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Abstract 

Peak hydrometeorological events have been the topic of much concern in recent years, chiefly their 

frequency and magnitude.  According to the Fifth Assessment Report by the Intergovernmental Panel 

on Climate Change (IPCC), land-surface temperatures have increased in the 20
th
 and early 21

st
 

centuries and more extreme precipitation events are expect in this warmer climate.  Furthermore, 

land-use changes can have a pronounced effect on the hydrologic regime.  The subsequent changes in 

streamflow and precipitation data over time can introduce nonstationarity in the time series data, 

resulting in data that are not independently and identically distributed (IID).  Significant trends, 

change-points, and serial correlation identified in time series data may invalidate the IID assumption, 

therefore, in these instances, more complex statistical techniques must be employed. 

     The first contribution of this thesis focuses on the development of a trend centered pooling 

approach.  The most commonly used pooled frequency analysis techniques do not account for 

nonstationarity in the pooling group member data, however, nonstationarity must be accounted for if 

it is detected in the time series data.  This approach pools data based on the form of trend found in the 

at-site data.  Therefore all sites are assessed for trend before regionalization and each pooling group is 

created with members having similar forms of statistically significant trend (either increasing or 

decreasing).  A case study is carried out on four homogeneous regions in different 

hydroclimatological regions in Canada.  Using the trend centered technique and the four pooling 

groups, peak 50- and 100-year nonstationary quantiles are estimated.  An uncertainty analysis of the 

examined regions indicates that there is less uncertainty in the nonstationary quantiles when 

compared to their stationary counterparts, thus reinforcing the effectiveness of this nonstationary 

regional frequency analysis technique. 

     This thesis additionally presents a peaks-over-threshold approach that makes use of covariate-

dependent stationary and nonstationary thresholds.  The generalized Pareto (GP) distribution is fit to 

threshold exceedance data using covariate-dependent location and scale parameters.  Bivariate and 

multivariate models are used for both the threshold and GP models.  The methodology is applied to 

precipitation data from 30 meteorological stations in coastal British Columbia (BC) due to the 

potential for climate change effects in the region.  50-year quantile estimates and their associated 

uncertainty are calculated, indicating that there is stronger evidence of stationarity, however 

numerous stations show nonstationary behaviour.  A comparative trend analysis is also carried out on 

the frequency and magnitude of stationary threshold exceedance events for the winter and summer 
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seasons for the 1976-2014 and 1986-2014 time periods.  The results from this analysis indicate that 

statistically and globally significant trends are present in the threshold exceedance and frequency of 

peak data. 

     The final contribution of this thesis focuses on the presence of serial correlation in 

hydrometeorological data.  If autocorrelation is detected in time series data, standard nonparametric 

trend detection tests can produce erroneous results.  Therefore, numerous techniques have been 

developed to account for detected serial correlation to improve trend detection accuracy.  Several tests 

have previously undertaken the task of assessing the power and type I error rates of existing 

techniques, however, there has been little focus on negative serial correlation.  Furthermore, a large 

number of the existing techniques assume the data to have an autoregressive lag-1 (AR(1)) memory 

structure, an assumption that is not consistently applicable.  Accordingly, this research compares the 

power and type I error rates of various existing statistical techniques that account for positive and 

negative autocorrelation when used in combination with the Mann-Kendall nonparametric trend test.  

Using instantaneous peak data from a subset of southern Ontario watersheds, differences in the serial 

structure of the block maxima series (BMS) and peaks-over-threshold (POT) data are elucidated.  It is 

determined that BMS data are more likely to have significant negative lag-1 serial correlation and are 

more likely to have AR(1) memory structures; positive significant autocorrelation is more commonly 

found in POT data.  It is determined that the block bootstrap (BBS), the Hamed and Rao (1998) 

variance correction technique (VCCF1), and the sieve bootstrap (SBS) are the most powerful 

techniques in the presence of positive autocorrelation.  Alternatively, the VCCF1 and BBS techniques 

are most appropriate when significant negative serial correlation is present.  A comparative trend 

analysis is also undertaken on the same study area in which trends are assessed based on the land-use 

in the catchments of interest.  The included land-use classifications include agricultural, natural, 

RHBN, and urban; trends in several hydrological characteristics are assessed.  Differences in the 

detected trends using POT and BMS data are also revealed.  Trends are identified in the natural and 

RHBN watersheds; however, there is a lack of consistency between those detected in the BMS and 

POT data.  Furthermore, numerous statistically and globally significant trends are identified in the 

urban and agricultural catchments.    

     The overall contributions of this research include the development of a novel trend centered 

pooling approach for regional frequency analysis, the development of a covariate-dependent threshold 

selection methodology for at-site frequency analysis, and the comparison of the memory structure of 

BMS and POT data.  Additionally, the effects of negative serial correlation on the type I error rates 
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and power of numerous statistical techniques developed for use with nonparametric trend tests are 

elucidated. 
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Δ𝑗(𝐴𝐼𝐶) Difference in AIC with respect to the minimum AIC [-] 

𝜀𝑡  White-noise from simulated data [-] 

𝜖𝑡  Transformed residual GP series at time 𝑡 [-] 

𝜖(𝑡)𝑖 Transformed residual GEV series at time 𝑡 [-] 

𝜂 Amount to be added to block length [-] 

𝜃𝑖 Angular value for the date of occurrence of event 𝑖 [rad] 

𝜃̅ Mean direction of the flood dates [rad] 

𝜗 Vector of parameters [-] 

𝜗𝑡  Vector of nonstationary parameters [-] 

𝜗(𝑡) Nonstationary distribution parameters [mm][-] 

𝜗̂𝑘
(𝑖)

 Estimate of parameter 𝑘 for site 𝑖 [-] 

𝜗̂𝑘
𝑅 Regional estimate of parameter 𝑘 [-] 

𝜅 Stationary shape parameter [-] 

𝜅(𝑡) Nonstationary scale parameter [-] 

𝜅𝑅(𝑡) Time-invariant shape parameter [-] 

𝜆 Rate parameter [threshold exceedances/year] 

𝜇𝑖 Collection of 𝑚 regional location parameters [-] 

𝜇(𝑡) Nonstationary location parameter [-] 

𝜇𝑋 Mean of 𝑋𝑡 [-] 

𝜇𝑅(𝑡) Time-dependent regional location parameter [-] 

𝜇𝑉  Theoretical mean [-] 

𝜇𝜀 Mean of white-noise process[-] 

𝜉𝑖 Index-flood of site 𝑖 [m3
/s] 

𝜌1 Lag-1 serial correlation coefficient [-] 

𝜎 Scale parameter [mm] 

𝜎𝑖 Collection of 𝑚 regional scale parameters [-] 

𝜎(𝑡) Nonstationary scale parameter [-] [mm] 

𝜎𝑅(𝑡) Time-dependent regional scale parameter [-] 

𝜎𝑉 Theoretical standard deviation [-] 

𝜎𝑋
2 Variance of 𝑋𝑡 [-] 

𝜎𝜀
2 Variance of white-noise process [-] 

𝜏 Regression quantile [mm] 
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𝜏0 Selected nonstationary threshold/regression quantile [mm] 
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“Water is the driving force of all nature.” 

                                                 -Leonardo DeVinci 



1 

Chapter 1 

Introduction 

 

Extreme hydrological events can have a profound effect on human health and safety, in the form of 

extensive property/environmental damage and loss of life.  The National Oceanic and Atmospheric 

Administration (NOAA) reports the 30 year flood loss averages of approximately $8 billion in 

damages and 82 deaths per year in the U.S. (NWS, 2015).  In Europe, Hoyois and Guha Sapir (2003) 

reported a total of 264 flood disasters from 1973 to 2002, where they define a disaster by at least 10 

deaths or 100 persons affected.  The more recent flooding in the Canadian eastern Prairies in 2011 

claimed one life, affected thousands and caused close to $1 billion in damages (EC, 2011).  Although 

flooding events pose an obvious threat to those affected and the surrounding environment, the impacts 

can be minimized through effective flood risk planning and management.  Commonly used 

methodologies rely on flood frequency analysis (FFA) techniques in order to estimate the scale of 

engineering design and flood protection measures.  The methodologies in FFA have been developed 

on the premise of a stable climate, land use, and land cover, consequently producing 

hydrometeorological data free of inhomogeneities such as temporal trend. 

     It is widely accepted that the anthropogenic release of greenhouse gases into Earth’s atmosphere is 

causing the mean global temperature to increase.  We now live in a climate that is, on average, 

approximately 1ºC warmer than 50 years ago (Hartmann et al., 2013).  In a warmer climate, the 

occurrences of flood events are projected to increase due to heavier precipitation amounts (Hartmann 

et al., 2013).  In addition to climate change, land-use changes can have profound effects on the 

hydrological characteristics of a watershed.  The 20
th

 century has been characterized by intense land-

use changes with respect to agricultural practices, urbanization, and forest management.  These 

changes can cause shifts in hydrological and ecological systems and impact the rainfall-runoff 

relationship, thus affecting flood risk (Villarini et al., 2009a).  Also, the addition of impervious 

surfaces can lead to increased flood magnitude and decreased time-to-peak of extreme events.  In the 

European Union, agricultural land has been lost to urbanization an average of 2% per decade, while 

Theobald et al. (2009) reported an estimate of an increase in impervious surface in the conterminous 

U.S. of 36.2% by 2030 (Kundzewicz et al., 2010).  Prior to the aforementioned anthropogenic 

forcings, hydroclimatalogical data were assumed to be independently and identically distributed (IID) 

meaning that the observations were independent of each other and all come from the same statistical 
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probability distribution.  The assumption of IID data may no longer be valid due to the nonstationary 

character of the data.  Hipel and McLeod (1994) define the stationarity of a stochastic process as 

“…being qualitatively interpreted as a form of statistical equilibrium.  Therefore, the statistical 

properties of the process are not a function of time (p. 67).”  Evidence of nonstationarity in the form 

of temporal trend has been found in peak flow data of catchments worldwide (Reed et al., 1999; Jain 

and Lall, 2000; Zhang et al., 2001; Burn and Hag Elnur, 2002; Hodgkins et al., 2003; Burn and 

Cunderlik, 2004; Burn et al., 2008; Burn et al., 2010; Schmocker-Fackel and Naef, 2010; Bormann et 

al., 2011; Hirsch, 2011).  Many studies have focused on pristine catchments unaffected by land-use 

changes but these watersheds exhibit less apparent nonstationarities in the flow record and are 

sparsely populated.  Areas affected by marked land-use change present the greater socio-economic 

risk; therefore, a focus of this thesis will be on both the analysis of watersheds affected by prominent 

land-use changes and potential climate change in addition to pristine catchments (Sugahara et al., 

2009; Vogel et al., 2011). 

     The statistical techniques used in FFA have been developed for use with IID data.  The return 

period of an event, or the average time between hydrological events of the same magnitude, is 

developed based on the IID assumption, therefore, in a changing climate with the increased 

occurrence of events, this characterization of these events becomes questionable.  Within FFA, data 

can be analyzed on a site by site basis or through pooled frequency analyses.  At-site flood frequency 

estimation is generally appropriate for watersheds with a streamflow record approximately twice the 

length of the return period of interest (Reed et al., 1999).  In the absence of this quantity of data, 

pooled frequency analysis can be used in lieu of at-site frequency estimation techniques.  By pooling 

data from hydrologically similar sites, more accurate estimates can be determined.  There is therefore 

a need to develop methods within the pooled flood frequency framework that account for possible 

nonstationarity in the pooling group member data.   

     Other types of nonstationarity aside from monotonically increasing/decreasing trends will also be 

explored.  Cyclostationarity, caused by climatic teleconnections (i.e., low-frequency climatic 

oscillations) can, in some instances, be mistaken for increasing or decreasing trends in a series.  

Therefore, if cyclostationarity were detected and accounted for, the true nonstationarity within the 

data may then be detected.   

      The absence of IID data can be determined, in many instances, by the presence of an increasing or 

decreasing trend in the moments of statistical distributions fitted to the data.  Modelling the time-

dependent location and scale parameters has been carried out in a variety of contexts but the shape 
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parameters of extreme value distributions are more difficult to estimate (Coles, 2001).  If a 

distribution is particularly skewed, this skewness may not be adequately represented in a limited 

sample of data (Hosking and Wallis, 1997).  Thus, the uncertainty in estimating higher moments can 

be substantial and the significance of nonstationarities found in this data may be questioned.  Due to 

potential bias in estimating the aforementioned parameter, the assumption of a constant shape 

parameter is used herein, while the assumption of a temporal dependence structure in the location and 

scale parameters has been employed (Katz et al., 2002; Hanel et al., 2009).    

     To ensure data are free of inhomogeneities, tests for trend and change-points are generally carried 

out, however, serial correlation (autocorrelation) within a data record can affect the results of this 

testing (von Storch, 1995; Yue et al., 2002b; Serinaldi and Kilsby, 2016).  Numerous techniques have 

been developed for use with nonparametric trend testing methods to address the effects of serial 

correlation (von Storch, 1995; Hamed and Rao, 1998; Yue et al., 2002b; Yue and Wang, 2004a; 

Bayazit and Önöz, 2007; Khaliq et al., 2009; Önöz and Bayazit, 2012; Blain, 2013; Sonali and 

Kumar, 2013; Wang et al., 2015), though, many techniques make underlying assumptions that affect 

their accuracy. 

     Extreme hydrological data can be characterized in a variety of manners.  There have, however, 

been several methods used more frequently than others.  The block maxima and partial duration 

series, or peaks-over-threshold (POT) are commonly used for the purposes of FFA.  Generally 

speaking, the block length employed for the block maxima is 1-year, resulting in the annual 

maximum series (AMS).  The principal benefit of the block maxima series (BMS) is that the 

observations included in the series are most likely produced by separate hydroclimatological events, 

thus producing a series free of dependence between measurements.  Issues may arise with the use of 

the BMS, as dry years are automatically incorporated into the hydrometric series, which may result in 

higher trend identification rates than would be found when using the POT series (Svensson et al., 

2005).  Therefore, the POT series may provide a more accurate representation of the true magnitudes 

of trends. 

     According to Milly at al. (2008), annual global investments in water infrastructure exceed U.S. 

$500 billion.  Therefore, the risk to those affected by extreme hydrological events combined with the 

potential monetary loss of the overdesign of hydraulic structures are topics of concern.  There is a 

need to develop more robust methods in FFA to deal with systematic changes in the extreme 

hydrological data (Sivapalan and Samual, 2009).  Furthermore, employing risk-based techniques that 

consider both stationary and nonstationarity analyses, in addition to economic considerations, is a 
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valuable undertaking (Rosner et al., 2014).  Projections for increasing or decreasing trends are largely 

dependent on the flood generating mechanisms of the catchment in question.  Increasing flood 

magnitudes are expected where floods result from heavy rainfall and decreasing magnitudes are 

expected in areas where floods are characterized by snowmelt (Kundzewicz et al., 2010).  Due to the 

dichotomy of the changing nature of flooding events, there is a need to characterize the uncertainty in 

their estimation for records displaying both increasing and decreasing temporal trend.   

1.1 Objectives 

When temporal dependence is apparent in the moments of a fitted distribution, the IID assumption no 

longer holds true and traditional statistical methods will produce results which may be significantly 

biased.  In FFA, statistical distributions are fit to available data, which is carried out by determining 

the probability distribution function or cumulative distribution function (CDF) for a continuous 

random variable (𝑥).  The CDF is denoted by 𝐹(𝑥) = Pr⁡[𝑄⁡ ≤ 𝑥], where Pr⁡[𝑄⁡ ≤ 𝑥] is the 

nonexceedance probability of the random variable, 𝑄 is the quantile (predetermined level or event of 

interest).  FFA is concerned with the upper tail of the frequency distribution, primarily the quantile of 

return period 𝑇, 𝑄𝑇, the inverse of the CDF, which is given by (Hosking and Wallis, 1997): 

 

𝑥(𝐹) = 𝑄𝑇 = 𝑥(1 − 1/𝑇)                                                     (1-1) 

 

where 𝐹 = ⁡1 − 1 𝑇⁄ .  It is clear from the above equation that the quantile is a function of the 

nonexceedance probability of an event.  Therefore, the goal of flood frequency analysis is to estimate 

the 𝑄-⁡𝑇 relationship with minimal uncertainty (Burn 1989).   

     The overall objective of this thesis is to explore new methodologies for incorporating 

nonstationary data into extreme value analyses and to ascertain the effects of serial correlation on 

various types of peak event data.  More specifically, the objectives of this research include: 

 

1) The development of a trend centered pooling approach for regional frequency analysis of peak 

streamflow data based on the form of trend detected (either increasing or decreasing); 

2) To develop a methodology for selecting covariate-dependent thresholds and generalized Pareto 

(GP) distribution parameters to determine those models that provide superior goodness-of-fit and 

less uncertainty for the purpose of quantile estimation; 
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3) To carry out a comparison of several well-known and other more recently developed techniques 

which account for serial correlation when the Mann-Kendall (MK) trend test is applied;  

4) To determine the most appropriate techniques to account for autocorrelation in trend analyses 

when used on BMS and POT data; and 

5) To provide an analysis of trends in southern Ontario watersheds based on land-use. 

1.2 Thesis Organization 

Chapters 2 and 3 of this thesis are provided in the form of manuscripts that have been published in 

scientific journals.  Chapter 2 was published in the Journal of Hydrology (O’Brien and Burn, 2014) 

while Chapter 3 was published in the Canadian Water Resources Journal (O’Brien and Burn, 2018).  

Chapter 4 is presented as a thesis chapter; however, the intent is the submission of two manuscripts.  

Therefore, to facilitate the transition from Chapters 2 to 3 and Chapters 3 to 4, transition paragraphs 

are included to aid in the readability of this thesis. 

     The objective of Chapter 2 is the creation of a trend centered pooling approach based on the form 

of trend found in the at-site data (i.e., either decreasing or increasing).  This chapter introduces the 

topic of pooled FFA and the index-flood technique.  The methodology is outlined, along with a case 

study, showing the applicability and usefulness of the technique.  This chapter also addresses the first 

objective listed above. 

     Chapter 3 presents a methodology for a covariate-dependent threshold and GP distribution model 

selection procedure, thus addressing the second objective of this thesis.  The developed methodology 

for this technique, and an applicable case study are included.  

     The final three objectives are addressed by Chapter 4.  Various well-known and more recent 

techniques that account for serial correlation when using nonparametric trend tests are examined.  The 

power and type I error rates of these techniques in the presences of positive and negative 

autocorrelation are also examined.  The chapter concludes with a comparative trend analysis based on 

land-use in a subset of watersheds in southern Ontario. 

     Chapter 5 presents the overall conclusions from this research and the potential for future research 

based on this work. 

     The list of references follows Chapter 5. 
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Chapter 2 

A Nonstationary Index-Flood Technique for Estimating Extreme 

Quantiles for Annual Maximum Streamflow 

This chapter is built upon the published article with the same title published in the Journal of 

Hydrology.  Minor differences between the published paper and the chapter have been made to 

facilitate consistency and coherence.   

 

O’Brien, N. L. and D. H. Burn. 2014. A nonstationary index-flood technique for estimating extreme 

     quantiles for annual maximum streamflow. Journal of Hydrology, 519: 2040-2048. 

Summary 

The magnitude and timing of peak streamflow events may be affected by land-use changes along with 

climate change, thus leading to nonstationarity in the records.  Temporal trend, along with change-

points, in peak flow records can affect the accuracy of quantile estimates; therefore, these issues 

should not be disregarded.  Commonly used techniques for pooled flood frequency analysis do not 

account for nonstationarity found in the data recorded for members of a region.  To overcome this 

shortcoming, the objective of this research is to introduce a trend centered pooling approach for 

regionalization in which pooling groups are created based on the form of trend found in the at-site 

data.  The approach involves the formation of regions comprised entirely of sites exhibiting either 

statistically significant increasing or decreasing trends.  Regional parameter estimates are determined 

using a maximum likelihood approach, which is carried out with the assumption of second-order 

nonstationarity.  The technique was applied to four homogenous regions all located in differing 

hydroclimatological Canadian regions.   The uncertainty of quantile estimates calculated through the 

implementation of this technique was established using a balanced regional vector resampling 

approach, which was found to be a comparatively advantageous approach (Burn, 2003).  The results 

indicate that there is less uncertainty in quantile estimates found through the application of the trend 

centered pooling approach when compared to a regional stationary analysis of the same regions.  The 

potential for overestimation/underestimation of design quantiles in the presence of significant 

regional nonstationarity (i.e., decreasing/increasing trends) is also elucidated. 
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2.1 Introduction 

The 2013 flooding in Alberta, Canada and the 2013 Colorado, United States floods have sparked 

much discussion concerning adequate planning and protection from extreme hydrological events.  

Concern over flooding arises due to the substantial socioeconomic risks associated with these events.  

Research concerning the magnitude and timing of extreme hydrological events suggests that land-use 

changes along with climate change may lead to nonstationarity in peak streamflow records.  

Stationarity can be interpreted as a form of statistical equilibrium; therefore, the statistical properties 

of the process in question would not be time-dependent (Hipel and McLeod, 1994).  Intensification of 

the hydrologic cycle is anticipated as the mean global temperature rises, which can affect the timing 

and magnitude of flooding events (Hartmann et al., 2013).  In colder climates, the onset of spring 

snow-melt runoff is expected to shift from early spring to late winter thereby decreasing total runoff 

amounts while warmer climates may see an increase in total rainfall (Kundzewicz et al., 2010).  In 

addition to these projected climate-change responses, land-use changes can have marked effects on 

the hydrologic characteristics of a watershed.  The 20
th
 century has been characterized by intense 

land-use changes with respect to agricultural practices, urbanization, and forest management.  These 

changes can cause shifts in hydrological systems and impact the rainfall-runoff relationship, thus 

affecting flood risk (Villarini et al., 2009a).  In particular, the addition of impervious surface can lead 

to increase flood amplitudes and decreased time-to-peak of flooding events.  Evidence of these 

variations in runoff has been detected in peak flow data worldwide in the form of temporal trend 

(Robson and Reed, 1999; Jain and Lall, 2000; Zhang et al., 2001; Burn and Hag Elnur, 2002; 

Hodgkins et al., 2003; Burn and Cunderlik, 2003; Burn et al., 2010; Schmocker-Fackel and Naef, 

2010; Bormann et al., 2011; Hirsch, 2011).  

     Modelling nonstationarity in extreme hydrometeorological data is a topic that has received a great 

deal of attention in recent years (Kharin and Zwiers, 2005; Khaliq et al., 2006; El Adlouni et al., 

2007; Kyselý et al., 2010, Westra et al., 2013).  This may be due to the potential for systematic errors 

in quantile estimates in the presence of nonstationarity.  For example, an increasing trend in the mean 

of a flow series could lead to underestimated at-site flood quantiles if standard statistical methods are 

applied, thus increasing the risk of failure of engineering structures.  There is, however, less research 

with respect to the implications of nonstationarity in pooled FFA.  Using pooled FFA allows for the 

incorporation of data from several sites, thus allowing for greater accuracy in estimating peak flows.  

Standard techniques used in pooled FFA were developed for independently and identically distributed 

(IID) data, meaning data are independent and belong to the same statistical probability distribution.  
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In the presence of nonstationarity, the IID assumption is no longer valid and results obtained using 

standard methodologies may be inaccurate.  There is therefore a pressing need for the development of 

more precise pooled FFA techniques when time-dependence is exhibited in hydrological data.  

     Smith (1989) is an early reference that accounts for nonstationarity in a pooled frequency analysis.  

This study used IID data, which were not a function of time but of catchment characteristics.  More 

recently, Cunderlik and Burn (2003) proposed a novel detrending approach for FFA for nonstationary 

data.  Cunderlik and Ouarda (2006) developed a nonstationary approach to regional flood-duration-

frequency (Qdf) modelling using the index-flood method.  Hanel et al. (2009) propose a 

nonstationary index flood (IF) equation in which the pooled growth curve and index-flood both vary 

with time.  The authors apply their methodology to the Rhine basin where regions are determined 

subjectively.  The IF approach develop by Hanel et al. (2009) is also used by Roth et al. (2012) but 

transformed for the use of a peaks-over-threshold model with nonstationary parameters.  Their 

methodology is applied to the Netherlands, which has been determined to be a suitably homogeneous 

region in previous studies.  Other work has focused on modelling nonstationarity in regional 

frequency analysis using a Bayesian framework (Leclerc and Ouarda, 2007; Renard et al., 2006). 

     The central focus of this research is the development of a methodology for pooling peak 

streamflow data based on the form of trend detected (i.e., either increasing or decreasing trends).  The 

standard techniques used in regional frequency analysis have been developed for data that are not 

temporally dependent.  Therefore, if a region has members displaying nonstationarity, systematic 

errors may be introduced into the analysis.  This becomes particularly important as more recent data 

are collected, potentially resulting in an increasing number of statistically significant trends in peak 

annual flow data in Canadian watersheds and in catchments worldwide (Bormann et al., 2011; Burn 

and Cunderlik, 2003; Villarini et al., 2009b).  This trend centered pooling technique initially involves 

testing applicable data for trends using the Mann-Kendall test.  Sites that display temporal trend in the 

mean tendency are then used for the creation of homogeneous regions.  This methodology is 

employed under the premise of second-order nonstationarity, which results in the formation of 

regions comprised solely of sites exhibiting significant trends, on which the remainder of the analysis 

is focused. 
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2.2 Methodology 

This section outlines the methodology used with respect to the trend centered pooling technique.  The 

primary goal of this section is to describe the nonstationary index-flood model, the regionalization 

technique implemented, and the parameter estimation methodology used for this research. 

2.2.1 Data Screening and Trend Detection 

The proposed regionalization technique makes use of statistically significant trends found in 

individual site data.  Trend detection is carried out using the non-parametric Mann-Kendall test, 

which is a rank-based test commonly used for analysis of hydrometric variables.  The Mann-Kendall 

trend statistic allows for the determination of the significance of a trend found in the data (Mann, 

1945; Kendall, 1975).  Significant serial correlation in individual site data can have deleterious effects 

on the robustness of trend detection tests; therefore autocorrelation was addressed using trend-free 

prewhitening (TFPW).  Following Yue et al. (2002), TFPW consist of fitting a linear trend to the time 

series, data are then pre-whitened and the final result involves blending the monotonic trend and the 

pre-whitened residual series. The use of this technique allows for the removal of serial correlation 

while maintaining any trend present in the data. 

     The power of the Mann-Kendall test can also be affected by change-points or shifts in the data.  

Therefore, the homogeneity of the data was assessed using Bayesian Change Point Analysis (BCPA), 

proposed by Barry and Hartigan (1992; 1993).  BCPA is a parametric test allowing for the detection 

of multiple change-points in a time series.   Regime shift testing is an important precursor for trend 

detection testing as change-points in the data may lead to the detection of trends when none exist. 

2.2.2 Index Flood Model 

The index flood technique (Dalrymple, 1960) provides a framework for determining design flood 

estimates that continues to be applied in a number of studies (Robson and Reed, 1999; Hanel et al., 

2009; Roth et al., 2012; Ilorme and Griffis, 2013; Norbet et al., 2014; Wright et al., 2014).  This 

method assumes that within an acceptably homogenous region, the flood response from all members 

is identically distributed aside from a site-specific scaling factor (i.e., the index flood).  This model 

has been modified herein to include the nonstationarity of the data and can be described by the 

following model: 

 

𝑄𝑖(𝐹, 𝑡) = ⁡𝜉𝑖𝑞(𝐹, 𝑡)                                                         (2-1) 
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where 𝑄𝑖(𝐹, 𝑡) is the time-dependent flood quantile of site 𝑖, 𝜉𝑖 is the index-flood of site 𝑖, and 𝑞(𝐹, 𝑡) 

is the nonstationary pooled growth curve.  The index-flood is taken as the mean of the at-site data. 

Under the assumption of second-order nonstationarity, distributional parameters can be modeled as a 

function of time, which can be expressed most generally as: 

 

𝜇𝑅(𝑡) = ⁡𝜇0 + 𝜇1𝑡 + 𝜇2𝑡
2 +⋯+ 𝜇𝑚𝑡

𝑚 

𝜎𝑅(𝑡) = ⁡ 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡
2 +⋯+ 𝜎𝑚𝑡

𝑚                                          (2-2)  

𝜅𝑅(𝑡) = 𝜅⁡ 

 

where 𝜇𝑅(𝑡) and 𝜎𝑅(𝑡) are the time-dependent regional location and scale parameters, 𝜇𝑖 and 𝜎𝑖 are a 

collection of 𝑚 regional parameters, and 𝜅𝑅(𝑡) is the time-invariant shape parameter.  When 𝑚 = 1, 

Equation (2-2) reduces to a linear model.  Although it is possible to model nonstationarity in all three 

parameters, the shape parameter is kept constant for the purposes of this research.  Evidence of a 

constant shape parameter has been found in various hydroclimatological data series, even when time-

dependence is identified in the location and/or scale parameters (Vinnikov and Robock, 2002; Kharin 

and Zwiers, 2005; Kyselý et al., 2010; Kay and Jones, 2012).  Also, given the average length of 

streamflow record and the potential for large sample variability when estimating higher moments, a 

focus on the nonstationarity of the first two moments is appropriate (Cunderlik and Burn, 2003). 

2.2.3 Regionalization 

An agglomerative hierarchical clustering technique is used for region formation.  This clustering 

technique is carried out by initially determining an interobject dissimilarity between objects, which is 

given by (Burn et al., 1997): 

 

𝐷𝑖𝑗
𝑑 =

𝐷𝑖𝑗+
𝑑𝑖𝑗

𝑑𝑚𝑎𝑥
𝑤

1+𝑤
                                                             (2-3) 

 

where 𝐷𝑖𝑗 is the dissimilarity between catchments 𝑖 and 𝑗 in terms of the hydrologic response 

variables chosen; 𝑑𝑖𝑗 is the geographic distance between catchments 𝑖 and 𝑗; 𝑑max is the maximum 

geographic distance between any two catchments; and 𝑤 is a weighting factor that reflects the relative 

importance of 𝑑𝑖𝑗⁡(scaled by 𝑑max,⁡the maximum distance between any pair of catchments) and 𝐷𝑖𝑗.  

The formation of pooling groups should not be solely based on spatial proximity but on a set of 
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attributes that effectively describes the hydrological response of the watersheds (Hosking and Wallis, 

1997).  With this consideration, the dissimilarity measure described above was implemented to allow 

for the formation of groups using hydrologic characteristics, while ensuring group formation within 

similar hydroclimatological regions.  As per Burn et al. (1997), a weighting factor of 0.3 was 

employed.  The final term in Equation (2-3), 𝐷𝑖𝑗 is the Canberra dissimilarity metric given by (Burn 

et al., 1997): 

 

𝐷𝑖𝑗 =
1

𝑐
∑

|𝑌𝑖𝑘−𝑌𝑗𝑘|

𝑌𝑖𝑘+𝑌𝑗𝑘

𝑐
𝑘=1                                                          (2-4) 

 

where 𝑌𝑖𝑘 is the value of the 𝑘th
 hydrologic response property for catchment 𝑖; and 𝑐 is the number of 

hydrologic properties.   

