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Abstract 

Poly(ether-block-amide) copolymer (PEBA) was used as an adsorbent for sorptive removal of 

bromophenols, particularly 4-bromophenol (BP), 2,6-dibromophenol (DBP), and 2,4,6-

tribromophenol (TBP) from wastewater. Batch sorption experiments were carried out to examine the 

bromophenol removal efficiency under different conditions, including temperature, pH, solute 

concentration, as well as sorbent forms (e.g., size). Both the Langmuir and Freundlich models were 

fitted to the sorption data well, and the sorption capacities of the three bromophenols were evaluated 

using the isotherm model. The pseudo-second order kinetics model best fitted the kinetic sorption 

data, and the rate constants of the phenol sorbates were determined. It was shown that both the 

internal diffusion and surface “reaction” were important during the sorption process. The activation 

energies for sorption based on pseudo-second order rate constants were found to be 38.0, 29.7 and 

27.7 kJ/mol for BP, DBP and TBP, respectively; while the activation energies based on internal 

diffusion were 41.7, 32.5 and 28.5 kJ/mol, respectively. The sorption performance of bromophenols 

on PEBA from industrial effluents related to tetrabromobisphenol A (TBBPA) production was 

evaluated, and the effects of pH, temperature, phenol concentration, contact time on the bromophenol 

sorption were investigated. The potential use of PEBA sorbent for treating phenol containing 

industrial effluents was demonstrated. In addition, regeneration tests of PEBA membrane were 

performed using deionized water and ethanol (99.5% v/v) as regenerating agents, and the feasibility 

of reusing the regenerated PEBA membrane in treatment of wastewater from TBBPA industry was 

confirmed. 
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Chapter 1 

Introduction 

 

1.1 Background 

Bromophenol is one of the most important phenol derivatives with bromines, and typical 

bromophenols include 4-bromophenol, 2,6-dibromophenol, and 2,4,6-tribromophenol. 

Bromophenols are classified as organobromines, which are derived from bromine [1]. So far, the 

content of specific organobromine in seawater is still unclear. However, it is believed that the 

bromine content in seawater is 65 mg/L, and about 95% of the bromine primarily exists in seawater 

on the earth [2]. In addition, due to the dynamic biogeochemical cycling, organobromines are the 

dominant forms of bromine around the globe [3]. Hence, it seems logical that the ocean can be 

considered as the large natural reservoir of organobromines. In seawater, bromophenols can be found 

in marine algae, sponges, and worms (e.g., bryozoans), and they are considered as important ocean 

resources [4]. For example, the simple bromophenols (e.g., 2-bromophenol, 4-bromophenol, 2,4-

dibromophenol, 2,6-dibromophenol, and 2,4,6-tribromophenol) from ocean are used in 

pharmaceutical industry that produces wide varieties of drugs for prophylaxes and treatments of 

thrombotic diseases [5]. In addition, in the ocean, 2,6-dibromophenol, 2-bromophenol and 2,4,6-

tribromophenol are the most strongly flavored compounds with a flavor threshold concentration 

(FTC) of 5 × 10-4, 3 × 10-2, and 0.6 ng/g, respectively, and they can be adsorbed by marine animals 

from the diet. Hence, bromophenols are identified as the key natural flavor resource of various 

seafood, such as ocean fish. As organobromines, bromophenols are toxic, and they are considered as 

chemical defense resources produced by marine organisms [6]. Due to the widespread applications 

and relative high content in the ocean, enrichment of bromophenols from water is of significant 

important in utilization of marine resources. 

In industries, the aromatic bromophenols are widely applied in the production of fungicides, 

brominated flame retardant (BFR) and BFR intermediates. In the year of 2001, about 9,500 tons of 

2,4,6-tribromophenol was produced in the world. During the production, use, and disposal, 

bromophenol can be released into soils, aquifers, and groundwater. Meanwhile, like most brominated 

fire retardants, relative high concentration of bromophenol can cause development of neurotoxicity, 

embryotoxicity, and fetotoxicity. Due to the potential acute toxicity and endocrine-discrupting 
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potency, both bromophenol and bromophenol-containing substances are classified as toxic pollutants 

[7,8]. In 1998, bromophenols were added to the list of hazardous wastes by United States 

Environmental Protection Agency (USEPA) [9]. For these reasons, pretreatment of wastewater 

containing bromophenols is necessary in industrial applications [10]. 

Several techniques have been investigated and developed for the phenolic compound removal 

and enrichment from water, including adsorption, membrane separation, solvent extraction, 

bioremediation, and chemical coagulation [11]. Traditionally, adsorption for phenol treatment in 

water is favored [12]. Adsorption has several advantages, including easy operation in both batch and 

continuous systems, no sludge formation, and the adsorbent can be regenerated for reuse [13]. 

Carbon-based materials, which are hydrophobic and non-polar, are the most common and promising 

sorbent for adsorption separation, even at low concentration. However, for carbon based sorbents, the 

production process is not environment-friendly, the regeneration process is expensive and complex, 

and the biodegradability of used sorbents is low [14]. Instead of using carbon based material, polymer 

based sorbent can be employed as an alternative economic sorbent [15]. Among these novel 

polymeric sorbents, poly(ether-block-amide) copolymer (PEBA) is demonstrated to have high 

selectivity for phenols and aromatic compounds in pervaporation process. Due to the presence of 

electron withdrawing functional groups (amide and ester) and electron donating functional groups 

(ether) on PEBA chains, bromophenol molecules with electron donating functional groups (bromine 

and phenol) can interact with the PEBA chain [16]. For this reason, PEBA has been proposed as a 

convenient sorbent for removal and enrichment of bromophenol from water by sorption process. 

Previous studies from our group have explored the potential of using PEBA membrane to 

remove phenols and mono-substituted phenolic compounds (i.e., 4-chlorophenol, 4-nitrophenol, 4-

methylphenol, catechol, and 4-aminophenol) from water. However, detailed work on the sorptive 

removal of bromophenol and multi-substituted bromophenols from water using PEBA membrane is 

still lacking [17,18]. This study aims to examine sorption characteristics for 4-bromphenol, 2,6-

dibromophenol, and 2,4,6-bromophenol on PEBA sorbents, including sorption isotherms and kinetics. 

The effects of temperature, initial phenol concentration, pH, processing time, and sorbent on the 

adsorption performance were investigated. 
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1.2 Objectives 

The objective of this study was to explore the potential of using PEBA sorbent to remove 

various bromophenols (i.e., 4-bromophenol, 2,6-dibromophenol, and 2,4,6-tribromophenol) from 

water. The thesis work is composed of the following tasks: 

(1) To perform batch sorption experiments under different conditions (i.e., temperature and initial pH) 

to study the sorption isotherms. 

(2) To conduct kinetic studies, and the effects of adsorbate concentration, sorbent properties, and 

temperature on sorption performance were investigated for understanding the sorption mechanisms.  

 (3) To confirm the effectiveness of using PEBA membrane for sorptive removal of bromophenols 

from industrial effluents. 

(4) To perform sorbent regeneration experiments to confirm the potential of reusing PEBA sorbent in 

treatment of wastewater from tetrabromobisphenol A (TBBPA) industry 
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1.3 Thesis Outline 

The present study consists of six chapters, which are organized and depicted in Figure 1. 

 

 

Figure 1 Outline of thesis. 
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Chapter 2 

Literature Review 

 

2.1 Adsorption 

Adsorption is a process occurring everywhere in nature. For example, fresh water with large 

quantities of inorganic and organic gels flows into the sea, and these gels can adsorb various 

contaminant ions and precipitate in seawater so that the ocean keeps clear blue instead of turning 

muddy. Meanwhile, with the development of human activity, the precipitated gels accumulate on the 

river mouth and desorb bad smells, which is a serious problem.  

In general, adsorption is defined as the change in density or concentration of a substance from a 

phase to an interface within solid-gas, solid-liquid, solid-solid, or liquid-gas systems [19]. The 

substance that accumulates at the interface is called adsorbate, and the substance on which sorption 

occur is called adsorbent. In general, adsorbates are molecules or ions, which are much smaller than 

adsorbents, and only a few adsorbates, such as polymeric adsorbents, have similar sizes with 

adsorbents [20]. 

Adsorption capacity is an important property of a sorbent. At a given temperature, the relation 

between adsorption capacity and gas pressure (or liquid concentration) is described by the adsorption 

isotherm. Adsorption isotherm plots are commonly used to examine the effectiveness of a sorptive 

separation, and can predict adsorbate/adsorbent interactions (e.g., London dispersion force, electric 

dipole-dipole interaction, electric quadrupole interaction, and electrostatic force (or Coulomb force)) 

[21]. More details about adsorption isotherm will be discussed in later sections. 

In terms of application, adsorption has been used for separation and purification of gases and 

liquids a long time ago. In 4000 BC, ancient Egyptians began to use wood and bone char coal to 

decolor wine, water, and sugar based drinks. In some old Japanese buildings (e.g., Kyoto Imperial 

Palace), wood char coals are paved under floors to purify the air. Nowadays, adsorption process is 

widely used in chemical, metallurgic, petroleum, and manufacturing industries. 
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2.2 Sorptive Removal of Phenolic Compounds from Water 

Recently, several sorbents have been studied to remove phenolic compounds from water, 

including carbonaceous sorbents, mineral based sorbents and polymeric sorbents. 

Carbonaceous materials, such as coconut husk, wood, coal etc. can be used to produce various 

adsorbents by physical or/and chemical activation. The large percentage of micropores, high pore 

volumes and surface areas, presence of functional groups, and easy modification are typical 

characteristics of carbonaceous based sorbents, which are responsible for sorptive removal of 

phenolic compounds [22,23]. While little research has been conducted with sorption of bromophenols 

onto carbonaceous materials, Bhatnagar [24] has studied the use of carbonaceous sorbents prepared 

from industrial wastes of fertilizer and steel plants to adsorb 2-bromophenol, 4-bromophenol, and 2,4-

dibromophenol. In this study, blast furnace sludge, dust, and slag were also used as sorbents for 

comparative purpose. It was concluded that the carbonaceous sorbent adsorbed much more 

bromophenols than other three blast furnace based sorbents. The morphologies of four different 

sorbents were shown in Figure 2.  

 

Figure 2 Scanning electron micrograph (SEM) micrographs of carbonaceous sorbents [24]. 

(a: activated carbonaceous adsorbent; b: activated blast furnace sludge; c: activated blast furnace dust; 

d: activated blast furnace slag) 
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It was seen from the micrographs that the carbonaceous based sorbent was highly porous, while 

the blast furnace based sorbents were not. It was confirmed by SEM micrographs that the 

carbonaceous based sorbent with a higher porosity leading to a higher surface area was an appropriate 

material for sorption of various bromophenols [24]. 

