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Abstract

Scala is a functional and object-oriented programming language which unifies concepts
from object and module systems by allowing for objects with type members which are
referenced via path-dependent types. The Dependent Object Types (DOT) calculus of
Amin et al. [2016] models only this core part of Scala, but does not have many fundamental
features of Scala such as strict and mutable fields. Since the most commonly used field
types in Scala are strict, the correspondence between DOT and Scala is too weak for us to
meaningfully prove static analyses safe for Scala by proving them safe for DOT.

This thesis presents the κDOT calculus, a calculus in the DOT family which supports
mutable fields and constructors. κDOT can emulate both lazy and strict fields, and the
constructor calls in κDOT emulate how objects are created in Scala. We present the key
features of κDOT, the key ideas required for type safety, and discuss how the operational
semantics of κDOT relates to that of Scala.

κDOT is proven type safe via a mechanized proof in Coq.

iii



Acknowledgements

I would like to thank everyone who made this thesis possible:
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Chapter 1

Introduction

Scala aims to be a scalable language where one can easily express ideas both large and
small. Toward this goal, Scala unifies concepts from object and module systems by allowing
objects to carry type members which are referenced by path-dependent types. In languages
such as ML, higher level ideas are expressed using modules and functors separately from
lower level ideas of function application and data creation, but in Scala the same language
of objects and functions is used to express both high and low level ideas. Instead of
writing functors that manipulate type-carrying modules, in Scala, we write functions that
manipulate type-carrying objects the same way we write functions that manipulate data.

1.1 Path-Dependent Types in Scala

Fig. 1.1 shows how a module signature can be defined in Scala. An OrderedModule en-
capsulates method members on ordered elements as well as a type member Elem for the
type of elements we are comparing. Fig. 1.2 shows how we implement OrderedModule for
integers and strings. The modules are instantiated the same way as objects using the new

keyword. If we try to compare elements of different types using an OrderedModule, we get
a path-dependent type mismatch error as shown in Fig. 1.3.

The example in Fig. 1.3 shows how path-dependent types can distinguish between
objects of different base types. However, with path-dependent types we can distinguish
between objects of the same base type. In Fig. 1.4, mangoTree and appleTree are both
instances of Tree, and are even created using the same constructor. However, we get a path-
dependent type mismatch error if we try to put the fruit of one tree into another. The field
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1 trait OrderedModule {
2 type Elem

3 val zero : Elem

4 def lessThan( left : Elem, right : Elem): Boolean

5 def moreThan(left: Elem, right : Elem): Boolean = {
6 lessThan( right , left )

7 }
8 }

Figure 1.1: Modules in Scala

10 trait IntOrdered extends OrderedModule {
11 type Elem = Int

12 val zero = 0

13 def lessThan( left : Int , right : Int ): Boolean = {
14 left < right

15 }
16 }
17

18 trait StringOrdered extends OrderedModule {
19 type Elem = String

20 val zero = ””

21 def lessThan( left : String , right : String ): Boolean = {
22 if ( left . length != right. length) {
23 false

24 } else {
25 left < right

26 }
27 }
28 }
29

30 val intOrdered : OrderedModule = new IntOrdered {}
31 val stringOrdered : OrderedModule = new StringOrdered {}

Figure 1.2: Module Implementation in Scala

2



33 val err : Boolean = intOrdered.lessThan(intOrdered.zero , stringOrdered . zero)

34 // OrderedModule.scala:33: error : type mismatch;

35 // found : this . stringOrdered . zero .type (with underlying type this . stringOrdered .Elem)

36 // required : this . intOrdered.Elem

37 // val err : Boolean = intOrdered.lessThan(intOrdered.zero , stringOrdered . zero)

38 // ˆ

39 // one error found

Figure 1.3: Path-Dependent Type Mismatch in Scala

1 trait Fruit [T] {
2 type A = T

3 }
4

5 trait Tree { tree =>

6 type TreeFruit

7 val fruit : Fruit [ tree . TreeFruit ] =

8 new Fruit[ tree . TreeFruit ] {}
9 var fruits : List [ Fruit [ tree . TreeFruit ]] = Nil

10 }
11

12 val mangoTree = new Tree{}
13 val appleTree = new Tree{}
14

15 appleTree. fruits = mangoTree.fruit :: appleTree. fruits

16 // Trees . scala :15: error : type mismatch;

17 // found : this . Fruit [ this .mangoTree.TreeFruit]

18 // required : this . Fruit [ this .appleTree. TreeFruit ]

19 // appleTree. fruits = mangoTree.fruit :: appleTree. fruits

20 // ˆ

21 // one error found

Figure 1.4: Type Mismatch Between Objects of the Same Type
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mangoTree.fruit is path-dependent on mangoTree, whereas appleTree.fruits is a list of
objects which are path-dependent on appleTree. Since appleTree and mangoTree are dif-
ferent objects, the path-dependent types appleTree.TreeFruit and mangoTree.TreeFruit

are different, resulting in a type mismatch.

Path-dependent types allow us to define records where the type of one field is path-
dependent on the type of another field. In Fig. 1.5, objects of type TypeCarry carry the type
members A and B and fields x and y of those types. Objects of type PathDependentPair

have a left field of type TypeCarry and a right field which is a function which takes in
inputs of type left.A and left.B and produces an output of type left.A.

Fig. 1.5 also shows how path-dependent types provide a syntactically lightweight way
to encode existential types in Scala. In the definition of IntStringDep.right, the types
left.A and left.B are abstract, yet we are able to easily use them for type annotations
without needing any heavy machinery to deconstruct the type of IntStringDep. In addi-
tion, Fig. 1.5, together with Fig. 1.6, show how path-dependent types allow for very fine-
grained control over execution at the type level. We are allowed to put PathDependentPairs
with different left.A and left.B types together in a list and iterate through them as
shown by the printPairs function, but we may not apply one right method to left.x

and left.y of a different PathDependentPair as attempted in the printPairsErr method
in Fig. 1.6.

1.2 DOT calculi

While path-dependent types are expressive, until very recently it was not known whether
it was possible to design a type safe calculus with path-dependent types without incurring
the overhead of a full dependent type system. After a long and elusive search for a sound
calculus that could model the path-dependent types of Scala, the Dependent Object Types
(DOT) family of calculi were proposed by Amin et al. [2012], and variants were recently
proven sound [Amin et al., 2016, Rompf and Amin, 2016b, Amin et al., 2014].

Proving type safety for DOT calculi is tricky because path-dependent types are very
flexible and allow the programmer to create contexts where there are unsound subtyping
judgments. While the programmer is allowed to create and type check these unsound
contexts, type safety holds because these contexts never appear during execution. We will
see examples of this in Chapters 4 and 6.
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1 trait TypeCarry {
2 type A

3 type B

4 val x: A

5 val y: B

6 }
7

8 trait PathDependentPair {
9 val left : TypeCarry

10 val right : ( left .A, left .B) => left.A

11 }
12

13 trait IntStringDep extends PathDependentPair {
14 val left : TypeCarry = new TypeCarry {
15 override type A = Int

16 override type B = String

17 override val x: A = 3

18 override val y: B = ”Hello!”

19 }
20 val right : ( left .A, left .B) => left.A = {
21 (x: left .A, y: left .B) => x

22 }
23 }
24

25 def printPairs (xs : List [PathDependentPair]): Unit = {
26 xs match {
27 case Nil => Unit

28 case depPair :: depPairs =>

29 println (depPair. right (depPair. left .x, depPair. left .y))

30 printPairs (depPairs)

31 }
32 }

Figure 1.5: Path-Dependent Pairs in Scala
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34 def printPairsErr (xs : List [PathDependentPair]): Unit = {
35 xs match {
36 case Nil => Unit

37 case depPair1 :: depPair2 :: depPairs =>

38 println (depPair1. right (depPair2. left .x, depPair1. left .y))

39 printPairs (depPairs)

40 case depPair :: depPairs =>

41 println (depPair. right (depPair. left .x, depPair. left .y))

42 printPairs (depPairs)

43 }
44 }
45 // DepPair.scala :38: error : type mismatch;

46 // found : depPair2. left .x.type (with underlying type depPair2. left .A)

47 // required : depPair1. left .A

48 // println (depPair1. right (depPair2. left .x, depPair1. left .y))

49 // ˆ

50 // one error found

Figure 1.6: Fine-grained Control in Scala

1.3 Laziness in Previous DOT Calculi

The DOT calculi of Rompf and Amin [2016b] and Amin et al. [2016] have notions of
path-dependent types, but chose to forgo many fundamental features of Scala in order to
simplify the calculi and type soundness proofs. In particular, objects in the calculus of
Rompf and Amin only have methods and type members, but not fields. Field reads are
emulated by method calls, which roughly correspond to lazy semantics for field reads. We
illustrate the laziness of method calls through an example in Scala. In the example in
Fig. 1.7, we emulate the code on the left which has a field read bananaPkg.banana by the
code on the right which uses a method call bananaPkg.readBanana(). In the code on the
left, the contents of the field bananaPkg.banana is evaluated when new BananaPkg{} is
evaluated. When the field is read, the location of the Banana object is fetched. We say
that the kind of field read used by the code on the right is lazy, because the contents of
field (i.e. body of the readBanana method) is not evaluated until the field is read via the
method call readBanana().

The DOT calculus of Amin et al. (WadlerFest DOT) supports fields and, instead of
methods, first-class functions. In this calculus, fields store terms which are evaluated each

6



class Banana {}
class BananaPkg {
val banana: Banana = new Banana{}
}

val bananaPkg = new BananaPkg{}
val banana: Banana = bananaPkg.banana

class Banana {}
class BananaPkg {
def readBanana(): Banana = new Banana{}
}

val bananaPkg = new BananaPkg{}
val banana: Banana = bananaPkg.readBanana()

Figure 1.7: Emulating Field Reads via Method Calls

class Orange {}
class OrangePkg {
lazy val orange: Orange = new Orange{}
}

val orangePkg = new OrangePkg{}
val orange: Orange = orangePkg.orange

val orangeAgain: Orange = orangePkg.orange

Figure 1.8: Lazy Field Reads in Scala

time the field is read, which again corresponds to lazy semantics. The closest analogue to
this kind of field in Scala are lazy vals. In Fig. 1.8, the field orange is declared as lazy
and its contents are evaluated when the first occurrence of orangePkg.orange is evaluated
and not when new OrangePkg{} is evaluated. Scala memoizes lazy field reads so that the
cached value is returned when the second occurrence of orangePkg.orange is evaluated.

The choice of lazy fields simplifies type soundness proofs. Lazy fields allow objects to
have recursive types without having to worry about field initialization or null reference
exceptions if we carefully define the operational semantics. Scala however, provides many
different types of fields:

val strict immutable

var strict mutable

lazy val memoized lazy immutable

The strict field types of Scala are much more commonly used than lazy vals. Since the
above DOT calculi only support lazy fields, the correspondence between DOT and Scala
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is too weak for us to meaningfully prove many static analyses sound for Scala by proving
them sound for DOT. Furthermore, lazy fields and the lack of field mutation limit the
expressiveness of the calculus (see Chapter 5).

Although field reads are lazy, function and method applications, are evaluated in a
strict manner in Scala and both of the above calculi. Neither of these calculi support any
form of field mutation. The calculus of this thesis, κDOT, extends WadlerFest DOT with
field mutation.