     For the purposes of this research, hydrologic response properties concerning the timing and 

variability of peak flow events are used.  Similarities in the time of occurrence of flood events can be 

quite useful for regionalization.  Angular values of the date of occurrence are calculated following 

Bayliss and Jones (1993) and Burn (1997) by: 

 

𝜃𝑖 = (𝐽𝑢𝑙𝑖𝑎𝑛⁡𝐷𝑎𝑡𝑒)𝑖 (
2𝜋

365
)                                                     (2-5) 

 

where 𝜃𝑖 is the angular value (in radians) for the date of occurrence of event 𝑖.  It is often helpful to 

plot the mean flood dates, the coordinates of which are given by: 

 

𝑥̅ = ⁡
1

𝑛
∑cos⁡(𝜃𝑖)

𝑛

𝑖=1

 

(2-6) 

𝑦̅ = ⁡
1

𝑛
∑sin⁡(𝜃𝑖)

𝑛

𝑖=1

 

 

where⁡𝑛 is the number of peak events.  With the 𝑥̅- and 𝑦̅-coordinates available, the mean direction of 

the flood dates is obtained by: 
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𝜃̅ = tan−1 (
𝑦̅

𝑥̅
)                                                               (2-7) 

 

The mean direction can be converted back into a day of the year using: 

 

𝑀𝐷 = 𝜃̅
365

2𝜋
                                                                 (2-8) 

 

where 𝑀𝐷 is a measure of the average time of occurrence of the flood events for a given catchment.  

Using the 𝑥̅- and 𝑦̅-coordinates, a measure of the variability of the occurrences of peak flow events 

can also be determined through: 

 

𝑟̅ = √𝑥̅2 + 𝑦̅2                                                              (2-9) 

 

where 𝑟̅ characterizes the spread of the data in a given catchment, which can range from 0 to 1.  

Values equal to unity would indicate that peak flows for a given catchment occur on the same day of 

the year, while values closer to zero would represent a great deal of variability in the flood dates.  The 

hydrologic response properties used in Equation (2-4) included 𝑀𝐷 and 𝑟̅.  𝑀𝐷 represents the 

average time of occurrence and 𝑟̅ the variability in the timing of events, thus the use of both measures 

encompasses the timing and variability of peak events in selected sites. 

     Following the calculation of the dissimilarity between catchments, region formation is carried out 

using the agglomerative hierarchical clustering technique, which begins with the union of the two 

closest catchments in dissimilarity space.  The dissimilarity is redefined between the new cluster and 

all other objects which allows for the inclusion of the next closest site.  The algorithm continues until 

the desired number of sites have been included in the region. 

     Having applied the Mann-Kendall trend test to the data, the flow records may be separated into 

two subsets (i.e., negative and positive trends) and regionalization can then be carried out within each 

subset.  The most common approach for testing regional homogeneity was developed by Hosking and 

Wallis (1997), which is applied after the desired number of stations have been included in the region.  

The Hosking and Wallis heterogeneity measure is initially calculated through the specification of a 

weighted variance statistic given by: 
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𝑉 = {∑ 𝑙𝑖(𝑡
(𝑖) − 𝑡𝑅)𝑀

𝑖=1 ∑ 𝑙𝑖
𝑀
𝑖=1⁄ }

1/2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2-10) 

 

where M is the total number of sites in the region, 𝑙𝑖 is the record length of site 𝑖, 𝑡(𝑖) is the at-site 

(sample) L-CV (coefficient of L-variation), and 𝑡𝑅 is the regional L-CV.  Simulation experiments are 

then carried out to determine the theoretical mean (𝜇𝑉) and standard deviation (𝜎𝑉) of 𝑉.  This results 

in the following heterogeneity measure: 

 

𝐻 =
𝑉−𝜇𝑉

𝜎𝑉
                                                                (2-11) 

 

A region can be considered acceptably homogeneous if 𝐻⁡ < ⁡1, possibly heterogeneous if 1 ≤ 𝐻 ≤

2, and definitely heterogeneous if 𝐻 > 2 (Hosking and Wallis, 1997).  The heterogeneity measure 

makes use of the sample and regional L-CV, which requires an ordered sample of data.  As a result, 

potential bias may be present when applying this homogeneity test in the presence of nonstationarity 

(Tramblay et al., 2003).  The creation of sufficiently homogenous regions is the precursor for 

parameter estimation but before parameter estimates can be determined, all at-site data were scaled by 

their stationary mean annual flood (Hosking and Wallis, 1997).  It should be noted that this method is 

designed for cases where there is considerable overlap in the period of record for the sites in a pooling 

group. 

2.2.4 At-Site Parameter Estimation 

At-site parameter estimates are determined using the method of maximum likelihood (ML) as it 

provides flexibility for the incorporation of covariates into the estimates of distribution parameters.  It 

is often less computationally intensive to take the logarithms of the likelihood function where the at-

site log likelihood function (ℓ(𝜗)𝑖) can be denoted as: 

 

ℓ(𝜗𝑡)𝑖 = ∑ 𝑙𝑜𝑔𝑓(𝑥𝑡|⁡𝜇(𝑡), 𝜎(𝑡), 𝜅)𝑡                                             (2-12) 

 

where 𝜗𝑡  is a vector of nonstationary parameters,  𝑓(𝑥𝑡|⁡𝜇(𝑡), 𝜎(𝑡), 𝜅) is the density function for site 

𝑖, 𝑥𝑡 are the time-dependent at-site data, 𝜇(𝑡) and 𝜎(𝑡) are the nonstationary location and scale 

parameters, respectively, and ⁡𝜅 is the stationary shape parameter.  Due to the complexity of the log 

likelihood function, solutions are generally attained numerically through non-linear optimization 
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algorithms.  The Nelder-Mead simplex algorithm was used for optimization herein (Nelder and Mead, 

1965).  In this study, three three-parameter distributions were considered as potential candidates for 

the regional growth curve, which include the generalized extreme value (GEV), generalized logistic 

(GL), and the generalized normal (GN) (Hosking and Wallis, 1997).  Nonstationary parameter 

estimation was carried out using R, which facilitated the implementation of the Nelder-Mead 

algorithm through the use of the optim-function (Coles, 2001; R Core Team, 2016).  Martins and 

Stedinger (2000) discuss how the ML estimation technique may lead to statistically/physically 

unreasonable estimates of skewness in small sample sizes.  Therefore, shape parameter estimates 

were assessed for each site and at-site data that provided unrealistic results were removed from the 

analysis.  For example, reasonable shape parameter estimates for the GEV distribution will likely fall 

between -0.3 and 0.3 (Martins and Stedinger, 2000). 

2.2.5 Model Selection 

For each site within a region, the aforementioned probability distributions are tested for best fit using 

the Akaike information criterion (AIC), which is given by (Akaike, 1974): 

 

𝐴𝐼𝐶𝑖 = −2[ℓ(𝜗)𝑖] + 2𝐾                                                    (2-13) 

 

where ℓ(𝜗)𝑖 is the at-site log likelihood for site 𝑖; and 𝐾 is the number of model parameters.  Given 

that goodness-of-fit of several distributions must be determined, the minimum AIC estimation 

(MAICE) procedure is implemented, where the distribution providing the lowest AIC value is chosen 

as the most suitable (Akaike, 1974).  Therefore, the 𝐴𝐼𝐶𝑖  values are summed for each distribution 

over all sites and the lowest overall value is chosen as the most suitable for the region.   

2.2.6 Regional Parameter Estimation 

Having determined the at-site nonstationary parameter estimates, pooled growth curve estimates can 

be calculated.  Within an acceptably homogeneous region, parameter estimates are well described by 

the regional average.  Therefore, at-site parameter estimates are combined in accordance with 

Hosking and Wallis (1997) to obtain regional parameter estimates:  

 

𝜗̂𝑘
𝑅 =

∑ 𝑛𝑖𝜗̂𝑘
(𝑖)𝑀

𝑖=1

∑ 𝑛𝑖
𝑀
𝑖=1

                                                            (2-14) 
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where 𝜗̂𝑘
𝑅 is the regional estimate of parameter 𝑘, 𝑛𝑖 is the number of observations at site 𝑖, and 𝜗̂𝑘

(𝑖)
 is 

the at-site estimate of parameter 𝑘.  Calculated values of the parameter estimates (i.e., 𝜇𝑅(𝑡), 𝛼𝑅(𝑡), 

and 𝜅𝑅) can now be substituted into the distribution in question, allowing for the determination of 

𝑞(𝐹, 𝑡), the pooled growth curve. 

2.2.7 Uncertainty 

One of the benefits of the maximum likelihood approach is the convenience of estimating standard 

errors with respect to the parameters of the distribution through the inversion of the information 

matrix of the likelihood function.  But with small samples, bootstrap resampling procedures may be 

of more use in assessing the standard errors of the parameter estimates and design values (Katz et al., 

2002).  Therefore, a balanced resampling approach was implemented, as per Burn (2003).  This 

approach recommends creating 999 copies of the original sample then concatenating these copies into 

a new longer sample.  This concatenated series is then randomly permutated and divided back into the 

original number of copies.   The result is 999 bootstrapped resamples that can be used to determine 

the uncertainty in quantiles estimates. 

     Given the nonstationarity found in the flow records used herein, data were transformed, resulting 

in a residual IID series (Katz, 2002).  Equation (2-15) below demonstrates this transformation using 

the GEV distribution: 

 

𝜖(𝑡)𝑖 = {1 − 𝜅𝑖[𝑋(𝑡)𝑖 − 𝜇𝑖(𝑡)] 𝜎𝑖(𝑡)⁄ }1 𝜅𝑖⁄                                       (2-15) 

 

where 𝜖(𝑡)𝑖 is the transformed residual series at time 𝑡, for site 𝑖; 𝑋(𝑡)𝑖  is the original data series at 

time 𝑡, for site 𝑖; 𝜇𝑖(𝑡) and 𝜎𝑖(𝑡) are the time-dependent location and scale parameters for site 𝑖; and 

𝜅𝑖 is the stationary shape parameter for site 𝑖.  Final samples were then created by converting the 

bootstrapped residuals into their original form through the inverse of Equation (2-15).   

     To preserve the spatial dependence between regional members, a vector resampling approach is 

used to determine uncertainty in pooled quantile estimates.  This is carried out by ensuring that for 

any given year, all sites having a flow value for that year were included in the bootstrapped samples.  

The balanced resampling approach is then applied to each vector of streamflow data.  Similar to the 

above noted procedure, 999 copies of the original sample are concatenated, permutated, then divided 

back into 999 bootstrapped samples.  95% confidence intervals (CIs) are then calculated through the 

use of the resampled quantiles.  The vector resampling approach is also used to assess the uncertainty 
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in quantile estimates using a stationary methodology, which allows for a comparison between the two 

techniques. 

2.3 Application 

The nonstationary pooled flood frequency model described in this study is demonstrated on four 

pooling groups from different physiographic Canadian regions.  Data from the Water Survey of 

Canada’s HYDAT database were used for region formation.  Site selection excludes stations 

potentially affected by anthropogenic land-use change; those included are in the Reference 

Hydrometric Basin Network (RHBN), which is comprised of catchments with relatively pristine or 

stable land-use conditions (Harvey et al., 1999).   

     Peak annual daily streamflow data from unregulated sites with at least 15 years of record were 

assessed for trend using the Mann-Kendall test at the 10% significance level.  Only data extending to 

at least 2006 were retained for analysis.  Uncharacteristically low or high flow values at the beginning 

or end of the flow record can cause erroneous results when applying the Mann-Kendall test, therefore 

all records were screened for such occurrences with neighboring sites to ensure the legitimacy of the 

flow values.   

     The application of the clustering approach described in section 2.2.3 resulted in the formation of 

four pooling groups, which are shown in Figure 2-1.  Three of the regions are comprised of sites 

exhibiting negative trend (Regions 1-3) and one with positive trend (Region 4).  It has been suggested 

that pooling group formation be founded on the 5T guideline, where T is the return period of interest 

(Reed et al., 1999).  The guideline suggests the inclusion of 5 times more station years in a region 

than the return period of interest to account for potential spatial dependence between members of the 

pooling group.  Therefore, the accuracy of the quantiles of the return period of interest is dependent 

on the number of station years in the region.  Sites were formed with the intention of adhering to this 

guideline but limitations in the number of significant at-site trends restricted the size of the pooling 

groups, which was only a concern for the 100-year return period quantiles.  Although the regions 

formed in this analysis were smaller than desired (i.e., less than 5T number of station years), it is 

believed that valuable information may still be garnered from their use (Reed et al., 1999).  Due to the 

potential impacts of spatial correlation among sites in the regions (Castellarin et al., 2008), intersite 

dependence was assessed following the methodology of Douglas et al. (2000).  Through this analysis, 

it was determined that cross-correlation amongst the members of all the regions was not statistically 

significant at the 5% significance level. 
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Figure 2-1: Location of nonstationary pooling groups. 

     The regions comprise four distinct physiographic areas.  Region 1, located in the South British 

Columbia Mountains Climate Region, is characterized by heavy snowfall, leading to peak events 

predominantly from spring and early summer meltwaters.  The hydrologic regime of Region 2, 

situated in the Great Lakes-St. Lawrence Region is characterized by spring snowmelt events.  Region 

3, located in the Atlantic Canada Region is also characterized by spring freshet events.  Lastly, peak 

flood events in Region 4, located in the Prairie Region, are most commonly generated from spring 

snowmelt (Hare and Thomas, 1979).  The seasonality measures for Regions 1-4 are shown in Figure 

2-2, where each point is plotted using the 𝑥̅- and 𝑦̅-coordinates defined in Equation (2-6).  Table 2-1 

shows the regional members of the pooling groups created using sites displaying significant negative 

trend, their respective number of station years and Hosking and Wallis heterogeneity measure.  Table 

2-2 is similar to Table 2-1 but outlines the information from the region created from sites displaying 

statistically significant positive trends. 

Region 1 (Negative Trend Region)
Region 2 (Negative Trend Region)
Region 3 (Negative Trend Region)
Region 4 (Positive Trend Region)

BC AB SK MB 

ON QC 

NB 

NS 

PE 

NL 

NL 
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Figure 2-2: Seasonality measure for Regions 1-4. 

 

Table 2-1: Nonstationary negative regional information. 

Negative Trend Regions 
 

Negative Trend Regions 

Region 
Station 

IDs 

Station 

Years 

Heterogeneity 

Measure  
Region 

Station 

IDs 

Station 

Years 

Heterogeneity 

Measure 

1 

08LG016 

430 1.94 

 

3 

01FB001 

301 0.99 

08NB016 
 

01FJ002 

08NK002 
 

02YC001 

08NK016 
 

02YJ001 

08NK018 
 

02YK005 

08NK022 
 

02YO008 

08NL004 
 

02ZC002 

 08NL024 
08NM171  

02ZF001 
02ZK004 

2 

02ED014 

287 1.11 

     
02KF011 

     
02LA007 

     
02LB007 

     
02LB020 

     
02MC001 
02HM005      

 

y 

x 

Region 1

Region 2

Region 3

Region 4
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Table 2-2: Nonstationary positive regional information. 

Positive Trend Regions 

Region 

Station 

IDs 

Station 

Years 

Heterogeneity 

Measure 

4 

02AB019 

276 1.93 

05OB021 

05OD001 
05QC003 

05QE008 

05QE012 

05RB003 

05UA003 

 

2.4 Results 

For the purposes of this study, six models were assessed for goodness-of-fit and are listed in Table 2-

3.  Nonstationarity was modeled in either the location and/or scale parameters of the three-parameter 

distributions used herein.  Due to limitations in the record length of the pooling group members, 

linear trends were used to model the nonstationarity in the distributional parameters.  Given that a 

trend in the location parameter does not necessitate the same form of trend in the scale parameter, the 

form of trend in the scale parameters is assessed in each region.  For example, a site may have an 

increasing trend in the location parameter and either an increasing or decreasing trend in the scale 

parameter.  If a mixture of increasing and decreasing trends are present in the at-site scale parameter 

estimates in a pooling group, the final regional estimates may not be representative of the form of 

trend in the at-site data.  In all the included regions, there is a mixture of trends in the scale 

parameters (i.e., both increasing and decreasing).  Therefore, the scale parameter is kept constant for 

the remainder of this research. 

 

Table 2-3: Summary of models used. 

Models Location/Scale Parameters of the Models 

GEV-1 

𝜇(𝑡) = ⁡𝜇0 + 𝜇1𝑡,⁡⁡⁡⁡⁡𝜎(𝑡) = ⁡𝜎 GL-1 

GN-1 

GEV-2 

𝜇(𝑡) = ⁡𝜇0 + 𝜇1𝑡,⁡⁡⁡⁡⁡𝜎(𝑡) = ⁡𝜎0 + 𝜎1𝑡 GL-2 

GN-2 
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     Maximum likelihood estimates are then determined for each regional member and an overall 

ranking was assigned to each distribution.  An overview of the ranked distributions with 

nonstationary location parameters can be found in Table 2-4.  Having determined the most suitable 

regional growth curve for each of the four regions, nonstationary regional parameters are then 

calculated.  This was done for each of the distributions highlight in Table 2-4 and summarized in 

Table 2-5. 

 

Table 2-4: Overview of goodness-of-fit (ranking). 

  Overall Rank / Goodness-of-Fit 

Distribution Region 1 (AIC) Region 2 (AIC) Region 3 (AIC) Region 4 (AIC) 

GEV-1 2 (394.5) 2 (204.4) 2 (185.6) 1 (408.4) 

GL-1 3 (402.8) 3 (211.6) 3 (191.2) 3 (424.7) 

GN-1 1 (393.6) 1 (203.1) 1 (182.7) 2 (415.8) 

                 *Bold and italicized cells represent the distribution with the best fit. 
                      *Bracketed figures represent the regional total AIC values. 

 

 

 

Table 2-5: Summary of the pooled growth curve parameters. 

    Pooled Growth Curve Parameters 

  
Nonstationary Stationary 

    Location Parameters Scale Shape 

Region Distribution 𝝁𝟎   𝝁𝟏  𝝈  𝒌 

1 GN-1 1.0630 -0.0058 0.3560 -0.3978 
2 GN-1 1.1679 -0.0102 0.3158 -0.2530 
3 GN-1 1.1113 -0.0103 0.2917 -0.3746 
4 GEV-1 0.4927 0.0183 0.4187 0.1102 

 

     The 50- and 100-year return period quantiles are estimated using Equation (2-1) for the sites used 

as the basis for the trend centered regionalization approach.  Both the nonstationary and stationary 

quantiles are shown in Figures 2-3(a-d) and 2-4(a-d), for the 50-year and 100-year quantiles, 

respectively. Upon comparison of the time-dependent and stationary quantiles, it is clear there is 

potential for underestimation in the case of increasing trends with time and vice versa with regards to 

decreasing quantiles.  For example, if the trend for Region 4 (Figure 2-4(d)) was projected to 2040, 

the nonstationary 100-year quantiles would have been underestimated by approximately 70 m
3
/s (~ 

40%).  An examination of Figure 2-3 shows that the stationary quantiles do not exclusively lie close 

to the mid-point of the nonstationary quantiles.  A possible explanation may be attributed to the 



 

21 

difference between the at-site slope estimates and the regional slope estimate.  That is, if the site in 

question had a slope close to the regional estimate, it would be more likely for the stationary and 

nonstationary quantiles to intersect mid-way. 

 

 

 

 

 

 
                 
 

 

 

 

                    

 

 

 

 

 

 

 
 

 

 

 
 
                 

Figure 2-3: 50-year stationary and nonstationary quantiles and their associated 95% confidence 

intervals; (a) Region 1 (b) Region 2 (c) Region 3 (d) Region 4.         

 

     An uncertainty analysis for both the 50- and 100-year stationary and nonstationary quantiles is 

carried out using the vector resampling approach, described in section 2.2.6.  Uncertainty is estimated 

in both cases to allow for comparison.  The final time-dependent 95% confidence intervals for 

Regions 1-4 are shown in Figures 2-3(a-d) and 2-4(a-d).  One site was chosen within each region for 

Figures 2-3 and 2-4 for graphical purposes. 
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Figure 2-4: 100-year stationary and nonstationary quantiles and their associated 95% 

confidence intervals; (a) Region 1 (b) Region 2 (c) Region 3 (d) Region 4. 

 

     The implementation of the trend centered pooling approach allows for a comparison between the 

goodness-of-fit of the proposed technique to the stationary regional frequency analysis procedure, the 

results of which are shown in Table 2-6.  The Hosking and Wallis (1997) Z
dist 

is the standard 

goodness-of-fit technique used in regional FFA, and is used in this comparison for the stationary 

analysis.  Table 2-6 reinforces the need for the inclusion of nonstationarity in pooled FFA, as there 

are apparent differences in the stationary and nonstationary goodness-of-fit results.  In the case of 

Region 1, for example, if the best fitting distribution were selected using a stationary methodology, 

the GEV distribution would have been chosen.  Given that this distribution was not the highest 

ranking for the nonstationary goodness-of-fit, quantiles determined through its use may be erroneous.  

There appear to be similarities in the goodness-of-fit of both the stationary and nonstationary 

techniques in the remaining regions but this may not hold true if a larger data set were available.   
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Table 2-6: Goodness-of-fit comparison of the proposed methodology and the Hosking and 

Wallis (1997) Z
dist

 measure. 

  Overall Rank / Goodness-of-Fit 
 Distribution Region 1 Region 2 Region 3 Region 4 

GEV-1 2   2   2   1 
 GEV (stationary)   1 

 
1   2   2 

GL-1 3   3   3   3 
 

GL (stationary)   3 
 

3   3   3 
GN-1 1   1   1   2 

 
GN (stationary)   2 

 
2   1   1 

 

2.5 Discussion and Conclusions 

     Pooled FFA is a valuable technique due to its use of data from hydrologically similar sites, thus 

allowing for more accurate quantile estimation.  As climate change effects progress and land-use 

changes become more prominent, time-dependence in peak streamflow records may become 

increasingly common.  Therefore, the need for robust flood estimation techniques in the presence of 

nonstationarity is a pressing concern.   

     A trend centered pooling approach is developed herein to account for statistically significant 

trends found in peak annual flow records using an index-flood approach.  Due to the limited number 

of statistically significant trends found in the HYDAT database, regional formation was restricted to 

four pooling groups.  The uncertainty analysis carried out for the 50-year and 100-year quantile 

estimates for Regions 1-4 confirmed that the methodology presented in this paper is more effective 

than a stationary analysis when significant regional nonstationarity is present.  It is also determined 

that in the presence of significant regional nonstationarity, there is potential for 

overestimation/underestimation of design quantiles dependent on the form of trends found in the at-

site data. 
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Transition Paragraph A 

Nonstationarity in hydrometeorological data may result in inaccuracies in peak quantile estimates.  

Time-dependent data may become more common as the mean global temperature increases, thus 

resulting in the likely intensification of the hydrologic cycle (Hartmann et al., 2013).  The impacts of 

global climate change have been documented throughout Canada and amplify existing climate 

hazards (Walker et al., 2008).   However, the socioeconomic risks of these hazards are most 

pronounced in densely populated regions.  Coastal BC is one such area as it includes the Greater 

Vancouver Regional District (Metro Vancouver) in which approximate 75% of the total provincial 

populace reside (Walker et al., 2008).  Substantial evidence of increasing temperatures in the region 

in recent decades (Zhang et al., 2000; Whitfield et al., 2002; Mote, 2003; Barrow et al., 2004; Meyn 

et al., 2013; ) are expected to exacerbate hydroclimatological risks (BCME, 2007).  Urban flash 

flooding is a prominent consequence of extreme precipitation in the Metro Vancouver area, 

furthermore, the municipality of Delta, BC has experienced marked flooding from the adjacent Fraser 

River (Baron et al., 2012).  Other extreme precipitation related hazards in the area include landslides 

and mudflows due to the proximity to the mountains (NVD, 2015).  In the previous chapter, it was 

demonstrated that nonstationarity in peak streamflow data can result in inaccurate pooled quantile 

estimates.  This chapter
1
 also focuses on peak quantile estimation, however, the context shifts from 

streamflow to precipitation estimates.  Natural sources of climate variability have a pronounced effect 

on the western Canadian climate, the most prominent being the El Niño Southern Oscillation (ENSO) 

and the Pacific Decadal Oscillation (PDO).  Statistically significant extreme precipitation trends may 

be the result of these climatic variations; therefore, employing a methodology that accounts for these 

oscillatory patterns is needed for accurate trend identification.  The objective of this chapter
1
 is to 

develop a methodology through which extreme precipitation quantiles are estimated and the results of 

which are compared to standard trend detection results.  The developed technique allows the reader to 

visually assess existing trends in peak precipitation quantile estimates, whereby, climatic variability 

has been accounted for in the central tendency and variability of the data.  This chapter focuses on 

daily precipitation, while the preceding chapter focused on annual maximum streamflow data. 
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Chapter 3 

A Nonstationary Peaks-Over-Threshold Approach for Modelling 

Daily Precipitation in Coastal British Columbia 

This chapter is built upon the published article with the same title published in the Canadian Water 

Resources Journal.  Minor differences between the published paper and the chapter have been made 

to facilitate consistency and coherence.   

 

O’Brien, N. L. and D. H. Burn. 2018. A Nonstationary Peaks-Over-Threshold Approach for 

Modelling Daily Precipitation in Coastal British Columbia. Canadian Water Resources Journal, 

DOI: 10.1080/07011784.2018.1455538 
 

Summary 

The estimation of extreme precipitation events is a topic of growing interest and concern, particularly 

in highly urbanized areas. The Fifth Assessment Report by the Intergovernmental Panel on Climate 

Change (IPCC) reported that land-surface air temperatures have increased and that more extreme 

precipitation events are expected in a warmer climate.  Hydrometeorological data often display 

nonstationary characteristics in a changing climate, prompting numerous studies worldwide.  This 

research proposes a peaks-over-threshold approach using both stationary and covariate-dependent 

nonstationary thresholds (bivariate and multivariate models).  The GP distribution is fit to threshold 

exceedance data, which accounts for potential nonstationarity in the variability of the extreme events.  

The analysis herein focuses on coastal British Columbia (BC), which includes the Greater Vancouver 

Regional District (Metro Vancouver), due to the potential impacts of climate change in the region.  

Results from quantile estimates and an uncertainty analysis indicate that in the winter and summer 

months, there is stronger evidence of stationarity in 50-year quantiles.  A trend analysis is also 

performed on the magnitude and frequency of POT events for winter and summer for two time 

periods (1976-2014 and 1986-2014).  Results of this analysis indicate that globally significant trends 

are found in the threshold exceedance and frequency of peak event data. 

https://doi.org/10.1080/07011784.2018.1455538
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3.1 Introduction 

Intensifications of the magnitude and/or frequency of severe precipitation events could result in more 

extensive and frequent flooding and can have far-reaching socioeconomic consequences in highly 

populated or urbanized areas.  For example, the widespread 2013 Alberta, Canada floods affected 

approximately 100,000 residents, resulted in four deaths, and caused US$5.7 million in damages 

(EM-DAT, 2016).  The Fifth Assessment Report by the Intergovernmental Panel on Climate Change 

(IPCC) states that global land-surface air temperatures have increased and that increases in extreme 

precipitation are consistent with a warmer climate (Hartmann et al., 2013).  Hartmann et al. (2013) 

note that there is convincing evidence of increases in the frequency and intensity of heavy 

precipitation in North America.  Therefore, the potential for nonstationarity in the magnitude and 

frequency of extreme precipitation events is of paramount concern.  Additionally, with the assertion 

by Milly et al. (2008) that stationarity is dead, the time-independence of the statistics of historical 

rainfall records is brought into question. 

     Hydrometeorological quantile estimates for low-frequency, high-magnitude events are essential 

for civil infrastructure design.  For instance, several Canadian provinces have imposed guidelines 

requiring that stormwater infrastructure adequately contain/convey runoff from a 100-year rainfall 

event (Stephens et al., 2002; Ontario Ministry of the Environment [OME], 2008).  Standard statistical 

techniques assume data to be independently and identically distributed (IID), meaning the data arise 

from the same statistical probability distribution (Katz et al., 2002).  This assumption is not valid in 

the presence of nonstationarity thus establishing a need for covariate-dependent approaches in a 

changing climate.  Estimating nonstationary hydrometeorological extremes has henceforth become a 

topic which has gained a great deal of interest (Kharin and Zwiers, 2005; Nadarajah, 2005; El 

Adlouni et al., 2007; Hundecha et al., 2008; Sugahara et al., 2009; Rajagopalan, 2010; Villarini et al., 

2010; Beguería et al., 2011; Burn et al., 2011; Ouarda and El-Adlouni, 2011; Villarini et al., 2011; 

Gilroy and McCuen, 2012; Roth et al., 2012; Tramblay et al., 2013; Li and Tan, 2015).   

     The extremes within hydrological data can be characterized in a variety of manners.  Two 

commonly used techniques include the block maxima series and the partial duration series (peaks-

over-threshold).  The block maxima series is comprised of the largest peak value of a data set in a 

predetermined block length, typically selected to be 1-year and resulting in the annual maximum 

series (Katz et al., 2002).  This research adopts the POT technique, in which all values that fall above 

a suitably high threshold are retained for analysis (Coles, 2001).  In addition to the peak annual data, 

this method facilitates the inclusion of supplementary extreme events in wet years.  The timing of 
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exceedances of a sufficiently high threshold are frequently modelled using a homogenous Poisson 

process, while excesses over the threshold are commonly modelled using the GP distribution, 

typically referred to as the Poisson-GP model (Khaliq et al., 2006).  The GP distribution parameters 

may, however, be characterized by temporal covariates (Renard et al., 2006; Sugahara et al., 2009; 

Kyselý et al., 2010; Beguería et al., 2011; Roth et al, 2012; Tramblay et al., 2013; Sungwook et al., 

2016) including the use of a nonhomogeneous Poisson process with the inclusion of a covariate-

dependent intensity parameter (Katz, 2010; Beguería et al., 2011).  A number of studies have focused 

on modelling nonstationarity in the selected threshold (Kyselý et al., 2010; Northrop and Jonathan, 

2011; Roth et al., 2012; Jonathan et al., 2013a; Jonathan et al., 2013b; Jonathan et al., 2014; Roth et 

al., 2014), but to the authors’ knowledge, none has developed a goodness-of-fit technique for 

selecting the most appropriate stationary or nonstationary threshold/GP model combination.  

Furthermore, this study addresses the confounding issue of time-dependence and large-scale ocean-

atmosphere phenomena in nonstationary threshold selection.  

     The purpose of this study is to assess nonstationarity in both threshold models and GP 

distribution parameters to determine those models that provide superior goodness-of-fit and less 

uncertainty for the purpose of quantile estimation.  Through this POT analysis a combination of 

bivariate and multivariate (linear and quadratic) covariate-dependent threshold models are evaluated.  

This research focuses on coastal British Columbia (BC), Canada. Extreme precipitation is associated 

with numerous hazards in the area, including flooding and landslides (Walker et al., 2008).   With 

approximately 75% of BC’s population living in coastal BC, primarily in Metro Vancouver (Walker 

et al., 2008), research of this nature is required to determine the magnitude and potential changes in 

extreme precipitation events that may be expected in one of Canada’s most populated regions.   

