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Abstract

Privately Constrained Pseudorandom Functions allow a PRF key to be delegated to some
evaluator in a constrained manner, such that the key’s functionality is restricted with
respect to some secret predicate. Variants of Privately Constrained Pseudorandom Func-
tions have been applied to rich applications such as Broadcast Encryption, and Secret-key
Functional Encryption. Recently, this primitive has also been instantiated from standard
assumptions. We extend its functionality to a new tool we call Privately Constrained
Testable Pseudorandom functions.

For any predicate C, the holder of a secret key sk can produce a delegatable key constrained
on C denoted as sk[C]. Evaluations on inputs x produced using the constrained key differ
from unconstrained evaluations with respect to the result of C(x). Given an output y
evaluated using sk[C], the holder of the unconstrained key sk can verify whether the input
x used to produce y satisfied the predicate C. That is, given y, they learn whether C(x) = 1
without needing to evaluate the predicate themselves, and without requiring the original
input x.

We define two inequivalent security models for this new primitive, a stronger indistinguishability-
based definition, and a weaker simulation-based definition. Under the indistinguishability-
based definition, we show the new primitive implies Designated-Verifier Non-Interactive
Zero-Knowledge Arguments for NP in a black-box manner. Under the simulation-based
definition, we construct a provably secure instantiation of the primitive from lattice as-
sumptions. We leave the study of the gap between definitions, and discovering techniques
to reconcile it as future work.
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Chapter 1

Introduction

In recent years, the landscape of theoretical cryptography has expanded considerably from
a wealth of new ideas. Nevertheless, long-standing challenging problems resist satisfying
solutions and drive a search for deeper insights and subtle relationships between concepts.
Definitions are often revisited and refined, proofs of creative techniques remain elusive
for years, and new impossibility results are frequent. In the past, we were restricted to
securing coarse-grained access to data. Today, we have techniques for computing on data
while it remains encrypted, and other fine-grained expressive tools. More recently, extensive
research has been done quantifying the requirements and necessary security limitations of
not only computing over encrypted data, but the evaluation of secret functions.

Consider a user Alice who possesses some private function f , and a user Bob who possesses
some inputs (x1, . . . , xk). Alice wishes to learn (f(x1), . . . , f(xk)) without requiring Bob’s
inputs, and without revealing f to Bob. Tools in the space of multi-party computation
have been able to solve this problem for some time, though with limitations. One of the
earliest schemes in this area is Garbled Circuits, due to Yao. Garbled Circuits (GC) allow
for single-use evaluation of a circuit C on an input x such that the only information learned
by an evaluator is C(x), and the length of the circuit. Reusability was only achieved years
later by Goldwasser et al. [38]. Additionally, this approach requires Bob’s inputs to first be
encoded in some way by Alice. Since we would like Alice’s behaviour to be independent of
Bob’s inputs, this doesn’t quite work. Though, we could at least allow Alice to perform the
encoding without learning the inputs, by introducing another primitive called Oblivious
Transfer.

A more general tool called Functional Encryption (FE) allows for Bob to encrypt his in-
puts {xi} himself using a public key, and be given a functional decryption key which only
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outputs decryptions of {f(xi)}. However, achieving function-privacy in this setting quickly
takes on the flavour of a much more powerful primitive called Indistinguishability Obfusca-
tion (iO). Indistinguishability Obfuscation guarantees that any two functions f0, f1 which
have identical input and output distributions can be encoded in a manner which preserves
functionality but hides which function is encoded. This seemingly restrictive capability
was show to be quite powerful by Sahai and Waters ([57]), who demonstrated techniques
for obtaining Deniable Encryption, Compact Signatures, and many other interesting ap-
plications. Recently, new candidate iO schemes have been proven secure without the use
of multi-linear maps — although requiring relying on new assumptions ([7]), or additional
tools which are yet to be instantiated ([2]).

In order to move away from the realm of obfuscation, one idea to consider is what happens
if Alice gives Bob some manner of reusable encoding of f which hides its description, but
also requires secret information in order to interpret the outputs. Then, perhaps we can
create a primitive in which Bob can produce encodings of {f(xi)} for arbitrary inputs.
Then, we can ask along which dimensions we can explore trade-offs in feasability and
security for such a primitive?

One existing tool which has a similar flavour to this idea is Privately Verifiable Computa-
tion. That primitive allows Alice to delegate a computation to Bob, and can be extended
to support function and output privacy. Though, in that case Alice must provide the
encoding of the input herself. Or, perhaps we could try to use Fully Homomorphic En-
cryption (FHE) to encrypt the circuit representation of f . Then, Bob could choose an
input x and compute the encryption of the universal circuit Ux. This would allow him to
compute encryptions of f(x) without learning f by computing a homomorphic evaluation
taking Encpk(f) as input. Unfortunately, the malleability of FHE means Bob could easily
change the circuit description, or possibly the output as well. Again, we don’t get quite
what we would like.

So, we turn our attention to Privately Constrained Pseudorandom Functions (PC-PRFs).
Constrained PRFs were concurrently introduced in [18], [46], and [19]. Intuitively, this
tool allows the holder of a PRF delegate a restricted version of their key which allows
evaluation for a subset of the domain. For constrained, or “unauthorized” inputs, evalu-
ations performed using the constrained key differ from the function outputs produced by
the original key, otherwise the output distributions should be identical for the remainder
of the domain. Without the restriction, we can make no security arguments with respect
to the pseudorandomness property of PRFs since the holder of an unconstrained key has
trivial distinguishing power. Varying degrees of expressiveness in the constraint can be
used to yield primitives such as Broadcast Encryption and Non-Interactive Identity-Based
Key Exchange.
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Our starting intuition is that for regular circuit-constrained PRFs, evaluation under a
constrained key in fact implicitly produces an encoding of a function evaluation in the form
of a PRF output. Consider a constraint predicate C and an associated constrained PRF
key sk[C]. Then, the output of a constrained evaluation on an input x (computed using
sk[C]) is a deterministic pseudorandom value y. Moreover, y is equal to an unconstrained
evaluation on x computed using sk if and only if C(x) = 1. Hence, whether or not the
equality is satisfied encodes a single bit. However, the definition does not require the
constraint to be private, so nothing is hidden from Bob.

A subsequent work by Boneh et al. added constraint-privacy to the definition [17]. How-
ever, properly characterizing security of the primitive proved to be non-trivial. In a fol-
lowup work, [14] it was shown that a candidate simulation-based security definition was
not satisfiable. Soon after, Canetti and Chen ([27]) showed the original definition must
be restricted to handing out a single constrained key, as security for multiple keys would
immediately imply iO. They also proposed a weaker simulation definition which could actu-
ally be realized. They also showed that PC-PRFs imply Secret-key Functional Encryption.
Since then, several constructions of PC-PRFs have been shown under this definition based
on lattice assumptions.

Using PC-PRFs, the intuition sketched above is a good starting point, but not enough
to satisfy our goal. While constraint-privacy allows Alice to decode a bit privately, she
can do this only knowing Bob’s input if her test is an equality comparison. We would
like Alice’s test to be independent of Bob’s input. Additionally, it would be nice if Alice’s
computational effort did scale with the size of the hidden constraint. To accomplish this,
we introduce a Privately Constrained Testable PRF (PCT-PRF). This new tool inherits
the properties of PC-PRFs, but allows Alice to check whether a PRF output resides in
a range corresponding to b = C(x) without requiring x. Alice recovers the bit b through
the implication that the output must have been produced by some x : C(x) = b. In
applications, our requirements will be somewhat strengthened to allow reusability and
avoid knowledge assumptions.

We will define the properties of this new primitive, and show how to construct it from lattice
assumptions. The construction will follow by observing that several techniques from recent
works for encoding branching programs (which build upon the result of Gorbunov et al. in
[34]) can be combined together. This lets us first construct a privately constrained PRF
with a particular structure, and then apply standard techniques to extend it to admit
testability in a straightforward manner. Similar observations regarding recent extensions
of GGH15 were made independently (but not concurrently) in the work by Chen et al.
([31] and a later update to [27]), such that the resulting construction is almost identical to
that found in their work. However, they do not define or consider testability.
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We will also show how to use the Privately Constrained Testable PRF to build a Non-
Interactive Zero-Knowledge (NIZK) proof system for NP, and prove it is secure with respect
to a candidate security definition for the testable PRF. Unfortunately, as in other PC-
PRFs, correctly stating security is challenging and we are only be able to prove the testable
PRF itself is secure with respect to a weaker security definition. In particular, the NIZK
security analysis does not carry over to the weaker definition. We conclude by leaving
this gap, and related technical challenges as open problems for future study. Recently,
Kim and Wu [47] constructed the first publicly verifiable NIZK scheme for NP from lattice
assumptions, although with a limitation to designated provers. In another recent work,
Quach et al. introduced Laconic Function Evaluation ([55]), which allows functionality
qualitatively similar to our high level goal if Bob is semi-honest. In contrast, their primitive
requires Alice’s effort to scale directly with the function description, and the secret decoding
information is the knowledge of the function itself.

1.1 Thesis Outline

In Chapter 2, we describe preliminaries on notation, a classic definition of pseudorandom
functions, and extended definitions which allow delegation and constraining functionality.

In Chapter 3, we introduce a new cryptographic primitive, a Privately Constrained Testable
Pseudorandom Function and define a candidate security model.

In Chapter 4, we describe non-interactive zero-knowledge proof systems, and show how
to build one from a Privately Constrained Testable Pseudorandom Function and existing
primitives.

In Chapter 5, we review a minimal set of preliminaries on lattices and lattice-based cryp-
tography.

In Chapter 6, we construct the primitive from lattice assumptions, and prove it satisfies
the correctness definitions we have proposed. We then show it is secure in an alternate,
weaker security model than the model introduced in Chapter 3.

In Chapter 7, we explore some of the proof challenges encountered in the construction of
Chapter 6, discuss additional intuitions, and discuss some background details regarding
construction and testability of other lattice-based Privately-Constrained PRFs.

In Chapter 8, we summarize the results of the thesis and present open problems left for
future work.
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Chapter 2

Pseudorandomness and Background

2.1 Notation and Cryptographic Background

To begin, we define some conventions and terminology that will be used throughout the
document.

Sets and Probability Distributions. Let N,Z,R denote the sets of the natural num-
bers, integers, and real numbers. For any n ∈ N, we define the set S = [n] to be the
closed set of values {1, . . . , n}. For any set (or vector), we say that Si is the i-th element or
component of S with respect to some ordering. We will also denote uniform distributions
over sets, denoted U(S), where we assign a probability measure equal to 1/|S| to each
s ∈ S.

We denote sampling elements according to a distribution as s ← S. We may also write

s
$← S, which means to sample s uniformly random among all elements of S. We will

also refer to B-bounded elements, as any value (or vector) whose support is in the range
[−B,B]. A B-bounded distribution is one such that according to some metric, the largest
element belonging to the distribution is B-bounded.

Finally, we define the statistical distance between any two distributions X, Y over a count-
able domain D as ∆(X, Y ) = 1

2

∑
d∈D|X(d)− Y (d)|.

Complexity. We will use standard asymptotic notation to characterize the rate of growth
of functions. Additionally we will use poly(·) to denote some arbitrary deterministic func-
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tion f = O(nc) for a fixed constant c, and PPT to mean algorithms which run in proba-
bilistic polynomial time. Any efficient algorithm is taken to be bounded by a polynomial.
In addition to standard complexity classes P,NP, co−NP we will refer to the class NC1 by
the simplified characterization as the set of all polynomial-depth fan-in 2, fan-out 1 binary
circuits.

We will often implicitly use polynomial time Turing reductions between algorithms. If A
is reducible to B, we write A ≤ B to mean that there exists a polynomial time algorithm
which solves A given O(1) access to an algorithm which solves B. We also write A ≤Q B
if the reduction is a quantum algorithm. All logarithms are implicitly written in base-2,
except where noted.

Cryptography. Let λ denote a security parameter. A negligible function negl(λ) with
respect to an input λ is bounded from above as follows: o(λ−c) (e.g. for every constant
c). A probability is overwhelming if it exceeds 1 − negl(λ). Two distributions (X, Y )
are statistically close if ∆(X, Y ) < negl(λ), and computationally close if for every PPT
algorithm A, the output distributions of the algorithm are close for both distributions over
a bounded quantity of elements in the domain. That is, |Pr[A(1λ, Xλ)]− Pr[A(1λ, Yλ)]| ≤
negl(λ). We abbreviate these distances as ≈s and ≈c respectively. We say a problem P is
computationally infeasible if there is no known PPT algorithm which solves P . Inputs to
algorithms are sometimes written in unary so that algorithms do not depend logarithmically
on the lengths of their bit representations.

We will model security as a series of experiments between an adversary A and a challenger,
both represented as PPT algorithms which operate on probability distributions. The view
of an adversary consists of any information known to them, and any possibly hidden values
on which that information depends. In experiments we may restrict the admissibility of
adversaries by limiting their capabilities. We say the advantage of the adversary is the
probability that they can accomplish the adversarial goal defined in some experiment.

Experiments are modified through a series of hybrid arguments where some component of
a distribution is modified, and an argument is made that the change is statistically close or
computationally close to the distribution in a preceding variant or “hybrid” of the experi-
ment. If the adversary is able to detect a distributional change which is computationally
indistinguishable, we form a reduction which uses the adversary as an oracle to solve the
problem in the computational assumption. Otherwise, we make some argument regarding
the change of the advantage.

Eventually, we consider a hybrid setting where A accomplishes the goal (“wins”) with
some probability close to an “ideal” minimum success probability. The triangle inequality
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is invoked to argue that the resulting changes imply A’s advantage must also be negligi-
ble in the security parameter in the “real” setting. We may instead also work towards
contradiction, and reduce A’s advantage to negligible to argue that A can be used as a
distinguisher between some set of “close” distributions.

We distinguish between selective security, where some aspect of the adversarial goal must
be fixed and announced by A at the beginning of an experiment, and adaptive security
where such restrictions are not present and A can potentially adapt their attack strategy
based on seeing the output of multiple interactions with the challenger. We will consider
experiments in two security models. In the indistinguishability model, an adversary must
distinguish between two possible honestly generated distributions. In the simulation model
the adversary must distinguish whether they are interacting with the challenger, or some
idealized simulator S which produces a distribution which is designed to be computationally
close to the adversary’s view. In the latter case, the distribution is produced given any
auxiliary information which is leaked to the adversary, but independently of their actual
inputs.

Finally, we say a function is one-way if it is computationally infeasible to invert.

2.2 Pseudorandom Functions

Pseudorandom functions (PRFs) were first defined in [37]. PRF are functions which should
be indistinguishable from a truly random function by any computationally bounded ad-
versary who is allowed to query the evaluation of the function on any polynomial number
of inputs (e.g. oracle access).

Definition 2.2.1 (Pseudorandom Function (PRF)). Let K be a key-space, X denote an
input domain, and Y denote a range space. A deterministic efficient function family F =
{F : K × X → Y} is pseudorandom if for every PPT adversary A there exists a negligible
function negl(·) such that∣∣∣ Pr

K←K
[AF(K,·)(1λ) = 1]− Pr

f
$←F̂

[Af(·)(1λ) = 1]
∣∣∣ ≤ negl(λ) (2.2.1)

for all sufficiently large λ ∈ N, and F̂ = {f : X → Y} the set of all functions from X to
Y.

In the definition above, we can take X = {0, 1}n,Y = {0, 1}m for n ≤ m for example. If
|X | < |Y| we may distinguish between the range R ⊆ Y of a PRF F, and its codomain Y .
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Then, it also follows that
Pr
y

$←Y
[y ∈ R] ≤ |X |/|Y|.

The security definition above strictly requires that the adversary not possess the key K, as
otherwise they have trivial distinguishing power. In richer applications, we would like to
delegate the key K to some evaluator A, so that they may evaluate the function themselves
— but without trivially losing the security property above. A natural idea is to delegate
a limited key which is unable to evaluate the function on certain inputs. Then, we may
argue that the same security definition still holds for any points which A can not evaluate
themselves. For example, the PRF described in [37] can easily be made delegateable for
prefix-constraints. In particular, for some x′ ∈ {0, 1}`, a key K[x′] allows A to evaluate
at all inputs x ∈ (x′ ‖ {0, 1}n−`). We may also wish to increase granularity and constrain
some polynomial number of points which do not share a common prefix. Such a tool is
called a puncturable PRF, which is modeled by a more complex experiment.

Definition 2.2.2 (Puncturable Pseudorandom Function). A PRF F : K×X → Y is also
a puncturable pseudorandom function if it admits an additional key space KP , and a tuple
of efficient algorithms (F.Setup,F.Eval,F.Puncture) with the following properties:

F.Setup(1λ): is a PPT algorithm which takes as input a security parameter λ, and outputs
a key-space K, a punctured key-space KP , and a description of F.

F.Puncture(K,S): is a PPT algorithm that takes as input a PRF key K ∈ K, and a poly-
nomially sized set S ⊂ X , and outputs a key K[S] ∈ KP .