One of the most important commercial carbonaceous products is activated carbon, which shows 

many positive characteristics for sorption purpose. For instance, the diameter of pores inside coconut 

shell activated carbon is 10-40 Å, which leads to super high degree of microporosity and surface area. 

For example, 1 g of activated carbon has a surface area of 1000-1600 m2 [25]. Many efforts have 

been devoted to investigating the feasibility of activated carbon for phenolic compound sorption. For 

example, Tancredi et al. [26] reported that phenol was preferentially physisorbed onto granular 

activated carbon prepared from Eucalyptus wood sawdust, and low chemisorbed was detected. 

Ozkaya et al. [27] reported that the adsorbed phenol remained on the activated carbon and sodium 

hydroxide had to be used to recover the adsorbed phenol from the sorbent. Ihsanullah et al. [28] 

reported that the adsorption capacity was significatively affected by the solution pH. Modifying the 

chemical composition (e.g., oxygen and hydrogen on surface groups) of activated carbon can improve 

the efficiency of phenolic compound removal. For example, Canizares et al. [29] modified activated 

carbon Calgon F400 by introducing chloride ions into the activated carbon, which affected 

significatively its adsorption properties for phenol. Asmaly et al. [30] used ferric oxide to modify the 

activated carbon surface, so that the phenol adsorption efficiency was enhanced. Abussaud et al. [31] 

showed Fe2O3, Al2O3 and TiO2 nanoparticles-loaded activated carbon had a higher adsorption 

capacity than raw activated carbon for the adsorption of phenol from water. In spite of the usefulness 

of activated carbon as an efficient material for phenolic compound sorption, it is still not practically 

feasible to use activated carbon for the phenol wastewater treatment. 

Mineral based sorbents, also known as sinking sorbents, are naturally occurring chemical 

compounds, and they are fine-grained and high-density materials [32,33]. Mineral based sorbents 

have been proposed by many researchers as a feasible method for removing phenolic compounds, 

because of their chemical inertness, non-flammability, easy availability and relative low cost [34-36]. 

Typical mineral based sorbents include clay and siliceous materials. Clay materials, such as zeolites, 

kaolinite, and halloysite are considered as the most promising alternatives to activated carbon. 

Recently, there have been a number of studies devoted to the sorption of phenols using low cost clay 

sorbents [37,38]. However, most of the clay adsorbents investigated show poor sorption capacity as 

compared to activated carbons. In addition, there is a risk of dust formation when using clay sorbents 
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during sorption process in open spaces. Siliceous materials represent a very large group, including 

silica fume, bentonite, and diatomite, which consist mainly of SiO2, and some of them are also 

classified as clay materials, such as bentonite and diatomite. The abundance of siliceous materials in 

nature and low cost make it a promising sorbent for removal and recycle of many unwanted 

chemicals from water [39]. Research has shown siliceous materials’ ability to bind phenols in water 

for sorption purpose [40]. For example, Banat et al. [41] reported the potential of bentonite to adsorb 

phenol from water, and the result revealed that the adsorption capacity of siliceous material-bentonite 

was increased with phenol concentration and decreased with the pH of the solution. Further study and 

development of siliceous sorbents for sorption purpose are needed. 

2.3 Sorption by Poly(ether-block-amide) Copolymer 

Poly (ether block amide) (PEBA) is sometimes called Pebax®, and it is a block copolymer with 

the following general chemical structure: 

 

Figure 3 Molecular structure of PEBAX. 

PEBA is an important thermoplastic elastomer, where PA represents a group of aliphatic 

polyamide “hard” blocks (e.g., nylon-6, nylon-12) and PE represents a polyether “soft” block (e.g., 

poly(ethylene oxide) [PEO], poly(tetramethylene oxide) [PTMEO]) . Within the PEBA structure, the 

PA “hard” component provides the mechanical strength, and the PE “soft” component provides the 

elastic properties. Increasing PA components in polymer chains leads the elongation of the PEBA to 

decreases, and the hardness and tensile strength to increase. During the polymerization process, the 

rigid PA segments with regular linear chains are linked with the flexible PE segments, and the 

crystalline phase and amorphous phase are combined together to form a copolymer with both 

thermoplastic and rubber properties.  

PEBA has been used widely, including footwear, equipment, and functional films. There has 

been increasing interest in utilizing PEBA as a material for membranes owing to its excellent 

chemical, mechanical, and thermal stabilities, and good permselectivity to aromatic compounds and 

their derivatives. A few studies have shown that PEBA can be a candidate material for separation of 
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phenolic components from water [42]. Pervaporation of water-phenol by Yahaya revealed the PEBA 

membranes to be the dominant material with a high selectivity to phenol [16]. Kujawski et al. [43] 

and Boddeker et al. [44] investigated the pervaporation separation of phenol from water using 

different grades of PEBA, including PEBAX-2533, PEBAX-4033, and PEBAX-5533. 

Among the PEBA category, PEBAX-2533 with 80-86 wt.% poly(teteramethylene oxide) 

segments is more suitable for effective sorption. PEBAX-2533 is a crystalline polymer, which can be 

characterized by wide-angle X-ray diffractograms (Figure 4). 

 

Figure 4 Wide-angle X-ray diffractogram of PEBAX-2533 [45]. 

where narrow peaks at 2θ = 17, 14 and 26° represent the crystalline region. Various separation 

studies have demonstrated that the PEBA has excellent affinity for many compounds. Therefore, 

PEBAX-2533 is considered as one of the best candidate materials for sorption of phenolic compounds 

[42]. 

 

2.4 Adsorption Isotherm Models 

2.4.1 Langmuir Isotherm Model 

In 1918, Langmuir used kinetic theory to derive an equilibrium model for monolayer adsorption, 

which is widely used to describe physical adsorption or chemisorption [46]. Based on Langmuir 

theory, the adsorption sites, which can hold adsorbed molecules, exist on the surface of the sorbents, 
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and the adsorbed molecules can be only fit on the specific sites, instead of the whole surface area. 

Hence, the adsorption process is also called specific adsorption, and it can be expressed as: 

 

(1) 

where A1 is the free adsorbate molecule in solution, B1 is the vacant sorption sites on the sorbent, and 

A1B1 represents the occupied sorption sites. ka and kd are the rate constant of adsorption and 

desorption, respectively. The Langmuir model is based on three main assumptions: 

i) The whole surfaces sites are alike without uneven structural features (e.g., dislocations). 

ii) There are no interactions between adsorbed molecules. 

iii) Only monolayers of molecules present on the adsorbent surfaces. 

With the above assumptions, the adsorption and desorption rates can be written as: 

𝑟𝑎𝑡𝑒𝑎𝑑𝑠 = 𝑘𝑎  (𝑁 − 𝑁𝑗) 𝐶𝑒 

(2) 

𝑟𝑎𝑡𝑒𝑑𝑒𝑠 = 𝑘𝑑  𝑁𝑗 

(3) 

where 𝐶𝑒, 𝑁, and 𝑁𝑗 represent sorption equilibrium solution concentration, number of total potential 

sites, and number of occupied sites, respectively. 𝑟𝑎𝑡𝑒𝑎𝑑𝑠 decreases with the number of unoccupied 

adsorption sites 𝑁 − 𝑁𝑗  decreasing; 𝑟𝑎𝑡𝑒𝑑𝑒𝑠  increases with the number of occupied sites 𝑁𝑗 . At 

equilibrium (𝑟𝑎𝑡𝑒𝑑𝑒𝑠 =  𝑟𝑎𝑡𝑒𝑎𝑑𝑠), the equilibrium constant (𝐾𝐿) is obtained as: 

𝐾𝐿 =  
𝑘𝑎

𝑘𝑑
=  

𝑁𝑗

(𝑁 − 𝑁𝑗) 𝐶𝑒

 

(4) 

Consequently, the fraction (𝜃) of adsorption sites occupied with molecules is defined as: 

𝜃 =  
𝑄𝑒

𝑄𝑚
=

𝑁𝑗

𝑁
=

𝑁 −  𝑁𝑗

𝑁
𝐾𝐿𝐶𝑒 

(5) 

By rearranging the above equations, the Langmuir adsorption isotherm equation is expressed as: 

𝑄𝑒

𝑄𝑚
=  

𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
 

(6) 
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which can be arranged as: 

1

𝑄𝑒
=  

1

𝑄𝑚𝐾𝐿

1

𝐶𝑒
+ 

1

𝑄𝑚
 

(7) 

where 𝑄𝑒  represents the equilibrium adsorption capacity,  𝑄𝑚  represents the theoretical maximum 

adsorption capacity, 𝐾𝐿 represents the Langmuir constant. Equation 7 is the linearized form of the 

Langmuir isotherm model. Hence, the constants of 𝑄𝑚 and 𝐾𝐿  can be calculated according to the 

slope and intercept of the 1/𝑄𝑒 vs. 1/𝐶𝑒 plot. 

 

2.4.2 Freundlich Isotherm Model 

The Freundlich isotherm model was developed by Freundlich in 1909, and it is an empirical 

equation based on a large variety of adsorption experiments [47]. This empirical model is widely used 

to describe heterogeneous systems, and can be expressed as: 

𝑄𝑒 =  𝐾𝐹𝐶𝑒
1/𝑛

 

(8) 

The above equation can be rearranged as: 

𝑙𝑛𝑄𝑒 = 𝑙𝑛𝐾𝐹 +  
1

𝑛
𝑙𝑛𝐶𝑒 

(9) 

where 𝑄𝑒  is the equilibrium adsorption capacity, 𝐶𝑒  is the equilibrium concentration of solute, 𝑛 

represents the intensity of adsorption, 1/ 𝑛  represents the heterogeneity factor, and 𝐾𝐹  is the 

Freundlich constant characteristic of a particular adsorption isotherm. In general, Freundlich exponent 

𝑛 is 1-10 for most favorable adsorption process, and stronger interaction between adsorbent and 

adsorbate tends to have a larger 𝑛. Equation 9 is the linearized form of the Freundlich isotherm 

model. Hence, the constants of 𝐾𝐹 and 
1

𝑛
 can be calculated according to the slope and intercept of the 

𝑙𝑛𝑄𝑒 vs. 𝑙𝑛𝐶𝑒 plot. 

2.4.3 Linear Isotherm Model 

The linear isotherm model is also called Henry’s adsorption isotherm, and it is considered as a 

special case of Freundlich isotherm model, where the Freundlich exponent 𝑛 equals 1, which means 

that adsorption energies from all sites are identical [48]. This model is defined by: 
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𝑄𝑒 =  𝐾𝐻𝐶𝑒 

(10) 

where 𝐾𝐻 represents the Henry’s adsorption constant. 