     The Rocky Mountains act as a barrier to arctic air masses, giving rise to mild seasonal 

temperatures in coastal BC (Hare and Thomas, 1979).  Although the area is one of the highest seismic 

activity zones in Canada (Chang et al., 2012), extreme weather events are the foremost hazard, 

affecting British Columbians more than any other climate hazard (Walker et al., 2008; Moore et al., 

2010).  The climate in southern BC is influenced by the El Niño Southern Oscillation (ENSO) and the 

Pacific Decadal Oscillation (PDO), both of which are large-scale ocean-atmosphere phenomena 

(Walker et al., 2008).  Several indices have been used to describe ENSO; the Niño 3.4 index is used 

herein.  The Niño 3.4  index is a measure of the area average sea surface temperature (SST) from    

5°S - 5°N and 170°E - 120°W (Rayner et al., 2003).  The PDO Index is the leading principal 
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component of the North Pacific monthly sea surface variability (poleward of 20°N) (Mantua et al., 

1997).   

3.2 Methodology 

A POT approach is developed for the analysis of hydrometeorological data using stationary and 

nonstationary thresholds in which the resulting threshold exceedance data are modelled using the GP 

distribution.  Trend detection is carried out on stationary threshold exceedance data using the Mann-

Kendall nonparametric trend test (Mann, 1945; Kendall, 1975) on total daily precipitation and rainfall 

frequency.      

3.2.1 Climate Oscillation Selection 

Due to the potential influence of both ENSO and PDO on coastal BC’s climate, the correlation 

between both of these climate indices and the precipitation data is assessed (Gershunov and Barnett, 

1998; Walker et al., 2008).  The Niño 3.4 Index is obtained from the National Oceanic & 

Atmospheric Administration – Earth System Research Library (NOAA-ESRL) Physical Sciences 

Division (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data), while 

the PDO Index is retrieved from NOAA National Climate Data Center 

(http://www.ncdc.noaa.gov/teleconnections/pdo/).  An analysis of the correlation between total 

monthly precipitation at each observation station and the Niño 3.4 and PDO indices is carried out 

through a cross-correlation analysis. 

3.2.2 Generalized Pareto Distribution Model 

The most prominent benefit of the POT approach over the block maxima approach is that more data 

are retained for analysis as opposed to using only one peak value in a given block length.  The 

Balkema-de Haan-Pickands theorem states that for a series of IID data, excesses over a sufficiently 

large threshold can be approximated using the GP distribution (Balkema and de Hann, 1974; 

Pickands, 1975).  Also, in the POT framework it can be demonstrated that the occurrence of 

exceedances over a high threshold (𝑢) follow a Poisson distribution with rate parameter 𝜆.   

     For a sequence of IID random variables 𝑥1, 𝑥2, … , 𝑥𝑛, where 𝑥𝑖 > 𝑢, the cumulative distribution 

function,  𝐹(𝑥), of 𝑥𝑖 − 𝑢 for a suitably large ⁡𝑢  is given by (Coles, 2001): 

 

𝐹(𝑥) = 1 − (1 +
𝜅

𝜎
𝑥)

−1 𝜅⁄

⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝜎 > 0, 𝑥 > 0, 1 + 𝜅(𝑥 𝜎⁄ ) > 0                     (3-1) 
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where 𝜎 and 𝜅 are the scale and shape parameters, respectively.  In the event that 𝜅 = 0, the 

distribution reduces to the exponential distribution, which is not employed in this analysis.  The 

quantile function, 𝑄𝑝 of the GP distribution is required to calculate the T-year event, which is an 

event exceeded, on average, once every 𝑇 = 1 (1 − 𝑝⁄ ), where 0 < 𝑝 < 1.  The quantile function is 

commonly expressed in terms of the scale and shape parameters, rate parameter, and T-year event 

(Coles, 2001): 

 

𝑄𝑝 = 𝑢 + (
𝜎

𝜅
) [(𝜆𝑇)𝜅 − 1]⁡⁡⁡𝑓𝑜𝑟⁡𝜅 ≠ 0                                            (3-2) 

 

In the event that data are nonstationary and therefore not IID, the GP distribution can be expressed in 

terms of covariates.  If distributional parameters are, for example, a function of time, the cumulative 

distribution function of the GP distribution may be expressed as (Coles, 2001): 

 

𝐹(𝑥𝑡) = 1 − (1 +
𝜅(𝑡)

𝜎(𝑡)
𝑥𝑡)

−1 𝜅(𝑡)⁄

                                               (3-3) 

 

where⁡𝑥𝑡  are the time-dependent data; 𝜎(𝑡) and 𝜅(𝑡) are the time-varying scale and shape parameters, 

respectively, and are expressed most generally by (O’Brien and Burn, 2014): 

 

𝜎(𝑡) = 𝜎0 + 𝜎1𝑡 + 𝜎2𝑡
2 +⋯+ 𝜎𝑚𝑡

𝑚 

(3-4) 

𝜅(𝑡) = 𝜅0 + 𝜅1𝑡 + 𝜅2𝑡
2 +⋯+ 𝜅𝑚𝑡

𝑚 ⁡ 

 

when 𝑚 = 1, Equation (3-4) reduces to a linear model, whereas, if 𝑚 = 2, Equation (3-4) assumes a 

quadratic form.  Evidence of a constant shape parameter has been found in various 

hydrometeorological studies and this assumption is used hereafter (Vinnikov and Robock, 2002; 

Kharin and Zwiers, 2005; Kyselý et al., 2010; Kay and Jones, 2012).   
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     If nonstationarity is present in the mean of the original data, the use of a stationary threshold will 

result in a nonhomogeneous Poisson process for the excesses.  This inhomogeneity can be modelled 

using a nonstationary rate parameter (Katz, 2010; Beguería et al., 2011); however the use of a 

nonstationary threshold may result in a homogenous Poisson process.  The latter approach is used 

herein to model potential changes in the central tendency of the data. 

3.2.3 Threshold Selection 

The distribution of exceedances over a threshold asymptotically approaches the GP distribution, given 

that a suitably high threshold is chosen.  Therefore, threshold selection must be done with care to 

avoid undue bias or, in the case of too high a threshold, high variance (Coles, 2001).  To ascertain 

whether change-points exist in the data, Pettitt’s test (Pettitt, 1979) is applied prior to both stationary 

and nonstationary threshold selection.  The following sections discuss the stationary and 

nonstationary thresholds selection criteria that are applied for this research.   

3.2.4 Stationary Threshold 

Stationary thresholds are selected through the use of several exploratory plots (Lang et al., 1999; 

Mailhot et al., 2013; Osman et al., 2013; Roth et al., 2016; Sungwook et al., 2016).  Assessing the 

validity of the homogeneous Poisson process assumption is carried out through the dispersion index 

plot (Cunnane, 1979), where an optimally selected threshold has a dispersion index equal to 1 

(Cunnane, 1979; Lang et al., 1999).  The mean residual life plot depicts the mean excess above a 

given threshold versus a range of threshold values.  The GP distribution provides a suitable fit to 

excesses over the selected threshold when linearity is apparent in the mean residual life plot.  

Complimentary threshold choice (TC) plots involve fitting the GP distribution to a range of threshold 

exceedances and assessing the stability of the resulting distributional parameters.  These include the 

scale and shape parameters for the GP distribution (Coles, 2001).  An overview of the threshold 

selection process is provided in Figure 3-1 for the Mission West Abbey summer season data.  Figure 

3-1(a) demonstrates that an appropriate threshold range falls somewhere between 14 and 17 mm.  A 

final threshold of 17 mm was selected as it provides slightly more linearity in Figure 3-1(b), which is 

the mean residual life plot.  The modified scale and shape parameters are also suitably stable after this 

point, and are depicted in Figure 3-1(c) and (d), respectively.   
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Figure 3-1: Stationary threshold selection plots for the Mission West Abbey station summer 

season data; (a) dispersion index plot (b) mean residual life plot (c) modified scale parameter 

plot (d) shape parameter plot.          Indicates a dispersion index of 1. 
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3.2.5 Nonstationary Threshold 

Quantile regression is used to determine nonstationary thresholds, which relies on the fact that sample 

quantiles can be determined by the solution of a linear optimization problem.  Given a set of 

observations (𝑥𝑖), the 𝜏th
 regression quantile is the solution of (Koenker and Basset, 1978; Koenker, 

2005): 

 

𝑚𝑖𝑛
𝛽 ∈ ⁡ℝ

⁡⁡⁡∑ 𝜌𝜏(𝑥𝑖 − 𝛽)𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3-5) 

 

where: 

 

𝜌𝜏(𝑢) = {
𝑢(𝜏 − 1), 𝑢 < 0
𝑢𝜏,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢 ≥ 0

 

 

In the event that the covariate in question varies linearly with time (𝑡), for example, the 𝜏th
 

conditional quantile function becomes: 

  

𝑄𝑥(𝜏|𝑡) = ⁡𝛽0(𝜏) + 𝑡𝛽1(𝜏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3-6) 

 

which can be estimated by: 

 

𝑚𝑖𝑛
𝛽0, 𝛽1 ∈ ⁡ℝ

⁡⁡⁡∑ 𝜌𝜏(𝑥𝑡 − 𝛽0 − 𝑡𝛽1)𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3-7) 

 

where 𝑥𝑡 is a set of time-dependent observations; and 𝛽0 and 𝛽1 are the intercept and the slope 

components of the regression quantiles, respectively.  For a more detailed explanation of quantile 

regression, please refer to Koenker (2005). 

     This research follows the methodology of Roth et al. (2014), which provides a basis for time-

dependent threshold selection.  That is, for a selected time-dependent threshold, the TC plot of the 

scale parameter for the selected threshold (𝜏0) should be approximately constant and the mean 

residual life plot should be approximately linear for all 𝜏 > ⁡𝜏0.  In addition to the mean residual life 
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plot and TC plots, dispersion index plots were examined for all 𝜏 > ⁡𝜏0 to assess the potential of a 

homogeneous Poisson process for threshold exceedances. 

     Four bivariate quantile regression models are used for nonstationary threshold modelling along 

with two multivariate models, all of which incorporate a climate oscillation index and/or time as 

covariates. 

3.2.6 Trend Detection 

There exist comparable trend detection tests in terms of their power of trend detection (Yue et al., 

2002) yet the Mann-Kendall test is widely applied and is therefore used for this research (Mann, 

1945; Kendall, 1975).  The presence of positive/negative serial correlation in hydrometric data can 

increase/decrease the likelihood of finding a significant trend (von Storch, 1995).  Although the data 

used for this analysis were declustered to ensure independence of events, any potential residual serial 

correlation was accounted for using the nonparametric BBS technique (Kundzewicz and Robson, 

2000).  This approach is carried out by resampling data in blocks, the length of which is selected 

based on the number of contiguous lags of significant autocorrelation.  After resampling is carried out 

a large number of times (2000 is implemented for this research), the empirical distribution of the 

results can be used to assess the significance of trends in the data set.  The benefit in using the BBS 

technique is that the autocorrelation structure of the data is preserved, whereas most techniques 

require the adoption of a lag-one autoregressive model [AR(1)].  For more information regarding the 

BBS technique, please refer to Khaliq et al. (2009) or Önöz and Bayazit (2012). 

     To determine whether significant (local) trends found using the Mann-Kendall test have occurred 

by chance, the field (global) significance is determined.  Field significance is employed to determine 

if an identified statistically significant trend occurred by chance.  Field significance is determined 

using a group block bootstrapping approach (GBBS) which assesses the significance of increasing 

and decreasing trends separately (Yue et al., 2003; Khaliq et al., 2009).  The goal of this technique is 

to determine the number of significant trends that occur by chance for a selected number of stations 

while maintaining the serial structure of the original data.  Vector resampling of years is carried out in 

blocks that preserve the serial structure of the original data.  Each station having data for the block 

bootstrapped year vector is added into a resampled data set and this continues until the desired 

number of station years are met (i.e., the resampled data set contains the same number of station-years 

of data as the original data set).  This process is repeated for a large number of times (1000 herein), 
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where trend detection is carried out for each resampled data set.  The empirical distribution of trends 

and subsequent p-value are then determined, which are then employed to determine field significance.  

 

3.2.7 Parameter Estimation 

The method of maximum likelihood (ML) is used for parameter estimation due to the ease of 

incorporation of covariates into distributional parameters.  In the case of a stationary model, the log-

likelihood function, ℓ(𝜗), is expressed as (Coles, 2001):  

 

ℓ(𝜗) = 𝑙𝑜𝑔𝐿(𝜗) = ∑ 𝑙𝑜𝑔⁡𝑓(𝑥𝑖|𝜗)
𝑛
𝑖=1                                              (3-8) 

 

where 𝜗 is a vector of parameters; 𝑓(𝑥𝑖|𝜗) is the probability density function; and 𝑥𝑖 are the time-

independent series of data.  In the event that parameter estimation is to be carried out in a 

nonstationary (time-dependent) context, the log-likelihood function is denoted by (O’Brien and Burn, 

2014):  

 

ℓ(𝜗𝑡) = ∑ 𝑙𝑜𝑔𝑡 𝑓(𝑥𝑡|𝜗(𝑡))                                                    (3-9) 

 

where 𝜗𝑡  is a vector of nonstationary parameters;  𝑓(𝑥𝑡|⁡𝜗(𝑡)) is the density function; 𝑥𝑡 are the time-

dependent at-site data; and 𝜗(𝑡) represents the nonstationary distribution parameters.  Due to the 

complex nature of the log-likelihood function, parameter estimates are commonly determined 

numerically through the use of non-linear optimization techniques; the Nelder-Mead simplex 

algorithm is used for this analysis (Nelder and Mead, 1965). 

3.2.8 Model Selection 

Figure 3-2 outlines the two stage approach that is applied in choosing the most suitable model for 

each data set.  The first stage involves calculating AIC weights that are used as goodness-of-fit 

criteria for the (non)stationary GP model selection.  After the most suitable GP model is selected for 

each threshold, the best fitting threshold models are selected by means of the root mean square error 

(RMSE). 
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Figure 3-2: Schematic of model selection process. 

 

     Akaike weights are initially employed as a goodness-of-fit measure to facilitate the selection of the 

stationary or nonstationary scale parameter models for each threshold.  The AIC is given by (Akaike, 

1974): 

 

𝐴𝐼𝐶 = −2[ℓ(𝜗)] + 2𝐾                                                     (3-10) 

 

where K is the number of parameters.  Using raw AIC values, the difference between the minimum 

AIC value and those of the other models is determined (Burnham and Anderson, 2002): 

 

Δ𝑖(𝐴𝐼𝐶) = 𝐴𝐼𝐶𝑖 −𝑚𝑖𝑛𝐴𝐼𝐶                                                  (3-11) 
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where Δ𝑗(𝐴𝐼𝐶) is the difference in AIC with respect to the minimum AIC; 𝐴𝐼𝐶𝑗  is the raw AIC for 

each model; and 𝑚𝑖𝑛𝐴𝐼𝐶 is the minimum AIC value.  Akaike weights are then calculated by 

(Burnham and Anderson, 2002): 

𝑤𝑗(𝐴𝐼𝐶) =
𝑒𝑥𝑝{−0.5Δ𝑗(𝐴𝐼𝐶)}

∑ 𝑒𝑥𝑝{−0.5Δ𝑚(𝐴𝐼𝐶)}𝑀
𝑗=1

                                               (3-12) 

 

where 𝑤𝑗(𝐴𝐼𝐶) is the AIC weight for model 𝑗 and ∑ 𝑤𝑗(𝐴𝐼𝐶) = 1.𝑀
𝑗=1    The GP distribution model 

with the largest AIC weight is selected as the most suitable.  If any AIC weight falls within 10% of 

the maximum, the more parsimonious model is selected.  Estimates of the GP distribution model 

parameters are determined using the ‘ismev’ package in R (Heffernan and Stephenson, 2009; R Core 

Team, 2016).  The ‘gp.fit’ function in this package allows for the estimation of stationary and 

nonstationary GP distribution parameters through ML estimation, with the option of adding a trend 

component into selected parameters.   

     Having selected the best fitting GP model for each threshold (stationary or nonstationary), the 

goodness-of-fit of the threshold models is ascertained through a quantile plot (Q-Q) comparison.  In 

the event of a nonstationary scale parameter and/or nonstationary threshold, a residual quantile plot is 

produced by transforming data to a standard exponential distribution (Coles, 2001), where (for 

example) time-dependent parameters are included: 

 

𝑥̃𝑡 =
1

𝜅
𝑙𝑛 {1 + 𝜅 (

𝑥𝑡−𝑢𝑡

𝜎(𝑡)
)}                                                    (3-13) 

 

where 𝑥̃𝑡 is the transformed exponential time-dependent data; 𝑢𝑡  is the nonstationary threshold at time 

𝑡.  The selection of the best fitting threshold was determined using the RMSE, through which the 

agreement between the empirical and modelled quantiles is assessed.  The threshold model having the 

lowest RMSE is selected, although, if any threshold model falls within 10% difference of the lowest 

RMSE, the model with the smaller number of parameters is selected to preserve model parsimony. 

3.2.9 Uncertainty 

A balanced resampling approach is implemented for the calculation of quantile confidence intervals 

(CI).  This technique involves first creating a large number of copies (999 is used herein) of the 

original sample data and concatenating the copies.  This concatenated vector of data is then randomly 
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permutated and broken back into the original number of copies. The resulting 999 bootstrapped 

resamples can then be used to estimate the uncertainty present in the quantile estimates (Burn, 2003).   

     In the event that nonstationarity is present in the scale parameter of the original data set of interest, 

data are transformed to remove the covariate-dependence before resampling.  Given that the GP 

distribution is applied for this research and using time as an example, nonstationary data were 

transformed to IID data using the following (Coles, 2001): 

 

𝜖𝑡 = [1 𝜅⁄ ]𝑙𝑛{1 + 𝜅[(𝑥𝑡 − 𝑢𝑡) 𝜎(𝑡)⁄ ]}                                           (3-14) 

 

where 𝜖𝑡  is the transformed residual series at time 𝑡; 𝑥𝑡 is the original data series at time 𝑡; and 𝑢𝑡  is 

the time-dependent threshold.  Data are transformed before bootstrapping and final samples are 

calculated using the inverse of Equation (3-14). 

 

3.3 Application 

3.3.1 Case Study Area 

Total daily precipitation data, retrieved from the National Climate Data Archive of Environment and 

Climate Change Canada, are used for this research.  Data from 30 gauges throughout coastal BC are 

used for the implementation of a POT analysis.  Before threshold selection is carried out, data are 

separated into winter season events, spanning from mid-October to mid-April, and summer season 

events, encompassing the remainder of the year.  Winter storms in BC are dominated by midlatitude 

cyclonic activity, resulting in substantial precipitation amounts.  The summer climate is characterized 

by a subtropical high pressure system that results in less frequent and intense storms (Walker et al., 

2008).  Therefore, seasonal partitioning of the data is necessary to reflect the different storm 

generating mechanisms.   

     Figure 3-3 shows the locations of 30 observation stations used in the analysis, six of which are 

located in Metro Vancouver.  Table 3-1 provides a spatial summary of the station characteristics in 

three geographical areas, which include the North Coast, the South Coast, and Vancouver Island.  The 

elevations and locations of the meteorological stations have a discernible impact on the mean annual 

precipitation recorded at these locations.  Substantial variability in mean annual precipitation is 

evident throughout coastal BC.  Windward areas and those at higher elevations receive greater annual 
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precipitation amounts.  Also, the rain shadow of Vancouver Island produces drier conditions in the 

south coast interior (Moore et al., 2010). 

     The precipitation data used for this analysis were initially screened for obvious transcription errors 

and uncharacteristically low or high values.  Observation stations for this analysis were retained for 

analysis if they have no more than four consecutive years of missing observations.  All stations with 

daily data west of the mainland Coast Mountains meeting these criteria were included in the analysis.  

Table 3-1 provides a summary of the percentage of missing data at each of the 30 retained 

meteorological stations.  All the stations, aside from North Pender Island, have less than 20% missing 

observations from the period of record; 27 of the stations have less than 10% missing data.  It is 

acknowledged that bias may be present in the precipitation measurements due to variations in wind 

speed and differences in instrumentation. Furthermore, the current analysis employs a two day 

separation time between maxima as a means of retaining peak precipitation from individual events 

(Coles, 1993; Caires et al., 2006; Kyselý and Beranová, 2009; Roth et al., 2012).  All data were also 

found to be free of step-changes prior to parameter estimation. 
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Table 3-1: Summary of stations used for analysis. 

 

 

 

 
 

Station Name 

 

Station 

ID 

Start 

Year 

End 

Year 

Latitude 

(°N) 

Longitude 

(°W) 

Elevation 

(m) 

Mean Annual 

Precipitation 

(mm) 

Percentage 

of Missing 

Data (%) 

North Coast   

(N1) Kitimat 2 1064321 1966 2014 49.34 121.76 16.8 2629 3.5 

(N2) Kitimat Townsite 1064320 1954 2014 54.05 128.63 98.0 2120 4.2 

(N3) Terrace PCC 1068131 1968 2014 54.50 128.62 67.0 1099 3.4 

South Coast   

(S1) Burnaby Simon Fraser U 1101158 1965 2014 49.28 122.92 365.8 1732 8.7 

(S2) Coquitlam Como Lake 

Ave. 
1101889 1972 2014 49.27 122.87 160.0 1626 

13.4 

(S3) Delta Tsawwassen Beach 1102425 1971 2014 49.01 123.09 2.4 902 1.9 

(S4) Gibsons Gower Point 1043152 1961 2014 49.39 123.54 34.0 1313 2.4 

(S5) Mission West Abbey 1105192 1962 2014 49.15 122.27 197.0 1823 2.3 

(S6) N Vancouver Wharves 1105669 1962 2014 49.31 123.12 7.0 1579 8.7 

(S7) Richmond Nature Park 1106PF7 1977 2014 49.17 123.09 3.0 1171 5.0 

(S8) Sumas Canal 1107785 1957 2014 49.11 122.11 9.0 1544 11.3 

(S9) Vancouver Harbour CS 1108446 1925 2014 49.30 123.12 2.5 1377 9.8 

Vancouver Island   

(V1) Alberni Robertson Creek 1030230 1961 2014 49.34 124.98 73.8 2068 2.7 

(V2) Courtenay Grantham 1021988 1960 2014 49.76 125.00 81.0 1285 9.6 

(V3) Cowichan Lake Forestry 1012040 1949 2014 48.82 124.13 176.8 2126 1.6 

(V4) Gabriola Island 1023042 1967 2014 49.15 123.73 46.0 850 8.1 

(V5) Galiano North 10130MN 1975 2014 48.99 123.57 6.0 859 6.8 

(V6) Gold River Townsite 1033232 1975 2014 49.78 126.06 119.0 2524 8.0 

(V7) Lake Cowichan 1012055 1960 2014 48.83 124.05 171.0 1747 9.4 

(V8) Metchosin 1015105 1968 2014 48.37 123.56 140.0 967 4.3 

(V9) North Pender Island 1015638 1972 2014 48.76 123.29 98.0 666 21.5 

(V10) Port Alice 1036240 1924 2014 50.39 127.46 21.0 3117 1.4 

(V11) Qualicum R Fish 

Research 
1026565 1962 2014 49.39 124.62 7.6 1268 

2.0 

(V12) Quatsino 1036570 1900 2014 50.53 127.65 3.4 2534 4.4 

(V13) Quinsam River 

Hatchery 
1026639 1975 2014 50.02 125.30 45.7 1555 

3.0 

(V14) Saanichton CDA 1016940 1914 2014 48.62 123.42 61.0 858 0.7 

(V15) Saltspring ST Mary's L 1016995 1976 2014 48.89 123.55 45.7 956 1.2 

(V16) Shawnigan Lake 1017230 1911 2014 48.65 123.63 159.0 1216 1.0 

(V17) Tofino A 1038205 1959 2014 49.08 125.77 24.5 3236 0.8 

(V18) Ucluelet Kennedy Camp  1038332 1964 2014 48.95 125.53 40.0 3309 2.3 
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Figure 3-3: Location of 30 meteorological stations used for the analysis. 
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3.4 Results 

3.4.1 Threshold Selection and Models 

Correlations between climate indices and monthly precipitation amounts were assessed for positive 

and negative lags of cross-correlation function (CCF) plots at the 5% significance level for the Niño 

3.4 and PDO indices.  It is determined that the PDO index is more strongly correlated with the 

monthly precipitation amounts in both the summer (73% of cases for PDO/27% for Niño 3.4) and 

winter seasons (76% of cases for PDO/24% for Niño 3.4).  For this reason, the PDO index and/or 

time are used as covariates for the univariate and bivariate thresholds and GP models used for this 

analysis.  Table 3-2 outlines the nonstationary threshold models employed.   

 

Table 3-2: Quantile regression threshold models. 

𝑄𝑥(𝜏|𝑡) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ = ⁡𝜈0(𝜏) + 𝑡 ∙ 𝜈𝑡1(𝜏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑇𝐻1) 
𝑄𝑥(𝜏|𝑃𝐷𝑂𝑡) ⁡⁡⁡= ⁡ 𝜈0(𝜏) + 𝑃𝐷𝑂𝑡 ∙ 𝜈𝑃𝐷𝑂1(𝜏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑇𝐻2) 

𝑄𝑥(𝜏|𝑡, 𝑃𝐷𝑂𝑡) = ⁡𝜈0(𝜏) + 𝑡 ∙ 𝜈𝑡1(𝜏) + 𝑃𝐷𝑂𝑡 ∙ 𝜈𝑃𝐷𝑂1(𝜏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑇𝐻3) 

𝑄𝑥(𝜏|𝑡) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ = ⁡𝜈0(𝜏) + 𝑡 ∙ 𝜈𝑡1(𝜏) + 𝑡2 ∙ 𝜈𝑡2(𝜏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑇𝐻4) 

𝑄𝑥(𝜏|𝑃𝐷𝑂𝑡) ⁡⁡⁡= ⁡ 𝜈0(𝜏) + 𝑃𝐷𝑂𝑡 ∙ 𝜈𝑃𝐷𝑂1(𝜏) + 𝑃𝐷𝑂𝑡
2 ∙ 𝜈𝑃𝐷𝑂2(𝜏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑇𝐻5) 

𝑄𝑥(𝜏|𝑡, 𝑃𝐷𝑂𝑡) = ⁡𝜈0(𝜏) + 𝑡 ∙ 𝜈𝑡1(𝜏)⁡+ 𝑡2 ∙ 𝜈𝑡2(𝜏) +𝑃𝐷𝑂𝑡 ∙ 𝜈𝑃𝐷𝑂1(𝜏) + 𝑃𝐷𝑂𝑡
2 ∙ 𝜈𝑃𝐷𝑂2(𝜏)⁡⁡⁡⁡⁡⁡(𝑇𝐻6) 

 
 

3.4.2 GP Distribution – Model Selection 

The GP distribution is fit to threshold exceedance data established through the use of stationary and 

nonstationary thresholds; the shape parameter was kept constant in all instances.  The stationary and 

nonstationary GP distribution models used for this analysis are outlined in Table 3-3.  Using the log-

likelihood estimates provided by the ‘gp.fit’ function, AIC weights are calculated for the stationary 

and nonstationary threshold exceedance data. Results from the Mission West Abbey observation 

station are provided in Table 3-4 for the summer season data as an example of the model selection 

process and are typical of all results.  The GP scale parameter model with the highest weight is 

selected as the most appropriate model for all thresholds except for 𝑇𝐻2 and 𝑇𝐻6, where 𝑇𝐻2 is the 

linear, time-dependent threshold and 𝑇𝐻6 is the quadratic time- and PDO-dependent threshold.  In 

these two instances, there was a tie for the highest weight; therefore, the more parsimonious model 

was selected for both threshold models.   
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Table 3-3: POT data and GP distribution quantile functions. 

Stationary GP 

Dist. Quantile 

Function 

𝑄𝑝 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ = ⁡𝑢 + (
𝜎0
𝜅
)[(𝜆𝑇)𝜅 − 1]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐺𝑃𝑆𝑡) 

Nonstationary 

GP Dist. 

Quantile 

Function 

𝑄𝑝(𝑡) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝑢 𝑢𝑐𝑜𝑣⁄ + (
𝜎0 + 𝜎𝑡1𝑡

𝜅
) [(𝜆𝑇)𝜅 − 1]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐺𝑃𝑁𝑜𝑛𝑆𝑡1) 

𝑄𝑝(𝑃𝐷0𝑡) ⁡⁡⁡⁡= 𝑢 𝑢𝑐𝑜𝑣⁄ + (
𝜎0 + 𝜎𝑃𝐷𝑂1𝑃𝐷𝑂𝑡

𝜅
) [(𝜆𝑇)𝜅 − 1]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐺𝑃𝑁𝑜𝑛𝑆𝑡2) 

𝑄𝑝(𝑡, 𝑃𝐷𝑂𝑡) = 𝑢 𝑢𝑐𝑜𝑣⁄ + (
𝜎0 + 𝜎𝑡1𝑡 + 𝜎𝑃𝐷𝑂1𝑃𝐷𝑂𝑡

𝜅
) [(𝜆𝑇)𝜅 − 1]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐺𝑃𝑁𝑜𝑛𝑆𝑡3) 

𝑄𝑝(𝑡) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ = 𝑢 𝑢𝑐𝑜𝑣⁄ + (
𝜎0 + 𝜎𝑡1𝑡 + 𝜎𝑡2𝑡

2

𝜅
) [(𝜆𝑇)𝜅 − 1]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐺𝑃𝑁𝑜𝑛𝑆𝑡4) 

𝑄𝑝(𝑃𝐷0𝑡) ⁡⁡⁡⁡= 𝑢 𝑢𝑐𝑜𝑣⁄ + (
𝜎0 + 𝜎𝑃𝐷𝑂1𝑃𝐷𝑂𝑡 + 𝜎𝑃𝐷𝑂2𝑃𝐷𝑂𝑡

2

𝜅
) [(𝜆𝑇)𝜅 − 1]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐺𝑃𝑁𝑜𝑛𝑆𝑡5) 

𝑄𝑝(𝑡, 𝑃𝐷𝑂𝑡) = 𝑢 𝑢𝑐𝑜𝑣⁄ + (
𝜎0 + 𝜎𝑡1𝑡 + 𝜎𝑡2𝑡

2 + 𝜎𝑃𝐷𝑂1𝑃𝐷𝑂𝑡 + 𝜎𝑃𝐷𝑂2𝑃𝐷𝑂𝑡
2

𝜅
) [(𝜆𝑇)𝜅 − 1]⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝐺𝑃𝑁𝑜𝑛𝑆𝑡6)⁡ 

*𝑢/𝑢𝐶𝑜𝑣 denotes a stationary threshold (𝑢) or one of the six nonstationary thresholds (𝑢𝐶𝑜𝑣) models in Table 3-2. 

 

Table 3-4: AIC weights for the Mission West Abbey observation station – summer season. 

Stationary/ 

Nonstationary 

GP Dist. 

Stationary 

Threshold 

(𝒖) 

Nonstationary Threshold Models (𝒖𝑪𝒐𝒗) 

𝑻𝑯𝟏 𝑻𝑯𝟐 𝑻𝑯𝟑 𝑻𝑯𝟒 𝑻𝑯𝟓 𝑻𝑯𝟔 

𝑮𝑷𝑺𝒕 0.005 0.009 0.039 0.040 0.032 0.025 0.004 

𝑮𝑷𝑵𝒐𝒏𝑺𝒕𝟏 0.012 0.011 0.033 0.046 0.041 0.020 0.006 

𝑮𝑷𝑵𝒐𝒏𝑺𝒕𝟐 0.200 0.297 0.291 0.250 0.259 0.352 0.281 

𝑮𝑷𝑵𝒐𝒏𝑺𝒕𝟑 0.246 0.221 0.291 0.201 0.232 0.201 0.281 

𝑮𝑷𝑵𝒐𝒏𝑺𝒕𝟒 0.030 0.053 0.091 0.187 0.165 0.071 0.031 

𝑮𝑷𝑵𝒐𝒏𝑺𝒕𝟓 0.374 0.344 0.184 0.167 0.162 0.235 0.269 

𝑮𝑷𝑵𝒐𝒏𝑺𝒕𝟔 0.133 0.064 0.072 0.109 0.110 0.097 0.128 

- Bold and italicized cells represent the distribution with the best fit (highest AIC weight). 