F.Eval(K[S], x): is a deterministic efficient algorithm that takes as input a punctured PRF
key K[S] ∈ KP , an input x ∈ X , and outputs y = F(K, x) if x 6∈ S, or it outputs ⊥1

if x ∈ S.

Correctness. A puncturable PRF satisfies correctness if for all x ∈ X , all polynomially
sized sets S ⊂ X , and all pairs of keys (K,K[S]) ∈ K × Kp, the following holds with
probability 1− negl(λ):

F.Eval(K[S], x) =

{
F(K, x) if x 6∈ S
⊥ otherwise.

1We may represent ⊥ as some distinct y′ ∈ Y such that F(K,x) 6= y′ for any K ∈ K, x ∈ X .
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Security. Security for the primitive will hold if the scheme satisfies residual pseudoran-
domness on the punctured points, meaning for all x ∈ S the output of F is indistinguishable
from a uniform function f : X → Y, given K[S]. We define security as an experiment
between a challenger which generates the punctured key, and a PPT adversary A consisting
of the following sequence of interactions:

1. The challenger chooses K
$← K, and a bit b

$← {0, 1}.

2. A issues any polynomial number of evaluation queries {x1, . . . , x`} to an oracle
OF(K,·).

3. A chooses a challenge set S∗ ⊂ X with |S∗| = poly(λ), and sends it to the challenger.
The challenger computes K[S∗] = F.Puncture(K,S∗), and outputs (K[S∗], {F(K, x∗i )}x∗i∈S)

if b = 0, otherwise if b = 1 it outputs (K[S∗], {U} $← Y |S∗|).

4. A outputs a guess b′, which is the output of the experiment.

We restrict security to admissible adversaries, satisfying the condition that no element of
S∗ is ever queried to the evaluation oracle. Then, we say the scheme is a secure puncturable
PRF if for all PPT admissible adversaries A,

Pr[b′ = b] = 1/2 + negl(λ).

Of course, the set of punctured items S can consist of a single challenge point x∗. We
can generalize this concept completely by defining keys which are constrained by arbitrary
functions. That is, K[C] (a key constrained with respect to a constraint C) can be used to
evaluate F all inputs x for which C(x) = 1, but remains pseudorandom on all other inputs.
Clearly, this capability subsumes both puncturing and prefix-constraints by taking C to
be either an equality or prefix-equality testing function. This notion was independently
developed in [18], [46], and [19]. The first instantiation of a circuit-constrained PRF from
standard assumptions was due to [25].

Constrained PRFs allow for the construction of primitives such as Broadcast Encryption
[18], and are also useful as part of proof techniques [57]. Boneh et al. also formalized
privately constrained (or constraint-hiding) PRFs in [17], which possess the additional
property that a constrained key K[C] also hides the constraint function C from any PPT
adversary. (We can define privately puncturable PRFs similarly). For circuit-constrained
PRFs, we specify the input space X to be the same as the input space of the constraint
C: X = {0, 1}`in .
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Definition 2.2.3 (Privately Constrained PRF). A privately constrained PRF family F =

{F : K×X → Y} for a constraint class Cλ = {{0, 1}ω(λ) → {0, 1}} is defined by a tuple of
algorithms (KeyGen, Eval, Constrain, ConstrainEval):

KeyGen(1λ, 1`C , 1`in) is a PPT algorithm that takes as input the security parameter λ, a
circuit description maximum length `C, an input length `in = ω(λ), and outputs a
secret key parameter sk and public parameters pp.

Evalpp(sk, x) is a deterministic algorithm that takes as input a PRF secret key sk, an input
string x ∈ {0, 1}`in, and outputs y ∈ Y.

Constrainpp(sk, C) is a deterministic algorithm that takes as input a PRF secret key sk, a
circuit C : {0, 1}`in → {0, 1} of length at most `C, and outputs a constrained key
sk[C].

ConstrainEvalpp(sk[C], x) is a PPT algorithm that takes as input a constrained key sk[C]
and a string x ∈ {0, 1}`in, and outputs y ∈ Y.

Correctness. A Constrained PRF P preserves functionality for constrained inputs if,
for any circuit C ∈ Cλ, (sk, pp) ← KeyGen(1λ, 1`C , 1`in), all inputs x ∈ {0, 1}`in for which
C(x) = 1, we have

Pr[ConstrainEvalpp(Constrainpp(sk, C), x) = Evalpp(sk, x)] > 1− negl(λ).

Security. We restrict the definitions below to the case of a single constrained key query
to avoid requiring stronger assumptions (cf. Remark 2.2.1).

1. Residual Pseudorandomness. Given access to three oracles (constrained key, evalua-
tion and challenge), the output of Evalpp(·) is indistinguishable from random for any
inputs not queried to the evaluation oracle, or is producible by ConstrainEvalpp(sk[C], ·).

• Constrained key oracle. Given a circuit C ∈ Cλ, the challenger outputs a con-
strained key sk[C]← Constrainpp(sk, C).

• Evaluation Oracle. Given an input x ∈ {0, 1}`in outputs y ← Evalpp(sk, x).

• Challenge Oracle. Given an input x∗ ∈ {0, 1}`in, the challenger samples b
$←

{0, 1}, and outputs y ← Evalpp(sk, x
∗) if b = 1, and y

$← Y if b = 0.

10



The adversary begins by querying for a constrained key, and is then allowed a polyno-
mial amount of evaluation queries. A then queries the Challenge Oracle on a selected
input x∗, and receives y. At the end of the experiment, A outputs b′, and wins if
b′ = b. An adversary A is admissible if x∗ is never queried to the evaluation oracle,
and C(x∗) = 0, to prevent trivial distinguishability. Residual pseudorandomness is
satisfied if the winning probability of any PPT adversary is bounded by 1/2 + negl(λ).

2. Indistinguishability-based constraint privacy. Given access to two oracles (constrained
key and evaluation), for any selectively chosen C0, C1 ∈ Cλ, the constrained keys
sk[C0], sk[C1] are computationally indistinguishable.

• Constrained key oracle. Given a pair of circuits C0, C1 ∈ Cλ, the challenger sam-

ples a bit b
$← {0, 1} and outputs a constrained key sk[Cb]← Constrainpp(sk, Cb).

• Evaluation Oracle. Given an input x ∈ {0, 1}`in, and a bit b, outputs y ←
Evalpp(sk, x).

The adversary begins by querying the challenger with two circuits C0, C1 ∈ Cλ, and
receives back sk[Cb] for a random bit b. A is then allowed a polynomial amount of
evaluation queries. At the end of the experiment, A outputs b′, and wins if b′ =
b. For admissibility we require that C0(x) = C1(x) for all inputs x queried to the
evaluation oracle, to prevent trivial distinguishability. Constraint privacy is satisfied
if the winning probability of any PPT adversary is bounded by 1/2 + negl(λ).

Remark 2.2.1 (Security (Constraint Privacy)). Canetti and Chen [27] showed that a scheme
which satisfied security for multiple distinct constraint queries would imply the much
stronger primitive of Indistinguishability Obfuscation (iO) [11]. To separate the analy-
sis from that of iO, we limit admissibility to a single constraint query (which are always
selectively chosen).

Canetti and Chen also showed for selectively chosen constraint, the above indistinguishability-
based constraint privacy and pseudorandomness definitions are equivalent to the following
simulation based definition. In particular, simulation implies indistinguishability by a
straightforward hybrid argument where C0 is switched to C1 by being simulated in an
intermediate step.
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Definition 2.2.4 (Privately Constrained PRF Simulation Security). For any stateful PPT
algorithm A, there exists a PPT stateful simulator S such that{

ExprealA (1λ)
}
λ∈N

c
≈
{
ExpidealA,S (1λ)

}
λ∈N.

A may ask a single constraint query for some circuit C ∈ Cλ followed by a polynomi-
ally bounded number of evaluation queries. In the ideal experiment, the constrained key
is produced by a simulator which receives only the size of the constraint `C. In the ideal
experiment, the simulator also learns an indicator bit dx = C(x) to enforce consistency.2

If dx = 0, S answers evaluation queries by (statefully) sampling a uniformly random value
from the co-domain. Otherwise, it answers by evaluating using the simulated key. The
output of the experiment is the output bit of A.

ExprealA (1λ):

1: (sk, pp)← KeyGen(1λ, 1`C , 1`in)
2: A → C
3: sk[C] = Constrainpp(sk, C)
4: A ← sk[C]
5: Repeat:
6: A → x
7: y = Evalpp(sk, x)
8: A ← y

9: A → b; Output b

ExpidealA,S (1λ):

1: S ← 1λ

2: A → C
3: sk[C̃] = S(1`C )

4: A ← sk[C̃]
5: Repeat:
6: A → x; dx = C(x)
7: if dx = 1 then
8: y′ = S(x, dx)
9: else

10: y′
$← Y

11: end if
12: A ← y′

13: A → b; Output b

Recently, concrete instantiations based on LWE (Definition 5.2.4) have been achieved in
[27], [22], [54], [31].

2We can consider an alternate formulation where the adversary provides the indicator bit, and the ex-
periment aborts in the event of an inconsistency. However, this is equivalent to restricting the admissibility
of the adversary and having the simulator learn bx from the environment.
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Chapter 3

Range-testable Pseudorandom
Functions

3.1 Definitions

Here, we formally define the notion of a Privately Constrained Testable PRF (PCT-PRF),
and consider a relevant security model.

Definition 3.1.1 (Privately Constrained Testable PRF). A privately constrained testable

PRF family P = {P : K×X ×{0, 1} → R0∪R1} for a constraint class Cλ = {{0, 1}ω(λ) →
{0, 1}} is defined by a tuple of algorithms (KeyGen, Eval, Constrain, ConstrainEval, Test).
With respect to Eval as defined below, we have Rb = ∪x∈XEvalpp(sk, b, x) and R0 ∪R1 ⊆ Y:

KeyGen(1λ, 1`C , 1`in) is a PPT algorithm that takes as input the security parameter λ, a
circuit description maximum length `C, an input length `in, and outputs a secret key
parameter sk and public parameters pp.

Evalpp(sk, x, b) is an efficient deterministic algorithm that takes as input a PRF secret key
sk, an input string x ∈ {0, 1}`in, a bit b ∈ {0, 1}, and outputs y ∈ Rb.

Constrainpp(sk, C) is a PPT algorithm that takes as input a PRF secret key sk, a circuit
C : {0, 1}`in → {0, 1} of length at most `C, and outputs a constrained key sk[C].

ConstrainEvalpp(sk[C], x) is an efficient deterministic algorithm that takes as input a con-
strained key sk[C] and a string x ∈ {0, 1}`in, and outputs y ∈ Rb for b = C(x).
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Testpp(sk, b, y) is an efficient deterministic algorithm that takes as input a secret key sk, a
bit b, and a value y ∈ Y and outputs a single bit.

Correctness. Fix any C ∈ Cλ. A constrained PRF P has evaluation correctness if for
all (sk, pp)← KeyGen(1λ, 1`C , 1`in), sk[C]← Constrainpp(sk, C) all inputs x ∈ {0, 1}`in,

Pr
sk,x,b

[ConstrainEvalpp(sk[C], x) = Evalpp(sk, x, C(x))] > 1− negl(λ).

We define Completeness and Unique Testability properties next. For completeness, we
require that for any y ∈ Rb, the algorithm Testpp(sk, b

′, y) outputs 1 if b = b′.

Completeness. A testable PRF satisfies testing completeness if for all
(sk, pp) ← KeyGen(1λ, 1`C , 1`in), x ∈ {0, 1}`in , and b ∈ {0, 1},

Pr
sk,x,b

[Testpp(sk, b,Evalpp(sk, x, b)) = 1] > 1− negl(λ).

Next, we define a unique testability over the co-domain Y , and hence both ranges of the
PRF (R0 ∪ R1), in that any output is unambiguously testable as belonging to a single
range Rb with overwhelming probability.

Unique Testability. A testable PRF satisfies unique testability if

Pr
sk,y∈Y

[Testpp(sk, 0, y) = Testpp(sk, 1, y) = 1] < negl(λ).

Security. We restrict the definitions below to the case of a single constrained key query
to avoid requiring stronger assumptions (cf. Remark 2.2.1).

1. Residual Pseudorandomness. Given access to four oracles (constrained key, evalu-
ation, testing and challenge), the output of Evalpp(·) is indistinguishable from random
for any inputs not queried to the evaluation oracle, or not producible by ConstrainEvalpp(sk[C], ·).

• Constrained key oracle. Given a circuit C ∈ Cλ, the challenger outputs a con-
strained key sk[C]← Constrainpp(sk, C).
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• Evaluation Oracle. Given an input x ∈ {0, 1}`in , and a bit b, outputs
y ← Evalpp(sk, x, b).

• Testing Oracle. Given a y ∈ Y , and a bit b, outputs Testpp(sk, b, y).

• Challenge Oracle. Given an input x∗ ∈ {0, 1}`in , the challenger sets b = C(x∗)

and samples c
$← {0, 1}. Finally it outputs y ← Evalpp(sk, x

∗, 1 − b) if c = 1,

and y
$← Y if c = 0.

The adversary begins by querying for a constrained key, and is then allowed a polyno-
mial amount of evaluation and testing queries. A then queries the Challenge Oracle
on a selected input x∗, and receives y. At the end of the experiment, A outputs c′, and
wins if c′ = c. An adversary A is admissible if (x∗, 1−C(x∗)) is never queried to the
evaluation oracle. Residual Pseudorandomness is satisfied if the winning probability
of any PPT adversary is bounded by 1/2 + negl(λ).

2. Indistinguishability-based constraint privacy. Given access to three oracles (con-
strained key, evaluation and testing oracles), for any selectively chosen C0, C1 ∈ C,
the constrained keys sk[C0], sk[C1] are computationally indistinguishable.

• Constrained key oracle. Given a pair of circuits C0, C1 ∈ Cλ, the challenger sam-

ples a bit d
$← {0, 1} and outputs a constrained key sk[Cd]← Constrainpp(sk, Cd).

• Evaluation Oracle. Given an input x ∈ {0, 1}`in , and a bit b outputs y ←
Evalpp(sk, x, b).

• Testing Oracle. Given a y ∈ Y , and a bit b, outputs Testpp(sk, b, y).

The adversary begins by querying the challenger with two circuits C0, C1, and receives
back sk[Cd] for a random bit d. A is then allowed a polynomial amount of evaluation
and testing queries. At the end of the experiment, A outputs d′, and wins if d′ = d.
For admissibility we require that C0(x) = C1(x) for all inputs x, to prevent trivial
distinguishability. Constraint privacy is satisfied if the winning probability of any
PPT adversary is bounded by 1/2 + negl(λ).

3. Conditional One-wayness. We say the PCT-PRF is one-way conditioned on the secret
key if for any PPT adversary A, all (sk, pp) ← KeyGen(1λ, 1`C , 1`in), x ∈ {0, 1}`in ,
b ∈ {0, 1}, we have

Pr
sk,x,b

[A(sk,Evalpp(sk, x, b))→ x] = negl(λ).
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Ignoring the testability properties, the definition of the primitive is quite similar to Defini-
tion 2.2.3, except that the residual pseudorandomness property is “two-sided”. The PRF
definition above has two independent ranges corresponding to b = 0 and b = 1 which are
mapped to independent of any constraint. Recall that in a standard constrained PRF, the
range of the function under sk and sk[C] intersect for all x such that C(x) = 1, where the
range under sk[C] may be induced by the constraining algorithm. Instead, the primitive
above has two ranges which are well defined and testable independently of any constraint
(which may not be guaranteed in a regular PC-PRF) — and the range under some con-
strained key sk[C] may intersect both of them.

In exposition, we will refer to Rb the “b-Range” of the PRF. Hence, Range(P) = (R0∪R1) ⊆
Y . Note that the unique testability property implies |R0 ∩ R1| = negl(λ), and therefore
that |X |/|Y| ≤ 1/2. Rather than having “constrained” and “unconstrained” outputs as
in standard constrained PRFs, and requiring Evalpp(sk, x) to be indistinguishable from
random for all inputs x with C(x) = 0 given sk[C] — we require the output of the function
to be indistinguishable from random for all values not producible using the constrained key.
That is, for any input x with C(x) = b, Evalpp(sk, x, 1− b) should also be indistinguishable
from random.

Also, note that the circuit privacy property has the stronger requirement that the con-
straints queried be functionally equivalent, rather than have the same outputs for all val-
ues queried to the evaluation oracle — since the testing oracle can be used on outputs
not returned from evaluation queries and generated using the constrained key. This triv-
ially allows for distinguishing between any constraints with differing functionality. Given
the extra requirements of functional equivalence, the testing oracle does not provide any
additional capability not already given by the evaluation oracle.

The inclusion of a testing oracle in this definition is done in order to preserve correctness
during hybrid experiments for applications of the primitive where we may wish to switch
between functionally equivalent constraints. Otherwise simulation arguments cannot go
through directly since an adversary gains trivial distinguishing capability.