1.4 Mutation in Previous DOT Calculi

While the DOT calculi of Rompf and Amin and WadlerFest DOT [Amin et al., 2016]
do not have any notion of mutation, other DOT calculi add mutation via ML-style first-
class references to a separate mutable store. Amin and Rompf [2017] and their technical
report [Rompf and Amin, 2016a] discuss adding a mutable object store to call-by-value
DOT calculi. In these calculi, mutating a reference replaces one object with another in
the mutable store. Since WadlerFest DOT is a call-by-reference language, Rapoport and
Lhoták [2017] extended WadlerFest DOT with a mutable store of references.

Both of these are very weak approximations to the field mutation we have in Scala.
Scala does support mutable local variables, but they are not first-class and immutable
local variables are more commonly used. Scala is a primarily call-by-reference language
with object fields containing references to other objects. Type systems for the above calculi
add a separate store typing context whereas in Scala we only reason about functions and
objects.

1.5 Object Initialization in Previous DOT Calculi

In previous DOT calculi, objects were defined by literals which were directly allocated
into a store with lazy fields. This is different from Scala where most objects are created
by special functions called constructors. As we saw in previous examples, we execute a
constructor by calling it with the new operator. When executed, a constructor first allocates
a new object into the heap with fields containing null references as the initial value of all
fields, and then replaces the null references with references to objects. In the example in
Fig. 1.9, when new PeachPkg{} is executed a PeachPkg object is allocated with its peach
field containing a null-reference. Next new Peach{} is executed which allocates a Peach
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class Peach {}
class PeachPkg {
val peach: Peach = new Peach{}
}

val peachPkg = new PeachPkg{}

Figure 1.9: Object Allocation in Scala

object and returns location of the new object. Lastly, the null reference in the peach field
is replaced with the location of the new peach object.

It is generally considered to be a programming error if a constructor does not replace
a null reference since it can cause null reference exceptions in the program. We were
interested in developing static analysis and type systems for preventing this class of pro-
gramming errors in Scala.

One of the main motivations for developing a new DOT calculus was that we found
existing DOT calculi unsuitable for static analysis and typing restrictions for object initial-
ization. In previous DOT calculi, there is no clear distinction between code that expects
an object to be initialized and code that initializes an object. We were also interested in
knowing how path-dependent types interacted with object initialization in Scala.

1.6 Thesis Outline

This thesis presents κDOT, a DOT calculus with field mutation and constructors. κDOT
is an extension of WadlerFest DOT with a substantial improvement in expressive power
while adding only a few syntactic and typing constructs. In particular, the typing rules
for mutation in κDOT are simpler than those of DOT calculi with ML-style references
since there is no need for a separate store typing context. Furthermore, the operational
semantics for κDOT is expressed using an abstract machine with a stack and a heap which
is closer to the execution environment of Scala which uses the JVM (Java Virtual Machine)
call stack and heap.

The contributions of this thesis are:

• We show how field mutation and constructors can be added to WadlerFest DOT
with minimal new constructs.
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• We provide a mechanized proof of type safety for κDOT in Coq available at https:
//git.uwaterloo.ca/ikabir/dot-public.

• We discuss how κDOT is useful for reasoning about interactions between object
initialization and path-dependent types.

The type safety proof of κDOT is an extension of the type safety proof of WadlerFest
DOT. To make the proof easier to extend we made simplifications to the type safety proof
of WadlerFest DOT which were presented at OOPSLA [Rapoport et al., 2017]. The work
on κDOT has been accepted for presentation in the upcoming SIGPLAN International
Scala Symposium [Kabir and Lhoták, 2018].

The rest of the thesis is outlined as follows. We discuss background work leading to
DOT calculi and present WadlerFest DOT and the issues we had with its constructs and
operational semantics in Chapter 2. In Chapter 3, we present the κDOT calculus; its
syntax, typing constructs, and operational semantics. In Chapter 4, we discuss the type
safety proof for κDOT. In Chapter 5, we compare the expressive power of κDOT to
WadlerFest DOT, and in Chapter 6, we explore initialization problems using κDOT. In
Chapter 7, we discuss the design choices we made for κDOT and provide some concluding
remarks in Chapter 8.

As a last note, we would like to point out that it is a very happy coincidence that the
letter k, its capitalized form K, and Greek letter κ have something to do with both the
“word” konstructor as well as the last name of the author!
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Chapter 2

Background

κDOT is an object-oriented calculus with first-class functions and constructors, path-
dependent types, top and bottom types, intersection types, and subtyping. Several DOT
and DOT-like calculi have appeared before κDOT. The DOT calculus was originally pro-
posed by Amin et al. [2012] as a theoretical foundation where the interactions between the
path-dependent types of Scala and other features could be studied, but before DOT, there
were other calculi with notions of path-dependent types. In this chapter we discuss general
ideas underlying DOT calculi in relation to the calculi that came before. We also discuss
WadlerFest DOT in detail so that we can compare it to κDOT in later chapters.

2.1 Related Work

System F<: (F-sub) [Cardelli et al., 1994] is a polymorphic typed lambda calculus with a top
type, subtyping, and bounded quantification for function arguments. Polymorphism in this
calculus is achieved by type application. DOT calculi, including κDOT, can fully encode
System F<:, but do not need type application for polymorphism. In DOT calculi, instead
of applying types for polymorphism, we apply functions to objects with type members.

On the more object-oriented side, Featherweight Java [Igarashi et al., 2001] is a class-
based object-oriented calculus that formalizes Java. Featherweight Java is a simple calculus
with objects, subtyping, and method application. The reduction semantics for method
application in Featherweight Java is call-by-value in the sense that substitution replaces
variables with copies of objects. Objects in Featherweight Java do not have type members,
and the calculus does not support any form of path-dependent types.
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The νObj calculus [Odersky et al., 2003] was one of the first calculi developed to for-
malize Scala. It supports first-class classes, objects with type members, and type selection.
The key feature of νObj is that it gives unique names to its objects. In νObj, for a type
label A, the path-dependent types x.A and y.A are the same type if and only if x and y
can be shown to refer to the same object. However, the type members in this calculus only
have upper bounds, whereas Scala and DOT calculi have type members with both upper
and lower bounds.

Featherweight Scala (FSalg) [Cremet et al., 2006] and Scalina [Moors et al., 2008]
are two other calculi that try to formalize Scala and are worth mentioning. FSalg was
developed with a focus on algorithmic type checking and to correspond closely to Scala.
Scalina was developed to explore higher-kinded types in Scala. FSalg and Scalina both have
type members with upper and lower bounds, but neither were proven type safe. In fact,
they are large calculi which makes it difficult to understand how their different features
interacted with path-dependent types for a proof of type safety.

The DOT calculus was introduced by Amin et al. [2012] as a calculus with only the
features required for path-dependent types. They defined a DOT calculus with intersection
types, union types, type members with both bounds, type selection, and type refinement
and discussed the difficulties in proving preservation, and hence type safety, for a small
step operational semantics. Since Amin et al., there have been several other DOT calculi,
some of which were proven type safe.

Amin et al. [2014] introduced µDOT, a very simple DOT calculus with methods, path-
dependent types, subtyping, and a big step operational semantics. In particular, µDOT
did not have a bottom type, union types, or intersection types. The lack of complicated
types caused by unions and intersections and their use of big-step semantics allowed them
to prove type safety without needing to prove a general environment narrowing lemma.
Their type safety proof only required an environment narrowing lemma for types starting
with a this variable.

In 2016, just before the author started their Master’s journey, Amin et al. [2016] proved
type safety for a DOT calculus with first-class functions, top and bottom types, intersec-
tion types, and a small step operational semantics. They presented the calculus at the
workshop commemorating Philip Wadler’s 60th birthday, which is why we call this calculus
WadlerFest DOT1. κDOT is directly inspired by this DOT calculus, and we discuss it in
more detail in the next section.

1The Amin et al. [2016] paper refer to the calculus as “the DOT calculus”. We call the calculus
WadlerFest DOT to distinguish it from other calculi that are also called “the DOT calculus”.
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Later on in 2016, Rompf and Amin [2016b] presented another DOT calculus with top
and bottom types, intersection and union types, and a small step operational semantics.
This calculus does not have functions and only supports method calls. However this cal-
culus supports a richer form of subtyping between recursive types.

Amin and Rompf [2017] and Rompf and Amin [2016a] discuss proving type safety for
DOT-like calculi under a big step operational semantics using definitional interpreters. In
particular, they discuss how to prove type safety for DOT by starting with a mechanized
type safety proof for System F<: and slowly generalizing and adding features such as type
members while keeping most of the type safety proof intact.

κDOT was developed with the goal of studying interactions between the path-dependent
types of Scala and object initialization. Some of the practical considerations include a
need to provide Scala programmers with guarantees that their programs will not throw
null-pointer exceptions, but we were also interested in enriching the type system of DOT
calculi based on initialization. Adding an initialization system to κDOT is the subject of
ongoing and future work, but much of the design choices in κDOT were informed by an
attempt to port the initialization system of Summers and Mueller [2011] to WadlerFest
DOT. We will discuss some of the ongoing work on initialization in Chapter 8.

The Mutable WadlerFest DOT calculus of Rapoport and Lhoták [2017] extends Wadler-
Fest DOT with a mutable store of references and ML-style references, and we originally
intended to add an initialization system to this calculus. However, we found that lazy
field reads interacted with ML-style references in counterintuitive ways, which led to the
development of κDOT. We discuss some of these issues in Section 2.4.

Although the abstract machine used for the operational semantics of κDOT was inspired
by more recent work on proving safety of compiler transformations, it can find its origins
in the Mark 1 machine Sestoft [1997].

2.2 WadlerFest DOT

We now present the syntax, operational semantics, and typing rules of WadlerFest DOT.

2.2.1 WadlerFest DOT Syntax

The syntax for WadlerFest DOT is given in Fig. 2.1.
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Labels and Variables

a, b, c Term Labels

A,B,C Type Labels

x, y, z Variables

Literals

l ::= λ (z : T ) .t Lambda

| ν (z : T ) d Object

Definitions

d ::= {a = t} Field Definition

| {A = T} Type Definition

| d ∧ d′ Aggregate Definition

Terms

t, u ::= x Variable

| l Literal

| x.a Field Read

| x x1 Application

| let z = t in u Let Binding

Types

S, T, U ::= > Top Type

| ⊥ Bottom Type

| ∀ (z : S)T Dependent Function

| µ (z : T ) Recursive Type

| {a : T} Field Declaration

| {A : S..T} Type Declaration

| x.A Type Projection

| S ∧ T Type Intersection

Evaluation Contexts and Answers

e ::= � Hole

| let x = � in t Let Bound Term

| let x = l in e Outer Literal Binding

n ::= x Variable Answer

| l Literal Answer

| let x = l in n Let Answer

Figure 2.1: Syntax of WadlerFest DOT
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The WadlerFest DOT calculus uses type labels (A,B,C) for type members and term la-
bels (a, b, c) for term members of objects. Literals in WadlerFest DOT are lambda functions
or objects. Objects in WadlerFest DOT consist of a list of definitions.

Terms in WadlerFest DOT are defined using administrative normal form (ANF)[Sabry
and Felleisen, 1993]. Terms in WadlerFest DOT are either a variable x, a literal l, a field
read x.a, a function application x x1, or a let binding let z = t in u.