 

   The best fitting threshold model was then determined using the model that provided the highest AIC 

weight.  This is carried out through the comparison of quantile or residual quantile plots (for 

nonstationary models), where the agreement between the model and empirical quantiles is measured 

using the RMSE.  An example is provided in Figure 3-4, showing the results for the summer season 

quantile plots at the Mission West Abbey observation station.  Figure 3-4(c) was chosen as the most 

suitable model as it is the most parsimonious within 10% difference of the minimum RMSE of all the 

threshold models.  Tables 3-5 and 3-6 outline the final selection of models, the associated parameter 
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estimates of the GP distribution models, and the applicable stationary or nonstationary threshold 

parameters.  

3.4.3 Trend Detection Summary 

A summary of the trend analysis of the magnitude and frequency of the POT data is presented in 

Figures 3-5 through 3-8.  Two analysis periods are examined (39- and 29-years) for all 30 stations 

and for the winter and summer seasons at the 5% and 10% significance levels.   

     Figure 3-5 indicates that the winter season threshold exceedance data are dominated by decreasing 

trends.  Trends are observed at the 5% and 10% significance levels for threshold exceedances for both 

analysis periods at several sites in the North Coast and Vancouver Island regions.  Although a number 

of statistically significant decreasing trends were identified, only those for the 1976-2014 (39-year) 

and 1986-2014 (29 year) period at the 10% significance level were determined to be field significant.  

A globally significant increasing trend is also identified in Figure 3-6 for the 1986-2014 (29-year) 

analysis period at the 5% and 10% significance levels at the Metchosin (V8) station only.   

   Results of the Mann-Kendall trend test for the summer season threshold exceedance and frequency 

data (Figures 3-7 and 3-8, respectively) indicate that there are a number of both increasing and 

decreasing trends, which are located primarily in the South Coast and Vancouver Island region.  It 

should be noted, however, that globally significant trends were only found in the peak data (Figure 3-

7), which include 39-year increasing trends at the 10% significance level and the 29-year decreasing 

trends at the 10% significance level.  These results highlight the importance of trend identification in 

different analysis periods. 
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Figure 3-4: Comparison of residual quantile plots of above threshold data from the summer 

season at observation station Mission West Abbey; (a) stationary threshold and quadratic PDO-

dependent scale parameter (b) Linear time-dependent threshold and linear PDO-dependent 

scale parameter (c) Linear PDO-dependent threshold and linear PDO-dependent scale 

parameter (d) Linear time and PDO-dependent threshold and linear PDO-dependent scale 

parameter (e) Quadratic time-dependent threshold and linear PDO-dependent scale parameter 

(f) Quadratic PDO-dependent threshold and linear PDO-dependent scale parameter (g) 

Quadratic time and PDO-dependent threshold and linear PDO-dependent scale parameter.  

Note: The RMSE for the selected model is bolded and italicized.
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Table 3-5: Final threshold selection and model parameters for the winter season data. 

 
Threshold Model Parameter(s) 

GP Dist. Model Parameters 

 

Scale Parameter(s) Shape Parameter 
𝜿   𝝂𝟎 𝝂𝒕𝟏 𝝂𝒕𝟐 𝝂𝑷𝑫𝑶𝟏 𝝂𝑷𝑫𝑶𝟐 𝝈𝟎 𝝈𝒕𝟏 𝝈𝒕𝟐 𝝈𝑷𝑫𝑶𝟏 𝝈𝑷𝑫𝑶𝟐 

North Coast 

(N1) Kitimat 2 34.76 -0.054 - - - 20.85 0.4947 -0.0133 - - -0.034 

(N2) Kitimat Townsite 29.19 -0.115 0.001 -0.790 0.580 16.50 - - - - 0.023 

(N3) Terrace PCC 10.00 - - - - 12.90 -0.0582 - - - 0.041 

South Coast 

(S1) Burnaby Simon Fraser U 24.19 -0.052 - -1.547 - 14.78 - - - - 0.017 

(S2) Coquitlam Como Lake Ave.* 21.00 - - - - 14.72 - - - - 0.078 

(S3) Delta Tsawwassen Beach* 9.90 - - - - 8.29 - - - - -0.008 

(S4) Gibsons Gower Point* 13.60 - - - - 10.34 - - - - -0.085 

(S5) Mission West Abbey* 23.39 - - - - 12.84 - - - - 0.081 

(S6) N Vancouver Wharves* 22.00 - - - - 13.53 - - - - 0.018 

(S7) Richmond Nature Park 14.01 -0.010 - - - 9.90 - - - - 0.004 

(S8) Sumas Canal 23.60 - - - - 14.00 0.0614 - - - -0.016 

(S9) Vancouver Harbour CS 23.38 0.094 -0.001 - - 9.80 0.1573 -0.0014 - - 0.063 

Vancouver Island 

(V1) Alberni Robertson Creek* 26.70 - - - - 21.50 - - - - -0.090 

(V2) Courtenay Grantham 22.61 -0.041 - - - 14.95 - - - - -0.043 

(V3) Cowichan Lake Forestry* 33.20 - - - - 20.85 - - - - -0.026 

(V4) Gabriola Island 13.23 -0.010 - - - 9.66 - - - - -0.013 

(V5) Galiano North 12.66 - - 0.417 -  10.97 - - - - -0.059 

(V6) Gold River Townsite 35.60 - - - - 28.85 -0.2162 - - - -0.040 

(V7) Lake Cowichan 30.18 - - 0.175 - 21.05 0.1540 - - - -0.052 

(V8) Metchosin 15.73 0.010 - -1.503 - 7.63 0.5492 -0.0104 -1.5826 0.0625 0.075 

(V9) North Pender Island 11.85 - - -0.090 - 10.55 - - - - -0.007 

(V10) Port Alice 46.29 0.092 - 2.148 - 17.93 0.0747 - 1.3582 - 0.158 

(V11) Qualicum R Fish Research* 21.10 - - - - 14.16 - - - - 0.069 

(V12) Quatsino 30.72 - - 1.096 - 16.90 - - - - -0.002 

(V13) Quinsam River Hatchery 18.02 - - -0.615 - 16.29 - - - - -0.146 

(V14) Saanichton CDA 15.87 0.023 - - - 8.40 0.0394 - - - 0.022 

(V15) Saltspring ST Mary's L* 13.00 - - - - 10.57 - - - - -0.030 

(V16) Shawnigan Lake* 22.10 - - - - 13.65 - - - - -0.019 

(V17) Tofino A* 42.20 - - - - 22.94 - - - - 0.058 

(V18) Ucluelet Kennedy Camp*  40.96 - - - - 24.74 - - - - 0.024 

           *denotes those sites having a stationary threshold and stationary GP dist. model. 
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Table 3-6: Final threshold selection and model parameters for the summer season data. 

 
Threshold Model Parameter(s) 

GP Dist. Model Parameters 

 

Scale Parameter(s) Shape Parameter 
𝜿   𝝂𝟎 𝝂𝒕𝟏 𝝂𝒕𝟐 𝝂𝑷𝑫𝑶𝟏 𝝂𝑷𝑫𝑶𝟐 𝝈𝟎 𝝈𝒕𝟏 𝝈𝒕𝟐 𝝈𝑷𝑫𝑶𝟏 𝝈𝑷𝑫𝑶𝟐 

North Coast 

(N1) Kitimat 2* 18.00 - - - - 16.81 - - - - 0.051 

(N2) Kitimat Townsite 18.27 0.037 - - - 13.32 - - - - 0.112 

(N3) Terrace PCC* 10.40 - - - - 7.40 - - - - 0.158 

South Coast 

(S1) Burnaby Simon Fraser U 12.97 0.024 - 0.713   14.18 -0.0697 - - - -0.043 

(S2) Coquitlam Como Lake Ave. 9.69 - - 0.589 0.573 14.69 - - -0.5935 -0.9711 -0.144 

(S3) Delta Tsawwassen Beach* 5.51 - - - - 7.08 - - - - -0.091 

(S4) Gibsons Gower Point 9.85 -0.026 - - - 9.19 - - - - -0.100 

(S5) Mission West Abbey 14.46 - - 0.116 - 12.65 - - 1.1586 - -0.047 

(S6) N Vancouver Wharves 21.88 0.006 - -0.182 - 12.69 -0.0903 - - - -0.032 

(S7) Richmond Nature Park* 6.80 - - - - 9.09 - - - - -0.089 

(S8) Sumas Canal 16.69 0.018 - - - 10.09 0.0728 - - - 0.024 

(S9) Vancouver Harbour CS* 15.80 - - - - 9.90 - - - - 0.032 

Vancouver Island 

(V1) Alberni Robertson Creek* 13.10 - - - - 12.45 - - - - 0.053 

(V2) Courtenay Grantham 10.82 - - 1.266   7.10 - - - - 0.175 

(V3) Cowichan Lake Forestry 12.94 0.008 - - - 11.86 - - - - 0.048 

(V4) Gabriola Island 5.80 - - - - 7.05 - - 0.268 -0.428 -0.034 

(V5) Galiano North* 6.93 - - - - 5.50 - - - - 0.108 

(V6) Gold River Townsite* 19.00 - - - - 13.43 - - - - 0.158 

(V7) Lake Cowichan* 11.30 - - - - 10.11 - - - - 0.183 

(V8) Metchosin 6.28 0.026 - - - 5.55 - - - - 0.155 

(V9) North Pender Island 4.84 0.027 - - - 5.18 - - - - 0.037 

(V10) Port Alice 27.38 -0.006 - 0.397 - 21.94 - - - - 0.009 

(V11) Qualicum R Fish Research 9.43 - - 0.844 - 7.45 - - - - 0.035 

(V12) Quatsino 20.53 -0.032 - 0.508 - 11.66 - - 0.425 0.714 0.087 

(V13) Quinsam River Hatchery 10.59 - - - - 7.48 - - -0.639 - 0.125 

(V14) Saanichton CDA 7.92 0.019 - - - 5.45 - - - - 0.117 

(V15) Saltspring ST Mary's L 5.98 - - 0.519 - 5.31 - - - - 0.073 

(V16) Shawnigan Lake 7.27 0.010 - - - 7.37 -0.017 - - - 0.081 

(V17) Tofino A* 25.78 - - - - 17.17 - - - - 0.054 

(V18) Ucluelet Kennedy Camp  29.02 -0.423 0.008 - - 17.99 - - - - 0.084 

            * denotes those sites having a stationary threshold and stationary GP dist. model. 



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3-5: Winter season stationary threshold exceedance trend locations. Bold and italicized 

legend fonts indicate trends that are globally significant. Note: Only locations showing trends 

are shown.  Depicted trends may be either for a 29- or 39-year analysis periods at the 5% and 

10% significance levels. 
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Figure 3-6: Winter season frequency of stationary threshold exceedance trend locations.  Bold 

and italicized legend fonts indicate trends that are globally significant. Note: Only locations 

showing trends are shown.  Depicted trends may be either for a 29- or 39-year analysis periods 

at the 5% and 10% significance levels. 
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Figure 3-7: Summer season stationary threshold exceedance trend locations.  Bold and 

italicized legend fonts indicate trends that are globally significant.  Note: Only locations 

showing trends are shown.  Depicted trends may be either for a 29- or 39-year analysis periods 

at the 5% and 10% significance levels. 
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Figure 3-8: Summer season frequency of stationary threshold exceedance trend locations.  

Note: Only locations showing trends are shown.  Depicted trends may be either for a 29- or 39-

year analysis periods at the 5% and 10% significance levels. 
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3.4.4 Quantile Estimation Summary 

Quantile estimates are calculated for the 50-year events for each of the winter and summer season 

data using Equation (3-2) and are illustrated in Figures 3-9 and 3-10, respectively.  If a stationary 

model is determined to be the best fit, a comparison with nonstationary quantiles is not warranted and 

is therefore not presented.  For all the remaining data sets, a comparison between the best-fitting 

stationary and nonstationary model quantiles is provided.  Due to the inclusion of PDO as a covariate, 

the quantile estimates are not consistently smooth, particularly in the case of a PDO-dependent GP 

scale parameter.  Trends identified through the Mann-Kendall trend test are included in the top right 

corner of Figures 3-9 and 3-10 as a means of comparison. 

     For the winter season data, 12 of the 30 sites are identified as stationary through the model 

selection technique.  All of the sites in the North Coast region are identified as nonstationary 

(decreasing), whereas 56% (5 of 9) and 39% (7 of 18) of sites in the South Coast and Vancouver 

Island regions are, respectively.  Of the remaining four stations on the South Coast, two (S1 and S7) 

display very mild nonstationarity, while the remaining two (S8 and S9) reveal increasing 50-year 

quantiles.  Within the Vancouver Island region, seven of the stations have stationary quantiles (V1, 

V3, V11, V15, V16, V17, and V18), while seven of the remaining stations show nominal changes in 

quantiles with respect to time (V2, V4, V5, V8, V9, V12, and V13).  The four remaining sites exhibit 

discernable nonstationarity, three of which are increasing (V7, V10, and V14) and one of which is 

decreasing (V6).  A decreasing trend was also identified at station V6 at the 5% significance level for 

the 29 year period (1986-2014).  An inconsistent decreasing trend is identified at station V14 but this 

could be due to the marked difference in the period of record of the station data and the 29/39 year 

time frames.  The magnitude of uncertainty in the quantile estimates is similar for both stationary and 

nonstationary models, aside from site V10 which has smaller stationary CIs.  Given that the stationary 

threshold and GP model provides substantially less uncertainty for this particular site, confidence in 

these nonstationary estimates is low. 
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Figure 3-9 (N1-S9): 50-year nonstationary and/or stationary quantiles and their associated 95% 

confidence intervals - winter season.  Notes: The notation in the top left of each plot is the 

associated station from Table 3-1; the symbol in top right corner indicates trend results for 

exceedance data  for the 29- or 39-year periods of record, D indicates a decreasing trend, I an 

increasing trend, and 5/10 indicate the significance level (%).  The threshold exceedance trend 

results are provided as a means of interpretation of model fit and comparison. 
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Figure 3-9 (V1-V12): 50-year nonstationary and/or stationary quantiles and their associated 

95% confidence intervals - winter season.  Notes: The notation in the top left of each plot is the 

associated station from Table 3-1; the symbol in top right corner indicates trend results for 

exceedance data  for the 29- or 39-year periods of record, D indicates a decreasing trend, I an 

increasing trend, and 5/10 indicate the significance level (%).  The threshold exceedance trend 

results are provided as a means of interpretation of model fit and comparison. 
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Figure 3-9 (V13-V18): 50-year nonstationary and/or stationary quantiles and their associated 

95% confidence intervals - winter season.  Notes: The notation in the top left of each plot is the 

associated station from Table 3-1; the symbol in top right corner indicates trend results for 

exceedance data  for the 29- or 39-year periods of record, D indicates a decreasing trend, I an 

increasing trend, and 5/10 indicate the significance level (%).  The threshold exceedance trend 

results are provided as a means of interpretation of model fit and comparison. 

 

 

 

 

 

 

 

 



 

55 

 

Figure 3-10 (N1-S9): 50-year nonstationary and/or stationary quantiles and their associated 

95% confidence intervals - summer season.  Notes: The notation in the top left of each plot is 

the associated station from Table 3-1; the symbol in top right corner indicates trend results for 

exceedance data  for the 29- or 39-year periods of record, D indicates a decreasing trend, I an 

increasing trend, and 5/10 indicate the significance level (%).  The threshold exceedance trend 

results are provided as a means of interpretation of model fit and comparison. 
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Figure 3-10 (V1-V12): 50-year nonstationary and/or stationary quantiles and their associated 

95% confidence intervals - summer season.  Notes: The notation in the top left of each plot is 

the associated station from Table 3-1; the symbol in top right corner indicates trend results for 

exceedance data  for the 29- or 39-year periods of record, D indicates a decreasing trend, I an 

increasing trend, and 5/10 indicate the significance level (%).  The threshold exceedance trend 

results are provided as a means of interpretation of model fit and comparison. 
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Figure 3-10 (V13-V18): 50-year nonstationary and/or stationary quantiles and their associated 

95% confidence intervals - summer season.  Notes: The notation in the top left of each plot is 

the associated station from Table 3-1; the symbol in top right corner indicates trend results for 

exceedance data  for the 29- or 39-year periods of record, D indicates a decreasing trend, I an 

increasing trend, and 5/10 indicate the significance level (%).  The threshold exceedance trend 

results are provided as a means of interpretation of model fit and comparison. 

 

     The summer season data show slightly less stationarity, with 10 of the 30 sites having time-

independent quantiles.  In the North Coast region, two of the three sites are stationary, with the 

remaining nonstationary site (N2) showing little discernable change over the period of record.  Three 

of the nine sites in the South Coast region are stationary (S3, S7, and S9) and three have minimal 

nonstationarity or fluctuate around a constant mean value (S2, S4, and S5).  Of the remaining three 

stations, two show decreasing and one increasing 50-year quantiles, although nonstationary estimates 

for station S6 have slightly more uncertainty than their stationary counterparts. Finally, Vancouver 

Island contains five stationary sites, but of those remaining, only two (V16-decreasing and V18-

increasing) show apparent changes in 50-year peak return period precipitation estimates.  In 

agreement with the winter season findings, the uncertainty in the stationary and nonstationary 50-year 

quantile estimates are relatively comparable, aside from those of site V18.  There is noticeably more 

uncertainty in the nonstationary quantiles for this station; therefore, there is minimal confidence in 

these estimates. 
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3.4.5 Regional Pattern Overview 

Figure 3-9 demonstrates that the North Coast, winter season 50-year quantile estimates are generally 

decreasing, although one site (N2) shows very little change over the period of record.  Furthermore, 

the trend analysis identified a decreasing trend at N1 for the 1986-2014 period at the 5% significant 

level, and a decreasing trend for the 1976-2014 period was detected at site N3 at the 10% significance 

level.  One trend was also identified in the North Coast region frequency data in the winter season, a 

variable for which the trend results are field significant (Figure 3-6).  Although the detected trends in 

the magnitude of the POT data were not determined to be field significant, these findings suggest 

overall decreasing peak precipitation in the winter months.  An analysis of Figure 3-10 reveals that 

there is minimal indication of nonstationarity in the summer peak quantile estimates, as well as no 

trends being identified at those sites.  The GP and threshold model parameters in the winter season for 

the North Coast displayed both PDO- and time-dependence, although the models selected for the 

summer months are dominated by stationarity (Tables 3-5 and 3-6).  Furthermore, divergent 

nonstationary behaviour is observed in the winter quantile estimates at stations N1 and N2, although 

these two stations are very closely located.  Differences in the nonstationary quantile estimates at 

these two stations may be due to other factors such as changes in instrumentation and location over 

time. 

     Figures 3-5 and 3-6 illustrate that Vancouver Island is dominated by decreasing trends in above 

threshold occurrences and the frequency of those occurrences in the winter season.  Globally 

significant decreasing trends were identified for the above threshold occurrences for the 39-year 

period decreasing trends at the 10% significance level.  Additionally, one field significant increasing 

trend was identified (Figure 3-6) for the winter 1986-2014 period at the 5% and 10% significance 

levels.  A combination of increasing and decreasing trends were found in the summer months in the 

magnitude and frequency of POT events; however, only increasing threshold exceedance trends for 

the 39-year period (10% significance level) and decreasing trends for the 29-year period (10% 

significance level) were found to be field significant.  The winter quantile estimates have somewhat 

contradictory results, given that a number of sites are discernably increasing. Also, the summer 50-

year quantile estimates were predominantly stationary, yet a number of significant trends were 

identified through the trend analysis.  Finally, an analysis of the threshold models from Tables 3-5 

and 3-6 selected for Vancouver Island suggests that the central tendency of the winter and summer 

season data is influenced by both time and PDO.  An analysis of the GP scale parameter estimates 

reveals that the winter variability is more likely stationary. 
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     The South Coast region is characterized by relatively stationary quantiles for both seasons, 

although several fluctuate about a constant mean.  However, two sites have noticeably increasing 50-

year quantile estimates in the winter and summer quantiles indicate that several sites have discernably 

increasing and decreasing quantiles as well.  Two significant decreasing trends were identified in the 

winter season, while summer season trends for both the frequency and magnitude of POT events were 

generally decreasing.  Additionally, the South Coast region shows a mixture of time and PDO-

dependence in the summer in all model parameters, while the winter season appears to be rather 

stationary.   

3.5 Discussion 

This section includes a comparison of this analysis with other similar studies.  Such comparison is a 

challenging task due to differences in methodologies, but is nonetheless a valuable undertaking.    

     In an analysis of daily precipitation data throughout Canada, Stone et al. (2000) found decreasing 

trends in heavy precipitation frequency in winter months in coastal BC, which is consistent with the 

findings of this work.  Increases in the frequency of peak summer events were also identified by 

Stone et al. (2000); however, their research did not find globally significant trends in summer 

frequency data.  Zhang et al. (2000) found statistically significant increases in gridded daily 

precipitation in summer months in the southwestern portion of BC for the 1900-1998 and 1950-1998 

periods.  The findings of the quantile analysis for the South Coast region herein are in agreement with 

these findings.  Zhang et al. (2000) also identified significant increasing trends in an area similar to 

that of the North Coast region for the 1900-1998 period, which is generally consistent with the 

quantile analysis of this area.  In a Canada-wide analysis, Vincent and Mekis (2006) examined 

numerous precipitation and temperature indices from 1950 to 2003.  They found an increase in the 

number of days with snow and rain in coastal BC, although these finding were not statistically 

significant.  However, significant increasing trends in very wet days (≥⁡95
th
 percentile) were 

primarily identified on Vancouver Island and in the North Coast region, which is inconsistent with the 

results of this research, given that the detected trends in frequency of over threshold events were 

generally decreasing (significant or otherwise).  Burn et al. (2011) used hourly precipitation to carry 

out a POT analysis of events of varying duration in BC.  The results of this analysis for the summer 

season found statistically and globally significant trends in the frequency of above threshold events 

for the 24-hour duration storms (40-year period).  However, no globally significant trends were found 

in the summer frequency data herein.  Also, the winter season frequency data of Burn et al. (2011) are 
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dominated by increasing trends, although none were field significant.  These trend results are 

somewhat consistent with those of the winter trend analysis carried out herein, whereby a globally 

significant increasing trend was found for the winter frequency data.  The winter peak magnitude data 

herein are dominated by decreasing trends. However, some evidence of increasing winter quantiles 

was found in the Vancouver Island and South Coast regions. 

     Mote (2003) found predominantly increasing trends in daily precipitation for the winter season 

from 1950 to 2000 in southern coastal BC, which is consistent with the quantile estimates from the 

South Coast region.  Mote (2003) also found a mixture of increasing and decreasing trends on 

Vancouver Island, which is also consistent with the results herein.  In an analysis of Canadian daily 

total rainfall, Vincent and Mekis (2009) found increasing trends in summer and decreases in winter 

precipitation in southwestern BC.  These results are somewhat similar to those found for the North 

Coast region in the winter and the South Coast region in the summer.  Although the work of Mote 

(2003) and Vincent and Mekis (2009) used daily precipitation indices, they did not assess peak 

precipitation trends; therefore, a direct comparison between these two studies is not possible. 

     General circulation model (GCM) projections for coastal BC indicate the potential for wetter 

winter seasons and drier conditions in the summer months (British Columbia Ministry of the 

Environment [BCME], 2007; Walker et al., 2008).  The results established through the trend analysis 

are somewhat consistent with the above noted projections for the winter season given that globally 

and statistically significant increasing trends in frequency were found for the 29-year analysis period 

at both significance levels.  Also in agreement, a number of trends in the summer season were found 

to be decreasing.  It should also be noted that the results of the quantile analysis provided better 

agreement with likely climate change projections. 

     Whitfield et al. (2010) describe the PDO as a powerful post-hoc explanatory concept, limiting the 

forecasting potential with this index.  Therefore, care should be taken in extrapolating the quantile 

estimates past the period of record, particularly in instances with strong quadratic behaviour.  One of 

the anonymous reviewers suggested that concave quadratic behaviour may possibly be due to a period 

of predominant La Niña between approximately 1990 and 2012, which led to a long period of cold 

PDO SSTs.   
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3.6 Conclusions 

This paper incorporates existing nonstationary extreme value approaches to develop a methodology 

for the selection of stationary/nonstationary thresholds.  Nonstationary threshold selection is carried 

out through quantile regression, which allows for the inclusion of bivariate and multivariate models.  

A two-stage selection process is proposed, in which AIC weights are initially employed to determine 

the best-fitting (non)stationary GP distribution model for each threshold.  Threshold/GP distribution 

models are then compared through the use of Q-Q plots. This methodology is developed as a 

complementary approach to trend detection which allows the user to visually identify potential trends 

in peak quantile estimates.   

   There is more evidence of stationarity in the North Coast winter and summer threshold exceedance 

data, which is confirmed by the quantiles and trend analyses.  Similar results are revealed for the 

South Coast region, although there is some evidence of increasing quantiles in the winter.  Vancouver 

Island shows the most potential for nonstationary increasing peak 50-year quantiles in both seasons, 

although there is some evidence of decreases in the winter.  Through the trend analysis, it was 

revealed that a number of significant trends were found in the magnitude and frequency of POT data 

for both seasons. 

     In general, the results from the quantile and trend analyses are in agreement with previously 

published work.  Furthermore, dissimilarities in the trend and quantiles analyses reinforce the 

usefulness of investigating trends through various means and highlight the importance of comparisons 

within various periods of record.  Based on this historical data trend analysis, there is less risk of 

serious precipitation related winter events; however, the frequency of these events is increasing in 

recent years. Furthermore, the quantile analysis suggests that there is moderate risk of 

increases/decreases in winter or summer hydrometeorological hazards in coastal BC. 
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Transition Paragraph B 

Hydrometeorological time series commonly exhibit serial correlation due to climatological and 

hydrological phenomena.  Serial correlation occurs when observations at a given time are dependent 

on previous observations.  For example, antecedent soil moisture conditions may lead to the detection 

of autocorrelation in a data set.  The presence of significant serial correlation may have deleterious 

effects on nonparametric trend tests applied to the data.  It has been demonstrated that the existence of 

positive autocorrelation leads to increased rates (type I error) of false detection of trends when none 

exists (von Storch, 1995).  Conversely, negative serial correlation decreases the likelihood of 

detecting significant trend when one does indeed exist.  Accurate identification of existing trends is 

essential before the application of FFA techniques to ensure that this form of inhomogeneity is 

adequately addressed.  Throughout the completion of Chapters 2 and 3, it was observed that there was 

a lack of research on the effects of negative serial correlation on existing techniques which account 

for autocorrelation for nonparametric trend testing.  This has been largely omitted from the literature 

given the physical meaninglessness of negative memory structure (von Storch, 1995), however, it 

nonetheless exists and must be adequately addressed.  Furthermore, differences in the serial structure 

of BMS and POT data have been largely overlooked.  The purpose of Chapter 4 is to compare the 

power and type I error rates of various commonly used techniques that account for serial correlation.  

This analysis includes an assessment of both positive and negative serial correlation, the latter of 

which has not been thoroughly assessed in the literature.  Furthermore, the differences in BMS and 

POT memory structures are analyzed, along with a land-use dependent trend analyses.  While the 

preceding chapter focused on daily precipitation data, the following chapter employs an instantaneous 

dataset where block maxima and partial duration series data are used. 
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Chapter 4 

Trend Identification in the Presence of Serial Correlation: A 

Comparison of Block Maxima and Peaks-Over-Threshold Data 

 

Summary 

The existence of serial correlation in a hydrometeorological time series can have deleterious effects 

on trend detection tests.  To account for significant autocorrelation detected in data sets, various 

techniques have been developed over time, each having their own assumptions and accuracy.  Many 

of such techniques assume the data have an AR(1) memory structure, however, this assumption is not 

universally applicable.  Furthermore, the existence of positive or negative serial correlation has 

dissimilar effects on these statistical techniques.  This research compares the power and type I error 

rates of various well-known and several newer techniques to account for positive and negative serial 

correlation in combination with the Mann-Kendall nonparametric trend test.  Through a case study of 

a subset of southern Ontario watersheds, it is determined that BMS data are more likely to have 

significant negative lag-1 serial correlation but are also more likely to have an AR(1) serial structure.  

POT data are predominantly positively autocorrelated, with a greater proportion of higher order 

memory structures.  It is determined that in the case of positively serially correlated data, the BBS, 

the VCCF1, and the SBS are the most powerful.  Alternatively, in the case of negative 

autocorrelation, the VCCF1 and BBS approaches are recommended. 

     Using peak event data parsed from instantaneous streamflow observations, a comparative trend 

analysis is carried out on 70 southern Ontario watersheds with mixed land-use.  The land-use 

classifications were defined as urban, agricultural, natural, and RHBN.  Furthermore, the differences 

in trends detected in POT and BMS data are highlighted.  There is evidence of significant trends in 

the RHBN and natural catchments, however, these trends are not consistent in either the POT or BMS 

data sets.  The results of the trend analysis highlight commonly detected trend patterns in the urban 

catchments, that is, statistically significant increases in peak discharge, volume, and frequency of 

events, along with decreasing duration, and time to peak are observed.  Similar results are identified 

in the agricultural watersheds, with consistent significant trends found in the peak event magnitudes. 
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4.1 Introduction 

There is a growing body of research focusing on temporal dependence in hydrometeorological event 

characteristics, most notably, accurate identification of trends in peak events.  The Fifth Assessment 

Report by the Intergovernmental Panel on Climate Change (IPCC) states that there is strong evidence 

to suggest that global land-surface temperatures have risen since the late 19
th
 century and increases in 

extreme precipitation are anticipated in a warmer climate (Hartmann et al., 2013).   Increased 

precipitation can have a cascading effect within the hydrologic cycle, thus prompting extensive 

research focused on trend identification in temperature, precipitation, and streamflow records, among 

other hydrometric time series worldwide (Lettenmaier, 1976; Hirsch et al. 1982; Hipel et al., 1988; 

Burn, 1994; Lins and Slack, 1999; Douglas et al., 2000; Zhang et al., 2001; Burn and Hag Elnur, 

2002; Yue and Pilon, 2004; Svensson et al., 2005; Burn, 2008; Bormann et al., 2011; Burn et al., 

2011; Noguchi et al., 2011; Sonali and Kumar, 2013).  This chapter focuses on the effects of serial 

correlation on the power and type I error rates of positively and negatively autocorrelated data, and 

compares several well-known and more recent statistical techniques that account for serial correlation 

in hydrometeorological data.  A further emphasis is placed on land-use dependent trend analyses 

using BMS and POT data. 

4.1.1 Overview of the Background and Effects of Serial Correlation  

Serial correlation is commonly detected in hydrometeorological data, for example, antecedent soil 

moisture conditions can lead to autocorrelation in streamflow measurements.  Positive autocorrelation 

within a time series can affect trend detection tests by increasing the likelihood of detecting 

significant trend when none is present (von Storch, 1995).  Therefore, if serial correlation is identified 

within a time series, it must be properly accounted for to accurately assess the significance of trends.  

