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Abstract 

The Late Ordovician Period witnessed the second largest mass extinction in the 

Phanerozoic Eon and the Hirnantian glaciation. To infer ocean redox conditions across 

the Ordovician-Silurian transition, we measured the U (as δ
238

U relative to standard 

CRM145 = 0 ‰) and Mo (as δ
98

Mo relative to standard NIST SRM 3134 = +0.25 ‰) 

isotope compositions of 26 organic-rich mudrock samples from the Late Ordovician 

(Katian) Fjäcka Shale and the Early Silurian (Aeronian-Telychian) Kallholn Formation 

(Siljan ring district, Sweden). The magnitude of Re, Mo, and U enrichments, ReEF/MoEF 

and UEF/MoEF ratios, and sedimentary Fe speciation point to locally euxinic bottom water 

conditions during deposition of the Fjäcka Shale. The same proxies suggest that black 

shales of the Kallholn Formation were deposited under transiently euxinic conditions 

with the chemocline situated near the sediment-water interface, whereas gray shales 

stratigraphically equivalent to the upper Kallholn Formation were deposited from 

oxygenated bottom waters. These observations are consistent with higher δ
98

Mo and 

δ
238

U in the Fjäcka Shale compared with the Kallholn Formation.    

Because the Fjäcka Shale was deposited from persistently euxinic bottom waters, 

the Mo and U isotope compositions from these rocks can be used to estimate the extent of 

global ocean euxinia and ocean anoxia (euxinic plus ferruginous conditions), respectively. 

Elevated MoEF and Mo/TOC ratios in the euxinic Fjäcka Shale suggest no more than 

moderate basin restriction from the open ocean as well as non-quantitative removal of Mo 

from the euxinic bottom waters, thus pointing to Mo isotope fractionation between 

seawater and the euxinic sediments. Hence, we infer that even the highest δ
98

Mo 

(+1.28 ‰) preserved in the Fjäcka Shale is only a minimum estimate for the Mo isotope 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

3 
 

composition of coeval global seawater. Correcting for seawater-sediment Mo isotope 

fractionation, the δ
98

Mo of late Katian seawater may have been +1.4–2.1 ‰, which 

corresponds to ~10–70% Mo removal into the euxinic sink. The average authigenic δ
238

U 

of the Fjäcka Shale is –0.05 ‰ to +0.02 ‰ after correcting for a range of possible detrital 

δ
238

U values, thus yielding an overall average of ~0 ‰. Taking into account isotope 

fractionation during U removal to euxinic sediments, we infer that late Katian seawater 

δ
238

U was about –0.85 ‰ to –0.60 ‰. A steady-state U isotope mass balance model 

reveals that 46−63% of riverine U input was removed in anoxic settings. Based on the 

Mo and U isotope data, we infer that euxinic and anoxic waters may have covered < 1% 

and at least 5% (potentially tens of percent) of the total seafloor area during the late 

Katian, respectively, based on previously published models that relate the magnitude of 

Mo and U burial fluxes to the areal extent of euxinic and anoxic seafloor. By comparison, 

only 0.21−0.35% and < 1% of the total seafloor area was covered by anoxic waters today 

and during the Cenozoic, respectively. The difference between the estimated extent of 

ocean anoxia (euxinic plus ferruginous) and ocean euxinia points to an appreciable extent 

of ferruginous water masses during the late Katian. Integration of our data with previous 

studies thus supports the hypothesis that ocean oxygenation intensified during the 

subsequent Hirnantian glaciation (when seawater δ
98

Mo temporarily reached values 

similar to today). Hence, environmental stresses related to glaciation, not an expansion of 

ocean anoxia, may have triggered the first phase of the Hirnantian mass extinction. 

 

Keywords: uranium isotopes; molybdenum isotopes; Katian; Hirnantian glaciation; 

euxinic; ferruginous 
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1. INTRODUCTION 

 

The environmental conditions of the Ordovician world (485-444 Ma) played an 

important role in metazoan evolution, extinction, and biogeographic distribution. 

Relatively high sea-level stands (Haq and Schutter, 2008), a pronounced greenhouse 

climate state for most of the period (Shields et al., 2003), paleocontinents mostly located 

in the Southern Hemisphere (Cocks and Torsvik, 2002, 2005), probable superplume 

events (e.g., Huff et al., 1996; Bergström et al., 2004; Christidis and Huff, 2009), and a 

terminal Ordovician (Hirnantian) glaciation (e.g., Brenchley et al., 2003; Saltzman and 

Young, 2005; Delabroye et al., 2010) were the key features of the Ordovician Earth. 

Notable biological events at this time include rapid biota diversification (the Great 

Ordovician Biodiversification Event; GOBE) in the early Middle Ordovician (e.g., 

Webby et al., 2004; Servais et al., 2009) and the second largest Phanerozoic extinction 

event in the Late Ordovician, with ~85% loss of species (Brenchley et al., 2001; Sheehan, 

2001). Recovery of biodiversity to pre-extinction levels (similar to the early Middle 

Ordovician) by surviving species and communities required at least 4-5 Myr (Brenchley 

et al., 2001; Sheehan, 2001). 

 The nature of ocean redox conditions before, during, and after a two-phase mass 

extinction event and associated glaciation in the Hirnantian has been a subject of recent 

debate. The Hirnantian glaciation ended the pronounced greenhouse environment of the 

preceding Ordovician, and resulted in rapid cooling and eustatic fall (Fig. 1; Finnegan et 

al., 2011). Rapid cooling may have been the major kill mechanism for the first extinction 

phase during the early to middle Hirnantian (Brenchley et al., 2001; Melchin et al., 2013). 
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Associated with the Hirnantian glaciation is a strong positive δ
13

C excursion (HICE: 

Hirnantian Isotope Carbon Excursion) (Fig. 1; e.g., Marshall and Middleton, 1990; 

Brenchley et al., 1994; Kump et al., 1999; Webby et al., 2004; Bergström et al., 2006; 

LaPorte et al., 2009; Ainsaar et al., 2010; Zhou et al., 2015) that can be explained by 

either increased burial of organic carbon (Brenchley et al., 1994; Hammarlund et al., 

2012; Zhou et al., 2015), or the exposure and weathering of carbonate platforms (with 

high δ
13

C) in low latitudes due to eustatic fall (Kump et al., 1999). Evidence for increased 

ocean oxygenation and potentially more vigorous ocean circulation in response to 

glaciation was suggested based on a switch from deposition of black shales to gray shales 

(Brenchley, 1989; Finney et al., 1999; LaPorte et al., 2009; Melchin et al., 2013). 

Hammarlund et al. (2012) suggested instead that positive pyrite δ
34

S and organic carbon 

δ
13

C excursions at this time reflect an expansion of water column euxinia that, together 

with sea-level fall, was responsible for the first phase of the Hirnantian mass extinction. 

The second phase of the mass extinction occurred during the middle-late Hirnantian, and 

is thought to be associated with expansion of ocean anoxia following the demise of the 

glaciation (Brenchley et al., 2001; Melchin et al., 2013), or expansion of euxinic waters 

onto shallower continental shelves because of sea-level rise (Hammarlund et al., 2012). 

Quantifying the extent of ocean anoxia and euxinia during the Hirnantian and the 

preceding Katian can help resolve these competing hypotheses. 

Recently, the stable Mo isotope system was used to infer global ocean redox 

conditions across the Ordovician-Silurian transition (Dahl et al., 2010a; Zhou et al., 2012, 

2015). Removal of dissolved Mo from seawater to sediments is strongly tied to the 

availability of dissolved sulfide in the water column and sediment pore fluids, such that 
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high, moderate, and low Mo enrichments are found in sediments deposited in euxinic, 

suboxic to anoxic/non-sulfidic (ferruginous), and well-oxygenated marine environments, 

respectively (Morford and Emerson, 1999; McManus et al., 2006; Kendall et al., 2010; 

Scott and Lyons, 2012; Reinhard et al., 2013). The Mo isotope composition of organic-

rich mudrocks (ORMs) deposited from strongly euxinic bottom waters ([H2S]aq > 11 μM) 

may directly capture the global seawater Mo isotope composition, particularly in 

restricted basins where Mo removal from bottom waters is quantitative (Barling et al., 

2001; Arnold et al., 2004; Neubert et al., 2008). However, ORMs deposited from non-

euxinic or weakly euxinic bottom waters ([H2S]aq < 11 μM) have variably lower δ
98

Mo 

than global seawater, reflecting the preferential removal of lighter Mo isotopes to 

sediments in these environments (Arnold et al., 2004; Neubert et al., 2008; Gordon et al., 

2009; Poulson Brucker et al., 2009). Hence, the Mo isotope paleoredox proxy is most 

sensitive to the areal extent of euxinic versus non-euxinic marine environments.   

Temporal compilations of Mo isotope data from euxinic ORM suggest that the 

δ
98

Mo of global seawater between 520 and 440 Ma was typically ~+1.0−1.4 ‰, with one 

instance of higher values (+2.4 ‰) in the early Hirnantian associated with glaciation 

(Dahl et al., 2010a; Zhou et al., 2012, 2015; Kendall et al., 2015). The consistently low 

seawater δ
98

Mo values during 520−440 Ma compared with today (+2.34 ± 0.10 ‰; 

Barling et al., 2001; Siebert et al., 2003; Nakagawa et al., 2012; Nägler et al., 2014) 

potentially suggest that the oceans were generally less oxygenated and contained a 

greater extent of water column euxinia, consistent with generally lower Mo 

concentrations in euxinic ORM deposited at this time compared with later Phanerozoic 

ORM (Dahl et al., 2010a; Zhou et al., 2012, 2015; Kendall et al., 2015). However, local 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

7 
 

redox proxies such as Fe speciation and Mo enrichments cannot quantitatively reveal 

whether ORMs were deposited from weakly versus strongly euxinic bottom waters. 

Hence, it remains possible that significant Mo isotope fractionation occurred between 

seawater and euxinic sediments in some cases. It is therefore possible that the extent of 

ocean oxygenation during the Ordovician and Silurian has been generally underestimated. 

In addition, Zhou et al. (2015) suggested that stratigraphic variations in the Mo isotope 

data of Ordovician-Silurian ORM from the Yangtze Platform (South China) were 

primarily influenced by changes in local rather than global ocean redox conditions. 

 Because the Mo isotope proxy is more sensitive to the extent of ocean euxinia 

rather than general ocean anoxia (i.e., euxinic plus ferruginous conditions; Neubert et al., 

2008; Cheng et al., 2015), new global ocean paleoredox proxies are needed to test 

hypotheses regarding the extent of ocean oxygenation at the Ordovician-Silurian 

transition. The U isotope system in ORMs represents an emerging global ocean 

paleoredox proxy with good potential to provide constraints on the extent of general 

ocean anoxia because U burial in anoxic sediments is primarily mediated by both 

microbial Fe(III) reduction and microbial sulfate reduction, and thus is less dependent on 

H2S availability compared with Mo (e.g., Morford and Emerson, 1999; Weyer et al., 2008; 

Montoya-Pino et al., 2010; Asael et al., 2013; Partin et al., 2013; Basu et al., 2014; 

Stirling et al., 2015; Stylo et al., 2015; Kendall et al., 2015). Notably, consistently large 

experimental U isotope fractionations are observed during the microbially mediated 

reduction of U(VI) to U(IV) by several different bacterial strains (Basu et al., 2014; 

Stirling et al., 2015; Stylo et al., 2015). The greatest extent of U isotope fractionation in 

the marine environment occurs in anoxic settings (where the heavier 
238

U isotope is 
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preferentially removed to sediments) whereas distinctly smaller U isotope fractionations 

occur in oxygenated and suboxic environments (e.g., Weyer et al., 2008; Montoya-Pinos 

et al., 2010; Brennecka et al., 2011b; Andersen et al., 2014; Holmden et al., 2015; 

Noordmann et al., 2015). Hence, the combined use of the U and Mo isotope systems 

gives a more robust approach for inferring global ocean redox conditions than the Mo 

isotope system alone by shedding insight on the areal extent of both euxinic and 

ferruginous conditions (Asael et al., 2013; Kendall et al., 2015). In this study, 

sedimentary Fe speciation data, trace metal concentrations, and U and Mo isotope data 

are reported for ORMs deposited before and after the Hirnantian in the Siljan ring district, 

central Sweden.  