The types in WadlerFest DOT are one of the following:

• The top and bottom types correspond to the top and bottom types of the subtyping
lattice.

• A dependent function type ∀ (z : S)T is the type of a function with a parameter z
of type S with a return type of T , which can refer to z.

• A recursive type type µ (z : T ) is the type of an object of type T which can refer to
its self-variable z.

• A field declaration type {a : T} says that an object has a term member of type T .

• A type declaration type {A : S..T} says that a term member A is a subtype of T
and a super type of S.

• A type projection x.A refers to the type member A of the object x.

• An intersection type S ∧ T refers to the most general subtype of S and T .

The presentation here is slightly different from Amin et al. [2016], who refer to literals
as values. We call them literals here for economy of concepts between WadlerFest DOT
and κDOT. In κDOT, literals are not values or answers. In addition, we alert the reader
that for objects ν (z : T ) d, both T and d are in the scope of z, but when we discuss objects
in κDOT, definitions will not be in the scope of z.

2.2.2 WadlerFest DOT Type System

The typing and subtyping rules for WadlerFest DOT are given in Fig. 2.2, Fig. 2.3, and
Fig. 2.4.

The rules (Var), (All-E), (Let), and ({}-E) are standard typing rules for variables,
function applications, let bindings and field reads.

The (All-I) and ({}-I) rules are used to type function and object literals. An object
ν (z : T ) d is given the recursive type µ (z : T ), by checking the definitions d against the
declared type T . Note that the initial types given to type members using the (Def-Typ)
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Γ (x) = T

Γ ` x : T
(Var)

Γ ` x : {a : T}
Γ ` x.a : T

({}-E)

Γ ` x : T

Γ ` x : µ (x : T )
(Rec-I)

Γ ` x : µ (z : T )

Γ ` x : [x/z]T
(Rec-E)

Γ ` x : ∀ (z : T )U Γ ` x1 : T

Γ ` x x1 : [x1/z]U
(All-E)

Γ ` t : T x /∈ fv (U)
Γ, x : T ` u : U

Γ ` let x = t in u : U
(Let)

Γ ` x : T Γ ` x : U

Γ ` x : T ∧ U
(And-I)

Γ ` t : T Γ ` T <: U

Γ ` t : U
(Sub)

Γ, x : T ` t : U x /∈ fv (T )

Γ ` λ (x : T ) .t : ∀ (x : T )U
(All-I)

Γ, x : [x/z]U ` [x/z] d : [x/z]U

Γ ` ν (z : T ) d : µ (z : T )
({}-I)

Figure 2.2: Typing in WadlerFest DOT

Γ ` {A = T} : {A : T..T} (Def-Typ)

Γ ` t : T
Γ ` {a = t} : {a : T}

(Def-Trm)

Γ ` d1 : T1 Γ ` d2 : T2
dom (d1) , dom (d2) disjoint

Γ ` d1 ∧ d2 : T ∧ U
(And-Def)

Figure 2.3: Definition Typing in WadlerFest DOT
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Γ ` T <: > (Top)

Γ ` ⊥ <: T (Bot)

Γ ` T <: T (Refl)

Γ ` T ∧ U <: T (And1-<:)

Γ ` T ∧ U <: U (And2-<:)

Γ ` S <: T Γ ` S <: U

Γ ` S <: T ∧ U
(<:-And)

Γ ` x : {A : S..T}
Γ ` S <: x.A

(<:-Sel)
Γ ` x : {A : S..T}

Γ ` x.A <: T
(Sel-<:)

Γ ` T <: U

Γ ` {a : T} <: {a : U}
(Fld-<:-Fld)

Γ ` S2 <: S1 Γ ` T1 <: T2

Γ ` {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ)

Γ ` S2 <: S1 Γ, x : S2 ` T1 <: T2

Γ ` ∀ (x : S1)T1 <: ∀ (x : S2)T2
(All-<:-All)

Γ ` S <: T Γ ` T <: U

Γ ` S <: U
(Trans)

Figure 2.4: Subtyping in WadlerFest DOT
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t 7−→ t′

e[t] 7−→ e[t′]
(Term)

l = λ (z : T ) .t

let x = l in e[x y] 7−→ let x = l in e[[y/z] t]
(Apply)

l = ν (z : T ) . . . {a = t} . . .
let x = l in e[x.a] 7−→ let x = l in e[[x/z] t]

(Project)

let x = y in t 7−→ [y/x] t (Let-Var)

let x = let y = s in t in u 7−→ let y = s in let x = t in u (Let-Let)

Figure 2.5: Operational Semantics for WadlerFest DOT

rule have tight bounds, i.e. the lower bound and the upper bound are the same. This means
that the declared type T of a well-typed object literal must have tight bounds. The recur-
sion introduction (Rec-I), recursion elimination (Rec-E), and intersection introduction
(And-I) rules apply only to variables, but the subsumption rule (Sub) applies to all terms.

For subtyping, the (Top) and (Bot) rules establish the top and bottom types of the
subtyping lattice. The (Refl) and (Trans) rules define reflexivity and transitivity of
subtyping and the (And1-<:), (And2-<:), and (<:-And) rules define standard subtyping
rules for intersection types. As is standard, subtyping for function types is contravariant
in the parameter type and covariant in the return type by the (All-<:-All) rule. Typing
for field declarations is covariant by the (Fld-<:-Fld) rule, and typing for type members
declarations are contravariant in the lower bound and covariant in the upper bound by
the (Typ-<:-Typ) rule. Note that field typing together with the subtyping rules for
intersections allows DOT calculi to have both width and depth subtyping for records. The
(Sel-<:) and (<:-Sel) rules make a type projection x.a a subtype of its upper bound and
a super type of its lower bound. These last two rules are where most of the expressive
power of DOT comes from. While making DOT expressive, these two rules are also where
much of the complexities for proving type safety come from.

2.2.3 WadlerFest DOT Operational Semantics

The operational semantics for WadlerFest DOT is given in Fig. 2.5.

The (Term), (Apply), (Project) rules apply inside an evaluation context. The
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(Term) rule is a simple congruence rule. The (Apply) rule looks up a function in the
evaluation context and performs a call-by-reference function application. The (Project)
rule performs a field read, replacing references to the variable z (representing the this self-
reference) with the let binding variable of the object. Note that field reads are call-by-name
in WadlerFest DOT — term labels are associated with terms, not values or references, and
the terms are reevaluated after each read. The (Let-Var) rule evaluates let bindings
for variables. The (Let-Let) rule evaluates nested let bindings by pulling out nested let
bindings to larger scopes.

2.3 Mutable WadlerFest DOT

The Mutable WadlerFest DOT calculus of Rapoport and Lhoták [2017] adds ML-style
references to WadlerFest DOT. It adds syntax for references, dereferencing, and reference
updates shown below.

• ref x T creates a new reference of type T and initializes it with the variable x.

• !x reads the contents of a reference x.

• x := y updates the reference x with the variable y.

A reference containing a variable of type T is given the type Ref T , and subtyping
between references is expressed by the following invariance rule.

Γ ` T <: U Γ ` U <: T

Γ ` Ref T <: Ref U
(Ref-Sub)

Mutable WadlerFest DOT keeps most of the operational semantics of WadlerFest DOT
but adds a store of bindings from locations to variables. The additional rules are shown in
Fig. 2.6.

2.4 Issues with WadlerFest DOT

While WadlerFest DOT and Mutable WadlerFest DOT are type safe calculi, we found the
(Let-Let) rule difficult to work with when proving type safety. We also found it awkward
to think about program operation when terms evaluating in one scope move to a different
scope. Furthermore, call-by-name field reads interacted counter-intuitively with ML-style
references when we tried to express ideas of field initialization for dependently typed fields
in Mutable WadlerFest DOT.
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p /∈ dom (σ)

σ | e[ref x T ] 7−→ σ, p = x | e[p]
(Ref)

σ(p) = y

σ | let x = p in e[!x] 7−→ let x = p in e[y]
(Deref)

σ | let x = p in e[x := y] 7−→ σ[p := y] | let x = p in e[y] (Store)

Figure 2.6: Operational Semantics for Mutable WadlerFest DOT

To see how the (Let-Let) rule interacts with type safety, we note that the typing
rules allow us to type terms with free variables in their type annotations. For example,
the following typing derivation is valid in WadlerFest DOT, although the variable magic
is free.

z : magic.A ` z : magic.A
(All-I)

` λ (z : magic.A) .z : ∀ (z : magic.A)magic.A

Now consider the following program which has the type ∀ (x : magic.A)magic.A. The
program reduces to a program which has type ∀ (x : x1.A)x1.A but not the original type
∀ (x : magic.A)magic.A.

let x1 = λ (z : >) .z in

let x2 = let magic = x1 in magic in

λ (z : magic.A) .z

(Let-Let) 7−→ let x1 = λ (z : >) .z in

let magic = x1 in

let x2 = magic in

λ (z : magic.A) .z

(Let-Var) 7−→ let x1 = λ (z : >) .z in

let x2 = x1 in

λ (z : x1.A) .z

So subject reduction does not hold for WadlerFest DOT. The problem is that to type
let x = t in λ (z : magic.A) .z, we type λ (z : magic.A) .z assuming that only x may be
possibly substituted, but in the above reduction we also substituted the variable magic.
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Since the type system does not naturally guarantee that terms are closed, subject
reduction is proved assuming that the term is closed. If let x = t in u is closed, no free
variables like magic appear in u. This complicates the type safety proof since we have to
prove additional closure properties for subject reduction.

Operationally, the (Let-Let) rule makes it difficult to understand exactly when a
nested let bound literal becomes part of the evaluation context. In the example below,
several reduction steps take place before the let bound value finally becomes part of the
evaluation context. This makes reasoning about the operational side of WadlerFest DOT
tedious.

let x1 = let x2 = let x3 = λ (z : >) .z in x3 in x2 in x1

(Let-Let) 7−→ let x2 = let x3 = λ (z : >) .z in x3 in

let x1 = x2 in x1

(Let-Let) 7−→ let x3 = λ (z : >) .z in

let x2 = x3 in

let x1 = x2 in x1

In WadlerFest DOT and Mutable WadlerFest DOT, fields of an object can be path-
dependent on the object itself, but the contents of the field must be defined inside the
object. For example, in the following Mutable WadlerFest DOT program, the type of the
field tree.fruit is Ref {A : tree.Fruit}, which is path-dependent on tree.

let tree =

ν (z : {Fruit : z.Fruit..z.Fruit} ∧ {fruit : Ref {A : z.Fruit..z.Fruit}})
{Fruit = z.Fruit}∧
{fruit = let x = ν (z1 : {A : z.Fruit}) {A = z.Fruit} in

ref x {A : z.Fruit..z.Fruit}}

Notice how the entirety of tree.fruit had to be defined inside tree because of the
path-dependent typing. But now, because of call-by-name semantics, a new reference is
created every time tree.fruit is read. For example, in the code below, x2 and x3 refer to
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two different objects.

let tree = in let tree = in

let x1 = tree.fruit in let fruit1 = ν (z1 : {A : z.Fruit}) {A = z.Fruit} in

let x2 = !x1 in 7−→∗ let x1 = p1 in

let x3 = tree.fruit in let x2 = fruit1 in

let x4 = !x3 let fruit2 = ν (z1 : {A : z.Fruit}) {A = z.Fruit} in

let x3 = p2 in

let x4 = fruit2

store: p1 = fruit1, p2 = fruit2

In particular, updating the reference x1 has no impact on the reference x3 or on the
field tree.fruit. The example below would only change what p2 points to.

let tree = in let tree = in

let fruit1 = ν (z1 : {A : z.Fruit}) {A = z.Fruit} in

let x1 = p1 in

let x2 = fruit1 in

let fruit2 = ν (z1 : {A : z.Fruit}) {A = z.Fruit} in

let x3 = p2 in

let x4 = fruit2 in

let fruit3 = ν (z1 : {A : z.Fruit}) {A = z.Fruit} in

x3 := fruit3

store: p1 = fruit1, p2 = fruit2

We found the above to be counter intuitive when programming in the Mutable Wadler-
Fest DOT calculus and a very weak approximation to the field mutation allowed by var

fields in Scala and the field initialization done by Scala. As we will see in subsequent
chapters, κDOT mitigates all of the above issues.
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Chapter 3

κDOT

We now present the κDOT calculus, a DOT calculus with support for field mutation and
constructors. Conceptually, we get κDOT from WadlerFest DOT in the following steps.