There are a number of parametric and nonparametric tests that can be used for trend detection, 

although many commonly applied parametric tests (e.g. Student t-test) require data to be normally 

distributed.  It has been documented that parametric tests are slightly more powerful than 

nonparametric tests when applied to Gaussian data, although this assumption may not hold true in all 

instances (Hamed and Rao, 1998; Yue and Pilon, 2004).  The Mann-Kendall (MK) (Mann, 1945; 

Kendall, 1975) nonparametric test is the most commonly applied trend detection test; however, 

through extensive simulation, Yue et al. (2002a) documented the power of MK test and the Spearman 
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rank correlation (SRC) test (Lehmann, 1975; Sneyers, 1990) to be comparable for detecting trend 

through simulation experiments.  These results may be inconsistent with practical applications of the 

nonparametric methods however (Khaliq et al., 2009; Sonali and Kumar, 2013). 

     Independence within a dataset is a fundamental assumption of all trend detection tests, one that is 

violated in the presence of serial correlation. When applying trend detection tests founded upon 

hypothesis testing, there are two potential sources of error.  Type I error (with a probability equal to 𝛼 

or the significance level) occurs when the null hypothesis (𝐻0) of no trend is rejected, when there is 

no trend present in the data.  The probability of rejecting the null hypothesis when it is true should be 

equal to the assigned (nominal) significance level.  Type II error (with a probability equal to 𝛾) arises 

when there is a trend present in the data but the alternative hypothesis (𝐻1) is incorrectly rejected.  

The power of the test is determined when a trend exists in the data and is correctly identified (1 − 𝛾) 

(Hipel and McLeod, 1994).   

     The work of von Storch (1995) was one of the first to highlight the effect of serially correlated 

data on the type I error rate of the MK test.  The author suggests the use of prewhitening (PW) using 

an AR(1) model to account for autocorrelation before the MK test is applied.  Through extensive 

simulation, Yue et al. (2002b) examine the effect of both positive and negative serial correlation 

(using and AR(1) model) on trend-free time series.  For positive values of autocorrelation, the 

authors’ results were in agreement with von Storch (1995) in that the type I error rate increases as a 

function of increasing lag-1 serial correlation (𝜌1).  Also, it was found that negative serial correlation 

has the opposite effect, whereas, the type I error rate decreases as a function of decreasing 𝜌1.  

Additionally, it was found that prewhitening effectively removes serial correlation, reducing the type 

I error close to the nominal value.  When positive trend was superimposed onto a positive AR(1) 

process, it was determined that the PW approach removes a portion of the trend, thus making it less 

likely that a significant trend would be detected (Yue et al., 2002b).  These results were in accordance 

with those of Yue and Wang (2002), who demonstrated that the PW approach may lead to 

inflation/deflation of negative/positive trend in time series.  Due to the effect of prewhitening on trend 

magnitude, Yue et al. (2002b) suggested a revised procedure, trend-free prewhitening (TFPW), in 

which a linear trend is estimated and removed from the data before prewhitening.  The residual 

prewhitened series and trend are then blended before trend detection.  When applied to streamflow 

data, Yue et al. (2003) found that TFPW was able to detect more trends than PW, thus demonstrating 

the method’s ability to more accurately limit the effects of serial correlation on data with trend.  Yue 

and Wang (2002) and Bayazit and Önöz (2007) both suggested the use of selective prewhitening to 
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limit power loss of the technique, a suggestion that has been scrutinized by several authors (Bayazit 

and Önöz, 2004; Zhang and Zwiers, 2004; Hamed, 2009).  Hamed (2009) argued that selective 

prewhitening is not a valid option and the technique could be corrected by simultaneously estimating 

𝜌1 and trend to avoid bias before applying the technique.  More recently, in a study by Önöz and 

Bayazit (2012), the authors found the TFPW technique to have more power for detecting trend than 

the original MK test when applied to data with significant lag-1 serial correlation due to its propensity 

to inflate trend estimates and propose a modification to the procedure (MTFPW).  MTFPW is similar 

to TFPW, the difference being that original series is prewhitened, as opposed to prewhitening the 

detrended series (both methods are explained in detail in section 4.3).  Furthermore, Rivard and 

Vigneault (2009) demonstrate the TFPW technique may be more appropriate for negatively correlated 

data. 

    Several authors have demonstrated that autocorrelation in time series affects the variance of the 

MK test statistic (Hamed and Rao, 1998; Yue et al., 2002b) but not the asymptotic normality (Cabilio 

et al., 2013).  Based on this observation and the work of Bayley and Hammersley (1946), Hamed and 

Rao (1998), and Yue and Wang (2004a) proposed a variance correction approach for the MK test to 

account for the increase/decrease in variance when positive/negative serial correlation is present.  The 

authors propose correcting the variance with the use of an effective sample size (ESS) that accounts 

for the effects of autocorrelation (Hamed and Rao, 1998; Yue and Wang, 2004a).  It has been 

established that both variance correction techniques have similar power in detecting trend (Khaliq et 

al., 2009; Blain, 2013).  Wang et al. (2015) also investigate the effects of variance on the MK test but 

their methodology aims to correct the discrepancy between the variance of the original data and the 

residual noise after PW. 

     To account for serial correlation, Kundzewicz and Robson (2000, 2004) suggested the use of a 

BBS method for trend detection, whereby the resampling would replicate the serial dependence 

structure of the data by resampling in blocks.  The suitability of the BBS technique for limiting the 

effects of serial correlation on the MK test was assessed by several authors, through which it was 

determined that the BBS approach had a comparable power for detecting trend as the variance 

correction approach when significant serial correlation was present in the data (Khaliq et al., 2009; 

Önöz and Bayazit, 2012).  In a study by Khaliq et al. (2009), it was established that the TFPW 

approach identified more significant trends than the BBS approach.  The authors attribute the 

behaviour to the Markovian dependence structure used in the TFPW technique, an assumption that 

may not be valid for all hydrometeorological time series. Önöz and Bayazit (2012) found the TFPW 
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approach to have a higher power for trend detection than the variance correction and BBS approaches 

but also note that the method had a larger type I error rate.   Blain (2014) found similar results 

regarding TFPW and also determined that PW and the MTFPW approaches provides similar type I 

error rates but the MTFPW approach was more powerful.   

     Noguchi et al. (2011) suggest accounting for autocorrelation in a data series using an 

autoregressive SBS along with a statistical trend detection test.  There is a considerable body of 

literature concerning the use and applicability of the SBS technique (Kreiss, 1992; Bühlmann, 2002; 

Politis, 2003; Chernick, 2008; Kreiss et al., 2011; Cabilio, 2013).  This approach consists of fitting an 

autoregressive model of order p (AR(p)) to the data and bootstrapping the residuals of the model.  

The bootstrapped residuals are then converted into bootstrapped realizations using the same AR(p) 

model.  

4.1.2 Introduction to the Effects of Land-Use on Watershed Hydrology 

The hydrologic response of a watershed is related to the land cover and use within the catchment 

(Rosburg et al., 2017).  Consequently, land-use changes are generally associated with marked 

changes in hydrologic response; however, the degree of hydrologic change is dependent on the extent 

and type of land-use modifications.  These types of changes can be anthropogenic (urbanization, 

agricultural, deforestation, etc.) or natural (wildfire) but nonetheless result in similar hydrologic 

regime alterations.  Given that a hydrograph is most commonly characterized by its peak, duration, 

and volume, the effects of hydromodifications are generally concentrated on these features. 

     According to Statistics Canada, the percentage of Canadians living in urban areas increased by 

80% between 1911-2011 (Statistics Canada, 2011a).  Urban expansion results in the addition of 

impervious surfaces and channelization of watercourses, with a subsequent increase in surface runoff.  

The hydrological consequences to the receiving waters are far reaching and include water quality and 

aquatic ecosystems degradation (Everard and Moggridge, 2012).  Urbanization results in flashier 

streams with increased peak discharge, volume, and frequency of runoff events, while decreasing 

duration, time to peak, and additionally decreased baseflow in urban systems (Leopold, 1968; 

Seaburn, 1969; Konrad, 2003; Morgan et al., 2004; Burns et al., 2005; Chang, 2007; Hamdi et al., 

2011).  The goal of current storm water management (SWM) practices is to offset the effects of urban 

growth, however, runoff events may still tax these systems, resulting in similar results to those 

previously noted.  Given that approximately 86% of Ontario’s populace lives in urban centers 
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(Statistics Canada, 2011b), a focus on urban peak runoff event trends may help to mitigate the 

associated socioeconomic risks. 

     In addition to urbanization, agricultural land-use changes can have considerable hydrologic 

effects.  It is estimated that over 50% of croplands in the United States (US) and Canada require 

artificial drainage for productive yields (Skagg et al., 1994).  Surface ditches and subsurface tile 

drains are commonly installed for agricultural purposes to provide adequately dry, well-aerated soils 

(Irwin and Whiteley, 1983).  Improved drainage results in substantial hydrological impacts; however, 

the manifestation of these changes are watershed specific (King et al., 2014; Apsīte et al., 2017).  

Parallel processes affect the hydrologic response of a tile drained agricultural watershed (Spaling, 

1995).  The addition of subsurface drainage allows water to move more quickly through the soil 

which could potentially increase peak flows (Robson, 1990).  Conversely, tile drainage increases the 

depth to the groundwater table, creating greater storage capacity in the soil, thus increasing retention 

time, which may result in smaller peak flows (Robson, 1990; Spaling, 1995).   Agricultural areas that 

depend on surface drainage may, however, see increases in peak events (King et al., 2014).  The 

nature of the hydrological changes is, therefore, highly dependent on the type of artificial drainage 

(whether surface or subsurface), soil characteristics (well or poorly drained soils), and antecedent 

moisture conditions (Spaling, 1995).  For these reasons, it is unsurprising that there have been 

conflicting findings regarding the effects of agricultural drainage on peak flow magnitudes in 

southern Ontario (Irwin and Whiteley, 1983; Serrano et al., 1985; Spaling, 1995; Fraser and 

Flemming, 2001) and worldwide (Madramootoo and Broughton, 1987; Madramootoo et al., 1988; 

King et al., 2014; Rahman et al., 2014; Muma et al. 2016; Apsīte et al., 2017; Rogger et al., 2017). 

     This research is a novel addition to the existing literature in that it extensively examines the effects 

of negative serial correlation on numerous existing statistical tests that account for autocorrelation 

when used with nonparametric trend tests.  Furthermore, this research explores the differences in the 

memory structures of the BMS and POT dataset, thus allowing for the determination of the most 

appropriate technique for use on these types of data. 

     The purpose of this chapter is to provide a comparison of several well-known and other more 

recent techniques that account for short-term persistence when the MK trend test is applied.  Similar 

research has previously been carried out; however, the results of this chapter indicate the need for a 

more critical analysis of the effects of negative serial correlation on existing techniques.  The topic of 

negative serial correlation is one that has received limited attention in the literature, although, it is 

commonly found in practice.  Furthermore, a comparison of the most appropriate techniques to 
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account for serial correlation for use on BMS and POT data is provided.  This chapter additionally 

provides a comparative analysis of trends having various periods of record and land-use changes. 

4.2 Overview of the Mann-Kendall Nonparametric Trend Test 

Although there are numerous techniques for identifying trend in a time series, this research focuses on 

the Mann-Kendall nonparametric test as it is the more commonly applied technique.  The MK test is a 

rank-based test used for determining the significance of a trend.  For a series of data 𝑥1, 𝑥2, … , 𝑥𝑛, the 

MK test statistic (𝑆) is given by (Mann, 1945; Kendall, 1975): 

 

𝑆 =⁡∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-1) 

 

where 𝑥𝑗  and 𝑥𝑖 are sequential observations and: 

𝑠𝑖𝑔𝑛(𝜔) =⁡{

⁡⁡⁡1⁡⁡⁡⁡𝑖𝑓⁡𝜔 > 0
⁡⁡⁡0⁡⁡⁡⁡𝑖𝑓⁡𝜔 = 0
−1⁡⁡⁡⁡𝑖𝑓⁡𝜔 < 0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-2) 

 

When 𝑛 ≥ 8, the test statistic (𝑆) is approximately normally distributed with mean (𝐸(𝑆)) equal to 

zero and variance given by: 

𝑉(𝑆) = ⁡
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑘(𝑘)(𝑘−1)(2𝑘+5)

𝑛
𝑘=1

18
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-3) 

 

where 𝑡𝑘 is the number of ties and 𝑘 is the extent of a tie.  The standardized test statistic (𝑍) is as 

follows: 

 

𝑍 = {

(𝑆 − 1) √𝑉(𝑆)⁄ ⁡⁡⁡⁡𝑆 > 0

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆 = 0

(𝑆 + 1) √𝑉(𝑆)⁄ ⁡⁡⁡⁡𝑆 < 0

                                                  (4-4) 

 

The standardized MK statistic follows a standard normal distribution; therefore, the null hypothesis of 

no trend is rejected when 𝑎𝑏𝑠(𝑍) ≥ 𝑍1−𝛼 2⁄ , where 𝛼 is the adopted significance level of the test.  It 

should also be noted that a positive value of 𝑆 indicates an increasing trend while a negative value 

indicates a decreasing trend. 
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     The MK test requires independence between observations; therefore, serial correlation within a 

time series can lead to erroneous results.  The following section describes the approaches used herein, 

in conjunction with the MK test, to account for autocorrelation in a times series. 

4.3 Statistical Approaches for Incorporating Serial Correlation 

Hydrometeorological data commonly exhibit dependence between observations.  Data displaying 

statistically significant positive serial correlation, for example, can increase the type I error rate of the 

MK test leading to potentially inaccurate results.  The goal of this section is to provide a brief 

overview of several commonly used techniques for accounting for autocorrelation, which include: 

prewhitening (PW), trend-free prewhitening (TFPW), prewhitening with bias corrected lag-1 

autocorrelation (BCPW), modified trend-free prewhitening (MTFPW), variance correction (VCCF1 

and VCCF2), variance correction prewhitening (VCPW), block bootstrap (BBS), and sieve bootstrap 

(SBS).  Please note that all slope estimates presented herein were determined through the use of 

Theil-Sen nonparametric slope estimation approach (Theil, 1950; Sen, 1968). 

 

Prewhitening (PW) 

The PW approach was initially suggested by Kulkarni and von Storch (1995) and von Storch (1995) 

to limit the effects of serial correlation in a time series.  The approach assumes an AR(1) structure of 

dependence within the data in which the sample lag-1 autocorrelation coefficient (𝑟1) is estimated.  

The sample data are then prewhitened using the following formula (von Storch, 1995): 

 

𝑦𝑡 = 𝑥𝑡 − 𝑟1𝑥𝑡−1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-5) 

 

where 𝑦𝑡 is the prewhitened time series; 𝑥𝑡 is the original data at time 𝑡; 𝑟1is the lag-1 autocorrelation 

coefficient estimate; and 𝑥𝑡−1 are observations of the original data at time 𝑡 − 1.  A trend detection 

test can then be applied to the residual series. 

 

Trend-Free Prewhitening (TFPW) 

Trend-free prewhitening was initially proposed by Yue et al. (2002b) as it was demonstrated through 

simulation that PW removes a portion of the trend magnitude in a time series (in the case of positively 

serially correlated data).  The TFPW procedure is as follows: 
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1) The slope of a trend (𝑏) in a sample of data is initially estimated using the Thiel-Sen slope 

estimator. 

2) Any significant trend found within the time series is assumed to be linear and the data are 

detrended as follows: 

 

𝑥𝑡
′ = 𝑥𝑡 − 𝑏𝑡                                                            (4-6) 

 

where 𝑥𝑡
′ is the detrended series and 𝑏 is the estimated slope. 

3) 𝑟1is then estimated from 𝑥𝑡
′ and the data are prewhitened, resulting in (𝑦𝑡

′): 

 

𝑦𝑡
′ = 𝑥𝑡

′ − 𝑟1𝑑𝑥𝑡−1
′                                                         (4-7) 

 

where 𝑥𝑡−1
′  is the detrended lagged time series and 𝑟1𝑑 is the estimated lag-1 serial correlation 

coefficient of the detrended series. 

4) The final step involves the blending of estimated trend (𝑏𝑡) and the residual series (𝑦𝑡
′): 

 

𝑦𝑡 = 𝑦𝑡
′ + 𝑏𝑡                                                            (4-8) 

 

where 𝑦𝑡 is the blended series that can now be tested for trend. 

 

Modified Trend-Free Prewhitening (MTFPW) 

In an analysis of annual streamflow series in 17 Turkish rivers all with significant lag-1 

autocorrelation, Önöz and Bayazit (2012) found the original MK test had more power for detecting 

trend than when TFPW was applied.  As a result, the authors suggested a modified trend-free 

prewhitening approach.  The three first steps of the MTFPW approach and TFPW are the same (i.e., 

the slope of trend is estimated, the series is detrended, and the lag-1 autocorrelation coefficient is 

estimated from the detrended series).  The difference between the two methods occurs when the 

original series is prewhitened in the modified approach, as opposed to the detrended series in TFPW, 

which is given as:  

 

𝑧𝑡 = 𝑥𝑡 − 𝑟1𝑑𝑥𝑡−1                                                           (4-9) 
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where 𝑧𝑡  is the prewhitened series.  The residual prewhitened series can then be tested for significant 

trend. 

 

Prewhitening with Bias Corrected lag-1 Autocorrelation (BCPW) 

Hamed (2009) maintained that trend in a time series would interfere with the estimation of serial 

correlation, thus introducing bias into the estimate.  As an alternative to detrending, the author 

suggests estimating the parameters of a Markovian model with linear trend given by: 

 

𝑥𝑡 = 𝑟1𝑥𝑡−1 + 𝑎 + 𝑏𝑡 + 𝑒𝑡                                                (4-10) 

 

where 𝑎 is the linear trend intercept estimate and 𝑒𝑡 is a noise/residual term.  Hamed (2009) 

recommends solving for 𝑟1, 𝑎, and 𝑏 simultaneously using the ordinary least squares (OLS) method 

as an alternative to detrending.  The author compares several bias correction approaches for 𝑟1⁡and 

suggests the use of the OLS correction of van Giersbergen (2005): 

 

𝑟1
∗ =

(𝑛𝑟1+2)

𝑛−4
                                                            (4-11) 

 

where  𝑟1
∗ is the bias corrected lag-1 autocorrelation coefficient and 𝑛 is the sample length.  With an 

estimate of 𝑟1
∗ the series can then be prewhitened and resulting series tested for trend. 

 

Variance Correction (VC) 

The purpose of the variance correction technique is to correct the inflated/deflated variance of the MK 

test statistic due to positive/negative serial correlation.  The modified variance [𝑉∗(𝑆)] is given by: 

 

𝑉∗(𝑆) = 𝑉(𝑆) ∗ 𝐶𝐹                                                        (4-12) 

 

where 𝑉(𝑆) is the variance of the test statistic and 𝐶𝐹 is a correction factor based on the ESS.  Two 

commonly applied approaches for calculating 𝐶𝐹 are those of Hamed and Rao (1998) and Yue and 

Wang (2004a), which are respectively as follows: 

 

𝐶𝐹1 = 1 +
2

𝑛(𝑛−1)(𝑛−2)
∑ (𝑛 − 𝑘)(𝑛 − 𝑘 − 1)(𝑛 − 𝑘 − 2)𝑟𝑘

𝑅𝑛−1
𝑘=1                      (4-13) 
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𝐶𝐹2 = 1 + 2∑ (1 −
𝑘

𝑛
)𝑛−1

𝑘=1 𝑟𝑘                                                  (4-14) 

 

where ⁡𝐶𝐹1 is the correction factor proposed by Hamed and Rao (1998); 𝐶𝐹2 is the correction factor 

proposed by Yue and Wang (2004a);  𝑘 is the lag; 𝑟𝑘
𝑅 is the lag-⁡𝑘 autocorrelation coefficient of the 

ranks of the data; and 𝑟𝑘 is the lag-𝑘 autocorrelation coefficient of the data.  A trend detection test can 

then be applied using the modified variance.  The variance correction techniques are applied under 

the AR(1) assumption by 𝑟𝑘 = 𝑟1
|𝑘|

.  Where appropriate the VCCF1 method is applied to all 

significant lags herein.  The VCCF2 method is applied to all lags up to one-fourth of the series length 

as anything larger may be statistically unreliable (Box and Jenkins, 1970). 

 

Variance Correction Prewhitening (VCPW) 

Wang et al. (2015) proposed variance correction prewhitening based on two established variance 

correction techniques.  The slope of the trend (𝑏), is initially estimated and removed from the series 

using Equation (4-6).  Using this detrended series, the lag-1 autocorrelation is estimated and if 

significant, the series is prewhitened using Equation (4-7).  A corrected trend-free prewhitened series 

is then computed by: 

 

𝑦𝑡
′′ = 𝑦𝑡

′ (𝑠
𝑥𝑡
′
2 𝑠

𝑦𝑡
′
2⁄ )                                                        (4-15) 

 

where 𝑠
𝑥𝑡
′
2  is the variance of 𝑥𝑡

′ and 𝑠
𝑦𝑡
′
2  is the variance of 𝑦𝑡

′.  A modified slope estimator (𝑏′) is then 

determined as follows for positive values of 𝑟1: 

 

𝑏′ = 𝑏/√𝑉𝐼𝐹 

 

where: 

 

𝑉𝐼𝐹 ≈ (1 + 𝑟1)/(1 − 𝑟1)⁡                                                     (4-17) 
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If 𝑟1 < 0, 𝑏′ = 𝑏 is considered.  The final step recombines the modified trend (𝑏′𝑡) and the corrected 

trend-free prewhitened series: 

 

𝑥𝑡
′′ = 𝑦𝑡

′′ + 𝑏𝑡                                                            (4-18) 

 

where 𝑥𝑡
′′ is the final transformed series to be tested for trend using the MK test. 

 

Block Bootstrap (BBS) 

The block bootstrap is a nonparametric technique in which the data are bootstrapped in predefined 

blocks (Kundzewicz and Robson, 2000).  Block length is determined based on the serial dependence 

structure of the data, that is, the contiguous number of significant lags of serial correlation.  The BBS 

procedure is as follows: 

1) Estimate the test statistic of the trend detection test from the original data. 

2) Estimate the number (𝜅) of significant contiguous serial correlations. 

3) Resample the original series in blocks of length 𝜅 + 𝜂 until a resampled series is created having a 

length the same as the original data.  In the case of unequal block length, a smaller/larger block 

will not affect the result of the technique.  Implement the resampling procedure a large number of 

times. 

4) Estimate the trend detection test statistic for each resampled series.  If the test statistic of the 

original data falls in the tails of the distribution of resampled test statistics, the result is 

considered significant. 

 

Sieve Bootstrap (SBS) 

Noguchi et al. (2011) suggest the use of the AR-sieve bootstrap and provide the methodology 

required to combine the technique with a trend detection test of choice.  The authors’ procedure for 

use with the MK test includes the following: 

1) Estimate test statistic of the trend detection test from the original data. 

2) Estimate the autoregressive structure [AR(𝑝)] of the data by: 

 

𝑥𝑡 = ∑ 𝑟𝑘𝑥𝑡−𝑘 +
𝑝
𝑘=1 ⁡𝑒𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-19) 
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Resample the residuals from Equation (4-19) a large number of times, creating a resampled series 

the same length as the original for which the selected AR(𝑝) filter has been re-added to the 

residuals of Equation (4-19). 

3) Estimate the selected trend detection test statistic for each resampled series. 

4) The p-value of the test is given by the number of times that the test statistic of the original data 

exceeds those calculated through the resampling approach.  A p-value less than the pre-assigned 

significance level indicates a significant result. 

4.4 Simulation Study 

To determine the type I error rate and power of the aforementioned techniques, a Monte Carlo 

simulation study is carried out.  The simulations include trials with and without serial correlation and 

also with and without a trend component.  Descriptions of the simulation experiments are outlined in 

the following sections.  Additionally, all the techniques are employed with the AR(1) assumption 

except the BBS approach that selects the block length based on the number of contiguous lags of 

significant serial correlation. 

4.4.1 Series Without Trend 

A simulation study is performed to ascertain the type I error rate of the techniques described in 

section 4.2.  An AR(1) model is employed to assess type I error, where the simulated data were 

generated as follows: 

 

𝑋𝑡 = 𝜇𝑋 + 𝜌1(𝑋𝑡−1 − 𝜇𝑋) + 𝜀𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-20) 

 

where 𝑋𝑡 and 𝑋𝑡−1 is the simulated time series at times 𝑡 and 𝑡 − 1, respectively; 𝜇𝑋 is the mean of 

𝑋𝑡; and 𝜀𝑡  is a white-noise process with a mean of zero (𝜇𝜀 = 0) and variance (𝜎𝜀
2) equal to 𝜎𝑋

2(1 −

𝜌1
2). 

     The simulation results presented herein are comprised of 10,000 AR(1) time series with a mean 

(𝜇𝑋) of 1, coefficient of variation (Cv) of 0.25, 0.5, 0.75, 1, and 1.5 and length, 𝑛  = 25, 50, 100, 150, 

and 200.  Both positive and negative lag-1 autocorrelation coefficients are examined                        

(𝜌1 = -0.9(0.1)0.9) including simulated time series with no autocorrelation.  2000 bootstrap resamples 

are generated for the bootstrapped based models (BBS and SBS), which was found to be suitable in 
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previous studies (Svensson et al., 2005; Önöz and Bayazit, 2012).  Following the results from section 

4.5.2.3, a value of 𝜂 = 1 is employed. 

     Using the significance level, 𝛼 = 0.05, the type I error rate is assessed for the simulated series.  

This is determined from the rejection rate (𝑅𝑟𝑒𝑗) of the null hypothesis of no trend, which is given as 

follows (Yue et al. 2002b): 

 

𝑅𝑟𝑒𝑗 = 𝑁𝑟𝑒𝑗/𝑁⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-21) 

 

where 𝑁𝑟𝑒𝑗  is the number of simulated series in which the null hypothesis is rejected and 𝑁 is the 

total number of simulations. 

4.4.2 Series With Trend 

A Monte Carlo simulation is carried out using the techniques described in section 4.2 in order to 

assess the power of each method.  An AR(1) model (Equation (4-20)) was used along with the 

addition of a linear trend (𝑇𝑡 = 𝛿𝑡), superimposed as follows: 

 

𝑋𝑇 = 𝑋𝑡 + 𝛿𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4-22) 

 

where 𝑋𝑇 is the AR(1) model with the additional trend.  Linear trends with slopes                               

𝛿 = -0.01(0.002)0.01 were used for the simulated time series.  The power of the techniques described 

in section 4.2 is assessed as the rejection rate of the null hypothesis (of no trend) when applied to 

series with superimposed trend. 

4.5 Simulation Results 

In the presence of serial correlation, a desirable characteristic of any statistical tests is the ability to 

maintain the nominal significance level to be considered a valid approach.  Although a number of 

authors have emphasized the importance of type I error rates close to the assigned significance level 

(Zhang and Zwiers, 2004; Önöz and Bayazit, 2012), a balance between low type I error and high 

power must also be a consideration in selecting an appropriate technique.  For the sake of brevity, 

only subsets of the simulated results are shown thus providing an overview of the behaviour of the 

statistical techniques. 



 

77 

4.5.1 Type I Error 

The results of the type I error rates from the Monte Carlo simulations are depicted in Figure 4-1 for 

positive values of the lag-1 autocorrelation coefficient.  As expected, the presence of increasing 

values of the lag-1 autocorrelation coefficient increase the likelihood of rejecting the null hypothesis 

of no trend, which is characterized by an increase in the type I error rate (von Storch, 1995; Hamed 

and Rao, 1998; Yue et al., 2002b; Yue and Wang, 2002; Yue and Wang, 2004a) and changes in the 

length and Cv of the simulated series have little effect on this result.  All the techniques are able to 

preserve the nominal significance level in the absence of serial correlation, which is particularly 

apparent with increased record lengths.  

  

 

Figure 4-1: Type 1 error rate (rejection rate) attained from the MK test and nine 

complimentary serial correlation techniques for positive values of serial correlation.   
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     Similar to previous research (Khaliq et al., 2009; Blain, 2014; Wang et al., 2015), TFPW is unable 

to preserve the nominal significance level in the presence of an increasing lag-1 serial correlation 

coefficient.  The modified version (MTFPW), proposed by Önöz and Bayazit (2012), is capable of 

producing lower type I error rates than TFPW but diverges from the nominal significance level when 

the record length is shorter and as the value of the lag-1 autocorrelation coefficient increases.  

Analogous to the results of Yue et al. (2002b), Figure 4-1 demonstrates that the VCCF1 technique, 

proposed by Hamed and Rao (1998) produces rejection rates higher than the assigned significance 

level for shorter record lengths and larger values of the lag-1 autocorrelation coefficient.  Several 

authors have maintained that the VCCF1 approach is incapable of preserving the nominal rejection 

rate due to its use of the ranks of the data to calculate the serial correlation coefficient (Yue et al., 

2002b; Yue and Wang, 2004a), and as a result Yue and Wang (2004a) proposed a modified version in 

which 𝜌1 is calculated directly from the data (VCCF2).  It is apparent from Figure 4-1, and consistent 

with the results of Blain (2013), that the VCCF2 technique produces only slightly lower type I error 

rate than the VCCF1 method for moderate and mild values of 𝜌1, independent of the length and Cv.  

However, the rejection rates for the two techniques remain somewhat larger than desired for moderate 

to high values of 𝜌1 for shorter records lengths.  Additionally, when data are serially correlated, the 

two bootstrapping techniques invariably produce rejection rates higher than the assigned significance 

level.  The VCPW technique provides rejection rates close to the nominal significant value, although, 

this approach results in slightly lower assessment results than the assigned rejection rate when 𝑛 >= 

150 and 𝜌1 >= 0.6, for all included values of Cv.  It should be noted that the results presented herein 

are not entirely consistent with those of Wang et al. (2015), although, the number of Monte Carlo 

simulations used in each analysis differ.  This research employs 10,000 Monte Carlo simulations, 

whereas Wang et al. (2015) use 2000, therefore, it is likely the results presented herein more closely 

represent the true average performance of the VCPW technique.  Also, in agreeance with several 

authors (Yue et al., 2002b; Blain, 2014; Wang et al., 2015) the PW approach results in type I error 

rates closest to the nominal significance level but at the cost of a marked decrease in power, which 

will be examined in section 4.5.2.  Finally, the BCPW approach produces rejection rates very similar 

to those of the PW approach, however, the approach results in higher type I error rates when records 

lengths are shorter (𝑛 < 50). 

     Despite hydrometeorological data commonly exhibiting a positive serial dependence structure, 

several authors have detected negative values of the lag-1 autocorrelation coefficient (Hamed and 
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Rao, 1998; Yue and Wang, 2002, Khaliq et al., 2009; Blain, 2013).  Significant lag-1 serial 

correlation is also found in this study (discussed in section 4.6.3.1) and is consequently included in 

the simulation experiments herein.  Accordingly, this simulation experiment includes the effects of 

negative values of the lag-1 autocorrelation coefficient on type I error rates, which are displayed in 

Figure 4-2.  It is evident that the length and Cv of the data have little effect on the rejection rate and 

that the MK test alone results in rejection rates that decrease in accordance with decreasing values of 

negative serial correlation.  The TFPW, VCPW, BBS, and SBS techniques clearly decrease the type I 

error rate below the assigned significance level in the presence of negative serial correlation.  The 

remaining approaches have a similar capacity for preserving the nominal significance level even for 

large values of 𝜌1. 
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Figure 4-2: Type 1 error rate (rejection rate) attained from the MK test and nine 

complimentary serial correlation techniques for negative values of serial correlation.  Notes: 

MK test is not shown due to low assessment results. 

