at-age differed 

between sites and could thus explain the difference between sites in THg in Arctic Grayling. Site 

was the fixed factor, length was the dependent variable and age was the covariate. The 

interaction term (Site*Age) was significant (ANCOVA, F = 11.03, df = 37, P < 0.05), indicating 

that growth rates differed between sites. Arctic Grayling grew faster in Kennady Lake than in 

Little Nahanni (Figure 3.6), and thus higher THg in Arctic Grayling from Kennady Lake was not 

caused by slower growth rates in this system. 
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Figure 3.6. Box plots of Log10 total mercury (THg) concentration (ww) at 

each age of Arctic Grayling captured from Kennady Lake and Little Nahanni 

River. At similar ages, Arctic Grayling from Kennady Lake had higher THg 

than Arctic Grayling from Little Nahanni River.  Outliers (36 and 51) are 

both from Little Nahanni River; these fish had higher THg at a given age 

when compared to other fish in the population and were included in 

additional analyses.  Boxes represent the 25th, 50th, and 75th percentiles, and 

whiskers represent the 5th and 95th percentiles. 
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Figure 3.7. Linear regressions between fork length (mm) and age 

(years) of Arctic Grayling from Kennady Lake (SLR, F (1, 20) = 41.84, 

P < 0.05) and Little Nahanni River (SLR, F (1, 19) = 217.68, P < 0.05).  

 

 

Log10 THg was moderately and negatively related to δ13Cadj at Kennady Lake (r = - 0.38) 

and not correlated at Little Nahanni River (r = - 0.08) (Table 3.3; Figure 3.8). Overall, the 

relationship between δ13Cadj and THg was negative in both Kennady Lake and Little Nahanni 

River populations of Arctic Grayling. As previous authors have shown a negative relationship 

between THg and δ13C (e.g., Power et al. 2002), a pooled samples t-test was performed to 

determine whether δ13Cadj differed between sites and thus might explain higher THg in Arctic 

Grayling from Kennady Lake. Delta13C ratios were adjusted using δ13C values for Chironomidae 

as the baseline benthic invertebrate common between Kennady Lake and Little Nahanni River. 

Delta13Cadj did not differ significantly between sites, and thus did not explain differences in THg 

between sites. To ensure that differences in the relationship between fish size and δ13Cadj 
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between sites did not affect the assessment of mean differences in δ13Cadj between sites, an 

ANCOVA was performed; Site was the fixed factor, δ13Cadj was the dependent variable, and 

length was the covariate. The interaction term (Site* Length) was significant (ANCOVA, F(1,47) 

= 6.23, P < 0.05), indicating that the relationship between δ13C and length differed between sites. 

The relationship between δ13Cadj and site was found to be not significant (ANCOVA, F(1,47) = 

3.91, P = 0.55). At similar lengths (260mm), δ13Cadj is considered not significantly different 

between sites, which confirms δ13Cadj does not explain differences in THg between Kennady 

Lake and Little Nahanni River.  

 

 

Fig. 3.8. Relationship between Log10 Total Mercury (THg) 

concentration (ww) and δ13Cadj (‰) in Arctic Grayling from Kennady 

Lake and Little Nahanni River. Log10 THg was significantly and 

negatively related to δ13Cadj (‰) at Kennady Lake (SLR, t (25) = - 2.34, 

P < 0.05) but the relationship was not significant at Little Nahanni 

River (SLR, t (22) = - 0.62, P = 0.54).  
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Fig. 3.9. Relationship between δ13Cadj (‰) and length (mm) in Arctic 

Grayling from Kennady Lake and Little Nahanni River. Length (mm) 

and δ13Cadj (‰) are negatively and significantly related at Kennady 

Lake (SLR, F(1, 25) = 8.65, P < 0.05) but the relationship was not 

significant in the Little Nahanni River (SLR, F (1, 22)= 1.89, P = 0.18). 

 

 

 

At a similar δ15N, Arctic Grayling from Kennady Lake had higher THg concentration than at 

Little Nahanni River. Higher THg in Kennady Lake Arctic Grayling at similar values of δ15N 

suggests there may be baseline differences in mercury concentration between the two systems. 

Log10 THg in Arctic Grayling was moderately and positively correlated with δ15Nadj at Kennady 

Lake, but there was no relationship between THg and δ15Nadj in Arctic Grayling at Little Nahanni 

River (Table 3.3; Figure 3.10). The relationship between δ15Nadj and length in Kennady Lake was 

positive and significant relationship (SLR, F(1, 25) = 38.58, P < 0.05). This suggest that Arctic 

Grayling in Kennady Lake may show an ontogenetic shift in feeding, while feeding by Arctic 

Grayling in Little Nahanni River appears much more variable across lengths (Figure 3.11). 
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Fig. 3.10. Log10 total mercury (THg) concentration (ww) as related to 

δ15Nadj (‰) for Arctic Grayling in Kennady Lake (KL), NWT, in 2014 

and Little Nahanni River (LNR), NWT in 2015 and 2016.  

 

 

In an ANCOVA, site was the fixed factor, length was the covariate and δ15Nadj was the 

dependent variable. The interaction term (Site* Length) was not significant (ANCOVA, F(1,47)  = 

2.26, P = 0.14), indicating regression of slopes was similar. Delta 15Nadj was significantly related 

to site (ANCOVA, F(1, 47) = 27.96, P < 0.05) but not significantly related to fork length 

(ANCOVA, , F(1, 47) = 0.25, P = 0.62). Tests of normality as well as qualitative assessments of Q-

Q and residual*predicted plots, indicated normality of residuals from the ANCOVA analysis. 

Estimated least squares means using type III sum of squares produced an estimate of 15Nadj to be 

3.57 (± 0.22 SE) and 5.38 (± 0.24 SE) for Kennady Lake and Little Nahanni River, respectively. 

