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Abstract 
	
The development of non-viral gene delivery vectors is highly challenging and aims to provide a 

safe while cost-effective manufacturing alternative to viral vectors. Eleven novel gemini 

surfactants (G4-G14) were designed and synthesized by covalent linking of 10 different functional 

moieties (R = R1-R10) to the spacer regions of gemini surfactants (chemical formula m-s-m; m = 

saturated 12, 18 carbon alkyl chains, s = R-linked-imino-substituted-7 methylene spacer group 

(7NR)). These R-functionalities include imidazole and thiol containing functional groups (R1 = 

imidazolepropionyl, R2 = thiopropionyl; for synthesis of G4 (18-7NR1-18) and G5 (18-7NR2-18)), 

linear RGD derivatives (R3 = RGDG, R4 = GRGDSPG; for synthesis of G6 (12-7NR3-12), G7 (18-

7NR3-18), G8 (18-7NR4-18)), polyhistidine derivatives (R5 = E(H)5; for synthesis of G9 (18-7NR5-

18)), bifunctional RGD-polyhistidine peptides (R6 = EGRGDSPG(H)5; for synthesis of G10 (18-

7NR6-18)), and arginine-rich peptide motifs (R7 = Suc-(E)2G(R)2, R8 = Suc-(E)2G(R)3, R9 = Suc-

(E)2(G)3(R)3, R10 = Suc-DE(G)3(R)3); for synthesis of G11 (18-7NR7-18), G12 (18-7NR8-18), G13 

(18-7NR9-18), G14 (18-7NR10-18)]. The RGD-functionalized gemini surfactants were evaluated 

for targeted gene delivery.  

Further, the impact of non-covalent addition of designed peptide enhancers (7 types; PA-PG) 

[zwitterionic RGD peptide enhancer (PA), cationic peptide enhancers rich in histidine and/or 

arginine (PB, PD, PF), or bifunctional cationic, RGD peptide enhancers (PC = PA+ PB, PE = PA+ PD, 

PG = PA+ PF)] were examined for development of peptide-based lipopolyplexes, named peptide-

driven tri-modal gene delivery systems (PDTMG). The PDTMG were formulated using peptide 

enhancers/gemini surfactants/1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) helper 

lipid, for in vitro delivery of green fluorescent protein (GFP)-expressing plasmid DNA.  
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Using quantitative flow cytometry, transfection activity was investigated by both the percentage 

of the transfected cells and the intensity of GFP expression level determined by mean fluorescence 

intensities (MFI). The correlation of the transfection activity and viability to the physicochemical 

properties of delivery systems, size and zeta potential, were identified to advance formulation 

strategies for development of a potent delivery system with negligible cytotoxicity. These include 

optimization of cationic quaternary ammonium of gemini surfactants/anionic phosphate of DNA 

(N/P) mole ratios (r± values), DOPE/gemini molar ratios (r values), and the molarity of the 

compositional elements in the formulation mixtures (MP, MG and ML for molar concentrations of 

peptide enhancers (P), gemini surfactants (G) and DOPE helper lipids (L), respectively). 

In vitro transfection studies demonstrated that among PDTMG delivery systems formulated using 

fourteen different gemini surfactants [G1-G14] differing in their headgroups and alkyl tails lengths 

(i.e., s = 3, 7NH, 7NR1-10; m = 12, 18), remarkably gemini surfactants with short RGD functional 

headgroups and C18 alkyl tails (G7 and G8) provided elevated cell-penetrating activity and 

endosomal rupturing functionality. The G7-based PDTMG formulation (prepared at r±	=	1.1 and 

r = 6.8; MP = 267 µM, MG = 17 µM, ML = 113 µM) revealed up to 120-fold increase in MFI as 

compared to bi-modal gemini/DOPE formulation (prepared at r±	=	10 and r = 3.3). Compared to 

the PDTMG systems formulated using G1-G6 and G9-G14 gemini surfactants (prepared at r±	=	

1.1 and r = 6.8), G7 counterparts resulted up to 38-fold higher in MFI. Further, the G7- and G8-

based PDTMG nanoparticles demonstrated comparable transfection activity with the gold-

standard Lipofectamine 3000 transfection reagent. 

It is believed that the short RGD functional peptides (R3, R4) covalently linked to 18-series gemini 

surfactants provided reduced steric hindrance on the surface of the PDTMG nanoparticles when 

compared to other functional peptides (R5-R10), and exhibited endosomal destabilizing effects in 
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response to cellular environment. The non-covalent addition of cationic peptide enhancers in 

formulation of the PDTMG delivery systems demonstrated a synergistic effect for DNA 

condensation, particle stability, cellular uptake, amplified endosomal release, protecting and 

facilitating the intracellular delivery of the pDNA.  

This project has demonstrated that G7- and G8-based PDTMG nanoparticles have the capability 

to undergo conformational changes in response to the cellular environment, disrupt the endosome, 

and release genetic materials into the cell cytoplasm. The development of these novel peptide-

based lipopolyplexes provided a solid foundation for design of the versatile derivatives for in vivo 

targeted delivery of nucleotide-based therapeutics. 
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Chapter 1  

Introduction 
 
 
 
1.1 Introduction to gene delivery 

Gene therapy is a cutting-edge technology that uses therapeutic nucleic acids to cure or prevent 

wide range of inherited conditions (such as hemophilia [1], thalassemia [2], cystic fibrosis [3], 

Wiskott-Aldrich syndrome [4]) and acquired diseases (including cancer [5, 6], infectious diseases 

[7], neurodegenerative disorders [8] and cardiovascular conditions [9]) at the genetic level. This 

can be achieved by either replacing a malfunctioning gene, or introducing a therapeutic gene for 

transient expression of a defective gene, or inactivating an overexpressing gene through gene 

silencing techniques [10-14]. Gene therapy can be classified into two major categories: germ line 

gene therapy and somatic gene therapy that target germ line cells (egg or sperm) and somatic cells 

(non-reproductive cells or body cells), respectively [15, 16]. Germ line gene therapy offers a 

permanent therapeutic effect that can potentially eliminate an inherited genetic disorder from a 

family and possibly from the population [17]. However, the idea surrounding germline gene 

therapy is controversial due to unresolved ethical challenges and unpredictable side effects which 

are yet to be known and may affect future generations [18-23]. Somatic gene therapy is considered 

a safe approach where modifications and effects are limited to the individual and are not passed 

on to the next generations [24].  

In addition to the common classes of therapeutic nuclei acids (e.g., plasmid DNA (pDNA), 

antisense oligonucleotide (AON), small interfering RNA (siRNA), small hairpin RNA (shRNA), 

microRNA (miRNA)) used in gene therapy, the emergence of programmable nuclease-based 
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genome editing technologies over the past decade dramatically impacted scientific research [25, 

26]. The genome editing technologies utilize chimeric nucleases that are engineered by fusing 

sequence-specific DNA-binding domains to a nonspecific DNA cleavage domain. These 

engineered nucleases generate targeted DNA double-strand breaks (DSBs) into the genome, 

resulting in efficient and precise genome modification through cellular DNA repair mechanisms, 

including error-prone non-homologous end joining (NHEJ) and homology-directed repair (HDR) 

using exogenous DNA [14]. Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector 

Nucleases (TALENs) and more recently, the innate bacterial based immune system Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR)/ associated protein 9 (CRISPR/Cas9) 

technology are the major tools used in the field of genome editing [10, 11, 27]. In contrast to ZFNs 

and TALENs that use proteins to recognise the target DNA sequence, CRISPR/Cas9 employs 

single guide RNA (sgRNA) for site recognition; hence, it provides a simple, easy-to-use and highly 

efficient gene editing tool for therapeutic applications in human [14]. For a comprehensive review 

of genome editing techniques, their mechanism of action and delivery strategies for therapeutic 

applications refer to [12, 26, 28].  

Despite the substantial progress in the field of gene therapy, there are fundamental challenges for 

safe and effective delivery of therapeutic nucleic acids to target cells in human body. This has 

consequently resulted in limited success of gene therapy in clinical trials. 

 

1.2 Current position of gene therapy: progress and limitations 

In 1989, the first clinical protocol was approved to test the safety and feasibility of the gene therapy 

process using retroviral-mediated “marked” tumor-infiltrating lymphocytes (TIL) concomitant 

with interleukin-2 in treatment of advanced melanoma [29] and the first human gene therapy 
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clinical trial was approved by FDA on September 14th 1990 to treat two unrelated girls, ages 4 and 

9, suffering from adenosine deaminase deficiency, a very rare autosomal monogenic disorder that 

causes severe combined immunodeficiency (ADA-SCID) [30]. Since then, there have been almost 

2,600 gene therapy clinical trials undertaken that have utilized both viral vectors and non-viral 

vectors as a method of gene transfer [31]. Viral vectors are the amongst the most used vectors in 

clinical trials. Approximately 70% of gene therapy clinical trials carried out so far have utilized 

recombinant viruses such as adenoviruses (20.5%), retroviruses (17.9%), adeno-associated viruses 

(7.6%) and lentivirus (7.3%)- based on online available database on The Journal of Gene Medicine 

Gene Therapy Clinical Trials Worldwide (updated November 2017). To date, cancer has been the 

most targeted disease in clinical gene therapy trials (approximately 65%), followed by monogenic 

diseases (11.1%), infectious diseases (7%) and cardiovascular diseases (6.9%) [31]. GendicineTM, 

developed by SiBiono GenTech, was the first human gene therapy product that was approved by 

the State Food and Drug Administration of China (SFDA) in 2003 [32]. GendicineTM is a 

recombinant adenoviral expressing human p53 (Ad-p53 gene therapy) for treatment of head and 

neck squamous cell carcinoma [32]. This breakthrough, later, resulted in accelerating in 

development of several other gene therapy products such as Glybera® (alipogene tiparvovec), 

StrimvelisTM, Kymriah® (tisagenlecleucel), YescartaTM (axicabtagene ciloleucel) and LuxturnaTM 

(voretigene neparvovec-rzyl) [33-36]. Glybera® (alipogene tiparvovec) is an adeno-associated 

virus serotype 1 (AAV1)-based gene therapy that delivers human lipoprotein lipase (LPL) gene to 

muscle cells for the treatment of severe lipoprotein lipase deficiency (LPLD), a rare autosomal 

monogenic disorder of triglyceride metabolism. Glybera®, marketed by uniQure, was the first gene 

therapy product to gain approval by the European Medicines Agency (EMA) in the Western world 

back in 2012 [33]. However, 5 years later, due to the high market price, at an average of $1 million 
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per treatment, uniQure’s Glybera® was withdrawn from the European market [37, 38]. 

GlaxoSmithKline (GSK)’s Strimvelis®, the second approved gene therapy by EMA in May 2016, 

is an ex-vivo genetically modified hematopoietic stem cell (HSC) gene therapy for the treatment 

of patients with ADA-SCID.  Strimvelis® is prepared by inserting a functional ADA gene into the 

cells from the patient’s own bone marrow using gammaretrovirus [34]. At the expensive cost of 

the treatment, $665,000 for a single dose of Strimvelis®, and the low number of treated patients 

(only two patients as of July 2017), in July 2017, GSK has announced that the company is 

considering eliminating its rare disease unit [39]. On Aug 30, 2017, the U.S. Food and Drug 

Administration (FDA) has approved the cell-based gene therapy Kymriah®, which became the first 

gene therapy available in the United States [40]. Kymriah®, marketed by Novartis Pharmaceutical 

Corporation, is a chimeric antigen receptor (CAR)-T-cell therapy for the treatment of patients up 

to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) [35, 41]. The second 

FDA approved CAR-T-based gene therapy is granted to YescartaTM (Gilead Science Inc.’s Kite 

Pharma) on October 18, 2017 to treat patients with diffuse large B-cell lymphoma (DLBCL) [42]. 

Both Kymriah® and YescartaTM are customized treatments that use patient’s own T cells to target 

and kill cancer cells, which have a specific antigen (CD19) on their surface [40, 42]. More recently, 

on December 19, 2017, FDA granted gene therapy approval to LuxturnaTM, developed by Spark 

Pharmaceutics Inc., to treat patients with biallelic RPE65 mutation-associated retinal dystrophy, a 

rare form of inherited retinal disease [43]. LuxturnaTM is a recombinant adeno-associated virus 

serotype 2 (AAV2)-based gene therapy that is administered via subretinal injection where it 

delivers a functional copy of human retinal pigment epithelium-specific protein 65kDa (RPE65) 

gene to retinal pigment epithelial (RPE) cells [44].  
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Despite these recent advancements of viral of gene therapy, there are fundamental limitations 

associated with viral vectors, including immunogenicity, carcinogenesis, cytotoxicity, broad 

tropism, limited DNA packaging capacity [45-47]. 

In 1999, a patient suffered from deficiency of ornithine transcarbamylase (OTC; a liver enzyme 

responsible for removal of ammonia from the blood) died in an adenovirus-mediated gene therapy 

clinical trial due to an unexpected severe immune response triggered by the virus capsid protein 

[48]. In addition, in a French clinical trial begun in 1999 for the treatment of X-linked severe 

combined immunodeficiency disorder (X-SCID) by Ex vivo retrovirus-mediated gene transfer into 

hematopoietic stem cells, two patients developed leukemia-like syndrome in late 2002. The disease 

was shown to be due to the oncogenic insertional mutagenesis resulting from random retroviral 

integration to the LMO2 proto-oncogene promoter of host cells [45, 49, 50]. Recently, 

complications with CAR-T products (Kymriah® and YescartaTM) including life-threatening side 

effects, such as cytokine release syndrome and neurological toxicities, are increasingly getting 

attention [51]. As a result, many of viral gene products are used in combination with various 

immune modulatory regimens [52]. These events highlight some of the major safety concerns with 

the use of viral gene therapy products.  

In addition, the high price tags of viral gene therapy products (e.g., Kymriah®: $475,000, 

YescartaTM: 373,000 and LuxturnaTM: $425,000 for single dose per eye or $850,000 for both eyes) 

raise the question of affordability and present considerable financial challenges for health-care 

providers and insurance companies [37, 41, 53]. Moreover, difficulty in production and 

manufacturing process, possibility of large-scale contamination of bioreactor batches [54], 

encourage the research for the potential alternatives that can circumvent many of these limitations.  
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Non-viral gene therapy can fall into two categories: physical methods and non-viral vectors. 

Physical technology including electroporation [55], gene gun [56], ultrasound [57], and 

hydrodynamic injection [58] utilize physical forces to deliver naked nucleic acids into the targeted 

cells by creating transient membrane holes or defects in the cell membrane [16, 59]. However, 

these strategies are generally invasive that may cause cell trauma, cell death and/or physical 

damage to the samples [60]. In addition, their applications are limited to the local tissues (such as 

skin and muscles) and are not feasible for systemic gene delivery [61]. Non-viral vectors are highly 

sought after because of their low toxicity and immunogenicity, potential for repeated 

administration, low cost and ease of large scale production, potential platform for surface 

engineering with receptor-specific ligands for targeted gene delivery, and capacity to deliver 

unlimited size of nucleic acid payloads. Various non-viral vectors have been developed, including 

lipid-based vectors and polymer-based nanoparticles, dendrimer-based vectors and cell penetrating 

peptides [62]. Unlike viruses that have evolved mechanisms to deliver their genomes efficiently 

to host cells, non-viral vectors are not capable to effectively transport their cargos across various 

extra- and intra-cellular barriers. As a result, they have comparatively lower transfection efficiency 

and none of the non-viral based gene therapeutics has so far been approved by the US FDA despite 

the progress in their clinical developments [25, 63]. Therefore, development of non-viral gene 

delivery systems that can mimic the virus effective gene transfer is highly desirable [64-66].  

 

1.3 Barriers to non-viral gene delivery 

1.3.1 Extra-cellular barriers 

 Systematic delivery of non-viral vectors is hindered by enzymatic degradation, serum 

inactivation, and clearance by host defence mechanism. After in vivo administration of the 
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therapeutic nucleic acids, free nucleic acids can be rapidly degraded by various nucleases existing 

in circulation and extracellular environment. In a study, it was shown that the half-life of naked 

plasmid DNA in mouse whole blood was about 10 minutes at a concentration of 100 µg/ml [67]. 

Therefore, it is necessary to use vector systems that can efficiently condense and protect the large 

nucleic acid macromolecules against enzymatic degradation. Condensation and protection are 

generally proceeded by electrostatic interaction between negatively charged phosphate backbone 

of nucleic acids and cationic agents (such as lipids and polymers) to form thermodynamically 

stable particles (e.g., lipoplex and polyplex). The size, stability and the degree of complexation are 

largely dependent on the type and the amount of materials being used [68]. For example, these 

parameters can be controlled by adjusting cationic lipids/polymers to nucleic acids charge ratios 

(N/P).  

The administration of neutral and cationic gene delivery vectors, however, can lead to aggregation 

owing to colloidal instability of cationic complexes at high physiological salt concentration or 

interaction with negatively charged erythrocyte membrane. Therefore, these aggregates may result 

in vascular blockage and lung embolization [69]. Preventing aggregation by increasing 

electrostatic repulsion using excessive cationic charge can further increase the opsonisation of the 

positively charged particles with plasma proteins (opsonins) in which the opsonized particles 

induce rapid clearance by circulating macrophages (through activation of the complement system) 

and phagocytic cells of the mononuclear phagocytic system (MPS) located in the liver, spleen, 

bone marrow and lungs (also known as reticuloendothelial system (RES)) [70, 71]. Increased 

colloidal stability is typically achieved by modification of non-viral vectors with hydrophilic 

polymers (e.g., poly(ethylene glycol) (PEG)), which creates a hydrophilic layer around the particle 

surface and confers steric hindrance between the opsonins and the delivery systems, thus  avoiding 



	 8 

recognition by the RES system and prolonging circulation time in bloodstream [72, 73]. Therefore, 

the PEGylated nanoparticles (also referred as “stealth” nanoparticles) with reduced cytotoxicity 

can accumulate at pathological regions such as solid tumors (the so-called passive targeting) due 

to the cut-off size of their leaky vasculature, a phenomenon termed as “enhanced permeability and 

retention (EPR) effect” [66, 74]. Targeting ligand moieties such as peptides, antibodies and sugars 

have been grafted on the surface of gene delivery vectors to target organs/tissues of interest. 

However, the improved stability of PEG-shielded nanoparticles without efficient cleavable PEG 

systems have shown to inhibit cellular uptake and interfere with endosomal escape of the gene 

delivery systems, resulting in reduced gene expression [75, 76].  

In addition to physiological barriers after systemic administration, the gene delivery vectors must 

cross anatomical barriers such as epithelial tissue of the blood vessels and the extracellular matrix 

to gain access to the targeted cells.  

Gene delivery vectors using non-systemic administration are subjected to the sets of barriers 

associated with each organ involved (skin, eye, lung and other mucosal barriers) [25]. Following 

the extracellular barriers, the intracellular hurdles include cellular uptake, intracellular delivery, 

endosomal escape, nuclear translocation (in case of pDNA delivery) as described below. 

 

1.3.2 Intra-cellular barriers  

1.3.2.1 Cell binding and uptake mechanism  

The uptake of naked nucleic acids across the lipophilic cell membrane is hindered due to the large, 

hydrophilic and high negative charge density of nucleic acids. Cationic complexes such as 

lipoplex, polyplex or other nanocarriers are typically used to facilitate internalization of nucleic 

acids through a process called endocytosis, by which the portion of the cell membrane 
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progressively encloses the vector, invaginates into a vesicle and then pinches off from the cell 

membrane to form an intracellular vesicle [77]. It is generally accepted that cell membrane 

interactions with cationic complexes are non-specific and mainly driven by the electrostatic 

interactions between the cationic complexes and the negatively charged proteoglycans carrying 

various glycosaminoglycans (GAGs) (e.g., chondroitin sulfate proteoglycans (CSPGs) and 

heparan sulfate proteoglycan (HSPGs)) on the cell surface [78-80]. Several viruses have also been 

shown to utilize these highly negatively charged GAGs as binding receptors to bring them closer 

to cells where they can interact with other receptors triggering internalization process [81-84]. The 

internalization of cationic complexes can be mediated either by electrostatic interaction with 

generic binding sites on the cell membrane in a non-specific manner (adsorptive-mediated 

endocytosis) and/or by specific ligands that bind to specific cell surface receptors (receptor-

mediated endocytosis). Receptor-mediated endocytosis is believed to be a more efficient method 

for targeted gene delivery with reduced cytotoxicity. Cell surface binding and internalization, 

however, was found to be specific only within a narrow window of charge ratios close to neutrality 

[85, 86]. 

Targeted gene delivery can be achieved by surface modification of nanoparticles with specific 

ligands that can efficiently target certain receptors or antigens that are overexpressed in a disease 

or condition. Arg-Gly-Asp (RGD) [87], folate [88], transferrin [89], mannose [90] and cell-specific 

antibodies [91], are a few examples of nanoparticles surface modifications that have been 

investigated for targeted gene delivery.  

As a particular example, RGD peptide motif ligands, found in many extra-cellular matrix (ECM) 

proteins such as collagen, laminin, fibronectin (FN), vitronectin (VN), von Willebrand Factor 

(VWF) and fibrinogen (FG), bind to integrins, a large family of transmembrane heterodimeric 
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glycoprotein receptors made of a and b subunits, and have been exploited for integrin-mediated 

targeted gene delivery. Many integrins, including a5b1 and av	integrins (such as	avb3, and avb5), 

recognize the RGD peptide motif. Integrin-mediated uptake are also exploited by certain viruses, 

including adenovirus, echovirus and foot-and mouth disease virus [92-94].  The grafting of 

synthetic RGD peptides or peptidomimetics to the surface of gene complexes have been 

investigated for cancer gene therapy through targeting of avb3 integrin, which is involved in tumor 

angiogenesis and progression [95-98]. The integrin avb3 is highly expressed on cancer cells and 

tumor vasculatures, but it is absent in resting endothelial cells and most normal cells, making it an 

attractive target for cancer gene therapy [99]. In a study, polyethyleneimine (PEI) nanoparticles, 

which were PEGylated with a cyclic RGD ligand at the distal end of the PEG, were used for tumor-

targeting delivery of siRNAs inhibiting vascular endothelial growth factor receptor-2 (VEGF R2) 

expression and tumor angiogenesis [100]. It was shown that the intravenous administration of the 

gene complex in tumor-bearing mice decreased protein expression with the tumor, resulting in 

inhibition of tumor growth and reduction in angiogenesis.  

Endocytosis mechanism can also be classified in two broad categories: phagocytosis and 

pinocytosis. Phagocytosis is only limited to the specialized cells such as macrophages, monocytes 

and dendritic cells. Pinocytosis, however, occurs in all cell types and based on the composition of 

the coated vesicle, the size of the detached vesicle and the subsequent intracellular trafficking of 

the internalized particles are typically subdivided into four distinct pathways: 1- clathrin-mediated 

endocytosis (CME), 2- caveolae-mediated endocytosis (CvME), 3- macropinocytosis and 4- 

clathrin- and caveolae-independent endocytosis (CIE) [101]. The details of non-viral vectors 

cellular uptake mechanism have been extensively reviewed in the literature [102-104].  
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Briefly, CME includes the internalization of nutrients, antigens, growth factors and pathogens by 

binding to a cell surface receptor, followed by clustering of the ligand-receptor complexes into 

coated pits, which are then taken up into a clathrin-coated vesicle (CCV) with the size range of up 

to 200 nm [104]. The clathrin then depolymerized to form uncoated vesicles, which are then fused 

with each other and/or other vesicles, resulting in formation of early endosome, followed by 

acidification by proton pumps and maturation into late endosome and eventually lysosome to form 

an endolysosome where the particles are degraded at pH around 4.5.    

CvME are small (60-80 nm), flask-shaped invagination of plasma membrane that are enriched in 

cholesterol and glycosphingololipids. CvME are involved in transcytosis (specially in endothelial 

cells) and endocytosis and are characterized by the presence of caveolin-1 located at the inner 

leaflet of the membrane bilayer [105, 106]. The density of caveola varies between cell types, 

tissues and can vary by the physiological conditions or disease states [106]. CvME is generally 

reported to be a non-acidic and non-digestive route of internalization where the internalized cargos 

are directly transferred to the Golgi and/or endoplasmic reticulum thus bypassing endolysosomal 

degradation [107]. However, the recent evidence suggests that some of the internalized 

caveosomes can join the classical endocytic degradative pathway [103, 105]. 

Macropinocytosis refers to the formation of large heterogeneous vesicles that are not induced by 

the cargos but rather stimulated in response to growth factors such as colony-stimulating factor-1 

(CSF-1), epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). 

Macropinocytosis is an actin-based process by which the internalization of fluids and particles 

occurs through cell surface ruffling that collapses onto and fuse with the plasma membrane [77, 

108]. The endocytic vesicles, called macropinosomes, can be as large as 5 µM in diameter (usually 

bigger than 1 µM) and reported to have no coat. The intracellular fate of the macropinosomes are 
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largely dependent on the cell type, but generally they become acidified and shrink. The 

macropinosomes either recycle their content back to the cell exterior or mature and fuse with other 

late endosomes or with lysosomes [104, 109].   

Phagocytosis is an actin-based membrane protrusions zippering up around the ligand-coated large 

particles (0.5> µM), followed by internalization into uncoated vesicles called phagosomes, which 

then readily fuse to early endosomes and late endosomes and eventually mature into 

phagolysosome where the internalized cargos are degraded [110]. Particle internalization is 

mediated by opsonic receptors, including complement receptors and Fc receptors.    

In addition to the professional phagocytes (neutrophils, monocytes and macrophages, dendritic 

cells), other cell types such epithelial cells, endothelial cells and fibroblasts may uptake large 

cationic gene complexes (lipoplex and polyplex) through phagocytosis-like mechanism [77, 110].  

Other endocytosis pathways independent of clathrin and caveolin (CIE) have been described to 

take place in lipid rafts and can include flotillin-dependent endocytosis, GTPase regulator 

associated with focal adhesion kinase-1 (CRAF1)-dependent endocytosis, adenosine diphosphate-

ribosylation factor 6 (Arf6)-dependent endocytosis, and RhoA-dependent endocytosis [104].  

Among all these endocytic pathways, clathrin-mediated endocytosis has been reported to be the 

major internalization pathway for non-targeting cationic gene delivery systems (i.e. adsorptive-

mediated endocytosis). In addition, most of the current ligands used in targeted gene delivery 

(receptor-mediated endocytosis), including asialoglycoprotein, epidermal growth factor (EGF), 

folate, integrin-binding motifs, lactose, mannose and transferrin, are internalized via clathrin-

mediated endocytosis [77]. 

The use of cell-penetrating peptides (CPPs) also referred to as protein transduction domains (e.g., 

TAT (48-60), penetratin, transportan) has also been investigated for internalization of nucleic acid 
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cargos [111]. It was initially suggested that these peptides can directly penetrate through the cell 

membrane by the localized positive charge of the peptides or formation of inverted micelles in an 

energy-independent mechanism (non-endocytic pathways). However, more evidence found that 

the major uptake mechanism of these peptides and their cargos are mediated through endocytosis 

pathways- primary macropinocytosis, in a non-specific manner driven by enhanced electrostatic 

interaction with the cell [112].       

 

1.3.2.2 Endosomal escape  

Regardless of the route of the endocytosis, the endocytosed gene complexes are trapped in 

endosomes, which then they are either degraded by lysosomal proteases or recycled back to the 

extracellular milieu through multiple pathways [113, 114]. In addition, it was reported that 

nanoparticles that are directly delivered into the cell cytoplasm (e.g., by microinjection) can be 

captured by an autophagy response (also known as ‘self-eating’) and are delivered to the lysosomal 

compartment for degradation [115]. These observations indicated that the escaped nanoparticles 

from single endosomal escape event can also be recaptured in endocytic vesicles, leading to 

entrapment in the endosomal compartment and hence limited therapeutic efficiency.        

Therefore, design of gene delivery systems that can efficiently escape from endosomes and release 

the nucleic acid cargos into cytoplasm is crucial for high transfection efficiency. Zabner and 

colleagues., showed that direct injection of cationic lipoplex into the nucleus do not induce high 

gene expression, indicating that dissociation of DNA from cationic complex must occur before 

transcription [116]. Following this, a model, explaining the underlying mechanism for the release 

of naked DNA from the complex, was proposed by Xu and Szoka, suggesting that flip-flop of 

anionic phospholipids from the cytoplasmic side of the endosomal membrane to the endosomal 
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lumen form charge-neutralized ion-pairs with cationic lipids of lipoplex, resulting in destabilizing 

the endosomal membrane and displacement of pDNA from the complex into the cytoplasm [117]. 

The incorporation of neutral phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine 

(DOPE), as a helper lipid in formulating cationic complexes promotes membrane fusion and 

endosomal destabilization by adopting inverted hexagonal (HII) phase at acidic pH [118, 119]. It 

was shown that the addition of lysosomotropic agent chloroquine, known to elevate the pH by 

buffering the endosomes, resulted in inhibition of the transfection efficiency of DOPE-containing 

cationic complex, denoting the necessity of the acidic pH of the endosomes for the DOPE helper 

lipid activity [120]. Similarly, adenoviruses exploit the low pH of endosome to destabilize the 

endosome where the Ad penton base protein containing five RGD motifs undergoes a 

conformational change at pH 6, exposing its hydrophobic regions and penetrates to the endosomal 

membrane and escape from endo-lysosomal degradation [121-124].  

Replacement of the un-saturated DOPE helper lipid with a phospholipid of the same acyl chain 

groups, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) or with a phospholipid made up 

of the same head group, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylehanolamine (DPPE), was 

shown to result in low transfection efficiency [120, 125]. In addition, the inclusion of cationic 

lipids with long saturated tails (³ C16:0) or with large charged head groups or bilayer-stabilizing 

lipids (e.g., PEGylated lipids) was reported to have inhibitory effects on intracellular delivery and 

thereby reducing lipoplex transfection efficiency [80, 126]. This has been observed to be the strong 

correlation between the transfection efficiency and the capability of the lipoplexes in inducing 

lamellar to nonlamellar phase transition [80]. The geometrical shape of the lipids has been used to 

predict the occurrence of such phases. Lipids with a cone-like geometry (i.e., headgroup surface 

area is larger than hydrocarbon area) self-assemble into micelles, exhibiting positive membrane 
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curvature, and lipids with a cylindrical geometry (i.e., headgroup and hydrocarbon surface areas 

are about equal) favourably adopt the bilayer phase, whereas inverted cone shaped lipids (i.e., 

having a headgroup area smaller than hydrocarbon domain) obtain the hexagonal HII phase or 

inverted micelles (cubic phase), exhibiting negative membrane curvature [118, 127, 128]. The 

complementary mixtures of positively curved cone and negatively curved inverted cone-shaped 

lipids can adopt lamellar system that maybe capable of undergoing non-lamellar phases and 

destabilizing endosomal membrane. For example, the mixture of cone shaped DOPE, which adopts 

the inverted hexagonal phase in isolation at above 10°C, with cationic lipids are used to complex 

DNA in a bilayer structure [128, 129]. Safinya’s group studied the supramolecular structures of 

cationic lipoplex in correlation with their transfection efficiency using synchrotron small angle X-

ray scattering (SAXS) and optical microscopy [129, 130]. The SAXS scans of the self-assembled 

cationic lipoplex revealed either the formation of lamellar Ha" phase where the DNA monolayers 

intercalated (sandwiched) between cationic bilayers, or columnar inverted hexagonal phase H##"  

structure consisting of DNA surrounded with cationic lipid monolayers arranged on a 2D 

hexagonal lattice [129, 130]. Optical microscopy showed that H##"  complexes rapidly fused and 

released DNA upon interaction with anionic endosomal vesicles. 