1. Ensure literals are always let bound.

2. Remove evaluation contexts and add a heap.

3. Add field mutation.

4. Remove objects from the literal grammar and constructors.

During the development of κDOT, we proved type safety for the calculus after each
of the above steps. In the next few sections, we describe the syntax, typing rules, and
operational semantics for κDOT before describing type safety in Chapter 4.

3.1 Syntax

The syntax for κDOT is given in Fig. 3.1, where we highlighted the parts that are different
from WadlerFest DOT. We make the following changes to the syntax of terms.

• In κDOT, we separate out variables into two categories. Locations are variables
that represent items in the heap and abstract variables are used for let bindings
and for parameters of functions and constructors.

• We added setter types (lower bounds) to field types to soundly type field assign-
ments.
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Labels and Variables

a, b, c Term Labels

A,B,C Type Labels

y Locations

z Abstract Variables

x, k ::= y | z Variables

Definitions

d ::= {a = t} Field Definition

| {A = T} Type Definition

| d ∧ d′ Aggregate Definition

Terms

t, u ::= x Variable

| new k ( #„x ) Constructor Call

| x.a Field Read

| x.a := x1 Field Write

| x x1 Application

| let z = l in u Literal Binding

| let z = t in u Let Binding

Literals and Heap Items

l ::= λ (z : T ) .t Lambda

| κ
(

#      „

z : T , z1 : U
)
{d} t Constructor

h ::= l Literal

| ν (z : T ) d Object

Types

S, T, U ::= > Top Type

| ⊥ Bottom Type

| ∀ (z : S)T Dependent Function

| µ (z : T ) Recursive Type

|
{
a : S.. T

}
Field Declaration

| {A : S..T} Type Declaration

| x.A Type Projection

| S ∧ T Type Intersection

| K
(

#      „

z : T , z1 : T
)

Constructor Type

Frames, Stacks, Heaps, and
Configurations

F ::= let z = � in t Let Frame

| return y Return Frame

s ::= ε | F :: s Stack

Σ ::= · | Σ, y = h Heap

c ::= 〈t; s; Σ〉 Configuration

n ::= 〈y; ε; Σ〉 Answer

Figure 3.1: Syntax of κDOT
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• We added constructors to the grammar for literals and added types for constructors.
Since objects in κDOT are allocated via constructor calls, we do not need objects
to be part of the syntax of terms in κDOT.

• We removed objects from the grammar for literals and added syntax for literal
bindings. In κDOT, literals are always referred to by variables.

• We added syntax for field assignment and constructor calls.

Since we give κDOT an operational semantics based on an abstract machine with a
stack and a heap, we also added the following syntax for machine states.

• We added heap items, which are literals or objects.

• Unlike objects in WadlerFest DOT, the definitions of an object are not in the scope
of the self-variable in κDOT.

• We added frames, stacks, heaps, and configurations. Configurations are machine
states.

• We changed the notion of answer to reflect the new operational semantics.

Note that just like in WadlerFest DOT, the grammar for field definitions allows fields
to contain arbitrary terms, so field reads are still call-by-name and can reduce to arbitrary
terms. But field assignment in κDOT only allows assigning variables to object fields.

New Constructs and Terminology

For a field declaration {a : S..T}, we call S the setter type of a and T the getter type of a.
When we describe the type system for κDOT, setter types will control what can be written
to a field. Getter types are the same as the field typing in WadlerFest DOT and tell us the
type of the term contained inside a field. Setter and getter types are separated because
field reads are a covariant operation whereas field writes are a contravariant operation.

For a constructor κ
(

#      „

z : T , z1 : U
)
{d} t we call d the set of default definitions and t the

body of the constructor. The variable z1 can be thought of as the this or self variable of
traditional object-oriented languages. d and t may both refer to z1. Objects allocated by
a constructor are first allocated with the default definitions. The body of the constructor
is o computation that happens before the allocated object is available to the callee of the
constructor.
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Abbreviations

To simplify our discussion, we will use some abbreviations for declarations. For field
declarations of the form {a : T..T}, we will write {a : T}, and for type declarations of the
form {A : T..T}, we will write {A : T}.

Since it is a very common pattern to have constructors that take no arguments and
are only used once, we will sometimes use the WadlerFest DOT notation ν (x : T ) d as an
abbreviation for a constructor creation immediately followed by a constructor call let k =
κ (z : T ) {d} z in new k ().

Furthermore, for function types where the output does not depend on the input, we
will use T → U to mean ∀ (z : T )U .

3.2 Operational Semantics

We give the κDOT calculus an operational semantics via an abstract machine (Fig. 3.2).
A configuration of the machine consists of a term t, a stack s, and a heap Σ; where t is the
current focus of execution, s is a list of frames representing the current evaluation context,
and Σ binds locations to literals and objects. We execute a κDOT term t by initializing
the machine with 〈t; ε; ·〉 and then starting the machine. The machine then either runs
indefinitely (diverges), finishes executing and returns an answer 〈y; ε; Σ〉 with y pointing
to an item in the heap, or gets stuck.

For each possible shape of the term t and stack s in a configuration, there is at most
one possible rule that can apply. Thus the operational semantics is deterministic up to
renaming of variables.

Frames and the Stack

The abstract machine supports two kinds of frames, let frames and return frames. Let
frames represent the continuation of executing let terms and return frames represent the
continuation of constructor calls.

Frames are pushed onto the stack by either executing a let binding term, or by calling
a constructor. When executing let z = t in u, the (Let-Push) rule pushes the frame
let z = � in u onto the stack and starts executing the term t. The � represents the hole
of the let binding’s evaluation context. If t executes down to a location y, the (Let-Loc)
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y = ν (z : T ) . . . {a = t} . . . ∈ Σ

〈y.a; s; Σ〉 7−→ 〈t; s; Σ〉
(Project)

y = ν (z : T ) . . . {a = t} . . . ∈ Σ
Σ′ = Σ [y = ν (z : T ) . . . {a = y1} . . .]
〈y.a := y1; s; Σ〉 7−→ 〈y1; s; Σ′〉

(Assignment)

y = λ (z : T ) .t ∈ Σ

〈y y1; s; Σ〉 7−→ 〈[y1/z] t; s; Σ〉
(Application)

#„y2 = #     „y, y1
#„z2 = #     „z, z1

k = κ
(

#      „

z : T , z1 : U
)
{d} t ∈ Σ

〈new k ( #„y ) ; s; Σ〉 7−→〈
#        „

[y2/z2]t; return y1 :: s; Σ, y1 = ν
(
z1 :

#    „

[y/z]U
)

#        „

[y2/z2]d
〉 (New)

〈y1; return y :: s; Σ〉 7−→ 〈y; s; Σ〉 (Return)

〈y; let z = � in t :: s; Σ〉 7−→ 〈[y/z] t; s; Σ〉 (Let-Loc)

〈let z = l in u; s; Σ〉 7−→ 〈[y/z] t; s; Σ, y = l〉 (Let-Lit)

〈let z = t in u; s; Σ〉 7−→ 〈t; let z = � in u :: s; Σ〉 (Let-Push)

Figure 3.2: Operational Semantics for κDOT
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rule pops the frame from the stack and executes u. Note that only z is ever substituted in
u, leaving other variables intact.

If there is a binding of a constructor k = κ
(

#      „

z : T , y : U
)
{d} t in the heap Σ, a con-

structor call new k ( #„x ) does three different things via the (new) rule. Firstly, a new object
is allocated with the default definitions d as fields and bound to a fresh location y in the
heap. Secondly, a return frame return y returning the location of the newly allocated object
is pushed onto the stack. Lastly, the body of the constructor t is run. If the body of the
constructor finishes executing, the (Return) rule pops the return frame and returns the
location of the object.

We note that a return frame can be represented by a let frame of the form let z = � in y,
but we made return frames explicit since we were interested in designing initialization sys-
tems for DOT. Return frames separate computation resulting from different constructors.

Field Reads and Writes

For a field read y.a, the (Project) rule looks up the object referred to by y and produces
the term t that is bound at y.a. If the field is not mutated between subsequent reads, t
is reevaluated at each read. Thus field reads are lazy without memoization just like in
WadlerFest DOT.

A field assignment y.a := y1 is evaluated using the (Assignment) rule. The rule firstly
mutates the heap so that y.a contains the location y1 and secondly returns y1 as the focus
of execution.

Literals and Applications

A let bound literal is evaluated with the (Let-Lit) rule, which binds the literal to a new
location in the store and substitutes references to the location with the new location.

The (Application) rule evaluates function applications y y1. An application evaluates
to the body of the function at location y with an appropriate substitution. Similar to
WadlerFest DOT, function applications in κDOT are call-by-reference.