 

2. GEOLOGICAL BACKGROUND 

 

 The Siljan ring district (61.04°N, 14.92°E; Fig. 2) is located in central Sweden, 

and is thought to be the largest impact structure in Europe (present-day diameter of 52 km, 

and an estimated ~90 km diameter before erosion; Grieve, 1988; Holm et al., 2011; Juhlin 

et al., 2012). Recently, the Siljan ring has been a focus of research under the project 

“Concentric Impact Structures in the Paleozoic” (CISP; Högström et al., 2010), which is 

one of the essential parts of the “Swedish Deep Drilling Program” (SDDP; Lorenz et al., 

2010) (Fig. 2). Since 2011, three additional holes (Mora 001, Solberga #1, and Stumsnäs 

#1) in the Siljan area were drilled and cored by the Swedish private company IGRENE 

AB for geothermal energy and natural gas exploration. 
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The Siljan region was part of Baltica, which was situated at equatorial latitudes 

during the Late Ordovician (Cocks and Torsvik, 2002, 2005). At that time, the 

depositional environment in the Siljan area was a shallow marine continental shelf 

(Cocks and Torsvik, 2005). Stratigraphic studies show that the basin deepened to the west 

(Larson et al., 1999; Cederbom et al., 2000). Subsequently, the Scandinavian Caledonides 

developed on collision between Baltica and Laurentia during the Late Silurian to Early 

Devonian (Cederbom et al., 2000; Huigen and Andriessen, 2004). Sedimentary rocks in 

the Oslo area, south Norway, record the associated Caledonian foreland basin (Huigen 

and Andriessen, 2004).  

The Siljan structure is thought to have been caused by the Devonian impact of a 

meteorite on a seabed underlain by sedimentary rocks of Ordovician and Silurian age. 

Evidence for a bolide impact origin includes planar deformation structures in quartz 

(Tamminen and Wickman, 1980), occurrence of shatter cones (Svensson, 1973), and fluid 

inclusion analyses (Komor et al., 1988). New 
40

Ar/
39

Ar laser spot data and step-heating 

data for a melt breccia indicate an impact age of 380.9 ± 4.6 Ma (Reimold et al., 2005; 

Jourdan et al., 2012). Precambrian bedrock is exposed in this ring-like depression, 

particularly in the 30-km-wide central plateau (Fig. 2). Around the impact margins, 

jostled blocks of Ordovician and Silurian strata are exposed, providing an opportunity to 

study the regional Early Paleozoic sedimentary sequences and paleoenvironments 

(Ebbestad and Högström, 2007; Lehnert et al., 2012, 2013). These Early Paleozoic 

sedimentary rocks are unmetamorphosed and well preserved. 

The basal Tremadocian Obolus beds of Ordovician age are the oldest in the 

preserved Paleozoic lithostratigraphic succession, whereas the Nederberga Formation 
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shales of Middle Silurian age mark the top of the succession (Grahn, 1998; Ebbestad and 

Högström, 2007). The Ordovician stratigraphy is similar to that observed in other parts of 

Sweden (e.g., Ebbestad and Högström, 2007; Lehnert et al., 2012). The regional 

geological succession and lithostratigraphy are summarized by Ebbestad and Högström 

(2007). More recently, a geological correlation of the terminal Ordovician succession 

based on carbon isotope stratigraphy and biostratigraphy from five quarries and eight 

sections was presented by Ebbestad et al. (2014) (Fig. 3). Biostratigraphic ages in the 

Siljan ring district are based on well-characterized biozones (Ebbestad and Högström, 

2007; Ebbestad et al., 2014). 

 Petroleum was produced from organic-rich source rocks as a result of the Siljan 

impact event rather than by deep burial, as indicated by biomarker thermal maturity 

indicators in the source rocks. Oil-source rock correlation analysis using biomarkers and 

carbon isotope data indicate that the Siljan ring oil was sourced predominantly from the 

Ordovician Fjäcka Shale (formally “Tretaspis shale”), probably with a minor contribution 

from the Silurian Kallholn Formation (formally “Rastrites shale”) (Vlierboom et al., 1986; 

Ahmed et al., 2014). Stein et al. (2009, 2014) reported a four-point Re-Os age of 812 ± 

48 Ma for heavy oil recovered from seeps penetrating the Katian Boda limestone in the 

Solberga quarry. The four oil samples have constant Re (1.4−1.6 µg/kg) but highly 

variable Os concentrations (40−300 ng/kg) that are interpreted as mixtures of meteoritic 

debris and oil (Stein et al., 2014). The initial 
187

Os/
188

Os (0.20 ± 0.12) from the Re-Os 

regression indicates an unradiogenic extraterrestrial contribution to the oils. Although the 

Re-Os isotope system in oil was significantly disturbed by inclusion of meteoritic 

material during hydrocarbon formation, there is no evidence of similar isotopic 
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disturbance to the shales (Stein et al., 2009, 2014). Hence, geochemical data from the 

Fjäcka Shale and Kallholn Formation in the Siljan ring can be used to reconstruct Late 

Ordovician and Early Silurian ocean redox conditions. 

 The Fjäcka Shale is the main focus of this study and was deposited during the late 

Katian, broadly coeval with the “Boda Event” (Fortey and Cocks, 2005; Cherns and 

Wheeley, 2007). The early-middle part of the Late Ordovician (Sandbian and Katian 

stages) was characterized by sea levels that were generally 100−200 m higher than today 

(Haq and Schutter, 2008; Fig. 1). Sea surface temperature (SST) variations, based on 

clumped oxygen isotope data from carbonates and oxygen isotope data from conodont 

apatite, show a general cooling trend during this time (Trotter et al., 2008; Finnegan et al., 

2011; Fig. 1). This cooling trend may have been briefly interrupted in the late Katian by 

the warmer “Boda Event” based on migrations of benthic species from low to high 

latitude and the occurrence of warm water near the South Pole (Fortey and Cocks, 2005), 

which is also suggested by SST variation profiles (Fig. 1; Finnegan et al., 2011; Melchin 

et al., 2013). However, Cherns and Wheeley (2007) alternatively considered the “Boda 

Event” to mark global cooling based on detailed facies analysis. 

For this study, 26 samples were obtained from the Mora 001, Solberga #1, and 

Stumsnäs #1 drill cores. Lithostratigraphic units and detailed core descriptions are 

reported in Lehnert et al. (2012, 2013). Upper Ordovician rock units are preserved in the 

eastern (Solberga #1) and southern (Stumsnäs #1) Siljan ring. However, Late Ordovician 

stratigraphy is absent in Mora 001 from the western Siljan ring, which has been explained 

by movement of the Caledonian peripheral forebulge from west to east (Lehnert et al., 

2012). Six samples of Early Silurian light gray shale were obtained from a “lower shale 
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member” that has a thickness of about 62 m in Mora 001. Based on new graptolite 

findings, the gray shale (early Telychian) is broadly equivalent to the upper Kallholn 

Formation (Aeronian-Telychian) (Lehnert et al., 2013). In Solberga #1, the thickness of 

the Kallholn Formation and Fjäcka Shale is 60 m and 6 m, respectively. Four samples of 

the Kallholn Formation and six samples of the Fjäcka Shale were obtained from Solberga 

#1. In Stumsnäs #1, the Fjäcka Shale has a thickness of 5 m and 10 samples were 

obtained from this drill core. The samples were selected from intervals previously 

collected for Re-Os isotope studies (Stein et al., 2009, 2014). 

 

3. PROXIES AND ANALYTICAL METHODS 

 

3.1. Sedimentary iron speciation 

Sedimentary Fe speciation has been widely used to evaluate local bottom water 

redox conditions for paleoenvironmental studies (e.g., Poulton and Raiswell, 2002; 

Anderson and Raiswell, 2004; Poulton et al., 2004, 2010; Lyons and Severmann, 2006; 

Canfield et al., 2008; Li et al., 2010; Reinhard et al., 2009; Kendall et al., 2010, 2015; 

Poulton and Canfield, 2011). Biogeochemically highly reactive iron (FeHR) can react with 

sulfide in the water column or in sediments during early diagenesis, and is mainly 

composed of pyrite Fe (Fepy), carbonate Fe (Fecarb), ferric oxide Fe (Feox), and magnetite 

Fe (Femag), such that FeHR = Fecarb + Feox + Femag + Fepy (Poulton and Canfield, 2005). 

Total Fe (FeT) consists of unreactive or poorly reactive Fe mainly associated with silicate 

minerals and the aforementioned highly reactive Fe species (Poulton et al., 2004).  
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The ratio of FeHR/FeT in modern sediments and Phanerozoic sedimentary rocks is 

usually < 0.38 for oxygenated marine settings (Raiswell and Canfield, 1998; Poulton and 

Raiswell, 2002), whereas higher ratios predominantly indicate anoxic bottom waters. 

Analyses of Phanerozoic sediments and sedimentary rocks suggest that 0.22 is a 

reasonable lower limit to distinguish oxic from anoxic conditions in bottom waters 

(Poulton and Raiswell, 2002; Poulton and Canfield, 2011). Hence, FeHR/FeT can be used 

to distinguish anoxic (≥ 0.38) from oxic (≤ 0.22) conditions. However, it is noted that low 

FeHR/FeT can represent a false signature for oxic conditions if Fe precipitation from an 

anoxic water column is inefficient, sedimentation rates were rapid, or Fe remobilization 

occurred during diagenesis (Planavsky et al., 2011; Poulton and Canfield, 2011; Sperling 

et al., 2015). Other indicators such as redox-sensitive trace metal enrichments (e.g., Re, 

Mo, U) should therefore be used to confirm an oxic signature derived from Fe speciation 

(e.g., Kendall et al., 2010). In anoxic environments , ferruginous and euxinic conditions 

can be distinguished by using the extent of pyritization of the highly reactive iron pool 

(Fepy/FeHR). Values of Fepy/FeHR > 0.7 indicate euxinic conditions, whereas values < 0.7 

indicate ferruginous conditions (März et al., 2008; Poulton and Canfield, 2011).  

Sedimentary Fe speciation analyses were performed at the State Key Laboratory 

of Biogeology and Environmental Geology, China University of Geoscience (Wuhan). A 

sequential extraction method (described in Poulton and Canfield, 2005) and atomic 

absorption spectroscopy (AAS) was used for obtaining Fecarb, Feox, and Femag contents, 

with a relative standard deviation (RSD) of less than 5% (Li et al., 2015). Sulfide was 

extracted and measured using a modified chromium reduction method (Canfield et al., 

1986), and Fepy content was then calculated based on a pyrite mineral formula of FeS2 (Li 
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et al., 2015). Recovery rates for pyrite extraction, as tested on a pure pyrite standard (Alfa 

Aesar) for two batches, are both > 92%. Since no international standards for sequential 

extraction of Fe species have been established, two internal laboratory standards (CUG-2, 

CUG-3) have been repeatedly used and tested in the Lyons Biogeochemistry Laboratory 

at the University of California, Riverside (UCR). Our average values of Fecarb, Feox, and 

Femag from CUG-2 are 0.13 ± 0.02% (1SD, n=7), 0.21 ± 0.02% (1SD, n=7), and 0.11 ± 

0.01% (1SD, n=7), which are in excellent agreement with average values for Fecarb 

(0.11%), Feox (0.20%), and Femag (0.10%) measured at UCR. Our average values of Fecarb, 

Feox, and Femag from CUG-3 are 1.21 ± 0.14% (1SD, n=4), 0.21 ± 0.02% (1SD, n=4), and 

0.52 ± 0.10% (1SD, n=4), which also match the average values for Fecarb (1.26%), Feox 

(0.20%), and Femag (0.64%) measured at UCR. 