 

4.5.2 Power: Series with Positive Serial Correlation and Trend 

Figure 4-3 illustrates the effects of the inclusion of increasing trend and positive values of the lag-1 

autocorrelation coefficient on the simulated time series.  By initially focusing on uncorrelated series 

(𝜌1 = 0), it is clear that the BBS approach provides higher power than the remaining techniques 

particularly when the slope and/or record length increase.  The remaining approaches result in 

consistently lower rejection rates regardless of the coefficient of variation, slope, and/or record 

lengths, however, this result is likely due to the use of the AR(1) assumption when no significant 

serial correlation is present in the simulated data.  Furthermore, in the absence of serial correlation, 
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when weak increasing trends are present in the data (𝛽 = 0.002), and record lengths are shorter         

(𝑛 <= 50), all the techniques have considerably low power.  Therefore, accounting for positive serial 

correlation when none occurs in the data reduces the ability of any approach to detect a weak trend 

when one is present, as the removal of the AR(1) process effectively removes a portion of the trend 

(Yue and Wang, 2002).  Changes in the coefficient of variation have minimal effect on the ability of 

any technique to reject the null hypothesis of no trend, again when 𝛽 = 0.002, 𝑛 <= 50, and 𝜌1⁡= 0.  In 

accordance with the results of Yue et al. (2002a) and Yue and Pilon (2004), in the absence of serial 

correlation, increases in the slope of trend cause associated increases in the power of all the examined 

techniques, although this effect is much more prominent when record lengths are longer (𝑛 >= 100).   

     As anticipated, all the statistical approaches have higher power when the record length increases 

and/or for higher slopes of trends.  Figure 4-3 illustrates that when the slope of the trend is weak      

(𝛽 = 0.002) and the record length is shorter (𝑛 = 50), there is a direct relationship between increases 

in power of each assessed method and increasing amounts of serial correlation.  In accordance with 

the results of Yue and Wang (2002), rejection rates deviate from this pattern (i.e., rejection rates 

decrease with increasing amounts of serial correlation) as the slopes and record lengths increase.  

Also, the resulting decrease in power associated with increases in Cv becomes more prominent as the 

record length increases and for higher slope magnitudes.  It should be noted that the TFPW technique 

provides results that are an increasing function of serial correlation in relation to increasing 

𝜌1⁡coefficients yet deviations of this pattern are observed as the record length increases along with the 

slopes of trends.  The addition of trend in the simulated series contaminates the estimates of the 

autocorrelation coefficient, supporting the assertion that trend produces spurious serial correlation 

(Yue and Wang, 2004b) and serial correlation in the data results in inflated trend estimates.  A 

possible explanation for the increased power of the TFPW technique pertains to the above noted 

interaction of trend and serial correlation producing overestimated trend magnitudes.  The removal of 

an inflated trend results in an underestimated lag-1 serial correlation coefficient, which is then used to 

prewhiten the data.  Therefore, the data may not have been adequately prewhitened as the estimate of 

the lag-1 serial correlation coefficient is smaller than the true one.  Furthermore, the inflated trend is 

then added back into the data before applying the MK test.  The outcome of an overestimated trend 

and inadequate prewhitening produces type II error rates that are lower than those of other statistical 

techniques (Önöz and Bayazit, 2012; Blain, 2014). 
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Figure 4-3: Power of the MK test and nine complimentary serial correlation techniques for 

positive values of serial correlation and increasing trends.   

 

     An assessment of Figure 4-3 of the individual approaches demonstrates when 𝑛 <= 50, 𝜌1⁡> 0, and 

for all slope magnitudes, the TFPW approach consistently results in the highest power, although a 

reason for this has previously been provided and this technique will not be discussed further in this 

section.  For the same record length and moderate values of the lag-1 autocorrelation coefficient    

(0.3 > 𝜌1⁡> 0.5), the BBS technique is more capable of rejecting the null hypothesis of no trend than 

the remaining techniques, regardless of the magnitude of slope or Cv.  The remainder of the statistical 
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tests produce similar rejection rates, although, the PW, BCPW, and VCPW techniques result in 

slightly lower rejection rates in comparison.  Again when the record length is shorter but when 𝜌1⁡> 

0.6, the MTFPW approach has high power for detecting trend, although BBS, VCCF1, and SBS 

provide similar results.  Additionally, the PW approach provides the lowest rejection rates as this 

approach has been shown to remove a portion of the existing trend (Yue and Wang, 2002).   

     It is evident that when the record length increases, the ability of all the approaches to detect trend 

does as well.  When the record length increases (𝑛 >= 100), and when 0.3 > 𝜌1⁡> 0.5 and 𝛽 <= 0.004, 

similar results are observed for all the statistical techniques (aside from TFPW and original MK), 

with the exception of the BBS and SBS techniques which provide higher rejection rates.  For the       

𝑛 >= 100,⁡𝛽 <= 0.004, and 𝜌1⁡> 0.6 the BBS remains the most powerful but the SBS and MTFPW 

techniques also provide high (albeit lower) rejection rates.  The effects of Cv on the power of the tests 

are most obvious when the slope of trend is higher, whereby there is a decreased ability of each 

approach to detect trends when Cv = 1.0.  It is clear that all the statistical techniques are powerful 

when strong slopes are present in data with long record lengths, although the power is affected by 

increasing values of 𝜌1⁡ and Cv.  In agreeance with the results of Yue and Wang (2002), the effects of 

positive and negative trend magnitude produce similar results on rejection rates when positive serial 

correlation is present and have consequently been omitted. 

     Based on the results of the simulations with positive serial correlation, it is clear that the TFPW 

technique provides type I error estimates that are much greater than the nominal significance level, 

although it is certainly the most powerful technique.  The remaining statistical techniques are 

reasonably capable of preserving the nominal significance level when the lag-1 autocorrelation 

coefficient is moderate or low, although, the BBS and SBS techniques consistently have slightly 

higher results.  An examination of the power of the same techniques indicates, however, that the BBS 

and SBS techniques have higher power when serial correlation estimates are moderate to low. 

 

4.5.3 Power: Series with Negative Serial Correlation and Trend 

The impact of negative serial correlation and decreasing trend on the power of the statistical tests 

designed to account for the effect of serial correlation is presented in Figure 4-4.  Regardless of the 

direction of the trend (positive or negative), in the absence of serial correlation the power of all the 

statistical techniques is similar, which is demonstrated in Figures 4-3 and 4-4 (Yue and Wang, 2002). 

When the record lengths are shorter (𝑛 <= 50) and in the presence of mild slopes (𝛽 <= -0.004), all 
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the techniques maintain similarly low power with increasing amounts of negative serial correlation 

(regardless of changes in the coefficient of variation).  In accordance with the results of Yue and 

Wang (2002), the rejection rate of the MK test alone decreases as a function of decreasing serial 

correlation.  It is also apparent that the TFPW, VCPW, and SBS exhibit similar behaviour.  The 

performance of all statistical tests changes with decreasing slope magnitudes (𝛽 >= -0.006, 𝑛 <= 50, 

Cv = 0.5), whereby, the power of the majority of the tests is considerably higher but there is an 

obvious decrease with an increase in Cv.  Under the same conditions, several tests show increasing 

power as a function of decreasing lag-1 autocorrelation coefficient magnitudes (i.e., PW, MTFPW, 

and BCPW).  The results of Yue and Wang (2002) demonstrate that the high rejection rates of the PW 

technique are a result of the trend being inflated by the removal of the Markovian model (i.e., a 

negative lag-1 serial correlation coefficient).  The MTFPW, BCPW, VCCF1, VCCF2, and BBS 

techniques provide high power estimates for moderate amounts of serial correlation                            

(-0.3 < ⁡𝜌1 < -0.5).  The variance correction techniques are most powerful for moderate to low values 

of ⁡𝜌1 which are most commonly found in hydrometeorological data.  The behaviour of the TFPW, 

VCPW, and SBS is similar to that of the MK test alone, whereby the likelihood of rejecting the null 

hypothesis decreases in proportion to decreasing values of the lag-1 autocorrelation coefficient.  A 

possible explanation of the reduced power of the TFPW technique in the presence of negative lag-1 

serial correlation could again be due to the contamination of the true slope of trend.  If negative 

autocorrelation results in deflated slope trends then removal of this deflated trend will result in 

overestimated ⁡𝜌1 values.  This interaction is reinforced by the results of Rivard and Vigneault (2009) 

where the authors show that prewhitening with a negative serial correlation coefficient results in a 

subsequent increase in the estimated slope.  Prewhitening with a larger (more negative)⁡𝜌1 will result 

in a re-inflated trend after which the deflated trend is re-added, resulting in reduced power.  Rivard 

and Vigneault (2009) also demonstrated that the bias in the slope estimates when trend and negative 

serial correlation are present is lower than when positive serial correlation and trend are present.   

Therefore, the loss in power of the TFPW technique in the presence of negative serial correlation is 

less pronounced than the increase in power when positive serial correlation is present, which is 

demonstrated in Figures 4-3 and 4-4.  Furthermore, the SBS technique has a marked decrease in 

power with increasing ⁡𝜌1 values.  A possible explanation for this result may be again be due to the 

interaction of the slope of trend and ⁡𝜌1.  The reduced power of the SBS technique may be a result of 

the re-addition of the AR(p) filter, where 𝑟1is negative, having an overall deflationary effect on the 

final slope of trend. 
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Figure 4-4: Power of the MK test and nine complimentary serial correlation techniques for 

negative values of serial correlation and decreasing trends.   

 

     When the record length increases (𝑛 >= 100), the power of the majority of the statistical tests 

increases along with it. The behaviour noted above is apparent when  𝑛 >= 100 and 𝛽 <= -0.004, 

although, the BBS technique now appears to have increasing power as a function of decreasing values 

of⁡⁡𝜌1.  These characteristics are unchanged with an increase in Cv but a higher coefficient of variation 

does result in lower power estimates in all instances.  Similar to the results presented in Figure 4-3, 

the impact of serial correlation on each statistical test’s ability to detect trend is no longer an issue 

MK PW TFPW MTFPW BCPW VCCF1 VCCF2 VCPW BBS SBSMK PW TFPW MTFPW BCPW VCCF1 VCCF2 VCPW BBS SBS

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
o
w

e
r 

(R
e

je
c
ti
o

n
 R

a
te

)
P

o
w

e
r 

(R
e

je
c
ti
o

n
 R

a
te

)

Cv = 0.5

n = 50

 = -0.002

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cv = 1.0

n = 50

 = -0.002

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
o
w

e
r 

(R
e

je
c
ti
o

n
 R

a
te

)

Cv = 0.5

n = 50
 = -0.008

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cv = 1.0

n = 50
 = -0.008

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
o
w

e
r 

(R
e

je
c
ti
o

n
 R

a
te

)

Cv = 0.5

n = 150
 = -0.002

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cv = 1.0

n = 150

 = -0.002

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
o
w

e
r 

(R
e

je
c
ti
o

n
 R

a
te

)

Lag-1 Autocorrelation Coef f icient

Cv = 0.5

n = 150

 = -0.008

-0.8 -0.4 0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Lag-1 Autocorrelation Coef f icient

Cv = 1.0

n = 150

 = -0.008



 

86 

when the record length is long and the slope of trend is high, although, when 𝑛 = 150, 𝛽 >= -0.006, 

⁡𝜌1 > -0.7, and Cv >= 0.75, the SBS and VCPW techniques are less capable of detecting significant 

trend when one exists.  Again, for the sake of brevity the results including negative serial correlation 

and increasing trends were omitted as they were similar to the results presented in Figure 4-4. 

     In the presence of negative serial correlation, it is established that the TFPW, VCPW, BBS, and 

SBS techniques cannot maintain the nominal significance level when no trend is present in the data.  

In the presence of mild trend and short record length, all the included approaches are very limited in 

their ability to detect the included trend.  As the slope and/or record length increase, the power of 

many techniques does also, but the TFPW, VCPW, and SBS techniques comparatively provide lower 

rejection rates.  When the record length is long and the magnitude of slope great, all techniques 

appear to be quite powerful, independent of the magnitude of the lag-1 serial correlation coefficient, 

although an increase in the coefficient of variation greatly affects the VCPW and SBS techniques for 

low ⁡𝜌1 values.  It should be noted that, although the simulation experiments give insight into the 

behaviour of these statistical techniques, they are purely mathematical and may not adequately 

characterize the correlation structure of real data.  Therefore, section 4.6 will examine how the 

statistical approaches perform on streamflow data gathered from a subset of gauging stations from 

southern Ontario.  

4.5.4 BBS Approach - Selecting 𝜼 

Khaliq et al. (2009) examined the optimal selection of 𝜂 using annual mean daily flows in the 

Canadian Reference Hydrometric Basin Network (RHBN).  The authors select the optimal block 

length based on the mean difference between the observed lag-1 autocorrelation coefficient and those 

estimates from the bootstrapped samples.  The authors determined that there was a negligible 

difference in selecting a near optimal value of  𝜂 and using 𝜂 = 1.  More recently, Önöz and Bayazit 

(2012) advocate selecting block length based on those that provide the minimum type I error. Also, 

the authors demonstrate through simulation of various AR(1) models, that type I error rates and 

power are not very sensitive to differences in block length.  A simulation is carried out to determine if 

there is merit in choosing an optimal block length based on the minimum type I error over using 𝜂 = 1 

when data are generated by means of a Markovian model, the results of which are presented in 

Figures 4-5 and 4-6 for 𝑛 = 50 and⁡𝑛 = 150, respectively.  Figure 4-5(a) illustrates the difference in 

block length when it is selected using the minimum type I error and using 𝜂 = 1.  It’s clear that the 

block lengths differ with varying values of the lag-1 autocorrelation coefficient but the difference in 
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type I error, shown in Figure 4-5(b), is small.  Figures 4-5 (c) and (d) elucidate the differences in 

power with 𝛽 = 0.002 and 𝛽 = 0.008, respectively, but again these differences are minor.  Although 

using 𝜂 = 1 does provides slightly higher type I error rates, it results in slightly higher power for trend 

detection.  Similar results are illustrated in Figure 4-6 when 𝑛 = 150.  Therefore, if the serial structure 

of the data is indeed an AR(1) process, there appears to be little evidence to warrant the use of a near 

optimal 𝜂 given the results from Figures 4-5 and 4-6.  Furthermore, the determination of the block 

length which provides the minimum type I error is a computationally intensive endeavor.  Figure 4-7 

illustrates the differences in type I and type II error in five additional complex correlation structures 

when 𝑛 = 50.  Again, there appears to be a similar pattern of slightly higher type I error when using 𝜂 

= 1 accompanied by a nominally higher power when trend is present in the time series.  The results 

for 𝑛 = 150 are similar to those in Figure 4-7 and have been omitted for the sake of brevity. 

 

 

 

 

 

 

 



 

88 

 

Figure 4-5:  (a) Comparison of block length selected by means of the minimum type I error rate 

using 𝜼 = 1 (b) Comparison of type I error rate associated with the block length from (a) and 

the type I error using  𝜼 = 1 (c)  Comparison of the power associated with the block length from 

(a) and power using  𝜼 = 1 with 𝜷 = 𝟎. 𝟎𝟎𝟐 (d) Comparison of the power associated with the 

block length from (a) and power using  𝜼 = 1 with 𝜷 = 𝟎. 𝟎𝟎𝟖.  All plots have record length 𝒏 = 

50, Cv = 0.5, and data are generated with an AR(1) model.   
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Figure 4-6: (a) Comparison of block length selected by means of the minimum type I error rate 

using 𝜼 = 1 (b) Comparison of type I error rate associated with the block length from (a) and 

the type I error using  𝜼 = 1 (c)  Comparison of the power associated with the block length from 

(a) and power using  𝜼 = 1 with 𝜷 = 𝟎. 𝟎𝟎𝟐 (d) Comparison of the power associated with the 

block length from (a) and power using  𝜼 = 1 with 𝜷 = 𝟎. 𝟎𝟎𝟖.  All plots have record length 𝒏 = 

150, Cv = 0.5, and data are generated with an AR(1) model.  
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Figure 4-7: (a) Comparison of block length selected by means of the minimum type I error rate 

using 𝜼 = 1 (b) Comparison of type I error rate associated with the block length from (a) and 

the type I error using  𝜼 = 1 (c)  Comparison of the power associated with the block length from 

(a) and power using  𝜼 = 1 with 𝜷 = 𝟎. 𝟎𝟎𝟐 (d) Comparison of the power associated with the 

block length from (a) and power using  𝜼 = 1 with 𝜷 = 𝟎. 𝟎𝟎𝟖.  All plots have record length 𝒏 = 

150, Cv = 0.5, and data are generated with an AR(1) model.  The time series models illustrated 

are generated through either an AR(p) process where 𝑿𝒕 = ∑ 𝝆𝒑
𝒑
𝒌=𝟏 𝑿𝒕−𝒌 + 𝒆𝒕 or an ARMA(p,q) 

process where 𝑿𝒕 = ∑ 𝝆𝒑𝑿𝒕−𝒌 +
𝒑
𝒌=𝟏

∑ 𝜽𝒋𝒆𝒕−𝒋
𝒒
𝒋=𝟏 + 𝒆𝒕. The selected model parameters are as 

follows: AR(2): 𝝆𝟏 = 𝟎.𝟏, 𝝆𝟐 = 𝟎. 𝟏; AR(6): 𝝆𝟏 = 𝟎. 𝟎𝟐𝟐, 𝝆𝟐 = 𝟎.𝟏𝟐𝟑, 𝝆𝟑 = 𝟎.𝟏𝟐,                

𝝆𝟒 = 𝟎.𝟎𝟕, 𝝆𝟓 = −𝟎.𝟎𝟏𝟗, 𝝆𝟔 = 𝟎. 𝟐𝟏𝟗, Constrained AR(3): 𝝆𝟏 = 𝟎.𝟔𝟏𝟗, 𝝆𝟑 = 𝟎. 𝟏𝟕𝟕; 

Constrained AR(9): 𝝆𝟏 = 𝟏.𝟑𝟐𝟓, 𝝆𝟐 = −𝟎.𝟔𝟎𝟓, ⁡𝝆𝟑 = −𝟎.𝟏𝟑; ARMA(1,1): 𝝆𝟏 = 𝟎.𝟒,         

𝜽𝟏 = −𝟎. 𝟐.   
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4.5.5 Simulation Conclusions 

The preceding analyses provide simulation results that explore the power and type I error rates for 

cases where there is positive or negative lag-1 serial correlation in a dataset.  The following 

conclusions can be drawn with respect to lag-1 autocorrelation present in time series data: 

 Increasing positive values of ⁡𝜌1⁡are directly related to increasing type I error rates.  In the case of 

negative values of ⁡𝜌1, the PW, MTFPW, BCPW, and VC techniques are more capable of 

preserving the nominal significance level;  

 All the analyzed techniques are able to preserve the nominal significance level in the absence of 

serial correlation; 

 TFPW suffers from increasingly high type I error rates with increasing values of positive lag-1 

serial correlation, however, the technique is certainly powerful.  The loss of power in the TFPW 

technique in the presence of negative lag-1 serial correlation is less pronounced than the increase 

when ⁡𝜌1 is positive;  

 PW results in type I error rates very close to the nominal level in the case of positive ⁡𝜌1 values 

but at the cost of lower power.  In the case of negative 𝜌1values, PW adequately produces 

nominal significance levels and is quite powerful; 

 In the case of positive serial correlation, all the techniques (aside from TFPW) are reasonably 

able to maintain the assigned significance level for mild to moderate values of the lag-1 serial 

correlation coefficient.  However, the BBS technique is more powerful than the rest of the 

techniques regardless of the magnitude of ⁡𝜌1; 

 The SBS technique has an obvious decrease in power when ⁡𝜌1 is negative; and 

 Based on the simulation results, there is little evidence to warrant the use of near optimal 𝜂 values 

and a value of 𝜂 = 1 is sufficient. 

 

4.6 Case Study 

Using POT and BMS data from 70 gauging stations from southern Ontario, an analysis of the serial 

correlation structure and trend for each station is assessed using the techniques described herein.  A 

description of the instantaneous data used for the analysis follows. 
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4.6.1 Overview of Data 

The Water Survey of Canada’s (WSC) hydrometric database (HYDAT) provides average daily flow 

data but knowledge of sub-daily processes, as they apply to the discharge hydrographs, can provide a 

more detailed understanding of streamflow characteristics.  WSC introduced data processing 

techniques in 1968 that employed the use of computer programs allowing for hydrograph charts to be 

digitized at sub-hourly intervals.  Digitized stream stage records, various rating curves, and any 

necessary corrections, were then archived in electronic form, thus providing all the required data to 

replicate the discharge hydrographs.  Daily figures, available on the HYDAT database, were 

calculated using this instantaneous data and published.  A computer program (ArkWSC) was written 

to extract and verify the archived data, which works in tandem with legacy WCS software, the result 

of which is instantaneous discharge data.  Hourly and sub-hourly data from 1996 onward are stored in 

the WSC’s internal CompuMOD database and were extracted and combined with the ArkWSC data.  

The final hydrometric record is comprised of hourly or sub-hourly (15 min) data spanning 1969-2016 

(Thompson, 2013).   

     The increased temporal resolution of the instantaneous data allows for individual events to be 

identified on the hydrograph; an algorithm making use of watershed specific characteristics was 

developed by Thompson (2013) to parse the hydrograph into unique events.  Pairs of valleys were 

identified in the data as local minima in the first derivative of the time series.  The algorithm then 

recursively searches between found valleys for peaks above a predefined threshold.  If a significant 

peak is found, the hydrograph between the corresponding valleys is taken as an event.  The algorithm 

also distinguishes between secondary peaks that may occur during a given event.  Event 

characteristics, including discharge, volume, duration, time to peak, and flashiness (peak event 

discharge divided by time to peak) can then be readily extracted.  For more information regarding the 

WSC data extraction and the event parsing algorithm, please refer to Thompson (2013).   

     The observed deviation in the instantaneous and mean daily data is provided in Figure 4-8 through 

which the value of the instantaneous data is reinforced for peak event discharge.  Peak discharges 

occur for short periods of time, which are not adequately captured in mean daily data.  The deviation 

between the two datasets is most prominent for flashier urban systems but it is still apparent, to a 

lesser degree, for relatively pristine watersheds.  The published WSC AMS corresponds to the 

instantaneous streamflow measurement, although, this resolution is only available for the peak annual 

events.  Consequently, a great deal of information regarding the peak flow regime of the watersheds 

is not readily available, as there may be a number of low frequency, high magnitude events annually.  
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These data are well suited for POT analyses, as events are individually parsed, eliminating the need 

for declustering.  A comparison of the performance of the modified statistical tests is carried out on 

BMS and POT data.   

 

 

Figure 4-8: Observed occurrence of instantaneous vs. mean daily discharge at station 02HC009, 

having a drainage area of 191 km
2
 (Thompson, 2013). 

 

     This analysis focuses on a subset of southern Ontario gauging stations falling within the Great 

Lakes-St. Lawrence climatic region (Hare and Thomas, 1979), all having a similar period of record.  

To account for the effects of seasonality in the data and to ensure similar flood generating 

mechanisms, each dataset is divided into three yearly time frames (January to April, June to 

September, and October to December).  Yearly hydrographs of the data were analyzed to determine 

the timing of freshet events, which tend to occur in March or April in southern Ontario.  As the 

instantaneous data do not necessarily include the peak freshet events due to ice cover, the January to 

April event data are omitted from the analysis.  Convective storm events are common in the summer 

months and often result in intense but short periods of runoff, consequently, the June to September (J-

S) time frame was selected to encompass such events.  Lastly, frontal systems are prominent in the 

October to December (O-D) time period.  

      With the use of watershed delineations provided by the WSC and the Ontario Land Cover 

Compilation v.2.0, three broad land-cover classifications are generated, which include natural, 
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agricultural, and urban land-uses.  The urban classification was carried out firstly, whereby, those 

catchments having more than 25% urban area were classified as such.  Of the remaining stations, 

those having more than 30% agricultural land-use were classified accordingly.  Due to the presence of 

vast amounts of undisturbed land, the remainder of the watersheds are classified as natural.  Seven of 

the included catchments are part of the RHBN, comprised of watersheds having relatively stable or 

pristine land-use conditions (Harvey et al., 1999).  An aerial analysis of each catchment is carried out 

to determine the level of regulation in each watershed in the study area.  Those with highly regulated 

conditions, such as large reservoir systems and dams, were removed from the analysis.  It should be 

noted, however, that major urban flood control systems may potentially be considered regulated (i.e., 

large detention storage ponds), although this consideration is encompassed in the urban station 

classification.  Also, records having more than four consecutive years of missing data were removed 

from the analysis.  Key characteristics of each watershed are provided in Table 4-1, including the 

number of years of data available, location, and land-use classification.  A map of the included 

gauging station locations is provided in Figure 4-9, with reference numbers that correspond to Table 

4-1.  Threshold selection for the POT data is carried out using several exploratory plots, namely, 

mean residual life plots, complimentary threshold choice plots (for scale and shape parameters), and 

dispersion index plots (Cunnane, 1979; Lang et al., 1999).  An extensive overview of the threshold 

selection methodology is presented in section 3.2.4. 
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Table 4-1: Summary of stations used for analysis.  

Fig. 4-9 

ID 

Station 

ID 
Station Name 

Start 

Year 

End 

Year 

Latitude 

(°N) 

Longitude 

(°W) 

Area 

(km
2
) 

Agricultural 

(%) 

Urban 

(%) 

Natural 

(%) 

Land-Use 

Classification 

1 02DD015 Commanda Creek Near Commanda 1975 2016 45.95 79.61 103.8 3% 0% 97% Natural 

2 02EA005 North Magnetawan River Near Burk's Falls 1971 2015 45.67 79.38 328.8 3% 0% 97% RHBN 

3 02EA010 North Magnetawa River Above Pickerel Lake 1971 2015 45.70 79.31 155.1 2% 0% 98% Natural 

4 02ED003 Nottawasaga River Near Baxter 1969 2016 44.25 79.82 1230.6 73% 6% 21% Agricultural 

5 02ED007 Coldwater River at Coldwater 1969 2016 44.71 79.64 168.5 55% 7% 38% Agricultural 

6 02ED017 Hogg Creek Near Victoria Harbour 1989 2016 44.73 79.78 65.2 65% 3% 33% Agricultural 

7 02ED024 North River at the Falls 1988 2016 44.77 79.58 243.6 42% 8% 50% Agricultural 

8 02FA001 Sauble River at Sauble Falls 1969 2016 44.68 81.26 913.5 53% 3% 44% Agricultural 

9 02FA002 Stokes River Near Ferndale 1976 2016 45.04 81.34 50.5 24% 2% 74% Natural 

10 02FB007 Sydenham River Near Owen Sound 1969 2016 44.52 80.93 183.0 58% 3% 39% RHBN 

11 02FB009 Beaver River Near Clarksburg 1970 2016 44.52 80.47 587.1 58% 3% 39% Agricultural 

12 02FB010 Bighead River Near Meaford 1969 2016 44.57 80.65 298.0 65% 2% 33% Agricultural 

13 02FC001 Saugeen River Near Port Elgin 1972 2016 44.46 81.33 3953.5 68% 3% 29% RHBN 

14 02FC015 Teeswater River Near Paisley 1972 2016 44.27 81.27 669.9 67% 3% 31% Agricultural 

15 02FE003 Middle Maitland River at Listowel 1969 2016 43.73 80.97 73.4 80% 8% 12% Agricultural 

16 02FE009 South Maitland River at Summerhill 1969 2016 43.68 81.54 370.6 87% 3% 10% Agricultural 

17 02FF002 Ausable River Near Springbank 1969 2016 43.07 81.66 865.4 85% 4% 11% Agricultural 

18 02FF004 South Parkhill Creek Near Parkhill 1969 2016 43.16 81.73 42.7 89% 2% 8% Agricultural 

19 02FF007 Bayfield River Near Varna 1969 2016 43.55 81.59 460.4 86% 4% 9% Agricultural 

20 02FF008 Parkhill Creek Above Parkhill Reservoir 1973 2016 43.16 81.63 112.5 87% 2% 11% Agricultural 

21 02GA010 Nith River Near Canning 1970 2016 43.19 80.46 1034.3 81% 5% 14% RHBN 

22 02GA018 Nith River at New Hamburg 1969 2016 43.38 80.71 544.2 85% 4% 11% Agricultural 

23 02GA030 Alder Creek Near New Dundee 1969 2016 43.37 80.55 47.4 76% 12% 12% Agricultural 

24 02GB007 Fairchild Creek Near Brantford 1970 2014 43.15 80.15 388.6 67% 11% 21% Agricultural 

25 02GB008 Whitemans Creek Near Mount Vernon 1970 2016 43.13 80.38 385.9 77% 4% 19% Agricultural 

26 02GC002 Kettle Creek at St. Thomas 1969 2016 42.78 81.21 330.9 82% 7% 11% Agricultural 

27 02GC007 Big Creek Near Walsingham 1969 2016 42.69 80.54 566.7 76% 4% 19% Agricultural 

28 02GC010 Big Otter Creek at Tillsonburg 1969 2016 42.86 80.72 354.1 81% 5% 14% Agricultural 

29 02GC018 Catfish Creek Near Sparta 1969 2016 42.75 81.06 294.5 84% 6% 10% Agricultural 

30 02GC031 Dodd Creek Below Paynes Mills 1987 2016 42.79 81.27 99.6 87% 5% 9% Agricultural 

31 02GD004 Middle Thames River at Thamesford 1969 2016 43.06 80.99 306.0 83% 4% 13% Agricultural 

32 02GD021 Thames River at Innerkip 1978 2016 43.22 80.69 148.9 86% 4% 10% Agricultural 

33 02GG002 Sydenham River Near Alvinston 1969 2016 42.83 81.85 701.2 82% 5% 14% Agricultural 

34 02GG003 Sydenham River at Florence 1984 2016 42.65 82.01 1149.3 82% 4% 14% Agricultural 

35 02GG006 Bear Creek Near Petrolia 1969 2016 42.91 82.12 248.7 84% 3% 13% Agricultural 

36 02GG009 Bear Creek Below Brigden 1981 2016 42.81 82.30 535.6 83% 4% 13% Agricultural 

37 02GH002 Ruscom River Near Ruscom Station 1971 2016 42.21 82.63 125.0 94% 4% 3% Agricultural 

38 02GH003 Canard River Near Lukerville 1977 2016 42.16 83.02 159.0 86% 8% 6% Agricultural 

39 02GH004 Turkey Creek at Windsor 1982 2011 42.26 83.04 29.6 2% 94% 4% Urban 

40 02HA006 Twenty Mile Creek at Balls Falls 1970 2016 43.13 79.38 291.7 77% 9% 13% Agricultural 

41 02HB004 East Sixteen Mile Creek Near Omagh 1969 2016 43.50 79.78 193.0 68% 16% 16% Agricultural 

42 02HB012 Grindstone Creek Near Aldershot 1970 2016 43.30 79.87 77.9 57% 15% 28% Agricultural 
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Table 4.1 (continued): Summary of stations used for analysis.  