The above equation is the simplest isotherm model, and it usually can be used to describe the 

adsorption data better for systems with lower solute concentrations. 

2.5 Adsorption Kinetic Models 

2.5.1 Pseudo-First Order Kinetics Model 

The pseudo-first order reaction kinetics model was investigated by Lagergren in 1989, and it has 

been widely used in numerous systems to provide valuable insights into the sorption process [49]. 

This model assumes that the sorption rate is proportional to the sorption capacity available, and it can 

be expressed as: 

𝑑𝑄𝑡

𝑑𝑡
=  𝑘1(𝑄𝑒 − 𝑄𝑡) 

(11) 

where 𝑄𝑡 refers to the solute uptake at time 𝑡, 𝑄𝑒 refers to the solute uptake at equilibrium, and 𝑘1 

refers to the pseudo-first order rate constant. Equation 11 can be integrated with initial condition 𝑡 =

0, 𝑄𝑡 = 0, gives, 

ln(𝑄𝑒 − 𝑄𝑡) =  −𝑘1𝑡 + 𝑙𝑛𝑄𝑒 

(12) 

The above equation is the linearized form of the pseudo-first order kinetics model [50]. Hence, the 

parameters of 𝑘1 and 𝑄𝑒 can be calculated according to the slope and intercept of the ln(𝑄𝑒 − 𝑄𝑡) vs. 

𝑡 plot. In addition, Equation 11 provides that the solute uptake rate is only based on the value of 

𝑄𝑒 − 𝑄𝑡, not on the solute concentration in the solution [51]. 

 

2.5.2 Pseudo-Second Order Kinetics Model 

The pseudo-second order kinetics model was investigated by Ho and Mackay in 1990s with a 

focus originally on the sorption of batch metal onto peat. They found that chemical sorption with 

sharing or/and exchanging electrons between peat and batch metal ions occurred into the solution 

system [52]. This model can be expressed as: 
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𝑑𝑄𝑡

𝑑𝑡
= 𝑘2(𝑄𝑒 − 𝑄𝑡)2 

(13) 

where 𝑄𝑡 refers to the solute uptake at time 𝑡, 𝑄𝑒 refers to the solute uptake at equilibrium, and 𝑘2 

refers to the pseudo-second order rate constant. Equation 13 can be integrated with initial condition 

𝑡 = 0, 𝑄𝑡 = 0, gives, 

 

𝑡

𝑄𝑡
=  

1

𝑘2𝑄𝑒
2 +  

1

𝑄𝑒
𝑡 

(14) 

The above equation is the linearized form of the pseudo-second order kinetics model. Similar to the 

pseudo-first order kinetic model, the parameters of 𝑘2 and 𝑄𝑒 can be calculated according to the slope 

and intercept of the 
𝑡

𝑄𝑡
 vs. 𝑡 plot. 

It is assumed that, the rate limiting step for the pseudo-second order kinetic model is chemical 

sorption involving molecular interactions between sorbent and sorbate materials [50,53]. The pseudo-

second order kinetic model has certain properties in common with the pseudo-first order kinetic 

model. The second order model also states that the solute uptake rate is only determined by the 

sorption capacity of the sorbent materials available, not the solute concentration [51]. 

 

2.5.3 Intra-Particle Diffusion Kinetics Model 

In 1962, the intra-particle diffusion model was investigated by Weber and Morris based on a 

study of sorptive removal of biologically resistant pollutants from wastewater [54]. It has been found 

that in numerous sorption experiments, the solute uptake rate was proportional to 𝑡1/2 in the initial 

sorption stage (𝑄𝑡/𝑄𝑒<0.5), giving a linearized form of the intra-particle diffusion model. This model 

can be expressed as: 

𝑄𝑡 =  𝑘𝑖√𝑡 + 𝐶 

(15) 

where 𝑘𝑖  refers to the intraparticle mass transfer constant, and 𝐶  refers to the intensity of the 

boundary layer effect. The parameters of 𝑘𝑖  and 𝐶  can be calculated according to the slope and 

intercept of the 𝑄 vs. √𝑡 plot. 
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Considering the 𝑄𝑡  vs. √𝑡  plots from the above model, the intra-particle diffusion can be 

expected into three categories [55]: 

i) When 𝑄𝑡  vs. √𝑡  plot is linear, the intra-particle diffusion is a dominant factor in the 

sorption rate controlling steps. 

ii) When 𝑄𝑡 vs. √𝑡 plot is linear and the parameter 𝐶 equals 0, the solute uptake rate is only 

determined by the intra-particle diffusion. 

iii) When 𝑄𝑡 vs. √𝑡 plot is linear and the parameter 𝐶 does not equal 0, both intra-particle 

diffusion and boundary layer effects are likely considered as the dominant factors in the 

sorption processes. 
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Chapter 3 

Isotherm Study for Bromophenols Sorption in PEBA 

 

3.1 Introduction 

The study of sorption isotherm can be generally used to get an insight into the sorption type and 

mechanism. In this work, the sorption of BP, DBP, and TBP in PEBA was investigated under 

different conditions (i.e., temperature, and pH). The two commonly used isotherm models (Langmuir 

and Freundlich models) were used to fit the sorption data, and the sorption capacities of 

bromophenols on PEBA were estimated based on the fitted plots. 

3.2 Experimental 

3.2.1 Materials 

PEBA 2533 SA01 (Arkema®), N,N - dimethylacetamide (anhydrous 99.8 %, Sigma-Aldrich®), 

4-bromophenol (99%, Sigma-Aldrich®), 2,6-dibromophenol (97%, Sigma-Aldrich®), and 2,4,6-

tribromophenol (99%, Sigma-Aldrich®) were obtained from commercial suppliers and used as 

received. Some chemical and physical properties of the sorbates (bromophenols) studied in this work 

are listed in Table 1. 

Table 1 Chemical and physical properties of bromophenols studied in this work [56]. 

 

Molecular structure 
Molar mass 

(g/mol) 

Solubility in water 

(g/L at 293 K) 
λmax (nm) pKa 

 

4-bromophenol 

173.01 14 279.5 9.17 

 

2,6-dibromophenol 

251.90 0.90 308.0 6.67 

 

2,4,6-tribromophenol 

330.80 0.061 312.5 5.97 
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3.2.2 Preparation of Polymeric Membrane Based Sorbent 

A 15 wt.% PEBA 2533 solution in N, N - dimethylacetamide (DMAc) was made. The solution 

was heated in a water bath at 353 K with vigorous stirring for 3 hours. The homogenous mixture was 

allowed to sit at 343 K for 24 hours to avoid entrapped air bubbles. The solution was dispensed into 

preheated petri dishes by using volumetric glass syringes. The petri dishes were heated in an oven at 

343 K for 24 hours to evaporate the organic solvent (DMAc). The formed PEBA membranes were 

washed several times with deionized water using ultrasonic cleaner (PM3-900TL, Prima®, UK), and 

allowed to dry in a vacuum oven (VO400, Memmert®, Germany) at 343 K for 8 hours to remove 

residual DMAc. The thickness and surface areas of the prepared PEBA sorbent were measured. 

3.2.3 Determination of Sorption Equilibrium Uptake 

This study involved batch sorption. In isotherm studies, the equilibrium uptakes 𝑄𝑒  for each 

bromophenol were determined by: 

𝑄𝑒 =
𝑉 × (𝐶0 − 𝐶𝑒)

𝑀
 

(16) 

where 𝑉 is the volume of the solution (L) measured; 𝑀 is the mass of PEBA sorbent (g); and 𝐶0 and 

𝐶𝑒 represent the initial and equilibrium concentrations (mmol/L), respectively, which were measured 

using a UV-Vis spectrophotometer (UV-5500PC, Metash®, China) at 𝜆𝑚𝑎𝑥 of each bromophenol. The 

calibration curves are presented in Appendix B. Prior to each run, all glasswares used were cleaned 

thoroughly. 

3.2.4 Effects of Temperature 

The batch adsorption of each bromophenol (BP, DBP, and TBP) on the PEBA membrane 

sorbent at different temperatures (298, 308, 318, and 328 K) was conducted as follows: 0.3 g of the 

PEBA membrane (thickness: 200 ± 10 𝜇m) was placed into a 250-mL Erlenmeyer flask containing 

150-mL aqueous solution of the bromophenol with different 𝐶0. For each bromophenol study, two 

flasks of solution with lowest and highest concentrations were left without PEBA membrane to serve 

as blanks. 

Consequently, the capped Erlenmeyer flasks were sealed with parafilm and placed in a constant 

temperature shaker (SHA-B, Yamato Scientific®, Japan) at a pre-set temperature. The above flasks 

were continuously shaken at 100 r/min for a period of 24 hours, to allow for equilibration of the 
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sorption process. In order to obtain data efficiently, four constant temperature shakers were running at 

the same time. 

Finally, 𝐶𝑒  of bromophenol at different temperatures were determined with the UV/Vis 

spectrophotometer at corresponding 𝜆𝑚𝑎𝑥, and 𝑄𝑒 were calculated by Equation 16. 

3.2.5 Effects of Solution pH 

The adsorption of each bromophenol (BP, DBP, and TBP) on PEBA membrane at different 

initial pH was performed in a way similar to the procedure described in Section 3.2.4, except that, 

prior to adding the solution into the flasks, the initial pH (3, 5, 10, and 12) of stock solution for each 

bromophenol was adjusted by using HCl or NaOH. The pH of each solution sample was monitored 

by using a pH meter (SX-5150, Sanxin®, China). In addition, all prepared samples were continuously 

shaken at room temperature (298 K), and equilibrium concentration 𝐶𝑒  was determined using the 

UV/Vis spectrophotometer. 

 

3.3 Results and Discussion 

3.3.1 Effects of Temperature 

The effects of temperature on the adsorption isotherms of BP, DBP, and TBP in PEBA 

membrane were examined in the range 298 – 323 K, and the results are shown in Figure 5. 
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Figure 5 Sorption isotherms trend lines of (a) BP, (b) DBP, and (c) TBP in PEBA membrane at 298 – 

323 K. 

(membrane thickness = 200 𝜇m, solution pH = 7) 

Figure 4 shows that the sorption capacities of BP, DBP, and TBP in PEBA membrane were 

different. TBP had the highest sorption capacity, and PB had the lowest sorption capacity. Generally, 

the sorption of all three bromophenols was more pronounced at a lower temperature. As temperature 

increased, the equilibrium uptake of bromophenols on PEBA membrane decreased, which seems to 

suggest that the sorption of bromophenols in PEBA membrane was an exothermic process. 

