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Abstract

Since its early success as an experimental test of the theory of general relativity in 1919,
gravitational lensing has come a long way and is firmly established as an indispensable element
for many astrophysical applications. In this thesis, we explore novel applications of gravitational
lensing that further our understanding of the dark sectors of the cosmos and other astrophysical
objects, namely dark matter nanostructure, black holes and the Galactic disk. We pay particular
attention to developing concrete and optimal statistical methodologies and numerical implemen-
tations for these novel probes.

We start by developing a statistical framework to measure the dark matter power spectrum in
the deep nonlinear regime, using transient weak lensing, and simultaneously measure the time
delays for strongly lensed quasars. We then outline how observations of microlensing in optical
and radio can unravel the structure, dynamics, and content of the Galactic disk, and in particular,
be used to detect stellar mass black holes. Lastly, using the shadow images of the super-massive
black holes caused by extreme lensing effect, we can learn about the structure of space-time,
accretion flows and astrophysical jets. We present a Bayesian framework for analyzing the data
from the Event Horizon Telescope Collaboration.
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Chapter 1

Introduction

In this thesis, we apply gravitational lensing to indirectly detect the properties of astrophysical
objects on different scales. In most cases, we are targeting objects that are not luminous and
hence not directly observable; this includes dark matter structure and black holes.

There has been many observational constraints on the dark matter power spectrum in the last
few decades including the CMB observations, large scale structure surveys, Lyman-α forest and
more. These provide strong limits on the dark matter power spectrum on cosmological scales
down to galactic scales. On samller scales however, there are only weak upper bounds coming
from a handful of methods such as the limits from ultra compact minihalos and primordial black
holes [37]. In Chapter 2 we propose a novel way to constrain the dark matter power spectrum in
extremely small scales comparable to the size of the solar system.

Stellar-mass black holes, as the final stage of stellar evolution for massive stars present a
unique way to study the evolution of high mass stars including the core-collapse supernova
physics as well constraining the high-mass end of the stellay initial mass function [110]. In addi-
tion having a black hole mass function will allow us to more accurately estimate the merger event
rates in gravitational wave experiments. Currently only a couple dozens of stellar-mass black
holes with measured masses exist [52] and they belong to a very specific subsets of the stellar
mass black holes namely X-ray binaries detected in X-ray observations and merging black holes
detected via gravitational wave experiments. The current low statistics coupled with nontrivial
biases in the obsevered populations make it impossible to contruct a black hole mass function.
Chapter 3 proposes a new way to detect stellar mass black holes at a much higher rate than pos-
sible today using gravitational microlensing observed in radio images of radio bright sources.
This method allows for breaking the degenaracies present in stellar microlensing and measuring
all the lensing parameters such as mass of the black hole, its distance and velocity.
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Gravitational microlensing provides a unique opportunity to study the structure of the Milky
Way. The microlensing observables such as the optical depth and the distribution of the lensing
time scales depend to the denity profile along the line of sight, velocity distribution of the souces
and the lenses and the mass distribution of the lenses [190]. Combined with other data products
from micrlensing surveys such as the color-magnitude distribution of the monitored stars this
can be used to constraint the structure and dynamics of the Galaxy. In Chapter 4 we use the
gravitational microlensing data to study the structure and dynamics of the Milky Way’s disk .

The Event Horizon Telescope is the highest resolution instrument capable of achieving a
resolutions of 13µas. It is a collection of radio telescopes all around the globe and is aimed at
resolving event-horizon scale structures around supermassive black holes [79, 82]. The main
targets of observations are the suppermassive black holes at the center of the Galaxy (Sgr A∗)
and M87. Chapter 5 introduces Themis which is a parameter estimation framework for the Event
Horizon Telescope (EHT). Themis is a Bayesian parameter estimation framework and allows the
use of different EHT data products, incorporating various physical models. The code is designed
to be easily extensible and to exploit the high performance computing machines efficiently. In
what follows, we start with an introduction to Bayesian inference and gravitational lensing as the
common themes in this thesis, setting the stage for the following chapters.

1.1 Bayesian inference

Statistical inference as an extension of logical inference is the tool that is used in all branches of
science for building and evolving the mathematical models. In particular, Bayesian inference has
been widely used in physics over the past decade. Bayesian method allows iterative improvem-
nets to the models by combining the new data with the results of the last updated model (used as
prior information) in a coherrent way. This in essence is the gradual application of the scientific
method as the new data becomes available. In this section, we overview the concepts of Bayesian
inference and how they are applied to the process of model building.

1.1.1 The Bayes’ theorem

The Bayes’ theorem is derived using the symmetries of Boolean logic and is expressed as:

P(θ|M,D) =
P(D|M, θ)P(θ|M)

P(D|M)
, (1.1)
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where M represents the mathematical model, θ represents the set of parameters within the model
M and D stands for the observed data. The term P(θ|M) is the prior and is the probability of
each set of parameters within model M prior to observing the data D. This would generally
come from the data perviously observed and represents the state of knowledge before the new
data becomes available. P(D|M, θ) is called the likelihood and is the probability of the observed
data D being observed in the context of model M and parameter set θ. This term represents the
predictions of the model at its current state. The term in the denominator P(D|M) is called the
Bayesian evidence and is the probability of data D being observed given the model M. This is
a normalization factor that can be ignored if one is only considering a single model M. On the
other hand, when comparing two different models M and M′ the bayesian evidence is used to
chose which model is favoured by the data. This is the subject of section 1.1.6. The term on the
left hand side P(θ|M,D) is called the posterior probability and is the probability of the parameter
set θ given the observed data D and in the context of model M. The posterior represents the
updated plausibility of each θ after taking into account the new observations. One can look
at the Bayes’ theorem as the application of scientific method used to iteratively improve the
mathematical models with new observations.

1.1.2 Bayesian parameter estimation

Oftentimes one needs to estimate parameters within a given model, be it a phenomenological
model or built upon a physical theory. In such cases the underlying model M is fixed and the
Bayes’ theorem can be simplified as:

P(θ|D) ∝ P(D|θ)P(θ), (1.2)

where we have taken out the Bayesian evidence term P(D) since it’s a constant. One is generally
interested in calculating expectation values of physical quantities over the posterior probability,
(these include finding the means and variances)

E[ f ] =

∫
f (θ)P(θ|D)dθ, (1.3)

where E[ f ] is the expectation value of the function f (θ) over the posterior probability distribu-
tion. However in many cases the model contains many parameters and numerical estimation of
the integral poses a challenge. In particular the number of evaluations of the integrand grows
exponentially with the number of dimensions. The de facto way of approximating the posterior
probability mass in high dimensions is to use the Markov Chain Monte Carlo (MCMC) methods
due to their excellent scaling with the dimension of the parameter space θ.
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1.1.3 Markov Chain Monte Carlo

The origins of Markov Chain Monte Carlo methods go back to almost the same time as the Monte
Carlo methods themselves (i.e 1940s). The first paper on an MCMC algorithm was written in
1953 by Metropolis et al [182] on what is known as the Metropolis method today but it wasn’t
until 1990s that these methods gained widespread application.

Markov Chain Monte Carlo methods constructs a sequence of random points from the param-
eter space θ such that the sequence has the Markov property and the stationary distribution of the
points converges to the target density (e.g. the posterior distribution). Markov property means
that each point in the sequence depends only on the previous point. It has to be noted although
this is generally true there are some MCMC methods that don’t strictly satisfy this condition
such as the adaptive MCMC methods [14]. Once the MCMC chain is converged the density of
the sequence of points is proportional to the mass density of the target distribution which is often
the posterior distribution [183].

As an example of a simple MCMC algorithm we briefly present the Metropolis-Hastings al-
gorithm. To construct the series of samples from the posterior distribution in Metropolis-Hastings
method one proposes the new point (θn+1) according to:

θn+1 = θn +N(0,Σ). (1.4)

In this equationN(0,Σ) is a vector of random gaussian numbers with mean 0 and covariance
matrix Σ. The proposed point θn+1 is then accepted or rejected with a probability given by

min
(
1,

P(D|θn+1)P(θn+1)
P(D|θn)P(θn)

)
. (1.5)

If the proposed point (θn+1) is accepted then it’s added to the series of points; otherwise
the current point (θn) is added to the series. The procedure is then repeated until the series is
converged to a stationary distribution which is the posterior (P(θ|D)) probability mass.

1.1.4 Improving the efficiency of MCMC methods

Although MCMC methods can be very efficient, if not tuned properly they can suffer from poor
convergence. As an example the efficiency of Metropolis-Hastings algorithm depends on the
choice of the covariance matrix Σ used to propose the new steps. The optimal choice of the Σ

depends on the shape of the likelihood surface which is not known a priori. There are a host of
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methods called the adaptive methods that aim at optimizing the stepping probability N(0,Σ) by
iteratively changing Σ using the information from the previous steps [14].

There is a class of MCMC methods called the ensemble sampling methods that use many
MCMC chains (called the walkers) that work in conjunction to propose new steps and sample
the target distribution. The advantage of these methods is that they generally require minimal
tuning and can perform efficiently on a large class of target distributions. Examples of such
methods are the Affine Invariant method of Goodman et al. [127] and the Differential Evolution
method of [36]. Additionally these algorithms can be parallelized and using enough computa-
tional resources can run as fast as a single MCMC chain.

There are many other improved MCMC methods devised through the years and it’s outside
the scope of this thesis to cover all. Here we mention one notable example called the Hamiltonian
MCMC [24, 25]. Hamiltonian MCMC was first introduced for numerical simulations of lattice
field theory [85] and is particularly suited for very high dimensional problems were the con-
ventional MCMC methods would become inefficient. Intuitively the Hamiltonian method uses
“trajectories” to effectively move in the typical set of the target distribution such that subsequent
steps can explore points in the typical set that are far away whereas the conventional MCMC
methods have to “diffuse” to explore the same space that yields to slow exploration particularly
in higher dimensions.

1.1.5 Parallel tempering

One of the major problems in sampling a probability distribution is the risk of getting stuck in a
local maximum of a likelihood surface that has several maxima. In particular, if a multi-modal
distribution has modes that are sharp and well separated, any MCMC method can struggle to
explore the entire distribution. One solution to this problem is to use parallel tempering [87].

Parallel tempering works by introducing a temperature parameter (T ≥ 1) that is used to make
the target probability distribution more smooth through the relation

πT (θ) ∝ π(θ)
1
T , (1.6)

where πT (θ) is the tempered target distribution at temperature T and π(θ) is the original target
probability distribution. As the temperature increases the target distribution becomes more flat
and hence more easy to sample (For a flat target distribution MCMC would be doing a random
walk).

Parallel tempering normally uses a Temperature ladder (T0 = 1 < T1 < . . . < Tn) each with it’s
associated tempered distribution. Each tempered distribution would be sampled with an MCMC
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method running in parallel. This allows for the higher temperature MCMC chains to easily
explore the entirety of the target distribution while the MCMC routine at T = 1 will be sampling
the original target distribution. The MCMC chains in adjacent tempering levels are then allowed
to swap their position vectors θn and θn+1 once in a while with a probability given by:

min

1,(πTn+1(θn+1)
πTn(θn)

)(1/Tn−1/Tn+1) . (1.7)

This will allow for the MCMC chains at T = 1 to efficiently explore the target distribution
while ensuring the sampled distribution is not biased. A practical aspect of parallel tempering is
the choice of the temperature ladder since it can greatly affect the effectiveness of the algorithm.
The optimal choice of the temperatures depend on the structure of the target distribution and
hence not known a priori. However, the temperatures can be iteratively adjusted to achieve
optimal performance [279].

1.1.6 Model selection and criticism

So far the focus of this section has been Bayesian parameter estimation within the context of
a mathematical model and often that’s all one needs. However, sometimes there is a need to
compare various models with different degrees of complexity and assess their plausibility given
the observed data. Here we briefly cover the Bayesian solution to this problem.

It can easily be shown that:

P(M|D)
P(M′|D)

=
P(D|M)P(M)

P(D|M′)P(M′)
. (1.8)

This means that the relative probability of models M and M′ is proportional to the ratio of
their Bayesian evidence known as the Bayes factor or the odds ratio. Usually one can simplify
this and assume that P(M) = P(M′), that is the prior probability of the models are the same. In
this case evaluating the Bayesian evidence is all that is needed to compare the plausibility of
various models.

There are various methods to calculate the Bayesian evidence. The main methods are ther-
modynamic integration [164], nested sampling [254] and approximate methods such as Laplace
approximation or various information criteria.

Finally, let us discuss the last step which is known as the “model criticism”. Once a model is
selected amongst various models and the model parameters are estimated, one has to “criticize”
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the model based on the observed data; this is the extension of the traditional goodness of fit
tests such as the reduced Chi-squared test. Based on the finding, the models might have to be
revised and the process is repeated until the models can pass the criticism step. In the Bayesian
context, predictive checks are usually used for this purpose [35, 121]. Posterior predictive checks
works by first choosing a sample θ from the posterior distribution. Then a replica data set D′ is
generated using the likelihood function P(D′|θ). Finally the discrepancy between the real data
and the model D(D|θ) and between the replicated data and the model D(D′|θ) are calculated
using a discrepancy measure and compared against each other. The discrepancy measure D can
be the Chi-squared measure or any number of other measures to assess various aspects of the
model.

1.2 Gravitational lensing

The history of the gravitational lensing in the context of General Relativity goes back to 1911
when Einstein calculated the deflection of light by the Sun [91]. He calculated the deflection
angle to be 0.83 arcsec which was wrong by a factor of two due to his use of Newtonian me-
chanics. He later corrected this result, a prediction which was observationally confirmed in 1919
[71]. During 1920’s Eddington [90] and Chowlson [61] entertained the possibility of producing
multiple images in a gravitational lensing event. In 1930’s Einstein suggested that stellar mass
lenses are unlikely to be detected due to small angular separation [92] while Zwicky showed that
galaxies can produce large enough image separation to be detected [300, 301]. The next major
development in the field was the detection of a strong lensing event of a quasar in 1979 [281]
and the reintroduction of the idea of lensing by stellar mass objects by Paczynski [205]. With
the advancements in the instrumentation and the use of dedicated surveys, the number of both
stellar and extragalactic lensing events has greatly increased in the past few decades which has
revolutionized the field of gravitational lensing.

1.2.1 The formalism

Here, we shall present a simple description of gravitational lensing in (asymptotically) flat space-
time, but it can be easily extended to cosmological spacetime.

Figure 1.1 shows the geometry of a gravitational lensing event. As the light rays from the
source follow the null geodesics the wave-fronts get distorted and deflected. The angular position
of the source with respect to the optical axis is denoted as θs, the angular position of the lensed
image is named θl and α denotes the deflection angle. It could be shown that the two dimensional
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Figure 1.1: Schematic view of a gravitational lensing event. The source and the Lens are located
at a distance of DS and DL form the observer respectively. The source is located at an angle θS
from the optical access connecting the lens to the observer. The apparent position of the source
is represented as θL. α is the deflection angle caused by the lensing effect and b is the impact
parameter. Image courtesy of Wikimedia [3].

angular position of the source and the two dimensional angular position of the lens can be mapped
to each other using the lens equation given by

~θS = ~θL + ~α(~θL) = ~θL +∇ψ. (1.9)

ψ is known as the lensing potential which depends on the mass distribution of the lens and the
geometry of the lensing [247] and can be written as:

ψ(~θL) =

∫
κ(~θ) ln | ~θL−~θ|d2θ, (1.10)

where κ is the normalized surface density defined as:

κ(~θ) =
Σ(DL~θ)
Σcritical

, Σcritical =
c2DS

4πGDLDLS
. (1.11)
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DL, DS and DLS represent the distance of the observer to the lens, the distance of the observer
to the source and the distance between the lens and the source as shown in figure 1.1. The
Jacobian of the lensing transformation is of particular interest since it provides information on
how the areas change under lensing transformation and together with conservation of surface
brightness yields the magnification cause by the lensing. The Jacobian matrix A(θL) can be
written as:

A(θL) =
d~θS

d~θL
(1.12)

The Jacobian matrix A is usually expressed in terms of a convergnce κ and and shear γ1, γ2:

A =

(
1− κ−γ1 −γ2
−γ2 1− κ+γ1

)
(1.13)

The convergence is a measure of change in the size of the image due to gravitational lensing
while shear represents the distortion in the shape of the image. The magnification in the flux µ is
given by:

µ =
1

det(A)
=

1
(1− κ)2− (γ2)

, γ =

√
γ2

1 +γ2
2. (1.14)

When det(A) is equal to zero the magnification µ diverges. The locus of all points θL in the
lens plane that satisfy the condition A(θL) = 0 are called the critical curves. The corresponding
points θS in the source plane form the caustics.

1.2.2 Special cases

Now we look at the special case where the lens is a point source. In this case the lens equation
can be explicitly written as

θS = θL−
θ2

E

θL
, θE =

√
4GMDLS

c2DLDS
, (1.15)

where θE is the angular Einstein radius and M is the mass of the lens. If the lens and the source
are perfectly aligned the due to symmetry the image is going to be in the form of a ring located
at θE called the Einstein ring. The lens equation 1.15 has two solutions which correspond to two
lensed images located at
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θL± =
θS ±

√
θ2

S + 4θ2
E

2
. (1.16)

One of the images is located within the Einstein ring and the other one is on the outside,

separated by ∆θL± =

√
θ2

S + 4θ2
E . The two images have magnifications given by:

µ± =
1

1− (θE/θL±)4 . (1.17)

If in a lensing event there are visible images or arcs formed it would be what is known as
an strong lensing event. This usually happens for high mass lenses and well aligned lens-source
systems. If the deflections are too small and there are no visible images but the effect of lens-
ing can be inferred through statistically modifying the orientation of the background sources the
lensing system is in the weak gravitational lensing regime. In some cases there are multiple im-
ages formed but due to small angular separation between the images they cannot be distinguished
and only the variation in the total flux can be observed. In this case the lensing event is called
microlensing. This situation typically arises for stellar mass Galactic lenses. This is evident form
the fact that the Einstein radius θE is approximately given by:

θE

10−3arcsec
≈

(
M
M�

10kpc
D

)1/2

, D =
DS DL

DLS
. (1.18)

As can be readily seen the typical image separation for Galactic lensing events caused by
stellar mass lenses is of order of a milli arcsecond which is too small to be resolved with op-
tical telescopes. Since stars are moving around and the lensing magnification depends on the
source-lens alignment, the total flux received from the microlensed images varies with time.
The timescale for this variation is called the Einstein time tE and is roughly of order of a few
months. The change in the brightness of the background source as a function of time due to the
microlensing effect is called a microlensing light curve.

1.2.3 Gravitational lensing and time delay

Finally, we shall briefly discuss the time delay caused by the gravitational lensing effect. This
is in part due to the geometric effect of bending of the light rays and having to take a different
optical path. This effect is proportional to (θL− θS )2. The second effect is the gravitational time
delay which is proportional to the lensing potential ψ(θL). One can write the total time delay as
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τ(θL) ∝
1
2

(θL− θS )2−ψ(θL). (1.19)

As a result there is a time delay between the light reaching an observer from the different
images in a strong lensing image. The proportionality constant is sensitive to cosmological
parameters such as the Hubble constant H0 and hence measuring the time delay is of particular
interest.
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Chapter 2

Forward modelling of quasar light curves
and the cosmological matter power
spectrum on milliparsec scales

In this chapter we devise an optimal method to measure the temporal power spectrum of the
lensing and intrinsic fluctuations of multiply-imaged strongly lensed quasar light curves, along
with the associated time delays. The method is based on a Monte-Carlo Markov Chain (MCMC)
sampling of a putative gaussian likelihood, and accurately recovers the input properties of simu-
lated light curves, as well as the “Time Delay Challenge”. We apply this method to constrain the
dimensionless cosmological (non-linear) matter power spectrum on milliparsec scales (compa-
rable to the size of the solar system), to ∆2

NL < 4×107 at kNL ∼ 103pc−1. Using a semi-analytic
nonlinear clustering model which is calibrated to simulations, the corresponding constraint on
the primordial (linear) scalar power spectrum isPR < 3×10−9 at kL ∼ 3 pc−1. This is the strongest
constraint on primordial power spectrum at these scales, and is within an order of magnitude from
the standard ΛCDM prediction. We also report measurements of temporal spectra for intrinsic
variabilities of quasar light curves, which can be used to constrain the size of the emitting re-
gion in accretion disks. Future cadenced optical imaging surveys, such as LSST, should increase
the number of observed strongly lensed quasars by 3 orders of magnitude and significantly im-
prove these measurements, even though improvements in modelling quasar accretion and stellar
microlensing are necessary.
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2.1 Introduction

As a light beam travels through the matter distribution in space to reach us it gets both sheared
and focused. If the distortions in the wavefront are large enough, there are going to be multiple
images due to strong gravitational lensing. This effect was first observed by [280] for the doubly-
imaged quasar (Q0957+561). Being bright compact light sources, quasars can be observed up to
high redshifts and are excellent candidates as light sources in strong lensing systems. Many such
systems have been since observed and are of particular interest in cosmology. They can be both
used to study the properties of dark matter and the cosmological parameters such as the Hubble
constant [67, 265].

The time delay between different lensed images is the only parameter which depends on the
cosmological length scales and hence can be used to measure the Hubble parameter. This was
first proposed by [232] and lead to dedicated monitoring programs such as Cosmological Moni-
toring of Gravitational Lenses (COSMOGRAIL). There have been many different approaches to
measure the time delay from long term brightness measurements of the images in strongly lensed
systems. A comparison of some of these methods against synthetic data generated by the Time
Delay Challenge can be found in [166].

Another area where strong lensing can be particularly useful is in detecting (or constraining)
the distribution and abundance of dark matter. For example, it can be employed to study the
amount of dark matter in the lens system (e.g. [30]), or the sizes of its substructures (e.g. [69,
142]).

Less well-known is how time variability of the images can also be used to measure the statis-
tics of CDM nanostructures (or microhaloes). This is known as the transient weak lensing ef-
fect, and is induced by the moving dark matter microhaloes that cross the lines of sight towards
multiply-imaged quasars [227]. In this work, we search for the transient weak lensing signal in
strongly lensed quasar systems, leading to constraints on the (linear and nonlinear) dark matter
power spectrum. As a by-product of our analysis we also measure the strong lensing time delay,
as well as the temporal power spectrum of quasar accretion flow.

The chapter is structured as follows: We describe the data used in this work in Section 2.2.
Next, our method is described in detail in section 2.3 and the details of the parameter estimation
techniques are discussed in Section 2.4. The limitations arising from the finite size of the light
emitting region in source quasars is discussed in section 2.5. Section 2.6 presents the results
of applying our method to the Time Delay Challenge data. The results for internal and lensing
power spectra, as well as constraints on the ΛCDM linear spectrum are presented in Section 2.7,
which are followed by the Conclusions.
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2.2 Datasets

Strongly lensed quasar systems have been monitored by several different groups. This includes
radio observations such as [241] and optical measurements. Optical measurements include ded-
icated campaigns such as COSMOGRAIL as well as observations by other groups such as the
OGLE gravitational microlensing group [161]. We use the data made publicly available by COS-
MOGRAIL to demonstate our method.

COSMOGRAIL is a project aimed at constraining the cosmological parameters by monitor-
ing strongly lensed quasars. It has monitored the light curves of a few well known lensed quasars
over the course of a decade in an attempt to measure the time delay between different images.
The data consists of R-band light curves for each lensed image. There are six publicly available
lensed systems, namely HE 04351223, SDSS J1001+5027, RX J11311231, SDSS J1206+4332,
HS 2209+1914 and DES J0408-5354 [1].
To validate our method we have used the Time Delay Challenge (TDC) dataset. It includes thou-
sands of light curves that are made to represent different data quality and observational strategies,
as well as many realistic features present in real data such as periods of missing data and the ef-
fect of gravitational microlensing by stars in the lensed galaxy. As such, the TDC dataset serve
as an independent test to measure the performance of our method.

2.3 Method description

The ΛCDM model predicts a hierarchy of dark matter haloes on different length scales. While
baryonic matter can cool and form galaxies in the potential wells of larger dark matter haloes, the
cooling time is too long in the smaller halos, which are then non-luminous. As the light coming
from a distant quasar travels towards the observer it encounters several dark matter haloes of
various sizes, each one inducing an additional weak lensing effect. Since the haloes are moving
across the line of sight, the lensing effect is time variable. In [227] a relation between the dimen-
sionless matter power spectrum and the temporal power spectrum of the lensing amplification
was derived. In this section, we describe how the temporal lensing power spectrum and the time
delay are constrained by strongly lensed quasar light curves. Section 2.5 describes how the con-
straints on temporal lensing power spectrum are related to the limits on the dark matter power
spectrum.

In the following, we describe how the likelihood function for a set of observations depends
on the free parameters of the model. The data is the observed magnitude of the quasar images in
a strongly-lensed system over a period of time. The model consists of time delays between differ-
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ent images and two power spectra: the temporal power spectrum of weak lensing amplification
and the temporal power spectrum of intrinsic quasar magnitude variations.

A given image in the multiply-imaged quasar system is labeled with the subscript a. Each
measurement of the apparent magnitude for image a is decomposed into three parts, an intrinsic
part, m(tia + Ta), a part caused by the gravitational lensing effect, La(tia), and the measurement
error, nia:

Iia = m(tia + Ta) + La(tia) + nia (2.1)

where tia is the time at which the ith measurement is done for image a. Ta represents the grav-
itational time delay for image labeled by a (with T1 = 0). The vector I contains the light curve
data for lensed images of the same quasar stacked together.

The subscript i runs over different time steps from 1 up to the total number of time steps
NT . The subscript a takes NI different values where NI is the number of images. These two
indices can be combined into a single index (represented by greek letters) and defined as µ =

i + NT × (a−1). Using this convention, Equation 2.1 can be re-written as:

Iµ = m(tµ+ Ta) + La(tµ) + nµ. (2.2)

The covariance matrix for apparent magnitude measurements can be expanded in terms of power
spectra:

Cµν = 〈IµIν〉 = δµνσ
2
µ+∫

dω
2π

eiω(tµ−tν)[δabPL(ω) + eiω(Ta−Tb)Pm(ω)]. (2.3)

where Pm(ω) is the intrinsic temporal power spectrum and PL(ω) is the lensing temporal power
spectrum. δµν is the Dirac delta function and σ2

µ = 〈n2
µ〉. Note that we have assumed that the lens-

ing effect is uncorrelated across different images, which is the key property we use to distinguish
the intrinsic from the lensing temporal power spectra.

Now we divide the relevant part of frequency space into NF frequency bins and approximate
the power spectra using the Heaviside step functions as:

PL(ω) =

NF∑
l=1

plKl(ω),

Pm(ω) =

NF∑
l=1

pl+NF Kl(ω),

Kl(ω) = Θ(ω−ωl +∆ωl)Θ(ωl +∆ωl−ω). (2.4)
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We assume that PL(ω) and Pm(ω) are even functions while pl’s are unknown weights to be
estimated using the data. The covariance matrix can then be rewritten as:

Cµν = δµνσ
2
µ+

2NF∑
l=1

plK̃l
µν (2.5)

Where K̃l
µν for 1 ≤ l ≤ NF is defined as:

K̃l
µν = δabFl(tµ− tν)

K̃l+NF
µν = Fl(tµ− tν+ Ta−Tb)

Fl(∆t) =

∫
dω
2π

eiω∆tKl(|ω|) (2.6)

where ∆Tab = Ta−Tb is the time delay between different images. For each unknown parameter
set pl and ∆Tab, the chi-squared can be written in terms of the data vector I and the covariance
matrix C as:

χ2(pl,∆Tab) = ItCI + log[det(C)] (2.7)

Having the likelihood function ≡ exp(−χ2/2), we use a Markov Chain Monte Carlo (MCMC)
to explore the parameter space and find the best fit values together with their uncertainties.

The power spectra functions are considered between a minimum and a maximum frequency
corresponding to a minimum time scale Tmin equal to one third of the median of the time dif-
ference between data points and a maximum time scale Tmax which is equal to three times the
time difference between the first and the last data points. These choices relect the frequency
range where our data has the highest constraining power. Since the results are not sensitive to
these bounds we adopt these value throughout this chapter. NF has been set to 9 while the width
of frequency bins has been chosen such that they are equality spaced in logarithmic scale. In
addition there is a bin at very low frequency to take out the very long scale variations.

2.4 MCMC Sampling

In this section we describe the method used to explore the model parameter space and find their
posterior probability density function.

First, we need to define a likelihood function and choose priors on model parameters. In this
work, we choose the following form for the likelihood function:

L(pl,Ta) = exp
(
−
χ2

2

)
(2.8)
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We further choose a flat prior over a reasonably wide range for all the parameters in the model.
The details on the ranges are presented with the results below.

Having a large number of parameters, MCMC methods would be a natural choice. We tried a
range of MCMC algorithms such as Metropolis-Hastings and Gibbs sampling with adaptive step
size tuning but they generally struggled to yield reliable answers and suffered from convergence
issues. A combination of Affine-Invariant MCMC [127] and parallel tempering proved to give
reliable estimates. Here is a brief description of the algorithm used.

Affine invariant MCMC is a particular form of ensemble sampling that performs equally
well on a parameter space mapped by any Affine transformation. In particular it can sample
highly skewed distributions with linear correlations very efficiently. It’s also straightforward
to parallelize and hence take advantage of the available high performance computing facilities.
These methods only have a few hyperparameters and can be efficiently used on a large number of
problems with minimal need for tuning. Having a highly irregular and spiky likelihood surface,
the Affine-invariant ensemble sampler would spend a long time in local extrema and would suffer
from slow convergence. To circumvent this problem the ensemble sampler was combined with a
parallel tempering scheme [87].

Parallel tempering makes many copies of the likelihood function modified by a “temperature”
parameter:

L ∝ exp
(
−
χ2

2T

)
, (2.9)

where 1≤ T ≤ Tmax is the temperature parameter. In our runs generally around 5 tempering levels
were used. generally At T = 1 we have the original likelihood that we wish to sample. We run an
independent ensemble sampler at each temperature and let the chains at different temperatures
swap their positions in the parameter space after many Monte Carlo steps. This happens with a
probability given by:

min
1,L(~x2,T2)
L(~x1,T1)

1/T1−1/T2
, (2.10)

where T2 > T1. ~x1 and ~x2 are the positions of the two chains in the parameter space. In this way
the high-temperature chains easily move in the parameter space and visit places that would have
been difficult for the low-temperature physical chains to visit. By performing position swaps, the
physical chains can sample the region allowed by the priors effectively even for hard to sample
multimodal distributions. The posterior probability distribution function is then given by the
density of the lowest temperature chains (T = 1) only.

The choice of temperatures has an important effect on the performance of the sampler. Firstly,
the maximum temperature should be high enough to allow the chains to effectively move every-
where within the region permitted by the priors. Secondly, the temperature difference between
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adjacent temperatures should be small enough to allow position swaps to happen often. The
choice of temperature ladder is not clear a priori. We used a method to adaptively tune the
temperatures so that we get uniform swapping acceptance rate between the adjacent tempera-
tures. This avoids having a bottleneck in propagation of positions visited in the parameter space
by the highest temperature chain to the lowest temperature physical chains [279]. The parallel
tempering method could also be trivially parallelized which is very important in our case since
likelihood calculations are computationally expensive and the runtimes can be otherwise very
long.

2.5 Finite Size Effect

Assuming the quasar is a point source, the lensing temporal power spectrum can be calculated
and is given by [227]:

ωPL(ω) = 18π2H4
0Ω

(0)
m

2
∫ χs

0

(
1−

χ′

χs

)
χ′2dχ′∫ ∞

0
dv e−v2/σ2

( v
σ

)2 ∆2

ω
(1 + zχ′)3, (2.11)

where χs is the comoving distance to the quasar, zχ is the redshift at comoving distance χ, σ is
the velocity dispersion of dark matter halos and ∆2 is the dimensionless matter power spectrum.
For this work, we adopt σ ' 500 km/s, which is dominated by the cosmological bulk flows on
large scales (∼ 30 Mpc) [227].

We will recalculate this to take into account the finite size of the quasars’ emitting region
and generalize this result to include the effect of the finite size of the source. Assuming a radial
surface brightness profile given by a function f (r) we find the following formula for the lensing
temporal power spectrum:

ωPL(ω) = 18π2H4
0Ω

(0)
m

2
∫ χs

0

(
1−

χ′

χs

)2

χ′2dχ′∫ ∞

0

dv
σ2 e−v2/2σ2

∫ ∞

ω/v(1+z)

dk⊥
2π

ω(1 + zχ′)∆2F2
0(k⊥)

k2
⊥

√
k2
⊥−ω

2/v2(1 + zχ′)2
, (2.12)

18



100 101 102 103
Time [days]

10 3

10 2

10 1

100
Po

we
r r

at
io

Figure 2.1: Ratio of temporal power spectrum for an extended source of size 0.1 light−day to
that of a point source. The horizontal axis is T ≡ 2π/ω.

k⊥ is the transverse wavenumber and F0(k⊥) is the normalized Hankel transform of surface
brightness f (r) which is given by:

F0(k⊥) =

∫ ∞
0 f (r)J0[rk⊥(1 + z)]rdr∫ ∞

0 f (r)rdr
. (2.13)

Figure 2.1 shows the ratio of the lensing temporal power spectrum for an extended source of
size 0.1 light−day compared to a point source quasar. The extended source is assumed to be a
Shakura-Sunyaev disk [250] radiating as a black body. As can be seen here the finite size of the
source can drastically suppress the power on short time scales.

Another factor to consider is the effect of strong lensing on amplifying the fluctuations from
the transient weak lensing as well as the intrinsic fluctuations[227]. The effect is an enhancement
in the power by a factor of: (

2(κ2 +γ2)1/2

|(1− κ)2−γ2|

)2

, (2.14)

where κ and γ are the convergence and shear.
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The values of κ and γ are generally not known for the source quasars so the enhancement
cannot be calculated. If γ2� 1 the enhancement factor can be approximated as

4(−1 +
√
µ)2µ, (2.15)

where µ = 1/|(1− κ)2 − γ2| is the lensing magnification [266]. We used the estimated magnifi-
cations, calculated through lens modelling for three quasars, namely, HE-04351223 [285], RX-
J11311231 [27] and DES-J0408-5354 [6] to find the enhancement factor. For all the other quasars
we used the average enhancement for the known quasars which is ≈ 400.

2.6 Recovering time delays and the time-delay challenge

As discussed in Section 2.3, our model consists of the intrinsic and lensing power spectra and
the time delay between the light-curves. Therefore, we can recover the time delay for the quasar
images. In this section, we test the ability of our pipeline to recover the correct time delays.

The first test involves generating synthetic light curves and using them in our pipeline. The
lightcurves are generated using predefined lensing and intrinsic power spectra and time delays.
We then compare the recovered values to the actual input values. The data is generated to mimic
the observational strategy adopted by COSMOGRAIL. The time sampling is randomized and the
time shift due to strong gravitational lensing is included. The light curves include observational
errors and missing data intervals corresponding to non-observing seasons. Figure 2.2 shows an
example of such a light curve for two images of a strongly lensed quasar.

For each run several tests are performed to ensure the MCMC chains have converged. For
this example light curve the true time delay ∆T = 23 days was recovered as ∆T = 25.1±3.7 days.
In addition the lensing and intrinsic power spectra were recovered as shown in Figures 2.3 and
2.4.

The next test involves using TDC light curves [166]. There are thousands of generated light
curves separated into different classes with different data quality and observational strategies.
These are called different rungs and the differences include different cadence, total observational
timespan and dispersion in the cadence. We chose light curves from all 5 available rungs and
compared the recovered time delays to the true values. Table 2.1 shows the results of recovered
time delays for randomly selected TDC light curves. The results correspond to a randomly
selected light curve from each rung.
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Figure 2.2: Synthetic light curves for the two quasar images.

