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Rnmna Spectral stidies of solutions 

of Fonnic Aâd and Methyl Formate 

Raman spectroscopy was used to study solutions of formic acid in water, 

acetonitrile, 1 +dioxane, and dichioromethane and solutions of methyl formate in methyl 

d-formate and acetonitrile. 

A very clear non-coincidence effect, NCE (Le., v,, - v, t O), exists for formic 

acid. Dilution in water led to a reduction of the NCE. Such behaviour is indicative of 

resonance energy transfer, which implies si@~cant intermolecular coupling in formic 

acid and short range, short terni order in the liquid. Diiution in acetonitrile and 1,4- 

dioxane led to the development of peaks at -1735 cm-' and -1765 cm-'. By cornparison 

with methyl formate, the band at -1735 cm-' was assigned to uncoupled formic acid 

monomer. The band at -1765 cm-' was assigned to a foimic acid-solvent complex. 

Independent evidence (perturbations of the solvent spectra) was found to support the 

existence of a complex. In the case of acetonitrile, this complex was investigated more 

deeply. A "Job" plot gave ambiguous results conceming the co-ordination number, n, of 

the "complex". "Equiiibrium constants" were caiculated for several possible 



stoichiometries. At high relative amounts of acetonitrile the "equilibrium constant l1 

increased dramaticaliy (for each of the stoichiometries). At high concentrations of 

acetonitrile, a mixture of complexes may exist. 

A non-coincidence effect also exists in methyl formate but is much smailer than 

in formic acid. The NCE was snidied as a function of concentration and compared with 

several models in the Literature. The behaviour of the NCE for the isotopic dilution (in 

methyl d-formate) conformed with the mode1 tested However, the non-isotopic dilution 

(in acetonitnle) did not conform with the models. The full width at half maximum of the 

carbonyl band exhibited unusual behaviour, fim inmashg and then decreasing, indicating 

a change in the nature of the intennolecular potential with dilution. 
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1. INTRODUCTION 

A goal of the research described in this thesis was to attain a better understanding 

of the "structure" of liquid formic acid, methyl formate, and their solutions; the principal 

technique has been Raman spectmscopy. Resulu from neat formic acid at rwm 

temperature and at elevated temperatures have already been reporteci (1); the study of 

fonnic acid solutions is a n a d  extension. Previously in our gmup acetic acid was 

studied as a function of concentration and temperature (2) and fonnic acid was a naturai 

choice for a similar study. The high temperature results indicated fonnic a&, while 

saucturally similar to acetic acid, has a significantly different liquid structure. The 

explanations presented for acetic acid were not applicable to liquid formic acid. In an 

attempt to m e r  elucidate the structure of liquid formic acid, the study was extendeci to 

include polarization results and solution studies. The inclusion of methyl formate may 

appear, at first glance, somewhat arbitrary. However, methyl formate is closely related 

to formic acid. The acidic proton is replaceci by a methyl group, precluding hydrogen 

bonding. Hydrogen bondhg is obviously present in fomic acid and methyl formate is 

the closest structural analogue where hydrogen bonding is absent. By studying this non- 
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hydrogen bonded andogue, some light may be shed on the liquid structure of formic acid. 

Furthemore, methyl formate is a solvent of hoinsic interest. Methyl formate has been 

suggested as a solvent for the preparation of electrolytes for Lithium batteries (3). As 

such, m e r  understanding of its üquid structure and interactions with other species is 

desirable. 

This thesis is organized as foilows. The first chapter gives a brief o v e ~ e w  of the 

theory and appiication of Raman spectroscopy, followed by a discussion of cesonance 

energy transfer. The second chapter outhes the general experimental procedures. 

Experirnental details are psented in the foliowing chapters as required. The third and 

fourth chapters present the shidies of formic acid and rnethyl formate, respectively. Each 

chapter has been written, as  much as possible, as  a seif-contained "unit". Consequently, 

there is no central Hst of references - they are presented at the end of each chapter. 

Throughout this thesis 'v' has been used to Rpresent fnquency in wavenumber units. 

Conventionally, v with a horizontal bar is used for this. Unfortunately, the limitations 

of the text editor used to prepare thïs thesis prevent the easy generation of such a 

character. 



Raman spectroscopy is a form of optical spectroscopy which, like infmed 

spectroscopy, provides information about the vibrational modes of molecules. Smekal(4) 

theoretically predicted the Raman effect (or combination scattering) in 1923 but it was 

not observed until 1928. Simultaneously, Raman and Krishnan (5) and Landsberg and 

Mandelstam (6) observed combination scattering. Raman later won a Nobel prize for the 

achievement. Initially, Raman spectroscopy enjoyed a p e n d  of widespread use because, 

at the time, it was experimentally easier than infiand spectroscopy. However, infrared 

instrumentation advanced rapidly and Raman spectroscopy was pushed into the 

background, befoming the temtory of speciaüsts (7). In the late 1960's and early 1970's, 

the invention of the laser and its subsequeat replacement of the mercury arc lamp as a 

source of sarnple excitation led to rebirth of Raman spectroscopy as a practical technique. 

Since then, advances in detector technology, computer control, and data anaiysis have led 

to its populariq and a respecteci position among the tools for the characterization of 

malter. 



Raman spectroscopy is bascd on a light scattering phenornenon. A monochromatic 

source (usually a laser) illuminates the sample. When an incident photon interacts with 

a molecule, it can be scattend either elastically (with no change in energy) or inelastically 

(with a change in energy). The former process is known as Rayleigh scattering and the 

latter is caiied Raman scattering. The Rayleigh scatter is much less intense than the 

incident radiation and the intensity of the Raman scattering is much weaker (ca. 10-~ 

Urnes) than the Rayleigh scattering. 

The following short discussion of the (classical) theory of Raman spectroscopy has 

been adapted fiom Guillory (8). 

Rayleigh scatîering may k thought of in temis of the following equation: 

M(z-O) + k v ,  - M(z-O) + hcvo Il] 

where M(z = O) represents a molecule in the gnwnd vibrational state and hv, is the 

energy of the incident photon. Normai Raman (Stokes) scattering, on the other hand, may 

be written as: 



where M (z = 1) represents a molecule in a first excited vibraional state and hc(v, - VJ 

is the energy ciiffereuce between the incident and scattered photons. The ciifference is 

referred to as a Raman shift and is equal to a vibrational, rotational or eleztmnic energy 

change of the molecule. The difrence in energy between the incident radiation and the 

scattered radiation is independent of the energy of the incident photon. It is, in fa* the 

energy difference between the ground state and a fim excited state - a characteristic 

property of the molecule. 

The Raman effect arises because of an induced oscillating dipole moment, p., 

generated in the molecules by the interaction of the electric field vector, E, of the incident 

radiation. The induced dipole moment is given by: 

P-d 131 

where a is the polarizability - a tensor quantity. If the medium is anisotropic, then 



As the molede vibrates the polarizability will change. For small variations about 

the equilibrium position, a, (or any element of a) cm be expanded as a Taylor series in 

normal CO-ordinates: 

where ch' is the equilibrium polaruability dong the x direction induced by Ex. Higher 

terms in this expansion have k e n  neglected. 

For a nomal mode undergohg simple harmonic motion: 

Qk - Q; =mqo 163 

where Qo is the amplitude of vibration and v, is the frrquency of the vibration. 

Therefore, 
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If the x compent  of the electric field of the incident raàiation can be expressed by 

Ex - CaS(21tcv&) 181 

where E: is the amplitude of the electric vector and v, is the fiequency of the incident 

light, then 

(this is the 'x' component of the induced dipole). Using the trigonometric relation 

cos(a)cos(b)~[cos(a+b)+cos(a-b)] : 

The fmt term on the right hand side of this equation characterizes the intensity of the 

Rayleigh line and is proportional to G'. The second term gives the Raman intensity and 

is proportional ta (a- I Thus, for a vibration to be Raman active it must have a 

non-zero fluctuating polarUabiiity at equilibrium. The derivation also shows that Raman 

intensity occurs at V, - V, and V, + v, the Stokes and anti-Stokes lims respectively. This 

derivation implies equai intensity for both the Stokes and anti-Stokes lines. This, 

however, is not mie as wiil be discussed later. It also dows only fundamental 
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transitions. These flaws arise fiom restriction to a classical derivation and use of the 

simple harmonic osciIlatm approximation. The expression above was derived using only 

one element of the teasor. A full treatment requires the use of al i  the tensor elements, 

but the denvation for each elemnt is essentially the same. 

When Raman scattering takes place, the scattered light can be of higher or lower 

frequency than the incident light When it is higher, it is referred to as ana-Stokes 

scattering and when it is Lower, Stokes scattering. Anti-Stokes scattering occurs when a 

molecule in an excited vibrational state surrenders energy to the incident photon, thereby 

relaxhg to a lower energy state. For Stokes scattering the opposite is me: a molecule 

in a vibrational ground state obtains energy from the incident photon and is excited to a 

higher state. Boltzmann statistics dictate that at low temperatures most molecules are in 

vibrational ground States, so, because intensity is related to the number of molecules 

making the transition, Stokes lines are normally far more intense than anti-Stokes lines. 

In light of this faft, most Raman spectroscopy is done by studying the Stokes lines. The 

intensity of Raman scattering depends on the absolute frequency of the scattered light 

raised to the fourth power (see equation [lq). Consequently, excitation is usualiy in the 

visible region (commody at 488.0 nm or 514.5 nm fiom an argon ion laser). 

The classical treatment of the Raman eff- gives an incomplete picture. A 

complete study requires the use of tirne-dependent perturbation theory and is given by 



Long (9). Only a bnef comment on the resuits will be given here. 

Placzek (10) derived the expressions for Raman scattering for âifferent geometries. 

The polarizability is divided into two parts: a symrnetric part, a, and an asymmetric part, 

a , - a + p  

The symmetric part is defined as: 

1 a-- (aP + a,,, + ad 
3 

and the asymmetnc part ai: 

(a* - 4,3 + (a, - a,)' + (a, - aJ2 
2 2 2 

+ 6(a, + a, + a,) 

(gj king the elemnts of the polarizability tensor denned in equation 141). A 

aansformathn of the basis vectors can always be found that WU diagonalize the tensor 

maaùc. If this is done, the expression for B is greatly simplifieci: 
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In Raman spectroscopy the polarizability denvatives are the important quantities. These 

are defined as: 

where 'Q' is the vibrational normal coordinaie for a given mode. 

For 90" scattering geometry, the intensity of the Stokes scattered light is (9): 

where 

C - - constant. 

VO = incident fresuency in cm*' 

hcv,, = the energy Merence between an initial state 'm' and a fina 

'n' 

N = number of molecules initially in state 'm' 

k = the incident intensity. 

11 state 

For anti-Stokes "(vo + v d 4 "  replaces "(v, - v d 4 "  and "exp@cv, 1 kT) - 1" replaces " 1 - 

exp(-hcv, 1 kT)". The constants 45 and 7 arise from orientationai averaging and are a 

result of the particular experimental geometry. From this result, the ratio of Stokes to 



anti-Stokes intensity is found: 

This expression is found to be vaüd at thermal equilibrium (1 1). The exciting frequency 

is assumed to be well separated from any electronic transitions. If oot, the intensities can 

be greatly enhanced by the resonance Raman effect (1 1). 

In Raman spectroscopy the polarization characteristics of the incident light are 

known. Light scattered from a randomiy orîented liquid will have electrïc vectors whose 

orientation is pardel (4) and perpendicuiar (13 to the orientation of the incident elecaic 

vector. By using a simple Polaroïd f h  either one of these orientations can be seiectively 

studied. A quantity known as the depolarization ratio, defineci as: 

cm be calculated and can be used to detemine stmcnual information. With 90" 

scattering geometry, polarized incident light (as from an argon ion laser), and a Polaroid 

fdter to analyze the scattered radiation, the depolarization ratio wiil have a value between 

O and 0.75. For totally symmetric vibrations p < 0.75 (in theory, for cubic point groups, 

it should be zero) while for non-totally syxnmetric vibrations p = 0.75 (the value depends 

on the experirnental geometry (12)). Therefore, the number of totaîiy symmetric modes 
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cm be found easily. This helps elucidate the structure of the species under investigation. 

In addition to this rather simple analysis, two intensity fimctions may be defined as 

follows: 

niese are the isotropic and anisotropic intmsities, respectively. The anisotropic specrnim 

depends on both vibrational and reorientational motion of the molecule while the isotropic 

depends ody on vibrationai motion (13). In sorne cases information about vibrational and 

reorientational relaxation can be extracteci fiom the nata - vibrational and reorientationai 

relaxation times may be determineci from the half-widths of the isotropic and anisotropic 

spectm The phenornenon of resonance energy transfer (see section 1.3) can be studied 

by examining the isotropic and anisotropic spectra as a hinction of concentration. 

Valuable conclusions can then be drawn about intermolecular forces and liquid structure. 

At low Raman shifts a problem arises in separating the Rayleigh scaner fiom the 

Raman scatter. This is particularly pronounced over the range O - 200 cm-'. For gases 

this low frequency region wiii display discrete lines h m  rotational transitions. With 

solids, discrete lines from the lattice normal modes are clearly observed For liquids and 

solutions, however, sharp lines are not observed and separating the Raman from the 
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Rayleigh scatter becornes more difficult, Brooker, Nielsen and Praestgaard (14) and 

Murphy et al. (15) have asserted that most low hquency Uitensity above 10 cm*' should 

be regarded as Raman scatter. To extract the low frequency Raman data fkom the 

Rayleigh wing they proposed a so called "reduced function: 

w here 

v 

vo 

I(v) 

h 

C 

k 

T 

- - Raman shift  in cm-' 

- - frequency of the exciting line in cm-' 

- - intensity at v 

- - Planck constant 

C - speed of light 

- - Boltzmann constant 

- - temperature in Kelvin. 

This function corrects the intensity for separation from the exciting îine and for variations 

in the Boltzmann distribution with temperature. Its utility is greatest when studying bands 

at low ftequency or solutions at high temperature. An expression can, just as above in 

the intensity format, be written for the isotmpic spectnun: 



1.2.2 Practical Aspects of Raman Spectroscopy. 

Raman spectroscopy has some very useful advantages which make it applicable 

to a wide variety of situations. These advantages can be crudely classifieci into three 

categones: chernical, instrumental, and sampling. 

Raman spectroscopy has some important "chemical" advantages. Fit of dl, like 

infrared spectmscopy, it can be used for "fingerprinting". AU molecules will have a 

characteristic specmim and the spectnim can be used to detexmine a molecule's presence. 

In practice, however, because of band overlap, weakness of bands, and other problems, 

it may be di"cu1t to distinguish a given molecule in a complex system. A second 

"chemicai" advantage is that water is a weak Raman scatterer, while it is a very strong 

infrared absorber. Consequently. Raman spectra of aqueous systems are quite easy to 

collect. Studies of important biological and biochemical systems where. clearly, aqueous 

species are of great importance, are quite straightforward. A M e r  "chemical" advantage 

is that the intensity is linearly dependent on the concentration of the scattering species. 

This is a great benefit for aualytical applications. 
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Most Raman spectroscopy is done using excitation kquencies in the visible 

regim of the electromagnetic spectnim leading to important instrumental benefits. 

Aithough the fiequency difference between the incident and the scattered light is in the 

infrared, the light analyzed by the spectrometer is in the visible. Therefore, aii the opticai 

components and sample cells involved in the Raman experiment can be made from g k s .  

There is no aeed for special optical mitterials which may be fiagile, expensive or difficult 

with which to work. In addition, the entire vibrational spectrum (O - 5000 cm-') cm be 

studied easily without having to change the optics of the spectrometer. The use of glass 

as a material for cell construction means cells for non-ambient conditions cm be fairiy 

easily constmctd The use of lasers and visible Iight leads to another advantage of 

Raman spectroscopy: the use of fibre optics. Fibre optics allow the collection of in situ 

data without having the spectrometer in sinr (16). Data cm then k coliected from in vivo 

systems (obviously very important in biological applications) or fiom hostile (either to the 

spectrometer or the operator!) envuOmnents. 

Sample handling in Raman spectroscopy is generaily very easy. For example, 

solutions and liquids can be containeci in a rneiting point capiüary tube or a glas test 

tube. Sample preparation for solids cm be equaliy easy. Using a microscope attachment 

and assuming the solid is neither moistwe nor air sensitive, a spectrum c m  be collected 

of a sample placed on a microscope sliâe. Even when the solid is sensitive, collection 

of a spectrum may be possible through the walls of the ceiï containing it without 
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distiizbing the solid. Single crystals can be mounted and positioned with a goniorneter 

head. The amount of sample required for a Raman spectmm is, in general, very smd.  

For example, when studying Liquids or solutions and using melting point capiilary tubes, 

spectra c m  routinely be c o k t e d  from 0.25 - 0-50 mL of sample. Raman spectroscopy 

has the M e r  advantage of king a non-destructive technique; the sample can be 

recovered and used again. 

Unfortunately, Raman spectroscopy is saddled with some disadvantages. First, and 

most seriously, it is a very weak effect. Because of this, the concentration of the species 

must be fairly high to obtain a good spectruxn. Even when the concentration of the 

analyte is quite high a good spectqpn may only be obtained with large time constants and 

signal averaging. Consequently, considerable time may be required to obtain a good 

specrnini. This is especiaiiy true with a monochanne1 instrument. The second big 

problem with Raman spectroscopy is fluorescence. Visible radiation is commonly used 

for excitation in Raman spectroscopy and iadiation at these fnquencies can sometimes 

induce fluorescence. Fluorescence may be panicularly pronounced for highly conjugated 

systems. Compared to the Raman effect, fluorescence is a very strong efiect and can 

simply overwhelm the Raman signal. Extraction of usefbi data rnay then be impossible. 

Even srdi concentrations of fluorescent impurities c m  cause serious problerns. 

Forninately, the development of Fï-Raman tccbaiques have reduced this problem because 

near-infkared ftequencies are used for excitation. Similarly, experiments on coloured 
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samples can be difficult If the sample absorbs at the fresuency of the excithg radiation, 

unwanted thermal or photochemical effects may occur. Fluorescence rnay also be a more 

serious problem in coloured samples. These problems can be overcome by using longer 

wavelength excitation (e.g., krypton or helium-neon lasers), but this leads to a loss of 

sensitivity as govemed by the v4 factor in the intensity expression (equation 117). 

A schematic diagram of the typical Raman experiment is shown in Fig. 1 .L (13). 

In the early days of Raman spectnxcopy the excitation source was often a mercury arc 

lamp (the "Toronto" arc lamp). Since the 1960's the arc lamps have been replaced by 

lasers and all Raman spectroscopy is now done with lasers. The most common types of 

lasers are the argon ion (lines at 514.5 nm and 488.0 nm) and krypton (568.2 nm and 

647.1 nm). Other lasers are also used including the helium - neon laser and dye lasers. 

In choosing an exciting line a trade-off must be made between the socaiied "va 

advantage" and the possibility of photochemical reaction. The "v4 advantage" refers to 

the fact that the intensity of the scattered light h a s e s  in proportion to the fourth power 

of the frequency of the exciting light Unfortunately, the use of higher ffequency exciting 

radiation may lead to unwanted photochemical effects. Furthemore, using ultraviolet 

radiation takes away the advantage of being able to use glass cells and optics. To have 
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a choice of exciting lhes is useful in order to overcome possible fiuoresfence and colour 

problems. 

In principle, the light scattered from the sample can be analyzed at any angle 

relative to the incident radiation. In practice, three geometries are used W, 180°, and 

360" @ack scattering). The 90" scattering geometry is the most common. The light is 

focused into the spectrometer by a camera lem through the entrame dit. If polarization 

measurements are king perfonned, the polarization analyzer is mounted in fiont of the 

entrance slit. Between the polarization discriminator and the dit there is a quarter wave 

plate. The plate converts the linearly polarized light to circularly polarized light, 

effectively "scramblhg" it. Scrambiing is necessary because spectrometer gratings often 

have different transmission efficiencies for the two different orientations of the electric 

vector of the scattered light The monochromator then splits the bght into its component 

wavelengths. In the case of monochamel detection, the intensity of the light at each 

wavelength is meanired sequentidy and the detector is usually a photomultiplier tube. 

Multichannel detection is also possible. In this case, the exit dit fkom the spectrometer 

is eliminated and ai l  the wavelengths of the scattered light can be dispersed over a 

multichannel detector such as a photodiode amy or a charge coupled &vice detector. 

The multichannel detector provides a multiplex advantage that an entire specmun (or 

any part thereof) can be recorded in the tirne required for a single point on a single 

cbannel device. Tbus, a large number of spectra may be averaged to improve the signal- 



to-noise ratio. 

In most modern Raman instruments a computer controls the spectrometer and 

acquires spectral data Photon counters can be easily c o ~ e c t e d  to microcornputers to 

coilect &ta in a digital format Once collected the data can be easily treated on the 

computer. Baseline correction, spectral averaging, bandfitting, etc., allow the extraction 

of useful information (both qualitative and quantitative) even fiom relatively weak peaks. 

la2*4 Appücations of Raman Spectmscopy 

Because of its several advantages Raman spectroscopy has found widespread 

application. It is a technique that may be appiied to gases, liquids or solids. In practice, 

gases, because of their low densities and the inherent weakness of the Raman effect, are 

not as commonly studied as Liquids and solids. Raman spectroscopy is ofkn used in the 

study of solutions. Because water is such a poor Raman scatterer, Raman spectroscopy 

is especiaily good for studying aqueous systems (13,17). Application to biological 

systems foilows quite nahirally fiom this property (18). Bands may shift, change 

intensity, or develop in ilesponse to structural changes in the solution. In some cases 

kinetic (1) or thermodynamic (2) variables can be quantifieci. Raman spectroscopy has 

also found application in the study of electrodes and processes occuning at electrode 



surfaces. Certain molecules when adsorbad on particdar metals (gold, silver, and copper 

being the primary exampies) have greatly enhanced Raman signals - an effet  known as 

surface enhanced Raman scattering (SERS). It dows  the study of species adsorbed on 

metal surfaces at mono- or sub-monolayer concentrations (19). Raman spectroscopy can 

also be used in the study of the dynamics of non-electrolytes. ResuIts from the 

anisotropic and isotropic spectra can be used to caicuiate vibrational and reorientatïonal 

correlation hctions (20). Clearly, based even on this short List, Raman spectroscopy is 

a technique of great utiiity. 