3.3 Type System

Fig. 3.4, Fig. 3.3, Fig. 3.5, and Fig. 3.6 show the typing rules for κDOT. Most of the rules
are the same as WadlerFest DOT. Rules that are new or different from WadlerFest DOT
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Γ, z : T ` t : U z /∈ fv (T )

Γ ` λ (z : T ) .t : ∀ (z : T )U
(All-I)

Γ,
#      „

z : T , z1 : U ` d : U #„z /∈ fv
(

#„

T
)

Γ,
#      „

z : T , z1 : U ` t : T ′

Γ ` κ
(

#      „

z : T , z1 : U
)
{d} t : K

(
#      „

z : T , z1 : U
) (K-I)

Figure 3.3: Literal Typing in κDOT

Γ (x) = T

Γ ` x : T
(Var)

Γ ` x : {a : T..U}
Γ ` x.a : U

({}-E)

Γ ` x1 : T
Γ ` x : {a : T..U}
Γ ` x.a := x1 : U

(:=-I)

Γ ` x : T

Γ ` x : µ (x : T )
(Rec-I)

Γ ` x : µ (z : T )

Γ ` x : [x/z]T
(Rec-E)

Γ ` l : T x /∈ fv (U)
Γ, x : T ` u : U

Γ ` let x = l in u : U
(Lit-I)

Γ ` x : ∀ (z : T )U Γ ` x1 : T

Γ ` x x1 : [x1/z]U
(All-E)

Γ ` k : K
(

#      „

z : T , z1 : U
)

Γ ` #      „

x : T

Γ ` new k ( #„x ) : µ (z1 : U)

(K-E)

Γ ` t : T x /∈ fv (U)
Γ, x : T ` u : U

Γ ` let x = t in u : U
(Let)

Γ ` x : T Γ ` x : U

Γ ` x : T ∧ U
(And-I)

Γ ` t : T Γ ` T <: U

Γ ` t : U
(Sub)

Figure 3.4: Term Typing in κDOT
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Γ ` {A = T} : {A : T..T} (Def-Typ)

Γ ` t : T

Γ ` {a = t} :
{
a : T.. T

} (Def-Trm)

Γ ` d1 : T1 Γ ` d2 : T2
dom (d1) , dom (d2) disjoint

Γ ` d1 ∧ d2 : T ∧ U
(And-Def)

Figure 3.5: Definition Typing in κDOT

Γ ` T <: > (Top)

Γ ` ⊥ <: T (Bot)

Γ ` T <: T (Refl)

Γ ` T ∧ U <: T (And1-<:)

Γ ` T ∧ U <: U (And2-<:)

Γ ` S <: T Γ ` S <: U

Γ ` S <: T ∧ U
(<:-And)

Γ ` x : {A : S..T}
Γ ` S <: x.A

(<:-Sel)
Γ ` x : {A : S..T}

Γ ` x.A <: T
(Sel-<:)

Γ ` T2 <: T1 Γ ` U1 <: U2

Γ ` {a : T1..U1} <: {a : T2..U2}
(Fld-<:-Fld)

Γ ` S2 <: S1 Γ ` T1 <: T2

Γ ` {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ)

Γ ` S2 <: S1 Γ, x : S2 ` T1 <: T2

Γ ` ∀ (x : S1)T1 <: ∀ (x : S2)T2
(All-<:-All)

Γ ` S <: T Γ ` T <: U

Γ ` S <: U
(Trans)

Figure 3.6: Subtyping in κDOT
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are highlighted.

Since literals are not terms, we type literals separately using literal typing and type let
bound literals using the (Lit-I) rule. Constructors are typed using the (K-I) rule. The
default definitions d, output type U , and the constructor body may all refer to x1.

Field assignments are typed using the (:=-I) rule, where a variable may be assigned to
a field if it conforms to its setter type. Constructors calls are typed using the (K-E) rule,
which produces recursive object types.

For definition typing, we modify the (Def-Trm) rule so that term members are typed
with the setter type being the same as the getter type. For a well-typed constructor literal

κ
(

#      „

z : T , z1 : T1 ∧ · · · ∧ Tn
)
{d}, this means that the bounds in Ti must be tight regardless of

whether Ti is a type member or a term member. We modify the (Fld-<:-Fld) subtyping
rule to be contravariant in setter types.

We will discuss the proof of type safety in Chapter 4.

3.4 Bringing Scala to DOT

We end the chapter by briefly comparing the fields in Scala, WadlerFest DOT and κDOT.

In κDOT, we tried to preserve as much of WadlerFest DOT as possible while trying to
add features inspired by Scala. Scala has vars, vals, and lazy vals and depth-subtyping
for vals and lazy vals, and WadlerFest DOT offers a non-memoized version of lazy vals
with depth-subtyping.

Fields in κDOT are lazy, but allow for mutation. However, although fields can contain
arbitrary terms, we only allow writing fully evaluated locations to fields. This is directly
inspired by Scala, where only fully evaluated locations are allowed to be written to var

fields. Furthermore, κDOT allows depth-subtyping on getter types. As we will see in
Chapters 5 and 6 this kind of field, together with constructors, allows us to express all
programming patterns available with vars and lazy vals.

In κDOT, we can even provide some immutability guarantees using subtyping to make
the setter type ⊥. This is slightly different from the type of immutablity guaranteed by
Scala. Scala disallows all writes to val fields, whereas if we have an object y with a field
a of type {a : ⊥..>} and a variable x of type ⊥, κDOT will allow the write y.a := x.
However, the type safety proof in Chapter 4 will show that a fully evaluated location can
never have type ⊥, so y.a := x will never be executed.
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Chapter 4

Type Safety for κDOT

In this chapter we outline the type safety proof for κDOT. We prove type safety for κDOT
by proving progress and preservation lemmas in the style of Wright and Felleisen [1994].
We will start by defining what type safety means for our operational semantics. We will
then look at the challenges in proving type safety for DOT calculi. Next, we will look
at the proof infrastructure that we developed and used for proving the canonical forms
lemmas. Lastly, we will discuss details of our mechanized proof of type safety.

4.1 Configuration Typing for Type Safety

Given our operational semantics, type safety says that if we start our abstract machine
with a well-typed term, then the machine either runs indefinitely or successfully returns
an answer.

Theorem 4.1.1 (Type Safety). If ` t : T , then either the initial configuration of the
abstract machine 〈t; ε; ·〉 diverges or 〈t; ε; ·〉 7−→∗ 〈y; ε; Σ〉 for some answer 〈y; ε; Σ〉.

We proved type safety of κDOT by proving progress and preservation lemmas in the
style of Wright and Felleisen [1994]. However, to express the progress and preservation
lemmas, we needed to extend typing to heaps, stacks, and configurations.

The proofs were mechanized and checked in Coq and are available at https://git.

uwaterloo.ca/ikabir/dot-public.
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Γ ` S <: U

Γ ` ε : S, U
(Stack Empty)

Γ ` s : T, U x /∈ fv (T )
Γ, x : S ` u : T

Γ ` let x = � in u :: s : S, U
(Stack Let)

Γ ` s : T, U Γ ` x : T

Γ ` return x :: s : S, U
(Stack Return)

Figure 4.1: Stack Typing in K-DOT

Definition 4.1.2 (Heap Correspondence). For a context Γ and an environment Σ, we
say that Γ corresponds to Σ, written Γ ∼ Σ, if Γ and Σ have the same domain, and for all
x : T ∈ Γ and x = h ∈ Σ,

• if h = λ (z : S) .t, then Γ ` h : T using the (All-I) rule,

• if h = κ
(

#      „

z : S, z1 : U
)
{d} t, then Γ ` h : T using the (K-I) rule, and

• if h = ν (z : U) d for some object ν (z : U) d, then T = µ (z : U) and Γ ` d : [x/z]U .

Heap Correspondence is essentially literal typing (Fig. 3.3) together with objects typed
using definition typing.

Fig. 4.1 shows the typing rules for stacks. Stacks represent evaluation contexts and are
given two types Γ ` s : S, U . Here, S is the type that the focus of execution must have in
order for the overall evaluation context to have type U .

The use of subtyping in the (Stack Empty) rule allows us to avoid defining subtyping
explicitly between stacks and configurations. When a term t has type S and S <: U , then
t also has type U . Similarly, when a configuration pairs t with an empty stack the overall
configuration has type U .

The (Stack Let) rule closely mirrors the (Let) typing rule. For x /∈ fv (S) and
Γ, x : S ` u : T , if a term t has type S, then let x = t in u has type T . Similarly, if t is
used as the focus of execution and let x = � in u is added on top of a stack s of type
Γ ` s : T, U , they behave as if let x = t in u is paired with s.

The (Stack Return) rule ensures that, after a constructor call, the stack is typed
with the type of the allocated object while allowing the constructor body to have any type.
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Given heap correspondence and stack typing, we define configuration typing as follows.

Definition 4.1.3 (Configuration Typing). Γ ` 〈t; s; Σ〉 : U if Γ ∼ Σ and for some
type T , Γ ` t : T and Γ ` s : T, U .

Configuration Typing is defined for proving preservation for a small step operational
semantics. In the above definition, U is the type of the term that the machine is started
with, T is the type of the current focus of execution, and stack typing ensures that U is
preserved when pushing and popping stack frames.

4.2 Inert Types for Type Safety

The type safety proof for κDOT extends the type safety proof for WadlerFest DOT of
Rapoport et al. [2017]. Following the Rapoport et al. type safety proof, we define inert
types, inert contexts and then prove progress and preservation.

Definition 4.2.1 (Record Type). A type T is a record type if T is the intersection of
tight field declarations {a : S..S} and tight type {A : S..S} declarations of distinct labels. A
field (type) declaration {a : S..U} ({A : S..U}) is tight if its bounds S and U are the same.

Definition 4.2.2 (Inert Type). A type U is inert if

• U is a dependent function type ∀ (x : S)T , or

• U is a constructor type K
(

#      „

x : S, y : T
)

for a record type T , or

• U is a recursive type µ (x : T ) for a record type T .

Definition 4.2.3 (Inert Context). Γ is an inert context if the type Γ (x) that it binds
to each variable x is inert.

Note that definition typing always produces record types. Since a constructor is typed
by ensuring the default definitions correspond to the declared output type, a well-typed
constructor must have a record type as its declared output type. Thus, an object created
by calling a well-typed constructor must have an inert type. Inert types essentially capture
precise types of objects and literals in the heap that result from executing a well-typed
κDOT program. When a well-typed program is executed, the focus of execution is always
typed under an inert context. Inert contexts are free from bad bounds and do not allow
unsound subtyping judgments such as K (a : T ) <: ∀ (z : T )T and ∀ (z : T )T <: {a : T}.
Using inertness, we define the progress and preservation lemmas as follows.
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Lemma 4.2.4 (Progress). If Γ is inert and Γ ` c : U , then either c is an answer or there
exists c′ such that c 7−→ c′.

Lemma 4.2.5 (Preservation). If Γ is inert, Γ ` c : U , and c 7−→ c′, then there exists
Γ′ such that the concatenation Γ++Γ′ is inert and Γ++Γ′ ` c′ : U .

We get type safety from the above progress and preservation lemmas by noting that
for ` t : T , the empty context is inert and types the initial configuration as ` 〈t; ε; ·〉 : T .

An interesting feature of our preservation lemma is that it adds an inertness condition
to the conclusion. We use inertness to ensure all objects in our heap and typing context are
typed using tight bounds, which makes proving the canonical forms lemmas easier. In the
next section we will discuss the bad bounds problem for DOT calculi which makes proving
canonical forms lemmas difficult. We will explore runtime consequences of inertness in
Section 6.5.

4.3 Bad Bounds Break Canonical Forms

In general, canonical forms lemmas tell us that the type of a term informs us of its shape.
For example, the simply typed lambda calculus has a canonical forms lemma for function
types [Pierce and C, 2002, p. 105].

Lemma 4.3.1 (Canonical Forms for Functions in STLC). If v is a value of type
T → U , then there exists a t such that v = λ (x : T ) .t.

The bad bounds problem for DOT calculi Amin et al. [2012] is that for any pair of
arbitrary types T and U , there exists an environment Γ such that Γ ` T <: U . All
that is required for this is Γ ` y : {A : T..U}, and subtyping follows from the (<:-Sel),
(Sel-<:), and (Trans) subtyping rules. The requirement of Γ ` T <: U is easily satisfied
if y : {A : T..U} ∈ Γ or y : ⊥ ∈ Γ.