Cationic polyplexes such as polyethylenimine (PEI), polyamidoamine (PAMAM) dendrimers and 

imidazole-containing polymers, however, are suggested to exert a distinct approach known as 

“proton-sponge” mechanism [86, 131, 132]. This hypothesis is correlated with the buffering 

capacity of polymers below physiological pH. During endosomal acidification and maturation, the 

unprotonated amine groups (secondary or tertiary amines with pKa values between 5.5-6) act as a 

sponge by absorbing protons, resulting in more influx of H+ ions, leading to an increased influx of 

Cl- counterions which causes increased osmotic pressure inside the endosomes. Consequently, the 
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influx of water into the endosomes causes osmotic swelling and the eventual rupture of the 

endosomal membrane, thus resulting in subsequent release of polyplexes in the cytoplasm [133]. 

For other cationic polymers such as polylysine, which contains only primary amine groups, the 

addition of chloroquine at the time of transfection can considerably improve their transfection 

efficiency by inhibiting lysosomal DNA degradation. The practicality of this approach, however, 

is only limited for in vitro gene delivery [134, 135]. 

The details of the escape mechanism of lipoplexes and polyplexes are still debatable as no direct 

evidence has supported these mechanisms [80, 135-138].  

Other strategies to overcome endosomal barriers include the utilization of fusogenic viral peptides 

derived from viral proteins (e.g., fusogenic peptide derived from the N-terminal sequence of the 

influenza virus hamagglutinin subunit HA-2) or synthetic fusogenic peptides (e.g., amphipathic 

peptides GALA and cationic amphipathic peptide KALA) that can be either covalently or non-

covalently attached to the gene delivery systems [139-142]. These peptides can undergo a 

conformational change at endosomal pH and adopt an a-helical structure that can interact with the 

endosomal membrane and result in destabilization and pore formation [143]. For example, 

influenza HA-2 subunit (23 mer: GLFGAIAGFIENGWEGMIDGWYG) at neutral pH forms a 

hydrophilic non-helical structure due to the charge repulsion arising from the negatively charged 

glutamic acid (E) residues (located at position 11 and 15) and aspartic acid (D) residue (at position 

19) and speculated that the protonation of the acidic residues at low endosomal pH promotes 

transition to a hydrophobic helical conformation, hence inducing the peptide’s membrane fusion 

and leakage activity [139, 144]. It was shown that the DNA complexes made up of polylysine as 

the nucleic acid packaging module, polylysine-modified transferrin as the receptor-mediated 

transport module and polylysine bound to HA-2 peptide, forming a simple model of an “artificial 
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membrane-free virus” (for example similar to adenoviruses), can enhance endosomal escape and 

gene expression [139, 145].        

 

1.3.2.3 Nuclear translocation  

Delivery of DNA across the double-bilayer nuclear membrane is essential to access the 

transcriptional machinery for subsequent transcription of their encoding transgenes in the nucleus. 

In quiescent or slow dividing cells with intact nuclear envelope, the nuclear uptake is considered 

as the rate-limiting barrier. However, this barrier is not as important in rapidly dividing cells as 

DNA can reach the nucleus during cell division where the breakdown of the nuclear envelope takes 

place [146]. To promote nuclear uptake, nuclear localization signals (NLS), which are short 

cationic peptide sequences, have been utilized to actively deliver DNA through the nuclear pore 

complex (NPC). The NPC are 125 MDa assembly of 30 different nucleoproteins that allow passive 

diffusion of small molecules but require active transport for macromolecules larger than ~40 kDa 

[146, 147]. Many proteins bearing NLS are recognized by specific proteins called karyopherins 

(for example importins), which mediate nuclear transport through the nuclear pore [86, 146]. 

Therefore, many studies have been devising various methods to promote nuclear localization. 

These include attachment of karyopherins to the delivery system, coupling of linear or plasmid 

DNA with NLS-peptides, and covalent linkage of DNA nuclear targeting sequences (DTS) to 

vectors [148-151]. For example. the SV40 enhancer is a DTS that is believed to contain a binding 

site for transcription factors bearing NLSs that allow the plasmid vector containing the SV40 DTS 

with NLSs to shuttle into the nucleus [151]. Cationic polyplexes may also serve as NLS to some 

extent, due to their positive surface charge [152, 153].  
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1.4 Non-viral gene delivery systems 

Due to the limitations associated with the viral vectors, since the mid 1970’s many types of 

synthetic vectors have been developed to overcome the extra- and intra-cellular barriers [68]. Some 

of the most common synthetic polymer-, dendrimer- and lipid-based vectors (Fig. 1.1 and Fig. 1.2) 

are described here.  

 

1.4.1 Poly(L-Lysine) (PLL) 

Poly(L-Lysine) (PLL) was the first cationic polymer introduced in 1987 by Wu and Wu [154, 155]. 

The PLL is the most widely studied cationic polymer and has been used as linear or branched in a 

variety of polymerizations including PLL-containing peptides [156]. In the absence of lysosomal 

disruption agent such as chloroquine, PLL has poor transfection activity. This is because all the 

primary amine groups of PLL are protonated at physiological pH, and therefore have low buffering 

capacity for endosomal escape [62, 68]. In addition, as the molecular weight of the cationic 

polymer increases, this results in increasing the net positive charge leading to tighter complexation 

of DNA, hence, forming more stable particles. However, increasing the length of the cationic PLL 

is often associated with increasing the cytotoxicity profile of the delivery complexes. PEG-grafted 

PLL have shown to reduce toxicity and increase circulation half-life by preventing plasma protein 

binding [156, 157]. The conjugation of PLL with asialoorosomucoid glycoprotein, folate, RGD 

peptides, and antibodies have also been investigated for targeted gene delivery [154, 158-160]. 

 

1.4.2 Polyethylenimine (PEI) 

Polyethylenimine (PEI) was introduced by Behr et al. in 1995 [131] and similar to PLL has been 

widely used in linear or branched forms as gene delivery vehicles. Examples of commercially 
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available transfection reagents based on linear PEI include ExGen500, and jetPEI [161, 162]. The 

strong buffering capacity of PEI owing to the great number of primary, secondary, and tertiary 

amines, make PEI and its variants as potent delivery systems. Conjugation of various targeting 

ligands such as RGD motifs, galactose, transferrin, and specific antibodies to PEI have been 

explored to improve their uptake for targeted delivery [163-165]. For example, synthetic virus-like 

particles were developed by conjugation of RGD integrin-binding motif (i.e., CYGGRGDTP) to 

thiol-derivatized PEI via disulphide bridges to follow adenovirus properties such as size, centrally 

protected DNA core, integrin-mediated cellular uptake, and acid-triggered endosome escape [163]. 

One of the drawbacks of the PEI is its non-biodegradable nature, causing substantial toxicity in 

vivo. Several approaches to decrease the cytotoxicity of PEI include PEGylation, functionalization 

of the PEG-PEI block copolymer with targeting moieties (e.g., RGD and galactose), and 

conjugation with biodegradable linkers (e.g., disulphide- and ester-crosslinked PEIs) [166-169].    

 

1.4.3 Carbohydrate-based vectors 

Carbohydrate-based vectors have been investigated as gene delivery vectors for their excellent 

biodegradability, biocompatibility and low toxicity properties [68, 170]. Chitosan and 

cyclodextrins are amongst the most frequently studied carbohydrate-based gene delivery systems.  

Chitosan is obtained by the alkaline deacetylation of chitin, a naturally occurring polymer, and 

composed of b(1®4)-linked D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) 

repeating units (Fig. 1.1) [170-172]. The transfection activity of chitosan polyplexes have been 

shown to be affected by several factors such as degree of deacetylation, molecular weight, the 

number of chitosan nitrogen atoms per DNA phosphorus atoms charge ratio, pH, and their 

physicochemical properties (size and zeta potential) [173, 174]. The bioadhesive and permeation-



	 20 

enhancing properties of chitosan-based polyplexes, make them suitable vectors in oral and nasal 

gene delivery. This is due to the electrostatic interactions between the cationic chitosan with 

negatively charged sialic acid residues (pKa = 2.6) on mucins, which are highly hydrated 

glycoprotein constituents of mucus and primarily responsible for viscoelastic properties of mucus  

[175-179].  However, their applications for in vivo gene delivery are limited due to several 

drawbacks that include low solubility at physiological pH and low transfection activity [180]. To 

enhance their solubility and improve colloidal stability of the chitosan polyplexes for prolonged 

circulation time, chemical modification of chitosan has been investigated by quaternization of the 

D-glucosamine or grafting certain polymers such as PEG and dextran to chitosan [172, 181]. 

Targeted gene delivery of chitosan-based polyplexes has also been achieved by grafting cellular 

targeting ligands on chitosan (e.g., galactose for targeted delivery to liver cells, folate for 

pulmonary tumor targeting) [182, 183]. Moreover, functional groups such as histidine, imidazole, 

urocanic acid or PEI were coupled to chitosan to confer proton sponge capacity, thus facilitating 

their endosomal escape and increasing their transfection activity [184-189].  

Cyclodextrins (CDs) are naturally occurring cyclic a(1®4)-linked oligosaccharides of D-

glucopyranose units [190]. CDs possess a basket-shaped topology with a hydrophilic cavity 

exterior and an inner hydrophobic cavity, which allows inclusion and solubilisation of hydrophobic 

“guest” molecules [170, 190]. The most common CDs are a-,  b- and g-CDs, which are comprised 

of 6, 7, and 8 D-glucopyranose units, respectively [190]. CDs with abundant hydroxyl groups are 

soluble in water and can also be easily functionalized with multiple targeting ligands. While the 

transfection efficiency of native CDs is much lower compared with conventional polymeric 

vectors, such as chitosan, PEI and PLL (that is perhaps due to their poor capability to form stable 

complexes with pDNA), CDs have been exploited as a central dendritic core for coupling of 
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various functional groups, as linking agents for development of larger gene delivery constructs, or 

as structural modifier to modulate the performance of existing gene delivery vectors [170, 190].  

Other carbohydrate-based vectors used as gene delivery vectors include dextran, arabinogalactan, 

hyaluronan, alginate, pullulan, pectin, and schizophyllan [191-197].  

 

1.4.4 Dendrimer-based vectors 

Dendrimers are hyperbranched macromolecules with three-dimensional well-defined architectures 

constructed using both divergent and convergent methods [198-200]. A few examples of 

dendrimers used in gene delivery include polyamidoamine (PAMAM) dendrimer, 

poly(propylenimine) (PPI) dendrimer, triazine dendrimer, carbosilane dendrimer, phosphorus 

dendrimer, and PLL dendrimer [201-208]. Superfect and PolyFect are the two commercially 

available transfection reagents prepared using activated PAMAM dendrimer technology [209]. 

Dendrimers can efficiently condense nucleic acids by electrostatic interactions, protect them from 

enzymatic degradation, and promote their cellular uptake and endosomal escape. The primary 

amine groups at the periphery of dendrimers bind to and compact nucleic acids, while the high 

density of tertiary amines within the interior of dendrimers function as an endosomal pH buffer, 

hence enhancing intracellular delivery of nucleic acids [198, 210]. The transfection activity of 

dendrimers is dependent on the dendrimer generation (i.e., number of repeated branching cycles 

during dendrimer synthesis) [169]. However, the increased transfection efficiency of high 

generation dendrimers is often accompanied with serious cytotoxicity. Therefore, to improve 

transfection activity and lower cytotoxicity, surface modification of dendrimers with various 

functional ligands such as lipids, sugars, peptides and proteins have been explored [211-217].         
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Fig. 1.1. Chemical structures of selected cationic polymers used for non-viral gene delivery. 

 

1.4.5 Polypeptides 

Polypeptides hold great promise in the field of gene therapy owing to their inherent 

biocompatibility, biodegradability, and bioactivity. The diversity of polypeptides confers peptide-

based gene delivery systems with various functions such as DNA condensation and protection, 

cell targeting, cell penetrating, endosomal escape capacity, cellular trafficking of DNA and nuclear 

localization [142, 143, 218].  
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Neurotensin, LHRH, Tf, RGD, trastuzumab are a few examples of targeted peptides used for 

targeted gene delivery [139, 219-223]. Table 1.1 also lists the most important functional peptides 

that have been used in gene delivery systems. These peptides can be readily synthesized using 

solid phase peptide synthesis methods and can be used as a single peptide sequence or in 

combination by covalent conjugation of different functional peptides to a single multifunctional 

molecule [142, 224].    

 

 

Table 1.1. Cell penetrating peptides (CPPs), endosomolytic peptides, and nuclear localization 
signal (NLS) peptides used for gene delivery.  
 
 

Function Name Sequence Reference 

CPPs TAT (48-60) GRKKRRQRRRPPQ [225] 

 Penetratin RQIKIWFQNRRMKWKK [226] 

 Transportan GWTLNSAGYLLGKINLKALAALAKKIL [227] 

 VP22 NAKTRRHERRRKLAIER [228, 229] 

 MAP KLALKLALKALKAALKLA [230] 

 Pep-1 KETWWETWWTEWSQPKKKRKV [231] 

 Polyarginine (R)9 [232] 

Endosomolytic GALA WEAALAEALAEALAEHLAEALAEALEALAA [140] 

 KALA WEAKLAKALAKALAKHLAKALAKALKACEA [233] 

 JST-1 GLFEALLELLESLWELLLEA [234] 

 ppTG1 GLFKALLKLLKSLWKLLLKA [235] 

 ppTG20 GLFRALLRLLRSLWRLLLRA [235] 

 His-rich peptides HHHHHWYG [236] 

 His-rich peptides CHKKKKKKHC [237] 

NLS SV40 T antigen PKKKRKV [238] 

 Nucleoplasmin KRPAATKKAGQAKKKK [239] 

 PARP KRKGDEVDGVDECAKKSKK [240] 

 M9 YTAIAWVKAFIRKLRK [241] 
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1.4.6 Cationic lipids 

Over the past three decades, various cationic lipid-based gene delivery systems have been 

developed. These complexes mimic natural viruses where the synthetic carriers transfer gene 

across cell membranes and resulted in expression of exogenous DNA [130]. Cationic lipids are 

constructed from hydrophilic head group connected to hydrophobic hydrocarbon tails (often two 

alkyl tails with 12-18 carbons in length) via a linker group. In aqueous environment, most cationic 

lipids in combination with neutral helper lipids such as DOPE or cholesterol are self-assembled 

into closed lipid bilayer membrane shells (liposomes) in an entropically favorable manner [242, 

243].  

It was first demonstrated in 1980 that liposomes composed of natural anionic phosphatidylserine 

were capable of encapsulating and delivering Simian virus 40 (SV40) DNA into cells [244]. In 

1987, the first synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl-N,N,N-trimethylammonium 

chloride (DOTMA), was produced by Felgner et al.  [245]. It was shown that cationic small 

unilamellar liposomes containing DOTMA could interact spontaneously with DNA and more 

efficiently encapsulate DNA (100% entrapment) than conventional liposomes (less than 10% 

entrapment). In addition, cationic DOTMA in combination with DOPE, in a 1:1 (wt/wt) ratio, 

could form small cationic liposome that could efficiently transfect various mammalian cell lines 

[245]. Since then, many commercially available cationic lipid reagents were developed, including 

dioctadecylamidoglycylspermine (DOGS; TRANSFECTAMTM) [246]; 1,2-dioleoyloxy-3-

trimethylammonium-propane (DOTAP) [247, 248], 3b-[N-(N",N"-dimethylaminoethane)-

carbomoyl]cholestrol (DC-Chol) [249], 2,3-dioleyloxy-N-[2(sperminecarboxamido)-ethyl]-N,N-

dimethyl-l-propanaminium trifluoroacetate (DOSPA; Lipofectamine) [250] (Fig. 1.2).  
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Fig. 1.2. Chemical structures of cationic lipids (DOTMA, DOTAP, DOGS, DOSPA and DC-Chol) 
and neutral helper lipids (DOPE, DPPC). 
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The addition of polycations such as poly(L-Lysine), histone, and protamine into cationic liposomes 

(Lipofectamine, DC-Chol, Lipofectin) containing nucleic acids have been shown to considerably 

reduce the particle size of the complexes, improve DNA stability against nuclease activity, and 

significantly enhance the level of gene expression [251, 252]. These ternary complexes which are 

formed by non-covalent interactions (electrostatic interactions and hydrophobic effects) are 

denoted as lipopolyplexes.  

In attempt to construct integrin-mediated gene delivery, lipofectin (DOTMA/DOPE) (L) was 

incorporated into integrin-targeting peptide/DNA (ID) complex to form LID vector [253, 254]. It 

was demonstrated that the peptide-based lipopolyplex increased luciferase expression by more 

than 100-fold and was capable to efficiently transfect several cell types in vitro [253, 254]. Colin 

et al. examined transfection efficiency of lipofectamine/[K]16RGD/DNA in tracheal cell line. The 

ternary complex increased the transfection about three orders of magnitude as compared with the 

[K]16RGD/DNA and about 6-fold higher than that of lipofectamine/[K]16/DNA [255]. Jenkins et 

al. reported that intratracheal delivery of LID vector formulated by complexation of Lipofectin, 

integrin targeting peptide (K16-GACRRETAWACG) specific to a5b1 integrin and pCI-Luc 

plasmid DNA in water resulted in 10-fold increase in luciferase activity in comparison to that 

prepared in phosphate-buffered saline (PBS) [256]. Kudsiova et al. investigated the transfection 

efficiencies of lipid/DNA (LD) lipoplexes and lipid/peptide/DNA (LPD) lipopolyplexes in relation 

to alteration of the alkyl chain geometry of cationic lipids using novel C14-DOTMA analogues 

(containing cis- or trans-double bonds at positions D9 or D11 or an alkyne at position C9; Fig. 1.3) 

in MDA-MB-231 breast cancer cell line [257, 258]. It was shown that lipoplexes incorporating 

trans-lipids (co-formulated with DOPE and using gWiz-luc plasmid) at lipid: pDNA weight ratio 

of 4:1 had higher transfection efficiency than those with cis-lipids or alkyne lipids, and among 
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trans isomers, lipoplexes formulated with E-D11 was more efficient than E-D9. In addition, 

lipoplexes formulated with alkyne lipids at lipid: pDNA weight ratio of 4:1 or 16:1 were more 

efficient than that of with cis-lipids, and at 16:1 lipid: pDNA weight ratio was comparable to the 

luciferase expression in cells transfected with E-D9 lipids-formulated lipoplexes prepared at the 

4:1 lipid: pDNA weight ratio [257]. While there was no clear explanation to justify the direct 

correlation between the geometry of the cationic lipids and their correlated transfection efficiency, 

it was hypothesized that E-lipids presumably occupy a smaller area per molecule than the Z-lipids 

or alkyne lipids, resulting in more efficient complexation and thus higher transfection efficiency. 

The transfection study of the LPD lipopolyplexes, however, suggested superiority of the cis-lipids 

in LPD formulations. The Z-lipids (cis-lipids) pack less tightly due to the significantly larger area 

per molecule than the E-lipids with trans double bonds in their alkyl chains. As a consequence, 

bilayers formed by Z-lipids are more fluid and permeable than those containing E-lipids. This 

therefore, was hypothesized, to allow more of the integrin targeting sequence to protrude through 

the lipid bilayer from the central core of the tightly bound cationic peptide-DNA complex, and 

leading to better targeting and transfection activity [258]. This proposed structure was in alignment 

with the previous work performed by Mustapa et al. who studied the structure of the ternary LID 

complex (prepared from Lipofectin (1:1 DOTMA:DOPE), a bi-functional cationic, targeting 

peptide component, and pDNA) using fluorescence quenching experiments and freeze-fracture 

electron microscopy [259]. These experiments concluded that the cationic portion of the peptide 

(polylysine domain- K16) interacts with pDNA and forms a condensed DNA-peptide inner core 

surrounded by an irregular lipid layer, from which the targeting moiety of the peptide partially 

protrudes (Fig. 1.4). Freeze-fracture electron microscopy of LID and LK16D lipopolyplexes 

displayed a soft outer-shell/hard inner core morphology (Fig. 1.5). Similar structures were also 
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observed by Tagawa et al. in formulating LMD virus-like nanoparticles self-assembled from 

cationic liposomes (DC-Chol/DOPE), adenovirus core peptide µ (mu) and pDNA [260]. The cryo-

electron microscopy of LMD particles (prepared at 12:0.6:1 lipid:mu:DNA w/w/w ratio), however, 

revealed encapsulation of the MD core within a DC-Chol/DOPE cationic bilammellar liposome, 

described as a double-walled virus-like nanoparticle (VNP) with the particle size of 120 ± 30 nm 

[260].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Fig. 1.3. The structures of C14 analogue of DOTMA containing cis- or trans-double bonds at 
positions C9 or C11 (Z-D9 (a), E-D9 (b), Z-D11 (c), E-D11 (d)) or triple bonds at position C9 (e) 
in their alkyl chains, depicted from reference [258].   
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4. A model for the molecular organization of the LID lipopolyplex. Adapted with permission 
from [259]. Copyright (2007) American Chemical Society. 
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Fig. 1.5. Freeze-fracture electron micrographs of LID lipopolyplexes (a) and LK16D (b, c) 
displaying particles having a “hard” inner core with an irregular “soft” outer shell. Adapted with 
permission from [259]. Copyright (2007) American Chemical Society. 
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1.4.7 Gemini surfactants 

In addition to the cationic congeners of classical glycerophospholipids and cholesterol derivatives 

presented above, a novel class of cationic dimeric surfactants, known as gemini surfactants, have 

been investigated for gene delivery application [261-263]. In 1991, the name “gemini surfactants” 

was assigned by Menger to a family of synthetic amphiphilic molecules consisting of two head 

groups and two aliphatic chains that are linked at the level or close to the head group by a rigid 

spacer group (e.g., a benzene or stilbene unit) [264]. Since then, the term has been broadened to 

include all dimeric surfactants with rigid or flexible (e.g., a hydrocarbon chain) spacer region, 

those contain multiple heads and multiple tails whether they are symmetrical or asymmetrical, and 

even those surfactants studied preceding Mengers’s work [265-270]. Gemini surfactants provide 

high levels of interfacial activity and promote self-assembly at concentrations about hundredfold 

lower as compared to the monomeric surfactants [271-273]. The synergistic behaviour observed 

for gemini surfactants impart with the structural flexibility in their design make them of special 

interest for development of non-viral vectors for gene therapy [274].  

Gemini surfactants can be categorized based on their functionalities such as ammonium-, 

pyridinium-, carbohydrate-, cholesterol-based and disulfide-containing gemini surfactants [263, 

275].  

The propensity of the surfactant to self-assemble in water can be quantitatively measured by 

determining the critical micelle concentration (CMC), which is defined as the concentration above 

which monomeric surfactants self-assemble into supramolecular aggregates. Therefore, the lower 

the CMC the higher the tendency of surfactants is to self-assemble in water. The solution properties 

of N,N-bis(dimethylalkyl)-a,w-alkanediammonium, also called m-s-m gemini surfactant (where 

m and s refer to number of carbon atoms of the alkyl tail and spacer groups, respectively) has been 



	 32 

well studied [263]. The CMC value of simple surfactants is associated with their structural 

parameters such as the length of the alkyl tail, the size and charge of the polar head and of the 

counterions. In gemini surfactants, the linker connecting the monomeric surfactant structural units 

limits their individual mobility and thus the increased hydrophobic forces lower the CMC of 

gemini surfactants as compared with corresponding monomeric surfactants of equivalent chain 

length, polar head and counterion [265]. For example, the CMC of 12-3-12 gemini surfactant, 

[C12H25N+(CH3)2-(CH2)3-N+(CH3)2C12H25] 2Br-, was found to be approximately 1 mM, which is 

16 times lower than the CMC value of dodecyltrimethylammonium bromide (DTAB; CMC: 16 

mM), [C12H25N+(CH3)3] Br- [271, 273, 276]. While increasing the alkyl tail length of gemini 

surfactants linearly decreases the CMC value, the effect of variation in length and polarity of short 

spacer groups (2-8 atoms) on CMC values are not prominent. A longer hydrocarbon spacer (s >10), 

however, was found to reduce the CMC value due to the folding of the spacer and thus bringing 

the quaternary ammonium head groups in closer proximity, thus increasing the overall 

hydrophobicity of the gemini surfactant and resulting in an enhanced tendency to self-assemble 

([263, 265, 277].      

The morphology of the supramolecular assemblies formed by gemini surfactants can be 

determined by various techniques such as light scattering, cryo-transmission electron microscopy 

(cryo-TEM) and small angle neutron scattering (SANS) methods. Gemini surfactants in aqueous 

solution can form a variety of shape ranging from spherical to thread-like micelles, rod-like, disk-

like micelles and lamellar shapes [278, 279]. For example, 12-s-12 gemini surfactants with short 

spacer (s = 2,3) tend to form threadlike micelles and as the length of the spacer increases they form 

spherical micelles (for medium length, s = 5-12) and vesicles (for very like spacer region, s = 16) 

[278]. 



	 33 

Many factors such as concentration, temperature and ionic strength of the solution can impact the 

morphology of the aggregates [279]. For example, at low concentration, 12-2-12 gemini 

surfactants form spherical micelles and by increasing concentration, their morphologies change to 

elongated micelles and grow both in length and number [280].  

The morphology of the aggregates can be predicted by surfactant structure using the surfactant 

packing parameter “P”, a method introduced by Israelachvili et al. (Fig. 1.6).   

𝑃 =
𝑣
𝑎°𝑙*

 

where v is the surfactant alkyl tail volume, 𝑙* is the alkyl tail length and 𝑎° is the surface area 

occupied by the head-group at the aggregate interface. For example, surfactants with large head 

group areas have P < 1/3, forming into spherical micelles, whereas P = 1 indicates planar bilayer 

formation, and small polar heads P > 1 form inverted micellar phases (inverted hexagonal (HII) 

structures).  

As discussed earlier, lipoplexes that are capable to induce transition from lamellar (La
C) to inverted 

hexagonal (HII
C) structures are more transfection-efficient than those remaining their lamellar 

structures. Since, most cationic lipids including gemini surfactants have P < 1, they are mixed with 

non-aggregate forming helper lipids (P > 1) such as DOPE and cholesterol in certain proportions 

in order to induce an average P around 1 or over 1. The addition of helper lipids also reduces the 

electrostatic repulsions between cationic head groups and strengthens the hydrophobic forces, 

allowing lipids to pack together and forming a stable lipoplex [281, 282]. 
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Fig. 1.6. The packing parameter “P” of surfactants with various molecular geometries and the 
predicted morphologies of the supramolecular assemblies formed by surfactant structure [243, 281, 
282].  
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methylene units) to transfect BHK cells with pCMV-b-gal plasmid [283]. It was shown that 
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addition, the incorporation of DOPE as a helper lipid resulted in reduction of the transfection 

efficiency. Badea et al. investigated series of gemini surfactants (alkyl tail = 12 or 16; spacer length 

= 2-16) formulated with/without DOPE helper lipid for delivery of the pGTmCMV.IFN-GFP 

plasmid in PAM 212 keratinocyte at various gemini/plasmid charge ratios (5:1; 10:1; 20:1; 40:1) 

[284]. The maximum expression of IFNg was observed for the pDNA/16-3-16/DOPE (P/G/L) 

complex at 10:1 gemini/plasmid charge ratio, whereas cells transfected with 12-n-12 gemini 

surfactants in the absence of DOPE showed no IFNg detection [284]. Replacement of one C16 

chain of gemini surfactant with a phyntanyl moiety (dissymmetric phytanyl-gemini surfactant; 

phy-3-16) increased the transfection efficiency as compared to 16-3-16 in OVAR-3 cells using 

pVGtekRL plasmid encoding green fluorescent protein (GFP) [285]. Following a study examining 

DNA condensation using polyamine-DNA complexes and the effect of spacing between amine 

groups for DNA transfection, a series of aza- (N-CH3) and imino (N-H) substituted gemini 

surfactants were designed to increase the transfection efficiency of gemini surfactants [286-288]. 

It was shown that 12-7N-12 and 12-7NH-12 gemini surfactants, both with a three-methylene unit 

separation between adjacent nitrogen centers, increased transfection as compared with the gemini 

surfactants with a two-methylene unit separation (12-5N-12 and 12-8N-12) [288]. In addition, the 

higher transfection efficiency of imino-substituted 12-7NH-12 gemini surfactant than aza-

substituted 12-7N-12 was hypothesized to be associated with the pH-sensitive imino-group that 

facilitate membrane fusion and release of DNA upon cellular uptake [288]. The variations in alkyl 

tail length of m-7NH-m gemini surfactants (m = 12, 16, 18, 18:1) were investigated for 

keratinocyte transfection at various gemini/plasmid charge ratios (r± = 0.5:1; 1:1; 2.5:1; 5:1; 10:1) 

(Fig. 1.7). It was demonstrated that the transfection efficiencies increased by increasing alkyl tail 

length (18 > 16 > 12) and were highest in cells transfected using pDNA/gemini/DOPE complexes 
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with r± = 10 [289]. The unsaturated 18:1-7NH-18:1 resulted in lower transfection efficiency as 

compared with 18-7NH-18 and the reason behind this was suggested to be due to oxidation of the 

double bond during either complex preparation or storage [289]. Upon further investigation, it was 

shown that the attachment of a glycine moiety on 12-7NH-12 gemini surfactant resulted in higher 

gene expression in COS-7, PAM212 and SF 1EP cells [290]. Recently, Cardoso et al. investigated 

the transfection efficiency of series of serine-derived gemini surfactants (with varying alkyl chain 

lengths and linker groups (amine, amide and ester) connecting the spacer region to the head groups) 

formulated with DOPE and cholesterol for delivery of pEGFP-C1 plasmid DNA encoding GFP at 

gemini/plasmid charge ratios ranging from 1:1 to 8:1 in HeLa cells (human epithelial cervical 

carcinoma cell line) [291]. The flow cytometry result analysis showed that the percentage of the 

transfected cells was highest for gemini surfactants with C12 alkyl tails at the lowest charge ratios 

(1:1-2:1) and interestingly C14 and C16 alkyl tails had highest percentage of transfection with 

their highest charge ratios (8:1) (C14 > C16) whereas the transfection efficiency of C18 at 2:1 was 

higher than that of the highest of C14 and C16 counterparts. Therefore, no clear trend can be 

concluded in relation to the variation of the chain lengths and the charge ratios associated with 

their transfection efficiency.   
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Fig. 1.7. The CMC values of m-3-m and m-7NH-m gemini surfactants obtained from [273, 287, 
289, 292].  
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Sharma et al. studied the effect of pyridinium-based gemini surfactant formulated with DOPE (at 

1:2 molar ratio) carrying gWiz-Luc plasmid DNA at a +/- charge ratio 3:1 in correlation with the 

variation in chain length and the nature of the counterion in NCI-H23 lung cancer cell line [293]. 

