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Abstract

Dynamic transmission models of influenza are often used in decision-making to identify which vacci-

nation strategies might best reduce influenza-associated health and economic burdens. Our goal was

to use laboratory confirmed influenza cases to fit model parameters in an age-structured, two-type

(influenza A/B) dynamic model of influenza. We compared the fitted model under two different

types of fitting methodologies: using longitudinal weekly case notification data versus using cross-

sectional age-stratified cumulative case notification data. These two approaches allow us to compare

model predictions when using two different types of model fitting procedures, according to data

availability. We find that the longitudinal fitting method provides best fitting parameter sets that

have a higher variance between the respective parameters in each set than the cross-sectional cu-

mulative case method. Also, model predictions–particularly for influenza A–are very different for

the two fitting approaches under hypothetical vaccination scenarios that expand coverage in either

younger age classes or older age classes. The cross-sectional method predicts much larger decreases

in total cases from baseline vaccination coverage than the longitudinal method. Also, the longitudi-

nal method predicts that vaccinating younger age groups yields greater declines in total cases than

vaccinating older age groups, whereas the cross-sectional method predicts the opposite. These re-

sults show that the type of data used to fit a dynamic transmission model can produce very different

outcomes, hence multiple fitting methods should be used whenever possible.
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1. Introduction1

Seasonal influenza imposes a significant health burden each year, reducing the quality of life2

for many across the globe [1]. Although often viewed as a mild illness typically causing school3

or workplace absenteeism, influenza can cause significant complications for vulnerable populations4

such as the elderly or those with weakened immune systems. In order to combat influenza, health5

jurisdictions may implement vaccination programmes (such as the Universal Influenza Immunization6

Program in Ontario, Canada) that may target certain age groups, professions, or make vaccines7

widely available to the public.8

Dynamic transmission models can be used to evaluate the effectiveness of control strategies9

for seasonal influenza, such as targeted vaccinations and vaccine types [2, 3, 4, 5, 6, 7, 8, 9, 10,10

11]. These models are increasingly essential for decision-making regarding vaccine implementation,11

since in silico experiments regarding optimal age of vaccination can be done when experiments in12

real populations are impossible or impractical. For example, a frequent problem addressed in the13

literature is finding an optimal approach to distributing vaccines [12]. Some research has found that14

targeting younger age groups produces the most benefit in limiting influenza spread and improving15

health outcomes across a population [13, 14, 15, 16, 17, 18]. However, other research has also shown16

this may not be the case in all circumstances [19, 2]. In the past, influenza transmission models17

have either chosen parameters without a fitting process [20, 21], have been fitted to a single year18

using cross-sectional cumulative cases for that season [22, 23], to weekly time series longitudinal19

data [24, 8], to influenza like illness (ILI) data, assuming ILI incidence follows the same patterns as20

seasonal influenza [22, 24], or incorporating data of laboratory confirmed influenza cases [8, 23].21

Here, we create an age stratified dynamic transmission model of seasonal influenza following22

similar approaches to Thommes et al. [9], and use positive influenza specimen tests for parameter23

estimation. Our research questions are (1) to determine whether a dynamic two-strain (influenza24

A/influenza B) transmission model can be fitted to longitudinal time series data of weekly laboratory25

confirmed influenza cases spanning multiple years, and (2) to compare the resulting fit and model26

predictions of the impact of vaccination to the case where the model is fitted only to non-longitudinal,27

cross-sectional data on age-stratified cumulative attack rates instead. This comparison will help28

determine how the quality and type of data can impact a model’s outcomes, as some regions have29

more complete surveillance than others. In our model, we seek to estimate the key parameters of30

influenza transmission for both A and B strains. Previous models have not solely used laboratory31
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confirmed case data for both A and B strains of seasonal influenza, or used the same fitting process to32

directly compare results when fitting to longitudinal time series data and cross-sectional cumulative33

case data over multi-year time spans.34

2. Methods35

Our model is a compartmental age structured model [25], and we will fit important transmission36

parameters to longitudinal influenza case data, as well as cross-sectional age stratified case data.37