This means that there are contexts where canonical forms does not hold and terms
which would be ill-typed under more traditional type systems can be typed in DOT. For
example, the following context gives a variable bound to a function literal a constructor
type and then allows the new operation to be called on that variable.

y : {A : ∀ (z : >)>..K (z : U)} ` let k = λ (z : >) .z in new k () : µ (z : U)
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Here, although λ (z : >) .z is given the type ∀ (z : >)> through literal typing, new k ()
is typed in the context y : {A : ∀ (z : >)>..K (z : U)}, k : ∀ (z : >)>. Here k is given a
constructor type via the following typing and subtyping rules.

y : {A : ∀ (z : >)>..K (z : U)}, k : ∀ (z : >)> ` ∀ (z : >)> <: y.A (<:-Sel)

y : {A : ∀ (z : >)>..K (z : U)}, k : ∀ (z : >)> ` y.A <: K (z : U) (Sel-<:)

y : {A : ∀ (z : >)>..K (z : U)}, k : ∀ (z : >)> ` ∀ (z : >)> <: K (z : U) (Trans)

y : {A : ∀ (z : >)>..K (z : U)}, k : ∀ (z : >)> ` k : ∀ (z : >)> (Var)

y : {A : ∀ (z : >)>..K (z : U)}, k : ∀ (z : >)> ` k : K (z : U) (Sub)

y : {A : ∀ (z : >)>..K (z : U)}, k : ∀ (z : >)> ` new k () : µ (z : U) (K-E)

In the lambda calculus, we get canonical forms by an inversion of the typing relation,
but a similar inversion does not work for DOT calculi. However, Amin et al. [2012] noticed
that since objects are always created with tight bounds, if we start from a well typed term,
bad bounds do not occur in any context where reduction will take place. For the type
safety proof for κDOT, we insist on inert contexts because bad bounds do not occur in
these contexts. In an inert context, we are able to invert the typing relation for canonical
forms.

4.4 Substitution Lemma for Path-Dependence

The standard substitution lemma for a call-by-value lambda calculus is as follows [Pierce
and C, 2002, p. 106].

Lemma 4.4.1 (Call-by-value Substitution Lemma). If Γ, x : T ` t : U and Γ ` v : T
for a value v, then Γ ` [v/x] t : U .

The above lemma is used in the abstraction elimination case of the preservation lemma.
It tells us that since an abstraction is typed using the following rule, when we apply the
abstraction to a value v of the correct type and produce [v/x] t, the type is preserved.

Γ, x : T ` t : U
Γ ` λ (x : T ) .t : T → U

(Abs-I)

Since we are in a call-by-reference setting, the type of substitution we perform is sim-
pler; we only replace an abstract variable with a location (both are variables) rather than
substitute a value for a variable. This simplifies the required substitution property to the
following form.
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Property (Call-by-reference Substitution). If Γ, x : T ` t : U and Γ ` y : T for a
location y, then Γ ` [y/x] t : U .

However, the above property does not hold in the presence of path-dependent types.
We illustrate this with the following example. Suppose we have the following for x 6= y:

Γ, x : µ (z : {A : >}) ` x : x.A

Γ ` y : µ (z : {A : >})

Here, Γ, x : µ (z : {A : >}) ` > <: x.A by recursion elimination and the (<:-Sel) rule.
Thus, x can be given the path-dependent type x.A through subtyping. Here x and y have
the same type as required by the substitution property, but if we remove the reference x
from the typing context, then we remove the subtyping relation > <: x.A, so we cannot
type y as Γ ` y : x.A. The problem can occur even when the variable being substituted
does not occur in the type or the term.

Γ, x : µ (z : {A : ⊥}), x1 : x.A, x2 : ∀ (z1 : ⊥)> ` x2 x1 : >
Γ ` y : µ (z : {A : ⊥})

Γ, x1 : x.A, x2 : ∀ (z1 : ⊥)> 0 x2 x1 : >

Similar to the above example, we have Γ, x : µ (z : {A : ⊥}) ` x.A <: ⊥ and x1 can be
given the type ⊥ by subtyping. If we remove the reference x from the typing context, then
we remove the subtyping relation x.A <: ⊥, and so we cannot type x1 as ⊥. Hence we
cannot use x1 as an input to x2 since inputs to x2 have to have type ⊥.

Since the simple substitution property does not hold, for path-dependent types we need
a more general substitution lemma.

Lemma 4.4.2 (Substitution Lemma). If Γ1, x : T,Γ2 ` t : U and Γ1 ` y : [y/x]T for a
location y, then Γ1, [y/x] Γ2 ` [y/x] t : [y/x]U .

In the above lemma, we substitute all references to x with y, including in the context
Γ2 and the type U . Replacing x with y in the context and the type allows us to replace x
with y in all typing and subtyping judgments which were used to derive Γ1, x : T,Γ2 ` t : U
and derive Γ1, [y/x] Γ2 ` [y/x] t : [y/x]U .

4.5 Working from the Bottom Up

Amin et al. [2014] comment that instead of trying to prove type safety proof for an entire
DOT calculus from scratch, DOT type safety proofs are easier to develop by starting from
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an existing type safety proof and adding features in a bottom-up fashion and fixing the
parts of type safety proof which break while keeping most of the proof intact. We followed
their advice and slowly evolved κDOT from the simplified proof of type safety Rapoport
et al. [2017] for WadlerFest DOT.

WadlerFest DOT has an operational semantics based on evaluation contexts where both
values and variables are treated as answers. Starting from this calculus, we arrived at the
current κDOT in the following steps, producing a proof of type safety at the end of each
step.

1. Adapt the notion of evaluation contexts to heaps.

2. Change the operational semantics to reduce literals to a let binding and redefine
answers to only be variables.

3. Replace well-typed evaluation contexts with heap correspondence. Well-typed is a
relation analogous to heap correspondence, but for evaluation contexts.

4. Add setter types and field mutation.

5. Remove objects from the literal grammar, ensure literals are let bound, and add
constructors and frames.

Unlike functions, we designed constructors to take multiple arguments because we even-
tually want to add an initialization system to κDOT through a static analysis of construc-
tors. To keep the static analysis localized to constructors, we needed constructors to be
closed after type erasure. Therefore, constructors need multiple arguments since any refer-
ences needed by constructors need to be passed as inputs. This made the last step tedious
because the type safety proof and the Coq libraries used had little support for dealing with
multiple arguments and many lemmas had to be lifted manually to multiple arguments.

4.6 Mechanization and Locally Nameless Representa-

tion

The mechanized type safety proof of κDOT uses a locally nameless representation together
with cofinite quantification of free variables introduced by binding rules such as (All-I)
and (Let). The equivalence between rules using cofinite quantification and the usual
rules are discussed by Aydemir et al. [2008]. In this representation, we represent abstract
variables with de Bruijn indices and locations by named variables. The binding rules under
cofinite quantification are shown in Fig. 4.2, Fig. 4.3, and Fig. 4.4. In the rules shown, L
represents a finite set of variables.
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∀y′, y′ /∈ L =⇒ Γ, y′ : T ` [y′/z] t : [y′/z]U

Γ ` λ (z : T ) .t : ∀ (z : T )U
(All-I)

∀
#„

y′ , y′1,
#„

y′ , y′1 /∈ L =⇒ Γ,
#        „

y′ : T , y′1 : [
#        „

y′, y′1/#      „z, z1]U ` [
#        „

y′, y′1/#      „z, z1] d : [
#        „

y′, y′1/#      „z, z1]U

∀
#„

y′ , y′1,
#„

y′ , y′1 /∈ L =⇒ Γ,
#        „

y′ : T , y′1 : [
#        „

y′, y′1/#      „z, z1]U ` [
#        „

y′, y′1/#      „z, z1] t : [
#        „

y′, y′1/#      „z, z1]T ′

Γ ` κ
(

#      „

z : T , z1 : U
)
{d} t : K

(
#      „

z : T , z1 : U
) (K-I)

Figure 4.2: Mechanized Literal Typing

∀y′ /∈ L Γ, y′ : T ` [y′/z]u : U
Γ ` t : T

Γ ` let z = t in u : U
(Let)

∀y′ /∈ L Γ, y′ : T ` [y′/z]u : U
Γ ` l : T

Γ ` let z = l in u : U
(Lit-I)

Figure 4.3: Mechanized Typing for Let Bindings

∀y′ /∈ L Γ, y′ : T2 ` [y′/z]U1 <: [y′/z]U2

Γ ` T2 <: T1

Γ ` λ (z : T1) .U1 : ∀ (z : T2)U2

(All-<:-All)

Figure 4.4: Mechanized Subtyping
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In our mechanized Coq proof we use the TLC library provided by Arthur Chargueraud
which provides many primitives for working with locally nameless representations.

For type safety we prove the weakening, narrowing, substitution, and renaming lemmas
and then build infrastructure to prove canonical forms for inert contexts. We then proceed
to prove the progress and preservation lemmas.

4.6.1 Weakening, Narrowing, Substitution and Renaming

We now state the weakening, narrowing, substitution, and renaming lemmas for κDOT.

Lemma 4.6.1 (Weakening). If Γ1,Γ2 ` t : T and x /∈ dom (Γ1) ∪ dom (Γ2), then Γ1, x :
T,Γ2 ` t : T .

The Weakening lemma tells us that extra information in typing contexts does no harm.
We prove weakening by a straightforward mutual induction on subtyping and the typing
relations for terms, definitions, and literals.

Lemma 4.6.2 (Narrowing). If Γ1, x : T,Γ2 ` t : U and Γ1 ` T ′ <: T then Γ1, x : T ′,Γ2 `
t : U .

The Narrowing lemma tells us that more precise information in typing contexts does no
harm. Similar to the weakening lemma, we prove narrowing by a straightforward mutual
induction on subtyping and the typing relations for terms, definitions, and literals.

Lemma 4.6.3 (Substitution Lemma). If Γ1, x : T,Γ2 ` t : U and Γ1 ` y : [y/x]T for a
location y, then Γ1, [y/x] Γ2 ` [y/x] t : [y/x]U .

We prove substitution by a mutual induction on subtyping and the typing relations for
terms, definitions, and literals.

We then combine weakening and substitution to prove the renaming lemmas. Renaming
says that replacing an abstract variable with a location of the same type preserves typing.

Lemma 4.6.4 (Renaming for Let Bindings). If ∀y′ /∈ L, Γ, y′ : T ` [y′/z] t : U and for
a location y, Γ ` y : T , then Γ ` [y/z] t : U .

The above says that reducing a let binding via the (Let-Push) rule preserves config-
uration typing.

Lemma 4.6.5 (Renaming for Function Applications). If ∀y′ /∈ L, Γ, y′ : T ` [y′/z] t : [y′/z]U
and for a location y, Γ ` y : T , then Γ ` [y/z] t : [y/z]U .
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The above says that reducing a function application via the (Application) rule pre-
serves term typing.

Lemma 4.6.6 (Renaming for Constructor Calls). If

• ∀
#       „

y′, y′1 /∈ L, Γ,
#        „

y′ : T , y′1 : [
#        „

y′, y′1/#      „z, z1]U ` [
#        „

y′, y′1/#      „z, z1] t : [
#        „

y′, y′1/#      „z, z1]T ′,

• for locations #„y , Γ ` #      „

y : T , and

• y1 /∈ dom (Γ)

then Γ, x1 : µ (z1 : [
#„x/#„z ]U) ` [

#      „y, y1/#      „z, z1] t : [
#      „y, y1/#      „z, z1]T ′.

Lemma 4.6.7 (Renaming Definitions for Constructor Calls). If

• ∀ #      „x, x1 /∈ L, Γ,
#      „

x : T , x1 : [
#       „x, x1/#      „z, z1]U ` [

#       „x, x1/#      „z, z1] d : [
#       „x, x1/#      „z, z1]U ,

• for locations #„y , Γ ` #      „

y : T , and

• y1 /∈ dom (Γ)

then Γ, x1 : µ (z1 : [
#„x/#„z ]U) ` [

#      „y, y1/#      „z, z1] d : [
#      „y, y1/#      „z, z1]U .

The above say that reducing a constructor application via the (New) rule preserves
configuration typing.