Remark 3.1.1 (Usefulness of Functional Equivalence). The additional restriction of func-
tional equivalence is only introduced to prevent trivial distinguishing capabilities provided
by the testing oracle (which we will rely on for the proof of security in Construction 4.1.1).
At first glance, it may appear useless if to only support indistinguishability for circuits
which have identical input and output distributions. However, counterintuitively we can
exploit a subtle observation that we can use circuits whose functionality differs on inputs
outside of the input distribution. This technique follows from the techniques introduced
by Sahai and Waters [57], known as punctured programs.
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Chapter 4

Applications

4.1 Designated-verifier Non-interactive Zero-knowledge

In this section we will show how to construct a designated-verifier non-interactive zero-
knowledge (NIZK) proof system where any protocol participant is able to use a shared
public parameter to produce zero-knowledge proofs. Informally, these are proofs which
irrefutably attest to the truth of certain mathematical statements without revealing any
significant information about the why the statement is true.

A designated-verifier scheme is a special case of a privately verifiable proof system in which
verification capability is restricted. When the verifier is designated we require that the
setup (preprocessing step) of the scheme (which produces the public parameters) is done
in a trustworthy manner (or by a trusted-third party). This is crucial for zero-knowledge,
as we can envision a malicious verifier which produces pathologically malformed public
parameters which cause any proofs output by the scheme to trivially leak information, or
allow for the proving of false statements. This weakness is commonly called trusted-setup,
and is also a challenge when designing publicly verifiable proof systems3.

We can now formally define, and construct a Designated-verifier NIZK for NP languages
L (mathematical problems), which are defined together with a relation RL → {0, 1}. We
often omit the subscript on RL when it is obvious from context. A statement (a problem
instance) x belongs to L if and only if there exists a witness (or “certificate”) w such that
R(x,w) = 1. That is, x ∈ L ⇐⇒ ∃w : R(x,w) = 1. We say that the language L is in NP

3Non-interactive proof systems which allow preprocessing, are publicly provable, and publicly verifiable
capture the CRS (”Common Reference String”) model
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if for any statement x ∈ L, there exists a witness w with |w| = poly(|x|) such that R(x,w)
can be evaluated in time poly(|x|, |w|). Our construction will resemble a decomposed ver-
sion of the NIZK construction in [57].

Definition 4.1.1 (Designated-verifier NIZK Argument). Let R be an NP relation for a
language L. A non-interactive zero-knowledge (NIZK) argument for L in the Designated-
verifier model is a computationally sound proof system consisting of the following three
algorithms:

• N.Setup(1λ, R) → (pk, vk): is a PPT algorithm. Given as input the security param-
eter λ and the NP relation R, the setup algorithm outputs a proving/verification key
pair (pk, vk).

• N.Prove(pk, x, w) → π: is a PPT algorithm. Given as input the proving key pk, a
statement x and witness w, the proving algorithm outputs a proof π.

• N.Verify(vk, x, π)→ {0, 1}: is a deterministic efficient algorithm. Given as input the
verification key vk, a statement x and proof π, the verification algorithm outputs 1
if and only if the proof is accepted.

The scheme N must also satisfy the following properties:

Completeness. For all (x,w) for which R(x,w) = 1, and any (pk, vk)← N.Setup(1λ, R):

Pr
(x,w)

[N.Verify(vk, x, π) = 1 | π ← N.Prove(pk, x, w)] = 1− negl(λ).

Soundness. For any PPT bounded adversary A, for any (pk, vk)← N.Setup(1λ, R), and
for all statements x:

Pr[x 6∈ L ∧ N.Verify(vk, x, π) = 1 | (x, π)← AN.Verify(vk,·)(pk)] = negl(λ).

Zero-knowledge. For any PPT bounded adversary A, there exists a PPT simulator S
such that for (pk, vk)← N.Setup(1λ, R), and all (x,w) with R(x,w) = 1,

A(π ← N.Prove(pk, x, w)) ≈c A(π ← S(pk, vk, x)).
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Construction 4.1.1 (Designated-verifier NIZK Argument from PCT-PRF).

• Let λ be a security parameter

• Let R : {0, 1}n × {0, 1}m → {0, 1}, for n = |x|,m = |w|)

• Let P = (P.KeyGen,P.Eval,P.Constrain,P.ConstrainEval,P.Test) be a PCT-PRF with
input size `in = n+m+ λ.

• Let F = (F.KeyGen,F.Puncture,F.Eval) be a puncturable PRF family with input size
n+ 1 and output size ψ = poly(λ, n)

• Let C be the circuit in Fig. 4.1

For convenience, we define the following abbreviated notation. Let Test(i, πi) be an algo-
rithm which outputs b if P.Testppi(ski, b, πi) outputs 1 for exactly one b ∈ {0, 1}, and ⊥
otherwise. Additionally, we take F(K, x) to denote F.Eval(K, x).

Construction Overview. The starting intuition behind the construction is to use the
witness relation R as the constraint circuit C. Then, any PRF input (x ‖ w) will produce
a value y ∈ R1. The designated-verifier can then use sk to test whether y is in fact in
the correct range. This approach only supports a single use. So, we instead consider a
a hypothetical multi-bit output constraint which outputs elements in a range indexed by
a puncturable PRF F(K, (R(x,w) ‖ x)). In this case a valid proof would land in a fixed
pseudorandom range which depends on the statement x, and whether x ∈ L. Intuitively,
forging a proof in this setting implies predicting the PRF output for F(K, (1‖x)) for x 6∈ L,
i.e. for which R(x,w) = 0 for all w. In the proof we will puncture K on some input (1‖x∗),
which preserves functionality of the circuit perfectly, while remapping the target required
for the forgery to something uniformly random.

Of course, the definition of the PCT-PRF is limited to predicates, but we can replicate this
intuition by decomposing the constraint into many constrained keys which output single
bits of F(K, (R(x,w) ‖ x)). We will use a different ski for each component to avoid the
issue raised in Remark 2.2.1. We will also append a salt onto the inputs which is ignored
by the constraint (implicitly treated as a no-op) to facilitate worst-case zero-knowledge
which would be otherwise impossible given the deterministic nature of the PCT-PRF.4

The formal construction proceeds below.

4The salt is also required to satisfy the requirement of the constraint belonging to Cλ, as the size of
the domain for a language with small statements may have size considerably smaller than the security
parameter. In which case, Conditional One-wayness cannot hold in a computational sense.
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N.Setup(1λ, R)→ (pk, vk):

1. Let K ← F.Setup(1λ).

2. For i ∈ [ψ], let (ski, ppi)← P.KeyGen(1λ, |R|+ |F|, n+m+ λ).

3. For i ∈ [ψ], let {ski[Ci]← P.Constrainppi(ski, Ci)}i∈[ψ]

4. Output (pk, vk) = ({ski[Ci]}i∈[ψ], (K, {ski}i∈[ψ]))

N.Prove(pk, x, w)→ π:

1. If R(x,w) = 0, output ⊥
2. Parse pk = {ski[Ci]}i∈[ψ]

3. For i ∈ [ψ]:

(a) Sample ri
$← {0, 1}λ

(b) Let ui = (x ‖ w ‖ ri)
4. Output π = {P.ConstrainEvalppi(ski[Ci], ui)}i∈[ψ]

N.Verify(vk, x, π)→ {0, 1}:

1. Parse vk = (K, {ski}i∈[ψ]).

2. Parse π = (π1, . . . , πψ)

3. Evaluate π′ = (Test(1, π1) ‖ · · · ‖ Test(ψ, πψ))

4. Compute z = F(K, (1 ‖ x))

5. Accept if π′ = z

Prove NIZK

Constants: PRF key K
Input: ui

1: Parse5(x,w, r) = ui
2: Compute β = F(K,R(x,w) ‖ x)

Output: Output βi

Figure 4.1: Constraint circuit Ci

5Note that only an arbitrary no-op is applied to r, and its value is not used functionally inside the
constraint. The constraint computes the entire evaluation of F(K, ·), but only outputs the i-th bit of its
output.
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4.1.1 Security

Theorem 4.1.1. If P is a correct PCT-PRF with testing completeness, and F is a secure
puncturable PRF with respect to Definition 2.2.2, then the NIZK in Construction 4.1.1
satisfies completeness.

Proof. Completeness follows from the correctness and completeness properties of the PCT-
PRF.

Let z = F(K, (1 ‖ x)). For any (x,w) such that R(x,w) = 1 and ri ∈ {0, 1}λ, the output of
the predicate Ci(x ‖w‖ ri) is the i-th output bit of the internal PRF F : βi = F(K, (1 ‖x))i
(i.e. zi). Let ui = (x‖w‖ri) for i ∈ [ψ]. By the correctness property of PCT-PRFs we have
that πi = P.ConstrainEvalpp(sk[Ci], ui) = P.Evalpp(ski, ui, βi) with probability 1 − negl(λ).
Then, by testing completeness of the PCT-PRF it follows that P.Testpp(sk, πi, βi) = 1.

Recall the abbreviated notation from the construction, where Test(i, πi) outputs b if P.Testppi(ski, b, πi)
outputs 1 for exactly one b ∈ {0, 1}, and ⊥ otherwise. Then, the equalities above hold
with overwhelmingly high probability for all i ∈ [ψ].

It follows that π′ = (Test(1, π1) ‖ · · · ‖ Test(ψ, πψ)) = z. By definition, the condition for
accepting the proof is π′ = z. We conclude that the construction satisfies completeness
with the required bound.

Theorem 4.1.2. If P is a PCT-PRF with constraint indistinguishability, and F is a punc-
turable PRF with respect to Definition 2.2.2, the NIZK in Construction 4.1.1 is computa-
tionally sound against selectively chosen statements.

Proof. We prove the claim through a series of hybrid arguments. For the remainder of the
theorem, x∗ is some selectively-chosen challenge statement.

H0: This is the real setting.

H1,i: For all j ≤ i, the constraint circuit Cj instead contains a punctured PRF key K[1‖x∗].

H2: Steps 3-5 of N.Verify calculate a uniformly random value z∗ and compare π′ = z∗

instead of evaluating F and comparing π′ = F(K, 1 ‖ x∗).

Lemma 4.1.1. If P is a PCT-PRF scheme with constraint privacy with respect to in-
distinguishability security of Definition 3.1.1, then for all A we have |Pr[H1,i(A) = 1] −
Pr[H1,i−1(A) = 1]| = negl(λ).
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Proof. In the real setting, the verifier receives a puncturable PRF key K from the trusted
authority, and the set of secret keys {ski}i∈ψ, and p = ({ski[Ci]}i∈[ψ], the public parameter.
The adversary wins if they produce {(π∗, x∗) | N.Verify(vk, π∗, x∗) = 1 ∧ x∗ 6∈ L}. Let
H0(A) denote the advantage of the adversary A in attacking the soundness of the scheme
on a selectively chosen statement x∗ in the real setting.

The only difference between H0 and H1,0 is that the PRF key K has been punctured on
(1 ‖ x∗). However, since x∗ 6∈ L, there does not exist w∗ such that R(x∗, w∗) = 1, and the
PRF can never be called on the input (1 ‖ x∗) in program Ci. Hence, the behaviour of
both constraints is functionally equivalent. Therefore, if there is a difference in advantage
between the two hybrids, we can use A to create an efficient adversary B against the
constraint privacy of the PCT-PRF.

B samples a key K for the PRF F. B creates a circuit description of Ci (Fig. 4.1) with
K fixed, or with K[1 ‖ x∗] fixed (e.g. C ′i), and issues a constraint query to the PCT-PRF
challenger with both circuits. After receiving the constrained key for one of {Ci, C ′i}, B
answers A’s verification queries for any submitted (x, π) by issuing testing queries to the
PCT-PRF challenger for πi since it does not have the testing key ski. For all other i′ ∈ [ψ],
it performs the tests itself.

Consider the case when i = 1. If the challenger chooses the original circuit Ci, we are
in H0, otherwise we are in H1,1. Any non-negligible change in advantage for A implies B
has non-negligible advantage against the constraint privacy of the PCT-PRF. We repeat
through a series of hybrid arguments over i ∈ [ψ] until all ψ circuits are changed and we
are in H1,ψ.

Lemma 4.1.2. If F is a selectively secure puncturable PRF according to Definition 2.2.2,
then for all A we have |Pr[H2(A) = 1]− Pr[H1,ψ(A) = 1]| = negl(λ).

Proof. For anyA with a non-negligible change in advantage, we create an efficient adversary
B against the security of the puncturable PRF. B plays the role of the NIZK verifier. Before
creating pk, B issues a punctured key query (punctured on (1 ‖x∗)) to the punctured PRF
challenger, and receives back K[1 ‖ x∗] and a challenge value z∗. (Recall above that x∗ is
known to the reduction in the selective security model.) The punctured key is otherwise
functional for verifying all other statements x 6= x∗.

B then samples constrained keys {ski[C ′i]}i∈ψ using K[1 ‖ x∗], and provides them to A.

When verifying the proof π∗, B compares against the value z∗ directly. If A wins, B infers
that it obtained the real PRF output F(K, 1 ‖ x∗) from the challenger and outputs 1.
Otherwise, it outputs 0 to indicate z∗ was uniformly random.
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If the real value was returned, then we are exactly in H1,ψ, otherwise if z∗ is uniformly
random then we are in H2. Therefore, if there is a difference in advantage between the two
hybrids, we can use A to create an efficient adversary B against the security privacy of the
puncturable PRF.

Finally, through the triangle inequality, Lemma 4.1.1 and Lemma 4.1.2, it follows that for
any PPT adversary A the change in advantage between H0 and H2 is at most negligible in
the security parameter.

However, in H2, forging requires producing a uniformly random output, which is exponen-
tially unlikely. Therefore, the scheme satisfies computational soundness.

Theorem 4.1.3. If P is a one-way PCT-PRF given sk, and satisfies correctness as in
Definition 3.1.1, then the NIZK in Construction 4.1.1 is zero-knowledge.

Proof. We begin by defining the behaviour of evaluation oracles which will be used by the
simulator to invoke one-wayness.

{O∗i,b(·)} provides oracle access to the function P.Evalpp(ski, b, ·) for i ∈ [ψ], b ∈ {0, 1}.
Additionally, the oracles provide a challenge functionality as follows: when responding to
an evaluation query on an input x, it first flips a coin and obtains a value c ∈ {0, 1}. If
c = 0 the oracle returns the evaluation on x, otherwise if c = 1 it outputs a uniformly
random element in Rb.

The behaviour of S is defined as:

1. Compute z∗ = F(K, (1 ‖ x))

2. Sample u∗i
$← {0, 1}(n+m+λ)

3. Output (x∗, π = {O∗i,z∗i (u
∗
i })).

Now, we prove the claim through a series of hybrid arguments.
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H0: All proof queries are answered by computing N.Prove(pk, x, w).

H1,i: For i ∈ [ψ] the proof oracle query which produces πi′ for all i′ ≤ i is instead produced
by evaluating P.Evalpp(ski, zi, ·) on an honestly generated input (x ‖ w ‖ r) (without
computing P.ConstrainEvalppi(ski[Ci], ·) and bypassing the constrained key).

H2,i: For i′ ≤ i, the simulator outputs πi by evaluating P.Evalpp(ski, b, u
∗
i ) on a uniformly

random input u∗i ∈ {0, 1}(n+m+λ) .

H3: The proof is completely generated by S.

Lemma 4.1.3. If P is a PCT-PRF scheme with evaluation correctness, then |Pr[H1,i(A) =
1]− Pr[H1,i−1(A) = 1]| = negl(λ).

Proof. By correctness of the PCT-PRF, if R(x,w) = 1, set z = F(K, 1 ‖ x), and compute:

ski[Ci] = P.Constrainppi(ski, Ci)

y = P.ConstrainEvalppi(ski[Ci], (ui)))

y′ = P.Evalppi(ski, ui), zi)

Then:
Pr[y 6= y′] < negl(λ)

Hence, the change is statistically close.

Lemma 4.1.4. If P is a one-way PCT-PRF, then for all A we have |Pr[H2,i(A) = 1] −
Pr[H2,i−1(A) = 1]| = negl(λ).

Proof. First, we see that z = F(K, x) can be generated independently of the witness for any
statement x ∈ L. Furthermore, the outputs are no longer functionally dependent on the
real public parameters pk since O∗i,b outputs values in the correct range of Rb(Pi) regardless
of the constraint circuits Ci.

Consider the case when i = 1. For any adversary A whose advantage differs between H1,ψ

and H2,i, we create an algorithm B which breaks the one-wayness of P.

B computes z = F(K, (1 ‖ x)), ri ← {0, 1}λ, and issues a challenge query to O∗i,zi on the
input u∗i = (x ‖w ‖ ri) to generate πi. The resulting proof (π1, . . . , πi, . . . , πψ) is forwarded
to A. If A outputs 0, B concludes the value returned by the oracle is not the evaluation
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of a valid input (P was evaluated on an input which did not contain a valid witness) and
we are in H3,1, otherwise we are in H2,ψ. We repeat for i ∈ [ψ].

Finally, observe that H2,ψ = H3. By Lemma 4.1.3 and Lemma 4.1.4, for any PPT bounded
A we have that H0 is indistinguishable from H3, where the proof is simulated without
knowledge of the witness. Any adversary which wins with non-negligible probability implies
inverting the PCT-PRF. We conclude that the scheme satisfies zero-knowledge.