It was demonstrated that the transfection efficiency increased by increasing the chain length, which 

is in parallel with the decrease in size of lipoplexes. The transfection efficiency showed maximum 

by chloride counterion (borderline chaotropic/kosmotropic; localized in between the Stern layer 

and the diffuse layer) as compared with chaotropic (PF6
- and Br-, large ions and poorly hydrated; 

strongly bound to the ionic surface of supramolecular aggregates) and kosmotropic (H2PO4
-, small 

ions and well- hydrated; loosely associated with the ionic surface of supramolecular structures) 

counterions [293, 294]. This was suggested to be due to the chloride counterion contribution to 

promote aggregation while being loose enough to dissociate upon compaction of DNA. The 

complexity of this behaviour was revealed where the kosmotropic dihydrogenophosphate resulted 

in formation of smaller lipoplexes with slightly higher zeta potential than that of chloride 

counterion.   

Bajaj et al. synthesized various cholesterol-based gemini surfactants, which differ in the length of 

the spacer chain (s = 3, 4, 5, 6, 12), and investigated their transfection efficiency in the presence 

of DOPE helper lipid carrying pEGFP-c3 plasmid DNA by both the number of the transfected 

cells and the mean fluorescence intensities (MFI) for revealing the level of GFP expression in 

GFP-positive cells using flow cytometry [295]. All the cholesterol-based gemini 

surfactants/DOPE showed significantly higher gene transfection activity as compared to their 

monomeric lipid counterparts. In addition, at 0.5:1 +/- charge ratio, it was found that the 

cholesterol-based gemini surfactant with pentamethylene spacer region (at 1:4 gemini/DOPE mole 
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ratio) had the highest transfection efficiency, although the number of transfected cells was found 

to be less [295].  

Zuber et al. used disulfide-containing gemini surfactants (formed by dimerization of the 

tetradecylamide of ornithyl-cysteine; (C14CO)2) co-formulated with DOPE and cyclic RGDfK-

grafted lipid (f = D-phenylalanine) for formation of virus-like particles containing pEGFPLuc 

plasmid to transfect HUVEC and KB cell lines [296]. The result showed the poor transfection 

efficiency of the virus-like particles compared to PEI/DNA complexes; however, the addition of 

chloroquine resulted in a further increase of luciferase gene expression [296].  

To create virus-like nanoparticles by turning lipoplexes into artificial viruses that mimic virus 

properties, the system requires a centrally protected DNA core, receptor-mediated uptake, and the 

ability to undergo structural changes in response to cellular environment in order to trigger 

endosomal escape. The transfection activity of the system can be quantitatively measured by both 

the number of cells transfected and the MFI. The transfection percentage and MFI are both 

imperative factors that indicate the transfection activity of a given gene delivery vector. While the 

transfection percentage can provide information on the internalization potency of a delivery vector 

(i.e., indicator of transfection efficiency), the MFI can give insight on the effectiveness of the 

delivery system for intracellular delivery of the pDNA for successful expression level of the 

reporter protein (i.e., indicator of transfection efficacy). Therefore, a potent gene delivery system 

with high transfection activity requires to have both high transfection efficiency and high 

transfection efficacy.    
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Chapter 2  

Hypothesis and Objectives 
	
	
	
2.1 Rationale  

Delivery of therapeutic genes to diseased tissues is challenging and highly sought after in the field 

of therapeutic research. Cellular uptake and effective endosomal escape are the important aspects 

for in vivo application of gene therapy. Non-specific cellular uptake has been attempted by 

incorporating various alkyl chain lengths into the delivery system, using hydrophobic amino acids, 

or using cell penetrating peptides to enhance the penetration of nanocarriers across cellular 

membranes [68]. The quaternizing amine group has frequently been used for increasing the 

cationic charge density for a given vector and typically reported to improve their transfection 

efficiency. Promoting endosomal release has been investigated by incorporating various 

macromolecules bearing unprotonated amine groups with low pKa values to stage endosomal 

escape due to so-called “proton sponge” effect [68, 297]. Polyethylenimine (PEI), histidine or 

imidazole containing polymers, peptides, and lipids are a few examples of such systems [298, 

299]. While the increasing charge density of delivery systems may be effective in enhancing 

cellular uptake and possibly endosomal rupture, cellular toxicity is another challenge when 

developing a gene delivery system. Histidine or guanidine functional groups have been shown to 

lower cellular toxicity due to better distribution of positive charges. The guanidine head group of 

arginine has also been considered to more effectively improve internalization by forming hydrogen 

bonds with the negatively charged phosphate and sulfates of cell surface membranes as compared 

to lysine with the same positive charges [112]. Cysteine residues containing thiol groups have been 

used to improve colloidal stabilization and transfection efficiency through reducible interpeptide 
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disulfide bonds, therefore forming cross-linked complexes with DNA [300]. Peptide ligands such 

as transferrin, epidermal growth factor, antibodies and cell adhesion molecules have been grafted 

to various delivery systems to target cellular uptake in a site-specific manner [301, 302]. The 

covalently grafting of linear RGD derivatives (GRGDSP) to dioleyl lipid tails via PEG2000 was 

performed to target genes for integrin-mediated internalization [303]. RGD (arginine-glycine-

aspartic acid) peptidomimetics bind to integrin receptors on melanoma, fibroblasts and epithelial 

cells and have broad application to target drugs and genes to specific cells as well as diagnostic 

and tissue engineering [122, 301, 304]. Peptide-based lipopolyplexes, which prepared by pre-

complexing pDNA with cationic peptides rich in basic amino acid residues (e.g., arginine, lysine 

or histidine) or with bi-functional receptor-targeting, cationic peptides, and further combining with 

classical cationic liposomes (i.e., containing DOTMA, or DOTAP or cholesterol derivatives) have 

been shown to have improved site-specific targeting and enhanced transfection properties [76, 141, 

253, 305-307]. 

Cationic gemini surfactant-based lipoplexes formulated with neutral helper lipids, such as DOPE 

and DPPC, have been widely used as non-viral gene delivery systems [261, 308]. Through 

functionalization of the spacer group and the alteration of alkyl chain lengths of gemini surfactants, 

the development of new compounds can potentially enhance the transfection efficiency and safety 

profile of gene delivery vectors.  

The main focus of this project is to: 1- design and synthesize novel gemini surfactants with various 

functional headgroups such as imidazole- and thiol-containing functional groups, linear RGD 

derivatives, polyhistidine derivatives, bi-functional RGD-polyhistidine peptide, zwitterionic and 

cationic arginine-rich peptide motifs, 2- design several peptide enhancers that include zwitterionic 

RGD peptide enhancer, DNA-binding cationic peptide enhancers rich in histidine and/or arginine, 
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and bifunctional cationic, RGD peptide enhancers, 3- systematically optimize lipoplex delivery 

systems incorporating gemini surfactants of varying alkyl chain lengths, spacer groups and 

functional headgroups with the aim to provide a clear pattern correlating the physicochemical 

properties of delivery systems to their transfection efficiency, 4- investigate the impact of the 

designed peptide enhancers for development of gene delivery formulations containing peptide 

enhancers and/or gemini surfactants and/or DOPE helper lipids and evaluate the impact of the 

compositional elements on transfection properties and cell viability, 5- explore the impact of the 

headgroups of gemini surfactants by systematic variation of the functional moieties in conjunction 

with alteration of their alkyl chain lengths to elucidate the biophysical mechanism of the 

formulated lipopolyplex delivery systems.    

 

2.2 Hypothesis 

It is hypothesized that development of multifunctional, multicomponent gene delivery systems that 

contain 1- cationic peptide enhancers that interact and protect DNA at the core of the delivery 

systems, 2- targeting peptides at the surface of the nanoparticles that bind to cell surface receptors 

and mediate endocytosis, 3- a lipid shell that can fuse with the endosomal lipid membrane, leading 

to the cytoplasmic release of DNA- representing synthetic virus-like nanoparticles similar to 

“envelope-type viruses”, will be a potent alternative to viral gene delivery vectors. The success of 

the in vitro gene transfer will provide a potent platform for designing and developing of its kind 

for targeted in vivo non-viral gene therapy.  

  

2.3 Objectives 

The objectives of this project are explained as follows:   
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1. Design, synthesis and characterization of 11 novel R-functionalized gemini surfactants (G4-

G14) with 10 different functional moieties (m-7NR-m; m = 12, 18) (Table 2.1, Fig. 2.1). 

2. Optimization and physicochemical characterization of lipoplex formulations by measuring 

their particle size and zeta potential.   

3. Development and optimization of peptide-based lipopolyplexes, and the impact of various 

designed peptide enhancers (7-types, with various charges and different lengths- Table 2.2) 

on transfection efficiency and cell viability of the formulated lipopolyplexes.    

4. Physicochemical characterization of lipopolyplex formulations.   

5. Screening 14 different gemini surfactants (G1-G14) formulated lipopolyplexes to evaluate 

the relationships between the structure of gemini surfactants and their transfection efficiency 

and cytotoxicity.       

6. Proposing a unifying model-mechanism based on transfection efficiency results and 

physicochemical characterization of gene delivery systems for rationalization of surface 

engineering in development of synthetic virus-like nanoparticles.     

 

The significance outcome of this work has been filed for patent with the United States Patent and 

Trademark Office (USPTO) (filed: Sep 6, 2017) [309] and the Canadian Intellectual Property 

Office (CIPO) (filed: June 28, 2018) [310]. The details of this research project are presented in the 

following chapters.    
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Table 2.1. Fifteen gemini surfactants (m-s-m formula) studied in this research. m = 12 and 18 
carbon alkyl chains, s = 3 (3 methylene unit), 7NH (imino-substituted-7 methylene unit), 7NR (R-
linked-imino-substituted-7-methylene unit) spacer groups. R = R1-R10 functional moieties. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
Compound 

Compound formula (m-s-m) 
# Names 

G0 12-3-12 
m-3-m 

12-3-12 

G1 18-3-18 18-3-18 

G2 12-7NH-12 
m-7NH-m 

12-7NH-12 

G3 18-7NH-18 18-7NH-18 

G4 Imid-18 

m-7NR-m 

18-7NR1-18 (R1 = imidazolpropionyl) 

G5 Thiol-18 18-7NR2-18 (R2 = thiopropionyl) 

G6 RGDG-12 12-7NR3-12 (R3 = RGDG-) 

G7 RGDG-18 18-7NR3-18 (R3 = RGDG-) 

G8 GRGDSPG-18 18-7NR4-18 (R4 = GRGDSPG-) 

G9 18-E-PepD 18-7NR5-18 (R5 = -E(H)5) 

G10 18-E-PepE 18-7NR6-18 (R6 = -EGRGDSPG(H)5) 

G11 18-Suc-E2GR2 18-7NR7-18 (R7 = -Suc-(E)2G(R)2) 

G12 18-Suc-E2GR3 18-7NR8-18 (R8 = -Suc-(E)2G(R)3) 

G13 18-Suc-E2G3R3 18-7NR9-18 (R9 = -Suc-(E)2(G)3(R)3) 

G14 18-Suc-DEG3R3 18-7NR10-18 (R10 = -Suc-DE(G)3(R)3) 
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Fig. 2.1. The general structures of 15 different gemini surfactants differing in alkyl chain lengths 
and/or spacer groups and/or functional headgroups. 
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Table 2.2. Amino acid sequence, net charge (at pH = 7) and molecular weight of seven peptide 
enhancers: zwitterionic RGD peptide enhancer (PA), cationic histidine and/or arginine rich peptide 
enhancers (PB, PD, PF), or bifunctional cationic, RGD peptide enhancers (PC = PA+ PB, PE = PA+ 
PD, PG = PA+ PF).  
 

 

 

 

 

 

 

 

 

 

 

 

Peptide enhancer Name 
Sequence 

(N- to C-terminus) 

Net charge 

at pH 7 

MW 

(g/mol) 

PA (7a.a.) RGD GRGDSPG 0 664.63 

PB (10a.a.) (R)6-H3 H(R)3H(R)3HG 6.3 1423.6 

PC (17a.a.) RGD-(R)6-H3 GRGDSPGH(R)3H(R)3HG 6.3 2050.22 

PD (5a.a.) (H)5 (H)5 
0.5 703.71 

PE (12a.a.) RGD-(H)5 GRGDSPG(H)5 
0.5 1330.33 

PF (15a.a.) (H)12-(R)2 (H)2R(H)7R(H)3G 3.2 2033.11 

PG (22a.a.) RGD-(H)12-(R)2 GRGDSPG(H)2R(H)7R(H)3G 3.2 2659.73 
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Chapter 3  

Experimental Procedures 
	
	
	
3.1 Materials  

Custom designed peptide enhancers (7 types: PA (GRGDSPG); PB (H(R)3H(R)3HG); PC 

(GRGDSPGH(R)3H(R)3HG); PD ((H)5); PE (GRGDSPG(H)5); PF ((H)2R(H)7R(H)3G); PG 

(GRGDSPG(H)2R(H)7R(H)3G)) were purchased from Biomatik Corporation (Cambridge, ON, 

Canada) (purity > 95%). 1-N-trityl-imidazole-2-ylpropionic acid and 3-(tritylthio)propionic acid 

(protected R1 and R2 functional moieties, respectively) were obtained from Sigma-Aldrich 

(Oakville, ON, Canada). The protected peptide functionalities (R3-R10) were purchased from 

Biomatik Corporation (Cambridge, ON, Canada). The resin-cleaved protected R3 (Boc-Arg(Pbf)-

Gly-Asp(OtBu)-Gly-OH) and R4 (Boc-(Gly)-Arg(Pbf)-Gly-Asp(OtBu)-Ser(tBu)-Pro-Gly-OH) 

were obtained with the free C-terminal carboxylic groups (purity > 95%). The rest of protected 

functionalities (R5-R10) were acquired on resin with the free carboxylic groups at the N-terminus 

of the peptide (i.e., the free side chain of glutamic acid or succinic acid). The protected R5 (Boc-

Glu-(His(Trt))5) and R6 (Boc-Glu-Gly-Arg(Pbf)-Gly-Asp(OtBu)-Ser(tBu)-Pro-Gly-(His(Trt))5) 

were obtained on H-His(Trt)-2-Chlorotrityl Resin (0.342 mmol/g); while the protected R7 

(succinyl-Glu(OtBu)-Glu(OtBu)-Gly-Arg(Pbf)-Arg(Pbf)), R8 (succinyl-Glu(OtBu)-Glu(OtBu)-

Gly-Arg(Pbf)-Arg(Pbf)-Arg(Pbf)), R9 (succinyl-Glu(OtBu)-Glu(OtBu)-Gly-Gly-Gly-Arg(Pbf)-

Arg(Pbf)-Arg(Pbf), and R10 (succinyl-Asp(OtBu)-Glu(OtBu)-Gly-Gly-Gly-Arg(Pbf)-Arg(Pbf)-

Arg(Pbf)) were procured on Rink amide MBHA Resin (loading capacity: 0.45 mmol/g used for R7 

and R8 or 0.332 mmol/g used for R9 and R10). All chemicals including 1-bromooctadecane, 3,3¢-

iminobis(N,N-dimethylpropylamine), 1-[bis(dimethylamino)methylene]-1-H-1,2,3-triazolo[4,5-
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b]pyridimium 3-oxid hexafluorophosphate (HATU), N,N-diisopropylethylamine (DIPEA), 

trifluoroacetic acid (TFA), triisopropylsilane (TIS), 1,2-ethanedithiol (EDT), N,N-

demethylformamide (DMF) and HPLC grade acetonitrile (MeCN) were purchased from Sigma-

Aldrich (Oakville, ON, Canada). Analytical ultra-performance liquid chromatography (UPLC) 

was performed on a Waters ACQUITY UPLC H-Class BioSystem (Milford, MA, USA) with a 

flow rate of 0.2 mL/min and UV detection at 214 nm. Semi-preparative reverse phase high 

performance liquid chromatography (RP-HPLC) was performed on a Waters instrument (Waters 

e2695 separations module) (Milford, MA, USA) at a flow rate of 10 mL/min and UV detector set 

to a wavelength of 214 nm. The mobile phases for both analytical UPLC and semi-preparative 

HPLC were solvent A (water/TFA: 99.9/0.1, v/v) and solvent B (MeCN/TFA: 99.9/0.1, v/v). 

Analytical separation was achieved by a linear gradient of solvent B on ACQUITY UPLC BEH 

C18 column (130 Å pore size, 1.7 µm particle size, 2.1 mm ´ 50 mm); while, the semi-preparative 

separation was on 300SB-C18 semi-preparative column (300 Å pore size, 5 µm particle size, 9.4 

mm ´ 250 mm). Electrospray ionization mass spectrometry (ESI-MS) was performed on a Q-

Exactive Orbitrap System (Thermo Fisher Scientific, CA, USA) using a mixture of solvent A 

(water/formic acid, 99.9/0.1, v/v) and solvent B (MeCN/formic acid, 99.9/0.1, v/v). 

 

3.2 Synthesis of gemini surfactants  

3.2.1 Synthesis of m-3-m and m-7NH-m (m = 12, 18 alkyl chain length) 

Synthesis of m-3-m (i.e., 12-3-12 (G0), 18-3-18 (G1)) and m-7NH-m (i.e., 12-7NH-12 (G3), 18-

7NH-18 (G4)) gemini surfactants used in this study was carried out prior to this research according 

to the published procedures [265, 271, 273, 287, 289]. However, to satisfy the sufficient quantities, 

the synthesis of the 18-7NH-18 gemini surfactant was repeated, as described below.  
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The 18-7NH-18 gemini surfactant was synthesized by refluxing 1 equivalent of 3,3¢-iminobis(N,N-

dimethylpropylamine) (15 mmol, MW: 187.33) with 2.2 equivalents of 1-bromooctadecane (33 

mmol; MW: 333.39) in 50 mL of MeCN at 90°C under a N2 atmosphere for 24 h (Fig. 3.1). Then, 

the reactor flask was cooled down and placed on an ice bath for an hour, allowing the precipitation 

of the product to take place. The resulting precipitated solid was then filtered using a Buchner 

funnel and washed with a large excess of cold MeCN under vacuum for at least 3 times to remove 

the reaction mixture. The crude product was dried overnight in a 37°C oven and the identity of the 

synthesized 18-7NH-18 surfactant was analyzed by ESI-MS (Fig. B1 and B2; Appendix B).     

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Synthesis scheme of 18-7NH-18 gemini surfactant.  
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3.2.2 Synthesis and purification of 11 novel functionalized-gemini surfactants (G4-G14; m-

7NR-m; R = R1-R10 containing imidazole, thiol or peptide functional groups)  

The synthesis of 11 novel functionalized gemini surfactants (G4-G14, Table 2.1) were performed 

by covalently linking 10 different functional moieties (R1-R10; Fig. 3.2 (B)) to the imino spacer of 

m-7NH-m gemini surfactants (m = 12, 18) as shown in Figure 3.3 either by method A or method 

B, as described below.  

Method A was performed for synthesis of G4-G8 gemini surfactants in solution phase (e.g., at 40 

µmol scale in 20 mL of MeCN) and method B was carried out for synthesis of G9-G14 in solid 

phase on-resin (at 100-200 µmol scale in 10 mL of DMF) (Fig. 3.3 and Fig. 3.4) by amide bond 

formation between the imino spacer of gemini surfactants (1 eq.) and the pre-activated free 

carboxylic group of the R-functional moieties (2 eq.) using HATU (1.9 eq.) and DIPEA (2.8 eq.) 

[311-313]. In method A, in case of peptide-functionalization [R3-R4], the m-7NH-m gemini 

surfactants were coupled to free carboxylic groups at the C-terminus of the resin-cleaved protected 

peptide moieties (Fig. 3.3 (A)- step 1 and 2). After 3-4 hours’ completion of the ligation reactions, 

the organic solvents were removed by rotary evaporation and then the protected products were 

separated from the reaction mixture using semi-preparative RP-HPLC (Fig. 3.3 (A)- step 3). In 

method B, however, following the solid-phase peptide synthesis on resin, the coupling of gemini 

surfactants took place at the N-terminus of the protected peptide moieties through a carboxyl-

containing linker such as glutamic acid with the free side chain carboxyl (used in production of 

G9-G10) or succinic acid (used in production of G11-G14) (Fig. 3.3 (B), step 1). The 

cleavage/deprotection step was then accomplished using a cocktail of TFA/H2O/TIS (95:2.5:2.5, 

v/v/v) (for compounds G4, G6-G14) or TFA/thioanisol/EDT/anisole (90:5:3:2, v/v/v/v) (for 

compounds G5) for over 2-3 hours (Fig. 3.3 (A)- step 4 and (B)-step 2). Crude products were 
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purified by semi-preparative RP-HPLC (Table 2.2), lyophilized and kept at -20°C. The 

quantitative and qualitative identification of the synthesized compounds confirmed by analytical 

RP-UPLC and electrospray ionization-mass spectrometry (ESI-MS) (purity > 95%). 
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Fig. 3.2. (A) General structure of m-7NR-m gemini surfactants (m= 12, 18; R= R1-R10). (B) 
Chemical structure of R functional moieties (R1-R10).  
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Fig. 3.3. Synthetic scheme for R-functionalization of gemini surfactants by Method (A) in solution 
(for synthesis of G4-G8 m-7NR-m gemini surfactants (m = 12, 18; R = R1-R4)) or by Method (B) 
in solid phase (for synthesis of G9-G14 m-7NR-m gemini surfactants (m = 18; R = R5-R14)). m-
7NR-m gemini surfactants were synthesized by covalent linking of the imino groups of the m-
7NH-m gemini surfactants to free carboxylic groups located either at the C-terminus of R 
functional peptides (using Method (A)) or at the N-terminus of the R functional motifs through a 
carboxyl-containing linker (using Method (B)). The cleavage and/or deprotection, and purification 
steps were accomplished to yield G4-G14 m-7NR-m gemini surfactants. 
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Fig 3.4. (A) The synthesized R-functionalized G4-G8 gemini surfactants by Method (A). (B) The 
synthesized R-functionalized G9-G14 gemini surfactants by Method (B). 
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3.3 Preparation of formulations 

	
The freshly made stock solution of DOPE (L) helper lipids (Avanti Polar Lipids, Alabaster, AL, 

USA) were prepared at 1 mM concentration in sucrose solution (9.25% w/v) by bath sonication 

(10 min) and high-pressure LV1 Microfluidizer (´ 3 at 20,000 psi) as described previously [314, 

315]. The aqueous solutions of gemini surfactants (G1-14) and peptide enhancers (PA-PG) were 

separately prepared in nuclease-free water.  

Uni-Modal (UM [P], UM [G]), Bi-Modal (BM [G/L], BM [P/L], BM [P/G]) and Tri-Modal 

(PDTMG [P/G/L]) gene delivery systems were formulated at various cationic quaternary 

ammonium of gemini surfactants/anionic phosphate of pDNA (N/P) mole ratios (r±	 values), 

DOPE/gemini molar ratios (r values), and molar concentrations of the compositional elements in 

the formulation mixtures (MP, MG and ML for molar concentrations of peptide enhancers (P), 

gemini surfactants (G) and DOPE helper lipids (L), respectively; ; see Table 3.1 for detailed 

information on the selected formulations). The formulation mixtures were pre-incubated for 30 

minutes at room temperature before being used in the transfection assay.  

For example, PDTMG [PC/G7/L] formulations were prepared by first pre-complexation of pDNA 

with PC cationic peptide enhancer and G7 gemini surfactant for 15 minutes at room temperature, 

followed by addition of the DOPE helper lipid to the pDNA/PC/G7 mixture and further incubation 

for another 15 minutes. The pDNA/PC/G7/L mixture were diluted with nuclease-free water to a 

final volume of 10 µL or 50 µL transfection reagent per well of a 96-well or a 24-well plate, 

respectively.  

The gWizTM GFP pDNA (5757 bp; Aldevron, Fargo, ND, USA) and tdTomato RFP (red 

fluorescent protein) pDNA (Clontech Laboratories Inc., Mountain View, CA, USA) were used to 

monitor the expression level of the reporter genes. A mock pDNA (5688 bp; Blue Heron Biotech, 
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Bothell, WA, USA) with absent of a fluorescent protein reporter gene was used as negative control. 

The commercially available LipofectamineTM 3000 reagents (Invitrogen Life technologies) was 

used as a reference transfection reagent according to the manufacturer’s instructions. 

 

 

Table 3.1. Selected gene delivery systems formulated using peptide enhancers (P) and/or gemini 
surfactants (G) and/or DOPE helper lipids (L) at varying molarities of the compositional elements 
(MP, MG, ML). (A) Detailed information on formulating Uni-Modal (UM [P MP]), Bi-Modal (BM 
[G MG/L ML], BM [P MP /L ML], BM [P MP/G MG]) and Tri-Modal (PDTMG [P MP/G MG/L ML]) 
delivery systems containing 0.5 µg pDNA in 50µL transfection reagent (prepared per well of a 24 
well plate). (B) Scaling transfection reagents (10 µL, 50 µL) for formulating 0.1 µg and 0.5 µg of 
pDNA used per well of 96-well and 24-well.  
	

	
	

	
	
	

	
	
	
 

A) Formulations containing 
0.5 µg pDNA per well of a 24-
well plate 

Peptide (P) Gemini (G) DOPE (L) 
r± r nP 

(nmol) 
MP 

(µM) 
nG 

(nmol) 
MG 

(µM) 
nL 

(nmol) 
ML 

(µM) 
BM [G 154/L 500] 0.0 0 7.69 154 25.00 500 10 3.3 

BM [G 31/L 500] 0.0 0 1.54 31 25.00 500 2 16.1 

BM [G 31/L 100] 0.0 0 1.54 31 5.00 100 2 3.3 

UM [P 49] 2.4 49 0.00 0 0.00 0 - - 

BM [P 49/L 100] 2.4 49 0.00 0 5.00 100 - - 

BM [P 49/G 31] 2.4 49 1.54 31 0.00 0 2 - 

PDTMG [P 49/G 31/L 100] 2.4 49 1.54 31 5.00 100 2 3.3 

PDTMG [P 267/G 17/L 100] 13.3 267 0.8 17 5.00 100 1.1 6.0 

PDTMG [P 267/G 17/L 113] 13.3 267 0.8 17 5.67 113 1.1 6.8 

 

B) Formulation preparations 96-well plate 24-well plate  

DNA per well 0.1 µg 0.5 µg  

Transfection reagent per well 10 µL 50 µL 
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3.4 Physicochemical characterization of formulations 

The gene delivery formulations were prepared as described in Section 3.3. Size measurements 

were performed at the same concentration used in the transfection assay (60 µL from formulation 

mixtures were measured in transparent disposable ZEN0118 cuvettes); while, zeta (z)-potential 

measurements were performed by diluting samples to a final volume of 1 mL in nuclease-free 

water. The size (the Z-average, mean hydrodynamic diameters) and z-potential of the particles 

were measured using 632.8 nm (red) wavelength laser at a 173° scattering angle (detector 

position), and at 25°C with a 1 min equilibrium time, and automatic measurement cycle using 

Zetasizer Nano ZS instrument (model number: ZEN3600, Malvern instruments Ltd., 

Worcestershire, UK). ZEN0040 and DTS1070 cuvettes were used for size and zeta potential 

measurements, respectively. Data points are the average of three measurements (n = 3) ± standard 

deviation (SD).  

 

3.5 Cell culture and in vitro transfection  

Human malignant melanoma A375 cell line (ATCC ® CRL-1619TM) and mouse fibroblasts 3T3-

Swiss albino (ATCC ® CCL-92TM) were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) – high Glucose supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin and incubated at 37°C under an atmosphere of 5% CO2. Cells were seeded 

in 96-well/24-well tissue culture-treated plates (Corning Inc., Corning, NY, USA) at a density of 

40,000 cells/cm2 and 15,000 cells/cm2 for A-375 and 3T3 cell lines, respectively. After 24 h (when 

85-90% confluency was achieved) and 1 h prior to transfection, the complete medium was replaced 

with the basic DMEM medium without serum and antibiotic. Cells were transfected with 

formulations containing pDNA (0.1 µg/well of 96-well plate or 0.5 µg/ well of 24-well plate) and 
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incubated at 37°C for 5 h. The fresh complete growth medium was added to each well without 

removing transfection formulations and further incubated for 19 h. After 24h of transfection, cells 

were trypsinized and stained with MitoTracker Deep Red (0.5 µL/mL) for 15 min at 37°C. The 

percentage of the pDNA-transfected cells, the mean fluorescence intensity (MFI) of the cells 

expressing GFP, and cell viability were examined by flow cytometry (Attune® Flow Cytometer, 

Life Technologies, Carlsbad, CA, USA).  