13 Resonance Energy TrPnsfer 

In pure liquids vibrations of neighbouring molecules are coupled because of the 

interrnolecular interactions between them (21)- If the molecular orientations are random, 

the net effect is the broadening of vibrationai bands. If, however, the aiignment of the 

molecules is not random, then the transition dipole moments of two neighbouring 

molecules may couple. This will give rise to in-phase and out-&phase modes of this 

larger unit When this phenornenon occurs, resonance energy transfer (RET) has taken 

place, and it can be observed spectroscopicaliy. RET most clearly manifests itself in a 

Raman non-coincidence effect (NCE) which is a difference in the maxima of the isotropic 

and the anisotropic components of the spectrai bands. ï h e  difference, defineci as AV = 
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v-- - v, (in miL), is h o s t  always positive. When the ciifference is negative, it is 

referred to as the anomalous NCE (22) and this has been observed in alcohols (23). 

Furthemore, RET provides a "new" pathway for vibrational dephasing, so it may affect 

vibrational bandwidths. 

Changes in the conditions of the substance uader investigation lead to changes in 

the spectra. If the species is diiuted in some inert solvent, the NCE graduaily disappean. 

Mirone and Fi (24) reported that Av becomes zero at a finite, non-zero concentration, 

somewhat dependent on the nature of the solvent They reported that the shape of the Av 

vs. concentration graph depends on the relative values of the dielectric constants of the 

solute and solvent The slope increases with increasing concentration of the solute if the 

solvent has a higher dielectric constant than the solute. The slope decreases when the 

reverse is true. Also, when the solute is diluteci, the frequency of the maximum in the 

anisotmpic spectnim was found not to change signifïcantly (25). However, the kquency 

of the isotropic maximum inmased and tended toward the fiequency of the anisotmpic 

maximum. Secondly, when the tempe- was raised, Av demaseci (21). Thirdly, 

inmeashg the pressure usually causes the fkquency maxima of both the isotropic and 

anisotropic spectra to shift in the same direction (26) but not necessarily by the sarne 

amount. 

Different workers have taken different approaches to the development of a theory 
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to explain the non-coincidence effect (NCE) (24,27-36). In chapter 4 ody some of these 

models (24,29-34) are applied to solutions of methyl formate in methyl d-formate and in 

acetonitde. However, for the sake of completeness, each of these approaches will be 

bnefiy summarked here. 

1.3.1 Theory of Scheibe (279) 

Scheibe and Doge (27) and Scheibe (28) deveioped a theoretical matment of the 

non-coincidence effat. Their treatment did not include the effects of dilution. They 

began by writing the dipole potentid between two molecules 'A' and 'B' as: 

where 

R = the distance between the dipoles 

Km = a factor related to the orientation of the dipole moment vectors. 

This dipole interaction cari cause an additional energy differenfe between the ground and 

the hrst excited vibrational states. By applying perturbation theory to moiecule 'A' this 

additional energy difference is given by: 



The fust terni in the large square brackets arises h m  mechanical anharmonicity and 

disappears if a harmonic potential is used. The second term is nom the electrical 

anharmonicity and occm if the dipole moment is not a linear fimction of the normal co- 

ordinate. A vibrating molecuie will interact with the field created by the dipole moments 

of its neighboun. The fust and second te- in the large square bmckets arise from this 

interaction and the interaction leads to a shift in the unperturbed frequency. The last term 

originates fiom transition dipole coupling between 'A' and 'B'. This wiU ody occur if 

'A' and 'B' are identical and the same vibrational mode for each is considered- This will 

lead to splitthg of modes which are normally singly degenerate, i.e., a non-coincidence 

effect. The size of the spiitting WU be ditectly atfected by 'R' and 'Km'. 

1.3.2 Theory of Fini and Minwn (21,t139) 

Fini and Mirone (21) proposed a fairly simple mode1 to explain RET. They 

assurned aprotic, dipolar liquids consist of small m o l d a r  clusters within which there 



exists some partial order. The molenilar dipoles of the molecules in each cluster c m  

align thernselves either paraUeI or anti-paraile1 to a cornmon direction. The presence of 

a permanent dipole moment, therefore, ailows the formation of some short range order. 

The transition dipole moments may then couple and resonance energy transfer c m  take 

place. The orientational order will exist up to a distance such that the energy of 

electrostatic interaction between the two dipoles equals the thermal agitation energy (2 1). 

Typicaily. this distance is a value that allows the molecules in the fmt coordination sheIl 

to anain a preferential orientation with respect to the central molede. Because E T  oniy 

occurs berneen identical molecules, dilution (which replaces soiute moIecuies in a co- 

ordination shell with solvent moIecules) will decrease the ability of the solute molecules 

to couple. As dilution continues, RET will decrease and the non-coincidence effect will 

duninish. Evenhiaily, as mentioned above, Av vankhes at a finite, non-zero 

concentration. At this point the isotropie, anisoaopic, and infrared peak maxima should 

ail coincide. This mode1 can also explain the effm of increased temperature. As the 

temperature increases, the greater thermal agitation reduces the size of the clusters and 

disrupts alignment of the molecular dipoles inside them. This reduces the extent of 

resonance energy transfer and reâuces Av. 

Fini and Mirone derived an empirical equation to relate the non-coincidence (Av) 

to the concentration of the soiute and the dielectric constants of the solute and soivent 

(24): 



where 

Av = v-. - v, (in cm") 

Av, = v-* - v, for the pure solute 

€1 
O - dielectric constant of the solvent 

Ez O - dielectric constant of the solute 

4) O - volume fraction 

O 0  
- - "threshold volume for non-coïncidence to occur, 

Giorgini and Fini later stated (29), besed on this observation, that the NCE was related 

to the interaction between the permanent dipoles of the dissolved spezies. They noticed 

two important points. First, Av decreased as the solution became more diiute and there 

was a certain "threshold" concentration below which the NCE did not take place. Second, 

the shape of the Av vs. graphs depended on the relative values of the dielectric 

constants of the solute and solvent. 

They explained their fmt obmvation as follows. There are two competing 



processes for vibrational depûasing. The first is resonance energy transfer in which a 

quantum of vibrational energy is traasferred b r n  one oscillator to another. The second 

is simple energy dissipation through collisions and the me. If two oscîllators are coupled 

at time t = O, there is a finite, non-rero probability of vibrational energy transfer fiom the 

excited oscillator to the second osciilator. As time passes the probability that transfer has 

occurred inmeases. At some tirne, T, the probability will be unity. If .t is long relative 

to the t h e  for simple energy dissipation resonance energy transfer does oot take place. 

As the solution is diluteci, t becomes longer and longer so RET becomes less "efficient". 

At some f ~ t e  concentration T is so large RET does not take place and the splitting 

disappears. 

The explanation of the second observation (that the shape of the Av vs. @ graphs 

depended on the dielectric constants of the "active" and "solvent" species) was based on 

two assumptions. Fit, the coupiing of the two modes takes place by transition dipole - 

transition dipole (TD-TD) coupling. Each molecuie will conaibute to Av a term which 

is proportional to: 
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where 'r' is the distance fiom the reference molecule. Secondly, the isotropic - 

anisotropic separation is directly related to the orientational correlation induced by static 

dipolar interactions. Under these assumptions, they showed that: 

where 

E - - dielectric constant of the solution 

N - - number density of solute 

d - - minimum distance of approach between two molecules 

Therefore, the Av versus concentration c w e  will have a dependence on E. This value 

can be calculated assuming a linear relationship between the solution dielectric constant 

and the volume fiaction of the active species (31): 

w here 

EL 
- - dielecaic constant of the solvent 

E2 = dielectric constant of the solute 

@ - - volume firaction of the "active" species 

In some cases they found their mode1 did not agree with the observed nsults. Two 

possible explanations were given. Fit, E might not be a hear function of volume 

fraction. Second, and most importantly, specific, possibly short range, interactions might 
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not be adequately described by the bullc dielectric constant Furthemore, such 

interactions could affect the transition dipole moments leading to even pater errors. 

If the vibrationai coupling which le& to RET occurs through the transition dipole 

moment, then Av shouid be proportional to laCi /a~I~  (37). In other words, the 

separation of the isotropie and anisotropic peak maxima should be related to the intensity 

of the infrared transition. Indeed, it is generally the case that the largest non-coincidence 

effects are observed for strmgly absorbing modes (e.g., the carbonyl stretch). The NCE 

has been observed, howevcr, for the V, vibration of 1,25-thiadiazole (38) which is very 

weak in the iafrared. McHale has asserted (30,31) that the transition dipole - transition 

dipole interactions are not the only means of couphg. ûther possible sources are 

hydrogen bonding, quadmpoIequadrupole, and dipole-dipole interactions. McHde 

determineci that orientation-dependent intermolecular forces can give rise to an NCE even 

in the absence of local order. 

Wang and McHale (30) performed an extensive and detailed thwretical analysis 

of the non-coincidence effect. They concluded, contrary to the prevailing wisdom, that 

short range order is unnecessary for a non-coincidence effect to be observed. Short range 
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order may enhance the non-coincidenfe effect, but it is not at the rmt of the efiect. The 

fundamental reasoa is that the resonance coupling potential between two molecules is 

angle dependent The angle dependent intemoledar forces modify the force constants 

of the harmonic osciliators Ieading to an anisotropic frequency disaibution. Isotropie 

Raman scattering samples the average of the frequency dimibution but anisotropic Raman 

scattering samples the anisotropy of the distribution. Because of this, the fmt spectral 

moments in the isotropie and the anisotropic are different and a NCE is observed. 

Further, Wang and McHale's derivation showed the splitting is proportional to the number 

density ("concentration") of the solute and inversely proportional to both the free 

oscillator fiequency and the effective mas. At infinite dilution the spiining should vanish 

and this is commonly observed. In addition. McHale and Wang showed that if the 

couphg is assumed to arise from iaduced dipole interactions the relative splitting (i.e., 

the non-coincidence splitting for a given solution divided by the non-coincidence splitting 

for the pure solute) relies linearly on the infrared intensity parameter 1 ap/w 1 and is 

always positive. Therefore, the size of the NCE should be related to the infrared 

intensity. As was mentioned above, strongly intense infrared transitions are most iikely 

to have a large NCE. 

In a subsequent paper (31) McHale examined the dependence of the non- 

coincidence effect on the concentration of the active (solute) species. Shc argued that a 

strong angle dependent intermolecular potential could result in concenaaiiondependent 
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peak positions for the isowpic and anisotropic spectra, Furthenaore, any intermolecular 

forces strong enough to give an NCE could also be expected to cause the bandwidths in 

both the infiared and Raman spectra to depend on the concentration. 

The derivations carried out in this paper (3 1) were tested for a mixture at dilute 

concentration (the so calied "weak interaction regime") where the effects of molecular 

association can be neglected; the primary means of vibrational coupling is through the 

transition dipoles. (However, this is not the only means by which resoaance energy 

transfer may occur. Hydrogen bonding is another type of interaction which cm lead to 

a large isotropic-anisotropic splitting (3941)). Widiin these assurnptions the following 

expression was derived for the splitthg: 

- - Avogadro's number 

- - rnolar volume 

- - reduced oscillator mass 

- - volume fraction of the active species 

- - l WaQ I 

- - the dipole moment 

- - fne oscillator angular frequency 



E - - static dielectric constant of the solution 

d - - minimum intermolecular distance 

= aaisotropic spectral first moment (in angular kquency) 

M, = isotropie spectrai Wt moment (in angular frequency) 

To make cornparisons to experimentai obsemations, it is necessary to know the 

dependence of the dielectric constant on concentration. McHale assurned E is a function 

of the volume fiaction (see equation [31])- It is then possible to re-write equation 1321: 

AM - AM, 

For systems in which x>l or x=l this nsult is in fairly good agreement with experimental 

results. For xcl the appiication of McHale's mode1 (because of some underlying 

assumptions) is not really appropriate. This is the case for polar molecules in a non-polar 

solvent where molecular association (short rage order effects) may be important. 
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Mirone (33) disputed McHale's result given above. He believed McHale's 

equation (equation 1321) was too simplistic anci needed to be replace& He suggested 

McHaie's equation shodd be re-written as: 

where 

n - - refractive index of the solution. 

Mirone compared the splitting (for neat acetone) predicted by his equation with that of 

McHale and found his modification gave a better result. 

13.4 Theory of Logan (34,359 

Logan outlined his theones on the non-coincidence effect in two papers. One of 

these (34) dealt with isotopic binary mixtures and the second (35) with more general 

systems. bgan  accepteci Wang and McHale's (30) hypothesis of an angle dependent 

interaction potential (arising from permanent dipolar interactions) whicii preferentially 

weights the relative alignment of a pair of molecules between which resonance energy 

transfer can take place. He stated that many-bdy molecular interactions are responsible 

for the details of liquid structure and thus îhe appearance of the non-coincidence effect 



Logan set out to examine the thennodynamic dependencies of the NCE. 

In his fust paper (34)' Logan derived an expression for the dependence of the 

NCE on the concentration of the active species for mixtures of isotopomers. His 

derivation was predicated on a number of assumptions. First, he used a mode1 of a 

simple, dipolar, hard sphere liquid Second, to apply the theory, the mode studied must 

be non-degenerate and sufficiently separated from all other vibrational transitions that 

population relaxation effects c m  k negiected Third, he assumed the permanent dipoie 

moment of the active species lies along the principal molecuiar axis and that vibration 

modulates the dipole moment along this axis. He stated that this is a common situation 

for singly-degenerate vibrational modes in dipolar molecules. In addition to these 

assumptions, Logan made use of the mean spherical approximation (42). WiKithin these 

assumptions Logan derived a following dependence of the NCE on concentration: 

48 M-- - AU'- - AM- - XA F b l )  
25n% m 0 p 3  

where 

m - - reduced mass 

Q = hard sphere diameter 

- a= - angular fquency of the isolated, uncoupled a mode of 'A' 

Y - - 1 av 1 aQ 1, the dipole moment denvative 



P = number density of the solution 

Eo = permittivity of a vacuum 

M = spectral fust moment of the anisotropic or isotropic specmim 

- XA - mole fraction of the active species, 'A'. 

c(p,T) is a value fond by solving: 

whene 

p,, = permanent dipole moment 

e = U P ? ~  

&,T) is a function of p and T alone, independent of X,. Therefore. if number density 

and temperature are constant, 

where 

mmt spiitting for pure species 'A'. 

This linearity only applies to an isotopic mixture. 

Logan then extended his study to examine non-isotopic mixtures (35). His 
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analysis was based on the same assumptions as in his previous paper (34). UnWEe the 

isotopic mixtures, the spiitting does not necessarily have a iinear dependence on the mole 

fraction of the active species (see, for example, (21,24,43,44)). For a non-isotopic 

dilution the abilities of the solute and solvent molecules to orient a solute pair ciiffer. 

Dilution can cause new intermolecular forces to become important These new forces 

may arise fiom sources other than the active pair and will have d i f f e ~ g  abilities to aiign 

the active pair than for the original, pure solvent. Therefore, there is no simple h e m  

dependence of the NCE on the mole fraction even at constant temperature and number 

density. Furthemore, most experimental work is done at constant temperature and 

pressure, so the mole fraction and number density dependencies of the NCE become 

entwined. 

In this second paper (35) Logan examineci a simple dipolar, hard sphere mixture 

(of the "active" species, 'A', and the "solvent" species, 'B') in which the interaction 

potential consisted of two parts: 1) a sum of pairwise additive bard sphere interactions 

with hard sphere diameters a, and 4; 2) a dipolar part arising from the mutual 

interaction of the permanent dipole moments of both spezies. Logan then defined a 

function: 



w here 

P - - total nwnber density 

R - - distance between interacting molecules. 

The function h/(R) gives the 'R' dependence of the contn'bution of an anglar function 

(which is related to the relative orientation of the active species) to the painuise 

distribution function. The splitting depends on @X,&I'): 

w here 

speed of light 

& - &- for the a mode of species 'A' - a function of 

xA' p a d  'I' 

effective m a s  for the a mode of species 'A' 

ftee osciilator angular frequency for the a mode of species 

'A' 

hard sphere diameter of 'A' 

1 &L / aqd for the a mode of species 'A' 

perminivity of a vacuum 

(and t, has dimensions of the). In the low number density b i t :  



where 

The splitting can then be written as 

where 

and 

(eAo(p,T) is  defmed by equation [44D. In the low awnber density domain the alignrnent 

effects which facilitate resonance energy transfer (and therefore non-coincidence splitting) 

arise from the interaction of the permanent dipoles on a pair of "active" moleniles. The 

quantity cA0(p,T) embodies the pair-wise aiignments of the active molecules. Outside the 

low number density limit, o k r  molecules of other species wil l  act to preferentially 

weight the relative alignment of any pair of RET active molecules. c(X,9,T) may be 



calculated (within the MSA) fiom: 

where 

Y(, - X, trio (9.1) + x, e, cm 

c = C(X,,P.T) 

These equations are, strictly speaking, only valid when the diameters of 'A' and 'B' are 

the same. However, Logan States they should be reasonably successful if the hard sphere 

diameters are within 5 - 108. For a given set of X,, p, and T, y, is obtained from 

equations 1441 and 1501 and fkom 1471 and 1431. Knowing y ,  equation [49] gives 

c(XAp9T)- The experimentally observable aM,(XA,p.T) is then found nom equation 

1461. Using an approximate method to solve for C(X,.p,T) the foliowing relatiomhip can 

be written: 
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Application of this theory requkes the experimenter to rneasure the number density of the 

solutions at each concentration. 

According to Logan. previous workers (24,î9,3 1,32,33) trïed to simpliv this result. 

Simple dielecaic screening or continuum dielecaic theory arguments were employed to 

scale the low number density pair alignment effects embodied in t,,(p,T) by a function 

dependent on the index of refraction andor the dielectric constant of the solution. Logan 

feels this approach is not Wrely to adequately reflect the microscopie origins of the NCE. 

Logan made some important assumptions. First, the dominant anisotropic 

intermolecular forces responsible for alignment effects are fiom dipolar interactions. 

Second, the species involved are dipolar hard spheres with comparable effective hard 

sphere diameters. Furthermore, Logan omitted from his theoretical treatment the effects 

of short range anisotropic intermolecular interactions. Such interactions c m  lead to 

orientational alignment and either a positive or negative contribution to the non- 

coincidence effect. 

13.5 Sr imm~rg 

The preceding sections have presented a brief o v e ~ e w  of the three main 
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theoretical approaches to the NCE and its dependence on concentration. The main result 

of the treatments of Wang and McHale (30) and McHale (31) is that short range order 

in the Liquid is not necessary for the noncoincidence effect to occur. The fMdrunenta1 

reason is because of an angle dependent intermolecular potential. Fini et al. (24,29) 

derived an empirical equation for the dependence of the splittïng on the concentration. 

They dso poshilated the existence of a "threshold volume" below which the NCE does 

not appear. These two approaches made use of dielectric screening arguments to simpw 

the interaction of two dipoles in the solution. On the other hand, Logan developed a 

theory to explain the effect without ushg this type of simplification. He derived a more 

detailed equation for the dependence of the splitting on concentration using a more 

rigorous model of liquid structure. Because of this, its range of application is narrower 

and certain more restrictive conditions must be met, Later in this thesis the data for 

methyl formate in methyl d-formate are compared to Logan's theory for isotopic dilution 

(34) while the data for methyl forniate in acetonitrik are compared with the models of 

Fini and Mirone (24,29), McHale (3 1-32) and Mirone's modification of McHale (33). 

Without knowing the bard sphere diameten of methyl fonnate and acetonitde, 

cornparison to Logan's model for non-isotopic dilution (35) is pointless. 
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2.1 Chernicals and Solutions 

In general chemicals were used "as received fiom suppiiers - no m e r  

purification was performed. The details of the chernicals and the preparation of solutions 

wili be discussed in the relevant chapters. 

For spectra collected of samples under LOOOC, the samples were sealed in glas 

capillary tubes held in a thermos- copper block. The sampIe was placed in the tube 

using a syringe and a length of Teflon tubing. As the plunger of the syringe was pressed, 

the tubing was slowly removed. Next, using the syringe and tubing, some of the sample 

was removed fiom the top half of the capillary. This made sealing the tube somewhat 

easier. Any bubbles in the tube were removed by tapping the tube. After tbis, the 

capillary aibe was sealed using a Bunsen bumer. The copper block is illustrated in Fig. 
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'sr out 

Fig. 2.1: Copper Block for Holding Capillary Tubes (2) 
A - Sample Tube Entrauce; B - Laer Beam Entrante; C - Raman 
Scatteted Light; LP - Locking Pin to Hold Copper Block in Place. 



2.1. Water nom a regulated bath circdated through the block to maintain a constant 

temperature. 

23 High Temperature Fumace 

At the beginning of this project it was anticipated that high temperature (Le., > 

100°C), high pressure experiments would play a significant role. The furnace used to 

generate the high temperahms is illustrateci in Fig. 2.2. To perfom these experiments, 

the furnace was re-designed to give better spectra (as described below). Detailed 

descriptions of the fumace, the high pressure apparatus, and their use are readily available 

elsewhere (1-4) and are not provideci here- However, a bnef description of the re- 

designed furnace is given. As the project evolved, the role of the hi@ tempera-, high 

pressure equipment greatly diminished. 

Originally the furnace was positioned in the sample chamber so that the sample 

tube was perpendicuiar to the floor of the sample chamber. It was subsequently pointed 

out this did not take bill advaatage of the slit geometry (5). To impmve the signal, the 

furnace was recoostn~cied by rotating it and mounting it on its si&. In this way the 

sample tube was parailel to the floor. As showa in Fig. 2.3, a tube parailel to the floor 

gives much better signal than oae perpendicular to t&e floor. There is, however, a d e -  



Fig. 2.2: High Temperature Fumace (2). 



High Temperature Fumace 

- asbestos based insulation 

- base plate 

- removable metal cap 

- copper coils for coolhg water 

- plug connectirtg heating wire to taperanire controiier 

- h a c e  feet 

- metai casing 

- machinable g l a s  ceramic sections surrounding fimace 

- Pyrex jacket 

- silver block to minimize heating gradients dong sampiing 

region 

- chromel-alumel thennocouple 

- heater wire 



Raman Shift / cm" 

Fig. 2.3: Cornparison of Horizontal (Parailel to the Fioor) and 
Vertical (Perpencluluar to the Fioor) Orientations of the 
Furnace Sample Celi for 2.8 m ZnSO,. 
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off. When the tube is perpendicular, any bubbles which may form wiU rise to the top of 

the tube and their residence tirne in the beam will be very short. Obviously this wül not 

happen when the tube is paralle1 to the floor. Second, mixing of the sample and the 

hydraulic fluid (generally, water) can be a p a t e r  problem in the parailel arrangement, 

leading to contamination of the sample. 

Raman spectroscopy is based on an inherently weak effect and this leads to weak 

signals. It is fiequently ciifficuit to obtain spectra with a good signal-to-noise (SN) ratio. 

Improvements to the signal-to-noise ratio can generaliy be made in two ways: 1) 

mathematically by the use of smmthing and 2) experimentaiiy. Experimentally, the 

signai-to-noise ratio can be improved by 1) increasing the measurement t h e ,  't', at each 

point; 2) increasing the number of measurements (which are averaged) at each point; 3) 

increasing the number of SC- of the spectrurn which are then averaged. More wiil be 

said about these options in the section, "Cornputers and Software". It is, in generai, better 

to improve signal-to-noise experirnentally rather than mathematically. 