Estimates were made at the mean level of the covariate (fork length of 260.75mm) and were 

significantly different (F (48) = 27.96, P < 0.05). That is, Arctic Grayling at Kennady Lake had 

lower 15Nadj than at Little Nahanni River when accounting for larger fish size at Kennady Lake.  
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Figure 3.11. The relationship between δ15Nadj (‰) and length for Arctic 

Grayling in Kennady Lake (KL), NWT, in 2014 and Little Nahanni River 

(LNR), NWT in 2015 and 2016. δ15Nadj is significantly and positively 

related to length at Kennady Lake (SLR, F(1, 25) = 38.58, P < 0.05), 

but shows no relationship in the Little Nahanni River (SLR, F(1,22) 

= 0.01, P = 0.92).  
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Figure 3.12. Stable isotope biplot illustrating mean values of δ13C (‰) 

and (‰) for 13 species of forage fish and benthic invertebrates collected 

in δ15N Kennady Lake, NWT.  

 

To begin investigations of food web differences between Kennady Lak and Little Nahanni 

River, stable isotope biplots were examined. As expected, fish species, including Arctic 

Grayling, Lake Chub, Ninespine Stickleback and Slimy Sculpin occupy a higher trophic position 

than benthic invertebrate taxa in Kennady Lake based on δ15N values (Figure 3.12). Delta13C 

values for fish species show overlap with invertebrate species that are known to occupy benthic, 

littoral and pelagic zones. This suggests fish are feeding on a combination of benthic 

invertebrates from various water column zones, with Arctic Grayling showing a more benthic 

signature and Ninespine Stickleback feeding more pelagically.   
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Figure 3.13. Stable isotope biplot illustrating mean values of δ13C (‰) and 

δ15N (‰) for four species of fish and benthic invertebrates collected in 

Little Nahanni River, NWT in 2015 and 2016.   

 

 

There were four species analyzed from Little Nahanni River that were also captured and 

analyzed from Kennady Lake. These organisms included two fish species, Arctic Grayling and 

Slimy Sculpin and two benthic invertebrate taxa, Chironomidae and Phryganeidae. Similar 

trophic trends are identified in Little Nahanni River as in Kennady Lake, which revealed two 

distinct groupings; one representing fish and one representing the benthic invertebrate species. 

As observed in Kennady Lake, fish species in Little Nahanni River are feeding at approximately 

one trophic level (~3.4 ‰) higher than benthic invertebrates in the system.  



89 

 

 
Figure 3.14. Regressions of log mercury concentration (μg/g ww) versus 

log10 δ15N for fishes and benthic invertebrates collected in Kennady Lake, 

NWT in 2014 (top; slope = 1.4) and Little Nahanni River, NWT in 2015 

and 2016 (bottom; slope = 0.40). Methyl-mercury (MeHg) values were 

used for benthic invertebrate organisms and total mercury (THg) values 

were used for fish species in regression analyses. Note: scales differ for 

each site.  
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Rates of biomagnification were investigated using regression analyses that revealed a 

positive and significant relationship between log10 mercury concentration (μg/g ww) and log10 

δ15N in both Kennady Lake (SLR, F(1,72) = 24.19, P < 0.05) and Little Nahanni River (SLR, F(1,39) 

= 6.22, P < 0.05). Delta15N and mercury concentrations in all species analyzed at Little Nahanni 

River, represent biomagnification of mercury from inverts to fish species.  I tested for differences 

in mercury biomagnification rates by conducting an analysis of covariance; site was the 

independent variable, Log10 THg was the dependent variable, and log10 δ
15N was the covariate. 

Heterogeneity of slopes was not observed, with the interaction term of site* log10 δ
15N (F (1, 111) = 

2.11, P = 0.15). Therefore, biomagnification rates did not differ between Kennady Lake and 

Little Nahanni River, and do not explain differences in Arctic Grayling THg between the study 

systems.  

 

Figure 3.15. Mean δ13C (‰) in fish and benthic invertebrates collected 

from Kennady Lake, NWT in 2014 and Little Nahanni River, NWT in 

2015 and 2016. Where applicable, error bars represent 95% confidence 

intervals.   
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Stable isotope δ13C can help discern between different prey items that may be consumed. 

Figure 3.16 shows δ13C ratios of the fish and invertebrate taxa that were captured in both study 

systems, as well as additional invertebrate taxa. In Kennady Lake, Arctic Grayling had similar 

δ13C ratios to Corixidae and Valvatidae, whereas in Little Nahanni River, Arctic Grayling had 

similar δ13C ratios to Phyrganeidae. This suggests that prey item selection may differ between 

Kennady Lake and Little Nahanni River. If concentrations of mercury in prey items differ 

between sites, this may explain the difference in mercury concentration in Arctic Grayling 

between the two sites. 

 
Figure 3.16. Total mercury (THg) concentration (μg/g ww) in Arctic 

Grayling and methyl-mercury (MeHg) concentration (μg/g ww) in 

benthic invertebrate families, Chironomidae and Phryganeidae (the 

only two benthic invertebrate taxa found in both systems) in 

Kennady Lake (KL) and Little Nahanni River (LNR). Where 

applicable, error bars represent 95% confidence intervals and letters 

indicate significant pairwise comparisons.    
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Two families of invertebrates were captured at both Kennady Lake and Little Nahanni 

River: Phryganeidae and Chironomidae. Phryganeidae and Chironomidae MeHg concentration 

values were similar to those found in Arctic Grayling in Little Nahanni River (Figure 3.16.  

Phryganeidae had higher mercury concentration in Kennady Lake than at Little Nahanni River. 

Due to having only one sample for most invertebrates, significance testing could not be 

completed. The results indicate that higher THg in Arctic Grayling at Kennady Lake may reflect 

differences in MeHg concentrations in some preferred prey items.  