Time delay[days]
rung NI Actual Recovered

0 2 5.78 5.34+0.60
−0.54

1 2 14.23 14.06+0.09
−0.08

2 2 28.44 29.16+0.96
−0.71

3 2 57.53 56.71+0.91
−1.29

4 2 27.2 26.91+0.29
−0.29

Table 2.1: Recovered values vs actual time delay values for randomly selected TDC light curves.
NI is the number of images and error bars are 1σ significance level.
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Figure 2.3: Lensing power spectrum for the synthetic quasar light curve measured by our method.
The orange dots are the actual values used to generate the light curve. The errorbars show the
three sigma uncertainty region.
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Figure 2.4: Intrinsic power spectrum for the synthetic quasar light curve measured by our
method. the orange dots are the actual values used to generate the light curve. The errorbars
show the three sigma uncertainty region.
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2.7 Results

In this section, we discuss the results of applying our method to COSMOGRAIL light curves.
The results are divided into three separate sections discussing the time-delays, the limits on the
dark matter power spectrum and the power spectrum for quasar variability.

Once the limits on the nonlinear dark matter power spectrum are found, one can use the stable
clustering hypothesis to transform these into limits on the linear dark matter power spectrum([209,
257, 297]). Here, we shall use the particle phase space average density (P2SAD) modelling, pro-
vided in [297], which is calibrated against numerical N-body simulations [259] The model is
inspired by the stable clustering hypothesis in phase space and supported by the remarkable uni-
versality of the clustering of dark matter in phase space as measured by P2SAD across simulated
haloes of different masses, environments, and redshifts. On small scales and for primordial power
spectra which are reasonably similar to ΛCDM, we can fit the P2SAD predictions for ∆2

NL(kNL)
by power laws in terms of the linearly extrapolated power spectrum ∆2

L(kL):

∆2
NL(kNL) ≈ a

[
∆2

L(kL)
]α
, kNL ≈ b

[
∆2

NL(kNL)
]1/3
× kL, (2.16)

where a = 0.24,b = 1.12 and α = 3.05.

The inferred linear power spectrum ∆2
L(kL) can then converted to the primordial power spec-

trum PR(kL), using the ΛCDM linear transfer and growth functions. For Planck 2015 cosmology
the conversion factor is:

∆2
L(3 pc−1) = 1.5×1011PR(3 pc−1) (2.17)

2.7.1 Time delays

In this section, we present the recovered time-delay values and compare them to the results
obtained by the COSMOGRIAL collaboration. Table 2.2 summarizes the results. It shows the
time delay values obtained in this work and the time delay values obtained in previous works. It
should be noted that in cases where multiple previous estimates existed only one is quoted in the
table. The last column in the table provides the references for the quoted time delay values.The
fourth column shows the name of the images used for calculating the time delays. The name
designations follows that of the corresponding reference given in the last column. There are
two sets of results for DESJ0408-5354 in the table. The first result is when only two of the
three available light curves were used. The next two lines show the result when all three light
curves were fitted simultaneously. The corresponding posterior distributions of the time delays
are shown in figure 2.5
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Time delay[days]
Name This work Previous works Images Ref.

HE0435-1223 8.56+0.05
−0.06 8.4±2.1 BA [31]

RXJ1131-1231 0.45+0.05
−0.90 0.7±1.0 BA [270]

HS2209+1914 22.11+2.95
−3.33 20.0±5.0 BA [96]

J1206+4332 109.31+2.27
−2.34 111.3±3.0 AB [96]

J1001+5027 116.11+2.11
−2.62 119.3±3.3 BA [230]

DESJ0408-5354 113.91+39.34
−1.46 112.1±2.1 BA [66]

DESJ0408-5354
113.93+26.92

−11.58 112.1±2.1 BA [66]

151.44+47.01
−17.57 155.5±12.8 DA [66]

Table 2.2: Time delay values obtained using our method compared to the previous works. The
first column is the name of the quasar system. The second and third column present the values
found in this work and the values found in previous works. The fourth column lists the images
used to calculate the time delays. The image designations follow the conventions in the corre-
sponding reference given in the last column. As we can see in figure 2.5 the asymmetric and/or
large errors compared to previous results can be attributed to the extended tail and/or secondary
peaks in the posterior. This will not be captured in a Gaussian approximation.
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Figure 2.5: Posterior distributions of the time delays from MCMC chains corresponding to the
values reported in table 2.2. The title of each panel shows the quasars and imgae pairs according
to table 2.2. The top row show the two time delays obtained when simultaneously fitting three
light curves. The other panles are obtained by only fitting the pair of light curves noted in the
title.
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2.7.2 Quasar temporal power spectrum

One of the output products of our pipeline is the temporal power spectrum of intrinsic quasar
variability. Figure 2.6 shows this measurement for the COSMOGRAIL quasars. The low fre-
quency break in the power spectrum can be used to constrain the size of the accretion disk ([171],
[138]). The detailed analysis of disk size will be the subject of a separate paper.
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Figure 2.6: Measurements of the temporal power spectrum for quasar intrinsic variability. Error
bars are the two sigma confidence intervals. Different colors represent different quasars. The
color red is DESJ0408-5354 using two light curves, magenta is the same quasar using three light
curves, black is J1001+5027, yellow is J1206+4332, green is HS2209+1914, blue is HE0435-
1223 and cyan is RXJ1131-1231.
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2.7.3 Dark matter power spectrum

The last output from our analysis is the lensing power spectrum. Figure 2.7 shows the results for
COSMOGRAIL quasars. The resulting lensing power spectra are then converted into dimension-
less matter power spectra. It should be noted that the lensing power recovered by our pipeline
contains both the transient weak lensing signal from dark matter structures and the gravitational
microlensing signal from the stars within the lens galaxy and thus should be interpreted as upper
limits. These limits depend upon the size of the quasar disk via the finite size effect. We report
four sets of limits assuming different disk sizes. The first set is assuming the light emitting region
in the quasar disk size is almost a point source at 10−5 light−day. This may represent the situa-
tion where most of the light comes from a compact hot spot on the accretion disk. The size of the
light emitting region in the quasar disk is estimated to be in the range of ≈ 0.1− 10 light−day.
We plotted four sets of limits for disk sizes of 10−5, 0.1, 1 and 10 light−day. Figure 2.9 shows
these limits relative to the ΛCDM predictions using the P2SAD modelling discussed above [297].
The best upper limits are given by the doubly lensed Quasar system J1206+4332 (Black lines in
figure 2.9). Figure 2.8 shows the light curves for the two images in this lensed system.
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Figure 2.7: Measurements of the lensing power spectrum. Error bars are the two sigma confi-
dence intervals. Different colors represent different quasars. The color red is DESJ0408-5354
using two light curves, magenta is the same quasar using three light curves, black is J1001+5027,
yellow is J1206+4332, green is HS2209+1914, blue is HE0435-1223 and cyan is RXJ1131-
1231.

2.8 Conclusion and Future Prospects

We presented a novel method to simultaneously fit for the time delays of strongly lensed quasars,
as well as the power spectra of their intrinsic variability and the temporal power spectrum of the
gravitational lensing, caused by stellar microlensing and dark matter haloes. The recovered time
delays are consistent with the previous methods and, depending on the light curve quality, can
even yield sub percent level accuracy.

We have presented upper limits on the dimensionless dark matter power spectrum over the
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Figure 2.8: The mean subtracted light curves for the two lensed images in doubly lensed Quasar
system J1001+5027. The light curves are shifted by the best fit time delay value.
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Figure 2.9: Upper limits on dimensionless dark matter power spectrum at the three sigma level.
Different sub-plots correspond to different quasar disk sizes given in light days. The lower (up-
per) grey band shows the prediction for the nonlinear power spectrum using the P2SAD mod-
elling of [297], assuming ΛCDM (5×ΛCDM) linear power spectrum (the band thickness shows
0.5 dex uncertainty in the substructure volume fraction 0.1 . fsubs . 0.4). Different colors rep-
resent different quasars. The color red is DESJ0408-5354 using two light curves, magenta is
the same quasar using three light curves, black is J1001+5027, yellow is J1206+4332, green is
HS2209+1914, blue is HE0435-1223 and cyan is RXJ1131-1231.
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10−7 − 10−3pc scales which remain consistent with the ΛCDM predictions, despite the depen-
dence on the size the emission region in quasar accretion disks. Our strongest limit on the
(non-linear) matter power spectrum is on milliparsec scales, and is given by ∆2

NL < 4× 107 for
kNL ∼ 103pc−1. Using the P2SAD model for nonlinear clustering of CDM nanostructure [297],
which is calibrated against high resolution N-body simulations, we can translate this limit to a
limit on the linear power spectrum. The corresponding constraint on the primordial (linear) scalar
power spectrum is given by PR < 3× 10−9 on kL ∼ 3 pc−1, which is the strongest constraint on
these scales, and is within an order of magnitude of the ΛCDM prediction, assuming a power
law power spectrum down to these scales. Finally we were able to measure the power spectrum
for the intrinsic quasar variability which could help us study the nature of quasar variability and
accretion processes.

Future cadence optical imaging surveys, most notably the Large Synoptic Survey Telescope
(LSST), are expected to improve the size of the sample of strongly lensed quasars by ∼ 3 orders
of magnitude, dramatically reducing our statistical errors [200]. However, it is clear that further
theoretical modelling in the structure of the emission region in quasar accretion disks, as well as
a clean separation of microlensing and transient weak lensing effects (e.g., via the gaussianity of
the noise [227]) are necessary to lower the upper limits and/or turn them into a detection.
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Chapter 3

Resolving microlensing events with
triggered VLBI

Microlensing events provide a unique capacity to study the stellar remnant population of the
Galaxy. Optical microlensing suffers from a near complete degeneracy between the mass, the
velocity and the distance. However, a subpopulation of lensed stars, Mira variable stars, are
also radio bright, exhibiting strong SiO masers. These are sufficiently bright and compact to
permit direct imaging using existing very long baseline interferometers such as the Very Long
Baseline Array (VLBA). We show that these events are relatively common, occurring at a rate of
≈ 2 yr−1 of which 0.1 yr−1 are associated with Galactic black holes. Features in the associated
images, e.g., the Einstein ring, are sufficiently well resolved to fully reconstruct the lens proper-
ties, enabling the measurement of mass, distance, and tangential velocity of the lensing object to
a precision better than 15%. Future radio microlensing surveys conducted with upcoming radio
telescopes combined with modest improvements in the VLBA could increase the rate of Galactic
black hole events to roughly 10 yr−1, sufficient to double the number of known stellar mass black
holes in a couple of years, and permitting the construction of distribution functions of stellar
mass black hole properties.

3.1 Introduction

Gravitational lensing presents one of a handful of current observational windows on the dark uni-
verse. The distortion of background galaxies by galaxy clusters has provided a striking demon-
stration of general relativity [21]. More importantly, it has enabled the unique reconstruction
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of the projected mass density of the cluster dark matter haloes [205, 231]. While the dynamics
of stars and gas probe the dark matter halo within 102 kpc of the central galaxy [213], gravita-
tional lensing currently provides the only means to detect and study the halo on larger scales. By
combining such measurements, it has become possible to map the dark matter distribution in the
local universe [251].

The detailed structure of a gravitationally lensed image may be separated into the intrinsic
structure of the lensed object and a distortion imposed by the lens that depends upon the lens
location and mass distribution. A typical scale is set by the Einstein angle, this is exactly the
angular scale of the Einstein ring cast by a point lens,

θE =

√
4GM(DS −DL)

c2DS DL
, (3.1)

where M is the total source mass and DS and DL are the source and lens distance, respectively.
For galaxy clusters this can span many arcminutes.

Gravitational lensing within the Galaxy also occurs when the angular separation of a back-
ground star and a foreground object becomes comparable to θE . This differs from the gravita-
tional lensing of clusters and galaxies in two important respects. Firstly, the angular size of the
lensed image has a typical scale of θE ≈ 1(M/M�)1/2 mas, well below the resolution of existing
optical telescopes. As a result, direct optical imaging has not been feasible. Nevertheless, the
conservation of brightness, a consequence of Liouville’s theorem, implies substantial magnifi-
cations of the total flux associated with the magnified image, typically increasing by more than
an order of magnitude. Secondly, the peculiar motions of objects within the Galaxy cause the
source-lens system to evolve on time-scales comparable to

tE ≡
θE∣∣∣µµµS −µµµL

∣∣∣ , (3.2)

where µµµS and µµµL are the source and lens apparent angular velocities, respectively. For typical
values in the Galaxy tE ranges from days to months, depending on the source mass and distance
of lens and source from the observer. The relationship between tE and the lens structure implies
a characteristic light curve, referred to as a microlensing event.

The rarity of serendipitous lens-source alignments require the monitoring of large numbers of
potential sources to identify candidate microlensing events. For this purpose optical surveys of
dense star fields have been undertaken by a number of groups, both to constrain the contribution
of stellar remnants to the Galactic dark matter budget [188] and more recently to find extrasolar
planets which results in short time-scale features in the microlensing light curve [118]. These
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have successfully excluded remnants with masses between 10−7M�–10M� as a candidate for
dark matter within the Galactic halo [12, 165].

Motivated by the potential to detect extra-solar planets, recent years have seen the initiation
of high-cadence, large-area surveys. These have been enabled by the development of large CCD
arrays for telescopes with wide fields of view. As a result, the OGLE1 (Optical Gravitational
Lensing Experiment) collaboration recorded ≈ 2× 103 events in 2013, using the Early Warning
System [277] to alert the follow-up telescopes for monitoring microlensing events with better
time-coverage . The Korean Microlensing Telescope Network (KMTNet) will increase the num-
ber of events to 6000 per year with a 10 minute cadence operating continuously [217].

Reconstruction of microlensing events usually only determines the tE . As a direct conse-
quence, the mass of the lens, and the distances and velocities of the lens and source suffer from a
fundamental degeneracy. Methods for breaking the mass-distance degeneracy typically requires
higher-order effects. If the microlensing parallax can be measured – an asymmetry in the light
curve induced by the non-uniform motion of the Earth – the lens distance and the mass of the lens
can be constrained [128, 229]. Parallax effect can also be employed by monitoring microlens-
ing events from earth and space simultaneously. Spitzer has been used to this end, measuring
microlensing parallax and thus providing an additional constrain [260]. Alternatively the source
finite-size effect could be used to break the degeneracy. If the angular impact parameter is smaller
than the source angular size the point source approximation is no longer valid and the finite-size
effect becomes important. By analyzing the light curve an additional relation between angular
source size and angular Einstein radius could be found. In both cases, the lens and the source
apparent motions must be subsequently measured after the event to remove these from consid-
eration [see, e.g., 132], which is only possible for stellar lenses and explicitly excludes those
associated with stellar remnants.

Directly resolving the image would greatly simplify the reconstruction of the lens parame-
ters. The typical scales of microlensing events are well matched to those achievable by very long
baseline interferometry (VLBI) at centimetre wavelengths, e.g., with the Very Long Baseline Ar-
ray (VLBA). Unfortunately, imaging microlenses with the VLBA requires compact radio bright
sources with typical brightness temperatures in excess of 1010 K, well above the typical stellar
temperatures. However, the unprecedented rate at which microlensing events are being identified
by optical surveys makes it possible to leverage rare source properties for this purpose.

Mira variables provide a natural target for optically triggered radio imaging microlensing
experiments.2 Miras are asymptotic giant branch (AGB) stars with month time-scale pulsations

1http://ogle.astrouw.edu.pl/ogle4/ews/ews.html
2[141] explore a number of other potential radio-bright microlensing targets, including the continuum emission

from a wide class of giants. Of these, only the SiO masers from Miras and active galactic nuclei have sufficiently
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largely determined by convection in their envelopes [288]. While the optical luminosities of
Miras can vary over three orders of magnitude [233], the typical peak luminosities are on the
order of 103L�, ensuring that they are among the brightest objects in microlensing survey samples
[258]. With typical masses similar to 1M� Miras are relatively numerous despite having AGB
lifetimes of roughly a million years. Given the number of stellar targets, optical depth of lenses,
and typical lensing timescales the rate of microlensing events with hundred percent detection
efficiency is given by

Nevents

NstarsTobs
=

2
π

τ

< tE >
. (3.3)

Assuming there are 4 × 104 Mira stars in the bulge (see Section 3.3.2), the optical depth of
microlensing events toward the Galactic bulge is τ ' 2.35×10−6 [261], and a typical time scale
of one month for the microlensing events (i.e. < tE >' 1 month) we therefore expect to observe
roughly 1 Mira-source microlensing events per year.

Of particular importance here is the presence of SiO masers in the extended atmospheres of
Miras. Typical sizes of the masing regions are 1 AU, corresponding to angular sizes of 0.1 mas for
distances characteristic of bulge stars [236]. Because of the nonthermal nature of the maser pro-
cess, the spots can have brightness temperatures as high as 5×1010 K, well above the thresholds
for imaging with the VLBA [236]. Within the Galactic center, the inner parsec of the Galactic
bulge, the SiO masers associated with evolved stars have been imaged with the VLBA at angular
resolutions of 0.7 mas, limited by the interstellar electron scattering in that region [235, 236].
Outside of the Galactic center, it should be possible to image these with resolutions approaching
0.3 mas.

Here we explore the rates of suitable microlensing events anticipated by current and future
surveys and the precision with which the associated lens parameters can be reconstructed. We
propose using optical microlensing surveys to trigger follow-up VLBA observations based on
source location in the color-magnitude diagram, anticipated event duration, and the lack of a
bright lens counterpart. A subset of these will be Miras, previously identified via the observation
of long-time instrinsic variability. Massive lenses are more heavily represented in long-duration
events, and those without obvious stellar counterparts are more likely to be associated with mas-
sive compact objects.

In section 3.2 we describe a Monte Carlo simulation of microlensing events, discuss the rela-
tive rates at which Miras are expected to be lensed by various objects, including stellar remnants,
and how event selection can be optimized for imaging based on optical properties. Section 3.3
discusses the absolute rates of radio-bright black hole microlensing events of a variety of poten-
tial surveys. Section 3.4 describes the resulting images for a simple maser model and estimates

high brightness temperatures to be amenable to VLBI imaging.
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the accuracy with which the lens properties can be reconstructed. The implications for con-
structing mass and distribution functions for the Galactic remnant population is discussed in 3.5.
Finally, conclusions are collected in 3.6.

3.2 Stellar Remnants in Simulated Microlensing Surveys

The rates of microlensing events associated with compact remnants depends on the distribution
of sources and lenses within the Galaxy and the detection efficiency of current and upcoming
microlensing surveys. Here we describe simulations of an OGLE-like microlensing survey and
estimate the number of microlensing events we anticipate to be associated with the various Galac-
tic remnant populations. To do this, we perform mock surveys assuming the monitored stellar
field is located in the Galactic bulge.

Necessary inputs are the mass, velocity, color, and magnitude distributions of potential sources
and the mass and velocity distributions of potential lenses. For simulation of microlensing events,
we adapt the detection efficiency in terms of the Einstein crossing time of OGLE survey sources
[290]. We describe the details of the model here.

3.2.1 Galactic Distribution Model and Stellar Lens/Source Population Model

To generate mock microlensing events we require the spatial and velocity distributions of the
stellar targets and lenses.

For the structure of the Galaxy, we use thin disk model and standard bulge model from [26].
The density distribution in disk is modeled in cylindrical coordinates by a double exponential
function,

ρD(R,z) =
Σ

2H
exp

(
−(R−R�)

Rd

)
exp

(
−|z|
H

)
, (3.4)

where Σ is the column density of the disk at the Sun position, H the height scale and Rd the
length scale of the disk. The distribution of the lens transverse velocity with respect to the line
of sight is established from solar motion and the local lens velocity distributions (see Table 3.1).

The bar is described in a Cartesian frame positioned at the galactic center with the major axis
x tilted by φ = 45◦ with respect to the Galactic center-Sun line. The bar density is given by

ρB =
MB

6.57πabc
e−r2

s/2

r4
s =

[( x
a

)2
+

(y
b

)2
]2

+
z4

c4 ,

(3.5)
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Structure Parameter Value
Σ (M� pc−2) 50
H (kpc) 0.325

Disk Rd (kpc) 3.5
velocity σr (kms−1) 34.
disper- σθ (kms−1) 28.
sions σz (kms−1) 20.
MB (M�) 1.7×1010

a (kpc) 1.49
Bar b (kpc) 0.58

c (kpc) 0.40
velocity σ (kms−1) 110
ρ0 (M�pc−3) 0.932×10−5

Spheroid ac (kpc) 0.5
velocity σ (kms−1) 120
ρH� (M�pc−3) 0.008
Rc (kpc) 5.0

Halo M in 60 kpc (1010M�) 51
velocity σ (kms−1) 200

Table 3.1: Assumed parameters of the galactic model, The model is partly adopted from [229]

where MB is the bulge mass, and a, b and c are the scale length factors. The assumed spherically
symmetric dispersion velocity of bulge stars is 110 km s−1. For the density of the spheroid
structure we take the following function [240],

ρspher =

ρ0(ac/8.5kpc)−2.44 a ≤ ac

ρ0(a/8.5kpc)−2.44 a ≥ ac
(3.6)

a2 = R2 + z2/(0.76)2, ac, ρc and assumed spherically symmetric spheroid velocity dispersion are
given in table (3.1).

Combining the density distribution of Galaxy, kinematics, mass function and stellar popula-
tion of stars, we can generate microlensing events in terms of tE , Ml, Dl, Ds, θE and π, where π
is the parallax parameter that is described in the Appendix A. We use the detection efficiency of
OGLE survey in terms of Einstein crossing time (i.e. ε(tE)) to select the observed microlensing
events in our simulation [290]. A general overview about the simulation of microlensing events
can be found in [226].
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3.2.2 Remnant Population Model

In addition to the known stellar populations, gravitational lens candidates include the Galactic
population of compact objects. In principle, these may be comprised of the remnants of stellar
evolution and primordial objects. We make the conservative assumption that the latter are absent,
and consider only the remnants of massive stars.

The end point of stellar evolution depends primarily on the mass of the progenitor. We
consider two classes of remnants, white dwarfs and black holes. We ignore the intermediate
neutron stars, which we expect to contribute marginally to the high-mass tail of the white dwarf
population and otherwise be indistinguishable from them using microlensing observations alone.
Hence in practice the remnants are effectively white dwarfs/neutron stars and black holes.

Encoded in the remnant population is the Galactic high-mass star formation history. Once
the relationship between the zero-age main sequence progenitor mass (MMS) and the final rem-
nant mass (MR, where R may be WD or BH) is specificed, the mass function3 (φ(MR)) is given
solely in terms of the star formation rate (Λ(t)) and initial mass function of main sequence stars
(Φ(MMS)):

φ(MR) =

∫
dt

Λ(t−TMS)Φ(MMS)
d log10 MR/d log10 MMS

, (3.7)

where TMS ≈ 10(MMS/M�)−1.5 Gyr is the lifetime of a main sequence star with mass MMS asso-
ciated with the remnant mass MR, and the integration is over the entire Galactic history. Effec-
tively, this is simply the number of remnants formed over the history of Galactic star formation,
excluding those stars that remain on the main sequence. For this we adopt the star formation rate
from [137], which peaks roughly 10 Gyr ago, and the “Disk and Young Clusters” stellar initial
mass function (IMF(M)) from [54], though employing the “Universal” IMF from [163] makes
no discernible difference.

We relate MWD and MMS via the piecewise continuous expression presented in [244], ob-
tained for white dwarfs in open clusters by comparing the white dwarf ages inferred by cooling
models and cluster age from isochrone fitting:

MWD/M� =



0 mMS ≤ 0.5588
0.01mMS + 0.5418 0.5588 < mMS ≤ 1.7
0.134mMS + 0.331 1.7 < mMS ≤ 4
0.047mMS + 0.679 4 ≤ mMS < 8
0 8 ≤ mMS ,

(3.8)

3We define the mass function to be the number of objects per logarithmic decade, i.e., dN/d log10 M.
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Figure 3.1: Assumed mass functions of brown dwarfs and stars (solid), white dwarfs (dashed),
and black holes (dotted) in the disk and bulge. The spike features at low (white dwarf) and high
(black hole) masses correspond to regions in which the remnant mass is nearly independent of
that of the progenitor. These do not substantially impact the results here.
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Figure 3.2: Assumed mass function of brown dwarfs and stars (solid), white dwarfs (dashed),
and black holes (dotted) in the Spheroid. The spike features at low (white dwarf) and high (black
hole) masses correspond to regions in which the remnant mass is nearly independent of that of
the progenitor. These do not substantially impact the results here.
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where mMS ≡ MMS/M�.

The relationship between MBH and MMS is highly dependent upon the uncertain evolution of
massive stars and the details of core collapse supernovae. As a result, above 30M� it is unclear
what the slope of the MBH-MMS relationship is [see Figure 9 of 111]. Here we make a moderately
conservative assumption that the resulting black hole mass is independent of MMS, setting

MBH/M� =


0 mMS ≤ 8
0.3mMS 8 < mMS ≤ 33
10 33 < mMS ,

(3.9)

which lies in the middle of the permitted range presented in [111] and is roughly consistent with
narrow black hole mass range inferred from X-ray binaries by [203].

The resulting stellar and remnant mass functions for the disk, bulge and spheroid are shown
in Figures 3.1, 3.2. The spikes in the low and high mass ends of the white dwarf and black hole
mass functions are associated with regions in which the remnant mass are nearly independent of
the progenitor mass, and contain a finite number of objects. For both the disk and the bulge there
is a break in the stellar mass function where stars produced during the star formation peak are
leaving the main sequence, roughly 1M�.

Because neither white dwarfs nor black holes are expected to experience strong kicks at
formation, we assume the same velocity dispersion for the remnants as the surrounding stellar
population. This is notably not the case for neutron stars, which often experience sufficient kicks
to be launched into the halo, diluting their density in the disk and therefore their representation
in the lens sample for current and planed microlensing surveys.The observation of pulsars with
ages less than 3 Gyr, indicates a pulsar birth velocity dispersion of about 400 kms−1 [144].

3.2.3 Mock Observation Statistics

In order to simulate the microlensing events, we choose the source stars from a Hipparcos-
like color-magnitude distribution [212], distributed proportional to the density of matter. After
selecting the source star with a given absolute color and magnitude, the position of star in the
color–magnitude diagram changes due to the distance modulus and interstellar extinction. Those
stars brighter than the limiting magnitude of the microlensing survey (which is taken about 19
in I-band in this simulation) are selected for the observation. It should be noted that the results
are not sensitive to the limiting magnitude and could be applied to microlensing surveys with
different limiting magnitudes.
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We note that not all the microlensing events generated in this simulation are observable in
reality. Depending on duration of observation, cadence of photometric data and non-observing
nights due to bad weather and technical failures, only a fraction of events as a function of Einstein
crossing time, tE , can be observed. We adapt the detection efficiency function (i.e. ε(tE)) for
selecting the observed events from OGLE published function [226, 290].

Each event is constructed by first choosing a random source with the appropriate proper-
ties, subsequently a random lens with the appropriate properties, and finally applying the OGLE
detection efficiency. That is,

1. Source star selection:

(a) A source star position is selected with a probability distribution given by the stellar
density and geometric factors, i.e.,

dP
dDS

∝ ρ(DS )D2
S , (3.10)

(b) The source star stellar type is randomly chosen according to Hipparcos Color-Magnitude
distribution.

(c) The stellar component (bulge, disk, spheroid) is selected with weights equal to their
density at DS .

(d) The source star velocity is the sum of the bulk Galactic motion for the chosen stellar
component at the chosen source location and a random contribution pulled from a
Gaussian distribution with the appropriate dispersion (listed in Table 3.1).

2. Lens selection:

(a) A lens position is selected from the stellar density, modified by the lensing cross
section, i.e.,

dP
dDL

∝ ρ(DL)

√
DL(DS −DL)

D2
S

. (3.11)

(b) A lens component (bulge, disk, spheroid) is randomly chosen according to the local
densities of each at DL.

(c) A lens component type (star, white dwarf, black hole) is randomly chosen according
to the local fraction of each for the given component.

(d) A lens mass is selected according to the total mass function of the chosen component
modified by the approximate lensing cross section; for a fixed observing time the
probability of detecting a lens is ∝ θE ∝ M1/2.
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(e) A lens velocity is the sum of the bulk Galactic motion for the chosen component
and a random contribution pulled from a Gaussian distribution with the appropriate
dispersion (listed in Table 3.1).

3. Detection efficiency cut: Given the lens mass, source and lens velocities, and source and
lens positions tE is computed, and the event is accepted with a probability set by the OGLE
detection efficiency.

The result is a set of lensing events with known intrinsic properties (source and lens masses,
distances, velocities, and types) selected using a realistic microlensing survey biases.

Figure 3.3 shows the distribution in Einstein crossing time of simulated events. Since in the
simulation we flag lenses that are either main sequence or remnants and, we can classify lenses
based on lens type. Here we compare the overall microlensing events with those produced by
black holes specifically; the fraction of events with black hole lenses is 0.035. This fraction is
comparable to the estimate of [131], which finds 0.01 assuming a 100% detection efficiency, and
thus neglecting the higher detection efficiency of Mira events.

Another important point is the average log(tE) for the overall events and black hole events are
1.5 and 2.0, respectively. This is unsurprising since the duration of events scales with lens mass
as M1/2, and is an immediate consequence of the fact that the average black hole mass is roughly
an order of magnitude larger than that of the overall sample. Hence, black hole lensing events
are typically more than three times longer than the typical microlensing event, with important
consequences for identification and parameter estimation.

Figure 3.4 shows the distribution of lens locations in our simulated survey for each of the
Galactic components and lens types. Events are dominated by lenses within the disk (65%) with
the remainder from the bulge (35%); the spheroid contributes negligibly. Of note is that the
lens distribution within the disk is nearly evenly distributed between the bulge and a heliocen-
tric distance of 2 kpc, implying that microlensing surveys necessarily probe the lens population
throughout the intervening disk. This remains true independent of the lens type.

3.3 Radio-Bright Microlensing Event Rates

Key to the radio imaging of microlensing events is the identification of radio-bright lensed
sources. In the near term this requires the identification of candidate events based on their optical
properties alone. Here we discuss the rates implied by the previous section employing surveys
that exploit optical counterparts of radio bright sources (i.e., Mira variables) and the potential
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Figure 3.3: Distribution of microlensing events in Einstein crossing time from Monte-Carlo
simulation. The detection efficiency of OGLE survey is applied during event selection. The
fraction of black hole events to the overall events is 0.035 and weighted heavily towards long tE.
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rates from future radio microlensing surveys. This is ultimately dependent on the population and
distribution of candidate sources.

3.3.1 Miras as Microlensing Sources

Miras provide a natural class of optically bright sources with strong radio emission in the form
of circumstellar SiO masers. In most microlensing surveys Miras have already been identified
due to their variable nature. Where they have not been, they may be crudely identified with in
the optical color magnitude diagram (CMD), shown for the OGLE III sample in Figure 3.5. In
particular, Miras produce a bright, red cluster that only marginally overlaps with the remainder of
the survey targets. From direct inspection of the OGLE III fields we estimate that as many as 5%
of the objects near the center of the Mira cluster in Figure 3.5 are identified Miras.4 In Section
3.5 we show that there should be nearly 6 times more Miras in the bulge than have been detected
thus far, suggesting that it might be possible to increase the fraction of Miras in this region to up
to 10%-15%, after accounting for the field of view of the OGLE III survey. Given their high radio
brightness, confirmation that a given candidate source is a Mira can then be quickly obtained by
direct radio observation with existing large radio telescopes. Equally important is that there is
little chance for lensing-induced source confusion – blending of source and lens stars does not
move objects appreciably within the region populated by Miras.

Rapid intrinsic stellar variability provides an obvious impediment to the identification and
characterization of microlensing events. For this reason variable stars have been generally iden-
tified and excluded from past and ongoing surveys. Thus, while there are microlensing events
reported by OGLE III that penetrate the Mira cluster (see Figure 3.5), these are almost certainly
not associated with Miras. Nevertheless, the presence of such events makes clear that apart from
variability there are no intrinsic barriers to including stars lying in the Mira-cluster-region of the
CMD in microlensing surveys.

The variable nature of Miras can be mitigated in a number of ways. Typical Miras vary with
periods of ≈ 1 yr, I-band variability amplitudes between 1.4 mag and 3 mag [258], and V-band
variability amplitudes typically two–three times larger [157]. However, black hole microlensing
events can be easily distinguished from the intrinsic variability as a result of three important
differences. All of these may be exploited in part due to the high luminosity of Miras, and
therefore the high photometric accuracy with which they may be monitored.

First, microlensing light curves have a well-understood structure set by the lens-source ge-
ometry and nature of gravitational lensing, characterized by a divergent rise as the source ap-

4For this purpose we fit the Mira density distribution with a Gaussian and define “near center” to be within a
single standard deviation from the mean.
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proaches the lens caustics (moderated for the largest magnification events by the finite source
size; see Section 3.4.2 and Appendix A.1). This differs from the intrinsic variations of Miras.
Thus careful light curve fitting should be able to rapidly distinguish between microlensing and
intrinsic variability.

Second, the amplitude of the flux variation during microlensing events is typically larger
than that due to intrinsic variability. Typical magnifications are of order 200%, while high-
magnification events can exceed an 1000%. These correspond to magnitude variations of 0.75 mag
and 2.5 mag, comparable the that caused by intrinsic variations in I-band. Hence, the microlens-
ing signal is an order unity modification of the underlying source variability in I-band. At longer
wavelengths the intrinsic variability decreases further, on average variations in the magnitude at
1.25 µm are 20% of those at optical wavelengths [255]5.

Third, the flux variations due to microlensing are achromatic. Again this is in stark contrast
to the intrinsic variability of Miras, which varies dramatically with wavelength. Thus, multi-band
monitoring should be readily able to disentangle the two variability components.

We make no further attempt to assess the efficiency with which Mira microlensing events can
be identified, i.e., we presume that the intrinsic variability of Miras does not result in a significant
inefficiency. As a result, our rate estimates may be considered to be optimistic.

3.3.2 Bulge Miras Microlensing Rates

The OGLE III survey monitored approximately 150 million stars in Galactic bulge from 2001 to
2009 in search for gravitational microlensing events and provided us with the largest catalogue of
microlensing events available. OGLE used the Early Warning System (EWS) to detect ongoing
microlensing events [277]. EWS uses Difference Image Analysis photometry and by analyzing
all the stars in the field flags the potential microlensing events [9]. In doing so it currently
identifies and filters out variable stars. The flagged stars go through several tests including a
visual inspection of the light curve and after satisfying all the criteria they are announced as a
microlensing candidate. Figure 3.5 shows the CMD for OGLE III microlensing events [290].
The lensing events have not gone through blending correction for consistency reasons since it
cannot be done for non lensed stars.

Miras are a few orders of magnitude brighter than M-dwarfs, increasing their representation
in microlensing surveys. An advantage of using bright stars is that blending by background and

5There are instances for which near-infrared variability is nevertheless sizable, e.g., R Cas, where the amplitude
of variations at 1.25 µm are as large as 1.42 mag. However, the variability continues to drop rapidly with increasing
wavelength.
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lens stars do not affect the brightness of the source star significantly (Figure 3.5). Moreover, from
the lens equation, and estimating the mass of the lens star, we can calculate the contribution of
blending and correct the position of the source star in the CMD [186, 196].

Within the OGLEIII catalogue there are currently 6528 Miras [258]. The larger number of
Miras inferred in the bulge suggest that this can be readily enlarged by surveying the entire bulge
region. A rough estimate of the number of Miras in the bulge can be made via the infrared surface
brightness.

We follow the approach used in [178]. The method is based on using the empirical relation
between Mira number density and infrared surface brightness to infer the total number of Miras
in the bulge.

We employ the infrared brightness measurements from Diffuse Infrared Background Experi-
ment (DIRBE) aboard the Cosmic Background Explorer (COBE) satellite. DIRBE made full sky
brightness maps in ten infrared bands ranging from 1.25µm to 240µm. For our purpose we make
use of the zodical-light-subtracted infrarred mission-average map at 2.2µm. The maps are avail-
able online at http://lambda.gsfc.nasa.gov/product/cobe/dirbe_prod_table.cfm.

Before using the DIRBE brightness measurements it must be corrected for dust extinction
and the contribution from the Galactic disk removed. Following [178] we correct for dust using
an empirical relationship between the K-band extinction AK and infrared colour:

AK = 0.73× (−2.5log(I1.25/I2.2) + 0.14) , (3.12)

where I1.25 is the 1.25µm zodiacal-light-subtracted mission-average DIRBE flux.