The laser and spectrometer pedormed admirably over the course of this research 

causing no speciaï problems. There is, however, a small recmhg problem with the 
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detector housing and window. The photomultiplier tube must be kept cold (-40°C) to 

reduce thermal emission of electrons h m  the photocathode. Under humid conditions 

(such as a southem Ontario summer!) this leads to condensation and formation of ice 

across the lem and the lens holder in fiont of the phoiamultïplier tube. Leaks (which 

develop over time) in the dry argon-filled holder cause this problem. This leads to a 

dramatic loss of signal. In severe cases this can lead to cracking of the lens holder. 

When this problem is evident, it is necessary to dry out the housing, leas, and lens holder- 

The detector must be disassembled in such a way that the photomultiplier tube is not 

exposed to bright light. It must be stored in a cool, dark, dry place. The lens and lens 

holder are removed fiom the housing and dried and cleaned. The housing is "baked out" 

at -30°C overnight. Then, the detector is re-assembled. 

2.5 Excitation and Detection 

The configuration used in these experiments was typical for Raman spectroscopy. 

Excitation was achieved with a Coherent Mode1 305 argon ion laser operathg at either 

488.0 nm (in air, blue) or 514.5 nm (in air, green) with the latter king used for the 

majority of the experiments. The blue line was occasionally employed to avoid problems 

with laser plasma lines interfering with spectral bands. Powen were measured with the 

laser's interna1 meter and were set at 1.5 W or 2.0 W depending on the experiment. In 
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oeneral, low temperature (< 1000C) capillary work was done at 1.5 W and high b 

temperature, high pressure work was done at 2.0 W. In some cases, because of the 

volatility of species, the laser power was reduced to prevent bubble formation. No 

problems with fluorescence were encountend The laser iight followed the path 

iliustrated by the dashed iine in Fig. 2.4. 

The light scattered from the sample was coiiected and focused on the entrance dit 

of the monochromator by a simple camera lem. A Jarteil-Ash spectrometer with a 1 .O 

m focal length scanning Czerny-Turner double monochromator was used. The 1 180 

grooves mm-' grating is blazed for 514.5 nm to give a hear dispersion of 8 2  A mm-'. 

Mechanical slitwidths were nonnally set at 100 pm or 150 pn depending on the 

particular experiment. Where signal strength made it practicai, the namwer width was 

used. These mechanical slitwidths translate to -3 cm" and -4.5 cm" (at 514.5 nm) 

spectral siitwidfhs, respectively. Spectral slitwidths become smafler for a given 

mechanical slitwidth as the absolute wavenumber decreases. In other words, specaal 

slitwidth improves as the monochromator moves h m  the exciting Line to greater Raman 

shift. This is iliustrated in Fig. 2.5. Control of the monochromator and acquisition of 

spectral data were by an IIM. PSR 286 cornputer. 

The Qtector was a themralectricaüy cooled RC.A. 3 1034 photomultiplier tube. 

Photon counting was employed using a combination of an SSR Instruments mode1 1120 



Fig. 2.4: The Sample Cornparmient of the JamII-Ash Spectrometer 
(2)- 
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Fig. 2.5: Spectral Resolution as a Function of Raman Shift 
a) Shift h m  20492 cm*' (488.0 nm, in air) 
b) Shin fiom 19435 cm*' (5 14.5 nm, in air) 



amplifïer / discrimiaator and a mode1 1105 data converter. 

For conducting polarization studies, a polarization analyzer was used. This 

apparatus was attached at the entrance slit to the monochrornator and consisted of two 

parts: a thin piece of Polaroid film to discriminate one polarization fiom another and a 

scrambler plate just after the Polaroïd film. The Polaroid Nm had a cucular holder which 

allowed easy rotation of the Nm to select either parallel or perpendicular radiation for 

analysis. Because gratings do not have equal transmission efficiencies for palle1 and 

perpendicular radiation. a "scrambler" (see section 1.2.3) is necessary. In these 

experiments, a quarter wave plate made fiom calcite was used as the scrambler. 

2.6 Cornputers and Software 

AU data collection and manipulations were performed on LBM PC's or compatibles 

using software designed (or adapted) and written in our laboratory. 

Most important among the pmgrams was the aptly named "Raman" program. This 

program controlled the monochrornator and acquind spectral data. This program allows 

the collection of spectral data in four independent regions with a maximum of 2000 points 

in each region. The user enters five experimental parameters: i) the spectral region; ii) 
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the number of points per wavenumber; 5) the time constant; iv) the number of 

measurements at each point and v) the number of scans. Coiiecting a spectrum is then 

a matter of optimuiag each of these parameters to get the best spectra (in ternis of quality 

and quantity) in the shortest time. The user's choice of the first parameter is, obviously, 

a matter of which specnal region is being studied. It is the latter four parameten where 

the real "juggling" takes place. By increasing the number of points per wavenumber, the 

spectrum is sampled more frequently. Clearly, sampiing more often is desirable as it wiIl 

give a more accurate representation of the spectrum. Furthemore, when applying 

statistical tools such as bandfitting, it is desirable to have as many points as possible. 

Equatly obvious, of course, is that the total experimental the wiU increase markedly. 

The time constant is the length of time for a given measurement at a given point. 

-1ncreasing this variable increases the total signal (which is good) but also the total time 

(which is bad). The number of measurements is perhaps the most important parameter. 

This sets the number of rneasutements of time constant, 'TC', at each point Tbese 

measurements are then averaged to give a finia intensity value at each point. Because 

signal rises as n and noise rises as dn, the S/N ratio rises as dn. Therefore, increasing 

the number of measurements incteases the S N  ratio. Udortunate1y, it also increases the 

total experimental time quite dramaticaliy. Varying the number of scans should achieve 

the same resuit as changing the aumber of measutements at each point. In this case, 

however, it is the entire speccn~n which is averaged by CO-adding several different scans. 

Unfortunately, if any flaws exïst in the monochromator drive, the monochromator may 
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not be re-set to precisely the same position at the beginniag of each nui and this might 

lead to poor spectra Therefore, this parameter was always set to one. 

In addition to wliecting data, the "Raman" program was used for some data 

manipulation. The fmt of these is baseline correction. Baseline correction using this 

program is interactive. The user chooses points in the spectrum which model the baseline 

and then chwses a function to which to fit these points. The avaiiable functions are a 

iine and polynomials to the fifth degree. There is also an option to model the baseline 

using line segments drawn fiom point to point. A least squares procedure is used to fit 

the chosen function to the chosen points. Once an acceptable (to the user) fit is found 

it is subtracted and the modifîed data can be stored. Good baseiine correction is 

important because, if poorly appiïed, it can lead to misleadhg or erroneous resuits when 

bandfitting is appiied. A second type of data modification possible using this program 

is the generation of "reduced" or "R" spectra (see section 1.2.1). This correction was 

suggested by Brooker, Nielsen and Raestgaard (6). 

Freguently in Raman spectmscopy vibrational bands overlap. This is especially 

pronound when workhg with con&nsed phase systems such as solutions. This is a 

problem which may be overcome, in some cases, by applying statistical methods to 

decompose the spectral contour into its component bands. Bandfitting was pefiormed 

using a routine originally written by Pitha and Jones (71, modifieci by Murphy and 
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Bernstein for Raman spectroscopy (8), and slightly modified in our labofatory to nui on 

PC's. In Raman spectroscopy, the bandshape is the convo1ution of two functioas: a 

Lorentzian function, which accounts for homogeneous Ihe broadening, and a Gaussian 

function, which accounts for inhomogeneous Iine broadening. The Lorentzian hinction 

is given by: 

- - intensity at Raman shift of v 

- - peak height 

- - peak position 

- - bandwidth parameter. 

nie Gaussian function is given by: 

Ka) - x1exp(-x,2(o - q2) 

X4 = Gaussian bandwidth parameter 

M q h y  and Bernstein's routine replaces the coavohition of equations [l] and [2] with a 

simple product of Lorentzian and Gawian functions. When using this routine, the user 

is rquind to enter the band position, intensity, half Mdth at half maximum and the 

relative Lorentzian "character". This "character" is embodied by a quantity 'R' - the 

Gauss - Lorentz shape ratio: 



When R = 1 the band is completely Lorenaian aad when R = O the band is completely 

Gaussian. The fitîing routine uses a non-ünear, le& squares method and varies the 

parameters untii a best fit of the spectnim is constructed. It was found there was some 

variation in the calculated parameters. This was especially tme if a large number of 

bands was used or if overlap of component bands was quite signifiant. Generally, band 

positions were reproducible and the largest variations were found with band areas and 

widths. Furthemore, the final d t s  were somewhat dependent on the initial guesses of 

the user. To deviate this problem, bandfitting was applied to a given file several times 

and averages used. The emr  bars used in this thesis reprisent the spread of results 

obtained fiom these repeated bandfits. In some cases the differences between bandfit 

solutions was m e r  than in other cases and the wider error bars are seen. In some cases 

the spread of results was very smaU and the sizes of the enor bars are smaller than the 

marken themselves. In lïght of these problems it is necessary to apply careful judgement 

in the evaluation of bandfitting results. 

In the course of this project, two other cornputer routines had to be developed (see 

Appendix I). The fmt of these was to perform spectral subtraction. As mentioned in 

chapter 1, the isotmpic spectrum is defined as: 



The subtraction routine simply subtracts the second from the first on a point by point 

basis. The user enten a subtraction factor by which the second N e  is multiplied pnor 

to subtraction. By changing the sign of this factor, two spectra may be added. The 

second routine developed was to calcuiate spectral moments. It is necessary to calculate 

fïrst moments to test the theories of resonance energy transfer. The n" spectral moment 

of a band is defined as (9): 

w here 

I(v) = inteusity at a Raman shïft of v 

v - - the Raman sbift (in cm-') 

such that M(0) = 1. If the band is symmetric, the first moment and the band centre will 

be equal. Because the spectral data are digitked, the integrals an evaluated over a 

selected range (chosen by the user) using Simpson's de. The user may also chwse 

which spectral moment to calculate. 
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This program (SPTOOLILBAS) wil i  add and subtract spectra, calculate band areas 

using Simpson's Rule, and caldate spectral moments. 

30 D M  Y(2000,4), S(4), F(4), SS(4), NS(4), TC(4), COL(8) 
D M  Y2(2000), S 2(4), F2(4), SSS(4), NS2(4), TC2(4), AI(2W) 
NUL$ = "" 
ECH$ = CHR$(27) 
COL(1) = 9: COL(2) = 14: COL(3) = 12: COL(4) = 13: COL(5) = 7: COL(6) = 11: 
COL(7) = 10: COL(8) = 14 
SMIN = 20000: YMIN = 150000 
F M A X = O : Y M A X = O  

110 CLS 
120 PRNI' : PRINT : PRINT 
130 PRINT TAB(32); "SPECTRAL TOOLS II" 
140 PRINT : PRINT : PRJNT 
150 PRINT TAB(28); "PRESS ANY KEY TO CONTINUE" 
160 A$ = INKEY$: IF A$ = "" THEN 160 

209 FLAG = O: CLS 
210 P m  
ON ERROR GOTO 220 
TF SOU$ = "" THEN DEFDIR$ = "BA" ELSE DEFDIR$ = SOU$ 

21 1 PRINT : PRINT "What is the source directory (def. = "; DEFDfRS; ")"; 
INPUT SOU$ 
IF SOU$ = "" THEN SOU$ = DEFDrn 
IF RXGHT$(SOU$, 1) O 'l" THEN SOUS = SOU$ + ''Y' 
DEFDLR$ = SOU$ 
PRJNT : P m  "Files on "; SOU$; " disk:": FILES SOU$ + "*.*" 

212 PRINT : PRINT "What is the name of the file (clef. ext- is 'RAM')"; 



INPUT Q$ 

IF Q$ = "" OR LEN(Q$) > 12 THEN 
PRINT "Filename is to long" 
GOTO 212 

END IF 
m$ = ".RAM" 

FOR IAI = 1 TO LEN(Q$) 
IF MID$(Q$, IAl, 1) = "-" THEN 
IF IAl = 1 THEN BEEP GOTO 212 
EXTS = MID$(Q$, ml) 
Q$ = LEEir$(Q$, IAI - 1) 

END IF 
NEXT IAI 

IF LEN(EXT$) O 4 THEN 
FOR IAl = LEN@XT$) + 1 TO 4 
E n $  = ExT$ + ": 

NEXT IAl 
END IF 

P m  
PRINT "Opening N e  "; 
OPEN L!§ FOR INPUT AS #1 
INPUT #1, SA$, TE$, CL$, D$, Es, G$, RE$, NR 

CLOSE #1 
DEFDIR$ = SOU$ 

218 PRINT : PRINT : PRINT " Filename : "; L$ 



PRINT " Temperature : "; TE$ 
PRINT " Line/power : "; CL$ 
PRINT " Polarkation : "; D$ 
PRINT " Slits : "; E$ 
PRINT " Remarks : "; RE$ 
PRINT " Region Start End Step Sue TWstep" 

FOR J = 1 TO NR: PRINT J, S(J), F(J), SS(I), T(J): NEXT 

219 PRINT 
INPUT "1) AdcüSubtraction 2) Simpson's Rule Area 3) Spectral Moment 4) Run 5) 
Exit"; TC 
PRINT : ON TC GOSUB 25222,30000,40000,60000,610ûû 
CLS : GOTO 218 

60000 GOTO 110 

61000 END 

IF ERR = 53 THEN 
LOCATE CSRIAN - 1,301 PRINT "-> FILE DOES NOT EXTST !!!" 
BEEP 
IF FLAG = 1 THEN RESUME 2601 1 ELSE RESUME 210 

END IF 

IFERR=71 ORERR=72THEN 
PRINT : PRINT "Disk not d y . "  
BEEP 
PRINT "Insert disk and press any key to continue" 

D O U N T I L K $ o " "  
K$ = INKEY$ 

LOOP 

IF K$ = ECH$ AND FLAG = 1 THEN RESUME 2601 1 
IF K$ = ECH$ AND FLAG O 1 THEN RESUME 21 1 
IF K$ O ECH$ THEN RESüME 

END IF 



IF ERR = 75 OR ER. = 76 THEN 
BEEP: P m  
PRINT "Paîh does not exist or cannot be found!" 
IF FLAG = 1 THEN RESUME 2601 1 ELSE RESUME 210 
END IF 

IF ERR = 68 OR ERR = 24 OR ERR = 25 OR ERR = 57 THEN 
BEEP: PRINT 
PRINT "Some form of device error has occurred." 
PRINT "Check disk drive connections etc. then press any key to C O ~ M U ~ "  a = "" 

IF K$ = ECH$ AND FLAG = 1 THEN RESUME 26011 
IF K$ = ECH$ AND FLAG O 1 THEN RESUME 21 1 
IF K$ O ECH$ THEN RESUME 

IF ERR = 64 OR ERR = 52 THEN 
PRINT : PRINT "Bad Nename" 
BEEP 
IF FLAG = 1 THEN RESUME 2601 1 ELSE 210 

END IF 

PRINT : PRINT "The addition/substraction feature wül replace all the original data 
Continue"; 
INPUT AN$ 
IF LEFT$(AN$, 1) = "N" OR W $ ( A N $ ,  1) = "no THEN RETURN 



25225 IF NR = 1 THEN 
OREG = 1 
GOTO 26000 

END IF 

25500 PRINT : INPUT "Which region do you want to use in the subtraction"; OREG 

IF OREG > NR THEN 
BEEP 
GOTO 25500 
END IF 

IF OREG <= O THEN 209 

26000 'CLS 
26010 'CLS : PRLNT 
26011 FLAG = O 

ON ERROR GOTO 220 
FLAG = 1 
PRINT : INPUT "Which directory do you want to search for the fie to be subtracted 
"; DR$ 
IF Dm$ = "" THEN D m  = DEFDIR$ 
IF RIGHT$(DIR$, 1) O "Y1 THEN DR$ = DI= + "Y1 
PRINT : PRINT "Files on "; DI=; " disk:": FiLES DR$ + "*.*" 

26012 PRINT : INPUT "What is filename (default extension is RAM !!!) "; Q$ 
IF Q$ = "" THEN 26011 

IF LEN(Q$) > 12 THEN 
BEEP: PRINT "Fiename is to long" 
GOTO 26000 

END IF 

FOR IAl = 1 TO LEN(Q$) 



IF MID$(Q$? IA1, 1) = "-" THEN 
IF IAl = 1 THEN BEEP: GOTO 26012 
EXTS = MID$(Q$, Ml) 
Q$ = LEFT$(Q$, IA1- 1) 
END IF 

NEXT Ml 

FOR IA1= LEN(EFiT$) + 1 TO 4 
ExT$=ExT$+"" 

NEXT IAl 

END IF 

L$ = DIR$ + Q$ + m$ 
PlW"ï:REFLAG= 1 
PRINT "Openhg N e  "; L$ 

DISPFL = O 
PRINT : PRINT : PRIM' " Fiename : "; SA2$ 
PRINT l1 Temperature : "; TES 
PRINT " Linelpower : "; C U  
PRINT " Polarization : "; d2$ 
PRNI' " Slits : "; E2$ 
P W  " Remarks : "; RE2$ 
PRINT " Region Start End Step Size Time/stepW 
FOR J = 1 TO NR2: PRINT J, S2(J), F2(J), SS2(1), T2(J): NEXT 
P m  



IFNR2=1THEN 
SREG = 1 
GOTO26û18 - 
END IF 

26017 PRINT : INPUT ' W c h  region do you want to use for subtraction"; SREG 

IF SREG <= O THEN 26000 

IF SREG > NR2 THEN 
BEEP 
GOTO 26017 
END IF 

26018 IF SS(0REG) O SSZ(SREG) AND NR2 > 1 THEN 
BEEP 
PRINT : PRINT "The step size is ciiffereut Born the original spectnun!" 
GOTO 26017 

END IF 

IF SS(0REG) O SS2(SREG) AND NR2 = 1 THEN 
BEEP 
PRINT : PRINT "The step size is different hm the original spectnun!" 
GOTO 26011 

END IF 

IF S2(SREG) O S(0REG) THEN 
BEEP 
PRINT : PRINT "The starting wavenumbers are different!" 
IF NR2 > 1 THEN 26017 ELSE 26011 

END IF 

IF TZ(SREG) O T(0REG) THEN 
BEEP: PRINT 
PRINT "The time constant is not the same for the two spectra! Continue"; 
INPUT AN$ 
IF LER$(AN$, 1) O "y" AND LEFT$(AN$, 1) O "Y" AND NR2 = 1 THEN 

26000 



IF =$(AN!§, 1) O "y" AND =$(AN$, 1) O "Y" AND NR2 > 1 THEN 
26017 

END IF 

IF E2 O E THEN 
B E P :  PRINT 
PRINT "The slits are not the same for the two spectra! Continue"; 
INPUT AN$ 
IF LEFï$(AN$, 1) = "N" OR LEFT$(AN$, 1) = "n" THEN 26000 

END IF 

IF NS2(SREG) > NS(0REG) THEN INS = NS(0REG) ELSE INS = NSZ(SREG) 

SSI = SS(SREG) 
SI = S(0REG) 
FI = SI + SSI * DVS 

FOR 1 = O TO NS2(J) 
mm #2, Y20 

NEXTI 
NEXTJ 
CLOSE #2 

PRINT : INPUT "What is the scaiing factor 

FOR J = O TO INS 
Y(J, 1) = Y(J, OREG) + SF * Y2(J) 
NEXT J 

(default = - 43)"; SF 

FOR T = INS + 1 TO 2000 
Y(T, 1) = O 
NEXT T 



FORR=2TONR 
FOR J = O TO NS(R) 
Y(& R) = O 

NEXTJ 
N E m R  

NR = 1: SS(1) = SSI: S(1) = SI: F(1) = FI: NS(1) = INS 

REFLAG = O 
PRINT : INPUT "Do you want to view the results"; AN$ 

IF =$(AN$, 1) = "Y" OR m $ ( A N $ ,  1) = "y" OR AN$ = "" THEN GOSUB 1050 

CLS 
PRINT : INPUT "Do you want to store the results"; AN$ 
IF m $ ( A N $ ,  1) = "N" OR LEFï$(AN$, 1) = "n" THEN RETURN 

lm RETURN 

1050 CLS 
XV = SI: NSP = SI 
SW=SI:EW=FI 
NNS = INS 
TSS = SSI 

YMAX = O: YMIN = 1500000 

FOR T = O TO INS 
IF Y(T, 1) > YMAX T ' E N  YMAX = YCT, 1) 
IF Y(T, 1) < YMIN THEN YMIN = Yfl, 1) 
NEXTT 



MI=YMIN 
1150 CLS 

SCREEN 12 '64ûx480 pixels 
LOCATE 1, I 'set up the plot screen 
p m  w "; SA$; w - ";  SA^$ '(identify the files) 

1 155 VIEW (20, 43)-(620,413)' O, O 'set view port at 600x370 pixels 
LOCATE 27, 1 'set x axis label 
PRINT TAB(3); USING "####"; SW; TAB(75); E W  
PRINT TAB(3S); "SHFï  (CM-1)" 
LINE (O, 0)-(0, 370), 11 'draw axes 
LINE -(600, 370), 11 
PPWN=600/(EW-SW) 'determine pixeldwaveno. 
PfINT=37O/(MX-MI) 'detemine pkelsTmtensity 
XHS=(EW-SW)/5: YHS=(MX-MI)/5 
XH=SW:YH=MI 

FORT= 1 TO5 'place hatchmarks 
XHP=(xH-SW)*PPwN 
XHPI = INT(XHP) 
IF(XHP-XHPII)>=.5THENXHPI=XHPI+ 1 
YHP=(YH-MI)*PPINT 
YHPI = INT(YHP) 
lFcyHp-YHPI)>=.5THENXHPI=MiPI+ 1 
PSET @HP, 370) 
LINE -@€PI, 365)' 11 
PSET (O, YHPI) 
LINE -(5, YHPI), 1 1 
XH=XH+XHS 
YH=YEI+YHS 
m T  

1165 W = Y(0, 1) 'determine first x pixel position 
FX=(NSP-SW)*PPWN 'and fhd  integral value for it. 
FXI=INT(FX) 'Round it off if necessary. 
IF(FX- FXI) >= .5THENFXl=FXI+ 1 'do the sameforthefirst y 
FY = 370 - ((YV - MI) * PPINT) 'position 
Fn=INT(FY) 
I F ( F Y - F Y I ) > = . 5 T H E N M = M + l  