 

3.6 Transfection study and cell viability by flow cytometry   

To create a consistent flow cytometry analysis, flow cytometry parameters were adjusted 

according to fluorescent and non-fluorescent cells prepared by electroporation with PmaxGFPTM 

reporter pDNA, tdTomato RFP plasmid or mock pDNA using Lonza Nucleofector Kit (Lonza Inc., 

Basel, Switzerland). Cell viability of the transfected cells was evaluated using MitoTracker® Deep 

Red FM (a cell permeable far red-fluorescent dye, which stains mitochondria in living cells) by 

assessing the metabolic activity of the mitochondria and the mitochondrial membrane potential 

(analysis in all events) [315-317]. The intensity of green or red fluorescence vs. MitoTracker 

intensity signals were used to evaluate the impact of transfection reagents on the percentage of the 

transfected cells and protein expression level in viable cell populations. The expressions of the 

fluorescent proteins were detected in the BL1 channel (emission filter: 530/30 nm for GFP 

detection) and the BL2 channel (emission filter: 574/26 nm for RFP detection) using 488 nm blue 

laser as an excitation source. MitoTracker Deep Red mitochondria stain was excited with 638 nm 

red laser and detected in RL1 channel (emission filter: 650-670 nm). In order to place the events 

in the appropriate area in the FSC vs. SSC dot plot, FSC (forward scatter) and SSC (side scatter) 

voltages were set at 1350 (mV) and 2400 (mV), respectively. Meanwhile the BL1, BL2, and RL1 
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fluorescence channels were adjusted to locate the population in the two-dimensional (2D) density 

plot of the BL1 or BL2 (on the X axis) vs. RL1 (on the Y axis) by setting the detector voltages for 

BL1 at 1450 (mV), BL2 at 1450 (mV) and RL1 at 1400 (mV). A total number of 20,000 cell events 

were recorded for cell cycle analysis. Figure A1 (Appendix A) shows the 2D dot plot (BL1 vs. 

RL1) of control-untreated cells (Cells only), control-mock pDNA and PmaxGFPTM pDNA 

transfected cells by electroporation.   

Transfection studies were investigated by both the percentage of the transfected cells and the mean 

fluorescence intensities (MFI) determining the intensity level of expression of the reporter 

fluorescent proteins (i.e., GFP or RFP). The relative measurement of the percentage of the 

transfected cells for a given transfection reagent was assessed according to control-untreated cells 

(with intensity values below 5,000 range on the BL1 logarithmic axis) by setting the outlier at 

5,000 (low threshold (LT) analysis) (Figs. A2; Appendix A). To effectively and critically compare 

the extent of GFP expression levels of gene delivery formulations, the MFI was measured at two 

different thresholds: low threshold (LT) and high threshold (HT) by setting the outlier at 5,000 and 

10,000, respectively, on the BL1 logarithmic axis. Measuring MFI at HT provides a better analysis 

for understanding and interpretation of flow cytometry data by excluding the events with low 

fluorescence intensities (i.e., from 5,000-20,000 fluorescence intensity, the background noise from 

the delivery vehicle were also detected as investigated by various transfection agents carrying 

mock pDNA), and hence reducing the skewing of MFI. This analysis would be particularly useful 

in comparing the MFI for transfection agents with high transfection percentages (Figs. A2; 

Appendix A). Therefore, the difference between the intensity of their GFP expression levels can 

be measured more appropriately when comparing transfection agents. Both the percentage of the 

transfected cells and the MFI were normalized by control-untreated cells.   
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The percentage of cell viability of gene delivery formulations was expressed as ‘cell viability 

index’ and investigated according to the percentage of control-untreated-MitoTracker-stained cells 

(denoted as ‘cells only’ in untransfected wells), by setting the outlier at 30,000 on the RL1 

logarithmic axis, in which the control-untreated cells with intensity values above 30,000 range 

were considered as 100% viable (with intact mitochondrial membrane potential). The cell viability 

index was calculated as follows: 𝑉,-./,.0	2/345. 𝑉67,-./,.0	*87,-85 	×	100%. 

 

3.7 Statistical analysis  

All data are presented as means ± SD (n ³ 2) and in vitro studies of the samples were performed 

in at least 2 independent experiments to ensure reproducibility. Differences between groups were 

identified by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison 

post-hoc test. GraphPad Prism (version 7.0c, GraphPad Software, Inc.) was used for statistical 

analyses. Statistical significant differences were considered when p < 0.05 (∗p < 0.05, ∗∗p < 0.01, 

∗∗∗p < 0.001, ∗∗∗∗p < 0.0001). 
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Chapter 4  

Results 
	
	
	
4.1 Synthesis and characterization of functionalized m-7NR-m gemini 

surfactants (m = 12, 18) bearing imidazole, thiol, linear RGD motifs, poly-

histidine, or arginine-rich peptide functional headgroups   

Eleven novel R-functionalized gemini surfactants [G4-G14] (m-7NR-m formula; m = 12, 18 and 

R = R1-R10, Fig. 3.2; Table 2.1) were co-designed and synthesized by covalently linking the amino 

group of the m-7NH-m gemini surfactants to the free carboxylic groups of functional groups in 

solution phase (method (A)) or on solid phase support (method (B)). 

Using method (A), G4 (imid-18) and G5 (thiol-18) were synthesized by functionalization of the 

gemini surfactants with imidazole- and thiol-containing functional groups (R1: imidazolepropionyl 

(R1), R2: thiopropionyl), respectively. G6 (RGDG-12), G7 (RGDG-18) and G8 (GRGDSPG-18) 

were synthesized by conjugating gemini surfactants to the free C-terminus of the RGD peptide 

motifs (i.e., R3: RGDG, R4: GRGDSPG). 

Method (B) was used to synthesize G9 (18-E-PepD) bearing (H)5 functional headgroup (i.e., R5: 

E(H)5), G10 (18-E-PepE) with bifunctional RGD-(H)5 headgroup (i.e., R6: EGRGDSPG(H)5), and 

G11- G14 having arginine rich peptide motifs (i.e., R7: Suc-(E)2G(R)2, R8: Suc-(E)2G(R)3, R9: Suc-

(E)2(G)3(R)3 and R10 = Suc-DE(G)3(R)3), by conjugating gemini surfactants to the free carboxylic 

groups located at the N-terminus of the functional peptides. The modified uncharged C-terminal 

amide end of the R7-R10 functionalities (generated from the use of Rink amide resin) were designed 

to increase the biological activity, stability [318] and cell penetrating capability of the G11- G14 

gemini surfactant. 
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The synthesized G4- G14 gemini surfactants were purified to a single peak (purity > 95%) using 

analytical reverse phase high performance liquid chromatography (RP-HPLC) and the identity of 

the products were confirmed by ESI-MS (Table 4.1, and Fig. B3-B23 in Appendix B). 

	
Table 4.1. Characterization of m-7NR-m gemini surfactants (m = 12, 18; R = R1-R10). The identity 
of the synthesized G4-G14 m-7NR-m gemini surfactants were confirmed by ESI-MS and the 
purifications were conducted by RP-HPLC with a linear gradient of solvent B on 300SB-C18 semi-
preparative column; mobile phases: solvent A (water/TFA: 99.9/0.1, v/v) and solvent B 
(MeCN/TFA: 99.9/0.1, v/v); flow rate: 10 mL/min; UV detection: 214 nm.   
	

		

Compounds MW 

(g/mol) 
ESI-MS (m/z) RP- HPLC 

# Names 

G4 Imid-18 816.42 407.92 [M] 2+, 272.28 [M] 3+ 60-100% B in 15 min 

G5 Thiol-18 782.43 390.90 [M] 2+ 60%-100% B in 15 min 

G6 RGDG-12 911.36 303.92 [M] 3+ 40%-60% B in 15 min 

G7 RGDG-18 1079.67 359.99 [M] 3+ 60%-100% B in 15 min 

G8 GRGDSPG-18 1320.92 660.03 [M] 2+, 440.35 [M] 3+, 330.52 [M] 4+ 60%-100% B in 15 min 

G9 18-E-PepD 1509.11 754.06 [M] 2+, 503.04 [M] 3+, 377.53 [M] 4+ 50%-100% B in 10 min 

G10 18-E-PepE 2135.73 
1067.69 [M] 2+, 712.13 [M] 3+, 534.35 [M] 4+ 

427.68 [M] 5+, 356.57 [M] 6+ 
50%-100% B in 20 min 

G11 18-Suc-E2GR2 1421.04 710.06 [M] 2+, 473.71 [M] 3+, 355.53 [M] 4+ 
 

50%-100% B in 20 min 

G12 18-Suc-E2GR3 1577.22 525.74 [M] 3+, 394.56 [M] 4+ 50%-100% B in 20 min 

G13 18-Suc-E2G3R3 1691.32 564.09 [M] 3+, 423.32 [M] 4+ 50%-100% B in 20 min 

G14 18-Suc-DEG3R3 1677.30 559.42 [M] 3+, 419.82 [M] 4+ 50%-100% B in 20 min 
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4.2 Bi-modal gemini/DOPE lipoplexes: Formulation optimization and the 

impact of RGDG-functionalized gemini surfactants on the transfection 

activity of gemini-based lipoplexes 

Systematic optimization of BM [G/L] lipoplex delivery systems were performed using six different 

gemini surfactants differing in the spacer groups and hydrocarbon tail lengths (i.e., 12-3-12 (G0), 

18-3-18 (G1), 12-7NH-12 (G2), 18-7NH-18 (G3), RGDG-12 (G6) and RGDG-18 (G7)) to 

correlate molecular architecture of gemini surfactants and physicochemical properties of the 

lipoplex delivery systems in relation to their transfection activity.  

While the physical characterization of the lipoplexes were performed to provide a general pattern 

and insight to predict an optimized formulation for pDNA delivery, more depth analysis of the 

effect of the compositional elements of gemini-based lipoplexes was investigated by in vitro 

transfection studies at various gemini to DNA N/P mole ratios (e.g., r±	= 1, 2, 3, 5, 10) and 

DOPE/gemini molar ratios (e.g., r = 16.2, 9.7, 3.3, 2, 0.7, 0). 

In vitro transfection studies of BM [G/L] lipoplexes were investigated for delivery of GFP-

encoding gWizTM pDNA and RFP-encoding tdTomato pDNA to A375 human melanoma cell lines 

and 3T3-mouse fibroblasts in 96-well plates. However, only the optimization of the selected 

formulations, investigated using gWizTM GFP pDNA on 3T3-mouse fibroblasts, are discussed and 

shown below in order to put the numerous data analysis into perspective. The impact of RGDG-

functionalized gemini surfactants (G6, G7) were compared to the parental gemini surfactants (G2 

and G3) on both the number of the transfected cells and the intensity of gene expression level.  
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4.2.1 Particle size and zeta potential analysis 

The physicochemical properties of gene delivery formulations in correlation with their transfection 

activity portfolio were analyzed to advance formulation strategies for development of a potent 

delivery system. The hydrodynamic diameters, polydispersity index (PDI) and surface charge (z-

potential) of various gemini-based lipoplexes formulated at different r± and r values were 

characterized by dynamic light scattering (DLS).  

As shown in Figures 4.1 and 4.2, the DLS data indicated that lipoplexes formulated using m-3-m, 

m-7NH-m and m-7N(RGDG)-m at r± = 10 and r = 3.3 (high gemini and DOPE lipid density; MG 

= 154 µL, ML = 500 µM) formed compact particles with the average size diameter of 

approximately 200-500 nm. However, by decreasing r± = 2 (MG = 31 µL) with identical DOPE 

lipid molarity (ML = 500 µM; r = 16.2), all lipoplexes formed large aggregates (>1.5 µm) with a 

higher PDI, as observed in Figures 4.1 and 4.2.  

Further investigation of the impact of the r± (2, 10) in conjunction with varying the r values (16.2, 

3.3, 0.7, 0) on the physical properties of the lipoplexes was performed for G6 and G7 gemini 

surfactants. As shown in Figure 4.2, at r± = 10 (grey bars), by decreasing the r from 3.3 (BM [G 

154/ L500]) to 0.7 (BM [G 154/ L100]) to 0 (UM [G 154]), the size of the G6-based lipoplexes 

increased from 517.5 ± 49.0 nm to 857.9 ± 152.9 nm to large aggregates of 2388.3 ± 147.6 nm, 

respectively. However, lipoplexes formulated using G7 gemini surfactants at r± = 10 with varying 

r values generated small particle sizes; 291.5 ± 20.8 nm, 181.4 ± 2.3 nm and 181.1 ± 4.8 nm for 

those with r of 3.3, 0.7 and 0, respectively. These observed differences between the G6 and G7 in 

the physical properties of the corresponding lipoplexes are likely due to the various intermolecular 

repulsive and attractive forces from the hydrophilic cationic heads and the hydrophobic alkyl tails 

of the gemini surfactants in the formation of the lipoplexes. In the case of the G7-based lipoplexes 
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formulated at r± = 10 and at varying r values (3.3, 0.7, 0), these opposite forces maybe dominated 

by the strong hydrophobic forces from the long saturated C18 alkyl tails of G7 gemini surfactants 

that yielded much more compact particles as compared to the lipoplex counterparts formulated 

using G6 with the short saturated C12 alkyl tails. This is also supported by their zeta potential data 

indicated that at r± = 10, G7-based lipoplexes exhibited the highest zeta potentials (from » +54 

mV to » +64 mV), whereas, G6 strongly reduced the zeta potentials of the lipoplexes (from » -0.2 

mV to » +51 mV) (Fig. 4.2).  

It was observed that at r± = 2 (red bars- Fig 4.2) and r = 0 (without DOPE), the G6 lipoplexes (i.e., 

UM [G6 31]) formed large aggregates (> 2 µm), while the G7 lipoplexes (i.e., UM [G7 31]) showed 

an average size diameter of 408.1 ± 6.8 nm. The formation of large aggregates observed for the 

UM-G6 lipoplexes (without DOPE) formulated at both r± of 2 and 10 (as stated above) is perhaps 

due to the strong repulsion forces between the cationic head groups of gemini surfactants and the 

weak hydrophobic interactions between the 12C alkyl tails of G6 gemini surfactants. However, in 

the case of UM-G7 lipoplexes (without DOPE), the increased hydrophobic effect from the 18C 

alkyl tails of G7 gemini surfactants generated smaller range particles, in that those formulated at  

r± = 10 formed more compact particles than that of formulated at r± = 2. This is believed to be 

generally due to the lower critical micelle concentration of gemini surfactants with saturated 18C 

alkyl tails as compared to the gemini surfactants with saturated 12C alkyl tails (see examples 

shown in Fig 1.7). Further, by incorporation of DOPE, the average size diameters of the G6- and 

G7-based lipoplexes formulated at r± = 2 and r = 3.3 (i.e., BM [G 31/ L 100]) were decreased to 

477.1 ± 16.2 nm and 289.4 ± 8.8 nm, respectively. The co-formulations of DOPE lipids with G6 

gemini surfactants at r± = 2 with r = 3.3 or at r± = 10 with r = 3.3 are thought to reduce the 

electrostatic repulsions between the cationic polar heads of gemini surfactants and additionally 
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increase the hydrophobic effects by balancing the packing of the saturated gemini surfactants with 

unsaturated DOPE lipids together, thus, resulting in formation of complexes with significantly 

reduced average size particles. These observations are also in agreement with the results obtained 

by Sharma et al. for DNA compaction with cationic gemini surfactants/DOPE formulations [319]. 

These effects of DOPE in formulating lipoplexes using G7 gemini surfactants, however, were 

found to only be prominent at r± = 2, indicating the extent of compaction is in close relation with 

the lengths of the alkyl tails and density of the gemini surfactants.  

 As shown in Figure 4.2, at r± = 2, by increasing the r from 3.3 to 16.2 (BM [G 31/ L 500]), G6- 

and G7-based lipoplexes formed large aggregates. As presented in Figure 4.2, the zeta potentials 

of G6- and G7-based lipoplexes formulated at r± = 2 and r = 3.3 (z-potential: +21.9 ± 1.6 mV and 

+38.3 ± 0.5 mV for the formulated G6 and G7, respectively) were significantly higher than those 

formulated at r± = 2 with r of 0 and 16.2; while significantly lower in comparison to their 

counterparts formulated at r± = 10 with r of 0.7 and 3.3.  
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Fig. 4.1. Physical characterization of BM [G/L] lipoplexes formulated using 12-3-12 (G0), 18-3-
13 (G1), 12-7NH-12 (G2) and 18-7NH-18 (G3) gemini surfactants as a function of r± = 10, 2 (MG 
= 154 µM, 31 µM, respectively) with identical DOPE molarity (ML = 500 µM). (A) Hydrodynamic 
diameter and (B) PDI of the lipoplexes were determined by DLS. Results are presented as mean ± 
SD from one, two or three independent experiments (n = 3 per experiment).   
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Fig. 4.2. Physical characterization of BM [G/L] lipoplexes formulated using RGDG-12 (G6), 
RGDG-18 (G7) as a function of r± (10, 2) and r (0, 0.7, 3.3, 16.2). (A) Hydrodynamic diameter, 
(B) PDI and (C) zeta potential of the lipoplexes were determined by DLS. Results are presented 
as mean ± SD from one experiment (n = 3). 
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4.2.2 In vitro transfection studies 

The optimization of the BM [G/L] lipoplex delivery systems were also investigated as a function 

of r±	and r, both for the number of the transfected cells and the intensity of gene expression level 

determined by MFI, using quantitative flow cytometry.  

 

4.2.2.1 The impact of gemini to DNA N/P mole ratios (r± values) on transfection properties of 

BM [G/L] lipoplexes  

	
Transfection activities of BM [G/L] lipoplexes were first investigated by varying r±	values	(10, 2) 

with identical DOPE molarity (ML = 500) across 6 different gemini surfactants G0, G1, G2, G3, 

G6, G7, grouped into three categories m-3-m, m-7NH-m and m-7N(RGDG)-m (with m = saturated 

C12 or C18 alkyl tails). As shown in Figure 4.3, the percentage of the fluorescent positive cells 

were found to be slightly or significantly higher in all the BM [G/L] lipoplexes formulated at r± = 

10 (with r = 3.3; prepared at ML = 500) as compared to their counterparts formulated at r± = 2 

(with r = 16.2; prepared at ML = 500). In addition, the BM [G/L] lipoplexes formulated at r± = 10 

using 18-series gemini surfactants generally resulted in slight or significant higher in the 

percentage of the fluorescent positive cells as compared to the counterparts with C12 alkyl tails 

(exception being observed for G2 vs. G3 lipoplexes with almost similar transfection percentages). 

However, in contrast to the high internalization of the BM [G/L] lipoplexes formulated at r± = 10, 

no significant increase in intensity of GFP expression levels were observed in the studied gemini 

surfactants as compared to control-untreated cells (Fig. 4.3 and Fig. D1, Appendix D). Noticeable 

trends were observed in the GFP expression levels of the BM [G/L] lipoplexes with decrease in r± 

values. As shown in Figure 4.3 and Figure D1 (Appendix D), all the BM [G/L] lipoplexes 
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formulated at r± = 2 (with r = 16.2) resulted in an increase in the intensity of gene expression levels 

(MFI) as compared to the one formulated at r± = 10 (with r = 3.3) (though statistically insignificant 

for G1 and G7 gemini surfactants).  

The transfection activity of the BM [G/L] lipoplexes were also investigated at r± = 1, 3 and 5 using 

m-7N(RGDG)-m gemini surfactants (G6, G7) with identical DOPE molarity (ML = 500) (Fig. 4.4). 

The quantification of the MFI for the transfection agents containing G6 formulated at r± = 5 (with 

r = 6.5) or G7 formulated at r± = 5 (with r = 6.5) or at r± = 3 (with r = 10.8) showed no significant 

increase in the intensity of GFP expression levels as comparted to that of formulated at r± = 10 

(with r = 3.3) or control-untreated cells. However, the G6 gemini surfactants at r± = 3 (with r = 

10.8) resulted in an increase in MFI similar to that of formulated at r± = 2 (with r = 16.2). Further 

reduction to r± = 1 (with r = 33) resulted in a reduction in MFI for G6 gemini surfactants whereas 

an increase in MFI for G7 gemini surfactants as compared to their counterpart lipoplex formulated 

at r± = 2 (with r = 16.2). This demonstrates that the protein expression is effective at a narrow 

range of r±	values (approximately 1-3), and above which further compaction resulted in negligible 

protein expression. Considering both the percentage of the transfected cells and the MFI, the 

transfection activity of the BM [G/L] lipoplexes reach to their maximum at r± » 2 for G7-

formulated lipoplex and at r± » 3 for G6-formulated lipoplex.  

The impact of the r±	values together with details on the effect of the alkyl tail lengths of the gemini 

surfactants on the percentage and MFI of the transfected cells (as explained above) elucidate the 

correlation between the GFP expression levels and the pDNA compaction of the BM [G/L] 

lipoplexes. In general, the low MFI levels of the transfected cells with the BM [G/L] lipoplexes 

formulated at r±	> 2 using gemini surfactant with 18C alkyl tails (G7) or at r±	> 3 using gemini 
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surfactant with 12C alkyl tails (G6) can be explained by the tight compaction of pDNA that hinders 

the endosomal release of pDNA into the cell cytoplasm. Following these findings, in a recently 

published work, the impact of lowering the r± values from 10 to 2.5 was also shown to increase 

the protein expression level of the lipoplexes formulated using Glycyl-Lysine modified gemini 

surfactants [320]. While the report discussed that the previous generations of gemini surfactants 

(i.e., m-3m, m-7NH-m) showed maximum transfection efficiency at r± = 10, this research, in 

contrast, provided a foundation that showed the m-3-m, m-7NH-m and functionalized m-

7N(RGDG)-m (with m = saturated C12 or C18 alkyl tails) gemini based-lipoplexes all 

demonstrated GFP expression activity at r± around 1- 3.  
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Fig. 4.3. Transfection studies of BM [G/L] lipoplexes formulated using 6 different gemini 
surfactants as a function of r± = 10, 2 (MG = 154 µM, 31 µM, respectively) with identical DOPE 
molarity at ML = 500 µM, as quantified by flow cytometry. The intensities of GFP expression 
levels of the BM [G/L] lipoplexes increase at r± = 2 (with r = 16.2) as compared to that of 
formulated at r± = 10 (with r = 3.3). Results are presented as mean ± SD from two independent 
experiments (n = 6, 3 repeats per experiment) performed on 3T3 mouse fibroblast in 96-well plates. 
(A) The percentage of the transfected cells and (B) the intensity of GFP expression level (MFI) 
were normalized to untreated control (cells only) (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p 
< 0.0001).  
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Fig. 4.4. Transfection studies of the BM [G/L] lipoplexes formulated using RGDG-12 (G6) and 
RGDG-18 (G7) gemini surfactants for delivery of pDNA to 3T3 mouse fibroblast. Optimization 
as a function of r± = 10, 5, 3, 2, 1 (MG = 154 µM, 77 µM, 46 µM, 31 µM, 15.4 µM, respectively) 
with identical DOPE molarity at ML = 500 µM, as quantified by flow cytometry. Results are 
presented as mean ± SD from one or two independent experiments (3 repeats per experiment) 
performed in 96-well plates. (A) The percentage of the transfected cells and (B) the intensity of 
GFP expression level (MFI) were normalized to untreated control (cells only).  
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4.2.2.2 The impact of DOPE/gemini molar ratios (r values) and RGDG functionalization of 

gemini surfactants on transfection properties of BM [G/L] lipoplexes  

As shown in the previous section, the transfection activities of BM [G/L] lipoplexes using m-3-m, 

m-7NH-m and m-7NH(RGDG)-m formulated at r± = 2 with r = 16.2 (MG = 31 µM, ML = 500 µM) 

resulted in an elevation in level of protein expression as compared to that formulated at r± = 10 

with r = 3.3 (MG = 154 µM, ML = 500 µM) (see Section 4.2.1.1.) To investigate the effect of r 

values on transfection properties of gemini-based lipoplexes, transfection studies were 

investigated by varying the molar concentration of DOPE (ML = 500 µM, 300 µM, 100 µM, 0 

µM) with identical r± value (2 or 10) using m-7NH-m (G2 and G3) and m-7NH(RGDG)-m (G6 

and G7) gemini surfactants.  

As shown in Figure 4.5, a decreasing trend in the percentage of transfection was found for all the 

gemini surfactants (G2, G3, G6 and G7) formulated at r± = 2 by decreasing r from 16.2 to 0 (with 

the only exception for G6 formulated at r = 16.2 being slightly lower than that of formulated at r 

= 9.7). In contrast, reducing the lipid density of the lipoplex delivery systems formulated at r± = 2 

by decreasing r from 16.2 to 3.3 resulted in an increasing trend in the intensity of protein expression 

level (Fig. 4.5 and Fig. D2 (Appendix D)). Interestingly, G3-based lipoplexes formulated at r± = 

2 and r = 0 (without DOPE helper lipid) resulted in significantly higher MFI as compared to that 

of formulated using G2, G6 and G7 (Fig. 4.5 and Fig. D2 (Appendix D)). In general, finding the 

right concentration of the constituents (MG, ML) in correlation with the molecular structures of 

gemini surfactants (head groups and the alkyl tails) is the determining factor in order to formulate 

stable particles that can improve internalization of the pDNA while effectively destabilize the 

endosomal membrane and release pDNA into the cytoplasm. As shown in Figure 4.5, among BM 

[G/L] lipoplexes formulated at r± = 2 and r = 3.3, only G7-formulated lipoplexes showed 
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statistically significant increase in the percentage of the transfection as compared to control-

untreated group (though not significant as compared to high dense particles).  

Note that although G7-lipoplex formulated at r± = 2 and r = 3.3 (particles with low lipid density) 

was observed to have the highest transfection activity, as shown in Figure 4.4, the intensity of the 

GFP expression level, determined at low threshold (LT) analysis, showed no significant 

improvement as compared to the control-untreated group, and even significantly lower as 

compared to that of formulated using G3 or G6 gemini surfactants (as shown in Figure 4.5). This 

is partly due to the skewing of the MFI by the background noise as described in Section 3.6. To 

avoid misinterpretation and better understand the flow cytometry data, it was necessary to compare 

the MFIs of all transfection reagents at high threshold (HT) analysis, as shown in Section 4.3. 

Therefore, in Section 4.3.2.1, the MFI of the G7-lipoplexes formulated at r± of 2 or 10 and r = 3.3 

will be reassessed and compared with other formulations at HT. While quantification of the 

percentage of the fluorescent positive cells at LT can provide general information on the 

transfection percentage/penetration activity of various delivery formulations studied throughout 

this project, analysing the MFI at HT can allow us to better investigate their transfection activities 

and measure their GFP expression levels by flow cytometry (refer to Section 4.3).    
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Fig. 4.5. Transfection studies of the gemini-based lipoplexes formulated using 12-7NH-12 (G2), 
18-7NH-18 (G3), RGDG-12 (G6) and RGDG-18 (G7) gemini surfactants as a function of r = 16.2, 
9.7, 3.3, 0 (prepared at ML = 500 µM, 300 µM, 100 µM, 0 µM, respectively) with identical r± = 2 
(prepared at MG = 31 µM), as quantified by flow cytometry. Results are presented as mean ± SD 
from two independent experiments (n = 6, 3 repeats per experiment) performed on 3T3 mouse 
fibroblast in 96-well plates. (A) The percentage of the transfected cells and (B) the intensity of 
GFP expression level (MFI) were normalized to untreated control (cells only). Asterisks indicate 
statistical significance compared to untreated control (* p < 0.05, ** p < 0.01, **** p < 0.0001). 
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The impact of r values on transfection activity of the G7-based lipoplexes was further investigated 

at r± = 10 by varying the DOPE lipid density (e.g., r = 3.3, 2, 0.7, 0) and compared to the G7 

lipoplexes formulated at r± = 2 and r = 3.3 (Fig. 4.6). It was shown that decreasing the lipid density 

at r± = 10 by reducing the r value from 3.3 to 2, to 0.7 and finally 0 (without DOPE), as shown in 

Figures 4.6 and Figure D3 (Appendix D), revealed no significant improvements in the intensity of 

GFP expression levels as compared to the control-untreated cells. In addition, further increasing 

the DOPE lipid density at r± = 10 by increasing the DOPE molarity above 500 µM (r above 3.3) 

also showed no effect in intensity of protein expression levels (data not shown). As shown in 

Figure 4.6, the MFI at LT analysis demonstrated that the intensity of GFP expression level was 

increased approximately up to 27-fold for G7–based lipoplex formulated at r± = 2 with r = 3.3 as 

compared to that of formulated at r± = 10 with varying lipid density (e.g., r = 3.3, 2, 0.7, 0).  

Therefore, as per data shown above, at r± = 10, changing the r values showed no effect on the 

transfection activities of the G7-based lipoplexes. This is thought to be due to the tight compaction 

capability of the cationic gemini surfactants that regardless of the DOPE lipid density of the 

lipoplex delivery systems, hinder the release of pDNA. However, at r± = 2, reducing the r value 

could form particles with a thin lipid membrane that although resulted in reduced penetration 

activity, had further improvements on the pDNA release into the cytoplasm. Among the lipoplexes 

with low lipid density formulated at r± = 2 and r = 3.3, G7 (formula: 18-7N(RGDG)-18) gemini 

surfactant having long alkyl tails with RGDG surface functional headgroup resulted in higher 

transfection activity (both the percentage of the transfected cells and the intensity of protein 

expression level) comparing to that of formulated using G2 (formula: 12-7NH-12) and G3 

(formula: 18-7NH-18) as well as RGDG-functionalized G6 (formula: 12-7N(RGDG)-12) gemini 

surfactants (Fig. D2, Appendix D).  
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Fig. 4.6. Transfection studies of the RGDG-18 (G7)-based lipoplexes as a function of r = 3.3, 2, 
0.7, 0 (prepared at ML = 500 µM, 300 µM, 100 µM, 0 µM, respectively) with identical r± = 10 
(prepared at MG = 154 µM) as compared to the optimized G7-based lipoplexes formulated at r± = 
2, r = 3.3 (i.e., BM [G7 31/L 100]). Results are presented as mean ± SD from one experiments (n 
= 3) performed on 3T3 mouse fibroblast in 96-well plates, as detected by flow cytometry. (A) The 
percentage of the transfected cells and (B) the intensity of GFP expression level (MFI) were 
normalized to untreated control (cells only) (* p < 0.05, ** p < 0.01, *** p < 0.001).  
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4.3 Development of versatile peptide-based lipopolyplexes: peptide-driven tri-

modal gene delivery systems (PDTMG) 

As shown in the Section 4.2, the BM [G/L] lipoplexes formulated using m-7NH-m (G2 and G3) 

and m-7N(RGDG)-m (G6 and G7) were found to have the highest transfection activity at r±	= 2 

and r = 3.3 (prepared at MG = 31 µM, ML = 100 µM). However, the transfection percentages and 

the stability of the particles were low. That was shown to be due to both reduced lipid densities 

and the low zeta potentials of the gemini-based lipoplexes. To improve the physicochemical 

properties and the transfection activity of the delivery systems, the impact of non-covalent addition 

of several peptide enhancers that differ in their charges (0, 0.5, 3.2, 6.3) and lengths (consisting of 

histidine and/or arginine residues and/or targeting RGD motif (GRGDSP); as listed in Table 2.2) 

were investigated using DLS and flow cytometry. These include zwitterionic RGD peptide 

enhancers (i.e., PA), cationic (R)6-(H)3 peptide enhancers (i.e., PB), bi-functional cationic RGD-

(R)6-(H)3 peptide enhancers (i.e., PC), cationic (H)5 peptide enhancers (i.e., PD), bi-functional 

cationic RGD-(H)5 peptide enhancers (i.e., PE), cationic (H)12-(R)2 peptide enhancers (i.e., PF) and 

bi-functional cationic RGD-(H)12-(R)2 peptide enhancers (i.e., PG). In addition, the impact of 

structural variations in the spacer groups and functional headgroups of gemini surfactants in 

conjunction with alteration of their alkyl chain lengths (G1-G14, as listed in Table 2.1) were 

investigated. The GRGDSPG-18 (G8), 18-E-PepD (G9), and 18-E-PepE (G10) gemini surfactants 

were co-designed and synthesized to include functional headgroups with RGD peptide, (H)5 

peptide, and bi-functional cationic RGD-(H)5 peptide, respectively. These provided a comparison 

on the effect of the covalent linking and non-covalent addition of PA, PD and PE in transfection 

activity of PDTMG delivery systems. The correlation of the compositional elements and the 

structural modification of gemini surfactants together with the transfection activity and 
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cytotoxicity of the delivery systems were identified for development of various peptide-based 

lipopolyplexes (PDTMG) as shown below.  