 

Table 3.4. Total dissolved mercury in water samples 

collected from Kennady Lake, NWT (1995 to 2010) 

and Little Nahanni River (2016).   

Site 

Total Dissolved Mercury 

(ng/L) 

Kennady Lake 5.00 

Little Nahanni 

River 0.39 

 

  

To further evaluate baseline mercury in each study ecosystem, dissolved mercury in water 

was compared. Samples from Kennady Lake showed considerably higher (1.28 orders of 

magnitude) dissolved mercury in Kennady Lake than in the Little Nahanni River. Therefore, it 

appears that there is more mercury available for methylation and uptake by Arctic Grayling in 

Kennady Lake compared to the Little Nahanni River. Unfortunately, data on MeHg 

concentrations in water are not available from Kennady Lake, so MeHg concentrations could not 

be compared between sites.  
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3.4 Discussion 

Direct comparisons of mercury bioaccumulation between adfluvial and fluvial populations 

of Arctic Grayling from barrenland tundra and mountain ecosystems have not been made in the 

literature. Each life history type has unique habitat characteristics and trophic interactions that 

may affect mercury bioaccumulation. Consistent with my hypothesis, mean THg concentrations 

in Arctic Grayling muscle tissue were significantly higher in the Kennady Lake, adfluvial 

population (0.06 ± 0.02 μg/g ww) than in the Little Nahanni River, fluvial population (0.02 ± 

0.01 μg/g ww). Although mean size of Arctic Grayling was larger in Kennady Lake (adfluvial 

population), size-corrected THg values were still significantly higher in Kennady lake fish. 

Differences in baseline MeHg and preferred prey items appear to affect the difference in THg in 

Arctic Grayling between ecosystems, although further research is necessary. When compared to 

other contaminant literature, THg concentrations in Arctic Grayling from Kennady Lake (mean = 

0.06 ± 0.02 μg/g) and Little Nahanni River (mean = 0.02 ± 0.01 μg/g) are lower than in 

previously studied adfluvial populations of Arctic Grayling in Alaska (range: 0.078 to 0.264μg/g; 

Jewett et al., 2003). Given that differences in fish size did not explain differences in THg, other 

covariates were investigated to help explain variation in THg concentration between sites.   

Growth rate of fish can be examined by an age-at-size metric, which has been used to 

explain differences in THg concentration in previous studies (e.g., Harris & Bodaly, 1998). Fish 

with increased growth rates exhibit lower THg concentrations, which can be attributed to greater 

metabolic efficiencies (Kidd et al., 1999; Karimi at al., 2007). In my study, Arctic Grayling from 

Kennady Lake were larger at a given age (indicating faster growth), however; they also exhibited 

higher THg concentration than Arctic Grayling from the Little Nahanni River. This result is 

inconsistent with previous literature (see Morel et al., 1998; Kidd et al., 1999; Evans et al., 2005; 
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Karimi at al., 2007), and indicates that differences in growth rate do not explain why THg 

concentrations in Arctic Grayling are higher in Kennady Lake than in Little Nahanni River. 

Stable nitrogen isotope ratios (δ15N) indicate trophic position, and when related to THg 

concentration, δ15N can help illustrate biomagnification of THg in a food web (Kidd et al., 1995).  

THg was positively related to δ15Nadj in Kennady Lake but the relationship was less pronounced 

in Little Nahanni River Arctic Grayling. Arctic Grayling from Kennady Lake showed higher 

THg at similar δ15Nadj values to fish from Little Nahanni River. Thus, differences in THg 

concentrations as a function of higher trophic position is not observed like in previous literature 

(Evans et al., 2005; Chasar et al., 2009). To assess if ontogenetic shifts in diet may alter the 

interpretation of trophic position, the relationship between δ15N and fork length was assessed. A 

significant and positive relationship between δ15Nadj and fork length was observed in Arctic 

Grayling from Kennady Lake, while fish from Little Nahanni River showed no discernable trend. 

This suggests that larger Arctic Grayling from Kennady Lake may shift their diet to alternative 

prey items, altering their trophic position in comparison to younger, smaller fish. Regardless, at a 

standardized size (260 mm), δ15Nadj was higher in Arctic Grayling from Little Nahanni River 

than in Kennady Lake, which is contradictory in explaining the increased THg observed in 

Kennady Lake Arctic Grayling.  

Biomagnification is the transfer and retention of THg from one organism to another through 

consumption. Because THg biomagnifies in food webs, there is often a positive relationship 

between THg and δ15N (Morel et al., 1998; Hoffman et al., 2002).  THg biomagnification was 

assessed using an ANCOVA and slope coefficients of regressions between THg and δ15N in each 

system. Slope coefficients were comparable between sites, which represents similar 

biomagnification rates of THg in Arctic Grayling from Kennady Lake and Little Nahanni River. 
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This indicates that Arctic Grayling from Kennady Lake and Little Nahanni River do not differ in 

their sequestration of methyl mercury, and that differences in mercury must be explained by 

differences in mercury at more basal levels of the food web.   

Qualitative comparisons of isotopic biplots that included potential prey organisms revealed 

two distinct groupings of similarly feeding organisms in each respective ecosystem. A relatively 

simple food web was identified in which all fish species feed at least one trophic level higher (> 

3.4‰) than benthic invertebrates (Vander Zanden & Rasmussen, 2001; Post, 2002). In 

comparing δ13C values and THg between ecosystems, Arctic Grayling showed higher THg 

concentrations when compared at similar δ13Cadj to Little Nahanni River. A negative relationship 

between THg concentration and δ13Cadj was observed in Kennady Lake, suggesting higher THg 

concentrations are found in less enriched δ13C adj food sources. However, there was not a 

significant relationship between THg concentration and δ13Cadj in the Little Nahanni River. After 

standardizing for length, δ13Cadj was found to be similar between Kennady Lake and Little 

Nahanni River, which does not explain the differences in mercury concentrations between the 

systems.  