PSET (FXI, Fn), C O L 0  'set the first point in the spectnun 
FORJ= 1 T O N S  'draw the spectnmi by drawing lines 
XV = XV + TSS 'to the next pixel position 
YV = Y(& 1) 
W=(Qcv-Sw)*PPWN) 
XPI = INTOcp) 
IFfXPr-XP) >=.5THENxPI=xPI+ 1 
w=370-((yv-h4c) *PPlNT) 
YPI = INT(YP) 
IF (YP - YPI) >= .5 THEN YPI = YPI + 1 
LINE -(XPI, Wl), COL(2) 
NE= J 

1175 VIEW PRINT 29 TO 30 
K$ = "" 

PRINT "Press any key to continue" 

26200 PRINT : PRINT "The spectra wiU be recorded with the foilowing descriptors:" 
PRINT 
D$ = "Isotropie" 
PRINT " Temperature : "; TE$ 
PRINT " Line/power : "; CLâ 
P R N ï  " Polarization : "; D$ 
PRINT " Slits : "; E$ 
PRINT " Remarks : "; RE$ 
PRINT : INPUT "Do you want to change any of this information"; AN$ 

IF LEFI:$(AN$, 1) = " Y  OR LEFZ$(AN$, 1) = "y" THEN 
P m  
PNNT "'ENTER' does not change the default value." 
PRINT : INPUT "Temperature"; Ab6 



IFAN$ O "" THENTE$ =AN$ 
INPUT **Line/powerff ; AN$ 
IF AN$ O "" THEN CL!§ = AN$ 
INPUT "PoIarization"; AN$ 
IF AN$ O "" THEN D$ = AN$ 
INPUT "Slits"; ANS 
IF AN$ O "" THEN E$ = AN$ 
INPUT "Remarks"; AN$ 
IF AN$ O "" THEN RE$ = AN$ 

END IF 

RE$=DATE$+"" +RE$ 
LRE = LEN(RE$) 

26500 EXT$ = "ISO" 
IF DEST$ = "" THEN D D W  = SOU$ ELSE DDIR$ = DEST$ 

26505 DEF$ = SA$: D m $  = m$ 
LSA = -(SA$) 

FOR T = 1 TO LSA 

IF S$ = "." THEN 
SA$ = LEFT$(SA$, (T - 1)) 
EXIT FOR 

END IF 

DEF$ = SA$: DEFEX$ = EXT$ 
PRINT : PRINT "If ail the defaults are chosen, the results will be stored as: " 
PRINT D D W  + DEF$ + "." + DEFEX$ 
PRIM' : PRINT "What is the destination diractory (def. is "; DDIRS; " )"; 
INPUT DEST$ 
IF DEST$ = "" THEN DEST$ = D m $  
IF RIGHT$@EST$, 1) O ''Y' THEN DEST$ = DEST$ + *'Y' 

265 10 PRINT : PRLNT "What is the permanent name for the N e  (def. is "; DE'S; " )"; 
INPUT F!§ 



IF LEN(F$) > 8 THEN 
BEEP: PRINT : PRINT "Fileaame is too long" 
GOTO 26510 
END IF 

DEFEX$ = EXT$ 
2651 1 P W  : PRINT "Mat is the extension (def. is "; DEFEX$; " )"; 

INPUT Exn 

IF Lm-$) > 3 THEN 
BEEP: PRINT 
PRINT "Extension is too long" 
GOTO 265 1 1 

END IF 

ON ERROR GOTO 265 12 

P m  : FILES FILEN$ 
PRINT "Fie aiready exists": BEP: EXT$ = RIGHT$(EXT$, 3): GOTO 26510 

26513 PRINT "Saving fiie as "; FiLEN$: PRZNT 
26514 OPEN FILEN$ FOR OUTPUT AS #1 

PRNI' #1, F$; ","; TE$; ","; CL$; tt,ne; D$; t y ;  mi 11 , gr. , MG$; ","; RE$; I*,"; NR 
PRINT #1, S(1); F(1); SS(1); T(1); NS(1) 

FOR 1 = O TO NS(1) 
PRINT #1, Y(r, 1) 

NEXT 1 

PRINT #1, ZE 



IF ERR = 53 AND REFLAG = O THEN 
PIUNT : PRINT "New fie" 
RESUME 26513 

END IF 

IFERR=61 ORERR=71 ORERR=72ORERR=57ORERR=68OR 
ERR=24 OR ERR = 25 AND REFLAG = O THEN 
BEEP: PRINT 
PRINT "Disk Mi or not ready" 
PRINT "Check drive ancilor insert a new diskette" 
PRINT "Press any key to continue" 
I($ = "fl 

DO UNTIL K$ O "" 
K$ = m E Y $  

LOOP 

CLOSE #I 
IF K% = ECH$ THEN RESUME 26500 ELSE RESUME 26514 

END IF 

IF (ERR = 64 OR ERR = 52) AM) REFLAG = O THEN 
PRINT : PRINT "Bad filename" 
BEEP: EXT$ = RIGHT$(EXï!§, 3) 
RESUME 26510 

END IF 

IF ERR = 75 OR ERR = 76 THEN 
PRINT : PRINT "Path not found or access error" 
BEEP: EXT% = RIGHT$(EXT$, 3) 
RESUME 26505 

END IF 

ON ERROR GûTO O ' tum off emr oappiag 
y*********************** endofemor~pping ****************************** 



30000 F m =  ITHEN 
CH= 1 
GûTO 31000 

END IF 

PRINT : INPUT "For which region do you wish to calculate the areal'; CH 

3 1000 GOSUB 35100 'arrange array for integration 

GOSUB 50000 'perform Simpson's M e  integration" 

PRINT : PRINT "The calculateci area is"; AREA 
PRINT : PRINT 

IF NR > 1 THEN 
PRINT : INPUT "Do you want to calculate the area of another region"; AN$ 
IF AN$ = "Y" OR AN$ = "y" THEN 30000 

END IF 

35100 PRINT : INPUT "What is the starting wavenumberl'; SWN 

IF S W N  < S(CH) OR SWN > F(CH) THEN 
BEEP 
PRINT : PRINT "Starting wavenumber is not within the range of the data" 
GOTO 35100 

END IF 

35200 PRINT : INPUT "What is the final wavenumber "; JWN 

IF EWN < S(CH) OR EWN c= SWN OR EWN > F(CH) THEN 
BEEP 
PRINT : PRINT "Final wavenumber is invalid!" 
GOTO 35200 

ENDF 



SPA = (SWN - S(CH)) I SS(CH) 
EPA = (EWN - S(CH)) f SS(CH): NSA = (EWN - SWN) 1 SS(CH) 

FOR T = O TO NSA 
A I 0  = Y(SPA + T, CH) 

NEXT T 

IF NR = 1 THEN 
CH= 1 
GOTO 40100 

END IF 

PRINT : INPUT "Xn which region do you wish to calculate the spectral moment"; CH 

40100 PRINT : INPUT "Which spectral moment to calculate"; SM 

IFSMeOTHEN 
BEEP 
PRINT : PRIM' "Invalid spectral moment!": PRINT 
GOTO 40100 

END IF 

40200 P m  : INPUT "What is the band maximumtv; BM 

IF B M  < O THEN 
BEEP 
PRINT "Invalid frequency ! " : PRINT 
GOTO 40200 

END IF 



BA = AREA 

FOR T = O TO NSA 
IN = (SWN + T * SS(CH)) 
A I 0  = Y(SPA + T, CH) * 0 A S M  

NEX'TT 

BSM = AREA / BA 

PRINT : PRINT "The band maximum is "; BM 
PRINT : PRINT "The spectral moment is "; BSM 

PRINT : PRINT "Press any key to continue" 
K$ = 1111 

K$ = "" 
K$ = INKEY$ 

LOOP 

50000 AREA = O: Al = 0: A2 = 0: A3 = O 





3. SOLUTIONS OF FORMIC ACID 

3.1 Introduction 

An isolated formic acid m o l d e  has C, symmetry and nine normal modes of 

vibration spanning the representation: 

î, = 7A' + 2A" 

GU the vibrations are both Raman and infiared active and seven of the Raman bands are 

polarized. Four of the vibrations are stretches, four are deformations, and one is a 

torsion. If the 'OH' group is taken as a point mas,  Ç symmetry is retained and 

r,, = SA'+ A" 

Therefore, three vibrations are associated with the 'OH' group: the O-H stretch, the COH 

deformation, and the OH torsion. The remaining modes are the C-H stretch, C=û stretch, 

C-OH stretch, CH in-plane ben4 O-C=O deformation, and the CH out-of-plane bend A 

normal coordinate analysis of monomeric formic acid has been conducted by Susi and 

Scherer (1). 

In practice, the Raman and hfhmd spectra are complicated by intermoIecular 

interactions (hydrogen bonding or dipole - dipole forces) between forrnic acid molecules. 
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This problem is particularly pronounced for liquid formic acid. The existence of smng 

intennolecular forces can lead to the coupüng of normal modes and to the resonance 

energy naosfer effect. This may M e r  complicate the specmim of f o d c  acid. 

Liquid formic acid has ken studied by a number of methods including infrared 

spectroscopy (2,3,4), low frequency Raman spectroscopy (5,6), Raman spectroscopy (4), 

X-ray analysis (7), NMR spectroscopy (8), dielectric measurements (9), and neutron 

diffraction methods (10). The conclusions regarding the structure of liquid formic acid 

have been almost as diverse. Several workers have concluded the iiquid contains 

polymeric species (2,4,5,7,9,10). Todinson, Cumutte and Hathaway were specific in 

concluding the liquid consists of helical polymers (4). Other workers have concluded 

iiquid formic acid contains of dimers (3,8,l1). Waldstein and Blatz concluded liquid 

formic acid was composed of either polymers, an open dimers, or a mixture of tbe two 

(6). Clearly, the structure of fonnic acid is not weU characterized. 

Pure formic acid was studied both at room temperature and at elevated 

temperatures and pressures in a previous work (12). A swey  spectrum (100 - 2000 cm", 

in R(v) format) is presented here for completeness (Fig. 3.1) and partial assignments are 

given in Table 3.1. 

Dr. Murray Brooker (13) suggested a series of experiments on formic acid diluted 
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Fig. 3.1: S w e y  Spectrum of 98% Formic Acid 



Table 3.1: Partial Assignment of Fomiic Acid (4). 

F~quency I cm-' Assignment 

1600 - 1750 C=O stretch 

1 1398 C-H bend 1 WOHO) + C-O mctch 

1208 C-O stretch 

1 650 - 725 1 OC0 bend 

1 1060 1 C-H bend 
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in water. Dilution should lead to a reduction of any iatermolecular coupling (which gives 

rise to resonance energy traasfer) and therefore to consequent changes in the spectrum. 

As the "active" species is diluted the degree of association should decrease and this 

should be observable in the spectruxn. Similar work has already been done in our 

Iaboratory on acetic acid (14,lS). Those studies showed a dependence on concentration 

of the nature and relative amounts of the associated species in acetic acid Studies of 

solutions of formic acid were undeden, in part, to see if similar effects rnight be 

observed. Such effects, if they do occur, may shed some light on the structure of pure 

formic acid However, as was found from the previous work (12), the behaviour of 

forrnic acid is quite different from that of acetic acid. 

The chemicals used in these experiments were: 98 - 100% fomùc acid, 99% 

acetonitrile, 99.9% dichloromethane (aii supplied by B.D.@, 99.9% 1,4-dioxane (Fisher) 

and Milli-Q water. The fonnic acid and the organic solvents were used "as nceived", 

ic., without fkther purification. The small amount of water present in the formic acid 

is not expected to have a sigaincant effect on the results. Binary solutions of formic acid 

with each of the solvents were prepared. Ternary solutions of formic acid, acetonitrile 

and dichloromethane were prepared to constnict a Job plot. As shown in section 3.3.2 
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(formic acid I acetonitrik) formic acid and acetonitde form some sort of "complex". The 

"method of continuous variations" (which generates a Job plot) (16) allows the 

determination of the relative amounts of "ligand and "metal" in a complex. This method 

was applied to the formic acid - acetonitrile system with the objective of detemiiniog the 

relative amounts of formic acid and acetonitrile in the "complex". More will be said 

about this later (section 3.3.6). 

The binary solutions of iormic acid were prepared on a mole fiaction basis using 

25 mL volumetric flasks. The required volume of fonnic acid was measured using a 

graduated cylinder and poured into the flask The mass of the fonnic acid was then 

detennined. The volwnetric flask was Nled to the mark with solvent and the mass of the 

solvent was recorded. The volumetric flasks were capped, wrapped with Parafilm and 

stored in a refkigerator. 

Portions of the solutions were added to thin-wded capillary tubes using a syringe 

and a length of Teflon tubing. The binary solutions were added using a plastic syringe 

and this did not appear to have any adverse effect on the spectra. For the solutions 

containhg dichioromethane, however, the use of plastic syringes gave quite high 

backgrounds. A glas syringe was tned and it alleviateci the problem. The syringes (both 

plastic and glass) were rinsed thomughly with the intended solutions before ffing the 

capillary and rinsed with Milli-Q water aftetwards. The capillary was then placed in the 



thermosauted copper block that has already been d e s c f l i  (section 2.2). 

AU spectra were collected usiag the 5 14.5 nrn line at 1.5 W (rneasured at the laser 

head) as the excitation source. Survey spectra and spectra of the C O  stretching region 

of the binary solutions were coUected with a mechanical slitwidth of 150 pm. For 

solutions involving acetonitrile, spectra of the CkN stretching region (2100 - 2400 cm-') 

were collected with dits of 100 p. For the ternary solutions, spectra were coîlected in 

three spectral regions. The i%t was 585 - 885 cm-'. This ~ g i o n  includes a band fiom 

the solvent, dichiorornethane, that was used as an intensity standard. It exactly overlaps 

the O-Ca bending bands of formic acid but is very m n g  while the O-C-O bending 

bands are very weak. The error in intensity fiom the contribution of the O - C S  bands 

was estimated to be less than 1% and therefore not significant. The second region was 

the stretching region of the acetonitrile. For both of these regions the slits were set 

at 100 p. The third region was the carbonyl region of focmic acid (1500 - 1900 cm-') 

where the sIits were set at 200 p. The binary solution spectra were coïiected at 25OC 

while the spectra for solutions containhg dichloromethane were coikcted at 200C. The 

tempe- was reduced for the latter solutions because of the low boiüng point of 

dichloromethane (WC). 



3 3  Resuits and Discussion 

Solutions of formic acid in four Merent solvents (water, acetonitde, 1,4-dioxane 

and dichloromethane) were studied. The results for each solvent will be presented in tum. 

3.3.1 Formic acid / Water 

A senes of solutions of HCOOH I H,O was prepared from X(HC00H) = 0.900 

to X(HCO0H) = 0.510, The concentrations are summarized in Table 3.2. 

Figure 3.2 shows a survey spectrum for formic acid at X = 0.510. The most 

ciramatic effects are in the o-C=û deformation region (600 - 750 cm-') and the carbonyl 

region (1475 - 1875 cm-'). Also, some slight change appean in the low kquency band 

at -200 cm''. 

The carbonyl spectrai region was studied in the gnatest àepth. Figure 3.3 shows 

the effect of dilution on this spectral region. As the formic acid is diluteà the band 

maximum moves to higher fkquency and the high frequency shoulder becornes less 

prominent The band maximum moves towards coincidence with the high frequency 

shoulder. In the spectra of more dilute formic acid, low frequency asymmetry occurs 



Table 3.2: Concentrations of HCûûH I H20 SoIutions. 

Code x(HCOOH) C(HCooH) C @ D  
/ mol L" f mol L" / mol L" 



Fig. 3.2: Smey  Spectnmi of HCOOH I H,O X(HC0OH) = 0.501. 



1675 

Raman Shift / cm" 

Fig. 3.3: Carbonyl Modes of HCOOH / H,O. 
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because of overlap with the v, mode of water. n i e  appearance of this mode necessarily 

precludes continuing studies below X(HCOOH)-O.S for HCOOH I H,O. 

Figures 3.4 - 3.5 show the isotropic and anisotmpic spectra of fonnic acid under 

various conditions. A non-coincidence of the isotropic and anisotropic band maxima is 

very clear. From the spectmm of 98% formic acid it is evident the maximum in the 

isotropic spectnim corresponds to a shoulder in the anisotropic and vice versa The 

maximum in the anisotropic is at -1725 cm-' and this frequency is essentially constant 

throughout the concentration range. At 100°C (98% HCOOH) the anisotropic maximum 

is at -1728 cm-'. Tomluison, Curnutte? and Hathaway (4) report an infiareci maximum 

at 1715 cm-' that shifts upward by 4 cm" when the temperature is raised from lO0C to 

80°C. They assigned this to C S  stretchg. In the Raman, however, they assigned the 

peak at 1654 cm" to C=û stretching and a shoulder at 1740 cm-' to a combination of CH 

bending (1060 cm-') and OC0 bending (675 cm*'). Unfomately, these assignments 

seem to be based on spectra at O°C and pure fomic acid h z e s  at g°C! 

Figure 3.6 shows the separation of band maxima as a function of formic Md mole 

fraction. The separations are given in Table 3.3. At X(HC00H)-1 (98% B.D.H. formic 

acid) the separation is -64 cm*'. in other molecules with carbonyl groups the non- 

coincidence is typically < 15 cm-' (17). However, di the other evidence suggests a 

resonance energy transfer (RET) effect is taking place in fomiic acid As the acid is 
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Fig. 3.4: Polarizaîion Studies of HCOOH / H20: 
a) 98% HCOOH b) X(HCO0H) = 0.510 
(nonnalized). 
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Fig. 3.5: HCOOH (98%) Polarization Studies at -100°C 
(normalized). 





Table 3.3: NCE for HCOOH / H,O. 

xmc~l i )  NCE / cm" 

1 .O00 64 
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diluteci, the separaiion of the isotropic and anisotropic peaks decreases and has a fairly 

strong dependence on the mole fhction. The anisotropic peak position does not change 

as the formic acid is diluted, remaining fked ai -1725 cm-'. The isotropic peak shifts. 

Concentrations of formic acid below X(KCOOH)-CJ were not used because of the 

overlap with v, of water at -1600 c d .  Further, the NCE at -100°C is smaller than at 

25°C- A reduction in NCE as temperature is r a i d  is characteristic of resonance energy 

transfer (18). The splitting in fonnic acid is very large and indicates a significant 

interaction between formic acid molecules. This is not surprising considering the 

possibility of quite strong hydrogen bonding in this system. 

The low fkequency band at -200 - 210 cm'' shifts very slightly h m  208 cm'' 

(98% HCOOH) to 201 cm-' (X(HC00H) = 0.510) as the concentration fails. The " R  

spectrum (19) suggests some high frepuency asymmetry in this band (see Fig. 3.7). This 

band has been assigned to an H-O-H bending mode associated with hydrogen bonding 

(Blatz and Waldstein (6)). The presence of this band throughout the dilution range 

impiies the continuation of hydrogen bonding. Therefore, the hydrogen bonding in fonnic 

acid is quite strong and may partialiy explain the very large non-coincidence effect. 

The third region studied in detail was the OGi) deformation region (625 - 750 

cm"). In neat formic acid this band envelope had an unusual shape suggesting the 

possibility of three underlying bands. At lower concentrations (X(HC00H) c 0.7) this 
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Fig. 3.7: Effect of Dilution on the "Association" Band of HCOOH. 
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envelope had a more "conventional" appearance ( s e  Fig. 3.8). Using three band fi6 on 

aU the spectra reveal interesthg changes. The lowest fiequency band shifted to higher 

frequency (hm -672 cm-' to -679 cm-'), but the change occurs almost entirely below 

X(HCOOH)-O.7. The relative intensity also decreased. The second band shifted (681 

cm-' to 693 cm") but, again, the change is greatest for concentrations below 

X(HCOOH)-0.7. The relative intensity of this band increased. The third band increased 

in fkequency, but the change was spread more evenly. The relative intensity of this band 

increased and then decreased. The @ C O  bending band, just iike the C=O band, is 

likely to change as the intermolecular forces change. Tùerefore, these spectral changes 

indicate changes in the nature of the intennolecuiar forces. 

Formic acid in aqueous solutions behaves differently k m  acetic acid. Semmler 

(l4,lS) studied acetic acid at elevated temperatures and in solutions. She concluded neat 

acetic acid was a mixture of polymers, cyclic dimers, open dima, and monomen. As 

the acetic acid was heated or diluted, the level of association decreased. No polarization 

results were reported. In formic acid the results strongly suggest resonance energy 

transfer is occUmng. The isotropie and the anisotropic peaks are noncoincident and the 

separation is quite large. The separation decreases with diiution and with a rise in 

temperature. Both observations strongly suggest RET because diluting or heating the 

fomiic acid should lead to a dismption of ordcr, a decouplhg of the oscillators, a 

reduction in the effectiveness of RET and consequently a decrease in the non-coincidence 
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Fig. 3.8: Effect of Dilution on the O-&o Deformation Modes of 
HCOOH- 
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effect. The occurrence of RET suggests Som type of order in the Iiquid that allows the 

oscillators to couple. This local order is induced by dipole - dipole forces in conjunction 

with hydrogen bonding. The hycùogen bonding is present throughout the dilution range 

(as proven by the continued presence of the "association" band at -200 cm-'). This 

observation suggests formic acid forms very stabk hydrogen bonds. 

33.2 Formic Acid / Acetoiiitrile 

These experiments were originaliy undertaken to study the RET effect in fomiic 

acid using a solvent whose bands do not overlap those of formic acid. The ideal solvent 

must meet other conditions as weU. It should not react with formic acid and should 

provide a wide range of formic acid solubility. Acetonitrile seemed an appropriate choice 

and a series of solutions QL(HC0OH) = 0.898 to X(HCO0H) = 0.157) of formic acid in 

acetonitrile was prepared. A summary of the concentrations is presented in Table 3.4. 

The results were unexpected. The changes in the formic acid spectra (see Fig. 

3.9a) are completely different from those seen for dilution in water. The first impression 

was that the acetonitrile and the formic acid had reacted. Hydrolysis of acetonrmle (to 

form acetic acid) occm under acidic conditions but is very slow (20). Furthemore, in 

this system only smaU amounts of water and few protons are present. Other possible 



Table 3.4: Concentration Summary for HCûûH / CH,CN Solutions. 