 

3.2. Elemental analyses 

Trace element concentrations and U and Mo isotope compositions (see Section 

3.3 and 3.4) were measured at the W.M. Keck Foundation Laboratory for Environmental 

Biogeochemistry, School of Earth and Space Exploration, Arizona State University 

(ASU). Samples were powdered in a ball mill using silicon nitride jars. Splits of the 

powdered samples were ashed at 550C overnight (to oxidize organic matter) and 

dissolved in concentrated HF–HNO3–HCl. A weighed split of each sample solution was 

diluted with 0.32M HNO3 and element concentrations were analyzed using a Thermo i-

CAP quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS). A split of 

powder from the USGS Devonian Ohio Shale standard SDO-1 was dissolved and 
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analyzed along with samples to verify instrument accuracy. Trace element concentration 

reproducibility was within 10%. 

To evaluate local redox conditions during deposition of the studied stratigraphic 

units, the enrichment factors (EFs) of U, Mo, and Re were calculated relative to average 

upper crust. The EF is calculated as follows (Tribovillard et al., 2006): 

EF = [metal / Al]sample / [metal / Al]average upper crust 

The average upper crust data for U (2.8 mg/kg), Mo (1.5 mg/kg), and Al (8.04 wt.%) are 

from McLennan (2001), and Re (1.0 µg/kg) is from Selby et al. (2007).  

Total organic carbon (TOC) contents were analyzed by Activation Laboratories 

Ltd. The TOC is calculated by the difference between total carbon (TC) and total 

inorganic carbon (TIC). The TC was analyzed on an ELTRA CS 2000 Carbon Sulphur 

Analyzer. A split of the sample powder was weighed and combusted at 1370°C in a 

nearly pure oxygen environment. After removal of moisture and dust, the resulting 

CO2 released by combustion was measured using a solid-state infrared detector for TC. A 

separate split of sample powder was dissolved by 20% HCl, enabling the amount of TIC 

to be quantified using the same measurement procedure as described above. This 

procedure results in a detection limit of 0.5 wt.% for TOC content. 

 

3.3. Uranium isotopes 

Uranium isotope measurements followed the experimental procedures stated in 

Weyer et al. (2008) and Kendall et al. (2013). A weighed amount of double spike solution 

(
233

U and 
236

U) was added to a split of each digested sample solution to correct for 

column chromatography and instrument mass bias. Eichrom® UTEVA resin was used to 
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isolate and purify U from sample solutions. Uranium isotope measurements were 

performed on a Thermo Scientific Neptune multiple collector (MC) ICP-MS instrument 

using an ESI Apex desolvating nebulizer. The U isotope ratio (δ
238

U) of each sample was 

reported relative to the CRM145 standard: 

δ
238

U sample (‰) = (
238/235

U sample / 
238/235

U CRM145 – 1) × 1000 

Repeated measurements of the U isotope standards CRM145 (measured against 

itself) and CRM129a yielded average δ
238

U of 0.00 ± 0.09 ‰ (2SD, n=87) and –1.70 ± 

0.10 ‰ (2SD, n=8), respectively. The average value for CRM129a is statistically 

identical to that reported by earlier studies (Brennecka et al., 2011a; Kendall et al., 2013, 

2015). During the course of this study, the SDO-1 standard was also analyzed and yielded 

an average δ
238

U of –0.11 ± 0.10 ‰ (2SD, n=3), which is in agreement with the average 

of –0.06 ± 0.04 ‰ (2SD, n=17) reported for SDO-1 by Kendall et al. (2015). The 2SD 

uncertainty of a sample is reported as the 2SD uncertainty of sample replicate 

measurements or 0.09 ‰ (the average uncertainty of CRM145, CRM129a, and SDO-1), 

whichever is greater. 

 

3.4. Molybdenum isotopes 

Measurement of Mo isotope compositions followed the protocols stated in Duan 

et al. (2010) and Herrmann et al. (2012). A weighed amount of double spike (
97

Mo and 

100
Mo) was added to a split of each digested sample solution to correct for mass bias. 

Subsequently, the purification of Mo was carried out by a two-step column chemistry 

procedure that involved first anion and then cation exchange chromatography (Barling et 

al., 2001; Arnold et al., 2004; Duan et al., 2010). Molybdenum isotope analysis was 
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performed on the Neptune MC-ICP-MS instrument using an ESI Apex desolvating 

nebulizer.  

Molybdenum isotope data for samples are first measured relative to an in-house 

standard (RochMo2) and then are re-calculated relative to the new international NIST 

SRM 3134 standard (Nägler et al., 2014). Thus, Mo isotope data are reported as follows 

(Nägler et al., 2014): 

δ
98

Mo sample (‰) = 1000 × [(
98

Mo/
95

Mo)sample /(
98

Mo/
95

Mo)NIST SRM 3134) – 1] + 0.25 

By setting the δ
98

Mo of NIST SRM 3134 to +0.25 ‰, the δ
98

Mo of open ocean 

seawater is +2.34 ± 0.10 ‰ (2SD) (Goldberg et al., 2013; Nägler et al., 2014), which is 

statistically identical (given analytical uncertainties) to the seawater value (~+2.3 ‰) 

previously measured against many in-house standards in different laboratories (Barling et 

al., 2001; Siebert et al., 2003; Arnold et al., 2004; Nakagawa et al., 2012). In this way, the 

"traditional" seawater δ
98

Mo value of ~+2.3 ‰ can be kept and Mo isotope data 

measured relative to in-house standards in most laboratories can now be directly 

compared after re-normalizing to NIST SRM 3134 (Goldberg et al., 2013; Nägler et al., 

2014).  

 The NIST SRM 3134 standard has a heavier Mo isotope composition (+0.33 ± 

0.05 ‰; 2SD, n=99) compared with the in-house RochMo2 standard at ASU (Goldberg 

et al., 2013). In this study, the measured value for NIST SRM 3134 was +0.31 ± 0.04 ‰ 

(2SD, n=10) relative to RochMo2. Hence, 0.06 ‰ was subtracted from each sample Mo 

isotope composition measured relative to RochMo2 so that all data is reported relative to 

NIST SRM 3134 = +0.25 ‰. The average δ
98

Mo for SDO-1 in this study was +1.06 ± 

0.05 ‰ and +0.81 ± 0.05 ‰ (2SD, n=13) relative to NIST SRM 3134 = +0.25 ‰ and 

0.00 ‰, respectively. The latter value is in excellent agreement with the average δ
98

Mo 
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values for SDO-1 of +0.80 ± 0.14 ‰ (2SD, n=504) reported by Goldberg et al. (2013) for 

multiple laboratories, and +0.82 ± 0.11 ‰ (2SD, n=145) reported by Goldberg et al. 

(2013) for double spike analyses using the ASU Neptune MC-ICP-MS. Given the 

average uncertainty of SDO-1, we report the 2SD uncertainty of a sample as the 2SD 

uncertainty of sample replicate measurements or 0.11 ‰, whichever is greater. 

 

4. RESULTS 

 

4.1. TOC contents, iron speciation, and trace metal enrichments 

The Fjäcka Shale contains high TOC contents (4.0−8.2 wt.%) with an average of 

5.6 wt.% (Table 1 and Fig. 4). Consistently high ratios of FeHR/FeT (> 0.38) and 

Fepy/FeHR (> 0.79) (Fig. 5), together with high trace metal enrichments (UEF: 5.5−10.1; 

MoEF: 14.2−214.4; ReEF: 33.2−108.1) (Table 1), are observed for the Fjäcka Shale at both 

the Stumsnäs #1 and Solberga #1 localities (Figs. 6–7).  

Black shales from the Kallholn Formation in drillcore Solberga #1 have relatively 

lower TOC contents of 2.9 to 6.5 wt.% (average = 4.2 wt.%) compared with the Fjäcka 

Shale (Table 1, Figs. 4, 6). Lower trace metal EFs are observed in the Kallholn Formation 

black shales compared with the Fjäcka Shale (Fig. 7). The sample at 61.46 m has lower 

trace metal enrichments (UEF: 4.1; MoEF: 3.1; ReEF: 9.2) and lower Fe speciation ratios 

(FeHR/FeT = 0.28; Fepy/FeHR = 0.79) compared with other Kallholn Formation black shales 

(UEF: 4.2−6.7; MoEF: 10.1−32.7; ReEF: 11.0−55.1; FeHR/FeT ≥ 0.34; Fepy/FeHR ≥ 0.86) 

(Table 1, Figs. 4–5).  
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The gray shales in drill core Mora 001 have the lowest TOC contents (≤ 1.0 wt.%) 

and are also characterized by low FeHR/FeT (0.19−0.24) and Fepy/FeHR (0.47−0.60) ratios 

and low trace metal enrichments (UEF: 1.4−2.7; MoEF: 1.5−5.7; ReEF: 1.3−13.4) (Table 1, 

Figs. 4–7). 

 

4.2. Uranium and molybdenum isotope compositions  

The δ
238

U and δ
98

Mo of the Fjäcka Shale range from −0.24 ‰ to +0.10 ‰ and 

from +0.42 ‰ to +1.28 ‰, respectively (Table 1). The middle Fjäcka Shale in Stumsnäs 

#1 has the highest MoEF (> 103), UEF (> 8), and ReEF (> 68), and the highest δ
238

U 

(+0.01 ‰ to +0.10 ‰) and δ
98

Mo (+0.92 ‰ to +1.28 ‰). Overlying and underlying 

shales in this drillcore exhibit relatively lower δ
238

U (top: −0.17 ‰ to +0.01 ‰; bottom: 

−0.08 ‰ to +0.03 ‰) and lower δ
98

Mo (top: +0.58 ‰ to +1.09 ‰; bottom: +0.63 ‰ to 

+1.28 ‰). No obvious stratigraphic trend is observed for the Fjäcka Shale in Solberga #1 

(Fig. 4).  

The black shales of the Kallholn Formation in Solberga #1 yield generally lower 

δ
238

U (−0.34 ‰ to −0.10 ‰) and δ
98

Mo (+0.44 ‰ to +0.86 ‰) compared with the Fjäcka 

Shale. A similar observation can be made for the two gray shales of the uppermost 

Kallholn Formation (δ
238

U: −0.29 ‰ to −0.07 ‰; δ
98

Mo: +0.40 ‰ to +0.48 ‰) (Table 1). 

In the Fjäcka Shale, the δ
98

Mo values are moderately correlated with MoEF (R
2 

= 

0.61, n=21, p(α) < 0.0001), whereas the Kallholn Formation black and gray shales 

display no correlation (R
2 

= 0.05, n=7, p(α) = 0.6298) (Fig. 8a). Only a weak positive 

correlation between δ
238

U and UEF is observed for the Fjäcka Shale (R
2 

= 0.25, n=19, p(α) 
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= 0.0293), and no correlation is observed for the Kallholn Formation black and gray 

shales (R
2 

= 0.08, n=6, p(α) = 0.5871) (Fig. 8b). 

 

5. DISCUSSION 

 

5.1. Local marine redox conditions 

Shales deposited from locally euxinic bottom waters contain pronounced 

authigenic enrichments of redox-sensitive metals and are an attractive target for 

estimating global ocean redox conditions using Mo and U concentrations and isotope 

compositions (e.g., Gordon et al., 2009; Montoya-Pino et al., 2010). Consistently high 

ratios of FeHR/FeT (> 0.38) and Fepy/FeHR (> 0.79) as well as high MoEF, ReEF, and UEF 

indicate that the Fjäcka Shale was deposited from persistently euxinic bottom waters 

(Figs. 5, 7).  