Incorporating age structure is a critical factor, as population contact patterns, and therefore influenza38

transmission, depend on age. Details of the model development are given in the following sections.39

2.1. Population Demographics40

Our model uses age compartments 1 year in size, starting from 0-1 years, and ending at 99+ years41

[24, 9]. The population size and age structure are modelled after the province of Ontario, Canada,42

to remain consistent with our data on influenza incidence. We also chose Ontario as our study43

population on account of its relatively large population size and presence of a universal influenza44

immunization program in the province. When we age the population, we use yearly population45

projections given by Ontario’s Ministry of Finance, which are based on census data, birth/death46

rates, immigration, and emigration [26, 27, 28], or census data (for the model’s 2011 population)47

[29]. Due to the model’s high age resolution, we are able to specify age dependent contact rates.48

These contact rates play a crucial role in influenza transmission, and we use a contact matrix which49

specifies the mean daily duration of contact time in minutes between age groups [30]. These contact50

data are based on studies conducted in the United States, and thus we are making the assumption51

that contact rates in the region we are modelling are similar.52

2.2. Influenza Incidence Data and Epidemiology53

All data used in our study are publicly available. Data on confirmed influenza cases are available54

for the province of Ontario, Canada from the years 2010 to 2015 [31]. The data give the weekly55

number of confirmed cases in the province for the specified years. For fitting our model to age56

stratified cumulative cases, we use the years 2011 to 2016 due to these years having the required57

data available. The age categories used in the fitting are 0-19, 19-65, and 65+. In our model, we58

will consider influenza cases caused by both the A and B strains.59
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The influenza virus in our model has a susceptible-infected-recovered-vaccinated natural history.60

For transmission, we use the contact hypothesis [30] where our contact matrix C taken from Table61

1 in Zagheni et al [30] defines the average daily time of contact between age groups. We define βi62

to be the probability that an individual in age group i becomes infected after being in contact with63

an infectious individual, which in our case is constant across age groups. The time varying force of64

infection for age group i is given by65

λi(t) =

100∑
j=1

βi Cij

(
Ij
Nj

)
, (1)66

where Ij is the number of infected individuals in age group j and Nj is the size of age group j.67

Additionally, influenza incidence shows a prominent annual recurrence in the winter months, which68

has been thought to be caused by a variety of factors such as temperature, humidity, and changes69

in contact patterns [32, 33, 34]. To ensure this seasonal variation in our model, we use a sinusoidal70

function [35] and multiply the force of infection by71

1 +A cos

(
2π(t+ δ)

365

)
, (2)72

where A is the amplitude of the seasonality function which determines the variation of the basic73

reproductive numberR0, and δ determines on what day the maximum value of the seasonality occurs74

(δ = 0 corresponds to January 1). This formulation is similar to previous work modelling the same75

dynamic [24, 9, 20], and we use the derivation found in Thommes et al. [9] to relate βi to R0.76

Finally, infected individuals recover at a constant rate γ. Also, to model the antigenic drift of77

the influenza virus [36], we force individuals that have been infected to lose their immunity at a78

constant rate. In our model, natural immunity loss occurs at rate ρN .79

2.3. Vaccination80

In Ontario, the primary types of vaccines used are the trivalent inactivated vaccine, the quadri-81

valent inactivated vaccine, and the quadrivalent live-attenuated vaccine [37]. In this region, the82

recommended individuals to receive vaccination are those aged 6 months and older, and especially83

individuals in high risk groups or those who may directly transmit to high risk groups [37].84

In our model, we specify a proportion of individuals in each age group to become vaccinated85

each year. At the time of vaccination, a vaccinated individual in age group i receives vaccine86

induced immunity according to the vaccine’s efficacy with probability εi, and remains susceptible87
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with probability 1 − εi. Vaccine efficacy is set to 65% for ages < 65 and 55% for older age groups88