Code X(HCo0H) C r n C ~ H '  C ( 0  
/ mol L-' / mol L" 

RB940520A 0.898 22.75 2.577 

RB940520B 0.702 16.54 7.010 

RB94û520C 0.503 11.09 10.94 

RB94052OD 0.305 6.327 14-41 

RB94052OE 
-- - - 

O- 157 3.106 16.69 
- 

RB940526A 0.782 18.96 5.283 
1 

RB940526B 0.580 13-10 9.482 

RB940526C 0.397 8.468 12.88 

RB940526D 0. 198 3-988 16.1 1 
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Fig. 3.9: Spectra of HCOOH 1 CH,CN X(HC00H) = 0.503: 
a) S w e y  Specûum 
b) Spectrai Region when an NH Stretching Band would be 
Expected (above 3200 cm-'). 
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reactions between formic acid and acetonitde might reasonably be expected to lead to 

a product exhibithg an NH stretching mode. Therefore, a spectrum of X(HC00H) = 

0.503 solution was recorded between 2800 cm-' and 3600 cm-'. This spectnim shows no 

evidence of an NH stretch (see Fig. 3.9b). Furthemiore, if proton transfer had taken place 

the C=O vibrations would disappear and two vi'brations fnmi the COi group would appear 

(21). This is not the case. These d t s  suggest no reaction tmk place and so the 

carbonyl (1500 - 1900 cm-') and the nitrile (2100 - 2400 cm*') regions were examined 

more closely. 

In the carbonyl region of pure formic acid a maximum with a hi@ frequency 

shouider is evident As formic acid is diluted in acetonitrile, this profde changes 

dramaticaliy. Figure 3.10 illustrates this very well. Three bands are obviously present 

and low kquency asymmetry suggests a fourth band underlying this profile. Bandfitting 

was applied to the spectra using four-band fits and the cesuits are summarized in Table 

3.5. At X(HC00H) = 0.898 the spectrum suggested only three bands. Figure 3.1 la 

shows the dependence of each band position on mole fraction. The band positions of the 

two higher frequency bands (v, and v,,) are viroually independent of concentration. The 

lowest f'requency band (v3 appears to pass thmigh a maximum at X(HCû0H) = 0.580. 

The remaining band's (vJ position decreases with increasing fonnic acid concentration. 

Another set of parameters that is of interest in this study is the fraetion of the total 

carbonyl intensity from each band, a. As can be seen in Fig. 3.1 lb, the intensity of band 
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Raman Shift 1 cm" 

Fig. 3.10: Carbonyl Region of HCOOH / CH3CN: 
1 - X(HCO0H) = 0.898; 2 - X(HC00H) = 0.503; 
3 - X(HC00H) = 0.157. 



Table 3.5: Summary of Bandfitting for HCOOH / C H P .  

Note: 

a is the fraction of the total carbonyl band intensity. 
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Fig. 3.11: Variation of the Band Parameters for the Carbonyl Region 
of HCOOH / CH,CN: 
a) Position b) Fraction of Total Intensity 
O - Band a; . - Band b; A - Band c; + - Band d. 
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(a) incteases with increasing formic acid concentration whereas bands (c) and (d) 

decrease. Band (b) shows considerable fluctuation but no systematic aend The reason 

for this variation is unknown. Because of the occurrence of four bands (as opposed to 

two in neat formic acid) and the behaviour of their relative integrated intensities, the 

formation of some sort of formic acid - acetonitrile association or complex was 

hypothesized Evidence in the e N  stretching region gave M e r  support to this 

hypothesis. 

Cleanr evidence to support the existence of some son of "association" is found 

in the n i d e  (210 - 2400 cm-') region. In pure acetonitrile the strongest band in this 

region is the C=N stretch. It is a very intense band When formic acid is added to 

acetonitriie, a shoulder appears at higher frequency (see Fig. 3.12). This shoulder (-2270 

cm-') increases in intensity relative to the band at -2255 cm-' as the formic acid 

concentration increases (see Fig. 3.13 and Table 3.6). This band has aïs0 been observeci 

for solutions of acetonitrile with silver ions (22), methanol (23), ortho-cresol (24), IBr 

(25), and phenol(26) and suggests significant formic acid - acetonitrile binding. Fawcett 

(27) studied the interaction of acetonitrile with a wide range of solvents of varying Lewis 

basicity or acidity. He found a solvent induced frequency shift (SES) of the C=N band. 

For solvents more basic than acetonitrile, the SIFS was negative but for more acidic 

solvents the SIFS was positive. Formic acid is more acidic than acetonitrile, so the 

development of the peak at 2270 cm-' is consistent with the results of Fawcett 
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Fig. 3.12: C=N Stretching Region of: 
a) Rire CH3CN b) HCOOH I C H p  (X(HCû0H) = O S  10). 





Table 3.6: Fraction of Total Nitrile Intensity of 2270 cm'' Band 
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Having established the existence of a formic acid - acetonitrile association, the 

naturai question to ask is, "how are these two molecules bound together?". One would 

expect acetonitrile to "bond" through the aitrogen atom as this atom possesses an electron 

lone pair. The development of the high frequency shoulder on the e N  stretching band 

supports this belief. (The move to bidm frequency has been explained by Fawcett (27) 

in the foilowing way. The molecular orbital forming the bond to the electmphilic species 

(in this case, formic acid) has substantial nitrogen lone pair character. However, there 

are also considerable CoN and C-C anti-bonding contriiutions. Because charge is 

removed &om the anti-bondinq orbital, the C=N bond is strengthened and the bond shifts 

to higher frequency.) Uniüre acetonitrile. formic acid has two possible sites for bonding: 

the carbon atom and the hydrogen of the OH group. If association were through the 

hydrogen atom, a change in the formic acid band at -200 cm*' (OH-H bend) rnight be 

anticipated. However, any changes in this region might be ciifficuit to see. An alternative 

approach is to replace the acidic proton with a non-acidic group. Such a group (and the 

simplest) is the methyl group. If evidence is found of association (either through the 

carbonyl bands or the CkN band), the association in the formic acid / acetonitrile system 

is most iikely through the carbonyl group. Therefore, a solution of rnethyl formate in 

acetonitrile was stuclied. 

A solution of methyl formate in acetonitrile W O - 0 . 5 )  was prepared and the 

Raman spectrum collected. It is presented in Fig. 3.14. In the carbonyl stretching region 
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Fig. 3.14: Spectra of Solutions of Methyl Formate / Acetonitrile 
mm-OJ): 
a) Carbonyl Region b) CkN Region. 
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three bands, the strongest of which is at -1720 cm", are present As an aside, this 

frequency is almost identical to the band maximum position of the anisotropic spectrum 

of pure formic acid. This observation may be quite significant. The spectrum of the 

carbonyl region is identical to that of pure methyl formate (Fig 4.1 and (28)). The G N  

stretchiog region of acetonitrile shows no change, unlike the formic acid spectra, These 

results suggest the interaction between the acetonitrile and formic acid occurs through the 

acidic hydrogen of the formic acid. 

Having established (possibly) the naaire of the interaction between acetonitrile and 

formic acid the next logical step is to try to determine the "co-ordination number" of the 

formic acid This can be calcuiated by using the Job method or "methd of continuous 

variations" (16). To do this, a suitable solvent must be found so the sum of the anaiytical 

concentrations of the two species can be held constant (ie., Ç = C(HCûûH) + 

C(CH3CN) = constant). Also, obviously, the solvent should not have overlapping bands 

with either species and both species should have a wi& range of solubility. 1.4-dioxane 

appeared to fit the requirements quite nicely. Between 1500 cm-' and 2600 cm'' it has 

no bands of its own and fomùc acid and acetonitrile are quite soluble in it. In a 

preliminary experhent a small amount (-2.5 mL) of an HCOOH / CH3CN solution 

@(HCûûH) = 0.501) was added to -2.5 mL of 1,4dioxane. As seen in Fig. 3.15, some 

major changes occur in the spectrum. Fit, the relative intensity of the band at -1730 

cm-' increases markedly while shihing to slightly lower frequency. Second, the shoulder 
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Fig. 3.15: (HCUûH + CH3CN) 1 1,440xane: 
a) Carbonyl Region b) C=N Stretching Region. 
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at -2270 cm-' is greatly reduced in relative intensity (with respect to the 2255 cm-' band). 

This suggests 1,4-dioxane is quite effective at reducing the interaction between acetonitriie 

and formic acid or that 1,4-dioxaw cornpetes with acetonïtrile to solvate the formic acid. 

These preliminary results prompteci a closer investigation of solutions of formic acid in 

1,4-dioxane. 

3 3 3  Formic Acid / 1,4dïoxane 

A set of solutions of formic acid in 1,440xane was prepared and the 

concentrations are summarized in Table 3.7. When the solutiom were preparecl, two 

observations were made. First, the mixing of the two liquids is exothermic. Second the 

volume of the solution increases with mixing. 

The spectra of formic acid in 1,4-dioxane are best discussed by breaking them into 

particdar regions. The spectrum of pure 1,440xane has aùeady been reported by 

Malherbe and Bernstein (29) and a spectnim is shown here for completeness (Fig. 3.16a 

and Table 3.8). Assignments are taken fiom Malherbe and Bernstein and are based on 

C& symrnetry, i.e., the chair conformation. A survey spectrum of HCOOH I 1,4-dioxane 

(X@COOH) = 0.509) is also presented (Fig. 3.16b). 



Table 3.7: Summary of Concentrations for HCOOH I 1,edioxane. 
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Fig. 3-16: S w e y  Spectra of: 



Table 3.8: Assignment of l&dioxane Spectrum (29). 

Frequency I cmSL Assignment 

422 v, ,  ring bending 

433 v9, ring bending 

486 v3@ ring bending 

834 v,, ring siretchhg 

852 1 v,, rocking 

1015 v,, ring stretching 

1109 v,, ring stretching 

1 127 V, wagging 
A 

1461 v3 , deformation 

2662 V3 + V33 
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Between 100 and 950 cm-' the most interesthg effeas occur between 400 and 500 

cnïL. In pure 1.4-dioxane three bands are present between 400 cm-' and H)O cm": at 419 

cm-' ( v ,  ring bend, A& 432 cm" (v,, ring benci, AJ, and 485 cm-' ( v ,  ring ben& BJ. 

As formic acid is added to the system, a new band develops (see Fig 3.17). This band 

is f î t  apparent at X(HC00H) = 0.305 at a shift of 444 cm-'. T h i s  new band, like the 

432 cm-' of pure 1.4-dioxane, is polarized. As the concentration of formic acid increases 

so does the relative intensity of this band The shift also increases slightly to 450 cm-[. 

At the same time the band of 1,4-dioxane at 432 cmeL decreases and by X(HC0OH) = 

0.903 the 432 cm-' band has disappeared. The polarization characteristics of these t h e  

bands do not change with changing concentration of fomùc acid. Another region of 

interest is the O-- deformation region (650 - 750 cm-') of fonnic acid. As the formic 

acid is diluted, the effects seen here are aimost identical to those seen in water. With 

dilution this band becornes more symmetrical and the high frequency shaulder less 

pronound. The remaining two bands in this region (100 - 950 cm") are fiom the l , d  

dioxaw. The intense band at -832 cm-' is a ring stntching mode (v,. A$ and the weaker 

shoulder at -852 cm" is a CH, rocking mode (v,, A& They are unaffecteci by the 

presence of fomiic acid. 

Between 900 and 1600 cm-' 1,4-dioxane bas many bands. Most of these (at 1127 

cm-', 1217 cm-', 13 W cm-', 1397 cm-', 1441 cm-' and 1459 cm*') have been assigned to 

various types of CH, bending modes. Of the remainder, two are ring stretching modes 
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Fig. 3.17: a) 1,4-dioxane b) HCOOH I l,4-dioxane 
(X(HC00H) = 0.50)  
1 - 419 cm*'; 2 - 432 cm*'; 3 - 444 cm*'; 4 - 485 cm*'. 
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at 1014 cm-' (v,, 4) and 1 108 cm-' (v,, Ba and one is a combination mode at 1335 cm-L 

(v, + vd .  The most interesting changes occur between 1090 cm-' and 1150 cm-' (Fig. 

3.18). In this interval pure 1,Qdioxane has two peaks of almost equd intensity. With 

increasing formic acid concentraiion a new, depolarized peak at 1096 miL forms. This 

peak is fmt apparent at X(HC0OH) = 0.305 and grows as the concentration of formic 

acid increases. At the same time the 1,4-dioxane mode at 1108 cm-' decreases. Another 

change which can be seen in this region is the development of a band at 1166 cm-'. This 

arises from fonnic acid and so its increase in intensity with increasing X(HCO0H) is 

hardly surprising. However, in pure formic acid it underlies a broad, asymmetrical profde 

ascribed to C-O stretching (see Fig. 3.1). The cornpanion band in pure HCWH is 

slightly more intense and centred at 1202 cm-'. In the solutions in 1,4-dioxane this band 

(at - 1 170 cm") is distinct fkom the band at 1202 cm-'. The band at 1202 cm-' does not 

become apparent until X(HCO0H) = 0.712. The remaining bands in this region do not 

seem much affected. 

The next important region saidied was between 1500 and 1900 cm-' (Fig. 3.19). 

In this region 1,4-dioxane bas no bands of its own and ail the bands arise from carbonyl 

stretching of the formic acid. Just as with the diiution of forrnic acid in acetonitrile, some 

very pronounceci changes take place. At X(HCo0H) = 0.904 thme underlyhg bands 

were obvious for the carbonyl contour. Unfortunately, the bandfitting was not very 

reiiable for tbis solution when the-band fi6 were used. At lower concentrations four 
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Fig. 3.18: a) Rire 1,4-dioxane 
b) Upper Trace - X(HC00H) = 0.509; 

Lower Trace - Rire Formic Acid 
1 - 10% m-'; 2 - 1108 cm"; 3 - 1127 cm-'; 4 - 1166 cm-'. 
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Fig. 3.19: Carbonyl Region of HCûûH 1 1,4-dioxane 
1 - X =0.904; 2 - X = 0.509; 3 - X = 0.101. 
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bands clearly underlie the profile. As the formic acid is diluted, the band ai -1730 cm-' 

becornes more and more prominent. In f a  for X(HC00H) c 0.903 it is the most 

intense (as measured by fraction of total area) in the carbonyl region. Similarly, the 

maximum in 1, of pure focmic acid, the dominant peak of the HCOOH / CH3CN solutions 

and the maximum in the methyl formate spectnun aii  occur between 1720 - 1740 cm-' - 

a noteworthy observation. The band positions of the two higher bands (-1730 cm-' and 

4764 cm-') are independent of the concentration of formic acid. Adopting the same 

convention for identifying the bands as used for the HCOOH I CH,CN spectra, these are 

bands (c) and (d). Band (a) first rises in frequency and then decreases, passing a 

maximum at just over X(HC00K) = 0.5. Band (b) shows a very srnail decrease in 

frequency as the concentration of fonnic acid increases (sae Fig. 3.20a). As the formic 

acid becomes more concentrated the intensities of bands (a) and (b) increase while bands 

(c) and (d) decrease (see Fig. 3.20b)). These nsults are similar to those for HCOOH / 

cH,CN. 

The resuits for HCOOH / 1,4-dioxane are quite instructive. Fit, the changes seen 

in the H C O H  1 CH&N spectra are very similar to those seen for the HCûûH 1 1,4- 

dioxane spacm so the spectral changes in the carbonyl region of the HCOOH / CH3CN 

solutions are not unique to the HCOOH I CH3CN system. Second, the= is some evidence 

for an interaction betweea fomiic acid and 1,440xaae. This supposition nsts entirely 

on the development of peaks at 444450 cm-' and at 1096 cm-' and the simultaneous 
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Fig. 3.20: Variation of the Band Parameters for Carbonyl Region of 
HCûûH / 1,4dioxane: 
a) Frequency b) Fraction of Total Intensity 

-Banda; -Band b; A -Bande; + -Bandd 
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decrease in peaks at 432 cm-' and 1108 cm-'. These two bands are ring bencihg and ring 

stretching modes, respectively. Considering any interaction between formic acid and 1,4- 

dioxane wouid occur through the oxygens on the 1,4-dioxane, it is not surprising these 

bands would be affected. The other two bands associated with ring vibrations (at -832 

cm-' and 1014 cm-'), which are far more intense, appear to be completely unaffected. 

33.4 Formic Acid / Dicbloromethane 

Studies on formic acid in dichloromethane were origindy undertaken to tind a 

suitable solvent for a Job plot. Uniike acetonitrile and 1,4=dioxane, dichloromethane is 

unlikely to act as a Lewis base. Unlike water, it is a non-hydrogen bonded solvent It 

is an aprotic, dipolar liquid. Furthemore, it does not have bands in the carbonyl region 

of fonnic acid. Also, formic acid and acetonitrile have a wide solubility range in 

dichloromethane. Because of ail these properties, dichloromethane was included in this 

study. To begin, a series of binary solutions of formic acid and dichloromethane was 

prepared and the concentrations an sxmmmhd in Table 3.9. 

As before, the cahnyl region of the formic acid was the most closely studied. 

At X(HCO0H) = 0.893 the spectnim is not much different from the spectrum of pure 

formic acid A maximum at -166 1 cm'' and a shoulder at - 1733 cm-' are evident. High 



Table 3.9: Concentration Surnxnary for HCOOH I CH,CI, Solutions. 

code 

RB9503 16A 

RB9503 16B 

RB9503 16C 

RB9503 1 0  

RB9503 16E 

x ( H c ~ H "  

0.893 

0.689 

0,476 

0.288 

0.098 

c(HcooH) 
/ mol Le' 

2 1-76 

14.83 

9.159 

5.059 

1.626 

wwu 
I 

/ mol L" 

2,606 

6.68 1 

10.07 

12.5 1 

14.57 b. 
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frequency asymmetry exists on th is  envelope above -1733 cm-' but it is very slight As 

the formic acid is diluted, the band at -1661 cm'' shifts to lower fkequency by about 8 

cm-'. High fiequency asymmetry appears on the band at 1661 cm" but with dilution this 

asymmeûy decreases. The halfwidth of this band also decreases and the asymmetry is 

greatly reduced by X(HCûûE3) = 0.476 (see Fig. 321a). Below X(HCO0H) = 0-476 

some Iow frequency asymmetry appears on this band. At X(HC0oH) = 0.0998 the low 

frequency asymmetry has Whially disappeared but there is some high frequency 

asymmetry. With dilution the shoulder at 1733 cwL ùecomes progressively better defmed 

and moves upward 12 cm-' to -1745 cm-'. Throughout the concentration range. the band 

at 1733 - 1745 cm-' continues to rise in relative intensity but is never the dominant peak. 

At X(HCO0H) = 0.0998, there are two distinct bands at -1653 cm-' and -1745 cm-' (see 

Fig. 3.21b) and there is also a very weak band at -1788 cm-'. The specmim also suggests 

the presence of a weak band between 1653 cm*' and 1745 cm-', but it is unlaiown fkom 

what this band arises. 

The second region investigated in detail was 80 to 425 cm". As previously stated, 

in pure formic acid this region contains a broad band that has been assigneci by a number 

of workers, both theoretical (30-32) and (gas phase) experimental (33.34). to a mode 

involving hydrogen bonding. This region also includes a stmng, sharp band nom 

dichloromethane at -284 cm-'. As the formic acid is diluteci, the broad band begins to 

change. A high fiequency shoulder develops and grows in relative intensity (see Fig. 
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Fig. 3.2 1: Carbonyl Region of HCûûH 1 CH2ClZ: 
a) X(HC00H) = 0.476 b) X(HC00H) = 0.0998. 
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3.22). The shoulder shifts to higher frapency with düution. Unfortunately, at the most 

dilute concentration the new band is obscured by the far more intense band of the 

dichIoromethane. The new band is also sharper than the original band. If the original 

band is really fiom hydrogen bonding. the changes seen in it are quite intriguing. One 

wouid expect dilution to have a pronounced effect on bands associated with hydrogen 

bonding. Of the four solvents used ody the dichloromethane had any effect on this band. 

Attempts were made to examine the bands of dichloromethane to see if any 

evidence could be found there for interaction between formic acid and dichloromethane. 

Unfortuliately, the bands of dichioromethane are either too weak or the overiap with those 

of formic acid is too great to be of much use. The one exception is the band at -284 

cm-'. This band shows no change with the presence of formic acid. 

3.35 Discussion of BmPry Resuits 

When taken together, the resuits presented above for the binary systems of formic 

acid are quite enlightening. 

The resuits for the HCOOH I H,O system clearly indicate a phenornenon known 

as Resonance Energy Transfer (RET) is taking place. This effixt arises h m  the coupling 
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Raman Shift 1 cm'' 

Fig. 3.22: Effect on "Associationn Band of HCOOH of Dilution in 
c H 2 a z  
1 - X(HC0ûH) = 0.893 2 - X(HC00H) = 0.476 
3 - X(HC00H) = 0.288. 
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of the transition dipole moments of two viiraiional modes on two interacting species. 

N o d y  such an interaction indicates the presence of local order in the pure liquid 

induced by some intermolecular force snch as dipole - dipole interaction or hydrogen 

bonding. RET usuaüy manifests itself in the fomi of a non-coincidence effect (NCE) - 

a difference in the frequency maximum between the isompic and anisotropic spectra. For 

liquids where the primary interaction is dipole - dipole (i.e., hydrogen bonding is absent) 

the non-coincidence effect is usually less than 15 cm". NB-dirnethyl formamide (which 

is strucairally similar to formic acid), for example, has one of the largest noncoincidence 

effects: -14 cm-' (35-37). Stmcturally, methyl formate is even more similar. The acid 

proton is replaced by a methyl group which, of course, pncludes hydrogen bonding. As 

wiil be shown in chapter 4, the NCE of methyl formate is -7 cm-'. In pure formic acid 

the NCE is very large (-64 cm-'). Very large NCE's are often found in liquids which 

exhiiit hydrogen bonding such as HF (38) and alcohols (39,40). RET often broadens 

bands and the isotropc and anisotropic components of pure and aqueous formic acid are 

very broad compared to those of mthyl formate. This evidence indicates a very strong 

intermolecular interaction between formic acid monomers in pure liquid formic acid to 

which hydrogen bondiug makes a large contribution. 

Acetonitrile and 1,4-dioxane are two solvents wbich are very different from water. 

UnliLe watex, they are aprotic and not hydmgen bonded. Also, they possess readily 

available lotte pairs which may allow them to act as Lems bases. Dilution in these 
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solvents has a drarnatically different effect than dilution in water. The two rnost 

interesthg peaks are those arising at the two higher Fnquencies: -1737 cm-' and -1765 

cm-'. 

First, consider the band at -1730 - 1740 cm-'. In acetonitrile its position does not 

Vary much over the concentration range studied and averages to 1737 cm-'. This band 

appears in 1,4-dioxane (-1729 cuiL). dichlommethane (-1740 cm-'), ether (-1735 cm*') 

(13) and as the anisotmpic maximum in aqueous solutions (-1725 cm-'). Furthemore, 

the C S  stretch in methyl formate is at -1720 cm" (Table 4.4 and (28)). Because of its 

presence in the fout solvents, this band likely does not arise Born some HCOOH--solvent 

complex but from fomiic acid itself. Because the freguency of this peak is fairly close 

to the anisotropic maximum and close to the carbonyl fiequency in pure methyl formate, 

this band is probably from "monomeric" (i.e., decoupled) formic acid For acetonitrile 

and 1,4-dioxane this band becomes more intense (as measured by fkaction of total 

carbonyl intensity) as the forrnic acid is diluted (see Fig. 3.23a). Furthemore, in both 

solvents the fuii width at haif maximum (FWfLM) shows a monotonie, major decrease 

with dilution (see Fig. 3.23b). This observation is also consistent with the hypothesis that 

E T  is occurring in f o d c  aci& As the active species is dilute& the coupling between 

individual uni& becomes iess and less efficient. Thenfore, the energy becomes 

"localized" on one of the monomeric uni& increasing the vibrational Lifetime and 

narrowing the band of the decoupled monomer. 