Then, the experimental data for BP, DBP, and TBP sorption onto PEBA membrane were fitted 

with two models, including: 

 the linearized form of Langmuir isotherm model (Equation 7) by plotting 1/𝑄𝑒 vs. 1/𝐶𝑒. 

 the linearized form of Freundlich isotherm model (Equation 9) by plotting ln (𝑄𝑒) vs. ln (𝐶𝑒). 
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They are shown in Figures 6 - 7. The model parameters and correlation coefficient (R2) for both 

models are presented in Table 2. 
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Figure 6 Langmuir isotherms fitted data for the sorption of (a) BP, (b) DBP, and (c) TBP on PEBA 

membrane at 298 – 323 K. (membrane thickness = 200 𝝁m, solution pH = 7) 

 

 

0

40

80

120

160

200

240

280

320

0 10 20 30 40 50 60

1
/Q

e
(g

/m
m

o
l)

1/Ce (L/mmol)

298 K

308 K

318 K

328 K

1 1.5 2 2.5 3 3.5 4

-3.5

-2.5

-1.5

-0.5

0.5

ln
(Q

e)

ln(Ce)

298 K

308 K

318 K

328 K

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-6

-5

-4

-3

-2

-1

ln
(Q

e)

ln(Ce)

298 K

308 K

318 K

328 K



 

 21 

 

Figure 7 Freundlich isotherms fitted data for the sorption of (a) BP, (b)DBP, and (c) TBP on PEBA 

membrane at 298 – 323 K. (membrane thickness = 200 𝝁m, solution pH = 7) 

Table 2 Parameters of Langmuir and Freundlich isotherm models for sorption of BP, DBP, and TBP 

in PEBA membrane at different temperatures. 

 

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

-7

-6

-5

-4

-3

-2

ln
(Q

e
)

ln(Ce)
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Bromophenols 
Temperature 

(K) 

Langmuir Freundlich 

𝑄𝑚  

(mmol/g) 

𝐾𝐿 

(L/mmol) 
𝑅2 

𝐾𝐹 

(dimensions 

based on 𝑛) 

1/𝑛 𝑅2 

BP 

298 2.57 0.0161 0.998 0.0469 0.847 0.998 

308 2.19 0.0116 0.999 0.0257 0.867 0.997 

318 1.93 0.0108 0.997 0.0202 0.821 0.996 

328 1.83 0.0100 0.997 0.0177 0.825 0.997 

DBP 

298 4.55 0.0104 0.998 0.0473 0.988 0.997 

308 3.23 0.00886 0.997 0.0269 0.972 0.998 

318 2.44 0.00873 0.995 0.0214 1.02 0.997 

328 2.08 0.00897 0.996 0.0187 0.997 0.997 

TBP 

298 5.26 0.0879 0.995 0.549 1.03 0.995 

308 3.57 0.0859 0.997 0.315 1.01 0.998 

318 2.56 0.0832 0.998 0.219 0.996 0.998 

328 2.27 0.0818 0.997 0.202 1.02 0.998 
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As shown in Figures 6 – 7, for all three bromophenols, the experimental data were fitted well 

with both the Langmuir and Freundlich models at all temperatures, and the coefficient of 

determination (R2) were high (>0.995). The results were in agreement with other studies. Bhatnagar 

[24] studied the removal of BP by industrial wastes, and it was found that the sorption isotherm of 

bromophenols could be expressed by the Langmuir and Freundlich equations. Anbia et al. [57] 

reported the sorption isotherm of BP on functionalized magnetic MCM-48 nanoporous silica by 

cyanuric chloride followed both models at various temperatures. 

Since the sorption data were found to conform both the Langmuir and Freundlich equations, the 

performance of removing different bromophenols by PEBA membrane could be represented and 

compared by the values of of 𝑄𝑚 and 𝐾𝐹. As shown in Table 2, an increase in temperature decreased 

the values of 𝑄𝑚  and 𝐾𝐹  for BP, DBP, and TBP, which suggested that the sorption of all three 

bromophenols onto PEBA membrane was exothermic process. However, the value of 1/𝑛 remained 

almost constant, and it was not significantly affected by temperature. 

Based on the Langmuir model parameters in Table 2, the maximum sorption capacities of PEBA 

membrane for BP, DBP, and TBP were found to be 2.57 mmol/g (at 298 K), 4.55 mmol/g (at 298 K), 

and 5.26 mmol/g (at 298 K), respectively. It was also seen from Table 2 that the order of sorption in 

terms of 𝑄𝑚 or 𝐾𝐹 on PEBA membrane is BP<DBP<TBP. 

The type of bromophenols as characterized by their physical and chemical properties could 

influence their sorption capacities in PEBA. The solubility of BP, DBP, and TBP was considered as 

an important factor affecting sorption capacity. Normally, the sorption capacity of PEBA membrane 

was less for bromophenols with a high solubility than for phenols with a small solubility at same 

temperature. Specifically, the more soluble the bromophenol is, the less strongly would it tend to be 

adsorbed [58], which made the bromophenol molecule to be favored in the liquid phase. Of the three 

bromophenols studied here, the solubility of BP in water (14 g/L, 298 K) was the largest, resulting in 

the smallest sorption capacity in PEBA membrane, as seen from Table 2. Conversely, the solubility 

of TBP in water was the smallest, and the sorption capacity of TBP in PEBA membrane was observed 

to be the largest. This appeared to be due to the strong affinity between the hydrophobic PEBA 

membrane and the hydrophobic TBP molecules. This observation was in agreement with the results 

of Bhatnagar’s study, which mentioned that an increase in solubility of the bromophenol was 

associated with a decrease in adsorption capacity [24]. 

Considering the chemical aspects of the solutes, molecules with electron withdrawing groups 

(e.g., -Br) were expected to affect adsorption to a great extent. Generally, it was observed that 
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stronger electron withdrawing groups are associated with an increase in adsorption capacity. Anbia et 

al. [57] compared the adsorption properties of BP and 4-chlorophenol (CP) on modified MCM-48 

silica based adsorbent, and found the sorption capacity of CP was higher than that of BP, which 

appeared to be attribute the difference of electron withdrawing strength (-Cl was stronger than –Br). 

In addition, for the same functional groups with election withdrawing properties, more substitution on 

the phenolic molecules is related with an increase in adsorption capacity. For instance, the number of 

substituted electron withdrawing group (-Br) increased in the order BP<DBP<TBP, and the sorption 

capacity of three bromophenols on PEBA membrane increased in the order BP<DBP<TBP. Present 

result was in agreement with Bhatnagar’s study, which reported that the sorption capacity of the di-

substituted bromophenol was higher than that of the mono-substituted bromophenol on industrial 

wastes made adsorbents under the same conditions [24]. In some other studies, the molecular size of 

adsorbate was shown to affect adsorption. Specifically, the sorption capacity of a sorbent was less for 

larger solute molecules than that for smaller ones under the same conditions [54]. However, this was 

not consistent with the results of this study, since BP with the smallest size had the lowest sorption 

capacity among all three bromophenols studied here. 

3.3.2 Effects of Solution pH 

The effects of solution pH on the equilibrium adsorption of the three bromophenols on PEBA 

membrane were determined at temperature 298 K. The sorption isotherms for BP, DBP, and TBP in 

PEBA were shown in Figure 8. 
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Figure 8 Sorption isotherms trend lines for the sorption of (a) BP, (b) DBP, and (c) TBP on PEBA 

under different pH at 298 K. (membrane thickness = 200 𝝁m) 

 

It is shown that as the solution pH increased, the sorption capacity of all three bromophenols on 

PEBA membrane decreased. Figures 9 – 10 shows the data fitting to the linearized isotherm models, 

and the model parameters were determined and presented in Table 3. 
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Figure 9 Langmuir isotherms fitted data for the sorption of (a) BP, (b) DBP, and (c) TBP on PEBA 

under different pH at 298 K. (membrane thickness = 200 𝝁m) 
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Figure 10 Freundlich isotherms fitted data for the sorption of (a) BP, (b) DBP, and (c) TBP on PEBA 

under different pH at 298 K. (membrane thickness = 200 𝝁m) 
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Table 3 Parameters of Langmuir and Freundlich isotherm models for the sorption of BP, DBP, and 

TBP in PEBA membrane at different pH at 298 K. 

Bromophenols Initial pH 

Langmuir Freundlich 

𝑄𝑚 

(mmol/g) 

𝐾𝐿 

(L/mmol) 
𝑅2 

𝐾𝐹 

(dimensions 

based on 𝑛) 

1/𝑛 𝑅2 

BP 

3 2.86 0.0177 0.999 0.0628 0.823 0.999 

5 2.70 0.0156 0.999 0.0526 0.829 0.999 

10 2.37 0.0149 0.999 0.0442 0.832 0.999 

12 2.19 0.0136 0.999 0.0375 0.837 0.999 

DBP 

3 4.78 0.0124 0.999 0.0585 0.986 0.999 

5 4.62 0.0110 0.999 0.0502 0.987 0.999 

10 4.36 0.0089 0.999 0.0383 0.988 0.999 

12 4.09 0.0082 0.999 0.0333 0.989 0.999 

TBP 

3 5.66 0.0939 0.999 0.562 0.993 0.999 

5 5.38 0.0888 0.999 0.558 0.995 0.999 

10 5.02 0.0836 0.999 0.411 1.01 0.999 

12 4.90 0.0788 0.999 0.378 1.02 0.999 

 

Figures 9 – 10 show that both the Langmuir and Freundlich models fitted the experimental data 

well. In addition, as shown in Table 3, the coefficient of determination (R2) is high (>0.995), which 

indicated that it was reasonable to use either the Langmuir or Freundlich models to represent and 

compare the removal performance of PEBA membrane for all the three bromophenols studied.  

Based on Langmuir model parameter Qm, the data in Table 3 show the sorption capacity at a 

given initial pH was in order of BP<DBP<TBP. As mentioned previously, the more soluble the 

bromophenol was, the less strongly it tended to be adsorbed on PEBA membrane. 

On the other hand, as shown in Table 3, as the solution pH increased, the sorption capacity of an 

individual bromophenol on PEBA membrane decreased, and the sorption capacity was the highest 

(2.86 mmol/g for BP; 4.79 mmol/g for DBP; and 5.67 mmol/g for BP) at a pH of 3. It seemed that pH 
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can affect the solubility of the sorbent in the solution, resulting in a change in the sorption capacity. 