[38, 39, 40]. We also assume there is no partial immunity conferred with an inefficacious vaccination89

[24, 9]. For vaccination coverage rates, we use data from the studies by [41, 42, 43, 44], and based on90

the age ranges given, we use linear interpolation to restore our yearly age resolution. The baseline91

coverages are 0-1 years: 3.7%, 1-2 years: 7.4%, 2-11 years: 29.48%, 12-19 years: 36%, 20-49 years:92

25.5%, 50-64 years: 48%, 65-74 years: 73%, 75-84 years: 84%, and 85+ years: 82% [41, 42, 44, 43].93

Much like natural immunity, vaccine acquired immunity wanes at a constant rate of ρV . In our94

model, we choose ρV to be a fitted parameter rather than choosing it as a fixed value or assuming95

it to be equal to ρN , as was used in previous studies [24, 9, 20]. Finally, those who become infected96

regardless of vaccinating will not show a reduction in infectiousness.97

2.4. Model Structure98

Our system of differential equations consists of susceptible Si(t), infected Ii(t), recovered Ri(t),99

and vaccinated Vi(t) individuals where i denotes the respective age class an individual belongs to.100

dSi

dt
= −λi(t) + ρNRi + ρV Vi (3)101

dIi
dt

= λi(t)− γIi (4)102

dRi

dt
= γIi − ρNRi (5)103

dVi
dt

= −ρV Vi (6)104

105

The system is integrated with a time step of one day allowing for precise calculation the the daily106

force of infection as well as sufficient numerical solution accuracy. We use the MATLAB package107

ODE4 to fulfill our fixed time step requirement. In addition to the 5 year time period for which we108

have historical influenza incidence data, we run our model with a 10 year burn in period. During109

the burn in period, we use the 2010 population demographics and maintain the same vaccine uptake110

rates that were used during our period of interest.111

Each year we choose a day near the end of summer (August 31), to age the population [20, 24, 9].112

Individuals are moved to the next age class in one time step, and those in the 99+ age category113

remain. Then, the population is scaled to match the demographics of the next year’s population,114

as projected by Statistics Canada and Ontario Ministry of Finance. If these more in depth metrics115

are not available, population birth and death rates may simply be used. Newborns entering the first116

age category all populate the S0 compartment.117
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Next, vaccination occurs on October 1 of each year because in our selected region the majority118

of vaccination occurs in the fall. In our model, we make the approximation that vaccination of the119

population occurs before each influenza epidemic begins. Then, at a point tseed we add an external120

value λext to the force of infection for the remainder of the influenza season. This is a hybrid between121

models by Goeyvaerts et al. [24] and Thommes et al. [9] as we find this small addition to the force122

of infection grants a smoother transition into each new influenza season as opposed to infecting a123

bulk amount of individuals all at once on tseed. In addition, for the period of time between seasons,124

we remove λext so no additional new cases arise. A diagram showing the primary transitions of125

our model is shown in Figure 1. Vertical arrows represent aging, and on the day of the year the126

population is aged, members in each compartment are added to the corresponding compartment in127

the next age group.128

Figure 1: Diagram of the age-stratified SIRS compartmental model with vaccination. See Methods for definitions of

parameters and variables.