4.1.2 Comparison with other Works

Since we will focus on a lattice-based instantiation of PCT-PRFs in Construction 6.3.1, we
will focus on comparing against NIZKs which can be instantiated from lattice assumptions.
The first Designated-Verifier NIZK for NP which can be built from lattice assumptions is
due to [52]. Their scheme is built via a black-box transformation from any Public-key
Encryption scheme, and a 3-round interactive zero-knowledge protocol for honest verifiers
(often called a Σ-Protocol). Lattice-based Σ-protocols are still in active development and
struggle with efficiency. In general, achieving NIZK schemes from lattice assumptions
incurs a tricky balance between soundness and zero-knowledge, which necessitates large
amount of parallel repetitions, and rejection sampling in existing strategies. ([48], [13])
It is difficult to compare the computation or communication complexity of their scheme
to Construction 4.1.1, without comparing between concrete instantiations. Though, in
Chapter 6, we will rely on some heavy machinery in order to construct PCT-PRFs, so it is
reasonable to assume that our scheme is less efficient than the most efficient instantiations
of [52].

Kim and Wu also constructed as Designated-Prover from lattice assumptions in [47]. Their
scheme can either involve a designated verifier, or be made publicly verifiable (but always
requires a designated prover). Their work was based on a transformation from the Fully
Homomorphic Signature scheme in [39], and any symmetric encryption scheme.

Since their scheme requires very specific tools, it is more reasonable to conjecture perfor-
mance of their scheme vs. our instantiation. The [47] construction can have its performance
potentially improved by restricting attention to evaluation of branching programs (which
recognize NC1), using the evaluation techniques of ([24] , [40]). This is without loss of
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generality since 3-SAT is NP-Complete and has an NC1 witness relation. Since our instan-
tiation is also limited to NC1, it is more reasonable to theorize about performance com-
parisons. The constructions are comparable in terms of prover and verification complexity.
Any lattice-based schemes which feature some form of constrained circuit evaluation suf-
fer from eventual “correctness degradation”, and must have parameters chosen to bound
the maximum depth of a circuit to be evaluated. Again, [47] clearly yields smaller public
parameters since the correctness degradation incurred can be made much slower.

Both other schemes require that some state be hidden from the verifier to preserve zero-
knowledge. In [47], the prover state must be kept secret, and in [52] the trusted authority
must keep some state hidden from the verifier (but the prover’s parameter can be public).
In contrast, it seems that in our construction zero-knowledge is preserved even if the
verifier receives everything including any coins used during setup — and we only rely on
the designated-verifier restriction to preserve soundness.
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Chapter 5

Lattice-based Cryptography

Here, we will recall a minimum set of basic facts and intuitions about lattices and lattice-
based cryptography which we will make use of in later constructions.

Notation. We rely on some additional notation for the remaining definitions and con-
structions. For any q ∈ N, let Zq = Z/qZ denote the quotient ring of integers modulo q; we
will generally only rely on Zq being an additive group. Similarly, we take elements in Zn×mq

to be matrices of n-dimensional (column) vectors over Zq. Matrices A will be labeled with
bold upper-case letters, and vectors v with bold lower-case.

We will focus on definitions in terms of the `2 (euclidean) and `∞ norms, denoted as ‖·‖ and
‖·‖∞ respectively. We extend the definition of norm to matrices in the standard “operator”
norm convention such that ‖A‖ = maxi‖Aei‖ for ei representing the standard basis vectors
with a 1 entry in their i-th position, and 0’s elsewhere. So, we have the simplification that
‖A‖∞ denotes the largest absolute value of any entry in A. We extend concatenation
notation to matrices and vectors such that for V,W ∈ Zn×k, [V‖W] ∈ Zn×2k.

We also recall the definition and properties of the Kronecker product, which is the standard
tensor product on linear maps defined as follows. For any i× j matrix A and k× l matrix
B, the Kronecker product A⊗B is the ij × kl matrix:

A⊗B =

a11B · · · a1jB
...

. . .
...

ai1B · · · aijB


With the aij being entries of A. Note that if ‖A‖ = 1, it follows that ‖A ⊗ B‖ ≤ ‖B‖.

In particular, ‖I⊗B‖ = ‖B‖ for any B (strict equality). We will also rely on the “mixed
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product” property of the Kronecker product, which states that for all matrices (A,B,C,D)
where the products AC, and BD are well-defined it holds that:

(A⊗B) · (C⊗D) = (AC)⊗ (BD)

In particular we will exploit this in analyses of correctness, and make use of the fact that
the Kronecker product is also a multiplicative homomorphism.

5.1 Lattices and Computational Problems

Definition 5.1.1 (Integer Lattices). An m dimensional lattice Λ is a discrete additive
subgroup of Rm. A lattice is completely specified by some non-unique set of linearly
independent m-dimensional basis vectors B = {b1, . . . , bk}. We define the lattice specified
by B as:

Λ(B) = {Bz : z ∈ Zk}.

We call B a basis of Λ, similarly to bases for vector spaces. A lattice Λ(B) has rank k ≤ m
depending on the rank of its basis, e.g. if k = m the lattice is full-rank. For every lattice
Λ, there also exists a dual -lattice Λ∗ defined as follows:

Λ∗(B) = {v ∈ span(Λ) : 〈v,x〉 ∈ Z, ∀x ∈ Λ(B)}.

Then, B∗ = B(BTB)−1 is a basis for Λ∗ — that is Λ(B∗) = Λ∗(B). For any full-rank
lattice, we have B∗ = B−T . Finally, it holds that for any lattice Λ, (Λ∗)∗ = Λ.

Every lattice has a fundamental region defined by the k-dimensional parallelepiped formed
by its basis vectors. The volume of the parallelepiped is |det Λ|, also called the volume of
the lattice. Tiling the fundamental region over Rm also generates the lattice. So, without
loss of generality all operations taking place within the lattice can be done modulo the
fundamental region instead.

Next, we state an important definition regarding the set of distinct shortest vectors with
respect to a `p norm (discounting the origin point, which is contained in any lattice).

Definition 5.1.2 (Successive Minima). Let Br denote the closed m-dimensional ball with
radius r centered at the origin. For a rank k lattice Λ, we define the set {λi}i∈[k] such that
for each i:

λi(Λ) = min{r : dim(span(Λ \ {0} ∩ Br)) ≥ i}.
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Sometimes notation is overloaded and λi refers to v ∈ Λ such that‖v‖ = λi. Then, the
(possibly non-unique) shortest vector in any lattice is often called λ1. A famous theorem
by Minkowski states that

λ1 ≤
√
k · |det Λ|1/k.

It follows immediately that the set of vectors B = {λi} forms a basis for Λ. Contrary to
this, a set of any linearly independent vectors does not necessarily form a basis for the
lattice. Since lattices are discrete, the inclusion of a rational scalar multiple of some λi
means the resulting basis forms some sublattice Λ′ ⊂ Λ instead. In general, lattice bases
are not-unique, as multiplying by any matrix U with |det U| = 1 generates a different basis,
and preserves the discreteness. This also implies that the volume of the lattice is invariant
of the choice of basis. In particular, we may derive a basis B′ for some lattice Λ(B) which
gives no additional insight regarding the vector λ1 (or its norm) over the universal bounds.

Next, we briefly define two classical computational problems on lattices. Note that no
cryptographic systems have been created whose hardness is based directly on the prob-
lems. Instead, we will define a related, but distinct set of problems whose use is currently
understood for cryptographic implementations.

Definition 5.1.3 ((Approximate) Shortest Vector Problem (SVPγ)). Given a random basis
B of a lattice Λ(B), find a γ · λ1-short vector in Λ. (That is, find non-zero v ∈ Λ such
that ‖v‖ ≤ γ · λ1.)

In the case of γ = 1, we have the shortest vector problem (SVP). For γ <
√

2, the
approximate SVP problem is known to be NP-hard. [49]. On the other hand, for extremely
large γ the problem is trivial as any non-zero lattice vector constitutes a valid solution.
SVPγ is known to lie in NP∩co-NP for γ ≈

√
m [4] (for the remainder of the section we will

focus on full-rank lattices). Note that the problem is stated in terms of a random basis,
since for “nice” bases the problem is trivial. This implies that rewriting a basis in terms of
much smaller lattice vectors is difficult as well. Algorithms which accomplish this are called
“Basis Reduction” algorithms, which currently are able to solve SVP with sub-exponential
approximation factors. Some algorithms are surveyed in Section 2.2 of [53].

Definition 5.1.4 ((Approximate) Closest Vector Problem (CVPγ)). Given a random basis
B of a lattice Λ(B), and a target point t ∈ span(Λ), find x ∈ Λ such that dist(t,x) ≤
γ ·dist(t,Λ). Equivalently, find a point in the lattice whose distance from t is no more than
γ times the distance between t and its nearest lattice point.

It can be shown that SVPγ ≤ CVPγ for any γ. Intuitively, the shortest vector in a lattice
is a non-zero vector which is closest to the origin, so an oracle for CVP which takes the
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origin as its input point, outputs the solution to the CVP which also solves SVP — this
intuition can be made rigorous for any approximation factor. We can also observe that for
any γ · dist(t,Λ) ≤ ‖λ1‖/2, the solution to the problem is guaranteed to be unique — this
follows from a property sometimes called the packing distance.

5.2 Cryptographic Assumptions

When designing cryptographic tools, we are interested in working with problems which
are computationally hard in the average-case. We can design such problems on a special
family of lattices known as q-ary lattices.

Definition 5.2.1 (q-ary Lattices). Let n,m, q ∈ N. For any A ∈ Zn×mq , define the follow-
ing full-rank m dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Zm : Az ≡ 0 (mod q)}
Λ(AT ) = {z ∈ Zm : ∃s ∈ Zn | z ≡ sTA (mod q)}

With the property that qZm ⊆ Λ ⊆ Zm. It also holds that:

q · Λ⊥(A)∗ = Λ(AT )

We also consider a generalized definition:

Λ⊥u (A) = {z ∈ Zm : Az ≡ u (mod q)}
= Λ⊥(A) + x

which is defined for any syndrome u ∈ Znq for which there exists an integral solution to
Ax ≡ u (mod q). This lattice corresponds to some coset of Λ⊥(A) in Zm induced by x.

Note that in the definition of Λ⊥(A), the matrix A is not the basis of the lattice — rather
the basis is defined by some basis for Ker(A). Next, we state a generalization of the
Leftover Hash Lemma [44] necessary for establishing later definitions.

Lemma 5.2.1 (Lattice Leftover Hash Lemma ([56] Claim. 5.3, [35] Lemma 5.1)). Let
n,m, q ∈ N. For a constant c > 1 and m ≥ cn log q, let ε = q−(c−1)n/4. Then with

probability 1− ε, for A
$← Zn×mq , x

$← {0, 1}m,u $← Znq , we have

∆(Ax mod q,u) < ε.
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In particular, it follows from Lemma 5.2.1 that for some m > 2n log q and any u ∈ Znq ,
there exists a x ∈ {0, 1}m such that Ax ≡ u (mod q). That is, any syndrome of Λ⊥u (A)
is well-defined. Now, we can define our first computational assumption.

Definition 5.2.2 (Short Integer Solution (SISn,q,m,β)). Given A
$← Zn×mq and a bound β,

find a non-zero vector z ∈ Zmq with norm ‖z‖ ≤ β such that

Az ≡ 0 (mod q).

For the problem to admit a solution in general, we require β >
√
n(blog qc+ 1). We can

also notice that the problem implies a collision resistance function Ax mod q for any small
x (e.g. in {0, 1}m) since any collision immediately yields a short solution to 0. We will
rely on this fact in the next section.

Theorem 5.2.1. For any m = poly(n), β > 0, and sufficiently large q ≥ β · poly(n),
GapSVPγ ≤ SISn,q,m,β for some γ = β ·poly(n), where the reduction implies solving GapSVPγ
on any n-dimensional lattice.

The problem GapSVP is a decisional version of Definition 5.1.3 (i.e. decide whether the
‖λ1‖ is less than or greater than some bound) which has similar hardness to SVP across
the spectrum of approximation factors. In [35], it was shown that the bounds poly(n)
for both the size of the modulus and the approximation factor could be set to Õ(

√
n).

Improved bounds were established in later works ([53]). Note that SIS resembles solving a
shortest-vector problem on the lattice Λ⊥(A), and the hardness of the problem decreases
as m increases.

Another remarkable aspect of the theorem statement is that solving an average-case in-
stance of SIS (e.g. a problem on a special m-dimensional lattice) implies solving a different
problem on any n-dimensional lattice, i.e. in the worst-case.

Next, we will define a distribution necessary for defining the rest of the properties we will
need. Going forward, all problems and constructions will be presented, and proven secure
assuming the hardness of some lattice problem with a certain approximation factor.

Definition 5.2.3 (Discrete Gaussian Distributions Over Lattices [35]). Define the Gaus-
sian function on Rn centered at c with standard deviation σ > 0 as:

∀x ∈ Rn, ρσ,c(x) = ρc(x/σ) = e−π‖x−c‖
2/σ2
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If c is omitted, it is assumed to be 0. Then, the Discrete Gaussian distribution over a
lattice Λ is the probability measure assigned to all points x ∈ Λ:

DΛ,σ,c =
ρσ,c(x)

ρσ,c(Λ)

So, sampling from DΛ,σ,c produces discrete values with respect to a Gaussian probability
mass function with parameter σ. In particular, the mass assigned to any x 6∈ Λ + c is 0.
We will sometimes use the notation above in a compact form when sampling matrices, e.g.
Dk×m

Z,σ = (DZk,σ)m. Note that the use of Zk is no different than the definition above since

Zk = Λ(Ik) is the k-dimensional standard integer lattice for any k ∈ N.

Next, we state a celebrated result by Regev [56] which defined a generalization of the
“Learning Parity with Noise” problem. We state the decisional version of the problem.

Definition 5.2.4 ((Decisional) Learning with Errors (LWEn,q,χ)). Let n = poly(λ), q ∈ N,

and χ = DZ,σ : σ ≥ 2
√
n. Then for any a

$← Znq , u
$← Znq , private s

$← Znq , and e ← χ,
distinguish between the following two distributions:

(a,u), (a, 〈s,a〉+ e mod q)

with probability significantly better than 1/2 + negl(λ).

Regev showed that solving LWE in the average-case implies solving GapSVPγ in the worst-
case via a quantum algorithm. In particular, if we fix s, and for any m = poly(n) sample

A
$← Zn×mq , and eT ← χm, then we can define LWEn,m,q,χ as to claim:

(A, b = sTA + eT mod q) ≈c (A, b
$← Zmq )

Theorem 5.2.2 ([56]). Let n = poly(n), q ≤ 2poly(n), and χ = DZ,σ with σ ≥ 2
√
n. For

any m = poly(m) and γ = Õ(nq/σ), it holds that:

GapSVPγ ≤Q LWEn,m,q,χ

We can think of LWEn,m,q,χ as solving a variant of CVPγ with a distance guarantee (called
“Bounded Distance Decoding”), given the point t = sTA + eT mod q near the lattice
Λ(AT ). We typically refer to s as the secret term, and e as the error or noise term (which
is also a secret in the problems above). It was shown in [35] that the family of lattices
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Λ(AT ) defined by any A ∈ Zn×mq has the particularly nice feature that ‖λ1‖∞ ≤ q/4.
This implies that if an LWE error term is bounded by q/4, we can unambiguously recover
a distinct lattice point. Generalizations of this fact form the basis of most lattice-based
encryption schemes; we will also make use of this property in our constructions.

While simply rounding the output of ρσ,c may produce an output from the wrong dis-
tribution, [35] showed it is also possible to efficiently sample within negligible statistical
distance of a discrete Gaussian distribution over any lattice, and any coset. This algorithm
was improved in [21] to sample from the distribution exactly. This means that LWE-based
primitives can also actually be implemented in practice on physical devices since we can
handle the simple case of sampling over Z. (Otherwise we may have a separation between
what can be proved, and what can be implemented)

Lemma 5.2.2 ([21]). Let B be a basis for a lattice Λ = Λ(B), and B̃ be it’s Gram-
Schmidt orthogonalization. Then there is a PPT algorithm which samples from DΛ,σ,c for

any c ∈ Rm, and σ > ‖B̃‖ ·
√

ln(2m+ 4)/π.

Now, we will bound the norm of samples drawn from discrete Gaussian distributions which
will be necessary in later analysis. This will also justify that it is quite easy to sample from
a distribution χ which is wide enough to satisfy the requirements of Definition 5.2.4 while
preserving unique decoding of vectors in Λ(AT ).

First, we introduce a quantity ηε known as the smoothing parameter [51], which is one of
the most important concepts in lattice-based cryptography. This is the minimal parameter
σ such that the expectation of the discrete Gaussian DΛ,σ,c is statistically close to that of
the continuous m-dimensional Gaussian centered at c with the same σ. As a consequence,
[49] shows that adding Gaussian noise with parameter σ > ηε to any lattice point results
in a point within statistical distance 2ε from uniform over Rm.