 

4.3.1 Particle size and zeta potential analysis: uni-modal, bi-modal and tri-modal gene 

delivery systems 

Due to the numerous possibilities in formulating various gene delivery formulations containing 

peptide enhancers (7 types) or in combination with gemini surfactants (14 types) and/or DOPE 

lipid at their optimal ratios, the physicochemical properties of selected delivery formulations were 

characterized to provide a rational in formulating an effective gene delivery formulation.  

To investigate the effect of the peptide enhancers on physical properties of gene delivery 

complexes, the particle size diameters, PDI and zeta potential of various gene delivery systems 

(i.e., UM [P], BM [P/L], BM [P/G], PDTMG [P/G/L]) were investigated by DLS at varying molar 

concentrations of the compositional elements.  

 

4.3.1.1 UM [P] gene delivery systems 

As shown in Figure 4.7, the UM [P] gene delivery systems formulated using zwitterionic PA 

peptide enhancers or cationic PB or PC peptide enhancers all showed small Z-average particle sizes. 

Zeta potential measurements showed that increasing the peptide molarities of PB and PC from 10 

µM to 98 µM, increased the zeta potentials of the UM [P] complexes to approximately +20 mV, 

suggesting the binding of the cationic peptide enhancers to pDNA and neutralization of its negative 

charge. Increasing the peptide molarity of zwitterionic RGD peptide enhancers (i.e., PA), however, 

showed no significant changes in the zeta potentials of the UM [PA] complexes, indicating the 

pDNA was not efficiently neutralized nor compacted.  
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4.3.1.2 BM [P/L] gene delivery systems 

The complexation of pDNA with zwitterionic PA peptide enhancers and DOPE lipid formulated at 

MP = 62 µM and high DOPE molarity (ML = 500 µM), showed small size particles (111.2 ± 0.4 

nm for the BM [PA62 /L 500] formulation; Fig 4.7). As shown in Figure 4.7, increasing the PA 

molarity (MP = 62 µM, 154 µM, 308 µM) did not significantly change the sizes and zeta potentials 

of the formulated BM [P/L] complexes and interestingly all exhibited strongly negative zeta 

potential values (approximately -50mV to -40mV), suggesting that pDNA was inefficiently 

neutralized. In contrast, increasing the peptide molarity of the cationic peptide enhancers (i.e., PB 

and PC; MP = 10 µM, 25 µM, 49 µM, 98 µM) strongly increased the sizes of the BM [P/L] 

complexes to large aggregates and noticeably increased the zeta potentials from negative values to 

positive values. This may indicate that while increasing the cationic peptide molarity resulted in 

increasing the positive charges of peptide/DNA complexes, the repulsive forces between the 

cationic peptides resulted in formation of larger aggregates. This may also suggest the inability of 

the zwitterionic DOPE for sufficient compaction of BM [P/L] complexes. It was found that 

decreasing the DOPE lipid density of the BM [P/L] complexes by decreasing the DOPE lipid 

molarity (ML = 100 µM), the size of the complexes formulated using PB or PC strongly decreased 

(261.1 ± 7.1 nm and 341.9 ± 12.5 nm for BM [PB 98/L 100] and BM [PC 98/L 100], respectively; 

Fig 4.7). The BM [PB 98/L 100] and [PC 98/L 100] complexes showed the zeta potentials of 

approximately +20 mV.   
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Fig. 4.7. Physical characterization of UM [P] and BM [P/L] gene delivery systems formulated 
using zwitterionic PA, cationic PB or PC peptide enhancers at varying molar concentration of the 
compositional elements. (A) Hydrodynamic diameter, (B) PDI and (C) zeta potential of the 
complexes were determined by DLS. Results are presented as mean ± SD (n = 3). 
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4.3.1.3 BM [P/G] gene delivery systems 

As shown in Figure 4.8, BM [P/G] gene delivery systems formulated using cationic peptide 

enhancers (i.e., PB or PC) at MP = 49 µM, 98 µM and gemini surfactants (i.e., G6 or G7) at r± = 2 

(prepared at MG = 31 µM) yielded small size particles (»136 nm to » 251 nm), indicating the 

synergistic effects of the cationic peptide enhancers and the gemini surfactants for pDNA 

condensation as compared to the corresponding UM [G] complexes (G6 or G7 formulated at r± = 

2), which formed large aggregates (refer to Section 4.2.1, Fig. 4.2). The zeta potential of all the 

formulated BM [P/G] gene delivery systems were also found to be substantially higher than BM 

[P/L] gene delivery complexes, and amongst the BM [P/G] complexes, those formulated with G7 

gemini surfactants generated significantly higher surface charges than that of formulated using G6 

gemini surfactants (e.g., z-potential: +40.0 ± 0.8 mV vs. +30.1 ± 1.1 mV vs.+17.6 ± 2.1 mV for 

BM [PC 98/G7 31], BM [PC 98/G6 31] and BM [PC 98/L 100], respectively). Comparing with BM 

[G/L] lipoplexes formulated at r± = 2 and r = 3.3 (Fig. 4.2), the BM [P/G] complexes formulated 

at r± = 2 with cationic peptide enhancers at MP of 49 µM or 98 µM showed smaller size particles 

and slightly higher zeta potentials. Further details on the synergistic effects between the cationic 

peptide enhancers and gemini surfactants in complexation of pDNA will be described in the 

following section (4.3.1.4).   

 

4.3.1.4 PDTMG gene delivery systems 

Systematic characterization of various types of PDTMG formulations were carried out by 

combining zwitterionic or cationic peptide enhancers (i.e., PA, PB, PC, PD, PE, PF, PG) with several 

gemini surfactants (i.e., G6, G7, G9, G10) and DOPE lipid at different molarities of the 
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compositional elements to provide a general view on the physical properties of the numerous 

PDTMG complexes, studied in this project.  

Formulating the pDNA by the zwitterionic PA peptide enhancers in combination with G6 gemini 

surfactants and DOPE at r± = 2 and r = 3.3 (i.e., PDTMG [PA308, G6 31, L 100]) generated large 

aggregates (» 1.9 µm; Fig. 4.8 (A)) with significantly low zeta potentials (+1.1 ± 0.4 mV; Fig. 4.8 

(C)), indicating insufficient pDNA charge neutralization and complexation. This may further 

suggest the role of PA in preventing the pDNA complexation in the PDTMG [PA308, G6 31, L 

100] formulation when compared to the counterpart BM [G6 31/L 100] formulation, which were 

shown to form particles with positive surface charges (refer to data shown in Section 4.2.1, Fig. 

4.2). PDTMG complexes formulated using PA and G7 gemini surfactants (PDTMG [PA308, G7 

31, L 100]), however, resulted in similar average size particles compared with the BM [G7 31/L 

100] lipoplexes (prepared using G7 at r± = 2 and r = 3.3) but with significantly reduced zeta 

potential. This phenomenon is thought to be correlated with the association of gemini surfactants 

in the presence of peptide enhancers and DNA in which these dynamics affect the effective DNA 

compaction process. There are several interactions that can be responsible for polymer-surfactant 

association including hydrophobic interaction and electrostatic interactions [321, 322]. As stated 

previously (Section 4.2.1), the extent of the pDNA compaction in BM [G/L] lipoplexes is more 

likely related with the lipid density and the alkyl chain length of gemini surfactants. According to 

the zeta potential measurements for the UM [P] formulations (Section 4.3.1.1), it was shown that 

the zwitterionic PA peptide enhancers generated negatively charged particles, suggesting that 

pDNA was not sufficiently neutralized nor efficiently compacted, as indicated by the negative zeta 

potential of the particles (Section 4.3.1.1, Fig. 4.7). Therefore, it is thought that the increased PA 

molarity (MP = 308 µM) resulted in dispersion of pDNA and lowering the association of gemini 
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surfactants for effective compaction and DNA charge neutralization when compared to the BM [G 

31/L 100] lipoplexes formulated using G6 or G7 gemini surfactants. This explanation may be 

further supported, in a complementary manner, by comparing the effect of the cationic peptide 

enhancers in formation of PDTMG complexes.   

As shown in Figure 4.8, the addition of the cationic peptide enhancers (i.e., PB, PC; MP = 49 µM-

98 µM) in formulating PDTMG, prepared using G6 or G7 at r± = 2 and r = 3.3 (MG = 31 µM, ML 

= 100 µM), all generated smaller size complexes (from » 141 nm to » 246 nm) with significantly 

increased zeta potentials as compared to the corresponding BM [G 31/L 100] lipoplexes, and 

amongst the cationic PDTMG complexes, those formulated by G7 showed higher zeta potentials 

(from » +45 mV to » +52 mV) than that of formulated by G6 (from » +35 mV to » +40 mV). As 

previously shown, the UM [P] complexes formulated using cationic PB or PC showed higher zeta 

potentials than those formulated using zwitterionic PA, suggesting the higher 

association/complexation of pDNA for the complexes formulated with the cationic peptide 

enhancers (i.e., PB or PC) compared to that of formulated with the zwitterionic PA peptide 

enhancers. Therefore, it is believed that in the PDTMG formulation, the higher association of 

cationic peptide enhancers with pDNA may lead to the higher association of gemini surfactants to 

the pDNA-cationic peptide complexes, and hence synergistically resulting in higher degree of 

complexation and effective DNA charge neutralization in the PDTMG formulations. Therefore, 

the synergistic contribution of all the components of the PDTMG delivery system (i.e., cationic 

peptide enhancers, gemini surfactants and DOPE lipids) provided more efficient pDNA 

compaction as compared to the counterpart lipoplex formulations at the equal lipid molarities and 

uni-modal peptide-DNA complexes. These collectively may further support the hypothesis of this 

project, in that, the cationic peptide enhancers intercalating pDNA forms inner core peptide/pDNA 
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complex, which are surrounded and compacted by the gemini/DOPE lipids. This proposed model 

is in an alignment with the previous research studying the supramolecular assembly of peptide-

based lipopolyplexes [258-260].  

Generally, the degree of the pDNA compaction and charge neutralization by cationic peptide 

enhancers can be correlated with the length and charge of the cationic polymers. As shown in 

Figure 4.9, the PDTMG [P 67/G 27/ L 100] complexes formulated at r± = 1.7 and r = 3.8, using 

cationic PC, PD, PE, PF or PG peptide enhancers, G7 gemini surfactants and DOPE, all resulted in 

formation of particles with high positive zeta potentials (from  » +44 mV to » +50 mV). The Z-

average particle size for the PDTMG [P 67/G7 27/ L 100] complexes formulated using PC, PF or 

PG peptide enhancers were from » 154 nm to » 165 nm for (Fig. 4.9), and for the ones formulated 

using PD and PE were » 386 nm and » 279 nm, respectively. The higher Z-average particle size for 

the PDTMG complexes formulated using PD and PE might be due to the lower pDNA compaction 

associated with the low positive charge of the cationic peptide enhancers (i.e., net positive charge 

at pH 7 = 0.5; Table 2.2) as it was also reported that a minimum of six to eight positive charges in 

a polypeptide are required for efficient DNA condensation [86, 323-325]. From the data presented 

above, it was observed and can be predicted that the physical characteristics of various PDTMG 

delivery systems, formulated in a similar condition using the cationic peptide enhancers, gemini 

surfactants with the same length saturated alkyl tails, and DOPE, generate particles with similar 

size and zeta potential, and among the PDTMG complexes, those formulated using gemini 

surfactants with saturated 18C alkyl tails had higher zeta potentials compared to that of formulated 

using gemini surfactants with saturated 12C alkyl tails. These observations were in alignment to 

the physical studies of various lipopolyplex gene delivery systems formulated using various 
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cationic peptides (whether linear, branched or dendritic) in combination with DOTMA and DOPE, 

that exhibited also similar size, surface charge and lipid bilayer structure [326, 327].     

Further investigation in formulating the compositional elements of the PDTMG delivery systems 

using cationic PC peptide enhancers, G7, G9, G10 gemini surfactants, and DOPE showed that by 

increasing the molar concentrations of cationic peptide enhancers (MP = 67 µM, 133 µM, 267 µM) 

along with the fine tuning of gemini surfactants and DOPE, as shown in Figures 4.9 and 4.10, 

could also generate small particles (from » 147 nm to » 174 nm) with highly positive zeta potentials 

(from » +44 mV to » +60 mV) (Fig. 4.9 and 4.10). For example, PDTMG formulated using PC at 

MP = 267 µM in combination with G7 gemini and DOPE prepared at r± = 1.1 and r = 6.8 (i.e., 

PDTMG [PC 267/G7 17/L 113]) generated particles with Z-average size diameter of 168.6 ± 0.6 

nm, PDI of 0.188 ± 0.029 and zeta potential of +51.1 ± 0.3 mV, as presented in Figure 4.9.  
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Fig. 4.8. Physical characterization of BM [P/G] and PDTMG [P/G/L] gene delivery systems 
formulated using PA, PB or PC peptide enhancers in combination with RGDG-12 (G6) or RGDG-
18 (G7) and/or DOPE helper lipid at r± = 2 (prepared at MG = 31 µM). (A) Hydrodynamic 
diameter, (B) PDI and (C) zeta potential of the complexes were determined by DLS. Results are 
presented as mean ± SD (n = 3). 
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Fig. 4.9. Physical characterization of PDTMG [P/G/L] gene delivery systems formulated using 
cationic PC, PD, PE, PF or PG peptide enhancers in combination with RGDG-18 (G7) and DOPE 
helper lipid at r± = 1.7 and 1.3 (prepared at MG = 27 µM and 20 µM, respectively). (A) 
Hydrodynamic diameter, (B) PDI and (C) zeta potential of the complexes were determined by 
DLS. Results are presented as mean ± SD (n = 3). 
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Fig. 4.10. Physical characterization of PDTMG [P/G/L] gene delivery systems formulated using 
cationic PC peptide enhancers in combination with RGDG-18 (G7), 18-E-PepD (G9) or 18-E-PepE 
(G10) gemini surfactants and DOPE lipid at r± = 2.5, 2.1, 1.7 and 1.1 (prepared at MG = 40 µM, 
33 µM, 27 µM and 17 µM, respectively). (A) Hydrodynamic diameter, (B) PDI and (C) zeta 
potential of the complexes were determined by DLS. Results are presented as mean ± SD (n = 3). 
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4.3.2 Formulation strategies for development of potent gene delivery systems 

  

4.3.2.1 In vitro transfection activities of uni-modal vs. bi-modal vs. tri-modal (PDTMG) gene 

delivery systems  

In vitro transfection studies of various gene delivery systems, such as BM [G/L], UM [P], BM 

[P/L], BM [P/G] and PDTMG [P/G/L], were investigated using cationic PC peptide enhancer, G6 

and G7 gemini surfactants, and DOPE for delivery of gWizTM GFP pDNA to 3T3-mouse 

fibroblasts in 24-well plates. To lower skewing of the MFI and better compare the intensity of 

protein expression levels, as explained in Section 4.2.2.2, the MFI of various transfection 

formulations were assessed at HT.  

Relative measurements of the intensity of GFP expression level at HT indicated that the MFI was 

approximately 20-fold higher for the optimized BM [G7 31/L 100] lipoplexes (prepared at r± = 2 

and r = 3.3) compared to the BM [G7 154/L 500] lipoplexes (prepared at r± = 10 and r = 3.3) (p < 

0.001) (Fig. 4.11 (B)). However, the cell penetration activity of the BM [G7 154/L 500] lipoplexes 

was significantly lower compared to the BM [G7 154/L 500] lipoplexes, as shown by the number 

of the cells transfected.  

To further improve transfection activity, the effect of PC peptide enhancers alone or in combination 

with G7 (MG = 31 µM) and/or DOPE (ML = 100 µM) was investigated on both transfection 

percentage and the intensity of GFP expression level. As shown in Figure 4.11 (B), the UM [PC49] 

formulation and the BM [PC 49/L 100] showed no significant increase in the intensity of the GFP 

expression compared to control-untreated cells (p > 0.05). The lipopolyplex delivery system, 

PDTMG [PC49/G7 31/L 100], showed around 2-fold higher transfection percentage compared to 

both the BM [G7 31/L100] formulation (p < 0.0001) and the BM [PC49/G7 31] formulation (p < 
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0.0001). In addition, the MFI with PDTMG [PC49/G7 31/L 100] was 1.8-fold higher than the BM 

[G7 31/L100] formulation (p < 0.01) and 3.1-fold higher than the BM [PC49/G7 31] formulation 

(p < 0.0001) (Fig. 4.11 (A) and (B)). These experiments demonstrated the superiority of the 

transfection activity of the PDTMG [PC/G7/L] complexes compared to the uni-modal (i.e., UM 

[G], UM [P]) and the bi-modal (i.e., BM [G/L], BM [P/L], BM [P/G]) counterparts. Therefore, it 

can be inferred that the cationic PC peptide enhancers in combination with G7 gemini surfactants 

and DOPE synergistically contributed to the enhanced GFP expression level of the PDTMG 

[PC49/G7 31/L 100] complexes, as confirmed by both the increase in the percentage of the 

transfected cells and the enhanced MFI when compared to the counterpart uni-modal and bi-modal 

complexes.  

Further increasing the amount of the PC peptide enhancers, the BM [PC196/G7 31] and the PDTMG 

[PC244/G7 31/L 100] formulations exhibited increased transfection percentages (p < 0.05) (Fig. 

4.11 (A)) and reduced MFIs (though statistically insignificant) (Fig. 4.11 (B)) compared to their 

respective counterparts formulated at MP = 49 µM. In yet another transfection experiment, the 

PDTMG [PC49/G7 31/L 100] formulation demonstrated an increase in GFP expression level 

compared to the PDTMG [PC10/G7 31/L 100] formulation, as confirmed by both increase in the 

transfection percentage (p < 0.05) (Fig. 4.12 (A)) and the MFI (though statistically insignificant) 

(Fig. 4.12 (B)). These experiments collectively indicated that the transfection activity of the 

PDTMG complexes formulated using PC, G7 and DOPE at r± = 2 and r = 3.3 (MG = 31 µM, ML = 

100 µM) could be effectively improved by small increase in the peptide molarity from MP = 10 

µM to MP = 49 µM, and above which (i.e., from 49 µM to 244 µM) no apparent differences were 

observed in the GFP expression levels (for further details, refer to Section 4.3.2.2).   
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By decreasing the length of the alkyl tails using G6 gemini surfactants, it was found that there was 

no significant increase in the transfection percentages for the BM [G6 31/L100] lipopolexes and 

the PDTMG [PC10/G6 31/L 100] complexes compared to control-untreated cells (p > 0.05) (Fig. 

4.12 (A)). This demonstrated the superiority of the transfection activity of the G7 gemini 

surfactants compared to G6 gemini surfactants in both BM [G/L] and PDTMG [P/G/L] 

formulations (Fig. 4.12 (A) and (B)). The comparison of the transfection activities of G6 vs. G7 

gemini surfactants formulated PDTMG delivery systems will be further investigated in Section 

4.3.3.   
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Fig. 4.11. The transfection activities of BM [G/L], UM [P], BM [P/L], BM [P/G] and PDTMG 
[P/G/L] gene delivery systems formulated from cationic PC peptide enhancer and/or RGDG-18 
(G7) gemini surfactant and/or DOPE helper lipid. Results are presented as mean ± SD from one 
or two independent experiments (n = 3 per experiment) performed in 24-well plate. (A) The 
percentage of the transfected cells and (B) the intensity of GFP expression levels were normalized 
to untreated control (cells only) (* p < 0.05, ** p < 0.01, **** p < 0.0001).  
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Fig. 4.12. The transfection activities of BM [G/L] lipoplexes and PDTMG [P/G/L] complexes 
formulated from cationic PC peptide enhancer, and RGDG-12 (G6) or RGDG-18 (G7) gemini 
surfactant and DOPE helper lipid at r± = 2 and r = 3.3. Results are presented as mean ± SD from 
one experiments (n = 3) performed on 24-well plate. (A) The percentage of the transfected cells 
and (B) the intensity of GFP expression levels were normalized to untreated control (cells only) (* 
p < 0.05 and **** p < 0.0001).  
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4.3.2.2 Optimization of the PDTMG nanoparticles: synergistic mechanism between peptide 

enhancer, gemini surfactant and DOPE lipid 

Further optimization of the PDTMG [PC/G7/L] nanoparticles by evaluating the transfection 

percentage and the MFI using flow cytometry led to better understand the synergistic mechanism 

of the delivery components for improvement in GFP expression level.  

As shown previously (Section 4.3.2.1), the addition of cationic PC peptide enhancers at MP = 49 

µM resulted in a significant increase in GFP expression level for PDTMG formulated at r± = 2 

and r = 3.3 using G7 gemini surfactants. However, further increase in the peptide molarity showed 

no improvement in the intensity of GFP expression levels (Fig. 4.11 (B)). As part of an 

optimization study, it was found that by decreasing the r± from 2 to 1.1 along with increasing the 

MP from 49 µM to 267 µM and fine tuning of DOPE to gemini molar ratio at r = 6.8, PDTMG 

[PC267/G7 17/L 113] exhibited the highest transfection activity with a 2.3-fold increase in the MFI 

compared to PDTMG [PC49/G7 31/L 100] (Fig. 4.13). This demonstrated synergistic effects of the 

components of the PDTMG complexes in formation of nanoparticle for effective cellular and 

intracellular pDNA delivery. Figure E1 (Appendix E) provide a further detail on the optimization 

of the compositional elements of the PDTMG nanoparticles in relation to their transfection 

activities. It is important to note that while decreasing the r± from 2 to 1.1 by decreasing the gemini 

molarity from MG = 31 µM to MG = 17 µM showed high transfection activity, decreasing the 

gemini molarity by increasing the volume of the formulation mixture resulted in significant 

reduction in transfection activity of PDTMG complexes (Fig. 4.14). This demonstrated the 

dispersion effect in formation of nanoparticles in which at the equal amounts of the peptide, gemini 

surfactant and DOPE (the same mole amounts) (i.e., PDTMG formulated at r±	=	2 and r = 3.3) 

reducing the concentration of the compositional elements by increasing the volume of the 
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formulation mixture did not form effective PDTMG nanoparticles, and led to near total loss of 

GFP expressions (Fig. 4.14 (B)). This can validate the hypothesis of this project that synergistic 

effects of the components of the PDTMG resulted in formation of nanoparticles that can effectively 

complex pDNA for effective cellular uptake and endosomal release. This phenomenon could be 

further explained by the effect of polymer-surfactant association for effective DNA compaction 

process. It is thought that the high association of cationic peptide enhancers with pDNA forming 

a peptide-pDNA core provided a platform for effective association of gemini surfactants along 

with DOPE at such low lipid molarities (MG = 17 µM; ML = 113 µM). Therefore, the PDTMG 

[PC267/G7 17/L 113] delivery system (prepared at r± = 1.1 and r = 6.8) could effectively compact 

pDNA for uptake mechanism and once ingested, could disassemble, rupture endosome and release 

its peptide-DNA cargo into the cell cytoplasm.    

The optimization of the PDTMG formulation provided a better understanding on the formation of 

PDTMG nanoparticle and further elucidated the effect of the compositional elements and their 

supramolecular assembly in correlation with their cellular uptake and endosomal release. Further 

details on the effect of the peptide enhancers and molecular architecture of gemini surfactants on 

the compaction and release of pDNA will be described in the following sections (refer to Section 

4.3.3, 4.3.4 and 4.3.5).   
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Fig. 4.13. Optimization of PDTMG complexes formulated from cationic PC peptide enhancer, 
RGDG-18 (G7) gemini surfactant and DOPE helper lipid at varying r± from 2 to 1.1, and r from 
3.3 to 6.8. Results are presented as mean ± SD from one to six independent experiments as shown 
in the embedded table (n = 2 or 3 per experiment) performed in 24-well plates. (A) The percentage 
of the transfected cells and (B) the intensity of GFP expression level were normalized to untreated 
control (cells only) (* p < 0.05 and **** p < 0.0001). 
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Fig. 4.14. The effect of volume on formulating PDTMG delivery systems in correlation with their 
transfection activities. BM [PC196/G7 31], PDTMG [PC196/G7 31/L 100] and PDTMG [PC244/G7 
31/L 100] were prepared at 0.5 µg pDNA per 50 µL transfection mixture; while *BM and 
*PDTMG formulations were formulated at 0.5 µg pDNA per 75 µL transfection mixture; and 
**PDTMG formulations were prepared at 0.5 µg pDNA per 100 µL transfection mixture. Results 
are presented as mean ± SD from one experiment (n = 3) performed in 24-well plates. (A) The 
percentage of the transfected cells and (B) the intensity of GFP expression level were normalized 
to untreated control (cells only) (*** p < 0.001 and **** p < 0.0001). 
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4.3.2.3 Cell viability  

The condensation of pDNA by various carriers showed some degree of the viability loss (Fig. 

4.15). The low complexation of pDNA at low lipid density by the BM [G7 31/L 100] lipoplexes 

formulated at r± = 2 and r = 3.3 showed significant improvement in 3T3 cell viability compared 

to the BM [G7 154/L 500] lipoplexes formulated at r± = 10 and r = 3.3 (Fig. 4.15 (A)). The UM 

[PC 49] and BM [PC 49/L 100] complexes were non-toxic at the expense of losing their transfection 

activities. The effective complexation of pDNA by the PDTMG [PC 49/G7 31/L 100] complexes 

showed slight reduction (~ 9%) in cell viability compared to BM [G7 31/L 100] lipoplexes (Fig. 

4.15 (A)). As shown in Figure 4.15 (B), increasing the peptide molarity while reducing the gemini 

to DNA ratio at r± = 1.1 in formulating the PDTMG complexes caused minimal reduction (~ 10%) 

in cell viability compared to untreated control.  
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Fig. 4.15. MitoTracker staining for measuring the cytotoxicity of BM [G/L], UM [P], BM [P/L], 
BM [P/G] and PDTMG [P/G/L] gene delivery systems using flow cytometry. Results are presented 
as mean ± SD from one or two independent experiments (n = 3) for graph (A) or from one to six 
independent experiments, as part of an optimization study (n = 2 or 3 repeats per experiment for 
graph (B) that were performed in 24-well plates. Asterisks represent no significant difference from 
untreated (100%) control (p > 0.05). 
 

BM [G
7 1

54
/L 

50
0]

BM [G
7 3

1/L
10

0]

UM [P
C
49

]

UM [P
C
19

6]

BM [P
C
49

/L1
00

]

BM [P
C
49

/G
7 3

1]

BM [P
C
19

6/G
7 3

1]

PDTMG [P
C
49

/G
7 3

1/L
10

0]

PDTMG [P
C
19

6/G
7 3

1/L
10

0]

PDTMG [P
C
24

4/G
7 3

1/L
10

0]

Cell
s O

nly
0

20

40

60

80

100
C

el
l V

ia
bi

lit
y 

In
de

x 
(%

, R
L1

)

**

PDTMG [P
C
49

/G
7 3

1/L
10

0]

PDTMG [P
C
67

/G
7 2

7/L
10

0]

PDTMG [P
C
67

/G
7 2

0/L
10

0]

PDTMG [P
C
13

3/G
7 2

0/L
10

0]

PDTMG [P
C
26

7/G
7 1

7/L
10

0]

PDTMG-3 
[P C

26
7/G

7 1
7/L

11
3]

Cell
s O

nly
0

20

40

60

80

100

C
el

l V
ia

bi
lit

y 
In

de
x 

(%
, R

L1
)

A

B



	 102 

4.3.3 The impact of peptide enhancers with varying charges and lengths on transfection 

activity and cell viability of PDTMG nanoparticles  

4.3.3.1 In vitro transfection activities of PDTMG nanoparticles formulated with various peptide 

enhancers  

As described in the previous section, the PDMTG nanoparticles formulated using cationic PC 

peptide enhancers, G7 and DOPE showed significant transfection activity compared to the 

counterpart uni-modal [P] complexes and bi-modal [G/L] or [P/G] complexes (refer to Section 

4.3.2).   

To investigate the impact of peptide enhancers, the transfection activities of various PDTMG 

delivery systems were assessed using several peptide enhancers, such as zwitterionic peptide 

enhancer or cationic peptide enhancers with varying charges (net positive charge at pH 7: from 0.5 

to 6.3) and peptide lengths (from 5 to 22 amino acid residues), in combination with G7 gemini 

surfactant and DOPE lipid.  

As shown in Figure 4.16 (A), it was observed that increasing the peptide molarity of the 

zwitterionic PA peptide enhancers made no changes in the transfection percentage of the 

formulated PDTMG complexes (i.e., PDTMG [PA62/G7 31/L 100] and PDTMG [PA308/G7 31/L 

100]); however, MFI measurements indicated that by increasing the peptide molarity of the PA, 

the transfection activity of the PDTMG [PA308/G7 31/L 100] formulation was reduced ((though 

not statistically significant) compared to the PDTMG [PA62/G7 31/L 100] formulation (Figure 

4.16 (B)). This is more likely due to the low association of the zwitterionic PA peptide enhancers 

to pDNA, leading to dispersion effect in formation of nanoparticles.  

In comparison with the cationic peptide enhancers, it was found that the transfection activities of 

the PDTMG complexes formulated using PB or PC peptide enhancers (i.e., PDTMG [PB49/G7 31/L 
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100] and PDTMG [PC49/G7 31/L 100]) were significantly higher compared to the PDTMG 

complexes formulated using PA peptide enhancers (Fig. 4.16 (A) and (B)).     