2.5. Parameter Fitting129

We compared two methods of fitting our model’s parameters: fitting the parameters to longi-130

tudinal weekly case notification data spanning multiple years (we will call this the ”longitudinal131
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method”) and fitting the parameters to cross-sectional age-stratified data that lack a temporal vari-132

able (we call this the ”cross-sectional method”).133

2.5.1. Longitudinal Method134

We aim to fit the parameters of our model to multi-year longitudinal time series data taken from135

[31] in a similar manner to Goeyvaerts et al. [24]. However, we use laboratory confirmed influenza136

specimen cases instead of ILI incidence data used by previous models which are based on reported137

influenza-like symptoms rather than laboratory confirmed cases.138

In order to quantify the goodness of fit for a given parameter set, we use a least squares approach:139

historical weekly incidence of the number of positive influenza cases is compared to our model’s140

corresponding output. We define the number of historical reported cases in week w to be IHw , and141

the number of cases given by the model in week w to be IMw . In order to directly compare the142

two quantities, we use the parameter α introduced by Goeyvaerts et al. [24] to scale the model143

incidence. Here, α captures the probability that an infected individual is symptomatic, visits a144

medical practitioner and gets tested for the influenza virus which returns a positive result. The sum145

of squares error is then146 ∑
∀w

(
IHw − (αIMw )

)2
. (7)147

To evenly sample the parameter space, we use Latin hypercube sampling [45] to generate 35,000148

parameter combinations. Parameter descriptions and fitting ranges (that is, Latin hypercube sam-149

pling ranges) are given in Table 1. We then determine each parameter set’s sum of squares score150

over a simulation run. Next, we utilize MATLAB’s GlobalSearch algorithm to search for optimal151

parameter combinations using the parameter sets that offered the lowest sum of squares values.152

GlobalSearch attempts to find a function’s global minimum, and initializes its search over the pa-153

rameter space from a user defined start point. In our case, the function we are seeking to minimize154

is the sum of squares score of our system of differential equations. The input points are used by the155

solver to determine an initial estimate for a basin of attraction, and the algorithm also generates a156

set of trial points to be used in finding the minimum. Additionally, upper and lower bounds may157

be specified for each parameter, which we define as the same bounds used in the Latin hypercube158

sampling. Any number of runs of the GlobalSearch algorithm may be performed, using a different159

starting point corresponding to the parameter sets obtained from the Latin hypercube samples for160

each run. Moreover, maximum runtimes may be specified as well.161
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Table 1: Parameter descriptions, fitting ranges and literature sources.

Parameter Description Fitting Range Source

A Amplitude of seasonality function 0 - 1.0 Maximum range.

tseed
Days after vaccination when infected are

seeded into the population

1 - 90

1-120**
Assumption*.

δ Timing of seasonality function peak (days)
-10-45

-60-10**
Assumption*; forces R0 peak to fall between November and January

R0 Average basic reproduction number 1.0-2.5
[46], peak range also encompasses estimates of pandemic

influenza strains [47, 48].

γ Mean latent plus infectious period 4 days (fixed) [49]

ρN Natural waning immunity rate
1.0-2.5 years

1.0-4.0 years**
Assumption.*

ρV Vaccine conferred waning immunity rate 0.5-1.5 years
Encompasses the range used by similar models [9, 24], and based on research

deducing that antibodies may wane near the end of a season [50].

λext

Infections originating from an outside source.

(Value added to the force of infection)
0.01-0.2 Assumption.

α Scaling factor of model incidence 0.0005-0.15 Estimate based on [51].

*Also based on preliminary Latin hypercube sampling. Wider ranges were originally used, but the best results were contained within

ranges shown above.

**Ranges used for influenza B.
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Due to the stochastic nature of the process, more runs may result in lower least squares fits, and162

the available computational resources will be a determinant of how many initial points, and therefore163

runs, of GlobalSearch are used. In our analysis, we use the 50 best performing parameter sets164

obtained from the Latin hypercube sampling to use as initial points for the GlobalSearch algorithm.165

We also tested a group of random initial points gathered from the top 15% of parameter sets from166

the Latin hypercube sampling, but they did not provide better results (lower sum of squares) than167

the aforementioned top 50 sets.168

2.5.2. Cross-Sectional Method169

For fitting age-stratified cumulative cases over the 5-year period, the available data is from170