The quantity ηε is defined such that a continuous Gaussian over the dual lattice has most
of its mass centered around the origin. The reason for this definition is complex, but a nice
intuition is that applying a Fourier transform to a “narrow” continuous Gaussian distri-
bution over Λ∗ corresponds to a “wide” (and hence close to uniform) discrete distribution
over Λ. These properties end up being crucial to the reductions in [56], and provides a
different perspective on why discrete gaussian noise is present in Definition 5.2.4.

Lemma 5.2.3 (Smoothing Parameter). For an m-dimensional lattice Λ and ε > 0, the
smoothing parameter ηε(Λ) is the smallest σ such that ρ1/σ(Λ∗ \ {0}) ≤ ε.

Lemma 5.2.4 ([35]). For any m-dimensional lattice Λ and ε > 0, we have

ηε(Λ) ≤ ‖B̃min‖ ·
√

ln(2m(1 + 1/ε))/π,
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where Bmin = {λ1, . . . , λm} is the minimum basis of Λ, and ‖B̃‖ denotes the norm of its
Gram-Schmidt orthogonalization.

We can then bound the norm of any discrete Gaussian sample.

Lemma 5.2.5 ([51]). For any m-dimensional lattice Λ, c ∈ span(Λ), ε ∈ (0, 1), and
σ ≥ ηε(Λ), we have

Pr
x←DΛ,σ,c

[
‖x− c‖ > σ

√
m
]
≤ 1 + ε

1− ε
· 2−m.

If c = 0, the bound holds for any σ > 0, with ε = 0.

Now, we will define useful generalizations of the LWE assumption. We can easily extend
the definition to matrices by noticing each row of any B = SA + E mod q takes the form

sTi A + eTi mod q. So, provided we take S
$← Zn×nq and E ← χn×m we can demonstrate

hardness through a simple hybrid argument in which each row of B is replaced with a
uniform element in Zmq by invoking LWEn,m,q,χ.

In [8] it was shown that LWE remains hard if the secrets are sampled from the error
distribution χ (e.g. the secrets have small norm) (with a small loss on the number of
samples m), this is called the “Normal Form” LWE. Boneh et al. [16] showed the problem
remains hard if the public matrix A ∈ Zn×m has low-norm entries provided the dimension
n is increased to O(n log q) and the secrets are drawn uniformly over Znq . Chen et al. [31]
generalized these two ideas and showed that the roles of the S and A terms could also be
swapped (i.e. A becomes the secret component). This holds even if S has small norm, as
long as A remains uniformly distributed and dimensions are chosen appropriately.

We will make use of the [8] and [16] version of LWE in this work, so to distinguish them we
will adopt the notation of [31] and specify the problem with the subscripts LWEn,m,q,θ,π,χ
for a secret distribution θ, a public distribution π, and an error distribution χ. For brevity,
we may drop subscripts when not necessary, or obvious from the context.

5.3 Lattice Trapdoor Techniques

The techniques established in the previous section show we can sample from discrete Gaus-
sian distributions over any lattice, with the norm depending on the “quality” of the basis
(e.g. ‖B̃‖). In particular, we sample short vectors from Λ⊥(A) if we pick some small basis
for Ker(A) and derive A later, which lets us solve SISn,q,m,β for β as stated in Lemma 5.2.5.
However, this requires some careful consideration. The average-case hardness of SIS is
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on average over all A ∈ Zn×mq . The procedure described above could instead produce
pathological A for which the problem is not difficult. Moreover, preimages output by the
algorithm could leak information about the private B.

What we would like is to be able to sample A which is close to uniform over Zn×m together
with a basis which lets us sample short solutions. If A is indeed close to uniform, SIS
implies it should be difficult to find a basis which allows sampling solutions with norm less
than β. This leads us to the construction of a trapdoor function, for which it is difficult to
find preimages, but easy to verify congruences Ax mod q — in which case we can consider
the “short” basis a trapdoor TA for A.

In particular, we would like to sample short solutions from any coset u of Λ⊥u(A) since
this is strictly more useful than sampling preimages of 0. For example, such a scenario
immediately yields a signature scheme in the random oracle model where u = H(m).
However, in order to make security claims we first need to define an inhomogenous variant
of SIS to relate any scheme to a computational assumption.

Definition 5.3.1 (Inhomogenous Short Integer Solution (I-SISn,q,m,β)). Given A
$← Zn×mq ,

u ∈ Znq and a bound β, find a vector x ∈ Zmq with norm ‖x‖ ≤ β such that:

Ax ≡ u (mod q)

It follows immediately that SISn,q,m,2β ≤ I-SISn,q,m,β since any collision x,x′ : Ax ≡ Ax′

(mod q) implies A(x−x′) ≡ 0 (mod q) which yields a solution (x−x′) to SIS with norm
‖x−x′‖ ≤ 2β. In practice, any parameters must be chosen so that not only can we sample
preimages for a matrix A ∈ Zn×mq with norm β, but SISn,q,m,2β is hard with respect to a
security parameter λ.

We now state the minimum set of requirements for achieving lattice trapdoors. All of the
techniques in the literature satisfy the requirements sketched above in terms of producing
a random looking A and not leaking information about the trapdoor. The best performing
techniques are due to [50], which do not follow the “short basis” approach but are limited
to q-ary lattices, whereas the strategies in [35] work for any lattice.

Lemma 5.3.1 (Lattice Trapdoors and Preimage Sampling ([5], [35], [50])). Let n, q ∈ N,
and m = O(n log q). Then there exists a PPT algorithm TrapGen(1n, 1m, q) which outputs
a matrix A ∈ Zn×mq together with a trapdoor (A,TA), such that A is statistically close to
uniform over Zn×mq . Additionally, there is a PPT algorithm PreSample(TA,u, σ) which for

any σ ≥ O(
√
n log q) and any u ∈ Znq outputs a sample x ∈ Zm from DΛ⊥(A),u,σ such that

Ax ≡ u (mod q).
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For convenience we will sometimes abbreviate the output d of PreSample(TA,u, σ) as
d = A−1(u, σ), omitting the standard deviation parameter outside of proofs to simplify
exposition. Of course, A is not invertible, but it is the case that Ad ≡ u (mod q). The
definition extends immediately to sampling preimages of any n× k matrix U ∈ Zn×kq .

Remark 5.3.1. Some works which focus on ‖·‖∞ often write the output of PreSample as
being O(n

√
log q) bounded, rather than (n log q)−1/2 · ‖σ ·

√
m‖∞ ≤ (

√
n log q)2. We can

restrict PreSample to only outputting samples with this bound. A similar remark is made
briefly in [34] with the qualifier that this does not impact the resulting distribution by a
significant factor. Of course, we could always treat any `2 norm values as worst-case bound
in `∞ analyses instead, which results in more well distributed values, but makes analysis
more nuanced.

Lemma 5.3.2 ([27], [35]). For any (A,TA) ← TrapGen(1n, 1m, q), σ > 2
√
n log q the

following holds with overwhelmingly high probability:

(A,x,y : y
$← Znq ,x = A−1(y, σ)) ≈s (A,x,y : y = Ax,x← DZm,σ)

Proof. The statement follows immediately from Lemmas 5.2, 5.3 and Corollary 5.4 in
[35], since the matrix A output by TrapGen(1n, 1m, q) is statistically close to uniform for
sufficiently large m ≥ 2n log q, the columns of A generate Znq with overwhelmingly high

probability, and σ = ω(
√

logm) ≥ ηε(Λ
⊥(A)).
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Chapter 6

Construction from Learning with
Errors

6.1 Lattice-based PRF Fundamentals

Various lattice PRFs have been studied since the first construction by Bannerjee et al.
in [10]. Many of the constructions are syntactically similar, but depending on choices of
parameters and distributions, must be based on widely different security assumptions. We
will review simplified descriptions of the underlying structures, and outline the challenges
faced when trying to build a PRF which is range-testable and privately constrained from
lattice assumptions.

The first intuition in constructing lattice PRFs is that the high-order bits of any LWE
sample b = sTA + eT mod q are unaffected by e, given that the error is drawn from some
B-bounded distribution. However, LWE says that the entirety of the resulting product is
indistinguishable from random — including those bits which are not affected by the error.
With this observation, we could consider rounding the product sTA mod q instead. Then,
as long as the amount of low-order bits dropped by rounding exceeds the maximum size
of any error e with high probability, rounding should produce an identical output instead
of sampling an error. This gives a deterministic function which is also pseudorandom, and
we have the main ingredients for a PRF.

In particular, for a rounding function b·ep : Zq → Zp defined as:

bxep = b(p/q) · xe mod p,
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then for any q/p > B · nω(1), we have

bsTA + eT ep = bsTAep.

Bannerjee et al. also defined a related problem called Learning with Rounding (LWR),
which is essentially the right side of the expression above. The problem asks to distinguish
noisy inner products where the noise is introduced only by rounding. They showed that
for an appropriate amount of rounding specified by p, LWRn,q,p is equally hard as LWEn,q,χ.
The original construction by Bannerjee et al. [10] took the form:

FA,{Si,b}(x) =

∏
i∈|x|

Si,xi ·A


p

(6.1.1)

For a secret key consisting of {Si,b ← χn×n}i∈|x|,b∈{0,1} , A ∈ Zn×mq , and security based on
the normal form LWE assumption.

A subsequent work by Boneh et al. [16] showed that an alternative construction also
possessed key-homomorphic properties, where A0,A1 ∈ {0, 1}m×m are global public low-

norm matrices, and the key is a vector s
$← Zmq :

Fs(x) =

sT ·∏
i∈|x|

Axi


p

(6.1.2)

=
⌊
sT ·Ax

⌉
p

(6.1.3)

A major difference in this scheme was that key size was reduced dramatically, and that
proving security required a different LWE assumption with small normed, higher dimension
public matrices (Definition 5.2.4).

Towards Constraints and Testability. We will use the observation that any PRF
structured like Eq. (6.1.1) can be made testable by sampling A together with trapdoor.
The intuition is that the underlying geometric behaviour of the PRF produces points which
are close to a lattice defined by the secret key and the input. The trapdoor lets us test
this closeness as long as the distance (error) is sufficiently bounded. So, a possible strategy
is to try to construct a Privately Constrained PRF which corresponds to Eq. (6.1.1), and
attempt to introduce testability using the trapdoor.
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The first step can be accomplished using the “GGH15” graph-induced encoding technique
of [34], and was first shown in [27]. However, their construction is also not testable as
described. Informally, the construction preserves the structure of Eq. (6.1.1) aside from a
lossy map which is applied to the A term of the secret key. The map they choose in their
construction is a considerable barrier to testability. Though, some lossy map is required
to make the construction secure, so we will consider an alternate map which does not have
this problem. We will explore this in detail in Section 7.5 after introducing some necessary
definitions.

6.2 GGH15 Encodings and Branching Programs

In [34], it was observed that the homomorphic capabilities of LWE could be creatively
combined with lattice trapdoors to encode constrained walks along directed acyclic graphs.
Extensions of this idea were used to propose candidate multi-linear maps, non-interactive
multi-party key exchange, and other constructions.

We start with a simple example to sketch the intuitions. The example will does not
propose any particular cryptosystem, but serves as a more concrete description of how
lattice techniques can be used to encode a constrained walk on a directed graph. This
concept will be crucial to realizing actual applications. Consider the simple directed graph
G(V,E) with vertices vi,j V = {v0, v1,0, v1,1, . . . , vn,1} below.

v0

v1,0

v1,1

v2,0

v2,1

v3,0

v3,1

Figure 6.1: A simple directed graph

Suppose we associate a matrix and trapdoor (Ai,j,TAi,j
) with each vertex (and A0 for v0).

We can use lattice techniques to allow any party to create an LWE sample corresponding
to the last vertex in a constrained walks as follows:

1. Select a path from v0, P = {b1, b2, b3 | Ai,bi → Ai+1,bi+1
}

39



2. Sample Si ← χn×n,Ei ← χn×m

3. Compute Bi = Si ·Ai+1,bi+1
+ Ei

4. Sample Di ← A−1
i,bi

(Bi) ∈ Zm×m

5. Output P̃ = (A0, {Di}i∈[3])

Then,

A0

3∏
i=1

Di ≈

(
3∏
i=1

Si

)
A3,b3 (6.2.1)

We will analyze the exact structure of such products in the next section. Informally, the
approximation holds because preimages output by lattice trapdoors have low norm, and
we can rely on the hardness of LWE with both small secrets and error terms. If all the
matrices Ai,b are public, we have the following concepts:

1. By assumption only the owner of the trapdoors TAi,j
should be able to sample

preimages.

2. Since each Bi is an LWE sample, then each Ai,bDi = Si ·Ai+1,bi+1
+ Ei,b is also an

LWE sample for matching i, b

3. Every intermediate product resembles an LWE with a more complex error term.

Of course, given the set of vertices anyone can produce an LWE sample, but producing
samples under the output vertex matrices in the manner above implies knowledge of the
trapdoors. Considering these properties, it is tempting to claim that the entire path is
hidden given the encoding.

However, until recently it was unknown how to obtain any positive security results for
similar encodings. Depending on the goals of the construction, components which may need
to stay hidden for security may need to be made public to argue distributional changes are
indistinguishable. In fact, many early candidate constructions have been demonstrated
to be insecure ([32], [30]). It was shown only later, in [27], [42], [58] how to use these
techniques in a secure manner for different applications than those originally proposed by
[34].
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The GGH15 encodings briefly sketched above are more interesting when combined together
with branching programs (via Barrington’s Theorem). Branching programs can represent
all circuits in the class NC1, and can be evaluated by performing a set of ordered state
transitions which is representable by a walk on a graph of the form in Fig. 6.1. In such
a setting, the encoder can publish encodings corresponding to all valid state transitions
{Di,b}b∈{0,1}. Here, the subscripts b depend on the i-th input bit of a circuit C ∈ NC1.

Restricting our attention to a public graph with a fixed topology, we wish to enable an
evaluator to perform all possible connected walks. This allows them to evaluate a program
on any possible input. Assuming LWE, we will be able to prove that the program C, and
its output C(x) are hidden. The encoding strategy will differ from the sketch in that we
will not index the matrices for each vertex by b, but instead encode two possible edges
in the preimages Di,b by introducing structure. We will structure encodings such that a
directed walk on a graph like the one above induces a directed walk on a binary tree (we can
view branching programs as binary decision trees). The encoding strategy will seemingly
deviate from older analyses of LWE, and require some more careful security analysis, but
this will be easily remedied ([27], [42], [58], [31]). Next, we will describe the details and
formally define these properties.

Definition 6.2.1 (Permutation Branching Programs). A width w, length L permutation
branching program {BP(C)} for some circuit C : {0, 1}`in → {0, 1} consists of an ordered
sequences of w × w permutation matrices {Pi,b ∈ {0, 1}w×w}i∈[L],b∈{0,1}, an index to input
map ι : [L] → [`in], and some fixed permutation P∗ ∈ {0, 1}w×w \ Iw. A permutation
branching program is evaluated as follows:

BP(C)(x) =


1 if

∏
i∈[L] Pi,xι(i) = Iw

0 if
∏

i∈[L] Pi,xι(i) = P∗

⊥ else

Theorem 6.2.1 (Barrington’s Theorem ([12])). For d ∈ N, and all depth-d circuits C ⊂
NC1, represented as functions C : {0, 1}`in → {0, 1} there exists a set of width w = 5, length
L = 4d branching programs {BP(C)}C∈C with the same index-to-input map ι : [L] → [`in],
such that: BP(C) = ({Pi,b ∈ {0, 1}w×w}i∈[L],b∈{0,1} ,P

∗, ι).

The definition above can be generalized to non-permutation matrices, which can signifi-
cantly improve efficiency but requires dramatically different constructions and proofs [31].
The property that all branching programs resulting from Theorem 6.2.1 have the same
index-to-input map is of great utility for proving indistinguishability of circuits. We call
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these oblivious branching programs. Furthermore, any branching program can be made to
have the simple map ι(i) = i mod `in at the cost of increasing the length of the branching
program.

Theorem 6.2.2 (GGH15 Evaluation Correctness). Let n,m,w, L ∈ N, t = wn, q ≤
2poly(n),m > Ω(t log q), and let {Ai ∈ Zt×mq }i∈[L+1], {Si,b ∈ Zn×nq ,Ei,b ∈ Zt×mq ,Di,b ∈
Zm×mq }i∈[L],b∈{0,1}, with β∗ = maxi,b{‖Si,b‖∞, ‖Ei,b‖∞, ‖Di,b‖∞}. Let Ŝi,b = Iw⊗Si,b. Then,
there exists q ∈ N such that for all x ∈ {0, 1}L:

A1

L∏
i=1

Di,xi ≈

(
L∏
i=1

Ŝi,xi

)
AL+1 (mod q),

where for all i, b: Di,b = A−1
i (Ŝi,b ·Ai+1 + Ei,b).