On the contrary, the gray shales equivalent to the upper Kallholn Formation were 

likely deposited from oxygenated bottom waters, asindicated by low TOC contents and 

low FeHR/FeT ratios of 0.19−0.24. Since Re enrichment in sediments occurs under anoxic 

conditions with or without the presence of dissolved H2S whereas Mo removal from 

sediment pore waters requires dissolved H2S (i.e., more intensely reducing conditions), 

the relative enrichments of MoEF and ReEF in sediments can be further used to indicate the 

depth of O2 penetration into sediments (Morford and Emerson, 1999; Morford et al., 

2005). Some gray shales have small MoEF accompanied by stronger ReEF, suggesting O2 

penetration was < 1 cm below the sediment-water interface (Morford and Emerson, 1999; 

Morford et al., 2005). Other gray shales have low ReEF and MoEF, suggesting a greater 
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depth of O2 penetration (> 1 cm) into sediments that enables Re, U, and Mo diffusion 

from sediment pore waters back into the water column. Hence, the U and Mo isotope 

compositions of the grey shales are not suitable for inferring global ocean redox 

conditions. 

The more TOC-rich black shales of the Kallholn Formation were probably 

deposited under both non-euxinic and euxinic bottom water conditions. Weakly 

oxygenated conditions may be represented by sample 61.46 m, which has a low FeHR/FeT 

ratio (0.28) and low Mo (3.1) and Re (9.2) enrichments, although we cannot exclude the 

possibility of anoxic and ferruginous conditions. By comparison, the other Kallholn 

Formation black shales were likely deposited under euxinic waters based on their higher 

FeHR/FeT ratios (0.34−0.58), consistently high Fepy/FeHR (> 0.80) ratios, and elevated 

trace metal enrichments (Fig. 4). These observations suggest that the position of the 

chemocline fluctuated and was close to the sediment-water interface during deposition of 

the Kallholn Formation black shales. A switch from euxinic conditions to oxygenated 

conditions can cause re-mobilization and re-deposition of redox-sensitive trace metals at 

deeper depths within sediments, thus obscuring the original depositional trends (Morford 

and Emerson, 1999; Morford et al., 2005). Hence, we conclude that the black shales of 

the Kallholn Formation may not be suitable for inferring global ocean redox conditions 

by using Mo-U isotopes.  

Because the Fjäcka Shale was deposited from persistently euxinic bottom waters, 

it is the main focus of our efforts to infer global ocean redox conditions in the following 

discussion. In the Fjäcka Shale, the correlation between Mo and TOC is poor (R
2
 = 0.04, 

n=18, p(α) = 0.4262), as is the correlation between U and TOC contents (R
2
 = 0.16, n=18, 
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p(α) = 0.1000) (Fig. 6). The weak correlation between U and TOC contents is not 

unexpected for ORMs deposited under euxinic conditions because U may not be directly 

associated with organic matter in ORMs but rather can be found in authigenic phases like 

UO2 (Algeo and Maynard, 2004; Tribovillard et al., 2006). However, the poor correlation 

between Mo and TOC contents was not expected because strong Mo-TOC correlations 

are commonly observed for sediments deposited in modern euxinic basins (Algeo and 

Lyons, 2006; Georgiev et al., 2011). By contrast, Re and TOC contents are well-

correlated in the Fjäcka Shale (R
2
 = 0.93 if sample 135.01 m is excluded, n=17, p(α) < 

0.0001), clearly indicating a hydrogenous origin for Re (e.g., Anbar et al., 2007). The 

reason for the poor Mo-TOC correlation in the Fjäcka Shale is not known, but may be 

related to water chemistry (e.g., pH; Helz et al., 2011) or to multiple host phases for Mo 

(e.g., both organic matter and sulfide minerals; Chappaz et al., 2014) rather than post-

depositional disturbance (Ardakani et al., 2016) given that a good Re-TOC correlation 

and minimal open-system Re-Os isotope behavior was observed for these ORMs (Stein et 

al., 2009, 2014). 

Low Mo/TOC ratios and low MoEF/UEF ratios in euxinic sediments are observed 

in strongly restricted basins like the Black Sea due to highly efficient removal of Mo to 

sediments and slow Mo recharge rates from the open ocean (Algeo and Lyons, 2006; 

Algeo and Tribovillard, 2009). Neither feature is observed in the Fjäcka Shale. Although 

Mo/TOC ratios of the Fjäcka Shale vary widely (average: 13.5 mg/kg/wt.%), most are 

intermediate between that of modern euxinic sediments in the Saanich Inlet (~45 

mg/kg/wt.%) and Black Sea (~4.5 mg/kg/wt.%) (Algeo and Lyons, 2006), suggesting no 

more than moderate basin restriction during Fjäcka Shale deposition (Fig. 6a; particularly 
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if the global oceanic Mo reservoir during the late Katian was lower than the modern 

ocean, which would cause lower Mo/TOC ratios in ORM). This interpretation is 

consistent with Mo/U ratios of the Fjäcka Shale. High MoEF/UEF ratios (average = 5.1) in 

the Fjäcka Shale, which in some cases exceed three times the modern seawater molar 

Mo/U ratio, can be explained by more efficient removal of Mo to euxinic sediments 

compared with U, but without significant drawdown of seawater Mo concentrations (Fig. 

7a; Algeo and Tribovillard, 2009). These interpretations are consistent with the 

MoEF/ReEF ratios (average = 1.7) of the Fjäcka Shale, which are broadly similar to the 

molar Mo/Re ratio of modern seawater (Fig. 7b).   

The ORMs of the Fjäcka Shale in Solberga #1 and Stumsnäs #1 have some 

similarities and differences in geochemical characteristics (Table 2). Significant overlap 

in the TOC contents, Fe speciation ratios, and ReEF is observed between the two 

drillcores, and there is no meaningful statistical difference between the drillcore averages 

(based on unpaired t-tests). The Fe speciation ratios indicate euxinic conditions for the 

Fjäcka Shale at both the Solberga #1 and Stumsnäs #1 localities, but this technique is not 

capable of precisely quantifying the H2S levels of euxinic waters and thus cannot be used 

to determine if the two localities had strongly ([H2S]aq > 11 µM) or weakly ([H2S]aq < 11 

µM) euxinic bottom waters. Distinctly higher MoEF (and to a lesser extent UEF) are 

observed in Stumsnäs #1, suggesting more strongly euxinic bottom water conditions at 

this locality. Hence, the ORMs from Stumsnäs #1 may be the most suitable for inferring 

global ocean redox conditions using Mo isotopes. Indeed, higher δ
98

Mo is observed in the 

Fjäcka shale in the Stumsnäs #1 core. Although higher δ
238

U is also observed in 

Stumsnäs #1, the δ
238

U of modern euxinic sediments does not appear dependent on the 
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amount of H2S in bottom waters, unlike δ
98

Mo (Neubert et al., 2008; Andersen et al., 

2014; Holmden et al., 2015). Possibly, this explains the moderate correlation between 

MoEF and δ
98

Mo, but poor correlation between UEF and δ
238

U in the Fjäcka Shale (see 

Section 4.2).    

 

5.2. Uranium isotope constraints on the extent of anoxia in the late Katian ocean 

5.2.1. The U isotope paleoredox proxy 

Uranium is primarily derived from the oxidative weathering of continental crust, 

and subsequent transport of dissolved U(VI) by rivers to the oceans (Morford and 

Emerson, 1999; Dunk et al., 2002; Partin et al., 2013). In modern oxygenated seawater, U 

is highly soluble and mainly exists as uranyl carbonate (UO2[CO3]3
4-

; Langmuir, 1978), 

with a long residence time (~ 400−500 kyr) in the oceans (Ku et al., 1977; Dunk et al., 

2002). In contrast, soluble U(VI) is reduced to insoluble U(IV) below the sediment-water 

interface, primarily because of microbial Fe(III) and sulfate reduction (abiotic reduction 

of U is kinetically slower), resulting in removal of U from anoxic pore waters into 

organic matter, sulfide minerals, and authigenic U phases (e.g., uraninite) (Anderson, 

1987; Anderson et al., 1989; Barnes and Cochran, 1990; Morford and Emerson, 1999; 

McManus et al., 2006; Tribovillard et al., 2006; Asael et al., 2013; Partin et al., 2013). 

Biogenic carbonates, sediments deposited from anoxic and suboxic waters, and coastal 

zones are major sinks for U. Sediments deposited from well-oxygenated waters and 

hydrothermally altered oceanic crust are minor U sinks (Morford and Emerson, 1999; 

Dunk et al., 2002; Partin et al., 2013; Noordmann et al., 2015; Tissot and Dauphas, 2015; 

Andersen et al., 2016; Wang et al., 2016). 
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The U isotope system is a promising ocean paleoredox proxy that has been 

applied to carbonates (Brennecka et al., 2011a; Romaniello et al., 2013; Chen et al., 

2016), Fe-Mn crusts (Goto et al., 2014; Noordmann et al., 2016; Wang et al., 2016), and 

ORMs (Weyer et al., 2008; Montoya-Pino et al., 2010; Asael et al., 2013; Kendall et al., 

2013, 2015). Modern well-oxygenated seawater has a δ
238

U of −0.39 ± 0.01 ‰ (Stirling 

et al., 2007; Weyer et al., 2008; Tissot and Dauphas, 2015; Andersen et al., 2016; 

Noordmann et al., 2016). The average δ
238

U of the upper crust (−0.29 ± 0.04 ‰; Tissot 

and Dauphas, 2015; Noordmann et al., 2016) is slightly higher than that of modern 

seawater by ~+0.1 ‰. The range of average δ
238

U values suggested for rivers (–0.27 ‰ 

to –0.34 ‰) is similar to average upper crust, implying minor U isotope fractionation 

(∆
238

Usediment−SW) during weathering and river transport (Stirling et al., 2007; Tissot and 

Dauphas, 2015; Andersen et al., 2016; Noordmann et al., 2016). Minor U sources to 

seawater such as groundwater and aeolian inputs are poorly constrained (Dunk et al., 

2002; Tissot and Dauphas, 2015).  

In anoxic environments, a large, volume-dependent, U isotope fractionation 

accompanies the reduction and precipitation of U, resulting in preferential removal of the 

heavier 
238

U isotope from seawater to sediments (Biegeleisen, 1996; Schauble, 2007; 

Stirling et al., 2007; Weyer et al., 2008; Montoya-Pino et al., 2010; Andersen et al., 2014; 

Noordmann et al., 2015). Recent ORMs from Black Sea Unit I, deposited from strongly 

euxinic waters (H2S(aq) > 11 µM), have an average δ
238

U value of +0.03 ± 0.20 ‰ (Weyer 

et al., 2008; Montoya-Pino et al., 2010), which is about +0.4 ‰ higher compared with 

that of modern global seawater. However, the magnitude of U isotope fractionation 

observed in the Black Sea can only be regarded as a minimum value because the Black 
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Sea is a strongly restricted basin (Anderson et al., 1989) and partial U depletion (~40%) 

in the deep waters has occurred due to U burial in sediments coupled with slow rates of 

deep water renewal (Andersen et al., 2014). Similar logic applies to the Kyllaren fjord, 

Norway (Noordmann et al., 2015). A U isotope fractionation factor of ~+0.62 ± 0.17 ‰ 

(2σ) between global seawater and authigenic U in euxinic sediments was observed for the 

more open ocean Saanich Inlet, Canada (Holmden et al., 2015). This larger isotope 

fractionation is more similar to that observed during microbially-mediated U reduction 

(+0.68 ‰ to +0.99 ‰; average ~ +0.85 ‰), which may be the main process responsible 

for U removal to sediments (Basu et al., 2014; Stirling et al., 2015; Stylo et al., 2015). 