Canada as a whole [31] (Ontario level data does not include age-stratified cases). Thus, we scaled171

the cases by the proportion of the Canadian population that lives in Ontario in order to remain172

consistent with the longitudinal method’s fitting.173

The fitting for the cross-sectional method was identical to the longitudinal method, except we174

did not compute a difference of squares from the model output to the historical data for each week.175

Instead, the difference of squares was computed over total cases over the entire 5-year period. Also,176

the model output of each age category (ages 0-19, 19-65, and 65+) was separately compared to177

the corresponding historical data, such that we attempted to fit age-specific number of cases in the178

model to the age-specific profile observed in the data.179

3. Results180

3.1. Parameter Fitting Comparison181

Time series of the best parameter combinations resulting from the the fitting processes for in-182

fluenza A and B for the longitudinal method are shown in Figure 2 and Table 2. The plotted results183

are compared to the historical laboratory confirmed cases over the time period. We used a separate184

fitting process for each strain, although we assume that the vaccine efficacy and the infectious peri-185

ods are the same for both. The largest differences in our model emanate from the 2012 season for186

influenza B. Most parameter sets undershoot the peak in this season, although some achieve much187

closer fits.188

Simulations using the cross-sectional method produce the parameter combinations shown in189

Table 3, with the results for each age category shown in Figure 3 A,B. Age-stratified results from190
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Figure 2: Time series of confirmed influenza cases (black) and the fitted model (grey) for (A) Influenza A and (B)

Influenza B. Shaded region represents 95% confidence intervals.

Table 2: Best fitting parameter values (mean and standard deviation) for the longitudinal method.

Parameter Mean Value, A Strain Std. Dev. Mean Value, B Strain Std. Dev.

A 0.6304 0.2211 0.3115 0.1269

tseed (day) 35.43 23.89 71.50 32.06

δ (day) 21.15 10.85 -25.14 19.26

R0 1.424 0.3195 1.322 0.3302

ρN (days) 593 237 1408 133

ρV (days) 468 88 427 169

λext 0.0965 0.0731 0.1108 0.0731

α 0.002608 0.0008535 0.004065 0.006953

the longitudinal model are included for comparison in panels C and D. In the cross-sectional method191

results, the variance of total cases produced by the parameter sets for influenza A (Figure 3A) in192

each age category are much lower than that of influenza B (Figure 3B). This could stem from the193

fitting process, and how Globalsearch attempts to find optimal parameter combinations to match the194

age-stratified data. In the case of influenza A, each search has parameters converge to very similar195
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values, whereas the final values for influenza B have much higher variance in comparison. This could196

be due to how the infections are spread out across each age category. For example, influenza A has197

many more cases in the ages 19+ than the ages 0-18. However, influenza B’s cases are evenly spread198

across all ages.199

Table 3: Best fitting parameter values (mean and standard deviation) for the cross-sectional method.

Parameter Mean Value, A Strain Std. Dev. Mean Value, B Strain Std. Dev.

A 0.4405 0.06101 0.4904 0.1131

tseed (day) 46.16 26.14 59.84 36.14

δ (day) 12.02 14.64 -25.70 20.69

R0 1.003 0.01747 1.044 0.09240

ρN (days) 416 68 464 238

ρV (days) 548 11 550 0

λext 0.06387 0.03514 0.1411 0.06227

α 0.0935 0.02440 0.004088 0.0008010

For influenza A, the primary differences in parameters for the two fitting methods stem from the200

parameters A (seasonality amplitude), R0 (average basic reproduction number), and α (incidence201

scaling factor). For the seasonality amplitude, we notice that when not required to meet multiple202

varying seasonal peaks as we did in the longitudinal method, the average amplitude is lower with203

less variance in the cross-sectional method fits than in its longitudinal counterparts. Similarly,204

the average R0 value amongst the parameter sets follows the same pattern: in the cross-sectional205

method’s fits, the average value and variance amongst the sets is lower than the values seen in the206

longitudinal method’s fits. Finally, α is much larger in the cross-sectional method’s fits.207