Proof. Consider the expanded terms below, where the relation holds modulo q:

A1

L∏
i=1

Di,xi ≡

(
L∏
i=1

Ŝi,xi

)
AL+1 +

L∑
i=1

(
i−1∏
j=1

Ŝi,xi · Ei,xi ·
L∏

k=i+1

Dk,xk

)
︸ ︷︷ ︸

Ex

(6.2.2)

≈ε

(
L∏
i=1

Ŝi,xi

)
AL+1 (6.2.3)

Suppose β = Ω(t
√

log q). Then, a loose upper bound on the error term above is: ‖Ex‖∞ =
β∗ ≤ β(2mβ)L−1. So, for q > β∗, Eq. (6.2.3) holds with precision ε = β∗/q, which can be
easily satisfied if both (β,m) have at most logarithmic dependence on q.

Note that above the secret term Iw ⊗ Si,b simply maps the secret Si,b to each n rows of
an nw ×m matrix, so we can simply view this as “giving out more samples”. Recall from
Definition 5.2.4 that as long as the number of samples remains polynomial this doesn’t
impact hardness by any relevant factor.
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Corollary 6.2.1. For β∗, q as in Theorem 6.2.2, for any p ∈ Z such that p < β∗/q, we
have

A1

L∏
i=1

Di,xi ≡

(
L∏
i=1

Ŝi,xi

)
AL+1 (mod p).

Now, we can describe how to embed branching programs into a GGH15 encoding by
exploiting multiplicative homomorphism and adding some additional structure. Consider
when each Ŝ term is instead written as: Ŝi,xi = Pi,b ⊗ Si,xi , where Pi,b is some w × w
permutation matrix6. Then, a GGH15 encoding of a permutation branching program is a
set of encodings of permutation matrices, and has preimages of the following form:

AiDi,b = (Pi,b ⊗ Si,b) · (Inw ·Ai+1) + Ei,b (6.2.4)

The correctness analysis above is preserved, since multiplying by a permutation matrix has
no effect on the `∞ norm. So, it suffices to prove that the resulting evaluation produces a
valid encoding of a branching program output, we will show this below. Informally, this
works because of the homomorphic properties of the encodings. Since we will only encode
branching programs, which are oblivious — an evaluator can simply “pretend” the square
matrices {Di,b} are the choices of permutation matrices, and compute a subset product
which depends on their input without having to know the underlying circuit description.

Lemma 6.2.1 (GGH15 Evaluation Correctness for Branching Programs (follows from [34],
[27])). Let BP(C) = {Pi,b}i∈[L],b∈{0,1} be the length L, width w branching program repre-
senting a circuit C ∈ NC1 of the form C : {0, 1}`in → {0, 1}. Also, let A1, {Di,b}i∈[L],b∈{0,1}
be a GGH15 encoding of BP(C). Then, for any x ∈ {0, 1}`in the GGH15 evaluation process
produces an encoding of C(x) ∈ {Iw,P∗}.

Proof. Let Ŝi,b = Pi,b ⊗ Si,b, and Di,b = A−1
i (Ŝi,b ·Ai+1 + Ei,b) as in Theorem 6.2.2.

Then for any input x ∈ {0, 1}`in , by Eq. (6.2.3) and multiplicative homomorphism of the
Kronecker product:

6In fact, this format is not restricted to the Kronecker product, but can also be applied to any mul-
tiplicative homomorphism γ : Zw×w × Zn×n → Zt×t, and non-permutation matrices — with additional
considerations regarding security and on the noise growth induced by γ. ([31]).
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A1

∏
i∈[L]

Di,xι(i) ≈

∏
i∈[L]

Pi,xι(i) ⊗ Si,xι(i)

 ·AL+1 (6.2.5)

=
L∏
i=1

Pi,xι(i) ⊗

(
L∏
i=1

Si,xι(i)

)
·AL+1 (6.2.6)

= P̂⊗

(
L∏
i=1

Si,xi

)
·AL+1 (6.2.7)

Finally, by Theorem 6.2.1 we have that P̂ ∈ {I,P∗} corresponding to the bit C(x).

While encoding permutation matrices into LWE samples was first described in [34], the first
security proof of any GGH15 style construction (regardless of permutation matrices) was
shown by Brakerski et al. [26] and by Canetti and Chen in [27]. In particular, the basic
semantic security property we wish to accomplish is that the encoding hides the branching
program. Canetti and Chen showed this through a “trapdoor closing” strategy, and a more
expressive analysis of the LWE assumption which allows for limited additional structure,
i.e., the exact same construction written above where we take structured secrets Pi,b⊗Si,b.
Based on the definition of LWE, security of such a variant doesn’t readily follow. Canetti
and Chen showed that this is still secure by reducing LWE to this form, incurring a small
poly(w) blowup in the dimensions.

When considering security properties of GGH15 encodings, it is relevant to consider that
the correctness of evaluation does not depend on any of the intermediate vertices Ai being
public, but in order to invoke a standard LWE assumption: (A,AS + E) ≈c (A,U) at
least one component of the tuple must be public. The proof strategies in [27] and [58]
assume that all matrices Ai are global public parameters. Of course, the LWE assumption
was originally stated with the term A as being public, and this is not harmful for security.
However, we can instead treat them as auxiliary input in a simulation security definition
([31]). This interpretation will be crucial to our construction.

Security analysis for GGH15 was made more flexible in [31] by defining security with
respect to some fixed auxiliary input. They also showed that it is possible to invert the
role of the Si,b and Ai,b terms and treat the low-norm Si,b matrices as the public keys
(and as auxiliary input in the proof), and rely on a modified LWE assumption. This
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change allows for improved efficiency and extended functionality in some cases. Informally,
semantic security will state that for random-looking Si,b,Ai and appropriate auxiliary
input, a GGH15 encoding hides the functionality of a branching program. We now formally
state the semantic security property, and restate a proof similar to those in [27], [58], [31].

Theorem 6.2.3 (GGH15 Semantic Security ([27], [42], [58], [31])). Let L ∈ N. Assuming
LWEn,m,q,DZ,σ ,U(Zq),DZ,σ∗ , for all permutation matrices {Pi,b ← {0, 1}w×w}i∈[L],b∈{0,1}, we
have

(aux, {Di,b}i∈[L],b∈{0,1}) ≈c (aux, {D̃i,b
$← Dm×m

Z,σ }i∈[L],b∈{0,1}),

where

AL+1
$← Zt×m

{(Ai, τi)← TrapGen(1t, 1m, q)}i∈[L]

{(Si,b,Ei,b)← Dn×n
Z,σ × χ

t×m}i∈[L],b∈{0,1}

Bi,b = (Iw ⊗ Si,b) · (Pi,b ⊗ In ·Ai+1) + Ei,b

Di,b ← A−1
i (Bi,b, σ),

and auxiliary input aux = {Ai}i∈[L].

Proof. The proof follows the framework of [27], [42], and [58]. In particular, for starting
at the end of the “chain”, for i ∈ [L, 1] we will first replace the LWE samples Bi,b with
uniformly random, and then rely on Lemma 5.3.2 to argue that preimages of uniformly ran-
dom matrices are statistically close to Dm×m

Z,σ , and hence can be sampled without requiring
the trapdoors.

HL+1: This is the real setting. For all i, b: Di,b ← PreSample(TAi
,Bi,b).

For the next two hybrids we iterate over 0, 1, and then b ∈ {0, 1} before proceeding to Hi,2.

Hi,b,0: Bi,b is replaced by Ui,b
$← Zt×mq for all j ∈ [L, i], the preimage becomes Dj,b ←

A−1
i (Uj,b, σ).

Hi,b,1: The preimage is sampled obliviously for all j ∈ [L, i] : D̃j,b
$← Dm×m

Z,σ

Hi,2: Aj+1
$← Zt×mq (rather than being sampled with a trapdoor)

H0: This is the simulated setting. For all i, b: {D̃i,b
$← Dm×m

Z,σ }, A1
$← Zt×mq .
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If there exists an adversary A whose change in advantage between Hi,b,0 and Hi−1,b,0 is
some non-negligible ε, we can create an adversary B with the same advantage of breaking
LWEn,m,q,DZ,σ ,U(Zq),DZ,σ∗ . The intuition is as follows:

B will replicate the process of encoding a branching program, starting at the beginning
of BP(C), and until some fixed step i ∈ [L]. In the real setting, i exists outside of this
range. During each set of hybrids, we will encode progressively decreasing portions of
BP(C). At a particular step i, for a permutation matrix Pi,b will issue a challenge to an
LWE challenger to obtain the correct sample, and then encode a preimage for whatever the
challenger returns.

If they return a uniform sample, then the preimage can be generated independently of
the trapdoor as it is statistically close to an arbitrary sample in Dm×m

Z,σ by Lemma 5.3.2.
At this point, any trapdoors, and LWE samples for a step i′ > i no longer need to be
generated. By the previous observation, they are removed from the view of A because the
preimages which would normally induce them are generated independently of the rest of
the components. We proceed this way until all the preimages are sampled from Dm×m

Z,σ ,
and the only remaining matrix A1 is generated uniformly at random (without a trapdoor).

B begins by sampling:

{Aj ← Zt×mq }j∈[i+1,L+1] (6.2.8)

{(Aj,TAj
)← TrapGen(1t, 1m, q)}j∈[1,L−i+1] (6.2.9)

{(Sj,b,Ej,b)← Dn×n
Z,σ × χ

t×m}j∈[1,i−1],b∈{0,1} (6.2.10)

Then, for each j ∈ [L, i] and b ∈ {0, 1}, it creates Bj,b = (Iw⊗Sj,b) · (Pj,b⊗In) ·Aj+1 +Ej,b,
and samples Dj,b ← A−1

i (Bj,b, σ).

When reaching step i, fix b = 0. Instead of generating B∗i,b itself, it queries the LWE
challenger with Ai+1 and gets back the challenge output:

B∗i,b = U
$← Zt×mq (6.2.11)

or

B∗i,b = (Iw ⊗ S∗i,b) · (Inw ·Ai+1) + E∗i,b (6.2.12)

Namely, (Ai+1,B
∗
i,b) is an instance of LWEn,m,q,DZ,σ ,U(Zq),DZ,σ∗ . To obtain a sample relative

to the correct form, A right-multiplies B∗i,b by (Pi,b ⊗ In). This block-permutation is an
independent reversible operation, so B∗i,b remains uniform, or it corresponds to LWE sample
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of the form required for correctness. Each n×m block of E∗i,j is independent, so this process
does yield a valid LWE distribution. Note that A will be able to produce (Ai+1,B

∗
i,b) since

(Ai+1,D
∗
i,b) are in their view.

Next, B samples a preimage for the challenge D∗i,b : AiD
∗
i,b = B∗i,b, and sends the resulting

distribution:

(A1, {D1,0, . . . ,D
∗
i,b,Di,1−b,Di+1,0, . . .DL,1})

to A. Now, A’s goal is to distinguish Hi,0,0 from Hi−1,2. The only thing that changes is
the distribution of D∗i,b conditioned on the distribution of B∗i,b. If A has any advantage in
distinguishing between the two settings, then their advantage translates into B’s advantage
against the LWE challenger.

Next, we analyze the difference between Hi,0,0 and Hi,0,1. By Lemma 5.3.2, the distribution

(Aj,A
−1
j (U)) is statistically close to (Aj,U

′ $← Dm×m
Z,σ ). So, we replace D∗i,b with a uniform

discrete Gaussian sample, and the distributions remain statistically close. We repeat this
set of changes for b = 1 (since Si,b is sampled independently), resulting in replace both Dj,b

being replaced with uniform discrete Gaussian samples D̃j,b for j > i.

Then, observe that no LWE samples are ever produced under Aj+1. So, we “close” the

trapdoor by replacing it with a uniformly random matrix, that is: Aj+1
$← Zt×mq . Since

Aj+1 is statistically close to uniform over Zt×mq the change between Hi,1,1 and Hi,2 is also
statistically close. This completes one iteration of changes for an index i.

Finally, after iterating over all i ∈ [L, 1], after making the change H1,1,1 we also replace A1

with uniformly random, as we no longer need to use its trapdoor. As above, this change is
statistically close, and moreover none of the {D̃i,b} depend on A1 since they are sampled
obliviously. Now, we are in H0 where the entire distribution is simulated.
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6.3 Construction

6.3.1 Construction Overview

Now, we describe how to use the GGH15 encoding strategy to instantiate Privately Con-
strained Testable PRFs for a constraint family Cλ in NC1 which are testable for both ranges.
For the remainder of this section let w = 5, and let ei be the i-th standard basis vector of
a w-dimensional vector space.

Following [31]), we define the notation: for k ∈ [w] let A
(k)

denote the (k − 1)n + 1
to kn-th rows of a matrix A ∈ Zwn×m (i.e. (eTk ⊗ In) · A), and extend the definition

to ranges of indices A
[i,j]

. Additionally, for all ensembles (x ∈ {0, 1}L, {Vi,b}i∈[L],b∈{0,1})
define: Vx =

∏
i∈[L] Vi,xi . We take all terms indexed by xi as their unique representative

xι(i), with the input to index map omitted for brevity.

Testability. Our starting point is Eq. (6.1.1) due to Bannerjee et al. [10].

FA,{Si,b}(x) = bSx ·Aep

The first observation is that by sampling A together with a trapdoor, it is easy to sample
a low-normed Z : AZ ≡ 0 mod q. Then, for any any PRF output Y, YZ ≈ 0 up to some
rounding error. For a random matrix Y′ (outside of the range of F whp.), the resulting
product will have a sufficiently small `∞ norm with only small probability. This forms the
basis of the test. Using a “special” A rather than uniform does not contradict any security
definitions since the resulting A can be made statistically close to uniform.

In the actual construction we will only sample half of A = [A′‖R] with a trapdoor to
simplify the proof of unique testability. Then, for low-normed Z : A′Z ≡ R mod q — we
will parse Y = [Y0‖Y1] and check if Y0Z−Y1 ≈ 0.
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Two Ranges. Since the testability strategy only makes sense for a single-ranged PRF,
we proceed with the obvious strategy of simply sampling two different matrices A∗0, and
A∗1 structured as above with separate trapdoors, giving us two separate PRFs. Then, all
we need to do is have a way of embedding the two PRF keys A∗0,A

∗
1 into some kind of

gadget which outputs PRF evaluations under A∗b for b = C(x), while hiding the keys and
C. We can accomplish this using GGH15 encodings.

Assembling the Pieces. Now, we can use a GGH15 encoding of a circuit C. Lemma 6.2.1
tells us that:

A1 ·Dx ≈ (In ⊗ Sx) · (Pb ⊗ In ·AL+1)

For, Pb ∈ {P∗, Iw} a fixed permutation which depends only on b = C(x) (cf. Defini-
tion 6.2.1). So, the permutation moves a fixed distinct n×m block into the first n rows of
AL+1. So, we choose AL+1 such that it contains A∗0 and A∗1, and in particular so that Pb

moves A∗b into the first n rows of AL+1 during evaluation.

Then, by publishing only the top n rows of A1 (i.e. A
(1)

1 ) we guarantee the output of the
GGH15 evaluation is an n × m matrix in the image of A∗b . Then, rounding the output
gives us a PRF. ⌊

A
(1)

1 ·Dx

⌉
p

=
⌊
Sx ·A∗b

⌉
p

Hiding the bottom (w − 1) · n rows of also A1 gives the lossy map needed for security —
otherwise an adversary always learns both image points of the PRF wrt. x, and hence
always answer challenges correctly in the residual pseudorandomness experiment. Note
that our “two PRFs” are not actually independent since the GGH15 encoding reuses the
{Si,b} terms, implying their private keys are correlated. We will show both output ranges
are pseudorandom by viewing {Di,b} as the global public parameters, and the unpublished
blocks of A1 as the secret key of the Boneh et al. ([16]) PRF in Eq. (6.1.3) instead.
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Construction 6.3.1 (Range-testable Privately Constrained PRF).