To remove the Galactic disk contribution we make use of fits to the infrared brightness maps
outside the bulge. [178] adopted an exponential function in Galactic longitude to model the disk

I(l,b) = I(0,b)exp(−|l|/l0(b)) , (3.13)

where the scale-height in Galactic longitude l0(b) is a function of Galactic latitude. This function
was fit to the 2.2µm DIRBE maps at high Galactic latitutdes, 10◦ < |l| < 45◦. Motivated by the
exponential vertical structure of the Galactic disk, we also estimated the disk contribution by
fitting an exponential function in Galactic latitude. The resulting bulge brightness estimates, and
thus the number of bulge Miras, is insensitive to which fitting function is used.

As shown in Figure 3.6, the number of Miras in a given field is strongly correlated with
the corrected infrared surface brightness. Like [178] we find a high-quality linear relationship
between the Mira number counts in OGLEII fields and the corrected DIRBE 2.2µm. This remains
true when Mira number counts in OGLEIII fields are added. Linear fits to the latter gives an
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updated ratio of Mira number density to 2.2µm surface brightness of 4.3Sr/MJy, similar to that
found by [178]. With a total 2.2µm flux of 0.9MJy in the bulge (−10◦ < l < 10◦ and −10◦ < b <
10◦), this implies that there are around 4×104 bulge Miras.6

3.3.3 Current and Near-future Optical Survey Microlensing Rates

At least two improved microlensing surveys are underway, exceeding OGLE III in three ways:
higher cadence, deeper magnitude limits, and increased sky coverage. OGLE IV, in operation
since 2010, has a bulge field of ≈ 330 deg2, 3.3 times larger than that of OGLE III. The resulting
OGLE IV EWS event rate is three times larger than that of OGLE III; OGLE III EWS detected
about 650 events in 2008 whereas OGLE IV EWS detected almost 2000 events in 2013 and over
2000 in 2014. The forthcoming The Korean Microlensing Telescope Network (KMTNet) con-
sists of three dedicated 1.6 m telescopes located in Australia, South Africa, and South America,
each with 4 deg2 field of view. Thus, KMTNet anticipates detecting ≈ 2300 microlensing events
per year with constant cadence of almost 10 min [140].

The high luminosity of Miras and the long time-scales of black hole microlensing events
imply that the first two, higher cadence and deeper magnitude limits, will at best produce modest
improvements in the Mira microlensing rate. High cadences will vastly over-sample black hole
microlensing light curves, and thus while important for planet searches are unlikely to be helpful
for the study of Galactic remnants.

Even within the extincted region near the Galactic center Miras remain visible due to their
high intrinsic luminosity. Since optically dim stars do not produce strong radio emission (Stellar
photospheres of dwarf stars are essentially undetectable with current radio telescopes), expanding
the survey sample to less luminous objects provides little value for the study of black holes.
Nevertheless, the deeper magnitude limits of future surveys will permit the inclusion of regions
of high extinction, i.e., dark areas of the bulge, in survey fields [249], marginally increasing the
number of Miras that can be monitored. This may be ameliorated by operating microlensing
surveys in the infrared as well.

Much more important is the expanded sky coverage. We have already assumed that the entire
Galactic bulge will be monitored in our previous rate estimate. Further increasing the number
of monitored Miras substantially in an optical survey necessarily requires expanding the surveys
beyond the bulge. Moderate modifications to the observing strategies of existing optical surveys

6This number is insensitive to alternative fitting functions for the Mira number–2.2µm surface brightness re-
lation. We tried linear fits with non-zero offsets, corresponding to an unsubtracted background component, and
non-linear fits, none of which substantially changed this number.
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present an obvious way in which radio-bright microlensing event rates can be substantially in-
creased. Because Miras are intrinsically luminous, they lie well above the detection threshold
of all ongoing microlensing surveys located anywhere within the Galaxy. Therefore, the relative
paucity of Miras does suggest an alternative strategy: broad and shallow instead of narrow and
deep.

Including the Galactic disk increases the number of stellar targets by a factor of ≈ 6-7. As-
suming the stellar population does not vary widely between the bulge and the disk this would
produce an commensurate growth in the Mira sample. Hence, we expect ≈ 2− 3× 105 Miras
in total within Milky way. Unfortunately, the microlensing optical depth in the disk is roughly
a third of that of the bulge as a result of the former’s smaller stellar density. Therefore, after
taking into account the disparity in optical depth, the net increase of Mira microlensing events is
reduced to a factor of 2-3. As a result, we estimate that a survey that monitors the entire Galactic
plane to an I-band magnitude limit of 15 would capture radio-bright microlensing events at a rate
of 2 yr−1, corresponding to a radio-bright black hole microlensing events at a rate of 0.1 yr−1.

Importantly, these survey strategies need not be exclusive. Since the objects of primary inter-
est for radio imaging, black holes, result in long-duration microlensing events, even sparse time
sampling is sufficient (on the order of once per week). The OGLE IV survey has already adopted
such a strategy, monitoring the entire Galactic disk with a cadence of 1-2 days and the bulge with
a cadence . 1 hr [278].

3.3.4 Far-future Optical Microlensing Surveys

The LSST (Large Synoptic Survey Telescope) is a 8.4 meter telescope equipped with a wide field
camera with 9.6 square degrees field of view. It will provide a deep survey of southern sky (over
20000 square degrees) giving 1000 exposures of each patch during 10 years of observations. The
optimal cadence of the survey for different areas of the sky is yet to be determined. The single
exposure depth in r-filter will be ≈ 24.5 mag and it can yet go deeper (≈ 26.5 mag) by co-adding
the images. Being a ground base survey the angular resolution is limited by seeing (0”.7) and
ultimately by its pixel size (0”.2) [147].

The mean cadence of 3− 4 days is much shorter than the typical time-scales of the long
duration black hole lensing events. Furthermore the deep survey combined with the fact that Mira
variables are bright stars guarantees that most of the Mira lensing events in the Galaxy, LMC,
and SMC will be detected by LSST. Thus, for finding black hole lensing events amenable to
radio imaging, the LSST presents a similar capability to current generation microlensing surveys
operated with modified observation strategy.
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3.3.5 A Future Radio-Continuum Microlensing Survey

Were a microlensing survey performed in the radio directly the need to identify optically-bright
radio counterparts would be eliminated altogether, resulting in the finding of events that are
amenable to radio imaging with a near 100% efficiency. Moreover such a radio survey would
permit monitoring the much more numerous compact continuum radio sources. With the advent
of a number of rapid-survey radio telescopes (e.g., the Square Kilometre Array [268], Canadian
Hydrogen Intensity Mapping Experiment [19], etc.), enabling rapid nearly all-sky surveys, high-
cadence radio transient searches will become common. A radio microlensing survey is a natural
byproduct of these.

The stringent requirements on source size (. 1 mas) restricts the potential radio microlensing
survey source targets to stars (e.g., Miras) or primarily extragalactic objects. The details of the
lens parameter estimation are only weakly dependent on the distance to the radio source; placing
sources at extragalactic distances decreases the Einstein angle by at most 30%.

More important is the over-all number of sources, which directly translates into the predicted
rate enhancement. These, in turn, depend on the flux limit and wavelength of interest, both set
by the VLBA. For a 10 M� black hole lens multiple image components are easily visible by the
VLBA for frequencies above 3 GHz, providing a natural upper limit of 10 cm on the observation
wavelength. For 10 min integration times with 500 MHz bandwidths the VLBA flux limit should
be near 20 µJy and 40 µJy at 22 GHz and 43 GHz, respectively; where required we adopt a flux
limits of 30 µJy.7 Large-amplification events will reduce the effective flux limit further. As we
will see below, either improvements in the sensitivity of the VLBA or new radio-bright source
classes will be necessary to leverage a radio microlensing survey.

Radio-bright active galactic nuclei (AGN) provide a natural class of sources, being both
numerous, and more importantly compact. Conveniently, they are also typically flat-spectrum
radio sources, meaning that neither the source identification nor the subsequent microlensing
survey need be performed at the same wavelengths at which the events are ultimately imaged.
Thus, to estimate the number of potential sources above the VLBA flux limit we employ the
NRAO VLA Sky Survey at 1.4 GHz reported in [64] [though see also 63, 65] finding roughly
1.6×107 and 1.5×108 radio-bright AGN in ellipticals and spirals, respectively, with fluxes above
above 30 µJy.

These are distributed isotropically, and thus a large fraction of AGN will be visible at high
Galactic latitude with correspondingly smaller lensing optical depth. As a result, the average
lensing optical depth for an AGN survey to that for the optical surveys that monitor the Galactic

7We assume system-equivalent flux densities are roughly 500 Jy and 1000 Jy at 22 GHz and 43 GHz, respec-
tively.
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bulge alone is approximately 0.01. Thus, despite having nearly 290 times the number of targets,
a radio microlensing survey of objects above 30 µJy would produce a black hole microlensing
event rate 1 yr−1, about the same as that from Mira-based optical surveys.

To obtain an event rate of 10 yr−1, doubling the number of know black holes in two years,
requires a flux limit of 3 µJy. This is would require corresponding improvements in the VLBA.
However, in principle this may be achieved via an extended integration time combined with an
expanded bandwidth. Currently, 4 GHz bandwidths supported by 16 Gbps recorders are planned
stations participating in millimetre-wavelength VLBI observations [283], and could be deployed
to VLBA stations for use at centimetre wavelengths. Combined with 2 hr integration times, these
reach the 3 µJy flux limit needed. Below 3 µJy the number of sources scale approximately as
N>S ∝ S −0.5, and thus further growth in the number of sources is a slow function of flux limit.

3.4 Radio VLBI Event Reconstruction

Motivated by the prospect of substantial number of optical microlensing events amenable to
radio imaging, we now present illustrative examples of what these may look like for typical event
parameters, and discuss the precision with which the event parameters may be reconstructed.

3.4.1 Models of Resolved Masers

SiO masers at ≈ 43 GHz (≈ 7 mm) have routinely been detected around late-type giants in the
central parsec of the Galaxy [235]. Located within the extended atmospheres of Miras, these
are typically within 8 AU of their parent, corresponding to an astrometric offset of 1 mas in the
Galactic center. Note that this is comparable to the Einstein angle, θE , and therefore the lensing
of the maser emission is distinct from that of optical emission of the star due to the finite size
effect of the source star [286].

The masing spots are resolved both because of their intrinsic structure and as a result of an
interstellar scattering screen that scatter-broadens images of the Galactic center [17, 33, 134]. Be-
cause of the latter effect, even point sources exhibit an extended source structure with a full-width
half-max (FWHM) of ≈ 0.7 mas, effectively limiting longest baselines that can be employed by
the VLBA. However, this scattering is highly localized, occurring only for sources in the imme-
diate vicinity of the Galactic center, and unlikely to limit the resolution attainable by efforts to
image Miras throughout the Galactic bulge.

Typical intrinsic sizes for nearby SiO individual maser spots are 1 AU, corresponding to
≈ 0.1 mas at ≈ 8 kpc distance, and therefore also unlikely to significantly limit the resolution of
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VLBA observations. We ignore the impact of intervening scatter broadening and model the in-
trinsic emission from an individual spot by a Gaussian intensity profile with a FWHM of 0.1 mas:

Iint(βββ) = I0e−|βββ|
2/2σ2

spot , (3.14)

where σspot = 0.1 mas/
√

8ln2 = 0.042 mas.

In practice, SiO masers from Mira variables often form arc-like structures that are domi-
nated by a handful of individual masing spots. For black hole lenses the angular sizes of these
structures are typically smaller than θE , and thus multiple spots are likely to be strongly lensed
simultaneously. For less massive lenses the ring angular angular scale and θE may be more sim-
ilar. Nevertheless, because the emission between maser spots remains incoherent8. the resulting
lensed image is a linear superposition of a number of individual spots. Thus, here we consider
the simpler problem of a single masing spot to assess the size of the constraints that can be placed
on the lens in principle.

Net velocity offsets between the star and masing spots are systematically incorporated into
the radio source velocities and thus do not present an additional systematic uncertainty. However,
the masing spots can also evolve in size and luminosity. Both are unlikely to produce substantial
complications since they don’t impact the separation of the lensed images (see Section 3.4.4).
While the latter can complicate the determination of the radio light curve, this may be ameliorated
via the optical light curve.

3.4.2 Generating Mock Images

Time sequences of mock images are generated via a multi-step process: beginning with the
specification of the positions of the source, lens, and observer, the mapping of the source to the
image plane via the thin-lens equation, and convolution with a realistic beam.

Over the duration of a lensing event, the position of the source and lens are assumed to evolve
with a fixed velocity:

xxxS = xxxS ,0 + vvvS t and xxxL = xxxL,0 + vvvLt , (3.15)

respectively. In practice only the transverse motion is important. In contrast, the observer posi-
tion, i.e., that of the Earth, is orbital, and thus includes the orbital acceleration:

xxx⊕ = xxx⊕,0 +

∫
dtΩΩΩ⊕× rrr⊕ . (3.16)

8This is distinct from, e.g., for pulsars, which produce many coherent spots due to scintillation within the
interstellar medium, and therefore require careful consideration of wave-optics effects [211].
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The lens geometry is then fully defined by the distances

DL ≡ |xxxL− xxx⊕| and DS ≡ |xxxS − xxx⊕| , (3.17)

and the transverse angular displacement

βββ ≡
(xxxS − xxx⊕)

DS
−

(xxxS − xxx⊕)
DS

·
(xxxL− xxx⊕)

DL

(xxxL− xxx⊕)
DL

. (3.18)

Neglecting the acceleration in the Earth’s motion and the line-of-sight motion of the source
and lens permits a simplification of βββ to a linear function of time, though here we will make use
of the more general expression in equation (3.18).

For a point-mass lens the observed position on the sky, θθθ is given by the thin-lens equation.
Usually this is expressed as a potentially multi-valued function of the projected source position.
However, we need only to identify the projected source position in terms of the observed position
θθθ, given by

βββ = θθθ

1− θ2
E

|θθθ|2

 . (3.19)

Since surface brightness is conserved, this then immediately defines the lensed image in terms of
the intrinsic

Ilens(θθθ) = Iint
[
βββ (θθθ)

]
. (3.20)

Finally, we convolve the lensed image with a realistic, if not pessimistic, beam. For this
we assume a 43 GHz beam, B(θθθ) is an anisotropic Gaussian, consistent with the beam in [168]:
semi-minor axis of 0.5 mas and semi-major axis of 1.4 mas, oriented 12◦ East of North. The
large aspect ratio is a result of a combination of the low declination of the Galactic center and
the North American location of the VLBA antennae. In practice, this resolution is lower than
may be achieved by the VLBA at 43 GHz; in [235] the interstellar scatter broadening limited
the size of the array that could be effectively employed. Outside of the Galactic center it should
be possible to increase the resolution by a factor of 2–3, though we adopt the [168] beam. The
resulting observed intensity distribution is then

Iobs(θθθ) =

∫
d2θ′B(θθθ− θθθ′)Ilens(θθθ′) , (3.21)

where prior to the convolution the angular positions are converted into equatorial coordinates.

All that remains is to specify the relative positions, velocities, and mass of the source and
lens. We do this for a handful of illustrative examples in the following sections.
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3.4.3 Example Lensed Maser Images

As fiducial source parameters we assume DS = 8 kpc and a proper velocity of 120 km s−1,
consistent with sources in Galactic bulge. The fiducial lens parameters are DL = 4 kpc and a
proper velocity of 30 km s−1, consistent with the velocity dispersion in the Galactic disk. The
relative positions of the source and lens are chosen so that minimum impact parameter is 0.3 mas
oriented in declination. These result in typical images that are illustrative of the general situation.
All that remains is to specify the mass of the lens.

The first case we consider is that of a 10M� black hole, for which θE = 3.2 mas. A time-
sequence of images for our fiducial case is shown in Figure 3.7, covering nearly a year. Since the
minimum impact parameter is small in comparison to θE , multiple images are present. Because
θE is also considerably larger than the intrinsic source and beam sizes, these are well resolved,
suggesting that detecting and interpreting the features of strong lensing by black holes will be
straightforward. In particular, a direct measurement of θE is possible simply by fitting the spot
separations, though we defer to how well this may be done in practice to Section 3.4.4.

The same qualitative conclusions hold for a 1M� lens, indicative of a white dwarf, shown
in Figure 3.8.9 Despite the smaller Einstein angle (θE = 1.0 mas), multiple images are resolved,
again implying that θE can be directly measured. Where these differ most dramatically is near
peak magnification (center panel in Figures 3.7 and 3.8); the more massive lens produces corre-
spondingly larger distortions in the image as a result of the better resolution of the Einstein ring.
The microlensing event is also significantly shorter.

The effect of the accelerated observer frame, due to the Earth’s orbital motion, is evident
in the asymmetric entrance and exist from the microlensing event. However, this effect may
be confused with features arising from the impact of the asymmetric beam and arbitrary event
orientation. Thus in Figures 3.7 and 3.8 we have also shown by the red contours the images
with the Earth’s orbital motion neglected. From these it is clear that asymmetry in the temporal
evolution of the image structure at early and late times is a robust indicator of parallax.

3.4.4 Parameter Estimation

The primary parameters of interest are those of the lens: mass, velocity, distance. Given only the
magnification light curve these are degenerate, constrained only by the event time-scale and peak

9Recall that a solar-type star would not modify the color of the combined lens-source system sufficiently to
place it outside of the allowed region in the CMD.

58



Figure 3.7: Example 10 M� black hole microlensing event. Impact parameter of 0.3 mas, relative
lens-source velocity of 150 kms−1, 1 AU FWHM maser, and radio beam typical of Galactic
center observations with the VLBA (semi-minor/major axes of 0.5 mas and 1.4 mas, respectively,
with a position angle of 12◦ east of north). Red contours show images ignoring the orbital motion
of the Earth, while black contours include the parallax. For reference, the blue dotted line shows
the Einstein ring.
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Figure 3.8: Example 1 M� stellar microlensing event. Impact parameter of 0.3 mas, relative lens-
source velocity of 150 kms−1, 1 AU FWHM maser, and radio beam typical of Galactic center
observations with the VLBA (semi-minor/major axes of 0.5 mas and 1.4 mas, respectively, with
a position angle of 12◦ east of north). Red contours show images ignoring the orbital motion of
the Earth, while black contours include the parallax. For reference, the blue dotted line shows
the Einstein ring.
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magnification.10 As a consequence, all that can be recovered even in principle are the projected
impact parameter in unites of θE , tE , and the time of maximum magnification. However, images
like those in Figures 3.7 and 3.8 introduce at least two key additional observables: θE and a
lensing parallax.

The peak magnification occurs at the projected closest approach, for which the projected
impact parameter is βmin and the magnification is

Amax =
β2

min + 2θ2
E

βmin

√
β2

min + 4θ2
E

. (3.22)

The degree to which Amax may be measured depends upon the quality of the photometry that can
be performed, and thus is likely to be limited by systematic errors in the radio flux calibration
(flux calibration accuracy for the VLBA and the VLA at 43 GHz would be roughly 10%). At this
time the separation between the centroid of the primary and secondary images is

∆θ =

√
β2

min + 4θ2
E , (3.23)

which may be measured directly from the images to a precision that exceeds the interferometric
beam width by up to an order of magnitude for high signal-to-noise detections [235]. Thus,
together, these yield a high-precision estimate of θE:

θE =
∆θ
√

2

[
Amax

√
A2

max−1− (A2
max−1)

]1/2

≈
∆θ

2

(
1−

1
8A2

max

)
,

(3.24)

where the latter expression is for large Amax, and a fractional precision of

σ2
θE

θ2
E

≈
σ2

∆θ

∆θ2 +
σ2

Amax

4A6
max

. (3.25)

When the uncertainty is dominated by the astrometric uncertainty, this implies that for a 10M�
black hole θE can be measured to within ≈ 1%.

Even without detailed event modeling, θE immediately enables the determination of the rel-
ative proper motion from equation (3.2):

µµµL−µµµS =
θE

tE
ûuu , (3.26)

10This may be improved substantially through the exploitation of the impact of parallax on the light curve [128,
229].
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where ûuu is the asymptotic direction of the vector between the first and second images. The source
proper motions can be directly measured by follow-up observations; the angular velocities of
individual maser spots have been measured with an accuracy better than 1 mas yr−1. As with
the source positions, this is limited by the electron scattering [235], and thus for sources beyond
the central pc it should be possible to measure this nearly an order of magnitude better, giving a
typical accuracy of 0.1 mas yr−1, corresponding to a physical velocity of 4 km s−1 at the distance
of the Galactic center. With a typical lens apparent velocity of 30 km s−1, comparable to the
velocity dispersion within the disk, this induces to a roughly 10% uncertainty in the inferred ωωωL.

The remaining degeneracy with DL may be broken via the measurement of a parallax from
the microlensing event itself. The sources of most interest also are expected to have the longest
tE , and thus encompass a substantial fraction of a year. As made explicit in Figures 3.7 and 3.8,
long tE permit measurements of the impact of the Earth’s orbital motion, i.e., a parallax. This
comes in two forms.

First, the light curve itself is asymmetric as a result of the modified evolution of the Earth-
lens-source alignment [256]. Figure 3.9 shows the effect of parallax on light curve of a 10 M�
black hole lensing event. Since the Earth accelerates substantially during this period, the addi-
tional component is distinguishable from the otherwise unknown but essentially fixed velocities
of the source and lens, resulting in an asymmetry in the magnification light curve. While the
maser emission and optical stellar emission are not spatially coincident, the offset in the distance
is much smaller than DS , and thus DL can be reconstructed from either the optical or infrared
light curves. Typical uncertainties of %10 in radio flux calibration may preclude the use of radio
light curve for this purpose. Since Miras are among the brightest stars in the microlensing sur-
vey fields, they may be good candidates for obtaining DL in this way, assuming the underlying
variability can be adequately modeled.

Second, as described in the previous section, the underlying impact on the lensed images
themselves is directly measurable. Note that this is essentially the same effect, the asymme-
try in the magnification light curve arises from the asymmetry in the evolving image structure.
However, unlike the parallax effect in the light curve, the image structure is insensitive to the
Mira variability. While it is possible to attempt a full fit to the sequence of images, most of the
information is contained in the locations of the multiple images. Thus, shown in Figure 3.10 is
the angular separation of image components as a function of time for the sequence of images in
Figure 3.7.

The mock data shown in figure 3.10 provide a convenient way to estimate the accuracy with
which the parallax parameter can be reconstructed. We compute the centroid positions of the
multiple image components by performing a maximum-likelihood fit of the positions of beam-
convolved point sources. The uncertainty in the centroid is constructed assuming a flux limit

62



of 10% of the maximum brightness of an unlensed maser spot, and introduce corresponding
Gaussian fluctuations in the mock data (see in Fig. 3.10). At late times the uncertainties grow as
a result of the dimming of one of the two images far from peak magnification.

As a simple model we write the impact parameter as a linear combination of impact parame-
ters with and without parallax effect included:

β = λβp + (1−λ)βnp , (3.27)

where βnp and βp are the angular separations when the orbital acceleration of the Earth is ignored
and included assuming DL = DS /2. As shown in Appendix A.3, the interpolation parameter is
related to the lens distance by λ = (DS −DL)/DL, and hence a measurement of λ corresponds to
a measurement of the lens position. That is, keeping all angular measurements fixed, fitting the
evolving image separation directly probes the lens distance.

A maximum-likelihood fit recovers λ = 0.84±0.20, where the 1σ errors are indicated. That
is, for typical parameters the impact of parallax can be detected within the radio images at more
that 4σ. For a given λ the corresponding estimates of the lens distance and its uncertainty are

DL =
DS

1 +λ
and

σ2
DL

D2
L

=
σ2
λ

(1 +λ)2 , (3.28)

and thus, we recover DL = 4.3± 0.5 kpc. That is, typically, DL can be reconstructed with an
accuracy of roughly 10%.

With an estimate of the lens distance it is possible to reconstruct the lens mass and transverse
velocity from θE and ωωωL. The mass may be estimated given measurements of θE and λ via

M =
c2

4G
θ2

E
DS

λ
. (3.29)

Assuming the uncertainty in θE is negligible and in DS is of order 10%, the fractional uncertainty
in M is given by that in λ, and thus the mass can be estimated with an accuracy of roughly 14%.
The lens transverse velocity is given by

vvvL = DLωωωL . (3.30)

Assuming the typical uncertainties of %10 in both quantities, the transverse velocity can be
typically reconstructed to 14% as well.
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Figure 3.9: Example light curve for the microlensing event shown in Figure 3.7. The blue
dashed and solid red lines correspond to when the effect of parallax is neglected and included,
respectively. On ±50 day time-scales the impact of parallax is clearly visible, resulting in roughly
30% asymmetries in the light curve.
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Figure 3.10: Evolution of the image separations for the microlensing event shown in Figure 3.7.
Centroid errors are constructed assuming a flux limit of 10% the maximum flux. The dashed
and dotted lines correspond to the expected image separations when the effect of parallax is
neglected and included, respectively. As with the light curve in Figure 3.9, the largest impact of
parallax occurs at early and late times, causing deviations of roughly 50% of a beam width on
year time-scales.
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Figure 3.11: Microlensing event example for a black hole-black hole binary system of equal
mass ( 10 M� each ) with orbital period of 30 yr. Impact parameter of 0.3 mas, relative lens-
source velocity of 150 kms−1, 1 AU FWHM maser, and radio beam typical of Galactic center
observations with the VLBA (semi-minor/major axes of 0.5 mas and 1.4 mas, respectively, with
a position angle of 12◦ east of north). Red contours show images ignoring the orbital motion of
the Earth, while black contours include the parallax. For reference, the blue dotted line shows
the Einstein ring. 66



3.4.5 Binaries

Resolving the lensed images provides a natural way to distinguish between single and double
lenses, i.e., isolated and binary black holes. The latter, black hole-black hole binary systems are
of particular interest as a potential gravitational wave source [5]. At the same time they have the
potential to both inform and leverage the observations of X-ray binaries [see, e.g., 237]. Figure
3.11 shows a typical binary image, which may be immediately distinguished from the Figure 3.7
by both the complicated lensed-image morphology and, more directly, the presence of a third
image.

The efficiency with which binaries can be detected depends strongly on their projected angu-
lar separation. Sufficiently compact binaries will appear as a single lens, while the components
of sufficiently wide binaries will produce independent lensing events. After conducting a suite
of numerical experiments with binaries in different orientations, peculiar velocities, and impact
parameters, we have found that binaries with projected angular separations spanning an order
of magnitude about the Einstein angle can be readily identified. The case shown in Figure 3.11
has a binary angular separation comparable to the individual Einstein radii of the black holes,
3.2 mas.

As with the isolated case, the motion of the Earth induces shifts in the image locations due to
parallax, and thus the lens distance can in principle be extracted. Unlike the isolated case, typ-
ically the image morphology during maximum magnification is complicated. This is mitigated
by the fact that the parallax signal is largest when the lens-source separation is largest, and thus
where the binary will appear most point-like. Nevertheless, we leave binary parameter estimation
for future work.

3.5 Discussion

With moderate changes in strategy existing and future optical/infrared microlensing surveys
should achieve black hole event rates of roughly 0.1 yr−1. Dedicated radio microlensing surveys
could reach event rates an order of magnitude higher. As a result, radio imaging of microlensing
events can provide the novel ability to produce a large sample of stellar remnants with known
masses, positions (including distances), and velocities. Importantly, this sample would not suffer
from the standard biases that plague studies based on binaries; the selection effects associated
with microlensing surveys are well understood and can be modeled and removed. This enables a
variety of probes of astrophysical phenomena, which we discuss here.
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3.5.1 Massive Star Evolution

The large event rates enables the systematic construction of a black hole mass function over a
decade. For radio microlensing surveys (see below) this rate can be an order of magnitude larger.
Unlike X-ray binaries, for microlensing the observing biases are well understood and can be
addressed via direct modeling, resulting in an accurate representation of the mass distribution of
stellar mass black holes in the Milky Way.

The mass distribution of black holes would be immediately diagnostic of the dynamics of core
collapse supernovae, the cataclysmic events surrounding their formation. Typically, accretion of
fallback material produces a mass gap between neutron stars and black holes, a region of relative
paucity in the black hole mass function extending to masses well above 2M� [272, 289, 298] . In
all cases, key uncertainties in the stellar evolution (e.g., wind loss rates, supernovae energetics,
etc.) impact the final mass distributions [115]. There have been studies on the effect of variations
in neutrino mechanism for core collapse supernovae on the theoretical black hole mass function
[210] and using the observed black hole mass function there already have been constraints on
core collapse supernova [162]. For compact binary systems, the location and depth of the mass
gap is further sensitive to the binary evolution history [112]. While tentative evidence for a mass
gap has already been reported based on the inferred masses of black holes in X-ray binaries [203],
this is necessarily subject to the variety of strong selection effects and substantial uncertainties
mentioned above. Moreover, studies of X-ray binaries are fundamentally limited by the small
number of binaries currently known.

In contrast, radio-imaged microlensing events provide a means to systematically accrue large,
debiased samples of Galactic black holes, limited only by survey duration. Thus, they offer both
a method to assess the poorly known biases inherent in X-ray binaries and ultimately to directly
access key elements of massive star evolution.

Furthermore, radio-imaged microlensing events will produce estimates of the lens positions
and tangential velocities. Thus, together with the mass function it is possible in principle to
construct a Galactic black hole distribution function. The velocity distribution will possibly be
strongly impacted by the dynamics of core collapse supernovae via supernova kicks [284], as
well as the subsequent evolution of the Galactic remnant population.11

Galactic black holes also serve as a fossil record of massive star formation. Therefore, de-
tailed comparisons of the local12 densities of stellar mass black holes, white dwarfs, and sub-solar
stars yield an estimate of the potentially temporally and spatially varying stellar initial mass func-

11While the dynamical relaxation time of the Galaxy is of order 104 Gyr, black holes are much more massive
than the typical Galactic object, and thus can have relaxed substantially.

12Necessarily accounting for potentially significant differences in relaxation rates.
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tion. In particular, this provides a unique ability to constrain the history of the high-mass end of
the initial mass function.

3.5.2 Gravitational Wave Experiments

The measurement of the mass of a single isolated stellar-mass black hole would provide an
important calibration for population synthesis computations, performed primarily to produce
rate estimates for gravitational wave detectors [22]. This is the consequence of the typical nature
of lenses in contrast to the particular evolutionary history of X-ray binaries, currently used to
calibrate the variety of uncertainties in the rate estimates.

More generally, the binarity rate and source distribution are key inputs into black hole binary
gravitational wave source population estimates. High-mass X-ray binaries, the objects likely
progenitors of the black hole-black hole binaries visible by experiments like LIGO [4], are nec-
essarily young by virtue of the large mass of the secondary, providing a strong bias towards
populations associated with the recent star formation history of the Milky Way. In stark contrast,
binary mergers are expected to occur very long times after their formation, and are therefore
indicative of the integrated star formation history of the Milky Way. The detection of a black
hole-black hole binary presents a means to study the binary black hole population over the en-
tirety of the Galactic history. Unfortunately, the lower limit on the projected binary separation for
which radio-imaged microlensing events can efficiently detect binarity (roughly 1 mas at 8 kpc)
corresponds to orbital periods of years, and thus will not present candidate gravitational wave
sources. Nevertheless, it would provide a significant calibration of binary formation rates, and
therefore black hole-black hole binary populations.

3.5.3 Isolated Neutron Stars

Thus far we have focused primarily on black hole lenses. Nevertheless, it is possible to directly
detect solar mass objects as well. While we have included a discussion of the white dwarf
lensing rates we have largely ignored lensing events from isolated neutron stars. An estimate of
the neutron star lensing rate is nevertheless possible using the black hole lensing rate. The two
key assumptions are that the massive stellar progenitors of black holes and neutron stars follow
a known initial mass function ( here we assume Salpeter) and that the neutron stars receive kicks
during formations.

From the first we estimate the ratio of the total number of Galactic neutron stars to the total
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number of Galactic black holes:

NNS

NBH
≈

(
MZNS

MZBH

)−1.35

≈ 4 , (3.31)

where MZNS ≈ 8 M� and MZBH ≈ 21 M� are the minimum zero-age main-sequence masses of
stars that form neutron stars and black holes, respectively [289].

The second assumption modifies the volume occupied by neutron stars. Stars formed at an
initial radius rinit with a natal kick (vkick) larger than the circular velocity (vcirc) will isotropize
within a radius of

rmax ≈ rinitev2
kick/2v2

circ ≈ 7rinit , (3.32)

where we have used typical values vkick ≈ 400 kms−1 and vcirc ≈ 200 kms−1. Thus, neutron
stars formed in the Galactic bulge will be distributed across a volume nearly 400 times larger
than similarly formed black holes, and thus exhibit a number density 400 times smaller. The net
result is that for typical numbers the rate of neutron star microlensing events is expected to be
roughly 1% of that for the black holes, justifying our neglect of neutron stars.

However, we caution that this conclusion is extremely sensitive to the typical kick velocities.
If the typical kick velocity is 300 kms−1 the neutron star lensing rate rises to 10% of the black
hole lensing rate. More importantly, if the neutron star kick velocity distribution contains a low-
velocity tail or is bimodal, as suggested by the large number of known Galactic neutron stars [see,
e.g., 108, 214], the bulge may retain a large fraction of neutron stars originally formed within it.
In this cases the neutron star and black hole lensing rates can be comparable. Thus, the relative
frequency of neutron star and black hole events provides an additional probe of the distribution
of neutron star formation kicks.

If large numbers of neutron star lensing events are observed, radio-imaged microlensing pro-
vides a novel way in which to directly measure the neutron star mass function, independent of the
biases inherent in the study of neutron star binaries. Unfortunately, given their large typical age
(& 1 Gyr) these are all likely to be exceedingly dim, with luminosities of ≈ 10−11-10−9L�, and
therefore not amenable to direct size measurements, complicating any effort to directly constrain
the high-density nuclear equation of state.

Nominally, these objects would also fall below the death line for typical pulsar magnetic field
strengths (1012 G) and periods (1 s). However, due to magnetic field decay, implicated by the
low surface fields in recycled millisecond pulsars, these objects could still exhibit observable
magnetospheric emission; typical surface fields after a Gyr would then be expected to lie near
1011 G. Nevertheless, many would still live near the death line, and therefore would at best be
transient radio sources. Hence, in this case the radio emission of isolated neutron stars found by
radio-imaged microlensing would provide an unbiased probe of neutron star magnetization and
its evolution.
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3.6 Conclusions

VLBI observations of radio-bright microlensing events affords the ability to resolve the multi-
component structure of microlensing events at radio wavelengths. Such images would break the
degeneracies between distance, velocity, and source mass inherent in studies of the light curve
alone by providing a direct measurement of the size of the Einstein ring and the presence of
signatures of parallax in the evolving image structure and/or asymmetric light curves. Thus,
radio imaging enables the reconstruction of the lens parameters to better than 15% accuracy.
The dominant source of this remaining uncertainty is due to the unknown distance and velocity
of the lensed source, and thus these may be improved by roughly an order of magnitude by
follow-up observations that constrain the source’s proper motion and distance. Furthermore,
imaging provides an immediate method to detect binary lenses, albeit within a rather narrow
range of orbital separations (corresponding to periods of roughly 2 yr–20 yr). It is noteworthy
that this remains the case when the lens belongs to the otherwise unobservable Galactic remnant
population, e.g., neutron stars and black holes.

Radio-bright microlensing events can be identified using existing optical/infrared microlens-
ing surveys. Mira variables exhibit SiO masers in their envelops and therefore provide a natural
radio-luminous target. Moderate modifications to existing survey strategies, some of which are
already pursued by OGLE-IV, should produce events amenable to radio imaging at a rate of
≈ 2 yr−1. Of these, assuming the Galactic black hole population arises solely via the evolution
of massive stars, roughly 0.1 will due to black holes. This rate will increase substantially if black
holes compose a significant fraction of the Galactic dark matter budget.

Detections of Galactic black holes via microlensing provides an unbiased sample of massive
star remnants. The existing sample of stellar mass black holes, obtained via observations of X-
ray binaries, necessarily suffers from strong, uncertain biases associated with the formation and
evolution of tight massive-star binaries. As a consequence, the detection and characterization of
even a handful of black holes using radio-imaged microlensing events will inform the late-stage
evolution of massive stars, the energetics of their subsequent supernovae, and the event rates of
current and future gravitational wave experiments.