Hence, the representative U isotope fractionation between modern seawater and open 

ocean euxinic sediments may be about +0.60 ‰ to +0.85 ‰. Previous U isotope 

paleoredox studies assumed a fractionation of only ~+0.5−0.6 ‰ (e.g., Montoya-Pino et 

al., 2010; Brennecka et al., 2011a; Kendall et al., 2015). 

The magnitude of U isotope fractionation is smaller in other marine sinks. 

Sediments from the Peru continental margin overlying suboxic bottom waters have 

slightly higher δ
238

U (−0.28 ± 0.19 ‰) than modern seawater (Weyer et al., 2008). The 

Fe-Mn crusts from the Pacific ocean overlying well-oxygenated bottom waters have an 

average δ
238

U value of −0.65 ± 0.05 ‰ (Goto et al., 2014) to −0.61 ± 0.09 ‰ (Wang et 

al., 2016). Hence, Fe-Mn crusts are offset by about –0.25 ‰ from seawater, consistent 

with experimental observations (Brennecka et al., 2011b). Primary carbonate precipitates 

have an average δ
238

U (−0.37 ± 0.12 ‰) that is indistinguishable from global seawater 

regardless of biological or mineralogical origin (Romaniello et al., 2013), consistent with 

minor to negligible isotope fractionation during co-precipitation of U with calcite and 
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aragonite (Chen et al., 2016). However, the δ
238

U of shallow bulk carbonates that contain 

dissolved H2S in pore waters exhibit a U isotope fractionation of +0.2−0.4 ‰ compared 

with that of modern seawater (Romaniello et al., 2013). Low-temperature hydrothermal 

alteration of oceanic basalts may be associated with a net U isotope fractionation of about 

+0.25 ‰, favoring removal of the heavier 
238

U isotope into altered basalts (Andersen et 

al., 2015; Tissot and Dauphas, 2015; Noordmann et al., 2016). The magnitude of U 

isotope fractionation in coastal retention zones (due to U uptake by oxide minerals and 

organic matter) may be around −0.24 ‰, although more work needs to be done to 

confirm this value (Tissot and Dauphas, 2015).  

Based on this modern framework, an expansion of ocean anoxia will increase the 

extent of preferential removal of isotopically heavier U from seawater to anoxic 

sediments, thus resulting in lighter δ
238

U for global seawater (Weyer et al., 2008; 

Montoya-Pino et al., 2010; Brennecka et al., 2011a). Therefore, ancient ORMs deposited 

during times of more expanded ocean anoxia compared with today will take on a lower 

δ
238

U signature as seawater δ
238

U shifts to lower values. 

 

5.2.2. Uranium isotope composition of the late Katian ocean 

Given the moderate authigenic U enrichments in the Fjäcka Shale (UEF = 5.5–

10.1), the bulk δ
238

U in these rocks were influenced to a minor extent by detrital minerals, 

thus requiring calculation of authigenic δ
238

U. Holmden et al. (2015) proposed that 

detrital δ
238

U may have a much lower value (−0.83 ± 0.12 ‰) in Saanich Inlet sediments 

compared with the average upper crust as a result of preferential release of 
238

U into 

solution during weathering. However, Tissot and Dauphas (2015) and Andersen et al. 
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(2016) suggested limited overall U isotope fractionation between the upper continental 

crust and rivers as a result of weathering. Nevertheless, because local variations in the 

δ
238

U of detrital material are possible, a range of detrital δ
238

U (−0.8 ‰ to −0.3 ‰) is 

reasonable to use for calculating the proportion and isotopic composition of authigenic U 

in the Fjäcka Shale. Calculation of the authigenic δ
238

U can be done using the following 

equation (Asael et al., 2013): 

δ
238

Ua = δ
238

Us – (Al/U)s × {(δ
238

Ud – δ
238

Us) / [(Al/U)d – (Al/U)s]} 

where “a”, "s", and "d" represent authigenic U, sample U, and detrital U, respectively. 

Detrital Al and U concentrations are assumed to be the average upper continental crust 

values of 8.04 wt.% and 2.8 mg/kg, respectively (McLennan, 2001).  

The average authigenic δ
238

U of the Fjäcka Shale for both drillcores is −0.05 ± 

0.11 ‰ (1SD) and +0.02 ± 0.11 ‰ (1SD) when using detrital δ
238

U values of −0.3 ‰ and 

−0.8 ‰, respectively. After correction, it is found that the detrital component comprises 

up to 15% of the U in the Fjäcka Shale. Although Stumsnäs #1 may represent the more 

euxinic site during deposition of the Fjäcka Shale based on the higher Mo enrichments at 

that locality, the δ
238

U of euxinic ORMs is not thought to depend on the amount of 

aqueous H2S in the water column (Andersen et al., 2014; Holmden et al., 2015). Hence, 

we report an overall average authigenic δ
238

U of ~0 ‰ for both drillcores (Table 3).  

Applying the U isotope fractionation between global seawater and open ocean 

euxinic sediments (+0.60 ‰ to +0.85 ‰) to the average authigenic δ
238

U of the Fjäcka 

Shale (~0 ‰), we suggest that the δ
238

U of the late Katian ocean was approximately 

−0.60 ‰ to −0.85 ‰, which is lower than the modern well-oxygenated ocean (–0.4 ‰). 

Hence, the late Katian ocean was characterized by a greater extent of anoxia compared 
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with today. We now use a simple U isotope mass-balance model to quantify the extent of 

anoxia.  

 

5.2.3. Quantitative constraints on the extent of anoxia in the late Katian ocean 

5.2.3.1. Uranium isotope mass balance in the modern ocean 

 Uranium isotope mass balance modeling can be used to obtain a first-order 

estimate of the extent of anoxic conditions in the late Katian ocean. This method has been 

used to constrain the extent of ocean anoxia during the Cretaceous Oceanic Anoxic Event 

2 (OAE2) (Montoya-Pino et al., 2010) and the end-Permian mass extinction event 

(Brennecka et al., 2011a). The U isotope mass balance equation is defined below 

(Montoya-Pino et al., 2010): 

δ
238

Uinput =  (fanox × δ
238

Uanox) + (fother × δ
238

Uother), 

where “input” = riverine U inputs, “anox” = anoxic and euxinic U sinks, “other” = all 

other U sinks (suboxic, carbonates, Fe-Mn oxides, oceanic crust alteration including high 

temperature [HT] and low temperature [LT], pelagic clays, coastal), “f” = the fraction of 

U removed into each corresponding sink, and fother + fanox = 1.  

 The average δ
238

U of the input is assumed to be equivalent to the riverine average 

of approximately −0.3 ‰ (Tissot and Dauphas, 2015; Andersen et al., 2016; Noordmann 

et al., 2016) given that aeolian and groundwater inputs are small and poorly characterized. 

An overall fractionation factor (+0.043 ‰) between the “other” sinks and modern 

seawater can be calculated as the weighted average of those individual sinks in the 

modern ocean, suggesting an average δ
238

U of −0.357 ‰ for the "other" sinks (Andersen 

et al., 2014, 2016; Tissot and Dauphas, 2015; Wang et al., 2016; Noordmann et al., 2016; 
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Table 4). Applying a fractionation factor of +0.60 ‰ to +0.85 ‰ between global 

seawater and anoxic/euxinic sediments, a δ
238

U range of +0.20 ‰ to +0.45 ‰ is assumed 

for the modern anoxic/euxinic sink. Applying these values to the U isotope mass balance 

equation and assuming steady-state conditions, 7−10% of the riverine U flux is removed 

into the anoxic/euxinic sink. Therefore, other sinks represent 90-93% of the U removal 

flux (Fig. 9A). 

 

5.2.3.2. Uranium isotope mass balance in the late Katian ocean 

 The U isotope mass balance equation can be used to estimate the proportion of U 

that was removed into the anoxic sink in the late Katian using the modern mass balance 

as a starting point (Montoya-Pino et al., 2010; Brennecka et al., 2011a). As described 

previously, late Katian seawater δ
238

U may have been –0.60 ‰ to –0.85 ‰ based on the 

average authigenic δ
238

U of the Fjäcka Shale (~0 ‰; assumed to be representative of the 

anoxic/euxinic sink at this time). The δ
238

U of late Katian rivers is assumed to be similar 

to the modern value (–0.3 ‰) since the eroding upper continental crust today and during 

the late Katian probably had a similar U isotope composition (e.g., Andersen et al., 2015; 

Dhuime et al., 2015; Tang et al., 2016). It is assumed that U isotope fractionations 

between seawater and the two defined sinks were similar for the late Katian and modern 

oceans. Hence, when late Katian seawater = –0.60 ‰, then the δ
238

U of the 

anoxic/euxinic sink and all other sinks are 0 ‰ (= –0.60 ‰ + 0.60 ‰) and –0.557 ‰ (= –

0.60 ‰ + 0.043 ‰), respectively. When late Katian seawater = –0.85 ‰, then the δ
238

U 

of the anoxic/euxinic sink and all other sinks are 0‰ (= –0.85 ‰ + 0.85 ‰) and –0.807 ‰ 

(= –0.85 ‰ + 0.043 ‰), respectively. 
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 Based on these estimates for the U isotope composition of the two sinks, we 

calculate that the anoxic/euxinic U sink and the other U sinks in the late Katian ocean 

constitute 46−63% and 37−54%, respectively, of the total U sink flux (Fig. 9B). 

According to the U isotope mass balance model, the proportion of U removed to 

anoxic/euxinic sinks in the late Katian ocean may have been approximately four to nine 

times larger compared with that of the modern ocean, thus indicating a greater extent of 

late Katian ocean anoxia compared with modern well-oxygenated ocean. Applying the 

same logic and calculation method (a simple steady-state U isotope mass balance model 

with two sinks and a U isotope fractionation of +0.60−0.85 ‰ between seawater and the 

anoxic/euxinic sink) to other U isotope studies, we provide new estimates for the 

proportions of U removed into the anoxic/euxinic sink during the OAE2, late Permian, 

and late Ediacaran (Table 5). These calculations show that the size of the anoxic/euxinic 

U sink during the late Katian overlaps with estimates for OAE2 and the late Permian, and 

was significantly higher compared with the late Ediacaran and today. 

 

5.3. Marine redox conditions during the late Katian as inferred from Mo isotopes 

5.3.1. The Mo isotope paleoredox proxy 

Dissolved Mo in seawater is mainly derived from oxidative weathering of the 

upper crust and transportation of soluble molybdate (MoO4
2-

) by rivers to the oceans. 

Molybdenum behaves conservatively in oxygenated seawater and has a long residence 

time of 440 kyr (Miller et al., 2011). In anoxic settings, Mo becomes insoluble and is 

removed into sediments, especially in the presence of dissolved sulfide (e.g., Emerson 

and Huested, 1991; Helz et al., 1996, 2011; Erickson and Helz, 2000; Scott et al., 2008; 
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Scott and Lyons, 2012). Intermediate thiomolybdate ions (e.g., MoO4-xSx
2-

) are the 

dominant species if the H2S(aq) concentration is low, whereas tetrathiomolybdate (MoS4
2-

) 

and to a lesser extent trithiomolybdate (MoOS3
2-

) occurs when H2S(aq) is > ~11 µM 

(Erickson and Helz, 2000; Nägler et al., 2011). Reactions with zero-valent sulfur are 

suggested to form particle-reactive Mo polysulfides that are sequestered by organic 

matter and solid Fe-S phases (Helz et al., 1996, 2011; Erickson and Helz, 2000; 

Tribovillard et al., 2004, 2006; Algeo and Lyons, 2006; Dahl et al., 2013; Chappaz et al., 

2014). 