Prey species, including prey fish and benthic invertebrates, vary largely in their MeHg 

concentration due to trophic interactions and basal MeHg that is biologically available for uptake 

(Riva-Murray et al., 2013). Slimy Sculpin, Phryganeidae and Chironomidae were in-common 

prey species in Kennady Lake and the Little Nahanni River. Similar δ15N and THg values 

between Arctic Grayling and Slimy Sculpin helped elucidate that the two fish species are feeding 

at a similar tropic level, and above invertebrates. Arctic Grayling are predominantly surface-

feeding organisms; in Alaskan lakes, they have been reported to prey exclusively on surface 

insects (Allen-Gil et al., 1997). Qualitative comparisons of mean δ13C for fish and benthic 
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invertebrates revealed that Arctic Grayling may feed on different carbon sources than the two in-

common species investigated in this study. Arctic Grayling from Kennady Lake had similar 

carbon signatures to Corixidae and Valvatidae, and Corixidae had higher MeHg concentrations 

in comparison to other invertebrates (Phryganeidae and Chironomidae) from Kennady Lake; 

feeding on these invertebrates, which were not in-common between systems, may help to explain 

higher THg concentration in Kennady Lake Arctic Grayling. In a comparison between 

invertebrate species captured in both systems, there is evidence that Phryganeidae have higher 

MeHg concentrations in Kennady Lake when compared to Little Nahanni River. In contrast, 

MeHg concentrations in Chironomidae were similar between the two systems. It is possible that 

preferred prey items have higher MeHg concentrations in Kennady Lake than in Little Nahanni 

River. Although lack of stomach content analysis and limited analysis of MeHg in invertebrates 

precludes strong inference, but overall it appears that benthic invertebrates have higher MeHg in 

Kennady Lake than in the Little Nahanni River.   

Methyl-mercury concentrations in benthic invertebrates in the Little Nahanni River were 

lower than in similar taxa in Kennady Lake. Riva-Murray et al. (2013) found that MeHg 

bioaccumulation in stream invertebrates can vary significantly dependant on their functional 

feeding group (e.g., shredders vs grazers) and habitats at relatively small spatial scales. Thus, 

determining the preferred prey items for Arctic Grayling in the Little Nahanni River would help 

explain THg concentrations found in these fish. Carbon signatures of Arctic Grayling in the 

Little Nahanni River suggest they prefer Phryganeidae as a prey item when compared to 

Chironomidae. Lower THg in Arctic Grayling in the Little Nahanni River may also be 

influenced by terrestrial prey item selection by Arctic Grayling. Research by Jardine et al. (2015) 

found that Arctic Grayling that rely more heavily on terrestrial-based carbon sources are subject 
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to lower MeHg exposure. Sufficient riparian vegetation and the fluvial nature of mountain 

streams can deliver terrestrial invertebrates into the trophic food web in Little Nahanni River. A 

sub-species of Arctic Grayling, the Baikal Grayling (Thymallus arcticus baicalensis), show a 

preference for surface prey items, including terrestrial invertebrates (Olson et al., 2016). 

Resource partitioning behavior, like that of the Baikal Grayling, can greatly reduce MeHg 

bioaccumulation in oligotrophic streams (Tsui et al., 2014). Although terrestrial invertebrates 

were not investigated in this study, similar trends in surface feeding may help explain reduced 

MeHg concentrations in Arctic Grayling from Little Nahanni River. Future research that better 

quantifies differences in available prey invertebrates between ecosystems, in particular, 

invertebrates in the drift and at the surface of the stream or lake should be conducted. Evaluating 

the differences in MeHg concentration available for biomagnification from aquatic versus 

terrestrial inputs in these systems may also help explain the observed differences in mercury 

concentrations between adfluvial and fluvial Arctic Grayling.   

 Mercury concentrations in fish are related to habitat use (e.g., Power et al. 2002), which 

could differ significantly across stream and lake habitats used by Arctic Grayling populations for 

foraging. The relationships between δ15N and MeHg concentration as well as the carbon 

signatures of in-common prey items suggest that differences in THg concentrations in Arctic 

Grayling are a function of differences in baseline MeHg concentrations between Kennady Lake 

and Little Nahanni River. Water analysis results support that Kennady Lake (5.0ng/L) has 

dissolved mercury concentrations approximately ten times higher than Little Nahanni River (0.39 

ng/L). Higher dissolved mercury can provide sulphur- and iron-reducing bacteria a greater 

opportunity to methylate mercury, making it biologically available for bioaccumulation (Morel 

1998). Basal levels of dissolved and MeHg can be affected by a number of environmental factors 
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based on physical habitat characteristics and location of the waterbody (Stoken et al., 2016). 

Mercury concentrations can respond to variability in ecosystem characteristics, such as water 

temperature, redox conditions, water chemistry, composition of the prey community, presence 

and distribution of methylating environments, lotic vs lentic habitat use, pelagic vs littoral habitat 

use, water residence times, and catchment sizes (see AMAP 2011). Ecosystem characteristics 

may have a pronounced effect on THg availability for Arctic Grayling, as adfluvial (lake-

feeding) and fluvial (stream-feeding) populations of Arctic Grayling occupy different foraging 

habitats. On average, water temperature in Kennady Lake (~15°C) is higher than Little Nahanni 

River (~8°C). Higher water temperatures can also promote methylation and result in higher 

MeHg (Evans et al., 2005; St. Louis et al., 2005; Lehnherr et al., 2012), this would be especially 

prominent in shallow pockets of water similar to Kennady Lake. Similarly, increased primary 

production, as promoted by increases in temperature, can contribute to increased mercury 

methylation (Prowse et al., 2006). Unpublished data from Kennady Lake and Little Nahanni 

River suggest that primary production is greater in Kennady Lake, as nitrogen, phosphorus, and 

chlorophyll a concentrations are higher in that system. Thus, Kennady Lake may be a more 

methylating environment than Little Nahanni River. Further investigation into baseline MeHg 

availability and the differences in microbial communities present at each site is necessary. 