KeyGen(1λ, 1`C , 1`in):

1. Take L = 4d for d = log(`in)

2. Choose n, q, σ, set t = wn, m = Ω(t log q) as per Section 6.3.2

3. Sample (A′0,TA′0
), (A′1,TA′1

)← TrapGen(1n, 1(m/2), q)

4. Sample R0
$← Zn×m/2q ,R1

$← Zn×m/2q

5. Let A∗0 = [A′0 ‖R0],A∗1 = [A′1 ‖R1]

6. Sample Z0 ← PreSample(TA′0
,R0, σ),Z1 ← PreSample(TA′1

,R1, σ)

7. Sample AL+1
$← Zwn×mq .

8. Sample {Si,b ← Dn×n
Z,σ }i∈[L],b∈{0,1}

9. Set

A
[1,2]

L+1 =

[
A∗1
A∗0

]
10. Output sk = ({Si,b},A∗), pp = (p, q, t,m)

Evalpp(sk, x, b):

1. Compute Sx =
∏

i∈[L] Si,xi

2. Output y =
⌊
Sx ·A∗b

⌉
p

Constrainpp(sk, C):

1. Parse C as a length L, width w branching program: {Pi,b}i∈[L],b∈{0,1}

2. Let πi,b = Pi,b ⊗ In.

3. Sample {(Ai,TAi
)← TrapGen(1t, 1m, q),Ei,b ← χt×m}i∈[L],b∈{0,1}

4. Set AL+1 = A∗

5. Compute Bi,b = (Iw ⊗ Si,b) · (πi,b ·Ai+1) + Ei,b
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6. Use the trapdoors TAi
to create the directed encodings of the edges Ai → (πi,b ·

Ai+1):

(Di,0,Di,1)← PreSample(TAi
,Bi,b) | AiDi,b = Bi,b

7. Compute A
(1)

1 = (eT1 ⊗ In) ·A1

8. Output sk[C] = (A
(1)

1 , {Di,b}i∈[L],b∈{0,1})

ConstrainEvalpp(sk[C], x):

1. Parse sk[C] = (A
(1)

1 , {Di,b}i∈[L],b∈{0,1})

2. Compute Dx =
∏

i∈[L] Di,xi

3. Output y =
⌊
A

(1)

1 ·Dx

⌉
p

Testpp(sk, b, y):

1. Parse y = [Y0 ‖Y1]

2. Compute C = Y0 · Zb −Y1

3. Output 1 if ‖C‖ < q/4, otherwise output 0

6.3.2 Correctness and Parameters

One important difference in our construction from [27], [31] is that we will choose p not
simply arbitrarily close to 2 (to output at least one bit out of each position of the resulting
product) so that q/p is larger than the error bound introduced during evaluation. Instead,
we take p to be large enough so that the absolute error introduced by rounding is still
small enough to allow for the correctness of a subspace test (i.e. multiplying by a short
preimage). In order to cover all of the correctness and security requirements we will choose
parameters as follows:

1. Take n = O(λ) for security, t = wn to support encoding w×w permutation matrices

2. Take m = Ω(t log q) to guarantee solutions for any coset with high probability
(Lemma 5.2.1), with some hidden constant c > 4 to support partitioned testing

3. Set χ = DZ,2
√
n for hardness of LWE (Definition 5.2.4)
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4. Take σ ≥
√
t log q for satisfiability of trapdoor sampling (Lemma 5.3.1)

The combination of parameters yields β ≤ O(t
√

log q) (cf. Remark 5.3.1). As in other
works based on GGH15, since the magnitude of the initial LWE error terms needs to be
small for correctness, we end up relying on LWE with subexponential approximation factors
to the underlying lattice problems.Finally, note that the requirement that q/p > β(2mβ)L

is stronger than the requirement q/p > βL of Lemma 6.3.1, so taking p > 4mβ is without
loss of generality.

Theorem 6.3.1 (Preservation of Functionality for Constrained Inputs). For all x ∈
{0, 1}`in and C ∈ Cλ,

Pr[ConstrainEvalpp(sk[C], x) 6= Evalpp(sk, C(x), x)] = negl(λ) (6.3.1)

Proof. Consider the expression below:

ConstrainEvalpp(sk[C], x) =
⌊
A

(1)

1 ·Dx

⌉
p

(6.3.2)

=

eT1 ⊗ In · (A1 ·
∏
i∈[L]

Di,xi)


p

(6.3.3)

= eT1 ⊗ In

(A1 ·
∏
i∈[L]

Di,xι)


p

(6.3.4)

= eT1 ⊗ In

⌊(
L∏
i=1

Ŝi,xi

)
(P⊗ In) ·AL+1

⌉
p

(6.3.5)

= eT1 ⊗ In

⌊(
Iw ⊗

L∏
i=1

Si,xi

)
(P⊗ In) ·AL+1

⌉
p

(6.3.6)

=

⌊(
L∏
i=1

Si,xi

)
·A∗C(x)

⌉
p

(6.3.7)

= Evalpp(sk, C(x), x), (6.3.8)

which follows from Eq. (6.2.3), and the fact that the bookend has no effect on the norm.
For the final step, it is true that for C(x) = 0, the matrix A∗0 does not necessarily end up
in the first block of AL+1 for the permutation P∗ as defined in the setup algorithm (as
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opposed to the case C(x) = 1, where it is the identity matrix). However, since P∗ is some
fixed 5-cycle which depends only on L, this is without loss of generality, as we can simply
insert A∗0 into the appropriate block of AL+1 when computing the constrained key.

Theorem 6.3.2 (Testing Completeness and Unique Testability). The algorithm Testpp(sk, b, y)
in Construction 6.3.1 satisfies completeness and unique testability.

Proof. For any input x, consider that,

y = bSxA∗bep (mod p) ≡ SxA
∗
b + Ê (mod q), (6.3.9)

where Ê is the absolute error introduced by rounding, e.g. ‖Ê‖∞ = O(β(2mβ)L−1).

First, parse A∗b = [A′b ‖Rb], and y = [Y0 ‖Y1]. Then,

[Y0 ‖Y1] = [SxA
′
b + Ê0 ‖ SxRb + Ê1] (6.3.10)

For Zb ∈ χm×m : ‖Zb‖∞ ≤ β ∧A′bZb ≡ Rb (mod q):

(SxA
′
b + Ê0) · Zb = SxRb + Ê0 · Zb (6.3.11)

≈ Y1, (6.3.12)

where we bound the error as Ê1 + ‖Ê0 · Zb‖∞ ≤ 2 · ‖Ê0 · Zb‖∞ ≤ mβq/p. So, testing is
complete for p > 4mβ as we can unambiguously check the distance modulo q from Rb.

Next, observe that by Lemma 5.3.2, since each Zb is a preimage of a uniformly random
matrix, if [Y0‖Y1] ∈ Rb, then Y0 · Z1−b is statistically close to uniform over Zn×mq . (A′b
is statistically close to uniform, and therefore generates Znq with probability exponentially
close to 1). So, the expression (Y0 · Zb−1 − Y1) mod q is itself close to uniform, and it
follows that:

Pr[‖(Y0 · Zb−1 −Y1) mod q‖∞ < q/4] = 2−nm = negl(λ)

Hence, the probability that both tests pass is negligible in the security parameter, as
required.
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6.3.3 Security

Security relies on the lower n(w − 1) rows of A1 being hidden from the adversary. This
follows from the proof of Theorem 6.2.3 since the preimages themselves are computation-
ally close to random discrete gaussian samples, and we never need to produce any LWE
samples under A1. Although the entirety of A1 is considered part of the auxiliary input
available to the adversary and simulator in the GGH15 security experiment; this does not
contradict our requirements for the PRF. Since the GGH15 adversary is participating in
a distinct experiment, and produces constrained keys themselves — they do not gain any
inherent advantage from seeing these values and can simulate the PCT-PRF challenger
appropriately.

A Weaker Security Definition. Unfortunately, it is not clear how to show that our
construction satisfies the strong definition of Definition 3.1.1. In particular, transitioning
between encoding a circuit C0 to a circuit C1 in a series of hybrids (to preserve testing
oracle access) is a challenge without a clear resolution. This challenge occurs specifically
because of limitations in the current understanding of GGH15 encodings. To this end,
we introduce a weaker simulation-based definition which ignores the testability properties
altogether (since it is also unclear how to reconcile testing oracles with simulated con-
strained keys). This security definition restricts attention to just the “two-sided” residual
pseudorandomness and constraint privacy. The definition is otherwise similar to the Defi-
nition 2.2.4 which is common to all recent works on Privately Constrained (non-testable)
PRFs.

In applications, this means testing correctness must be lost during certain stages of the
security proof when changing between constraint circuits. This poses a serious challenge to
successfully proving security of applications relative to this definition, and we are presently
unable to do so. Furthermore, the construction of PCT-PRFs from GGH15 may not satisfy
conditional one-wayness of Definition 3.1.1, we explore this in Section 7.1.
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Definition 6.3.1 (Range-testable Privately Constrained PRF (Weak) Simulation Secu-
rity). For any stateful PPT algorithm A, there exists a PPT stateful Simulator S such
that: {

ExprealA (1λ)
}
λ∈N

c
≈
{
ExpidealA,S (1λ)

}
λ∈N

A may ask a single constraint query for some circuit C ∈ Cλ followed by a polynomially
bounded number of evaluation queries (x, bx). In the ideal experiment, the constrained key
is produced by a simulator which receives only the size of the constraint `C. In the ideal
experiment, the simulator also learns an indicator bit dx = C(x) to enforce consistency. If
dx 6= bx, S answers evaluation queries by (statefully) sampling a uniformly random value
from the co-domain. Otherwise, it answers by evaluating using the simulated key. The
output of the experiment is the output bit of A.

ExprealA (1λ):

1: (sk, pp)← KeyGen(1λ, 1`C , 1`in)
2: A → C
3: sk[C] = Constrainpp(sk, C)
4: A ← sk[C]
5: Repeat:
6: A → (x, bx)
7: y = Evalpp(sk, x, bx)
8: A ← y

9: A → b; Output b

ExpidealA,S (1λ):

1: S ← 1λ

2: A → C
3: sk[C̃] = S(1`C )

4: A ← sk[C̃]
5: Repeat:
6: A → (x, bx); dx = C(x)
7: if dx = bx then
8: y′ = S(x, bx, dx)
9: else

10: y′
$← Y

11: end if
12: A ← y′

13: A → b; Output b
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Lemma 6.3.1 (BLMR PRF (Adapted from [27], [16])). Let L ∈ N be the bit-length of
an input x, n,m, p, q,∈ N. Let σ, σ∗ ∈ R : 0 < σ < σ∗ < q, and q/p > (σ∗

√
m)L. Let

υq = U(Zn×mq ), γσ = Dm×m
Z,σ , and χσ∗ = Dn×m

Z,σ∗ . For any U← υq, and {Di,b ← γσ}i∈[L],{0,1},

the function F : {0, 1}L → Zn×mp defined as:

FU(x) =

U ·
∏
i∈[L]

Di,xi


p

is a PRF assuming the hardness of LWEn,m,q,υq ,γσ ,χσ∗ .

Theorem 6.3.3 (Simulation Security). Construction 6.3.1 satisfies (weak) simulation se-
curity as per Definition 6.3.1 assuming LWEn,m,q,DZ,σ ,U(Zq),DZ,σ and LWEn,m,q,υq ,γσ ,χσ∗ as per
Lemma 6.3.1.

Proof. We define the simulated constrained key sampling procedure for S(1λ) as follows:

1. Upon receiving a constrained key query for C ∈ Cλ. Let L = poly(`C , `in), the

simulator S samples sk[C̃] = (U ← Zn×mq , {Di,b ← Dm×m
Z,σ }i∈[L],b∈{0,1}), and outputs

sk[C̃] as the constrained key.

2. For any evaluation query (x, bx) and indicator bit dx, S outputs:

P.EvalS(x) =

{
bU ·Dxep if dx = bx

Y
$← Zn×mp otherwise

We proceed in two steps, first we define a simulator S∗ and prove its behaviour is indis-
tinguishable from the real experiment assuming semantic security of GGH15 encodings for
permutation branching programs (Theorem 6.2.3). Then, we use Lemma 6.3.1 to show
that S∗ is computationally indistinguishable from S.

Before describing the behaviour of S∗, we describe how given a constrained key in the form
of a GGH15 branching program encoding ((eT1 ⊗In) ·A1, {Di,b}), for any input x the image
of (x, 1 − C(x)) can always be recovered given the entirety of A1 (without the bookend)
since evaluations of this form always produce both possible images under x. Moreover, since
any length L oblivious branching program induces a fixed w-cycle P∗ — we can output
the image of (x, 1− C(x)) directly by “shifting” the phase of the cycle.
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Recall that the output of any branching program evaluation is a permutation matrix P ∈
{I,P∗}. Let P̄ denote the complement of P in this set. In particular, P = I if b = C(x) = 1,
and Ī = P∗. We first observe that for any permutation matrix P, and every γ ∈ [w], there
exists α ∈ [w] such that eTα · P = eTγ . For example, if P = I then we have the trivial
relation α = γ, ∀α ∈ [w]. Then, for any P̄ we condition α on eγ ·P = e1 · P̄ (corresponding
to the permutation which represents 1− b):⌊

(Sx ·A∗1−b)
⌉
p

=
⌊
(eT1 ⊗ In) · (Iw ⊗ Sx) · (eTαP⊗ In) ·AL+1

⌉
p

(6.3.13)

=
⌊
(eTα ⊗ In) ·A1 ·Dx

⌉
p
, (6.3.14)

where equality holds via Theorem 6.3.1 and the mixed-product property of the Kronecker
product.

Now, define the functionality of S∗ as follows:

1. Upon receiving a constrained key query for C ∈ Cλ, the simulator S∗ samples sk[C̃] =
(U← Zt×mq , {Di,b ← Dm×m

Z,σ }i∈[L],b∈{0,1}), and outputs sk[C̃] as the constrained key.

2. Let U
(i)

= (ei ⊗ In) · U. For any evaluation query (x, bx) and indicator bit dx, S
outputs:

P.EvalS∗(x) =



⌊
U

(1) ·Dx

⌉
p

if dx = bx⌊
U

(a) ·Dx

⌉
p

else if bx = 0⌊
U

(b) ·Dx

⌉
p

else if bx = 1,

where we fix a, b such that

ea = eTγ · I = eT1 ·P∗ (6.3.15)

eb = eTγ ·P∗ = eT1 · I (6.3.16)

These indices are uniquely determined by the length of the branching program only, so it
is without loss of generality that the simulator can choose these values without knowing
C.

Lemma 6.3.2. The real experiment is indistinguishable from the output of S∗ assuming
LWEn,m,q,DZ,σ ,U(Zq),DZ,σ .
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Proof. The proof proceeds via semantic security of GGH15 encodings as per Theorem 6.2.3
with auxiliary input {Ai} in a similar fashion to the proof of Lemma 7.6 in [31]. Namely,
if there exists an adversary A which distinguishes the real distribution from the output of
S∗, we can create an efficient adversary B which distinguishes between the distributions in
Theorem 6.2.3.

1. A queries B for a constrained key for a circuit C. B queries the GGH15 challenger
with BP(C) = {Pi,b}i∈[L],b∈{0,1} and receives {Ai}i∈[L], {Di,b}i∈[L],b∈{0,1} .

2. B answers evaluation queries as follows:

P.EvalB(x) =



⌊
A

(1)

1 ·Dx

⌉
p

if dx = bx⌊
A

(a)

1 ·Dx

⌉
p

else if bx = 0⌊
A

(b)

1 ·Dx

⌉
p

else if bx = 1

Since Ai are chosen statistically close to uniform in the real setting, the first compo-
nent of the product above is statistically close to the distribution of U in S∗. Then, if
{Di,b}i∈[L],b∈{0,1} corresponds to a constrained key sk[C] we are in the real setting. Oth-
erwise, if the outputs are simulated by the GGH15 challenger, by LWE the output is
computationally indistinguishable from the distribution of {Di,b}i∈[L],b∈{0,1} produced by
S∗. Then, when A responds with “simulated” or “real”, B forwards the same reply to the
GGH15 challenger. Hence, the advantages of B and A are the same.

Finally, we observe that the distributions of S and S∗ are computationally close assuming

LWEn,m,q,υq ,γσ ,χσ∗ through a hybrid argument by treating A
(a)

1 and then A
(b)

1 as the secret
keys in Lemma 6.3.1, which concludes the proof of the theorem.
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Chapter 7

Extensions and Discussions

7.1 Conditional One-wayness

We can consider standard PRFs to be one-way in a straightforward manner because the
secret key is not delegated, and the values themselves are not testable. However, despite
our construction satisfying most of the desired properties based on LWE, it is not clear how
to argue one-wayness given the secret key from the same assumption, or any assumption
at all.

Consider an unrounded output of the PCT-PRF Construction 6.3.1: ŷ = SxA
∗
b + Ex. By

examining the correctness of evaluation in Theorem 6.2.2, we see that both the term Sx
and Ex not only depend on the input x, but do not take the form of anything resembling a
computational assumption related to lattice problems. So, if we could recover both terms
from ŷ, we could potentially learn something about x. Since A∗b is sampled together with
a trapdoor, we can use the LWE inversion algorithms of [35] or [50] to do exactly this.

We can deal with leaking Ex simply by only returning rounded outputs bŷep (as defined
in the construction already), since the absolute error introduced by rounding statistically
loses information about the original error term. However, rounding does not impact the
inversion algorithm ([6]) as long as the magnitude of the rounding error is bounded by q/4
(which we require for correctness of testability.) Hence, the holder of the trapdoor of A∗b
can always recover Sx as well. The problem of recovering the input given Sx is captured
by the following definition.7

7Note, that in our setting the problem is far more structured since for an input-repeating branching
program ` = L = (`in)2. So, in fact our product takes indices which are periodic over `in with respect to
ι(i).
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Definition 7.1.1 (Low-Dimension Discrete Gaussian Subset-Product). For n ∈ N, q ≤ 2n,
and σ = poly(n), given {Si,b ← Dn×n

Z,σ }i∈`,b∈{0,1}, and a target R ∈ Zn×nq , find x ∈ {0, 1}` :
R = Sx =

∏
i∈[`] Si,xi mod q.