 

 

 

 

 

 

 

 

 

Fig. 4.16. The transfection activities of PDTMG complexes formulated using zwitterionic PA or 
cationic PB or PC peptide enhancers in combination with RGDG-18 (G7) and DOPE lipid at r± = 
2 and r = 3.3. Results are presented as mean ± SD from one experiment (n = 3) performed in 24-
well plates. (A) The percentage of the transfected cells and (B) the intensity of GFP expression 
level were normalized to untreated control (cells only) (* p < 0.05 and ** p < 0.01).   
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His residues, Table 2.2) resulted in similar transfection activities. Comparing the transfection 

activities of the PDTMG complexes formulated from the cationic peptide enhancers with or 

without targeting sequence (i.e., PC, PE, PG containing RGD sequence and PB, PD, PF not containing 

RGD sequence; Table 2.2), it is inferred that the targeting RGD peptide sequence of the cationic 

peptide enhancers had a negligible effect in the PDTMG formulations. Therefore, the above 

experiments demonstrated that rather than the targeting RGD sequence and/or polyhistidine and/or 

polyarginine or their combination thereof contributing to the transfection activity of the formulated 

PDTMG complexes, perhaps the pDNA complexation ability of these cationic peptide enhancers 

were more likely to be the reason for the transfection activity of the formulated PDTMG 

complexes. The relation between the pDNA complexation and transfection activity is more evident 

when compared to the PDTMG complexes formulated from zwitterionic targeting RGD peptide 

enhancers (PA) that revealed significantly lower transfection activity than the PDTMG complexes 

formulated from cationic peptide enhancers (i.e., PB, PC, PD, PE, PF, PG). Therefore, it can be 

reasonably argued that the comparable pDNA complexation of the cationic peptide enhancers 

resulting from small differences on their net positive charges (at neutral pH, the net positive charge 

of the cationic peptide enhancers ranging from 0.5-6.3; Table 2.2) led to similar transfection 

properties of the formulated PDTMG complexes. In accordance with this research, Welser et al. 

reported that the Arg- or Lys-rich peptides significantly improved the transfection efficiency of 

lipopolyplexes (formulated with DOTMA and DOPE) [326]. Further, the author showed His-rich 

peptides did not significantly contribute to the endosomal release of lipopolyplexes, and concluded 

that the “proton-sponge” effect, previously described for His-rich peptides formulated as 

polyplexes [298, 328], had a negligible impact in the lipopolyplexe formulations [326]. Taken 

these together, it can be expected that the higher complexation of pDNA mediated by the 
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electrostatic interactions between the positively charged side chains of the cationic peptide 

enhancers and the negatively charged phosphate backbone of pDNA in the PDTMG formulation 

can perhaps introduce more pDNA per cell; hence, resulting in higher GFP expression levels. 

However, it is believed that the endosomal release of the PDTMG components is mediated by the 

synergistic effects of the gemini surfactants and DOPE lipid, as described in the following sections 

(refer to Section 4.3.4 and 4.3.5).    

 

 

 

 

 

 

 

 

 

 

 

 

 



	 106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.17. The transfection activities of PDTMG complexes formulated using various cationic 
peptide enhancers (i.e., PC, PD, PE, PF, PG) in combination with RGDG-18 (G7) and DOPE lipid at 
r± = 1.7 and 1.1 (prepared at MG = 27 µM and 17 µM, respectively). Results are presented as mean 
± SD from one experiment (n = 3 for graphs (A) and (B); n = 2 for graphs (C) and (D)) performed 
in 24-well plates. (A) and (C) The percentage of the transfected cells, and (B) and (D) the intensity 
of GFP expression level were normalized to untreated control (cells only). 
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4.3.3.2 Cell viability  

The PDTMG complexes formulated from zwitterionic PA peptide enhancers showed significant 

reduction in 3T3 cell viability (cell viability: » 63% and » 57% for cells treated with PDTMG 

[PA62/G7 31/L 100] and [PA308/G7 31/L 100] formulations, respectively) compared to untreated 

control (Fig. 4.18 (A)). However, PDTMG complexes formulated from cationic PB or PC exhibited 

lower cytotoxicity (cell viability: » 72% and » 77% for cells treated with PDTMG [PB62/G7 31/L 

100] and [PC62/G7 31/L 100] formulations, respectively) than the PDTMG complexes formulated 

from zwitterionic PA peptide enhancers. These suggest that the lower association of zwitterionic 

PA peptide enhancers compared to cationic peptide enhancers for pDNA complexation and the 

resulting dispersion effect in formation of the PDTMG complexes could be the reason for the 

increased cytotoxicity.     

As shown in Figure 4.18 (B) and (C), reducing the amounts of gemini surfactant and/or increasing 

the amounts of cationic peptide enhancers (i.e., PC, PD, PE, PF, PG), the formulated PDTMG 

complexes resulted in minimal reduction (from ~ 20% to non-toxic) in cell viability compared to 

untreated control.     
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Fig. 4.18. MitoTracker staining for measuring the cytotoxicity of PDTMG complexes formulated 
from peptide enhancers PA-G, RGDG-18 (G7) gemini surfactant and DOPE lipid. Results are 
presented as mean ± SD from one experiment (n = 3 for graphs (A) and (B); n = 2 for graph (C)) 
performed in 24-well plates. Asterisks represent no significant difference from untreated (100%) 
control (cells only) (p > 0.05). 
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4.3.4 The impact of gemini surfactants of varying alkyl chain lengths, spacer groups and 

functional headgroups on transfection portfolio of PDTMG nanoparticles 

 

4.3.4.1 In vitro transfection activities of PDTMG nanoparticles formulated using m-3-m, m-

7NH-m or m-7N(RGDG)-m 

As previously shown (Sections 4.3.2 and 4.3.3), the optimization of the PDTMG [PC/G7/L] 

formulation showed the highest transfection activity for the PDTMG complexes prepared at MP = 

267 µM, MG = 17 µM and ML = 113 µM (r± = 1.1 and r = 6.8), and further it was observed that 

the PDTMG complexes formulated from the cationic PB, PC, PD, PE, PF, PG peptide enhancers 

demonstrated similar transfection activities. To further investigate the impact of gemini surfactants 

on transfection properties of the PDTMG complexes, in vitro transfection studies of various 

PDTMG delivery systems were performed using G1-G7 gemini surfactants (Table 2.1) which 

differ in the alkyl chain lengths (m = saturated 12C or 18C) and/or spacer groups (s = 3, 7NH, 

7NR) and/or functional headgroups (R = R1 (imidazolepropionyl), R2 (thiopropionyl), R3 (RGDG 

peptide)).  

As presented in the Figure 4.19 (A), the PDTMG [PC 267/G 17/L 113] complexes formulated at 

r± = 1.1 and r = 6.8 from 12-7NH-12 (G2) or RGDG-12 (G6) gemini surfactants showed 

insignificant increase in the percentages of the transfected cells and the MFI compared to control-

untreated cells (p > 0.05). Increasing the amounts of G6 gemini surfactant by increasing r± from 

1.1 to 1.7, as shown in Figure 4.20 and Figure D5 (Appendix D), the transfection percentage of 

the PDTMG [PC 267/G6 27/L 100] complexes was slightly improved compared to the PDTMG 

[PC 267/G6 17/L 113] complexes (though statistically significant, p < 0.05), while the MFI was 

significantly increased for the PDTMG [PC 267/G6 27/L 100] complexes compared to the PDTMG 
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[PC 267/G6 17/L 113] complexes (p < 0.0001). This could be explained by the internalization of 

the G6-based PDTMG nanoparticles at r± = 1.7 into the cells to mediate the downstream events 

including rupturing the endosome and release its pDNA cargo into the cell cytoplasm. By further 

increasing the r± from 1.7 to 2.1, the slight increase in the transfection percentage of the PDTMG 

[PC 267/G6 33/L 100] complexes compared to the PDTMG [PC 267/G6 27/L 100] complexes (p > 

0.05; Fig 4.20 (A)) was accompanied with significant decrease in the MFI (p < 0.05; Fig 4.20 (B)). 

This suggests that the tighter compaction with higher amounts of G6 gemini surfactants in 

formulating the PDTMG complexes hindered the endosomal release of pDNA.  

Increasing the length of the alkyl tails using gemini surfactants with saturated 18C alkyl tails 

resulted in higher internalization of the formulated PDTMG nanoparticles (Fig. 4.19 (A)). The 

PDTMG complexes formulated from 18-7NH-18 (G3) gemini surfactants (i.e., PDTMG [PC 

267/G3 17/L 113]) showed significantly higher transfection activity compared to 18-3-18 (G1) 

counterpart complexes, as indicated by both higher the transfection percentage (p < 0.0001) and 

the MFI (p < 0.01) (Fig. 4.19 (A) and (B)). Compared to G3-based PDTMG complexes, the 

PDTMG complexes formulated from imidazolepropionyl-functionalized G4 gemini surfactants 

resulted in significant increase (p < 0.01) in the intensity of the GFP expression level with similar 

transfection percentage (Fig. 4.19 (A) and (B)). However, the thiolpropionyl-functionalized G5-

based PDTMG showed significant reduction in the GFP expression level as compared to the 

counterpart PDTMG complexes formulated with the parent G3 gemini surfactants. As shown in 

Figure 4.19 and Figure D4 (Appendix D), the PDTMG complexes formulated from the RDGD-

functionalized G7 gemini surfactants demonstrated superior transfection activity, exhibited the 

highest transfection percentage and MFI as compared to the counterpart G1-G6 lipopolyplexes. 

Compared to the PDTMG complexes formulated from G6 gemini surfactant, the PDTMG 
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complexes formulated from G7 (with the same headgroup but 18C alkyl tails) showed a 23-fold 

increase in the transfection percentage and a 39-fold increase in the MFI (Fig 4.19 (A) and (B)). 

The above data indicates that the G7-based PDTMG nanoparticles could more efficiently 

internalize and more effectively release the pDNA into the cell cytoplasm compared to the 

PDTMG nanoparticles formulated from G1-G6 (Fig D4, Appendix D). The higher cell penetration 

activity of the G7-based PDTMG complexes is, therefore, inferred to be attributed to both the long 

C18 alkyl tails of G7 gemini surfactants and their functional RDGD headgroups. It is thought that 

the electrostatic interaction as well as hydrogen bond formation between the positive guanidine 

group of arginine residue from the RGDG functional headgroups of gemini surfactants and the 

negatively charged phosphate and sulphate of cell surface membrane resulted in high penetration 

activity of the G7-based PDTMG nanoparticles. As shown in Figure 4.19 and Figure D4 

(Appendix D), the G7-based PDTMG nanoparticles also demonstrated comparable transfection 

activity with the positive control Lipofectamine 3000 transfection reagent. Further details on the 

impact of the functional headgroups for endosomal release of pDNA will be described in the 

Section 4.3.5. 
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Fig. 4.19. The impact of alkyl chain length, spacer group and functional headgroup of gemini 
surfactants on transfection activities of PDTMG complexes formulated from cationic PC peptide 
enhancer, various gemini surfactants (i.e., 18-3-18 (G1), 12-7NH-12 (G2), 18-7NH-18 (G3), imid-
18 (G4), thiol-18 (G5), RGDG-12 (G6), RGDG-18 (G7)) and DOPE lipid. Results are presented 
as mean ± SD from one experiment (n = 2) performed in 24-well plates. (A) The percentage of the 
transfected cells and (B) the intensity of GFP expression level were normalized to untreated control 
(cells only) (* p < 0.05, ** p < 0.01 and **** p < 0.0001).   
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Fig. 4.20. Transfection activities of PDTMG complexes formulated from PC peptide enhancer, 
RGDG-12 (G6) and DOPE at r± = 2.1, 1.7, 1.1 (prepared at MG = 33 µM, 27 µM and 17 µM, 
respectively) as compared to RGDG-18 (G7)-based PDTMG complexes formulated at r± = 1.1 
(i.e., PDTMG [PC 267/G7 17/L 113]). (A) The percentage of the transfected cells and (B) the 
intensity of GFP expression level were normalized to untreated control (cells only) (* p < 0.05, ** 
p < 0.01 and **** p < 0.0001). Results are presented as mean ± SD from one experiments (n = 2) 
performed in 24-well plates.  
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4.3.4.2 Cell viability  

The PDTMG [PC 267/G 17/L 113] complexes formulated from G1, G2, G5 or G6 gemini 

surfactants, previously shown to have insignificant transfection activities (as indicated by their 

MFIs; Fig. 4.19 (B)), were also non-toxic to the cells (Fig. 4.21). As shown in Figure 4.21, 

Lipofectamine 3000 transfection reagent showed no significant reduction in the cell viability, 

while the G3- and G7-based PDTMG complexes caused slight reduction (approximately 8% and 

16%, respectively) of the 3T3 cell viability compared to the untreated control. Interestingly, the 

PDTMG complexes formulated from G4 gemini surfactants, which previously showed higher 

transfection activity than the G3-based PDTMG complexes (Figure 4.19 (B)), revealed no 

significant cell viability reduction compared to the untreated control. This is perhaps due to the 

better charge distribution of imidazole group [319] of the G4 gemini surfactants compared to the 

parental G3 gemini surfactant.                  

 

 

 

 

 

 

 

 

 

Fig. 4.21. MitoTracker staining for measuring the cytotoxicity of PDTMG complexes formulated 
from G1-G7. Results are presented as mean ± SD from one experiment (n = 2) performed in 24-
well plates. Asterisks represent that there is no significant toxicity compared with untreated (100%) 
control (p > 0.05). 

PDTMG [P
C
26

7/G
1 1

7/L
11

3]

PDTMG [P
C
26

7/G
2 1

7/L
11

3]

PDTMG [P
C
26

7/G
3 1

7/L
11

3]

PDTMG [P
C
26

7/G
4 1

7/L
11

3]

PDTMG [P
C
26

7/G
5 1

7/L
11

3]

PDTMG [P
C
26

7/G
6 1

7/L
11

3]

PDTMG [P
C
26

7/G
7 1

7/L
11

3]

Lip
ofe

cta
mine

 30
00

Cell
s O

nly
0

20

40

60

80

100

C
el

l V
ia

bi
lit

y 
In

de
x 

(%
, R

L1
)

* * * * * *



	 115 

4.3.5 Understanding the mechanism of pDNA release from PDTMG nanoparticles by 

designing various peptide-functionalized gemini surfactants 

4.3.5.1 In vitro transfection activity of the PDTMG delivery systems using peptide-

functionalized gemini surfactants   

To better understand the synergistic effects of the compositional elements of the PDTMG delivery 

system and elucidate the structure-activity relationships, in vitro transfection study of various 

PDTMG delivery systems were investigated by modifying the structure of the hydrophilic 

headgroups of gemini surfactants.   

As shown in Section 4.3.3, the non-covalent addition of several cationic peptide enhancers 

including bifunctional RGD-(R)6-(H)3 peptide enhancers (i.e., PC), pH sensitive cationic (H)5 

peptide enhancers (i.e., PD), bi-functional cationic RDG-(H)5 peptide enhancers (i.e., PE) in 

formulating the PDTMG delivery systems demonstrated similar transfection activities, while 

significantly higher transfection activities as compared to the non-covalent addition of the 

zwitterionic RGD peptide enhancers (i.e., PA). Further, it was shown (Section 4.3.4) that the 

PDTMG delivery systems formulated from gemini surfactants with 18C alkyl tails have higher 

penetration activity as compared to those formulated with C12 gemini surfactants. In this section, 

the effect of G8, G9 and G10 surfactants with PA, PD or PE peptide functional headgroup, 

respectively, will be evaluated on the transfection properties of the formulated PDTMG 

complexes. In addition, further understanding of the pDNA release from the PDTMG complexes 

will be assessed by systematically modifying the arginine-rich peptide functionalities using G11, 

G12, G13 and G14 gemini surfactants.    

As shown in Figure 4.22, in contrast to the effect of non-covalent addition of PA peptide enhancers 

as explained before, the PA-functionalized gemini (G8)-based PDTMG complexes showed 
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comparable transfection activity with the G7-based PDTMG complexes and Lipofectamine 3000 

transfection reagent.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.22. Transfection activities of RGDG-18 (G7)- and GRGDSPG-18 (G8)-based PDTMG 
complexes as compared to Lipofectamine 3000. Results are presented as mean ± SD from one 
experiment (n = 3) performed in 24-well plates. (A) The percentage of the transfected cells and 
(B) the intensity of GFP expression level were normalized to untreated control (cells only) (**** 
p < 0.0001). 
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complexes (Fig. 4.23 (A)). The observed lower penetration activities were perhaps due to the 

increased repulsive forces between cationic headgroups of the gemini surfactants (i.e., G9, G10) 

resulting from the increased positive charge density associated with the glutamic acid linkers 

containing positive a-ammonium groups. As shown in Figure 4.23 (A), the PE-functionalized 

PDTMG [P
C
26

7/G
8 1

7/L
11

3]

PDTMG[P C
26

7/G
71

7/L
11

3]

Lip
ofe

cta
mine

 30
00

Cell
s O

nly
0

10

20

30

Fl
uo

re
ce

nt
 P

os
iti

ve
 C

el
ls

 
(%

 o
f C

on
tr

ol
, B

L1
- L

T)

****

PDTMG [P
C
26

7/G
8 1

7/L
11

3]

PDTMG[P C
26

7/G
71

7/L
11

3]

Lip
ofe

cta
mine

 30
00

Cell
s O

nly
0

2×105

4×105

6×105

8×105

N
or

m
al

iz
ed

 M
FI

 o
f G

FP
 

(B
L1

- H
T)

 ns

A B



	 117 

gemini (G10)-based PDTMG nanoparticles showed higher penetration activity compared to the 

PD-functionalized gemini (G10)-based PDTMG nanoparticles. While increasing the r± from 1.1 to 

2.5 restored and significantly increased the penetration activities of the formulated G9- and G10-

based PDTMG nanoparticles (i.e., [PC267/G 40/L 100]) (Fig 4.23 (A)), their MFIs did not change 

and indicated negligible GFP expression levels as compared to the G7-based PDTMG 

nanoparticles (p < 0.00001) (Fig 4.23 (B)). The data above suggests that there is a totally different 

scenario between the non-covalent addition and the covalent linking of the peptide moieties (e.g., 

PA, PD, PE) to gemini surfactants in formulating the PDTMG complexes. Comparing the 

transfection activities of the PDTMG [PC267/G7 17/L 100], PDTMG [PD267/G7 17/L 100], 

PDTMG [PE267/G7 17/L 100] complexes, as shown in Figure 4.17 (see Section 4.3.3), vs. 

PDTMG [PC267/G7 17/L 113], PDTMG [PC267/G9 17/L 113], PDTMG [PC267/G10 17/L 113] 

complexes, as shown in Figure 4.23, it can be inferred that by covalently linking the peptide 

functionalities to gemini surfactants, the small changes in the arrangement of the amino acid 

residues have a determining impact on the pDNA release from the PDTMG complexes.  

As mentioned above, by increasing the r± from 1.1 to 2.5, the increased amounts of G9 and G10 

gemini surfactants containing pH sensitive (H)5 peptide motifs in the PDTMG complexes showed 

no improvement in GFP expression levels as compared to control-untreated cells, suggesting that 

the “proton-sponge” effect had no significant impact on the pDNA release from the G9- and G10-

based PDTMG complexes into the cell cytoplasm. Further, it was shown that the PDTMG 

complexes formulated at r± = 1.1 from RGDG-functionalized gemini surfactants (G7) or 

GRGDSPG-functionalized gemini surfactants (G8), which did not contain the pH sensitive (H)5 

peptide motifs, accommodated the pDNA release and resulted in high GFP expression levels. 

Taken together, it can be inferred that following the internalization of the PDTMG complexes in 
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the cells, the ability of the cationic gemini surfactants to induce the well-known inverted hexagonal 

phase [117, 130, 329, 330] is most likely to be responsible for the downstream events including 

fusion and disruption of the endosomal membrane and release of pDNA into the cell cytoplasm. 

However, further research such as SAXS experiments requires to further validate this hypothesis.      
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Fig. 4.23. Transfection activities of 18-E-PepD (G9)- and 18-E-PepE (G10)-based PDTMG 
complexes formulated at r± = 2.5, 2.1, 1.7 and 1.1 (prepared at MG = 40 µM, 33 µM, 27 µM and 
17 µM, respectively) as compared to RGDG-18 (G7)-based PDTMG complexes formulated at r± 
= 1.1 (i.e., PDTMG [PC267/G7 17/L 113]). Results are presented as mean ± SD from one 
experiments (n = 2) performed in 24-well plates. (A) The percentage of the transfected cells and 
(B) the intensity of GFP expression level were normalized to untreated control (cells only) (** p 
< 0.01 and **** p < 0.0001). 
 
 
 
 
 

PDTMG [P
C
26

7/G
9 1

7/L
11

3]

PDTMG [P
C
26

7/G
9 2

7/L
10

0]

PDTMG [P
C
26

7/G
9 3

3/L
10

0]

PDTMG [P
C
26

7/G
9 4

0/L
10

0]

PDTMG [P
C
26

7/G
10

 17
/L1

13
]

PDTMG [P
C
26

7/G
10

 27
/L1

00
]

PDTMG [P
C
26

7/G
10

 33
/L1

00
]

PDTMG [P
C
26

7/G
10

 40
/L1

00
]

PDTMG [P
C
26

7/G
7 1

7/L
11

3]

Cell
s O

nly
0

10

20

30

40

50

Fl
uo

re
ce

nt
 P

os
iti

ve
 C

el
ls

 
(%

 o
f C

on
tr

ol
, B

L1
- L

T)

****
** ρ+/-= 1.1

ρ+/-= 1.7

ρ+/-= 2.1

ρ+/-= 2.5

PDTMG [P
C
26

7/G
9 1

7/L
11

3]

PDTMG [P
C
26

7/G
9 2

7/L
10

0]

PDTMG [P
C
26

7/G
9 3

3/L
10

0]

PDTMG [P
C
26

7/G
9 4

0/L
10

0]

PDTMG [P
C
26

7/G
10

 17
/L1

13
]

PDTMG [P
C
26

7/G
10

 27
/L1

00
]

PDTMG [P
C
26

7/G
10

 33
/L1

00
]

PDTMG [P
C
26

7/G
10

 40
/L1

00
]

PDTMG [P
C
26

7/G
7 1

7/L
11

3]

Cell
s O

nly
0

2×105

4×105

6×105

N
or

m
al

iz
ed

 M
FI

 o
f G

FP
 

(B
L1

- H
T)

 

****
ρ+/-= 1.1

ρ+/-= 1.7

ρ+/-= 2.1

ρ+/-= 2.5

A

B



	 120 

As shown above, while the covalent functionalization of gemini surfactants with RGDG (i.e., G7) 

and GRGDGSPG (i.e., G8) motifs resulted in pDNA release from the PDTMG complexes and 

high GFP expression levels, the covalent functionalization of gemini surfactants with E(H)5 (i.e., 

G9) and EGRGDSPG(H)5 (i.e., G10) revealed total loss of GFP expression levels, suggesting no 

pDNA release from the PDTMG complexes into the cell cytoplasm. These experiments may 

suggest that the fusogenic inverted hexagonal phase structures for endosomal release of pDNA are 

not induced by the targeting sequence (i.e., GRGDSPG) or the nature of the amino acid residues 

(e.g., His-rich peptides) of the peptide-functionalized gemini surfactants but rather promoted by 

the molecular architecture of gemini surfactants (Fig. 3.4) in the PDTMG complexes.  

To further test the effect of molecular architectures of gemini surfactants, several peptide-

functionalized gemini surfactants (G11- G14) were designed and produced that include Arg, Asp, 

Glu, Gly residues. As shown in Figure 4.24 (A), the conjugation of (E)2G(R)2, (E)2G(R)3, 

(E)2(G)3(R)3 or DE(G)3(R)3 peptide motifs to gemini surfactants via succinic acid linkers (for 

producing G11-G14, respectively), all the G11-, G12-, G13- and G14-based PDTMG complexes 

formulated at r± = 1.1 showed similar penetration activities as compared to the counterpart G7-

based PDTMG complexes (i.e., PDTMG [PC 267/G7 17/ L 113]). However, the GFP expression 

levels of the PDTMG complexes formulated from either G11, G12, G13, or G14 were significantly 

lower compared to the PDTMG complexes formulated from G7 (p < 0.00001) (Fig. 4.24 (B)). In 

addition, it was found that the MFI of the PDTMG complexes formulated from the G11 or G12 

gemini surfactants at r± = 1.1 (i.e., [PC 267/G 17/ L 113]) were similar, but about 2-fold higher 

compared to the counterpart PDTMG complexes formulated from G13 or G14 (i.e., G13 and G14 

containing increased number of Gly residues compared to G11 and G12) (though statistically 

insignificant; Fig. 4.24 (B)). This supports the hypothesis that the molecular architecture of the 
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gemini surfactants, rather than the nature of the amino acid residues (e.g., His, Arg, Asp, Glu, Gly) 

of the peptide-functionalized gemini surfactants, is more likely to be responsible to effectively 

destabilize the endosome; and hence, release pDNA from the PDTMG complexes in to the cell 

cytoplasm. Further, as shown in Figure 4.24 (B), slight increase of the r± from 1.1 to 1.7, resulted 

in the total loss of GFP expression levels for all the G11-, G12-, G13- and G14-based PDTMG 

complexes.  

In general, it was observed that peptide functionalization of gemini surfactants can significantly 

improve the internalization of the PDTMG complexes into the cells. However, the PDTMG 

complexes can either significantly improve or decrease the GFP expression levels that were 

observed to be dependent on the arrangement of the amino acid residues and the molecular 

structure of the peptide-functionalized gemini surfactants as well as the density of the peptide 

functionalities. Therefore, it may be reasonably concluded that due to the reduced steric hindrance 

of the RGDG and GRGDSPG peptide motifs of the G7 and G8 gemini surfactants, respectively, 

the internalized G7- and G8-based PDTMG complexes in the endosomal vesicles could effectively 

disassemble by forming fusogenic inverted hexagonal phase structure, and release their pDNA 

cargo into the cell cytoplasm.    
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Fig. 4.24. Transfection activities of 18-Suc-E2GR2 (G11)-, 18-Suc-E2GR3 (G12)-, 18-Suc-E2G3R3 
(G13)- and 18-Suc-DEG3R3 (G14)-based PDTMG complexes formulated at r± = 1.7, 1.3 and 1.1 
(prepared at MG = 27 µM, 20 µM and 17 µM, respectively) as compared to RGDG-18 (G7)-based 
PDTMG complexes formulated at r± = 1.1 (i.e., PDTMG [PC267/G7 17/L 113]). Results are 
presented as mean ± SD from one experiments (n = 2) performed in 24-well plates. (A) The 
percentage of the transfected cells and (B) the intensity of GFP expression level were normalized 
to untreated control (cells only) (**** p < 0.0001). 
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4.3.5.2 Cell viability  

As presented in Figure 4.25, the PDTMG complexes formulated from G9-G14, which previously 

showed to have high cell penetration activities but no significant transfection activities, caused 

negligible cell cytotoxicity. However, the G8- and G7-based PDTMG complexes with high 

transfection profile caused slight reduction (from 17% to 4%-varies depending on the cells age) in 

cell viability. The higher cytotoxicity of the G8- and G7-based PDTMG complexes is most likely 

to be due to the efficient endosomal disruption associated with the amino acid arrangement of 

peptide headgroup and molecular shape of G7 and G8 compared to G9-G14 gemini surfactants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 124 

 

Fig. 4.25. MitoTracker staining for measuring the cytotoxicity of PDTMG complexes formulated 
from G7-G14. Results are presented as mean ± SD (n = 2 for experiments (A) and (B); n = 3 for 
experiment (C)) performed in 24-well plates. Asterisks represent that there is no significant 
difference from untreated (100%) control (p > 0.05). 
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Chapter 5  

Discussion 
	
	
	
5.1 Gemini-based lipoplexes 

To efficiently and effectively deliver pDNA, the negatively charged genetic materials need to be 

condensed into stable positively charged particles (or neutral particles in the presence of targeting 

moieties) to 1- protect them against enzymatic degradation, 2- facilitate their uptake across the 

negatively charged cell surface membrane via different mechanisms (e.g., clathrin, caveolae, 

micropinocytosis, and other endocytosis pathways), and following internalization, 3- destabilize 

and rupture the endosomal vesicles, and 4- release their pDNA cargo into the cytoplasm, from 

where the pDNA can reach the cell’s nucleus to be transcribed, and later translated into the 

encoding proteins [113, 319]. Therefore, in the first part of this project, the effects of lipoplex 

formulations incorporating gemini surfactants of varying alkyl tails, spacer groups, and functional 

headgroups (i.e., m-3-m, m-7NH-m, m-7N(RGDG)-m; m = saturated C12 or C18) were 

investigated for pDNA compaction, cellular internalization, and endosomal escape. The 

physicochemical characterization, size and zeta potential measurements by DLS, in conjunction 

with the transfection properties and cytotoxicity profile of lipoplex formulations identified the 

essential parameters for development of efficient and effective gene delivery systems.  

It was shown that lipoplexes formulated from m-3-m, m-7NH-m or m-7N(RGDG)-m gemini 

surfactants (m = saturated C12 or C18) at r± = 10 (i.e., prepared at MG = 154 µM) resulted in 

negligible GFP expression levels (as indicated by their MFIs at LT and HT analysis; Fig. 4.3 (B), 

4.6 (B), 4.11 (B)). Although these lipoplex formulations promoted the cellular uptake of pDNA, 

the limited expression of reporter GFP gene suggested the entrapment of pDNA in endosomes, 
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leading to their eventual degradation [115, 224]. By decreasing the r± values from 10 to 2, 

however, the intensity of GFP expression levels for all the lipoplexes formulated from m-3-m, m-

7NH-m or m-7N(RGDG)-m gemini surfactants were significantly improved (either statistically 

significant or statistically insignificant) (Fig. 4.3 (B)). Further reduction in lipid density, RGDG-

18 (G7)-based lipoplexes formulated at r± = 2 and r = 3.3 (i.e., prepared at MG = 31 µM and ML = 

100 µM) demonstrated the highest transfection activity compared to the counterpart complexes 

formulated using gemini surfactants with saturated 12C alkyl tails (i.e., 12-7NH-12 (G2) and 

RGDG-12 (G6)) or parental 18-7NH-18 (G3) gemini surfactant (Fig. 4.5 (A) and (B); Fig. D2, 

Appendix D). This suggests that RGDG peptide functionalization of gemini surfactant having long 

C18 alkyl tails could complex pDNA at low lipid density (i.e., r± = 2 and r = 3.3), enhance 

internalization of lipoplexes, effectively destabilize endosomal vesicles and disassemble 

lipoplexes, and hence release the pDNA into the cell cytoplasm. Comparing with the G7-based 

lipoplexes formulated at high lipid density with r± = 10 and r = 3.3 (i.e., BM [G7 154/L 500]), the 

penetration activity of the G7-based lipoplexes formulated at low lipid density with r± = 2 and r = 

3.3 (i.e., BM [G7 31/L 100]) was significantly lower, while the MFI (HT analysis) was 

approximately 20-fold higher. This is most likely due to the degree of pDNA compaction for GFP 

expression level, which associated primarily with the amount of G7 gemini surfactants, as 

formulating the lipoplexes by decreasing or increasing the amount of DOPE lipids at r± = 10 had 

no significant impact on the MFI, and revealed negligible GFP expression levels (refer to Section 

4.2.2.2 and Fig 4.6 (B) and Fig D3 (Appendix D)). These observations are in agreement with the 

physical properties of the lipoplexes measured by DLS, which showed the tight pDNA compaction 

using G7 gemini surfactant at r± = 10 when compared to counterparts formulated at r± = 2, as 

indicated by the zeta potential of the complexes (e.g., z-potential: +63.4 ± 1.3 mV and +38.3 ± 0.5 
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mV for BM [G7 154/L 500] and BM [G7 31/L 100] formulations, respectively) (Fig. 4.2 and Fig. 