Fig. 3.23: Variation of the Band Parameters for 1735 cm-' Band 
a) Fraction of Total Intensity b) Fuil Width at Haif Maximum 
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The second band (at -1765 cm-') is a Little more difficult to interpret, This band 

is present in ether (13). acetoniaile. and 1.4-dioxane. It is not present in aqueous formic 

acid and there is no analogous peak in methyl formate. In dichlorornethane its behaviour 

is quite peculiar- It appears as a weak shoulder at moderate formic acid concentrations 

but at X(HC00H) = 0.0998 it has disappeared. In acetonitrile and 1.4-dioxane the 

intensity of this band incteases as the fomiic acid is diluteci (see Fig. 3.24a). However, 

in the acetonitde solutions the intensity is higher and as the formic acid becomes more 

dilute the difference in intensity between the two solvents becomes even more noticeable. 

When (1, / Il,) is plotted against mole fiaction, different results for acetonitrile and 

l,4-dioxaoe are obtained. In acetonieile the relative intemity of the 1765 cm-' band with 

respect to the 1735 cm-' band steadily increases as the mole fraction of fomic acid goes 

down, but in the 1,edioxane solutions the relative intensity is aimost constant (see Fig. 

3.24b)- Becaust the relative htensity in acetonitde increases, the two bands cannot arise 

from two different modes on the same "type" of f o k c  acid. If this were so, the two 

bands would have a relative intensity independent of the concentration of formic acid. 

This band is never pnsent in the aqueous solutions and disappears in the most dilute 

dichloromethane solutions. so it seems dikely to arise purely from a formic acid species. 

In the acetonitrile and 1.4-dioxane solutions there is independent evidence to indicate the 

existence of a HCOOH--solvent cornplex, although, admittedly, in the case of 1 ,440xane 

this evidence is not very strong. These pieces of evidence suggest the 1765 cm-' baud 

arises from a formic acid molecule "bound to the solvent. 



Fig. 3.24: Variation with X(HC00H) of: 
a) Fraction of Total Wnsity b) 1, / 1 , 
for the 1765 cm-' band 

- in Acetonitde A - in 1,4-dioxane. 
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Cornpaison of the d t s  for acetonitde and 1,440xane reveals some important 

differences. At a similar formic acid concentration, the intensity of the 1765 cm-' band 

with respect to the 1737 cm-' is higher in acetonitde than in 1'4-dioxane. This implîes 

a pater  degree of "complexation" of formic acid in acetonitrile. This may be partially 

explained by invoking simple steric arguments. In acetonitrile the nitrogen atom is at the 

end of the molecuie and its lone pair is quite "exposed". In 1'4-dioxane the lone pairs 

are on oxygen atom held in a six-membered ring. On either side of the oxygen atoms 

are 'CH,' groups which might cause steric hindrance. Thus, in acetonitrile it may be 

easier for the formic acid to "attack" the lone pair. Fuither, the different levels of 

association may be a result of Merent electron donating abilities of the nitrogen and 

oxygen atoms. 

The spectra of queous formic acid show no evidence of "bonding" between 

formic acid and water. Water is itseif a hydrogen bonded Liquid and it rnay be 

thermodynamically unfavourable to break the H@-H20 and HCOCM--HCOOH hydrogen 

bonds to fonn HZO--HCOOH hydrogen bonds. In acetonitriie and 1,4dioxane this is not 

the case and the striking effects are seen. Cm& thermoâynamic evidence for this was 

found when the formic acid and 1,440xa.e were mixed: heat was evolved (indicating 

the formation of new bonds) and AV, was slighdy positive. 

The foregoing observations and discussion lead to the foilowing mdel of formic 
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acid. In pure formic acid tesonance energy transfer is occurring. Liquid formic acid, 

unWre iiquid acetic acid, does not exist as discrete, long lived dMns or polymers. 

Instead, it exists as collections of monomeric units which interact by hydrogen bonding. 

This strong intermolecuiar interaction allows the transition dipole moments to couple 

giving the RET effect The Wetimes of these interactions are probably quite short. If the 

fomic acid is diluted in a solvent capable of acting as a Lewis base (e.g., acetonitrile or 

1,4-dioxane) these hydrogen bonds rnay be mptured and new ones formed with the base. 

This le& to the pronounced development of the 1737 cm" (hm fkee monomer) and the 

1765 cm" (from "bound monomer) bands. 

33.6 Formic Acid + Acetonitrile / Dichioromethane 

Dichloromethane was chosen as the tertiary solvent to constmct a Job plot in order 

to detennine the "coordination numberl' of the acetonit.de - formic acid cornplex. It 

must be explicitly stated that the "co-ordination number" detennined this way is for a 

formic acid - acetonitrile interaction in dichIoromethane. In other solvents the "co- 

ordination number" could be Merent. Similarly, ail the quantities calculated in this 

section are for a system of formic acid + acetonitrik in dichloromtbane. In another 

tertiary solvent these quantities may also be ditferent. 
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At this point it is instructive to have a short digression to discuss the Job method 

(sometimes d e d  the "method of continuos variations") (16). 

Consider a chernical reaction of the form: 

M & c a M + b X  

which can also be written as: 

m * M + n X  

where n = b/a. If m, M, and X have bands which are distinct, the "method of 

c o n ~ u o u s  variations" ailows the determination of 'n' specaoscopicdïy. In the focmic 

acid - acetonitrile system the band at -2270 cm-l is assigned to the HCOOH-CH3CN 

complex and is sufficiently distinct h m  the other bands ihat this method may be applied- 

In applying the method of continuous variations the f h t  step is to prepare a series 

of solutions such that the sum of the formal concentrations of 'M' and 'X' is constant: 

The individual concentrations are then vaned so each solution has a different ratio CM : 

C .  A quantity 'f may be definecl as: 



and 

c, - (1 -n c, 

In any given mixture: 

rxi - fCT - nr=J 

and the dissociation constant is given by: 

K [mJ - ( (1 - f )Cr - [MXJ )(fC, - Nm,,l)" IITJ 

This equation implicitly shows how the concentration (and by extension, the iatensity) 

varies with 'f. The value of 'f at which is a maximum can be found by 

Merentiating the above equation, setting the derivative equal to zero, and solving for 'f . 

DSerentiating the above equation gives: 
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When the derivative is set to zero, this equation simplifies (after a linle algebra) to: 

and fiom this it is quite straighdorward to show: 

Thus, it is a fairly simple process to determine the value of 'n'. A plot of rarnpk (which 

depends linearly on Eomplex]) vs. 'f should give a curve with a maximum at some value 

of 'f between zero and one. From this value of 'f, 'n' can be calculated For the 

studies involving CH3CN and HCOOH, 'Ç' was set at -5.04 M, 'M' was taken as 

HCOOH, and 'X' as CH,CN. 

There are some important points to consider when applying the methoci of 

continuous variations. The sharpness of the maximum reveals something of the nature 

of the complex. If it is only slightly dissociateci, the maximum wiîl be very weli defined, 

but if the complex is very weak, the maximum wiii be poorly defined and it may be 

difficult to determine f- precisely. This can be overcome by examinhg the data at high 

'f and at low 'f and extmpolating the lines suggested by the data in these regions. The 

'f at which these lines intersect is f-. Alternatively, an analyticai function (e-g., a 

polynomial) can be fitted to the data and the maximum found by differentiation. The 

possible existence of several different complexes of the form is a fixther 
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complication. In the case of a formic acid - acetonitrile complex, the intensity of the 

2270 cm-' band depends only on the number of molecules of acetonioile that are bound 

in a complex, not on the identity of the complex. It is, therefore, a "colligative" property. 

The intensity of the -2270 cm" band could arise nom the p e n c e  of several fomiic acid 

-acetonieile complexes. If this is me, the Job plot is the superposition of the Job plots 

for each of the complexes. A lob plot with a poorly defineci maximum or a plot with 

"structure" results. 

The ternary solutions of acetonitrile, f o e c  acid and dichloromethane were 

prepared in a similar fashion to the binary solutions. As mentioned above, the object in 

preparing solutions for a Job plot is to have a series of solutions in which the sum of the 

formal concentrations of the "reactants" is constant. To achieve this, the required 

volumes of formic acid and acetonitde were measured with Mohr pipettes. The mass for 

each was aiso recorded. The 25 mL volumetric fiasks were filled with dichloromethane 

and their masses were recorded. In this way the formai concentrations of ail three species 

and the ratios of acetonitrile to formic acid are known. They are summarized in Table 

3.10. The flasLs were capped, wrapped with ParaNm and nfiigerated. These solutions 

had a slightly positive AV- 

To account for possible systemic enors such as variation in sample alignment, 

variations in detector response, etc., art intensity standard was used. For each solution, 



Table 3.10: Coacentratio~s for (HCûOH + CH,CN) / CH2C12 

f(CH3cN) C ( ~ , C 1 2 )  
/ mol L-' I I / mol L-' 

Code 

Note: 
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spectra were recordeci in the 585 - 885 cm-' region as well as in the C d  stretching 

region. The 585 - 885 cm-' region contains two stroag bands of dichloromethane. The 

stronger of the two (at 703 c d )  was used as the inansity standard (see Fig. 3.25). For 

each solution the "relative integrated inteasity" of the C=N bands was calcdated. The 

relative integrated intensity is denned as (41): 

The relative integrated intensity can then be dkctly related to the concentrations of the 

scattering species through: 

Ir- - J-C- 

where J,, is the relative molar scattering coefficient. 

The methcd of continuous variations was applied in the C=N stretching region of 

the formic acid - acetonitrile solutions. The band at -2270 cm-' is assigneci to the C3N 

stretch of acetonitrile "bound" to the fomiic acid. Therefore, as outlined above, this band 

should pass through an intensity maximum as 'f is varied. The variation of intensity of 

the -2270 cm-' band with 'f is shown in Fig. 3.26 and in Table 3.1 1. The intensity does 

pass through a maximum but it is not particularly well defined. Two polynomials (cubic 

and quartic) were fiaed to the Job Plot data: 



735 

Raman Shift 

Fig. 3.25: V, (703 cm") and V, (-736 c d )  Modes of CH2C12 in 
(HCOOH + CH,CN) I CHZCIZ ('f = 0.507). 





Table 3.1 1: Relative Integrated Intensities of the "Bound" Acetoaitrile. 



I,'=-15.257f3-0.087f2+15324f+0.116 r10.998 

1,' = -20.232f + 24.94lf - 24.833f + 20.16ûf - 0.016 r = 0.999 

The q u e  fit does have a (very slightly) betîer correlation but the relative errors in the 

coefficients were much higher. The cubic polynomial gives n = 1.36 (ic., HCOOH : 

CH3CN = 3:4) while the quartic polynomial gives n = 1.47 (ie., HCOOH : CH3CN = 

2:3). Obviously, then' ambiguity surrounds the mie value of 'a'. 

The question now, of course, is "what is the cause of this ambiguity?". The 

integrated intensity for the solution with f = 0.904 had an anomalously high value. This 

point was not used in the calculations but illustrated the possible limitations of the 

bandfitting program used in the analysis. This program, then, may contribute to the 

ambiguity surrounding 'n' . However, the biggest problem may Lie in the assumption that 

there is only one complex. Possibly, a number of complexes is present. A combination 

of a 1 : 1 and a 1:2 complex could yield a distorted Job plot similar to that obsmed here. 

Despite the difficulty in detennining the value of 'n', another valuable quaatity can 

be extracted from the data. This is the fiaction, a, of acetonitrile which "reacts" to form 

the complex. More precisely, it is the fiaction of acetonitrile which exists in a "bound 

state. In order to cietennine this, it is necessary to determine the relationship between the 

molar scattering coefficients for "hW (JF) and "bound (J,) acetonitrile. 
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In the C=N stretching region of the HCOOH + CH,CN solutions there are three 

bands. The high fiequency band (-2270 cmeL) is assigneci to acetonitde "bound to 

formic acid. The remaining two bands underlie an asymmetricai band contour centred at 

about 2255 cm-'. Even in pure acetonitrile the (=rN stretching band has some low 

frequency asymmtry. The asymmetry in the C-N stretching band has been investigated 

by a number of workers who gave different explanafions as to its meaning. Bulm (42) 

suggested there was association of acetonitrile into dimers; the two bands aise fkom the 

dimer - moaomer equilr'brium. Griffiths (43) did not accept this, suggesting instead the 

spectral feaaires "a ise  fiom s o n  unspecined molecular interaction which may well be 

localized on the C m  pazt of the molecule..". Loewenschuss and YeW (44) argued 

the spectral features were not due to an equilibrium between monomers and dimers but 

aise because of the existence of clusters in liquid acetonitrile. For the purpose of this 

discussion, this is a moot point It indicates the low frrquency asymmetry of the band 

at -2255 cmL is not fiom an acetonitrile - fonnic acid or acetonitrile - dichloromethane 

interaction. Two bands were useci to fit this envelope. 

Assume the two bands underlying this asymmetric contour arise from the C=N 

stretch of two "different" kinds of "fiee" acetonitde. k t  the concentrations of the two 

"fomis" of fiee acetonitrile be CA# and CA. so that: 



- when CF - the total concentration of fiee acetonitrile. 

Let 

The integraîed intensity of the asymmetrical contour is qua1 to the sum of the integrated 

intensities of the underlying bands. 'ilmefore, 

The individual values of CA,, CA-? Je ,  and JA- an not known but are implicitly included 

in equation 1151. 

Let the concentration of "bound acetonitrile be CB. Under m a s  bal-: 

where C is the formai concentration of acetonitrile. 



It is thea possible to calculate JF and JB (cf. Campbell et al. (24)). 

Therefore, a plot of IF / C vs. 1, 1 C should yield a line with a slope of JF / JB and an 

intercept of Jp Such a plot is given in Fïg. 327. Linear regression gives the following 

resuit: 

r, 1 C = 8.612 - 1.097 cB / C) r = 0.98 t 

From which J, = 7.85 f 1.32 and JF = 8.61 + 0.41. 

Calcuiating 'a', the fraction of acetonitrile present in a "bound" state, is now a 

fairly simple matter. Mathematically, 'a' is defined as follows: 



Fig. 3.27: Determination of JB and JF for the C=N Bands in the 
(HCOOH + CH3CN) / CH2Q System. 
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Values of a are given in Table 3.12. A plot of 'a' versus ' f is shown in Fig. 3.28a and 

shows a steady daxease in a as 'f increases. An increasing 'T ïs quivalent to an 

increasing C(CH3CN). Because the expriment is designed to hold the total formal 

concentration (Ç = C(CH3CN) + C(HCOOH)) constant, C(HCO0H) must necessdy 

decrease. Therefore, CC(CO0H) I C(CH3CN) also decreases and so does the number of 

eligible "partners" per acetonitrile molecule. Consequently. the chances of a given 

acetonitrile molecule king in a "bound state are lower. Ergo, 'a' kcreases. Figure 

3 .î8b shows the variation of 'd as a function of 'R' (= C(HCO0H) / C(CH,CN)). At 

high relative amounts of acetonitrile (Le., low 'R'), 'a' is quite srnaIl. Initidly, 'a' 

increases very rapidly with 'R' but begins to level off at higher values of 'K. 

An "equilibrium constant", "K", was dculated for the two possible complex 

stoichiometries (Le., 2:3 and 3:4). The values of "k' were calculated on the basis of the 

general equation: 

The concentration of "frae" acetonitrile is obtained k t l y  fkom the intensity and J,. 

From it, the appropriate mole ratios, and the necessary m a s  balance, the concentrations 

of formic acid and the complex were calculated The "eqdibrium constants" are 

summarized in Table 3.13. Also included in Table 3.13 are "K" values assuming a 1 : 1 

complex. A numkr of precedents exist in the Literahue (24,26,45-48) for assuming 1: 1 
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Table 3.12: Summary of 'a' values for (HCOOH + CH,CN) I CH2C12. 

R = Ç(HCO0H) / Ç(CH3CN) 

a = fraction of acetonitde present in a "bound state 



Fig. 3.28: Fraction of Bo& Acetonitrile as a Function of: 
a) 'f and b) 'R' 
for the (HCOOH + CH3CN) 1 CH2Q System. 
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Table 3.13: Values for "K" for Various Models of HCOOH + CHQT / CH2CI2- 

A) HCOOH : C&CN = 3:4 

"f' K = 3 C N l f  
/ mol L" 

[HCoOHIF 
/ mol L" 

[complex ] 
/ mol L-l I 



Table 3-13 conrinued. 

C)  HCOOH: CH,CN= 1:1 

ICH3CN]:~ 
/ mol L" 

WOOKJ, 
/ mol L-' 

[cornplex] 
/ mol L-' I 
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association between nitrile containing and 'OH' containing species, so these "K" values 

were calculated for cornparison. Figure 3.29 illustrates "k as a function of f(Cfi3CN). 

At low values of 'f, the "k' value is nearly constant- Once 'f is pater than 

approximately 0.6 the value of "k' increases sharply. h a study of ortho-cresol and 

acetonitrile in a binary system, Campbell, Park and Shwell (24) also fond a strong 

dependence of "K" on the concentrations of the species involved A number of possible 

reasons for this can be advanced. First, concentrations were used to calculate "K" instead 

of activities. At the very high concentrations (on a therrnodynamic scale) used here, this 

approximation may not be valid Second, intensity has been assurned to be a iinear 

function of concentration. Third, no allowance for possible self association of formic acid 

or acetonitrile has been made- In snidies of methanol and acetonitrile Yarwood et al. 

(23,49) showed the necessity of doing just this. The dependence of "K" on 'f and the 

ambiguous result for 'n' fiom the Job plot suggest the possibility of forming a mixture 

of complexes. Because the equilibrium constant increases sharply above f-û-6, the 

assumption of a single complex rnay break d o m  at this point. 

The average solvation number, sh-, for formic acid was also calculated (see Table 

3.14). The average solvation number is defined as: 



Fig. 3.29: "K" as a Function of 'f': 
a) 1: 1 Model 
b) - 2:3 Model; . - 3:4 Model 
for the (HCOOH + CH3CN) 1 CH& System. 



Table 3.14: Average Solvation Numbers fot (HCOOH + C H , O  I CH& 



where 

Pw% = the concentration of "bound" acetonitrile 

C(HC00H) = total stoichiometric concentration of formic acid, 

Figure 3.30 illustrates the dependence of i4, on [CHjCN], Not surprisingly, as 

[CH3w, (and by extension. C(cH,CN)) increases, so does the average solvation number. 

While the studies of these solutions necessarily focused on the (rN stretching 

region, specm of the carbonyl region were also collected. The C=O stretch of formic 

acid is not nearly as good a scatterer as the C-N stretch of acetonitrile. With this in 

mind and considering the relatively low concentrations of formic acid, the slits were 

opened to 200 p. The spectra are shown in Fig. 3.31a The changes in this region 

appear to be a "superposition" of the changes for HCOOH / CH,CN and HCOOH / 

CH2C12 The two peaks at 1735 - 1740 cm-' and -1765 c d  becorne more and more 

prominent (as &scribeci previously) as the formic acid is diluted, consistent with the 

results fkom the binary solutions. Bandfitting was applied to these spectral contours. 

Unfortunately, the band overlap is quite severe and acceptable fits could not be obtained. 

Despite this, intensities of the -1765 cm-' band were estimated from peak heights. This 

is, admittedly, a rather cmde means of obtaining intensities, but may be valid to a first 

approximation. The band at -1765 cm-' was pnviously assigned to "bound formic acid. 

As such, the intensity of this band should have a lin- dependence on the concentration 

of the cornplex. Figure 3.31b illustrates the dependence of 1 (1765 aïL) on Eomplex]. 
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Raman Shift / cm" 
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Fig. 3.3 1: a) Carbonyl Region of (HCûûH + CHSCN) I CH,Cl, 
1 - ' f = 0.104; 2 - 'f = 0.507; 3 - 'f = 0.799 
b) htensity of 1760 cd band vernis [cornplex] 

- 1: 1 Model; H - 2:3 Modei; A - 3:4 Model. 
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These are not relative interisities as debed by equation [Il] but iatensities from spectra 

normalized using the 702 cm-' band of CHZCl2. For each of the models the dependence 

appears to be roughiy linear. The comlations are not particuiarIy good (r c 0.9) but thu 

may arise because of the peak height approximation. The apparent linear dependence of 

1 (1765 cm") on Eomplex] gives support to assigning the band at -1765 cm-' to "bound" 

fonnic acid. 

This chapter describes studies of various solutions of liquid formic acid in an 

attempt to elucidate its structure. A second, serendipitous result was found: a pronounced 

effect on the acetonitrile spectnim indicative of a formic acid - acetonitrile cornplex. 

Formic acid was studied in a number of solvents: water, acetonitriie, t ,4-dioxane 

and dichioromethane. The aqueous d t s  are consistent with a phenornenon known as 

resonance energy transfer occuning in Iiquid formic acid. This, in mm, implies a degree 

of structural order in the liquid that allows the oscillators to couple. The hydrogen 

bonding pnsent in the liquid formic acid facilitates this coupling and explains the large 

noncoincidence effect and great width of the bands in the carbonyl region. Dilution in 

acetonitrile and 1,4-dioxane le& to dramatic changes in the Ca band of formic =id. 
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The development of peaks at -1730 cm-' and -1765 cm-' arises from the breaking of the 

coupled monomers to fonn "isolated" monomers (-1730 cmeL band) and the formation of 

a fomiic acid - solvent complex (-1765 cm-' band). Ia solutioas of formic acid in 

acetonitrile a new band (-2270 cm-') in the G N  stretcbing region develops and is 

assigned to a fomiic acid - acetonitrile complex. 