Currently, the rate of radio-bright microlensing events is limited by the number of compact
radio sources above the detection limits of existing VLBI facilities, and in particular the VLBA.
Nevertheless, an order of magnitude increase in event rates can be obtained by improvements in
the flux limits of VLBI observations, achieved, e.g., through increased collecting area (as could
be provided with long baselines in the next-generation VLA), expanded bandwidths and longer
integration times, and dedicated radio-continuum microlensing surveys. Therefore, it is possible
that in the near future it will be possible to double the number of known Galactic black holes with
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a survey extending two years, and begin the statistical study of the Galactic black hole properties
within a decade.
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Chapter 4

Understanding EROS2 observations
toward the spiral arms within a classical
Galactic model framework

EROS (Expérience de Recherche d’Objets Sombres) has searched for microlensing toward four
directions in the Galactic plane away from the Galactic center. The interpretation of the catalog
optical depth is complicated by the spread of the source distance distribution. We compare the
EROS microlensing observations with Galactic models (including the Besançon model), tuned to
fit the EROS source catalogs, and take into account all observational data such as the microlens-
ing optical depth, the Einstein crossing durations, and the color and magnitude distributions of
the catalogued stars.
We simulated EROS-like source catalogs using the HIPPARCOS (HIgh-Precision PARallax COl-
lecting Satellite) database, the Galactic mass distribution, and an interstellar extinction table.
Taking into account the EROS star detection efficiency, we were able to produce simulated
color-magnitude diagrams that fit the observed diagrams. This allows us to estimate average
microlensing optical depths and event durations that are directly comparable with the measured
values.
Both the Besançon model and our Galactic model allow us to fully understand the EROS color-
magnitude data. The average optical depths and mean event durations calculated from these
models are in reasonable agreement with the observations. Varying the Galactic structure pa-
rameters through simulation, we were also able to deduce contraints on the kinematics of the
disk, the disk stellar mass function (at a few kpc distance from the Sun), and the maximum
contribution of a thick disk of compact objects in the Galactic plane (Mthick < 5−7×1010M� at
95% confidence, depending on the model). We also show that the microlensing data toward one
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of our monitored directions are significantly sensitive to the Galactic bar parameters, although
much larger statistics are needed to provide competitive constraints.
Our simulation gives a better understanding of the lens and source spatial distributions in the
microlensing events. The goodness of a global fit taking into account all the observables (from
the color-magnitude diagrams and microlensing observations) shows the validity of the Galactic
models. Our tests with the parameter excursions show the unique sensitivity of the microlensing
data to the kinematical parameters and stellar initial mass function (IMF).

4.1 Introduction

Following Paczyński’s seminal publication ([205]), several groups initiated survey programs be-
ginning in 1989 to search for compact halo objects within the Galactic halo. The challenge for
the EROS (Expérience de Recherche d’Objets Sombres) and MACHO (MAssive Compact Halo
Objects) teams was to clarify the status of the missing baryons in our own Galaxy. In September
1993, the three teams, EROS ([15]), MACHO ([13]), and OGLE (Optical Gravitational Lens-
ing Experiment, [276]), discovered the first microlensing events in the directions of the Large
Magellanic Cloud and the Galactic center (GC). Since these first discoveries, thousands of mi-
crolensing effects have been detected in the direction of the GC together with a handful of events
toward the Galactic spiral arms (GSA) and the Magellanic Clouds.
Microlensing has proven to be a powerful probe of the Milky Way structure. Searches for mi-
crolensing toward the Magellanic Clouds (LMC, SMC) and M31 (survey MEGA ; [68] and
survey AGAPE; [199]) provide optical depths through the Galactic halo, allowing one to study
dark matter in the form of massive compact objects. Searches toward the Galactic plane (GC and
Galactic spiral arms) allow one to measure the microlensing optical depth of ordinary stars in the
Galactic disk and bar. Kinematical models and mass functions can also be constrained through
the event duration distributions.
Several teams have published results about the Galactic structure, through microlensing searches
in the Galactic plane, such as MACHO ([215]), EROS ([136]), OGLE ([264]), and MOA (Mi-
crolensing Observations in Astrophysics, [16]). The EROS team is the only group that have
searched for microlensing toward the Galactic spiral arms, away from the Galactic center. As a
matter of fact, the EROS team have measured the microlensing optical depth toward four direc-
tions of the Galactic plane (Fig. 4.1), i.e.,

• γ Sct (b̄ = −2.1◦, l̄ = 18.5◦),

• γ Nor (−2.4◦,331.1◦),
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• β Sct (−2.2◦,26.6◦),

• θ Mus (−1.5◦,306.6◦),

as far as 55 degrees in longitude away from the Galactic center ([224]). The distinguishing

γNorγSctβSct θMus

φ
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 D

is
k

Sun

B
a
r

Figure 4.1: Four directions toward the Galactic spiral arms monitored by EROS.

feature of these measurements with respect to other targets like SMC or LMC is the widespread
distribution of the distances of the monitored sources. The distances to the sources could not be
individually measured and both their average and dispersion are poorly estimated. The concept
of “catalog optical depth” was introduced in [224], and in this chapter we describe a complete
procedure to compare measured optical depth with model predictions. After the introduction
of the microlensing concepts (Sect. 4.2) and the presentation of the EROS data (Sect. 4.3), in
Sect. 4.4 we describe the technique to produce synthetic color-magnitude diagrams (CMDs), via
the HIPPARCOS catalog (HIgh-Precision PARallax COllecting Satellite [95], [273]), the spatial
distribution of mass from Galactic models, and the absorptions tabulated in a 3D map obtained
with infrared observations ([177]). We cross-checked the obtained local stellar number densities
with the expectations from the stellar initial mass function (IMF). In Sect. 4.5, we describe the
full simulation of the EROS program, in terms of CMDs taking into account the stellar detection
efficiency of EROS, and in terms of the microlensing events. Our fitting procedure is described in
Sect. 4.6, where we derive constraints on our simple Galactic model and test the Besançon model
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([240]); the fit takes into account the observed CMDs as well as the data from the microlensing
(optical depths and mean event durations) toward the four observed lines of sight; we use the fit
to estimate the allowed range of our simple Galactic model parameters. In the final discussion
(Sect. 4.7), we extract from the best fit the distance distributions of the sources and lenses.
Finally, we discuss the sensitivity of microlensing observations toward the Galactic arms to the
dark thick disk, central bar inclination, stellar mass function and disk kinematics.

4.2 Microlensing effect

The gravitational microlensing effect occurs when a massive compact object passes close enough
to the line of sight of a star to produce a temporary magnification of the source. A general
overview of the microlensing formalism can be found in [248] and [226]. In the approximation of
a single point-like lens deflecting the light from a single point-like source, the total magnification
of the source luminosity at time t is given by ([205])

A(t) =
u(t)2 + 2

u(t)
√

u(t)2 + 4
, (4.1)

where u(t) is the distance of the deflecting object to the undeflected line of sight, expressed in
units of the Einstein radius RE given by:

RE =

√
4GM

c2 DS x(1− x) (4.2)

' 4.54 A.U.×
[

M
M�

] 1
2
[

DS

10 kpc

] 1
2 [x(1− x)]

1
2

0.5
.

Here G is the Newtonian gravitational constant, DS is the distance of the observer to the source,
and xDS = DL is its distance to the deflector of mass M. Assuming a deflector moving at a
constant relative transverse speed vT , reaching its minimum distance u0 (impact parameter) to
the undeflected line of sight at time t0, u(t) is given by

u(t) =

√
u2

0 +

(
t− t0

tE

)2

, (4.3)

where tE = RE/vT , the lensing timescale, is the only measurable parameter bringing useful infor-
mation regarding the lens parameters in the approximation of simple microlensing,

tE ∼ 79 days×
[

vT

100km/s

]−1 [
M
M�

] 1
2
[

DS

10kpc

] 1
2 [x(1− x)]

1
2

0.5
. (4.4)
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4.2.1 Microlensing event characteristics

The so-called simple microlensing effect (point-like source and point-like lens with uniform
relative motion with respect to the line of sight) has some characteristic features that allow one to
discriminate it from any known intrinsic stellar variability. These features are as follows: given
the low probability for source detector alignment within RE , the event should be singular in the
history of the source (as well as of the deflector); the magnification is independent of the color;
the magnification is a simple function of time, depending on (u0, t0, tE), with a symmetrical shape;
as the geometric configuration of the source-deflector system is random, the impact parameters
of the events must be uniformly distributed; the passive role of the lensed stars implies that
their population should be representative of the monitored sample at any given source distance,
particularly with respect to the observed color and magnitude distributions.

This simple microlensing description can be complicated in many different ways: for ex-
ample, multiple lens and source systems ([174]), extended sources ([292]), and parallax effects
([129]); these complications will not be discussed here.

4.2.2 Observables: optical depth, event rate, and tE distribution

The optical depth up to a given source distance, DS , is defined as the instantaneous probability
for the line of sight of a target source to intercept a deflector’s Einstein disk, which corresponds
to a magnification A > 1.34. Assuming that the distribution of the deflector masses is described
by a density function ρ(DL) and a normalized mass function dnL(DL,M)/dM, this probability is

τ(DS ) =

∫ DS

0

∫ ∞

M=0

πθ2
E

4π
×
ρ(DL)

M
dnL(DL,M)

dM
dM4πD2

LdDL , (4.5)

where θE = RE/DL is the angular Einstein radius of a lens of mass M located at DL. The second
term of the integral is the differential number of these lenses per mass unit. As the solid angle
of the Einstein disk is proportional to the deflectors’ mass M, this probability is found to be
independent of the deflectors’ mass function

τ(DS ) =
4πGD2

S

c2

∫ 1

0
x(1− x)ρ(x)dx , (4.6)

where ρ(x) is the mass density of deflectors located at a distance xDS . This expression is used
when the distance to the monitored source population is known (for example, toward the LMC
and SMC).
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When the monitored population is spread over a wide distance distribution, as is the case to-
ward the Galactic plane, we have to consider the concept of “catalog optical depth” as introduced
in [224]; the mean optical depth toward a given population defined by a distance distribution
dnS (DS )/dDS of target stars is defined as ([189])

< τ >=

∫ ∞
0

dnS (DS )
dDS

τ(DS )D2
S dDS∫ ∞

0
dnS (DS )

dDS
D2

S dDS
. (4.7)

Again, this optical depth does not depend on the deflectors’ mass function. On the other hand,
for a given optical depth, the microlensing event rate depends on the deflectors’ mass distribution
as well as on the velocity and spatial distributions.

Contrary to the optical depth, the microlensing event durations tE and consequently the event
rate (deduced from the optical depth and durations) depend on the deflectors mass distribution
as well as on the velocity and spatial distributions. The statistical properties of the durations
and event rates can therefore provide global information on the dynamics of the Galaxy and on
the mass distribution, which complement other observational techniques based on direct velocity
and luminosity measurements.

In this chapter, the optical depth together with the observed event rate and more precisely the
duration distributions are compared with simulations to constrain the mass, shape and kinematics
of the lensing structures.

4.3 EROS data toward the Galactic spiral arms

In this section, we recall and summarize the EROS2 CCD observations and microlensing results
toward the Galactic spiral arms, and describe the efficiencies and uncertainties needed to allow
comparisons with simulations. Fig. 4.2 shows the observation time span with the average weekly
sampling toward the four targets discussed here. We only provide the information on the data
that is relevant for our simulation; more details on the original data can be found in ([224]).

4.3.1 EROS color-magnitude diagrams

The stars detected in EROS are statistically described by their color-magnitude diagrams given
in Fig. 4.3 in the (IC ,VJ) photometric system, hereafter simply noted (I,V). The published
EROS-CMDs provide for each catalog, labeled (C), the observed stellar density nC(I,V − I) per
square degree, magnitude, and color index, as a function of I and V − I, sampled in 0.3×0.2 cells
([225]). When using these CMDs, one has to take into account the following uncertainties:
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Figure 4.2: Time sampling toward the 4 monitored targets in the Galactic spiral arms: average
number of measurements per star and per week.
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Figure 4.3: Relative color-magnitude diagrams n(I,V − I) of the EROS catalogs toward the 4
directions toward the Galactic spiral arms. The gray scale gives the number density of stars per
square degree, unit of magnitude, and unit of color index.
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• Each stellar number density nC(I,V− I) value is affected by a statistical uncertainty coming
from the propagation of the Poissonian noise in the original EROS catalogs, as explained
in the header of the published EROS-CMD ([225]).

• Each nC(I,V − I) value is affected by a systematic uncertainty of ∼ 5.3%, owing to the un-
certainty on the size of the effective EROS field; this uncertainty is common to all catalogs.

• Another systematic uncertainty is due to the residual 0.07 magnitude EROS calibration
uncertainty ([28]), which affects the attribution of a star to a given [I, (V − I)] cell. It has to
be taken into account for each EROS color, and therefore induces a systematic uncertainty
of [0.07,0.16]mag. in the [I,V − I] ≡ [REROS , (BEROS −REROS )/0.6] system.

To generate an “EROS-like” catalog from a model for comparison puroposes, one needs to
use the efficiency of EROS to detect stars and the photometric uncertainties, both defined in
the EROS photometric system [REROS ,BEROS ] ≡ [I, I + 0.6(V − I)]. The EROS stellar detection
efficiency has been studied in ([224]), by comparing EROS data with HST data ([2]). Since we
found that an object detected in BEROS is systematically detected in REROS , the EROS stellar
detection efficiency can be parametrized as a function of the relative magnitude BEROS only (Fig.
4.4). The EROS photometric errors on the magnitudes and colors are parametrized as
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Figure 4.4: Star detection probability in EROS vs. the relative magnitude BEROS = I +0.6(V− I).
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where the 0.1 constant term (dominant for stars brighter than ∼ 18) is a residual uncertainty,
as estimated from EROS calibration studies using DENIS catalog data ([94])1, [σΦ/Φ] is the
relative image-to-image dispersion of the successive flux measurements given by Fig. 4.5, and
Nmeas is the number of observations (exposures) used to estimate the mean flux of a star, i.e., 268
toward β Sct, 277 toward γ Sct, 454 toward γ Nor and 375 toward θ Mus.
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Figure 4.5: Photometric point-to-point precision along the EROS light-curves vs. REROS = I
(upper) and BEROS (lower). Vertical bars in I show the dispersion of this precision in the EROS
catalog. The histograms show the magnitude distribution of the full EROS spiral arm catalog (all
directions).

Table 4.1 summarizes some of the key numbers regarding the color-magnitude statistical data.
When comparing the data with simulations, we focus on the stars brighter than I = 18.4, the most
reliable part of the EROS-CMD, with the highest and best controlled stellar detection efficiency.

1This irreducible uncertainty is attributed to the variability of the stellar spectra within the very wide EROS
passbands.
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4.3.2 Microlensing results

Table 4.1 provides the microlensing results from EROS ([224]). The σtE values differ from
the values published in table 3 from ([224]) because they were biased, since we assumed large
statistics for their estimates. To properly take into account the statistical fluctuations on small
numbers, we therefore re-estimated σtE from the expression,

σ2
tE =

1
Nevents−1

∑
events

(tE − tE)2, (4.9)

where Nevents is the number of microlensing events toward the target.

The average microlensing detection efficiency of the EROS survey was estimated in [224]; it
is defined as the ratio of events satisfying the EROS selection cuts to the theoretical number of
events with an impact parameter u0 < 1, and was found to be almost independent of the target,
since the time samplings were very similar. Figure 4.6 shows this efficiency as a function of the
Einstein duration of the events tE .
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Figure 4.6: Microlensing detection efficiency of the EROS survey toward the Galactic spiral
arms, as a function of the event characteristic duration tE .

4.4 How to synthesize an EROS-like color-magnitude diagram

We now compare the data with realistic simulations. In this section we describe how our mod-
eling takes into account all the known observational constraints and discuss how to handle the
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Target θ Mus γ Nor γ Sct β Sct
< α◦ > 200 245 278 281
< δ◦ > -64 -52 -13 -6
< b◦ > -1.46 -2.42 -2.09 -2.15
< l◦ > 306.56 331.09 18.51 26.60

field (deg2) 3.8 8.4 3.6 4.3
N Ic<18.4

stars 2.28106 5.24106 2.38106 3.0106

ρ∗×10−6deg−2 0.60 0.62 0.66 0.70
ρI<18.4
∗ ×10−6deg−2 0.245 0.23 0.28 0.34

Nevent with u0 < 0.7 3 10 6 3
τ×106 .67+.63

−.52 .49+.21
−.18 .72+.41

−.28 .30+.23
−.20

tE (days) 97±75 57±10 47±6 59±9
σtE (days) 98 31 14 12

Table 4.1: Data and results toward the 4 regions monitored in the EROS spiral arms program.
Average coordinates, field extensions, numbers of bright stars (I < 18.4), surface densities of all
stars, of the bright stars, and the measured microlensing optical depth and duration parameters
are provided for each target.

specific difficulties of this kind of analysis.

We generated apparent color-magnitude diagrams based on the following hypotheses and
ingredients from direct observations:

• The HIPPARCOS catalog ([95], [273]) provides the magnitudes and colors of 118218
local stars. We assume that the local population is representative of the entire Galactic
disk stellar population. This hypothesis is certainly justified for the disk stars. The central
bar stellar population is redder, but the EROS observations we are considering here do not
point toward its center.

• A random magnitude shift is induced to take into account observational limitations, such
as blending and uncertainties, from the HIPPARCOS and EROS data.

• The spatial mass density distribution results from the addition of the contributions of thin
and thick disks and of the bar modeled according to [26] and [86] or to the Besançon model
([240]).

• The light propagation is affected by Galactic extinction in I and reddening in V − I, ob-
tained from a 3D table of KS extinctions kindly provided by ([78]).
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4.4.1 Producing a CMD from the local HIPPARCOS catalog

We present in Appendix A our procedure to obtain a debiased CMD in the (I,V) color system
within the domain 0 < MV < 8 from the HIPPARCOS catalog. This debiased catalog is described
by the distribution n(M), where M represents the absolute magnitude and color “vector” of a
given stellar type. We established in Appendix A that the numerical contribution of stars brighter
than MV = 0 is negligible in a deep Galactic image. In our case, given our limiting magnitude,
we can also neglect the contribution of stars fainter than MV = 8.

Assuming that the stellar composition is constant along the line of sight, stars of any given
type are distributed along the line proportionally to the total mass density ρ. The number of stars
expected per square degree (Ω(1◦×1◦) = 3.046×10−4 sr) in the EROS catalog is then the integral
along the line of sight

nEROS (m) = (4.10)∫ ∞

0

ρ(D)
ρ�

n(m−δm−µ(D)−A(D))εEROS (m)Ω(1◦×1◦)D2dD,

where

• D is the distance to the star along the line of sight,

• µ(D) the corresponding distance modulus (independent of the color),

• A(D) is the interstellar extinction vector (one component per filter)

• δm is a random shift of m that takes into account blending (see Sect. 4.4.3) and uncer-
tainties from HIPPARCOS parallax and EROS photometry; HIPPARCOS stellar absolute
I magnitudes are randomly shifted according to a Gaussian distribution of dispersion

εI =

√[
5loge×

δπ

π

]2
+ (δI)2, (4.11)

where π and δπ are the HIPPARCOS parallax and associated error, and δI is the estimated
EROS photometric uncertainty from expression (4.8). The colors V − I are similarly ran-
domly shifted with the dispersion

εV−I =

√
δ(V − I)2

H +δ(V − I)2, (4.12)

where δ(V − I)H is the uncertainty on the color from the HIPPARCOS catalog and δ(V − I)
is given by Eq. (4.8).
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• εEROS (m) is the probability to detect a star with apparent magnitudes m in the EROS
catalog (see Fig. 4.4). Here this probability is a function of BEROS only, which is related
to the absolute magnitudes and to the distance D as follows:

BEROS = V −0.4(V − I) (4.13)
= µ(D) + MV + AV(D)−0.4(MV + AV(D)−MI −AI(D)).

4.4.2 Mass density distributions

In this section, we describe two mass distribution models used to scale the local densities of
lenses and sources along the line of sight. We note the different status of the thick disk: it is
considered hypothetical within the framework of the first model (so-called simple) since it is a
pure hidden matter contribution; on the other hand, it is considered as one of the components
within the framework of the second model (Besançon).

Simple tunable Galactic model

In this model, which is slightly modified (updated) from the so-called model1 we used in [224],
the mass density of the Galaxy is described with a thin disk and a central bar structure. The disk
is modeled by a double exponential density in galactocentric cylindrical coordinates

ρD(r,z) =
Σ

2H
exp

(
−(r−R�)

R

)
exp

(
−|z|
H

)
, (4.14)

where Σ = 50M�pc−2 is the column density of the disk at the solar radial position R� = 8.3kpc
([51]), H = 0.325kpc is the height scale, and R = 3.5kpc is the radial length scale of the disk. The
position of the Sun with respect to the symmetry plane of the disk is z� = 26 pc±3 pc ([173]).
The bar is described in a Cartesian frame in the plane of the Galaxy, with its origin at the Galactic
center with the major axis X tilted by Φ = 13◦ ([239]) with respect to the Galactic center-Sun
line, i.e.,

ρB =
MB

6.57πabc
e−r2/2 , r4 =

[(X
a

)2
+

(Y
b

)2]2

+
Z4

c4 , (4.15)

where MB = 1.7×1010M� is the bar mass, and a = 1.49kpc, b = 0.58kpc, and c = 0.40kpc are the
scale length factors.
There has been some controversy about the bar orientation Φ; in particular, the EROS collab-
oration ([136]) published an erroneously high value (Φ = 49◦ ± 8◦) deduced from the variation
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of the mean distance to the red giant stars with the Galactic longitude. This mean distance was
confused with the distance to the bar major axis, but this view is only correct for a zero width
bar. As a consequence, the value of Φ was strongly overestimated, since as soon as the bar is
elliptic, the barycenters of the stars along the line of sight do not coincide with the bar main axis
([167]). Moreover, this difference between the barycenter line and the main axis increases when
Φ decreases and when the width of the bar increases. Correcting this wrong view, we checked
that the EROS red giant clump distance measurements are in fact compatible with the low values
of Φ recently published ([239], [282]), as discussed in the following sections.

The hypothetical thick disk is also considered in our model, and we fit its fractional con-
tribution fthick to the Galactic structure ( fthick = 1 would correspond to fully baryonic Galactic
hidden matter). This disk is modeled as the thin disk (Eq. (4.14)), with Σthick = 35M�pc−2,
Hthick = 1.0kpc, and Rthick = 3.5kpc.

The IMF of the stellar population is taken from [55] (Eq. (B.9)). We already mentioned that
we expect the microlensing duration to be especially sensitive to the low-mass side of the IMF of
the lens population. We therefore define a tunable function for the low-mass side IMF (m ≤ M�),
by introducing a parameter m0 (with value m0 = 0.2M� for the regular Chabrier IMF):

ξ(logm/M�) = 0.093× exp
[
−(logm/m0)2

2× (0.55)2

]
, f or m ≤ M� (4.16)

and we fit this parameter to our microlensing duration data in Section 4.6.

We use the following kinematical parameters:

• The radial (axis pointing toward the Galactic center), tangential and perpendicular solar
motions with respect to the disk are taken from ([51]),

v�r = 11.1+0.69
−0.75, v�θ = 12.24+0.47

−0.47, v�z = 7.25+0.37
−0.36 (km/s). (4.17)

We found that the microlensing duration distribution obtained in our simulation is almost
insensitive to the exact values of these parameters.

• The global rotation of the disk is given as a function of the galactocentric distance by

Vrot(r) = Vrot,�×

1.00767
(

r
R�

)0.0394

+ 0.00712

 , (4.18)

where r is the projected radius (cylindrical coordinates) and Vrot,� = 239±7 km/s ([51]).

87



• The peculiar velocity of the (thin or thick) disk stars is described by an anisotropic Gaus-
sian distribution with the following radial, tangential, and perpendicular velocity disper-
sions ([208] and [207]):

σthin
r = 27.4±1.1 km/s σthick

r = 56.1±3.8 km/s

σthin
θ = 20.8±1.2 km/s σthick

θ = 46.1±6.7 km/s (4.19)

σthin
z = 16.3±2.2 km/s σthick

z = 35.1±3.4 km/s.

We also found that the microlensing duration distribution is insensitive to the exact values
of these parameters.

• The velocity distribution of the bar stars is given by the combination of a global rotation
([114], [216])

Ωbar = 39km±3.5 s−1 kpc−1 (4.20)

with a Gaussian isotropic velocity dispersion distribution characterized byσbar ∼ 110 km/s.
We found that the mean duration of microlensing events toward γ Sct, which is the only
line of sight crossing the bar, is almost insensitive to Ωbar, mainly because the global rota-
tion velocity is almost tangent to this line of sight.

Besançon Galactic model

In this model ([240], with updated parameters from [239]), the distribution of the matter in
the Galaxy is described by the superposition of eight thin disk structures with different ages, a
thick disk component, and a central (old) bar structure made of two components ([239]). We
considered the updated model from ([239]) that appears to be specifically adapted to the Galactic
plane, and chose the fitted parameters associated with a two ellipsoid bar (Freundenreich (S) plus
exponential (E) shapes). All the parameters from this model can be found in the Appendix B, to
enable any useful comparison with our simple model.

From the local CMD and mass density to the stellar distribution

The mass densities are then converted into stellar number densities and distributed according to
our debiased HIPPARCOS-CMD (Section 4.4.1). The number density of stars scales with the
stellar mass density, such that the total number density of stars within 0 < MV < 8 equals the total
mass density within the corresponding mass interval [0.65,2.8]M�, divided by the mean stellar
mass in this interval, as computed from the IMF. We finally take into account the fact that ∼ 2:3 of
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those stars are in binary systems, as discussed in Section B.2. This 2:3 poorly known factor and
the exact mass to stellar number ratio can both be absorbed in a global renormalization factor,
and our simulated catalog has been tuned to precisely reproduce the local (debiased) observed
HIPPARCOS-CMD.

We have now in hand the full description of stellar number densities according to the mass
densities and the debiased HIPPARCOS-CMD, which is our initial ingredient to simulate EROS-
like CMDs.

4.4.3 Extinction

We now have to consider the absorption model to simulate the effects of distance and reddening
of the sources in expressions (4.10) and (4.13).

After generating the position and type of a star, we estimate the extinction due to dust along
the line of sight using the table provided by ([78]). This 3D table provides AK , the extinction in
KS in the (b, l) = (±10◦,±100◦) domain, up to ∼ 15kpc, with 0.1◦ angular resolution and 0.1kpc
distance resolution. We use the following relations to transpose the AK into I and V passbands

AV = 8.55×AK , AI = 4.70×AK ,AV−I = 3.85×AK . (4.21)

We compared the extinctions from this table with the 2D table of ([246]) (through extrapolation
at infinite distance), which is notoriously imprecise toward the Galactic plane, and with the
calculator of ([245])2. We found that up to ∼ 5kpc, the extinctions in I from [245] are compatible
with the Marshall table, although systematically lower. At larger distances, the estimates depart
from each other, and extrapolations at large distance from Marshall table are much larger than
estimates from both [246] and [245]. Nevertheless, as discussed in section 4.5.1, we found
it necessary to correct the extinctions (AK) of the Marshall table for systematic and statistical
uncertainties, to get synthetic CMDs of I < 18.4 stars that correctly match the observed CMDs
(compare Fig. 4.7 with Fig. 4.10); indeed, because of the large multiplicative factor relating
AV and AI to AK , a small error on AK has a very significant impact on the apparent position of
a star in our CMD. Fig. 4.12 shows the average extinctions in V along the lines of sights as a
function of the distance to the source, after tuning the model parameters according to our fitting
procedure.

2https : //ned.ipac.caltech.edu/help/extinction law calc.html
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Figure 4.7: The V − I observed (gray histograms) and the simulated distributions (simple model
in black, Besançon model in red) for the bright stars (with I < 18.4), using the Marshall table
without systematic/statistical uncertainties (to be compared with Fig. 4.10, bottom).
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Blending

We know from the comparison of the EROS images with the HST images ([224]) that ∼ 60% of
the I < 16 objects and ∼ 70% of the I > 16 objects detected by EROS are blends. This blending
effect is different than the binary blend mentioned at the end of Appendix A. This effect, due
to the EROS low separation power, is accounted for by randomly decreasing the magnitudes of
60% of the faint stars (resp. 70% of the bright) according to a Gaussian distribution centered on
−0.07, with σ = 0.25 (resp. 0.13), truncated at zero.

In principle, blending also contributes to reduce the number of detected objects with respect
to the predictions based on the HIPPARCOS catalog. As for the binary blend, this effect can be
absorbed in a global renormalization factor.

4.5 Comparing the EROS observations with simulated popu-
lations and microlensing expectations

Our aim is now to tune and compare the Galactic models with the observations toward the four
Galactic disk lines of sight (characterized by the corresponding EROS catalogs noted C). We use
all the available observables for this purpose as follows:

• The four color-magnitude distributions (CMD) of stars brighter than I = 18.4, which is the
most reliable part of the EROS-CMD. The observable variables we consider are derived
from the projected magnitude and color distributions: the total stellar densities ρ∗ 3, and
the first moments V − I and σV−I of the V − I distribution4.

• The measured optical depths τ(C) ([224]) toward the four catalogs C (Table 4.1).

• The measured means tE(C) ([224]) (Table 4.1). The poor available statistics convinced us
not to use the σtE parameter in our fitting procedure, since it is affected by such a large
uncertainty that it is essentially not constraining.

For quantitative statistical comparisons based on χ2 studies, we need good control of the un-
certainties on these observables. The τ and tE uncertainties are provided in [224]. Table 4.1
summarizes the numerical data toward the EROS monitored populations that we use for the
comparison with a simulation (apart from σtE ).

3After noting that the slopes of the magnitude distributions seem universal, we concluded that the integrated
stellar number density ρ∗ carries all the information on this distribution.

4These variables have the advantage that they do not depend on an arbitrary binning.
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4.5.1 Simulation of the CMDs

All the relevant information is already given in Sect. 4.4. Here, we briefly summarize the differ-
ent stages to simulate EROS CMDs from various models or parameters.

The stellar absolute magnitudes and colors are first randomly chosen according to the HIP-
PARCOS unbiased color-magnitude density diagram of stars with 0 < MV < 8 (Fig. B.4 bottom).
Generated magnitudes are then shifted to take into account the blending described in Sect. 4.4.3,
as well as the HIPPARCOS parallax uncertainties and EROS photometric uncertainties (Eqs.
(4.11) and (4.12)).

To estimate the integral in expression (4.10), we generate the distance distributions of stars
according to the mass density distributions of each Galactic structure (bar, thin disk, or thick
disk). The EROS stellar apparent magnitudes and colors are estimated from the absolute mag-
nitudes, the distances, and take into account the absorptions tabulated (in KS ) at the position
randomly chosen within the EROS fields (see Sect. 4.4.3). After this stage, we obtain the ap-
parent color-magnitude distribution of the stars before detection. Finally, the contribution of
each generated star is weighted by the EROS stellar detection efficiency εEROS (m), which is
parametrized as a function of BEROS (figure 4.4).

As mentioned in Sect. 4.4.3, to successfully fit the CMDs we had to introduce the hypothesis
of a systematic uncertainty on KS changing with the catalog, ∆AK(C), and a random uncertainty
with constant width εAK , within the tabulated data. Since the table does not provide uncertainties,
we used this hypothesis as the simpliest way to make our simulation compatible with the obser-
vations (A.C. Robin, priv. comm.). Then the ∆AK(C) and εAK parameters were tuned together
with the Galactic parameters to obtain synthetic CMDs that fit the observed CMDs (see below).

4.5.2 Simulation of microlensing

The previous procedure, based on the synthesis of the color-magnitude diagrams, allows us to
simulate the EROS catalogs of sources. To simulate the microlensing process for these catalogs,
we also need to synthesize the population of lenses, containing all massive objects regardless of
their visibility. The local lens density population is therefore simulated with the appropriate IMF
(depending on the Galactic structure and on the model) scaled with the local mass density. The
transverse velocity distribution needed to simulate the microlensing event durations is obtained
from the combination of the velocity distributions from the disk(s) and the bar, according to their
respective local mass contributions. Finally, we take into account the impact of the time sampling
by simulating the microlensing detection efficiency according to Fig. 4.6.

92



4.6 Fitting procedure

Our simulation program allows us to produce the CMDs and microlensing distributions toward
our 4 catalogs labeled (C), with any choice of Galactic parameters. We detail below the procedure
developed for our simple tunable model, which we also used to probe the Besançon model (with
no tuned parameter other than the systematic uncertainties of the interstellar absorptions).

4.6.1 Fit and tuning of the simple model

We examined the following 16 observables (4 per target C) ρ∗(C), V − I(C), τ(C), and tE(C) as
a function of the following parameters, around their nominal values: εAK , the random uncer-
tainty on the extinctions AK provided by the table from [177] for each generated stellar position;
∆AK(C), the systematic uncertainty on AK(C), depending on the catalog(C); the Galactic bar
orientation Φ (nominal value Φ = 13◦); and the (hypothetical) thick disk contribution, which is
parametrized by the fraction fthick of the thick disk considered in ([224]). This contribution is
modeled like the thin disk (see Eq. (4.14)), with Σthick = fthick × 35M�pc−2, Hthick = 1.0kpc,
Rthick = 3.5kpc, and velocity dispersions given by Eq. (4.19).

To benefit from the exclusive time information tE(C) provided by the microlensing data, we
also considered some specific parameters that are expected to impact the microlensing optical
durations. First, the low-mass part of the IMF, which we generalized from [55] through parame-
ter m0 (nominal value m0 = 0.2) (Sect. 4.4.2). Second, we explored the sensitivity to the peculiar
velocities of the microlensing actors through a scaling of the velocity dispersions reported in
expression (4.19). We found that our simulation is insensitive to such a scaling, therefore con-
firming that orbital velocities dominate the relative transverse motions. Third, for completeness,
we also tested the sensitivity of tE with the global rotation of the bar (Eq. 4.20) and found almost
no sensitivity; this is mainly because the bar rotation is almost tangent to the line of sight of
γ Sct, which is the only line of sight that crosses the bar structure.

Sensitivity of the observables with respect to the Galactic parameters

We used our simulation to establish the sensitivity of the observables with the variations of the
different parameters, and we made the following observations.

We find that only the simulated observables from the low longitude fields (β Sct and γ Sct)
are sensitive to the variations of Φ, when we test for very large changes, but they are insensitive
to few degree variations around the nominal value Φ = 13◦. As a consequence, we exclude Φ

from our fit.
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At first order, the absorption random shift dispersion εAK , with respect to the tabulated values,
is assumed to be the same for all fields, and the widths of the four color distributions σV−I(C) are
found to be disconnected from the other observables and parameters. We therefore directly fit εAK

by minimizing the differences between (σobs.
V−I(C))2 and the width combination (σsim.(0)

V−I (C))2 +

(3.85 ∗ εAK )2, where the 3.85 factor comes from the relation AV−I = 3.85×AK (see Sect. 4.4.3),
and the σsim.(0)

V−I (C) values are obtained with a simulation that assumes εAK = 0. The value that
minimizes the sum on (C) is εAK = 0.085, which we assume to be independent of the catalog C.
We use this value in the subsequent simulations.

The Chabrier-like IMF parameter m0 and the observables tE(C) are also disconnected from
the other observables and parameters. We therefore make a separate (sub-)fit for these parame-
ters, by minimizing

χ2
tE =

catalogs∑
C

(tE
sim(C)− tE

obs(C))2

σ2
tE (C)

(4.22)

with respect to m0, where the suffixes sim and obs refer to the simulated and observed catalogs.

The observables ρ∗(C), V − I(C), and the microlensing optical depths τ(C) (12 observables)
depend only on fthick and on the systematics ∆AK(C) (5 parameters). We performed a combined
fit by minimizing the sum of χ2

ρ∗ , χ
2
V−I

and χ2
τ, which is defined similar to χ2

tE , but since we have
to take into account common systematics, some of the covariant matrices are not diagonal.

In our minimization procedure, we used the first order developement of the observables as
functions of the parameters to be fitted, from the derivatives computed with our simulation. This
allowed us to perform the fit with acceptable computing time, considering the very long runs
needed for each model configuration.

Systematic and statistical uncertainties

We have carefully established the budget error for each observable as follows.

For the ρ∗(C) budget error, we have to take into account the uncertainty of ∼ 5.3% on the
size of the effective EROS field and the consequences of the 0.07 magnitude EROS calibration
uncertainty. The impact of this calibration uncertainty on ρ∗(C) has been estimated from the
published EROS-CMD tables, by changing the position of the I < 18.4 magnitude cut by the 0.07
systematics. We found that the uncertainty on ρ∗(C) due to this calibration error is ∼ 5%. The
final systematics results from the quadratic addition of both uncertainties (7.3%) and since it is
a multiplicative systematics, it has to be considered as an uncertainty on a global normalization
α; we therefore use a standard procedure to include the extra parameter α and fit the product
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α×ρsim
∗ with ρobs

∗ . We adopt 15% as the statistical uncertainty on ρ∗(C), which is dominated by
residual uncertainties from the absorption model and blending effects.

For V − I(C) , we have to account for the systematics due to calibration uncertainties on
both REROS and BEROS , thus giving a global systematics of 0.16mag.. In the covariance matrix
associated with the fit minimization, this additive systematics, which is common to the four
directions, contributes as a full matrix, to be added to the usual diagonal matrix built from the
residual statistical uncertainty that is estimated to be 0.15mag..

Statistical uncertainties from the EROS-CMD Poissonian fluctuation propagation are esti-
mated as explained in the header of the published EROS-CMD ([225]). Considering the large
statistics available in the EROS database, we can neglect the uncertainties due to the Poissonian
fluctuations of the number of stars in the original EROS histogram used to produce the CMDs.

As a conclusion, the uncertainties on ρ∗(C), V − I(C) and σV−I(C) are dominated by the im-
pact of the calibration uncertainties and the residual uncertainties from blending and absorption
effects discussed above. The values used for the fit are summarized in Table 4.6.1.

Results from the fit

We note that the fit is done with the best value for the random uncertainty on the tabulated
absorptions AK: εAK = 0.085. The best fit is obtained with the following parameters.

First, regarding absorption systematics, we find ∆AK(βS ct) = 0.09mag, ∆AK(γS ct) = 0.04mag,
∆AK(γNor) = 0.11mag, and ∆AK(θMus) = −0.01mag.

Second, regarding the fraction of the thick disk, we find fthick = 0.05± 0.6. This result does
not differ from zero, showing that there is no need for an additional baryonic contribution to
the thin disk within the framework of our simple model. We also tested the option of a non-
luminous thick disk (made of compact unseen objects), assuming no contribution to the CMD
(therefore only impacting the optical depths); we found finvisible thick = 0.5± 0.9, which is again
not significantly different than zero. From this estimate, we can conclude that the total mass of
an invisible thick disk is smaller than 7×1010M� at 95%CL.

Third, regarding the IMF, we find m0 = 0.51± 0.25M�, which 1.24 sigmas away from the
0.2 nominal value of the local Chabrier IMF ([55]). Our observations are therefore significantly
sensitive to the low-mass side of the lens IMF. This sensitivity belongs to a non-local IMF, since
it concerns only the lenses and not the solar neighborhood. Fig. 4.8 shows both IMFs (the local
and best fitted lens-IMF).

For this global fit of the CMDs, optical depths and microlensing durations, we find χ2 = 6.5
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for 10 degrees of freedom with a fair repartition between the different types of observables (ρ∗,
V − I, τ and tE).
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Figure 4.8: Different mass functions considered in this chapter: Standard Chabrier (black) cor-
responds to the local regular Chabrier IMF (Eq. (B.9) with m0 = 0.2M�); the modified Chabrier
(m0 = 0.51M�, in green) gives the best fit for the lens IMF from our simple model.

We exchanged in our simple model the Chabrier IMF for the Kroupa IMF ([163]). The only
consequence to this exchange was a significant decrease in the tE values, as expected from the
larger contribution of low-mass objects (see Fig. 4.8 and Table 4.6.1). This degrades the fit by
∆χ2 = 7.4, showing that the Kroupa IMF is strongly disfavored by our data.

It is clear that a larger statistics of microlensing events toward the spiral arms would have the
capability to better constrain the thick disk component and the lens-IMF.

Table 4.6.1 summarizes the best fit results for our simple model compared with previous
simulations (model 1) considered in [224], differing mainly through the extinction description.
Fig. 4.9 shows the mass density along the line of sight of γS ct resulting from our simple fitted
model.
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Figure 4.9: Mass-density along the line of sight of γS ct from the various Galactic structures
(disks and bar), as a function of the distance from the Sun for our nominal simple model (thin
black lines) and the Besançon model (thick blue lines). The total densities are shown with dashed
lines.
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Target θ Mus γ Nor γ Sct β Sct
measured 0.25± .037 0.23± .035 0.28± .042 0.34± .051

ρI<18.4
∗ ×106 ±7.3% common systematics

simple model 0.22 0.26 0.28 0.32
Besançon 0.23 0.26 0.30 0.33
measured 1.95± .15 1.86± .15 2.36± .15 2.20± .15

V − I ±0.16 common systematics
simple model 1.83 2.02 2.35 2.13

Besançon 1.94 2.11 2.52 2.22
measured 0.71 0.78 0.71 0.75

σV−I simple model 0.72 0.73 0.83 0.74
Besançon 0.73 0.74 0.81 0.73

Nevent(u0 < .7) observed 3 10 6 3

model 1 2.8 9.9 7.1 6.3
Nevent(u0 < .7) simple model 4.0 8.6 3.6 2.2

Besançon 4.0 9.9 3.5 2.4
measured .67+.63

−.52 .49+.21
−.18 .72+.41

−.28 .30+.23
−.20

τ×106 model 1 0.42 0.52 0.71 0.57
simple model 0.23 0.38 0.43 0.45

Besançon 0.22 0.34 0.44 0.40
measured 97±75 57±10 47±6 59±9

model 1 73.8 67.9 37.9 60.2
tE (days) simple model 79.4 54.4 49.1 53.8

with Kroupa IMF 64 43 38 42
Besançon 68.5 51.9 43.0 49.3

Table 4.2: Best fit results on the observables toward the 4 regions monitored in the EROS
spiral arms program, compared with previous simulations (model 1) and observations published
in [224]: Surface density (per square degree) of stars brighter than I = 18.4, mean and width of
CMD color distribution, number of microlensing events, optical depth, and mean duration.
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4.6.2 Besançon model: tuning the extinctions

In this section, our purpose is to test the agreement of the Besançon model with the EROS
microlensing results. We used almost the same procedure as above, but fitting only the uncer-
tainties on the K extinctions. The best fit is obtained for εAK = 0.10, ∆AK(βS ct) = 0.14 mag,
∆AK(γS ct) = 0.13 mag, ∆AK(γNor) = 0.15 mag, and ∆AK(θMus) = 0.04 mag. The global fit
has a χ2 = 8.2 for 12 d.o.f, with specific contributions of χ2

ρ∗ = 1.2, χ2
V−I

= 2.2, χ2
τ = 2.8, and

χ2
tE = 2.0.

Not surprisingly, the values of χ2
τ = 2.8 and χ2

tE are worse than those of our simple model,
since no parameters are fitted for the thick disk and the IMF, but the fit is globally satisfying (see
Table 4.6.1 for the summary of the fitted parameters and observables). Fig. 4.9 shows the mass
density along the line of sight of γS ct from the Galactic structures of the Besançon model (in
blue), resulting from the best fitted extinction.

As for the previous simple model, we also tested the hypothesis of an invisible extra contribu-
tion to the thick disk for this model; we find that the best fitted value for such a thick disk favors
an added contribution of 2.5± 4.7 times the modeled thick disk (χ2 = 8.0 per 11d.o. f ). Again,
there is no significant indication of the need for such an invisible contribution and the upper limit
of a Besançon-like thick disk (somewhat thinner than in our simple model) is ∼ 5× 1010M� at
95%CL.

4.7 Discussion

As a preliminary to the discussion, we recall here some of the hypotheses used throughout this
chapter: First, we assume the disk to have the same CMD as around the sun; then we rely on the
extrapolation of the extinction map obtained in K band to I and V bands, and assume reasonable
systematic uncertainties on this map.

4.7.1 Comparison with previous results and robustness

Figure 4.10 (to be compared with Fig. 4.3) shows that our best fitted models are able to reproduce
satisfactorily the observed CMDs of the (I < 18.4) stars. Table 4.6.1 shows that the model we
used previously (model 1) was also satisfactory. We tested the robustness of our results by
changing some of the uncertainties (systematics and statistics) with unsignificant variations of
the best fitted numbers.
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Figure 4.10: Simulated CMDs toward the 4 monitored directions (top) with the magnitude
(middle) and color (bottom) projections for the stars brighter than I = 18.4, expressed in mil-
lion of stars per square degree per magnitude. Results from our simple model are plotted with
black lines and results from the Besançon model with red lines; the distributions of the EROS
observed populations of bright stars (I < 18.4) are superimposed on the projections as light gray
histograms.
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Our model now incorporates enough details to allow one to use the CMD as an observable
to be fitted. As a consequence, the main impact of this type of study, apart from constraining
the parameters fthick (for our simple model) and m0, is to extract information on the underlying
stellar populations of sources and lenses.

4.7.2 Lens and source populations

Figure 4.11 shows the fast variation of the simulated optical depth along the line of sight with
the distance for the four studied directions and for both models considered in this chapter. This

Figure 4.11: Simulated optical depths toward the 4 monitored directions, as a function of the
source distance, for our nominal simple model (thin lines) and the Besançon model (thick lines).

fast variation of the optical depth with the distance shows that the notion of catalog optical depth
is crucial when dealing with sources distributed along a line of sight. This notion is not relevant
when considering well-defined distance targets such as LMC, SMC, and M31; when considering
only bright sources toward the Galactic Center, it is estimated that the relative uncertainty on
the bright sources positions is less than 10% ([206]) and it is still possible to ignore the spread
of the sources and to use the classical concept of optical depth up to a given distance for the
whole catalog. Previous studies concerning the Galactic spiral arms ([75], [74]) performed a
simplified analysis, by assuming all sources to be at 7K pc to compare the observed optical depth
with simple models, but [224] started to draw attention to the impact of the source distance
spread. Now it is clear that precise studies in the Galactic plane are needed to know the distance
distribution of the monitored catalog. Figure 4.12 shows the expected distance distributions of
the lenses and sources in the EROS microlensing events obtained from our simulation (taking into
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account the EROS efficiencies). Again, the source distance distribution illustrates the relevance
of the concept of optical depth toward a population in contrast with the optical depth up to a
given distance.

4.7.3 Constraining the Galactic model: The specific contribution of mi-
crolensing data

The good agreement of our Galactic models with the data shows that there is no need for other or
more ingredients. The Besançon model predicts relatively small optical depths, and this obser-
vation is in agreement with the deficit of optical depth toward the inner bulge directions noticed
by MOA-II ([16]), even if this is not very significant from our reduced statistics.

We also used our simulation to measure the domain of Galactic parameters that is compatible
with our observations. We focused on parameters that are expected to impact the microlensing
optical depths or durations, i.e., the bar inclination Φ (nominal value Φ = 13◦); the thick disk
contribution, parametrized by the fraction fthick, either visible (for the simple model) or invisible
(for both models); the disk kinematics for which we explored our sensitivity through the scaling
of the velocity dispersions (in expression (4.19)); and the IMF parameter m0, as defined in Sect.
4.6.

The impact of the Galactic bar is illustrated in Fig. 4.12, where it is clearly visible that it
mainly intercepts the γ Sct line of sight; in the present case, owing to low statistics, our data
can only distinguish between a small or a large bar angle, but cannot refine its current estimate.
Nevertheless, it is clear that systematic microlensing study at relatively small Galactic longitude
is a promising technique to precisely measure the bar inclination.

We show that there is no significant need for an extra thick disk component (visible or invisi-
ble); otherwise, from our data alone there are not enough constraints to exclude its existence and
only a 95%CL upper limit on its total mass could be inferred (∼ 7×1010 M� for the simple-model
thick disk, ∼ 5×1010 M� for an extra invisible component in the Besançon-model thick disk).

We found that we cannot constrain the velocity dispersion ellipsoids of the microlensing
actors, since the transverse velocities involved in the microlensing durations are dominated by
the orbital velocities.

Interestingly, we show that microlensing durations can constrain the low-mass end of the
mass function (see Fig. 4.13), and more importantly, they can provide such constraints for non-
local stellar populations (the disk lens population); this is in contrast with the other techniques,
which can only measure the mass function around the Sun.
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Figure 4.12: Expected normalized distributions of the distances for the lensed sources —when
taking into account the EROS microlensing detection efficiencies— (thin lines) and of the lenses
(thick lines) from the simulation of our simple model (upper) and the Besançon model (lower).
The sparsely-populated distributions around 4kpc (for β Sct and γ Sct) correspond to the con-
tribution of the bar objects. The dashed curves show, as a function of the distance, the average
extinctions of the stars in the simulated EROS-like catalog (in V magnitude, on the right scale).
It is strongly biased in favor of small extinctions mainly due to the magnitude selection I < 18.4.
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Figure 4.13: Einstein duration tE distribution of the microlensing events expected by assuming 4
different IMFs: the standard Chabrier (black), the Besançon model (red), the modified Chabrier
(with m0 = 0.57, green), and the Kroupa IMF (blue).

The best fitted value we obtain for our parametrized Chabrier-type IMF of the lens population
of the disk is m0 = 0.51±0.25, which is in relative disagreement (by one standard deviation) with
the parameter of the local mass function (m0 = 0.2) of the Chabrier model. This discrepancy
originates in the longer mean durations of the observed events compared with the simulation
based on the local IMF. The microlensing technique seems to be significantly sensitive to the
IMF low-mass end.

We find that the Kroupa IMF does not correctly reproduce the mean durations of our mi-
crolensing events, because of the higher contribution of low-mass objects, inducing a deficit of
predicted long duration events.

4.7.4 Limitations of this study

We have made a considerable effort to understand the CMDs and the microlensing data toward
directions that have not been examined by other teams. For this reason, we note the limits we
encountered during this study to avoid any missinterpretation. Knowledge of the absorption map
was one of the most important limitations. Its precision and resolution within the studied fields
are parameters that impact the CMD so strongly that we found it necessary to assume (reason-
able) systematic and statistical dispersions to understand the observed densities of bright stars.
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The blending and the 2:3 estimated fraction of binary stars are also other sources of limitation
for understanding the CMDs. All of these elements have fortunately a somewhat degenerated
impact on the predicted stellar densities; without any correction to the extinctions, we found that
the simulated CMDs had too many stars and were bluer than the data, which could be solved
with a systematic extinction increase. These limitations impacts mainly the CMDs; the specific
observables from microlensing (optical depth and durations) are mainly impacted through the
distance distribution of the lenses.

4.8 Conclusions and perspectives

We have performed a complete simulation of the Galactic structure and the EROS acceptance,
which is able to reproduce all the EROS exclusive observations toward the Galactic arms. In
this view, we produced a debiased color-magnitude diagram from the HIPPARCOS catalog to
feed our simulation with a realistic stellar population. This population was spatially distributed
according to the Besançon Galactic model, and to a simple Galactic mass model including a thin
disk and a central bar, with an adjustable thick disk contribution and IMF. Every simulated object
was then considered as a potential gravitational lens as well as a potential source to gravitational
lensing. Taking into account the dust extinction and EROS detection efficiencies, the observed
color-magnitude diagrams and the microlensing optical depths and durations are correctly fitted
with both our simple Galactic model (with no thick disk) and the Besançon model. We then used
the simulation as a tool to obtain information on the configuration space of the microlensing
actors (lens and source distance distributions). The large width found in this way for the source
distance distribution validates the concept of “catalog optical depth” by contrast with the usual
optical depth to a given distance. This concept is to be used as soon as the sources are widely
distributed in distance. Finally, even with the small statistics of microlensing events, we were
able to extract interesting constraints on the Galactic parameters – i.e., bar inclination confirma-
tion, disk kinematics, mass function, and hidden matter– that have an impact on the microlensing
distributions.

The running VISTA Variables in the Via Lactea (VVV) survey [185], which is monitoring
stars within the Galactic plane in infrared, is well suited to enlarge the field of view within the
Galactic plane, by searching for microlensing in dusty regions. This survey should be able to
better constrain the parameters mentioned above, with promising perpectives such as measuring
the mass function in areas other than the solar neighborhood. The Large Synoptic Survey Tele-
scope (LSST) will also have the capability to monitor a wide domain of the Galactic plane for
microlensing, but only limited to the clear windows, free from large dust column densities.
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Chapter 5

Themis: A Parameter estimation
framework for the Event Horizon
Telescope

The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the
structure and dynamics of black hole emission regions on scales smaller than their horizons. This
has the potential to probe critically the mechanisms by which black holes accrete and launch
outflows, and the structure of supermassive black hole spacetimes. However, accessing this in-
formation is a formidable analysis challenge for two reasons. First, the EHT natively produces
a variety of data types that encode information about the image structure in non-trivial ways;
these are subject to a variety of systematic effects associated with very-long baseline interferom-
etry, and are supplemented by a wide variety of auxiliary data on the primary EHT targets from
decades of other observations. Second, models of the emission regions and their interaction with
the black hole are complex, highly uncertain, and computationally expensive to construct. As a
result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful
analysis framework. We present such a framework, Themis, which defines a set of interfaces
between models, data, and sampling algorithms that facilitates future development. We describe
the design and currently existing components of Themis, how Themis has been validated thus far,
and present additional analyses made possible by Themis that illustrate its capabilities. Impor-
tantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and
do so in a computationally efficient manner that can efficiently exploit modern high-performance
computing facilities. We expect that Themis will play an important role in extracting scientific
conclusions from recent and future EHT observations.
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5.1 Introduction

The Event Horizon Telescope (EHT), a global array of millimeter and sub-millimeter radio tele-
scopes, has resolved the horizons of at least two black holes [79–82]. This provides a unique
window on the high-energy astrophysical processes responsible for the substantial growth and
inordinate influence of supermassive black holes [98, 139], the dynamics and thermodynamics
of material in the strong gravity regime [197, 295], and the fundamental nature of black holes
[42, 220]. However, efficiently and accurately extracting this information from the observational
data presents numerous challenges, requiring the development of novel analysis tools tailored to
the EHT data products, EHT-target properties, and auxiliary information.

The EHT achieves an extraordinary resolution of 13 µas, making it the highest resolution
imaging instrument in the history of astronomy. It does this via very long baseline interferometry
(VLBI), in which information from pairs of individual stations separated by Earth-sized distances
are combined to measure small-scale structure on the sky. The resulting data takes the form of
complex visibilities, directly related to the Fourier transform of the image. This can be performed
in all four Stokes parameters, yielding complete information about the resolved polarization
structures (e.g., [153]). In the near future, this will be extended to multiple wavelengths (1.3 mm
and 0.87 mm) [99]. Millimeter-VLBI observations of the primary EHT targets have already been
carried out at multiple epochs, covering times ranging from 10 seconds to 10 years [82, 104, 105,
153].

Difficulties in the phase calibration, and lesser — though still significant — complications
in the amplitude calibration of these visibilities, has motivated the construction of a set of VLBI
observables (e.g., visibility amplitudes, closure phases [148], closure amplitudes [274, 275], vis-
ibility polarization fractions [153], etc.) that probe the underlying image structure in nonintuitive
ways. These have traditionally been interpreted within the context of a simple set of phenomeno-
logical models, e.g., multi-component Gaussians. However, the substantial structure anticipated
on horizon scales exhibited by the primary EHT targets has given rise to a broader modeling
effort, which includes a variety of physical processes [40, 41, 45, 56, 57, 59, 77, 84, 101, 126,
193, 195, 197, 253, 294, 295].

This modeling effort is further motivated by the large amount of ancillary data that exists
for EHT targets. All EHT targets are necessarily bright radio sources, and thus have been the
object of substantial astronomical scrutiny. Both the Galactic center (Sgr A∗) and M87 have
been studied across the electromagnetic spectrum, from decameter wavelengths [72] to very-high
energy gamma rays (> 1 TeV) [88]. Moreover, due to the close proximity to their central black
holes, both are empirically highly variable, providing statistical information about the dynamics
within the mm-wavelength emission regions and creating opportunities to probe these dynamics
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directly at multiple wavelengths [89]. Physical modeling of these sources provides the unique
ability to synthesize all of these observations, which when combined with EHT data, can provide
a detailed description of the conditions and dynamics of material near black hole horizons.

There are substantial challenges to such a broad modeling effort. First and foremost, models
of the near horizon region are necessarily complicated, invoking multiple emission components
(non-thermal and thermal emission regions with uncertain and potentially distinct locations [56,
60, 70, 202, 238]), a variety of dynamical processes (orbital motion, winds, jets, explosive events,
etc., [45, 84, 149, 181, 221], strong lensing in a potentially uncertain spacetime (Kerr or beyond,
[42, 150, 151, 187]), polarization transfer effects (e.g., Faraday rotation and conversion [145,
252]), and propagation effects (e.g., interstellar scattering [154]). To add to the complexity of
this comparison only Fourier modes along specific tracks in the two-dimensional Fourier domain
are probed via Earth-Aperture synthesis on time scales that can be comparable to intrinsic source
variability [170]. Thus, any tools constructed to make comparisons between physical models of
EHT targets and the collection of EHT and auxiliary data must be extremely flexible.

Second, there are clear emission-model independent features in many images that arise from
the structure of the underlying spacetime. These include the black hole shadow, the image of the
event horizon at infinity, first described by [20]. This is bounded by the photon ring, a bright
ring arising from the stacking of multiple images, in which the gross features of the spacetime
are encoded. Thus, there is substantial motivation to directly extract these generic features from
the EHT data alone. Again, this is complicated by the indirect relationship between the VLBI
observables and the image, resulting in frequently counter-intuitive conclusions. Hence, ideally,
any tools for assessing the presence and properties of image structures should be able to extend
to phenomenological models as well.

Third, the nature of EHT data has evolved rapidly over the past decade, growing as the
sensitivity and baseline coverage improved. It is far from clear that any particular set of EHT
data types are optimal for a given astrophysical or gravitational question. In some cases new
data types have been developed based on both instrumental and observational limitations (e.g.,
visibility polarization fractions). Given the broad range of EHT and ancillary data types, any
model comparison effort must maintain substantial flexibility in the kinds of information that it
can utilize.

Finally, in many cases the construction of physically realistic models is computationally ex-
pensive, requiring ray tracing (relatively cheap) and radiative transfer (often expensive) through
model structures. This difficulty is compounded by the often multimodal nature of the recon-
structed posterior parameter distributions (see, e.g., [41]). As a result, any analysis tools must be
both computationally efficient and be able to exploit the large investment in high-performance
computing resources.
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It is to address these challenges that we have begun the development of an analysis frame-
work for EHT and ancillary data: Themis (means ”order” and is the name of the Greek goddess
of divine law and order). Themis is designed to be modular, extensible, and highly parallel, en-
abling the extraction of increasingly detailed information from EHT observing campaigns, both
individually and in aggregate. Here we present the underlying design philosophy, structure, and
validation tests of Themis, including the reproduction of a variety of published analyses. We
then demonstrate the ability of Themis to trivially extend these, presenting new analyses of phe-
nomenological models that include the full set of published EHT observations.

In Section 5.2, we summarize the algorithms, components and implementation details of
Themis. Individual features are described in Sections 5.3-5.5. Various tests used to validate
Themis features are presented in Section 5.6. A handful of novel results enabled by Themis are
collected in Section 5.7. The computational performance of Themis and its key components, in-
cluding the implications for high-performance computing (HPC) systems, is addressed in Section
5.8. Finally, conclusions are summarized in Section 5.9.

5.2 Summary of Themis

5.2.1 Structure

The primary goal for Themis is to provide an extensible framework for unifying existing and
developing future analyses of EHT and auxiliary data. Thus, a key element of Themis is the
partitioning of the problem, defining a set of independent components in an extensible fashion,
ensuring that each may be independently developed. Thereby Themis may be continually and
effectively developed by the EHT community. Importantly, the practical bar to do so is substan-
tially reduced, requiring would-be developers to understand only the elements of the interface.
In the presence of a rapidly evolving data type and modeling effort, this is critical to leveraging
the substantial preceding efforts.

Themis consists of three distinct collections of components, each of which is designed to be
interchangeable:

Data Structures Management and standardization of observational data throughout Themis.
These facilitate the rapid introduction of new data products, expand the capability of exist-
ing data products, and define the objects for which predictions are ultimately made.

Models Any algorithm that produces a prediction for some data object given a list of parameters.
Models may be physically motivated or purely phenomenological. They are directly tied to
underlying data structures via the declaration of those for which predictions can be made.
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Likelihoods, Priors and Samplers Likelihoods provide a method for directly comparing model
and data objects. Note that in many cases elements of the underlying model may be sub-
sumed into a likelihood (e.g., nuisance parameters that can be analytically marginalized
over). Priors and samplers provide methods for efficiently exploring the model parameter
space, providing information about the model parameters.

In practice, there is some overlap between component classes (e.g., Likelihoods and Models),
which may be implemented in more than one way. Nevertheless, this has proven sufficiently
modular to enable rapid and significant model development already.

All Themis-based analyses are structured in the following way:

1. Generate the desired data objects, e.g., by reading in existing data sets.

2. Create an appropriate model object, i.e., declare a model capable of making predictions for
the data selected.

3. Specify prior probability distributions for each model parameter.

4. Construct the relevant likelihood objects, combining data sets as desired.

5. Execute a sampler, reporting sampler-specific parameter information (e.g., generate chains
for MCMC samplers).

In this way the execution of the analysis is conceptually modularized, enabling variations in each
stage to be made trivially.

5.2.2 Implementation

The main function is kept concise and is the only element of Themis a user that is simply run-
ning Themis needs to modify. The user may choose interchangeably different EHT data set(s),
theoretical model(s), likelihoods, priors, and samplers to employ. Conceptually, this function is
organized in a fashion that closely follows the analysis pipeline listed at the end of the previous
section to improve usability.

Themis also allows users to add wholly new functionality, such as additional models, which
can be included easily into a clear and well-established structure. An object-oriented program-
ming framework, along with inheritance, permits a clear and concise definition of component
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interfaces. Examples of how these are propagated through various Themis components are ex-
plicitly illustrated in the inheritance diagrams shown in Figures 5.1 and 5.2. Importantly, in the
former, the various predictions enabled by a particular model type (in this case, image-based
models, see Section 5.4.1) are shown; for more details see Section 5.4.

Themis is under version control provided by git with a modern, state-of-the-art branching
strategy including master, development and feature branches. Users are encouraged to generate
new code branches, develop and contribute to the code in the form of a pull request that will be
reviewed by the Themis core development team.

A suite of tests is run regularly via a script in an effort to identify bugs or regressions as early
as possible. The script performs these tests and sends a report to the Themis core development
team. These include short tests using EHT data, and range all the way to less frequent and slower,
to full scale parameter estimation validation tests similar to the ones presented in Section 5.6.

The code is written in C++ making it maximally portable, and has been tested on a variety of
systems. Themis is designed with minimal dependency on external libraries to avoid installation
conflicts; currently, the only required external libraries are FFTW [107] and the Message Passing
Interface (MPI)1. Up-to-date documentation is critical in a rapid development environment. To
meet this challenge, Themis has integrated documentation comments which may be optionally
rendered via Doxygen2 to produce a comprehensive, cross-linked html and/or PDF document.

We now turn to describing each component collection independently.

5.3 Themis Data Structures

Within Themis, observational data are collected in type-specific data structures. Each has a sin-
gular data element defined (a datum object) and an associated plural data structure (a data object)
that provide additional input/output facilities and element access functions. At a minimum, these
provide access to the values and their uncertainties. Typically, they include a variety of addi-
tional “accoutrements”, information necessary or useful in modeling the data. Importantly, these
accoutrements are both data-type specific and extensible: information that only becomes useful
in subsequent observations or analyses can be added without modifying the data-model inter-
face. For example, observed fluxes may initially include frequency as an accoutrement and later
expand to include time, observation facility, etc.

1Information on the MPI 3.1 standard can be found at www.mpi-forum.org.
2Information on Doxygen features, directives, and on how to obtain and install it, may be found at

www.doxygen.org.
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Figure 5.1: Inheritance diagram for the model image object within Themis generated via
Doxygen. These are models whose primary output is a raster image. Note that a number of
models that are either analytically tractable, or extend beyond a single, raster image are not
shown. A full listing of Themis models can be found in the online documentation.
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Figure 5.2: Inheritance diagram for the likelihood object within Themis generated via
Doxygen.
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Target Type Obs. Campaign N Reference
Yr Day(s)

Sgr A∗ F 1998-2006 11 [100, 176, 296, 299]
– VA 2007 100-101 19 [82]
– VA 2009 95-97 51 [104]
– CP 2009 93,96-97 24 [105]
– CP 2011 88,90-91,94 31 [105]
– CP 2012 81 25 [105]
– CP 2013 80-82,85-86 101 [105]
– VA 2013 80-82,85-86 128 [153]
– LP 2013 80-82,85-86 662 [153]
– VA 2013 80-82,85-86 861 [169]
– CP 2013 80-82,85-86 267 [169]

M87 VA 2009 95-97 104 [81]
– F 2012 81 8 [8]
– CP 2012 81 17 [8]

Table 5.1: Published EHT Data. Data types include visibility amplitudes (VA), closure phases
(CP), interferometric linear polarization fraction (LP), and fluxes (F) and N stands for the Num-
ber of data points, including detections only.

Organizing data this way within Themis both permits, evolution in how data is employed in
model comparisons, and presents a simple way in which to include additional types of data that
are currently unforeseen. This is especially important given the wide variety of auxiliary data
that exists for EHT targets, most of which has yet to be fully utilized. This has already been
implemented for a number of existing data types, including all for which EHT data has already
been reported (see Table 5.1). We summarize each of these below.

5.3.1 Visibility Amplitudes

The primary product of VLBI observations are complex visibilities, corresponding to the Fourier
modes of the image on the sky at spatial frequencies given by the projected baseline presented by
pairs of VLBI stations. Specifically, in the absence of confounding effects, the complex visibility
is given by

Vi j =

∫
dαdβI(α,β)e−2πi(αu+βv) , (5.1)
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where (u,v) is the two-dimensional projected baseline length between the ith and jth stations
expressed in units of the observed wavelength, and I(α,β) is the spatial intensity distribution at
angular position (α,β) [for a comprehensive introduction to radio interferometry, see, e.g., 271].

In practice, these are modified by a variety of observational complications, chief among
which are atmospheric absorption and phase delays at individual stations, which impact the am-
plitude and complex phase of Vi j. Of these, the latter are especially problematic, resulting in
phase shifts of the Vi j by many times 2π, effectively randomizing the phase on every baseline.
As a result, often the magnitudes of the visibilities, |Vi j|, are employed, which are subject only
to a comparably modest uncertainty, 1%-20% depending on station and atmospheric conditions
[see, e.g., 153, 169], albeit containing less information on the structure of the image. The num-
ber of visibility amplitudes generated by an interferometer grows quadratically with the number
of stations, N, scaling as ∝ N(N −1)/2. Throughout an observing campaign, the rotation of the
Earth produces a large number of independent measurements at different projected baselines.

Already a large number of EHT visibility amplitudes have been published for the primary
EHT targets, beginning in 2007, and extending through 2013 [82, 104, 153, 169]. We list these
in Table 5.1.

5.3.2 Closure Phases

While atmospheric phase delays typically preclude the reconstruction of the phase of the complex
visibilities3, it is possible, nevertheless, to obtain some information about these phases via the
closure phase,

Φi jk = arg
(
Vi jV jkVki

)
, (5.2)

i.e., the sum of the phases of a triplet of visibilities measured on the baselines between some
triplet of stations4. Because the baselines “close”, i.e., (u,v)i j + (u,v) jk + (u,v)ki = 0, all station-
specific phase errors vanish identically, leaving a quantity that depends solely on the image struc-
ture. Of particular importance, closure phases are also insensitive to the image blurring induced
by the diffractive component of the interstellar scattering. Closure phases are not unique — for
an array with N stations only (N − 1)(N − 2)/2 are independent — a result that is presaged by
their independence of the phase delays.

Closure phases have been reported by the EHT for Sgr A∗ for a number of years in [104] and
[169], and summarized in Table 5.1.

3This is not true if a phase reference is used, typically an extragalactic background source (see, e.g., [40]), or if
multiple wavelengths are simultaneously observed, permitting one to be phase referenced to the other [184].

4This is the argument of the bispectrum.
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5.3.3 Closure Amplitudes

Station-specific amplitude calibration errors can also be mitigated by combining visibilities mea-
sured on multiple baselines. The closure amplitude is constructed from combinations of visibili-
ties measured on four stations,

Vi jkm =
|Vi j||Vkm|

|Vik||V jm|
, (5.3)

and is insensitive to variations in the flux calibration and phase delays. Again, closure amplitudes
are also insensitive to the image blurring induced by the diffractive component of the interstellar
scattering. As with the closure phase, this comes at the price of uniqueness; there are only
N(N −3)/2 independent closure amplitudes.

Closure amplitudes constructed from EHT data have not yet been published, primarily due to
the limited number of stations participating in early observations. However, recent observations
have generated a number of trivial closure amplitudes, i.e., amplitudes for which one baseline
is very short, as part of the calibration process [see, e.g., 153]. Beginning with the April, 2017
observations, many non-trivial closure amplitudes can be anticipated.

5.3.4 Interferometric Polarization Fractions

The EHT observes in all four Stokes parameters, (I,Q,U,V). Independently, these can be used
to construct visibility amplitudes, closure phases, and closure amplitudes. However, additional
information may be obtained by combining observations made in different Stokes parameters.
The interferometric polarization fraction,

m̆i j =

√
|VQ

i j |
2
+ |VU

i j |
2

|Vi j|
, (5.4)

where VQ,U
i j are the visibilities associated with Stokes Q and U, and Vi j is the visibility defined

in Equation (5.1), is the extension of the familiar polarization fraction to the individual Fourier
modes of the image. m̆ is not to be mistaken with the Fourier transform of the linear polariza-
tion fraction as measured in the image domain. Unlike the standard polarization fraction, m̆i j
may be larger than unity, and can exhibit counter-intuitive pathologies for even simple source
models [see the discussion surrounding Figure S6 in the supplemental material in 153]. Like
closure amplitudes, the interferometric polarization fractions are insensitive to station-specific
flux calibration uncertainties and the diffractive component of the interstellar scattering.
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Interferometric polarization fractions have been reported for Sgr A∗, are typically quite large
and indicate the presence of ordered horizon-scale polarization structures [153]. We summarize
these in Table 5.1.

5.3.5 Flux Measurements

A key auxiliary set of observations are the spectral energy density distributions (SED) for primary
EHT targets, which typically place strong limits on the uncertain emitting particle distributions.
In addition, multi-wavelength light curves are a key probe of the nature and origin of variability in
the emission regions of the source. Both empirical constraints are intrinsically encoded in mea-
surements of the unresolved source flux, Fν, effectively equivalent to the visibility amplitudes
measured at “zero-baseline”, i.e. neighboring antennas. The distinction between these arises in
the accoutrements associated with the data, e.g., the origin of the observation, wavelength, time,
etc.

Multiple sets of flux measurement data for Sgr A∗ and M87 exist. For Sgr A∗, one set is
summarized in Table 5.1.

5.4 ThemisModels

Within Themis, a model is any algorithm capable of generating a prediction for any Themis data
type. Thus, Themis models are closely aligned with Themis data structures — for each data type
there is a corresponding base model type. Models can encompass multiple base model types,
i.e., they can be capable of generating predictions for more than one type of data. This enables a
broad, easily extensible, and backwards compatible framework for defining models that permits
the incrementally increasing sophistication. Importantly, it provides a uniform interface for both
phenomenological models, which are designed to make predictions for a handful of data types,
and physically motivated models, which can simultaneously make predictions for a wide variety
of data types.

The manner in which predictions are made is not prescribed. That is, where analytical ex-
pressions for the relevant data type exist (e.g., visibilities from simple geometric models), models
are capable of employing these. For more complex models, numerical computations are often
required. In anticipation of numerically produced predictions, Themis permits the passing of an
accuracy parameter for each value that specifies the accuracy with which these must be gen-
erated; typically setting this to 25% of the measurement uncertainty is sufficient to generate
accurate parameter estimates (see Appendix C).
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5.4.1 Image-based Models

Because the EHT directly probes the structure of horizon-scale images, Themis contains an
image-based model type. This provides a set of utilities for generating and manipulating visibility-
based data from models that primarily generate images.

Because image generation is frequently computationally intensive, the image-based model
introduces an additional position angle parameter, permitting the specific model implementations
to dispense with trivial image rotations, leading to a substantial potential reduction in the time
required to sample a broad range of parameters.

Once generated, images are padded with zeros by a factor of 8 by default to effect sinc-
interpolation in the numerically computed complex visibilities. The complex visibilities are
computed on a two-dimensional grid of (u,v) values via a two-dimensional Fast Fourier Trans-
form using the FFTW library [107]. There are no restrictions on the image dimensions, though it
is expected that the image is computed on a rectilinear grid with uniform pixel size; dimensions
that factor into small primes will be marginally faster.

Complex visibilities are then estimated at any arbitrary (u,v) via interpolation. By default
Themis employs bicubic interpolation, though a user may specify bicubic spline interpolation
if desired. From these, the closure phases are constructed via Equation (5.2). While visibility
magnitudes may also be constructed from the interpolated complex visibilities, it is considerably
more accurate to interpolate the visibility magnitudes directly.5 These are then used directly or
to compute closure amplitudes via Equation (5.3).

5.4.2 Phenomenological Geometric Models

Within Themis, a number of phenomenological geometric models have been implemented. These
are models for which no underlying physical emission mechanism is identified for the origin of
the image structures. However, such models are capable of extracting signatures of geomet-
ric features associated with underlying physical processes of interest, e.g., black hole shadows.
Currently implemented phenomenological models include the following.

5The magnitude of the gradient of the complex visibility and the gradinat of the visibility amplitude are related
via |∇V |2 = (∇|V |)2 + |V |2(∇φ)2 ≥ (∇|V |)2, and thus the former is generally smaller than the latter. As a result, the
errors in interpolation at any order are typically smaller when interpolating visibility amplitudes directly. Alterna-
tively, this permits considerably smaller image sizes when only amplitudes are required.
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Symmetric Gaussian

Historically, the first shadow size estimates from mm-VLBI observations of Sgr A∗ and M87
arose from fitting symmetric Gaussians to visibility amplitude measurements [82]. Therefore, we
have implemented within Themis a model consisting of a single symmetric Gaussian component,
characterized by a size, σ, and an amplitude, V0. This makes predictions for visibility amplitudes,
closure phases (trivially zero), and closure amplitudes.

Asymmetric Gaussian

The introduction of asymmetry in mm-VLBI images was initially characterized by an asymmet-
ric Gaussian. Within Themis we have implemented such a Gaussian model parameterized as in
[40], and characterized by a size, σ, an asymmetry parameter, A, the amplitude, V0, and the
position angle, ξ.

Multiple Symmetric Gaussian

Themis also includes a model consisting of an arbitrary number of symmetric Gaussian compo-
nents, each characterized by a size, σ j, location, (x j,y j), and amplitude, V j.

Crescent Model

Themis includes an implementation of the crescent model described in [155], for which the image
is obtained by subtracting two non-concentric discs, with the smaller disc lying completely inside
the larger one. The complex visibilities for this model can be obtained analytically and are given
by Equation (3) of [155]. As in [155], we reparameterize this in terms of an amplitude, V0,
overall size, R, relative thickness, ψ, degree of symmetry, τ, and the position angle, ξ. Both ψ
and τ are defined on the unit interval.

The “xringaus” model

Themis also contains an implementation of the nine-parameter xringaus model proposed in [23].
This model was constructed in an effort to mimic a more realistic black hole accretion image
like the ones commonly obtained from physically motivated models. The xringaus image is the
combination of an eccentric slashed ring and an elliptical Gaussian located in the brighter side
of the ring.

119



This model is then described by a tuple of nine parameters: the zero-spacing flux, V0, the
external radius, Rex, the internal radius, Rin, the distance between centers of the circles, d, the
“fading” parameter controlling the minimum brightness, the Gaussian axes sizes, a and b, the
fraction of the total flux in the Gaussian, gq, and the position angle, ξ. The complex visibilities
for this model, in terms of these parameters, can be also obtained analytically. The reader is
referred to Section 2 of [23] for a more detailed description.

Visual Binary

Themis also features a model of two Radio emitting Gaussian components in orbit around each
other. The model is characterized by a tuple of 13 parameters including the total flux Fi, size
σi, and spectral index αi of each component, the total mass of the system M, the binary mass
ratio, q ≤ 1, the orbital separation, R, the source distance d, the phase offset Φ0, the cosine of
the inclination angle, cos(i) of the orbital angular momentum vector and the position angle in
the sky, ξ. This model includes (and therefore also takes advantage of) relativistic effects such
as Doppler boost and relativistic aberration. It is explicitly time-dependent while being fully
analytic and thus fast to evaluate.

This model is to be compared to long time scale monitoring campaigns of sources such as OJ
287 or other binary candidates. Details will be published in a separate paper which focusses on
this topic.

5.4.3 Interstellar Scattering Models

Interstellar scattering modifies the intrinsic images of Sgr A∗ by both blurring the image (diffrac-
tive component) and adding small scale structures associated with a random realization of refrac-
tive modes that vary slowly throughout the night [refractive component; see, e.g., 154]. These
significantly modify visibilities on long baselines, and must be included in analyses of EHT
observations of Sgr A∗.

When many realizations of the scattering screen are averaged over, e.g., after many observing
nights, i.e., when the scattering may be treated in the ensemble average limit, only the diffrac-
tive component is present. This appears as an image smoothing via convolution with a Gaussian
kernel whose parameters depend on the details of the intervening scattering screen(s). Themis
has implemented two models for addressing interstellar scattering, both in the ensemble average
limit, which we list below. In both, the impact of scattering is imposed directly on the visibilities,
for which the convolution in image space reduces to a multiplicative factor. Within Themis, each

120



are implemented as a model that modifies an existing intrinsic model, with the latter introduc-
ing additional parameters. Hence, scattering provides an explicit example of how the modular
structure of Themis enables the rapid construction of new models.

Default Diffractive Screen

Multi-wavelength observations have produced a model for the scattering kernel that is asymmet-
ric and wavelength dependent, consistent with that anticipated by models of the scattering screen
that invoke Kolomogorov turbulence within a plasma sheet [34]. The associated semi-major and
semi-minor axis sizes are given by

σmaj = 9.39
(

λ

1.3 mm

)2
µas

σmin = 4.59
(

λ

1.3 mm

)2
µas,

(5.5)

and are oriented such that the major axis lies 78◦ East of North.

Parameterized Diffractive Screen

Recently, it has been shown that even for thin scattering screens, the wavelength dependence
of anisotropic scattering screens may be substantially more complicated [218]. The main un-
certainty is the inner-scale of the turbulence within the screen, corresponding to the dissipative
scale within the sheet. For some plausible values, the wavelength dependence could depart from
that found in [34] near 1.3 mm. As a result, a second scattering model has been implemented in
which σmaj, σmin, and the position angle are all parameterized as power laws of wavelength with
unknown coefficients and powers. That is,

σmaj = σA

(
λ

λp

)α
, σmin = σB

(
λ

λp

)β
,

and ξ = ξ0 + ξ1

[(
λ

λp

)γ
−1

]
,

(5.6)

where the 7 parameters, σA, σB, ξ0, ξ1, α, β, and γ may be varied. The pivot wavelength, λp, is
set by the user.
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5.4.4 Native Physical Models

The past two decades have seen the development of a number of physically motivated models
which employ ray tracing and radiative transfer in black hole spacetimes. These have two main
components: the construction of photon trajectories within the spacetime under consideration,
and the radiative transfer through some emitting plasma distribution. Both elements are directly
affected by variations in the spacetime structure, with the emission also depending on a number
of astrophysical considerations.

While this class of models is substantially more complicated than geometric models, their
physical origin presents a number of significant advantages. First, they are capable of making
predictions for a wide range of observations, making it possible to bring far more empirical data
to bear upon them. For example, they necessarily make simultaneous, self-consistent predictions
for images, fluxes, variability, and polarization features of the EHT and auxiliary data [44, 48, 56,
59, 77, 126, 146, 193, 221]. Hence, physical modeling enables a concordance fitting effort that
promises far more power to constrain the nature of the emission region [41, 59, 126]. Second, the
spacetime structure impacts the image in many ways beyond gravitational lensing. The dynamics
of the material in the emission region modifies its optical depth, and therefore appearance [38,
39, 43, 45, 46, 49, 58, 77, 126, 149, 194, 195, 221]. Thus, in principle, modeling the brightness
distribution offers additional probes of gravity [42, 45, 150, 151, 187]. Third, it provides direct
information about the high-energy astrophysical processes responsible for the growth of black
holes and the launching of jets [46, 47, 77, 126, 143, 193].

Within Themis, two general relativistic ray tracing and radiative transfer packages are pro-
vided. The first of these is the vacuum ray tracing and radiative transfer package VRT2 (Vacuum
Ray Tracing and Radiative Transfer). VRT2 is based on the plasma radiative transfer package
described in [38, 39] and provides a modular framework for adding novel plasma distributions,
radiative transfer mechanisms, and spacetime structures. It was the basis for the images gener-
ated in e.g. [40] and used in the analysis of [41]. It also natively interfaces with Themis, having
been written in the same programming language (C++), in a similar style. Models based on VRT2

within Themis include those listed below.

In addition, the vacuum ray tracing and radiative transfer package Odyssey described in [222]
has also been incorporated within Themis. Based on the ray tracing algorithm in [113] and the ra-
diative transfer formula presented in [293], Odyssey can exploit graphics processing unit (GPU)
cards to realize substantial speed gains for models that employ it. It requires the Compute Uni-
fied Device Architecture (CUDA)-enabled GPU cards and the CUDA compiler nvcc. Again, like
Themis, Odyssey is implemented in C/C++ and CUDA in C/C++, making its integration straight-
forward.
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Figure 5.3: Image produced by the radiative transfer module VRT2 showing the resulting best-fit
RIAF model after sampling the full parameter space. This reproduces the result in [41]. The X
and Y axis show image coordinates in units of the gravitational radius.

SED-fitted RIAF

This is an image at a single wavelength associated with the radiatively inefficient accretion flow
(RIAF) models described in [44] and refined in [40]. This model employs a tabulated set of
accretion flow parameters, obtained at different black hole spins and inclinations, that reproduce
the observed SED of Sgr A∗. The model parameters are the dimensionless spin magnitude,
a (in the range [0,1]), the cosine of the inclination, cosθ, ([−1,1]), and the position angle, ξ
([−180◦,180◦], as part of a model image). The intensity normalization may be included in via
the likelihood (see Section 5.5.1). An example image from the Themis-integrated VRT2 package
is shown in Figure 5.3.
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Extended RIAF

This is an extension of the SED-fitted RIAF model that permits a wide range of structural pa-
rameters in the RIAF model to vary. This consists of two populations of synchrotron emitting
electrons, orbiting a Kerr black hole in the presence of a toroidal magnetic field. Specifically, the
proper number density and temperature of a thermal population of electrons are given by

nth = ne,trηte−z2/2h2
t R2
, Tth = Terτt , (5.7)

where z = r cosθ and R = r sinϑ where r is the standard Boyer-Lindquist radius (measured in
GM/c2) and ϑ is the Boyer-Lindquist polar angle. Similarly, the proper number density of the
nonthermal electrons is given by

nnth = ne,ntrηnte−z2/2h2
ntR

2
, (5.8)

and has a power-law distribution in microscopic Lorentz factor above γmin with a power law
corresponding to an optically thin spectral index of α (i.e., 2α−1). These are emitting within a
toroidal magnetic field with comoving strength

B2

8π
= β−1 mpc2

6r
, (5.9)

and orbiting with a four-velocity outside of the innermost stable circular orbit (ISCO) given by

uµ = ut(1,0,0, κ`K) (5.10)

where `K is the specific Keplerian angular momentum and ut is determined by the standard nor-
malization condition on uµ; inside of the ISCO the material plunges on ballistic orbits. Thus,
there are 15 parameters: black hole spin, a, cosine of the black hole spin inclination, cosθ, black
hole spin position angle, ξ; thermal electron density normalization, ne,t, radial power-law, ηt, and
scale-height, ht, electron temperature normalization, Te, and radial power law, τt; nonthermal
electron density normalization, ne,nt, radial power-law, ηnt, scale-height hnt, minimum micro-
scopic Lorentz factor, γmin, and spectral index, α; plasma beta, β and sub-Keplerian fraction
κ. Note that subsets of these may be held fixed or varied simultaneously via the definition of a
wrapper model.

Orbiting Hot Spots

Major dissipative events within the accretion flow, such as magnetic reconnection events and
shocks, can generate initially compact, orbiting, synchrotron emitting hot spots. These may
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increase the emission of Sgr A∗ by orders of magnitude before inducing any dynamical ef-
fects. Therefore, they may be roughly modeled as orbiting, Gaussian non-thermal particle over-
densities that subsequently synchrotron emit in the radio and infrared, restricted to the equatorial
plane [43, 45]. To model the velocity profile of the spot we use a two-parameter, (αr, κ) ∈ [0,1],
four-velocity given by

uµ = (ut,ur
αr
,0,utΩκ). (5.11)

Here ur
αr

= ur
K +αr(ur

f f −ur
K) and Ωκ = Ω f f + κ(ΩK −Ω f f ), where K , f f subscripts denote Keple-

rian and free fall motion respectively, and Ωi = uφi /u
t
i [see also 221]. Thus, there are 10 parameters

needed for this model: black hole spin, a, cosine of the black hole spin inclination cosθ, black
hole spin position angle ξ; central spot non-thermal electron density ne,spot, spot radial size Rs;
initial spot location in time, t0, radius, r0, and azimuthal angle φ0; the sub-Keplerian parameter
κ, and the radial infall parameter αr.

Shearing Hot Spots

In practice, hot spots will subsequently shear and cool. Thus, Themis also includes a shearing hot
spot model [149], that incorporates the expansion of the hot spots within a background accretion
flow. The parameters of this model are identical to the orbiting spot model above.

5.4.5 External Physical Models

There is no intrinsic bar to including additional ray tracing and radiative transfer packages within
Themis. Doing so offers a number of benefits, including the ability to rapidly generate new
models within Themis itself, efficient parallelization and improved portability. However, native
integration is not necessary. It is often initially faster, and occasionally necessary, to externally
include modeling software. For Themis this has been done for a number of existing packages:

GRTRANS A publicly available general relativistic, polarized radiative transfer code written
in FORTRAN, see [76, 77]. GRTRANS and by extension also Themis is coupled to the
HARM3D GRMHD code [77, 117, 180].

ASTRORAY A significantly extended version of the general relativistic polarized radiative
transfer code written in C/C++ based on [252] and substantially extended in [126]. AS-
TRORAY and by extension Themis is coupled to HARM3D [117, 179, 180].

125



iPOLE A publicly available general relativistic, polarized radiative transfer code [194] based
on the covariant formulation presented in [116] and written in standard C. iPOLE and by
extension Themis are coupled to HARM3D [83, 117, 195].

RAPTOR A publicly available general relativistic radiative transfer code, see [49] written in
standard C. RAPTOR and by extension Themis is coupled to the BHAC [201] GRMHD
code, HARM3D [117, 195] and is GPU capable.

Note that many of these are directly coupled to a variety of existing GRMHD simulation
codes such as HARM3D and BHAC. As of now, Themis has successfully interfaced, in at least a
limited form, with the vast majority of the image generation tools employed by the EHT collab-
oration.

5.5 Likelihoods, Priors and Samplers

Models and data are systematically compared via likelihoods, which express the probability that
the data was obtained from the model. These are then explored by samplers, which explore the
dependence of the likelihood on the model parameters, incorporating any priors on the parameter
values. Here we describe the various elements of each as implemented in Themis.

5.5.1 Likelihoods

Within Themis likelihood is any method for taking a parameter vector, p, and construct a log-
likelihood, Ł. When this is generated using a Themis data object (consisting of a number of
individual values) and a Themis model object the log-likelihood is the probability of obtaining
the data given the model. Likelihoods can be combined with user-supplied weights, enabling
the combination of various data sets. However, when doing so it is assumed that the model
parameters are unchanged, i.e., the same set of model parameters are to be supplied to each
likelihood being used. All likelihoods expect a matching data type and model type, e.g., visibility
amplitude data and a model that generates visibility amplitude predictions.

The likelihood generally requires information about the underlying error distribution of the
data, which is typically provided via an error estimate. All currently implemented likelihoods
in Themis assume Gaussian errors, though this is not required — likelihood classes that assume
alternative error distributions (e.g., Rice distributions, etc.) are possible. Similarly, all currently
implemented likelihoods assume the data values are independent — this too may be relaxed in
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principle. An obvious example of both that is of considerable interest is the covariance induced
by the refractive modes in the scattering screen.

Likelihoods also can incorporate model features. In many instances, a subset of model pa-
rameters may be analytically marginalized over, and in the process subsumed into the likelihood
itself. We have implemented a number of examples of such “marginalized” likelihoods, i.e.,
likelihoods in which sets of nuisance parameters have been treated analytically.

The likelihoods currently implemented in Themis include the following.

Test Cases

To facilitate testing samplers, Themis includes two artificial likelihoods with given distributions.
The first is a multi-dimensional Gaussian, with user-specified mean and size. The second, the
Egg Box, is considerably more complicated, producing a highly multimodal likelihood function
in 5 dimensions:

Ł(p) =

2 +

5∏
i=0

cos(pi)


5

. (5.12)

The number of peaks can be set by the range over which the priors permit the parameters, p, to
vary. This is typically used to assess the ability of a sampler to accurately find widely separated,
high-likelihood regions.

Visibility Amplitudes

Themis includes a log-likelihood that assumes Gaussian errors for visibility amplitudes:

Ł(p) = −
∑

j

[
|V | j− |V̂ | j(p)

]2

2σ2
j

, (5.13)

where |V | j andσ j are the observed visibility amplitudes and their errors, and |V̂ | j(p) are the model
visibility amplitudes given parameters p. Note that the true visibility amplitude error distribution
is given by the Rice distribution, and for low signal-to-noise ratio (SNR) is both biased and
non-Gaussian [271]. However, when data are selected such that S NR ≥ 2 and approximately
debiased via |V | j →

√
|V |2j −σ

2
j , the visibility amplitude error distribution is within 8% of an

unbiased Gaussian distribution at all |V |, reproduces the mode to better than 1% and the 68% and
95% cumulative widths to better than 6% (see Appendix C.1). Currently, the user is required
to independently implement the debiasing procedure in the generation of the data tables prior to
reading them in Themis.
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Closure Phases

Similarly, Themis includes a log-likelihood that assumes Gaussian errors for closure phases:

Ł(p) = −
∑

j

[
Φ j− Φ̂ j(p)

]2

2σ2
j

, (5.14)

where Φ j and σ j are the observed closure phases and their errors, and Φ̂ j(p) is the model closure
phase given parameters p. This is similar to, but distinct from the visibility amplitudes likeli-
hood in that the difference,

[
Φ j− Φ̂ j(p)

]
, is chosen on [−180◦,180◦), selecting the branch that

minimizes the angular difference.

Closure Amplitudes

Closure amplitudes provide an example of a non-Gaussian likelihood within Themis. Because
closure amplitudes are constructed via taking ratios of visibility amplitudes, the likelihood of a
single value exhibits a significant asymmetry and extended tail towards large values, character-
istic of quotient distributions (see Appendix C.1). For SNR≥ 4, this is well approximated by
a Gaussian quotient distribution, given in Equation (C.24). In principle, this can make use of
ancillary information in the form of station system equivalent flux densities (SEFDs), though
this is left for future development. Thus, at present, we assume that the parameter ρ, defined in
Equation (C.21), is fixed to unity, for which the Gaussian quotient approximation is accurate at
allV to better than 13% for SNR≥ 4. The associated log-likelihood is

Ł(p) = −
∑

j

{
(V j−V̂ j)2

2Σ2
j

− log
(
Σ j

σ j

)

+ log

∆ jerf

 ∆ j
√

2Ω j

− 2Ω j
√

2π
e−∆2

j/2Ω2
j

},
where Σ2

j = σ2
j

1 +V2
j

1 + V̂2
j

, ∆ j =
1 +V jV̂ j

1 +V2
j

,

and Ω2
j =

σ2
j

(1 +V2
j )(1 + V̂2

j )
,

(5.15)

where the V j and σ j are the observed closure amplitudes, the V̂ j(p) are the model visibility
amplitudes given parameters p (with the functional dependence suppressed for clarity), and erf(x)
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is the error function. This differs from Equation (C.24) by constant normalization factors. In the
limit of σ j/V̂ j → 0 the third term vanishes. However, for V j of order unity, Equation (5.15)
does not reduce to a Gaussian distribution in any SNR limit.

Finally, we note that this approximation is significantly better when V̂ j is small. Generally,
the closure amplitudes can be constructed such that V j < 1, approximating this requirement.
Currently, the user is expected to independently define the set of closure amplitudes such that
this is true prior to reading them into Themis.

Interferometric Polarization Fractions

The interferometric polarization fraction provides a second example of a non-Gaussian likeli-
hood available in Themis. As with the closure amplitude, the source of the non-Gaussianity is
the presence of the ratio in their definition. This leads to an asymmetric likelihood with an ex-
tended tail towards large m̆ that is also well approximated by a Gaussian quotient distribution
for SNR≥ 2, given in Equation (C.17). That m̆ is defined by the ratio of visibilities constructed
simultaneously on the same baseline places an additional constraint on the likelihood, permit-
ting it to accurately be described by a single noise parameter (Appendix C.1): for SNR≥ 2, the
Gaussian quotient distribution is accurate at all m̆ to 13% for SNR=2 and 6% for SNR≥ 4. The
associated log-likelihood is identical in form to Equation (5.15):

Ł(p) = −
∑

j

{
(m̆ j− ˆ̆m j)2

2Σ2
j

− log
(
Σ j

σ j

)

+ log

∆ jerf

 ∆ j
√

2Ω j

− 2Ω j
√

2π
e−∆2

j/2Ω2
j

},
where Σ2

j = σ2
j

1 + m̆2
j

1 + ˆ̆m2
j

, ∆ j =
1 + m̆ j ˆ̆m j

1 + m̆2
j

,

and Ω2
j =

σ2
j

(1 + m̆2
j)(1 + ˆ̆m2

j)
,

(5.16)

were m̆ j and σ j are the observed polarization fraction and its uncertainty, ˆ̆m j(p) are the model
polarization fractions associated with parameters p (with the functional dependence suppressed
for clarity). This differs from Equation (C.17) by constant normalization factors. As with the
closure amplitudes, this is non-Gaussian even in the limit of σ j/m̆ j→ 0.
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Norm-Marginalized Visibility Amplitudes

Variations in the total source flux can be directly incorporated into the likelihood. Assuming
Gaussian errors for visibility amplitudes, it is possible to introduce and analytically marginalize
over an over-all normalization, V00, presuming a flat prior [42]. This provides both the maximum
log-likelihood:

Łmax = −

(∑
j V2

j /σ
2
j

) (∑
j V̂2

j /σ
2
j

)
−

(∑
j V jV̂ j/σ

2
j

)2

2
∑

j V̂2
j /σ

2
j

, (5.17)

which may be identified with the minimum χ2, occurring at

V00,max =

∑
j V jV̂ j/σ

2
j∑

j V̂2
j /σ

2
j

. (5.18)

More relevant for sampling is the marginalized log-likelihood:

Ł̄ = Łmax +
1
2

log

2πV2
00,max∑

j V̂2
j /σ

2
j

 (5.19)

with the corresponding marginalized normalization, V00,marg = V00,max.

By breaking the visibility amplitude data into epochs with similar visibility normalizations,
corresponding, e.g., to a variable accretion rate, this can substantially increase the efficiency of
sampling the remaining parameter space.

Shift-Marginalized Closure Phases

At lowest order, refractive scattering induces shifts in the closure phase. These, again, may be
incorporated into an appropriately constructed likelihood. Assuming Gaussian errors for closure
phases, it is possible to analytically marginalize over an over-all shift, φ, presuming a user-
supplied Gaussian prior [41]. This provides both the maximum log-likelihood

Łmax = −
φ2

max

2Σ2 −
∑

j

(
Φ j− Φ̂ j

)2

2σ2
j

, (5.20)

where the most likely phase offset is,

φmax = Σ2
∑

j

Φ j− Φ̂ j

σ2
j

where
1
Σ2 ≡

∑
j

1
σ2

j

, (5.21)
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The maximum log-likelihood is trivially related to the χ2 and is relevant for fit quality assess-
ment. More relevant for parameter estimation is the marginalized likelihood, for which the log-
likelihood is given by

Ł̄ = Łmax−
φ2

max

2(σ2
Φ

+Σ2)
+ log

 Σ√
σ2

Φ
+Σ2

 , (5.22)

with an associated marginalized value of the closure phase shift of

φ̄ =
σ2

Φ

σ2
Φ

+Σ2
φM. (5.23)

Here σΦ is the width of the Gaussian prior on φ; it is indicative of the amplitude of the refraction
or turbulence responsible for the inter-epoch closure phase fluctuations. This marginalized log-
likelihood is appropriate for sampling the remaining parameters. By breaking the closure phase
data into epochs with similar visibility normalizations, corresponding, e.g., to a variable accretion
rate, this can substantially increase the efficiency of sampling the remaining parameter space.

5.5.2 Priors

Themis provides a number of potential priors for individual parameters. These may be imposed in
two distinct ways: as “priors” that modify the likelihood and “transforms” that modify the param-
eter values. Within Themis, “priors” add a term associated with a given prior distribution. These
are trivially implemented and easy to understand. However, they can be inefficient, assuming that
the sampler will efficiently incorporate the modified likelihood. In contrast, “transforms” impose
priors indirectly by mapping the variable being sampled into the desired prior via a coordinate
transformation. These are more complicated to implement, typically requiring the integration
of the desired prior probability distribution. However, they are optimally efficient, permitting
the sampler to apply a more natural distribution. Note that “transforms” may be implemented
intrinsically within models by choosing a convenient set of parameters.

Likelihood evaluation is short-circuited on the evaluation of priors, i.e., where the prior has
zero probability (e.g., outside the limits of a linear range), the likelihood is not evaluated but
rather returns the appropriate vanishing value. This achieves two goals: first, Themis is made
marginally more efficient by avoiding unnecessary computation, and second, permits priors to be
used to avoid unphysical parameter combinations, where models may return nonsensical results,
e.g., negative densities passed to a radiative transfer code or black hole spin outside the range
permitted by General Relativity.
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Currently, Themis has only implemented priors and transforms of a single variable. This
is sufficient for most situations. However, there are situations which may benefit from priors
that depend on many parameters, e.g., enforcing an ordering among the intensities of multiple
Gaussian components, thereby eliminating the trivial degeneracy associated with swapping com-
ponents. Nevertheless, there is no reason that such a prior cannot be implemented within Themis.

Implemented priors include:

• None: a flat prior without boundary.

• Linear: a flat prior given two bounding values.

• Logarithmic: a logarithmic prior given two bounding values.

• Gaussian a Gaussian prior given a mean and standard deviation.

And implemented transforms include:

• None: no transformation (default).

• Fixed: returns a single, user-defined value.

• Logarithmic: effectively imposes a logarithmic prior.

5.5.3 Samplers

The process of sampling is conceptually separated from the definitions of data and models
through the standardization of the likelihood objects. Thus, within Themis, a sampler is any
method for exploring the values of a likelihood for various choices of the parameter vector.
There is no standard output or input for a sampler, which may even vary qualitatively depending
on the goal of the sampling process. However, all samplers interface with data and model objects
solely through the use of likelihood objects, and thereby permit analyses of a wide variety of
combinations of data and models. Implemented samplers include the following.

Grid Search

The conceptually simplest but least efficient is a simple grid search where the parameter space is
probed in predetermined fixed steps in each dimension. While limited in computational efficiency
this scheme is often used to cross-check results obtained by other samplers for smaller parameter
spaces that both schemes can handle.
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Parallel-Tempered, Affine-Invariant Markov Chain Monte Carlo

The natural choice for high dimensional models is to use MCMC. Having scalability in mind
we chose to implement ensemble sampling methods in which many MCMC chains sample the
parameter space in parallel. The chains interact and use the information from their spatial distri-
bution to effectively adjust their next jump proposals. This has the added benefit of being able
to sample the unknown likelihood surfaces efficiently and with minimal user input. We have
implemented two different ensemble sampling methods, namely, an affine-invariant method and
a differential evolution method; we discuss the latter in the next subsection.

The affine-invariant method can sample likelihood functions that are related by affine trans-
formations with the same efficiency [127]. This means it is very efficient in sampling highly
stretched likelihood distributions as long as the nonlinear correlations among parameters are
sufficiently weak.

MCMC algorithms are generally not very efficient on highly multimodal distributions. In
order to overcome this problem we have implemented parallel tempering for each MCMC sam-
pler. Parallel tempering makes copies of the log-likelihood (L) function that are made smoother
through the introduction of a temperature parameter, the higher the temperature the smoother the
likelihood surface:

Li ∝
L

Ti
(5.24)

The different temperatures are chosen from a temperature ladder such that 1 ≤ Ti ≤ Tmax. Then
we run a copy of our MCMC sampler for each tempered likelihood copy in parallel. The highest
temperature chains can freely move in the parameter space, while the low temperature chains can
be trapped in local likelihood maxima. By allowing the different temperature chains to exchange
their positions with some prescription we let the low temperature chains to get out of the local
maxima and explore the entire parameter space. In the end the lowest temperature chain, which
samples the original untempered likelihood, yields the posterior probability distribution.

In order to get an efficient parallel tempering algorithm the temperature ladder has to be
chosen carefully. There are two main factors to consider. First, The highest temperature used
should be large enough to let the chains move freely within the likelihood surface. Furthermore
the temperatures should not be too widely spaced as that could hinder efficient swaps between
chains from adjacent temperatures and lead to inefficient tempering. The choice of an efficient
temperature ladder depends on the likelihood surface and could be difficult to guess. To mitigate
this problem we have implemented a method to adaptively change the temperatures in order to
get near optimal efficiency. Our method follows that of [279].

We have implemented parallelism in different levels of the MCMC sampler. Tempering is
parallelized, MCMC chains at each tempering level run in parallel and the likelihood can itself
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use multiple threads to run. This allows for the effective use of large high performance computing
machines.

It is a well-known feature of MCMC schemes that there is an initial so-called “burn-in” phase
when the sampling exhibits comparatively large changes in parameter predictions, followed by
a phase where the MCMC chains settle down to smaller and more consistent changes, before
ultimately converging to a final answer. As is customary in this approach, we exclude a certain
number of MCMC steps corresponding to the “burn-in” process at the beginning of the “chains”,
i.e. the history of an MCMC walker.

Parallel-Tempered, Differential-Evolution Markov Chain Monte Carlo

The second MCMC algorithm implemented in Themis is the parallel-tempered, differential-
evolution algorithm [36]. The differential evolution method adjusts the collective move of its
chains in a way to achieve an optimal acceptance rate during Monte Carlo steps. It has the
added benefit of being able to jump between modes in multimodal problems even without any
tempering, thus representing a better option for multimodal distributions. Our implementation
follows that of ([198]) and it also makes use of the same parallel-tempering algorithm as the
affine invariant method.

Bayesian Evidence

The MCMC sampling described above provides the posterior probability distribution on param-
eters within the context of a given model. This allows us to calculate expectation values for
any quantity of interest and to assess the goodness of fit for a given model to the data. How-
ever, if we need to compare the plausibility of different models given the same data set, running
conventional MCMC is not enough.

There are different ways of performing the model comparison, this includes the reversible
jump MCMC, calculating the Bayesian evidence (via thermodynamic integration, nested sam-
pling or Laplace approximation), and information criteria [160].

In Bayesian probability theory the relative probability of two models given the same data set
is related to the ratio of the Bayesian evidences for the two models which is known as the Bayes
factor or the odds ratio. The relative posterior probability of the two models can be written as:

P(M1|D)
P(M2|D)

=
P(D|M1)
P(D|M2)

P(M1)
P(M2)

(5.25)
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In this equation M1 and M2 are the two models we wish to compare and D represents the
data used to make the comparison. P(D|M1) and P(D|M2) are the Bayesian evidence for the two
models. One can often assume that the prior probability of the two models, P(M1) and P(M2),
are equal, and hence the ratio of the Bayesian evidence or the Bayes factor is all one needs to
calculate.

Themis implements the thermodynamics integration method to calculate the Bayesian evi-
dence [164]. In order to do this many MCMC chains are run in parallel on tempered versions
of the likelihood. The temperature ladder for this purpose is provided by the user. Given the
posterior distributions and the values of the likelihood at these points, the Bayesian evidence (Z)
is obtained from

lnZ =

∫ 1

0
Eβ(L)dβ, (5.26)

Where L is the log-likelihood, β = 1/T , and Eβ(L) is the expectation value of the log-
likelihood calculated using the posterior probability distribution of chains at a tempered level
corresponding to T = 1/β.

5.6 Validation Tests

We now turn to validating Themis. For this we focus on the sampling methods, for which the
implementations are novel, and reproducing prior analyses of EHT observations of Sgr A∗. The
variety in algorithmic improvements present in Themis result in a considerable speed-up and
simplicity in implementation in comparison to the previous work to which we compare — often
analyses that took many months are now executed in days. Moreover, all of these tests have been
integrated into Themis, both as validation tools and tutorials for future users.

5.6.1 Validation of the samplers

Here we test the sampling part of the code thoroughly. In particular, we demonstrate the ability
of the affine sampler to reliably probe non-trivial parameter spaces. That is, we anticipate that
the complex models ultimately of most interest in the context of EHT analyses will produce
multimodal probability distributions in high-dimensional parameter spaces. It will be necessary,
therefore, to consistently identify all of the high-likelihood islands and determine accurately their
relative posterior probabilities.
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Figure 5.4: Two dimensional Gaussian likelihood sampled by the affine invariant MCMC sampler
(blue), the differential evolution MCMC sampler (red) and the grid search sampler (black).

Two dimensional Gaussian likelihood

If our model has a small number of parameters the grid search sampler can be efficient in sam-
pling the parameter space. In this test the grid search sampler was used to sample a two dimen-
sional symmetric Gaussian likelihood. Figure 5.4 shows the log likelihood recovered using the
grid search sampler as well as the marginalized posterior distributions for the same likelihood
sampled using MCMC methods.

Egg box test

In this test a 5 dimensional parameter space with a highly multimodal egg box like distribution is
sampled. The likelihood is described in Section 5.5.1 and contains 55 = 3125 sharp peaks within
the prior range: pi ∈ [−8,8] for all i.
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This presents a significant challenge to most sampling schemes. The narrowness of the peaks
and the dimensionality of the parameter space precludes a grid search, which would require more
than 3×1012 samples to robustly detect all of them. The large dynamic range in the likelihood,
i.e., the very low likelihoods between peaks, precludes typical MCMC schemes, which are unable
to efficiently explore the full parameter space. Therefore, it provides a strong test of the ability
of the parallel tempered, affine-invariant and differential-evolution parallel MCMC samplers to
efficiently find and reconstruct the various high-likelihood regions. As seen in Figure 5.5, both
capture all of the features of the Egg Box likelihood. This run was executed employing the
differential evolution sampler with 5 tempering levels and took only 1 min on a typical laptop.
There were 100 walkers running for 8000 steps and the burn-in period was less than 1000 steps.

16-Gaussian test

Here we show that the sampling scheme can correctly probe a two dimensional parameter space
with a likelihood consisting of 16 Gaussians, and accurately reconstruct the relative posterior
probabilities of different peaks. To do this, the likelihood of the Gaussian located at (x0, x1) =

(20,10), is chosen to be nine times higher than the others. This test was run using the affine
invariant sampler with 4 tempering levels. The number of MCMC steps in this case was 4000
steps and the sampler used 100 walkers.

As shown in Figure 5.6, the sampler finds all of the Gaussian components. In addition, it
recovers the non-uniformity of the likelihood surface, accurately reconstructing the posterior
weight of the appropriate component. Figure 5.7 shows the relative probability mass correctly
recovered for these 16 gaussian peaks.

5.6.2 Self-tests with simulated data

Here, we demonstrate the ability of Themis to accurately reconstruct model parameters. This
presents a simultaneous test of many of the components of Themis, including the data structures,
models, likelihoods, and samplers. We generate simulated images using Themis’ native model
classes, from which the appropriate simulated data is constructed. Thermal noise is then in-
cluded, producing a data set similar in character to that associated with a single night of the 2017
EHT campaign. The simulated data is then analyzed with Themis using the corresponding model.
Note that this does not address model discrimination. For this purpose, we considered three
models: the symmetric gaussian and the geometric crescent models, for which visibilities can
be computed analytically, and the SED-fitted RIAF model, which incorporates the ray-tracing
components of VRT2 and numerical data generation of Themis.
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Figure 5.5: Validation of the sampler with a five dimensional “eggbox”-likelihood test with the
five artificial parameters x0, x1, x2, x3, and x4. All peaks in the likelihood surface are successfully
recovered.
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Figure 5.6: Validation of the sampler with a two dimensional test involving a 16-Gaussians-
likelihood and two artificial parameters x0 and x1. Note that the sampler not only probes the
likelihood surfaces comprehensively, but it also correctly retrieves the Gaussian with the higher
likelihood at x0 = 20, x1 = 10.
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Figure 5.7: Relative posterior probability mass for the 16 gaussian peaks recovered via MCMC
sampling.

Gaussian Model

We generated simulated closure amplitude data from a compact, symmetric Gaussian with V0 =

2.5 Jy and σ = 5 µas. We adopted a Gaussian for simplicity. The very compact size was selected
to ensure high SNR detections on even the longest baselines of the 2017 EHT campaign; such
high SNRs are typical of more complex models. We analyze this data with Themis’ symmetric
Gaussian model (Section 5.4.2) to assess potential biases associated with the non-Gaussian nature
of the closure amplitude error distribution. We imposed an SNR minimum on the simulated
closure amplitude of 4.

For this analysis we used the closure amplitude likelihood described in Section 5.5.1. We
sampled the posterior distribution with the parallel-tempered affine-invariant MCMC sampler,
adopting linear priors on each model parameter. The analysis converged using 5 tempering levels
with 128 walkers communicating every 50 MCMC steps, and taking 100 samples per walker.

As expected, the total intensity is not constrained by closure amplitudes, recovering our prior
distribution. The resulting posterior distribution for the size of the Gaussian is shown in Fig-
ure 5.8. The reconstructed size is σ = 5.0004± 0.0004 µas6, consistent with the input value.

6Note that for all of our analysis we report the marginalized values for the parameters of each model instead of
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Figure 5.8: Posterior distribution of the size of the symmetric Gaussian reconstructed from sim-
ulated closure amplitude data with σ0 = 5 µas. The expected value is indicated by the vertical
blue line.

Repeating the analysis with different realizations of the simulated data produces qualitatively
similar results, though they do exhibit 2σ fluctuations marginally more often than anticipated.
No experiment produced a deviation larger than 3σ. As a result, we conclude that the likeli-
hood in Equation (5.15) does not fully eliminate the bias inherent in the closure amplitude error
distribution, though does so at the 2σ level. Decreasing the SNR minimum increases this bias
substantially, suggesting that additional development is required to fully exploit low-SNR data.

While the closure amplitude likelihood in Equation (5.15) is not Gaussian, and thus does not
admit a well-defined χ2, we do construct an approximate expression via χ2 = −2Ł. In the limit
of small closure amplitudes, this identification is well-motivated. The associated reduced-χ2 is
0.97 with 1656 degrees of freedom, suggesting that this statistic will be informative of fit quality.

Crescent Model

We generated simulated visibility amplitude and closure phase data from a diffractively-scattered
crescent image with V0 = 2.24 Jy, R = 28 µas, ψ = 0.14, τ = 0.07, and ξ = 0◦, and added thermal
noise to it. We then analyze this data with Themis’ crescent model (Section 5.4.2), demonstrating
that Themis properly recovers the parameters of the original image.

the maximum values, which for complicated likelihood distributions may differ significantly.
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For the analysis we used the standard visibility amplitude and closure phase likelihoods de-
scribed in Sections 5.5.1 and 5.5.1, and modeled the effects of diffractive scattering with the
default scattering model implemented in Themis, and described in Section 5.4.3.

In this case we sampled the posterior distribution with the parallel-tempered differential evo-
lution MCMC sampler adopting linear priors on each parameter of the model. The analysis
converged using 4 tempering levels with 16 walkers per level communicating every 50 MCMC
steps, and taking 10000 samples per walker. The resulting posterior distributions for the param-
eters of this model are shown in Figure 5.9 where the blue lines represent the true parameter
values of the original image.

Our analysis shows that the marginalized values for the parameters of the model are V0 =

2.2399±0.0001 Jy for the total flux, R = 28.0064±0.0054 µas for the overall size of the crescent,
with a relative thickness ψ= 0.1404±0.0003, an asymmetry parameter τ= 0.0691±0.0005, and a
position angle ξ = 0.040◦±0.023◦. Individually, these are consistent at the 2σ-level with the true
values of the original crescent image. The model gives a satisfactory fit to the data as confirmed
by the reduced-χ2 of 0.9813 with 1670 degrees of freedom, which implies that high-quality fits
exist.

RIAF Model

We generated visibility amplitude and closure phase data from a diffractively-scattered RIAF
image with (a, θ, ξ) = (0.10,60◦,0◦). We added thermal noise to the simulated data and then
analyze it with Themis’ SED-fitted RIAF model (Section 5.4.4) to show that Themis can properly
recover the parameters of the original image.

For the analysis the standard visibility amplitude and closure phase likelihoods (Sections
5.5.1 and 5.5.1) were used, and the effects of diffractive scattering were modeled using Themis’
default scattering model (Section 5.4.3). We used the parallel-tempered differential evolution
MCMC sampler with 3 tempering levels, 14 walkers per level communicating every 50 MCMC
steps, and took 5000 samples per walker.

The posterior distributions for the parameters of the model are shown in Figure 5.10. We
find that the marginalized values for the black hole spin parameters are a = 0.0997+0.0006

−0.0007, θ =

59.9983◦+0.0155◦
−0.0167◦ , and ξ = 0.0017◦+0.0223◦

−0.0199◦ . These parameter estimates are consistent at the 1σ-
level with the true values of the original RIAF image. In this case we find a reduced χ2 of 0.9868
with 1664 degrees of freedom, indicating that high-quality fits were found.
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Figure 5.9: Joint parameter distributions from the crescent model analysis of the simulated vis-
ibility amplitude and closure phase data generated from a crescent image with V0 = 2.24 Jy,
R = 28 µas, ψ = 0.07, τ = 0.14, and ξ = 0 rad. Here the true parameter values are represented by
the blue lines, and the contours show the 1, 2 and 3σ levels of the sampled posterior distribution.
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Figure 5.10: Joint parameter distributions for the SED-fitted RIAF model analysis of the simu-
lated visibility amplitude and closure phase data generated for a RIAF image with (a,cosθ,ξ) =

(0.1,0.5,0.0). Here the true parameter values are represented by the blue lines, and the contours
show the 1, 2 and 3-σ of the sampled posterior distribution.
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5.6.3 Reproducing Previous Results

The variety of published analyses of EHT observations of Sgr A∗ provides a natural validation
test of Themis, as well as a demonstration of its flexibility. These include comparisons of purely
phenomenological and physically motivated models of the image structure. In constructing these,
we make use of the published EHT data sets listed in bold in Table 5.1, consisting of visibility
amplitudes measured in 2007 and 2009 and closure phases measured between 2009 and 2013,
inclusively.

Symmetric Gaussian

We analyze the visibility amplitude data from 2007 and 2009 using the symmetric Gaussian
model described in Section 5.4.2 in order to show that Themis can reproduce previous model
fitting studies made to estimate the source size of Sgr A∗.

For the analysis we employed the norm-marginalized visibility amplitude likelihood de-
scribed in Section 5.5.1 to account for variations in the total flux of Sgr A∗ between observation
nights. The effects of diffractive scattering were modeled using Themis’ default scattering model
(Section 5.4.3).

We employed the parallel-tempered affine Invariant sampler with 4 tempering levels with
32 walkers per level, and adopted linear priors on each parameter of this model. The posterior
distribution for the intrinsic size of Sgr A∗ after 10000 MCMC iterations is shown in Figure 5.11.
The reconstructed size is σ = 15.73± 0.25 µas (FWHM = 37.05± 0.60 µas). The model gives
a satisfactory fit to the data with an associated reduced-χ2 = 1.15 with 65 degrees of freedom.
These results are in good agreement with the best fits found in [40] when all epochs are combined,
and the inferred sizes for each night reported in [82] and [104].

Asymmetric Gaussian

We also analyze the visibility amplitude data from 2007 and 2009 with the asymmetric Gaussian
model described in Section 5.4.2 to show that Themis can reproduce previous studies made to
probe the asymmetry of the emitting region of Sgr A∗.

For this analysis we also analytically marginalize variations in the total flux of Sgr A∗ be-
tween observation nights using the norm-marginalized visibility amplitude likelihood described
in Section 5.5.1, and modeled the effects of diffractive scattering using Themis’ default scattering
model (Section 5.4.3).
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Figure 5.11: Gaussian size distribution from the analysis of the symmetric Gaussian model to
the 2007 and 2009 visibility amplitude data of Sgr A∗.

We employed the Affine Invariant sampler and adopted linear priors on each parameter of
this model. The results converge using 4 tempering levels, with 32 walkers per level, and taking
20000 samples per walker. The posterior distributions for the different parameters of the model
are shown in Figure 5.12. Our analysis shows that the marginalized values for the parameters of
the model are σ = 19.07+1.07

−2.51µas, A = 0.54+0.13
−0.18, and ξ = −64.3◦+17.0◦

−4.7◦ , and ξ = 114.7◦+19.2◦
−5.1◦ .

This model also gives a satisfactory fit to the data with an associated reduced-χ2 = 0.75 with
63 degrees of freedom. These results are in good agreement with the best fits found in [40] when
all epochs are combined.

Crescent Model

We analyze the visibility amplitude data from 2007 and 2009 with the crescent model outlined in
Section 5.4.2 in order to show that Themis can reproduce the earlier findings reported by [155].

We proceeded in a similar fashion to the analysis performed with the Gaussian models em-
ploying the norm-marginalized visibility amplitude likelihood described in Section 5.5.1 to ac-
count for variations in the total flux of Sgr A∗ between days and modeling the effects of diffractive
scattering with the default scattering model implemented in Themis (Section 5.4.3).

In this case we sampled posterior distribution with the differential evolution MCMC sampler
adopting linear priors on each parameter of the model. We used the reported values in Table 1
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Figure 5.12: Joint parameter distributions from the analysis of the asymmetric Gaussian model
to the 2007 and 2009 visibility amplitude data of Sgr A∗. The gray contours show the 1σ, 2σ,
and 3σ confidence regions for the size, the asymmetry parameter and the position angle. For
reference, the symmetric Gaussian size distribution from Figure 5.11 is shown in red in the top
left panel. These parameter distributions are consistent with the results of [40].
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of [155] as initial guesses for the values of the parameters of this model. The analysis converged
using 4 tempering levels with 32 walkers per level, and taking 20,000 samples per walker. The
resulting posterior distributions for the parameters of this model are shown in Figure 5.13. The
marginalized values for the parameters of the model are R = 29.8+4.8

−3.2µas, ψ = 0.28+0.12
−0.17, and

τ = 0.20+0.15
−0.13. In this case the analysis finds two values for the position angle ξ = 60.5◦+8.4◦

−12.4◦ ,
ξ = −119.4◦+8.7◦

−13.7◦ , and a minimum reduced-χ2 = 0.76 with 62 degrees of freedom

RIAF Model: Visibility Amplitude Analysis

We now turn to the first example of a physical model. First, we demonstrate Themis’ ability to
reproduce the analysis published in [40]. For that purpose, we analyze the visibility amplitude
data of Sgr A∗ from 2007 and 2009 with the SED-fitted RIAF model described in Section 5.4.4,
using a tabulated set of accretion flow parameters obtained at different black hole spins and
inclinations — and distributed with Themis— that reproduce the observed SED of Sgr A∗.

For this analysis we employed a set of linear priors for each parameter of the model and the
norm-marginalized visibility amplitude likelihood described in Section 5.5.1 to account for vari-
ations in the total flux of Sgr A∗ between observation nights. The effects of diffractive scattering
were modeled using Themis’ default scattering model (Section 5.4.3).

We used the parallel-tempered differential evolution MCMC sampler with 5 tempering lev-
els and 16 walkers per level communicating every 50 MCMC steps. The test completed 5000
MCMC iterations and the posterior distributions for the black hole spin parameters is shown in
Figure 5.14. We find a spin a = 0.25+0.35

−0.19, while the inclination angle has two values located at
θ = −61.06◦+8.77◦

−10.02◦ , and θ = 62.31◦+10.54◦
−9.33◦ . The model has a minimum reduced-χ2 = 0.80 with 63

degrees of freedom. These results are in good agreement with the best fits found in [40] when all
epochs are combined.

RIAF Model: Visibility Amplitude and Closure Phase Analysis

We analyze the visibility amplitude and closure phase data sets that are bolded in Table 5.1 with
the SED-fitted RIAF model described in Section 5.4.4 using 128x128 pixel RIAF images, to
show that Themis successfully reproduces the results of the analysis published by [41].

For this analysis we employed the norm-marginalized visibility amplitude likelihood de-
scribed in Section 5.5.1 to account for variations in the total flux of Sgr A∗ between observation
nights. We also used the shift-marginalized closure phase likelihood 5.5.1 to model the effects
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Figure 5.13: Joint parameter distributions from the analysis of the crescent model to the 2007 and
2009 visibility amplitude data of Sgr A∗. The gray contours show the 1σ, 2σ, and 3σ confidence
regions for the overall radius, the relative thickness, the degree of symmetry and the position
angle of the crescent. These parameter distributions are consistent with the results of [155].

149



−1
.0
−0
.5

0.
0

0.
5

1.
0

co
s(
θ)

0.
25

0.
50

0.
75

1.
00

spin

−1
60
−8

0

0

80
16

0

ξ(
◦ )

−1
.0
−0
.5 0.

0
0.
5

1.
0

cos(θ)
−1

60 −8
0 0 80 16

0

ξ(◦)

χ2
red = 0.80, dof = 63
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2007 and 2009 visibility amplitude data of Sgr A∗. The gray contours show the 1σ, 2σ, and 3σ
confidence regions for the spin magnitude, a, the cosine of the inclination, cosθ, and the position
angle, ξ. These parameter constraints are consistent with the results of [40].
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Figure 5.15: Joint posterior parameter distributions for the SED-fitted RIAF model implied by
the combined visibility amplitude and closure phase data sets bolded in Table 5.1. For reference,
the posteriors implied by the visibility amplitude data alone are shown in red. The contours show
the 1σ, 2σ, and 3σ confidence regions for the spin magnitude, a, the cosine of the inclination,
cosθ, and the position angle, ξ. All parameter constraints are consistent with the results of [41].

of refractive scattering, while the effects of diffractive scattering were modeled using Themis’
default scattering model (Section 5.4.3).

We used the parallel-tempered differential evolution MCMC sampler with 5 tempering levels
and 16 walkers per level communicating every 50 MCMC steps. The MCMC chain was run for
8000 steps and the resulting posterior distributions for the parameters of this model are show in
Figure 5.15 in comparison to the results of analysis with visibility amplitude data only discussed
in the previous section. We find that the black hole spin parameters are similarly constrained after
the inclusion of the closure phase data, with a = 0.09+0.11

−0.07, θ=−61.00◦+2.74◦
−2.12◦ , and θ= 61.55◦+1.97◦

−3.25◦ ,
and ξ = −165.13◦+7.42◦

−4.62◦ . In this case we find a reduced χ2 of 1.07 with 231 degrees of freedom,
indicating that high-quality fits were found. These results are consistent with best fit parameters
reported by [41].
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5.7 New Results

In this section we present first novel results obtained with Themis. These make use of the ability
of Themis to rapidly generate new data comparisons and/or combine data sets in a uniform man-
ner. Additional results obtained by combining a more complete combination of the data sets in
Table 5.1 and applying additional model features will be reported elsewhere.

5.7.1 Crescent model

The extensible nature of Themismakes the extension of the analysis of the [155] crescent model to
include additional data trivial. We demonstrate this by including the closure phase data sets that
are bolded in Table 5.1. To account for refractive scattering, we employ the shift-marginalized
closure phase likelihood (Section 5.5.1) when including the contribution to the total likelihood
from closure phases. In all other respects, the analysis is similar to that presented in Section
5.6.3.

The inclusion of closure phase data places strong new constraints on the crescent structure
in a number of respects. The resulting posterior distributions for the parameters of this model
are shown in Figure 5.16. The constraints on all of the crescent parameters are substantially
improved quantitatively, often settling ambiguities in the previous analysis. The crescent overall
size has been restricted to R = 46.3+1.4

−1.5 µas; the relative thickness parameter is now ψ = 0.41+0.07
−0.04;

and asymmetry parameter is τ = 0.23+0.21
−0.14. Individually, these are consistent at the 2σ-level with

the expectation based on visibility amplitudes alone.

Similarly, the position angle is also strongly constrained, with the prior degeneracy elimi-
nated, finding ξ = 179.4◦+19.2◦

−9.1◦ . Unlike the other parameters, this is inconsistent with the estimates
from the visibility amplitudes alone at the 2σ-level. This is apparent in the bottom panels of Fig-
ure 5.16. This is modestly disconcerting given the qualitatively distinct natures of the closure
phases and visibility amplitudes. Nevertheless, the reduced-χ2 = 1.01, implies that high-quality
fits exist.

5.7.2 Extended RIAF model

The SED-fitted RIAF model treats the comparisons to the EHT data and flux measurements dif-
ferently, which utilize a set of prior set of SED fits. Again, the extensibility of Themis enables
relaxing this procedure, and comparing simultaneously to the flux and mm-VLBI measurements.
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Figure 5.16: Joint posterior parameter distributions for the crescent model implied by the com-
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In principle, this may broaden the black hole parameter estimates, trading worse SED fits for bet-
ter structural fits. To explore this we performed a new analysis, similar in spirit to that presented
in Section 5.6.3, in which we analyze both data sets concurrently.

We performed a new analysis using the extended RIAF model described in Section 5.4.4,
which generates flux measurements in addition to the mm-VLBI observations in a fashion iden-
tical to the SED-fitted RIAF model. In addition to the parameters describing the black hole
spin (magnitude, inclination, and position angle), three additional parameters were introduced,
describing the normalizations of the densities (ne,t, ne,nt) and temperature (Te) of the emitting
electron population; all remaining parameters were held fixed at the values employed in the
SED-fitted RIAF model: ηt = −1.1, ηnt = −2.02, τt = −0.84, ht = hnt = 1.0, α = 1.25, γmin = 100,
β = 10, and κ = 0. This model was compared to the flux and mm-VLBI data bolded in Table
5.1. For this run the affine invariant sampler with 4 tempering levels was used. There were 120
walkers used and the MCMC chain was run for 3300 steps.

In Figure 5.17, the resulting set of parameter constraints are presented in comparison to the
prior analyses described in Sections 5.6.3 and 5.6.3. In all cases, the spacetime parameters are
consistent with those found previously. Including the flux data produces a marginally stronger
constraint on the black hole spin, a = 0.1+0.19

−0.08, arising from the systematic decrease in the qual-
ity of the SED fits at higher spins (that was ignored in the prior analyses). Nevertheless, as
anticipated, the inclination constraints are broadened, permitting θ = 62.2+5.3

−4.6 and θ = −62.8+5.5
−6.2.

5.8 Code Performance

As seen in many of the validation tests and example analyses presented in Sections 5.6 and 5.7,
even for models with modest numbers of parameters, it is typical for the posterior probability
distributions to be multimodal. As the models increase in sophistication, introducing additional
physical freedoms and addressing various systematic uncertainties, this problem will be com-
pounded by the need to explore high-dimensional parameters spaces. This is further complicated
by the computational expense of numerically generating images of realistic astrophysical models.
As a result, Themis has been designed to exploit the proliferation of modern HPC systems. Here
we discuss the ways in which this has been, and may be, implemented, along with a description
of Themis’s scaling efficiency, demonstrating that it can run efficiently on very large machines.

Themis explicitly supports parallelization via MPI, and implicitly via OpenMP and CUDA.
MPI parallelization has been implemented at a number of levels, including the samplers, likeli-
hood evaluation, and model generation, permitting users maximum flexibility in distributing the
computational workload of an analysis.
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Figure 5.17: Joint posterior parameter distributions for the SED-fitted RIAF model implied by
the combined flux, visibility amplitude and closure phase data sets bolded in Table 5.1. For refer-
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Both, the Parallel Tempered Affine Invariant and Differential Evolution MCMC sampling al-
gorithms are designed to exploit parallelization in two levels. First, the use of parallel tempering
levels may be further parallelized by assigning separate tempering levels to different collections
of processors. Second, the use of ensemble methods may be trivially parallelized among the
individual walkers. Our implementation of the ensemble sampler evolves half of the walkers
simultaneously while using the other non-evolving half to determine the next proposed jump.
Each walker in the “active” set can be evolved on a separate CPU. Upon completion, the “active”
and “passive” sets swap, and the process is repeated. The result is a set of samplers that can
immediately utilize NT NW/2 processors, where NT is the number of tempering levels and NW is
the number of walkers, typically many times the number of parameters.

Image generation is an intrinsically parallelizable task. The VRT2 library already natively
supports MPI parallelization and vectorization via OpenMP. On modern Xeon based systems,
VRT2 can efficiently use NL = 32 cores to produce 128x128 pixel images before ancillary mem-
ory and communication costs become significant. Odyssey employs GPUs via CUDA, and
provides an example of mixed MPI/GPU support within Themis. The performance of mixed
MPI/GPU computation depends mainly on the number and specifications of the GPU cards, and
is less sensitive to the number of MPI cores. Users implementing new Themis models are pro-
vided an MPI communicator and are only responsible for determining if and how parallelization
should be implemented in their instance; they will be able to trivially exploit parallelization at
the other levels.

Figure 5.18 shows the scaling of Themis on a representative sample problem with NT = 4
tempering levels, NW = 16 MCMC walkers, and NL = 32 processors per likelihood evaluation.
For this case, Themis scales with 94% efficient to 32, 88% efficient at 512 cores, and 84% at
1024 cores. Note that even modest increases in problem complexity involving larger images or
higher-dimensional parameter spaces, require a larger set of walkers, tempering levels, and allow
more processors per likelihood evaluation. Thus, the scaling efficiency of Themis will improve
with problem size. Already, Themis can run efficiently on several thousand cores.

5.9 Summary

Themis provides a powerful new framework in which to develop and implement analyses of
EHT observations. By focusing on the construction of interfaces, Themis enforces a modularity
that facilitates rapid future development, ensuring flexibility and permitting extensibility. This
flexibility is illustrated by the existing set of current Themis components, which span a wide
variety of types of data, models, and sampling techniques. The clear definition of component
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inputs and outputs enables future developers to rapidly contribute additional components (e.g.,
image models) without the need for a global understanding of the internal structure of the code.

Implemented data types include both mm-VLBI observables (visibility amplitudes, closure
phases, closure amplitudes, polarization fractions) and ancillary data (fluxes). The ability to
easily add accoutrements to these data objects, e.g., time stamps, observing stations, atmospheric
conditions, observation resolution, etc., significantly increases their flexibility and the potential
sophistication of subsequent analyses.

The generic nature of the model interface produces a correspondingly broad array of accept-
able models, solving a key difficulty with unifying prior EHT analyses. As a result, Themis
can construct analyses of phenomenological (e.g., gaussians) and physically motivated models
(e.g., polarized images of synchrotron-emitting GRMHD simulations). It also naturally allows
the inclusion of optional, additional, independent model features (e.g., interstellar scattering)
in a uniform way. In principle, it can also facilitate in non-parametric modeling, e.g., image
inversion, though this has yet to be implemented.

A number of likelihoods have been implemented, including likelihoods that analytically ad-
dress nuisance parameters. This will become increasingly important as additional EHT system-
atics are considered, e.g., telescope gain corrections, refractive scattering, and intrinsic source
variability. Similarly, a number of samplers have been implemented, including samplers that
efficiently explore high-dimensional, multimodal likelihood surfaces.

A key feature of Themis is the ability to mix and match the above, constructing new analyses
via minor changes in the model used, data included, and sampler used. This will be critical
to evaluating the robustness of features, teasing apart subtle interactions in aspects of complex
models, and systematically assessing the impact of additional types of data. At the same time,
this permits rapid, distributed development: as features are added in the service of one analysis,
e.g., a new sampler or a new scattering model, they may be rapidly deployed to others.

In anticipation of increasingly complex, physically motivated emission models for EHT
targets, Themis enables the implementation of parallelization at multiple levels via multiple
schemes. At present, this is implemented in a number of samplers via MPI and models via MPI,
OpenMP, and CUDA. As a result, for typical analyses, Themis scales efficiently to thousands of
cores, depending on problem complexity, and can effectively exploit modern HPC systems. For
the implemented samplers, this parallel-performance scaling improves with problem complexity
(i.e., number of parameters), partially mitigating the introduction of additional physical features.

Both the individual components of Themis and their integration have been extensively tested.
Themis is able to accurately and consistently explore high-dimensional multimodal posterior
probability distributions. It is able to recover the parameters of models used to construct realistic
simulated EHT data for both geometric and physically motivated RIAF models. It has accurately
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reproduced previous analyses of published EHT data. In the case of the RIAF models, it has
done so in an order of magnitude less user time.

The extensibility of Themis is evident in the extension of these prior analyses. The [155]
crescent model has been reassessed in light of the EHT closure phase measurements of Sgr A∗

published in [105]. The weak degeneracy in the size of the crescent is now broken, selecting
R = 46.3+1.4

−1.5 µas. This is considerably larger than the size implied by the 1σ region obtained
when only visibility amplitude are considered, though still consistent at 2σ. Nevertheless, high-
quality fits of the combined closure phase and prior visibility amplitude data sets do exist. Note
that this implies a crescent diameter that is nearly twice as large as the 55 µas anticipated for
Sgr A∗ by identifying the crescent with the gravitationally lensed image of a geometrically thick
accretion flow.

Where prior RIAF analyses have separated the fitting the SED and EHT data for Sgr A∗,
Themis now simplifies the process of fitting both simultaneously. While this may yield weaker
parameter constraints in principle, in practice the black hole spin parameters are similarly con-
strained, with a = 0.1+0.19

−0.08; θ = 62.2+5.3
−4.6, and θ = −62.8+5.5

−6.2; and ξ = −158.1◦+11.5◦
−10.4◦ . Future analy-

ses that will systematically explore the relaxation of assumptions about the structure of the inner
accretion flow will be published elsewhere.

Themis is meant to facilitate continuous, vigorous development. Already, plans are underway
to implement schemes to correct individual station gains, address refractive scattering in the
interstellar medium, model stochastic variability in the intrinsic emission region, introduce jet
models, exploit GRMHD simulations, and perform non-parametric analyses. Future data type
development will include polarized fluxes, Faraday rotation measurements, circular polarization,
visibility variances. As a result, Themis is prepared to play fundamental role in the scientific
exploitation of the new window on black hole physics being opened by the EHT.
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Chapter 6

Conclusion

In this thesis we explored the power of gravitational lensing to measure the properties of various
hard-to-detect astrophysical objects. We showed that these methods can substantially change
our understanding of these objects. We explored how using the transient weak lensing effect of
dark matter halos can be used to put the strongest observational limit on the dark matter power
spectrum in the deep nonlinear regime. We found the constraint on the primordial (linear) scalar
power spectrum to bePR < 3×10−9 at kL ∼ 3 pc−1. Additionally our method was able to measure
time delays between light curves of strongly lensed quasars which can be used to measure the
Hubble constant. We then showed how gravitational microlensing can be used to understand the
structure and dynamics of the Galaxy. Concretely, we studied the stellar mass function, contribu-
tion of the thick disk to the Galactic disk density, and the disk kinematics. The same gravitational
microlensing effect can be used to detect stellar mass black holes at a much higher rate than what
was possible before and transform our knowledge of these objects. Taking advantage of the very
long baseline interferometers, we showed that the degeneracy present in the optical microlensing
can be overcome and one can find the mass and velocity of the lens, as well as its distance. With
modest improvements to the VLBA we can detect stellar mass black holes at a rate of roughly
10 events per year. Finally, the images of super-massive black hole shadows can be used to
learn about the structure of space-time, accretion flows and astrophysical jets. We introduced
a Bayesian framework for analyzing the data from the Event Horizon Telescope Collaboration.
We then outlined the architecture of this framework, the tests performed to validate it, and its
first applications to real data.
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R. Ansari, É. Aubourg, C. Balland, et al. Type Ia supernova rate at a redshift of˜ 0.1.
Astronomy & Astrophysics, 423(3):881–894, 2004.
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[73] X. Delfosse, T. Forveille, D. Ségransan, J-L. Beuzit, S. Udry, C. Perrier, and M. Mayor.
Accurate masses of very low mass stars: Iv improved mass-luminosity relations. arXiv
preprint astro-ph/0010586, 2000.

[74] F Derue, C Afonso, C Alard, J-N Albert, J Andersen, R Ansari, É Aubourg, P Bareyre,
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Appendix A

Breaking degeneracy with combined
observation

In this section we introduce the mathematical basis of gravitational microlensing, introduce the
photometric and astrometric observations of microlensing events and the way we can break the
degeneracy between the lens parameters.

A.1 Lens Equation for Single Lens

The single lens equation is given by geometrical relation between the angular position of source
β, angular position of the image θ and Einstein angle θE as follows:

θ2− θβ− θ2
E = 0, (A.1)

where β and θ are given with respect the center of coordinate system where lens is located. In
the gravitational microlensing the angular position of the source β moves along a straight line,
varying as

β2 = β2
0 + θ2

E(
t− t0

tE
)2, (A.2)

where β0 is the minimum impact factor and t0 is the time of closest angular approach of the lens
and source. From the equation (A.1), we get two solutions for the position of two images at two
sides of the lens as follows:

θ± =
β±

√
β2 + 4θ2

E

2
. (A.3)
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Substituting equation (A.2) in equation(A.3) results in the radial dynamics of the images as a
function of time.

The angular distance between the two images (∆θ = θ+ − θ−), regardless of the position of
source, can be written in terms of the impact parameter and the Einstein angle:

∆θ =

√
β2 + 4θ2

E (A.4)

At the minimum impact parameter where β = β0, two images get nearest approach to each other
and in this case the trajectory of the source is perpendicular to the line connecting these two
images

β0 =

√
∆θ2−4θ2

E . (A.5)

We note that on the right hand side the term in the square-root should be positive which implies
∆θ ≥ 2θE . So the separation between the two images is always larger than the diameter of the
Einstein ring while one image is inside and the other one is outside the Einstein ring.

The other observable parameter which can be measured from the photometry is the magni-
fication of the source during the lensing. Since in the gravitational lensing the flux of light is
conserved, the apparent change of area for lensed images would lead to a change in the energy
we receive from each image. The area of images compared to the source size is given by the
inverse of determinant of Jacobian. Denoting the area for the two images by A+ and A− the
differential element of area of an image to that of the source is given by:

A± =
θ±

β

∂θ±

∂β
. (A.6)

Substituting equation (A.3) in equation(A.6) the area for each images could be written as:

A± =
1
2

 β2 + 2θ2
E

β
√
β2 + 4θ2

E

±1

 (A.7)

The overall magnification is the sum of these two terms,

A = |A+|+ |A−| =
β2 + 2θE

β
√
β2 + 4θ2

E

. (A.8)

Substituting equation for (A.2) the magnification is independent of the Einstein angle and only
depends on t0, tE and u0 = β0/θE .
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At the time of minimum approach the magnification would have its maximum as a function
of β0 and θE . Substituting β0 from equation (A.5) in (A.8), maximum magnification can be
obtained as a function of Einstein angle and angular separation between the images as follows:

Amax =
∆θ2−2θ2

E

∆θ
√

∆θ2−4θ2
E

(A.9)

As a result the Einstein angle can be directly extracted from Amax as described in equation (3.24).

If the distance of the source from the earth is known (which is the case for microlensing
events in Galactic Center) measuring θE can put constrains on the mass and the lens distance
from observer. On the other hand parallax measurements can impose another constrain on the
lens parameters and in theory can resolve the lens parameters.

A.2 Parallax Effect in Microlensing Light Curves

The microlensing parallax effect results from the accelerating motion of the earth around sun. It
manifests itself as the relative motion of the source with respect to lens deviates from a straight
line. Assuming the earth moves around the Sun in a circular orbit, the relative angular motion of
the lens and source with respect to the observer in the case of stationary source and lens is given
by

πx = πcosξ(t), (A.10)
πy = πcosβsinξ(t), (A.11)

where
π =

1
θE

(
1a.u.

Dl
−

1a.u.
Ds

), (A.12)

β is the angular deviation of the orbital plane with respect to our line of sight, ξ(t) = ωt + ξ0, ω is
the orbital angular frequency and ξ0 is the initial phase of the earth orbit which can be set to zero
at the equinox. On the other hand relative displacement of the source with respect to position of
the sun on the lens plane is given by

βS
x = β(t)cosα−β0(cosα+ sinα), (A.13)
βS

y = β(t) sinα+β0(cosα− sinα), (A.14)

where the superscript represents relative motion of the source with respect to the sun and β0 is
the closest approach of the source to the sun and α is the angle between the trajectory of source
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and semi-major axis of the earth orbit. Now combining these two motions the relative motions
of the source with respect to the earth is given by

~β(t) = ~βS (t)−~π(t). (A.15)

The second term corresponds to a perturbation compared to the simple microlensing events. The
photometric effect of parallax can be measured as an asymmetry of the microlensing light curve
[10]. Also the astrometric effect of parallax is observable, if the lensed images are resolved.
By combining equation (3.24) and (A.12) the distance of the lens from the observer (Dl) can be
extracted. Substituting in the definition of θE , the mass of lens can be obtained. In fact the lens
mass can be obtained only given θE and π using the relation:

M
M�

=
1

8π
(
θE

1 mas
). (A.16)

From photometric observations and microlensing light curves the physical parameter that
is obtained by fitting to the light curve is the Einstein crossing time. Having measured this
parameter the transverse velocity of lens can be derived as vt = DlθE/tE .

A.3 Parallax Effect in Microlensing Images

The acceleration of the Earth impacts the image separations for the same reason it affects the
light curve. Here we estimate the size of this effect, explicitly determining the way in which the
lens distance enters.

We begin by defining averaged and perturbed lens and source positions,

sss ≡ xxxS − xxx⊕ = s̄ss−δδδ and `̀̀ ≡ xxxL− xxx⊕ = ¯̀̀̀ −δδδ , (A.17)

where s̄ss and ¯̀̀̀ include the linear lens and source motions and the linear component of the Earth’s
motion. The acceleration of the Earth is contained in δδδwhich is by construction quadratic in time
to lowest order. We will presume this to be small in comparison to s̄ss and ¯̀̀̀.
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Inserting these into equation (3.18) and linearizing in δδδ and ignoring terms of order β2 yields

βββ ≡

111− `̀̀ `̀̀D2
L

 · sss
DS

≈

111− ¯̀̀̀ ¯̀̀̀

D2
L

 · s̄ss
DS

+

(
DS

DL
−1

)111− ¯̀̀̀ ¯̀̀̀

D2
L

 · δδδDS

+
¯̀̀̀

DL

s̄ss
DL
·

111− ¯̀̀̀ ¯̀̀̀

D2
L

 · δδδDS
.

(A.18)

Therefore, noting that βββ · `̀̀ = 0,

β ≈ βnp +

(
DS −DL

DL

)
βββnp

βnp
·
δδδ

DS
, (A.19)

where βββnp ≡
(
111− ¯̀̀̀ ¯̀̀̀/D2

L

)
· s̄ss/DS is the angular position of the lens ignoring the Earth’s accel-

eration. The corresponding angular separation between the multiple images is then given by
equation (A.4)

∆θ ≈ ∆θnp +

(
DS −DL

DL

)
βββnp

∆θnp
·
δδδ

DS
. (A.20)

Note that equation (A.19) interpolates between βnp and β as the lens distance changes. With the
definition

βp ≡ βnp +
βββnp

βnp
·
δδδ

DS
, (A.21)

i.e., when DL = DS /2, we recover equation (3.27),

β = λβp + (1−λ)βnp , (3.27)

where
λ ≡

DS −DL

DL
. (A.22)
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Appendix B

Producing a local debiased CMD from the
HIPPARCOS catalog

The HIPPARCOS catalog provides equatorial coordinates (α,δ), apparent magnitudes VJ (= V),
color indexes (B−V)J , (V − I), and parallaxes π. To produce a local color-magnitude diagram,
we calculate the absolute magnitudes M from the relative magnitudes and from the parallax,
neglecting the local absorption. Fig. B.1 shows the distribution of these absolute magnitudes MV
and MI as a function of the distance for the catalogued stars. It has been established ([135]) that
the HIPPARCOS catalog is complete until apparent visual magnitude V = 7.5, i.e., above the red
curves of fig. B.1. This means that for a given absolute magnitude MV , the catalog is complete up
to the distance dc(MV) associated with the distance modulus µc = 7.5−MV ; for example, within
50 pc the catalog is complete up to MV = 4.0, which corresponds approximately to MI = 3.1.
Since we want to estimate the local CMD, we considered only those objects closer than 50pc
to avoid bias due to the very fast density variations with the distance to the Galactic plane. Fig.
B.2 shows the full HIPPARCOS-Tycho MI versus V − I distribution and the distribution limited
to stars within 50pc (in red). It is clear that the full catalog is strongly biased in favor of bright
(remote) objects.

To benefit from the whole statistics without suffering from selection bias, we calculate the
differential volumic density of stars as a function of the absolute magnitude 0 < MV < 6 (inter-
val chosen for statistical reasons, see next section) from the numbers of stars found within the
corresponding completion distance

dc(MV) = 10pc×10
µc
5 = 10pc×10

7.5−MV
5 ' 50pc×10

4.0−MV
5 , (B.1)

divided by the corresponding completion volume 4π/3×dc(MV)3. Those stars that we accounted
for lie above the completion (red) curve and between the two horizontal full lines in Fig. B.1. As
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Figure B.1: HIPPARCOS absolute magnitudes vs. distance distributions (up=MV , down=MI).
The red curves indicate the absolute magnitude completeness limit as a function of the distance.
The vertical line shows our distance limit to get the local stellar population. The horizontal
full lines at MV = 0 and MV = 6 correspond to the domain that contains enough stars from the
HIPPARCOS catalog to enable our debiasing procedure.
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Figure B.2: HIPPARCOS absolute color-magnitude diagram in MIC vs. (V − I)J . The black
squares correspond to the full catalog (statistically biased). The red squares correspond to the
subsample of stars closer than 50pc; this subsample is statistically unbiased only for absolute
magnitude MV < 4.0 (corresponding to MI < 3.1). The size scales are different between the red
and black squares for readability.
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we need a diagram that is representative of the solar neighborhood, we also consider only those
stars that are inside a sphere of radius 50pc (left of the vertical line in Fig. B.1) to avoid depleted
regions away from the Galactic median plane; indeed, as shown in Fig. B.3, the spatial 2D and
3D distributions of stars within 50pc distance of the catalog do not show global anisotropies.
With all these constraints, a total of 2307 stars from the HIPPARCOS catalog are used to build
our debiased local CMD. The upper panels of Fig. B.4 show the absolute magnitude and color

Figure B.3: Two-dimensional and 3D distributions of the HIPPARCOS objects within 50pc.
The excess toward (α = 67◦ δ = 16◦) corresponds to the Hyades open cluster.

distributions of all the HIPPARCOS stars within 50pc (full lines) and of the stars that are closer
than min(dc(MV),50pc), where dc(MV) is the completion distance defined in Eq. (B.1) (dashed
red lines).

We represent the HIPPARCOS catalog as a multi-dimensional distribution function defined
by

f (x,M) =
∑

catalog

δ(M−Mi)δ3(x−xi), (B.2)

where xi is the position of star i and Mi represents its absolute magnitude and color “vector”
(i.e., its type). As explained above, to extract the unbiased local density for a given stellar type
characterized by the vector M (here (MI ,MV)), we only account for the objects that are both
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within the completion volume (d < dc(MV)) and closer than 50pc, i.e.,

n(M) =
3

4π.min[dc(MV),50pc]3

∫
d<min[dc(MV ),50pc]

f (x,M)k(d)d3x, (B.3)

where k(d) is a correction factor that takes into account the variation of the density within the
completion volume (this correction varies from 1 to 1.09).

B.1 Extrapolating the local HIPPARCOS CMD

The number of usable HIPPARCOS objects (closer than min(dc(MV),50pc)) is statistically lim-
ited in the faint (MV > 6) and bright (MV < 0) ends, as can be seen in Fig. B.4 (upper left,
dashed line). Moreover, there is no star with MV > 9 within its corresponding completion dis-
tance dc(9) ' 5pc (i.e., above the red curve of Fig. B.1), because the volume is too small; there
is also no local star (within 50pc) brighter than MV = −3.

Therefore, when building a debiased density color-magnitude diagram, we need to examine
specifically the contribution of the stars with absolute MV magnitudes out of [0,6] range to avoid
statistical limitations or biases:

• First, we can neglect the contribution of the brightest stars; indeed, the HIPPARCOS cat-
alog contains only 35 stars brighter than MV < 0 within 50pc (complete sample). This
corresponds to a maximum contribution of

35×
[
10kpc
50pc

]3

×
Ω(1◦×1◦)

4π
∼ 6800stars/sq.deg. (B.4)

of MV < 0 stars within 10kpc distance (typically less than 2− 3% toward the directions
studied in this paper). This contribution will be neglected in the following discussions 1.

• Stars fainter than MV = 6 have a minor, but not negligible contribution to a deep Galatic
exposure. Instead of debiasing the statistically limited subsample of the HIPPARCOS
catalog, we choose to linearly extrapolate the local stellar density of these faint stars as
(see Fig. B.4 middle, left):

dn
dMV

= Const.+ 4.6×10−4MV (pc−3mag−1). (B.5)

1For this very conservative estimate, we assume a constant density along the line of sight, we neglect the
absorption, and we assume a 100% detection efficiency.
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Figure B.4: Top: Raw distributions of MV and (V − I) of all HIPPARCOS stars within 50pc
(6911 objects). The dashed lines show the numbers of stars within the completion volume cor-
responding to their magnitude (see text). Middle: Local debiased volumic density of stars (per
magnitude unit, in pc−3) estimated from the ratio of stars within the completion volume and ex-
trapolated beyond MV = 6. Bottom: Debiased MV vs. V − I stellar density of stars closer than
50pc. 200



Since we deduce from Fig. B.2 (lower right branch) that

V − I ∼ 0.47× (MI −3.97), (B.6)

or equivalently
V − I ∼ 0.33× (MV −4.0) (B.7)

the type of these faint stars is also completely extrapolated.

Fig. B.4 (bottom) shows the local CMD obtained following our complete procedure using the
HIPPARCOS stars with 0 < MV < 6 within dc(MV) and our extrapolated distribution for 6 <
MV < 8.

B.2 Comparison with the stellar density expected from the
mass function: A coherence check

We can crosscheck the stellar number density found from the HIPPARCOS catalog and the den-
sity expected from the mass function as follows: stars with 0< MV < 6 belong to the mass domain
defined by 0.85M� < m < 2.8M� ([73]). The local number density of objects within this mass
range is given by

n(0.85M� < m < 2.8M�) =

∫ 2.8

0.85

dn
dm

dm, (B.8)

where dn
dm is the stellar mass function in the solar neighborhood. We use the mass function

ξ(logm/M�) = dn
dlogm/M�

of [53], revised in [55],

ξ(logm/M�) = 0.093× exp
[
−(logm/0.2M�)2

2× (0.55)2

]
, m ≤ M�

= 0.041(m/M�)−1.35, m > M� (B.9)

(see fig 4.8). We find that the mean density of disk stars with 0 < MV < 6 in a sphere of 50pc
centered on the sun (located at 26pc from the disk plane ([173])) is 0.012pc−3. This is compatible
with the estimates from the integral of the MV debiased distribution of the volumic density of
stars plotted in Fig. B.4, nHIPPARCOS = 0.0076pc−3, when taking into account the fact that ∼ 2/3
of the stars are in binary systems ([55]) not deblended in the HIPPARCOS observations.
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B.3 Parameters of the Besançon Galactic model

The Sun is located at R� = 8.0kpc and z� = 15 pc, which is different than in our simple model.
The thin disk structures are parametrized in cylindrical galactocentric coordinates (r,z), and for
various ranges of age, as follows:

ρD(r,z)age ∝

exp(−
a2

R2
d

)− exp(−
a2

R2
h

)

 if age < 0.15 Gyr,

∝

exp

−
√

0.25 +
a2

R2
d

− exp

−
√

0.25 +
a2

R2
h


 ,

if age > 0.15 Gyr, (B.10)

where

• Rd = 5.0 kpc and Rh = 3.0 kpc if age< 0.15 Gyr,

• Rd = 2.17 kpc and Rh = 1.33 kpc if age> 0.15 Gyr,

• a2 = r2 + (z/εage)2;

• εage and the local mass densities corresponding to ρD(r�,z�)age values are given in table
B.3 for the different ranges of stellar age, together with the IMFs.

The thick disk contribution is expressed by

ρthick
D (r,z) = ρthick

D (r�,z�) (B.11)

×(1−
z2

xl(2hz + xl)
)exp

[
−

r−R�
Rthick

]
if |z| < xl,

×
exp(xl/hz)
1 + xl/2hz

exp
[
−
|z|
hz

]
exp

[
−

r−R�
Rthick

]
if |z| > xl,

where xl = 400pc, hz = 800pc and Rthick = 2.5Kpc. Table B.3 also gives the total local densitiy
ρthick

D (r�,z�) for the thick disk together with the IMF.

The two components of the bar are described in a Cartesian frame positioned at the Galactic
center with the major axis X tilted by Φ = 12.8 degree with respect to the Galactic center-Sun
direction. The mass density for each component of the bar is given by ([239])

ρbar1(X,Y,Z) = ρ0sech2(−Rs)× fc(X,Y) (B.12)
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ρbar2(X,Y,Z) = ρ0 exp(−Rs)× fc(X,Y), (B.13)

where

RCp
s =

[∣∣∣∣∣Xa
∣∣∣∣∣Cn

+

∣∣∣∣∣Yb
∣∣∣∣∣Cn

]Cp
Cn

+

∣∣∣∣∣Zc
∣∣∣∣∣Cp

, (B.14)

and fc is a cutoff function

fc(X,Y) = 1. if X2 + Y2 < R2
c , (B.15)

= exp

− (
√

X2 + Y2−RC)2

0.25kpc2

 if X2 + Y2 > R2
c .

The parameters for bar1 are ρ0 = 9.21M�.pc−3 (2), a = 1.46 kpc, b = 0.49 kpc, c = 0.39 kpc,
Rc = 3.43 kpc are the scale length factors and Cp = 3.007, Cn = 3.329. The total mass of this bar
is 35.45×109M�
The parameters for bar2 are ρ0 = 0.026M�.pc−3, a = 4.44 kpc, b = 1.31 kpc, c = 0.80 kpc,
Rc = 6.83 kpc are the scale length factors, and Cp = 2.786, Cn = 3.917. The total mass of this bar
is 2.27×109M�

The IMF for these two bars is dn/dm ∝ (m/M�)−2.35.

Age ρ(r�,z�) ε IMF
(Gyr) (M�pc−3)

disk 0-0.15 4.0×10−3 0.0140
0.15-1 7.9×10−3 0.0268
1-2 6.2×10−3 0.0375 dn/dm ∝ (m/M�)−α

2-3 4.0×10−3 0.0551 α = 1.6 for m < 1M�
3-5 5.8×10−3 0.0696 α = 3.0 for m > 1M�
5-7 4.9×10−3 0.0785
7-10 6.6×10−3 0.0791
WD 3.96×10−3

Thick disk all 1.64×10−3 dn/dm ∝ (m/M�)−0.5

Table B.1: Age, local mass density ρ(r�,z�), disk axis ratio ε, and IMF of the different stellar
components of the disks in the Besançon model. WD represents the white dwarfs.

2Not to be confused with the local density of the bar ρbar(r�,z�)
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As far as kinematics is concerned, we use the ellipsoids of velocity dispersions provided for
each structure and age in table 4 of ([240]).
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Appendix C

Prediction Accuracy Requirements

When predictions are made numerically frequently the computational expense is strongly depen-
dent on the accuracy of the theoretical estimate required. Thus, significant efficiencies can be
realized by understanding and limiting the accuracy requested where possible. Generally, com-
parisons with data with large uncertainties require far less accurate theoretical estimates than
with data that has small uncertainties. Here we determine the relationship with parameter esti-
mation uncertainty and the accuracy of the theoretical estimates, thereby estimating the accuracy
required by Themis.

We begin by assuming that the measurement errors are Gaussian. We further assume that the
posterior parameter probability is also nearly Gaussian, and thus adopt a Fisher matrix approach
to the estimation of the uncertainty of the parameter estimates. Finally, we assume that errors in
the predicted values are Gaussian and uncorrelated. That is, we set the log-likelihood to

Ł = −
∑

j

( f j +δ j− y j)2

2σ2
j

, (C.1)

where the predicted value is f j, δ j is the error in the predicted value, y j are the data, and σ j are
the observational uncertainties.

The assumption that the prediction errors are Gaussian corresponds to assuming that the δ j
are Gaussian random variables. This is not true in an absolute sense: each time a prediction is
made for the same independent variables the δ j does not change. However, in a statistical sense
we are assuming that at different independent variable values and for different parameter values
the δ j are well approximated by a random variable. It will be useful henceforth to characterize
the size of the distribution of the δ j in terms of σ j, i.e., we set the variance of the prediction error
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in terms of the measurement uncertainty as 〈δ2
j〉 = ∆2σ2

j . This implies that higher prediction
accuracy is possible for more accurately measured quantities.

The δ j modify the minimum Ł (and thus χ2) expected: averaging over realizations of the data
and the prediction errors,

〈Ł〉 = −
∑

j

〈 ( f j− y j)2 +δ2
j

2σ2
j

〉
≈ −

N
2

(
1 +∆2

)
, (C.2)

where we have further assumed the number of degrees of freedom is close to the number of data
points, N. For a sufficiently large number of degrees of freedom and a large enough ∆2, the devi-
ation will be statistically noticeable in the reduced χ2 when ∆ & (8/N)1/4. This expression grows
slowly with N, though, and is therefore not a fundamental limit as far as parameter estimation is
concerned.

The uncertainty in the estimate of the parameters is set by the inverse of the covariance
matrix, given by

Cab = −
∂2Ł

∂pa∂pb
=

∑
j

1
σ2

j

 ∂ f j

∂pa

∂ f j

∂pb
+ ( f j− y j +δ j)

∂2 f j

∂pa∂pb

 . (C.3)

Again, averaging over realizations of the data and the prediction errors gives

〈Cab〉 =
∑

j

1
σ2

j

∂ f j

∂pa

∂ f j

∂pb
. (C.4)

However, a typical value will be modified by the presence of the linear term. That is, the variance
in the inverse covariance is

〈(Cab)2〉− 〈Cab〉
2 =

∑
j

(1 +∆2)
 ∂2 f j

∂pa∂pb

2

. (C.5)

The covariance matrix, whose eigenvalues indicate the magnitude of the uncertainties, is given
by

C−1
ab = [〈Cab〉+δCab]−1 ≈ 〈Cab〉

−1
[
1−〈Cab〉

−1δCab
]

(C.6)

where

δCab = µ

√√√∑
j

(1 +∆2)
(
∂2 f j

∂pa∂pb

)2

≈ µ

(
1 +

∆2

2

) √√√∑
j

(
∂2 f j

∂pa∂pb

)2

(C.7)
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in which µ is a Gaussian random variable with unit variance. This error term is suppressed by
approximately a factor of N−1/2 relative to the mean variance, and thus in the limit of large N
becomes insignificant.

The error term contains two elements, associated with the measurement and prediction errors,
respectively. The ratio of the latter to the former is ∆2/2. When ∆2 is small and N is large, the
uncertainty on the parameter estimates then grows by a multiplicative factor of ∆2/4. This is
unconditionally small when ∆ is small.

In Themis, we typically set ∆ = 0.25, for which ∆2/4 = 0.016, which broadens the posterior
parameter distributions by 1.6%. This does complicate the interpretation of fit quality for N &
2048, however.

C.1 Error Distributions of Quantities Associated with Visibil-
ity Amplitudes

Themis has three data types associated with visibility amplitudes: visibility amplitudes them-
selves, interferometric polarization fractions, and closure amplitudes. The underlying error dis-
tributions of none of these is Gaussian, and the latter two poorly approximated by Gaussians.
Here, we summarize what the relevant error distributions are and quantify how well they are ap-
proximated in Themis. In all cases, we will assume that the complex visibilities are well described
by a Gaussian random variable with non-zero mean.

C.2 Visibility Amplitudes

The probability distribution of the magnitude of a complex Gaussian random variable, V , with
mean V0 and standard deviation σ is given by the Rice distribution [see, e.g., 271]:

pr(|V |; |V0|,σ) =
|V |
σ2 e−(|V |2+|V0|

2)/2σ2
I0

(
|V ||V0|

σ2

)
. (C.8)

At high SNR (defined here by |V0|/σ), a Gaussian with mean
√
|V0|2 +σ2 and standard deviation

σ becomes an increasingly good proxy for the Rice distribution, with the quality of this approxi-
mation increasing with SNR. When SNR≥ 2, the biased Gaussian in within 8% of the maximum
probability of the Rice distribution for all values of |V |. These are compared in the left panel of
Figure C.1 for various choices of SNR. We provide a set of quantitative estimates of the accuracy
of the of Gaussian approximation in Table C.1 for various SNRs.
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Figure C.1: Left: Comparison of the Rice and Gaussian distributions at various SNRs. Right:
Distribution of products of visibility amplitudes and their comparison to a single Rice distribu-

tion. The SNR indicates σ/W =

√
σ2

A/|VA,0|2 +σ2
B/|VB,0|2, with the range for each SNR value

corresponding to that obtained from different ways of apportioning the errors between σA/|VA,0|

and σB/|VB,0|. Summaries of the accuracy of the comparisons shown can be found in Tables C.1
and C.2.

SNR
Approx. Notes Error 1 2 4 8 32
Gauss – δmax 29% 8% 2% 0.4% 0.02%

– – δmode 7% 1% < 0.1% < 0.1% < 0.1%
– – δw 15%/17% 5%/6% 2%/2% < 0.5%/0.5% < 2%/ < 1%

Table C.1: Accuracy of Visibility Amplitude Error Distribution Approximations. δmax is the
maximum absolute difference, measured relative to probability maximum. δmode represents the
fractional error in the location of the mode and δw is the Fractional error in the width of the
region containing 68%/95% of the cumulative probability.

208



C.2.1 Visibility Amplitude Products

Before discussing the data quantities of interest, we begin by considering the distribution of the
product of visibility amplitudes, i.e., W = |VA||VB|. We do this both to illustrate the procedure
by which we construct exact probability distributions for combinations of products and quotients
of visibility amplitudes and to show explicitly that these are typically well-approximated by a
single Rice distribution.

We begin by exploiting the non-negative behavior of |V | to define v = log(|V |). This simplifies
the construction of the product by reducing it to a sum, i.e., in terms of vA and vB, W = evA+vB ≡ ew.
The probability distribution of v is given in terms of the Rice distribution by

qr(v; |V0|,σ) = ev pr(ev; |V0|,σ), (C.9)

which we will call the logarithmic Rice distribution. Its characteristic function is

φr(k; |V0|,σ) =

∫ ∞

−∞

e−ikvqr(v; |V0|,σ). (C.10)

In practice, this may be computed efficiently via FFT. In terms of φr, the characteristic function
of the probability distribution of w is, φp(k; |VA,0|,σA, |VB,0|,σB) = φr(k; |VA,0|,σA)φr(k; |VB,0|,σB),
and thus, the probability distribution of w is

qp(w; |VA,0|,σA, |VB,0|,σB) =
1

2π

∫ ∞

−∞

eikwφr(k; |VA,0|,σA)φr(k; |VB,0|,σB), (C.11)

which again may be computed efficiently via FFT. Finally, the desired probability distribution of
W is then

pp(W; |VA,0|,σA, |VB,0|,σB) = W−1qp(logW; |VA,0|,σA, |VB,0|,σB). (C.12)

These are shown in the right panel of Figure C.1.

While formally, the distribution of W is characterized by four parameters, in practice it is well

approximated by a single Rice distribution with W0 = |VA,0||VB,0| and σ =

√
σ2

A +σ2
B, differing

by 17% of the maximum probability for SNR≥ 2. This comparison is also shown in the right
panel of Figure C.1, and estimates of the accuracy of the approximation are tabulated in Table
C.2 for various SNRs. Note that this also implies that the product distribution is well fit by a
Gaussian for sufficiently high SNR.
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SNR
Approx. Notes Error 1 2 4 8 32

Rice SNR ratio=1 δmax 33% 17% 9% 4% 1%
– – δmode 36% 14% 4% 1% < 0.1%
– – δw 16%/21% 7%/10% 2%/2% 0.6%/0.6% < 2%/ < 1%

Rice SNR ratio=4 δmax 11% 5% 2% 1% 0.2%
– – δmode 13% 4% 1.0% 0.2% < 0.1%
– – δw 4%/9% 1%/3% 0.4%/0.7% < 0.5%/ < 0.2% < 2%/ < 1%

Table C.2: Accuracy of Product Error Distribution Approximations. SNR ratio is the Ratio of
VA,0/σA to VB,0/σB in the construction of the product distribution. δmax is the maximum absolute
difference, measured relative to probability maximum. δmode represents the fractional error in the
location of the mode and δw is the fractional error in the width of the region containing 68%/95%
of the cumulative probability.
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Figure C.2: Left: Comparison of the polarization fraction distribution (visibility amplitude quo-
tient distribution) with the Gaussian quotient distribution approximate (Gauss Q) for various
input values of the denominator SNR, SNRd. In all cases the numerator SNR was set to 8. For
comparison, a log-Normal distribution is also shown. Right: Comparison of the polarization
fraction distribution (boundaries of the shaded region), the Gauss Q approximation in Equation
(C.17), and the log-Normal model, for various total SNR (i.e., m̆/σm̆) at m̆ = 0.5 and 2.0. Quan-
titative estimates of the accuracy of the various approximations can be found in Table C.3.
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C.3 Polarization Fractions — Visibility Amplitude Quotients

We follow a similar procedure to that in the previous section to compute the distribution of
the quotient of visibility amplitudes, i.e., Q = |VA|/|VB|. Unfortunately, we find that the re-
markable simplicity of the distribution of visibility products does not extend to quotients. The
characteristic function of the logarithmic quotient distribution is φq(k; |VA,0|,σA, |VB,0|,σB) =

φr(k; |VA,0|,σA)φ∗r (k; |VB,0|,σB), where the ∗ denotes complex conjugation. The resulting loga-
rithmic quotient probability distributions is

qq(q; |VA,0|,σA, |VB,0|,σB) =
1

2π

∫ ∞

−∞

eikwφr(k; |VA,0|,σA)φ∗r (k; |VB,0|,σB), (C.13)

with corresponding quotient probability distribution

pq(Q; |VA,0|,σA, |VB,0|,σB) = Q−1qq(log Q; |VA,0|,σA, |VB,0|,σB). (C.14)

This is directly applicable to the polarization fraction, for which this distribution is shown in the
left panel of Figure C.2.

The polarization fraction distribution clearly deviates from the Gaussian and Rice distribu-
tions in two key respects. First, even at high SNR, the distributions are asymmetric, with the
probability maximum lying below Q0 = |VA,0|/|VB,0|. Second, there is a significant tail extending
to high values of Q, containing sufficient weight to move the average Q above Q0 for SNR≥ 2.
More accurate are fitted (i.e., same mean and standard deviation) log-normal approximations,
shown in the left panel of Figure C.2, which recover the asymmetry, though still exhibit devia-
tions for SNR≤ 4.

Combined with the accuracy of the Gaussian approximation to the Rice distribution, this
motivates an exploration of better approximates to the quotient distribution of visibility ampli-
tudes. For two Gaussian variables, with non-zero means, it is possible to analytically construct
the quotient distribution analytically:

pGaussQ(r) =

∫
dxdy

e−(x−x̄)/2σ2
x

√
2πσx

e−(y−ȳ)2/2σ2
y

√
2πσy

δ

(
r−

x
y

)
=

e−(r−r0)2/2Σ2

√
2πΣ

[
∆erf

(
∆
√

2Ω

)
−

2Ω
√

2π
e−∆2/2Ω2

]

where r0 ≡
x̄
ȳ
, Σ2 ≡ r2

0
σ2

x

x̄2 + r2σ
2
y

ȳ2 , ∆ ≡ Σ−2

σ2
x

x̄2 +
r
r0

σ2
y

ȳ2

 , Ω ≡
σxσy

Σx̄ȳ
,

(C.15)
and erf(x) is the standard error function. This is also shown in the left panel of Figure C.2. While
deviations from pq continue to exist, the Gaussian quotient (Gauss Q) distribution accurately
reproduces the large high-Q tail.
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As with pp(W), pq(Q) depends on the SNR of both the numerator and denominator inde-
pendently. Unlike the product distribution, the quotient distribution is not symmetric in this
dependency, with the properties of the denominator controlling the asymmetry and tail. There-
fore, characterizing this distribution by a single pair of numbers — a central value and width —
will result in a substantial uncertainty in the resulting quotient distribution. This is simplified for
polarization fractions by the fact that the stations used to construct the visibility amplitudes in
the numerator and denominator are the same, and thus both quantities have similar noise profiles
in principle, i.e, σA ≈ σB. This implies that

σA

|VA,0|
≈

1√
1 + m̆2

0

σm̆

m̆0
and

σB

|VB,0|
≈

m̆0√
1 + m̆2

0

σm̆

m̆0
, (C.16)

where m̆0 = |VA,0|/|VB,0| and σm̆ is the uncertainty obtained by the standard error propagation
formula. Note that these are the only two quantities required to fully specify the Gauss Q and
quotient distributions. Combining this with Equation (C.15), we obtain for the polarization frac-
tion,

pm̆(m̆; m̆0,σm̆) =
e−(m̆−m̆0)2/2Σ2

m̆
√

2πΣm̆

[
∆m̆erf

(
∆m̆
√

2Ωm̆

)
−

2Ωm̆
√

2π
e−∆2

m̆/2Ω2
m̆

]
where Σ2

m̆ = σ2
m̆

1 + m̆2

1 + m̆2
0

, ∆m̆ =
1 + m̆m̆0

1 + m̆2 , Ω2
m̆ =

σ2
m̆

(1 + m̆2)(1 + m̆2
0)
.

(C.17)

For various m̆0/σm̆, the right panel of Figure C.2 shows comparisons of the exact quotient and
Gauss Q distributions assuming the errors in Equation (C.16) for m̆0 = 0.5 and 2.0. The Gauss Q
distribution is within 11% and 13% of the maximum probability of the exact quotient distribution,
respectively, at all values of m̆ when SNR≥ 2. The accuracy of the Gauss Q approximation for
the polarization fraction distribution is tabulated for different SNRs and m̆ in Table C.3.

C.4 Closure Amplitudes

We now turn to the problem of constructing the error distribution for closure amplitudes gen-
erally. Again, the exact expression can be constructed using the characteristic functions of the
logarithmic Rice distributions:

φa(k; |VA|,σA, |VB|,σB, |VC |,σC , |VD|,σD) = φr(k; |VA,0|,σA)φr(k; |VB,0|,σB)φ∗r (k; |VC,0|,σC)φ∗r (k; |VD,0|,σD),
(C.18)
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SNR
Approx. Notes Error 1 2 4 8 32
Gauss Q m̆0 = 0.5 δmax 41% 11% 5% 2% 0.6%

– – δmode 22% 7% 2% 0.5% < 0.1%
– – δw 3%/13% 5%/4% 2%/2% < 0.5%/0.4% < 2%/ < 1%

Gauss Q m̆0 = 2.0 δmax 31% 13% 6% 3% 0.6%
– – δmode 2% 2% 1% 0.4% < 0.1%
– – δw 17%/20% 13%/18% 5%/6% 1%/1% < 2%/ < 1%

log-Norm m̆0 = 0.5 δmax 41% 17% 10% 5% 1%
– – δmode 26% 0.2% 0.4% < 0.1% < 0.1%
– – δw 46%/27% 21%/29% 5%/6% 1%/2% < 2%/ < 1%

log-Norm m̆0 = 2.0 δmax 68% 48% 27% 13% 3%
– – δmode 27% 23% 9% 3% 0.2%
– – δw > 100%/63% 51%/23% 12%/3% 3%/0.6% < 2%/ < 1%

Table C.3: Accuracy of Polarization Fraction Error Distribution Approximations. δmax is the
maximum absolute difference, measured relative to probability maximum. δmode represents the
fractional error in the location of the mode and δw is the fractional error in the width of the region
containing 68%/95% of the cumulative probability.
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Figure C.3: Left: Comparison of the closure amplitude distribution with the Gauss Q approxi-
mation in Equation (C.24) for various choices of the denominator SNR, SNRd. In all cases the
numerator SNR was set to 8, divided equally among the visibility amplitudes in the numerator.
For comparison, the visibility amplitude quotient (Rice Q) distribution is also shown. The range
of the filled bands indicate the uncertainty associated with various choices of how SNRd is appor-
tioned between the two visibility amplitudes in the denominator. In all cases, the value of ρ was
set to the proper value in all models. Right: Comparison of the closure amplitude distribution
and the Gauss Q approximation with ρ = 1, for V0 = 0.5. The colored bands indicate the range
of closure amplitude distributions when the true ρ is varied within the permissible range for the
2017 EHT campaign, [0.3,0.33]. The SNR within the numerator and denominator is distributed
uniformly. Quantitative estimates of the accuracy of the various approximations for illustrative
cases can be found in Table C.4.
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from which we obtain

qa(a; |VA,0|,σA, . . . ) =
1

2π

∫ ∞

−∞

eikaφa(k; |VA,0|,σA, . . . ), (C.19)

and
pV(V; |VA,0|,σA, . . . ) =V−1qa(logV; |VA,0|,σA, . . . ). (C.20)

These are shown in the left panel of Figure C.3. Similar to the polarization fractions, they are
clearly asymmetric and exhibit large tails to high values, typical of quotient distributions.

Formally, this requires knowledge of eight values to define. However, again, it is possible
to accurately estimate pV with only a handful of combinations of these value. Due to the simi-
larity between the amplitude product distribution (Section C.2.1) and the Rice distribution, both
the numerator and the denominator can be effectively described by only two parameters each.
As a result, the closure amplitude distribution is similar to the amplitude quotient distribution
described in Section C.3, shown by the dashed lines in the left panel of Figure C.3.

If the SNRs of the denominator and numerator are independently known, this is well ap-
proximated by the Gauss Q distribution in Equation (C.15). These may be reconstructed with
knowledge of the total SNR (V/σV), and the ratio of the thermal uncertainties in the numer-

ator and denominator, i.e., σn =

√
σ2

A +σ2
B and σd =

√
σ2

C +σ2
D; also shown in the left panel

of Figure C.3. The latter are not independent, related by the repeated presence of each of the
four stations required to produce a closure amplitude in the numerator and denominator. That is,
identifying the baselines A, B, C, and D, with stations 1 and 2, 3 and 4, 1 and 4, and 2 and 3,
respectively, assuming identical bandwidths and scan duration,

ρ2 ≡
σ2

n

σ2
d

=
S 1S 2 + S 3S 4

S 1S 4 + S 2S 3
,=

1 + (S 3/S 1)(S 4/S 2)
(S 4/S 2) + (S 3/S 1)

, (C.21)

where the S j is are station specific SEFDs. Despite the appearance of four SEFDs, this is a func-
tion of only two variables: the ratios S 3/S 1 and S 4/S 2. Where both of these ratios are of order
unity, i.e., for a homogeneous array, ρ ≈ 1. For highly heterogeneous arrays, in which more than
one station is much more sensitive than the others, this can deviate from unity substantially, by
an amount that depends on the second lowest and second highest SEFDs, S 2nd min and S 2nd max,
respectively: √

S 2nd min

S 2nd max
. ρ .

√
S 2nd max

S 2nd min
. (C.22)

For the 2017 EHT campaign, the station SEFDs ranged from 90 Jy to 6000 Jy, with most
being near 5000 Jy. The phased Atacama Large Millimeter/submillimeter Array (ALMA) is
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an extremely low-noise outlier at 90 Jy, followed by the Large Millimeter Telescope at 600 Jy
(CITE). As a result, ρ ranges from 0.3 to 3.3, with most of the potential closure amplitude squares
having ρ within 11% of unity. Therefore, even without prior knowledge about the visibilities that
comprise the numerator and denominator of the closure amplitude, a similar procedure to that
used for the closure amplitudes, where ρ ≈ 1 is assumed, is well motivated.

Given a value of ρ, either from the station SEFDs or setting it to unity,

σn

n
≈

ρ√
ρ2 +V2

0

σV
V0

and
σd

d
≈

V0√
ρ2 +V2

0

σV
V0

, (C.23)

where n and d are the mean values of |VA||VB| and |VC ||VD|, and V0 = n/d. As a result, an
approximation of the closure amplitude distribution based on the Gauss Q distribution can be
constructed via

pV(V;V0,σV) =
e−(V−V0)2/2Σ2

V

√
2πΣV

[
∆Verf

(
∆V
√

2ΩV

)
−

2ΩV
√

2π
e−∆2

V
/2Ω2

V

]
where Σ2

V
= σ2

V

ρ2 +V2

ρ2 +V2
0

, ∆V =
ρ2 +VV0

ρ2 +V2 , Ω2
V

=
ρ2σ2

V

(ρ2 +V2)(ρ2 +V2
0)
.

(C.24)

Quantitative assessments of the performance of this approximation for a number of variations in
the distribution of SNRs among the various components and for fixed and known ρ are listed in
Table C.4. For comparison, we also provide accuracy for estimates for a log-Normal distribution
with mean log(V0 +σ2

V
/V0) and standard deviation σV/V0. In the Gauss Q cases with fixed

ρ and for the log-Normal distribution, we permit the true value of ρ to range from 0.3 to 3.3,
reporting the maximum deviation for each measure independently.

Knowledge of ρ significantly improves the quality of the approximation, which for SNR≥ 2 is
accurate to 13% forV < 1. The asymmetric impact of noise in the denominator and numerator of
the closure amplitude is responsible for the worsening performance of the approximation when
the V > 1; generally, closure amplitudes can be constructed so that V . 1. The performance
of the approximation in reconstructing the mode and width of the distribution is very good in
this limit, better than 1%. When ρ is not known a priori, setting it to unity introduces an addi-
tional error in the approximation of the closure amplitude distribution. Nevertheless, even with
excursions of a factor of 3, by SNR≥ 4, the Gauss Q approximation is accurate to 13% at allV.

In practice, the primary difficulty with applying Equation (C.24) is the accuracy with which
σn/n and σd/d can be reconstructed, which depends how closeV is toV0. At low SNR, this can
lead to a significant error in the estimation of the likelihood. Where the estimate of σn/n or σd/d
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are higher than their true values, this makes little difference. However, where they are much
lower than their true values, this can result in a distribution that is considerably more narrowly
concentrated aboutV0 than the true distribution, biasing any resulting parameter estimates. This
ceases to be a significant bias for SNR> 4 for the 2017 campaign.
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