The Mo isotope system in ORM has been used widely over the past 12 years to 

reconstruct global ocean paleoredox conditions (e.g., Arnold et al., 2004; Siebert et al., 

2005; Wille et al., 2007, 2008; Pearce et al., 2008, 2010; Gordon et al., 2009; Kendall et 

al., 2009, 2011, 2015; Dahl et al., 2010a, 2011; Duan et al., 2010; Dickson and Cohen, 

2012; Dickson et al., 2012; Herrmann et al., 2012; Zhou et al., 2012, 2015; Asael et al., 

2013; Proemse et al., 2013; Westermann et al., 2014; Chen et al., 2015; Kurzweil et al., 

2015). The modern ocean has a δ
98

Mo of +2.34 ± 0.10 ‰ (Barling et al., 2001; Siebert et 

al., 2003; Nakagawa et al., 2012; Nägler et al., 2014) that is significantly higher than 

rivers (average = +0.7 ‰; Archer and Vance, 2008). This difference in isotopic 

composition between the rivers and oceans arises from the preferential removal of lighter 

Mo isotopes in sediments, which is most pronounced in oxygenated settings. 

In well-oxygenated ocean sediments, lighter Mo isotopes preferentially adsorb to 

Fe-Mn oxides and crusts, resulting in an equilibrium isotope fractionation of ~3 ‰ and an 

average δ
98

Mo for Fe-Mn oxides and crusts of around –0.7 ‰ (Barling et al., 2001; 

Siebert et al., 2003; Poulson et al., 2006; Poulson Brucker et al., 2009). In contrast, a 
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much smaller Mo isotope fractionation (0.7 ‰) is observed in continental margin ORMs 

deposited in weakly oxygenated and anoxic environments (O2 ≤ 10 µM) where H2S is 

restricted to the sediment pore waters, resulting in sediments with a δ
98

Mo of ~+1.6 ‰ 

(Poulson et al., 2006; Siebert et al., 2006; Poulson Brucker et al., 2009; Goldberg et al., 

2012). More intermediate redox environments are characterized by a range of 

intermediate δ
98

Mo that reflects the relative importance of Fe versus Mn oxide formation 

in the water column and subsequent reductive dissolution of these oxides in sediments 

and complexing of Mo with dissolved sulfide from sediment pore waters (Siebert et al., 

2006; Poulson Brucker et al., 2009; Goldberg et al., 2009, 2012). Specifically, Mn-rich 

and Fe-rich sediments with low dissolved porewater H2S have δ
98

Mo of –1.0 ‰ to +0.4 ‰ 

and –0.5 ‰ to +2.0 ‰, respectively (Siebert et al., 2006; Goldberg et al., 2009, 2012). 

In a strongly euxinic environment (H2S(aq) ≥ 11 µM) with slow recharge of Mo to 

deep waters (i.e., restricted marine basin or lakes), molybdate is rapidly transformed to 

trithiomolybdate and tetrathiomolybdate and subsequently to Mo polysulfide species, and 

removed nearly quantitatively from bottom waters to sediments, as observed in the 

modern Black Sea, Kyllaren fjord, and Lake Cadagno, Switzerland (Neubert et al., 2008; 

Dahl et al., 2010b, 2013; Noordmann et al., 2015). In this scenario, global seawater 

δ
98

Mo is directly captured by the euxinic sediments, despite the pronounced basin 

restriction, because of the long oceanic residence time of Mo (Barling et al., 2001; Arnold 

et al., 2004; Neubert et al., 2008; Noordmann et al., 2015). Based on Black Sea 

measurements, a minor Mo isotope fractionation of 0.5 ± 0.3 ‰ may occur between 

dissolved trithiomolybdate or tetrathiomolybdate and authigenic solid-phase Mo in 

sediments if there is incomplete removal of Mo from strongly euxinic bottom waters 
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(Nägler et al., 2011). The δ
98

Mo of organic-rich sediments in weakly euxinic 

environments (H2S(aq) < 11 µM) is known to display a much larger range of Mo isotope 

fractionation (up to ~3 ‰), which may be caused by incomplete conversion of molybdate 

to the highly reactive trithiomolybdate and tetrathiomolybdate species (each reaction step 

in the conversion of molybdate to tetrathiomolybdate is associated with Mo isotope 

fractionation) or periodic flushing of the basin with O2-rich waters (Arnold et al., 2004; 

Nägler et al., 2005; Tossell, 2005; Neubert et al., 2008; Nägler et al., 2011; Noordmann et 

al., 2015).  

Based on these modern observations, a more oxygenated ocean should have a 

higher δ
98

Mo than a more anoxic ocean because a generally smaller extent of Mo isotope 

fractionation occurs between seawater and sediments under anoxic conditions (and 

especially under strongly euxinic conditions), thus limiting the increase of seawater 

δ
98

Mo over the river baseline. The δ
98

Mo of strongly euxinic ORMs has the best potential 

of all ORM to record the global seawater δ
98

Mo during deposition and thus capture direct 

information about the extent of global ocean euxinia (because Mo burial is extremely 

efficient in euxinic settings; Arnold et al., 2004; Neubert et al., 2008; Scott et al., 2008).  

 

5.3.2. Extent of late Katian ocean euxinia 

 The more euxinic Fjäcka Shale from Stumsnäs #1 (based on Mo enrichments) has 

a higher average δ
98

Mo (+0.91 ± 0.26 ‰; 1SD) compared with Solberga #1 (+0.62 ± 

0.12 ‰; 1SD) (Table 2; detrital Mo represents < 5% of the Mo budget for each sample, 

so no correction for detrital Mo was made). The highest δ
98

Mo of +1.24−1.28 ‰ occurs 

in samples 219.74 m, 219.95 m, and 220.87 m from Stumsnäs #1, which have high MoEF 
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(62−214) and Mo/TOC ratios (11−37 mg/kg/wt.%), suggesting these samples are most 

likely to mimic seawater δ
98

Mo during deposition (e.g., Arnold et al., 2004; Gordon et al., 

2009; Dahl et al., 2010a). However, the high Mo enrichments indicate that Mo removal 

from bottom waters was probably not quantitative and thus even these highest δ
98

Mo 

values are probably only minimum estimates for coeval seawater.  

High MoEF/UEF ratios for the Fjäcka Shale, in some cases exceeding three times 

the modern seawater molar Mo/U ratio, indicate the potential operation of an Fe-Mn 

particulate shuttle (Fig. 7a) (Algeo and Tribovillard, 2009). The particulate shuttle can 

enrich sediments in isotopically light Mo through reductive dissolution of Mo-bearing Fe-

Mn oxides in sediments and recapture of the Mo by sulfides and organic matter (e.g., 

Herrmann et al., 2012; Scholz et al., 2013; Cheng et al., 2016). In this scenario, the 

Fjäcka Shale samples with the highest MoEF/UEF ratios should generally have lower 

δ
98

Mo than samples with lower MoEF/UEF ratios. However, the samples with the highest 

δ
98

Mo have high MoEF/UEF ratios, implying that a particulate shuttle did not significantly 

influence the δ
98

Mo of the Fjäcka Shale. In addition, a steep slope of (MoEF/UEF)auth is 

typically observed with operation of a particulate shuttle in modern anoxic basins (Algeo 

and Tribovillard, 2009), but this is not observed for the Fjäcka Shale (Fig. 7a). A 

moderate positive correlation is observed between Mo enrichments and δ
98

Mo for the 

Fjäcka Shale. These observations collectively suggest that dissolved sulfide levels in the 

water column rather than an Fe-Mn particulate shuttle influenced the Mo systematics in 

these rocks (Fig. 8a). 

 Although high Mo enrichments and Fe speciation can fingerprint local euxinic 

bottom water conditions, these proxies cannot reveal whether bottom water H2S(aq) was 
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high enough for quantitative conversion of molybdate to tetrathiomolybdate and Mo 

polysulfide species. It is thus possible that Mo isotope fractionation between seawater and 

the Fjäcka Shale occurred as a result of deposition from weakly euxinic bottom waters. 

The modern Cariaco Basin and shallower parts of the Black Sea (near the chemocline) 

both contain weakly euxinic bottom waters (H2S(aq) < 11 µM) but the sediments in these 

two locations have distinctly different ranges in δ
98

Mo (+1.5 ‰ to +2.2 ‰, and –0.6 ‰ 

to +0.9 ‰, respectively; Arnold et al., 2004; Neubert et al., 2008). The reasons for the 

different δ
98

Mo in these two weakly euxinic settings are poorly understood. If the Fjäcka 

Shale is analogous to the deep Cariaco Basin (i.e., deep-water deposition and more 

similar extent of basin restriction), then applying the observed Mo isotope fractionations 

of 0.1−0.8 ‰ characterizing the deep Cariaco Basin to the heaviest δ
98

Mo in the Fjäcka 

Shale suggests that late Katian seawater δ
98

Mo was between +1.4 ‰ and +2.1 ‰.  

 It is also possible that the Fjäcka Shale was deposited in a strongly euxinic setting 

such that Mo isotope fractionation resulted solely from non-quantitative removal of Mo 

from the bottom waters. A 0.5 ± 0.3 ‰ fractionation between strongly euxinic bottom 

waters and sediments may occur when there is quantitative conversion of all intermediate 

thiomolybdates to trithiomolybdates or tetrathiomolybdates but incomplete removal of 

Mo from the bottom waters into sediments (we note that this fractionation factor was 

estimated for the Black Sea and has yet to be verified in other modern anoxic basins; 

Nägler et al., 2011). If this situation applies to the Fjäcka Shale, then late Katian seawater 

δ
98

Mo should be ~+1.5−2.1 ‰, which is similar to the estimate derived for the 

assumption of Cariaco-style weakly euxinic conditions.  
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 In both cases (weakly or strongly euxinic), the inferred late Katian seawater 

δ
98

Mo (between +1.4 ‰ and +2.1 ‰) is lower than the modern ocean, indicating a 

greater extent of euxinia compared with today. For this range of seawater δ
98

Mo, between 

about 10% and 70% of the riverine Mo flux could have been removed into the euxinic 

sink, as calculated by Chen et al. (2015) assuming steady-state conditions and a three sink 

(oxic, suboxic, and euxinic) mass balance model for Mo. 

 

5.4. Implications for Late Ordovician ocean redox conditions and the first phase of 

the Hirnantian mass extinction 

The global seawater δ
238

U and δ
98

Mo inferred for the late Katian can be used to 

infer the areal extent of general ocean anoxia and euxinia, respectively. Mass balance 

models have been developed by recent studies to relate the magnitude of Mo and U burial 

fluxes into sediments of different redox character (and the associated isotope 

fractionations for each redox setting) to the areal extent of seafloor covered by those 

sinks (Dahl et al., 2011; Reinhard et al., 2013; Chen et al., 2015; Wang et al., 2016), and 

we used the results of mass balance modelling shown in the tables and figures from these 

studies to get our estimates. The mass balance models are tailored to the specific redox 

geochemistry of each metal. Based on the Mo concentration of the euxinic Fjäcka Shale 

and our estimate of late Katian seawater δ
98

Mo, the actual area of seafloor covered by 

euxinic waters was probably < 1% of the total seafloor (compared with < 0.2% today; 

Dahl et al., 2011; Reinhard et al., 2013, Chen et al., 2015). By comparison, the estimated 

late Katian seawater δ
238

U suggests that general ocean anoxia (both euxinic and 

ferruginous conditions) covered at least 5% (potentially tens of percent; precise estimates 
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are not possible given large uncertainties in U isotope fractionation factors for the anoxic 

and suboxic sinks) of the total seafloor (compared with 0.21−0.35% today and <1% 

during the Cenozoic Era), based on the model of Wang et al. (2016).  