For influenza B, the biggest differences in parameters for the two fitting methods stem from R0208

and the waning immunity rates ρN and ρV . Similarly to influenza A, the average basic reproduction209

number is smaller and has less variance amongst the sets in the cross-sectional method compared to210

the longitudinal method’s parameters. Also, the average natural waning immunity rate is smaller as211

well. An interesting note is that the vaccine conferred waning immunity rate takes on its maximum212

allowed value in all of the sets for the cross-sectional method. A similar, but less extreme, shift213
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Figure 3: Age-stratified cumulative cases for influenza A and B compared to empirical targets in our model. Target

number of cases from the emprical data are given by X’s where applicable. (A) Cross-sectional method for influenza

A. (B) Cross-sectional method for influenza B. (C) Longitudinal method with age-stratified results for influenza A.

(D) Longitudinal method with age-stratified results for influenza B. From bottom to top, each line in each boxplot

shows the following information: minimum value, first quartile, median, third quartile, maximum value. Red crosses

are considered outliers.

towards the maximum ρV value occurs in the influenza A parameter sets as well.214

3.2. Projected Impact of Expanded Vaccination Coverage215

These results may be further tested by observing the impact of implementing different vaccination216

scenarios or strategies for vaccine allocation approaches. Here, we test the changes in outcomes of217

our model with a targeted vaccine allocation in a scenario where a health jurisdiction is expanding218

their influenza vaccination program.219

When expanding vaccination coverage, an important consideration is targeted distribution of220

vaccines. The two main strategies are to target children, who are believed to be responsible for the221

majority of transmission, or to target high risk individuals and age groups, such as the elderly. To222
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test these two scenarios, we will increase the vaccine uptake of younger aged age groups in our model223

(ages 0-18) by 30% for each age, a strategy which has been believed to indirectly protect other age224

groups as well [18, 17, 16]. Then, we compare these results to increasing the total number of vaccines225

administered by the same amount in older age groups instead, which in our population is the ages226

55+.227

With the longitudinal fitting method for influenza A, vaccinating younger age groups produces228

a 24.53% drop in total cases on average from baseline vaccination (Figure 4A and Figure 5C).229

When targeting older age groups, we see an average reduction in total cases of 13.86%. Total mean230

confirmed cases and their 95% CIs are found in Table 4. Thus, the vaccination program aimed at231

the younger age classes provides a small benefit in total case reduction on average compared to a232

similar program targeting older ages. This stems from the low baseline vaccine uptake in children233

and their high contact rates with each other as well as middle aged adults. In the case of influenza234

B, targeting the younger ages gives an average 19.52% drop in total cases, whereas targeting the235

older age groups gives an average 24.27% drop in the mean (Figure 4B and Figure 5D). Total mean236

confirmed cases and their 95% CIs are found in Table 4. In this case, vaccinating older age groups237

produces a small but largely negligible average reduction in the mean of total cases across parameter238

sets used.

Table 4: Mean number of cases for influenza strains A and B under different vaccination scenarios.

Strain Baseline (95% CI) Vac. Prog. 0-18 (95% CI) Vac. Prog. 55+ (95% CI)

Longitudinal Method

Influenza A 28,787 (± 2,652) 21,725 (±2, 392) 24,797 (±3, 134)

Influenza B 7,483 (±914) 6,022 (±935) 5,667 (±1, 072)

Cross-Sectional Method

Influenza A 35,833 (±390) 24,173 (±597) 10,947 (±607)

Influenza B 12,861 (±785) 8,760 (±505) 6,410 (±646)

239

Using the cross-sectional method, influenza A results differ from the longitudinal method. In this240
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Figure 4: Time series of confirmed influenza A and B cases in the model under different vaccination scenarios for (A)

Influenza A and (B) Influenza B.