The renaming lemmas all have a similar form and so do their proofs. We show the
proof of Lemma 4.6.5.

Proof of Lemma 4.6.5. We pick a named variable y′ fresh enough so that y′ /∈ L, [y/y′] Γ =
Γ, [y/z] t = [y/y′] [y′/z] t, and [y/z]U = [y/y′] [y′/z]U .

Then from the premise, since y′ /∈ L, Γ, y′ : T ` [y′/z] t : [y′/z]U .

Now, by the substitution lemma, Γ ` [y/y′] [y′/z] t : [y/y′] [y′/z]U .

Since y′ is fresh enough, this is the same as Γ ` [y/z] t : [y/z]U .

4.6.2 Inverting Variable Typing

In κDOT, progress and preservation is proved by an inversion of configuration typing
followed by an induction on the typing for the focus of execution. For many of the cases,
we need to relate the type of a variable to its type in the typing context; for progress we
need this to prove canonical forms lemmas and for preservation to apply renaming lemmas.
However, these relationships are not available to us directly through an inversion of the
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typing judgment. In this section we discuss the function application and field read cases
of progress and preservation to illustrate the relationships we need between the type of
a variable and its type in the context. We end the section by discussing why inverting
variable typing is difficult in κDOT.

Preservation for Function Applications

Suppose we want to prove type preservation for 〈y y1; s; Σ〉 7−→ 〈[y1/z] t; s; Σ〉, where
y = λ (z : T ′) .t ∈ Σ and Γ ` y : ∀ (z : T )U , Γ ` y1 : T , and Γ ` y y1 : [y1/z]U . By inversion
of heap correspondence, we get the following:

• Γ (y) = ∀ (z : T ′)U ′ for some U ′.

• ∀y′ /∈ L′, Γ ` [y′/z] t : [y′/z]U ′ for some finite set L′.

To apply the renaming lemmas for preservation, we need the following:

• ∀y′ /∈ L, Γ, y′ : T ` [y′/z]U ′ <: [y′/z]U for some L.

• Γ ` T <: T ′.

However, a direct inversion of Γ ` y : ∀ (z : T )U gives us the following cases.

• Γ (y) = ∀ (z : T )U (Var)

• ∀ (z : T )U = [y/z′]S and Γ ` y : µ (z′ : S) (Rec-E)

• Γ ` S <: ∀ (z : T )U and Γ ` y : S (Sub)

In the (Rec-E) case, it is not helpful to further invert Γ ` y : µ (z′ : S) since among the
generated cases there will be another (Rec-E) case. Similarly, in the (Sub) case, inverting
Γ ` y : S will generate another (Sub) case among others. A direct inversion here is not
helpful since we can keep building chains of inversions.

For the (Sub) case, inverting the subtyping judgment Γ ` S <: ∀ (z : T )U is not helpful
since it produces many cases where we can again build chains of inversions. For example,
in the (Trans) rule we would have Γ ` S ′ <: S and Γ ` S <: ∀ (z : T )U , where we can
keep building an inversion chain by inverting Γ ` S ′ <: S.

Progress for Function Applications

Suppose we want to prove type progress for 〈y y1; s; Σ〉, Γ ` y : ∀ (z : T )U , Γ ` y1 : T , and
Γ ` y y1 : [y1/z]U . We need to invert the typing relation on y to get the type Γ (y). We
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need a canonical forms lemma to show that Γ (y) = ∀ (z : T ′)U ′ for some T ′, U ′ and ∀y′ /∈ L,
Γ, y′ : T ` [y′/z]U ′ <: [y′/z]U for some L.

As above, trying to invert Γ ` y : ∀ (z : T )U to relate ∀ (z : T )U and Γ (y) causes the
same issues.

Preservation for Field Reads

We run into similar issues when we try to prove type preservation for 〈y.a; s; Σ〉 7−→
〈t; s; Σ〉, where y = ν (z : S) . . . {a = t} . . . ∈ Σ and Γ ` y : {a : T..U} and Γ ` y.a : U . By
inversion on heap correspondence, we get Γ ` y : {a : T ′..T ′} and Γ ` y.a : T ′ for some T ′.
For preservation, we need Γ ` T ′ <: U .

Similar to the function application case, trying to invert Γ ` y : {a : T..U} to relate
{a : T..U} and {a : T ′..T ′} results in chains of inversion.

Issues with Inverting Variable Typing

For all of the above cases, we need to relate the type of a variable to the type that is
bound in the context. This is not directly available to us through inversion because typ-
ing derivations can be arbitrarily long in κDOT. For instance, we get chains of recursion
elimination because we can have chains of recursion introduction forming a large type
µ (z1 : µ (z2 : . . . µ (zn : T ))) which are eliminated by chains of recursion elimination. Sim-
ilarly, we can have chains of intersection introductions which are eliminated by chains of
the (And1-<:), (And2-<:), and (Sub) rules.

The usual approach to proving inversion properties when a direct inversion is not pos-
sible is by induction on the typing derivation. However, not only can typing judgments in
κDOT be arbitrarily long, the typing rules also allow cycling between pairs of introduction
and elimination rules. For instance, if we have Γ ` x : T , then Γ ` x : µ (z : T ) via the
(Rec-I) rule, and the (Rec-E) rule allows us to derive the original Γ ` x : T . These cycles
impede induction proofs, since the proposition Γ ` x : T is justified by Γ ` x : µ (z : T ),
which is in turn justified by the original proposition Γ ` x : T . Similarly, we can cycle be-
tween intersection introductions from the (And-I) rule and intersection elimination from
the (And1-<:), (And2-<:), and (Sub) rules.
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In general, inverting variable typing in κDOT is difficult because of the following rea-
sons:

• Subtyping can happen through path-dependent types, and a direct inversion of
typing does not take into account the lack of bad bounds in our context.

• Variable typing can go through repeated and arbitrarily long cycles of intersection
introduction and elimination.

• Variable typing can go through repeated and arbitrarily cycles of recursion elimi-
nation and introduction.

For our type safety proof, we need to invert typing for variables with function types,
field declarations, and constructor types. Instead of dealing with the different cases for in-
dividually, we define additional typing relations and build proof infrastructure for inverting
variable typing.

4.7 Infrastructure for Inverting Typing

To prove type safety for κDOT and relate the types of variables to the types bound in
the context, we introduce three additional typing relations: precise flow of variable types,
tight typing and subtyping, and invertible typing for variables.

A precise flow from U to T is denoted as Γ `! x : U � T . It says that Γ (x) = U
and T is derived from U by only applying rules for recursion elimination and intersection
elimination. If Γ `! x : Γ (x) � T is a precise flow in an inert context, if T is a function
or constructor type, then Γ (x) = T , and if T is a declaration then Γ (x) = µ (z : S) for a
record type S containing T .

A tight typing judgment Γ `# t : T says that t was typed using tight subtyping. A
tight subtyping judgment is the same as subtyping except that (<:-Sel) and (Sel-<:)
rules are modified so that only tight bounds from precise typing; i.e if Γ `# x : {A : T}T
then Γ `# T <: x.A and Γ `# x.A <: T . In an inert context general typing is equivalent
to tight typing since record types have tight bounds.

Invertible typing for variables uses only introduction rules. It uses precise flow to give
variables an initial type and then introduction rules give variables further types. This
removes cycles of introduction and elimination rules from our typing judgments since all
elimination rules are isolated to a single use of precise flow. In inert contexts, tight typing
for variables implies invertible typing.
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Γ(x) = U

Γ `! x : U � U
(Var-!)

Γ `! x : U � µ (z : T )

Γ `! x : U � [x/z]T
(Rec-E-!)

Γ `! x : U � S ∧ T
Γ `! x : U � S

(And1-E-!)

Γ `! x : U � S ∧ T
Γ `! x : U � T

(And2-E-!)

Figure 4.5: Precise Flow of Variable Typing

Lastly, to relate variable typing to the type bound in the context, we go through the
following “proof recipe”:

• Since we are in an inert context, general typing is the same as tight typing.

• For variables, tight typing implies invertible typing.

• Inverting invertible typing and precise flow relate types of variables to the type
bound in the context.

4.7.1 Precise Flow

The precise flow relation is shown in Fig. 4.5. Γ `! x : U � T reads as the type of x flows
from U to T , where T is derived from U by eliminating recursion and intersections and
Γ (x) = U .

The precise flow relation provides a single reusable syntax for proving inversion lemmas
about elimination rules and inert contexts. For example, we can prove the following lemmas
by inverting precise flow. These lemmas tell us that recursion and intersection elimination
rules do not apply to constructor and function types.

Lemma 4.7.1. If Γ `! x : ∀ (z : T )U � S then S = ∀ (z : T )U

Lemma 4.7.2. If Γ `! x : K
(

#      „

z : T , z1 : U
)
� S then S = K

(
#      „

z : T , z1 : U
)

.

For the types of objects we can prove the following lemma about recursion and inter-
section elimination.

Lemma 4.7.3. If Γ `! x : µ (z : T ) � S for a record type T , then S = µ (z : T ) or S is a
record type.

For inert contexts, we can prove the following inversion lemmas.
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Lemma 4.7.4. If Γ is an inert context and Γ `! x : U � ∀ (z : S)T , then U = ∀ (z : S)T .

Lemma 4.7.5. If Γ is an inert context and Γ `! x : U � K
(

#      „

z : T , z1 : U
)

, then U =

K
(

#      „

z : T , z1 : U
)

.

Lemma 4.7.6. If Γ is an inert context and Γ `! x : U � S for a record type S, then
U = µ (z : T ) for a record type T .

Lemma 4.7.7. If Γ is an inert context and Γ `! x : µ (z : T )� S for a declaration S, then
[x/z]T contains the declaration S.

The above lemmas say that in an inert context, function and constructor types only
flow from themselves and record types and declarations flow from recursive object types.

4.7.2 Tight Typing

Types in inert contexts only have tight bounds. To reason about typing without bad
bounds, we introduce tight typing and tight subtyping which isolate the possible use of
bad bounds to function and constructor literals, where parameters may have bad bounds,
and let bindings. The tight typing relation is shown in Fig. 4.6 and Fig. 4.7.

We use general typing for literals so that the body of functions and constructors can
be typed using bad bounds from parameters. However, since execution can never create
objects with bad bounds, literals with bad bounds are never called during execution.

While tight typing does not use any bad bounds for typing terms, the type produced
by tight typing may have bad bounds. For example, the following use of the ({}-E-#) rule
allows x.a to have a type with bad bounds, although the type of x itself has tight bounds.
The bounds for {A : >..⊥} are bad because it allows for > <: ⊥ which collapses the entire
subtyping lattice.