Since BP, DBP, and TBP were all weak acids (pKa<4), they are likely be present as neutral species at 

a solution pH below their pKa values. Conversely, the three bromophenols would be present as 

anionic species when the solution pH was above their pKa values. In general, the solubilities of 

anionic species were higher than that of neutral species. Therefore, the bromophenols at a higher pH 

would be adsorbed less [59]. This observation was in agreement with the results of DiGiano, who 

reported that as the pH decreased, p-nitrophenol turned to be neutral molecules, which were adsorbed 

more easily onto carbon based adsorbent [60]. 

3.4 Conclusions 

1. The equilibrium sorption of BP, DBP, and TBP in PEBA membrane obeyed both the Langmuir and 

Freundlich models. 

2. The calculated model parameters showed that the sorption capacities of the bromophenols in PEBA 

increased in the order: BP<DBP<TBP. Bromophenols with low water solubilities had a larger 

sorption capacity in PEBA membrane than those with high water solubilities. Decreasing pH and 

increasing temperature increased the capacities of PEBA for bromophenol sorption. 

3. The temperature dependence of the isotherm parameters suggested that the sorption of BP, DBP, 

and TBP onto PEBA was an exothermic process. 
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Chapter 4 

Kinetics of Bromophenol Sorption in PEBA Membrane 

 

4.1 Introduction 

The study of sorption kinetics plays an important role in well-designed sorption process. In this 

study, the sorption kinetics was determined by measuring the solute uptake rate in order to obtain 

valuable information about the nature and mechanism of the sorption process. 

4.2 Experimental 

4.2.1 Effects of Sorbate Concentration 

The adsorption kinetics studies were conducted at different adsorbate concentrations (BP: 30, 60, 

90, 120, and 150 ppm; DBP: 30, 60, 90, 120, and 150 ppm; TBP: 20, 30, 40, 50, and 60 ppm) using 

250-mL Erlenmeyer flasks with PEBA membrane samples of same thickness (200 ± 10 𝜇m); and 

mass (0.3 g). The flasks containing bromophenol solutions and PEBA sorbents were placed in a 

constant temperature shaker at a pre-set temperature (298 K). The UV/Vis spectrophotometer was 

used to measure the concentrations of the bromophenols at various intervals. Finally, the experimental 

data was analyzed based on 1st and 2nd order kinetics as well as intra-particle diffusion model. 

4.2.2 Effects of Sorbent Forms, Thickness, and Size 

To get an insight into the effects of sorbent on sorption performance, the batch adsorption 

kinetics studies were carried out at a constant initial concentration (60 ppm) and temperature (298 K) 

in 250 mL capped Erlenmeyer flasks.  

PEBA sorbents with the same mass (0.3 g), but different forms (PEBA membrane with 200 ± 10 

𝜇m in thickness; PEBA pellet with 1 mm in radius) were applied to evaluate the effects of sorbent 

forms in the sorption kinetics study. 

PEBA membranes with the same surface area (60 ± 5 cm2), but different thicknesses were used 

to evaluate the effects of sorbent thickness on the sorption kinetics. 

PEBA pellets (radius: 1 mm) with the same mass (0.3 g) with and without cuts (non-cut, cut 

once, and cut twice) for each pellet were used to evaluate the effect of sorbent size in the sorption 

kinetics study. 
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Each sample was placed in the constant temperature shaker at a pre-set temperature and shaking 

speed. Finally, the concentrations of the bromophenols were determined throughout the sorption 

periods using the UV/Vis spectrophotometer.  

4.2.3 Effects of Temperature 

The adsorption kinetics at different temperatures was performed in the same way as described 

before, except that, the initial phenol concentrations were 60 ppm for three bromophenols, and the 

sorption experiments were performed at 298, 308, 318, and 328 K using a constant temperature 

shaker. Finally, the experimental data was analyzed to determine the activation energy involved in the 

sorption process. 

4.3 Results and Discussion 

4.3.1 Effects of Sorbate Concentration 

The sorption kinetics of BP, DBP, and TBP on PEBA membrane showed the evolution of the 

sorption capacity with time. In order to obtain the sorbate uptake at time t, Equation 17 was used. 

𝑄𝑡 =  
𝑉 × (𝐶0 − 𝐶𝑡)

𝑀
 

(17) 

where Ct refers to the solute concentration (mmol/L) of the bromophenol solution at time t (min). To 

analyze the kinetic data and find the best suitable model for the sorption process, pseudo-first order 

and pseudo-second order rate models were considered. The effects of initial phenol concentration on 

the sorption kinetics are shown in Figure 11. 
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Figure 11 Kinetics of (a) BP, (b) DBP, and (c) TBP sorption by PEBA at different initial 

concentrations at 298 K. 

 

The sorption kinetic data obtained at different initial feed concentrations of bromophenols were 

fitted to the pseudo-first (Equation 12) and pseudo-second (Equation 14) order rate models, as 

shown in Figures 12 - 13. 
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Figure 12 Linearized pseudo-first order model fitted data for TBP sorption on PEBA at different 

initial concentrations at 298 K. 
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Figure 13 Linearized pseudo-second order model fitted data for TBP sorption on PEBA at different 

initial concentrations at 298 K. 
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Table 4 summarized the sorption kinetic parameters based on the pseudo-first and pseudo-

second order rate models calculated from the slopes and intercepts of the plots from Figures 11 - 12. 

The correlation coefficients (R2) of the pseudo-second order mode fits were high (>0.995) for all 

three bromophenols, and the values of 𝑄𝑒  obtained from experiments remained similar to those 

predicted from the plots. The pseudo-second order rate model fitted the experimental data better than 

the pseudo-first order rate model. It was decided to use the pseudo-second order rate model to 

compare and explain the sorption of different bromophenols on PEBA membrane, although strictly 

speaking this model fitting is not without reservation [50,53]. Nevertheless, this analysis is simple to 

do for the purpose of comparing the sorption performance, and such a treatment is considered 

adequate here. 

Table 4 Kinetic parameters of bromophenols sorption in PEBA membrane at different initial 

concentrations. 

  

Bromophe- 

-nols 

Initial 

Conc. 

(ppm) 

Pseudo-First Order Pseudo-Second Order 

Experimental 

𝑄𝑒  (mmol/g) 𝑘1 

(min
-1

) 

𝑄𝑒  

(mmol/g) 
𝑅2 

𝑘2 

(g·mmol
-

1
·min

-1
) 

𝑄𝑒  

(mmol/g) 
𝑅2 

BP 

30 0.0737 0.0181 0.928 11.4 0.0206 0.999 0.0201 

60 0.0747 0.0260 0.934 7.25 0.0378 0.999 0.0373 

90 0.0766 0.0327 0.922 6.87 0.0479 0.999 0.0473 

120 0.0769 0.0417 0.923 5.32 0.0666 0.998 0.0658 

150 0.0778 0.0490 0.920 4.73 0.0802 0.999 0.0798 

DBP 

30 0.0838 0.0265 0.907 16.4 0.0298 0.998 0.0289 

60 0.0839 0.0326 0.907 12.0 0.0421 0.999 0.0419 

90 0.0856 0.0392 0.904 9.72 0.0566 0.998 0.0558 

120 0.0875 0.0439 0.899 8.79 0.0689 0.998 0.0683 

150 0.0895 0.0511 0.894 7.63 0.0886 0.999 0.0882 

TBP 

20 0.0971 0.0282 0.867 31.8 0.0412 0.999 0.0399 

30 0.0986 0.0358 0.862 26.8 0.0552 0.998 0.0549 

40 0.0998 0.0423 0.864 25.0 0.0621 0.999 0.0618 

50 0.101 0.0544 0.869 23.6 0.0792 0.999 0.0788 

60 0.102 0.0687 0.875 20.5 0.0991 0.999 0.0989 
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4.3.2 Intra-Particle Diffusion Model 

The intra-particle diffusion model was also used to fit the experimental data for the initial 

sorption stage (𝑄𝑡/𝑄𝑒<0.5). The intra-particle diffusion model (Equation 15) fitting for sorption of 

the three bromophenols on PEBA at different initial phenol concentrations were shown in Figure 14, 

and the calculated model parameters were presented in Table 5. 
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Figure 14 Intra-particle diffusion model fitted data for (a) BP, (b) DBP, and (c) TBP on PEBA. 

Table 5 Parameters for intra-particle diffusion models of different initial concentrations of BP, DBP, 

and TBP on PEBA membrane. 

Bromophenols 
Initial Conc. 

(ppm) 

𝑘𝑖 

(mmol·g-1·min-1/2) 

𝐶 

(mmol·g-1) 
𝑅2 

BP 

30 0.00620 -0.00232 0.998 

60 0.0123 -0.00413 0.998 

90 0.0173 -0.00552 0.999 

120 0.0249 -0.00756 0.999 

150 0.0308 -0.00892 0.999 

DBP 

30 0.0129 -0.00328 0.998 

60 0.0185 -0.00452 0.999 

90 0.0257 -0.00580 0.998 

120 0.0332 -0.00732 0.999 

150 0.0452 -0.00963 0.999 

TBP 

20 0.0292 -0.00433 0.998 

30 0.0415 -0.00592 0.998 

40 0.0475 -0.00651 0.999 

50 0.0664 -0.00826 0.995 

60 0.0882 -0.0108 0.999 
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As shown in Figure 14, the Qt vs. t1/2 plots were all linear but did not pass through the origin 

point, which indicated that boundary layer effects were not absent in the sorption process for the three 

bromophenols [61]. As can be seen from Table 5, as the initial phenol concentration increased, the 

values of parameter C also increased, which suggested that the boundary layer effect was more 

pronounced in the system. However, in view of the small C values, the boundary layer effect is 

certainly not significant. 

In order to evaluate the effects of diffusion quantitatively, the slope of the fractional uptake 

(Qt/Qe) vs. t1/2 plot (Figure 15) was used to estimate the intra-particle diffusivities (Dc, m2/min) based 

on Equation 18: 

𝑄𝑡

𝑄𝑒
≈

4

𝑙
(
𝐷𝑐𝑡

𝜋
)

1
2 

(18) 

where l represents the thickness (m) of the PEBA membrane. Similar to Equation 15, the above 

equation also works in the initial sorption stage (𝑄𝑡/𝑄𝑒<0.5), where the sorption time is relatively 

short [62]. The results of diffusivities as evaluated are shown in Table 6. 
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Figure 15 Fitted data for fractional sorption uptake of (a) BP, (b) DBP, and (c) TBP on PEBA 

membrane versus t1/2. 

Table 6 Intra-particle diffusivity of different initial concentrations of BP, DBP, and TBP on PEBA 

membrane. 

Bromophenols 
Initial Conc. 