The interactions between Arctic Grayling and their environment, as well as differences in 

life history and geographic region can help explain differences in THg concentrations in Arctic 

Grayling between the ecosystems. Ecosystem characteristics, climate and geographic location 

play a significant role in determining baseline MeHg bioaccumulation rates in a given trophic 

food web (Scheuhammer & Graham 1999; see Chétalet et al., 2015).  Seasonal climate and 

topographic characteristics, like snow-pack and ice melt influence aquatic transport of mercury 
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across the landscape (Douglas, et al., 2012). Sub-Arctic mountain (Little Nahanni River) and 

barrenland tundra (Kennady Lake) ecosystems differ largely in their topographic characteristics. 

The high elevation Selwyn mountain range (Little Nahanni River) has a short snow-free period 

(July to September), with frequent summer precipitation events that result in flashy stream 

discharge events. In contrast, the catchment for Kennady Lake is less sloped, and is less flashy in 

times of snow melt and precipitation. These differences may play an important role in mercury 

transport and methylation and deserve further investigation.  

 

3.4.1 Research implications 

 

The results show that THg concentration in Arctic Grayling are lower than World Health 

Organization commercial guidelines for THg (< 0.05μg/kg; Lockhart et al., 2005). Harvesting 

Arctic Grayling would expose northern residents to lower THg concentrations when compared to 

larger predatory fish that are often targeted through subsistence activities (e.g., Lake Trout; 

Jewett et al., 2003).  

Better understanding mercury sequestration between mountain and barrenland tundra 

ecosystems is useful for northern residents and scientists to predict areas that are most vulnerable 

to climate- or development-induced increases in mercury. This study was the first to evaluate 

mercury concentrations differences between mountain and barrenland streams using Arctic 

Grayling. Future research should further evaluate the mechanism behind differences in MeHg in 

invertebrates between mountain streams and barrenland lakes.  

The impetus for this research was partly to gain baseline data on mercury and other 

contaminants in ecosystems from Kennady Lake and Little Nahanni River prior to major 

development from mining operations. The contaminant burden from diamond (Kennady Lake) 
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and zinc/silver mining (Little Nahanni River) are lower than other smelt mining methods, but 

baseline data will help industry contribute to informed monitoring protocols. This is particularly 

relevant to adjacent mining projects like Gahcho Kue, De Beers Canada and Selwyn-Chihong, 

for rehabilitation of their respective mine sites.  

 

3.4.2 Conclusion 

 

Direct comparisons between Arctic Grayling in two contrasting ecosystems provides 

evidence that mercury bioaccumulation differs with baseline ecosystem processes that affect the 

amount of baseline MeHg biologically available for uptake by Arctic Grayling. THg 

concentrations are higher in barrenland tundra, adfluvial populations of Arctic Grayling from 

Kennady Lake, even with length adjustment. Relationships between THg concentrations in 

Arctic Grayling and several covariates (δ15Nadj, δ
13Cadj, age and length-at-age) showed that 

Arctic Grayling THg burdens were most easily explained by basal MeHg in each respective 

ecosystem. Higher MeHg concentration in benthic invertebrates, specifically Phryganeidae, may 

help explain higher THg levels in Arctic Grayling from Kennady Lake. Fluvial populations of 

Arctic Grayling may also incorporate terrestrial invertebrates as prey, which carry lower mercury 

burden that aquatic invertebrates and may further exacerbate the differences in mercury 

concentrations between Kennady Lake and Little Nahanni River. Ultimately, Arctic Grayling fall 

within safe human consumption guidelines regardless of habitat type, although habitats that do 

not facilitate increased methylation, such as lotic stream environments, appear to produce Arctic 

Grayling with lower mercury concentrations. 
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Chapter 4 
 

General conclusion 
 

4.1 Research synopsis 

 

The main objective of this research was to contribute to our current knowledge and 

understanding of Arctic Grayling habitat use through occupancy modelling and investigate how 

differences in habitat use may affect mercury bioaccumulation in this species. Overall, 

knowledge gaps exist regarding Arctic Grayling ecology, partly due to their complex life history 

and also due to the harsh, remote climates they inhabit across their range. 

Results from chapter two of my thesis helped to quantify YOY Arctic Grayling habitat 

characteristics in fluvial mountain populations using occupancy analysis, which, previously, 

were described qualitatively or by very few studies (Scott & Crossman 1973; de Bruyn & 

McCart, 1974; Liknes and Gould, 1987; McClure & Gould 1991). Occupancy models identified 

water temperature and elevation as important habitat predictors for YOY Arctic Grayling in 

mountain streams. YOY Arctic Grayling preferred water temperatures greater than 8°C, 

suggesting that in early development, Arctic Grayling seek warm stream refugia, in an otherwise 

cold-water ecosystem. The role of groundwater and other warm-water sources (springs) in 

facilitating YOY Arctic Grayling growth is poorly understood and should be further investigated. 

Elevation was also identified as an important habitat predictor variable for YOY Arctic Grayling 

in mountain ecosystems. YOY Arctic Grayling preferred low elevation streams (< 1150masl). 