Fig. 4-9 

ID 
Station ID Station Name 

Start 

Year 

End 

Year 

Latitude 

(°N) 

Longitude 

(°W) 

Area 

(km
2
) 

Agricultural 

(%) 

Urban 

(%) 

Natural 

(%) 

Land-Use 

Classification 

43 02HB018 Credit River at Boston Mills 1982 2016 43.77 79.93 414.7 60% 12% 28% Agricultural 

44 02HB020 Credit River Erin Branch Above Erin 1983 2016 43.77 80.09 32.3 71% 7% 22% Agricultural 

45 02HC009 East Humber River Near Pine Grove 1969 2016 43.79 79.58 190.9 56% 21% 23% Agricultural 

46 02HC018 Lynde Creek Near Whitby 1969 2016 43.88 78.96 100.3 63% 17% 20% Agricultural 

47 02HC022 Rouge River Near Markham 1969 2016 43.86 79.23 181.3 38% 51% 12% Urban 

48 02HC024 Don River at Todmorden 1969 2016 43.69 79.36 318.5 12% 80% 9% Urban 

49 02HC025 Humber River at Elder Mills 1969 2016 43.81 79.63 296.3 60% 10% 30% Agricultural 

50 02HC027 Black Creek Near Weston 1969 2016 43.67 79.50 58.0 9% 87% 4% Urban 

51 02HC028 Little Rouge Creek Near Locust Hill 1969 2016 43.91 79.22 83.6 74% 14% 13% Agricultural 

52 02HC030 
Etobicoke Creek Below Queen Elizabeth 

Highway 
1969 2016 43.60 79.56 205.0 31% 63% 6% Urban 

53 02HC031 West Humber River at Highway No. 7 1969 2016 43.76 79.68 142.2 70% 20% 10% Agricultural 

54 02HC033 Mimico Creek at Islington 1969 2016 43.65 79.52 67.8 9% 88% 3% Urban 

55 02HC049 Duffins Creek at Ajax 1989 2016 43.85 79.06 257.5 64% 11% 25% Agricultural 

56 02HD003 Ganaraska River Near Osaca 1969 2016 44.02 78.44 67.3 51% 3% 45% Agricultural 

57 02HD008 Oshawa Creek at Oshawa 1969 2016 43.93 78.89 95.8 74% 11% 15% Agricultural 

58 02HD009 Wilmot Creek Near Newcastle 1969 2016 43.93 78.62 80.7 66% 8% 26% Agricultural 

59 02HD012 Ganaraska River Above Dale 1977 2016 43.99 78.33 241.9 58% 3% 39% Agricultural 

60 02HD013 Harmony Creek at Oshawa 1980 2012 43.89 78.82 42.9 41% 48% 10% Urban 

61 02HJ001 Jackson Creek at Peterborough 1969 2016 44.30 78.32 116.2 57% 11% 32% Agricultural 

62 02HK007 Cold Creek at Orland 1981 2016 44.13 77.79 160.5 58% 4% 39% Agricultural 

63 02HL003 Black River Near Actinolite 1969 2016 44.54 77.37 428.7 5% 1% 94% Natural 

64 02HL004 Skootamatta River Near Actinolite 1969 2016 44.55 77.33 677.7 3% 0% 97% RHBN 

65 02KF011 Carp River Near Kinburn 1971 2016 45.42 76.20 258.5 48% 14% 37% Agricultural 

66 02LA007 Jock River Near Richmond 1970 2016 45.25 75.79 526.1 45% 6% 50% Agricultural 

67 02LB006 Castor River at Russell 1969 2016 45.26 75.34 438.7 64% 9% 27% Agricultural 

68 02LB007 South Nation River at Spencerville 1971 2016 44.84 75.54 246.0 40% 3% 57% RHBN 

69 02LB008 Bear Brook Near Bourget 1977 2016 45.43 75.15 448.2 56% 8% 36% Agricultural 

70 02MC026 Riviere Beaudette Near Glen Nevis 1983 2016 45.27 74.49 132.6 56% 3% 41% Agricultural 
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Figure 4-9: Location of the 70 gauging stations used for the analysis. 
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4.6.2 Serial Correlation Structure of the Data 

The serial correlation structure of all POT and BMS datasets (extracted from the instantaneous data) 

is ascertained through standard ARMA (autoregressive-moving-average) modelling techniques.  

Preliminary model selection is carried out though an examination of the sample autocorrelation 

function (ACF) plot, partial autocorrelation function (PACF) plot, inverse autocorrelation function 

(IACF) plot, and the inverse partial autocorrelation function (IPACF) plot (Hipel and McLeod, 1994).  

Appropriate models are then selected with the use of the minimum Akaike information criterion 

(AIC) (Akaike, 1974).  Several goodness-of-fit criteria are used to assess the suitability of the selected 

model to confirm the whiteness of residuals and the assumption of linearly weakly stationary data.  

Both the residual and squared residual ACF plots are examined for evidence of white noise.  Due to 

the segmentation of each time series into seasonal periods, no evidence of seasonality is detected in 

any residual ACF plot.  The goodness-of-fit of each ARMA model was assessed using the Ljung-Box 

Portmanteau test.  Each model is also evaluated for autoregressive conditional heteroscedasticity 

(ARCH) and other nonlinearities using the McLeod-Li test (McLeod and Li, 1983).  All hypothesis 

testing was carried out at the 5% significance level.   

4.6.3 Trend Analysis 

This section employs the previously noted techniques on both BMS and POT data.  Data are analyzed 

for the J-S and O-D time periods separately and initially tested for change-points using Pettitt’s test 

(Pettitt, 1979).  Table 4-2 provides an overview of those sites having significant serial dependence 

structures (ARMA), the series length, coefficient of variation, standardized slope of trend, lag-1 

autocorrelation coefficient, and the dependence structures of each site after detrending.  The AR(p) 

dependence structures are added as they’re needed for the implementation of the SBS technique.  

Furthermore, as recommended by Cabilio et al. (2013), the SBS and BBS techniques should be 

detrended before implementation when the precise model error is unknown.  Therefore, the detrended 

serial structures of the data have been included in Table 4-2 as well. 
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Table 4-2: Summary of BMS and POT characteristics. 

 
Season Station ID 

Dependence 

Structure 

AR(p) 

Dependence 

Structure 

n CV 
Slope of 

Trend 
r1 

Detrended 

Dependence 

Structure 

Detrended 

AR(p) 

Dependence 

Structure 
  

B
M

S
 

Ju
n

.-
A

p
r.

 02ED024 AR(1)   29 0.568 -0.001 0.359 AR(1)   

02GC010 AR(1)   41 0.734 0.005 0.365 AR(1)   

02GG002 AR(1)   39 0.921 0.007 -0.378 AR(1)   

02HA006 AR(1)   35 0.871 0.003 -0.471 AR(1)   

02HC024 AR(1)   48 0.386 0.012 0.415 NS NS 

O
ct

.-

D
ec

. 02FA002 AR(1)   33 0.548 -0.007 -0.374 MA(1) AR(1) 

02FF004 ARMA(1,1) AR(1) 48 0.710 0.002 0.334 ARMA(1,1) AR(1) 

P
O

T
 

Ju
n

.-
A

p
r.

 

02DD015 AR(1)   99 0.6 0.00071 0.195 AR(1)   

02FA001 MA(1) AR(1) 76 0.69 0.00139 0.311 MA(1) AR(1) 

02FA002 AR(1)   60 0.93 0.00312 0.34 AR(1)   

02FB007 AR(1)   172 0.8 -0.0002 0.199 AR(1)   

02FB009 AR(1)   109 0.72 0.00084 0.301 AR(1)   

02FC001 AR(1)   66 0.49 0.00016 0.234 AR(1)   

02FC015 AR(1)   61 0.87 -0.0039 0.438 AR(1)   

02FF002 AR(1)   85 0.89 0.00113 0.23 AR(1)   

02FF004 ARMA(1,1) AR(1) 84 0.98 -0.0006 0.241 AMRA(1,1) AR(1) 

02GH003 AR(1)   44 0.49 0.01169 0.333 NS NS 

02HB004 ARMA(1,1) AR(1) 60 0.91 -0.0103 0.253 NS NS 

02HC009 AR(2)   116 0.71 -0.0006 0.206 AR(2)   

02HC018 AR(1)   116 0.84 0.00061 0.354 AR(1)   

02HC022 MA(2) AR(1) 84 0.68 -0.0002 0.474 MA(2) AR(1) 

02HC025 AR(1)   113 0.78 0.00017 0.373 AR(1)   

02HC027 AR(1)   145 0.41 0.00043 0.232 AR(1)   

02HC028 AR(1)   51 0.52 6.8E-05 0.323 AR(1)   

02HC030 AR(1)   65 0.27 0.0004 0.412 AR(1)   

02HD013 AR(1)   55 0.25 0.00091 0.259 AR(1)   

O
ct

.-
D

ec
. 

02FB009 AR(1)   48 0.46 -0.0023 0.267 AR(1)   

02FE003 MA(1) AR(1) 45 0.63 -0.0014 0.266 NS NS 

02FF002 MA(1) AR(1) 41 0.4 0.00476 0.356 MA(1) AR(1) 

02HC025 AR(1)   91 0.67 0.00035 0.294 AR(1)   

02HC027 AR(1)   91 0.43 0.00159 0.193 NS NS 

02HC033 ARMA(1,1) AR(1) 156 0.45 0.00113 0.146 NS NS 

- NS indicates that the series was found to have a non-significant serial structure.  

 

      It is clear that the BMS data are more likely to have AR(1) dependence structures but also the 

occurrence of negative serial correlation is limited to these data.  The POT data are dominated by 

positive 𝑟1 values and although the AR(1) model is quite common, these data are more likely to have 

more complex serial dependence structures.  As expected, detrending the data affects the serial 

structure, in some cases removing any significant serial correlation the data initially may have had.  

All instances where this occurred are denoted by an ‘NS’ in Table 4-2. 
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Records with Significant Serial Correlation 

Table 4-3 provides an overview of the BMS records in both the J-S and O-D time frames and the 

associated p-values of all the tests analyzed herein.  Very low p-values would indicate a very 

powerful result.  Four stations have positive 𝑟1values, which include, 02ED024 (J-S), 02GC010 (J-S), 

02HC024 (J-S), and 02FF004 (O-D).  The results of station 02HC024 (J-S) indicate the likely 

existence of a significant trend from several of the applied techniques.  As expected, the original MK 

test is powerful in detecting the trend in the series, with the TFPW technique being slightly more 

powerful due to the likely inflation of the true slope of trend.  The BBS approach also provides a 

similar p-value as the TFPW approach, indicating the technique’s strength in detecting the trend at 

this site.  The VCCF1 approaches are more powerful in detecting significant trend compared to the 

VCCF2 method under the AR(1) assumption, however the result after including multiple lags ((n-

1)/4) is more powerful.  The SBS technique is capable of detecting a significant trend at the 5% 

significance level, however the method’s power to detect the trend is slightly lower than the 

aforementioned techniques.  As expected, the PW approach is less powerful and fails to detect a trend 

at the 5% or 10% significance levels as a portion of the existing trend was likely removed.  

Additionally, the MTFPW, BCPW, and VCPW methods fail to detect a significant trend at the 5% 

significance level.  The detrended BBS approach provides a similar result to that of the original BBS 

approach.  Furthermore, detrending affects the magnitude of the lag-1 serial correlation coefficient, 

causing it to no longer be significant; therefore, the results of the detrended SBS approach are 

omitted.  The results of site 02GC010 (J-S) are generally consistent with those of 02HC024 (J-S), 

although, no significant trend is found through the use of any technique.  It is apparent, however, that 

the detrended SBS and BBS approaches provide very similar results to those of the original tests even 

when the slope of trend is relatively steep.  An examination of 02ED024 (J-S) indicates that in the 

presence of a very mild slope, even when the autocorrelation structure is AR(1) numerous techniques 

provide similarly high p-values, indicating a lack of trend at this site.  However, the PW, TFPW, 

MTFPW, BCPW, and VCPW methods provide lower assessment results than the remaining 

techniques.  Again, similar results are found at site 02FF004 (O-D) notwithstanding its ARMA(1,1) 

dependence structure.  As an alternative to AR(1) prewhitening, site 02FF04 (O-D) is also 

prewhitened with its true ARMA(1,1) dependence structure.  The results of this modified 

prewhitening indicate that there is a slight increase in power when the true serial structure of the data 

is accounted for, however, these results are not wholly consistent with those of Table 4-4. 
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     It is worth noting that almost half of the gauging stations listed in Table 4-3 have a significant 

negative 𝑟1value.  Stations 02GG002 (J-S), 02HA006 (J-S), 02FA002 (O-D) have negative significant 

𝑟1values in addition to true AR(1)  processes.  All these stations that have negative lag-1 

autocorrelation have moderate to steep slope estimates.  The original MK test is much less likely to 

detect a significant trend, if one does exist based on the high p-values of this method, which is the 

expected result when 𝑟1 is negative.  Lower p-values for the PW method are likely due to the addition 

of trend due to the negative lag-1 autocorrelation coefficient, although this result is inconsistent at site 

02HA006 (J-S).  Additionally, the MTFPW and BCPW approaches provide similar results to the PW 

technique.  The results of the TFPW, VCPW, and SBS (original and detrended) techniques tend to be 

less powerful in detecting trend which is consistent with the simulation results.  When the VCCF1 

approach is applied to all significant lags the technique becomes slightly less powerful than when 

applied with the AR(1) assumption.  This could, however, be due to the true serial structure of these 

sites being AR(1).  There is an issue when applying the VCCF1 techniques with significant lags 

considered at site 02HA006 (J-S).  It appears that several significant lags of negative serial correlation 

cause the correction factor to become negative.  This in turn causes the MK variance to become 

negative and therefore, the technique fails in this instance.  It should be noted that this error does not 

occur when the variance correction techniques are carried out under the AR(1) assumption.  The 

VCCF2 technique when multiple lags are considered does not appear to suffer from this limitation in 

this instance, however, the p-value is comparatively very small.  The low assessment result of the 

VCCF2 techniques when multiple lags are included is a potential indicator that this method may 

suffer from high Type I error rates, which was confirmed with simulation experiments (not included).  

Overall, the BBS and variance correction approaches provide the highest power for trend detection. 
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Table 4-3: Summary of techniques on BMS data. 

 

Station 

ID 

MK  PW* PW  TFPW* MTFPW* BCPW* VCCF1* 

VCCF1 

(all sig. 

lags) 

VCCF2

* 

VCCF2 

(up to lag     

(n-1)/4) 

VCPW* BBS 
BBS 

Detrended 
SBS 

SBS 

Detrended 

p p p p p p p p p p p p p p p 

Ju
n
.-

A
p
r.

 02ED024 0.985 0.621   0.594 0.621 0.707 0.990 0.987 0.990 0.974 0.621 0.955 0.979 0.988 0.987 

02GC010 0.363 0.807   0.616 0.771 0.880 0.375 0.363 0.524 0.108 0.771 0.377 0.391 0.453 0.468 

02GG002 0.418 0.078   0.131 0.092 0.097 0.133 0.375 0.218 0.006 0.152 0.254 0.258 0.392 0.384 

02HA006 0.589 0.700   0.594 0.700 0.700 0.356 - 0.382 0.094 0.553 0.465 0.404 0.549 0.548 

02HC024 0.001 0.169   0.005 0.061 0.081 0.007 0.001 0.012 0.000 0.061 0.003 0.005 0.040 - 

O
ct

.-

D
ec

. 02FA002 0.588 0.372   0.486 0.372 0.390 0.452 0.588 0.426 0.157 0.549 0.481 0.467 0.574 0.582 

02FF004 0.776 0.942 
0.88

0 
0.985 0.942 0.898 0.825 0.842 0.839 0.695 0.942 0.816 0.829 0.777 0.795 

*Indicates techniques applied under the AR(1) assumption. 

-Indicates that no result was found. 
Note: Significant results are bolded and italicized. 
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Table 4-4: Summary of techniques on POT data. 

 
Station ID 

MK  PW* PW  TFPW* MTFPW* BCPW* VCCF1* 

VCCF1 

(all sig. 

lags) 

VCCF2* 

VCCF2 

(up to lag    

(n-1)/4) 

VCPW* BBS 
BBS 

Detrended 
SBS 

SBS 

Detrended 

p p p p p p p p p p p p p p p 

Ju
n
.-

A
p
r.

 

02DD015 0.551 0.476   0.425 0.496 0.450 0.639 0.644 0.624 0.123 0.496 0.600 0.565 0.548 0.517 

02FA001 0.417 0.431 0.587 0.328 0.431 0.498 0.508 0.417 0.554 0.059 0.453 0.432 0.422 0.363 0.363 

02FA002 0.379 0.539   0.340 0.530 0.539 0.530 0.493 0.533 0.032 0.530 0.433 0.452 0.368 0.352 

02FB007 0.598 0.663   0.612 0.661 0.720 0.669 0.596 0.666 0.200 0.663 0.607 0.634 0.576 0.578 

02FB009 0.271 0.646   0.430 0.635 0.612 0.367 0.398 0.421 0.180 0.658 0.325 0.294 0.241 0.236 

02FC001 0.868 0.816   0.843 0.808 0.816 0.879 0.838 0.896 0.754 0.808 0.878 0.819 0.863 0.850 

02FC015 0.139 0.259   0.118 0.254 0.293 0.255 0.272 0.340 0.076 0.270 0.193 0.170 0.176 0.217 

02FF002 0.497 0.929   0.820 0.923 0.923 0.542 0.447 0.590 0.281 0.929 0.522 0.488 0.513 0.502 

02FF004 0.799 0.648 0.719 0.626 0.665 0.665 0.807 0.799 0.841 0.804 0.665 0.784 0.797 0.798 0.808 

02GH003 0.019 0.070   0.015 0.053 0.070 0.054 0.014 0.064 0.000 0.062 0.043 0.044 0.041   

02HB004 0.000 0.025 0.003 0.001 0.004 0.008 0.000 0.000 0.000 0.000 0.005 0.001 0.000 0.002   

02HC009 0.343 0.950   0.835 0.958 0.950 0.337 0.394 0.436 0.407 0.965 0.339 0.335 0.585 0.581 

02HC018 0.468 0.858   0.742 0.858 0.950 0.495 0.436 0.615 0.119 0.881 0.482 0.489 0.414 0.438 

02HC022 0.892 0.906 0.844 0.838 0.906 0.931 0.911 0.857 0.935 0.867 0.912 0.901 0.894 0.867 0.887 

02HC025 0.738 0.645   0.723 0.645 0.649 0.807 0.792 0.820 0.593 0.635 0.789 0.759 0.703 0.717 

02HC027 0.296 0.480   0.404 0.476 0.510 0.367 0.296 0.408 0.008 0.482 0.331 0.324 0.302 0.287 

02HC028 0.981 0.854   0.854 0.854 0.920 0.984 0.987 0.986 0.980 0.854 0.980 0.978 0.978 0.985 

02HC030 0.768 0.876   0.931 0.876 0.940 0.826 0.814 0.848 0.555 0.876 0.754 0.839 0.747 0.745 

02HD013 0.504 0.788   0.709 0.788 0.893 0.532 0.504 0.606 0.146 0.788 0.518 0.506 0.530 0.527 

O
ct

.-
D

ec
. 

02FB009 0.315 0.582   0.389 0.595 0.533 0.347 0.315 0.445 0.061 0.595 0.347 0.322 0.294 0.293 

02FE003 0.632 0.524 0.618 0.448 0.524 0.693 0.663 0.632 0.714 0.245 0.524 0.665 0.632 0.604   

02FF002 0.103 0.279 0.141 0.213 0.289 0.395 0.239 0.202 0.242 0.002 0.289 0.142 0.157 0.193 0.195 

02HC025 0.696 0.770   0.851 0.786 0.764 0.696 0.660 0.772 0.486 0.780 0.680 0.704 0.706 0.723 

02HC027 0.124 0.499   0.309 0.460 0.495 0.160 0.221 0.191 0.042 0.460 0.138 0.148 0.244   

02HC033 0.010 0.063 0.023 0.029 0.051 0.052 0.015 0.007 0.021 0.001 0.052 0.020 0.009 0.025   

*Indicates techniques applied under the AR(1) assumption. 
Note: Significant results are bolded and italicized. 
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     Table 4-4 provides a summary of the p-values of the POT data with significant dependence 

structures.  Of the sites with true AR(1) serial dependence, few have strong slopes of trends.  Several 

techniques detect trend significance at the 5% level at site 02GH003 (J-S).  As expected, the TFPW 

approach is the most powerful, although the BBS (original and detrended), SBS, and variance 

correction techniques (with several lags considered) are also able to detect significant trends.  The 

remainder of the techniques fail to detect significant trends at the 5% significance level.  Of the sites 

with weaker trends, p-values of the PW method are consistently higher than those of the original MK 

test likely due to the removal of a portion of the existing trend (e.g., 02FB009 (J-S), 02HC009 (J-S), 

02HC02d (O-D), etc.).  Slightly lower p-values are provided by the TFPW method, indicating an 

increase in the technique’s power to detect trend over the PW approach.  Furthermore, the MTFPW 

and BCPW approaches appear to have similar power as the PW approach.  Generally speaking, the 

VCCF2 method with lags (n-1)/4 considered is more powerful than when the AR(1) assumption is 

employed but again, this is likely due to the method’s high type I error rates.  Overall, the BBS, SBS, 

and variance correction techniques (including those that use the AR(1) assumption) are more 

powerful even when the true dependence structure is not AR(1). 

     The remainder of the sites in Table 4-4 have more complex serial correlation structures.  Of those, 

02HC009 (J-S) is the only site with higher order AR dependence.  In this instance, the SBS 

techniques are outperformed by the VCCF1/VCCF2 techniques and BBS techniques.  Noguchi et al. 

(2011) found reduced power for a higher order AR(p) model, stating that the slower decaying ACF 

leads to slower convergence rates of bootstrap approximations, a result that is also apparent herein.  

Significant trends were found at sites 02HB004 (J-S) at the 5% significance level using all the tested 

methods, likely due to the steepness of the estimated slope of trend at that site.  The detrended BBS 

approach and all variance correction approaches are the most powerful in detecting the trend at this 

site, although all the techniques have considerably high power for trend detection.  Similar results are 

found at site 02HC033 (O-D), however, the PW, MTFPW, BCPW, and VCPW methods fail to detect 

this weaker trend at the 5% significance level.  For all the included gauging stations in Table 4-4, the 

detrended and original SBS and BBS techniques provide similar results.  However, in accordance 

with Yue and Wang (2004a) the detrending procedure removes some of the existing autocorrelation, 

resulting in non-significant dependence structures at several sites.  PW is applied to those sites having 

non AR(1) dependence structures, however, there is no consistent improvement in assessment results 

in these instances.  This result may be due to sampling variations and bias in the estimates of the AR 

parameters (Hamed, 2009), resulting in residuals that may not be sufficiently white.   
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     In all applicable instances, the SRC test was also used following the recommendations of Khaliq et 

al. (2009) and Sonali and Kumar (2013), however, these results are omitted for the sake of brevity.  

Very minor differences were found between the MK and SRC test results, thus, the overall 

conclusions of Tables 4-3 and 4-4 remain similar when either nonparametric test is employed.  The 

following conclusions can be drawn from the serially correlated data: 

 In agreeance with numerous authors (von Storch, 1995; Hamed and Rao, 1998; Yue et al., 2002b; 

Yue and Wang, 2004a; Bayazit and Önöz, 2007; Khaliq et al., 2009; Önöz and Bayazit, 2012; 

Blain, 2013; Sonali and Kumar, 2013; Wang et al., 2015), when the MK approach alone is 

applied to positively serially correlated data, there is a greater chance of detecting a non-

significant or weak trend.  The opposite is true when significant negative serial correlation is 

present in the data;   

 VCCF1 doesn’t perform as expected when all significant lags of serial correlation are included if 

numerous lags of negative serial correlation are present.  Even when the true dependence 

structure is not AR(1) using the VCCF1 technique under this dependence structure is more 

appropriate in the presence of negative serial correlation.  Using all significant lags of the 

autocorrelation function when 𝑟1is positive offers comparable power to its AR(1) counterpart.  In 

agreement with several authors (Khaliq et al, 2009; Blain, 2013), the VCCF1 and VCCF2 

techniques under the AR(1) assumption provide comparable results, however, the VCCF1 

technique is slightly more powerful for both positive and negative 𝑟1values.  Using the VCCF2 

approach with multiple lags included is not recommended due to the method’s high type I error 

rates.  Furthermore, the variance correction techniques under the AR(1) assumption are highly 

powerful even when this is not the true memory structure of the data; 

 Of the remaining methods which rely on the AR(1) assumption (PW, TFPW, MTFPW, BCPW, 

and VCPW), the TFPW approach tends to be the most powerful when the lag-1 serial correlation 

coefficient is positive due to the inflationary effect of the technique.  It was shown through 

simulation, however, that this comes at the cost of high type I error rates.  Conversely, when data 

are negatively correlated, TFPW is much less powerful than the other techniques.  Furthermore, 

the propensity of the PW approach to remove (positive⁡𝑟1) or add (negative 𝑟1) a portion of the 

existing trend is observable through the assessment results in Tables 4-3 and 4-4.  Given that the 

remainder of the techniques (i.e., MTFPW, BCPW, and VCPW) provide very similar results to 

the PW method, this may indicate that the implementation of these methods may affect the true 

slope of trend.  Similar results are observed even when the true dependence structure of the data 
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is not AR(1).  The results of the above noted techniques are a bit more varied when 𝑟1is negative; 

however, none appear to be the overall most appropriate in these instances; 

 The detrended BBS approach provides very similar power as the standard approach.  This is 

likely due to the method’s insensitivity to small changes in block length.  However, detrending 

may potentially remove any existing serial correlation, thus affecting the result of the SBS 

approach; 

 The SBS technique is less effective on higher order AR dependence structures as well as having a 

marked decrease in power for negatively correlated data.  Therefore, this technique should be 

used with caution on positively correlated data and avoided when 𝑟1is negative due to the 

technique’s lack of power.  Of the two bootstrap techniques analyzed, the SBS technique is much 

less computationally intensive; however, the technique is limited to linear weakly stationary data.  

Also, determining the appropriate memory structure for the SBS technique is somewhat time 

intensive; 

 The lag-1 serial correlation coefficients of the BMS series are both negative and positive, 

however, the POT data are dominated by positive serial correlation.  Furthermore, the serial 

structure of the BMS data is more likely to be AR(1) in comparison to the POT series.  

Additionally, in agreeance with the results of Svensson et al. (2005), lower slopes of trends are 

identified in the POT series.  This is likely a results of the incorporation of dry years in the BMS 

series (which would likely be omitted from the POT data), which may cause steeper overall slope 

magnitudes; 

 There are more instances of significant autocorrelation in the June to September data compared to 

those in October to December, likely due to antecedent groundwater conditions;  

 Overall, for negatively serially correlated data, the VCCF1 approach under the AR(1) assumption 

and the BBS approach appear to be the most appropriate and powerful techniques.  In the case 

where data have positive 𝑟1 values, both VCCF1 techniques, BBS, and SBS techniques provide 

powerful results.  The use of the SBS technique on higher order memory structures may result in 

a decreased ability to detect significant trend, however, the BBS and SBS techniques do have 

slightly higher type I error rates.  Additionally, even when the AR(1) assumption is appropriate, 

the PW, TFPW, MTFPW, BCPW, and VCPW techniques fail to identify significant trends in 

several instances; and 

 Overall, there is more significant serial correlation identified in the POT series, however, the 

BMS data are much more likely to have significant negative lag-1 serial correlation. 
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Records without Significant Serial Correlation 

A comparison of the BBS(MK) and original MK techniques, as well as the BBS(SRC) and original 

SRC methods are carried out on data without significant lag-1 serial correlation.  The results of the 

percentages of sites with significant trend are provided in Table 4-5.  The differences between the 

four tested methods are small, indicating: (1) the BBS and original MK applications are very similar 

in their identified trend results; and (2) that the power for trend detection between the MK/SRC 

(original) and BBS(MK)/BBS(SRC) is similar but not identical.  Therefore, in agreeance with the 

recommendations of Khaliq et al. (2009) and Sonali and Kumar (2013), more than one trend 

identification method should be employed.  Additionally, and in accordance with the results of 

Svensson et al. (2005), more trends are found in the BMS data than in the POT data, likely due to the 

higher slopes of trends found in the latter.  There are, in general, more trends found in the June to 

September period than in the October to December time frame, which is likely the result of more 

intense and frequent rainfall events during that time. 

 

Table 4-5: Percentages of sites with significant trend - without significant serial structures. 

Season Series Type Sig. Level 
Percentage of Sig. Trends 

BBS-MK MK BBS-SRC SRC 

Ju
n
. 

- 
S

ep
t.

 

BMS 
0.05 20.0% 20.0% 16.9% 20.0% 

0.10 26.2% 26.2% 27.7% 26.2% 

POT 
0.05 5.9% 3.9% 5.9% 3.9% 

0.10 17.6% 17.6% 17.6% 13.7% 

O
ct

. 
- 

D
ec

. 

BMS 
0.05 10.3% 10.3% 8.8% 8.8% 

0.10 16.2% 14.7% 17.6% 13.2% 

POT 
0.05 6.3% 7.8% 6.3% 7.8% 

0.10 10.9% 9.4% 10.9% 10.9% 

 

 

4.6.4 Comparative Trend Analysis of Various Event Characteristics 

The previous sections analyzed peak event data, using the full period of record.  Using identical 

periods of record allows for a comparative analysis of trends and allows for the determination of field 

significance.  This section additionally employs five flood variable, which include the duration, 

flashiness, frequency (for POT data), peak, time to peak, and volume.  An overview of the global 

significance calculation methodology is provided in section 3.2.6.  Given the results of section 

4.6.3.1, the BBS(MK) will be employed for this task to account for significantly serially correlated 

series.  Furthermore, as shown in section 4.6.3.2, the BBS approach provides similar results to the 
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original MK test in the event of uncorrelated data, therefore, this approach is appropriate for both 

types of data. 

     Tables 4-6 and 4-7 provide the trend analysis results for the June to September and October to 

December time periods, respectively.  Each table displays the results from the four catchment types 

outlined in section 4.1, which include agricultural, natural, RHBN, and urban.  For the sake of 

comparison, records having data for three periods of records are analyzed for trends, which consist of 

1969-2016, 1979-2016, and 1989-2016.  For each watershed type, the percentage of stations having 

significant trend at the 5% and 10% significance levels are presented, where 10% are bracketed and 

presented below the 5% results. Furthermore, positive (increasing) and negative (decreasing) trends 

are indicated.  Field significant results are bolded and italicized and are presented separately for 

increasing and decreasing trends. 

     As anticipated, there are a substantial number of globally significant trends in the agricultural and 

urban catchments, which are likely due to the associated land-use changes.  For the agricultural 

watersheds in the J-S time period (Table 4-6), there is a notable decrease in peak event duration 

through all the time periods.  This may be the result of less baseflow contribution to stream flows due 

to the installation of tile drainage in the agricultural catchments.  The tile drainage coverage of 

southern Ontario was retrieved from Land Information Ontario (LIO), which indicates that all of the 

agricultural watersheds in this analysis indeed have dense artificial drainage networks.  This result 

could be due to extensive surface drainage improvement or the efficacy of the subsurface drainage.  