D3 (Appendix D)). It was shown that increasing the r± value above 2 or 3, depending on the length 

of the alkyl tails of gemini surfactants (i.e., saturated C12 or C18) demonstrated by G6- and G7-

based lipoplexes in Figure 4.4, the tight compaction hindered the cytoplasmic release of pDNA. 

Considering the higher penetration activity of the gemini surfactants with longer alkyl tails (i.e., 

C18 vs C12), fine tuning of r values by adjusting the DOPE lipid molarity at r±	= 2 not only further 

increased the transfection activities of the lipoplexes (Fig. 4.5 and Fig. D2 (Appendix D)), but also 

generated more stable particles. For example, the G7-based lipoplexes formulated at r±	= 2 and r 

= 3.3 (i.e., BM [G7 31/L 100]) generated more stable particles compared to those formulated at r±	

= 2 and r = 16.2 (i.e., BM [G7 31/L 500]), as indicated by both the hydrodynamic size and the zeta 

potential of the complexes (Z-average size: 289.4 ± 8.8 nm vs. 3738.7 ± 172.4 nm; z-potential: 

+38.3 ± 0.5 mV vs. -14.1 ± 0.5 mV for the BM [G7 31/L 100] formulation and the BM [G7 31/L 

500] formulation, respectively) (Fig. 4.2). Considering the limitation in increasing the lipid density 

(controlled by r±	and r values) both in terms of stability and transfection activity of the lipoplexes, 

as stated above, the RGDG peptide functionalization of gemini surfactants demonstrated the high 

penetration activity with enhanced intensity of GFP expression level for the BM [G7 31/L 100] 

lipoplexes compared to the BM [G3 31/L 100] lipoplexes (Fig. D2, Appendix D). In terms of 

cytotoxicity, the BM [G7 31/L 100] lipoplexes caused minimal reduction in cell viability (~ 10%) 

compared to control-untreated group (Fig. 4.15).   
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5.2 PDTMG complexes: peptide-based lipopolyplexes 

To improve pDNA complexation, stability, and penetration activity of the complexes while 

enhance their endosomal release functionality, in the present project various peptide-based 

lipopolyplexes, named PDTMG, were developed and studied by the non-covalent addition of 

peptide enhancers (PA-PG) and covalent functionalization of gemini surfactants with various 

functional groups (G4-G14) formulated in combination with DOPE lipid.  

The physical characterization of PDTMG complexes formulated at r±	= 2 and r = 3.3 from cationic 

peptide enhancers, gemini surfactants of varying saturated alkyl tail lengths (as demonstrated by 

G6 and G7 gemini surfactant), and DOPE lipid, showed higher pDNA complexation, forming 

more stable particles compared to their corresponding lipoplexes, as indicated by the size, PDI and 

zeta potential of the complexes (e.g., Z-average size: 195.2 ± 1.6 nm vs. 289.4 ± 8.8 nm; PDI: 

0.174 ± 0.017 vs. 0.475 ± 0.006; z-potential: +46.9 ± 0.2 mV vs. +38.3 ± 0.5 mV, for the PDTMG 

[PC49/G7 31/L 100] formulation and the BM [G7 31/L 100] formulation, respectively). This is due 

to the effective pDNA complexation by association of cationic peptide enhancers in conjunction 

with gemini and DOPE.  In agreement with DLS measurements, the flow cytometry quantification 

of the percentage of the fluorescent positive cells and the intensity of GFP expression levels 

revealed higher transfection activity for the G6- or G7-based PDTMG complexes compared to the 

counterpart lipoplexes (Fig. 4.11 and 4.12). For example, the transfection activity of the PDTMG 

[PC49/G7 31/L 100] formulation was shown to be approximately 3-fold higher compared to the 

BM [G7 31/L 100] formulation (Fig. 5.1 (A) and (B)). Compared to the lipoplexes (prepared at r±	

= 2 and r = 3.3), the PDTMG complexes with the increased zeta potentials demonstrated stable 

delivery system with enhanced penetration activity and endosomal rupturing functionality.  
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By reducing the r±	 value from 2 to 1.1, along with increasing the amount of cationic peptide 

enhancers, and fine tuning the r = 6.8, the transfection activity of the G7-based PDTMG complexes 

(i.e., PDTMG [PC267/G7 17/L 113]) was further improved (Fig. 4.13). This indicates the 

synergistic activity between the components of the G7-based PDTMG complexes for effective 

pDNA complexation, internalization, and release into the cell cytoplasm.         

 

 

 

 

 

 

 

 

Fig. 5.1. Comparing (A) the transfection percentage, (B) the intensity of GFP expression level of 
G7-based PDTMG complexes with the counterpart lipoplex formulation. Results are presented as 
mean ± SD from two to three independent experiments (n = 3 per experiment) performed in 24-
well plates) (*** p < 0.001). 
	
	
	
In addition, at r±	= 1.1, the impact of RGDG-functionalized gemini surfactant having saturated 

18C alkyl tails (i.e., G7) on transfection activity of the PDTMG complexes is more pronounced 

when compared with counterpart PDTMG complexes formulated from gemini surfactants having 

saturated 12C alkyl tails (G2 or G6, without or with RGDG peptide functional headgroups, 

respectively), or gemini surfactants having 18C without RGDG peptide functional headgroups 

(i.e., G1, G3-G5) (Fig. 5.2 (A.1) and (B.1)). This indicates that the peptide functionalization of the 
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gemini surfactant with long alkyl tails can improve the internalization and endosomal release of 

pDNA complexes.  

 

5.2.1 Model mechanism for pDNA release from PDTMG complexes  

Further investigation on the impact of peptide functionalization of gemini surfactants with 

saturated 18C-alkyl tails using G7, G9, and G10, showed that despite small differences in the 

physical properties (size and zeta potential) of the G7-, G9-, G10-based PDTMG complexes (Fig. 

4.10), significant differences on their transfection activities were observed (Fig. 4. 23 (A) and (B)). 

As presented in Figure 5.2 (B.2-3), the peptide-functionalization of gemini surfactants with: E(H)5; 

EGRGDSPG(H)5; succinyl-(E)2G(R)2; succinyl-(E)2G(R)3; succinyl-(E)2(G)3(R)3; succinyl-

DE(G)3(R)3 (i.e., the functional headgroups of G9-G14, respectively), resulted in negligible 

transfection activity of G9-G14-based PDTMG complexes. The G7 and G8 gemini surfactants 

with RGDG and GRGDSPG peptide functional headgroups, respectively, and with saturated 18C-

alkyl tails, however, demonstrated remarkable transfection activities (Fig. 5.2 (A.1-4) and (B.1-

4)). Taken together, it can be concluded that while the peptide functionalization of gemini 

surfactants can improve the cellular uptake of the PDTMG complexes, the release of pDNA cargo 

into the cell cytoplasm depends on the molecular flexibility of the peptide-functionalized gemini 

surfactants to permit and induce the formation of fusogenic inverted lipid phase structure.  

As illustrated in Figure 5.3, the following model mechanism is proposed for pDNA release from 

the lipopolyplexes, PDTMG delivery systems. After cellular uptake, the destabilization of the 

PDTMG complexes inside the endosomal vesicles is triggered by the inward compression exerted 

by actin polymerization [331] and/or by acidification of the endosomal vesicles, in which it is 

believed that depending on the molecular flexibility and molecular architecture of the gemini 
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surfactants, the induction of the inverted lipid phase structures destabilize the endosomal 

membrane, and hence release pDNA cargo into the cell cytoplasm. This suggested model 

mechanism was supported by covalently functionalizing gemini surfactants with various 

functional headgroups (R1-R10; Fig. 3.2) and their transfection activities formulated in the PDTMG 

complexes. It was observed that the increased steric hindrance of the functional headgroups (i.e., 

R5-R10, the peptide functional headgroups of G9-G14, respectively), resulted in negligible GFP 

expression levels. However, in the case of short RGDG and GRGDSPG peptide motifs linked to 

gemini surfactants with saturated 18C alkyl tails (i.e., R3 and R4, the peptide functional headgroups 

of G7 and G8, respectively), the G7- and G8-based PDTMG complexes not only exhibited 

enhanced cell penetration activities but also demonstrated endosomal rupturing functionalities in 

response to cellular environment. From this, it can be concluded that the reduced steric hindrance 

associated with the amino acid arrangement of the RGDG and GRGDSPG caused the G7- and G8-

based PDTMG complexes to effectively disassemble inside the endosomal compartments and 

release pDNA into the cell cytoplasm; while the bulky peptide functionalities in turn stiffened the 

G9-G14-based PDTMG complexes and hence, lead to the entrapment and degradation of pDNA 

in endosomal vesicles.       

These experiments indicated the importance of peptide functionalization of gemini surfactants for 

cellular internalization and their impact on the GFP expression level. The G7- and G8-based 

PDTMG complexes demonstrated comparable transfection activities with the commercial gold-

standard Lipofectamine 3000 reagent. The targeting ability of the peptide-decorated PDTMG 

complexes signifies the major advantages of this technology [309, 310] over Lipofectamine 3000 

and provided a rationale in designing its versatile derivatives for targeted gene therapy.      
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Fig. 5.2. Summary graphs for transfection activities of PDTMG complexes formulated from PC 
peptide enhancer, G1-G14 gemini surfactant, and DOPE lipid at r± = 1.1 and r = 6.8 (prepared at 
MP = 267, MG = 17 and ML = 113). (A.1-4) The percentage of the transfected cells and (B.1-4) the 
intensity of GFP expression level were normalized to untreated control (cells only). 
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Fig. 5.3. Schematic depiction of 18-7NH-18 (G3)-, RGDG-18 (G7)-, 18-Suc-E2GR2 (G11)-based 
PDTMG nanoparticles (top: from the surface view; bottom: from the horizontal plane view). The 
peptide functional headgroups of G7 and G11 gemini surfactants provide higher penetration 
activities compared to G3 gemini surfactant. In addition, the RGDG functional headgroup of the 
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G7 gemini surfactants present a reduced steric hindrance at the surface of the PDTMG 
nanoparticles compared to G11 gemini surfactants. This is believed to allow G7 gemini surfactants 
the molecular flexibly to induce lipid phase transition in the endosomal vesicles and effectively 
disassemble and rupture the endosome and release pDNA cargo into the cell cytoplasm. The 
peptide functionality of G11 gemini surfactants, however, it is believed to stiffen the G11-based 
PDTMG nanoparticles in which the bulky peptide functionality (i.e., with side chain groups of 
amino acid residues at both sides of the peptide backbone plane according to the primary structure 
of the peptide) of G11 may be locked into position, thus avoiding the inverted phase transition 
inside the endosomes and; hence resulted in pDNA entrapment and/or low release from 
endosomes. This proposed model mechanism may explain the high MFI of the G7-based PDTMG 
nanoparticles.      
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Chapter 6  

Conclusion and Future Directions 
	
	
	
In the present study, several designed peptide enhancers and novel functionalized gemini 

surfactants were developed and their transfection properties, alone or in combination with or 

without DOPE lipid, were investigated. The physicochemical properties along with transfection 

activity and cytotoxicity of various gene delivery systems were evaluated to identify the elements 

for efficient uptake, effective DNA complexation and release into the cell cytoplasm.         

The success for development of a potent gene delivery system is reliant on the amount, 

concentration (i.e., formulation aspect), as well as the structure-activity relationship of the 

compositional elements for DNA compaction and release. It was shown that the formation of large 

aggregates are not particularly detrimental for the in vitro transfection activity [303], since, for 

example, the large complexes of the BM [G3 31/L 500] formulation (prepared at  r±	= 2 and r = 

16.2) showed significant transfection activity when compared to untreated control cells (Fig. 4.3). 

However, the physical properties (i.e., size, PDI, and zeta potential) of the complexes are 

imperative indications for the particle stability, and essential for in vivo gene therapy applications. 

In this project, the transfection study of 7 peptide enhancers (PA-PG) and 15 different gemini 

surfactants (G0-G14) differing in spacer groups and/or functional headgroups and/or alkyl tail 

lengths were evaluated in different formulations.  

It was shown that non-covalent addition of cationic peptide enhancers (i.e., PB-PG) formulated with 

gemini surfactants and DOPE lipid can significantly improve the transfection activity of gene 

delivery complexes when compared to uni-modal (i.e., UM [G], UM [P]) and bi-modal (i.e., BM 

[G/L], BM [P/L], BM [P/G]) complexes. This indicates that the high association of the cationic 
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peptide enhancers to pDNA provided a peptide-pDNA core platform for effective compaction of 

pDNA by gemini surfactant and DOPE lipid in the tri-modal gene delivery system (PDTMG). 

While the transfection activities of the PDTMG complexes formulated from cationic peptide 

enhancers were shown to be higher than those formulated from zwitterionic PA peptide enhancers, 

there were no significant differences amongst transfection activities of the PDTMG complexes 

formulated from the cationic PB-PG peptide enhancers. This is partly attributed to the comparable 

pDNA complexation using the cationic PB-PG peptide enhancers resulting from small differences 

on their net positive charges ranging from 0.5-6.3. The impact of cationic peptide enhancers for 

effective pDNA compaction and their in vitro transfection activities in the PDTMG formulations 

can further be studied by increasing the number of Arg or Lys residues with or without RGD 

targeting or His-rich motifs, as listed in Table 6.1. The impact of non-covalent addition of the 

peptide enhancers on morphology of the lipopolyplexes will also require further detail 

investigation by TEM, SNAS and SAXS [258, 259, 326, 332].  

 

Table. 6.1. Future possibilities for designing cationic peptide enhancers to investigate the extent 
of transfection improvements in comparison with PC peptide enhancers in the PDTMG 
formulations.   
 

 

 

 

 

 

 

 

Peptide enhancer Name 
Sequence 

(N- to C-terminus) 

PC (17a.a.) RGD-(R)6-H3 GRGDSPGH(R)3H(R)3HG 

PH (12a.a.) (R)12 RRRRRRRRRRRR 

PI (12a.a.) (K)12 KKKKKKKKKKKK 

PJ (19a.a.) RGD-(R)12 GRGDSPGRRRRRRRRRRRR 

PK (19a.a.) RGD-(K)12 GRGDSPGKKKKKKKKKKKK 

PL (19a.a.) (H)7-(K)12 HHHHHHHKKKKKKKKKKKK 

PM (20a.a.) (K)20 KKKKKKKKKKKKKKKKKKKK 
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Further, it was shown that among the gemini surfactants studied in this project, the G7- and G8-

based PDTMG delivery systems formulated at r±	= 1.1 and r = 6.8 (prepared at MP = 267 µM, MG 

= 17 µM, ML = 113 µM) demonstrated superior transfection activities comparable to 

Lipofectamine 3000 transfection reagent. It is believed that the short RGDG and GRGDSPG 

peptide motifs covalently linked to gemini surfactants with saturated 18C alkyl tails not only 

resulted in enhanced penetration of the complexes but also provided reduced steric hindrance on 

the surface of the PDTMG complexes, allowing the complexes to effectively disassemble inside 

the cells, and release their pDNA cargo into the cell cytoplasm. The impact of molecular 

architecture of peptide-functionalized gemini surfactants in relation to the stability, transfection 

activity, and cell cytotoxicity of the tri-modal gene delivery complexes can be further studied for 

development of versatile delivery systems. For example, the derivatives of G7 gemini surfactant 

can be produced by alteration of the primary structure of the peptide headgroups [333] using 

method (B) and/or the alkyl chain geometry, as shown in Fig. 6.1, to further investigate their 

structure-function relationships. The synthesis of the peptide-functionalized gemini surfactants on-

resin using solid phase peptide synthesis (i.e., method (B)) could be advantageous in that the facile 

manufacturing of a library of gemini surfactants of varying peptide motif headgroups can be 

prepared using high-throughput automated peptide synthesis [334, 335]. The versatile 

development of active peptide-decorated PDTMG complexes can further be investigated for 

targeted gene delivery of various cell lines, including keratinocytes, retinal cells, neuronal cells, 

and lymphocytes for eventual ex vivo and in vivo applications.   

 

 

 



	 138 

	
Fig. 6.1. Chemical structures for future congeners of G7 gemini surfactants.       
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Appendices 
	
 

Appendix A: Flow Cytometry Analysis  

 

 

 

 

 

 

 

 

 

Fig. A1. Setting up flow cytometry parameters according to control-untreated cells and transfected 
cells with *mock pDNA and Pmax-GFPTM pDNA using electroporation. (A) the flow cytometry 
2D dot plot, presenting control-untreated cell, Mock pDNA- and Pmax-GFP pDNA-transfected 
cells, and (B) the flow cytometry quantitative measurement of the transfection percentage and the 
intensity of GFP expression level (MFI).      
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Fig. A2. Flow cytometry data analysis. The quantification of transfection percentages at low 
threshold (LT analysis by setting the outlier at 5,000 on the BL1 axis), while the MFI analysis at 
two different thresholds: at low threshold and high threshold (HT analysis by setting the outlier at 
10,000 on the BL1 axis). The HT analyses reduce the effect of the skewing of the MFI by the 
background noise, which detected below 10,000 fluorescence intensity on the BL1 axis, as 
demonstrated by the cells transfected with mock pDNA using BM [G/L] and PDTMG complexes. 
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Appendix B: Covalent Functionalization of Gemini Surfactants 

 

 

 

 

 

 

 

 

Fig. B1. ESI-MS data confirmed the identity of synthesized 18-7NH-18 (G3) gemini surfactants. 
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Fig. B2. High-resolution mass spectrometry (m/z) displays the doubly-charged ions to two decimal 
places for 18-7NH-18 (G3) gemini surfactants. 
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Fig. B3. ESI-MS data confirmed the identity of synthesized imid-18 (G4) gemini surfactants. 
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Fig. B4. High-resolution mass spectrometry (m/z) displays the singly- (as the TFA salt), doubly-, 
and triply-charged ions to five decimal places for imid-18 (G4) gemini surfactants. 
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Fig. B5. ESI-MS data confirmed the identity of synthesized thiol-18 (G5) gemini surfactants. 
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Fig. B6. High-resolution mass spectrometry (m/z) displays the singly- (as the TFA salt), and 
doubly-charged ions to five decimal places for thiol-18 (G5) gemini surfactants. 
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Fig. B7. ESI-MS data confirmed the identity of synthesized RGDG-12 (G6) gemini surfactants. 
High-resolution mass spectrometry (m/z) displays the triply-charged ions to five decimal places 
for RGDG-12 (G6) gemini surfactants. 
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Fig. B8. ESI-MS data confirmed the identity of synthesized RGDG-18 (G7) gemini surfactants. 
High-resolution mass spectrometry (m/z) displays the triply-charged ions to four decimal places 
for RGDG-18 (G7) gemini surfactants. 
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Fig. B9. ESI-MS data confirmed the identity of synthesized GRGDSPG-18 (G8) gemini 
surfactants. 
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Fig. B10. High-resolution mass spectrometry (m/z) displays the singly- (as the TFA salt), doubly-
, triply-, and quadruply-charged ions to two decimal places for GRGDSPG-18 (G8) gemini 
surfactants. 
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Fig. B11. ESI-MS data confirmed the identity of synthesized 18-E-PepD (G9) gemini surfactants. 
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Fig. B12. High-resolution mass spectrometry (m/z) displays the doubly-, triply-, and quadruply-
charged ions to five decimal places for 18-E-PepD (G9) gemini surfactants. 
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Fig. B13. ESI-MS data confirmed the identity of synthesized 18-E-PepE (G10) gemini surfactants. 
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Fig. B14. High-resolution mass spectrometry (m/z) displays the doubly-, triply-, quadruply-, and 
quintuply-charged ions to five decimal places for 18-E-PepE (G10) gemini surfactants. 
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Fig. B15. ESI-MS data confirmed the identity of synthesized 18-Suc-E2GR2 (G11) gemini 
surfactants. 
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T: FTMS + p ESI Full ms [133.40-2000.00]
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Fig. B16. High-resolution mass spectrometry (m/z) displays the doubly- (with or without TFA 
counterion), triply-, and quadruply-charged ions to two decimal places for 18-Suc-E2GR2 (G11) 
gemini surfactants. 
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Fig. B17. ESI-MS data confirmed the identity of synthesized 18-Suc-E2GR3 (G12) gemini 
surfactants. 
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T: FTMS + p ESI Full ms [133.40-2000.00]

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e 
A

bu
nd

an
ce

525.74

845.11

394.56

902.60

223.10
1165.14564.07149.02

338.34271.23 788.11 927.14 1324.65
1240.80

667.17435.58 1804.201381.901126.80
473.71

1861.20983.63 1466.16 1602.99 1719.99 1955.85

[M + 2TFA]2+

[M]3+

[M]4+

[M + 1TFA]2+

G12 (18-Suc-E2GR3) 

N

N

N

O

O
N
H

H
N

O
N
H

OH
N

O
O
N
H

OHO

OHO

NH
NHH2N

O

NH
NHH2N

NH O

NH
NHH2N

NH2

MW: 1577.22



	 195 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B18. High-resolution mass spectrometry (m/z) displays the doubly- (with one or two TFA 
counterions), triply-, and quadruply-charged ions to two decimal places for 18-Suc-E2GR3 (G12) 
gemini surfactants. 
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Fig. B19. ESI-MS data confirmed the identity of synthesized 18-Suc-E2G3R3 (G13) gemini 
surfactants. 
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Fig. B20. High-resolution mass spectrometry (m/z) displays the doubly- (with one or two TFA 
counterions), and triply- (with or without TFA counterion) charged ions to two decimal places for 
18-Suc-E2G3R3 (G13) gemini surfactants. 
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Fig. B21. ESI-MS data confirmed the identity of synthesized 18-Suc-DEG3R3 (G14) gemini 
surfactants. 
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Fig. B22. High-resolution mass spectrometry (m/z) displays the doubly- (with one or two TFA 
counterions), and triply- (with or without TFA counterion) charged ions to two decimal places for 
18-Suc-DEG3R3 (G14) gemini surfactants. 
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Fig. B23. RP-UPLC data for RGDG-12 (G6) and RGDG-18 (G7), synthesized using Method (A), 
and for 18-E-PepD (G9) and 18-E-PepE (G10), synthesized using Method (B). The purity of the 
products was confirmed by RP-UPLC using a linear gradient of solvent B (MeCN/TFA: 99.9/0.1, 
v/v) from 20% to 100% over 10 min on ACQUITY UPLC BEH C18 column (130 Å pore size, 1.7 
µm particle size, 2.1 mm ´ 50 mm) (flow rate: 0.2 mL/min; UV detection wavelength: 214 nm).   
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Appendix C: Non-Covalent Addition of Peptide Enhancers (7 Types) 

 

 

Fig. C1. Chemical structure of the peptide enhancers (PA-PG) studied in this research. 
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Appendix D: Flow Cytometry Dot-Plots 

 

Fig. D1. Flow cytometry dot plot of GFP expression levels in 3T3 fibroblasts after transfection (in 
96-well plate) with BM [G/L] lipoplexes formulated using 12-3-12 (G0), 18-3-13 (G1), 12-7NH-
12 (G2), 18-7NH-18 (G3), RGDG-12 (G6) and RGDG-18 (G7) as a function of r± = 10, 2 (MG = 
154 µM, 31 µM, respectively) with identical DOPE molarity at ML = 500 µM. 
 

BM	[G0 31/L	500]

BM	[G1 31/L	500]

!+/- = 2, r = 16.2 !+/- = 10, r = 3.3

BM	[G0 154/L	500]

BM	[G1 154/L	500]

BM	[G2 31/L	500]

BM	[G3 31/L	500]

BM	[G2 154/L	500]

BM	[G3 154/L	500]

BM	[G6 31/L	500]

BM	[G7 31/L	500]

BM	[G6 154/L	500]

BM	[G7 154/L	500]

Control-Cells	Only

!+/- = 2, r = 16.2 !+/- = 10, r = 3.3
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Fig. D2. Flow cytometry density plot of GFP expression levels in 3T3 fibroblasts after transfection 
(in 96-well plate) with BM [G/L] lipoplexes formulated using 12-7NH-12 (G2), 18-7NH-18 (G3), 
RGDG-12 (G6) and RGDG-18 (G7) as a function of r = 16.2, 9.7, 3.3, 0 (prepared at ML = 500 
µM, 300 µM, 100 µM, 0 µM, respectively) with identical r± = 2 (prepared at MG = 31 µM).  
 

 

UM	[G2 31] BM	[G2 31/L	100] BM	[G2 31/L	300] BM	[G2 31/L	500]

!+/- = 2, r = 0 !+/- = 2, r = 3.3 !+/- = 2, r = 9.7 !+/- = 2, r = 16.2

UM	[G3 31] BM	[G3 31/L	100] BM	[G3 31/L	300] BM	[G3 31/L	500]

UM	[G6 31] BM	[G6 31/L	100] BM	[G6 31/L	300] BM	[G6 31/L	500]

UM	[G7 31] BM	[G7 31/L	100] BM	[G7 31/L	300] BM	[G7 31/L	500]
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Fig. D3. Flow cytometry density plot of GFP expression in 3T3 fibroblasts, performed in 96-well 
plate. The correlation between the transfection efficacy of the gemini-based lipoplexes with the 
degree of pDNA compaction (as determined by the size and zeta potential of the complexes) using 
G7 gemini surfactants at r± = 10, 2 (prepared at MG = 154 µM, 31 µM, respectively).  
 

 

 

 

 

UM	[G7 154] BM	[G7 154/L	100] BM	[G7 154/L	300] BM	[G7 154/L	500]

BM	[G7 31/L	100]

!+/- = 10, r = 0 !+/- = 10, r = 0.7 !+/- = 10, r = 2 !+/- = 10, r = 3.3

!+/- = 2, r = 3.3

Control Group- Cells Only

BM	[G7 154/L	500]

Particle	size:	291.5	± 20.8	nm
ζ potential:	+63.4 ± 1.3	mV

BM	[G7 31/L	100]

Particle	size:	289.4 ± 8.8	nm
ζ potential:	+38.3 ± 0.5	mV



	 205 

 

Fig. D4. Flow cytometry density plot of GFP expression in 3T3 fibroblasts after transfection (in 
24-well plates) with PDTMG complexes formulated using PC peptide enhancer at MP = 267, and 
G1-G7 gemini surfactants and DOPE lipid at r± = 1.1 and r = 6.8 (MG = 17 µM and ML = 113 
µM). 
 

 

PDTMG	[PC/G1/L	] PDTMG	[PC/G2/L	] PDTMG	[PC/G3/L	]

PDTMG	[PC/G4/L	] PDTMG	[PC/G6/L	]

PDTMG	[PC/G7/L	] Cells	Only

PDTMG	[PC/G5/L	]

Lipofectamine 3000
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Fig. D5. Flow cytometry density plot of GFP expression in 3T3 fibroblasts transfected using G6-
based PDTMG complexes formulated at varying r± (1.1, 1.7, 2.1).  
 

 

PDTMG	[PC	267/G6 17/L	113] PDTMG	[PC	267/G6 27/L	100] PDTMG	[PC	267/G6 33/L	100]
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Appendix E: Optimization of PDTMG Nanoparticles 

 

 

Fig. E1. Optimization study- results are presented as mean ± SD from one experiment (n = 3) 
performed in 24-well plates. (A) The percentage of the transfected cells and (B) the intensity of 
GFP expression level were normalized to untreated control (cells only).  
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Appendix F: Size distributions for UM, BM and PDTMG complexes 

	
	
	
Table. F1. Particle size and PDI of UM [G] and BM [G/L] formulations as measured by DLS. 
	

	
	
	
	
	
	
	
	

Type Sample	Name Repeats T Z-Ave PdI Pk	1	Mean	Int Pk	2	Mean	Int Pk	3	Mean	Int Pk	1	Area	Int Pk	2	Area	Int Pk	3	Area	Int
	 °C d.nm 	 d.nm d.nm d.nm Percent Percent Percent

Size UM	[G6	31] 1 25 1299 0.648 726.9 0 0 100 0 0
Size 2 25 2256 0.294 1148 0 0 100 0 0
Size 3 25 2221 0.327 1053 0 0 100 0 0
Size BM	[G6	31/L	100] 1 25 469.8 0.493 628.7 114.3 0 73 27 0
Size 2 25 449.1 0.405 652.5 119.9 0 75.2 24.8 0
Size 3 25 512.5 0.442 699.8 125.4 0 71.8 28.2 0
Size BM	[G6	31/L	500] 1 25 1846 0.968 240.2 0 0 100 0 0
Size 2 25 1271 0.887 238.9 0 0 100 0 0
Size 3 25 1334 0.804 448.3 63.56 0 88.6 11.4 0
Size UM	[G7	31] 1 25 403.7 0.434 461.9 62.38 5430 89.6 8.2 2.2
Size 2 25 397.1 0.532 704.9 152.5 5420 73.5 25 1.5
Size 3 25 423.4 0.584 632.1 125.1 5426 77.7 19.9 2.4
Size BM	[G7	31/L	100] 1 25 282.9 0.471 408.1 4803 0 94 6 0
Size 2 25 275.9 0.488 714.7 144 4808 60.6 36.5 2.9
Size 3 25 309.3 0.467 535.4 109.9 5249 72.9 24.4 2.8
Size BM	[G7	31/L	500] 1 25 4011 0.153 669.2 0 0 100 0 0
Size 2 25 3351 0.889 1319 0 0 100 0 0
Size 3 25 3854 1 1614 0 0 100 0 0
Size UM	[G6	154] 1 25 2207 0.283 1974 0 0 100 0 0
Size 2 25 2729 0.451 1579 0 0 100 0 0
Size 3 25 2229 0.274 2035 0 0 100 0 0
Size BM	[G6	154/L	100] 1 25 735 0.534 744.3 81.29 5560 89.8 9 1.2
Size 2 25 632.6 0.414 604.9 0 0 100 0 0
Size 3 25 1206 0.501 1492 111.8 5463 86.1 11.3 2.6
Size BM	[G6	154/L	500] 1 25 629.4 0.616 652.9 91.21 0 79.3 20.7 0
Size 2 25 476.3 0.545 637.1 108.7 17.68 78.4 21.2 0.4
Size 3 25 446.7 0.387 399 0 0 100 0 0
Size UM	[G7	154] 1 25 176.6 0.391 176.4 1652 0 77.4 22.6 0
Size 2 25 192.1 0.436 130.4 605.9 4588 51.7 44.7 3.6
Size 3 25 174.6 0.387 249.7 4881 0 96.9 3.1 0
Size BM	[G7	154/L	100] 1 25 179.7 0.411 265.3 4715 0 95.4 4.6 0
Size 2 25 177.8 0.394 221.7 3398 29.42 86.6 11.4 2
Size 3 25 186.6 0.374 221.2 3864 0 89.3 10.7 0
Size BM	[G7	154/L	500] 1 25 332.5 0.358 225 65.05 0 76.2 23.8 0
Size 2 25 292.9 0.32 222.3 60.24 0 79.4 20.6 0
Size 3 25 249.2 0.338 259.5 79.39 0 67 33 0
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Fig. F1. The intensity-based size distribution of UM [G] and BM [G/L] formulated with G6 or G7 
gemini surfactants at r± = 2 and r = 16.2, 3.3, and 0 (i.e., 500/31, 100/31, and 0/31, respectively).   
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Fig. F2. The intensity-based size distribution of UM [G] and BM [G/L] formulated with G6 or G7 
gemini surfactants at r± = 10 and r = 3.3, 0.7, and 0 (i.e., 500/154, 100/154, and 0/154, 
respectively).   
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Table. F2. Particle size and PDI of UM [P] formulations as measured by DLS. 
	