Elevation is a particularly useful landscape predictor variable for resource managers, as data can 

be gathered remotely using digital elevation models and can be used in conjunction with local 

habitat characteristics to map critical spawning and rearing areas. 
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Analyses in chapter 3 were aimed at investigating how mercury concentration varies 

between Arctic Grayling from Kennady Lake and Little Nahanni River; these sites represent a 

barrenland tundra, adfluvial and mountain, fluvial population, respectively. Occupancy analysis 

has identified critical YOY rearing habitat in Kennady Lake (Baker et al., 2017) and in Little 

Nahanni River (Chapter 2). Results from those studies perpetuated further investigations into 

how Arctic Grayling ecology differs between two populations of the same species. There is a 

stark contrast between mountain and barrenland, tundra ecosystems, which appears to have had 

an effect on mercury bioaccumulation in each respective system. After size standardization, 

Arctic Grayling from Kennady Lake had significantly higher mercury concentrations than adult 

Arctic Grayling from Little Nahanni River. A variety of covariates, including stable isotopes 

(δ15N and δ13C) and fish characteristics (age, weight etc.) were analyzed, most of which were not 

significantly related to mercury, and did not explain differences in concentration between sites. 

Higher mercury in Arctic Grayling from Kennady Lake may be explained by higher MeHg 

concentrations at the base of the food chain; I found that invertebrates from Kennady Lake had 

significantly higher MeHg concentrations than invertebrates from the Little Nahanni River. 

Higher MeHg at the base of the food web suggests higher MeHg production in Kennady Lake. 

Mercury was not related to δ15N in Little Nahanni River, suggesting that as Arctic Grayling 

move up in trophic position, mercury bioaccumulation rates slow, or remain the same. This 

suggests that bioaccumulation in Little Nahanni River does not biomagnify up the food web as is 

typically found in other fish species (Kidd et al., 1995). Other explanations suggest that 

terrestrial prey items may play a significant dietary role in fluvial populations, as lower MeHg 

concentrations can be associated with terrestrial invertebrates when compared to aquatic 

organisms. Other variables, not quantified in my analysis, may also drive differences in mercury 
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concentration between systems. Mercury accumulation is habitat-specific and there are many 

variables contributing to the deposition, methylation and bioaccumulation of mercury (Evans et 

al., 2005). The study of contaminants in each respective watershed is a contribution to baseline 

data and may be especially useful in light of ongoing mining developments in the region.  

 

4.2 Advancing our understanding 

Arctic Grayling are a complex organism that utilize a variety habitat types depending on 

geographic location and life history type. Yet the species is still restricted to mostly northern 

regions with cold-water environments exhibiting low turbidity and minimal anthropogenic 

impacts. Arctic Grayling show incredible plasticity that have adapted their life history to a 

variety of lotic and lentic environments. In comparing YOY habitat from mountain streams to 

barrenland tundra streams, there are considerable differences in preferred habitat, which are a 

function of the landscape. Elevation and stream temperatures, which were the strongest 

predictors of YOY Arctic Grayling occupancy in this study, would be poor predictors of YOY 

habitat use in barrenland systems. Baker et al., 2017 found, that stream velocity and depth are the 

most important variables for predicting occupancy of barrenland YOY Arctic Grayling. In the 

literature, life history type is often only briefly mentioned in describing a given Arctic grayling 

population. This thesis, in combination with Baker et al., 2017, illustrates complex interactions 

between habitat use, migration patterns and life history, complicates the role of resource 

managers in assessing the vulnerability of populations of Arctic Grayling.  
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4.3 Management considerations 

To better manage Arctic Grayling and their habitats, it is critical for resource managers to 

understand the complexity of Arctic Grayling habitat use across its range. As cold-water 

salmonids, Arctic Grayling inhabit harsh environments that often depend on unique habitat 

features, like the presence of warm water natal streams, to sustain populations of Arctic 

Grayling. Disturbance to critical habitat can result in the loss of entire, remote populations. 

Information from this thesis and Baker et al., 2017 should be used for broad scale predictions of 

critical habitats by resource managers, as mining and gas developments continue to grow in 

northern Canada. 

At present, both populations studied in this thesis are vulnerable due to mining development. 

Kennady Lake has been drained for diamond extraction and road construction in the Little 

Nahanni River has opened the region up for ore hauling and expansion of mining projects in the 

future. Critical habitat information developed by this thesis (Chapter 1) should be considered the 

most quantitative representation of Arctic Grayling spawning and rearing habitat that is 

represented in in-land mountain populations. Anecdotal evidence suggests that these critical 

spawning and rearing grounds are highly localized, with specific habitat characteristics that are 

sparse in mountain ecosystems. These areas need maximum protection from impacts of resource 

development in order to sustain mountain populations of Arctic Grayling. 

 

4.4 Future study 

Chapter 2 provides quantitative results that can be used to predict YOY Arctic Grayling 

habitat use in mountain streams but has raised questions as to why Arctic Grayling make these 

habitat choices. In particular, warmer stream temperatures, as preferred by YOY Arctic Grayling, 



105 

 

raise the question of how ground water or warm water springs affect habitat selection by Arctic 

Grayling. It is common in other salmonids, like Arctic Char, to use groundwater as 

overwintering refugia (Dunmall et al., 2016), but it is unclear in the literature how groundwater 

may be used by Arctic Grayling.  To assist in answering this question, a baseline dataset of 

groundwater inputs and thermal conditions (e.g., via thermal imaging) could be helpful.    

The predictor variables identified in chapter 1 should be applied to a similar ecosystem with 

known populations of Arctic Grayling to test model accuracy. Several collaborators, including 

Parks Canada and Fisheries and Oceans Canada, are planning to implement monitoring programs 

for Arctic Grayling populations, in which this model could be applied and tested.  

Differences in mercury bioaccumulation between mountain and barrenland populations of Arctic 

Grayling require more explanation through further research. Differences are likely a result of 

differences in methylation at lower trophic levels that was not assessed through this research. 

There are several studies that assess mercury bioaccumulation and methylation rates in lentic 

environments, but very few studies quantify the role of i) methylation processes in streams and 

ii) the role of terrestrial mercury inputs into mountain stream ecosystems. Both are areas of study 

that need to be improved, which may help resolve the differences in mercury among ecosystems 

observed in Chapter 2.  