case, vaccinating older age groups results in the best case reduction (Figure 5A with comparison241

to the longitudinal model in Figure 5C). When increasing vaccination rates in the ages 55+, we242

see less than half the total cases than when expanding vaccination amongst ages 0-18. Total mean243

confirmed cases from the simulations are found in Table 4. For influenza B, vaccinating the younger244

age groups yields a 31.89% reduction in mean cases compared to baseline, and vaccinating older245

age groups provides a 50.16% reduction (Figure 5B with comparison to the longitudinal model in246

Figure 5D). Total mean confirmed cases from the simulations are found in Table 4. In general, the247

cross-sectional method’s fitting predicts a much larger decrease in total cases for any vaccination248

expansion strategy than the longitudinal time series fitting method. These results reveal that the249

varying types of data that can be used to fit a predictive model of influenza transmission can produce250

very different results.251

4. Discussion252

We have designed and implemented an age-stratified dynamic transmission model of seasonal253

influenza for both A and B influenza types. The model parameters were fit to laboratory confirmed254

influenza cases from the years 2010-2015 in the province of Ontario, Canada, as well as age-stratified255
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Figure 5: Cross-sectional method results of model predictions for influenza A and B cases under different vaccina-

tion scenarios, including comparison to the longitudinal method’s corresponding results. Subpanels show number of

cases for (A) Influenza A, (B) Influenza B, (C) Longitudinal method with age-stratified results for influenza A, (D)

Longitudinal method with age-stratified results for influenza B. From bottom to top, each line in each boxplot shows

the following information: minimum value, first quartile, median, third quartile, maximum value. Red crosses are

considered outliers.

cumulative case data from the years 2011-2016 in Canada. We also used this model to evaluate256

vaccine expansion strategies which target certain age groups.257

Using the cross-sectional method, the variance amongst the respective parameters in each of the258

50 best sets is generally smaller than that of the variance amongst the parameters found using the259

longitudinal method. Also, when introducing vaccination scenarios targeting different age groups,260

outcomes from using parameters derived from the two types of data differ- particularly for influenza261

A. For example, the cross-sectional method’s data predicts much larger decreases in total cases from262

baseline vaccination coverage than the time series data. Additionally, those simulations show that263

vaccinating older age groups will provide the most benefit in reducing the total number of cases in264

the population. Using the longitudinal method, results show that vaccinating younger age groups265

provides a moderate total case reduction for influenza A, and vaccinating older age groups provides266
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a slight total case reduction for influenza B.267

Our model makes some simplifying assumptions. For example, the parameter α, which represents268

the rate at which an infected individual is symptomatic and visits a physician who in turn administers269

a laboratory test for influenza which returns positive, is constant across all age groups. In reality,270

this may not be the case as some age groups may be more likely to visit a physician after becoming271

ill, or physicians may be more likely to administer tests for certain age groups. We also assume272

that the laboratory confirmed case data is a consistently uniform sample of all influenza cases.273

However, physicians may send in more tests depending on the time of year or when they perceive274

the prevalence of influenza is higher. Finally, we assume that vaccine efficacies are the same for both275

A and B strains, and that the infectious period is the same for both as well [9].276

There are some differences in the data used which hinder direct comparisons. The age-stratified277

cumulative case data gives country wide cases, whereas the time series data is for the province of278

Ontario. Although we scale the number of cases country wide by the proportion of Canada that lives279

in Ontario, the cases will still not be directly comparable. Moreover, the age-stratified cumulative280

case data available covers a one year difference from the time series data, causing some discrepancy281

in the number of cases over each 5 year span.282

Different regions will often have varying types of data available for influenza attack rates. In this283

work, we have considered weekly time series confirmed influenza cases and age-stratified cumulative284

cases, but other research has utilized ILI incidence as well [24, 8, 52]. We have shown that when285

using an identical fitting process, these different types of data used to fit the model can produce286

varying results. Thus, when fitting a dynamic transmission model for influenza, the quality of case287

notification data used is an important aspect that impacts model outputs.288
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