(ppm) 

𝐷𝑐 × 1010 

(m2·min-1) 
𝑅2 

BP 

30 0.721 0.998 

60 1.07 0.999 

90 1.08 0.999 

120 1.09 0.999 

150 1.16 0.999 

DBP 

30 1.51 0.998 

60 2.26 0.999 

90 2.61 0.998 

120 2.80 0.999 

150 2.94 0.999 

TBP 

20 2.89 0.998 

30 2.93 0.998 

40 3.02 0.999 

50 3.11 0.099 

60 3.39 0.999 
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The data in Table 6 show that the diffusivity of phenol in PEBA increased with an increased in 

the initial concentration of adsorbates (BP, DBP, and TBP). It appeared that, as the initial 

concentration of adsorbates increased, the sorption uptake of PEBA based sorbent also increased, 

leading the PEBA membrane to swell, making it easier for the solute molecules to diffuse in the 

membrane. 

 

4.3.3 Effects of Sorbent Forms 

To evaluate the advantages of using PEBA membranes over PEBA pellets for removing 

bromophenols, this section focused on the intra-particle diffusion study further. The sorption kinetics 

using the two forms of the sorbent (e.g., PEBA membrane vs. PEBA pellet) with same masses for 

sorption of BP, DBP, and TBP at same conditions is shown in Figure 16. 
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Figure 16 Kinetics of (a) BP, (b) DBP, and (c) TBP sorption by PEBA membrane vs. PEBA pellet. 

 (initial concentration = 60 ppm, temperature = 298 K) 

Figure 16 (a) shows that under the same conditions, the sorption of BP on PEBA membrane 

reached equilibrium earlier than that using PEBA pellet, while the equilibrium sorption capacities 

were same for both forms of sorbents. Similar observations can be made in Figure 16 (b) for DBP 

and Figure 16 (c) for TBP. Generally, for PEBA based sorbent with a given mass, the surface area of 

thin PEBA membrane was larger than that of PEBA pellet. Therefore, the above results revealed that 

sorption of bromophenols in PEBA sorbent was not a simple surface phenomenon (i.e., adsorption), 

and the actual solute uptake should be an internal sorption process inside the PEBA based material. 

Based on Section 4.2.1, the pseudo-second order model fit the experimental data well in kinetics 

studies. Hence, the above kinetics were fitted and analyzed with the pseudo-second order model only. 

The model curves were plotted in Figure 17, and the values of the model parameter values are 

presented in Table 7. 
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Figure 17 Linearized pseudo-second order model fitted data for (a) BP, (b) DBP, and (c) TBP 

sorption on PEBA membrane vs. pellet. (initial concentration = 60 ppm, temperature = 298 K) 

 

Table 7 Pseudo-second order kinetic parameters of bromophenols sorption in PEBA membrane vs. 

PEBA pellet. 

Bromophenols 
Pellet (P) or 

Membrane (M) 

𝑘2 (g·mmol-

1·min-1) 
𝑄𝑒  (mmol/g) 𝑅2 

Experimental 

𝑄𝑒  (mmol/g) 

BP 
P 3.68 0.0372 0.998 0.0370 

M 7.25 0.0378 0.999 0.0373 

DBP 
P 4.33 0.0417 0.998 0.0416 

M 12.0 0.0421 0.999 0.0419 

TBP 
P 6.22 0.0988 0.992 0.0986 

M 20.5 0.0991 0.999 0.0989 
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The data in Table 7 shows the value of pseudo-second order rate constant (k2) for PEBA 

membrane was larger than that for PEBA pellet for a given bromophenol. In other words, at the same 

conditions, as the surface area of PEBA increased, the value of k2 increased. This observation was 

expected because a larger surface area of PEBA with a given mass means more liquid-PEBA 

interfacial contact. This revealed that the internal mass transfer mechanism inside the PEBA material 

should be also considered with the surface mechanism during the sorption process. 

The intra-particle diffusion model (Equation 15) was also considered for phenol sorption on 

PEBA membrane and pellet, as shown in Figure 18.  
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Figure 18 Intra-particle diffusion fitted data for sorption uptake of (a) BP, (b) DBP, and (c) TBP on 

PEBA membrane and pellet. (initial concentration = 60 ppm, temperature = 298 K) 

Table 8 Parameters for intra-particle diffusion models of BP, DBP, and TBP in PEBA membrane and 

PEBA pellet. 

Bromophenols 

Pellet (P) or 

Membrane 

(M) 

Intra-Particle Diffusion Parameters 

𝑅2 𝑘𝑖 

(mmol·g-1·min-1/2) 

𝐶 

(mmol·g-1) 

BP 
P 0.00830 -0.00363 0.999 

M 0.0123 -0.00413 0.999 

DBP 
P 0.0101 -0.00322 0.998 

M 0.0185 -0.00452 0.999 

TBP 
P 0.0469 -0.00980 0.999 

M 0.0882 -0.0108 0.999 

 

It was shown that the PEBA sorbent sizes (membrane thickness, pellet diameter) can affect the 

intra-particle diffusion of bromophenol. The above results seem to suggest that intra-particle diffusion 

is not the dominant mass transfer mechanism during the sorption process, which further supported the 

conclusion in Section 4.3.2. 

Table 4 also showed that as PEBA material changed from pellet to film, resulted in an increase 

in value of Dc. Dc described the internal diffusion rate, which was not related to the thickness or 

surface area of the sorbent. The value of Dc was obtained from the slope of (Qt/Qe) vs. t1/2 plot with 
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the assumption that internal diffusion was 100% contributed to the sorption process. Clearly, the 

intra-particle diffusion is not a reasonable dominating mechanism of phenol sorption in PEBA. 

4.3.4 Effects of Sorbent Thickness 

To study the effect of PEBA membrane thickness with a given surface area on sorption process, 

the sorption uptakes for the three bromophenols were examined over time. The sorption kinetics data 

of PEBA membrane with the same surface area but different thicknesses for BP, DBP, and TBP is 

shown in Figure 19. 
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Figure 19 Uptake of (a) BP, (b) DBP, and (c) TBP on 60 cm2 PEBA membrane with different 

thicknesses. 

 

As shown in Figure 19, for the PEBA membrane with a given surface area, the sorption uptake 

of bromophenol decreased with an increase in the membrane thickness. Generally, the sorption 

capacity was proportional to the surface area of the sorbent for simple surface sorption if the sorption 

occurs only on the surface. Apparently, for the systems studied here, phenol sorption has occurred in 

the interior of PEBA sorbent. 

 

4.3.5 Effects of Sorbent Size 

Previous sections described sorptive removal of bromophenols from water by using PEBA 

membrane. However, due to the cost and procedure of producing membranes, pellet sorbents are still 

considered in industries. Usually, the commercial stock pellet was ground to smaller particles, which 

are expected to show better sorption capacity than original pellets. To compare the sorption properties 

of PEBA pellet of different sizes, and to further support that diffusion was not the only factor 

contributing to the mass transfer, the sorption uptakes of the three bromophenols in PEBA were 

examined over time. The sorption kinetics data of PEBA pellet with the same mass but different 

cutting sizes were shown in Figure 20. 

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60

Q
t

(m
m

o
l/

g)

Time (min)

100 μm

200 μm

300 μm



 

 46 

 

 

  

 

Figure 20 Uptake of (a) BP, (b) DBP, and (c) TBP on 0.3 g PEBA membrane with different cutting 

numbers. 
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As can be seen from Figure 20, the sorption capacities of PEBA pellets with different cuts were 

same. For PEBA pellets with a given mass, a decrease in size leads to a high surface area. Increased 

surface area did not change the equilibrium sorption capacity, suggesting again that the sorption 

process was not occurring by a simple surface phenomenon. This is in agreement with the previous 

results. Meanwhile, it was also shown that, instead of using PEBA membrane sorbent, using PEBA 

pellet sorbent with small sizes and high surface area was also feasible to remove bromophenols. 

However, the use of minute particles may result in significant presence drop for the liquid, which 

could be a significant operating issue. In addition, the PEBA pellet showed lower sorption 

performance than PEBA membrane, and its isolation was not as easy as film based sorbent. 

 

 

4.3.6 Effects of Temperature 

To investigate the effect of temperature on the sorption rate, the rates of sorption uptakes for the 

three bromophenols were examined at different temperatures. Figure 21 shows the amount of phenols 

sorbed into PEBA. 
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Figure 21 Kinetics of (a) BP, (b) DBP, and (c) TBP sorption on PEBA membrane at various 

temperatures. (initial concentration = 60 ppm, membrane thickness = 200 𝝁m) 

The pseudo-second order model was used to fit to the experimental data, as shown in Figure 22. 

The model parameters presented in Table 9. 
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Figure 22 Linearized pseudo-second model fitted data for (a) BP, (b) DBP, and (c) TBP sorption on 

PEBA at various temperatures. (initial concentration = 60 ppm, membrane thickness = 200 𝝁m) 
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Table 9 Kinetic parameters of bromophenols sorption in PEBA membrane at various temperatures.  

Bromophenols 
Temperature 

(T) 

𝑘2 (g·mmol-

1·min-1) 
𝑄𝑒 (mmol/g) 𝑅2 

Experimental 

𝑄𝑒 (mmol/g) 

BP 

298 7.25 0.0378 0.999 0.0373 

308 15.2 0.0323 0.999 0.0320 

318 20.6 0.0287 0.099 0.0286 

328 30.9 0.0218 0.998 0.0215 

DBP 

298 12.0 0.0421 0.999 0.0419 

308 22.5 0.0352 0.999 0.0350 

318 29.6 0.0319 0.099 0.0315 

328 36.7 0.0268 0.999 0.0266 

TBP 

298 20.5 0.0991 0.999 0.989 

308 29.9 0.0787 0.998 0.783 

318 38.6 0.0587 0.099 0.585 

328 58.7 0.0422 0.999 0.421 

 

As the data in Table 9 shows, at a higher temperature, the uptake rate increased but the 

equilibrium uptake capacity decreased. Therefore, with a change in temperature, there is a 

pronounced trade-off between sorption capacity and sorption rate in the system. 

 

4.3.7 Activation Energy 

Activation energy (Ea, kJ/mol) describes the energy barrier that needs to overcome for sorption 

to happen in the system, and it can be written in an Arrhenius type: 

𝑘 = 𝐴 ∙ exp(−
𝐸𝑎

𝑅 ∙ 𝑇
) 

(19) 

where k refers to sorption rate constant (L/mmol), A is a frequency factor, R (kJ/mol·K) is the 

universal gas constant, and T is the temperature (K). To calculate the value of activation energy, 

Equation 19 can be arranged to a linear form: 
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𝑙𝑛𝑘 = 𝑙𝑛𝐴 −
𝐸𝑎

𝑅 ∙ 𝑇
 

(20) 

where Ea and A can be calculated from the slope and intercept of the 𝑙𝑛𝑘 vs. 1/T plot. The 𝑙𝑛𝑘 vs. 1/T 

plots for the sorption of the three bromophenols in PEBA are depicted in Figure 23, and the 

calculated A and Ea values are listed in Table 10 

. 