This complex was then studied in temary solutions using dichloromethane as the 

solvent. The Job plot gave an ambiguous result. The molar scattering coefficients were 

calculated for the " f k "  and the " b o d  acetonitrile and fiom these the fiaction of 

acetonitrile existing in a "bound state was calculateci. This value decreases as the 

concentration of acetoniûile increases. The "equilibrium constant'' for the reaction was 

also determineci assuming several different formic acid : acetoaiaile ratios. Unfortunately, 

for ail the models the equilibriurn constant is not constant. At lower concentrations of 

acetonitrile (c -3.0 mol L-') it is nearly constant but above thïs concentration the value 

increases sharply. This may indicate some of the underlying assumptions are not valid 

or that, in solutions with high formal concentrations of acetonitrile, a mixtures of 

complexes is fomed. 
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4. SOLUTIONS OF METHYL FORMATE 

4.1 Introduction 

Methyl formate is stmcnirally very simüar to formic acid; the acid proton k i n g  

replaced by a rnethyl group. As illustrated in Table 4.1, such a small structural change 

Ieads to dramatic changes in the physical properties. Despite having a lower molar mass 

and a lower dipole moment, f o d c  acid has much higher melting and boiling points. 

These differences are directly attributable to the hydrogen bonding present in formic acid 

The hydrogen bonding has a profound effbct on the specmim which is illustrated in 

Figures 3.3 ( C a  region of HCOOH) and 4.1 (sa section 4.3). 

By studying methyl formate some light may be shed on the problem of the liquid 

srnichue of formic acid. The isotrûpic aud anisotropic spectra of fomiic acid reveal an 

unmistakeable non-coincidence effcct RJCE, see Fig. 3.4) and this is one of the 

manifestations of resonance energy transfer (RET, see chapter 1). Unfortmately, rhe 

madels developed to explain the NCE are not applicable to solutions where hydrogen 

bonding is present. Methyl formate is the nearest structural analogue to formic acid 

where hydrogen bonding is absent. Therefore, solutions of methyl formate were studied 



Table 4.1 : Cornparison of the Physical Properties of Formic Acid and 
MethyI Formate (1). 
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to gain a better un&rstanding of the NCE and RET and to set how good the various 

models for the NCE are for solutions of methyl formatc. Methyl formaîe U also of 

intriasic interest because, despite its limited liquid range, it has been suggested as a 

possible solvent for lithium battery electm1ytes (2). 

Infrared (3-7) and Raman (8-10) studies of rnethyl formate have been reponed. 
I 

Two normal coordinate analyses have been performed on methyl formate (13.14) and its 

âeuterated analogues (13). Most studied the vapour and liquid (3-6.9) states, but two 

have attempted to study the solid (7.9). The infrand (3,S) and Raman (9) spectra have 

been assigned and general agnement exists in the literan~e on these assignments. 

However, some slight disagreement over structure does exist. The first issue concerns the 

existence of two conformers of methyl forniate. Microwave absorption experiments have 

established (1 1) that the C a ,  C-O, and 0-CH3 bonds lie in a single plane. Within this 

structural restriction. huo conformations are possible: 

The literanire is inconsistent about the application of the tams 'cis' and 'tram' to these 

coaformers. Almost al l  workers (3-5,9,12) agree methyl formate exists only as conformer 
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1. However, Byrne et al. (6) argued for the presence of a srnail amount of conformer II. 

This argument was based on the presence of one band at 1768 miL in C q  solutions. 

Wilmshunt (3) had stated this band amse from a combination band (CH, symmetric bend 

+ C-O bend). Harris et ai. (9) based their Raman assignments on the exclusive presence 

of conformer 1. The second issue is the existence of associated species. Wilmshurst 

suggested liquid methyl formate was a mixture of associated and unassociated molecules. 

Harris et al., however, stated no evidence existed in the Raman spectra to support this 

hypothesis. 

The NCE has b a n  snidied in a wide variety of molecules. The major* of these 

systems have contained the carûonyl bct ionai  group. Ketones (15-18) and amides (19- 

22) have been the most fiequently studkd, but other molecules including liquid S 4  (23), 

nitriles (24) and CS, (26), have also been studied, Almost no work has b e n  doue on 

esters. Therefore, a study of methyl formate (the very simplest ester!) was undertaken 

to study its NCE and to shine some light on the structure of liquid formic acid. 

Resonance energy tmsfer not only c a w s  a non-coincidence effect, it also affects 

the vibrational bandwidth. The bandwidth may be written as the sum of individual 

components (2 1): 
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where î,,,, is the contributon from pure dephashg and T, is the dephasing contribution 

of RET . The third tenn arises h m  the "interference" of the fvst two and is only 

sifl~cant if the fmt two tenns are of comparable magnitude and if there are statistical 

correlations between the processes. The sign of T, may be positive or negative, but thïs 

cannot be predicted h m  theory. Thus, depending on the sign, the band may be 

broadened or n m w e d  by resonant transfer. Therefore, dilution (which t u m s  RET "off') 

can either broaden or narrow the band. If T,, and I', are uncorrelatecl (Le., T, = O), then 

RET should always Iead to band broadening. 

Knapp (26). however, has argued that when resonant coupling is present, the band 

broadening or narrowing c m  be explained without considering the cross terms. The 

broadening or narrowing of bands is explained on the basis of the nature and raie of the 

fluctuations (of the molecale - bath interactions) that Iead to dephasing. Knapp explaiwd 

the effect on Raman band positions and widths h m  dephashg by using a model based 

on the concept of "reactive coupüng" between an active site and a neighbouring site. The 

cross tenn, ï,, was assuwd to be zero. With ihis model "reactive coupling" is revealed 

by: a) a band shift to lower frrquency (compared to the position at infinite dilution); b) 

asymmetry to the high fkquency si& of the isoaapic band; c) broadening or narrowing 

of the band which depends on whether the fluctuations are rapid or slow compared with 

the "inna&' vibrational dephasing rate. When the total amount of intersite couphg 

between the reference site and aii other sites is varied (because of variations in difision 
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or molecular orientations), the presence of RET leads to a broadening of the band If 

these variations are counteracted by other changes in the intersite interactions so that the 

total coupling is constant, RET will lead to a narrowing of the band. If this latter case 

is mie, the removai of RET (by, for example, isotopic dilution) couid lead to band 

broadening. 

The chernicals used in these experiments were: methyl formate, anhydrous, 99% 

(Aldrich), methyl d-formate, 99% (Cambridge Isotope Laboratones) and acetoairnle 99% 

(BDH). AU the reagents were used withaut M e r  purification. Methyl formate has a 

low boiling point, so it was kept refiigerated. Furthermore, to prevent decomposition or 

ra t ion  with air, it was blanketed under argon. 

Because of the small amount of avdable methyl d-formate, the solutions were 

made by successive dilution. 10 mL volumetric flash were used. The required amount 

of methyl d-formate was measund with a graduateci cylinder, added to the volumetric 

flask and its mass recordeci. Methyl formate was then acided to the mark and the solution 

weighed again. This solution then became the "stock'' solution for the next highest 

concentration. Almost aii of any given "stock solution was used to prepare the next 
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concentration. Using this method, 12 solutions of methyl formate in methyl d-formate 

were prepared. The concentrations are given in Table 4.2. 

Solutions of methyl formate in acetonitrile were prepared in much the same way 

as solutions of formic acid in acetoniaile (see section 3.2). Solutions were prepared in 

25 mL volumetric flasks. The required volume of acetonitrile was pipetted using a Mohr 

pipette and the mass of the acetoaitrïie recorded. Methyl formate was added to the mark 

and its mass recorded. The acetoniaile was pipetted because the high volatihty of methyl 

formate makes it ciifficuit to pipette. The voluwaic flasks were capped, wrapped with 

Parafilm and stored in a refiigerator. Nine solutions were prepared this way and the 

concentrations are given in Table 4.3. 

A 5 mL glass syringe was used to fd the sample capillary tubes. For the 

solutions of methyl formate in acetonitrile there was sufficient solution to allow the 

rinsing of the syringe. However, for the methyl formate I methyl d-formate solutions this 

was not the case. For these solutions no rinsing was possible, so the syringe was 

dismantled and aliowed to air dry. Because of the volatility of both species, this was 

judged to be adequate. Making a good seal on the capiilary tube was essential to 

obtaining good spectra. Without a good seal, bubble formation (because of the high 

volatility of all the components) was a real problem. Additionaiiy, ailowing the Sealeci 

tubes to sit ovemight seerned to alleviated this problem. 



Table 4.2: Concentration Summary for MF / d-MF Solutions. 

Solution x(d-MF) 

pure d-MF 1,000 0.000 

RB95101 1A 0.885 0-1 15 



Table 4.3: Concentrations Summary for MF / Acetonitrile. 

Solution XOMF) @(MF) " 

PW 1 -00 1 .O0 

RB950622A 0.899 0.9 10 

RB950627A 0.799 0.820 

a - volume fraction; see section 4.3.2. 
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Ail spectra were collecteci using the 514.5 nm line of an argon ion laser. The 

details of the spectrometer, laser, etc. are discussed in chapter 2. For the solutions of 

methyl formate in acetonitrile the laser power was 1.5 W. For the methyl formate / 

methyl d-fonnate solutions the power was reduced to 750 mW. Bubbles fomed in the 

tube at higher laser powers. For ail spectra, the mechanical slitwidth was set at 150 p. 

Only the carbonyl region (1625 - 1825 cm-') was studied. AU the spectra were recorded 

at 20°C. To coUect the parallel and perpendicular spectra, a polarization aaalyzer was 

used Details of this device are given in section 2.5. The orientations of the Polaroid 

f h  and the scrambler wedge were checked by ninniog spectra of CCl, each day. The 

average values for the bands of CC4 were: 

= 0.782 P3u = 0.774 P459 = 0.022 

which compare reasonably well to the theoretical values of0.75,0.75 and 0. These errors 

may arise from imperfections in the film, the wedge, or k a u s e  the analyzer is not 

properly aligned with the dit andlor optic axis. Also, the theoretical values apply to 

isolated, non-interacting molecules. 

Figure 4.la shows a survey spectrum of methyl formate and assignments (taken 

form Harris (9)) are given in Table 4.4. The work presented in this chapter is concemed 



100 575 1050 1525 2000 
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1625 1725 1825 

Raman Shift / cm'' 

Fig. 4.1 : a) S w e y  Spectnun of Methyl Formate 
b) Carbonyl Region of Methyl Formate. 



Table 4.4: Assignment of the Methyl Formate and Methyl d-Formate Spectra (29). 

Frequency 
/ cm" 

Assignment Frequency 
/ cm-' 

v19 
CH, stretch 

- - 

v,, v3, 

CH, and CH stretch 1 
V49 7 2 2 3  

C=O stretch 
-- -- - - - - - - - - - 

v149 1689 
CH, deformation 

V69 1456 
CH, deformation 

V79 1433 
C-H in plane bend 

v89 1215 
C-O ~Cretch 

--- - -- - - 

1162 v97 1159 
O-CH, in plane bend 

1030 169 1050 
CH out of plane kad  

907 v 109 869 
0CH3 saetch 

767 VIL* 849 
O-C-O bend 

l v179 
skeletai torsion 1 

VI29 

~ C-O-C bend 

Assignment 

"19 

CH, stretch 

'729 

CH, stretch 

v39 
CD stretch 

VL4S 

CH3 deformation 

V69 

CH3 deformation 

V89 

C-O stretch 

v99 
OCH, in plane bend 

v79 
C-D in plane bend 

v 109 

O-CH, stretch 

167 

CD out of plane bend 

V1'9 

O-C-O bend 

"129 V17* 

C-O-C bend 
skeletal torsion 
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exclusiveiy with the behaMour of the carbonyl band at -1720 cm". This band is show 

in more detail in Fig. 4.lb. Even a cwsory look at the specaum shows then are at least 

3 bands in the carbonyl region: one strong, asymmetricai band at -1720 cm'' and nnro 

weak bands, one to higher fiequency and one to lower fkquency. Harris et al. (9) did 

not assign these bands. The bands are centred at -1695 cm-' and 1762 cm-'. Byme et 

al. (6) assigned a band at 1768 cm-' to the C O  stretch of conformer II, but Harris 

assumed methyl formate to be entirely conformer 1. 

43.1 Methyl Formate 1 Methyl d-Formate 

Raman spectra were recorded of 12 soiutions of methyl forniate (MF) in methyl 

d-formate (d-MF) plus pure MF and pure d-MF. As mentioned in the experimental 

section, the solutions were proàuced by successive dilution of the d-MF in methyl 

formate. The mole fiactions of each solution are s w d  in Table 4.2. 

Figure 4.2 presents the isotropie and anisotropic spectra for pure MF and pure d- 

MF. The carbonyl band shifts nom -1720 cm-' to -1691 cm" with isotopic substitution. 

Unlike the MF, the à-MF has a prominent band - 175 1 cm*'. Harris (9) assigned this band 

to 2v,, Susi (5) observed similar spectral feanue~ with IR spectroscopy ami suggested 

Fermi resonance was taking place. 



I\r Isotropie 

1625 1725 1825 

Raman Shift / cm" 

L Isotropie 

1625 1725 1825 

Raman Shitt / cm'' 

Fig. 4.2: Isotropie and Anisotropic Spectnc 
a) Methyl Formate b) Methyl d-Formate. 
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Figure 4.3 shows the isotropic and ankotropic spectra of a solution of MF / d-MF 

(?CO = 0.504)- Not unexpectedly. the carbonyl mode is strongly polarized The band 

overlap of the carbonyl modes of the two isotopomers is significant but not severe. In 

order to study the behaviour of the spectral contour atuibuted to one or other of the 

isotopomers. the band parameters for the individual contours must be calculated. This 

was done by applying bandfitting (see section 2.6). The total contour was fitted with six 

bands. Then. the individual compments of the C=û mode were added together to 

reconstmct the carbonyl contour of the isotopomer of interest. A cornparison of the 

original spectnim and the reconsmicted contour is shown in Fig. 4.4a and the individual 

band components for the complete contour are given in Fig. 4.4b. An example of the 

recombinatioa procedure is show for the C=û mode of MF (X(MF) = 0.504) in Fig. 4.5. 

The recoastructed contours were used for the subsequent data analysis. 

The most obvious thing to extract from the re-constnrcted spectra is the position 

of the peak maximum in the isotmpic and anisotmpic spectra The isotropic band is 

clearly asyrnmetric and more wiii be said about this later. The isotropic and anisotropic 

peak maxima (for MF) are summarized in Table 4.5. The isotropic band shows an 

obvious shift to higher fnquency as the MF is diluteci (see Fig. 4.6a). Yamood (21) 

made the same observation for isotopic mixtures of N,N-dirnetbylformamide. In aqueous 

solutions of formic acid, a similar effect is seen. If a Iinear extrapolation is applied to 

the data an isotropic position of 1733 cm-' is found at infinite dilution. Admittedly, no 



1725 
Raman Shift 1 cm'' 

Fig. 4.3: htropic and Anisotmpic Spectra of Methyl Formate I 
Methyl d-Formatt (X(MF) = 0.504). 



1625 1725 1825 
Raman Shift / cm" 

1725 

Raman Shift / cm" 

Fig. 4.4: Bandfittiag Results for Methyl Formate / Methyl d-Formate 
@(MF) = 0.504): 
a) ûverall Calcdatcd Contour and Original Data 
b) Overall Calcuiated Contour and Components. 



Fig. 4.5: Overall Calculateci Contour and Component Bands for the 
Carbonyl Stretch of Methyl Formate I Methyl d-Formate 
(x(MF) = 0.504). 



Table 4.5: Summary of the Band Positions for MF / d-MF. 



Fig. 4.6: Peak Positions for Methyl Formate / Methyl d-Formate: 
a) Isotropie b) Anisotropic. 
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theoretical b a i s  exists for using a linea. extrapolation on these data However, the data 

do suggest a linear extrapolation is misonable. The anisotropic peak data are not quite 

as "well behaved (see Fig. 4.6b). Only the most optimistic eye wouid claim any 

defintive dependence on mole fraction. The (very) gross tendency, however, appears to 

be a slight shift to higher fkquency as the MF becomes more dilute. This, too, is similar 

to the behaviour of fotmïc acid (in waier) where the anisotropic peak shifted, but only 

very slightiy, to higher fiequency. As an obvious consequence, the difference v,, - v, 

(Le., the NCE) decreases as the MF becomes more dilute. The differences are tabulated 

in Table 4.5 and plotted in Fig. 4.7. The plot shows the Merence tends to zero (just as 

expected) as the concentration f d s  to zero. 

A close look at the isotmpic spectmm of MF shows the C--O band (at l e s t  in the 

reconstxucted fom, Fig. 4.5) is asymmetric on the "blue" side. Because of this 

asymmetry, Logan's theones (27*28) cannot be applied directly because the band maxima 

cannot be equated to the fmt moments. The band fmt moments, M, must be calculated 

and are given in Table 4.6. The more asymmetrical a band, the greater is the difference 

between the fmt moment and the band maximum. Figure 4.8 shows - v, as a 

function of mole fiaction of mthyl formate. The isotropic band becomes more and more 

symmetrical as the mthyl formate is progressively diluted. At fairly dilute (but non-zero) 

concentrations the diffexence is essentiaily zero indicating the band is symmetrical. More 

WU be said below about this asymmetry. 





Table 4.6: Summary of the Fit Moments for MF / d-MF. 



Fig. 4.8: 4, ( = M, - v,) vs. X O  for Methyl Fomate I Methyl 
d-Formate . 
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For a simple isatopic dilution, Logan developed a mode1 (27) (see section 1.3.4) 

to calculate the dependence of the NCE on mole fiaction of the active species: 

M,-M-- - A-X 121 

where 

L- L - the anisotropic f h t  moment 

MW. - - the isotropie fmt moment 

&=a = the splitting in the pure active species 

X - - mole hction of the active species 

A plot of M.-,- - M, versus X(MF) is given in Fig. 4.9. The splining has a linear 

dependence on X O ,  but the correlation of the line is not very good If the two points 

at X O  = 0.357 and X(MF) = 0.884 are neglected, the correlation is much improved 

(r = 0.939) and the equation of the Line is given by: 

Ma-M' - 5.1X - 0.658 131 

In neat methyl formate the noncoincidence is 4.1 cm". Within the confidence interval 

of the linear regression the dope is the same as &. The intercept also lies within the 

confidence interval. 

Lastly, the data show an important effect of dilution on the halfwidths of the 

bands. This is most pronounced for the isotropic band Because it is asyrnmetric, the 

haifwidths at half height are different for the low ("red) ftequency and high ("blue") 



Fig. 4.9: Test of Logan's Mode1 (26) for the NCE of Methyl Formate 
1 Methyl d-Formate. 
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fiequency sides of the band. Table 4.7 and Figure 4.10a show the variations of these two 

halfwidths as a function of mole fiaction. At high MF concentrations the ciifference in 

the two values is quite large. As the MF is diluted the high frequency halfwidth is 

virtuaily constant until X(MF')-0.5 at which point it fdls dramaticaily. The low frequency 

halfwidth increases very slowly and then decreases slightly. The increase is only very 

slight and is surprising. Necessarily, then, the IWHM of the isotropic band uiitially 

increases as the MF is diluted. It rises to a maximum at X0-0.5 and then f d s  quite 

steeply (Fig. 4.10b). An increase followed by a decrease in bandwidth is unusual. 

Normally, as the solute is diiuted the cesonance energy transfer becomes less and Iess 

effective because solute molecules in the solvation shell are replaced by solvent 

molecules. This should lead either to band broadening or narrowing, but not botb. 

The results for MF / d-MF cm be summarized as follows. F i t ly ,  the peak 

maximum of the isotropic band moves toward higher kquency as the MF is diluted The 

data suggest a linear dependence. The anisotmpic peak is not as definitive. Second, there 

is high frequency asymmetry on the isotropic band. The asymmetry decreases as the MF 

is diiuted. Third, the NCE behaves just as pedicted by Logan's mode1 (27)- i.e., it has 

a linear dependence on the mole fraction. Logan argued thaî RET was responsible for 

the NCE. Founh, the FWHM of the isotropic band initiaily increases as the concentration 

decreases but fds  dramatically for concentrations below X(MF)-0.5. 



Table 4.7: H W ? i M ' s  and FWHM's for MF / d-MF- 

HWHM ("red") HWHM ("blue") FWHM 
/ cm" / cm-' / cm' 

0.1 15 7-3 6-1 13, 

0.234 7-1 6.4 13, 

0.357 7-9 8-1 16, 

0.44 1 7-6 8-9 16., 

0.504 75 9-3 16, 

0.557 7 *2 9.3 M., 

0.6û7 7-2 9-4 

0-658 7-2 9-3 1 6.5 

0.701 6 -9  9-3 16, 

0.76 1 6.8 9-3 16-, 

0.779 6% 9-3 1 S., 

0.884 6-5 9-3 15, 

1 -000 6, 8% 15, 



Fig. 4.10: Effect of Dilution on Bandwidth of Methyl Formate / 
Methyl d-Formate: 
a) HWHM (solid line - low fkequency HWHM, dashed line 
- high fresuency HWHM) b) FWHM. 
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As mentioned above, the band of C-O in MF does show a shifi to higher 

frequency with dilution and a very distinctive high fiequency asymmetry. Under Kaapp's 

(26) mode1 this is evidence of reactive coupling in methyl formate. The loss of the 

asymrnetry is also quite typical of this model. The behaviour of the FWEM of the 

isotropic band is rather unusual. Yarwood's (21) work on dimethyl formamide showed 

a steady increase in the HWHM as the dimethyl forniamide was dilutd Yarwood argued 

this was consistent with Knapp's model because reactive coupling couid lead to 

broaàeaing or narrowing of the band with dilution. The behaviour of the FWHM does 

not conform with Knapp's model (26) for resonant coupling. At fïrst it increases but then 

decreases having a fairly distinctive maximum at X(MF)-OS. Clearly, this is not 

expected from Knapp's model. If the observation is r d  (as opposed to an artifact of 

bandfitting or experimeatal error), it implies a significant change in the nature of the 

intersite coupling. Lnitially (that is, for solutions concentrated in MF). the amount of 

coupiing at a given reference site nmains fUed This leads to band broadening as the 

MF is diluteci. At X(MF)4.5 the aniou11t of coupling is no longer fixeci- Diffusional and 

reaientational effkcts (as weil as any other phenornena affecthg the totai amount of 

couphg) then cause variations in the totai amount of vibrational coupling. As this 

happens, the band begins to n m w  with dilution. An alternative explanation exists. 

Knapp's model is predicated on the assunption that the pure dephasing and the RET 

contributions to vibrational dephasing are uncomlated (Le., T, of equation [l] = O). If 

r, is not zero, the band may be broadened or narrowed with dilution depending on the 
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sign of î,. For the methyl formate system these two dephasing mechanisms may, indeed, 

be cornlateci and the sign of T, may change with dilution. 