Γ `# x : {a : {A : >..⊥} .. {A : >..⊥}}
({}-E-#)

Γ `# x.a : {A : >..⊥}

To type let x = t in u, the (Let-#) rule uses tight typing to type t but general typing
to type u since the type of t might introduce bad bounds.

Other than the above uses of general typing, tight typing is free from the use of bad
bounds. Because we use precise flow with tight bounds in the (<:-Sel-#) and (Sel-<:-#)
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Γ (x) = T

Γ `# x : T
(Var-#)

Γ `# x : {a : T..U}
Γ `# x.a : U

({}-E-#)

Γ `# x1 : T
Γ `# x : {a : T..U}
Γ `# x.a := x1 : U

(:=-I-#)

Γ `# x : T

Γ `# x : µ (x : T )
(Rec-I-#)

Γ `# x : µ (z : T )

Γ `# x : [x/z]T
(Rec-E-#)

Γ ` l : T x /∈ fv (U)
Γ, x : T ` u : U

Γ `# let x = l in u : U
(Lit-I-#)

Γ `# x : ∀ (z : T )U Γ `# x1 : T

Γ `# x x1 : [x1/z]U
(All-E-#)

Γ `# k : K
(

#      „

z : T , z1 : U
)

Γ `#
#      „

x : T

Γ `# new k ( #„x ) : µ (z1 : U)
(K-E-#)

Γ `# t : T x /∈ fv (U)
Γ, x : T ` u : U

Γ `# let x = t in u : U
(Let-#)

Γ `# x : T Γ `# x : U

Γ `# x : T ∧ U
(And-I-#)

Γ `# t : T Γ `# T <: U

Γ `# t : U
(Sub-#)

Figure 4.6: Tight Term Typing in κDOT
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Γ `# T <: > (Top-#)

Γ `# ⊥ <: T (Bot-#)

Γ `# T <: T (Refl-#)

Γ `# T ∧ U <: T (And1-<:-#)

Γ `# T ∧ U <: U (And2-<:-#)

Γ `# S <: T Γ `# S <: U

Γ `# S <: T ∧ U
(<:-And-#)

Γ `! x : U � {A : T..T}
Γ `# T <: x.A

(<:-Sel-#)
Γ `! x : U � {A : T..T}

Γ `# x.A <: T
(Sel-<:-#)

Γ `# T2 <: T1 Γ `# U1 <: U2

Γ `# {a : T1..U1} <: {a : T2..U2}
(Fld-<:-Fld-#)

Γ `# S2 <: S1 Γ `# T1 <: T2

Γ `# {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ-#)

Γ `# S2 <: S1 Γ, x : S2 ` T1 <: T2

Γ `# ∀ (x : S1)T1 <: ∀ (x : S2)T2
(All-<:-All-#)

Γ `# S <: T Γ `# T <: U

Γ `# S <: U
(Trans-#)

Figure 4.7: Tight Subtyping in κDOT
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rules for subtyping between types and type selections, bad bounds are never introduced
into the tight subtyping lattice. In an inert context, all bounds are tight and thus general
typing and tight typing are equivalent.

Theorem 4.7.8 (` to `#). If Γ is an inert context, then Γ ` t : T implies Γ `# t : T ,
and Γ ` S <: U implies Γ `# S <: U .

4.7.3 Invertible Typing

The invertible typing relation is shown in Fig. 4.8. Under invertible typing, variables are
first given precise types using precise flow. The (Fld-<:-Fld-##), (Typ-<:-Typ-##),
and (All-<:-All-##) rules give less precise types to variables through tight subtyp-
ing. The rest of the rules introduce type selections, the top type, intersection types, and
recursive types.

Invertible typing is essentially an inlining of tight subtyping into tight typing for vari-
ables. So for inert contexts, the following theorem holds.

Theorem 4.7.9 (`# to `##). If Γ is an inert context, then Γ `# x : T implies Γ `##

x : T .

Invertible typing does not use any elimination rules, in particular type selections, top
types, intersection types, and recursive types are never eliminated. This means that the
only way invertible typing introduces functions, constructors, and declarations is through
precise flow and then possibly making them less precise through the (Fld-<:-Fld-##),
(Typ-<:-Typ-##), and (All-<:-All-##) rules. This allows us to prove inversion
lemmas such as the following by induction.

Lemma 4.7.10 (Inversion for Function Typing). If Γ is inert and Γ `## x : ∀ (z : S2)T2,
then Γ (x) = ∀ (z : S1)T1, Γ `# S2 <: S1, and Γ, x : S2 ` T1 <: T2.

Proof. We prove the lemma by induction on invertible typing. There are only two cases
that apply. For the (Var-##) case, inverting precise typing and the fact that Γ (x) is inert
tells us that Γ (x) = Γ `## x : ∀ (z : S2)T2. The subtyping results follow from reflexivity
of subtyping. We prove the (All-<:-All-##) case by applying the induction hypothesis
together with transitivity of tight and general subtyping.

In the mechanized proof, the (All-<:-All-##) rule uses cofinite quantification, so
the mechanized version of the above lemma is as follows.
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Γ `! x : U � T

Γ `## x : T
(Var-##)

Γ `## x : T

Γ `## x : µ (x : T )
(Rec-I-##)

Γ `# T2 <: T1 Γ `# U1 <: U2

Γ `# x <: {a : T1..U1}
Γ `## x : {a : T2..U2}

(Fld-<:-Fld-##)

Γ `# S2 <: S1 Γ `# T1 <: T2
Γ `## x : {A : S1..T1}
Γ `## x : {A : S2..T2}

(Typ-<:-Typ-##)

Γ `# S2 <: S1 Γ, x : S2 ` T1 <: T2
Γ `## x : ∀ (x : S1)T1

Γ `## x : ∀ (x : S2)T2
(All-<:-All-##)

Γ `## x : T Γ `## x : U

Γ `## x : T ∧ U
(And-I-##)

Γ `## x : T
Γ `! y : U � {A : T..T}

Γ `## x : y.A
(<:-Sel-##)

Γ `## x : T

Γ `## x : >
(Top-##)

Figure 4.8: Invertible Variable Typing
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Lemma 4.7.11 (Mechanized Inversion for Function Typing). If Γ is inert and
Γ `## x : ∀ (z : S2)T2, then Γ (x) = ∀ (z : S1)T1, Γ `# S2 <: S1, and there exists a finite
set L such that for all x /∈ L, Γ, x : S2 ` [x/z]T1 <: [x/z]T2.

The above lemma is used for the function application cases for progress and preserva-
tion. We discuss applying the above lemma together with the theorems relating general
typing, tight typing, and invertible typing in Section 4.7.4.

4.7.4 Applying the Proof Recipe

We now return to the function application cases for progress and preservation and show
how the proof recipe is applied. The cases for constructor calls, field reads, and field writes
are very similar.

Preservation for Function Applications

We need to show Γ ` [y1/z] t : [y1/z]U given the following:

1. Γ inert,

2. y = λ (z : T ′) .t ∈ Σ,

3. Γ ` y : ∀ (z : T )U ,

4. Γ ` y1 : T ,

5. Γ ` y y1 : [y1/z]U ,

6. Γ (y) = ∀ (z : T ′)U ′ for some U ′, and

7. ∀y′ /∈ L′, Γ, y′ : T ′ ` [y′/z] t : [y′/z]U ′

for some finite set L′.

Proof. Since Γ is inert and Γ ` y : ∀ (z : T )U , we have Γ `# y : ∀ (z : T )U by Theorem 4.7.8
(` to `#). Now, by applying Theorem 4.7.9 (`# to `##), we have Γ `## y : ∀ (z : T )U . By
Lemma 4.7.11 (Mechanized Inversion) and since Γ (y) = ∀ (z : T ′)U ′, we have Γ `# T <: T ′

and for some finite set L, ∀y′ /∈ L, Γ, y′ : T ` [y′/z]U ′ <: [y′/z]U .

Since, for any y′, y′ /∈ (L′ ∪ L) implies y′ /∈ L′ and y′ /∈ L, we have

• ∀y′ /∈ (L′ ∪ L), Γ, y′ : T ′ ` [y′/z] t : [y′/z]U ′, and

• ∀y′ /∈ (L′ ∪ L), Γ, y′ : T ` [y′/z]U ′ <: [y′/z]U .

Since the tight subtyping rules are just more restrictive versions of the general subtyping
rules, Γ `# T <: T ′ implies Γ ` T <: T ′.

Thus, by subsumption and narrowing, we have ∀y′ /∈ (L′ ∪ L), Γ, y′ : T ` [y′/z] t : [y′/z]U .
Lastly, by renaming (Lemma 4.6.5) we have the result Γ ` [y1/z] t : [y1/z]U .
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Progress for Function Applications

We need to show that the (Application) rule applies to the configuration 〈y y1; s; Σ〉
given the following:

1. Γ inert and Γ corresponds to Σ,

2. Γ ` y : ∀ (z : T )U ,

3. Γ ` y1 : T , and

4. Γ ` y y1 : [y1/z]U .

Proof. Since Γ is inert and Γ ` y : ∀ (z : T )U , we have Γ `# y : ∀ (z : T )U by Theorem 4.7.8
(` to `#). Now, by applying Theorem 4.7.9 (`# to `##), we have Γ `## y : ∀ (z : T )U .
By Lemma 4.7.11 (Mechanized Inversion), we have Γ (y) = ∀ (z : T ′)U ′ for some T ′, U ′.

Now, for canonical forms we invert heap correspondence to get y = λ (z : T ′) .t ∈ Σ.

Thus, the (Application) rule applies and we step to 〈[y1/z] t; s; Σ〉.

4.8 Type Safety

We remind the reader that for our operational semantics, type safety states that if we start
our abstract machine with a well-typed term, then the machine either runs indefinitely or
successfully returns an answer.

Theorem (Type Safety). If ` t : T , then either the initial configuration of the abstract
machine 〈t; ε; ·〉 diverges or 〈t; ε; ·〉 7−→∗ 〈y; ε; Σ〉 for some answer 〈y; ε; Σ〉.

We prove type safety by proving progress and preservation lemmas for configuration
typing with heaps corresponding to inert contexts. Both lemmas are proven by inducting
on typing for the focus of execution. Since a well-typed term leads to a well-typed initial
configuration, the above type safety theorem follows.

Lemma (Progress). If Γ is inert and Γ ` 〈t; s; Σ〉 : U , then either 〈t; s; Σ〉 is an answer
or there exists c′ such that 〈t; s; Σ〉 7−→ c′.

Proof. We invert Γ ` 〈t; s; Σ〉 : U to get the following:

• Γ corresponds to Σ.

• Γ ` t : T for some T .

• Γ ` s : T, U .
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We proceed by induction on typing for the focus of execution, Γ ` t : T . The cases are
as follows:

(Var), (Rec-I), (Rec-E), (And-I) In these cases the focus of execution is a vari-
able. We either have an empty stack in which case the configuration is an answer, or
we can pop a stack frame using either the (Return) rule or the (Let-Loc) rule.

(All-E) This is the function application case covered in the previous section.

(K-E) In this case, we are calling a constructor. Similar to the function appli-
cation case, we invert variable typing for the constructor variable and retrieve the
constructor from the heap to apply the (New) rule with a fresh location.

({}-E) This is the field read case. Similar to the function application case, we
invert variable typing on the field declaration to retrieve the field definition from the
heap to apply the (Project) rule.

(:=-I) This is the field write case. