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Abstract

Spin-ice models feature the same statistical disorder as water ice, which is identified
as the source of zero-point entropy. Gapped topological excitations with properties of
monopoles are associated with the violation of the magnetic flux divergence condition
∇ ·B = 0, and electric charges are constructed on the dual diamond lattice. These emer-
gent structures have the characteristic long-range ‘Coulomb’ algebraic correlations, as well
as a linearly dispersing photon. Quantum tunneling between states, defined on closed
loops of magnetic flux give rise to persistent spin-liquid dynamics. Under the influence
of geometrical frustration, electronic properties of matter often crystallize into patterns
described by complex symmetry, and in some cases exhibit topological order accompanied
by long range entanglement. The general features of spin-ice are manifest in a large class
of materials with the chemical formula R2M2O7, where R3+ is a rare earth ion from the
lanthanide series, and M4+ is a transition metal. The versatility of this lattice gives rise to
a wide range of interesting and tantalizing behaviours.

This thesis starts with a brief review of the concept of frustration in condensed matter
physics, and the ice model is motivated by several common abstractions. Relevant prop-
erties of the classical Ising pyrochlore dipolar magnet, dysprosium titanate Dy2Ti2O7 are
discussed. Ytterbium titanate Yb2Ti2O7, and terbium titanate Tb2Ti2O7, are both classi-
fied as spin−1

2
pyrochlores with proposed spin-liquid behaviour at very low temperature.

Their general properties are also introduced, and motivated for this study. The second
chapter reviews some of the basic microscopic electronic interactions in the rare earth ions,
which originate mainly from atomic 4f orbitals.

The second part of this work is dedicated to experimental methods, and instrumen-
tation used to obtain the main results of this thesis. Chapters 3 and 4 describe specific
heat and magnetic susceptibility measurements, which are tools used to analyze magnetic
properties of matter into the millikelvin range. Essential details involved in calibrating
the temperature of a helium dilution cryostat with resistance thermometry, paramagnetic
susceptibility, and nuclear orientation, are the topic of Chapter 5.

In Chapter 6, specific heat measurements on Dy2Ti2O7 between 340 mK and 1 K are
presented, where it was discovered that this material reaches equilibrium on extremely
long timescales. Evidence for this was observed in the unconventional thermal relaxation
curves, which were used to obtain new results for the heat capacity and zero-point entropy.
The onset of a transition at low temperature was identified, which has eluded previous
work for more than two decades. The nature of this ordering transition is also discussed
in the context of studies that have recently investigated its behaviour.

iv



In Chapter 7, magnetic ac-susceptibility on Dy2Ti2O7 between 0.5 K and 1 K is used to
investigate the effect of oxygen vacancy lattice defects, on the evolution of the spin-ice tran-
sition. Magnetic properties of a crystal are compared, before and after high temperature
annealing in oxygen. These results highlight the prominent features in susceptibility that
are affected by subtle levels of oxygen deficiency. The conclusions are aimed at deducing
which characteristics of magnetic susceptibility can be associated with lattice defects.

In Chapter 8, specific heat measurements on Yb2Ti2O7 between 15 mK and 660 mK
are used to search for evidence of unconventional excitations associated with spin-liquid
behaviour. Specific heat below 100 mK exhibits a large anomaly attributed to nuclear
hyperfine interactions, which is modeled and subtracted. This reveals an uncommon power-
law in the specific heat c(T ) ∝ T 4, and several interpretations are discussed within the
context of existing models.

In Chapter 9, specific heat measurements of Tb2Ti2O7 between 15 mK and 1 K are
presented, where the precise stoichiometry has been “stuffed” with an excess, or shortage
of Tb3+ on the order of 0.1%. These small variations in stoichiometry have been proposed
to alter the low energy state between electric quadrupole order and quantum spin liquid
behaviour. Features in specific heat are found to be extremely sensitive to these variations,
which is also reflected in the specific heat anomaly resulting from hyperfine interactions.
The underlying electronic specific heat appears to drop exponentially below 0.1 K in two
samples of nominally stuffed, and under-stuffed Tb2+xTi2−xO7+y.

Chapter 10 is a summary of all the results, highlighting the important conclusions
and implications of the research presented in this thesis. The appendices summarize a
number of additional projects that were carried out during this thesis, in addition to any
measurements that were performed as part of a collaboration.
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Chapter 1

Introduction

The goal of this chapter is to introduce some of the general concepts that describe many-
body interactions on the pyrochlore lattice, with attention to three particular materials
that are the focus of this thesis: Dy2Ti2O7, Yb2Ti2O7, and Tb2Ti2O7, which obtain mag-
netic properties from their respective rare-earth ions Dy3+, Yb3+, and Tb.3+. These rare-
earth titanium-oxides are closely related by geometry, but their magnetic properties differ
drastically at low temperatures. Starting from the concept of geometrical frustration, mi-
croscopic spin-ice models are discussed in relation to specific heat and ac-susceptibility
measurements, which are the research tools used for this thesis. The conceptual ice model
is generalized from its classical version that treats spins as Ising variables, to one that
can support exotic features such as deconfined fractionalized excitations with an emergent
U(1) gauge structure.

1.1 Geometrical Frustration

Frustration refers to the inability of a system to simultaneously satisfy all of its individual
interactions. In the classical description of magnetism, spins are treated as vectors located
at the vertices of a lattice, where the interactions are described by a Hamiltonian model

H = −
∑
〈i,j〉

JijSi · Sj. (1.1)

The conventional notation 〈i, j〉 represents a double summation on i and its nearest neigh-
bours j, where the coupling energy Jij is positive for ferromagnetic (FM), and negative for
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antiferromagnetic (AFM) interactions. The dimensionality of the spin Si for the Ising, XY,
and Heisenberg cases is 1, 2, and 3 respectively. In the case of a two dimensional square
lattice, the lowest energy ground state is trivial for both FM/AFM interactions, as shown
in figure 1.1. It is easy to see how frustration can be induced by the particular geometry
of the lattice. For example, in the case of AFM interactions on the triangular lattice, it is
impossible to simultaneously satisfy all of the bonds on the lattice, indicated by the solid
lines in figure 1.2. In this case, there are many distinct configurations with the same total
energy.

Figure 1.1: Ground state of the Ising exchange model on a square lattice with antiferro-
magnetic (left) and ferromagnetic exchange (right) interactions.

Figure 1.2: Left: The triangular lattice cannot satisfy all antiferromagnetic (AFM) inter-
actions simultaneously. Solid lines indicate bonds that violate the AFM condition. Right:
The ferromagnetic (FM) case is trivial to satisfy.

Another common type of frustration in conventional spin-glasses is induced by interac-
tions that can vary between coupled spins. The Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction is mediated by conduction electrons, and oscillates between FM and AFM de-
pending on the distance between two spins. Another trivial example shown in figure 1.3 has
FM nearest-neighbour interactions, but AFM next-nearest-neighbour interactions. In this
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case, the square lattice is frustrated because of the mixed interactions, unlike the trivial
ground state depicted in figure 1.1.

Figure 1.3: Square lattice with mixed ferromagnetic bonds between nearest neighbours,
and AFM diagonal bonds. Because the system is unable to simultaneously satisfy all of
the bonds indicated by a line (solid for NN-FM, and dashed for NNN-AFM), the resulting
system is frustrated.

Characteristic features of magnetic ordering are often manifest as a singularity in the
magnetic susceptibility or specific heat. This defines the critical temperature Tc below
which magnetic ordering spontaneously arises, called the Curie temperature for a FM,
or the Néel temperature (TN) for an AFM. Susceptibility diverges as T approaches Tc
according to a power law

χ ∝ (T − Tc)−γ, (1.2)

where the critical exponent γ = 1 for classical mean field (Landau) theory gives rise to the
Curie-Weiss law. While this mean field approach often gives a poor description near the
critical temperature, it does hold for T >> Tc in many systems. Within this approximation,
the critical temperature Tc is distinguished from an elevated Curie-Weiss temperature θ,
which is positive (FM) or negative (AFM) depending on the sign of Jij. A convenient
way to determine if a system is generally FM or AFM is by fitting the high temperature
susceptibility to χ ∝ (T − θ)−1.
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Figure 1.4: General temperature dependence of the inverse susceptibility χ−1 for a typical
nonfrustrated antiferromagnet with |θ| ∼ TN (on the left), and for |θ| >> TN as a criterion
for frustration (on the right).

Introducing frustration to the system has the effect of suppressing magnetic ordering to
lower temperatures as depicted in figure 1.4, thereby establishing the frustration criterion
to determine whether a system is frustrated or not[1]

f = −θ/Tc & 10. (1.3)

Another simple, yet powerful probe for detecting frustration in a magnetic system is
through the residual entropy ∆s of the magnetic specific heat c

∆s =

∫ T

0

( c
T

)
dT, (1.4)

where in general for a non-frustrated magnet, the maximum entropy is ln(2S + 1) per spin
for an effective spin-S system. In the presence of frustration, the ground state still contains
a finite residual energy degeneracy as the system approaches zero temperature.
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1.2 Ice Models

Spin-ice gets its name from an elegant analogy to water-ice, which contains a very similar
type of frozen-in disorder at very low temperatures. This disorder arises because of geo-
metrical frustration intrinsic to the crystalline structure of water-ice H2O, which forms a
tetrahedral arrangement of H-O bond directions. Analogously, magnetic moments on the
pyrochlore lattice of spin-ice are constrained to point towards the center of the tetrahedral
sub-structure. This analogy between water-ice and spin-ice is illustrated in figure 1.5 for a
pair of adjacent tetrahedra that make up the lattice.

Figure 1.5: The analogy between Pauling’s model of proton ordering in water ice (left) and
the magnetic spin ice model (right).

It was known for some time in the early 1930’s that the entropy differences between
various reactions involving H2O did not agree with the values derived from low temper-
ature heat capacity measurements,

∫ T
0
Cpd lnT . In 1933, Giauque and Ashley ruled out

the possiblity that these discrepancies are due to inaccuracies in experimental data, and
suggested that the persistent rotation of water molecules in ice below 10 K is most likely
the cause.[2] Three years later Giauque and Stout did a more careful analysis of the heat
capacity of water-ice from 15 to 273 K, and found that this difference in entropy is in
excellent agreement with the theoretical value predicted from Pauling’s model of random
orientation of hydrogen bond directions in ice.[3, 4] This difference in entropy is attributed
to the fact that there are multiple energetically equivalent configurations of the H-O bond
directions on a single tetrahedron.
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The model of spin-ice developed from studies of the compounds Ho2Ti2O7, and Dy2Ti2O7,
where the rare-earth ions Ho3+ and Dy3+ spins have large magnetic moments (∼ 10µB)
that are constrained to point along the local 〈111〉 direction of the cubic unit cell, which
points along the line towards the center of a tetrahedron, as shown in figure 1.5.[5, 6] The
Curie-Weiss constant in both of these materials indicates the presence of ferromagnetic
interactions at high temperatures, which would näıvely give rise to an ordered magnet
at low temperatures. However, because of the axial anisotropy of the rare earth ion, the
resulting interaction between spins is effectively antiferromagnetic, which can give rise to
frustrated interactions. This point is expressed by writing a Hamiltonian for classical spin
vectors Si, in terms of an effective Ising variable Szi = ±1 that points along the local 〈111〉
direction (defined here as ẑi)

H = −J
∑
〈ij〉

Si · Sj = −J
∑
〈ij〉

(ẑiS
z
i ) ·
(
ẑjS

z
j

)
= +

J

3

∑
〈ij〉

Szi S
z
j , (1.5)

where the product ẑi · ẑj = −1/3 changes the sign of the exchange interaction when the
spins are Ising-like.[7] When effective antiferromagnetic interactions exist between Ising
variables constrained to point into or out of a single single tetrahedron, it is not possible
to simultaneously satisfy the interactions between all four spins. This leads to a frustrated
ground state. There exist

(
4
2

)
= 6 energetically degenerate spin orientations satisfying the

constraint, shown in figure 1.6.

Figure 1.6: Antiferromagnetic spins on a tetrahedron constrained to point along the local
〈111〉 direction has 6 energetically equivalent permutations that obey this constraint.

The large-scale degeneracy of spin ice arises from the total number of equivalent mi-
crostates that satisfy the ice-rules on the pyrochlore lattice. This calculation is a common
heuristic argument presented in reference [7] and takes the following approach: For a lattice
with N sites, there are N/4 individual tetrahedra that each have 6 degenerate configura-
tions, resulting in 6N/4 independent configurations that satisfy the ice-rules. However,
because the tetrahedra are interconnected, this number is reduced by a factor proportional
to the probability of a single tetrahedron satisfying the ice rules, 6/16. Therefore, the total
number of microstates on the pryochlore lattice is Ω ≈ 6N/4(6/16)N/4. It follows that the
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total residual entropy per spin S/N is the natural logarithm of the number of microstates,
multiplied by the Boltzmann constant kB, yielding

S/N = kB ln Ω =
kB
2

ln

(
3

2

)
. (1.6)
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Figure 1.7: Pauling’s residual entropy in Dy2Ti2O7. The inset shows inverse susceptibility,
indicating a small ferromagnetic Curie-Weiss constant θ ≈ 1K. Figure reproduced from
reference [6] with permission.
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This ground state entropy is equal to Pauling’s residual entropy per proton, enforcing
the analogy between water-ice and spin-ice.[3, 8] In the high temperature limit where the
magnetic spins are fluctuating randomly and completely disordered, there are 2N configu-
rations corresponding to an entropy kB ln 2 per spin. Therefore, an experimental measure-
ment of the entropy will capture the difference between the fully disordered, and frozen
states corresponding to ∆S/R = ln 2− (1/2) ln(3/2) per mole, where R = kBNA is the gas
constant and NA is the Avogadro constant. One of the landmark experimental verifica-
tions of the spin ice model was the measurement of Pauling’s residual entropy in Dy2Ti2O7

shown in figure 1.7 where upon integrating the magnetic component of C/T from 0.2 to
14 K, one recovers the difference in entropy expected for the spin-ice ground sate.[6]

1.2.1 Long Range Dipolar Interactions

While the nearest-neighbour antiferromagnetic Ising model in equation 1.5 provides a
good starting point to understand qualitative features of the classical spin-ice materials
Ho2Ti2O7 and Dy2Ti2O7, it neglects an important contribution that arises from magnetic
dipole-dipole interactions between rare-earth moments. Unlike the nearest neighbour Ising
exchange interaction, the dipolar interaction is a long range interaction that decays as the
inverse cube of the distance between two dipoles, r−3. The classical interaction energy for
two parallel neighbouring dipoles separated by a distance rnn is given by

D =
µ0

4π

µ2

r3
nn

, (1.7)

which is on the order of D ∼ 1 K in the Dy/Ho spin-ice materials. It turns out that this
is the same order of magnitude as the Ising exchange interaction J ∼ 1 K, indicating the
equal importance of both interactions in the real materials. The dipolar spin-ice (DSI)
model includes these interactions as well as the exchange interactions

HDSI = −J
∑
〈ij〉

Si · Sj +Dr3
nn

∑
i>j

[
Si · Sj
|rij|3

− 3(Si · rij)(Sj · rij)
|rij|5

]
, (1.8)

where Si are classical spin vectors that point along the local 〈111〉 axes with a local
magnetic moment µ = µSi. The DSI model is often truncated to nearest neighbours (NN)
only, leading to an effective exchange Hamiltonian that replaces the spins with Ising-like
variables Si

Heff = Jeff

∑
〈ij〉

SiSj, (1.9)
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where the effective NN exchange constant Jeff = Jnn + Dnn, accounting for the NN Ising
exchange Jnn = J/3, and the effective nearest-neighbour dipole interaction, Dnn = 5D/3.1

This simplified model successfully captures many qualitative features of the classical spin
ice materials. Monte Carlo simulations of spin-ice typcially implement dipolar interactions
using Ewald summation, a technique which performs sums to infinite distance rather than
defining a nearest-neighbour cutoff. In order to obtain the spin-ice manifold of states, Den
Hertog and Gingras concluded that the nearest neighbour exchange term in Dy2Ti2O7 is
antiferromagnetic, and spin-ice behaviour is due to long-range dipolar interactions.[9]

Because of the long-range, highly anisotropic nature of dipolar interactions, there are
relatively few cases of dipolar systems that do not form long-range order. It was quite
surprising when early research on spin-ice could not identify the presence of such an ordered
state in these materials.[10, 9, 11] Melko et al., shed some light on this conundrum with
a numerical algorithm providing speedup of spin dynamics at low temperature. Their
approach incorporated loop moves into the standard Metropolis Monte Carlo Algorithm,
by which closed loops on the lattice such as the one shown in figure 1.8 undergo spin reversal
and give rise to favourable energetic conditions. This type of excitation does not violate
the 2-in, 2-out rules, and therefore has a relatively low energy cost relative to a single
spin flip. The loop algorithm drastically speeds up the equilibration time in simulations,
and successfully identified the true long-range ordered ground state of the dipolar spin-ice
model. The simulated transition to long-range order was accompanied by a singularity
in specific heat around 0.18 K, using the known exchange parameters for real spin-ice
materials.[12] In much of the work that followed, it was assumed that for real materials,
the spin-ice ground state is practically frozen because of extremely slow dynamics at low
temperature. This point is addressed in a later chapter on experimental measurements of
the spin-ice Dy2Ti2O7.

1The sign convention is the standard one where J > 0 corresponds to ferromagnetic and J < 0
to antiferromagnetic interactions. This allows for a very simple interpretation of the ground states. For
Jeff > 0, we get effective antiferromagnetic interactions, leading to the 2 in-2 out ice rules, while for Jeff < 0
(where J < −5D, and D > 0 always), there are two unique ferromagnetic ground states corresponding to
4 in and 4 out alternating tetrahedra on the two sublattices.
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Figure 1.8: Numerical ground state configuration of the classical dipolar spin-ice model.
The hexagonal loop on the lattice indicates a low-energy mode that may resonate quantum
mechanically if electronic and magnetic interactions between magnetic atoms permits. The
corresponding specific heat obtained with the metropolis monte carlo algorithm permits
such low energy fluctuations to occur. Data reproduced from reference [12] with permission.

1.2.2 Spin Dynamics

Ac-susceptibility is the most suitable technique for characterizing the frequency response
of spin-ice materials below 20 K, which respond to a broad range of magnetic signals from
dc to 104 Hz. At higher temperatures, neutron scattering can capture the frequency range
from ∼ 107 to 1014 Hz, while muon spin relaxation can bridge the gap from ∼ 106 to 108 Hz.
It is believed that some very fast processes occurring near the resolution limit of neutrons
∼ 1012 Hz, are associated with incoherent wobble that may be attributed to hyperfine
coupling, or even spin dynamics of electrons.[13, 14] Such oscillations are typically small
in amplitude, and distinguished from the larger fluctuations associated with spin rotations
or reversals.

Magnetic ac-susceptibility temperature scans χ(T ) on Dy2Ti2O7 shown in figure 1.9,
identified peaks near 1 K and 15 K.[15, 16] This distinguishes three regions of distinct
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spin relaxation behaviour: (I) a low-temperature region below 1 K, (II) an intermediate
region between 1 K and 15 K, and (III) a high temperature region above 15 K. The 15
K peak is lowered in temperature with decreased driving frequency, an indication that
spin dynamics slow down as the system freezes. The temperature dependence of the
characteristic relaxation frequency, which is defined at the peak in χ′(T ) or χ′′(T ) for
a given temperature, is described by the common Arrhenius scaling f = f0 exp[−E/T ]
with an activation energy E ≈ 200 K.[15, 16]
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Figure 1.9: Magnetic ac-susceptibility of Dy2Ti2O7 from 1.8 to 40 K in the audio frequency
range. Figure on left reproduced from [15] with permission. Figure on right reproduced
from reference [16] with permission. Both independent studies show reasonable qualitative
agreement.

Similar information can be extracted from the complex frequency dependence of χ(ω)
shown in figure 1.10. The imaginary component χ′′(ω) exhibits a maximum in frequency
for a given temperature, and corresponds to a spin relaxation mechanism that dissipates
energy. The shape of χ′′(ω) and χ′(ω) also contains information about the frequency distri-
bution of relaxation modes. In the case of a single relaxation mode, the Debye distribution
χ(ω) = χ0(1 + iωτ)−1 is obtained, and an Argand plot of χ′′(ω) versus χ′(ω) has the shape
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of a half-circle. Deviations from the Debye model are manifest as deformations in the
symmetry of this half-circle. Different phenomenological models that correspond to a dis-
tribution of relaxation modes are discussed in section 4.2. For the present discussion, it
is worth noting that the intermediate temperature (1 K . T . 15 K) modes of relax-
ation in Dy2Ti2O7 are adequately captured by the generalized Davidson-Cole formalism
χ(ω) = χ0(1 + iωτ)−β.
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Figure 1.10: Left: Argand plots of χ′′(ω) vs. χ′(ω), reproduced from reference [15] with
permission. Right: Normalized χ′′(ω) of Dy2Ti2O7 between 1.8 K and 17 K, reproduced
from reference [16] with permission.

Neutron spin echo (NSE) is often used to obtain generalized susceptibility χ′′(q, ω),
which can be compared with bulk ac-susceptibility measurements. Analogous to the spin
echo from nuclear magnetic resonance, a polarized beam of neutrons undergo Larmor
precession before and after interacting with the sample. The beam phase is inverted at the
half-way point, allowing spins to rephase and form a “spin-echo”. The change in neutron
velocity imparted by the sample is detected as a loss of polarization, which is a measure
of the dynamic correlation function S(q, ω). The Fourier transform of this function is then
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directly proportional to the generalized susceptibility S(q, ω) ∝ χ(q, ω). Investigations on
the classical spin-ice compound Ho2Ti2O7 distinguishes two distinct relaxation mechanisms
separated near 15 K.[14] It was found that a single exponential characterizes the spin
relaxation after a weak perturbation, S(q, t)/S(q, 0) = A exp[−t/τ(T )], and the activation
energy exhibits thermal Arrhenius behaviour above 15 K τ(T ) = τ0 exp[−E/T ], with
E ≈ 300 K, in agreement with the bulk ac-susceptibility measurements.[14] The process
independent of neutron scattering wave-vector q indicates that the dominant relaxation
mode involves only single spin reversals. This is also supported by the activation energy
being close to the first set of excited crystal electric field levels near 300 K.[14, 17] In an
independent study, Sutter et al. also measured the relaxation of Dy2Ti2O7 down to 8 K
using a less common technique of nuclear forward scattering of synchrotron radiation from
the 25.65 keV resonance of 161Dy nuclei, and obtained a similar value for the activation
energy.[18]

Relaxation mediated through the first set of crystal field levels becomes very unlikely
for 2 < T < 15 K, due to the large activation energy. Here, the characteristic spin
relaxation time τ(T ) observed with ac-susceptibility, and neutron spin echo measurements,
is temperature independent; characteristic of a mechanism that involves quantum spin
tunneling. It is believed that tunneling between states within the ground doublet is induced
by transverse couplings between the neighbouring rare-earth sites.[19] Similar processes
have been suggested for Dy3+ systems in reference [20], and may be analogous to Mn12

clusters in reference [21] or the situation in LiHoF4 in reference [22], where transverse fields
play an important role in quantum spin tunneling.

As the spin ice ground state develops below about 1 K, the temperature independent
process gradually gives way to a sharp increase in the relaxation time, corresponding to an
activation of about 10 K.[23, 24, 25] These dynamics arise from the collective behaviour
of correlated spins and are perhaps the least understood at this point in time. The follow-
ing chapter digresses to the concept of emergent electromagnetism in spin-ice, which is a
convenient description of low energy magnetic excitations that may shed some light on the
origin of dynamics in this phase.
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1.2.3 Fractionalization

Because magnetic moments in spin ice are constrained to point along the local 〈111〉 axes,
its often convenient to think of each spin as contributing a net positive, or negative magnetic
flux to each tetrahedron. Ising spin variables Si, are mapped to a fictitious magnetic flux
bi, directed into, or out of each tetrahedron. Any state which obeys the 2-in, 2-out ice rule
must therefore have zero net magnetic flux at its center. These flux variables are directed
along the bond that joins the centers of two neighbouring tetrahedra, as shown between
sites A and B in figure 1.11.

A

B

Figure 1.11: Tetrahedra on the pyrochlore lattice can be decomposed into two sublattices
A/B that each define an fcc lattice. The bonds of a diamond lattice site are highlighted
in the A tetrahedron. A hexagonal plaquette of the diamond lattice is highlighted in red,
and in blue for the pyroclore lattice. Figure by H. M. Revell.[26]

Vertices of these bonds form a diamond lattice, and tetrahedra satisfying the spin ice
rules are equivalent to a divergence-free condition∑

i∈t

Szi = 0 →
∑
A←B

bi = ∇ ·B = 0, (1.10)
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where the sum of four spins on a tetrahedron t is mapped to a sum over the directed bonds
of a diamond lattice site. In the classical theory of electromagnetism, the divergence-free
condition is typically associated with the absence of magnetic monopoles.2 In the lattice-
analog defined here, reversing a single spin creates a 3 in-1 out or 1 in-3 out tetrahedron,
violating the divergence-free condition. At distances above the atomic length scale, this
may be effectively interpreted as point magnetic source with the properties of a fictitious
monopole. The adjacent tetrahedron carries a monopole of opposite charge.

The energy cost of creating a single monopole is therefore related to the cost of violating
the 2 in-2 out ice condition. For the nearest neighbour spin-ice model, the energy cost of
reversing a single spin is 4Jeff, so the creation of a single monopole should come at a cost
of approximately 2Jeff. Once a pair of monopoles are created, they can move to adjacent
tetrahedra via subsequent spin flips without increasing the total number of monopoles in
the system. There is however, a small energy cost associated with moving these objects
apart due to their mutual Coulombic interaction −µ0q

2
m(4πr)−1, where qm is the magnetic

charge and µ0 is the vacuum permeability.[27] As separation is increased, it is possible to
trace the path of a “string” of dipoles aligned head to tail, with the monopole pairs at
its ends. These are considered as infinitesimally thin solenoidal tubes of magnetic flux
with monopole-antimonopole pairs at the ends (analogous to Dirac strings). The tension
in each string is associated with the energy cost of manipulating or lengthening a string,
arising from the Coulombic interaction between magnetic charges at its endpoints. At large
distances, the two magnetic charges become deconfined, and can move independently with
no energy cost.[27]

This description is consistent with the nearest neighbour effective exchange model,
and provides a good account of the experiment from ∼ 2 K to ∼ 8 K where measure-
ments observe a quasi-plateau in the magnetic relaxation time. Numerical simulations
have demonstrated that the effect of this additional Coulombic interaction is to slow down
diffusion through the creation of locally bound pairs, thereby increasing the relaxation
timescales.[28]

2It is also possible to define this mapping in terms of an electric field (E), which is the dual of the
magnetic field (B), but in the case of spin-ice, it is more convenient to think of these as magnetic monopoles.
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1.2.4 Lattice Defects

Two common lattice defects that are known to affect the low temperature magnetic prop-
erties of spin-ice compounds are: substitutional defects known as stuffed sites, and oxygen
vacancies.

Substitutional Defects

Stuffing is a type of substitutional defect on the pyrochlore lattice described by the chemical
formula R2+xTi2−xO7−x/2, whereby a rare earth cation R3+ occupies a non-magnetic Ti4+

site, or vice versa. This defect is accompanied with reduced oxygen concentration in order
to preserve charge balance. The effect is enhanced when ionic radii of the two cations
are similar. For some lanthanide compounds with sufficiently large values of x, it leads
to the formation of a completely different fluorite-type phase with the chemical formula
R2TiO5.[29, 30]

Neutron scattering on single crystals of Ho2+xTi2−xO7−δ with x ≤ 0.3 demonstrated
that despite the relatively large value of x, spin-ice behavour is preserved, and the residual
entropy is consistent with the increase expected for additional paramagnetic Ho3+ spins on
the Ti4+ sites.[31] One of the distinguishing features is a broadened quantum spin tunneling
regime from 1 K to 40 K, which normally only covers the range from 1 K to 15 K.[32]

Stuffing also has the effect of stretching the spin relaxation function ∼ exp
[
− (t/τ(T ))β

]
where the Kohlrausch relaxation constant is β ≈ 0.5 from 1.5 K to 200 K, compared
with β = 1 for nominal stoichiometry. Stretched relaxation is common to a wide range of
physical systems, and typically results from a distribution of relaxation times associated
with glassy dynamics. For the case of stuffing in spin ice, this may be due to a random
distribution of magnetic defects, or with the presence of hierarchically constrained spin
dynamics where fast degrees of freedom successively constrain the slower ones.[32, 33]
Qualitatively, similar effects were observed in Dy2Ti2O7.[34] It is likely that magnetic ions
on the non-magnetic sites create pathways for exchange interactions that introduce new
relaxation dynamics.

Classical spin-ices Dy2Ti2O7 and Ho2Ti2O7 are robust to large levels of stuffing on the
order x ≤ 0.3 = 15%.[35] These compounds have the general features of spin-ice, but this
is not necessarily the case for other rare-earth compounds. For example, Tb2Ti2O7 has
shown sensitivity to very small levels of stuffing down to x ≈ ±0.001 = ±0.05%. One of the
distinct features of the x− T phase diagram near xc = −0.0025 is the transition between
a putative U(1) quantum spin liquid, and quadrupolar ordered state. The latter exhibits
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a sharp feature in specific heat near 0.5 K.[36, 37] Likewise, Yb2Ti2O7 has variations in
the sharpness and position of a sharp peak in specific heat near 0.2 K, that have also been
correlated with very small levels of stuffing x & 0.01 = 0.5%.[38, 39] These correlations
are believed to originate from the expansion or contraction of the lattice when a rare
earth cation takes the place of a Ti4+ cation. Rietveld refinements of neutron and x-ray
diffraction data are commonly used to identify the small changes in cubic lattice parameter
a(x) that result from small changes in the stuffing x. To give perspective, stuffing at the
level of x = ±0.01 can result in deviations of lattice parameter on the order of ±0.001 Å,
from a typical value of 10 Å. Lattice parameters can be obtained at room temperature as
indicators of stoichiometry before proceeding to more time consuming characterizations at
low temperatures.[39, 38, 37]

There is no doubt that a great deal of variability observed between experiments is
correlated with stuffing. Even small levels of stuffing (0.05%) previously thought to be
negligible can affect the magnetic properties of rare earth titanates at sufficiently low
temperatures. This suggests that the features of magnetic ordering are very delicate to
perturbations caused by defects or impurities. In some materials this is significant, while
in other cases the manifestations of disorder are negligible.

Oxygen Vacancies

The second common defect relevant to rare earth pyrochlores arises with oxygen deficient
stoichiometries. Shortage of O2− results in the chemical formula R2Ti2O7−δ, where charge
compensation is fulfilled by the transformation of Ti4+ to Ti3+. This reduction of Ti4+

causes it to acquire a magnetic moment, known as quenched orbital magnetism. Two
distinct types of oxygen vacancies can be distinguished on the pyrochlore lattice: O(1)
sites occupy the interior position of a rare-earth tetrahedron, while O(2) sites form a
scalenohedron surrounding the magnetic ion.

Figure 1.12 depicts a portion of the pyrochlore lattice and demonstrates the effects of an
O(1)-site oxygen vacancy on the magnetic properties of the rare-earth ions. There are two
important consequences of an O(1) oxygen vacancy. When a negatively charged oxygen
ion is removed, the surrounding positively charged Dy3+ ions experience an increased
Coulomb repulsion, resulting in an expansion of the tetrahedral structure. This oxygen
vacancy changes the symmetry of the crystal field, which changes the anisotropy of the
Dy3+ ions from Ising like, to xy-like. The second consequence of an oxygen vacancy, is the
reduction of two Ti4+ atoms to Ti4+, which compensates for the loss of negative charge.
This change in electronic structure produces a magnetic moment on the Ti site, which
normally is non-magnetic.
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Figure 1.12: Position of two distinct oxygen sites: O(1) and O(2) in spin-ice materials
(Dy2Ti2O7 shown). An O(1)-site vacancy expands the tetrahedral structure and changes
the magnetic isotropy of surrounding rare-earth ions. Two neighbouring titanium sites are
reduced to compensate for charge imbalance. Figure interpreted from reference [40] with
permission.

Sala et al. developed a model of O(1) oxygen vacancies that qualitatively reproduces
the main features of diffuse neutron scattering in Y2Ti2O7. The Y3+ ions are non-magnetic,
making this compound a good candidate to study the magnetism Ti3+ sites in the absence of
a large field contribution from the otherwise magnetic rare-earth ions. They found that the
Y3+ ions surrounding an O(1) vacancy at the center of a rare-earth tetrahedron experience
an increased Coulomb repulsion, resulting in an effective expansion of the tetrahedral cage.
Meanwhile, oxygen atoms occupiying neighbouring O(2) sites are pushed towards the Ti4+

ions, converting two of these to Ti3+ in order to preserve charge balance. Crystal electric
field calculations indicate that an O(1) vacancy changes the easy-axis 〈111〉 anisotropy of
surrounding rare earth ions to easy-plane type.[40]
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1.3 Quantum Ice Models

This section describes general features of a quantum spin liquid (QSL) state without math-
ematical rigor. This phase of matter is often associated with (I) a very large degree of quan-
tum entanglement between spins on a lattice, that (II) do not exhibit features associated
with classical magnetic ordering. Rather vaguely, (I) is defined as a long range entangled
state that cannot be transformed into a direct product of local states (|Ψ〉 = ⊗i|ψ〉i) with
local unitary transformations. (II) is intereseting because QSL’s are predicted to support
the existence of non-local excitations known as spinons, which are spin excitations that
behave as fractions of magnons or spin waves.[41]

For many years, the conventional method to describe ordering in matter was based
on the Landau theory of phase transitions, which identifies changes in symmetry of a
particular property of the system.[42] In the late 1980’s it was realized that a theory based
on symmetry breaking cannot explain the behaviour of spin liquids,3 and later the notion of
topological order was introduced to explain order beyond the symmetry description.[45, 46]

Resonating Valence Bonds

Conceptual origins of a QSL are attributed in part to P. W. Anderson, who proposed
resonating valence bonds (RVB) as an alternate ground state to classical Néel antiferro-
magnet, for the spin−1

2
triangular lattice Heisenberg antiferromagnet.[47] The conceptual

ingredients of a resonating state have origins in Pauling’s idea of resonating valence bond
theory, and is also a common approach used to describe compounds in quantum-organic
chemistry (eg. valence-bonds in aromatic compounds).[48]

The basic idea is that neighbouring pairs of spins form singlet dimers |↑↓ − ↓↑〉/
√

2
in order to lower the ground state energy. There are a small number of exactly solvable
quantum spin models. The Majumdar-Ghosh model is one that provides a simple example
of the valence-bond solid (VBS) state.[49] The Hamiltonian of this model has nearest, and
next-nearest neighbour interactions

H = J
∑
i

Si · Si+1 +
J

2

∑
i

Si · Si+2, (1.11)

where Si is a quantum spin−1
2

operator. The ground state of this Hamiltonian has two
equivalent ground states in which neighbouring pairs form singlet dimers. The Majumdar-

3In particular the chiral spin state.[43, 44]
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Ghosh wavefunction is a product of singlet wavefunctions for each pair

|ψ〉 = 2−N/2|(↑↓ − ↓↑)(↑↓ − ↓↑) · · · (↑↓ − ↓↑)〉, (1.12)

is illustrated in figure 1.13. Quantum spin liquids can arise in frustrated magnets with low
spin−S, where strong quantum fluctuations are sufficient to destroy conventional long-
range order.

( )1
2

= ↑↓ − ↓↑

ψ +

ψ −

Figure 1.13: Resonating valence bond state on the Majumdar-Ghosh Heisenberg antifer-
romagnetic spin chain. The model has two gapped, degenerate ground states, which are
dimerized states with dimers on even and odd links.

1.3.1 Quantum Liquids in Spin−1
2 Pyrochlores

The quantum spin-ice model introduces quantum fluctuations between spins on the py-
rochlore lattice. These models were originally studied in the limit of strong easy-axis ex-
change anisotropy, where it was demonstrated that there exists a fractionalized spin liquid
with an emergent U(1) gauge structure.[50] The emergent spinons are analogous to gapped
electric and magnetic charges, and a gapless photon. Magnetic charges are gapped with an
energy 2∆ ∼ Jzz, the cost of a spin flip out of the mainfold of spin-ice states. The origin
of the dual electric charge is less intuitive, understood as gapped topological excitations
arising from a wave packet of ice configurations with suitably chosen phases.[51] Finally,
the photons responsible for Coulombic interactions between the elementary charges are
gapless excitations with linear energy dispersion for small wave vector k, ω = c|k|, where
c is the speed of light corresponding to the fictitious photon that mediates the interaction
between emergent electrons and monopoles.

Quantum effects have been observed in various spin-ice compounds including Yb2Ti2O7,
Tb2Ti2O7, Er2Ti2O7, Tb2Sn2O7, Pr2Sn2O7, Pr2Ir2O7, and each of the rare-earth ions have
unique properties that can be classified by the irreducible representations of the D3d local
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symmetry group.4 The single-ion ground states correspond to the following irreducible
representations of this symmetry group.[52]

Γ4 pseudospin doublet

In the simplest case, the ground state wavefunction is a doublet state that is protected by
time-reversal. Recall Kramers theorem, which states that for a Hamiltonain that obeys
time reversal symmetry [H, T ] = 0, where T is the time-reversal operator, all its eigenstates
are at least twofold degenerate.

|±〉 = α|±1

2
〉+ β|∓5

2
〉+ . . . (1.13)

The effective spin operators (Sx, Sy, Sz) represent magnetic dipoles, with a net magnetic
moment given by

µi = µB[g±(xiS
x
i + yiS

y
i ) + gzziS

z
i ], (1.14)

which transforms the same way as spin−1
2

under the symmetries of the pyrochlore lat-
tice. Examples of this representation are the single-ion ground states of Yb2Ti2O7, and
Er2Ti2O7.

Eg non-Kramers doublet

This state is not protected by time-reversal

|±〉 = α|±4〉+ β|±1〉+ . . . (1.15)

The Sz operator transforms as a magnetic dipole, while the Sx, Sy operators transform as
electric quadrupoles. The magnetic moment is therefore produced by Sz only

µi = µBgzS
z
i zi. (1.16)

Examples are Ho2Ti2O7, and Tb2Ti2O7.

4This includes a C3 axis (local z), C2 axis (local y), and an inversion center, due to the local symmetry
of the crystalline electric field at the rare-earth site.
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Γ5 ⊕ Γ6 dipolar-octupolar doublet

The irreducible representation Γ5 ⊕ Γ6, is connected by time-reversal

|±〉 = α|±3

2
〉+ β|∓9

2
〉+ . . . (1.17)

This state is conceptually more complex, because the Sx and Sz operators transform like
magnetic dipoles along the local z−axis, while Sy is invariant under all D3d symmetries,
and transforms like a magnetic octupole. An example is Dy2Ti2O7.

Pseudospin−1
2

XXZ model

One starting point to study quantum spin-ice is to consider the rare-earth atoms which
possess ground state doublets that can be modeled as effective spin−1

2
objects on the

pyrochlore lattice. Projecting the superexchange Hamiltonian into the space of doublets,
gives rise to the effective model[53, 54]

HQSI =
∑
〈ij〉

JzzS
z
iS

z
j − J±

(
S+
i S
−
j + S−i S

+
j

)
+ J±±

(
γijS

+
i S

+
j + γ∗ijS

−
i S
−
j

)
+ Jz±

[
Szi
(
ζijS

+
j + ζ∗ijS

−
j

)
+
(
ζijS

+
i + ζ∗ijS

−
i

)
Szj
]
,

(1.18)

where the sum is over all nearest neighbour sites i and j on the pyrochlore lattice. The
pseudospin operators Szi are proportional to the magnetic moment along the local 〈111〉
axis, and Sxi , S

y
i , to the in-plane components of the magnetic dipole moment for the Kramers

case.5 The phase diagram of this Hamiltonian was investigated using a novel gauge theory
formulated in terms of slave-rotors by Savary et al., and is shown in figure 1.14.[57] They
studied the problem for J±± = 0 and Jz > 0, and found two exotic phases: a U(1)
quantum spin liquid (QSL), and a Coulomb ferromagnet (CFM), in addition to the generic
ferromagnetic (FM) and antiferromagnetic (AFM) phases. The Coulomb ferromagnetic
phase with fully ordered moments, is viewed as a polarized version of the U(1) QSL, and
also supports deconfined spinons.

In order to identify this phase with experiment, it is common to look for signatures of the
spinons and photons. Inelastic neutron scattering can identify the presence of fractionalized
spinons,[54, 58] or look for the linear dispersion (∝ ω) in the low-energy limit, which
normally diverges (∝ ω−1) in the case of a spin-wave.[57] This photon dispersion should
also appear as c ∝ T 3 in the low-temperature specific heat, something that was predicted
for Yb2Ti2O7, and was the focus of chapter 8.

5In the non-Kramers case, the latter are proportional to the quadrupole moment as a result of time
reversal invariance.[55, 56]
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Figure 1.14: Phase diagram for the quantum spin-ice hamiltonian in equation 1.18 obtained
for J±± = 0 and Jzz > 0 using gauge mean field theory. Figure reproduced from reference
[57] with permission.

1.4 Ytterbium Titanate Yb2Ti2O7

A good starting point to discuss the magnetic properties of ytterbium titanate Yb2Ti2O7,
is to consider the electronic ground state of an isolated Yb3+ ion. As for all the insulating
rare earth pyrochlore titanate oxides, the Yb3+ ion is surrounded by a scalenohedron of
O2− atoms that produce a crystal field with D3d symmetry. Under the symmetry of this
crystal field, the eight-fold degenerate 2F7/2 electronic ground state of the Yb3+ ion is split
into four Kramers doublets. For Yb2Ti2O7, the ground state is given by

|±〉 = α

∣∣∣∣±1

2

〉
+ β

∣∣∣∣±5

2

〉
+ γ

∣∣∣∣±7

2

〉
, (1.19)

with α ≈ −0.9283, β ≈ ±0.0866 and γ ≈ ±0.3616.[59] This consists primarily of mJ =
±1/2, confirmed by a variety of experimental and theoretical investigations. [60, 61, 62, 59]
The lowest ground doublet is separated from the first excited state by about 600 to 900 K,
which can be ignored at low energies. This justifies the effective spin−1

2
description that is

commonly adopted for this system. The g-tensor components gz ≈ 2 and g|| ≈ 4 indicate a
strong tendency for the magnetic moments to have planar XY anisotropy in the local 〈111〉
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basis.[60, 63, 64] Despite the highly anisotoropic g−tensor, the dominant exchange inter-
action in the material is in fact Ising-ferromagnetic, implying that the ordered Yb moment
lies primarily along the local 〈111〉 direction with magnitude ≈ 1µB.[64, 53, 65, 66, 54, 67]
It follows that the magnetic dipole interaction is significantly reduced in comparison to the
classical spin ices (Dy2Ti2O7 and Ho2Ti2O7), which have large classical moments ∼ 10µB.
Quadrupole moments do not exist in the atomic ground state doublet (eq’n 1.19).[53] The
dominant interaction in Yb2Ti2O7 results from a strong superexchange between Yb 4f
orbitals via neighbouring O 2p orbitals.

Ferromagnetic Ordering and Persistent Dynamics

An abundance of experimental evidence indicates that Yb2Ti2O7 undergoes ferromagnetic
ordering below the specific heat transition ∼ 270 mK. There is also significant support
for residual fluctuations below this temperature, which may seem to contradict an or-
dered ferromagnetic state. Magnetic Bragg reflections observed with neutron scatter-
ing that are indicative of long range ferromagnetic order, have been observed by some
authors,[63, 68, 69] while others have presented evidence for persistent spin dynamics be-
low the ordering transition.[70, 71, 58] One picture of the ground state corresponding to
splayed-ferromagnetic order of the type shown in figure 1.15 was obtained from a magnetic
neutron diffraction pattern.[72]

Figure 1.15: Magnetic structure of Yb2Ti2O7 inferred from magnetic neutron diffraction.
Figure reproduced from reference [72] with permission.

Muon spin resonance (µSR) measurements by various groups have also observed some-
what contradictory results regarding the presence of spin fluctuations and long-range order.
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In one of the studies, there is almost no temperature dependence to the muon spin relax-
ation below the ordering transition, and therefore no evidence for long-range order or frozen
spin dynamics.[73] In the other independent study, there is a strong indication that the
magnetic moments are static below the ordering transition.[69] The Yb2Ti2O7 samples in
both of these reports exhibit nearly identical features in the low temperature specific heat,
but the µSR measurements are completely different. It is difficult to attribute these dif-
ferences as a sample dependence issue, since the features in specific heat are known to be
excellent indicators of sample quality, and yet the µSR results could not be more different.

Suscpetibility and magnetization measurements also support the picture of a first order
transition that exhibits hysteresis in the magnetization. This transition is accompanied
by the development of a spontaneous ferromagnetic moment that is not fully saturated,
supporting the picture that there is a fluctuating component present in the material.[74]

Specific Heat

Typically, an ordered ferromagnet which is gapped will display an exponenial drop in
specific heat below the ordering transition. The existence of low energy magnetic excitation
should be reflected in the specific heat. For example, according to spin wave theory, the
ferromagnetic Heisenberg Hamiltonian has low temperature specific heat ∼ T 3/4. The U(1)
quantum spin liquid model should have gapped spinons at high temperature (monopoles
and electrons). At low temperatures, it should be governed by gapless photons that give
rise to cubic ∼ T 3 specific heat. Therefore, considering all of the controversy surrounding
the ground state properties of Yb2Ti2O7, it is obvious that the specific heat is an absolutely
critical component to constructing a complete picture of this unique material.

Numerous experimental and numerical investigations of the low temperature specific
heat of Yb2Ti2O7 exist in the literature. Magnetic spin correlations become apparent
in the specific heat below approximately 10 K, where the T 3 phonon contribution has
almost vanished, and the zero-field specific heat exhibits a broad Schottky anomaly cen-
tered around 2 K. At temperatures well above the magnitude of exchange interactions
≈ 1 K, the material behaves as a paramagnet. Numerical studies of the effective spin−1

2

anisotropic exchange quantum spin-ice model [equation 1.18] quantitatively reproduce the
main features of the 2 K Schottky anomaly.[67, 75, 76] These results, derived from 4th
order numerical linked cluster (NLC) expansion with Euler extrapolations were limited to
700 mK due to computational complexity.[67] Classical Monte Carlo simulations fail to
capture this 2 K anomaly, indicating the role of quantum effects in this feature. More
recent calculations based on the finite temperature Lanczos method (FTLM) on a 32-site
cluster of spins reached even lower temperatures, and reproduced qualitative features of
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the ferromagnetic ordering transition observed by experiment.[76] The numerical results
are compared in figure 1.16.

Figure 1.16: Yb2Ti2O7: Comparison of heat capacity from numerical simulations with the
finite temperature Lanczos method (FTLM)[76], the numerical linked cluster (NLC) ex-
pansion to 3rd and 4th order,[67] and experiment (blue circles,[77] and black triangles[38]).
In the figure on the left, FTLM calculations were done using the exchange parameters from
reference [54], while those on the right are from reference [78]. Both figures reproduced
from reference [76] with permission.

Multi-Phase Competition

The low temperature ground state doublet should be well represented by a pseudospin−1
2

effective exchange model. The nearest neighbour Hamiltonian can be represented by four
independent coupling constants Ji after accounting for the symmetry of the pyrochlore
lattice

H =
∑
〈ij〉

~SiJ̄ij ~Sj J̄ =

 J2 J4 J4

−J4 J1 J3

−J4 J3 J1

 (1.20)

where J̄ij are related by cubic rotations. These exchange parameters can be identified
with XY (J1), Ising (J2), symmetric off-diagonal (J3) and Dzyaloshinskii-Moriya (J4)
like interactions.[54, 79, 80] The relevant parameters in the case of Yb2Ti2O7 (as well
as Er2Ti2O7 and Er2Sn2O7) are J3 < 0, J4 = 0, which results in a competition between
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four different type types of order: Palmer-Chalker (Ψ4), noncollinear ferromagnet (FM),
coplanar antiferromagnet (Ψ3), and noncoplanar antiferromagnet (Ψ2).[80] The phase dia-
grams corresponding to the Hamiltonian in equation 1.20 were obtained for classical, and
quantum linear spin wave theory, shown in figure 1.17.[80] The finite temperature phase
diagram, outlined by the white circle, was obtained using classical Monte Carlo simula-
tions. These illustrations indicate, using the parameters of reference [54], that Yb2Ti2O7

has a low temperature ground state with noncollinear splayed ferromagnetic order, which
is consistent with several neutron scattering results.[69, 81, 82, 83] However, an outstand-
ing puzzle that has not been resolved is the observation of a gapless continuum in con-
trast to the expectation of a finite gap associated with coherent spin waves. Given the
proximity of Yb2Ti2O7 to the phase boundary between the FM and Ψ3 phases, it has
been proposed that the presence of competing phases may explain its behaviour at low
temperatures.[79] It has been proposed that this may also explain the rod-like features
observed with neturon scattering, indicative of dimensional reduction and anisotropic ex-
change interactions.[80, 84, 58, 54, 66, 85]
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Figure 1.17: Top Left: Classical ground state phase diagram [equation 1.20] for nearest
neighbour interactions, symmetric off-diagonal exchange J3 < 0 and no Dzyaloshinskii-
Moriya interaction J4 = 0. Top Right: Quantum fluctuations suppress the classical order.
White regions indicate where linear spin wave theory predicts suppression of conventional
LRO. The axes are plotted on a log-polar scale with 0 < ρ . 106. The lower figure shows
the trace indicated by the white circle in the upper figure. All three figures were reproduced
from reference [80] with permission. Estimates published for Yb2Ti2O7,[54] Er2Ti2O7,[86]
and Er2Sn2O7[87].
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1.5 Terbium Titanate Tb2Ti2O7

An intriguing feature of the Tb pyrochlore Tb2Ti2O7 is the absence of detectable con-
ventional long-range ordering as low as 50 mK, despite a negative Curie temperature
(θp ∼ −19) indicating antiferromagnetic exchange interactions.[88, 89]

If one neglects the axial distortion of oxygen surrounding the Tb3+ ion and assumes
cubic symmetry, then crystal field theory within the point charge approximation predicts
that the lowest energy levels for Tb3+ consist of a Γ3 singlet, a nonmagnetic Γ2 doublet and
a Γ

(2)
5 triplet. Adding trigonal distortion as a perturbation only splits the Γ

(2)
5 triplet into

a singlet and a doublet.[90] Neutron spectroscopic studies of the crystal field excitations
in Tb2Ti2O7 confirm that the Γ3 ground doublet is dominated by |mJ = ±4〉 components,
with |mJ = ±5〉 in the first excited state.[91] This suggests significant Ising anisotropy
along the local 〈111〉 direction. There is evidence of mixing with other states because the
first excited doublet is separated from the ground doublet by about 18 K. This is relatively
low in comparison to the classical Ising systems (Dy, Ho) that are on the order of 300
K.[92]

An effective quantum pseudospin−1
2

model provides a good account of the behaviour
of local magnetic doublets in the pyrochlore oxides in zero field: [55]

H =Jnn
∑
〈r,r′〉

[
σzrσ

z
r′ + 2δ(σ+

r σ
−
r′ + σ−r σ

+
r′) + 2q(e2iφr,r′σ+

r σ
+
r′ + h.c.)

]
+Dr3

nn

∑[
ezr · ezr′
|r − r′|3

− 3[ezr · (r − r′)][ezr′ · (r − r′)]
|r − r′|5

]
σzrσ

z
r′ ,

(1.21)

where the second term is the dipolar interaction. For a non-Kramers magnetic doublet, the
in plane pseudospin operators σxi , σ

y
i are associated with quadrupole moment ∼ {J±i , Jzi },

a result of time-reversal invariance. This is in contrast to the Kramers case (Yb3+, Nd3+,
Er3+), where the in-plane components of pseudospin are proportional to the magetic dipole
moment and there is no quadrupole moment. Classical mean-field calculations have shown
that there are two distinct electric quadrupole long range ordered phases, the planar anti-
ferropseudospin (PAF), and planar ferropseudospin (PF) phases, which are in close prox-
imity to the spin ice (SI) phase, which is replaced by a U(1) quantum spin liquid phase
in the presence of quantum fluctuations.[55] The corresponding phase diagram is shown
in figure 1.18. Early experimental and theoretical considerations of Tb2Ti2O7 made ob-
servations of short range correlations at very low energies down to 50 mK, [88] which was
attributed with dynamical behaviour associated with quantum effects.[93] Historically, the
interpretation of numerous experimental works has been problematic, due to sample de-
pendence attributed to small levels of off-stoichiometry in the form of Tb2+xTi2−xO7+y,
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Figure 1.18: Classical mean field phase diagram of the effective quantum pseudospin 1/2
Hamiltonian from reference [55] (left) and with specific parameters for Tb2Ti2O7 from
reference [96] (right). Both figures reproduced with copyright permission.

where −0.01 < x < 0.01 is even common in nominally stoichiometric samples.[94, 36]
Within this range, an ordering peak is typically observed with specific heat from 0.4 to
0.5 K, where this phase transition has also been correlated with other measurements in-
cluding magnetic susceptibility, inelastic neutron scattering, neutron spin echo, and muon
spin resonance.[95, 72, 94, 89, 96, 36, 97]

Specific heat measurements on Tb2Ti2O7 show significant differences among samples
below 2 K. The measurements on polycrystalline samples have generally produced more
consistent results, displaying a peak in the specific heat between 0.35 to 0.5 K, indicating
the presence of a phase transition. Variations in the peak position were correlated with the
non-stoichiometry of polycrystalline Tb2+xTi2−xO7+y, by adjusting the mass ratio of the
two starting materials Tb4O7, and TiO2, relative to the nominal value of x = 0 ± 0.002,
as illustrated in figure 1.19.[36] The investigation established that the non-stoichiometry
parameter, x, is correlated to the lattice constant of Tb2+xTi2−xO7+y, as well as the position
of the specific heat peak in temperature. Their hypothesis was that there is a critical value
x > xc whereby the ground state of the system undergoes long range order, while for x < xc,
the ground state is consistent with a spin-liquid state. The specific heat and hypothetical
phase diagram from this reference is shown in the inset in figure 1.19. The magnetization
measurements observed a very weak anomaly in the vicinity of the temperature that the
specific heat peak was observed for sample with x = 0 and ±0.005. Inelastic neutron
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scattering on the x = 0.005 (> xc) sample in that reference also showed the opening of a
gap in the magnetic excitation spectrum below Tc, indicating an ordered phase.
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Figure 1.19: Specific heat measurements of Tb2+xTi2−xO7+y for various nominal values of
x. Figure reproduced from reference [36] with permission.

Subsequent work was done on a single crystal of Tb2Ti2O7 grown with the floating
zone method. This resulted in a gradient along the length of the rod that is correlated
with the non-stoichiometry parameter, x.[37] Portions of the sample were cut at different
lengths, then characterized with x-ray diffraction, and specific heat measurements. The
measurements revealed that the lattice constant diverges from ideal stoichiometry, and that
the peak associated quadrupolar ordering disappears abruptly below x = xc ' −0.0025.
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Chapter 2

f-Orbital Physics

Magnetism of atoms can be derived from three dominant sources: intrinsic spin of unpaired
electrons, angular momentum of electrons orbiting the nucleus, and intrinsic nuclear spin
of unpaired nucleons. (I) Each electron carries intrinsic spin angular momentum s = 1

2

with a magnetic moment approximately equal to one Bohr magneton µB = −9.27× 10−24

[J/T]. (II) The orbital angular momentum of an electron surrounding an atom is given
by the cross product of its momentum and position l = r × p, and the corresponding
dipole moment is given by µl = −gLµB~−1l, where gL is the electron orbital g−factor
(III) The nuclear magnetic moment is primarily due to the nucleons, which have intrinsic
spin−1

2
derived from elementary quarks and gluons. The magnetic moment of a proton is

µp = 2.79µN and a neutron is µn = −1.91µN , where µN ≈ 5.05×10−27 [J/T] is the nuclear
magneton. Note that the electrons magnetic moment is typically much larger than that of
a nucleon µN/µB ≈ 103.

The magnetism associated with 4f orbitals arises in the elements Ce, Pr, Nd, Pm, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. These electrons experience a broad energy range
of interactions, depicted roughly by the temperature scale

10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 [oK]

coulombspin-orbitcrystal-fieldexchangehyperfine

The separation of these energy scales with little overlap makes the 4f series highly de-
sirable for the study of many-body exchange interactions at low temperatures. Overlapping
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energy scales are more common among the transition metals (d−block). The phenomena
concerning this thesis is relevant below ∼ 1 K, where exchange and hyperfine interactions
are concerned. The Hamiltonian describing an isolated 4f ion is commonly treated a sum
of parts that are separated in energy

H = Hspin +Horbital +Hnuclear, (2.1)

corresponding to the orbital motion of electrons surrounding the nucleus, the electronic
spin degrees of freedom, and the complete description of nuclear hyperfine structure. In
the following chapters we will consider each of these contributions with more detail.1

2.1 Coulomb

The orbital potential is the largest term in equation 2.1, accounting for the Coulomb forces,
and kinetic motion experienced by the electrons surrounding a nucleus. For an N -electron
atom with nuclear charge Z, the concise form of this time-independent Hamiltonian is

Horbital = − ~2

2me

N∑
i

∇2
i +

N∑
i

N∑
j 6=i

e2

|ri − rj|
+

N∑
i

Ze2

|ri|
, (2.2)

where the first term is the kinetic potential energy T̂e, the second term is the electron-
electron Coulomb repulsion V̂ee, and the third term is the Coulomb attraction between
electrons and the nucleus V̂eN , treated here as a point source with no internal structure.
This treatment is valid as a first order approximation because the energy splitting for
nuclear hyperfine interactions is small compared to the other terms considered here. Hy-
perfine interactions are considered with more detail in section 2.5. The remaining problem
to be solved for the free atom is the time-independent Schrodinger equation[

T̂e + V̂ee + V̂eN

]
Ψ = EΨ, (2.3)

where Ψ = Ψ(r1, r2, ..., rN) is the N -electron wavefunction. Due to the gross number of
variables that appear in such an equation for a multi-electron atom, an exact analytic
solution is not available, and a numerical solution requires a heavy amount of computa-
tion. Fortunately, there are simplifying approximations and group-theoretical arguments

1The information presented throughout this chapter has input from various sources including Refs.
[98, 99],...
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regarding the symmetry of the Hamiltonian and its solutions. These approximations fall
under the category known as self-consistent field methods, and commonly include: (I) The
Born-Oppenheimer approximation, which treats the motion of electrons as independent
of a heavy stationary nucleus. This approximation was already implicit in the orbital
Hamiltonian in equation 2.2, where the nucleus was treated as a point source of charge Z.
The hyperfine interactions capture these effects (section 2.5). (II) Relativistic effects are
neglected in the kinetic energy operator. These arise in the Dirac equation, and have an
important contribution to spin-orbit coupling in the rare-earths (section 2.2). (III) If it is
assumed that that the motion of each electron is independent of the rest, then the corre-
sponding wavefunction can be written as a product of individual electronic wavefunctions,
known as the Hartree product

Ψ(r1, r2, . . . , rN) = φ1(r1)φ2(r2) · · ·φN(rN). (2.4)

The Pauli exclusion principle dictates that this wavefunction is anti-symmetric under ex-
change of any two electrons

φi(rj)φj(ri) = −φi(ri)φj(rj), (2.5)

which is generalized to N electrons by the Slater determinant. With these simplifications
(I-III), the variational principle is then applied to equation 2.3, which minimizes the energy
of Ψ, and leads to a set of N Hartree equations[

− ~2

2m
∇2
i + Vi(ri)

]
φi(ri) = Eiφi(ri), (2.6)

where the electrostatic potential

Vi(ri) = −Ze
2

ri
+ e2

∑
j 6=i

∫
d3rj
|φj(rj)|2

|ri − rj|
, (2.7)

of electrons orbiting the nucleus requires a self-consistent solution such that each φi de-
pends on every φj. The first term in this equation is the static electron-nuclear inter-
action, and the second term is the average electrostatic electron-electron repulsion. An
important simplification results if Vi(ri) is spherically symmetrical, and therefore invariant
under rotations. The corresponding eigenfunctions of equation 2.6 transform according to
the irreducible representation of the full rotation group, justifying the spherical harmonic
representation basis. The eigenfunctions for each electronic orbital is given in spherical
coordinates as

φi(ri) = ilRnl(r)Y
ml
l (θi, ϕi), (2.8)
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where n is the principal (or radial), l the orbital (or azimuthal), and ml the magnetic
quantum numbers. These make up the particular electronic configuration of equation
2.4; commonly specified by the notation: nx#e, where x = s, p, d, f, g, h, . . . correspond
with l = 0, 1, 2, 3, 4, 5, . . . , and the superscript is used to denote the number of electrons
occupying the shell. From these arguments alone, one might expect a state Ψ consisting
entirely of 1s orbitals; however, this is prevented by the Pauli exclusion principle which
does not allow electrons to share quantum numbers. For example, the first stable 4f
electron appears for atom Z = 58 in Ce, where the complete configuration is given by
1s22s22p63s23p63d104s24p64d105s25p66s25d14f1. The number of electrons increases in the
rare earth series: Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, up to Lu which
has the configuration [Xe]6s25d14f14. The azimuthal variation of a 4f wavefunction is
depicted in figure 2.1.

Figure 2.1: Azimuthal variation of a 4f0 orbital.

In order to obtain the energy levels of Horbital, it is common to solve a simpler Hamil-
tonian, and apply perturbation theory as a first order correction. Consider the central
self-consistent field (cscf) Hamiltonian

Hcscf = − ~2

2m

∑
i

∇2
i +

∑
i

Vi(ri), (2.9)

where Vi(ri) is specified in equation 2.7 (and we are still assuming that it is spherically
symmetrical). Notice that this Hamiltonian contains most of the information about the
problem: the kinetic energy term, the static electron-nuclear interaction, and the averaged
electron-electron interaction term contained in the Vi(ri). Eigenfunctions of Hcscf depend
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on ni and li, and are all degenerate as a result of the invariant Hamiltonian under separate
rotations of individual electron coordinates. Now consider the electrostatic (es) repulsion
between electrons separately

Hes = Horbital −Hcscf, (2.10)

as a perturbation that splits the energy levels of Hcscf. This term couples the angular
momenta of individual electrons and captures the residual behaviour not accounted for
by the cscf-approximation. Hcscf contains most of the inter-electronic repulsion energy,
including the average spherical part (i.e., without angular dependence) so that the effect
of Hes is small enough to be treated as a perturbation. Before we can apply Hes as a
perturbation, we refer back to the total free atom Hamiltonian in equation 2.1 to note that
there are other terms relative to Horbital which should also be considered as perturbations.
The spin Hamiltonian Hspin contains the relativistic spin-orbit (so) interaction that couples
electron spin with electron oribtal angular momentum. Therefore, we must decide which
perturbation to apply first: Hes (LS-coupling), orHso (jj-coupling). LS-coupling is usually
appropriate for light atoms, while jj-coupling is more applicable to heavy atoms where the
individual coupling between electrons via the spin-orbit interaction is stronger than the
electrostatic repulsion between them. This is demonstrated with more detail in section 2.2.
Finally, there are a few intermediate cases where neither approximation is appropriate, and
the effect of Hes +Hso has to be treated together as a perturbation. That is the subject of
the next chapter.

Notice that Horbital is invariant under rotation of all ri coordinates simultaneously, and
therefore it should transform according to the group representation

D(l1) ×D(l2) × · · · ×D(lN ) =
∑

D(L), (2.11)

The resulting eigenfunctions are (2L + 1)-fold degenerate with L given by equation 2.11,
and can be decomposed with coefficients specified by Wigner or Clebsch-Gordan coupling
coefficients defined by ∑

m,m′

(ll′mm′|LM)φmφm′ . (2.12)
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2.2 Spin-Orbit

We now consider the spin dependent part Hspin contained in the total Hamiltonain for a
free atom, H in equation 2.1 as the next important term in the configuration of atomic
energy levels. It is considered a perturbation that splits the atomic orbitals discussed
in the previous section; which captures the largest energy contributions to H. This spin
Hamiltonian has several contributions. Perhaps the most intuitive is the spin-spin coupling
that results from the magnetic dipole-dipole interaction between electron spins

Hss =
∑
i

∑
j 6=i

[
si · sj
|rij|3

− 3(si · rij)(sj · rij)
|rij|5

]
. (2.13)

Another term comparable in magnitude is due to magnetic interactions arising from elec-
tron currents. This does not produce many important effects, and is usually neglected.
The major contribution to Hspin originates from a relativistic effect in the Dirac equation
that produces an interaction between spin- and orbital-angular momentum of electrons
(spin-orbit coupling). Consider a semi-classical electron moving with velocity v = r/m in
a spherically symmetric nuclear potential V (r). Its motion generates an effective magnetic
field

B = E × v

c2
=

(
− r
er

dV

dr

)
× p

mc2
= − 1

mec2

(
1

r

dV

dr

)
l, (2.14)

resulting in an interaction between this magnetic field B, and the magnetic moment of the
electron spin µ ≈ es/me, which has an energy

Uso = −µ ·B =
1

m2
ec

2

(
1

r

dV

dr

)
l · s = f(r)l · s. (2.15)

It is worth noting that if the potential generated by the nucleus is approximately Coulombic
V (r) ∼ Z∗r−1, where Z∗ is the effective nuclear charge seen by electrons, then the average

radial dependence of Uso scales as 〈f(r)〉 ∝ Z∗

r3 ∝ (Z∗)4

(n∗)6 , implying that spin-orbit coupling
is most important for heavy atoms with small diameter Z∗ >> r. This explains why jj-
coupling becomes important for heavy atoms, as mentioned in section 2.1. For multiple
electrons in an atom, the spin-orbit Hamiltonian is given by

Hso =
∑
i

ξ(ri)li · si, (2.16)

where the sum includes only the electrons outside the last closed orbital, and

ξ(ri) =
1

2m2c2

1

ri

dV

dri
. (2.17)
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Neglecting the less important terms mentioned earlier, this Hamiltonian sufficiently de-
scribes splitting of atomic orbitals with perturbation theory. Terms such as li · si are
no longer invariant under rotations of orbital and spin separately, but they are invariant
under simultaneous rotation. Therefore, group theory dictates that the eigenfunctions of
Horbital +Hspin must transform according to the representation

D(L) ×D(S) =
∑

D(J), (2.18)

where J = L + S, L + S − 1, . . . , |L − S|. The individual sub-shell wavefunctions can be
written as

Ψ(LSMLMS) =
∑
mlms

(LSMLMS|mlms)ψ(mlms). (2.19)

Applying the Wigner-Eckhart theorem, the spin-orbit Hamiltonian can also be expressed
succinctly as

Hso = ζLSL · S, (2.20)

where the spin-orbit coupling constant is given by

ζLS = ± π

m2c2S

∫
rR2

4f (r)
dv

dr
dr, (2.21)

with + and − corresponding to sub-shells that are less and more than half filled, respec-
tively. The energy splitting is obtained with first order perturbation theory

E1 = E0 + 〈LSJmJ |Hso|LSJmJ〉
= E0 + ζLS〈LSJmJ |S ·L|LSJmJ〉

= E0 + ζLS〈LSJmJ |
1

2
J2 −L2 − S2|LSJmJ〉

= E0 +
ζLS
2

[J(J + 1)− L(L+ 1)− S(S + 1)] ,

(2.22)

and the spacing between subsequent levels reduces to the Landé interval rule

∆E = E(J)− E(J − 1) = ζLSJ . (2.23)

Due to orbital pairing, inner shell electrons do not produce a net magnetic moment.
In many cases, the electronic ground state can be obtained through a convenient set of
guidelines known as Hund’s rules. According to these rules, the Pauli exclusion principle
requires that two fermions (electrons) cannot share the same set of quantum numbers (n,
l, ml, ms). Pairing of electrons in the same subshell (ml) is unfavourable due to Coulomb
repulsion; and furthermore, they experience less shielding from the nucleus in the close
presence of another electron. The most favorable conditions occur when the total spin
quantum number is maximized.
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The Origin of Hund’s Rule

Hund’s rule also states that for a given electronic configuration, the one with unpaired spins
is lower in energy than if the electrons are paired.

Start by considering a wavefunction which the includes spatial and spin co-ordinates of
a single electron Ψi = φiχi, where φi is the spatial coordinate, and χi is the spin coordinate.
A simplified model of the Hartree-Fock energy for a nucleus with N electrons

E =
∑
i

Ei +
1

2

∑
i

∑
j

[Jij −Kij]. (2.24)

Here Ei = 〈χi|− 1
2
∇2−Zr−1

i |χi〉 is the kinetic + electrostatic energy of an orbital designated
by χi, the Coulomb repulsion energy between electrons in orbitals i and j is given by
Jij = 〈χiχj|r−1

ij |χiχj〉, and Kij = 〈χiχj|r−1
ij |χjχi〉 is the exchange energy. The exchange

energy is factorizable into spatial ψi, and spin si =↑ or ↓, components

Kij = 〈ΨiΨj|r−1
ij |ΨjΨi〉 = 〈ψiψj|r−1

ij |ψjψi〉 |〈si|sj〉|
2 , (2.25)

which is zero for orthogonal states (antiparralel spins) and therefore increases the total
Hartree-Fock energy. This is the origin of Hund’s first rule, which states that unpaired
electrons arrange in parallel and maximize the total spin angular momentum. Finally, the
total angular momentum, J = |L− S| if the subshell is less than half full, and J = |L+ S|
if the subshell is more than half full.
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2.3 Crystal-Field

The distribution of charged ions throughout a crystalline lattice generates an internal
electric field particular to the symmetry of each site. The specific anisotropy of an ion
will then depend on the particular local point-group symmetry of the surrounding electric
fields. In general, the electrostatic energy of a single electron at position rc, surrounded
by a neighbouring charge distribution ρ(ri) is given by

Vcf(re) = −
∫

eρ(rc)

|re − rc|
drc, (2.26)

In the case where the neighbouring distribution does not overlap with the charge cloud
of the electron, this potential can be treated as a standard multipole series expansion in
terms of spherical harmonics Ylm

Vcf(re) =
∑
l,m

Almr
lYlm(θ, φ), (2.27)

where multipole moments of the 4f electrons are rlYlm(θ, φ), and the associated coefficients
arising from the electrostatic interaction are given by

Alm =
1

2l + 1

∫
eρ(rc)

rl+1
c

Y ∗lm(θ, φ)drc. (2.28)

At this point, some general considerations based on symmetry arguments can simplify the
form for the potential energy. Computing the matrix elements of Vcf involves integrals of
the type ∫

φ∗4fr
lYlmφ4fdτ , (2.29)

where φ4f are the 4f orbitals that transform according to the rotation group D(3). The
product Ylmφ4f transforms according to

∑
D(j) = D(l) × D(3) where |l − 3| ≤ j ≤ l + 3.

Therefore, the only non-vanishing integrals occur for j ≤ 3, which restricts the allowed Alm
to l ≤ 6. Another routine simplification at this stage is to restrict the values of Alm based
on the symmetry of the crystalline field, which may for example have 2-fold rotational
symmetry that restricts the allowed values of m = 0± 2,±4, . . . .

The conventional point-charge model regards the ionic charge distribution as a sum-
mation of i discrete point charges

Hcf =
∑
i

∑
lm

Almαl
〈
rl
〉
Ylm(Ji), (2.30)
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where αl are the numerical Stevens factors, which depend on the distribution of the electron
charge cloud, and Ylm(Ji) are the spherical harmonics, where the Cartesian coordinates
x, y, z, have been replaced by the respective angular momentum operators Jx,Jy,Jz, while
accounting for their anti-commutation relations (eg. xy → 1

2
[xy + yx]).

Historically, the conventional representation of crystal field operators was introduced
by Stevens, [100] who expressed the crystal field operators in terms of the tesseral harmonic
functions Zlm,

Zl0 = Yl0

Zl,±|m| =
√
±1/2

[
Yl,±|m| ± (−1)|m|Yl,|m|

]
,

(2.31)

where ± is for m > 0 or m < 0 respectively. These combinations of spherical harmonics
are purely real functions, making them easier to work with. The standard approach is then
to write the crystal field Hamiltonian in the compact form

Hcf =
∑
i

∑
lm

Bm
l O

m
l (Ji), (2.32)

where the crystal field parameters Bm
l are typically derived from experiment unless they

are easy to calculate. The operators Om
l (J) are known as the Steven’s operators, which

transform just like the tesseral harmonic functions. The first few Stevens operators are

O0
2 = 3J2

z − J(J + 1)

O1
2 =

1

2
(JzJx + JxJz)

O2
2 =

1

2

(
J2

+ + J2
−
)

O−1
2 =

1

2
(JzJy + JyJz) . . .

(2.33)

This formalism provides a fair approximation when the crystal field splitting is small com-
pared to the spin-orbit splitting. In this case, the separation of J states is large enough
that the crystal field interaction can be treated as a perturbation that splits only the lowest
J states.
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2.4 Exchange

The quantum mechanical exchange interaction can be described as an effective force that
exists between identical particles as a result of their indistinguishability. Its origin is purely
quantum mechanical, and is attributed to the symmetry of the wavefunction upon exchang-
ing two particles.

In the case of bosons, the symmetric nature of their wavefunction results in an effective
attraction between particles often associated with Bose-Einstein condensation. In the
case of fermions, the effect commonly known as Pauli repulsion arises as a result of the
asymmetry of the wavefunction upon exchange. The electron exchange correlation energy
arising from the Coulomb interaction was previously demonstrated in the context relevant
to spin-orbit coupling, where it was found to lower the overall Hartree-Fock energy by an
amount

Kij = 〈ψiψj|r−1
ij |ψjψi〉 |〈si|sj〉|

2 , (2.34)

where the configuration with parallel spins si, minimizes the total energy. This effect
justifies the rules for coupling angular momenta of atoms that were formulated in 1925 by
F. Hund based on the observation of atomic spectra.

Another exchange mechanism classified as kinetic exchange is different from Coulomb
exchange because it relies on electron hopping between atomic orbitals. Subject to the
Pauli principle, an electron can only hop from one orbital to another if it is not occupied
by another electron with the same spin. This produces an effective interaction between
the atomic orbitals that is conceptualized as exchange. Kinetic exchange mechanisms are
usually the dominant sources of ferromagnetic or antiferromagnetic interactions between
ions. This is followed by magnetostatic interactions such as the dipole-dipole interaction,
which have an effective interaction energy given by

∆E =
µ1 · µ2 − 3(r · µ1)(r · µ2)

4πε0c2r3
, (2.35)

for two magnetic dipoles µ1 and µ2, separated by a distance r.

The exchange formalism provides a good starting point to describe the behaviour of
phase transitions and other correlated phenomena in real materials. The Hamiltonian
representing effective magnetic exchange interaction between two ions is often reduced to
a simple form

∼ JijSiSj, (2.36)

where Jij represents the effective interaction between the operators on sites i and j. We
now discuss the origins of a few important exchange mechanisms that are relevant for the
description of collective magnetic phenomena; namely direct exchange, and superexchange.
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Direct Exchange

Direct exchange occurs due to electron transfer between neighbouring atomic orbitals that
are close enough to have significant overlap. It is instructive to consider the Hubbard
model to describe electron hopping

H = −t
∑
〈i,j〉,σ

(
c†i,σcj,σ

)
+ U

∑
i

ni,↑ni,↓ (2.37)

where c†i,σ is the creation operator for a spin-σ electron at the i−th orbital, and ni,σ = c†i,σci,σ
is the spin density operator. The matrix element for hopping between orbitals is given by
t, and the on-site potential from electron Coulomb repulsion is given by U . For instance,
consider a simple toy model of two electrons hopping between two orbitals

H = −t
(
c†1↑c2↑ + c†2↑c1↑ + c†1↓c2↓ + c†2↓c1↓

)
+ U (n1↑n1↓ + n2↑n2↓) . (2.38)

which has ground state energy, and corresponding eigenfunction given by (-)

ε± =
U

2
±
√
U2 + 16t2

2
(2.39)

Ψ± =
| ↑, ↓〉 − | ↓, ↑〉 − ε±

2t
[| ↑↓, ·〉+ |·, ↑↓〉]√

1 + ε2±/(2t
2)

(2.40)

Hence we can see that the energy of the regular states given by | ↑, ↓〉, | ↓, ↑〉 is lowered by
the inclusion of a hopping term, t. [101]

Superexchange

Superexchange can occur between two orbitals that are too far apart to allow for direct
hopping between overlapping orbitals. The hopping mechanism then proceeds through
an intermediary non-magnetic anion. Depending on the conidition, the resulting coupling
can be either antiferromagnetic or ferromagnetic. Superexchange is common among insu-
lating magnetic oxides, where the dominant charge transfer process is mediated through
p−orbitals of an intermediate oxygen anion. In most of the rare-earth elements, 4f elec-
trons are screened by closed shell 5s and 5p orbitals, therefore additionally reducing the
4f − 4f overlap between neighbouring sites.[102] For the spin-ice compounds, superex-
change is the dominant exchange mechanism that occurs between the magnetic ions. In
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this case, the p−orbitals of non-magnetic oxygen atoms serve as intermediate hopping sites
between f−orbitals of neighbouring rare-earth ions. This charge hopping mechanism for
two rare-earth f−orbitals separated by an oxygen p−orbtial is given by

V =
∑
αβ

[
t†1,αβp

†
αf1β + t1,αβf

†
1αpβ + t†2,αβp

†
αf2β + t2,αβf

†
2αpβ

]
, (2.41)

where α, β = (m,σ) labels the orbtial m and spin σ of the corresponding f−orbital of
the i−th rare earth, or the p−orbital of the intermediate oxygen. The tunneling matrix
element is given by ti,αβ.[103]
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2.5 Hyperfine

Hyperfine structure is a result of the interactions between the nucleus and surrounding
electrons, resulting in the splitting of atomic energy levels. To completely account for the
nuclear interactions, one also has to take into account the motion of the nucleus, treating
it as an object with internal structure rather than a Coulombic point source. It turns out
that these factors result in a small shift in energy for various isotopes, known as the isotope
shift, and they can often be neglected relative to the electron-nuclear interactions. Within
this approximation, we proceed with the assumption that the nucleus is a rigid object with
well defined magnetic and electric moments, and these properties are not affected by the
motion of external electrons.

Magnetic Hyperfine Interaction

Just as a system of interacting electrons can possess a non-zero angular momentum, the
nucleus can carry a magnetic moment due to the arrangement of nucleons (protons and
neutrons), which also carry intrinsic spin−1

2
. The Hamiltonian describing a system of

nucleons is analogous to equation 2.2

Hn−n = −~2

2

∑
i

1

mi

∇2
i +

1

2

∑
ij

Uij, (2.42)

where Uij is the interaction energy between two nucleons i and j, and depends on the
detailed structure of the nucleus. It can be shown that this Hamiltonian is rotationally
invariant and transforms according to the rotation group D(I), therefore giving rise to the
nuclear angular momentum I. This angular momentum is identified with nuclear spin, and
possesses a magnetic moment µN parallel to the nuclear angular momentum I

µN = µN
I

~I
. (2.43)

Electrons orbiting the nucleus produce an effective magnetic field Heff, interacting with
the nuclear magnetic moment in the standard way

HM = −µI ·Heff, (2.44)

which can be re-written as follows, provided that the effective field of the electrons is
proportional to their angular momentum J:

HM = aI · J (2.45)

47



where

a = −µN
~I

〈∣∣∣∣Heff · J
J2

∣∣∣∣〉 (2.46)

It follows that HM is invariant under combined rotations of electronic and nuclear coordi-
nates, and therefore, the eigenstates of this atom can be written in terms of the combined
angular momentum quantum number F and mF , where |I − J | ≤ F ≤ I + J . Applying
first order perturbation theory, the splitting of energy levels is given by

E(F ) = 〈IJFmF |aI · J|IJFmF 〉

=
1

2
a~2 [F (F + 1)− I(I + 1)− J(J + 1)]

(2.47)

Te effective magnetic field contributing to a in equation 2.46 can be calculated by consid-
ering separately the electrons orbiting outside and those that penetrate inside the nucleus.
Qualitatively, the external contribution arises from the orbital motion of electrons,

aorb ∝
〈

L

r3

〉
, (2.48)

as well as the dipolar interaction, which yields

adip ∝
〈

3
(S · r)r

r5
− S

r3

〉
. (2.49)

The internal contribution known as the Fermi contact interaction, is a combined effect
from s−electrons and the configuration of nucleons themselves,

aFC ∝ 〈S〉 |Ψ(0)|2 (2.50)

where |Ψ(0)|2 is the electron spin density ‘inside’ the nucleus. In cases where the spin-orbit
coupling is weaker than the hyperfine interaction, then it is necessary to work in terms of
L and S states

H = βHeff · (L + gsS) . (2.51)

Finally, if the crystal fields are stronger than even the electrostatic interactions within the
atom, the full treatment is necessary in terms of individual electron states li si,

H = βHeff ·
∑
i

(li + gssi) . (2.52)
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Electrostatic Hyperfine Interaction

The electrostatic hyperfine interaction is understood by expanding the electrostatic en-
ergy between the β-th electron at reβ and the α-th nucleon at rnα in terms of Legendre
polynomials, where ωαβ is the angle between rnα and reβ

He−n = −
∑
αβ

e2

|rnα − reβ|
= −e2

∑
αβ

[
1

reβ
+
rnα
r2
eβ

P1(cosωαβ) +
r2
nα

r3
eβ

P2(cosωαβ) + · · ·

]
(2.53)

The first term (l = 0) in this expansion is the electrostatic potential of the nuclear charge
that was already considered in the orbital Hamiltonian (equation 2.2). The second term
(l = 1), and the odd−l terms vanish because of parity invariance. This series converges
rapidly because of the ratio of nuclear and electronic radius to the l−th power, (rn/re)

l,
and in most cases, it is sufficient to keep only the electric quadrupole interaction (l = 2),

HQ = −1

6

∑
ij

Qij (∇E)ij (2.54)

Qij = e
∑
α

[
3

2
(rnαirnαj + rnαjrnαi)− δijr2

nα

]
(2.55)

(∇E)ij = e
∑
β

1

r5
eβ

[
3

2
(reβireβj + reβjreβi)− δijr2

eβ

]
(2.56)

where ri are the x, y, z components of r. In the angular momentum representation, the rnαi
are replaced by the component Ii of the angular momentum operator I, and the reβi are
replaced by the Ji components of J. After some simplification, the equivalent expression
in the angular momentum representation is given by

HQ =
3e2qJQ

8I(2I − 1)J(2J − 1)

[
4(I · J)2

~4
+

2I · J
~2
− 4I2J2

3~4

]
(2.57)

The first order correction to the energy is given by

EQ = 〈FmF |HQ|FmF 〉 =
3e2qJQ

8I(2I − 1)J(2J − 1)

[
K(K + 1)− 4

3
I(I + 1)J(J + 1)

]
(2.58)

where

〈IJFmF |2I · J|IJFmF 〉 = ~2K = ~2 [F (F + 1)− I(I + 1)− J(J + 1)] (2.59)
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Part II

Methods and Instrumentation
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Chapter 3

Specific Heat

Simply put, heat capacity is the quantity of heat, Q, required to raise the temperature of
a system by one degree in temperature. It can be expressed by the limit

Cx = lim
dT→0

(
dQ

dT

)
x

= T

(
∂S

∂T

)
x

, (3.1)

where S is entropy, and x refers to a thermodynamic quantity such as pressure, volume or
magnetic field that is held constant in the limit. According to the postulates of thermody-
namics, it follows that entropy and specific heat tend to vanish with the temperature of a
system. This can be seen by integrating (3.1):

S(T )− S(0) =

∫ T

0

(
C

T

)
dT. (3.2)

If ∆S → 0 as T → 0, then it implies C → 0 as T → 0. Thus, by measuring C to a very low
temperature, it is possible to extract the value of S(T ). Depending on the nature of the
excitation in a system, this may occur at several degrees Kelvin, while others may remain
disordered into the µK regime or lower. In the case of a magnetic system with effective
spin-S, a common way to test the validity of a theoretical model is to check that the total
entropy resleased as T → 0 is equal to kB ln(2S + 1) per site.

Statistical thermodynamics is concerned with the connection between the macroscopic
mechanical laws of classical thermodynamics, which encompass concepts such as temper-
ature, entropy and heat; and the microscopic nature of nuclei, atoms and molecules. This
fundamental connection is defined through the partition function

Z =
∑
i

e−εi/kBT , (3.3)
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which is defined such that the sum of probabilities Pi, that the system occupies microstate
εi is normalized ∑

i

Pi =
∑
i

1

Z
e−εi/kBT = 1. (3.4)

The partition function relates the statistics of a microscopic ensemble, to macroscopic
thermodynamic quantities such as the Helmholtz free energy F , entropy S, and specific
heat C,

F = −kBT ln(Z) (3.5)

S = −
(
∂F

∂T

)
(3.6)

C = −T
(
∂2F

∂T 2

)
(3.7)

3.1 Schottky Anomaly

The Schottky effect is a common type of specific heat anomaly that arises in a system
with multiple energy levels. It is a non-cooperative effect, which means that the individual
particles or modes of the system do not interact, and the total energy of the system is a
sum of its components. The effect is commonly considered in the context of an ion with
total angular momentum ~J , with (2J + 1) degenerate energy levels. In the presence of a
crystal electric field, the degeneracy is split into discrete energy levels that give rise to a
Schottky anomaly.

Nuclear Specific Heat

To demonstrate its general features, we consider the situation whereby a nuclear spin I
is split into (2I + 1) energy levels with corresponding potential energies εi, where i =
−I,−I + 1, ..., I − 1, I. The corresponding partition function for a single nucleus is given
by

Z =
+I∑
i=−I

e−εi/kT . (3.8)

The average energy of this nuclear spin is obtained from the partition function,

〈ε〉 = − d(lnZ)

d(kT )−1
=

∑+I
i=−I εie

−εi/kT∑+I
i=−I e

−εi/kT
, (3.9)
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and the resulting specific heat of a system with N nuclei is simply a sum of the individual
components

CSch =
d〈E〉
dT

=
d(N〈ε〉)
dT

=
R

(kT )2

∑+I
i=−I

∑+I
j=−I(ε

2
i − εiεj) exp [−(εi + εj)/kT ]∑+I

i=−I
∑+I

j=−I exp [−(εi + εj)/kT ]
. (3.10)

For the common case of a two-level system with energy separation ∆ = ε+ − ε−, this
equation reduces to the familiar form of a single Shottky anomaly shown in figure 3.1.
Calculation of CSch requires knowledge of the energy levels, εi, accessible to the nuclear
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Figure 3.1: Schottky anomaly for a two-level system with energy separation ∆ = 1 K.

spins, which is known as the atomic hyperfine structure. An effective magnetic field,
~Heff, that is felt by the nucleus, gives rise to a magnetic interaction proportional to ~µ ·
~Heff. Likewise, a quadrupolar interaction between the nuclear quadrupole moment, Q,
and the electric field gradient at the nucleus, q, is proportional to Qq. Collectively, these
interactions lift the degeneracy and determine the distribution of energy levels εi. Without
going into detail, the total Hamiltonian in the diagonal basis can be written as the sum of
the magnetic and quadrupolar terms[99]

HD +HQ = −a′Iz + P

[
I2
z −

1

3
I(I + 1) +

η

3
(I2
x − I2

y )

]
, (3.11)
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where a′ = µHeff/kNI and P = 3e2Qq/4kBI(2I − 1) are the magnetic hyperfine and
quadrupolar coupling parameters, respectively. The asymmetry parameters η = 0 in the
common case of an axially symmetric field, and the energy levels of this system are simply

εi/kB = −a′i+ P

[
i2 − 1

3
I(I + 1)

]
, (3.12)

where i = −I,−I + 1, ..., I − 1, I. The magnetic hyperfine constant is proportional to the
electronic magnetization a′ ∝ 〈Jz〉, and the quadrupole coupling constant to the average
value of the quadrupole moment P ∝ 〈J2

z − 1
3
J(J + 1)〉. Often at low temperature where

magnetic systems order ferromagnetically or antiferromagnetically, these averages can be
replaced by the fully saturated value a′ ∝ J and P ∝ J(J + 1). The microscopic origins of
these interaction parameters was also touched upon in section 2.5.

In many situations, the high temperature portion of the Schottky anomaly is only
accessible with experimental conditions, so it is useful to expand equation 3.10 as a power
series

CSch = c2T
−2 + c3T

−3 + c4T
−4 + . . . , (3.13)

where the coefficients are given by

c2

R
=

1

3
(a′)2I(I + 1) +

1

45
P 2I(I + 1)(2I − 1)(2I + 3),

c3

R
= − 1

15
(a′)2PI(I + 1)(2I − 1)(2I + 3),

c4

R
= − 1

30
(a′)4I(I + 1)(2I2 + 2I + 1).

(3.14)

On the low temperature side, the expansion of equation 3.10 increases exponentially

CSch ∼ e−δ/T (3.15)

where δ is some average temperature which characterizes the position of the peak.
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3.2 Calorimetry

An idealized calorimeter is one in which the system is adiabatically isolated from its envi-
ronment and thermally linked to a convenient reference from which it is possible to apply
fundamental principles of statistical physics.

The calorimeter monitors changes in temperature of a sample in response to an exchange
of heat Q, between the system and its surroundings. In practice, a system is always
exchanging energy due to contact with its surroundings, and this makes it difficult to
realize a truly adiabatic calorimeter. Therefore, the system must be designed to restrict
heat leaks to a desired level of precision. This is achieved by suspending the sample
in a vacuum chamber with filaments made of poor thermal conductors such as nylon or
kevlar. A thermometer and heater coupled to the sample also induce some contact with the
thermal reservoir, often through a set of electrical leads that have poor thermal conductivity
(i.e., superconducting filaments). These heat leaks should be minimized to a level that is
negligible relative to the dominant channel of heat flow in the system.

Another complication arises in cooling down the sample, which must be thermally
connected to a cold reservoir. This can be achieved with a low-pressure exchange gas, or a
mechanical switch that can be opened after cooling the sample to a desired temperature.
However, both of these methods have practical complications below ≈ 1 K. Exchange gases
eventually solidify, or exhibit superfluidity and coat the surfaces of a cryogenic vacuum
chamber. Mechanical vibrations associated with opening and closing of a heat switch
often perturb the system, and their use is limited at low temperatures for this simple
reason. Rather than striving for adiabatic isolation, materials with well-characterized
thermal properties are used to exchange heat between a system and the thermal reservoir.

The simplified model of an idealized calorimeter is depicted in figure 3.2, which is
subject to the conservation of heat energy described by the following equation

rate of change of
heat energy

= power leaving sample + power applied to sample

C(T )
∂T

∂t
= ∇ · (κ(T )∇T ) +

∂Q

∂t

(3.16)

The first term is the rate of change of heat energy q̇, and is related to heat capacity C

∆q = C(T )∆T ⇒ ∂q

∂t
= C(T )

∂T

∂t
. (3.17)

The second term is derived from Fourier’s law of heat conduction, which states that the
heat flux is proportional to the thermal conductance, and the temperature gradient across
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Figure 3.2: Schematic of an ideal calorimeter used to measure heat capacity C(T ). The
sample is coupled to a thermal reservoir at T0 by a weak link of thermal conductivity
κ(T ). The heater H applies a power P to the sample, and a thermometer T measures the
temperature. An equivalent electrical circuit model with capacitor C0 and resistor R0 is
shown on the left.

the thermal link: ~q = −κ∇T . The additional divergence of the heat flux comes from the
divergence theorem. The third term Q̇, is simply the volumetric heat flow per unit time
due to applied heat. The 1-dimensional form of equation 3.16 provides a good starting
point to describe the thermal evolution of the model in figure 3.2:

C(T )
∂T

∂t
− κ∂

2T

∂x2
= P, (3.18)

where the spatial derivative is taken along the direction of the weak link and P = Q̇ is the
power delivered by a heater. Integrating along the length of the wire and solving for C(T )

C(T ) =

(
∂T

∂t

)−1(
P −

∫ T

T0

K(T ′)dT ′
)
, (3.19)

where K(T ) = κ(T )A
l

is the thermal conductance of a wire with cross-sectional area A, and
length l. This universal formula for specific heat is very useful for describing the thermal
relaxation of several different experimental methods.
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3.3 Relaxation Method

For the idealized model in figure 3.2 described by the 1-dimensional heat equation 3.18
with a constant source of power P , we consider the case where the system has reached
thermal equilibrium and suddenly the heater power is turned off. The amount of power
applied is typically chosen to yield a small offset in temperature, such that C(T ) and K(T )
can be assumed to be constant over the range of ∆T . In this case, the solution to equation
3.18 is described by a single exponential

T (t) = (T1 − T0)e−t/τ1 , (3.20)

where T1 is the temperature of the sample before the power is switched off, and T0 is
the temperature of the thermal reservoir. Therefore, it is possible to obtain C directly
after measuring τ1 and K. Deviations from this ideal case can arise if the idealized model
conditions are not met. A signature of this behaviour is often detected as a deviation from
the single exponential behaviour described by equation 3.20. The appearance of an second
exponential in the relaxation is commonly known as the “τ2 effect” [104]

T (t) = A1e
−t/τ1 + A2e

−t/τ2 . (3.21)

If τ2 << τ1, the initial rapid exponential drop due to τ2 may be attributed to the internal
thermal equilibration of the sample itself; or in the case where the sample is mounted to
a platform, to the equilibration between the sample and a substrate. If the fast relaxation
(τ2 effect) is negligible, it follows that the heat capacity of the sample is easily extracted
from the time constant and thermal conductance of the weak link

C = − K

d(ln ∆T )/dt
=
K

τ1

. (3.22)

In complex cases, more than two exponential functions may be present in the relaxation
curve. If their time constants are close, then it becomes difficult, if not impossible to extract
a reliable fit to a sum of exponentials. This type of effect is described by the “distributed
τ” model, which is a sum of exponentials,

T (t) =
∞∑
n=1

Ane
−t/τn . (3.23)

This result is a solution to the Sturm-Liouville equation with the appropriate boundary
conditions a realistic calorimeter that accounts for the thermal conductivity of the sample,

57



platform, and weak link. The coefficients, An, are obtained by solving transcendental
equations, as demonstrated with detail in the appendix of reference [105].

Without prior knowledge of the internal distribution of thermal conductance, fitting the
relaxation data to equation 3.23 with n ≥ 3 is tricky, and in many cases unmanageable.
The simplest way to address this problem is by numerically integrating the rate of heat
flowing out of the calorimeter, rather than trying to extract the time constants τn with
a fitting procedure. To our knowledge, the only explicit reference to this type of method
was by Tsujii et al. [106] The total heat capacity of the sample and its addenda (C(T ) =
Csample(T ) +Caddenda(T )) is obtained by integrating heat flux leaving the system across the
weak link of thermal conductance K(T ):

C(T ) =
1

∆T (0)

∫ ∞
0

Q̇(t)dt =
1

∆T (0)

∫ ∞
0

K(T )∆T (t)dt. (3.24)

This integral can be performed numerically using trapezoidal integration, and K(T ) is
obtained by measuring the temperature offset for a given power, Kavg. = P/∆T at various
temperatures. If the relaxation step size is sufficiently small, the average value for K(T )
can be used. Smoothing the data may be necessary to reduce random noise, and in some
cases, it may be possible to fit the tail of the data to a single exponential to reduce the
increased noise as ∆T (t) approaches zero.

This model is elegant as it can be applied to any system with arbitrary thermal re-
laxation dynamics, as long as the appropriate conditions are met. The role of the weak
link is to act as a throttle for heat, setting the rate at which the system can relax to the
stage thermometer. If it is very weak (small thermal conductance), the observed thermal
relaxation will be slow, and the measured ∆T (t) will have more area in the integral of
equation 3.24. Alternatively, if it is very strong (large thermal conductance) relative to
the internal conductance of the sample, the observed temperature decay will be fast, and
the slow release of heat due to internal equilibration will not produce a large temperature
gradient ∆T (t) across the link. If the time constant of the weak link is chosen appropri-
ately, then the resulting relaxation curve has the characteristics of the distributed τ2 effect
described above, and the numerical integration procedure is appropriate. It is therefore
important that a sample exhibiting the distributed τ2 effect has a sufficient amount of time
to equilibrate within its surroundings, both before and after the relaxation is measured. It
may not always be clear what is a “sufficient” amount of time, in which case it is important
to adiabatically cool the material from higher temperatures and look for signatures of the
τ2 effect at every step of the process. Another disadvantage worth mentioning, is that heat
capacity contribution from the weak link is included in the total measured specific heat.
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Bachmann et al., calculated this contribution to be approximately 1
3
CWL of the heat ca-

pacity of the weak link. [105] It is therefore desirable to choose a weak link with relatively
negligible heat capacity to reduce this contribution.

3.4 Quasi-Adiabatic Heat Pulse Method

Perhaps the most intuitive method for obtaining specific heat; the quasi-adiabatic heat
pulse method is accomplished by applying a fixed amount of heat Q, and measuring the
resulting change in temperature ∆T . The heat capacity is expressed by the ratio C = Q

∆T
.

In practice, the step in temperature should be small enough to minimize errors arising from
variations in C(T ). Because of the finite duration of the heat pulse, some energy will be
lost through the weak link, resulting in a diminished value of ∆T . The common approach
to account for this loss, is extrapolating to the half-way point in the heat pulse, as shown
in figure 3.3. The data is fit before and after the heat pulse with an appropriate function
that represents its behaviour. In ideal cases where the simple model of equation 3.2 can
be assumed, the extrapolation is often peformed with a single exponential. In cases where
the time constant of the weak link is very large, it may be appropriate to fit with a linear
function T (t) = a+ bT , which is often a good approximation.
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Figure 3.3: Typical heat pulse measurement below 100 mK. The relaxation after the pulse
was fit to an exponential function and then extrapolated to the midpoint of the heat pulse.
∆T is extracted at midpoint of the heat pulse, indicated by the dotted line.

59



The utility of a heat pulse calorimeter can also become limited when the thermal
conductance within the sample is comparable to the weak link. This situation is analogous
to a setup where the sample is mounted onto a platform which is directly coupled to
the thermometer, heater and weak link. If the sample-to-platform coupling is relatively
poor, then a heat pulse will result in a characteristic overshoot in temperature of the
platform, implying a lag in actual temperature of the sample. This can result in a significant
overestimate of heat capacity, as shown in section 7.4.5 of the masters thesis of J. Quilliam,
a previous member of the Waterloo low temperature group.[107]

3.5 Slope Method

The slope method is the most rapid, but least quantitative technique for measuring heat
capacity. It is based on the notion that changes in the specific heat of a sample, will appear
as a change in the cooling rate of the sample. The experimental setup is the same as for
the other methods described previously. In this case, the temperature reservoir is kept at a
low temperature, while the sample is heated to the highest temperature of interest. Upon
reaching thermal equilibrium, the power is turned off, and the sample cools down towards
the reservoir temperature, T0, through the weak link. The corresponding cooling rate is
determined by the temperature gradient across the weak link with thermal conductance
K(T ), and the heat capacity is given by setting P = 0 in equation 3.19

C = −
(
dT

dt

)−1 ∫ T

T0

K(T ′)dT ′. (3.25)

Hence, the specific heat is inversely proportional to the rate of cooling dT (t)/dt. This result
is intuitive because a transition in the specific heat that rapidly releases a large amount of
energy, will result in a slowing down of the cooling rate.

As with each method, this approach has limitations. One of the major points is that the
equilibration time of the sample must be very fast compared to the weak link time constant,
otherwise the true temperature of the sample will lag behind the measured temperature,
resulting in an offset error in the temperature axis. It can be a useful method for rapidly
identifying the location and general shape of phase transitions in the specific heat, and
it also produces smooth plots of the specific heat (depending on the sampling rate of the
temperature T (t)).
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3.6 Calorimeter Design

T H

Gold contact

NbTi

Nylon

Weak link

Silver paint

Silver epoxy

C

K

T0

11 [ ]~ 10 W/K−

9 [ ]~ 10 W/K−

7 [ ]~ 10 W/K−

Figure 3.4: Diagram of sample calorimeter used for low temperature measurements.

The calorimeter consists of a copper ring threaded with nylon filaments used to suspend the
sample, as depicted in figure 3.4. The nylon filaments are obtained by unwinding a small
length of unwaxed dental floss. These nylon filaments have two desirable properties for
this application: they have good mechanical strength, allowing them to be stretched and
loaded with tension without breaking, and their small cross-section results in a very low
thermal conductance. The heater is a 10 kΩ metal-film chip resistor, which has a typical
temperature coefficient of ≈ 10 ppm/◦C, making it a very stable reference for heating the
sample. The temperature of the sample is measured with a RuO2 thick film chip resistor
that has been laser trimmed to a nominal resistance of 1000 Ω at room temperature. Both
chips are glued directly to the sample with epoxy or varnish. Superconducting electrodes
to the heater and thermometer are made with ≈ 6µm diameter NbTi wires that are ≈
1.5 cm long. These filaments were obtained by acid etching a small piece of copper-clad,
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multi-filamentary NbTi wire in concentrated nitric acid (HNO3) for several minutes to
dissolve the copper. The electrical contacts were made with DuPont silver paint, diluted
with solvent to obtain the proper viscosity. Good contact resistance between the NbTi
filament and the chip resistors can be difficult to achieve in some cases.

In some of our earlier experiments, these contacts were made with silver epoxy (Epoxy
Technology Inc.), containing small particles (≈ 20µm) of conductive silver, suspended in
epoxy resin to provide mechanical strength. The most ideal silver epoxy that we could
find on the market had silver particles which are still larger than the diameter of our NbTi
wire (≈ 6µm), making it difficult to produce reliable contacts. After switching to silver
paint (Dupont Inc.), the issues with contact resistance were improved significantly. Silver
paint is easier to work with because it can be easily diluted with solvent to any desired
viscosity, it dries within minutes at room temperature. It is also inexpensive compared to
silver epoxy, which has to be carefully prepared and cured at high temperatures.

Resistance thermometry was performed with the 4-wire ac method, eliminating contact
resistance and lead resistance of the cryostat wiring. In the case of the heater, a current
flowing through the contact resistance will also produce heat, so it is important to charac-
terize this resistance if it is not negligible. The total heater resistance (Rheater +Rcontact) is
also obtained with a 4-wire measurement, however, the voltage leads are connected at the
mid-point of the current leads (see figure 3.4). This measurement captures the additional
contact resistance between NbTi and the heater contacts. In most cases, this additional
contact resistance is negligible in comparison to the heater (< 1 part in 104).

Thermal links

Ideally, the thermal conductance of the nylon filaments and the NbTi electrical leads should
be negligible to that of the weak link. The weak link typically consists of an impure metal
wire which has its thermal conductivity dominated by electron conduction according to
the Wiedemann-Franz law:

κ = σLT, (3.26)

where L = 2.44 × 10−8 [WΩK−2] is the Lorenz number, and σ is the electrical conduc-
tivity of the metal. A good material for this application is a metal which contains im-
purities, or other crystallographic defects, and therefore has a residual resistance ratio
RRR = ρ300K/ρ0K ≈ 1. Under these conditions, σ is constant at low temperatures, and
the thermal conductivity is linear in temperature according to equation 3.26. This weak
link is connected between the sample and stage with a bead of conductive silver epoxy
at both ends to reduce the effects of thermal contact resistance at the ends of the wire.
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It turns out that this is difficult to achieve at very low temperatures (. 100 mK), where
phonon mismatch (Kapitza resistance) often becomes significant for the geometry of our
problem.

The thermal conductance of the weak link, K = κA/L is customized for the particular
temperature range and heat capacity of the sample. This requires a priori estimate for the
specific heat of the material, which can be calculated for the idealized model in figure 3.2,
where the relaxation is governed by a single exponential T (t) ∼ e−t/τ with time constant

τ = C(T )/K(T ). (3.27)

The ideal choice of τ depends on the particular measurement technique, temperature range,
and the thermal dynamics of the sample. It can range from minutes, for the ac method, to
hours, for the quasi-adiabatic heat pulse method. Longer time constants may be desirable
if the internal equilibration time is slow, such as for a glassy material.

One of the practical challenges of calorimetry is the design of a heat switch for rapidly
cooling the sample to the base temperature of the cryostat. This is useful when the
weak link is required to have a very poor thermal conductance. Mechanical heat switches
are typically practical above 1 K, but the heat produced by opening typically produces
too much vibrational heating to be practical at lower temperatures. An alternative is
the superconducting heat switch, which consists of a magnetic coil wrapped around a
superconducting wire such as Al, that switches into a normal state when the magnetic
field is beyond its critical value, Hc. Once the field is turned off, the wire superconductors
and thermal conductance drops by several orders of magnitude. In practice however, this
type of switch is difficult to incorporate alongside measurements of magnetic materials,
where the sample needs to be in a low noise, zero-field environment. Therefore, in the case
where a heat switch cannot be used, the choice of a thermal link needs to be considerate
of the cooling time for a sample with large heat capacity.
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Chapter 4

Magnetic Susceptibility

The kinetics of magnetism in a material are examined by measuring its response to an
oscillating magnetic field. The magnetic susceptibility, χ, is defined as a dimensionless
constant that is proportional to the ratio of magnetization and applied magnetic field:

M = χH. (4.1)

There is an unofficial, but widely used convention for magnetic moment per unit volume
M = m/V, such that volume susceptibility has the units

χv =
M

H
=

m

VH

[ emu

cm3Oe

]
. (4.2)

While most practices in science and engineering have already adopted the international
system (SI) of units, the conversion of magnetic units has been messy and confusing.
The majority of research and techincal work still uses the conventional cgs-emu system
of units. This controversy is explained from various approaches in a panel discussion on
units of magnetism that took place at the 1994 Joint MMM-Intermag Conference.[108]
For the susceptibility measurements presented in this thesis, we adopt the conventional
centimetre-gram-second (cgs) system with the electromagnetic unit (emu) in equation 4.2.

Susceptibility is not necessarily linear, but is described as a differential that depends
on frequency

χ(ω) =
∂M(ω)

∂H(ω)
(4.3)

The measured magnetic moment of a material in an alternating field with frequency ω is

M =
∂M

∂H
H sin(ωt) (4.4)
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For non-zero frequency, the quantity measured is the dynamic susceptibility, which can
acquire a phase if the magnetization response lags behind the driving field. This gives rise
to the complex representation of in phase and out of phase susceptibility, ~χ = χ′ + iχ′′.
The imaginary component, χ′′ indicates a dissipative process in the material, while the real
component is the linear response that approaches the slope of the magnetization curve in
the DC limit. The dynamic magnetic susceptibility can vary as a function of frequency,
magnetic field bias, and amplitude; and serves as a sensitive probe that yields information
about phase transitions.

The measurements described here consist of absorption and dispersion at low audio
frequencies (10−3 to 103 Hz), which correspond to an average response of the material over
a large population of energy levels. This is to be contrasted with a resonant measurement
technique, such as electron paramagnetic resonance or nuclear magnetic resonance, where
a single pair of energy levels are typically excited in a resonant manner.

4.1 Linear Response Theory

In very general terms, the goal of response theory is to characterize effects that perturba-
tions have on a specific property of the system. Mathematically, a non-linear response is
described by the Volterra series

y(t) = h0 +
N∑
n=1

∫
· · ·
∫
hn(τ1, ..., τn)

n∏
j

x(t− τj)dτj, (4.5)

where x(t) is the input, and y(t) the output of a continuous time-invariant system, and
h(τ1, ..., τn) is a function that captures the non-linear response of the system (called the
n−th order Volterra kernel). Similar to the common Taylor series expansion, the Volterra
series also captures the time-dependent properties of the expansion variable. In this sense,
the Volterra series is capable of capturing the output of a system over all times simultane-
ously, whereas the Taylor series correlates the input and output at one moment in time.
This ability to capture time-invariant behaviour is often described as a ‘Taylor series with
memory’, because the output is affected by past inputs.

Magnetic susceptibility χ, is a response function that describes the magnetic behaviour
of a system m(t), in response to an applied magnetic field h(t). In the context of linear
response theory, the Volterra series is truncated to the lowest order term only (omitting
the constant)

m(t) =

∫ t

−∞
χ(t− τ)h(τ)dτ + ..., (4.6)
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where the outputs and inputs are now written specifically as magnetization, m(t), and a
time dependent applied field h(τ), respectively. The Volterra kernel is the linear magnetic
susceptibility χ(t).

The fluctuation-dissipation theorem states that a system in thermodynamic equilibrium
will produce the same response to a small applied force as it would to a spontaneous
thermal fluctuation. Therefore, the linear approximation is valid when perturbing forces
are small enough to keep the system in thermal equilibrium. One common manifestation
of the fluctuation dissipation theorem relates to Johnson noise in electrical circuits, which
has the opposite effect of resistance by exchanging thermal fluctuations with a fluctuating
electrical current. Likewise, it also successfully accounts for the effects of Brownian motion
and thermal radiation.

An important result of the fluctuation dissipation theorem relates the power spectrum
of a sysetm S(ω) = 〈x(ω)x∗(ω)〉, to the imaginary part of the Fourier transform χ̃(ω), of
the susceptibility χ(t):

S(ω) =
2kBT

ω
Im[χ̃(ω)]. (4.7)

It follows that the autocorrelation function is given by the Fourier transform of this quantity
S(ω) = C̃(t), and is given explicitly in the time domain by

C(t) = 〈m(0)m(t)〉 = 2kBT

∫ ∞
−∞

χ′′(ω)

ω
cos (ωt)dω. (4.8)

The power dissipated due to fluctuations in m(t) are directly proportional to χ′′(ω). The
generality of this result demonstrates that the imaginary component of the susceptibility
corresponds to the dissipative component of any linear response function.

4.2 Relaxation Models

Various relaxation models exist, and historically, they have been derived from the theory of
dielectric relaxation in polar molecules. Perhaps the simplest of these theoretical models,
is the Debye relaxation model, which describes the response of idealized polar molecules
to an external electric field. While the models derived by Debye and others were origi-
nally for electric susceptibility measurements, they are frequently used to analyze magnetic
behaviour as well.

The Debye model is based upon the notion that the temporal electric or magnetic
relaxation of a system can be characterized by exponential decay, after the removal of a
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static polarizing field. In the case of a magnetic system,

M(t) = M0e
− t
τ , (4.9)

describes the relaxation from a static polarization M0. In frequency space, the Fourier
transform takes the form of a Lorentzian function

M(ω) =

∫ ∞
0

M0e
− t
τ e−iωtdt =

M0τ

1 + iωτ
. (4.10)

This is related to magnetic susceptibility M(ω) = χ(ω)H(ω), and in the case of a sinusoidal
field we get

χ(ω) =
M(ω)

H(ω)
=
M0

H0

τ

1 + iωτ
=

χ0

1 + iωτ
, (4.11)

where χ0 is the static susceptibility in the limit ω → 0. The real and imaginary components
of susceptibility, χ′(ω) and χ′′(ω), take the form

χ′ =
χ0

1 + (ωτ)2
(4.12)

χ′′ = − χ0ωτ

1 + (ωτ)2
(4.13)

In the case where there is a distribution of relaxation modes corresponding to multiple
time constants, the susceptibility can be generalized by a corresponding response function
f(τ),

χ(ω) =

∫ ∞
0

f(τ)

1 + iωτ
dτ , (4.14)

where the normalizing condition is
∫∞

0
f(τ)dτ = 1. In general, it can be difficult to derive

f(τ) for a particular microscopic system with a general response function.

The phenomenon of Debye relaxation can be derived by various means, that generally
require two major assumptions: (I) there are no interactions between dipoles, and (II) the
inertia of dipoles is assumed to be negligible. Since Debye presented his original theory, a
variety of solutions have also been built upon his model. [109, 110, 111, 112, 113]

Equivalent Circuit Model

Various physical phenomena are often conveniently represented by an equivalent circuit
model that appropriately captures the mathematical response of the system, and the par-
allel R||C circuit captures the essence of Debye relaxation. The total impedance of this

67



circuit

Z(ω) =

[
jωC +

1

R

]−1

=
R

1 + (ωRC)2
− j ωR2C

1 + (ωRC)2
, (4.15)

has analogous components to the susceptibility in equation 4.12 and 4.13

Z ′ =
R

1 + (ωRC)2
(4.16)

Z ′′ =
ωR2C

1 + (ωRC)2
. (4.17)

The time constant of this circuit is τ = RC, and the phase angle varies from −π/2 to
0 with decreasing frequency, reaching the critical frequency fc = 1/(2πRC) at −π/4. In
the low frequency limit, the impedance is purely real, Z(ω → 0) = R, while in the high
frequency limit, Z(ω → ∞) = 0. It is useful to keep some of these relationship in mind
when analyzing the qualitative features of susceptibility. Many equivalent circuit models
have no physical meaning, but are used as phenomenological tools.

Other Relaxation Models

Debye’s original model was developed for an idealized liquid of non-interacting polar
molecules in a non-polar solvent.[109] This model explicitly ignores dipolar inertia, as
well as dipole-dipole interactions.[114] These effects are characterized as a distribution
of time constants due to multiple relaxation modes. Glassy dynamics often introduce
stretched exponential known as Kohlrausch relaxation behaviour, that has the functional
form f(t) = exp

[
−(t/τ)β

]
, where 0 < β ≤ 1. One of the first alternate proposals to the

Debye model was introduced by brothers K. and R. Cole in 1941, who tried to explain the
behaviour of glycerine, and various other polar liquids that become extremely viscous at
low temperatures.[110] Their phenomenological model is expressed by

χ(ω) =
χ0

1 + (iωτ)α
, (4.18)

where 0 < α < 1 is a constant that reduces to the Debye model when α = 1. As pointed
out by the Cole brothers, the qualitative differences between various dispersion are most
evident when plotted on an Argand diagram (or Cole-Cole plot) as Im[χ] versus Re[χ],
shown in figure 4.1. The normalized Debye model produces a semi-circle which converges
at the origin for ω → ∞, and intersects the real axis at finite values for ω → 0. The
qualitative effect of α < 1 is to flatten the arc, changing this angle of intersection by
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euqal amounts at both high and low frequency. Two other commonly used models are also
depicted in the figure. The Davidson-Cole (DC) model [112]

χ(ω) =
χ0

(1 + iωτ)β
, (4.19)

and perhaps the most general Havriliak-Negami (HN) model [113]

χ(ω) =
χ0

(1 + (iωτ)α)β
. (4.20)

The DC and HN functions both introduce asymmetry into the Cole-Cole plots at high
and low frequency. One important distinction between these two models occurs at low
frequency, where the DC model always intersects the real axis at a right angle, whereas
this condition is relaxed for the HN model. While these generalized models often do not
have microscopic interpretations, they are very useful for phenomenological descriptions
and comparisons of a wide range of physical systems varying from dielectric liquids, to
fluids, to spin liquids.

Circuit models more complex than the one described above for Debye relaxation can
also be constructed to describe non-Debye models, a theme common to the field of elec-
trochemical impedance spectroscopy (EIS). When considering the recent application of
Onsager’s theory of electrolytes as a method to describe the behaviour of emergent mag-
netic charges (monopoles) in classical spin-ice, perhaps there is a strong connection to the
analytic methods already familiar to EIS.[115]
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Figure 4.1: Qualitative features of three commonly encountered relaxation models are
presented in the complex plane for ω → 0 to ω →∞. [HN] The Havriliak-Negami model,
which reduces to [D] the Debye model for α = β = 1, [C] the Cole-Cole model for β = 1,
and [DC] the Cole-Davidson model for α = 1.
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4.3 Magnetometer Design

The magnetometer is an apparatus designed to apply a magnetic field, and to measure
the magnetic response of a sample that is temperature controlled on the cryostat. The
magnetometer considered here was designed to isolate the sample from external fields that
may perturb its magnetic state, such as earth’s field. This was accomplished by enclosing
the apparatus with a cylindrical superconducting shield of lead or niobium. Two different
magnetometers were used in this thesis, having practically the same design but with some
subtle differences. The general schematic diagram for these devices is shown in figure 4.2.

Flux Transformer

Primary Coil

Sample

Trim Coil

RPrimary

TrimR

Feedback

Lockin
Excitation LC Filter

   Shielded Pair

Superconducting Shield

Gradiometer

Figure 4.2: Circuit diagram for the susceptometer circuit.

Primary Coil

Inside the magnetometer is a solenoid, referred to here as the primary coil, it consists
of a superconducting wire that is wrapped around non-magnetic material (with a small
volume susceptibility), such as Vespel. In the limit of a solenoid that is infinitely long, the
magnetic field strength inside the coil is given by

B =
µIN

L
, (4.21)

where I is the electrical current, N is the number of turns, µ is the permeability of the
material inside the coil, and L = µr2N2πl−1 is the inductance for a length l and radius r.
It is desirable to design the primary coil such that self-induced resonance does not occur in
the frequency range of operation. For an RLC circuit, this resonance typically occurs at a
frequency ω ∼ (LC)−1/2. One of the important differences between the two magnetometers
used in this thesis was the number and density of turns in the primary coil. One of the
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devices, referred to as susceptometer I (design by Jeffrey Quilliam), had a primary coil
with ∼ 300 turns, which was wrapped as densely as possible with no spacing between the
windings. Susceptometer II (design by Dave Vresc) had a sparse coil with ∼ 100 turns,
where the windings were separated by ∼ 1 mm per turn. The purpose of this design was to
lower the inductance; thereby raising the self-induced resonance, and allowing the device
to operate at higher frequencies than susceptometer I, which was limited to ∼ 1kHz for
high precision results.

Gradiometer Flux Transformer

The sample is positioned inside the primary coil, where it is secured to the flat surface of
a temperature controlled sapphire rod, with GE varnish or Apiezon grease. High purity
sapphire is non-magnetic, which is desirable because it will not interfere with the measure-
ment. The sample is positioned within one of the gradiometer coils, consisting of ∼ 5− 10
turns of Nb superconducting wire. The purpose of this loop is to inductively pick up
the magnetic flux emitted from the sample. The second gradiometer coil has the same
geometry as the first, but is wrapped in the opposite direction, and positioned inside the
primary coil away from the sample. Both gradiometer coils detect the magnetic field of the
primary; but with opposite polarity, such that the net current induced in the gradiometer
loop is zero. The net current induced in the gradiometer is due to the sample, and this
current is inductively coupled to the pickup coil of a dc SQUID operated in flux locked
loop mode (discussed later in this chapter). The purpose of SQUID instrumentation is to
convert the small signal induced in the gradiometer, into a large electrical signal that can
be measured with ordinary laboratory electronics. Another coil known as the trim coil,
is also inductively coupled to the empty loop in order to compensate for any imbalance
present in the gradiometer. The current in the trim coil is adjusted with a current limiting
resistor, RTrim, that is adjusted manually to null the signal when there is no sample present
in the magnetometer. In practice, the value of RTrim required to balance the gradiometer
with the desired precision of ∼ 1 part in 104, has been observed to vary between subse-
quent cool-downs, likely due to subtle shifts in the construction of the magnetometer due to
thermal expansion and contraction. To ensure optimal performance, it must be readjusted
for each cool-down. In some cases, this can be accomplished at a temperature where the
magnetic signal of the sample is small enough that it is not detectable by the instrument.
In the case of the spin-ice compounds, the magnetic moments are effectively frozen and do
not produce a magnetic signal at very low temperatures . 300 mK.
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Lockin Amplifier Circuit

A digital lockin amplifier is used to apply a signal to the sample and measure the phase
and amplitude of the response signal produced by the sample. The signal output by the
lockin amplifier consists of a pure sine-wave at a single frequency that is adjustable from
1 mHz to 100 kHz. The particular magnetometer used in our experiments only has a flat
frequency response in the dc to ∼ 10 kHz range. At higher frequencies, parasitic effects of
the circuit becomes relevant, producing a roll-off at high frequencies which would have to
be characterized and subtracted. Below 1 kHz, the response of the empty susceptometer
can be considered ‘flat’ to within a level that is not detectable by the instrumentation.

In the design of the lockin circuit, it is especially important to minimize the effects
of parasitic capacitance, which affects the frequency response of the susceptometer. The
primary contribution to is the capacitance of the π-filter that is used for filtering the
electrical leads at the top of the cryostat. This low-pass π-filter has a capacitance of
4000 pF (API Spectrum Control Series 700 # 56-725-005) with a 3 dB point at 0.8 MHz,
primarily to eliminate high frequency electromagnetic noise from the environment. The
circuit diagram for the primary excitation coil is shown in figure 4.2.

Shielded twisted copper pairs are used as connections to the cryostat, in series with
manganin alloy and NbTi superconducting wire throughout the cryostat. Directly at the
output of the lockin amplifier is a shielded enclosure that contains a current limiting resistor
for the primary and trim coils. A minimum number of resistors is used to minimize the
parastitic capacitance, which is typically on the order of 0.5 pF for an axial metal film
resistor. Surface mount resistors can be used to further reduce this capacitance.

Flux Locked Loop

The direct current Superconducting QUantum Interference Device (dc SQUID), consists
of two identical Josephson junctions in parallel, joined by a superconducting loop. Various
types of Josephson junction exist, typically consisting of two weakly coupled superconduc-
tors that are separated by a thin layer of a normal conductor (SNS), an insulator (SIS), or
more generally, a weak link that breaks the coherence of the quantum mechanical wavefunc-
tion across the barrier. In essence, this device is designed as a very sensitive magnetometer
that can detect changes in magnetic fields as low as 5×10−18 T. For a complete description
of the theory and implementation of dc SQUIDs, the reader is referred to the SQUID hand-
book compiled by Clarke and Braginski. This handbook also contains a chapter writted
by Drung and Mück that covers the essential details of SQUID electronics.[116]
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When a magnetic flux threads the loop of a dc SQUID, the slope of the transfer coef-
ficient dV (Φ)/dΦ determines the voltage produced across the device. The V (Φ) transfer
coefficient is a property that depends on the bias point intrinsic to each device. It does not
remain linear for a very large range of flux. This problem is circumvented by operating the
dc SQUID in an ac-flux modulated flux-locked loop mode. The modulated feedback circuit
effectively counts the number of flux quanta threading the dc-SQUID loop Φ0 = h/(2e),
and its output is independent of the transfer coefficient V (Φ). For the purposes of the sus-
ceptometer circuit depicted figure 4.2, the electronic readout for the dc SQUID operated
in flux locked loop mode has essential features shown in figure 4.3.
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Figure 4.3: Essential features of a dc SQUID operated in flux-locked feedback mode. Figure
reproduced from [116] with permission.
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4.4 Demagnetization and Calibration

The magnetic field generated within a body in response to an applied field Hext is also
influenced by the magnetization M of the body itself. This gives rise to the magneto-
static self-energy term arising from the classical interaction between dipoles, and generally
depends on geometry of the body. At surfaces perpendicular to the applied field, ficti-
tious magnetic poles are generated which produce a demagnetizing field Hdemag, effectively
reducing the internal field Hint

Hint = Hext −Hdemag. (4.22)

One can then distinguish between the true susceptibility χ and the external or apparent
susceptibility χA, where

χ =
∂M

∂Hint

, and χA =
∂M

∂Hext

. (4.23)

The net effect is a reduction in the apparent susceptibility χA relative to the true internal
susceptibility χ. This can be problematic because the demagnetizing field depends on the
geometrical aspect ratio of the body. The standard method to account for this effect is
to define a parameter N such that Hdemag = NM. The demagnetizing factor N(χ) is
generally a function of the susceptibility, but in the limit N(χ → 0), it depends solely on
the geometrical aspect ratio.[117] Recent work has demonstrated that in some situations,
additional dependence of N from χ can arise from the microscopic spin anisotropy (Ising,
XY, Heisenberg) of a particular lattice.[118] The most ideal sample geometry is one that
can be wrapped with a toroidial solenoid because it effectively has no boundaries, and
therefore N = 0. This type of geometry has only recently been implemented on the spin-
ice Dy2Ti2O7[119] and Ho2Ti2O7,[120] whereas previous results in the literature were done
with needle-shaped rectangular prisms. Fortunately, there is an analytic formula for the
demagnetizing factor of a rectangular prism with dimensions a, b, and c in the direction of
magnetization, when χ→ 0 [121]

πN =
b2 − c2

2bc
ln

(√
a2 + b2 + c2 − a√
a2 + b2 + c2 + a

)
+
a2 − c2

2ac
ln

(√
a2 + b2 + c2 − b√
a2 + b2 + c2 + b

)
+ ..., (4.24)

as well as an accurate approximation method for the general case of χ 6= 0.[117] For a
thin needle, the demagnetization factor approaches zero as the length of the needle goes
to infinity. The demagnetization factor of a perfect sphere is 1/3.
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The true susceptibility χ, is related to the external, measured susceptibility χA, by
combining equation 4.22 and 4.23

χ−1 = χ−1
A − 4πN. (4.25)

The importance of the demagnetizing field is dependent on the ratio of χ−1
A , and 4πN

(cgs units), where the apparent susceptibility converges to the true susceptibility χ in the
limit N → 0. To illustrate the qualitative effects that the demagnetization factor N has
on χ(ω), the relationship between χ and χA is depicted in figure 4.4 for the Debye model
(equation 4.11). For finite values of N , the amplitude of χ′ and χ′′ are reduced at low
frequency, which effectively raises the peak of χ′′ to high frequency. Note that the shape
of the high, and low frequency tails in χ′′ are not affected by the demagnetization factor
N . Another important result concerns the scaling of τωp(N) in figure 4.4, which is the
relative shift in the position of the observed χ′′ peak as a function of N , as well as the
susceptibility amplitude χ0. The qualitative behaviour for these features is the same for
the Havrialiak-Negami, Cole-Cole and Cole-Davidson models.
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Figure 4.4: Left: Effect of a finite demagnetization factor N , on the Debye relaxation
model in equation 4.11. The observed peak in χ′′A is shifted to a higher frequency than the
true χ′. The dc susceptibility χ′A(ω → 0) is reduced. Right: Relative shift in the observed
χ′′ peak frequency, τωp(N), as a function of χ0, and N indicating that the up-shift is
amplified for large susceptibility χ0.
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4.4.1 Magnetometer flux-to-voltage calibration

Before any demagnetization correction can be applied, experimental data must first be
converted to proper units of susceptibility. This is simply because the amplitude of χ−1

A ,
relative to 4πN in equation 4.25, determines the magnitude of correction. In the circuit of
figure 4.2, the measured quantity is a voltage generated by the flux-locked feedback loop,
which is proportional to the magnetic flux threading the dc SQUID. The in-phase Vx(ω),
and quadrature Vy(ω), signals detected by the lockin amplifier are directly proportional to
the susceptibility

χA(ω) = a (Vx(ω) + iVy(ω)) , (4.26)

where the coupling factor a depends on the mutual inductance of various elements in the
magnetometer circuit [see figure 4.2], as well as the total closed-loop gain of the electronic
circuitry. This factor is constant across frequency and temperature, provided that there
is no flux drift of the dc SQUID, which is typically negligible. Temperature dependent
dc flux drift of the SQUID may arise in some situations at low temperatures, and these
factors should be assessed for relevance in each particular situation.[122, 123, 124]

One rather obvious method for obtaining the flux-to-voltage conversion of a circuit is
to measure the susceptibility of a known material. A common approach is to measure a
spherical lead sample, which is diamagnetic in the superconducting state with χ = −1.
While this method appears desirable because you only need to calibrate the instrument
once, it does not account for small changes in the mutual inductance that can occur upon
thermal cycling of the instrument. This is mostly due to expansion and contraction of the
various circuit components.

The calibration method typically used in our laboratory; developed for the PhD thesis
of J. Quilliam, requires two measurements independent measurements with unique de-
magnetizing factors N1 and N2.[125] This is simply done by reducing the geometry, and
measuring the susceptibility χ(ω) a second time in the same frequency range. There exist
unique coupling factors for each sample a1, and a2, but have the same ‘true’ susceptibil-
ity according to equation 4.25. The calibration procedure is efficiently implemented as a
binary search algorithm for values for a1 and a2, that optimize the sum of the squared
residual between the two corrected data sets∑

ω

[χ1(ω)− χ2(ω)]2

χ1(ω)2 + χ2(ω)2
, (4.27)

for two independent geometries. This calibration procedure works best when the difference
between the geometrical demagnetizing factors is significant. Otherwise, the measured
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susceptibility will not vary much between the two geometries. If they are too similar,
then it will be impossible to obtain an accurate calibration factor from this procedure.
For example, a sample of Dy2Ti2O7 was measured for this thesis with two distinct aspect
ratios corresponding to N1 = 0.058, and N2 = 0.044, making it was impossible to calibrate
because the two data sets were too similar.

One of the outstanding questions that was observed in this thesis for low temperature
(< 1 K) measurements of Dy2Ti2O7, was the root cause of significant temperature depen-
dence to the correction factor a(T ) in equation 4.26. This finding came as a surprise because
the standard calibration procedure described by equation 4.27 normally produces a con-
stant value of a, for all temperatures. Several scenarios that could introduce temperature
dependence into this parameter are discussed below, and the experimental observations
are presented in the appropriate section 7.3 for Dy2Ti2O7.

4.4.2 Temperature dependent demagnetizing factor N(T )

The demagnetizing facactor N is independent of susceptibility χ(ω), only in the limit of
small χ→ 0. But if χ(ω, T ) is large and temperature dependent, then the demagnetizing
factor will certainly acquire temperature dependence through it N(χ(ω, T )). This can be
computed precisely at each temperature for a rectangular prism if the dc value (ω → 0) of
χ is known beforehand. For example, the dc value of N(χ) decreases from 0.058 to 0.05
for a finite value of χ = 1.5.[117] For the particular case of Dy2Ti2O7, the dc-susceptibility
only varies from χ ≈ 0.3 at 1 K, to χ ≈ 0.45 at 0.5 K. This small range of values for N(χ)
does not induce a large variability in the corrected susceptibility data, and it is safe to
assume a constant value for N , as done previously for Dy2Ti2O7.[126]

Another possible source of temperature dependence N(T ), may arise from the micro-
scopic spin anisotropy of the lattice (Ising, XY, Heisenberg). The details of this effect
were investigated in a study by Twengström et al., and are summarized in figure 4.5.[118]
This particular effect was relevant for large changes in susceptibility (χ ∼ 5) in spherical
samples of Dy2Ti2O7 at relatively high temperature (T > 20 K).
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Figure 4.5: Relationship between N and true susceptibility χint for various microscopic
lattice models. Blue squares are from Chen et al.[117] θ is the angle between the applied
field and the corresponding local Ising axes. Figure reproduced from reference [118] with
permission.

4.4.3 Temperature dependent dc-SQUID flux drift

The dc SQUID is operated in a flux-locked feedback loop to ensure a linear response
between the measured flux, and the voltage output from the electronic circuit. Some of
these details were discussed in section 4.3. Essentially, the SQUID flux to voltage transfer
coefficient V (φ) is independent of the operating (bias) point, and as long as the slope of
the transfer coefficient dV/dφ is large, then the feedback loop will have a constant gain.
Therefore, it is typically assumed that there is no temperature dependence to the gain of a
flux locked feedback loop. However, several mechanisms can been identified that have an
effect on the temperature sensitivity dφ/dT of the dc SQUID output, which can impact its
response, even in a flux-locked feedback loop.

Clarke et al., identified two contributions.[122] The dominant external field-dependent
effect was observed by measuring the sensitivity dφ/dT as a function of temperature by
field-cooling (2.85 G) different shields made of lead, niobium, and 50/50 lead-tin solder,
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where it was observed that the flux drifts are inherent to the shield material. The field-
independent sensitivity was also investigated by cooling in nominally zero field (≤ 10 mG)
where dφ/dT was found to be constant, and an order of magnitude larger than that ex-
pected for the superconducting shield. This was attributed to the asymmetry of the critical
currents Ic1 and Ic2 of the two Josephson junctions which share the bias current passing
through the dc SQUID. The temperature dependence of critical current for a Josephson
junction is given by the Ambegaokar-Baratoff relation [127]

I0(T ) =
π∆(T )

2eRN

tanh

[
∆(T )

2kBT

]
. (4.28)

The induced temperature dependence of the two asymmetric critical currents then gener-
ates a change in flux through the SQUID [123, 122]

φ =
LIc1

2
− LIc2

2
=
L

2
∆Ic. (4.29)

Schone et al., observed that the temperature dependence of the flux dφ/dT was much
larger than expected from asymmetry of critical currents, or from the effects of London
penetration depth λL(T ).[123] They concluded that dφ/dT ∼ 0.3Φ0/K was consistent
with the motion of trapped vortices from large bias fields, and the movement of these
vortices with temperature was found to have the largest effect on the observed temperature
dependence. Far below the superconducting transition of a Nb SQUID T << Tc ∼ 9 K,
the aforementioned mechanisms are expected to be much less important. Sendelbach et
al., investigated the temperature dependence of flux below ∼ 0.5 K, where they found
evidence of a high density of unpaired surface spins in thin-film SQUIDs that gives rise to
a large magnetic flux on the order of 1Φ0.[124]

While most of these effects can probably be avoided with ac modulation techniques,
they can certainly affect sensitive dc measurements of magnetic flux, especially when the
temperature of the SQUID is changing throughout the measurement.

4.4.4 Position of the sample within the pickup coil

In order to obtain the correct demagnetizing field within a needle-shaped object, it is
important to ensure proper alignment with the external field. If the sample is not aligned
perpendicular to the applied field, then magnetic poles may be generated along the sides of
the sample, which in turn distorts the internal demagnetizing field. This effect is difficult
to characterize without performing numerical simulations.
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Chapter 5

Millikelvin Thermometry

Accurate and precise thermometry presents challenges close to the base temperature of any
millikelvin-range cryostat because parasitic heat flow can offset the measured temperature
from its actual value. Considerable effort was invested in calibrating thermometry with a
variety of methods, and optimizing heat flow throughout the cryostat in order to ensure
reliability.

5.1 Resistance Thermometry

Cryogenic thermometry based on the resistance of a material is commonly used for ease of
implementation. These devices are classified as secondary thermometers, but they can be
attuned to a reference with a high degree of accuracy and repeatability. The sensitivity of
a resistive thermometer Ω/K, is typically used as a figure of merit to determine the best
temperature range for its application. The most common sensors for millikelvin thermom-
etry are doped germanium semiconductor (GRT) from 10 mK to 100 K, ruthenium oxide
(RuO2) thick film from 10 mK to 100 K, and Zirconium Oxy-Nitride (Cernox) thin film
from 100 mK to 500 K.

Temperature dependent resistivity ρ(T ), is a very common occurrence in materials. In
the case of a pure metal, scattering of conduction electrons by lattice phonon modes results
in a linear temperature dependence ρ(T ) ∝ T . In principle a very pure metal can be used
for thermometry, though the application is limited to high temperatures because of their
low resistance. As lattice temperature is reduced, impurities and other defects become
the dominant causes for scattering, and resistivity approaches a constant defined by the
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residual resisitivity ratio (RRR) ≡ ρ(T = 300 K)/ρ(T → 0K). In the case of a very “dirty”
metal, (RRR) ≈ 1.

Conductivity in semiconductors occurs because the chemical potential (Fermi level EF)
is in close proximity to the conduction Ec (for p-type), or valence Ev (for n-type) band
edges. Fermi-Dirac statistics dictate the distribution of electrons which can be thermally
excited into conduction

f(E) =
1

exp
[
E−EF

kBT

]
+ 1

. (5.1)

A notable result is that an intrinsic (un-doped) semiconductor generally exhibits an ex-
ponential drop in charge carriers as temperature is lowered, and that is reflected in the
resistivity

ρ(T ) ≈ ρ0 exp (∆E/2kBT ) , (5.2)

where ∆E is the energy gap between valence and conduction bands. This steep temperature
dependence makes semiconductors great for sensitive thermometry, which can also be tuned
for a particular range with appropriate doping. The temperature dependence of extrinsic
(doped) semiconductors is slightly different. They can have intermediate ranges where
reduced mobility of charge carriers inverts the polarity of the temperature coefficient. This
situation is described by Mott variable range hopping, a model based on tunneling of
electrons between localized charge carrier states in disordered systems. At sufficiently low
temperatures, the theoretical resistivity in this model converges to a simple result when
the density of states is constant

ρ(T ) = ρ0 exp (T0/T )
1
d+1 , (5.3)

where d is the dimension of the material, T0 ∝ (ga0)−3 where g is the density of states, and
a0 is the radius of localized states.[128] At lower temperatures there is often a gap in the
density of states due to the Coulomb interaction, and the resistance increases even more
rapidly with exponent 1/2

ρ(T ) = ρ0 exp (T0/T )
1
2 . (5.4)

This simple relationship between resistance and temperature is useful as a first order ap-
proximation, but deviations from this idealized behaviour commonly arise for various rea-
sons such as non-uniform doping in the substance. In many cases, a high-order polynomial
fit can pick up the subtle deviations.
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Doped Germanium

Germanium is typically doped with Arsenic (n-type) or Gallium (p-type) atoms to achieve
optimal sensitivity anywhere in the range of 10 mK to 100 K. The sensors used with dilu-
tion cryostats are most often calibrated from 50 mK to 5 K with a high-order Chebychev
polynomial that captures the deviations from equation 5.4. At these temperatures Ge
has a poor thermal conductance and must be carefully thermalized to avoid self heating
from the resistance measurement. Like most semiconductors, they are sensitive to elec-
trostatic discharge, and must always be measured with small electrical currents to avoid
re-distribution of dopant through electro-migration, which would change the calibration.
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Figure 5.1: Comparison of several doped Ge temperature sensors found in the lab. Cal-
ibrations between 50 mK and 1 K were performed by LakeShore Cryotronics Inc. The
original (OG) calibration for S/N 29037 was found to have errors below 100 mK.
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The calibrations for several doped Ge sensors available in the laboratory are displayed
in figure 5.1 as R versus T−1/2. The high temperature region of these curves exhibits
the theoretical behaviour [equation 5.4], with a subtle deviation at very low temperatures
T . 0.3 K. One of the sensors purchased from Lakeshore (S/N 29037) was found to
have a significant error in the calibration curve below 100 mK, despite a certificate of
calibration down to 50 mK. This was confirmed by comparing the faulty sensor with three
different references; a newer doped Ge sensor, 60Co nuclear orientation thermometry, and
paramagnetic susceptibility of cerium magnesium nitrate (CMN).

RuO2 Oxide Thick Film

Thick film ruthenium oxide resistors consist of conductive RuO2 powder embedded in lead-
silicate glassy matrix (eg. PbO-B2O3-SiO2) that is then deposited onto an Al2O3 substrate.
Temperature dependence of the resistivity will depend on the ratio of metal oxide to glass,
and is typically tuned for a room temperature resistance on the order of 102 Ω to 103 Ω.
The mechanism of electron conduction is also described by Mott variable range hopping,
where the general temperature dependence is of the form

ρ = ρ0 exp (T0/T )α , (5.5)

where ρ0 is determined at high temperatures, T0 ∝ NFa
3 where NF is the density of states

at the Fermi level, and a is the localization radius of states near the Fermi level.[129]
Several theoretical models have been proposed to predict the scaling of α with temper-
ature, which typically varies from α = 1/4 to α = 1/2. [130, 131, 132, 133, 134] One
detailed experimental study of thick-film RuO2 resistors consistently reported α = 0.345
with accuracy <0.5% down to 6 mK.[129]

All of the RuO2 thermometers used here were obtained from a single batch of Dale RC-
550-20, 1 kΩ bare chip resistors. This is a commonly used brand of resistor for cryogenic
thermometry because it has excellent sensitivity, reproducibility, and well desireable mag-
netoresistance in high magnetic fields (up to 8 T at 30 mK in Meisel et al.[135]). The films
are deposited on a Al2O3 substrate and laser trimmed by the manufacturer to a nominal
resistance of 1000 Ω at room temperature, with variations on the order of ∼ 1 Ω. The
temperature dependence of the resistance is also very similar below 1 K, showing variations
on the order of only a few percent between different senso.Data points above 50 mK were
obtained with a commercially calibrated doped Ge thermometer, and below 50 mK with
an in-house paramagnetic cerium magnesium nitrate (CMN) susceptometer. The subtle
differences between RuO2 sensors are evident when they are normalized, showing ≈25 mK
variations at the lowest temperatures investigated, as shown in figure 5.2.
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Figure 5.2: Temperature dependence of several RuO2 thermometers below 1 K, normalized
to a single device RMC , to enhance the subtle differences.

The choice of a suitable function to represent the calibration can be a difficult task
because a typical RuO2 thermometer does not always follow the theoretical form in equation
5.5 at very low temperatures. While that model provides a sufficient representation of the
data for a limited temperature range, or in the extreme limits of high and low resistance,
the common approach is based on an empirical equation

lnR =
N∑
n=0

an(lnT )n, (5.6)

where a minimum number of coefficients N is chosen to give an adequate representation
of the data.[135, 136] Most of the RuO2 chips from our batch of 1 kΩ resistors can be
accurately represented by this function with N = 4 or 5 parameters, as shown for a typical
calibration in figure 5.3.
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Figure 5.3: Top: Resistance vs. temperature for a tyipcal RuO2 (Dale RC-550-20) 1 kΩ
resistor below 1 K. The data was fit to equation 5.6 with N = 5 free parameters. Bottom:
The fit residual, and 1σ prediction bounds.

This type of calibration procedure was carried out for each of the specific heat measure-
ments presented in this thesis, were a new RuO2 thermometer was fixed directly onto each
sample. In order to ensure the accuracy of each thermometer at very low temperatures
(. 100 mK), these samples were cooled down a second time after performing specific heat
measurements with a strong thermal link (silver wire) to reduce offsets due to self heating.
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Thermal noise can become an issue for very large resistances. If possible, it can be
beneficial to use multiple resistors in parallel to reduce the thermal Johnson-Nyquist noise
vT =

√
4kBTR by a factor of

√
N for N resistors. This was implemented for the main stage

thermometer, where 4 RuO2 thermometers (1 kΩ) were combined in parallel to reduce the
electronic noise by a factor of 2. For example, a 10 kΩ resistor at 4 K has an intrinsic noise
of 1.46 nV/

√
Hz, which surpasses the noise floor of a quality voltage amplifier.

Additional useful points for minimizing systematic errors with resistance thermometers:

• Check self-heating periodically when changing temperatures by adjusting the excita-
tion power of the resistance bridge and look for signs of heating or cooling.

• Calibrate thermometers near important temperatures, such as features in specific
heat, to reduce systematic errors.
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5.2 Paramagnetic Thermometry

The magnetization of a paramagnet can provide a temperature scale for calibration. Curie’s
law indicates that susceptibility is inversely proportional to temperature for low levels of
magnetization

χ =
µ0M

B
=
C

T
, (5.7)

where M is the resulting magnetization from an applied field B, and C is the material-
specific Curie constant. In practice, deviations from this behavior occur due to factors
that affect the local magnetic field, such as magnetic long-range ordering. Cerium magne-
sium nitrate (CMN) Mg[Ce(NO3)6·8H2O] is an insulator with nearly ideal properties of a
Curie paramagnet above ≈ 10 mK and an ordering temperature Tc ≈ 2 mK that generally
depends on the quality of material. The Curie constant is obtained by fitting the high
temperature susceptibility to a calibrated reference. Limitations of its performance due
to low thermal conductivity are avoided by tightly pressing CMN powder with silver or
copper to improve the response time below 100 mK, which can approach & 1000 seconds.

Two different preparations of CMN were used to calibrate the temperature of our
dilution cryostat from 14 mK to 100 mK. Each of these were measured with one of the
two SQUID magnetometers described in section 4.3 at a very low frequency ∼ 1 to 3
Hz, and then calibrated to a commercial GRT thermometer (S/N 30651 and S/N 29037
in figure 5.1). One of the samples was prepared by compressing CMN with a roughly
equal volume of silver powder. The other sample of CMN was mixed with silver epoxy
in the form of a cylindrical puck. The susceptometer circuit in figure 4.2 was used to
measure each of the samples, where a large current limiting resistor RPrimary = 100 kΩ was
necessary to provide the small excitation required to avoid self-heating of the sample. For
a standard metal film resistor with temperature coefficient ±100 ppmK−1, this results in
±10 ΩK−1 (where the polarity varies randomly from one resistor to another). Drifts in the
electrical current by 1 part in 10−4 with room temperature fluctuations of the laboratory
were found to have noticeable effects on the measured response when the signal-to-noise
ratio of the measured susceptibility is low. These resistors were subsequently enclosed in
a PID temperature controlled aluminum shield ∼ 10 K above room temperature to reduce
drifts observed in the amplitude of the SQUID output voltage. Some typical data before
and this improvement is shown in figure 5.4.
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Figure 5.4: Measured susceptibility of CMN thermometer before and after improving the
stability of the current source. The cryostat was held at a constant temperature throughout
the duration of the experiment. Fluctuations in the CMN signal due to drifts in the
temperature of the laboratory were reduced significantly when the current source was PID
temperature controlled to 10◦C above room temperature.

The calibration procedure for each CMN sample to a commercial GRT sensor is shown
in figure 5.5 where the measured voltage is proportional to the magnetic flux produced
by the sample. A linear fit to χ(V ) vs T−1 above ∼75 mK was extrapolated to lower
temperatures according to equation 5.7. Both samples exhibit ∝ T−1 behaviour that is
expected for an ideal paramagnetic salt, confirming that both SQUID susceptometers, and
CMN samples are well behaved in this temperature range.
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Figure 5.5: Measured susceptibility χ′ (in volts) for two different samples of cerium mag-
nesium nitrate (CMN) in the calibrated region of a commercial doped germanium sensor
(GRT). Both samples follow Curies law in the measured temperature range. Error bars
corresponding to the standard error of the mean SE = σ/

√
N are much smaller than the

markers. Weighted least square regression was used with weights given by (SE)−2.
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5.3 Nuclear Orientation Thermometry

The angular distribution, or angular correlation, of γ-rays emitted from a solid can pro-
vide a method to investigate various properties of nuclear states related to their magnetic
spin moment. For an ensemble of nuclear spins with no preferred direction in space, the
angular distribution of emitted radiation will be isotropic, but the energy of γ-rays can be
perturbed by the surrounding nuclear environment. This interaction of a nuclear spin with
the surrounding hyperfine fields, or an externally applied field, can lead to an emission that
is anisotropic.

Electromagnetic radiation produced by a γ-ray transition between two nuclear states
with spin I1 and I2 with corresponding parity Π1 and Π2, is subject to the conservation of
angular momentum. The resulting multipolar field carries angular momentum ~L according
to the selection rule

|I1 − I2| ≤ L ≤ |I1 + I2|. (5.8)

The emitted of radiation (electric or magnetic) is determined by the change in parity,
where ∆Π = (−1)L for EL radiation, and ∆Π = (−1)L−1 for ML radiation.[99] Multipolar
radiation is familiar from the theory of electrodynamics, where radiation fields are described
by vector spherical harmonics Xlm(θ, φ). In the case of a pure multipole with quantum
numbers l and m, the time averaged power radiated per unit solid angle Ω has the form

dP (l,m)

dΩ
=

Z0

2k2
|alm|2|Xlm|2, (5.9)

where the first few angular distributions |Xlm|2 are given by: [137]

l m = 0 m = ±1 m = ±2

1 (dipole) 3
8π

sin2 θ 3
16π

(1 + cos2 θ)

2 (quadrupole) 15
8π

(
sin2 θ cos2 θ

)
5

16π
(1− 3 cos2 θ + 4 cos4 θ) 5

16π
(1− cos4 θ)

...

The distribution of a pure multipole with the form in equation 5.9 is isotropic because
of the property

l∑
m=−l

|Xlm(θ, φ)|2 =
2l + 1

4π
. (5.10)
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In classical electrodynamics, the alm in equation 5.9 are electric and magnetic multipole
coefficients, which can be determined by solving Maxwell’s equations for the particular
source. When the dimensions of the source are small compared to the emitted wavelength
(krnuc << 1) as often assumed for nuclei, the electronic multipole coefficient scales as [137]

aElm ∝ Qlm +Q′lm, (5.11)

where the electronic multipole moments generated by an electric charge distribution ρ are
given by

Qlm =

∫
rlY ∗lmρd

3x (5.12)

Q′lm = −i k

(l + 1)c

∫
rlY ∗lm∇ · (r ×M )d3x (5.13)

where Q′lm indicates the induced electric multipole moment due to the magnetization den-
sity M . Similarly, the magnetic multipole coefficient scales as

aMlm ∝Mlm +M ′
lm, (5.14)

where the magnetic multipole moments are determined by the magnetization densities
(r × J)/2 and M

Mlm = − 1

l + 1

∫
rlY ∗lm∇ · (r × J)d3x (5.15)

M ′
lm = −

∫
rlY ∗lm∇ ·Md3x. (5.16)

This is a good starting point to introduce the angular correlation function W (θ) at
temperature T , which describes the angular distribution of measured γ-radiation, expanded
in the set of orthogonal Legendre polynomials Pλ(cos θ)

W (θ) =
λmax∑
λ=0

[Bλ(I, T )UλAλQλ]Pλ(cos θ). (5.17)

Coefficients in equation 5.17 Uλ are angular momentum reorientation coefficients which
take into account the effect of unobserved intermediate transitions, Aλ are the angular
correction coefficients that account for mixing of multipolar radiation fields, and Qλ are
solid angle correction factors that take into account the complex interactions within the
finite size detector crystal. These values are described in sufficient detail for experimental
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nuclear orientation theromometry by H. Marshak.[138] Particular details regarding the
initial orientation of nuclear spins is captured by the statistical tensors

Bλ(I, T ) =
√

(2I + 1)(2λ+ 1)
+I∑

m=−I

(−1)I−m
(

I I λ
m −m 0

)
am(T ), (5.18)

where the array () is evaluated as a Wigner 3j symbol, and the relative population of each
nuclear spin sub-state m is determined by the Boltzmann distribution

am(T ) =
e−Em/kT∑
m e
−Em/kT

. (5.19)

At relatively high temperatures T >> Em/kB, the nuclear sub-states are equally occu-
pied, while at low temperatures the shift in population is towards low energy states Em.
In the presence of a magnetic field, the particular distribution of Em is also influenced
by the splitting of the nuclear spin state I. The source of this splitting can be hyperfine
fields surrounding the nucleus, or Zeeman splitting by an external field. For the particular
case of cobalt nuclear orientation thermometry, a small concentration of the radioactive
isotope 60Co is randomly distributed in a host crystal made from the stable isotope 59Co.
The effective hyperfine interaction Hamiltonian for the nuclear magnetic moment µ in an
effective hyperfine field Heff produced by 59Co is given by

Heff = −µ ·Heff + P

[
I2
z −

1

3
I(I + 1)

]
(5.20)

where the quadrupole coupling constant is

P =
3e2qQ

4I(2I − 1)
. (5.21)

In a suitable orthogonal basis, the energy levels of this Hamiltonian are given by

Em = −µm
I
Heff + P

[
m2 − 1

3
I(I + 1)

]
. (5.22)

In practice, these hyperfine parameters can be determined with high precision from another
measurement such as specific heat or nuclear magnetic resonance (NMR). Because the
effective field at the nucleus is also affected by demagnetization effects, the geometry of
the sample is prepared as a long needle to reduce this effect. In the case of 60CoCo(hcp)
γ-ray thermometery, measured hyperfine splitting is ∆hf = µHeff

kI
= −6.0725(24) mK, and
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the quadrupole constant is given by P/k = −2.2(4) µK. [138] This quadrupolar constant
is relatively small, resulting in a nearly even energy spacing that is determined primarily
by the hyperfine field.

60Co (5.27 y)
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0+ 0
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Figure 5.6: Nuclear decay scheme for 60Co. Figure adapted from reference [138].

The nuclear decay scheme for 60Co is shown in figure 5.6 where the isotope has a
half life of 5.27 y, and decays by β− particle emission with a branching of 99.92% to
the 4+ level of 60Ni. Two dominant γ-ray emissions occur from the 4+ to 2+ decay
(1173.2 keV), followed by 2+ to 0+ (1332.5 eV). Both of these transitions have pure E2
character (electric dipole), but the former has a small admixture with M3 character (mag-
netic quadrupole), δ(M3/E2) ≈ −0.0008(11), corresponding to an error in temperature
< 0.28% when neglected.[138]

For most cases of γ radiation, only the first two terms B2 and B4 are required because
higher order Bλ terms decrease rapidly with large λ. These statistical tensors are calculated
from the ‘moments of orientation’, as introduced by Tolhoek and Cox (1953) [139], and
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have the generalized expression

fλ(I) =

(
2λ

λ

)−1

I−λ
I∑

m=−I

λ∑
n=0

(−1)n
(I −m)!(I +m)!

(I −m− n)!(I +m− λ+ n)!

(
λ

n

)2

am. (5.23)

Explicit evaluation of the first two parameters yields

f2 = I−2

[
I∑

m=−I

m2am −
1

3
I(I + 1)

]

f4 = I−4

[
I∑

m=−I

m4am −
1

7

(
6I2 + 6I − 5

) I∑
m=−I

m2am +
3

35
I(I − 1)(I + 1)(I + 2)

] (5.24)

where an additional factor is required to obtain the Bλ coefficients, which can now be
computed straightforwardly from

Bλ(I) =

(
2λ

λ

)
Iλ

√
(2λ+ 1)(2I + 1)(2I − λ)

(2I + λ+ 1)!
fλ(I). (5.25)

Additional constants that are required to compute the angular distribution W (θ, T ) in
equation 5.17 particular to 60CoCo(hcp) are [138]

∆hf (mK) P/k (mK) U2 U4 A2 A4

-6.0725(24) -0.0022(4) 0.703731 0.227128 -0.597614 -1.069046

The solid angle correction factors Qλ are integrals that depend on geometry of the
detector, its distance from the source, and the linear absorption coefficient τ for the par-
ticular crystal used in the detector (NaI used here, but Ge(Li) are also very common). To
be precise, the linear absorption coefficients depend on energy of the γ−rays τ(Eγ) and
require Monte Carlo simulation, but the error introduced by assuming a constant value
is negligible for the narrow range of energies considered for 60CoCo nuclear orientation.
The solid-angle correction factors for scintiallation detectors with cylindrical geometry are
available in reference [140].

The angular distribution function below 100 mK is highly anisotropic, as shown in the
polar plot in figure 5.7. Orienting the scintillation detector along the crystal field axis
(θ = 0) provides the greatest variation in γ−ray intensity with temperature, which peaks
in sensitivity around 7 mK. The normalized angular distribution function is then compared
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Figure 5.7: Symmetry of the angular distribution function W (θ, T ) for several low temper-
ature values. Figure adapted from reference [138].

with experimental data by comparing the ‘cold’ anisotrpic count rate at a low temperature
CC to the ‘warm’ isotropic count rate CW at a high temperature with the ratio

W (0, T ) =
CC
CW

. (5.26)

60CoCo Results

60CoCo(hcp) gamma ray spectroscopy was performed on a metallic crystal purchased from
Oxford Instruments about 10 years ago, at which time it had an activity of 175 kBq. This
sample was estimated to have a remaining activity of ∼40 kBq assuming a half-life of
5.26 years for 60Co, and thus required longer count times with the detector. The metallic
crystal was soldered with minimal heat to a copper block with Wood’s metal (too much
heat can re-orient the crystal) and mounted to the same copper stage of the cryostat as the
calibrated thermometers. The scintillation detector from Alpha Spectra Inc., contained a
cylindrical sodium iodide (NaI) crystal of radius 1.5” and length 3” located approximately
∼ 24 inches from the radioactive source, and was aligned co-axially with the long direction
of the oriented needle-shaped 60CoCo (hcp) crystal.
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Figure 5.8: Gamma ray spectrum obtained using the NaI detector multi-channel analyzer
for 60CoCo for a period of 9 hours at 14 mK. The number of counts per channel are
normalized by the time of the acquisition period.

The typical γ−ray spectrum obtained at the base temperature of the cryostat is shown
in figure 5.8, where three distinct peaks are visible in the region. From left to right, the
first two peaks are the 1.173 MeV γ-ray emission from the 4+ to 2+ level and the 1.3325
MeV transition from the 2+ to 0+ level. The third peak is a temperature-independent
background peak that was subtracted from each spectrum. All three peaks were numer-
ically fit to three independent gaussians with a quadratic polynomial background. The
functional form used is given by

f(x) = a1e
− 1

2

(
x−b1
c1

)2

+ a2e
− 1

2

(
x−b2
c2

)2

+ a3e
− 1

2

(
x−b3
c3

)2

+ d1 + d2x+ d3x
2 (5.27)

The background signal of any particular scintillation detector is strongly dependent on the
nearby environment surrounding the detector. This is because scattering of x-rays, and
other events produce signals within the detector that are difficult to control. It is common
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practice is to measure the total photopeak area by fitting each peak to a gaussian function
with the expression

f(x) = f0e
− 1

2(x−bc )
2

(1 + α1(x− x0)n + α2(x− x0)m) , (5.28)

which is often able to capture the asymmetry in the low energy side of a gaussian peak
caused by scattering internal to the detector. [141] However, for this particular experiment,
the functional form in equation 5.27 provides a better fit to the observed gamma ray
spectrum. The total photopeak area was summed at each temperature to obtain the
total normalized counts shown in figure 5.9. The temperature scale in this figure, which
was obtained with paramagnetic CMN shows excellent agreement with 60CoCo nuclear
orientation thermometry.
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Figure 5.9: Temperature dependence of theoretical and measured photopeak area emitted
by 60CoCo on the dilution cryostat. The temperature scale obtained with paramagnetic
CMN thermometry shows excellent agreement with the theoretical curve down to 14 mK.
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Part III

Magnetic Pyrochlores
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Chapter 6

Specific Heat of Dysprosium Titanate
Dy2Ti2O7

6.1 Background

Magnetic susceptibility measurements on Dy2Ti2O7 below 1 K provide compelling evidence
for very slow dynamics in the frozen spin-ice state, with characteristic frequencies near
1 mHz below 0.5 K. This relaxation is exponentially activated with an energy barrier on the
order of 10 K.[23, 126, 26] This observation suggests that if a magnetic ordering mechanism
is active at these temperatures, then the equilibrium properties of the material should
evolve on similar timescales. The original hypothesis for this work was that changes in
the lattice temperature are reflected in the magnetic spins through the mechanism of spin-
phonon coupling on timescales determined by the characteristic magnetic relaxation. In
order to ensure adequate thermal equilibration, and to avoid quenching the system, heating
and cooling procedures should be performed on timescales that match the relaxation of
the magnetic system. This provided motivation to re-measure the low temperature specific
heat in this temperature range, paying particular attention to thermal equilibrium on
similar timescales.

In a common quasi-adiabatic heat pulse calorimeter, power is delivered to the sample
within a short duration of time, and the resulting temperature change is measured. For
an idealized system where the thermal conductance of the weak link K is much less than
the internal thermal conductance of the sample, the relaxation following a heat pulse can
be modeled as a single time-constant exponential, given by τ = C/K, where C is the
total specific heat. If the ideal conditions are not met, then the thermal relaxation may
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consist of multiple τ . The adiabatic heat pulse method is not a desirable technique for
systems with very slow internal relaxation because the sample cannot equilibrate rapidly
within the duration of a short heat pulse. In order to avoid the complications involved with
multiple time-constants, a calorimetric method involving numerical integration of the total
heat flowing across the thermal link was employed. This method of analysis, discussed
in section 3.3, accounts for the “distributed τ effect” in relaxation calorimetry.[105] It is
also insensitive to the internal configuration of the sample and the calorimeter, because it
is based on the simple concept of energy conservation.[106] The total specific heat of the
sample and calorimeter is given by

C(T ) =
1

∆T (0)

∫ ∞
0

Q̇(t)dt (6.1)

where Q̇(t) = K(T )∆T (t) is the rate of heat flowing out of the sample across the weak link
of thermal conductivity K, and ∆T (t) = T (0)− TB is the temperature difference between
the sample and temperature controlled stage TB. Simply put, the specific heat is the heat
flow rate integrated over time at a given temperature. The distributed τ effect becomes
noticeable in Dy2Ti2O7 below about 600 mK where magnetic excitations out of the spin
ice manifold are less favorable, and the entropy of the system is very close to Pauling’s
residual value (R/2) ln(3/2).

6.2 Methods

Specific heat measurements were performed in nominally zero field (< 10−3 G) on a mag-
netically shielded dilution refrigerator. The crystal sample of Dy2Ti2O7 was prepared at
McMaster University using the floating zone technique was also characterized with mag-
netic susceptibility measurements by Revell et al., and Yaraskavitch et al. [126, 25]. This
crystal sample had a mass of 16.6 mg, and rectangular dimensions 2×1×1 mm. Another
49.3 mg polycrystalline powder sample, left over from the growth rod of this crystal, was
cold-pressed with an equal volume of silver powder to improve its thermal conductance.
Platinum tungsten Pt91W9 wire was used as a weak link to connect each sample to the
cryostat, with thermal conductance K/T ≈ 2.8×10−8 WK−2 and 1.2×10−7 WK−2, respec-
tively, for the single crystal and powder. The measured temperature dependence for these
weak links are shown in figure 6.1, where each data point was obtained by measuring the
temperature change ∆T for a given power P delivered to the sample heater K = P/∆T , at
each temperature step in the relaxation method. Deviations from the linear Wiedemann-
Franz law K ∝ T expected for the metallic weak link are likely contributions due to thermal
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contact resistance (Kapitza boundary resistance). These contributions do not affect the
results because they are characterized by an empirical fit to K(T ), which is then used in
equation 6.1 to compute the specific heat.
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Figure 6.1: Thermal conductance of weak link vs. temperature obtained from Dy2Ti2O7

relaxation measurements for the single crystal (left), and the polycrystalline powder (right).
The solid line represents a second order polynomial fit that captures the behaviour.

The thermal relaxation technique was implemented by applying a constant power with
the sample heater, thereby raising its temperature by about ∼ 5 to 10% above the thermal
reservoir. This power was held constant for at least the same amount of time that the
thermal relaxation was measured. As mentioned previously, this step was crucial to ensure
that the slow magnetic system had adequate time to thermally equilibrate with the lattice.
After the heater was switched off, the thermal relaxation was recorded until changes in
temperature were no longer detectable within the resolution of the instrumentation. This
time required was found to increase exponentially from ∼ 100 seconds at 1 K to > 100
hours at 0.34 K, where measurements become restricted by the long timescales.
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The temperature of the single crystal throughout the entire duration of the measure-
ment (approximately 2 months) is shown in figure 6.2 to illustrate the cooling protocol
that was implemented. This may be used as a guide to estimate the cooling rate required
to keep the material in adequate thermal equilibrium for a similar measurement.
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Figure 6.2: Cooling history of the Dy2Ti2O7 crystal (top) and polycrystalline powder
(bottom) throughout the entire thermal relaxation measurements.
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6.3 Results

The results presented in this chapter were also published in reference [142]. Thermal
relaxation curves for the single crystal sample between 0.34 K and 1.034 K are shown
in figure 6.3, where the change in temperature ∆T is normalized at the start of each
curve. These plots indicate that relaxation above 0.6 K is well characterized by a single
exponential, which appears as a straight line on the log-linear plot. Below this temperature,
a bend in the curves becomes apparent, which is characteristic of the distributed τ−effect
described earlier. Based on a phenomenological model of relaxation, it is possible to fit
these curves to a sum of exponential functions and extract the specific heat.
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Figure 6.3: Normalized thermal relaxation of Dy2Ti2O7 at various temperatures. Typical
thermal relaxation measurements acquire data for ≤600 s (dashed vertical line), while the
quasiadiabatic heat pulse method is typically limited to a time window of ∼15 s (dotted
vertical line near t = 0). ∆T values are 5 to 10% of the nominal cryostat temperature.
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The vertical line at 15 s corresponds to the typical relaxation timescale that was used
to measure similar compounds using the quasi-adiabaitc heat pulse method,[1] and the
line at 600 s indicates the maximum cutoff that was previously reported for relaxation
measurements on Dy2Ti2O7.[143] These timescales are adequate for T > 600 mK where the
relaxation is captured by a single exponential, but an extrapolation beyond these timescales
would not describe the true shape of the relaxation curve at lower temperatures.

The distributed τ−effect becomes even more noticeable when the time axis is extended
to longer timescales, as shown in figure 6.4. In particular, the relaxation can no longer
be represented as a finite sum of exponential functions below 600 mK. The data can be
integrated numerically using equation 6.1 to obtain the specific heat.
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Figure 6.4: The same relaxation curves as in figure 6.3, with the time axis extended
beyond 1000 s. Inset: Thermal relaxation time constants obtained by fitting the tail of the
decay curve measured below 0.5 K agree with the Arrhenius-like behaviour of the magnetic
relaxation time observed with susceptibility measurements.
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Fitting the tail end of the data to an exponential function also provides an estimate of
the average thermal relaxation time intrinsic to the material, shown in the inset of figure
6.4. It appears that the characteristic timescale of thermal relaxation in Dy2Ti2O7 below
0.5 K behaves Arrhenius-like τ = τ0 exp(−EA/T ) with an energy barrier on the order
of EA ≈ 10 K, consistent with characteristic magnetic relaxation obtained from ac- and
dc-susceptibility measurements EA = 9.79 K.[126, 23] This connection indicates that slow
thermal relaxation may originate from magnetic ordering, as originally hypothesized.

A natural way to present the relaxation data, is to plot the rate of heat leaving the
sample as a function of time Q̇(t) = K(T )∆T (t), which is integrated to obtain the total
specific heat (equation 6.1). The rate of heat-flow for the single crystal at 340 mK is shown
in figure 6.5.
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Figure 6.5: Heat flow rate versus time for the single crystal sample of Dy2Ti2O7 at low
temperature revealing the slow release of heat at the pW level.
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The observed behaviour can be interpreted in the context of a very general circuit
model, that describes thermal coupling between the lattice and other degrees of freedom
such as magnetic spins, nuclear, or electronic degrees of freedom.
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T0

CelectronicCmagnetic
Cnuclear

Figure 6.6: Simplified model of heat flow between the lattice and other degrees of freedom.
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After integrating the heat flow for each relaxation curve, the resulting specific heat
shown in figure 6.7 shows significant differences from previous measurements reported in the
literature. An upturn in c/T below 0.6 K is evident, which is not captured by conventional
specific heat methods. The polycrystal powder, which is typically expected to be less prone
to material defects than a single crystal, also exhibits the onset of an upturn. Specific heat
of the single crystal was also analyzed by restricting the relaxation time window to 600
seconds, which qualitatively reproduces the results reported in the literature. While this
is not a strict comparison because those samples were not in equilibrium, it illustrates
qualitative features that are associated with non-equilibrium behaviour. Disparities in the
collection of measurements from the literature are likely due to variations in the cooling
procedures used.
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Figure 6.7: Specific heat versus temperature of Dy2Ti2O7 in zero field.
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The entropy obtained by integrating c/T from high to low temperature is shown in
figure 6.8. Data above 1 K was not measured for the particular samples studied here
because the variation among samples published in the literature was negligible in this
temperature range, and those values could be used for the integral. The result does not
exhibit a plateau at Pauling’s residual entropy value once equilibrium is established in the
material.

3

2

1

0

c(
T

)/
T

 [
 J

K
-2
m

ol
-D

y-1
 ]

6

5

4

3

2

1

0

s(
T

) 
[ 
JK

-1
m

ol
-D

y-1
 ]

1086420

T [K]

3

2

1

0

s(
T

) 
[ 
JK

-1
m

ol
-D

y-1
 ]

1.20.80.40
T [K]

Pauling's Entropy

Rln(2)

Pauling's Entropy

(R/2)ln(3/2)

 Single Crystal (this work)

 Klemke et al. (experimental)

 Ramirez et al. (experimental)
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to 12 K, where data from reference [143] was used above 1 K. (b) The resulting entropy
does not plateau at Pauling’s residual value.
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6.4 Discussion

These specific heat measurements suggest that the understanding of Dy2Ti2O7 below 0.5 K
incomplete. The findings suggest that when experiments are performed on sufficiently long
timescales, the ground state might not have the full Pauling entropy of an ice manifold. One
might expect that the long range nature of dipolar interactions should lift the degeneracy
of nearest neighbour interactions, and indeed, the existence of such an ordered state was
demonstrated numerically by Melko, Den Hertog, and Gingras for the dipolar spin-ice
(DSI) model in 2001.[12] While their loop algorithm might not represent a realistic model
for spin dynamics, it does speed up the ordering, and predicts the existence of a singularity
near 0.18 K that has qualitative agreement with the specific heat presented in figure 6.7.
While this comparison is compelling, quantitative fits to the experimental data within the
framework of the DSI model have been unsuccessful.

The results presented here call into question whether or not a transition to long-range
order occurs in Dy2Ti2O7, and have prompted other researchers to scrutinize the DSI
model. Mc Clarty et al., investigated the effect of quantum fluctuations on the ground
state of the DSI model.[144] Tunneling between spin-ice configurations was implemented
with the following type of Hamiltonian

Htunneling = −
∑
7
|�〉〈	 |+|	〉〈� |, (6.2)

where the sum upon 7 runs over hexagonal plaquettes, or closed loops on the pyrchlore
lattice. Using a variety of numerical and analytic techniques to explore the ground states of
a classical DSI model, they demonstrated that dipolar interactions are minimized through
the formation of ferromagnetically ordered spin chains that are exponentially screened
from one another. Spin chains running in parallel are coupled to one another through
short-range exchange that can be mapped to an effective 2-dimensional Ising model on
the triangular lattice.[144]. This mapping gives rise to three distinct ordered chain states:
cubic antiferromagnetic (CAF), tetragonal double-Q (TQD), and ferromagnetic (FM) or-
der. Adding the quantum tunneling [equation 6.2] stabilizes a fourth phase, orthorhombic
zigzag (OZZ), and if the tunneling term g is at least ∼ 70 mK, then it can drive a quantum
spin-liquid ground state. They were also able to qualitatively reproduce an upturn in c/T
with a singularity at T ≈ 100 mK, corresponding to the cubic antiferromagetic (CAF)
state. Due to the proximity of multiple competing phases, small uncertainties in the inter-
action parameters make it difficult to conclusively determine the equilibrium ground state
of Dy2Ti2O7.
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Around the same time that the aforementioned work was performed by McClarty et al.,
another study of refrustration and competing orders was presented by Henelius et al.[145]
This concept of refrustration refers to a competition between small effective spin-spin in-
teractions and the magnetostatic dipolar interactions. Applying various analytic and com-
putational methods to a generalized version of the dipolar spin-ice model (gDSM), they
consider several candidates for the cause of an upturn in specific heat: an exchange-induced
transition to long-range order, quantum non-Ising (transverse) terms in the effective spin
Hamiltonian, nuclear hyperfine interactions, and random disorder. The experimental spe-
cific heat data could not be explained by an impending ordering transition using the pa-
rameters for Dy2Ti2O7 in the literature. Their estimate for the quantum tunneling in
Dy2Ti2O7 is on the order of g ∼ 0.05 mK, much smaller than the g ∼ 70 mK required
to stabilize the quantum phase predicted by McClarty et al. The more likely explanation
for the upturn was attributed to the presence of random disorder (primarily oxygen defi-
ciency, and stuffing), which gives rise to a Schottky-type response below 0.5 K. This would
require a stuffing level on the order of 1%, with a energy scale of 1 K between impurities
on the lattice. Previous magnetic studies on the same parent crystal studied here observed
a longtime tail in the relaxation. Using a model of randomly distributed Ising spins on the
pyrochlore lattice, this longtime tail can be explained by 0.1% stuffing.[25] The stoichiom-
etry of Dy and Ti atoms can be measured by comparing relative intensities of Bragg peaks
using x-ray diffraction. It is estimated that the precision of this method allows the stuffing
to be measured down to 1%.[146] The presence of 1% random disorder cannot easily be
ruled out from the list of potential explanations for the upturn in specific heat.

Rau and Gingras recently investigated the magnitude of quantum effects in rare-earth
oxides, starting from a microscopic picture of electron tunneling.[103] When the electronic
hopping Hamiltonian is projected into the free-ion basis (J−manifold, Steven’s operator
representation), mutual interactions arise between multipolar moments. The moment rank
goes up to 2J , where odd-rank multipoles carry magnetic, and even-rank carry electric mo-
ments. The most significant at low energy is the magnetic dipole-dipole, followed by electric
quadrupole-quadrupole interactions. Super-exchange mediated through oxygen atoms also
needs to be considered, in addition to many more interactions, such as those generated by
direct exchange, via higher orbitals (5d, 6s), via inter-shell interactions, magneto-elastic
coupling, and virtual crystal field interactions; to name a few. An important conclusion
from this study, is that the multipolar inter-ionic couplings that arise from superexchange
are strongly suppressed beyond rank seven. This is because the process of hopping an
electron from one f−orbital to another, involves the transfer of 3 units of angular orbital
momentum L, and 1

2
unit of spin angular momentum S per hop. Thus, the round trip of

an electron can transfer at most 7 units of angular momentum (at most rank−7). This
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explains why the behaviour of large J ions such as in the case of Dy2Ti2O7, is strongly
classical; because the ground state doublet |±15

2
〉 would require a spin-flip operator of

rank−15.[52] Applying this formal approach to the classical spin ice materials, they found
that the generation of these high-rank multipolar interactions are strongly suppressed in
Dy2Ti2O7 and Ho2Ti2O7. In the case of Dy2Ti2O7, they concluded that the strength of
tunneling g, appears at third order in the transverse coupling, and these effects could be
relevant below 150 mK.

Another relevant study appeared during the time of writing this thesis, aimed at per-
forming neutron scattering with timescales derived from our measurements.[147] After
performing a slow cooling protocol on the sample, they could not detect any significant
difference in the scattering structure factor within the resolution of their instrumentation.
They also measured the specific heat of three isotopic variations of Dy2Ti2O7: one con-
tained natural abundances of Dy isotopes, one with only spin−5

2
163Dy, and one with only

spin−0 162Dy. All three samples were measured between 1 and 0.5 K with the relaxation
technique, allowing for relaxation times up to 89 × 104 s at the lowest temperature, as
indicated by our work. After subtracting the appropriate nuclear hyperfine contributions,
they observe that the sample with purely spin−5

2
163Dy has the largest residual upturn

of the three samples. Based on this observation, they propose that hyperfine interactions
provide additional pathways for electronic spin relaxation, which in turn give rise to the
observed upturn in specific heat.

We corresponded with the authors of this paper to get technical details regarding their
specific heat measurements. They indicated that the thermal conducitivity of weak link
used for the measurements was ≈ 10 times larger (K = 10−7 WK−1 at 0.5 K), and the
mass of the samples were . 2 times smaller (≈ 2 to 8 mg) than those used for our
measurements. As discussed in chapter 3.3, the thermal link converts heat flow to the
measured temperature gradient, which determines the sensitivity to the slow-relaxation
component. The intrinsic relaxation of the sample observed with our measurements has
a very slow release of energy, and this will convert to a very small temperature difference
across the weak link if its thermal conductance is large. Therefore, the smallest rate
of heat that can be observed is ultimately limited by the intrinsic noise of the sample
thermometer. For a heat flow rate of Q̇ = 1 pW, the temperature gradient across a
weak link of thermal conductance K = 10−7 W/K is ∆T (t) = Q̇(t)/K(T ) = 10 µK. This
resolution in thermometry can be very difficult to achieve with an ac-resistance bridge.1

1Consider this “back of the envelope” estimate for the ideal intrinsic noise in the thermometry of an
10 kΩ RuO2 resistance measurement at 500 mK. The noise floor of any ac-resistance measurement is
ultimately limited by the input noise of the voltage pre-amplifier. Assume that a total voltage input noise
of 1 nV/

√
Hz can be achieved. The Lake Shore model 3708 has 2 nV/

√
Hz (see appendix F for a better
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Increasing the weak link K(T ) corresponds to a proportional decrease in the measured
∆T (t) signal. This effect is illustrated in figure 6.9, where ∆T (t) and Q̇(t) are simulated
using the values of K and sample mass m used in reference [147]. Given the very small
heat flow rate observed in our measurements (. pW), this means that a large fraction of
the signal is lost when K(T ) is increased. Further careful studies are certainly required to
conclusively explain the behaviour of the thermal relaxation.
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Figure 6.9: Effect of various experimental conditions on thermal relaxation of Dy2Ti2O7

at 409 mK. Increasing the thermal conductance of the weak link K reduces the observed
∆T (t) at long timescales, while the intrinsic noise floor of the thermometry is the same.
Lowering the mass of the sample reduces the internal heat release Q̇(t).

design with 0.6 nV/
√

Hz). Cryostat lead resistance will further increase the total noise. Using a generous
excitation voltage for the ac-resistance bridge of 1 mVRMS would result in self-heating of the sample by
≈ 1 mK (assuming K = 10−7 WK−1). The sensitivity dR/dT of a typical RuO2 between 0.5 K and 1
K ranges from 103 Ω/K to 104 Ω/K. It follows that the intrinsic temperature noise of a 10 kΩ RuO2 has
RMS amplitude betwen 0.1 µK to 1 µK. In practice, this noise is often about 50× higher.
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Chapter 7

Magnetic susceptibility of
Dysprosium Titanate Dy2Ti2O7

High temperature magnetic relaxation in spin-ice (T & 15 K) is a classical single-ion
process dominated thermal fluctuations. This is distinguished from a nearly temperature-
independent (2 K . T . 15 K) region that is mediated by quantum tunneling, described
by Arrhenius scaling f(T ) = f0 exp(−ET−1) with E ≈ 2Jeff, instead of the expected value
for single spin flips within the effective nearest neighbour spin-ice (NNSI) model, 4Jeff.[14]
The observed energy barrier is half the expected value for a single spin flip within the
effective nearest-neighbour spin-ice model (NNSI), and is equivalent to the energetic cost
of a single topological defect (i.e., a single monopole).

Below 2 K, the NNSI model no longer provides an accurate description of magnetic
relaxation in Dy2Ti2O7. Long-range dipolar interactions are no longer effectively screened,
and cannot be neglected. Coulomb forces ∝ r−1 are manifest between the topological de-
fects, increasing the energy barrier to relaxation, and rapidly slowing the spin dynamics.
Qualitative features of this were modelled by Jaubert and Holdsworth, who found that
the inclusion of Dirac strings interconecting the monopoles improves the agreement with
characteristic timescales of experiment; when compared with the evolution of monopoles
themselves. While the simulations were successful at reproducing the rapid increase in
characteristic timescale in the crossover region, the timescales still fall short of the experi-
mentally observed timescales for Dy2Ti2O7 at lower temperatures . 1 K. [126] The reason
for this is not completely understood within the current theoretical framework of spin-ice
materials.
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7.1 Background

The measurements presented in this chapter are linked to a larger collaboration that
investigated the effect of vacancy defects and monopole dynamics in oxygen-deficient
pyrochlores.[40]. Crystals of Dy2Ti2O7 grown by D. Prabhakaran, were provided by J.
P. Goff and G. Sala. Our contribution was to characterize the magnetic relaxation below
1 K with ac-susceptibility measurements, for two samples with different levels of oxygen
vacancy. As described in section 1.2.4, the most common type of oxygen vacancy occurs at
O(1) sites, because these atoms are not bound as strongly as they are at O(2) sites. The
presence of an O(1) vacancy at the center of a rare-earth tetrahedron modifies the elec-
trostatic crystal field, and changes the anisotropy of these four ions from local easy-axis,
to XY -like easy-plane. This gives rise to a large 16-spin cluster that has a tendency to
strongly attract or repel monopoles that come into contact with the cluster.1

Another important type of defect encountered in spin-ice materials is stuffing due to
substitutional defects; this has similar effects on spin dynamics as an O(1) vacancy. In
a study by Revell et al., it was demonstrated that static stuffed moments are not only
capable of trapping monopoles, but also to serve as a nucleation site for these fractionalized
quasiparticles, thereby raising their density in thermal equilibrium. Within that study, it
was demonstrated that a characteristic signature of such a defect is a longtime tail in the
decay of the magnetization. These effects are relevant for very low levels of stuffing. Monte
Carlo simulations demonstrated that a very low level (0.30%) of stuffed static spins can
account for particular characteristics observed in the magnetic susceptibility of Dy2Ti2O7

below 1 K.2

Both studies by Sala et al., and Revell et al., demonstrate the importance of defects on
magnetic relaxation dynamics in spin-ice below 1 K. Remarkably, the role of O(1) oxygen
vacancies, and the effects of stuffing, have qualitatively similar effects on the magnetic
relaxation. Both are believed to manifest a longtime tail in the relaxation, and have a
tendency to increase the density of monopoles near the defective site. The purpose of this
chapter is to characterize and compare the differences in magnetic relaxation between a
typical “as-grown” crystal of Dy2Ti2O7, before and after it is “annealed” with oxygen.

1As demonstrated by elegant energy computations with microscopic assumptions described in the sup-
plementary information of reference [40].

2Those simulations were performed on a system with 0.30% stuffed spins (3,456 + 10 stuffed spins), by
randomly placing Ising spins with magnitude 10µB on the Ti tetrahedral sites.[25]
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7.2 Methods

Ac susceptibility measurements were performed on a crystal of Dy2Ti2O7 that was pre-
pared with the floating zone method described in reference [148]. Depending on growth
conditions, the sample can vary in colour, ranging from almost opaque and brown, to
transluscent and yellow. Annealing an as-grown brown sample in oxygen at a flow rate of
50 ml min−1 and a temperature of 1200 ◦C for 2 days produces material that is translus-
cent and yellow; implying that the brown material may have been oxygen deficient. This is
consistent with the evaporation of oxygen from the molten zone of the crystal growth. The
phase diagram for the Dy2O3-TiO2 system shown in figure 7.1 demonstrates the variety
of neighbouring phases that occur in the crystal growth process. The melting point of
Dy2Ti2O7 occurs at 1850◦C, which is the minimum temperature required for the formation
of a single pyrochlore phase. Annealing in oxygen is performed at a relatively low temper-
ature of 1200◦C to avoid the separation of phases that occurs at higher temperatures in
the phase diagram.
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Figure 7.1: Phase diagram of the Dy2O3-TiO2 system. α corresponds to the orthorhombic
phase, β is the hexagonal phase, F is a cubic solid solution with the fluorite phase, P is the
pyrochlore phase, and R corresponds to the rutile phase. Figure adapted from reference
[149] with permission.
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Additional details for the preparation of two samples ‘as-grown’, and ‘annealed’ are
described in reference [148]. Both pieces were cut into needle-shaped rectangular prisms
with the long axis aligned with the field of the magnetic susceptometer. In-phase and
quadrature components of the susceptibility were measured with the device described in
section 4.3 between 0.5 K and 1 K, with a frequency bandwidth spanning 10−3 to 103 Hz.

Thermal gravimetric analysis (TGA) presented by Sala et al., indicated that the as-
grown sample was slightly deficient in oxygen, corresponding to Dy2Ti2O7−δ with δ ≈
0.02.[40] This characterization was not performed on the annealed sample, and unfortu-
nately there is no independent measure of its oxygen concentration. They also measured
the magnetization of both samples, and found a smaller saturated magnetic moment in
the as-grown material. Crystal electric field (CEF) calculations supporting this conclusion
are consistent with a reduced moment from 10 µB to 5.7 µB at the defective Dy3+ sites
surrounding an oxygen vacancy. Representative lattice parameters calculated from powder
x-ray diffraction data on annealed and as-grown materials are 10.112 Å and 10.093 Å,
respectively.[148]
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7.3 Results
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Figure 7.2: The in-phase χ′(ω) and quadrature χ(ω)′′ components of ac-susceptibility for
as-grown Dy2Ti2O7.

This crystal had dimensions 1.00×1.00×4.00 mm3, with corresponding magnetometric
demagnetization factor N = 0.108 (using equation 4.24). Each data point was scaled by the
voltage-to-flux conversion constant, before applying the demag correction in equation 4.25.
The geometrical calibration procedure discussed in section 4.4 requires two measurements
of the susceptibility with distinct geometry. This type of analysis was attempted for two
different geometries. The results could not be reconciled due to complications caused by
an ohmic contact on the superconducting flux transformer. Those data were rejected, and
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instead the voltage-to-flux conversion was obtained by scaling the suscpetibility in the dc
limit χ′(ω → 0) at 950 mK, with the value reported in reference [126]. It will be argued
later that this assumption does not introduce significant errors that change the properties
of interest.

Oxygen Annealed Dy2Ti2O7

0

0.10

0.20

0.30

0.40

0.50


[e

m
u

cm
−

3
O

e−
1 ]

10-3 10-2 10-1 100 101 102 103

f [Hz]

0

0.05

0.10

0.15

0.20


[e

m
u

cm
−

3
O

e−
1 ]

500

550
575 600 650 675 700 750 800 8509009501000

Figure 7.3: The in-phase χ′(ω) and quadrature χ(ω)′′ components of ac-susceptibility for
annealed Dy2Ti2O7.

The annealed crystal was cut to dimensions 1.00×0.32×4.03 mm3, with a corresponding
magnetometric demagnetization factor N = 0.058. A second measurement was performed
after reducing the size of this sample to 0.46×0.33×4.03 mm3, with corresponding demag
factor N = 0.044. These two measurements had very similar demag factors, making it
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impossible to obtain a reliable voltage-to-flux calibration using the method in section 4.4.
The same alternate calibration procedure implemented for the as-grown sample in the
preceding section, was also used here, where data was scaled to the dc susceptibility at 1 K
reported in reference [126].

Calibration and Demagnetization

The greatest sources of uncertainty in these results are likely a result of the voltage-to-
flux calibration constant. Its value was obtained by assuming that the dc-susceptibility for
both as-grown, and annealed samples is very similar to the values reported in the literature.
There are several reasons why this assumption should not introduce significant error.

1. The absolute value of dc-susceptibility for a variety of samples in the literature
have nearly identical values, suggesting there is little sample dependence in this
parameter.[23, 126, 150, 25] After calibration, the temperature dependence of the
dc-susceptibility has excellent agreement with published data, suggesting that this
trend is not strongly affected by the calibration.

2. It was demonstrated in section 4.4, that the slope of tails in χ′′(ω) are not affected
by the demagnetization correction when χ does not vary much with temperature.
Therefore will not alter the fitting parameters for the Debye, Cole-Cole, Davidson-
Cole, or Havriliak-Negami models.

3. It was also demonstrated in section 4.4 that the effect of the demagnetizing field is
to raise frequency of the peak in χ′′(ωp), by a constant in logω. This was illustrated
for the single Debye model in figure 4.4, where τωp(N) is independent of the ‘true’
peak position τ = ωp(0)−1 for a constant value of χ0. Notice that this statement is
exact only when χ0, the dc susceptibility is constant, and while it is not constant for
the case of Dy2Ti2O7, the variation is very small in the temperature range of interest
0.3 . χ0 . 0.5. Therefore, the shift in frequency for both samples in figures 7.2
and 7.3, corresponds very closely to a constant shift in logω. The raw experimental
data can be analyzed to extract the slope of the relaxation frequency dω/dT , and
determine the spin relaxation energy barrier with reasonable accuracy.
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Temperature dependent voltage-to-flux calibration factor a(T )

An unresolved puzzle with the ac-susceptibility measurements was the observation of a
temperature dependent voltage-to-flux calibration factor for a particular sample with ultra-
fine needle with geometry (0.0001×0.0005×0.0036 mm3). This observation was surprising
because the calibration factor (a in equation 4.26) is generally independent of temperature
for Dy2Ti2O7, as demonstrated by earlier measurements.[24] The measured temperature
dependence of a(T ) in figure 7.4 demonstrates the effect for two geometries of the annealed
sample.
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Figure 7.4: Unresolved temperature dependence of the voltage-to-flux calibration factor for
two different geometries of annealed Dy2Ti2O7. One possible explanation is that narrow
geometry of the ultra-fine needle could result in a demagnetizing factor N that is extremely
sensitive to the precise alignment of the crystal with the applied magnetic field.

Several potential explanations were considered in section 4.4 as the source of a(T ) ob-
served here. The demagnetization factor does acquire temperature dependence N(T ) for
finite values of susceptibility χ(T ), but this variation is very small below 1 K for Dy2Ti2O7

(χ ≈ 0.3 at 1 K to χ ≈ 0.45 at 0.5 K). Similar effects arising from the microscopic spin
anisotropy of the lattice (Ising, XY, Heisenberg) are also only relevant at high temper-
ature (T > 20 K) where susceptibility is large (χ & 5). Several sources of temperature
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dependence due to dc-SQUID flux drift were also considered, but these factors are likely
too small to have significant effects for the range of frequency and temperature considered
here.

The width of the ultra-fine needle was significantly smaller than any sample previously
measured with this susceptometer. It is suspected that this narrow geometry could make
the demagnetizing factor N extremely sensitive to the precise alignment of the crystal
with the applied magnetic field. The demagnetization factor for a rectangular prism in a
tilted field would likely require detailed numerical calculations similar to those performed
in reference [117]. This data set exhibited another unusual property whereas the peaks
in apparent susceptibility χ′′A(ω) shifted to lower frequencies relative to the geometry with
larger N . This is opposite to what is expected theoretically. All of these factors indicate
that the problem likely originated from the geometry of the ultra-fine needle sample. An
alternate proposition is that the observed dependence of a(T ) is a characteristic of the
material when constrained to a certain geometry. More evidence is required in order to
pursue this as a legitimate source of the variation. It was concluded that the data for the
ultra-fine needle sample with dimension 0.0001×0.0005×0.0036 mm3 was unreliable, and it
was rejected from the analysis. As discussed in the previous section, the conclusions drawn
from the results are not affected by the alternate voltage-to-flux calibration procedure used.
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7.4 Discussion

Annealing Dy2Ti2O7 in oxygen has remarkable effects on the low temperature magnetic re-
laxation. Several different approaches are used to characterize the variety of effects arising
at low temperatures 0.5 < T < 1 K resulting from oxygen deficiency.

Relaxation Time τ (T )

Due to the broad distribution of frequencies in χ′′(ω), it is common to define the char-
acteristic relaxation time at the peak, as τ = ω−1

peak = (2πfpeak)−1. The scaling of this
characteristic time with temperature is often presented as log τ vs. inverse temperature,
as shown in figure 7.5.
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Figure 7.5: Characteristic relaxation time for Dy2Ti2O7 presented as an Arrhenius plot on
the left, and Vogel-Fulcher plot on the right. Fits to the data are indicated by solid lines.
Results are presented for another needle with similar geometry from Yaraskavitch et al.,
and for a torus-shaped sample from Eyvazov et al.[120, 126]
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To show the effect of the demagnetizing factor on the slope of τ(T ), error bars in figure
7.5 correspond to the characteristic time extracted from raw data prior to the correc-
tions. The plot of log τ versus T−1 produces a straight line for the commonly encountered
thermally activated Arrhenius-type behaviour τ = τ0 exp[EA/T ], where the barrier to re-
laxation EA is determined from the slope of the low temperature tail. On the right is a
plot of log τ versus (T −T0)−1, where T0 is a transition temperature obtained by fitting the
entire dataset to the Vogel-Fulcher (VF) equation τ = τVF

0 exp[DT0/(T − T0)]. The VF
model is often used to describe the slowing down of relaxation processes associated with
a glass transition where T0 corresponds to the glass ordering temperature. It was recently
proposed that Dy2Ti2O7 may have characteristics of a supercooled glass-forming dipolar
fluid.[119, 120] Nussinov et al., also present an argument for VF behaviour in pyrochlores
based on the existence of an exponentially large number of metastable states.[151] While
it is tempting to use VF scaling to extrapolate the observed behaviour of Dy2Ti2O7 and
imply the existence of a supercooled spin liquid, it is difficult to make conclusive arguments
when the glass (melting) temperature is not accessible to experiment. Nonetheless, the VF
function does provide an improvement over the Arrhenius model for the samples presented
in figure 7.5, and the fit parameters for both models are summarized in table 7.1. The
slowing down of the dynamics under cooling is more sudden in fragile liquids than in strong
ones, characterized by the magnitude of the fragility parameter D. It appears that oxygen
deficiency increases the fragility parameter, and lowers the glass transition temperature
T0. Materials with higher fragility typically have narrow glass transitions compared to
those with low fragility. This observation suggests that the presence of oxygen vacancies
increases the dynamical heterogeneity, associated with an increased variation of dynamics
in the material.

Table 7.1: Fit parameters for several samples of Dy2Ti2O7, fit to the Vogel-Fulcher equation
τ(T ) = τVF

0 exp[DT0/(T − T0)], and Arrhenius scaling τ = τA
0 exp[EA/T ].

Geometry T0 [mK] τVF
0 [s] D EA[K] τA0 [s]

As-grown Rectangular Prism 195 19µ 28 11.1 105n
Annealed Rectangular Prism 283 66µ 15 12.4 36n
Yaraskavitch et al. [126] Rectangular Prism 130 10µ 47 9.79 406n
Eyvazov et al. [120] Torus 257 140µ 14 7.6 6.2µ

Another interesting feature of the comparison in table 7.1 is that the torus shaped
sample has a larger characteristic attempt rate than the rectangular prisms. This might
result from an effect induced by the periodic boundary conditions of the toroidal geometry.
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Normalized Features of χ′′(ω)

General features of χ′′(ω) with temperature are revealed by normalizing the amplitude
and frequency of each of the peaks χ′′(ωp) in figure 7.6. The full-width at half-maximum
(FWHM) of both samples shows an increase below ∼ 800 mK, where spin-ice correlations
develop. This feature was also observed in other samples of Dy2Ti2O7, and is consistent
with an increase in the spread of relaxation timescales.[24, 152] Therefore, it appears that
oxygen deficiency reduces the spread of relaxation modes. Both samples exhibit similar
qualitative broadening features in the half-width at half-maximum to the left (HWHM-)
and right (HWHM+) of the peak that are common to most samples of Dy2Ti2O7.
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Figure 7.6: Normalized out-of-phase susceptibility for as-grown and annealed Dy2Ti2O7.
Oxygen vacancies reduce the enhancement of the full-width at half-maximum (FWHM)
below ∼800 mK, consistent with a smaller distribution of relaxation timescales.
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Susceptibility Fitting

An analytic function that accurately describes the susceptibility χ(ω) allows for a conve-
nient evaluation of the dynamic spin correlation function

C(t) = 〈M(0)M(t)〉 = 2kBT

∫ ∞
−∞

χ′′(ω)

ω
cos (ωt)dω, (7.1)

which is simply the Fourier cosine transformation of the complex susceptibility χ′′(ω).
This relationship is a result of the fluctuation-dissipation theorem, which states that the
linear response of a system to an external perturbation is expressed in terms of fluctu-
ations of the system in thermal equilibrium.[153] This transformation of χ′′(ω) can be
performed accurately with an analytic expression, and therefore it helps to fit the data to
an empirical model that captures its features. Common models are often variations of the
Debye equation, such as the Cole-Cole, Cole-Davidson, and Havriliak-Negami (HN) func-
tions compared in section 4.2. The most accurate representations for the low temperature
(< 1 K) behaviour of Dy2Ti2O7 are typically given by the HN model

χ′′(ω) = Im

[
χ0

(1 + (iωτ)α)β

]
, (7.2)

or a more generalized model that was introduced in reference [25]

χ′′(ω) =
1[

(τω)α1·n + (τω)−α2·n]1/n , (7.3)

where the position and sharpness of the maximum are respectively given by τ and n, and
the tails of χ′′ vanish with exponents α1 and α2. The general nature of this function
captures the asymmetry of the tails in the spectrum that are not accounted for by the HN
model. Differences between fits to the HN model, and the generalized model in equation
7.3 presented in figure 7.7, show very subtle improvements for the annealed sample at low
frequency. An analytic model for the real component of χ′(ω), for the generalized model
could not be obtained easily using the Kramers-Kronig relation

χ′(ω) =
2

π
P
∫ ∞

0

ω′χ′′(ω′)

ω′2 − ω2
dω′, (7.4)

but this integral can be obtained numerically. It shows excellent agreement with the
experimental χ′(ω) data in figure 7.7. Compliance of the data with the Kramers-Kronig
relation also validates the relationship between χ′(ω) and χ′′(ω).
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Figure 7.7: Log-log plot of χ′′(ω) comparing fits for the as-grown and annealed samples.
Fits to the generalized model in equation 7.3 are solid lines, and dashed lines are fits for the
Havriliak-Negami model in equation 7.2. A few of the fits are missing from the plot. The
unusual behaviour at high frequencies is likely roll-off due to capacitance in the electrical
network in figure 4.2.

The dynamic spin correlation function C(t) (equation 7.1) was computed numerically
at each temperature after fitting to the generalized χ′′ model (equation 7.3). These results
are shown in figure 7.8, where a characteristic difference between samples is apparent in
the longtime tails of C(t), often referred to as an “algebraic tail”, indicating a crossover
from exponential to power-law (algebraic) behaviour. In previous work on Dy2Ti2O7,
this algebraic tail was emulated with Monte Carlo simulations by randomly distributing
subsitutional defects (stuffing) within the dipolar spin-ice model. Stuffing was simulated
by placing static Ising 10 µB moments on 0.3% of the nonmagnetic Ti sites.[25] Despite
these successes, the dipolar spin ice model still does not explain the rapid slowing down
of dynamics below ≈ 2 K, or the stretched exponential observed in materials.[28] The
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results presented here only indicate that annealing the material in oxygen eliminates the
algebraic late time tail, suggesting that the defects produced by oxygen deficiency may have
similarities to those caused by stuffing. In the lower panels of figure 7.8, the correlation
function is scaled as ln [− lnC(t)]. The slope of this line is equal to the stretching factor β
when C(t) = exp

[
−(t/τ)β

]
, indicated as a dashed line in the plots. The stretching factor

of the as-grown sample varies from 0.75 to 0.80, while the annealed sample is in the range
0.65 to 0.75.
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Figure 7.8: Dynamic spin correlation function C(t) for Dy2Ti2O7. The algebraic longtime
tails are eliminated after annealing in oxygen when the data is fit to equation 7.3. The slope
of ln[− lnC(t)] in the lower panels measures the exponential stretching factor β, indicated
by dashed lines.
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Argand Diagrams

Significant qualitative changes due to annealing are evident when χ′′ is plotted against χ′

in the form of an Argand diagram as shown in figure 7.9. The most striking difference is
the temperature evolution of the slope near the origin. As demonstrated in section 4.2,
the slope of this feature is captured by the Davidson-Cole (DC) parameter in equation
4.19. This parameter β, decreases with temperature for the annealed sample, while the
as-grown material exhibits the opposite behaviour. At the other end of the axis, the dc
susceptibility can be extracted from the intercept of the χ′(ω) axis, and is nearly identical
for both samples.
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Figure 7.9: Argand plots for as-grown and annealed Dy2Ti2O7 (Double Rainbow).

This discussion concludes with one proposal for a physical interpretation of Davidson-
Cole parameter β. Calderwood suggested that temporal and spatial fluctuations of a
system exhibiting this type of parameter are subject to severe turbulence, suggesting that
“some dipoles will be more able than others to vibrate under the influence of an applied
sinusoidal field, and execute oscillations of greater magnitude”.[114, 154] Similar to the
original assumption of Debye’s model, this crude model of relaxation ignores dipolar inertia.
Accepting this proposal would that suggest magnetic dipoles in the annealed material
are subject to more fluctuations at low temperature and high frequency; whereas both
samples converge to the same behaviour in the dc limit. The temperature evolution of
β(T ) and α(T ) (Cole-Cole parameter) is demonstrated in figure 7.10. These parameters
were obtained from fits to the Havriliak-Negami model in figure 7.7.
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Figure 7.10: Temperature evolution of Havriliak-Negami fit parameters for as-grown and
annealed Dy2Ti2O7.

The temperature dependence of DC susceptibility extracted in the limit χ′′(ω → 0) is
shown in figure 7.11, where the temperature dependence of both samples agrees with those
of Yaraskavitch et al.,[24, 126] and indicates that the DC susceptibility is not strongly
affected by the annealing procedure implemented on these samples. This comparison also
suggests that the demagnetization correction implemented in this section, which has the
most prominent effects at low frequency, is indeed valid.

The approaches used to analyze the magnetic susceptibility data of Dy2Ti2O7 below
1 K are based on phenomenological models that classify prominent features of the observed
data. Results presented in this chapter have highlighted a variety of prominent features in
magnetic susceptibility that are affected by oxygen annealing. The complementary work
by Sala et al.,[40] on these samples suggests that these features arise from subtle levels of
oxygen deficiency, but further work should be done to characterize the precise differences
in stoichiometry to rule out the possibility that stuffing is also a culprit for the observed
variation. The present work supports a conclusion that defects, stuffing, and other subtle
impurities can have significant effects on the dynamics of magnetic spins, but further work
is required to investigate the full effects of disorder on the energetic ground state.

130



0.5 1 1.5 2
T−1 [K−1]

0.2

0.25

0.3

0.35

0.4

0.45

0.5


(
→

0)
[e

m
u

cm
−

3
O

e−
1 ]

Yaraskavitch et al.
As-grown
Annealed

Figure 7.11: DC susceptibility χ′′(T ) vs. inverse temperature for Dy2Ti2O7 below 1 K.
Yaraskavitch et al., is from reference [24]. Dy2Ti2O7 also does not exhibit Curie-Weiss
behavior at low temperatures.

Much of the current work on spin-ice materials is based around static properties of
the ground state rather than the dynamical features of their magnetism, which makes
these kinetic properties difficult to interpret. Apart from a small handful of theoretical
simulations that model the dynamics of spin-ice below 1 K, there is a significant gap in
the relationship between microscopic models and experiential observations that is calling
for more detailed investigations from both fronts.
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Chapter 8

Specific Heat of Ytterbium Titanate
Yb2Ti2O7

8.1 Methods

Specific heat of two polycrystalline Yb2Ti2O7 samples was measured between 15 mK and
660 mK, in order to capture the ferromagnetic ordering transition, and a large portion
of the nucler hyperfine specific heat. One of the samples, containing naturally occurring
abundances of Yb and Ti was taken from the same batch of material studied in reference
[155]. Another sample was prepared from enriched 174Yb2O3 and 48TiO2 by collaborators
at the Brockhouse Institute for Materials Research, at McMaster University. The enriched
oxides were purchased from Trace Sciences International Corp. Isotopic abundances of the
natural and enriched isotopes of Yb and Ti are presented in table 8.1 and 8.2, respectively.
Both samples were prepared as polycrystalline Yb2Ti2O7 by mixing 2 parts TiO2 with 1
part Yb2O3, and then heated to 1200oC for 24 hours with a warming and cooling rate of
100oCh−1. The natural sample had a mass of 312 mg and was pressed with 405 mg of Ag
powder, while the enriched isotopic sample had a mass of 139 mg and was pressed with
206 mg of Ag powder.

Both samples were suspended in vacuum with ≈1 cm long, 6 µm nylon threads, and the
4-wire resistance measurements were made with ≈1.5 cm long, 6 µm NbTi filaments. The
addenda and silver powder were measured independently, and found to contribute < 0.8%
to the measured total specific heat of the enriched sample at 50 mK (and less for the natural
sample). Thermal links of Pt92W8 wire were used as the primary thermal connection
between the sample and a temperature controlled stage. This thermal link was chosen
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to have a time constant from 0.5 to several hours below the ordering transition, in order
ensure thermal equilibrium of the sample. Several thermal relaxation measurements of the
specific heat were also performed at several temperatures, motivated by our earlier work on
the frustrated magnetic compound Dy2Ti2O7. We found that extremely long equilibration
relaxation times (up to ≈ 105s) were required to capture the equilibrium behaviour of
that compound.[142] No evidence of unusually long equilibration was identified for this
compound or any other specimen of Yb2Ti2O7, verifying that the heat pulse method is
sufficient for the present characterization.
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Figure 8.1: Heat pulse for a single datum in specific heat near 17 mK. The change in tem-
perature ∆T is obtained by fitting the relaxation to an exponential, and then extrapolating
to the half-time of the heat pulse. The inset shows a close up view of the extrapolation
procedure.

The specific heat measurements presented here were obtained in zero field (< 10−3

G) with the quasi-adiabatic heat-pulse method described in section 3.4, where a 1 kΩ
RuO2 thermometer (Dale RC-550-20) and 10 kΩ metal-film resistor were attached directly
to the sample with silver epoxy as described in section 3.6. A typical low temperature
heat-pulse response is shown in figure 8.1 demonstrating sluggish behaviour on the order
of 102 seconds, likely arising from the sample-to-silver thermal boundary resistance. The
duration of each heat pulse was typically on the order of 1 to 10 seconds. Vertical error
bars presented in the specific heat plots are derived from the non-simultaneous functional
prediction intervals at the midpoint of the heat pulse, with confidence interval of 1σ.
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Extensive care was taken to ensure accurate thermometry. Resistance to temperature
calibration curves for the RuO2 sensors are shown in figure 8.2 and 8.3 for the natural and
enriched materials, respectively. These were obtained on an independent cool down where
the thermal weak link was shorted by a silver wire to avoid offsets in temperature due
to self-heating. Calibration was performed directly to the paramagnetic susceptibility of
cerium magnesium nitrate (CMN), and 60Co nuclear orientation thermometry described in
chapter 5. Typical residuals for the calibration fit are< 1% (1σ) over the entire temperature
range.
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Figure 8.2: Natural Yb2Ti2O7: Resistance vs. temperature for the RuO2 (Dale RC-550-
20) 1 kΩ resistor. The data was fit to equation 5.6 with N = 4 free parameters. The fit
residual, and 1σ prediction bounds are shown in the lower plot.
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Figure 8.3: Enriched Yb2Ti2O7: Resistance vs. temperature for the RuO2 (Dale RC-550-
20) 1 kΩ resistor. The data was fit to equation 5.6 with N = 4 free parameters. The fit
residual, and 1σ prediction bounds are shown in the lower plot.

135



8.1.1 Hyperfine Interactions in Yb2Ti2O7

The purpose of this section is to describe the general nature of hyperfine interactions in
rare-earth oxides. Steps involved in calculating and fitting nuclear specific are demonstrated
for the case of Yb2Ti2O7.

In many rare-earth compounds, hyperfine interactions give rise to nuclear specific heat
[section 2.5], and Yb2Ti2O7 is no exception below 100 mK. Proper subtraction of this
term can be challenging because it often requires accurate data, or prior knowledge of the
interaction parameters. If this information is not available from complementary techniques
such as Mössbauer spectroscopy, electron spin resonance, or nuclear magnetic resonance,
then they can be tricky to predict on simple theoretical grounds. The most effective way
to suppress hyperfine interactions in any material is to prepare the sample with nuclear
isotopes free of intrinsic spin, and quadrupole moments. For the case of Yb, only two
out of the seven naturally occurring isotopes listed in table 8.1 have finite nuclear spin, or
quadrupole moment. The properties of Ti isotopes are also listed in table 8.2.

Table 8.1: Nuclear spin, dipole moment, quadrupole moment, and natural abundance of
stable Yb isotopes. Enrichment abundances have an uncertainty of 0.1%.

168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
Nuclear spin I 0 0 1/2 0 5/2 0 0
Dipole moment µ(µN) 0 0 +0.49367 0 -0.648 0 0
Quadrupole moment Q(b) 0 0 0 0 +2.80 0 0
Natural abundance (%) 0.13 3.04 14.29 21.83 16.13 31.83 12.76
Enrichment (%) <0.01 0.02 0.08 0.19 0.51 98.6(1) 0.57

Table 8.2: Nuclear spin, dipole moment, quadrupole moment, and natural abundance of
stable Ti isotopes. Enrichment abundances have an uncertainty of 0.1%.

46Ti 47Ti 48Ti 49Ti 50Ti
Nuclear spin−I 0 5/2 0 7/2 0
Dipole (µN) 0 -0.78848 0 -1.10417 0
Quadrupole moment Q(b) 0 +0.30 0 +0.24 0
Natural (%) 8.25 7.44 73.72 5.41 5.18
Enrichment (%) 0.21 0.47 98.9(1) 0.29 0.16
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There are two primary interactions that contribute to the hyperfine Hamiltonian. First
is the magnetic dipole-dipole coupling between the nuclear magnetic moment ~µ and the
effective magnetic field ~Heff produced by electrons orbiting the nucleus with the following
effective Hamiltonian

HD = −~µ · ~Heff = −µHeff

I
Iz, (8.1)

where the nuclear magnetic moment is given by ~µ = gIµN ~I, gI is the nuclear g−factor,
and µN is the nuclear dipole moment. The main contribution to Heff in the rare earth
elements arises from unquenched orbital angular momentum the 4f electrons, however,
there are additional contributions that should be considered for a complete picture. This
includes the dipolar contribution to Heff, which is typically about one tenth of the orbital
interaction, while the polarization of core s−electrons (and conduction electrons if they are
present) induced by 4f electrons contribute even less. Because of the electronic structure
of rare-earth ions (4fn, 5s2, 5p6, 6s2, 5d1), the electrons producing magnetism are typically
buried deep in the atomic 4f shell and are not affected strongly by their surroundings.
As a consequence, rare earth atoms retain their free-ion character in many compounds.
This is not necessarily true for other elements such as transition metals with exposed 3d
electrons.[99]

The second primary contribution to the hyperfine Hamiltonian results arises from the
electric field gradient ∇V (~r) generated by an electrostatic potential V (~r) at the nucleus,
which interacts with the intrinsic quadrupole moment of the nucleus. The general form of
this interaction is typically

HQ =
3e2Qq

4I(2I − 1)

[
I2
z −

1

3
I(I + 1) +

η

3
(I2
x − I2

y )

]
, (8.2)

where Q is the quadrupole moment of the nucleus, eq = Vzz is the electric field gradient
along the z−axis, and η is the asymmetry parameter.[99]. In the case of axial symmetry
(η = 0), the total hamiltonian HD +HQ is already in diagonal form with eigenvalues

εi = −a′i+ P

[
i2 − 1

3
I(I + 1)

]
, (8.3)

for i = −I,−I + 1, ..., I − 1, I, where a′ = µHeff

I
is the magnetic hyperfine constant, and

P = 3e2Qq
4I(2I−1)

is the electric quadrupole coupling constant. Recall from section 3.1, that the
specific heat of a simple two-level system exhibits a Schottky anomaly defined by a single
parameter ∆, equal to the difference in energy between the two levels

CSchottky = R

(
∆

T

)2
e∆/T

(1 + e∆/T )
2 . (8.4)
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When there are more than two energy levels, the specific heat is effectively a sum of
Schottky anomalies, varying in position and amplitude. When a nuclear spin−I is split
into 2I+1 energy levels, εi, where i = −I,−I+1, ..., I−1, I, then the total nuclear specific
heat derived from the partition function has the following form

CN =
R

(kT )2

∑+I
i=−I

∑+I
j=−I(ε

2
i − εiεj) exp [−(εi + εj)/kT ]∑+I

i=−I
∑+I

j=−I exp [−(εi + εj)/kT ]
. (8.5)

This function has the same high and low-temperature behaviour as a two-level Schottky
anomaly. It is suppressed exponentially ∼ e−δ/T for T << Tmax and exhibits ∼ T−2

behaviour for T >> Tmax, where Tmax ≈ (εi+1 − εi)/kI corresponds to the average peak
position of equation 8.5.[99]

Different isotopes of the same element will have magnetic hyperfine interactions related
by their nuclear gyromagnetic factors µ/I through the ratio

a′i
a′j

=
µi/Ii
µj/Ij

, (8.6)

and the ratio of quadrupolar constants is

Pi
Pj

=
QiIj(2Ij − 1)

QjIi(2Ii − 1)
. (8.7)

These constraints are valid when the effective magnetic field Heff is constant over the
nuclear volume, and is likely a safe assumption for the case of 4f electrons which have zero
density at the center of the nucleus.[99] In the case of Yb, using the nuclear moments in
table 8.1 results in the constraint

a′(173Yb) = −0.275× a′(171Yb). (8.8)

Theoretical values for Yb3+ are aJ(171Yb) = 3100 MHz = 148.8 mK , aJ(173Yb) = -850
MHz = -40.8 mK, where J = 7/2 for the saturated magnetic moment of the free ion.[156]
These values are often compared as a single variable corresponding to the effective magnetic
field at the nucleus

Heff =
a′I

µ
. (8.9)

The theoretical value estimate of Bleaney gives Heff = 421 T for a fully ordered moment
(J = 7

2
), while another value obtained from Mössbauer spectroscopy specifically for 170Yb,

was 115 T.[70, 157] This large difference is due to the size of the ordered moment, which
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attains its maximum value J = 7
2

for the free-ion calculation. It is significantly smaller in
the Mössbauer study, ∼ 1.15µB.

The isotope 171Yb has nuclear spin−1
2
, and therefore does not have a quadrupole mo-

ment because it is forbidden by the Wigner-Eckart theorem.1 As mentioned earlier, the
magnetic hyperfine interaction parameters in rare-earths are mainly due to orbital angular
momentum of the 4f electrons, and are independent of the environment in a particular
material. However, this is not true for the quadrupolar interaction, which depends strongly
on the crystal field environment. The electric field gradient (EFG) can be computed from
the crystal electric field energies, or it can be measured with a complementary technique
such as Mössbauer spectroscopy. Both of these methods have been performed in the liter-
ature for Yb2Ti2O7, yielding the same value for the EFG at the Yb3+ nucleus in the low
temperature limit of Vzz = 25 VÅ−2 (it is temperature independent below 4.2 K).[60, 61]
In the case of 173Yb, using Q = 3.0b[158], I = 5

2
, this corresponds to a coupling constant

P =
3eQVzz

4I(2I − 1)
kB = 0.65 mK. (8.10)

While Ti3+ ions do not carry a magnetic moment in Yb2Ti2O7, they do have a quadrupole
moment. There are no explicit estimates for the electric field gradient at the Ti3+ site avail-
able in the literature, but it turns out that this contribution is negligible in the analysis
that follows.

1The quadrupole operator Q is a rank−2 tensor and according to the Wigner-Eckhart theorem, it
couples with spin− 1

2 to produce either j = 3
2 or 5

2 , and therefore 〈 12 |Q|
1
2 〉 = 0.
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8.2 Results

The measured specific heat for both samples in figure 8.4 exhibits an offset, some differences
in the shape of the ferromagnetic peak, and of course the hyperfine contribution is reduced
for the enriched sample. The qualitative offset observed here for the enriched sample is
likely associated with levels of excess Yb3+ below 1%. Variations in the position, amplitude,
and width of the peak have also been attributed to very small off-stoichiometry.[38, 39]
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Figure 8.4: Total specific heat of natural and enriched Yb2Ti2O7 from 15 mK to 660 mK.
The sample with with natural abundance of Yb isotopes exhibits a sharp transition at 270
mK, and a large upturn below 100 mK due to nuclear hyperfine interactions. The enriched
sample also exhibits a sharp transition at 260 mK and a reduced nuclear term.

The enriched material has a significant, but reduced nuclear contribution below 100
mK. The primary contribution to this anomaly is the magnetic interaction a′, and to a
lesser extent the electric quadrupole interaction P . Specific heat of the natural sample was
fitted to equation 8.5 with energy levels given by equation 8.3. The fit was performed below
70 mK, where the nuclear specific heat of the natural sample is about an order of magnitude
greater than the enriched material. The numerical fitting procedure was performed by
calculating the energy level splitting for various hyperfine parameters, a′, and P , consistent
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with the constraints mentioned in the previous section. The best hyperfine parameters were
found to be a′(171Yb) = 43.2 mK, and a′(173Yb) = −11.9 mK, corresponding to an effective
hyperfine field Heff = 120 T, in close agreement with 170Yb2Ti2O7 Mössbauer spectroscopy
which obtained Heff = 115 T.[70] Assuming the theoretical values calculated for the fully
ordered J = 7

2
, Yb3+ free-ion in reference [156], this would suggest that the saturated

Yb moment is 〈Jz〉 = a/a′ = 0.98µB. This is close to the value inferred from neutron
scattering, 0.90(9)µB,[81] and from Mössbauer spectroscopy 1.15µB.[70] The quadrupole
constant is particular to the chemical environment, and was found to be P = 0.9 mK
from the fitting procedure. These numbers can be compared directly with Mössbauer
spectroscopy measurements, which reported an electric field gradient Vzz = eq = 25 VÅ−2

for nuclear spin I = 2, 170Yb.[60] Using the quadrupole moment Q(173Yb)= +3.0b,[158]
the quadrupolar coupling constant is then given by P = 3e2Qq(4I(2I − 1))−1 = 0.7 mK.
The residual specific heat in figure 8.5 exhibits T 4 behaviour below the 270 mK ordering
transition down to 60 mK.
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Figure 8.5: Specific heat of natural Yb2Ti2O7 exhibiting a large nuclear anomaly below
0.1 K. Numerical fits to the anomaly were subtracted, yielding a polynomial behaviour
∼ T 4 below the sharp transition at 0.27 K. The subtraction becomes unreliable below this
temperature because it is limited by the precision of the measurement. Lattice phonon
contributions on the order of 10−5 [JK−1mol-Yb−1] are insignificant below 100 mK.[159]
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Hyperfine interactions are short ranged, and therefore the nuclear specific heat of the
enriched sample should simply scale with the ratio of Yb isotopes with non-zero nuclear
spin. The chemical assay of enriched Yb2O3 shown in table 8.1 provides “typical” values
of 0.08% 171Yb, and 0.51% 173Yb quoted by the manufacturer, but the certainty of these
figures was not guaranteed. The measured specific heat suggests that the total level of
these isotopes should be ∼ 45% higher than indicated by the manufacturers assay, in order
to obtain the correct amplitude of the nuclear term at the lowest temperatures. It was
therefore assumed for the remainder of the analysis that the enriched sample contained
0.12% 171Yb, and 0.74% 173Yb isotopes. The effective hyperfine field Heff = 120 T, and the
quadrupolar constant P = 0.9 mK obtained from fits to the natural sample were assumed
to be the same in the enriched sample. The validity of this assumption relies mainly on
the fact that Heff (or a′) is the same for both samples, which is directly proportional to
the ordered magnetic moment. It was found that varying the effective field by ±10% does
not have a significant effect on the resulting nuclear specific heat, and therefore it is likely
a safe assumption. This is also a valid assumption for the quadrupolar constant, which is
independent of magnetic ordering.
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Figure 8.6: Specific heat of enriched Yb2Ti2O7 with 98.9% 174-Yb nuclear spin-0 isotopes.
Hyperfine interaction parameters obtained from the natural sample were used to compute
nuclear contribution, leaving residual contributions ∼ T 1.1 and ∼ T 4.
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After subtracting the nuclear contribution from the enriched sample in figure 8.6, the
residual specific heat contains an additional term that was not present in the natural
sample. This additional term is represented well by a power-law ∼ T γ, with γ = 1.1± 0.1
below 50 mK. Subtracting this power-law leaves behind a T 4 characteristic that matches
the natural sample at low temperatures, and also improves an offset at higher temperatures.
One important point, is that the empirical function αT 1.1 + βT 4 captures the behaviour
very accurately, while any polynomial other than T 4 does not fit the data. The origin of this
additional T 1.1 term is not entirely understood, but is believed to originate from impurities
(Fe, Cu, Si, Sn) at the level of 0.6± 0.12% in the 48TiO2 crystal growth material (compare
to <0.01% trace metals for the natural sample). The chemical assay of impurities provided
by the manufacturer is presented in table 8.3. The presence of impurities would certainly
imply that x > 0 in Yb2+xTi2−xO7−δ, consistent with the reduced ferromagnetic transition
temperature observed.[38] The chemical formula of impurities in the material are difficult
to predict because they depend on chemical reactions that take place at high temperatures
during the crystal growth process. One might speculate that the Fe impurities undergo
oxidation and form iron-oxide compounds. Alternate possibilities for the enhanced specific
heat were also considered, such as the calorimeter addendum contribution, but this would
have to be 50× larger to account for the discrepancy. Another consideration is the minute
levels of Ti nuclei, but that would have T−2 behaviour characteristic of a nuclear term.
Based on this observation, it is likely that the additional T 1.1 term is a non-interacting
addendum that can be subtracted from the total specific heat of the enriched sample.

Table 8.3: Assay of impurities present in the isotopically enriched Ti oxide used to prepare
the enriched sample. Impurities present in the Yb oxide are insignificant in comparison to
the Ti oxide. Data provided by the manufacturer, Trace Sciences International Corp.

(ppm) Bi Cd Cr Cu Fe Mg Si Sn
48TiO2 60 20 200 2000 6000 600 2000 2000
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8.3 Discussion

The residual specific heat is compared in figure 8.7, where both samples exhibit very sim-
ilar behaviour below their ferromagnetic ordering transitions. The assumptions regarding
impurities in the enriched material present uncertainty in the analysis, and this should be
kept in mind when making any conclusions from that sample. Conversely, the nuclear spe-
cific heat of the natural sample has excellent agreement with theoretical and experimental
investigations of Yb nuclear magnetism. Both materials exhibit very clean T 4 behaviour,
perhaps the only documented example of such behaviour in a magnetic system at these
temperatures. Several possible scenarios are now considered for the interpretation of such
behaviour.
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Figure 8.7: Specific heat of both samples after subtracting nuclear and impurity contribu-
tions as described in the text. The observed unconventional T4 power-law deviates from the
T3 behaviour of gapless photons expected for a U(1) quantum spin liquid on the pyrochlore
lattice. Fits to a gapped type-I pseudo-Goldstone mode are shown.
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U(1) QSL and Fractional Dispersion

It has been proposed that the existence of a quantum spin liquid phase would allow for the
existence of an emergent U(1) gauge field. The analogous photon would behave like the
conventional photon in electrodynamics, with a linear energy dispersion relation ω ∝ k.
Such excitations would produce energy dispersion u ∝ T 4, and cubic specific heat c ∝ T 3.
Thus we have ruled out the possibility that these particular samples have characteristic
U(1) quantum spin liquid behaviour. In general, the specific heat is related to the energy
dispersion through the internal energy density

u =

∫
εf(ε)g(ε)dε, (8.11)

where f(ε) = (eε/T − 1)−1 is the Bose-Einstein distribution, g(ε) = dΩ/dε is the density
of energy states where Ω = 4π

3
k3 is the k−space volume in 3-dimensions. In general, the

gapless energy-wavevector relation is given by the power-law relation ε(k) = ckn, where n,
and c are constants. This provides the link between energy and wavevector

g(ε) =
dΩ

dε
=

4πn

9

(
1

c

)3/n

ε
3
n
−1. (8.12)

And the internal energy, where x = ε/T , scales as

u(T ) ∝
∫

ε
3
n

eε/T − 1
dε = T 1+ 3

n

∫ ∞
0

x
3
n

ex − 1
dx. (8.13)

For photons with linear dispersion (n = 1), we get u ∝ T 4. In the present case, the mea-
sured quartic specific heat would imply that the internal energy scales as u ∝ T 5, implying
that the excitations giving rise to this energy relation have dispersion ω = ε ∝ k3/4. While
rather uncommon, there do exist theoretical examples of fractional dispersion relations,
such as ω ∝ k3/2, the so-called ripplon in a superfluid-superfluid interface.[160]

Pseudo-Goldstone Modes

The observed quartic behaviour may resemble the order-by-quantum-disorder scenario in
Er2Ti2O7, where quantum zero point fluctuations, and low energy thermal fluctuations play
a role in ground state selection among competing phases. This mechanism for ground state
selection is inhereted from the phase boundary of neighbouring phases, and is analogous
to the mechanism that selects Ψ3 states for parameters near the ferromagnetic phase of
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the anisotropic exchange model.[80] In that model, fluctuations induce a small gap in the
spin-wave spectrum with dispersion, known as a type I pseudo-Goldstone mode

ωk =
√
v|k|2 + ∆2. (8.14)

Pseudo-Goldstone modes that appear in linear spin-wave theory are often classified as
type I or type II, which correspond to having non-conserved or conserved order parame-
ters, respectively.[161, 162, 163] Computing the energy of the system with Bose-Einstein
statistics, the resulting specific heat takes the form of an integral equation [86]

C∆ = α

(∫ ∞
0

dx
x2(x2 + δ2)

sinh2
√
x2+δ2

2

)
T 3, (8.15)

where α depends on various constants, x = kβ and δ = β∆ are dimensionless constants.
The integral depends on the gap ∆ and the temperature T = β−1, and it can modify the
∼ T 3 behaviour and resemble ∼ T 4 within a limited temperature range. The residual
specific heat of each sample was fit to C∆T

−2 vs. T with the least squares method, to
data below 200 mK where the ferromagnetic transition peak should be negligible. The
resulting fits and gap temperatures ∆ are shown in figure 8.7. These fits provide reasonable
agreement with the observed behaviour below 200 mK for the natural sample, indicating
an upper bound for such a phenomenological gap of ∼ 0.36 K. Assuming that the analysis
for the isotopic sample is correct, a rough estimate for the upper bound on the pseudo-
Goldstone gap is ∼ 0.16 K.

The question arises: what is the nature of low energy spin excitations near the phase
boundary of the FM, Ψ2, and Ψ3 phases that define the behaviour of Yb2Ti2O7? We
cannot rule out the observation of gapped excitations below the temperature range of our
measurements, but the quartic temperature dependence of specific heat is indicative of
low energy behaviour that may be associated with either magnetic, or even higher order
gapless multipolar excitations.
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Chapter 9

Specific Heat of Terbium Titanate
Tb2Ti2O7

Various explanations have been proposed to explain the mechanism of non-magnetic “hid-
den order” observed in specific heat measurements of Tb2Ti2O7 at Tc ≈ 0.5 K. Some
proposed that magnetoelastic coupling leads to a cooperative Jahn-Teller transition, split-
ting the ground state doublet into two singlets. [164, 165, 166, 167] Recently, compelling
evidence has surfaced that the hidden order is likely associated with electric quadrupole mo-
ments of the non-Kramers Tb3+ ions, or perhaps even higher order multipole moments.[168,
169, 96, 37, 170] These low-lying crystal field states do not couple directly to neutrons,
making them elusive to scattering measurements. The esimated pseudospin−1

2
Hamilto-

nian parameters for Tb2Ti2O7 have placed it close to a phase boundary between electric
quadrupole order, and a U(1) quantum spin liquid state; suggesting that the vanishing of
Tc for Tb2+xTi2−xO7+y with x < −0.0025 corresponds to a transition into the putative
U(1) quantum spin liquid phase.[55] In this chapter, nuclear specific heat measurements
are presented for two samples that belong to either side of this transition.
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9.1 Methods

Off-stoichiometric Tb2+xTi2−xO7+y samples with a range of x were provided by collaborator
H. Kadowaki from Tokyo Metropolitan University. Eight samples with nominal values of x
ranging from −0.0125 to +0.0050 were prepared by mixing different ratios of the starting
materials Tb4O7, and TiO2 relative to a nominally x = 0 batch. The specific heat of these
samples between 400 mK and 2 K in figure 1.19, was previously reported by Taniguchi et
al.[36] The results indicated the presence of a sharp feature in the specific heat around 0.5 K
that is gradually suppressed and disappears completely below the nominal critical value
xc = −0.0025. Powder neutron diffraction measurements performed on the x = +0.0050
sample above, and below this transition temperature did not exhibit any clear changes
due to a structural transition. Inelastic neutron scattering was also measured above and
below Tc, indicating the presence of a

(
1
2

1
2

1
2

)
Bragg peak for the x = +0.005 sample, with

an estimated upper limit on the antiferromagnetic ordered moment of about 0.1µB. This
peak was absent in the x = −0.005 sample. The corresponding 0.08µB ordered moment
was much smaller than expected for the ∼ 5µB ground doublets, an indication that that
residual spin fluctuations might persist at these temperatures.

In this work, two polycrystalline samples of Tb2+xTi2−xO7+y with nominal values of
x = +0.0050 and x = −0.0075, were selected for specific heat measurements between 14
mK and 1 K. These samples are respectively referred to as ‘stuffed’ and ‘under-stuffed’, to
indicate an excess and shortage of Tb. The study in reference [36] suggested that the stuffed
compound exhibits order below 0.5 K associated with a planar antiferropseudospin (PAF)
phase, while the understuffed material is believed to have be a paramagnetic quantum
spin liquid. Specific heat measurements were performed in zero field (< 10−3 G) with the
quasi-adiabaitc heat pulse technique described in section 3.4, and the calorimeter design
described in section 3.6. The stuffed and under-stuffed samples both had Pt92W8 thermal
links with conductance 1.0×10−6 WK−1 and 6.6×10−6 WK−1, respectively at 0.5 K. Both
samples were mixed with approximately equal volumes of silver powder to improve the low
temperature thermal conductance, which is known to be very poor at these temperatures
in Tb2Ti2O7.[171]
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9.2 Results

Specific heat measurements for two polycrystalline samples of stuffed (x = 0.005) and
under-stuffed (x = −0.0075) Tb2+xTi2−xO7+y between 14 mK and 1 K are shown in figure
9.1. It was hypothesized that the stuffed sample should exhibit low-temperature quadur-
polar order associated with the sharp peak at Tc = 0.5 K. The under-stuffed sample did not
exhibit any similar features, suggesting the presence of a paramagnetic spin liquid ground
state. Below ∼ 200 mK, a large anomaly associated with the nuclear hyperfine interaction
dominates the specific heat of both samples.
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Figure 9.1: Specific heat of stuffed (x = +0.005), and under-stuffed (x = −0.0075)
Tb2+xTi2−xO7+y plotted with logarithmic, and linear axes to emphasize the low tempera-
ture behaviour. The high temperature side of the nuclear specific heat anomaly was fit to
equation 9.1 (solid lines), and subtracted from each sample (hollow markers).

The apparent variations in the nuclear specific heat of both compounds below∼ 200 mK
provides a strong indication that the hyperfine interactions are different for each compound.
This is not surprising, considering that the dipolar and quadrupolar order is known to vary
among these materials. There is also the possibility of an underlying transition in one of
the materials. The magnetic moments of the Tb atoms are not fully ordered, which makes
it difficult to apply the standard hyperfine theory. An attempt was made to fit the observed
nuclear anomaly using the standard approach that was applied to Yb2Ti2O7 in section 8.1.1;
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where magnetic moments on the rare-earth atoms are fully saturated, and the electric field
gradient has axial symmetry. This model did not produce satisfactory results for either
sample of Tb2Ti2O7. Based on the poor quality of those fits on the low temperature side
of the nuclear anomaly, a simple hyperfine model cannot capture the nuclear behaviour. It
is possible that the electronic quadrupole moment of the non-Kramers Tb3+ moment gives
rise to a significant hyperfine interaction with its nuclear quadrupole moment.

In section 3.1, it was demonstrated that the specific heat obtained for the splitting of
a spin−I nucleus can be expanded in inverse powers of T , where the first three coefficients
are given by equations 3.13. Within this approximation, the high temperature tail of the
nuclear anomaly has the form

CSch = c2T
−2 + c3T

−3 + c4T
−4 + . . . (9.1)

This procedure may be valid within a limited temperature range if the hyperfine interac-
tions are not changing significantly with temperature. The resulting nuclear fits shown in
figure 9.1 describe the data very well in the fitted range 0.08 < T < 0.17 (stuffed) and
0.07 < T < 0.15 (understuffed). After subtracting this term, the residual specific heat
exhibits a sharp drop characteristic of a gap in the energy spectrum.

Naturally occurring terbium contains only one stable isotope (159Tb) with nuclear
spin−3

2
, and quadrupole moment 1.432 b. The maximum entropy that can be extracted

from a nuclear specific anomaly is therefore equal toR ln(2I + 1) = R ln 4 ≈ 11.53 JK−1mol−1.
The total entropy for each sample was obtained from the integral of cT−1 in figure 9.2,
where the high temperature tail was extrapolated using the fitted curves. The resulting
entropy associated with the stuffed sample is ≈ 11.0 JK−1mol−1, while for the understuffed
sample it is 9.7 JK−1mol−1. Both of these values are less than expected, indicating that
measurements need to be extended to lower temperatures in order to obtain the full nuclear
entropy. The value obtained for the stuffed sample is very close to R ln 4, indicating that
there may be an additional entropy contribution that is not accounted for by splitting of
159Tb nuclear spins alone, such as a transition at very low temperature.
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Figure 9.2: Specific heat divided by temperature of stuffed (x = 0.005), and under-stuffed
(x = −0.0075) Tb2+xTi2−xO7+y. The total entropy of the nuclear peak s =

∫
cT−1dT

should equal R ln(2I + 1) for a spin−I nucleus.

9.3 Discussion

Discrepancies between the standard hyperfine theory and experimental data could be due
to several reasons. The ground state of Tb2Ti2O7 has been described as a spin liquid
with persistent dynamics, with a saturated magnetic moment 〈Jz〉 is less than the ≈ 5µB
expected for a fully saturated ground doublet.[90, 172] There is no strong indication from
neutron scattering measurements of a temperature dependence to this parameter below
0.5 K,[36] suggesting that the magnetic hyperfine constant should not be affected. The
electronic quadrupolar moment in Tb2Ti2O7 may produce a contribution to the electric
field gradient at the nucleus, not accounted for with the simple hyperfine model in section
8.1.1. However, this type of analysis is beyond the scope of the current work and certainly
requires more rigorous investigation. Perhaps it is sufficient to use a generalized hyperfine
Hamiltonian which captures the symmetry of the ordered quadrupolar moments.

The situation here in Tb2Ti2O7 might also resemble the theoretical model discussed
in reference [13], where electronic spin fluctuations persist in the low temperature regime
of nuclear coupling. This produces an effective hyperfine temperature that appears out of
equilibrium, with a nuclear Schottky anomaly that is shifted in temperature or amplitude.
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In order to demonstrate these effects, Bertin et al. considered a model of nuclear spins
subject to fluctuating electronic spins. The nuclear component was modeled as a two-level
spin−1

2
system driven by a randomly time dependent hyperfine field. This type of model

has the ability to modify the temperature dependence of the nuclear specific heat.

The generalized high temperature expansion in equation 9.1 captures the behaviour
of a nuclear anomaly regardless of the spacing of nuclear energy levels. This should be
a valid assumption for a system with partial or fully ordered multipole moments. Per-
forming the analysis under these assumptions, the resulting subtraction for both samples
indicates a rapid drop in specific heat, suggestive of gapped modes. This is in contrast
to the expectation of cubic T 3 behaviour expected for a U(1) quantum spin liquid state,
and therefore it is unlikely that such a phase exists in either of these samples within the
measured temperature range.
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Chapter 10

Summary

Specific Heat of Dy2Ti2O7

Spin-ice is a theoretical model that has the same statistical properties of hydrogen atoms in
water ice. One of the consequences of this analogy is the same intrinsic randomness below
the freezing temperature. The geometrical structure of these ice models results in a highly
degenerate system of energetically equivalent configurations equal to Pauling’s residual
entropy for water ice. Dy2Ti2O7 and Ho2Ti2O7 are the archetypes of spin-ice that are
adequately described with the classical dipolar spin-ice model for a wide temperature range.
While their behaviour above ∼ 1 K is well understood, properties in the Coulomb phase
are convoluted by the emergence of fractionalized excitations very similar to deconfined
magnetic monopoles. These emergent quasiparticles inevitably have a strong influence on
the low temperature properties of spin-ice that are not completely understood.

Specific heat measurements were performed on the archetypal spin-ice Dy2Ti2O7 be-
tween 340 mK and 1 K with a unique approach; ensuring that the material is in thermal
equilibrium throughout the entire measurement. Extremely slow attributes are apparent
below ∼0.6 K where the magnetic spin relaxation time observed with ac susceptibility
measurements diverges exponentially. Calorimetry was implemented with a thermal relax-
ation method to ensure the system equilibrates adiabatically on timescales of the magnetic
system. In order to detect small changes in temperature associated with the release of
heat from the system, it was essential to couple the sample to the cryostat with a weak
thermal conductor. This weak link acts as an impedance to heat flow, which sets the rate
at which the sample can equilibrate with the cryostat. It also acts as a heat sensor, where
the temperature gradient across the link is proportional to the rate of heat flow. These
measurements enforce that Dy2Ti2O7 is characterized by slow dynamics in accordance with
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the timescales determined by magnetic relaxation measurements, and the total entropy ex-
tracted from the system upon freezing is lower than expected for Pauling’s entropy. This
observation may imply that the material undergoes magnetic order on extremely slow
timescales. According to our work, the thermal relaxation time can reach & 104 seconds
below ∼ 0.3 K. The results presented in section 7.3 provide a strong argument that the
variations in specific heat previously observed for these materials (figure 6.7) were likely
due to equilibration issues.

Henelius et al., have demonstrated that introducing additional parameters into the
dipolar spin ice model associated with substitution defects (stuffing), is qualitatively con-
sistent with the behaviour observed in our measurements, however, the required levels of
disorder are on the order of 1%. The current status of many other projects in the litera-
ture that investigate this work are still relatively inconclusive, and the low-energy state of
Dy2Ti2O7 remains yet to be understood completely.

Magnetic Susceptibility of Dy2Ti2O7

Magnetic susceptometry is a tool that probes intrinsic dynamics of a material, or the ability
for magnetic moments to freely rotate within a lattice. A gentle magnetic field ≈ 5 mOe
is applied to avoid driving resonant transitions when examining the kinetics. In chapter
7, results spanning 0.5 K to 1 K, and 1 mHz to 1 kHz, were presented for two samples of
Dy2Ti2O7 that were cut from a single crystal. In an attempt at reducing oxygen vacancies,
one of these samples was annealed in oxygen at high temperature. This work was part of
a larger collaboration that investigated the effect of oxygen vacancies and their effect on
monopole dynamics in oxygen-deficient pyrochlores.[40].

In sections 4.4 and 7.3, the validity of experimental results were analyzed with various
approaches. This was particularly important because errors associated with demagneti-
zation effects can influence the observed susceptibility. The arguments presented were
aimed at quantifying the magnitude of errors associated with these effects, and the com-
plications that arise in measurements were scrutinized. From this analysis, susceptibility
measurements demonstrate that oxygen deficiency has significant effects on low tempera-
ture magnetic dynamics. In particular,

1. Temperature dependence of the magnetic relaxation time τ(T ) has qualitative simi-
larities for both samples, but the annealed material exhibited slower dynamics cor-
responding to a larger energy cost to flip spins.
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2. The widening of χ′′(ω) with T observed for the annealed sample suggests a broader
distribution of relaxation timescales compared to the as-grown sample.

3. The dynamic spin correlation function C(t) exhibits features consistent with a stretched
exponential, followed by power-law (algebraic) behavior at longtime scales. It appears
that annealing may eliminate this algebraic behavior, with the caveat that this func-
tion is very sensitive to the analytic form use to fit χ′′(ω) in equation 7.3. Although
the Havriliak-Negami relaxation model in equation 7.2 provides a very good fit to the
experimental data, it fails to capture this subtle effect that eliminates the algebraic
behavior.

4. In the low frequency limit, the dc susceptibility χ′′(ω) appears insensitive to oxygen
deficiency, stuffing, or other impurities that produce the observed sample variation.
This suggests that the equilibrium ground state properties are less sensitive to these
defects.

The important conclusions from this work should be emphasized. First, annealing
the sample in oxygen lowers the exponential stretching factor β observed in the magnetic
relaxation curves. This was surprising because the absence of random defects is typically
associated with an exponential (β = 1). The presence of defects might destroy correlations
that are otherwise responsible for slow dynamics.

The algebraic longtime tail in the dynamic spin correlation function, obtained using
the fluctuation-dissipation theorem, is also very sensitive to subtle features in the low-
frequency tail of the susceptibility χ′′(ω). Upon annealing, these subtle features are not
captured by the standard Havriliak-Negami relaxation model, but require more generalized
phenomenology that accounts for the asymmetry of the χ′′(ω) spectrum.

This study identifies the major qualitative features in the low temperatures suscepti-
bility that differ as a result of oxygen annealing. It has been found that some features,
including the barrier to relaxation, the longtime algebraic correlations, and the exponential
decay stretching factor, can vary significantly with very low levels of defects. The charac-
teristics of an ideal material are not yet understood, nor are many of the mechanisms that
give rise to their intriguing behaviour, and these are certainly topics for future work.
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Specific Heat of Yb2Ti2O7

The Yb3+ ion in Yb2Ti2O7 has significant planar anisotropy in comparison to the classical
Ising-like spin-ices. Ice correlations are manifested as a Schottky-like anomaly in specific
heat near 2 K, followed by a sharp feature at a critical temperature Tc ≈ 0.27 K. While the
nature of this transition was controversial for some time, there is now abundant evidence
that Yb2Ti2O7 enters a splayed-ferromagnet phase below Tc. This critical temperature has
also revealed significant sample dependence that is correlated with substitutional defects
due to stuffing. Despite exhibiting evidence of ferromagnetic long-range order, some exper-
iments observe features associated with strong fluctuations that are reminiscent of a spin
liquid. These characteristics may originate from higher order multipolar moments that go
beyond the conventional description of magnetic dipoles.

In chapter 8, measurements were performed on two samples of Yb2Ti2O7 between
15 mK and 660 mK using the quasi-adiabatic heat pulse method described in section
3.4. Measurements of specific heat in this temperature range are dominated by nuclear
hyperfine contributions, arising from the interaction of nuclear spin with the surrounding
electronic degrees of freedom. One of the samples containing natural abundances of Yb
isotopes demonstrates excellent agreement with theoretical hyperfine models. After sub-
tracting these nuclear contributions, the underlying specific heat exhibits unconventional
quartic behaviour c ∝ T 4 that does not have a conventional explanation. Another sample
was prepared with ≈ 99% 174Yb isotopes to reduce the effect of hyperfine interactions. The
measured specific heat of this sample was complicated by additional terms likely originat-
ing from impurities in the TiO2 growth material (∼ 0.6% Fe). Careful analysis suggests
these are described by an almost linear term c ∝ T 1.1±0.1, on top of the quartic behaviour
T 4 that was present in the natural isotopic sample. The magnitude of these terms were not
accountable to the known levels of metallic impurities, and therefore this fitting procedure
was performed on a phenomenological basis. While definitive conclusions should not be
obtained from the isotopically enriched sample, they demonstrate the effect of impurities
on the low energy state.

The quartic c ∝ T 4 specific heat observed in the natural sample is evidence of uncon-
ventional excitations that persist below the critical temperature, to at least 55 mK. This
rules out the possibility of purely cubic specific heat c ∝ T 3 in our samples, which would
be consistent with the linear energy-momentum dispersion relation of photons emerging
from a U(1) quantum spin liquid phase. However, another possibility is that the observed
specific heat may be qualitatively consistent with a linear dispersion relation that acquires
a small gap ∆ where ωk =

√
v|k|2 + ∆2, similar to a pseudo-Goldstone mode. The ex-

istence of such a mode was predicted in Er2Ti2O7, a close relative of Yb2Ti2O7. This
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would give rise to a cubic temperature dependence that gives way to an exponential drop
in specific heat. Using this phenomenological approach, the natural sample exhibits an
upper bound on the gap of ∼ 0.36 K. The isotopic sample had consistency with a gap
of ∼ 0.16 K, but this analysis was not as rigorous as for the natural sample. Within
the context of the pseudospin−1

2
exchange model, both these compounds are positioned

near competing phases in the ground-state phase diagram. As demonstrated for Er2Ti2O7,
quantum fluctuations play a role in the ground state selection for these materials through
the mechanism of order by quantum disorder. We speculate that a similar mechanism
may be at play in Yb2Ti2O7 due to the reasonable agreement with the pseudo-Goldstone
mode dispersion relations. Another scenario consistent with purely quartic specific heat,
is fractional dispersion that scales as ω ∝ k3/4. While uncommon in condensed matter
physics, there are theoretical examples of fractional dispersion relations in the literature.

The measurements performed in this study also prompted a thorough evaluation of
thermometer calibrations down to 14 mK that is described with detail in chapter 5. The
accuracy and precision of thermometry can present challenges near the base temperature of
any millikelvin-range cryostat because parasitic heat flow can offset the measured temper-
ature from its actual value. Ensuring that these effects are negligible requires a significant
effort in the design, assembly, and verification of the cryostat performance in accordance
with various observations. Verification is especially important in the limit where the cool-
ing power of the fridge is very low because thermal gradients can be significant. In an
effort to minimize temperature offsets due to self-heating, resistance thermometers used
for calorimetery were calibrated in-situ for each sample by mechanically shorting the ther-
mal link between the calorimeter and cryostat. The layout of electrical leads on the cryostat
was assembled very carefully to ensure that temperature gradients are minimized for each
particular application. The calibration down to 14 mK was verified with paramagnetic
cerium magnesium nitrate (CMN), and radioactive 60Co nuclear gamma ray orientation as
calibration references, using the methods described in section 5. This calibration process
also revealed that a commercial germanium resistance (GRT) thermometer was signifi-
cantly miscalibrated below 100 mK, despite a certificate of calibration down to 50 mK.
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Specific Heat of Tb2Ti2O7

The most recent project described in this thesis pertains to the compound Tb2Ti2O7.
Specific heat was measured between 15 mK and 1 K for two samples with stoichiome-
try Tb2+xTi2−xO7+y where +0.0050 (stuffed), and x = −0.0075 (understuffed) respectively
indicating an excess, and shortage of Tb. The sharp feature observed at a critical tempera-
ture Tc = 0.5 K for the stuffed sample is completely absent in the under-stuffed compound.
Below the critical temperature, a variety of other experiments indicate that the magnetic
component of the Tb3+ ion does not develop long-range dipolar spin order and is believed
to have correlations associated with a quantum spin-liquid state. The Tb3+ crystal field
ground doublet in this compound has a relatively small gap ∆ ∼ 18 K separating it from
the first excited state doublet, which among other facts, motivates the application of a
quantum spin-ice Hamiltonian. While the nature of this transition has eluded researchers
for several decades, recent experimental and theoretical evidence has emerged to support
electric quadrupole ordering of the non-Kramers Tb3+ ions.

Akin to Yb2Ti2O7, nuclear hyperfine interactions below ∼ 200 mK conceal the under-
lying electronic specific heat. Furthermore, there are significant differences between the
measured nuclear specific heat of the stuffed, and under-stuffed materials, indicating that
hyperfine interactions are different between these samples. This is an indication that ei-
ther the effective magnetic field produced by Tb3+ ions, or the quadrupolar interaction,
depends on the level of stuffing. Attempting to fit the nuclear specific heat with the stan-
dard approach (described generally in section 3.1, and in section 8.1.1 for Yb2Ti2O7) does
not agree with the experimental data. The observed specific heat for both samples does
not have the shape of a Schottky-like anomaly that is expected for standard splitting of the
hyperfine Hamiltonian. This could imply that the nuclear hyperfine coupling parameters
are not static, but changing with temperature, which is also consistent with a fluctuating
magnetic or quadrupolar moment. Another possibility is that nuclear quadrupole moments
couple to the electric quadrupole moments of the Tb3+ ion itself and perturb the standard
hyperfine Hamiltonian.

Fitting the high temperature end of the nuclear term with the standard expansion in
inverse powers of temperature as c2T

−2 + c3T
−3 + c4T

−4 + . . . yields reasonable agreement
with the data. Subtracting this contribution from each sample reveals a rapid drop in
specific heat, implying the presence of a gapped excitation at low energy. This refutes the
possibility of a U(1) quantum spin liquid in the particular samples studied, where such
a system would exhibit c ∝ T 3 at low temperatures. More theoretical and experimental
work is certainly required in order to completely understand the elusive nature of this
compound.
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Appendix A

Uranium Platinum UPt3

UPt3 is a heavy fermion compound that is believed to exhibit unconventional supercon-
ductivity. While it has been studied for nearly three decades since the discovery of bulk
superconductivity below∼ 0.5 K, the pairing symmetry of the order parameter is still under
debate because of the existence of two distinct superconducting phases with critical tem-
peratures occurring near T+

c = 0.56 K, and T−c = 0.5 K, suggestive of a multi-component
order parameter.[173] These correspond to transitions into a A−, and B−phases, respec-
tively with a multiple component f−wave symmetry order parameter that resembles the
canonical unconventional superfluid 3He. The leading theoretical proposition by Sauls is
the prediction of E2u symmetry for the order parameter, and is backed by significant ex-
perimental evidence. [174, 175, 176, 177, 178] Within this theoretical framework, a small
magnetic moment µ ∼ 0.02µB per U atom that develops around 5 K provides the source
of a symmetry breaking field. For a more thorough review of the vast theoretical and
experimental work relevant to UPt3, please refer to reference [179].

Results presented here were performed on crystals prepared over two decades ago for
the thesis of J. B. Kycia.[180, 181]. These samples prepared at Northwestern University
have the highest residual resistivity ratios (RRR) we are aware of prior to the present
time. The quality of these samples depends strongly on annealing temperature, where the
lowest quality samples annealed at 1250 oC have RRRc = 420, and the highest quality
samples annealed at 800 oC have RRRc = 1490. Measurements performed by Hong et
al. with transmission electron microscopy (TEM) demonstrated that the primary defect
responsible for controlling the Tc in the cleanest of these samples are most likely stacking
faults.[182] Specific heat measurements were performed between 0.3 and 0.6 K on samples
annealed at 800 oC, 970 oC, and 1250 o using the quasi-adiabatic heat pulse method. The
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results shown in figure A.1 indicate that the width and position of both superconducting
transitions T+

c and T−c are most ideal when low annealing temperatures are used.

In the normal state above ∼ 0.55 K, the large effective mass of conduction electrons
produces a large linear electronic specific heat coefficient Ce = γT , while in in the super-
conducting state Cs = γ0T + BT 2.[183] Specific heat of the superconducting state below
∼ 0.45 K is fitted for each sample to obtain a unique value of γ0. This fit was used as a
boundary to compute the entropy below the superconducting transition T−c . Above T−c ,
the integral of cT−1 should be equal to half the entropy released during the superconduct-
ing transition S =

∫
cT−1. These are indicated by the shaded regions on either side of

Tc−, where the area of each region is adjusted to be exactly equal. This condition is used
to determine the position of T−c , and similarly for T+

c .

Figure A.1: Specifc heat of UPt3 for three different samples annealed at 1250 oC (lowest
Tc’s) with RRRc = 420, 970oC with RRRc = 720, and 800 oC with RRRc = 1490 (highest
Tc’s). The equal entropy condition discussed in the text is indicated by filled areas.
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Figure A.2: Analysis of idealized parameters extracted from the specific heat of UPt3. (Top
Left): The evolution of critical temperatures T−c and T+

c with inverse residual resistivity
ratio RRR−1 is shown along with data from Keiser et al., for comparison.[184] (Top Right):
The difference T+

c − T−c versus RRR−1 converges to a finite value for the high quality
samples. (Lower Left): Step in specific heat divided by temperature ∆NAc(T

+
c )/T+

c at /T+
c ,

and T−c versus RRR−1. (Lower Right): The ratio β1/β2 versus RRR−1 should converge to
0.5 in the weak coupling limit.[184]
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Appendix B

Terbium Titanate Tb2Ti2O7

PHYSICAL REVIEW B 90, 014429 (2014)

Temperature and magnetic field dependence of spin-ice correlations in the
pyrochlore magnet Tb2Ti2O7

This project was part of a combined study of diffuse magnetic neutron scattering measure-
ments, and specific heat on a high quality single crystal of Tb2Ti2O7 that was published
in reference [185]. The neutron measurements were performed by K. Fritsch et al., at the
NIST Center for Neutron Research, and the samples were prepared at McMaster Univer-
sity. Specific heat measurements were done at the University of Waterloo. This study was
an extension of some earlier work published by Fritsch et al., which found evidence for
antiferromagnetic spin-ice correlations at

(
1
2

1
2

1
2

)
positions in reciprocal space. As indicated

by the title, the present work investigated the temperature and magnetic field dependence
of this scattering feature.

The main result of this study was the first observation of diffuse magnetic scattering
at
(

1
2
, 1

2
, 1

2

)
positions in reciprocal space that develops strongly below ≈ 275 mK. This

magnetic Bragg peak indicates the opening of a spin gap ≈ 0.06 to 0.08 meV, which
is very fragile, and destroyed by the application of a small magnetic field > 0.075 T.
The specific heat measurements performed between 800 mK and 200 mK reveal a sharp
transition near 450 mK, which could not be associated with any features in the neutron
scattering measurements. Another subsequent study on the same crystal by Kermarrec et
al., performed high resolution x-ray scattering measurements and determined that it has
a nominal off-stoichiometry of the form Tb2+xTi2xO7+δ with x ≈ +0.0042.

182



Additional Details for Specific Heat

Measurements were performed between 100 mK and 800 mK on a 33.8 mg piece of the single
crystal used for neutron scattering. The thermal relaxation method discussed in section
3.3 was used with the typical calorimeter setup described in section 3.6, using a platinum
tungsten wire for the dominant thermal link. The measured temperature dependence of
this thermal link, and the resulting specific heat is in figure B.1.
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Figure B.1: Left: Specific heat of single crystal Tb2Ti2O7 that appeared in Fritsch et al., in
reference [186], with several new low temperature points capturing the onset of the nuclear
anomaly. Right: Thermal conductance of the platinum tungsten weak link.
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PHYSICAL REVIEW B 92, 245114 (2015)

Gapped and gapless short-range-ordered magnetic states with
(

1
2
, 1

2
, 1

2

)
wave

vectors in the pyrochlore magnet Tb2+xTi2xO7+δ

In this collaboration,[168] three single cystals of Tb2+xTi2xO7+δ with x = −0.001,+0.0042,
and +0.0147 were studied with time-of-flight neutron scattering, and specific heat mea-
surements. The intermediate sample with x = +0.0042 was the same crystal from Fritsch
et al., investigated in the preceding section.[185] Stuffing levels x, were determined from
high-resolution x-ray scattering measurements.

Figure B.2: Specific heat of off-stoichiometric Tb2+xTi2xO7+δ single crystals as it appeared
in Kermarrec et al. Figure reproduced from reference [168] with permission.

The two new samples did not exhibit any interesting features in the specific heat, as
shown in figure B.2. Furthermore, they did not develop the

(
1
2
, 1

2
, 1

2

)
quasi-Bragg peaks

below∼ 275 mK associated with short-range anitferromagnetic moments in zero-field (nom-
inal, 0.01 T); unless they were cooled in a magnetic field of µ0H = 0.2 T along the [11̄0]
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direction. This state persists in both samples after the removal of the field. Therefore,
it was concluded that the

(
1
2
, 1

2
, 1

2

)
quasi-Bragg peaks are robust features of Tb2Ti2O7

(insensitive to precise stoichiometry). This work supports the conclusion that the sharp
transition observed with specific heat measurements near 0.5 K is not associated with mag-
netic dipole order, but likely originates from higher order multipole (quadrupole, octupole,
etc.) moments. It also poses the question: Why are magnetic dipole degrees of freedom
less sensitive to disorder (stuffing) than the multipolar order associated with Tc?

Additional Details for Specific Heat

Both x = +0.0147, and x = −0.0010 samples had an identical mass of 122.4 mg. The
thermal relaxation method was implemented with a platinum tungsten weak link. The
temperature dependence of weak link thermal conductance for both samples is shown in
figure B.3.
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Figure B.3: Thermal conductance of weak link versus temperature for both samples of
Tb2+xTi2xO7+δ, fit to a second order polynomial.
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Appendix C

Ytterbium Titanate Yb2Ti2O7

PHYSICAL REVIEW B 88, 134428 (2013)

Unconventional magnetic ground state in Yb2Ti2O7

This project was a larger collaboration that was published in reference [73], and is described
with great detail in the master’s thesis of R. M. D’Ortenzio.[187] Two samples Yb2Ti2O7

were prepared by collaborators at McMaster University in the forms of a single crystal,
and a polycrystal powder from the same batch of starting material. These samples were
studied with positive muon spin relaxation/rotation (µSR) at TRIUMF at the University
of British Columbia, and low temperature specific heat measurements were performed at
the University of Waterloo.

The muon spin relaxation showed very little temperature dependence for both samples.
Longitudinal field (LF) µSR indicated that spin dynamics are almost identical at 1 K and
16 mK, in contraditction to measurements in reference [68] which presented evidence of
dominant ferromagnetic order. Transverse field (TF) µSR was also performed on both
samples with a field of 50 mT along [110], which identified the presence of several distinct
frequencies associated with the local spin susceptibility of lattice sites nearby O2− ions,
where the positive muon likely resides. The highest of these frequencies has no temperature
dependence, and is associated with muons landing in the silver sample holder. The lower
frequencies exhibit a Curie-Weiss temperature of T µCW = −1.3 ± 0.5 K, from fits in the
range 400 mK < T < 3.5 K. This behaviour exhibits an abrupt disruption correlated with
the transition temperatures identified by specific heat measurements, shown in figure C.1.
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Figure C.1: Specific heat of single and polycrystal Yb2Ti2O7 as it appeared in D’Ortenzio
et al. Figure reproduced from reference [73] with permission.

The lack of temperature dependence observed with LF measurements is a common
theme among many ordered frustrated pyrochlores that has not been completely resolved,
and goes beyond the scope of this discussion. Although this study leaves the nature of the
low temperature state unresolved, it likely points to a phase transition that goes beyond
the conventional description of magnetic dipoles (M1), and possibly an exotic quantum
spin liquid (QSL) or valence bond solid (VBS) type of ordering.

Additional Details for Specific Heat

Specific heat measurements were performed using the slope method, whereby both samples
were cooled from 1 K to 60 mK as shown in figure C.2. The heat capacity is proportional to
the slope of the cooing curve, which reflects the rate of energy leaving the material through
the platinum tungsten weak link K, formally given by equation 3.25 in section 3.5. The
temperature dependence of the thermal conductance K = P/∆T of the weak link also
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shown, was obtained from relaxation measurements, that were also used to calibrate the
absolute value of specific heat. The samples had masses 45.5 mg, and 48.0 mg respectively
for the single crystal, and powder.
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Figure C.2: Left: Slope method cooling curves for two samples of Yb2Ti2O7. The plateau
indicates a massive release of latent heat at the critical temperature. Right: Thermal
conductance of weak link versus temperature for both samples of Yb2Ti2O7, fit to a second
order polynomial and subsequently used in equation 3.25.
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Appendix D

Cobalt Niobate CoNb2O6

Cobalt Niobate has recently seen activity because its low energy magnetic excitations might
be described by the E8 symmetry group, which is a 248-dimensional linear algebraic group.
Applications of E8 are familiar in theoretical models of string theory and supergravity, but
in a recent neutron scattering measurement, Coldea et al.,[188] detected spin excitation
consistent with a spectrum of eight particles that were predicted to exist for the transverse
field Ising model by Zamolodchikov in 1989.[189] Borthwick and Garibaldi have written
an accessible introduction to this subject.[190] The project described here was part of
a collaboration initiated at McMaster University, where the samples were prepared and
characterized with x-ray diffraction, magnetometry, heat capacity and µSR measurements.
These are described in the masters, and doctoral theis of T. J. S. Munsie.[191, 192]

Specific Heat Details

Zero-field (< 10−3 G) Specific heat measurements below 2 K were performed at the Uni-
versity of Waterloo using the relaxation method described in section 3.3. While performing
these measurements, a significant increase in the thermal relaxation time of the material
was noticed, with properties very similar to the extremely slow behaviour discovered for
Dy2Ti2O7 in Chapter 6. The thermal conductance of the manganin weak link K(T ), is
shown in figure D.2, next to a comparison of the measured thermal relaxation time with the
intrinsic time constant of the weak link τ = C/K. The features in this figure indicate that
the material behaves very slowly below ∼ 800 mK. The resulting specific heat is shown in
figure D.1, where there are significant difference in these results compared with published
measurements below 1 K.[193]

189



The observed low temperature behaviour ∝ T−2, is characteristic of a nuclear anomaly,
which is most likely caused by the hyperfine interaction of 59Co, which has nuclear spin
I = 7/2. The data below 0.7 K was fit to the function c(T ) = AT−2 where A/R = 17.2 mK.
This is consistent with the value reported from specific heat measurements on cobalt metal
A/R = 17.5 mK.[194]
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Figure D.1: This work: Specific heat of CoNb2O6 below 2 K was obtained with the slow
thermal equilibration method, which indicates a large upturn in specific heat below 0.5 K
∝ T−2. High temperature data for the same crystal was measured by T. J. S Munsie in
reference [192]. The measured phonon contribution from ZnNb2O6 was also obtained from
Hanawa et al., and is negligible below 3 K.[193]
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Figure D.2: Comparison of the weak link time constant τ = C/K with the measured
thermal equilibration time of CoNb2O6 below from 0.3 K to 1 K shows a significant slowing
down of the latter below 0.8 K. Right: Thermal conductance of the weak link fit to a second
order polynomial.
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Appendix E

Cryogenic Refrigeration

Before discussing the details of a dilution refrigerator, it is helpful to review some general
properties of helium, which comes in two stable isotopes: 4He and 3He. The utility of helium
as a refrigerant is determined by its latent heat of evaporation L, and its vapour pressure
Pv. The latent heat of evaporation at a particular pressure is determined by the strength
of forces binding the atoms together in the liquid state. Because the electronic structure
of helium consists of a closed s−shell, the binding between atoms can only arise from weak
van der Waals interactions. Furthermore, the relatively large quantum mechanical zero-
point energy prevents the formation of a solid phase, even at zero temperature (except at
high pressures, ∼ 25 atm for 4He). This finite energy

E0 =
h2

8ma2
, (E.1)

where a is a measure of the radius of a sphere occupied by the atoms, results in a zero-
point vibration amplitude that is larger for 3He than for 4He, because of its reduced mass
m.[195] This attribute also results in reduced latent heat of evaporation in 3He. Generally,
the cooling power for an evaporating liquid such as helium is given by

Q̇ = ṅ(Hliq −Hvap) = ṅL, (E.2)

where ṅ is the rate of mass flow evaporating form the liquid to vapour phase, and L is the
latent heat of evaporation.[195] If the vapour phase is maintained at a constant pressure
by vacuum pump, then the rate of mass flow will be proportional to the vapor pressure,
given approximately by Pv ∝ e−L/RT . It then follows that the cooling power also decreases
rapidly at low temperature

Q̇ ∝ e−1/T . (E.3)
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The maximum cooling power of any such liquid is limited when the rate of evaporation is
balanced by the external heat load to the liquid. In practice, this limit is about 1.3 K for
4He, and 0.3 K for 3He.

The principle of operation for a 3He-4He dilution refrigerator is very different than
for an evaporation cryostat. It relies on the finite solubility of 3He in 4He that occurs
when a mixture of these two isotopes are cooled below 0.867 K, as shown in the phase
diagram in figure E.1. The cooling power of a dilution refrigerator comes from the change
in enthalpy of mixing when 3He atoms move from concentrated 3He to a dilute phase
containing mostly 4He. In order to understand the origin of this finite solubility, we must
consider a few important differences between the two isotopes. Because of its reduced
mass, the 3He isotope experiences larger zero-point fluctuations than 4He (equation E.1),
and the binding energy is weaker because the atoms are more spaced out. Thus, when
a 3He atom is transferred from the concentrated to dilute phase, the increase in binding
energy is energetically favourable.

In opposition to this energy gain, the Fermi character of 3He atoms results in a successive
filling of energy states up to the Fermi energy EF = kBTF. Because of their larger effective
radius, the average distance between closely packed atoms in pure 3He is larger than it
would be when surrounded by 4He atoms. Since the electronic structure of both isotopes
is identical, they both experience the same Van der Waals attraction. However, the 3He
atom surrounded by 4He results in a lowering of this attractive energy relative to the pure
3He phase where the atoms cannot pack so tightly. Therefore, it is energetically favorable
for 3He to mix with 4He. 4He is an isotope with nuclear spin−0, and undergoes Bose
condensation to a superfluid below 2.177 K. 3He on the other hand, is an isotope with
nuclear spin−1

2
, and therefore obeys Fermionic statistics.

The phase diagram for the mixtures of liquid 3He-4He, in figure E.1 indicates the
presence of a region where phase separation occurs between the two nuclear isotopes. The
critical point of this phase separation occurs at ∼ 0.867 K. Below this temperature is a
region (two-phase region), where the allowed concentration of Fermi liquid 3He in superfluid
4He is limited to a finite concentration, indicated by the phase separation line. In the limit
T → 0, this phase of 4He can support a finite concentration limited to 6.6% 3He.
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Figure E.1: Illustrated phase diagram of liquid 3He-4He below 2 K. Adopted from [195].

The cooling power of this dilution process comes from the difference in enthalpy of 3He
in the dilute and concentrated phases

Q̇ = ṅ3 [Hd(T )−Hc(T )] , (E.4)

where a positive change in enthalpy ∆H, is endothermic. Energy is absorbed from the
surroundings as the energetic 3He atoms are pumped away into the concentrated phase.
In thermal equilibrium, the chemical potential of both concentrated and dilute phases are
equal[195]

µ3,c(xc, T ) = µ3,d(xc, T )

H3 − TS3 = H3,d − TS3,d(
H3(0) + 11T 2

)
− T

∫ T

0

C3

T ′
dT ′ = H3,d(T )− T

∫ T

0

C3,d

T ′
dT ′

H3,d(T ) = H3(0) + 95T 2 [J mol-He−3].

(E.5)

Hence, the cooling power for a circulation rate ṅ3 [mol s−1] is

Q̇(T ) = ṅ3 [Hd(T )−Hc(T )]

Q̇(T ) = 84ṅ3T
2 [W].

(E.6)
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Figure E.2: Measured heater power applied to the mixing chamber (S.H.E. Corporation
Model DRP-36) for various circulation rates. Stepper curves correspond to a higher circu-
lation rate. Extrapolating the intercept (∼0.6 to 1.6 µW) provides the intrinsic heat load
on the mixing chamber at base temperature. The cooling power of the dilution refrigerator
follows the expected power law, Q̇ ∝ T 2.

The measured cooling power for our dilution refrigerator (S.H.E. Corporation Model
DRP-36) is plotted for various circulation rates in figure E.2 as a function of T 2. The
base temperature was limited to ∼ 14 mK. The steeper curves correspond to a higher
circulation rate, which was adjusted by changing the level of heat applied to the still. The
extrapolated intercept on the left axis corresponds to the intrinsic heat load on the mixing
chamber, which typically ranges from 0.6 µW to 1.6 µW. This indicates that the intrinsic
heat load of the fridge is affected by the increased return heat load from the additional
helium circulating.
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fridge. Figure adopted from reference [125].
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Appendix F

Low 1/f−Noise Differential Amplifier

This section summarizes the important points of a project that involved the construction
and improvement of a differential voltage amplifier designed to work with very small signals
at very low frequency.

Ultra-low noise measurements at ultra-low frequency can be useful for a range of ap-
plications from ac-heat capacity and susceptibility, to gravitational wave detection, to
building vibration measurements. Many of the best amplifiers available on the market are
limited in this regard, and they are typically designed for use above ∼ 1 Hz. They are
also limited by intrinsic 1/f−noise (pink noise, or flicker noise) that arises in almost every
condensed matter system.

The amplifier design shown in figure F.1 was described by Scandurra et al., in reference
[196], where optimal values of the components are summarized. This simple design is based
on the standard differential FET configuraiton, but the key component is the IF3601 JFET,
which has an amazing en=0.3 nv/

√
Hz.1 A standard transistor Q1 and RSS biases each

JFET JL, and JR with about 4.5 mA of current, and the gain of the first stage is determined
by the ratio R2/R1 = 100 (40dB). Two instrumentation amplifiers IA1, and IA2 (Burr-
Brown INA131) source current to the JFETs as their input gate voltage is modulated. The
series element RCCC is a for pole-zero compensation, in order to stabilize the amplifier and
prevent feedback oscillations. A second stage amplifier can also be used to raise the voltage
gain by another 40 dB.

1en = Equivalent short circuit input voltage noise. Praised by Horowitz and Hill: runners-up in the the
low-noise comparison are the LSK170B and BF862, with considerably lower capacitance than IF3601.[197]
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Figure F.1: Schematic diagram of the two stage differential amplifier. Figure adapted from
reference [196].

The amplifier is powered by ±18 V,2. An aluminum Hammond enclosure was used
to shied from rf noise, and low-noise twinax cables were used to transmit signals. The
measured equivalent input voltage noise spectrum measured for several different configura-
tions is shown in figure F.2. It performs even better than stated in the original paper (0.9
nV/
√

Hz instead of 1.2 nV/
√

Hz at 10 Hz), and this was improved further by matching
the pair of IF3601’s based on similar transconductance. To do this, we purchased a bag
of 200 IF3601’s directly from Interfect Corp., that were obtained from a single wafer. The
distribution of gate-to-source VGS, voltages for each JFET was then measured with the
circuit shown in figure F.3. The circuit was also modified to work with multiple JFETs in
parallel at each input, which lowers the noise by a factor of 1/

√
N for N JFETs in parallel.

This may involve modifying the circuit to provide double the bias current to the pair. It
may also help to PID control the entire circuit board, or to cool the IF3601’s with liquid
nitrogen to lower their intrinsic noise. Both of these ideas require more testing.

2LM regulated from ±24 V battery cells shorted to ground with capacitors
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Figure F.2: Measured noise voltage density versus frequency for three different configura-
tions of the circuit in figure F.1 (both inputs shorted to ground). The un-matched pair of
IF3601’s had the highest (but still great) noise of ∼0.9nV/

√
Hz at 10 Hz. Closely matching

a pair with the method in figure F.3, lowered the noise to ∼0.8 nV/
√

Hz at 10 Hz. Using
two matched JFETs in parallel at each input (for a total of 4) lowered this even further to
∼0.6nV/

√
Hz at 10 Hz.
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