 

4.5 Final Remarks 

The resulting occupancy model (Chapter 2) contributes to our knowledge about Arctic 

Salmonids, and their habitat use, which was the impetus for this research. Fisheries and Oceans 

Canada is tasked with monitoring northern salmonid populations, as they may be the most at-risk 

family of fishes from development and climate-driven changes in the north. Substantial questions 
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still remain about Arctic Grayling habitat preferences (e.g., ground water) and mechanisms of 

contaminant bioaccumulation in the species. In collaboration with partner agencies, the methods 

and results from this thesis can be used in better answering some of these questions across the 

expansive range of Arctic Grayling.    
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Appendix A.  

 

Table A.1. Occupancy and detection efficiency covariates removed from analysis based on a 

Pearson correlation coefficient (r) greater than 0.70 or biological relevance. 

Parameter type Correlation Rank Variables Removed Correlated variable 

occupancy highly correlated calendar day photoperiod (r= -0.99) 

 (r > 0.70) discharge width (r= 0.77), velocity (r=  0.72) 

  cobble water temperature (r= -0.719) 

  

overhanging riparian 

vegetation coarse woody debris (r= 0.828) 

  % run fine sediment (r= 0.738) 

  % cascade boulder sediment (r= 0.787) 

  YSI water temp thermometer water temp (r= 0.784) 

 not relevant photoperiod  

  wetted width   

  pool  

  eddies  

  pH  

  

dissolved oxygen 

DO      
detection efficiency highly correlated cascade boulder (r= 0.70) 

 (r > 0.70) effort per sq. m effort (r= 0.724) 

 not relevant wetted width  

  cobble  

  overhanging veg.  

  coarse woody debris  

  undercut banks  

  netter  

  efisher settings  

  visibility obstructions  
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Table A.2. Detection efficiency variables fitted to global model to assess effects of lower 

detection efficiency during field surveys. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detection Efficiency Variable 

 % boulder 

 % riffle 

 % aquatic vegetation 

 previous knowledge 

 % cloud cover 

 electrofisher 

 effort 

 velocity 

 depth 

 % eddies 
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Table A.3. Site matrix used in occupancy analysis. Site data for replicates 6, 7, 8 and 9 replicates 

was lacking, and therefore did not perform as well in occupancy analyses, resulting in 5 

replicates used for final model analysis.  

Patch Replicate 

 1 2 3 4 5 6 7 8 9 

10 1673 1833 1769 1721 463 363 100 - - 

23 1652 1732 1700 1640 - - - - - 

48 2000 1346 1166 1102 365 100 1038 - - 

85 956 1320 1612 1376 1148 1332 - - - 

87 1149 1085 1289 1037 1389 - - - - 

95 972 1276 1588 1132 1288 - - - - 

97 1116 1268 1244 1020 1084 - - - - 

128 P128-New5 768 128 1064 1560 - - - - 

69a 95 398 159 - - - - - - 

15a 1668 1764 2600 1716 1684 1844 1780 - - 

15b 1768 1704 1656 1752 1800 1736 - - - 

17a 1724 1681 1793 1729 1857 1637 MarchNew 300 - 

17b 1852 2000 1692 1740 1788 300 200 - - 

20a 1746 1645 1865 - - - - - - 

20b 1698 1762 1666 1826 - - - - - 

20c 1634 1869 1650 1810 - - - - - 

21a 1900 1700 1300 400 200 - - - - 

21b 3300 3000 500 400 300 200 - - - 

21c 5200 5000 4900 4600 4500 4300 4200 3870 3600 

24a 2200 2100 1600 1500 1100 500 400 - - 

24b 7000 5400 5100 4500 3900 3500 3100 - - 

65a 1041 1089 1025 - - - - - - 

65b 854 251 481 - - - - - - 

65c 187 425 1305 977 1213 - - - - 

65d 933 1349 1169 460 1481 86 - - - 

65e 760 353 107 310 751 - - - - 

67a 1137 1300 600 400 1549 67a-New - - - 

67b 327 630 500 583 171 100 - - - 

67c 2350 1850 235 467 - - - - - 

67d 2600 697 100 79 - - - - - 

67e 713 600 1201 1325 - - - - - 

67f 15 997 1189 1617 - - - - - 

67g 535 637 1181 1061 1557 - - - - 

67i 692 850 - - - - - - - 

69b 1405 945 1609 1313 1445 1121 - - - 
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Table A.4. Occupancy matrix used in analysis representing presence (1) or absence (0) of YOY 

Arctic Grayling during surveys of the Little Nahanni River watershed in 2015.  

Site Replicate 

 1 2 3 4 5 6 7 8 9 

10 1 1 0 0 0 1 1 - - 

23 0 0 0 0 - - - - - 

48 0 0 0 0 0 0 0 - - 

85 0 0 0 0 0 0 - - - 

87 0 0 0 0 0 - - - - 

95 0 0 0 0 0 - - - - 

97 0 0 0 0 0 - - - - 

128 1 1 1 1 1 - - - - 

69a 0 0 0 - - - - - - 

15a 0 0 0 0 0 0 0 - - 

15b 0 0 0 0 0 0 - - - 

17a 0 0 0 0 0 0 0 0 - 

17b 0 0 0 0 0 0 0 - - 

20a 0 0 0 - - - - - - 

20b 0 0 0 0 - - - - - 

20c 0 0 0 0 - - - - - 

21a 0 0 0 0 0 - - - - 

21b 0 0 0 0 0 0 - - - 

21c 0 0 0 0 0 0 0 0 0 

24a 0 0 0 0 0 0 0 - - 

24b 0 0 0 0 0 0 0 - - 

65a 0 0 1 - - - - - - 

65b 0 0 0 - - - - - - 

65c 0 0 0 0 0 - - - - 

65d 0 0 0 0 0 0 - - - 

65e 0 0 0 0 0 - - - - 

67a 1 1 1 0 1 1 - - - 

67b 0 0 0 0 0 1 - - - 

67c 0 0 0 0 - - - - - 

67d 0 0 0 0 - - - - - 

67e 1 1 1 1 - - - - - 

67f 0 0 0 0 - - - - - 

67g 0 0 0 0 0 - - - - 

67i 1 1 - - - - - - - 

69b 0 0 0 0 0 0 - - - 
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Section A.5. Habitat covariate collection details 