The significant difference in the extent of seafloor covered by euxinic waters (as 

inferred from Mo isotopes) and anoxic waters (euxinic plus ferruginous; as inferred from 

U isotopes) points to an appreciable extent of anoxic and ferruginous water masses in the 

late Katian ocean. This finding is consistent with Fe speciation evidence for ferruginous 

water masses at some times and places in the oceans during the early Paleozoic 

(Cambrian to Devonian; Sperling et al., 2015). A greater extent of weakly/mildly 

oxygenated waters potentially also accompanied this larger extent of ocean anoxia during 

the late Katian, in which case the areal extent of strongly oxygenated deep waters beneath 

which Fe-Mn oxides were permanently buried was significantly lower than today 

(Reinhard et al., 2013; Chen et al., 2015; Wang et al., 2016). Our study highlights that the 

combined application of the Mo and U isotope paleoredox proxies has good potential to 

significantly improve constraints on the global extent and spatiotemporal variation of 

euxinic and ferruginous ocean redox conditions during the early Paleozoic, which is 

important for understanding the transition to generally widespread ocean oxygenation and 

its impact on biogeochemical cycles and metazoan evolution. Because the seawater 

residence times of Mo and U should be substantially higher than ocean mixing times even 

at significant extents of ocean anoxia (e.g., Dahl et al., 2011), the coupled Mo-U isotope 

approach may better constrain the global extent of ferruginous versus euxinic waters 

compared with Fe speciation, which is strictly a local redox proxy.       
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A small number of samples of early Hirnantian ORM from South China have 

δ
98

Mo that is similar to modern seawater δ
98

Mo (Zhou et al., 2012, 2015). Most of these 

samples also have high MoEF (> 200) that suggest deposition from locally euxinic bottom 

waters in a moderately restricted basin that had sufficient access to a large dissolved Mo 

reservoir (Scott and Lyons, 2012). This combination of high Mo enrichment and high 

δ
98

Mo points to widespread ocean oxygenation since mass balance constraints dictate that 

only this redox state permits both a large global oceanic Mo reservoir and high seawater 

δ
98

Mo (Scott et al., 2008; Dahl et al., 2010b; Reinhard et al., 2013; Chen et al., 2015; 

Kendall et al., 2015). We agree with Zhou et al. (2015) that the high δ
98

Mo from the early 

Hirnantian ORM may reflect intensification of local euxinia but advocate that the high 

δ
98

Mo also requires a well-oxygenated global redox state (other samples with lower 

δ
98

Mo may simply reflect non-euxinic conditions or lower bottom water [H2S]aq). Hence, 

we re-interpret the Mo isotope data from the South China ORM together with the Mo and 

U isotope data from the Fjäcka Shale in central Sweden as evidence for an increase in 

ocean oxygenation from the late Katian to early Hirnantian in response to glaciation. The 

Hirnantian glaciation would have lowered ocean temperatures, thus increasing the 

solubility of O2 in seawater, and decreased the nutrient supply to the oceans via reduced 

rates of continental weathering. Global cooling likely increased the temperature gradient 

between the equatorial and polar areas, thus causing increased wind-driven mixing of 

ocean waters. Together these factors promoted increased ocean oxygenation and therefore 

the reduction of O2-depleted deeper waters (LaPorte et al., 2009). 

Positive excursions in δ
34

Spy, δ
34

Ssulfate, δ
13

Ccarb, and δ
13

Corg during the early-mid 

Hirnantian have been explained by increases in pyrite and organic matter burial, thus 
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supporting expanded ocean anoxia as a mechanism for the first extinction pulse (e.g., 

Marshall and Middleton, 1990; Brenchley et al., 1994; Zhang et al., 2009; Hammarlund 

et al., 2012). However, the carbon and sulfur isotope records of early-mid Hirnantian 

sections are not always coupled, and it has been shown that positive S isotope excursions 

in the Phanerozoic rock record do not consistently point to increased ocean anoxia 

(Melchin et al., 2013). Interpretation of sulfur isotope trends in the context of ocean redox 

conditions can be complicated, for example, by diagenetic effects or changes in the 

microbial sulfur cycle and associated sulfur isotope fractionations (Zhang et al., 2011; 

Jones and Fike, 2013; Melchin et al., 2013). Hence, a sulfidic driver for the first 

extinction pulse during the early-mid Hirnantian (Hammarlund et al., 2012) is not fully 

supported by the light stable isotope data. Instead of interpreting HICE as the result of 

increased organic carbon burial, an alternative explanation is weathering of exposed 

carbonate platforms during eustatic fall triggered by Hirnantian glaciation (Kump et al. 

1999; Melchin and Holmden, 2006). This interpretation is compatible with the Mo 

isotope evidence for extensive ocean oxygenation during the early Hirnantian.   

Increased ocean oxygenation between the late Katian and early-mid Hirnantian is 

consistent with other geological and geochemical data. Low nitrogen isotope 

compositions (δ
15

N = −1 ‰ to +1 ‰) in sediments deposited in the late Katian and at the 

Hirnantian-Rhuddanian (Ordovician-Silurian) boundary suggest that deep oceans during 

these times were relatively depleted of fixed nitrogen, resulting in a deficiency of 

nitrogen returning to the photic zone via oceanic upwelling (LaPorte et al., 2009; Melchin 

et al., 2013). Hence, the δ
15

N data are consistent with our U and Mo isotope evidence for 

less extensive ocean oxygenation compared with today. Higher δ
15

N during the early-mid 
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Hirnantian (+2−4 ‰) suggests less intense denitrification and a greater extent of 

oxygenation in the deep oceans (LaPorte et al., 2009; Melchin et al., 2013), consistent 

with the highest δ
98

Mo observed in Hirnantian ORM (Zhou et al., 2012, 2015). Similarly, 

the proportion of ORM intervals deposited from oxic/suboxic versus anoxic bottom 

waters based on geochemical data (δ
34

S, trace element concentrations) was greater during 

the early-mid Hirnantian compared with the late Katian and early Rhuddanian (Melchin 

et al., 2013). Re-interpretation of the early Hirnantian Mo isotope data as representing 

widespread ocean oxygenation can be further tested by applying the U isotope paleoredox 

proxy to Hirnantian ORM. 

Climate conditions during the late Ordovician have been simulated by several 

general circulation models (e.g., Herrmann et al., 2004; Pohl et al., 2016). The advanced 

FOAM (Fast Ocean Atmosphere Model), which is coupled with climate and ice sheet 

feedback processes, shows that the accumulation of ice sheets may have occurred in two 

distinct phases (Pohl et al., 2016). When atmospheric CO2 dropped from 16 PAL to 12 

PAL (present atmospheric level), which corresponds to a drop of ~1.3°C in the tropical 

SST (Trotter et al., 2008), ice sheets abruptly occurred and expanded from the South Pole 

(> 60°S) to the middle latitudes (45°S)  (Pohl et al., 2016). Combined with SSTs from 

Trotter et al. (2008), the climate models suggest that the first ice sheet occurrence was as 

early as the late Darriwilian (Middle Ordovician) (Herrmann et al., 2004; Pohl et al., 

2016). The second modeled ice sheet accumulation is more severe and occurs in the early 

Hirnantian when atmospheric CO2 dropped from 8 PAL to 3 PAL (Pohl et al., 2016). The 

expanded ice sheet reached low-latitudes (30°S) (Pohl et al., 2016), and was associated 

with a strong positive carbon isotope excursion (e.g., Bergström et al. 2009), eustatic fall 
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(Haq and Schutter, 2008), and significant global cooling (a drop of ~7°C in tropical SST, 

more severe temperature drops probably occurred on land) (Trotter et al., 2008). Hence, 

the first ice sheet occurrence during the late Middle Ordovician was likely a response of 

general cooling, and this process was sufficiently mild that it did not cause severe 

environmental changes. However, the second ice sheet expansion during the early-middle 

Ordovician was more rapid, and thus had a more significant influence on environmental 

changes, biogeochemical cycles, and metazoans.  

Therefore, rapid global cooling is suggested to be the major killing mechanism for 

the first extinction phase during the early-middle Hirnantian, which is consistent with the 

biomarker record (e.g., a significant decline in trilobites and brachiopods; Brenchley et al., 

2001). Rapid environmental change, loss of shallow-marine and epicontinental habitats 

due to sea-level fall, and changes in nutrient cycles may have been significant ecological 

stresses associated with the glaciation. Even increased oxygenation was a stressor for 

some organisms, notably graptolites, who would have lost their preferred habitats in the 

denitrification zones at sites of high primary productivity (Melchin et al., 2013, and 

references therein). Increased ocean oxygenation from the late Katian to the early-middle 

Hirnantian, as inferred from paleoredox data (U and Mo isotopes; Zhou et al., 2012, 2015; 

this study), geological data (black versus gray shale distribution; Melchin et al., 2013) 

and geochemical data (N isotopes; Laporte et al., 2009; Melchin et al., 2013) collectively 

argues against expanded ocean anoxia as the trigger for the first pulse of the Hirnantian 

mass extinction. 

 

6. CONCLUSIONS 
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 A combination of Fe speciation, Mo-U-Re enrichments, and MoEF/UEF and 

MoEF/ReEF ratios constrain local bottom water redox conditions during deposition of the 

Late Ordovician and Early Silurian ORMs in the Siljan ring district, central Sweden. 

These records indicate a euxinic depositional environment for the Fjäcka Shale, 

fluctuations between euxinic and non-euxinic conditions for black shales of the Kallholn 

Formation, and an oxygenated setting for gray shales equivalent to the upper Kallholn 

Formation.  

 New U isotope data (−0.05 ‰ to +0.02 ‰; average of ~0‰) from the euxinic 

Fjäcka Shale suggest that late Katian seawater δ
238

U was between –0.60 ‰ and –0.85 ‰. 

Uranium isotope mass balance modeling suggests that the magnitude of U burial into the 

anoxic sink (46−63%) during the late Katian was roughly four to nine times larger 

compared with today, which corresponds to at least 5% (potentially tens of percent) of the 

total seafloor area (cf. Wang et al., 2016). The extent of global ocean anoxia at this time 

overlaps with U isotope model estimates for the OAE2 and late Permian oceans, but was 

significantly higher than the late Ediacaran (ca. 560–551 Ma) and the modern ocean. 

Although the highest δ
98

Mo in the Fjäcka Shale is about +1.3 ‰, Mo isotope 

fractionation between seawater and sediments most likely occurred due to incomplete 

formation of and/or removal of highly particle-reactive Mo sulfide species from bottom 

waters. Non-quantitative removal of Mo from bottom waters is implied by the high Mo 

enrichments associated with the highest δ
98

Mo. The inferred seawater δ
98

Mo 

(+1.4−2.1 ‰) during the late Katian suggests that 10−70% of the riverine Mo flux was 

removed into the euxinic sink, which probably corresponds to < 1% of the total seafloor 
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area (the areal extent remains low because Mo removal into euxinic sediments is highly 

efficient compared to other redox settings), consistent with the pronounced Mo 

enrichments in the Fjäcka Shale (cf. Dahl et al., 2011; Reinhard et al., 2013; Chen et al., 

2015). Therefore, the U and Mo isotope compositions of the Fjäcka Shale demonstrate 

expanded ocean anoxia and euxinia before the Hirnantian glaciation, respectively. The 

difference in the extent of seafloor area covered by anoxic waters (euxinic plus 

ferruginous, at least 5% inferred from U isotopes) and euxinic waters (< 1% inferred from 

Mo isotopes) highlights that a large aerial extent of ferruginous seafloor existed in the 

late Katian.   