So far the emphasis bas been very much on the behaviour of the C=O band of 

methyl formate. The obvious question to ask, then, is, "what about the C S  band of 

methyl d-formate?". This band is centred at about 1690 cm-' in pure d-MF (Fig. 4.2b) 

but with dilution shows a smdl shin to -1698 cm-' at X(d-MF) = 0.1 16. In pure d-MF 

the NCE is much srnailer (-2.4 cm-') than in pure MF (-7.0 cm''). Yarwood's (21) 

resdts for dimethyl formamide showed the NCE for the two isotopomers to be warly 

identical. Furthemore, unlike pure MF, the isotropie band of d-MF does not appear to 

have any high fiquency asymmetry. However, a possible complication exists. Harris 

et al. (9) assigned the band at -1751 cm'' to 2v, It has rather high intensity for an 

overtone band and this raises a question about the possibility of Fermi resonance with the 

C=û fiuidamentai. Susi (5) assigned two bands at 1712 cm-' and 1751 cm-' ( h m  

infkared spectroscopy) to C=û stretching in Fermi monance with a combination band 

(1441 + 304 cm''). Fetmi resonance. of course. affects the intensities and fiequencies of 

the bands involved. If Fermi resonance is occurring, any attempt to study the N(3E of the 

C=û band is futile. For this nason, a detailed investigation of the C=O band of d-MF 

was not performed 



The advantage of using acetonitrile as a solvent is that it has no bands which 

overlap those of the carbonyl region of methyi formate. This makes band resolution and 

reconstruction that much easier (see Fig. 4.1 1). Unfortunately, using non-isotopic dilution 

leads to greater theoretical complexity (27-30,33). Certain assumptions can no longer be 

made. That king said, the resuits for solutions of methyl formate in acetonitrile are 

qualitatively quite similar to those seen for MF / d-MF. 

Ten solutions of methyl formate in acetonitrile were prepared and the 

concentrations are summarized in Table 4.3. 

The dependences of the isotmpic and anisotropic band positions on mole fraction 

are illustrateci in Table 4.8 and Fig. 4.12. Qualitatively, the dependences are very simiiar 

to those seen in the isotopic dilution. The isotropic band position depends much more 

strongly on the mole fraction than the anisotropic band. For the isotopic dilution, a linear 

extrapolation gives an isotropic band position of 1733 f 1.3 cm-' at M i t e  dilution 

compared to 1730 f 0.91 cm-' in acetonitrile. When the statistical error limits are 

considemi, these two values are vimially the same. The comlation of the line is not as 

good for the isotopic dilution and this is probably a d t  of greater bandfitting 

uncertainty. The dependence of the isotropic band position on mole fraction (i.e., the 



1625 1725 1825 
Raman Shift / cm'' 

1725 

Raman Shift / cm" 

Fig. 4.1 1: Bandfitting in the Carbonyl Region of Methyl Formate I 
Acetonitde @(MF) = 0.494): 
a) Overail Calculated Contour and Onginal Data 
b) O v e d  Calculateci Contour and Components. 



Table 4.8: Summary of the Band Positions, N a ' s  and Relative NCE's 
for MF / Acetooitde. 

Rel- NCE 



Fig. 4.12: Carbonyl Band Positions for Methyl Formate / Acetonitrile: 
a) Isotropie b) Anistropic. 
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slope of the line) is virtually the same for both the isotopic and non-isotopic dilutions. 

As with the soIutions in d-MF, the NCE (v,. - v,) decmses as the MF is diluted (see 

Fig. 4.13). The RET is king "tumed off just as it was in the isotopic dilutions. 

However, the NCE disappears "faster" in the isotopic dilution. Imposing a linear fit on 

the data gives a slope of 8.9 I 1.2 for the isotopic dilution but only 7.0 + 1.4 for dilution 

in acetonitrile. Considering the emr limits, however, these values are the same. This 

is an unfortunate result of the poor correlations on the lines. It seems reasonable to posit 

that the NCE decreases more rapidly with isotopic dilution than with non-isotopic 

dilution. The implication then becornes that E T  is reduced / elirninated "quicker" (with 

respect to concentration) by isotopic dilution, for which solvent molecules are more 

s M a r  in size and mass. 

The ability of several models (presented in chapter 1) to describe the dependence 

of the NCE of MF on concentration was tested. To begin, however, the "relative 

splitting" must be defined. This quantity is given by: 



Fig. 4.13: NCE (= v,. - v ~ )  for Methyl Formate / Acetonitrile vs. 
Mole Fraction. 



where 

A(@) - the splitting at a given volume fraftion 

A(@ = 1) C - the splitting for the pure solute 

AU the models are baKd on using volume fiaction as the concentration scale. This is to 

take advantage of the assumption that the dielectrïc constant can be wrïtten as a simple 

linear function of the concentraiion of the solute: 

where 

El 
- - dielectric constant of the solvent 

E2 - - dielectric constant of the solute 

@ - - volume fiaction of the solute 

All the models have a is0  asswned ideal solutions (3 1). Therefore, al1 the concentrations 

on a mole fiaction scale are easily converted to volume fiactions using the densities of 

the solute and solvent. This conversion is given in Table 4.3. Obviously, the dielecaic 

consta-nts must also be known. The solutions were run et 20°C and at this temperature 

the dielectric constant of acetonitrile is 36.94 (32) and of methyl formate is 8.5 (1). The 

models of Fini and Mirone (15-17), McHale (29,30) and Mirone's modification (33) of 

McHale9s model were examined. Logan's model (28) for non-isotopic dilution was not 

tested This model assumes the hard sphere diameters of the solute and solvent are within 

10%. Without knowing the bard sphere diameters, examining his mode1 is pointless. 
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Fini and Mirone's model (15-17). an empincal derivation. gives the following 

dependence of splitting on volume fraction: 

for @ c 0 ,  

where $is some "thnshold volume" below which there is no Na. The fmt thing to do, 

then, is determine the threshold volume for MF I acetonitriie. The plot of Av versus 9 

(MF) was extrapolated using a bear fit to obtain O, (see Fig. 4.14). The equation of the 

line is given by: 

Av = 7.07 @ - 0.678 r = 0.971 

fiom which $, = 0.096. If the point at + = 0.467 (which appears to be anornabus, see 

Fig. 4.13) is neglected, the equation becomes: 

Av = 7.22 @ - 0.878 r = 0.985 

and @, = 0.122. Figure 4.15 gives a cornparison of the obsewed splitting and the splitting 

predicted by Fini and Mirone's mdel. Three predicted curves comsponàiug to @, = O, 

0.096 and 0.122 are plottecl. The model fails badly. Other workers have found a fairly 

aood agreement between their work and the model (18,20). In the examples given in Fi & 

and Mirone's own paper (16). the dielectric constant of the solute was generally hi& 



Fig. 4.14: NCE (= v, - v,) of Methyl Formate / Acetonitrile vs. 
Volume Fraction- 



Fig. 4.15: Test of Fini and Mirone's Mode1 (15-17) for the NCE of 
Methyl Formate in Acetonitrile: 
Dashed Line: 0, = O; Dotted Line: 0, = 0.096; 
Solid Line: 4, = 0.122. 
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of the solvent and several times the solvent was non-polar. Here. both the solute (MF) 

and the solvent (acetonitde) are quite polar and the dielecnic constant of MF is quite low 

relative to that of acetonitde. Furthemore, the assumption of ideal solutions is suspect 

To assume two Iiquids as polar as these two do not interact is probably not valid 

Figure 4.16 shows the theory of McHale (2930) and Fig. 4.17 shows Mirone's 

modification (33) of McHale's theory. As an aside. Mirone's modification requires 

knowledge of the index of refkaction of the solution. McHale's theory gives: 

where 

AM = the difference in the band d t  moments: M-,- - ly, 

fwaE= M-,,. - M, for the pure liquid. 

(see equations 1331 - 1351 of chapter 1). These values for methyl formate are summarized 

in Table 4.9. Mirone modified this equation to give 



Fig. 4.16: Test of McHale's Mode1 (29,30) of the NCE for Methyl 
Formate 1 Acetonirrile. 



Fig. 4.17: Test of Mirone's (33) Modification of McHak's Model 
(29,30). 



Table 4.9: Summary of the Band Moments, NCEs and Relative 
N a ' s  for MF / CH&N. 

mm w s o .  wl"S0. NCE 
/ cm" / cm-' / cm" 

0.095 o. 107 1728.6 1729., O*, 

O. 199 0.221 1727, 1729, 1% 

0.296 0.325 1726., 1727, 1-0 

0.434 0.467 1726, I72gmg 3 -4 

0.494 0.528 1 726.3 1 727.g l - 6  

0.594 0.627 1726, 1 728 .2 1-7 

0.699 0.727 1 72Se6 1727, 2* 1 

0.799 0.820 1724., 1727, 2-5 

0.899 0.9 10 1722, 1726, 3-7 

1 .O0 1 .O0 

Rel. NCE 



where C is a constant given by: 

(the subscript '2' designates values for the pure solute). Therefore, the refractive indices 

had to be measme& The refractive indices of MF and acetonitrile are virtudy identical 

(1.3433 and 1.3423, respectively (1)). A plot of 'n' versus volume fraction is shown in 

Fig. 4.18 (and Table 4.10). This plot has considerable scatter but suggests the 'n' values 

maximize near X O  = 0.5. The "rippling" in the Fig. 4.17 is because of this scatter. 

As shown in Figs. 4-16 and 4.17 the behaviour of MF in acetonitrile does not conform 

with either one of these models. McHale (29) has stated her theory is only applicable in 

the "dilute solution regime" where aggregation is negiected, For a polar species such as 

methyl formate at the concentrations used here, this model may not be appropriate. 

Additionally, the ideal solution assumption has been made. Further, Torii (34) has shown, 

using Monte Car10 simulations, that in the case of acetone the dieleceic screening 

approach of McHale is hadequate for explainhg the NCE. Logan's (27,28) is bener. 

In amending McHale's model, Mirone (33) made no assertions about the range of 

applicability . 

The asymmetry present in the isotropie band of MF 1 d-MF is also pnsent in the 

solutions of MF I acetonitrile. Just as before, the asymmetry (as measured by M, - v,) 



Fig. 4.18: Index of Refkaction of Methyl Formate I Acetonit.de 
Solutions. 



Table 4.10: Indices of Refiaction of the MF / Acetonitrile Solutions. 
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decreases as the MF is diluted (see Fig. 4.19). If a hear fit is imposed on the M, - v, 
versus X(MF) plot, the slope is 45 + 0-75. For the isotopic dilution, however, the slope 

is 4.7 f 0.47. Within the statistical errors the slopes are the same. Just as with the 

isotopic dilutions, the asymmetry of the band is vividiy shown by comparing the two half- 

widths. The high frequency half-width is somewhat greater than the low frequency 

asymmetry (Fig. 4.20 and Table 4.1 1)- This agrees with Knapp's d e l  (26) in which 

high frequency asymmetry is seen for coupled osciliators. The "blue" haif-width is also 

more strongly Hected by dilution. decreasing quite rapidly below X(MF)-0.7. 

The behaviour of the full-width at half maximum of the isotropic C=O band is 

somewhat different for the two solvents. In d-MF the FWHM initiaily rises and then, 

below X0-0.5, falls rapidly. In aceton.it.de the initial rise is much smaller. As 

mentioned above, within Knapp's mode1 (26) this sort of behaviour is unexpected. Bands 

may broaden as the solute is diluted and Yarwood (21) observeci this in solutions of 

dimethyi formamide. However, an initial increase followed by a decrease is unusual. In 

the case of the acetonitriie solutions. the largest FWHM reached is 15.5 cm-' at X(MF) 

= 0.699 (see Table 4.1 1 and Fig. 4.20) This is just banly sigaificant compared to the 

EWHM of pure MF (14.7 cm-'). The largest FWHM for the isotopic dilution is 16.8 cm-' 

at X O  = 0.504 (see Table 4.7 and Fig. 4.10) and this LF significantly pa te r  than the 

pure methyl formate. These resuits imply that vibrational &phashg follows a dinerent 

mechanism in acetonitrile than in d-MF. The intermolecular potentiai and coupling 



Fig. 4.19: 4, (= M, - v ~ )  vs. X O  fot Methyl Formate / 
Acetonitrile. 
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between methyl formate molecules must be different in the two solvents. Interestingiy, 

after the maximum bandwidth is reached it f a s  more sharply in acetoniaik than in d- 

MF. In acetonitrile, then, the concentration range over which the total amount of inteaite 

coupling is nxed is quite srnaIl. Dinusional and orientational effects (as welI as any other 

phenornena affecthg the total amount of coupling) become sigaificaot at higher 

concentrations of methyl formate, leading to a denrase in bandwidth below these 

concentrations. Possibly, as explained in section 4.3.1, the pure dephasing and RET 

contributions to bandwidth are correlated (i.e., T, of equation [l] # 0) and the sign of T, 

may change with dilution. 

The results for methyl formate in acetonitrile cm be summarized as follows. First, 

the dilution of methyl formate leads to a progressive shift of the isotropic band to higher 

fiequency. A hear extrapoiation gives a Raman shift of 1730 cm" at infite diiution. 

The high frequency asymmetry of the isotropic band decrwes as the MF is diluted. 

These two observations are qualitatively identical to those seen for the isotopic dilution. 

The NCE decreases with dilution but does not conform to any of the thne models tested 

It must be saiâ, however, that McHale's mode1 (29,30) was derived for diiute solutions 

so its application here may be invaliâ. The FWHM of the isotropic band shows an initial 

(but very slight) increase foiiowed by a de-; different in degree fiom the FWHM 

behaviow in the isotopic shidies where a clear maximum was observed. 



Table 4.1 1: H W H M ' s  and FWHM's for MF / AN. 

HWHM ("red") HWHM ("blue") I I 



Fig. 4.20: Effect of Dilution on Bandwidth for Methyl Formate / 
Acetonitrile: 
a) HWHM (solid line - low fnquency HWHM, dashed line 
- high frequency EWHM) b) FWHM. 



The results lead to some important conclusions about the nature of liquid methyl 

formate. Resonance Energy Transfer is one avenue for vibrational dephasing in organic 

liquids. It manifests itself most clearly in a non-coïncidence of the isotropic and 

anisotropic peaks which decreases as the solute is diluted A number of models (15- 

17,27-30,33) have been suggested to account for its dependence on concentration. The 

studies of methyl formate clearly indicate this effect is occurring in the liquid. The 

isotopic dilution studies conform with the theory of Logan (27) wherein the NCE has a 

linear dependence on mole fraction of the "active" species. Unfortunaiely, for the non- 

isotopic dilution (in acetonitde), the NCE of methyl formate does not confonn with any 

of the models t e s a  The reasons for this nonconforrnity are not known. It may, in part, 

be a result of assuming ideal solution behaviour. Fini and Mirone did suggest two 

reasons for possible failures of their modei. First, the dielectric constant might not be a 

linear function of volume ktion.  Second, specific, short range interactions might not 

be adequaîely described by the dielectrïc constant. In the case of McHale's mode1 (2930) 

application to solutions as concentrated as those used here is not likely valid. However, 

the NCE is decreased as the MF is diluteci. In addition, the "rate" of the decrease of the 

NCE is greater for the isotopic dilution thm for the non-isotopic dilution. Because the 

NCE disappears faster with isotopic dilution, the methyl formate oscillators are king 
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decoupled more quickly. Methyl d-fonnate is better at dismpting the preferential 

alignment required for RET to take place. Intuitively, thû &es sense. A deuterated 

analogue should find it easier to penetrate the solvation shell than a completely "foreign" 

species. 

One of the oddities of these results is the behaviour of the full-width at half 

maximum of the isotropie band Under ICnapp's (26) model RET can broaden or narrow 

a band even when pure dephasing and RET are uncomlated. Yarwood (21) has found 

band broadening with isotopic dilution and explaineci it in temu of Knapp's model. For 

both the isotopic and non-isotopic dilutions, the FWHM fmt increases and then decreases. 

Thus, according to Knapp's model (26), the total amount of intermolecular coupling is 

constant for the concentrated solutions of MF and the band broadens with dilution. 

At some concentration (X(MF)-0.5 for isotapic and X(MF)4.7 for non-isotopic 

solutions) this is no longer, true and the band nanows with dilution. Aiternatively, the 

pure dephasing and resonant energy eansfer may be correlated (see equation cl]). 

Because the initiai rise is smaller and the concentration at which nanowing begins is 

higher, the nature of the intermolecular potential for methyl formate molecules must be 

solvent dependent. 
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5. SUMMARY AND CONCLUSIONS 

5.1 Formic Acid 

Fonnic acid was snidied in a number of solvents: water, acetonitrile, 1 -4-dioxane 

and dichloromethane. Each of these solvents had a different effect on the spectnrm of 

formic acid, although the spectra for the acetoaitrile and 1,4-dioxane solutions were 

somewhat simiiar. For the aqueous solutions a very pronounced noncoincidence effect 

(which decreased as the formic acid was diluted) was seen. The size of the NCE 

(especiaily when compand to non-hydrogen bonded methyl formate) and the great width 

of the bands strongly suggest resonance enetgy transfer is occunhg. The presence of 

RET implies considerable "structurai order" (no doubt augmented by the hydrogen 

bonding) in the liquid which dows the individual oscillators to couple. Dilution in 

acetonitrile and 1,4-dioxane led to the development of two peaks at -1735 cnïi and at 

-1765 cm-'. The band at -1735 cm" is almost coincident with the carbonyl fiequency 

of dilute methyl formate. Because methyl formate is a "model" for non-hydrogen bonded 

formic acid the -1735 cm-' band was assignecl to "free" formic acid. The -1765 cmeL 

band does not appear in soiutions of fonnic acid in water nor in solutions in 

dichloromethane. Because independent evidence existed for a formic acid--solvent 
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complex in acetonitrile and 1,Qdioxane solutions (perturbations in the spectra of pure 

acetonitrile and pure 1,4-dioxane), the band at -1765 cm-' was assigned to a formic 

acid-solvent complex. 

For the formic acid / acetoaitrile solutions, this complex was studied in more 

detail. A shoulder at -2270 cm" developed on the CoN stretch at -2255 cm-' and was 

assigned to the C=N stretch of acetonitrile "bound" to formic acid A Job Plot gave an 

ambiguous result. Equiübrium constants were calculated using several different 

stoichiometries. For ail models the equilibtium constants increased dramatically at high 

formal concentrations of acetoniaile. The formation of more than one complex is 

possible and at the higher concentrations of acetonitrile a mixture of complexes may exist 

Future work on solutions of formic acid should focus on achieving a beiter 

understanding of the formic acid--acetonitrile complex. The most immediate question is 

the possibility of a mixture of complexes at high relative arnounts of acetonitrile. The 

"Job" plot constructed nom these experiments was based on rather hi@ formal 

concentrations of both acetonitrile and fonnic acid. The preparation of a second Job plot 

with lower formai concentrations wouid be useful. Furthemore, it might help resoIve the 

ambiguity concernïng the CO-ordination numkr. Solutions with a constant concentration 

of formic acid but varying concentrations of acetonitrile should also be shidied. Such 

studies couid sheà some light on the question of the presence of more than one complex- 



230 

In addition to these immediate suggestions, the project codd be expanded dong two other 

lines. Fht,  formic acid and its "association" with other nitriles (e.g., butyronitrile or 

acrylonitrile) couid be examined- Second, the "association" of other carboxylic acids 

(e.g., acetic acid) and acetoninile couid be studied- 

5.2 Methyl Formate 

Originally, methyl formate was studied to gain a bettex understanding of the 

structure of liquid formic acid. This was not quite as successfbl as ho@ However, 

experiments on rnethyl formate did yield some important observations. Fht, the carbonyl 

band is mucb narrower and the non-coiiiciàence effect is much smaller for methyl formate 

than for formic acid. Unlike mthyl formate, formic acid can be expected to be 

extensively hydrogen bonded. The large ciifferences in baudwidth and NCE (between 

formk acid and methyl formate) support this assertion. Second, in both acetonitrile and 

methyl d-formate the carbonyl band maximum at infinite dilution was - 1730 c d ,  almost 

coïncident with a band in solutions of formic acid. Consequently, the band at -1735 cm-' 

in fonnic acid was assigneci to "free" formic acid monomer. Third, the spectrum of 

methyl formate in acetonitriie did not show any association between methyl formate and 

acetonitrile. ûther than reducing the size of the NCE, the acetonitrile did not affect the 

carbonyl region of methyl formate. Furthemore, the G N  stntch of acetonitrile was 
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unaffecteci. These observations led to the conclusion that (not Surpnsingly!) association 

between formic acid and acetonittile occm t h u g h  the acid proton and the nitrogen of 

acetonitrile. 

In addition to these observations, the experiments revealed some interesting facts 

about the structure of liquid methyl formate. A non-coincidence effect in methyl formate 

indicates resonance energy transfer is taking place in iiquid methyl formate. The size of 

the NCE decreases as the methyl formate is diluted. Qualitatively, the behaviour of the 

isotropic band - a) a band shZt to higher frequency with dilution; b) high frequency 

asymmetry wùich decreases with dilution; c) change of bandwidth with dilution - is 

consistent with Knapp's (1) model for "reactive coupling". For the isotopic düution the 

methyl formate NCE effect shows reasonably good agreement with Logan's model (2). 

Unforiunately, the non-isotopic dilution shows very poor agreement with the models (3-8) 

tested. The existence of RET in liquid methyl formate suggests some significmt short 

term, short range order in the liquid that aliows the transition dipoles to couple. This 

short range o&r should not be interpreted as the formation of dunes in the "traditionaltt 

sense. If this were true, far more ciramatic results would have been seen in the carbonyl 

region. The behaviour of the FWHM of methyl formate was also quite interesting. In 

both the isotopic and non-Wtopic dilutions, the FWnM initially increased and then 

decreased. Under Knapp's mode1 (1) this indicates the total amount of intermolecular 

coupling is initially constant but varies below some "threshold concentration. The 
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variation of the FWHM was also ciiffereut for the two different dilutions indicating (not 

surprisingly) that the intenûolacular potential for methyl formate is solvent dependent. 

The behaviour of the bandwidths may also suggest that the pure dephasing and RET 

contributions to the bandwidth are not uncorrelated- 

Expansion of the work on methyl formate could follow several paths. First, a 

different solvent for non-isotopic dilution could k used. Logan's model for isotopic 

dilution (2) was reasonably successful and the non-isotopic model (9) is an expansion 

(albeit a complex expansion) of the isotopic model. To do this, a solvent which has a 

hard sphere diameter within 10% of the hard sphere diameter of methyl formate must be 

found The data needed to find such a solvent may be difficult to discover. Furthemore, 

in a different, non-isotopic, solvent methyl formate might confona with the other models 

(3-8). Second, the effect of ions on the NCE could be studied. Methyl formate has been 

suggested as a solvent for lithium battery eleztrolytes (10). Of course, ions must be 

added. A study of the NCE as a hction of salt (e-g., LiAsFd concentraiion would be 

quite interesting. Eteplachg methyl formate molecules in the solvaîion shell with ions 

should disrupt the local order and lead to a decrrased NCE. A third, broader, path is to 

study the NCE of other simple esters (e.g., methyl =tate). 
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