There is a general increasing tendency for peak event magnitudes over all the time periods and data 

types.  Therefore, it would appear that the connection of previously unconnected depression storage 

and higher velocity subsurface flows have potentially caused increased peak flows.  In the most 

recent time period, however, there appears to be both increasing and decreasing globally significant 

results, possibly indicating that the additional water storage capacity of the soil may play a role in 

decreasing peak flows in certain areas.  The results of the time to peak are somewhat mixed and 

appear to be highly dependent on the data type and time periods.  Therefore the field significant 

increasing flashiness trends are likely the results of increasing peak event magnitudes rather than 

decreasing times to peak.  Event volume trends are highly dependent on the type of data used, for 

example, the BMS data indicates increasing globally significant trends, whereas the POT data show a 

combination of increasing and decreasing trends, with more of the former.  Finally, there are 

increasing trends in the frequency of peak event magnitudes, however, the percentage of such 

decreases in the 1979/1989-2015 time periods. 
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     There are similarly a large proportion of globally significant trends in urban station data, the 

results of which closely follow those noted in section 4.1.  The addition of impervious surfaces over 

time has likely led to decreased baseflow and subsequent significant decreasing trends in duration.  

Trends in peak flow are greatly dependent on the type of data employed for analysis.  Based on the 

BMS data, there are certainly increasing trends in peak flow over all the time periods, however, an 

analysis of the POT data indicates no trends in peak flows.  The volume of events appears to be 

increasing, independent of the time period or type of data employed, although the POT trends are not 

globally significant in the 1979/1989-2014 time periods.  Few field significant results are found in the 

time to peak data and those results are not consistent in the different times periods or the type of data.  

Regardless of the type of data analyzed or the time period, there is a consensus on a statistically 

significant increase in the flashiness of numerous catchments. Finally, it is unsurprising that field 

significant trends in the frequency of peak event flows were noted throughout all the examined time 

periods based on the nature of urban growth. 

     Given the extent of land-use changes in the agricultural and urban watersheds, no conclusions 

regarding climate variability could be garnered.  To this end, an analysis of the RHBN and natural 

watershed is carried out.  There are several field significant trends found in the RHBN data, of 

particular interest is that 50% of the sites for the peak streamflow data, in the 1969-2016 time period 

exhibit increasing trend at the 5% significance level.  This could be an indicator of climate variability, 

however, no trends are found in the POT data for the same time period.  Therefore, these trends in the 

BMS data could be due to the inclusion of dry years in the BMS series (Svensson et al., 2005).  

Moreover, both the natural and RHBN sites show globally significant increasing trends in frequency 

for the 1979-2016 time period.  Finally, statistically significant increasing trends in flashiness were 

indicated for the POT data during the 1989-2016 time period, however, they are not accompanied by 

globally significant trend in the peak or time to peak event characteristics.  Therefore, climate change 

signals may be confounded with land-use changes at the urban and agricultural watershed and the 

trends may not wholly be related to hydromodifications; however, this cannot be confirmed without 

further analysis of precipitation data over the same time periods. 

    Table 4-7 provides a similar analysis but presents the data from the O-D time period.  In the land-

use dominated catchments, there are noticeably less globally significant trends (particularly in shorter 

time periods) but this is likely a result of less rainfall at this time of year.  The results in the 

agricultural catchments are somewhat similar to those found for the J-S time period for the duration, 

peak, and time to peak.  The trend results for the watershed flashiness, volume, and frequency are 



 

110 

mixed and appear to be highly dependent on the type of data and time period.  The urban catchments 

also follow a similar pattern when compared to the J-S results.  The duration of events is similarly 

decreasing over all the time periods.  There is, however, little evidence of increasing trends in peak 

event magnitudes aside from those found in the 1969-2016 time period, which could be a direct result 

of urbanization (Thompson, 2013).  The volume trend results again appear to be highly dependent on 

the type of data and no overall consensus on this event characteristic can be determined.  The 

proportion of time to peak and flashiness trends are generally decreasing with decreasing time 

periods.  Lastly, there is no evidence of trends in the frequency of peak event magnitudes.  An 

examination of the RHBN and natural sites also indicates that for the POT data during the 1969-2016 

time period, 100% of the natural sites displayed globally significant increasing trends in flashiness 

and 100% of the RHBN sites showed increasing trends in frequency.  Moreover, during the 1979-

2015 time period, the POT data indicate that 33% of the RHBN sites exhibit increasing time to peak.  

The RHBN sites also display decreasing trends in duration during the 1989-2016 time period, 

however, this is not consistent with the POT data for the same time frame.  

     In regards to the natural and RHBN catchments, there is some evidence to suggest that there may 

be increasing peak events and frequency of those events.  There is certainly no evidence of a 

decreasing tendency in these events, a result that has been found in numerous other studies (Zhang et 

al., 2001; Burn and Hag Elnur, 2002; Cunderlik and Ouarda, 2009; Burn et al., 2010; Burn et al., 

2012).  It should be noted however, that most peak analyses use published AMS data, the peaks of 

which are generally caused by freshet events in snowmelt dominated watersheds.  Therefore, a direct 

comparison to these studies cannot be carried out as this analysis looks at secondary events which 

occur in the summer or fall seasons having dissimilar flood generating mechanisms. 

     It is apparent that the addition of impervious surfaces and dense drainage networks have resulted 

in various significant changes to the hydrologic regimes of the urbanized catchments.  Results of the 

BMS trend analysis for peak magnitude for the J-S and O-D time periods are generally increasing, a 

result that is commonly found in the literature (Leopold, 1968; Rose and Peters, 2001; White and 

Greer, 2006; Hajazi and Markus, 2009; Rosburg et al., 2017).  Similarly, the BMS and POT data 

show globally significant increasing trends in the volume of peak event and decreasing trends in 

duration, which again has been documented in several previous studies (Leopold, 1968; Boyd et al., 

1993; Konrad, 2003; Roseburg et al. 2017).  It is generally believed the urban growth decreases the 

time to peak (Leopold, 1968; Konrad, 2003); a result that is not consistently observed in the J-S time 

period but is, however, in the O-D data.  Similar to the results of Roseburg et al. (2017), the 
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flashiness of the urban catchments during the J-S time period is increasing.  During the O-D time 

period, a mix of increasing and decreasing significant trends are found.  Finally, urbanization is 

commonly associated with an increase in the frequency of peak events (Rose and Peters, 2001; 

Konrad, 2003), a result which is also established in the summer (J-S) data.  Conversely, the O-D data 

exhibit little evidence of trends in this characteristic.  

     The agricultural catchments have seen a notable increase in peak discharge over the three time 

periods and data types.  This result is consistent with the findings of Turtola and Paajanen (1995) and 

Rozemeijer and Broers (2007).  The reason for the increase in peak flows may be attributed to a 

number of basin characteristics, such as antecedent soil moisture conditions, soil type, crop type, 

climatic conditions, catchment slope, or density and type of subsurface drainage (Madramootoo, 

1988; Fraser and Flemming, 2001).  Serrano (1985) and Spaling (1995) found decreases in time to 

peak in agricultural catchments with artificial drainage.  This is somewhat consistent with the results 

from this analysis, given that globally significant trends were found for this event characteristic, 

however, increasing trends were identified as well.  Finally, the trend results for volume were 

somewhat mixed and were dependent on the time period and type of data (POT or BMS).  Bengtson 

et al. (1988) found an increase in volume between drained and undrained plots in Louisiana, whereas 

Rahman et al. (2014) found decreases in flow volume in the Red River agricultural basin, located in 

the United States and southern Canada. 
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Table 4-6: Percentages of trends observed in the June – September period. 

 
June - September 

 
1969-2015 

 
Agricultural Natural RHBN Urban 

Number of Sites Included: 29 1 2 5 

  BMS 

Duration 
+0%/-27.6% +0%/-0% +0%/-0% +0%/-60.0% 

(+0%/-34.5%) (+0%/-0%) (+0%/-0%) (+0%/-60.0%) 

     
Flashiness 

+27.6%/-0% +0%/-0% +50.0%/-0% +80.0%/-0% 
(+37.9%/-0%) (+100%/-0%)* (+50.0%/-0%) (+100%/-0%) 

     
Peak 

+20.7%/-0% +0%/-0% +50.0%/-0% +80%/-0% 
(+27.6%/-0%) (+0%/-0%) (+50.0%/-0%) (+100%/-0%) 

     
Time to Peak 

+0%/-0% +0%/-0% +0%/-0% +40.0%/-0% 

(+6.9%/-3.5%) (+0%/-0%) (+0%/-0%) (+40.0%/-20.0%) 

     
Volume 

+13.8%/-0% +0%/-0% +0%/-0% +100.0%/-0% 

(+20.7%/-0%) (+0%/-0%) (+50.0%/-0%) (+100.0%/-0%) 

  POT 

Duration 
+3.5%/-27.6% +0%/-0% +0%/-0% +0%/-60.0% 

(+3.5%/-31.0%) (+0%/-0%) (+0%/-0%) (+0.0%/-80.0%) 

     
Flashiness 

+6.9%/-0% +0%/-0% +50.0%/-0% +20.0%/-0% 
(+6.9%/-3.4%) (+0%/-0%) (+50.0%/-0%) (+60.0%/-0%) 

     
Frequency 

+20.7%/-0% +0%/-0% +0%/-0% +100.0%/-0% 
(+24.1%/-3.4%) (+0%/-0%) (+0%/-0%) (+100.0%/-0.0%) 

     
Peak 

+6.9%/-3.4% +0%/-0% +0%/-0% +0%/-0.0% 
(+6.9%/-10.3%) (+0%/-0%) (+0%/-0%) (+0.0%/-0.0%) 

     
Time to Peak 

+0%/-6.9% +0%/-0% +0%/-0% +20.0%/-20.0% 
(+0%/-13.8%) (+0%/-0%) (+0%/-0%) (+20.0%/-20.0%) 

     
Volume 

+0%/-6.9% +0%/-0% +0%/-0% +40.0%/-0.0% 

(+3.4%/-6.9%) (+0%/-0%) (+0%/-0%) (+40.0%/-0.0%) 

 
1979-2015 

 Agricultural Natural RHBN Urban 

Number of Sites Included: 44 4 6 5 

 
BMS 

Duration 
+2.0%/-34.1% +0%/-0% +0%/-0% +0%/-80.0% 

(+2.0%/-36.4%) (+0%/-0%) (+0%/-16.7%) (+0%/-100.0%) 

     
Flashiness 

+11.4%/-0% +0%/-0% +0%/-0% +20.0%/-0% 
(+25.0%/-0%) (+0%/-0%) (+16.7%/-0%) (+40.0%/-0%) 

     
Peak 

+4.5%/-0% +0%/-0% +0%/-0% +20.0%/-0% 
(+18.2%/-0%) (+0%/-0%) (+0%/-0%) (+40.0%/-0%) 

     
Time to Peak 

+0%/-0% +0%/-0% +16.7%/-0% +0%/-20.0% 

(+0%/-5.0%) (+0%/-0%) (+16.7%/-0%) (20.0%/-20.0%) 

     
Volume 

+5.0%/-0% +0%/-0% +0%/-0% +40.0%/-0% 

(+13.6%/-0%) (+0%/-0%) (+0%/-0%) (+60.0%/-0%) 

* Positive values indicate increasing trends and negative values indicate decreasing trends; Entries in bold/italics indicate 
field significant results; the first line of results are trend results at the 5% significance level, the second line in parentheses 
are for the 10% significance level, which applies to the field significant results as well. (*) identifies sites land-use 
classifications in which field significance could not be determined due to an inadequate number of stations. 
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Table 4-6: Percentages of trends observed in the June – September period (continued). 

 

June - September 

 
1979-2015 

 
POT 

Duration 
+0%/-18.2% +0%/-0% +0%/-16.7% +0%/-60.0% 

(+0%/-25.0%) (+0%/-25.0%) (+0%/-16.7%) (+0%/-80.0%) 

     
Flashiness 

+5.0%/-2.0% +25.0%/-0% +0%/-0% +20.0%/-0% 
(+5.0%/-2.0%) (+25.0%/-0%) (+16.7%/-0%) (+40.0%/-0%) 

     
Frequency 

+4.5%/-0% +0%/-0% +0%/-0% +40.0%/-0% 
(+9.0%/-0%) (+25.0%/-0%) (+16.7%/-0%) (+40.0%/-0%) 

     
Peak 

+0%/-5.0% +0%/-0% +0%/-0% +0%/-0% 
(+6.8%/-5.0%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

     
Time to Peak 

+2.0%/-4.5% +0%/-0% +0%/-0% +0%/-20.0% 
(+2.0%/-6.8%) (+0%/-0%) (+0%/-0%) (+20.0%/-40.0%) 

     
Volume 

+2.0%/-6.8% +0%/-0% +0%/-0% +0%/-0% 

(+4.5%/-11.4%) (+0%/-0%) (+0%/-0%) (+20.0%/-0%) 

 
1989-2015 

 Agricultural Natural RHBN Urban 

Number of Sites Included: 52 4 6 8 

 
BMS 

Duration 
+0%/-13.5% +25.0%/-0% +0%/-0% +0%/-37.5% 

(+20.0%/-21.2%) (+25.0%/-25.0%) (+0%/-0%) (+0%/-37.5%) 

     
Flashiness 

+11.5%/-0% +0%/-0% +0%/-0% +25.0%/-0% 
(+19.2%/-0%) (+0%/-0%) (+0%/-0%) (+37.5%/-0%) 

     
Peak 

+3.8%/-0% +0%/-0% +0%/-0% +25.0%/-0% 
(+15.4%/-0%) (+0%/-0%) (+0%/-0%) (+37.5%/-0%) 

     
Time to Peak 

+2.0%/-0% +0%/-0% +0%/-0% +0%/-12.5% 
(+5.8%/-2.0%) (+0%/-0%) (+0%/-0%) (+0%/-12.5%) 

     
Volume 

+6.0%/-0% +25.0%/-0% +0%/-0% +25.0%/-0% 

(+13.5%/-0%) (+25.0%/-0%) (+0%/-0%) (+37.5%/-0%) 

 
POT 

Duration 
+0%/-11.5% +0%/-25.0% +0%/-0% +12.5%/-37.5% 

(+0%/-19.2%) (+0%/-25.0%) (+0%/-0%) (+25.0%/-37.5%) 

     
Flashiness 

+7.7%/-0% +25.0%/-0% +0%/-0% +25.0%/-0% 
(+9.6%/-0%) (+25.0%/-0%) (+33.3%/-0%) (+37.5%/-0%) 

     
Frequency 

+6.0%/-0% +0%/-0% +0%/-0% +25.0%/-0% 
(+11.5%/-0%) (+25.0%/-0%) (+16.7%/-0%) (+50.0%/-0%) 

     
Peak 

+0%/-4.0% +0%/-0% +0%/-0% +0%/-0% 
(+5.8%/-5.8%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

     
Time to Peak 

+4.0%/-8.0% +0%/-0% +0%/-16.7% +0%/-0% 
(+4.0%/-8.0%) (+0%/-25.0%) (+0%/-16.7%) (+0%/-12.5%) 

     
Volume 

+0%/-2.0% +25.0%/-0% +0%/-0% +12.5%/-0% 

(+2.0%/-3.8%) (+25.0%/-0%) (+0%/-0%) (+13.0%/-0%) 

* Positive values indicate increasing trends and negative values indicate decreasing trends; Entries in bold/italics indicate 

field significant results; the first line of results are trend results at the 5% significance level, the second line in parentheses 
are for the 10% significance level, which applies to the field significant results as well.  
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Table 4-7: Percentages of trends observed in the October - December period. 

 
October - December 

 
1969-2015 

 
Agricultural Natural RHBN Urban 

Number of Sites Included: 29 1 2 5 

  BMS 

Duration 
+10.3%/-24.2% +0%/-0% +0%/-0% +0%/-40.0% 

(+10.3%/-24.1%) (+0%/-0%) (+0%/-0%) (+0%/-60.0%) 

 
    

Flashiness 
+20.7%/-3.4% +100%/-0%* +0%/-0% +60.0%/-0% 

(+24.1%/-3.4%) (+100%/-0%)* (+0%/-0%) (+60.0%/-0%) 

     
Peak 

+10.3%/-0% +0%/-0% +0%/-0% +100.0%/-0% 

(+24.1%/-0%) (+0%/-0%) (+0%/-0%) (+100.0%/-0%) 

     
Time to Peak 

+0%/-0% +0%/-0% +0%/-0% +0%/-20.0% 
(+0%/-6.9%) (+0%/-0%) (+0%/-0%) (+0%/-40.0%) 

     
Volume 

+6.9%/-0% +0%/-0% +0%/-0% +20.0%/-0% 

(+17.2%/-3.4%) (+0%/-0%) (+0%/-0%) (+20.0%/-0%) 

  POT 

Duration 
+0%/-3.4% +0%/-0% +0%/-0% +20.0%/-0% 

(+0%/-17.2%) (+0%/-0%) (+0%/-0%) (+0%/-20.0%) 

     
Flashiness 

+3.4%/-3.4% +0%/-0% +0%/-0% +40.0%/-0% 

(6.9%/-3.4%) (+100%/-0%)* (+0%/-0%) (+40.0%/-0%) 

     
Frequency 

+6.9%/-0% +0%/-0% +50.0%/-0% +0%/-0% 
(+6.9%/-3.4%) (+0%/-0%) (+100%/-0%) (0%/-0%) 

     
Peak 

+6.9%/-0% +0%/-0% +0%/-0% +20.0%/-0% 
(+10.3%/-0%) (+0%/-0%) (+0%/-0%) (+40.0%/-0%) 

     
Time to Peak 

+0%/-6.9% +0%/-0% +0%/-0% +0%/-20.0% 
(+0%/-6.9%) (+0%/-0%) (+0%/-0%) (0%/-20.0%) 

     
Volume 

+3.4%/-0% +0%/-0% +0%/-0% +0%/-0% 

(+13.8%/-3.4%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

 
1979-2015 

 Agricultural Natural RHBN Urban 

Number of Sites Included: 44 4 6 5 

 
BMS 

Duration 
+0%/-29.5% +0%/-0% +0%/-0% +0%/-100.0% 

(+2.3%/-29.5%) (+0%/-0%) (+0%/-0%) (+0%/-100.0%) 

     
Flashiness 

+4.5%/-2.3% +0%/-0% +0%/-0% +0%/-0% 

(+6.8%/-2.3%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

     
Peak 

+0%/-0% +0%/-0% +0%/-0% +0%/-0% 
(+2.3%/-0%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

     
Time to Peak 

+0%/-2.3% +0%/-0% +0%/-0% +0%/-80.0% 
(+0%/-11.4%) (+0%/-0%) (+0%/-0%) (+0%/-80.0%) 

     
Volume 

+0%/-6.8% +0%/-0% +0%/-0% +0%/-0% 

(+0%/-9.1%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

* Positive values indicate increasing trends and negative values indicate decreasing trends; Entries in bold/italics indicate 
field significant results; the first line of results are trend results at the 5% significance level, the second line in parentheses 
are for the 10% significance level, which applies to the field significant results as well. (*) identifies sites land-use 
classifications in which field significance could not be determined due to an inadequate number of stations. 
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Table 4.7: Percentages of trends observed in the October - December period (continued). 

 

October - December 

 

1979-2015 

 
POT 

Duration 
+0%/-7.0% +0%/-0% +16.7%/-0% +0%/-40.0% 

(+2.3%/-18.2%) (+0%/-0%) (+16.7%/-0%) (+0%/-60.0%) 

     
Flashiness 

+2.3%/-2.3% +0%/-0% +16.7%/-0% +20.0%/-0% 
(+6.8%/-2.3%) (25.0%/-0%) (+16.7%/-0%) (+20.0%/-0%) 

     
Frequency 

+2.0%/-0% +0%/-0% +0%/-0% +0%/-0% 
(+2.3%/-2.3%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

     
Peak 

+0%/-0% +0%/-0% +0%/-16.7% +0%/-0% 
(+4.5%/-0%) (+0%/-0%) (+0%/-16.7%) (+20.0%/-0%) 

     
Time to Peak 

+4.5%/-4.5% +0%/-0% +0%/-0% +0%/-20.0% 
(+6.8%/-4.5%) (+0%/-0%) 33.3%/-0% (+0%/-20.0%) 

     
Volume 

+0%/-5.0% +0%/-0% +0%/-16.7% +0%/-0% 

(+2.3%/-9.1%) (+0%/-0%) (+0%/-16.7%) (+0%/-0%) 

 
1989-2015 

 Agricultural Natural RHBN Urban 

Number of Sites Included: 52 4 6 8 

 
BMS 

Duration 
+2.0%/-4.0% +0%/-0% +0%/-0% +0%/-25.0% 

(+1.9%/-7.7%) (+0%/-25.0%) (+0%/-33.3%) (+0%/-37.5%) 

     
Flashiness 

+2.0%/-0% +0%/-0% +0%/-0% +0%/-12.5% 
(+9.6%/-0%) (+0%/-0%) (+0%/-0%) (+0%/-12.5%) 

     
Peak 

+0%/-0% +0%/-0% +0%/-0% +0%/-0% 
(+1.9%/-0%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

     
Time to Peak 

+2.0%/-0% +0%/-0% +0%/-0% +0%/-12.5% 
(+3.8%/-0%) (+0%/-9.1%) (+0%/-0%) (+0%/-25.0%) 

     
Volume 

+2.0%/-0% +0%/-0% +0%/-0% +0%/-0% 

(+3.8%/-0%) (+4.5%/-0%) (+0%/-16.7%) (+13.0%/-0%) 

 
POT 

Duration 
+0%/-1.9% +0%/-0% +0%/-16.7% +0%/-12.5% 

(+0%/-6.0%) (+0%/-0%) (+0%/-16.7%) (+12.5%/-12.5%) 

     
Flashiness 

+5.8%/-6.0% +0%/-0% +16.7%/-0% +0%/-12.5% 
(+7.7%/-10.0%) (+0%/-0%) (+16.7%/-0%) (+0%/-12.5%) 

     
Frequency 

+2.0%/-2.0% +0%/-0% +0%/-0% +0%/-0% 
(+1.9%/-3.8%) (+0%/-0%) (+0%/-0%) (+0%/-0%) 

     
Peak 

+0%/-0% +0%/-0% +0%/-16.7% +0%/-12.5% 

(+3.8%/-0%) (+0%/-0%) (+0%/-16.7%) (+12.5%/-12.5%) 

     
Time to Peak 

+3.8%/-2.0% +0%/-25.0% +0%/-0% +0%/-0% 
(+9.6%/-2.0%) (+0%/-25.0%) (+0%/-0%) (+0%/-0%) 

     
Volume 

+3.8%/-2.0% +0%/-0% +0%/-16.7% +0%/-0% 

(+5.8%/-4.0%) (+0%/-0%) (+0%/-16.7%) (+0%/-0%) 

* Positive values indicate increasing trends and negative values indicate decreasing trends; Entries in bold/italics indicate 
field significant results; the first line of results are trend results at the 5% significance level, the second line in parentheses 
are for the 10% significance level, which applies to the field significant results as well.  
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4.7 Conclusions 

This research examines the differences in serial correlation structure and trend prevalence in BMS 

and POT data.  It was determined that BMS data are more likely to be negatively serially correlated 

and have an AR(1) memory structure, whereas the POT data were dominated by positive 

autocorrelation.  It was established that the BBS technique and VCCF1 approach (under the AR(1) 

assumption) are most appropriate for negatively correlated data, whereas the BBS, VCCF1 

techniques, and SBS approaches were found to be the most powerful for positively correlated data.  

Selecting the most appropriate ARMA(p,q) model may, however, be time consuming which makes 

the BBS approach attractive if the computational expense is not a concern. 

    According to Leopold (1968), urbanization is the most forceful type of land-use change in regards 

to altering the hydrologic regime.  This statement is clearly exemplified through this analysis; 

however, it is also apparent that agricultural land-use changes have a marked effect on streamflow 

characteristics.  Given that there have been increasing trends in air temperatures in southern Ontario 

(Nalley et al., 2013) and more frequent precipitation events are expected in a warmer climate, trends 

in the natural and RHBN gauging data may be present due to anthropogenic climate change.   

Furthermore, trends in average annual flow have been detected in southern Ontario (Nalley et al. 

2012)  There are indications of significant changes in several event characteristics at the natural and 

RHBN sites, however, these changes are not consistent in the POT and BMS data or in the different 

time periods.  Additionally, the trend results at the urban stations are quite representative of the 

effects of urbanization.  The trend results at the agricultural stations, however, are strongly dependent 

on type of data and the time period used for the analysis.  There is, however, a consistent pattern of 

increasing peak event flows, a result that is found less commonly in the literature.  Therefore, future 

work should focus on quantifying the degree and type of artificial drainage within the agricultural 

catchments and determining if the increase in peak flows is attributable to land-use changes or climate 

change. 

     This research has highlighted the significant differences in identified trends when using BMS and 

POT data.  Significant trends are more often detected in the BMS dataset likely due to the inclusion of 

dry years in these records, which causes increased slopes of trends.  Therefore, the results of the POT 

analyses may be more valuable when addressing the significance of hydrometeorological trends in a 

given watershed.  In practice, if serial correlation may be an issue, using the BBS approach is 

recommended due to the technique’s robustness in the presence of both positive and negative serial 

correlation. 
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Chapter 5 

General Conclusions 

5.1 Introduction 

In recent years, the seemingly larger than average number of peak hydrometeorological events has 

incited concern among the general public and scientific communities alike.  There is evidence that 

suggests that these events are indeed becoming more frequent and of greater magnitude (Coumou and 

Rahmstorf, 2012).  Therefore, the advancement of statistical techniques that incorporate 

nonstationarity are of great value in a changing climate.  This thesis examines methodologies for the 

incorporation of nonstationarity in pooled and at-site FFA in addition to techniques for nonparametric 

trend identification in the presence of significant serial correlation.  Thus, the overall contribution of 

this research aids in the development of nonstationary techniques in the face of temporal dependence, 

the key findings of which are outlined below. 

5.2 Summary of Results and Conclusions 

A trend centered pooling approach is developed in Chapter 2, which accounts for statistically 

significant trend found in peak annual streamflow records.  Four homogeneous pooling groups were 

created based on the form of detected trend in the at-site data.  The developed index-flood approach 

utilizes a time-dependent location parameter that is then incorporated into regional parameters.  The 

following results and conclusions are drawn from Chapter 2: 

 The potential for underestimation/overestimation of increasing/decreasing time-dependent 

quantiles was demonstrated, thus elucidating the need for nonstationary pooled FFA techniques; 

 Through the use of the standard Hosking and Wallis (1997) goodness-of-fit technique, it was 

demonstrated that the best fitting distribution changes when the trend centered pooling approach 

is employed, compared to the standard index-flood methodology; and 

 Less uncertainty was found in the nonstationary quantile estimates compared to their stationary 

counterparts, thus confirming that the methodology provides more accurate results than the 

standard index-flood approach. 
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The purpose of Chapter 3 is the development of a peaks-over-threshold approach that allows for the 

incorporation and selection of covariate-dependent thresholds and GP distribution parameters.  This 

methodology uses both bivariate and multivariate models that account for temporal dependence in 

addition to large-scale ocean-atmosphere phenomena.  Given the propensity for climate change 

effects in coastal BC, this area was used for the analysis.  The area is divided regionally for 

comparative results, which include the North Coast, South Coast, and Vancouver Island.  The overall 

results and conclusions of this chapter are as follows: 

 The threshold and model selection methodology is robust.  This was tested through the removal 

of the higher-order (quadratic) model, in which case, there was very little change in the selected 

models; 

 There is limited overlap in trends detected through nonparametric means and those determined 

through the quantile modelling approach.  This highlights (1) the need for alternative trend 

assessment approaches, and (2) when teleconnections have a strong influence on a region’s 

climate, they should be accounted for to effectively address increasing or decreasing tendencies in 

peak hydroclimatological extremes; and 

 The results of the analysis of the mainland areas (North Coast and South Coast) indicated that 

peak precipitation amounts are more likely stationary.  The Vancouver Island analyses do, 

however, show a greater propensity for nonstationarity. 

 

Chapter 4 provides a comparison of several techniques that account for serial correlation when used 

with nonparametric trend testing. The power and type I error rates of these methods were assessed for 

both positive and negative lag-1 autocorrelation coefficients.  This research additionally addressed the 

differences in the serial structure of BMS and POT data and highlights which methods are most 

appropriate for use with each of these data types.  Finally, this chapter provides a trend analysis of a 

subset of watersheds in southern Ontario based on land-use.  The results and conclusions from 

Chapter 4 are presented below: 

 In agreeance with the literature, the MK test alone is greatly affected by significant lag-1 serial 

correlation and should not be used in this instance; 
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 The memory structure of the BMS and POT data are quite different, whereby a great deal more 

significant serial correlation is identified in the POT data and the BMS data is more likely to have 

significant negative lag-1 serial correlation; 

 When several lags of significant serial correlation are present, the VCCF1 approach does not 

perform as expected, and in this instance, it is recommended to use this approach under the AR(1) 

assumption regardless of the serial structure of the data.  The VCCF2 approach has high type I 

error rates when larger lags are considered, therefore, using this technique, again under the AR(1) 

assumption, regardless of the memory structure of the data, is recommended.  It was found, 

however, that the variance correction techniques were highly powerful when used under the 

AR(1) assumption in all instances; 

 In agreeance with other research, the TFPW approach should be avoided due to its high type I 

error rates; 

 The PW approach alone should be avoided due to its inflationary effect in the presence of positive 

lag-1 serial correlation; 

 The BBS approach is similarly powerful to the original MK approach in the absence of serial 

correlation; 

 Overall, the BBS, VCCF1 techniques, and SBS techniques are recommended for positively 

autocorrelated data, however, the SBS technique is less effective on higher order AR dependence 

structures; 

 When data are negatively correlated, the VCCF1 approach under the AR(1) assumption and the 

BBS approach appear to be the most appropriate techniques; 

 Significant trends and higher slopes of trends are more likely to be detected in BMS data, likely 

due to the incorporation of data in dry years; 

 Numerous statistically and globally significant trends were found in the agricultural and urban 

land-use catchments, whereas, there is much less indication of trend significance in the RHBN 

and natural sites. 
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5.3 Future Research 

In regards to Chapter 2, future work may focus on the creation of a regionalization technique based 

on the sign and magnitude of trends found in peak flow data.  This may be carried out using a Monte 

Carlo simulation or through the use of a larger data set, with more pronounced time-dependence.  

Testing at-site data for trends in both the mean and variance before regionalization could also be a 

focus of future study.  Given that the standard regional heterogeneity tests have been formulated for 

IID data, more research is also needed in this area to ascertain the effects of nonstationarity on this 

measure.   

     The application of the threshold and GP model selection approach presented in Chapter 3 could be 

applied to other types of hydrometeorological data, which would elucidate the flexibility of the 

methodology.  Furthermore, the approach allows for the addition or removal of the complexity of the 

models included, so it could easily be used in different geographic areas. 

     The land-use trend analysis presented in Chapter 4 indicates a consistent pattern of increasing peak 

flow events in the agricultural watersheds.  This result is less common in the literature and warrants 

further analysis.  Climate variability should be ruled out using precipitation data for these catchments, 

after which, a soil analysis, and the extent of artificial drainage should be examined.  Any trend 

patterns consistent with the installation of tile drainage could then be linked to those found in the 

watersheds or potentially to climate change effects. 
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