 The heaviest δ
98

Mo in the early Hirnantian (+2.4 ‰) is associated with 

pronounced Mo enrichments and is similar to modern seawater (+2.3 ‰) (Zhou et al., 

2012, 2015), thus suggesting early Hirnantian ocean oxygenation was at a scale similar to 

that of the modern ocean. Hence, we infer that ocean oxygenation intensified from the 

late Katian to the early-mid Hirnantian. This interpretation is supported by other 

geological and geochemical evidence across the Ordovician-Silurian transition (LaPorte 

et al., 2009; Melchin et al., 2013), suggesting that the first phase of the Hirnantian 

extinction may be related to rapid global cooling (Brenchley et al., 2001; Melchin et al., 

2013) rather than expansion of sulfidic water masses (Zhang et al., 2009; Hammarlund et 

al., 2012). Our study  highlights the advantage of integrating U and Mo isotope data from 

ORMs to infer the global extent of ferruginous and euxinic conditions in ancient oceans.  
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FIGURE CAPTIONS 

 

Fig. 1. Carbonate carbon isotope, global sea level, and sea surface temperature variations 

during the Middle-Late Ordovician to Early Silurian. Global division of the geologic time 

scale is from Cohen et al. (2013). Carbonate carbon isotope curve is modified from 

Bergström et al. (2009) and Cramer et al. (2011). Global sea level curve is from Haq and 

Schutter (2008). Sea surface temperature curve is from Finnegan et al. (2011). HICE: 

Hirnantian Isotope Carbon Excursion; GICE: Guttenberg Isotope Carbon Excursion. 

 

Fig. 2. Simplified map of the Siljan ring district showing recent drill sites. Map modified 

from Ebbestad and Hӧ gstrӧ m (2007). 

 

Fig. 3. Late Ordovician to Early Silurian stratigraphy in the Siljan ring district, central 

Sweden. Global division of the geologic time scale is from Cohen et al. (2013). Stage 

slices are based on Bergström et al. (2009) and Cramer et al. (2011). Regional stages are 

from Nõlvak et al. (2006) and Ebbestad et al. (2014). Stratigraphic succession of the 

Siljan ring district is based on Ebbestad and Hӧ gstrӧ m (2007), Ebbestad et al. (2014), 

and Kröger et al. (2016). The U-Pb zircon ages of the Osmundsberget K-bentonite and 

Kinnekulle K-bentonite are from Bergström et al. (2008) and Bauert et al. (2014), 

respectively. Drill core names and arrows on the right side indicate the stratigraphic 

layers sampled. 
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Fig. 4. Geochemical profiles through three drillholes (Mora 001, Solberga #1, and 

Stumsnäs #1). Stratigraphic columns and formation names of each drillcore are modified 

from Lehnert et al. (2012, 2013). The error bars in the δ
98

Mo and δ
238

U profiles represent 

the long-term reproducibility of our secondary standards (0.11‰ and 0.09‰, respectively; 

2SD). Vertical lines were added to the FeHR/FeT and Fepy/FeHR columns to identify anoxic 

and euxinic conditions, respectively (details in Section 3.1). The sample depths in this 

figure are based on Lehnert et al. (2012, 2013). J. Fm.= Jonstorp Formation; Sl. Lst.= 

Slandrom Limestone; Fj. S. = Fjäcka Shale; Fr. Fm.= Freberga Formation; S-S-F 

Lst.E= Skärlӧ v-Seby-Folkslunda Limestone equivalents; Se. Lst.= Segerstad Limestone; 

K. Lst.= Kullsberg Limestone; P. B. = Precambrian basement; O. beds = Obolus beds; 

“S-DF-CL”  = shale + debris flow + compact limestone. 

 

Fig. 5. Diagram showing Fepy/FeHR versus FeHR/FeT. Dashed lines are used to clarify 

different bottom water conditions (details in Section 3.1).  

 

Fig. 6. Diagrams showing trace metal concentration versus TOC content; a) Mo vs TOC, 

b) U vs TOC, and c) Re vs TOC. Dashed lines in a) represent regression slopes for four 

modern anoxic basins reported by Algeo and Lyons (2006) (Saanich Inlet: 45 ± 5; 

Cariaco Basin: 25 ± 5; Framvaren Fjord: 9 ± 2; Black Sea: 4.5 ± 1; in mg/kg/wt.%). Solid 

trend lines of each trace metal vs TOC for the Fjäcka Shale are plotted with R
2
 values 

(sample 135.01 is excluded when plotting the Re vs TOC trend line and calculating R
2 

value because it is an obvious outlier). 
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Fig. 7. Diagrams showing: a) Mo EF versus U EF, b) Mo EF versus Re EF. Dashed lines 

in a) and b) represent the molar Mo/U (Algeo and Tribovillard, 2009) and Mo/Re 

(Crusius et al., 1996) ratios of modern seawater (1 × SW), respectively, and fractions of 

modern seawater (0.1 × SW, 0.3 × SW, and 3 × SW). Enrichment patterns and 

corresponding controls in a) are illustrated following Algeo and Tribovillard (2009). Re 

has similar behaviour as U (but Re generally has higher authigenic enrichments in ORM), 

suggesting the enrichment patterns and redox controls are broadly similar for Re and U 

(Morford and Emerson, 1999). 

 

Fig. 8. Diagrams showing a) δ
98

Mo versus Mo EF and b) δ
238

U versus U EF. Dashed 

lines in a) and b) with R
2
 values represent trend lines of δ

98
Mo vs Mo and δ

238
U vs U EF 

for each rock unit, respectively, where FS represents the Fjäcka Shale and KF represents 

the Kallholn Formation. 

 

Fig. 9. Uranium isotope mass balance diagrams for A) the modern ocean and B) the late 

Katian ocean, and associated estimates of the anoxic/euxinic sink. Assumptions and 

calculation methods are described in the text. 
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Table 1. Geochemical data for shales from the Mora 001, Solberga #1, and Stumsnäs #1 

drillholes in Siljan district, central Sweden. 
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 TOC = total organic carbon 
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 EF = enrichment factor = (metal / Al)sample / (metal / Al)ave. upper crust. Average upper crust metal values are 

from McLennan (2001) except for Re (Selby et al., 2007). 
c
 U isotope data reported relative to CRM 145. 

d
 Reported uncertainty is the 2SD of replicate measurements or 0.09‰, whichever is greater. 

e
 Number of MC-ICP-MS analyses of the same sample solution. 

f
 Mo isotope data reported relative to NIST SRM 3134 = +0.25‰. 

g
 Reported uncertainty is the 2SD of replicate measurements or 0.11‰, whichever is greater. 

h
 FeHR = highly reactive iron = carbonate iron (FeCarb) + ferric-oxide iron (FeOx) + magnetite iron (FeMag) + 

pyrite iron (FePY). 
I
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Table 2. Comparison of geochemical data among rock units from each drill core (ave = average) 
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Table 3. Authigenic U isotope compositions of the Fjäcka Shale 
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0.1

5 

             Stumsnäs #1 

           

217.55 4.47 15.7 -0.17 0.09 0.09 3 -0.16 

0.9

0 

0.1

0 -0.10 

0.9

0 

0.1

0 

217.69 5.19 15.7 -0.16 0.04 0.09 3 -0.14 

0.8

9 

0.1

1 -0.08 

0.8

9 

0.1

1 

219.42 4.23 13.6 0.01 0.05 0.09 3 0.05 

0.8

9 

0.1

1 0.11 

0.8

9 

0.1

1 

219.58 5.26 16.3 0.07 0.04 0.09 3 0.12 

0.8

9 

0.1

1 0.18 

0.8

9 

0.1

1 

219.74 5.31 16.6 0.10 0.03 0.09 3 0.15 

0.8

9 

0.1

1 0.21 

0.8

9 

0.1

1 

219.95 5.67 17.1 0.01 0.03 0.09 3 0.05 

0.8

8 

0.1

2 0.12 

0.8

8 

0.1

2 

220.87 4.37 13.0 -0.06 0.06 0.09 3 -0.03 

0.8

8 

0.1

2 0.04 

0.8

8 

0.1

2 

220.87rp

t 4.32 13.1 -0.02 0.03 0.09 3 0.02 

0.8

9 

0.1

1 0.08 

0.8

9 

0.1

1 

220.96 5.06 13.1 0.03 0.04 0.09 3 0.08 

0.8

7 

0.1

3 0.16 

0.8

7 

0.1

3 

221.32 5.03 12.1 -0.06 0.06 0.09 3 -0.02 

0.8

6 

0.1

4 0.06 

0.8

6 

0.1

4 

221.44 5.21 11.3 -0.08 0.11 0.11 3 -0.04 

0.8

4 

0.1

6 0.06 

0.8

4 

0.1

6 
a
 = U isotope date reported relative to CRM145 

b
 = Reported uncertainty is the 2SD of replicate measurements or 0.09‰, whichever is greater 

c
 = Number of MC-ICP-MS analyses of the same sample solution 

d
 = Authigenic U isotope composition 

e
 = Detrital U isotope composition 

f
 = Fractions of authigenic U in the sample 

g
 = Fractions of detrital U in the sample 

h
 = Only U isotope data is reanalyzed for this sample  
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Table 4. Modeled U fluxes and isotopic compositions in modern ocean 

Source 
Flux (10

6
 

mol/yr) 

δ
238

U 

(‰) 

Δsource-SW 

(‰) 

Δsource-SW 

(‰) used 

in model 

δ
238

U 

(‰) used 

in model 

       
River 

42 

−0.24 to 

−0.34 ~ +0.10 +0.10 −0.30 

       Modern seawater - −0.40 - - −0.40 

       

Sink 
Flux (10

6
 

mol/yr) 

δ
238

U 

(‰) 

Δsink-SW 

(‰) 

Δsink-SW 

(‰) used 

in model 

δ
238

U 

(‰) used 

in model 

       

Oxic 

Coastal retention 7.6 −0.64 −0.24 

+0.043 −0.357 

       Pelagic clay 3.0 −0.36 +0.04 

       Oceanic crust 

alteration (HT) 
2.0 

−0.40 0 

       Oceanic crust 

alteration (LT) 
3.8 

−0.15 +0.25 

       Fe-Mn oxides 1.0 −0.64 −0.24 

       

Carbonates 5.6 

−0.20 to 

0 

+0.20 to 

+0.40 

       Subo

xic 

Continental 

margin 15.3 −0.30 +0.10 

       Ano

xic 

Anoxic/euxinic 

sediments 4.5 +0.20 +0.60 

+0.60 to 

+0.85 

+0.20 to 

+0.45 

       Data come from Andersen et al. (2014, 2016),Tissot and Dauphas (2015), Wang et al. (2016), Noordmann 

et al. (2016) and reference therein. SW = seawater; HT = high temperature; LT = low temperature. 
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Table. 5 Estimates for proportions of anoxic/euxinic sink in different geological times by U isotope 

mass balance model 

Period 
Age Litholo

gy 

δ
238

U of 

anoxic/euxinic sink 

δ
238

U of 

seawater 

Proportion of 

anoxic/euxinic sink 

(Ma) (‰) (‰)  (%) 

Modern 

ocean 
1
 

0 N/A 
+0.20 to +0.45 −0.40 

2
 

7 to 10 

OAE2 
3
 93 shale −0.03

6
 

−0.88 to 

−0.63 52 to 67 

Late Permian 
4
 252 

carbona

te −0.05 to +0.20 −0.65 38 to 55 

Late Katian 
1
 448 shale 0 

−0.85 to 

−0.60 46 to 63 

Late 

Ediacaran 
5
 

560 to 

551 shale +0.29
6
 

−0.56 to 

−0.31 0 to 27 
1
 This study 

2
 Stirling et al. (2007); Weyer et al. (2008); Andersen et al. (2015, 2016); Tissot and Dauphas (2015); 

Noordmann et al. (2016) 
3
 Montoya-Pino et al. (2010) 

4
 Brennecka et al. (2011a) 

5
 Kendall et al. (2015) 

6
 Authigenic average U isotope is recalculated in this study by using the equation in Section 5.2.2 
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