 

Figure 23 Linearized Arrhenius equation fitted data for BP, DBP and TBP sorption on PEBA 

membrane. 

 

Table 10 Activation energy for sorption based on pseudo-second order rate constant of BP, DBP, and 

TBP in PEBA. 

Bromophenols 
𝐸𝑎 

(kJ·mol-1) 
𝑅2 

BP 38.0 0.969 

DBP 29.6 0.945 

TBP 27.6 0.990 
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If diffusion mechanism were the primary controlling step in the sorption process, then the 

activation energy Ea (kJ/mol) could be described by: 

𝐷𝑐 = 𝐷0 ∙ exp(−
𝐸𝑎

𝑅 ∙ 𝑇
) 

(21) 

where D0 refers to the temperature independent pre-exponential factor [63]. To calculate the value of 

activation energy based on the experimental data, Equation 21 may be arranged to a linear form as 

following equation: 

𝑙𝑛𝐷𝑐 = 𝑙𝑛𝐷0 −
𝐸𝑎

𝑅 ∙ 𝑇
 

(22) 

where the parameters of Ea and D0 can be obtained from the slope and intercept of the 𝑙𝑛𝐷𝑐 vs. 1/T 

plot. The value of Dc based on the experimental data from Section 4.3.6 was calculated from the 

slope of (Qt/Qe) vs. t1/2 plot, which was depicted in Figure 24, and the calculated Dc values are listed 

in Table 11. 
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Figure 24 Fitted data for fractional sorption uptake of (a) BP, and (b) DBP, and (c) TBP on PEBA 

versus t1/2 at various temperatures. (initial concentration = 60 ppm, membrane thickness = 200 𝝁m) 

Table 11 Intra-particle diffusivity of different initial concentrations of BP, DBP, and TBP on PEBA 

membrane at various temperatures. 
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Bromophenols 
Temperature 

(K) 

𝐷𝑐 × 1010 

(m
2
·min

-1
) 

𝑅2 

BP 

298 1.07 0.999 

308 2.15 0.999 

318 3.59 0.999 

328 5.00 0.999 

DBP 

298 2.26 0.999 

308 3.78 0.998 

318 5.47 0.998 

328 7.56 0.998 

TBP 

298 3.39 0.999 

308 5.41 0.999 

318 7.12 0.998 

328 9.96 0.998 
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Then the 𝑙𝑛𝐷𝑐  vs. 1/T plots for the three bromophenols are depicted in Figure 25, and the 

calculated D0 and Ea values are listed in Table 12. 

 

 

Figure 25 Linearized Arrhenius-type of equation (if dominated by diffusion) fitted data for BP, DBP, 

and TBP sorption on PEBA membrane. 

 

Table 12 Activation energy for intra-particle diffusivity for sorption of BP, DBP, and TBP on PEBA 

membrane at various temperatures. 

Bromophenols 
𝐸𝑎 

(kJ·mol-1) 
𝑅2 

BP 41.7 0.983 

DBP 32.4 0.993 

TBP 28.5 0.991 

 

It can be seen that for a given bromophenol, the value of activation energy obtained from 

Equation 20 was similar to that obtained from Equation 22. Either model could be applied to the 

study of activation energy for sorption of the three bromophenols on PEBA membrane. Morris et al. 

[54] indicated that, if diffusion mechanism was the only factor dominating the mass transfer for 

adsorbents with large molecular sizes, then the activation energy was in the rage of 12-21 kJ/mol. The 
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results revealed again that intra-particle diffusion was not the dominating mass transfer mechanism 

during the sorption process, which was in agreement with the conclusions drawn in Section 4.3.2 and 

4.3.3. 

4.4 Conclusions 

1. The kinetics of BP, DBP, and TBP sorption in PEBA membrane obeyed the pseudo-second order 

kinetics model. 

2. The sorption uptake occurred not only on surface, the phenol molecules also entered the interior of 

the PEBA sorbent. 

3. The sorption kinetics results showed that the processing of PEBA pellets to PEBA membranes 

improved its sorption rate. A decrease in the membrane sorbent thickness increased both sorption rate 

and capacity, and the cutting of PEBA pellets to smaller sizes increased its sorption rate only. The 

kinetics data analysis also supported that diffusion was not the dominating mechanism in sorption. 

4. The rate constant based on the pseudo-second order kinetics model and diffusivity coefficient 

based on the intra-particle diffusion model were both temperature dependent, and the temperature 

dependencies followed Arrhenius type of relations. 
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Chapter 5 

Use of PEBA Sorbent to Treat Waste Effluent from 

Tetrabromobisphenol A Industry 

 

5.1 Introduction 

Tetrabromobisphenol A (TBBPA), which belongs to both bisphenol A (BPA) and bromophenol 

categories [64], is a toxic white powder at room temperature [65,66]. Its solubility in water is 0.063 

mg/L at room temperature [70], and its structure is shown in Figure 26. As mentioned in earlier 

sections, there are wide practical applications for bromophenol in industries. For instance, TBBPA 

can be used as an intermediate to produce epoxy, polyester, ABS, HIPS, plastics, or coating material 

for facilitating the fire retardant property [67,68]. 

 

Figure 26 Molecular structure of TBBPA. 

 

TBBPA is primarily synthesized by bromination of BPA, as shown in Figure 27. Depending on 

reaction conditions, three methods have been used to prepare TBBPA, including direct bromination, 

catalytic bromination, and oxidation-bromination [69]. 

 

Figure 27 Synthesis of TBBPA with BPA. 

 

Exploition of halogen resources, such as bromine and bromine derivatives, has been an important 

part of ocean economy. Shandong Tianyi Chemical Co., Ltd. (TY), a core operating company of 

Shandong Research Institute of Ocean Chemical Industry (Weifang, China), has been a major 
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TBBPA supplier with a production capacity of (1,5000 mt/year). The production route for TBBPA 

can be illustrated as follows: 

 

 

Figure 28 Schematic diagrams for TBBPA production. 

Bromine and hydrogen peroxide were added to the TBBA-chlorobenzene solution at a controlled 

temperature. Then, the temperature of the mixture was increased until crude TBBPA was formed. 

Finally, the TBBPA product with high purity was obtained by successive crystallization, filtration, 

washing, and drying. During the TBBPA production process, multiple bromophenols (i.e., TBP, 

Tribromobisphenol A and TBBPA) were discarded into the outflow wastewater. There is a need for 

sorptive removal of discarded bromophenols from TBBPA production line. Currently, carbonaceous 
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adsorbent has been used for treatment of such wastewater. However, as mentioned in Section 2.2, 

carbonaceous sorbents are expensive and non-environmental friendly. 

To solve the above problem, PEBA membrane was considered as an appropriate sorbent, owing 

to its high tolerance in acidic/basic effluents and excellent sorption capacity for bromophenols. 

Previous sections have studied the sorption performance of PEBA membrane for single bromophenol 

(i.e., BP, DBP, or TBP) solution, which was prepared in laboratory. To confirm the efficient 

performance of PEBA membrane on removing bromophenols in real applications, industrial effluents 

from TBBPA production line were used in the sorption tests.  

This section will be focused on the evaluation of the sorption performance of PEBA membrane 

for removing discarded TBP from TBBPA industrial effluents at different conditions, including pH, 

temperature, adsorbent dosage, adsorbate concentration, and contact time. 

 

5.2 Experimental 

5.2.1 General Procedure for the Treatment of Bromophenols from Industrial Effluents 

25 L of effluent W1 and W2 were obtained from the midstream aqueous mixtures in #1 and #5 

TBBPA production line (TY-101, Weifang Binhai Economic Development Zone, Shandong, China), 

respectively. Prior to packaging and shipping the effluent W1 and W2 to the laboratory from the 

production line, the main components (mass distribution) of the sample were determined by TY 

(shown in Figure 28). The delivered industrial effluents were filtrated by using filter paper and 

vacuum pump to remove the insoluble contaminants left during the production period. The 

concentration of TBP in filtrated W1 (59 ppm) and W2 (40 ppm) were measured by UV/Vis. 

Consequently, the filtrated effluents were sealed under sample vials for further testing.  

As shown in Figure 28, both W1 and W2 effluents contained TBP, which would be adsorbed by 

PEBA membrane sorbent. To evaluate the sorption performance of PEBA membrane for the obtained 

effluents, the percentage of TBP removal, defined below, was used. 

𝑇𝐵𝑃 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 =
𝐶0 − 𝐶𝑡

𝐶0
× 100% 

(23) 

where 𝐶0 is the initial concentration (mmol/L) of TBP; and 𝐶𝑡 is the concentration (mmol/L) of TBP 

in the wastewater at time t (min), which was determined by using UV-Vis spectrophotometer. 
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5.2.2 Effects of Solution pH 

The batch sorption experiments were introduced here. 1.0 g of the PEBA membrane (thickness: 

200 ± 10 𝜇m) was placed in a 250 mL Erlenmeyer flask. 150 mL of the aqueous solution of W1 and 

W2 with given concentrations (𝐶0) and different initial pH values (2, 4, 6, 8, 10, 12) were then 

dispensed into each flask. The pH values of W1 and W2 were adjusted with HCl and NaOH, and 

determined by using a pH meter. For each effluent, two flasks of the solution samples with smallest 

and largest pH values were left without PEBA membrane to serve as blanks. The Erlenmeyer flasks 

were consequently sealed with parafilm and placed in the constant temperature shaker at a pre-set 

temperature (298 K). The above flasks were continuously shaken at 100 r/min for a period of 24 

hours, to allow for equilibration of the sorption process. Finally, the concentrations of W1 and W2 for 

varying initial pH values were determined with the UV/Vis spectrophotometer at corresponding  

𝜆𝑚𝑎𝑥, and TBP removal were calculated by Equation 23. 

5.2.3 Effects of Temperature 

Sorption experiments were conducted similar to those mentioned in Section 5.2.2, except that, 

the filtrated effluents W1 and W2 were dispensed into each flask without pH adjustment, and the 

prepared samples were shaken at 298 – 328 K with 10 K increments. 

5.2.4 Effects of Adsorbate Concentration 

Sorption tests were conducted with effluents at different concentrations. The stock solutions of 

effluent W1 and W2 were successively diluted to 90%, 80%, 70%, and 60% of their original 

concentrations. In addition, all sealed samples were continuously shaken at the same temperature (298 

K) and the bromophenols removal at different concentrations was evaluated. 