	

	
	
	
	
	
	
	

Type Sample	Name Repeats T Z-Ave PdI Pk	1	Mean	Int Pk	2	Mean	Int Pk	3	Mean	Int Pk	1	Area	Int Pk	2	Area	Int Pk	3	Area	Int
	 	 °C d.nm 	 d.nm d.nm d.nm Percent Percent Percent

Size UM	[PA62] 1 25 145.6 0.471 378 0 0 100 0 0
Size 2 25 150.5 0.502 509.6 82.87 0 63.1 36.9 0
Size 3 25 145.6 0.52 194.5 3037 0.8014 78.2 15.3 6.4
Size UM	[PA154] 1 25 128.4 0.531 274.9 0 0 100 0 0
Size 2 25 128 0.515 266 19.35 0 93.3 6.7 0
Size 3 25 235.7 0.253 233 24.27 5224 82.8 10.7 6.5
Size UM	[PA308] 1 25 135.4 0.669 588.8 57.01 0 65.3 34.7 0
Size 2 25 110.2 0.467 371 66.93 0 57.6 42.4 0
Size 3 25 112 0.429 244.9 3723 0 97.5 2.5 0
Size UM	[PB 10] 1 25 340.6 0.456 668.3 194.2 5174 59.5 37.8 2.7
Size 2 25 279.2 0.367 434.8 4722 0 98.6 1.4 0
Size 3 25 272.4 0.282 538.3 0 0 100 0 0
Size UM	[PB 25] 1 25 265.8 0.287 421.9 118.8 0 78.9 21.1 0
Size 2 25 266.7 0.269 335.7 74.05 0 92.1 7.9 0
Size 3 25 293.7 0.403 485.2 126.9 0 76.1 23.9 0
Size UM	[PB 49] 1 25 239.3 0.364 478.9 126.4 0 69.6 30.4 0
Size 2 25 237.5 0.322 284.4 61.82 5029 92.7 4.1 3.2
Size 3 25 245.3 0.387 313.6 4547 0 94.2 5.8 0
Size UM	[PB 98] 1 25 182.7 0.374 219.5 4584 0 93.3 6.7 0
Size 2 25 170.1 0.347 137 507.6 0 59.6 40.4 0
Size 3 25 175.2 0.331 208.8 5012 0 96.4 3.6 0
Size UM	[PC 10] 1 25 212.4 0.239 242.5 5161 0 97.9 2.1 0
Size 2 25 205.1 0.261 257.6 4060 40.11 95.7 4.1 0.3
Size 3 25 210.8 0.247 285.2 66.25 0 91.7 8.3 0
Size UM	[PC	 25] 1 25 208.4 0.208 234.5 5291 0 98.9 1.1 0
Size 2 25 214.1 0.239 269.7 5041 0 98.8 1.2 0
Size 3 25 220.6 0.262 246.6 4783 0 95.7 4.3 0
Size UM	[PC 49] 1 25 161.3 0.204 199.4 0 0 100 0 0
Size 2 25 157.6 0.197 195.9 0 0 100 0 0
Size 3 25 160.9 0.205 182.2 4865 0 98 2 0
Size UM	[PC 98] 1 25 158.9 0.224 171 4817 0 96.4 3.6 0
Size 2 25 158.3 0.196 197.4 0 0 100 0 0
Size 3 25 152.5 0.188 189.9 0 0 100 0 0
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Fig. F3. The intensity-based size distribution of UM [P] formulated with zwitterionic PA peptide 
enhancer (at MP = 62 µM, 154 µM, 308 µM).   
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Fig. F4. The intensity-based size distribution of UM [P] formulated with cationic PB and PC peptide 
enhancers (at MP = 10 µM, 25 µM, 49 µM, 98 µM).   
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Table. F3. Particle size and PDI of BM [P/L] formulations as measured by DLS. 
	
	

	
	
	
	
	
	
	
	
	

Type Sample	Name Repeats T Z-Ave PdI Pk	1	Mean	Int Pk	2	Mean	Int Pk	3	Mean	Int Pk	1	Area	Int Pk	2	Area	Int Pk	3	Area	Int
	 	 °C d.nm 	 d.nm d.nm d.nm Percent Percent Percent

Size BM	[PA62/L	500] 1 25 112.1 0.236 140.6 4589 0 98.5 1.5 0
Size 2 25 110.6 0.229 144.7 0 0 100 0 0
Size 3 25 110.9 0.234 146.4 0 0 100 0 0
Size BM	[PA154/L	500] 1 25 112.8 0.243 130.7 4758 0 97 3 0
Size 2 25 109.2 0.238 140.1 21.76 0 98.3 1.7 0
Size 3 25 110.7 0.218 143.4 0 0 100 0 0
Size BM	[PA308/L	500] 1 25 114.6 0.253 155.9 0 0 100 0 0
Size 2 25 113.7 0.223 147 0 0 100 0 0
Size 3 25 111.8 0.231 140.8 4785 22.3 98.2 1.2 0.6
Size BM	[PB 10/L	500] 1 25 139.1 0.228 163 4896 0 97.9 2.1 0
Size 2 25 141.8 0.231 156.9 4672 0 96.5 3.5 0
Size 3 25 138 0.236 199.5 0 0 100 0 0
Size BM	[PB 25/L	500] 1 25 463.7 0.332 538.2 118.2 0 91.4 8.6 0
Size 2 25 427.2 0.341 825.2 0 0 100 0 0
Size 3 25 454 0.377 1109 288.4 0 59.3 40.7 0
Size BM	[PB 49/L	500] 1 25 2664 0.624 591.9 0 0 100 0 0
Size 2 25 2925 0.104 1032 0 0 100 0 0
Size 3 25 2636 0.195 1155 0 0 100 0 0
Size BM	[PB 98/L	500] 1 25 2940 0.987 512.2 0 0 100 0 0
Size 2 25 3462 0.461 683.9 0 0 100 0 0
Size 3 25 3615 1 1363 0 0 100 0 0
Size BM	[PC 10/L	500] 1 25 171.8 0.176 211.5 0 0 100 0 0
Size 2 25 167.6 0.181 209.6 0 0 100 0 0
Size 3 25 167.5 0.185 210.5 0 0 100 0 0
Size BM	[PC	 25/L	500] 1 25 692.8 0.566 407 0 0 100 0 0
Size 2 25 692.1 0.421 481.7 0 0 100 0 0
Size 3 25 687.8 0.44 491.4 0 0 100 0 0
Size BM	[PC 49/L	500] 1 25 3294 0.011 889.6 0 0 100 0 0
Size 2 25 5163 1 1219 0 0 100 0 0
Size 3 25 4006 1 1518 0 0 100 0 0
Size BM	[PC 98/L	500] 1 25 4155 0.19 839.3 0 0 100 0 0
Size 2 25 5093 0.392 793.7 0 0 100 0 0
Size 3 25 3778 0.507 1002 0 0 100 0 0
Size BM	[PB 98/L	100] 1 25 249.4 0.298 243.9 0 0 100 0 0
Size 2 25 257.1 0.276 281.3 61.48 0 94.6 5.4 0
Size 3 25 276.8 0.375 338.2 124.4 0 76.7 23.3 0
Size BM	[PC 98/L	100] 1 25 319.3 0.449 462.4 174.7 0 61.3 38.7 0
Size 2 25 337.5 0.375 475.1 156.3 5376 71 26.9 2.1
Size 3 25 368.9 0.39 479.6 141.4 0 78.7 21.3 0
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Fig. F5. The intensity-based size distribution of BM [P/L] formulated with zwitterionic PA peptide 
enhancer (at MP = 62 µM, 154 µM, 308 µM) and DOPE helper lipid (at ML = 500µM).   
	
	
	
	
	
	
	
	
	
	
	
	

0

2

4

6

8

10

12

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 43: PepA 2+ Dope 5 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 8-Jun-2016....

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-08-16 5:13:04 PM

8

File Name: 

PepA 2+ Dope 5 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

284.7

1.330

Temperature (°C): 

43

 

25.0

112.1

0.0

Peak 2: 832.20.236

68.30

Intercept: 

1.5

0.000Peak 3:

Peak 1: 98.5140.6

0.953

Z-Average (d.nm): 

0.000

PdI: 4589

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:39:57 PM
Record Number: 43
File name: New peptides 8-Jun-2016

BM	[PA62/L	500]

0

2

4

6

8

10

12

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 46: PepA 5+ Dope 5 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 8-Jun-2016....

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-08-16 5:21:02 PM

8

File Name: 

PepA 5+ Dope 5 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

286.2

1.330

Temperature (°C): 

46

 

25.0

112.8

0.0

Peak 2: 746.80.243

59.41

Intercept: 

3.0

0.000Peak 3:

Peak 1: 97.0130.7

0.957

Z-Average (d.nm): 

0.000

PdI: 4758

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:40:32 PM
Record Number: 46
File name: New peptides 8-Jun-2016

BM	[PA154/L	500]

0

2

4

6

8

10

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 49: PepA 10+ Dope 5 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 8-Jun-2016....

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-08-16 5:27:37 PM

8

File Name: 

PepA 10+ Dope 5 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

271.9

1.330

Temperature (°C): 

49

 

25.0

114.6

0.0

Peak 2: 0.0000.253

95.80

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0155.9

0.960

Z-Average (d.nm): 

0.000

PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:42:25 PM
Record Number: 49
File name: New peptides 8-Jun-2016

BM	[PA308/L	500]



	 216 

	
Fig. F6. The intensity-based size distribution of BM [P/L] formulated using cationic PB and PC 
peptide enhancers (at MP = 10 µM, 25 µM, 49 µM, 98 µM) and DOPE helper lipid (at ML = 
500µM, 100 µM).    
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Table. F4. Particle size and PDI of BM [P/G] formulations as measured by DLS. 
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Type Sample	Name Repeats T Z-Ave PdI Pk	1	Mean	Int Pk	2	Mean	Int Pk	3	Mean	Int Pk	1	Area	Int Pk	2	Area	Int Pk	3	Area	Int
	 	 °C d.nm 	 d.nm d.nm d.nm Percent Percent Percent

Size BM	[PB	 49/G6	31] 1 25 228.8 0.266 300.6 4612 39.63 95.8 2.1 2.1
Size 2 25 234.6 0.303 288.3 4845 0 97.1 2.9 0
Size 3 25 239.9 0.296 307.8 4801 0 97.2 2.8 0
Size BM	[PB	 98/G6	31] 1 25 263.8 0.52 345.8 5401 0 97.8 2.2 0
Size 2 25 243.9 0.451 489.4 96.71 0 75.7 24.3 0
Size 3 25 244.9 0.452 507.8 93.73 0 76.2 23.8 0
Size BM	[PC 49/G6	31] 1 25 164.4 0.294 194.4 5156 0 97.7 2.3 0
Size 2 25 169.5 0.254 217.5 4796 0 98.5 1.5 0
Size 3 25 164.1 0.253 180.2 4633 0 95.4 4.6 0
Size BM	[PC 98/G6	31] 1 25 167.6 0.352 218.8 5006 0 97.1 2.9 0
Size 2 25 156.7 0.17 164 0 0 100 0 0
Size 3 25 161.9 0.173 169.4 0 0 100 0 0
Size BM	[PB 49/G7	31] 1 25 181.6 0.237 242.3 0 0 100 0 0
Size 2 25 187.4 0.245 248.9 0 0 100 0 0
Size 3 25 191 0.265 240.9 4005 0 96 4 0
Size BM	[PB	 98/G7	31] 1 25 148.3 0.221 187.1 3657 0 97.7 2.3 0
Size 2 25 151.9 0.215 181.5 4964 0 98.6 1.4 0
Size 3 25 151.5 0.225 180.5 38.36 4838 95.9 2.2 1.9
Size BM	[PC 49/G7	31] 1 25 239.5 0.326 263.8 5132 0 96.1 3.9 0
Size 2 25 224.7 0.263 235.6 5103 0 96.5 3.5 0
Size 3 25 215 0.238 236 4414 0 94.8 5.2 0
Size BM	[PC 98/G7	31] 1 25 138.9 0.278 194.6 4822 0 98.9 1.1 0
Size 2 25 137.1 0.265 203.8 0 0 100 0 0
Size 3 25 131.6 0.31 182.5 4290 0 97 3 0
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Fig. F7. The intensity-based size distribution of BM [P/G] formulated with cationic PB and PC 
peptide enhancers (at MP = 49 µM, 98 µM) and G6 or G7 gemini surfactants at r± = 2 (MG = 31 
µM).    
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Table. F5. Particle size and PDI of PDTMG [P/G/L] formulations as measured by DLS. 
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Type Sample	Name Repeats T Z-Ave PdI Pk	1	Mean	Int Pk	2	Mean	Int Pk	3	Mean	Int Pk	1	Area	Int Pk	2	Area	Int Pk	3	Area	Int
	 	 °C d.nm 	 d.nm d.nm d.nm Percent Percent Percent

Size PDTMG	[PA308/G6	31/L100] 1 25 2186 0.315 1673 0 0 100 0 0
Size 2 25 1748 0.277 1631 0 0 100 0 0
Size 3 25 1921 0.257 2039 0 0 100 0 0
Size PDTMG	[PB 49/G6	31/L100] 1 25 265.5 0.131 215.5 0 0 100 0 0
Size 2 25 230.8 0.388 207.9 0 0 100 0 0
Size 3 25 240.1 0.466 196.2 5192 0 91.8 8.2 0
Size PDTMG	[PB 98/G6	31/L100] 1 25 151 0.218 166.8 0 0 100 0 0
Size 2 25 146.6 0.217 160.9 0 0 100 0 0
Size 3 25 148.5 0.231 155.3 0 0 100 0 0
Size PDTMG	[PC 49/G6	31/L100] 1 25 205.7 0.95 175.1 0 0 100 0 0
Size 2 25 191.1 0.748 173.7 0 0 100 0 0
Size 3 25 177.2 0.345 159.2 0 0 100 0 0
Size PDTMG	[PC 98/G6	31/L100] 1 25 139.5 0.248 141.5 0 0 100 0 0
Size 2 25 140.8 0.253 137.1 5413 0 98.7 1.3 0
Size 3 25 141.5 0.254 138.4 0 0 100 0 0
Size PDTMG	[PA308/G7	31/L100] 1 25 280.5 0.443 410.5 5048 0 96.4 3.6 0
Size 2 25 283.2 0.452 690.9 176.1 4912 54.1 43 2.9
Size 3 25 342 0.445 159.1 686.5 0 50.9 49.1 0
Size PDTMG	[PB 49/G7	31/L100] 1 25 191.5 0.168 199.2 0 0 100 0 0
Size 2 25 193.9 0.109 216.2 0 0 100 0 0
Size 3 25 191.5 0.134 210.3 0 0 100 0 0
Size PDTMG	[PB 98/G7	31/L100] 1 25 166.2 0.079 176.1 0 0 100 0 0
Size 2 25 158.1 0.182 172.7 0 0 100 0 0
Size 3 25 153.7 0.194 169.1 0 0 100 0 0
Size PDTMG	[PC 49/G7	31/L100] 1 25 196.2 0.213 200.7 0 0 100 0 0
Size 2 25 191.7 0.16 208.8 0 0 100 0 0
Size 3 25 197.7 0.148 215.5 0 0 100 0 0
Size PDTMG	[PC 98/G7	31/L100] 1 25 161.6 0.222 155.3 0 0 100 0 0
Size 2 25 163.9 0.011 169.8 0 0 100 0 0
Size 3 25 150.9 0.199 166.9 0 0 100 0 0
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Fig. F7. The intensity-based size distribution of PDTMG [P/G/L] formulated with zwitterionic PA 
(at MP = 308 µM), cationic PB or PC peptide enhancers (at MP = 49 µM, 98 µM), G6 gemini 
surfactants, and DOPE lipid at r± = 2 and r = 3.3.    
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Fig. F8. The intensity-based size distribution of PDTMG [P/G/L] formulated with zwitterionic PA 
(at MP = 308 µM), cationic PB or PC peptide enhancers (at MP = 49 µM, 98 µM), G7 gemini 
surfactants, and DOPE lipid at r± = 2 and r = 3.3.    
	
	
	
	
	
	
	
	
	
	
	
	
	

0

1

2

3

4

5

6

7

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 1: A 10+ 18R 2+ D1  1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 17-Jun-201...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-17-16 3:23:01 PM

7

File Name: 

A 10+ 18R 2+ D1  1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

130.8

1.330

Temperature (°C): 

1

 

25.0

280.5

0.0

Peak 2: 585.30.443

297.7

Intercept: 

3.6

0.000Peak 3:

Peak 1: 96.4410.5

0.953

Z-Average (d.nm): 

0.000

PdI: 5048

% Intensity:

Refer to quality reportResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:22:02 PM
Record Number: 1
File name: New peptides 17-Jun-2016

PDTMG	[PA308/G7 31/L100]

0

5

10

15

20

25

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 115: B 10+ 18R 2+ D 1 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 20-Jun-201...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-20-16 11:59:15 PM

8

File Name: 

B 10+ 18R 2+ D 1 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

379.6

1.330

Temperature (°C): 

115

 

25.0

191.5

0.0

Peak 2: 0.0000.168

52.56

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0199.2

0.940

Z-Average (d.nm): 

0.000

PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:15:29 PM
Record Number: 115
File name: New peptides 20-Jun-2016

PDTMG	[PB49/G7 31/L100]

0

10

20

30

40

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 118: B 20+ 18R 2+ D 1 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 20-Jun-201...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-21-16 12:03:33 AM

8

File Name: 

B 20+ 18R 2+ D 1 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

447.1

1.330

Temperature (°C): 

118

 

25.0

166.2

0.0

Peak 2: 0.0000.079

30.51

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0176.1

0.911

Z-Average (d.nm): 

0.000

PdI: 0.000

% Intensity:

Refer to quality reportResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:16:17 PM
Record Number: 118
File name: New peptides 20-Jun-2016

PDTMG	[PB98/G7 31/L100]

0

5

10

15

20

25

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 133: C 10+ 18R 2+ D 1 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 20-Jun-201...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-21-16 12:25:29 AM

8

File Name: 

C 10+ 18R 2+ D 1 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

285.6

1.330

Temperature (°C): 

133

 

25.0

196.2

0.0

Peak 2: 0.0000.213

46.54

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0200.7

0.943

Z-Average (d.nm): 

0.000

PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:16:50 PM
Record Number: 133
File name: New peptides 20-Jun-2016

PDTMG	[PC49/G7 31/L100]

0

10

20

30

40

0.1 1 10 100 1000 10000

In
te

ns
ity

 (P
er

ce
nt

)

Size (d.nm)

Size Distribution by Intensity

Record 136: C 20+ 18R 2+ D 1 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides 20-Jun-201...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

June-21-16 12:29:53 AM

8

File Name: 

C 20+ 18R 2+ D 1 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

401.6

1.330

Temperature (°C): 

136

 

25.0

161.6

0.0

Peak 2: 0.0000.222

24.53

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0155.3

0.892

Z-Average (d.nm): 

0.000

PdI: 0.000

% Intensity:

Refer to quality reportResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...

 
www.malvern.com
Malvern Instruments Ltd

Serial Number : MAL1010163
Zetasizer Ver. 7.10

21 Aug 2018 12:17:46 PM
Record Number: 136
File name: New peptides 20-Jun-2016

PDTMG	[PC98/G7 31/L100]



	 222 

Table. F6. Particle size and PDI of PDTMG [P/G/L] formulations using PC-PG peptide enhancers 
as measured by DLS. 
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Type Sample	Name Repeats T Z-Ave PdI Pk	1	Mean	Int Pk	2	Mean	Int Pk	3	Mean	Int Pk	1	Area	Int Pk	2	Area	Int Pk	3	Area	Int
	 	 °C d.nm 	 d.nm d.nm d.nm Percent Percent Percent

Size PDTMG	[PC 67/G7	27/L100] 1 25 161.6 0.25 218.1 4797 0 98.9 1.1 0
Size 2 25 158.4 0.237 187.2 4140 0 96.2 3.8 0
Size 3 25 155.1 0.221 208.4 0 0 100 0 0
Size PDTMG	[PD 67/G7	27/L100] 1 25 445.2 0.487 613.2 118.2 0 77.4 22.6 0
Size 2 25 375.6 0.575 463.2 101.1 5392 80.5 15.8 3.7
Size 3 25 335.8 0.472 534.5 3763 0 89 11 0
Size PDTMG	[PE67/G7	27/L100] 1 25 283.8 0.286 435.1 0 0 100 0 0
Size 2 25 284.3 0.306 552.4 141 0 70.5 29.5 0
Size 3 25 269.8 0.312 328.2 4630 59 92.3 4.4 3.2
Size PDTMG	[PF67/G7	27/L100] 1 25 164.1 0.286 216 4873 0 98.9 1.1 0
Size 2 25 164.7 0.287 218.7 4777 0 97.7 2.3 0
Size 3 25 155 0.265 194.7 4878 0 98.2 1.8 0
Size PDTMG	[PG 67/G7	27/L100] 1 25 157.3 0.248 206.8 42.63 0 95.1 4.9 0
Size 2 25 156.4 0.261 192.6 4503 0 96.5 3.5 0
Size 3 25 149.5 0.284 217.1 0 0 100 0 0
Size PDTMG	[PC 67/G7	20/L100] 1 25 168.6 0.205 195.7 5005 0 98.7 1.3 0
Size 2 25 162.8 0.193 208.5 0 0 100 0 0
Size 3 25 161 0.179 197.5 0 0 100 0 0
Size PDTMG	[PC 133/G7	20/L100] 1 25 169.1 0.232 227.1 0 0 100 0 0
Size 2 25 162.5 0.19 202.4 0 0 100 0 0
Size 3 25 163.7 0.164 196.2 0 0 100 0 0
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Fig. F9. The intensity-based size distribution of PDTMG [P/G/L] formulated with cationic PC-PG 
peptide enhancers, G7 gemini surfactants, and DOPE lipid.    
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Record 22: Sample 8 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

September-29-16 8:38:02 PM

7

File Name: 

Sample 8 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

157.2

1.330

Temperature (°C): 

22

 

25.0

169.1

0.0

Peak 2: 0.0000.232

123.7

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0227.1

0.933

Z-Average (d.nm): 

0.000

PdI: 0.000

% Intensity:

Refer to quality reportResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Table. F7. Particle size and PDI of PDTMG [P/G/L] formulations using cationic PC peptide 
enhancer, with G7, G9 or G10 gemini surfactants, and DOPE lipid as measured by DLS. 
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Type Sample	Name Repeats T Z-Ave PdI Pk	1	Mean	Int Pk	2	Mean	Int Pk	3	Mean	Int Pk	1	Area	Int Pk	2	Area	Int Pk	3	Area	Int
	 	 °C d.nm 	 d.nm d.nm d.nm Percent Percent Percent

Size PDTMG	[PC 267/G9	17/L113] 1 25 170.4 0.216 216.1 0 0 100 0 0
Size 2 25 176.5 0.224 210.6 0 0 100 0 0
Size 3 25 175 0.24 228.7 0 0 100 0 0
Size PDTMG	[PC 267/G9	27/L100] 1 25 149.3 0.205 191.7 0 0 100 0 0
Size 2 25 153.1 0.229 206.1 0 0 100 0 0
Size 3 25 149.6 0.247 208.6 0 0 100 0 0
Size PDTMG	[PC 267/G9	33/L100] 1 25 150.3 0.234 201.9 0 0 100 0 0
Size 2 25 150.8 0.242 175.8 4851 0 97.4 2.6 0
Size 3 25 150.2 0.247 191.5 4942 0 98.6 1.4 0
Size PDTMG	[PC 267/G9	40/L100] 1 25 148.6 0.244 242 0 0 100 0 0
Size 2 25 151.7 0.263 184 4892 0 97.3 2.7 0
Size 3 25 159.5 0.336 161.2 758 0 74.9 25.1 0
Size PDTMG	[PC 267/G10	17/L113] 1 25 166.3 0.221 217.3 0 0 100 0 0
Size 2 25 164.9 0.164 199.7 41.48 0 97.7 2.3 0
Size 3 25 165 0.228 219.8 0 0 100 0 0
Size PDTMG	[PC 267/G10	27/L100] 1 25 166.9 0.252 236.9 0 0 100 0 0
Size 2 25 173.4 0.203 221.1 0 0 100 0 0
Size 3 25 175.4 0.256 221.4 41.3 5183 93.2 5.6 1.2
Size PDTMG	[PC 267/G10	33/L100] 1 25 146.8 0.236 161.1 4940 0 96.9 3.1 0
Size 2 25 148.1 0.23 202.4 0 0 100 0 0
Size 3 25 150.8 0.204 190.7 0 0 100 0 0
Size PDTMG	[PC 267/G10	40/L100] 1 25 149.8 0.23 194.8 0 0 100 0 0
Size 2 25 146.9 0.232 193.6 31.28 0 98.9 1.1 0
Size 3 25 144.7 0.244 185.2 4770 0 98.3 1.7 0
Size PDTMG	[PC 267/G7	17/L113] 1 25 169 0.255 160.1 0 0 100 0 0
Size 2 25 169.6 0.165 208.5 0 0 100 0 0
Size 3 25 167.3 0.144 201.2 0 0 100 0 0
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Fig. F10. The intensity-based size distribution of PDTMG [P/G/L] formulated using cationic PC 
peptide enhancers in combination with G7, G9 or G10 gemini surfactants, and DOPE lipid at r± = 
2.5, 2.1, 1.7 and 1.1 (prepared at MG = 40 µM, 33 µM, 27 µM, 17 µM, respectively).    
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Record 16: Sample 5 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 2:11:30 PM

7

File Name: 

Sample 5 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

175.8

1.330

Temperature (°C): 

16

 

25.0

170.4

0.0

Peak 2: 0.0000.216

118.0

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0216.1

0.963

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Record 13: Sample 4 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 2:07:00 PM

8

File Name: 

Sample 4 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

428.1

1.330

Temperature (°C): 

13

 

25.0

149.3

0.0

Peak 2: 0.0000.205

100.7

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0191.7

0.944

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Record 10: Sample 3 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 2:02:37 PM

8

File Name: 

Sample 3 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

409.5

1.330

Temperature (°C): 

10

 

25.0

150.3

0.0

Peak 2: 0.0000.234

118.3

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0201.9

0.926

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Record 7: Sample 2 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 1:58:12 PM

8

File Name: 

Sample 2 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

433.7

1.330

Temperature (°C): 

7

 

25.0

148.6

0.0

Peak 2: 0.0000.244

259.7

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0242.0

0.874

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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File name: New peptides zeta and size in water- 24-Oct-2016
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Record 28: Sample 9 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 2:29:43 PM

7

File Name: 

Sample 9 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

140.4

1.330

Temperature (°C): 

28

 

25.0

166.3

0.0

Peak 2: 0.0000.221

118.4

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0217.3

0.969

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

Refer to quality reportResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Record 25: Sample 8 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 2:25:18 PM

9

File Name: 

Sample 8 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

460.3

1.330

Temperature (°C): 

25

 

25.0

166.9

0.0

Peak 2: 0.0000.252

144.8

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0236.9

0.867

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Record 22: Sample 7 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 2:20:44 PM

8

File Name: 

Sample 7 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

406.2

1.330

Temperature (°C): 

22

 

25.0

146.8

0.0

Peak 2: 642.40.236

62.63

Intercept: 

3.1

0.000Peak 3:

Peak 1: 96.9161.1

0.949

Z-Average (d.nm): 

0.000
PdI: 4940

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Record 19: Sample 6 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 2:16:19 PM

8

File Name: 

Sample 6 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

445.6

1.330

Temperature (°C): 

19

 

25.0

149.8

0.0

Peak 2: 0.0000.230

108.3

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0194.8

0.938

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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Record 4: Sample 1 1

SOP Name: 

0.010

System
Duration Used (s): 

Attenuator: 

Viscosity (cP): 

New peptides zeta and siz...

0.8872

Dispersant Name: 

mansettings.nano

Cell Description: 

Sample Name: 

Results

October-24-16 1:53:46 PM

7

File Name: 

Sample 1 1

Water

Count Rate (kcps): 
30

1.59

Sample Details

General Notes: 

3.00
Disposable micro cuvette (40µl)

Material Absorbtion: 

Record Number: 

Measurement Date and Time: 
Material RI: 

Measurement Position (mm): 

Dispersant RI: 

184.3

1.330

Temperature (°C): 

4

 

25.0

169.0

0.0

Peak 2: 0.0000.255

45.91

Intercept: 

0.0

0.000Peak 3:

Peak 1: 100.0160.1

0.994

Z-Average (d.nm): 

0.000
PdI: 0.000

% Intensity:

GoodResult quality :

Size Distribution Report by Intensity
v2.2

Size (d.nm): St Dev (d.n...
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