A number of different methods were employed in the collection of habitat data. Each site 

was classified as run, riffle, pool or cascade (Rosgen, 1994). Photoperiod was recorded as the 

number of daylight minutes in a given day of sampling and was calculated using the difference 

between sunrise and sunset times according to data available from Environment Canada. Air 

temperature was recorded in degrees Celsius at each site using a general liquid-filled glass 

thermometer. Water temperature was measured using both a standard liquid-filled glass 

thermometer as well as a YSI sonde unit. Wetted width (cm) was a point measurement; the 

distance from one wetted edge of the stream to the other (perpendicular to the flow) was 

measured using a 30m tape measure. Water depth (cm) was measured in 20% increments across 

the wetted width of the stream (taken at 20, 40, 60 and 80% intervals; four total depth 

measurements) at each site, and averaged (arithmetic mean). Average velocity (m/s) was 

calculated at each site (detection efficiency) using a modified head-rod method using a standard 

meter stick. The head-rod calculation uses the difference between actual depth of the stream 

(reading when the narrow-width of the meter stick is placed parallel to flow) and the head-rod 

depth (reading when the broad-side of the meter stick is placed parallel to flow) (Fonstad et al., 

2005). Velocity was also recorded at the patch scale (occupancy) as a component of the 

discharge measurement. Velocity (m/s) and discharge (m3/s) were measured using a Hach FH950 

Portable velocity meter mounted on a wading rod. Ten velocity measurements were equally 

spaced across the wetted width of the stream, at 20% and 60% depth to capture surface and sub-

surface variation in flow. Slope was determined at each patch from the elevational change 

between the end and beginning of each site surveyed using Google Earth Image Landsat / 

Copernicus and Garmin BaseCamp software. Elevation was determined at each patch from the 
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elevational reading of the downstream end of each site using Google Earth Image Landsat / 

Copernicus and Garmin BaseCamp software. Strahler stream order, a stream ranking system 

based on tributary inflows, was determined using the Natural Resources Canada river and 

streams layer in ArcGIS. Percent cover of substrate types was estimated using modified 

Wentworth substrate size classifications: sand/silt (<0.2cm), gravel (0.2 – 6.4cm), cobble (6.4 – 

25.6cm), boulder (>25.6cm) and bedrock (Wisniewski 2013). Overhanging vegetation was 

estimated as percent cover from an overhead view at each site. Aquatic vegetation was evaluated 

as percent coverage at each site. Coarse woody debris, defined as downed wood that provided 

velocity refugia and/or in-stream cover for drift-feeding organisms (Langford et al., 2012) was a 

site measurement that was evaluated as percent cover. Undercut banks were considered as any 

receding bank line under the top soil layer, and measured as percent cover at each site. Boulder 

cover was a measure of in-stream cover for fish to use as velocity refuge and was assessed as 

percent cover where boulders provided slack water at each site. Eddies, which can provide 

velocity refugia and increased drift-feeding opportunities, were also assessed as percent cover. 

All water chemistry variables (pH, specific conductivity and dissolved oxygen) were measured 

using a YSI 556 multi-parameter water quality meter at each site. The YSI unit was calibrated 

and maintained according to company standards, prior to and during fieldwork.   

Data on several variables hypothesized to affect detection efficiency only (not occupancy) 

were also collected; all detection efficiency variables were collected at the scale of ‘site’. 

Visibility was a ranking of visual obstructions, which included turbulence, physical obstructions, 

and reflection. Ranks from 0 (no visibility obstructions) to 3 (3 visibility obstructions) were 

assigned. Cloud cover was measured in percent cover. Effort, measured in seconds, was recorded 

by the electrofisher as the amount of alternating current applied to the stream during a given 
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survey. Effort area (seconds/m) was a calculated measure: effort (seconds) divided by the 

amount of stream area (wetted width x 100m stream length). ‘Previous knowledge’ of the crew 

was a categorical variable that was meant to account for surveyor bias: personnel knowledge of a 

site was ranked as ‘0’ (no previous visits to patch), ‘1’ (one crew member had surveyed a site 

within the same patch) or ‘2’ (both crew members had previously surveyed a site within the same 

patch).  
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0.035732
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-0.09593

0.093056
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0.291889
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-0.25209

-0.14807
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0.050184
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-0.42155
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-0.03421
-0.16467
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-0.37842
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0.038973
0.175706
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-0.13019

-0.03596
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-0.1445

0.178546
-0.1587

-0.16637
0.028566702

0.540082
0.581686
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0.652914

-0.01427
0.176338

0.021619
-0.16344
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-0.04587

-0.13452
-0.1334
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-0.02782
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-0.06947
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-0.39525
-0.68608
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0.434482
0.171753

-0.22442
-0.44219

-0.48836
-0.5488

0.249559
0.228546
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-0.19787

0.436853
0.346968
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0.382054
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-0.21897
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0.656306
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-0.00154
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0.155694
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-0.21884
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0.021705
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-0.33752
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0.072706
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-0.24433
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0.341413
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0.270333

-0.04383
-0.44056

-0.393
-0.28218

0.292441
-0.0138

0.014697
-0.43911

-0.25869
-0.3865
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0.322556
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-0.07743
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