Impagliazzo and Naor showed in [45] that the Subset-Product of n group elements in
some group G is one-way if ` > c log|G| for any c > 1, or in particular if the function is
compressing. This is at odds with our typical desire for PRFs to be injective, moreover if we
treat Si,b as elements of G = GL(n, q) for some prime power q then log |G| = n(n−1) log q.
This is substantially larger than what is attainable for security of the construction (` <
log q). So, it doesn’t even make sense to use to try to use their result as a heuristic as the
conditions are so far from being met.

Alternatively, we could observe that since ‖S‖x is small, in which case it is never reduced
wrt. the modulus, we could wish to apply the results of [3], [1] which apply over infinite
domains to argue that for X← Dn×m

Z,σ ,y ← Dm
Z,σ′ , it holds that Xy ≈s Dn

Z,σ′XT . Although,
in that case we would at the very least require that Si,b have dimensions (n log q)×(n log q).
We could choose to increase the dimensions of the Si,b to exploit this form, but leveraging
the theorem in [1] would require each consecutive pair of Si matrices to grow considerably
in their standard deviation. This implies issues in managing error growth and obtaining
small enough approximation factors for the underlying LWE assumption — possibly in
satisfying other parameter relationships as well.

So, we have no promising direction to take to prove the conditional one-wayness required
for the NIZK application in Construction 4.1.1. Next, we examine an alternative direction
which we could take which accomplishes a similar goal.

7.2 Context-Hiding

The ephemeral randomness ri which is added to the inputs in Construction 4.1.1, is added
only in order to rely on conditional one-wayness. Since by definition PRFs are determin-
istic, in a worst-case situation in which a witness w for some statement x is unique — we
can not hope for zero-knowledge. Appending ri as a O(λ) “salt” to inputs to makes the
number of possible image points exponential in the security parameter.

Though, the core of the idea is that PRF outputs reveal nothing about their respective
inputs, even given the secret key sk. So, we instead consider a more abstract notation
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of context-hiding PRF outputs. In this case we would like that the prover could produce
values which are testable, but not necessarily in the range of the PRF. In particular, these
testable outputs should be provably independent of the input. We will formalize this by
defining simulated testable outputs y′ which can be produced without knowing an input
such that C(x) = b, and whose distribution is close to values produced by PCT-PRF
evaluation. For this idea to be useful, an evaluator should be able to produce a testable
value in the same range as whatever they obtained from an honest evaluation — without
compromising security. This is captured by the properties below.

Hidepp(y): is an efficient PPT algorithm that takes as input a PRF output y ∈ Rb, and
outputs a value y′ ∈ (Y × Y) : Testpp(sk, y

′, b) = 1.

For security, we require that there exists a simulator S.Hidepp that for any choice of param-
eters produces a simulated ỹ′ which is testable, but produced independently of any input
x. We then require that the output of the simulator be indistinguishable from the output
of Hidepp(·). In particular, the following distributions should be computationally close for
all PCT-PRFs P = (sk, pp), all C ∈ C, sk[C], x ∈ X , b = C(x), y = ConstrainEvalpp(sk[C], x)
and any efficient function f :


y,

y′ = Hidepp(y),
Testpp(sk, b, y

′)
f(sk, y′)

 ≈c


y,
ỹ′ = S.Hidepp(b),
Testpp(sk, b, ỹ

′)
f(sk, ỹ′)

 (7.2.1)

This property could be used in place of the salt and conditional one-wayness required in
Lemma 4.1.4, and used to repeat an alternate proof for Construction 4.1.1. We will now
show that the PCT-PRF in Construction 6.3.1 can support context-hiding.

7.2.1 Instantiating Context-Hiding

Comments Regarding Testability. We first observe some non-obvious properties which
are permitted by the testability properties in Definition 3.1.1.

1. It is allowed that ∃y ∈ Y \ (R0 ∪R1), b ∈ {0, 1} : Testpp(sk, b, y) = 1
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2. For example, let y′ = [R′‖R′Zb] for R′
$← Zn×m/2q , this trivially passes Testpp(sk, b, y

′)
as defined in Construction 6.3.1 for any R′.

We may also clarify a potential weakness in the testing algorithm. For maliciously chosen
small normed values, then tests for both values of b ∈ {0, 1} pass and unique testability
does not hold. Honest evaluations will not have such a small `∞ norm with high probability,
so we could choose to reject these inputs. However, this is equivalent to outputting ⊥ if both
tests relative to 0 and 1 pass in the construction, since the norm bound on such malicious
values means that their product will be small when multiplied with either preimage whp.
This is the strategy used for Construction 4.1.1.

Recall that the matrices A∗b are not output as part of the public parameters, but there is
nothing that prevents us from doing so since we can invoke LWE to argue the outputs of the
PRF remain indistinguishable from uniform — so even given A∗b , which range a value lies
in remains hidden8. We can use this to exploit the randomized-self reducibility property
of LWE shown in [56] Lemma 4.1. Regev observes that the bilinearity of inner products
maps any sample from an LWE distribution under some public matrix A with secret s, to
a sample under A with secret s + t for any t ∈ Znq (and maps to uniform otherwise).

So, we include (A∗0,A
∗
1) as part of pp. Then, for any unrounded output ŷ = SxA

∗
b + Ex

the evaluator samples T
$← Zn×nq . and outputs:

y′ = bŷ + TA∗bep = b(Sx + T)A∗b + Exep (7.2.2)

Of course, by the security properties of the PCT-PRF, they are unable to tell which matrix
to multiply with, but they can repeat the process once with each A∗b . For the correct choice
of A∗b , the resulting sample has its secret term mapped to a uniformly random value Sx+T,
which hides all information about Sx. For the repetition under which the wrong A∗b is used
for the shift, the evaluator produces bSxA∗b + Ex + TA∗1−bep. If q is prime, TA∗1−b is a
uniformly random value, and sends the sample to the uniform distribution over Zn×mq ,
which of course also hides Sx as desired.

All of these steps can instead be done by adding bTA∗bep to the rounded PRF output as
well, since rounding is approximately linear up to some small binary error vector which has
negligible impact on the testing procedure. We now define the context hiding algorithm
and simulator, and show they satisfy the properties laid out in Section 7.2.

8This design rules out statements of the form “Given sk[C], it is difficult to find y ∈ Rb without knowing
x : C(x) = b” as this is becomes trivial. So, any application which requires context hiding must rely on
amplifying in parallel for a set of pseudorandom target ranges as done in Construction 4.1.1.
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P.Hidepp(y): Given a (rounded) output in Y , sample T
$← Zn×mq , and output:

y′ = (y + bTA∗0ep, y + bTA∗1ep)

S.Hidepp(b): Sample T,U
$← Zn×mq × Zn×mq , and output:

ỹ′ = (bTA∗bep,U)

The algorithms above give ỹ′ ≈c y′ by LWE with a small loss in advantage incurred by the
ordering of the tuple. Similarly, it follows immediately from LWE that the evaluator learns
nothing by running the Hidepp algorithm. Since the context hiding does not affect the
functionality of the trapdoor, for the entry in y′ which gets sent to the correct distribution,
testability is preserved. For the final condition, we have that Sx + T ≈s U for any Sx, and

T,U
$← Zn×mq × Zn×mq , which is stronger than the computational requirement on f(sk, ·).

7.3 Feasibility of the NIZK Application

The construction we achieve in Construction 6.3.1 only achieves the weaker simulation
security of Definition 6.3.1, which does not allow testing during the security experiment.
The proof strategy for Construction 4.1.1 relies on testability since it follows a similar proof
strategy to those in [57], and as such we can not demonstrate a “bottom to top” provably
secure NIZK. Similarly, as shown before we can not provably demonstrate conditional
one-wayness is satisfied by the construction.

However, we can instantiate the rest of the components of the scheme since there are
puncturable PRFs from lattice assumptions which can be evaluated in NC1 and fit within
the restrictions of the constraints supported by the scheme. Also, we have that for any
L ∈ NP, L ≤ 3-SAT. This is relevant as 3-SAT’s witness relation R satisfies R ∈ NC1.
Finally, as shown above we can successfully construct a context-hiding extension to the
scheme, which at least would suffice for the zero-knowledge component of the proof given
the same proof strategy.

7.4 Testability of other PC-PRFs

Following [16], it was later demonstrated in [9] that the form of the PRF could be gen-
eralized further. By using public matrices of the form Ab = G−1(A′b) for A′b uniform

63



over Zn×mq , the generalized scheme could could be proven using a more conventional LWE
assumption. (Where G is a special structured matrix with a public trapdoor) The gen-
eralized construction also had revised requirements on the ratio p/q, and a more general
algorithm for producing Ax.

After further study, it was shown that the [9] style constructions could be combined with
techniques from Attribute-based and Fully Homomorphic Encryption in [25] which also
leveraged useful properties of the matrix G for supporting circuit evaluation. This led to
circuit constrained PRFs, and finally Privately Constrained PRFs in [22] and [54]. For
some constraint predicate C, these constructions produce outputs which essentially take
the following form:

Fs,C(x) =
⌊
sT · (Ax + C(x) ·G) + eT

⌉
p

(7.4.1)

In these schemes, a PRF output lands near a fixed point in an unknown lattice induced
by the input x, or a fixed coset of Ax induced by sTG. The error term arises from the
use of FHE schemes in the constructions which are used to hide the constraint circuit.
Unfortunately, it is not clear how to test such a value even given s if the input is not
known in advance (otherwise testing is trivial by subtracting bsT (Ax + C(x) · G)ep and
checking the norm). When looking at the PC-PRF constructions in detail, it is also not
clear how to modify them to introduce testability while preserving the properties they rely
on for security and correctness.

7.5 Relation to other GGH15 Constructions

Recall that the Canetti and Chen Privately Constrained PRF ([27]) used preimage encod-
ings of the following form to embed branching programs.

AiDi,b = (Pi,b ⊗ Si,b) · (Inw ·Ai+1) + Ei,b (7.5.1)

Independently, Goyal et al. [43] presented a related way of encoding branching programs
using GGH15 for different applications (e.g. “Lockable Obfuscation”). This strategy was
was later proven semantically secure in [42], and [58]. In particular, they sample a preim-
age for a block-permutations of each adjacent A matrix in the graph, and encode the
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same secret into each block for each index i, b and rely on a standard normal-form LWE
assumption, i.e.,

AiDi,b = (Iw ⊗ Si,b) · (Pi,b ⊗ In ·Ai+1) + Ei,b. (7.5.2)

We can show that Eq. (7.5.1) and Eq. (7.5.2) are in fact equivalent due to the mixed-
product property of the Kronecker product, by switching the positions of Pi,b, and Iw since
they have the same dimensions. This implies that LWE with this form of structured S (or
structured A) is equally as hard as normal-form LWE directly. The translation from one
form to the other is as follows:

(P⊗ S) ·A + E = (P⊗ S) · Inw ·A + E (7.5.3)

= (P⊗ S) · (Iw ⊗ In) ·A + E (7.5.4)

= (P · Iw)⊗ (S · In) ·A + E (7.5.5)

= (Iw ⊗ S) · (P⊗ In) ·A + E, (7.5.6)

where the transformation follows from the mixed-product property of the Kronecker prod-
uct and commutativity of identity matrices.

Canetti and Chen used the GGH15 branching program techniques to create a privately
constrained PRF for NC1, however their construction as designed, does not admit testa-
bility. Notice that Definition 2.2.3 requires the output of the PRF to be indistinguishable
from uniform for any x : C(x) = 1. For any GGH15 encoding defined as above, we can-
not satisfy this condition when constructing Privately Constrained PRFs. Recall that all
branching programs of a fixed length share the same input to index map, and the same
output permutation P∗ — therefore we consider P∗ to be public. Since a GGH15 evalua-
tion produces the entire output of the final permutation, we can easily map any output for
C(x) = 0, to the output C(x) = 1 by appropriately inverting the permutation P∗. This
yields a trivial attack on residual pseudorandomness.

Canetti and Chen circumvented this problem by introducing a lossy map (a “bookend” in
iO literature) such that the attack sketched above is impossible. In particular, they “fold” a
matrix J ∈ χn×nw into A1 by encoding it in an additional high dimensional LWE term. That
is, instead of publishing A1, they release JA1 +E′. Then, the analysis from Theorem 6.2.2
carries over. Since the resulting output is lossy, the permutation cannot be inverted without
first recovering A1, which implies breaking LWE. Then, they demonstrated an expression in
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terms of J produced during the evaluation is pseudorandom by reduction to LWE, which lets
them use this as the key in the form of the PRF in Eq. (6.1.3) to argue pseudorandomness.

An easier strategy which accomplishes the same result is to simply drop all but the first
n of the rows of A0 (as in Construction 6.3.1, which is used implicitly in [42] and [58]
for correctness. Of course, this map is also lossy, so we can hope to use it in an updated
construction that does admit testability. The analysis of pseudorandomness is then de-
rived from a closer inspection of the structure induced by the branching evaluation, as in
Theorem 6.2.3. [27] was later updated to also include this simplified lossy map in their
construction, and becomes equivalent to Construction 6.3.1 aside from testability and the
two-sided residual pseudorandomness. This strategy is also present in the Privately Con-
strained PRF construction of [31] (which is otherwise notably different), although their
construction can only be made testable for the constrained range.

7.6 One-sided Testability

The testability of Definition 3.1.1 requires that outputs in both ranges be testable, and is
defined in terms of a “two-sided” residual pseudorandomness property. We could instead
define these properties such that only the constrained range (e.g. the image under the
constrained key sk[C] for all authorized inputs x : C(x) = 1) is testable. That is, the
constrained range is distinguishable from random given the secret key. This variant is
relevant to consider with respect to actual constructions. Recall that correctness guarantees
that the range of the PRF under the sk[C] coincides with the range under sk for authorized
inputs. So, if we assume the outputs of sk are testable given sk, then outputs produced
using sk[C] on authorized inputs are also testable.

The definition of the standard privately constrained PRF in Definition 2.2.3 only requires
that the range of the function under sk[C] for all unauthorized inputs is indistinguishable
from random — so the images of these points may deviate from the image under sk in
some unpredictable manner. Then, it is not necessarily true that there exists any efficient
algorithm which can also test outputs of the constrained key for unauthorized inputs. We
can recover completeness in this setting for predicate constraints by giving out constrained
keys for a circuit and its complement: sk[C], sk′[C̄] (with respect to different secret keys to
avoid the iO implications of Remark 2.2.1).

A construction of a testable PRF with the above limitation admits an efficient attack on
any scheme using the primitive. If the PRF has a large expansion factor, and satisfies com-
putational testing completeness — we have a trivial attack on residual pseudorandomness.
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Namely, given the output y of a PRF which is to be tested, an adversary can perform an
arbitrary perturbation of the value (flip a bit, or even replace it with a uniformly random
value) to obtain y′, and send y′ to a challenger with testing capability.

If the behaviour of the challenger is unaffected, this implies y was not in the testable range.
Otherwise, if the behaviour of the challenger does change, this implies y had to have been
in the testable range. In either case, residual pseudorandomness is not satisfied.
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Chapter 8

Conclusions and Future Work

This work defined and initiated the study of a new cryptographic primitive: Privately
Constrained Testable PRFs. Unfortunately, our understanding of this primitive is still
quite limited. We are able to construct the primitive from lattice assumptions, but only
prove it is secure in a security model which removes a core component of the functionality.
So, we are currently unable to achieve a “top to bottom” provably secure instantiation of
any application.

Additionally, the proof strategies which seem to follow most naturally (e.g. the soundness
proof of the NIZK scheme in Theorem 4.1.2) from our stronger definition appear to require
that the primitive behave as an interactive kind of “Indistinguishability Obfuscation” (iO).
This is intuitively a much stronger assumption, since our primitive only allows outputs to
be learnable for the holder of the secret key. This strongly suggests that the definitions and
proof strategies presented are not the correct approach to yielding usable constructions.

Alternatively, the gap encountered in the NIZK soundness proof is simply an artifact of
the proof technique, and there are tools that can be leveraged to make a different proof go
through. Depending on the particular application, it may be possible to prove security by
relying on parallelization, weaker combinatorial techniques and/or complexity leveraging.
One possibility is to dramatically reduce testing soundness such that uniformly random
values always output some valid bit during testing, and rely on threshold techniques to
mitigate distinguishing advantage gained from intermediate losses of correctness. However,
the viability of this idea is inconclusive without formal analysis.

We conclude with the following open problems:

1. Formulate an alternate definition for Privately Constrained Testable PRFs which
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admits provably secure applications and an instantiation of the primitive in that
model.

2. The GGH15 strategy poses a tremendous barrier to any indistinguishability-based
definition, such that resolving the problem would lead to a significant step towards
achieving iO. Find an instantiation of privately constrained testable PRFs which
does not require using GGH15 such that testability is preserved concurrently with
circuit indistinguishability. Furthermore, find a construction for which the design of
the testability and residual pseudorandomness are not mutually exclusive (as in our
context-hiding construction).

3. Analyze additional applications of the primitive, and determine whether they can be
proven secure in the security models in which we have been able to instantiate the
primitive.
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