5.2.5 Effects of Contact Time 

Instead of shaking the prepared samples at different temperatures for 24 hours in Section 5.2.3, 

the sealed solution with same concentration for each group were shaken at a constant temperature 

(298 K) for varying time (2, 5, 10, 20, 30, 40, 50, 60, and 90 min). 

5.2.6 Effects of Adsorbent Dosage 

The prepared PEBA membrane (thickness: 200 ± 10 𝜇m) was cut to pieces of different masses 

(1.0, 0.8, 0.6, 0.4, and 0.2 g), and the sorption tests were carried out at 298 K for 24 hours. 
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5.2.7 PEBA Membrane Regeneration 

Regeneration of PEBA membrane for TBP sorption from both effluents W1 and W2 were 

conducted, the PEBA membrane samples (mass: 1.0 g; thickness: 200 ± 10 𝜇m) were immersed into 

the effluent for 3 hours for sorption, followed by immersion in deionized water and ethanol (99.5% 

v/v) for 3 hours to induce desorption. Both processes were performed at constant temperature (298 K) 

in a constant temperature shaker. The membrane samples were then dried in a vacuum oven and the 

percent desorption was determined. The same membrane was consequently used for subsequent 

sorption /desorption cycles to evaluate the regeneration performance. 

 

5.3 Results and Discussion 

5.3.1 Effects of Solution pH, Temperature, Adsorbate Concentration, Contact Time, 

and Adsorbate Dosage 

Figure 29 shows that the percent TBP removal decreases with an increase in pH. This is an 

agreement with our previous study. A change in solution pH led to a change in solute solubility, and 

this affects the adsorption performance significantly.  

 

Figure 29 Effects of solution pH on the removal of TBP in TBBPA industrial effluents. 

(mass of PEBA = 1.0 g; sorption time = 24 hours; temperature = 298 K; initial concentration = 59 

ppm for W1, 40 ppm for W2) 
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Ashraf et al. [70] investigated the use of white radish peroxidase for sorptive removal of 

contaminated phenolic compounds from wastewater at different pHs, and the results revealed that as 

the pH increased from 2 to 10, the percent phenolic compound removal increased and then decreased. 

Obviously the effect of pH on sorption performance depends on the properties of the sorbent and the 

solute. 

Figure 30 shows how the temperature affected TBP removal for both effluents. As expected, the 

sorption of bromophenols from the effluents was also an exothermic process. At 298 K, TBP removal 

rates for W1 and W2 were 90% and 87%, respectively. In practice, the operating temperature was 

determined by the mainly process operating conditions. 

 

Figure 30 Effects of temperature on the removal of TBP in TBBPA industrial effluents. 

(mass of PEBA = 1.0 g; sorption time = 24 hours; pH = 7; initial concentration = 59 ppm for W1, 40 

ppm for W2) 
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Figure 31 shows the removal of bromophenols from the effluents at different concentrations. 

The percentage removal of TBP becomes lower at lower TBP concentrations in water. This is 

understandable, because the driving force for phenol sorption will be reduced when the feed is 

diluted, resulting in reduced sorption uptake. 

 

 

 

Figure 31 Effects of adsorbate concentration on the removal of TBP in TBBPA industrial effluents. 

(mass of PEBA = 1.0 g; sorption time = 24 hours; temperature = 298 K; pH = 7; initial concentration 

= 59 ppm for W1, 40 ppm for W2) 

 

Figure 32 shows the impact of sorption time on TBP removal. As expected, for both effluent 

W1 and W2, when contact time increased, the removal of TBP increased. The sorption uptake no 

longer changes when the contact time is long (>40 mins). This is expected, because TBP sorptionon 

the PEBA membrane will eventually reach equilibrium, and removal percent will be a constant. Idris 

[40] also studied the effect of contact time on the percent sorptive removal of phenolic compounds 

from liquids using silica gel sludge. The results showed that the percent phenol removal continuously 

increased on increasing the contact time, and no further enhancement was observed after 120 mins, 

which was similar to the results obtained in this section. Therefore, selecting appropriate contact time 

was necessary for increasing sorption efficiency and lowering labor cost. 

30

40

50

60

70

80

90

100

50 60 70 80 90 100

TB
P

 r
e

m
o

va
l (

%
)

Dilution (%)

W1

W2



 

 63 

 

Figure 32 Effects of contact time on the removal of TBP in TBBPA industrial effluents. 

(mass of PEBA = 1.0 g; temperature = 298 K; pH = 7; initial concentration = 59 ppm for W1, 40 ppm 

for W2) 

The effects of PEBA membrane dosage on the sorptive removal of bromophenols were shown in 

Figure 33. The percent TBP removal increased with an increase in adsorbent dosage. This is obvious, 

because for a given effluent concentration, increasing the sorbent amount will increase the TBP 

uptake, resulting in an increase in the TBP removal. 

 

Figure 33 Effects of adsorbent dosage on the removal of TBP in TBBPA industrial effluents. 

(sorption time = 24 hours; temperature = 298 K; pH = 7; initial concentration = 59 ppm for W1, 40 

ppm for W2) 
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5.3.2 PEBA Membrane Regeneration 

In order to evaluate the regeneration performance of PEBA membrane, the polymeric sorbent 

saturated with different bromophenols was run consecutive batch sorption and desorption tests. The 

fractional desorption of TBP from PEBA membrane in different solution (e.g., water, and ethanol) 

was depicted in Table 13. The percentage of TBP removed from the PEBA sorbent in ethanol was 

higher than that in water, which suggested that alcohols were more effective for stripping the sorbed 

TBP from PEBA sorbent. Table 13 also shows that the fractional desorption was still high (> 90%) 

after three sorption & desorption cycles. The above results confirmed the possibility of reusing the 

PEBA membrane for treatment of wastewater from TBBPA industry. 

 

Table 13 Desorption of TBP from PEBA membrane using water and ethanol after consecutive 

sorption and desorption process. 

 

 

 

 

Effluent Regenerative Agent Number of Sorption Run Desorption Rate (%) 

W1 

Water 

1 96 

2 92 

3 91 

Ethanol 

1 97 

2 93 

3 91 

W2 

Water 

1 96 

2 93 

3 90 

Ethanol 

1 98 

2 95 

3 92 
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5.4 Conclusions 

1. The sorption potential of PEBA membrane was demonstrated for the removal of TBP from     

TBBPA industrial effluents. 

2. The sorption studies with two industrial effluent samples showed that a lower pH and temperature 

favored TBP removal. 

3. The PEBA membrane was reusable for treatment of wastewater from TBBPA industry. 
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Chapter 6 

General Conclusions and Recommendations 

 

6.1 General Conclusions 

PEBA was studied as a promising material to adsorb bromophenol. The sorption of several 

bromophenols (i.e., BP, DBP, and TBP) onto PEBA membranes and pellets was investigated.  

The sorption isotherms of the three bromophenols on PEBA were determined. The effects of 

temperature and pH on sorption performance were investigated. The sorption seems to be an 

exothermic process, and the sorption isotherms of BP, DBP, and TBP obeyed both the Langmuir and 

Freundlich models. The sorption capacity of PEBA for the bromophenols was analyzed based on the 

fitted models, and the solubility of bromophenols in water was correlated to the sorption capacity of 

the phenols in the PEBA membrane. 

The effects sorbate concentration and temperature on the sorption kinetics of the three 

bromophenols onto PEBA membrane were studied. The rate of sorption of BP, DBP, and TBP onto 

PEBA membrane followed the pseudo-second order kinetics model, and diffusion was not the 

dominating mass transfer mechanism during the sorption process. 

The application of PEBA membrane in treating industrial effluents from TBBPA production was 

demonstrated. The potential of using PEBA membrane for the removal of discarded TBP from the 

industial effluents was evaluated. The effects of pH, temperature, solute concentration, sorption time, 

and sorbent dosage on the percent TBP removal were tested. In addition, studies on the regeneration 

and reuse of PEBA membranes for repeated uses for TBP removal were carried out, confirming 

feasibility of using PEBA to treat effluents from TBBPA production. 

6.2 Recommendations 

6.2.1 Further Thermodynamic Studies 

Preliminary isotherm results using PEBA membrane as sorbent were presented in Chapter 3. 

The next step would be to do the thermodynamic studies and to determine the thermodynamic 

parameters (i.e., Gibbs energy, enthalpy and entropy changes in the sorption process), which may also 

support the sorption process was exothermic. 
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6.2.2 Modification of the Pseudo-Second Order Kinetics Model 

As mentioned in Chapter 4, the sorption of all three bromophenols in PEBA membrane obeyed 

the pseudo-second order kinetics model. In the data fitting, the value 𝑄𝑒 was assumed constant to 

calculate the parameters based on the linearized isotherm plots. In fact, the value of 𝑄𝑒 changes with 

instant adsorbate concentration during the sorption process. Thus, further modification of the pseudo-

second order kinetics model data fitting is necessary to obtain more accurate kinetic parameters to get 

a deeper insight into the sorption mechanisms. 

6.2.3 Further Regeneration Studies 

Preliminary work on PEBA regeneration using deionized water and ethanol (99.5% v/v) as 

regenerative agents were done in Section 5.3.2. Further investigation on optimization of the 

regeneration methods (e.g., temperature, use of vacuum, or using other regenerative agents) for better 

regeneration performance is needed. 



 68 

Appendix A 

UV/Vis Absorption Spectrum of Bromophenols 

 

Figure A. 1 UV/Vis absorption spectrum for 100 ppm BP solution. (T = 298 K) 

 

 

 

Figure A. 2 UV/Vis absorption spectrum for 50 ppm DBP solution. (T = 298 K) 
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Figure A. 3 UV/Vis absorption spectrum for 50 ppm TBP solution. (T = 298 K) 
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Appendix B 

Calibration Curves for Estimating Concentration of Bromophenols 

 

Figure B. 1 UV/Vis spectrophotometer calibration curve for BP solution from 20 - 160 ppm. 

 

 

Figure B. 2 UV/Vis spectrophotometer calibration curve for DBP solution from 10 - 60 ppm. 
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Figure B. 3 UV/Vis spectrophotometer calibration curve for TBP solution from 10 - 60 ppm. 

 

 

 

 

  

[BP] = 39.52 × (ABS@312.5 nm) - 1.45
R² = 0.9999

0

10

20

30

40

50

60

70

0 0.3 0.6 0.9 1.2 1.5 1.8

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Absorbance @ 312.5 nm



 

 72 

Appendix C 

UV/Vis Absorption Spectrum of Effluents from TBBPA Production 

 

Figure C. 1 UV/Vis absorption spectrum for effluent W1. (T = 298 K) 

 

Figure C. 2 UV/Vis absorption spectrum for effluent W2. (T = 298 K) 
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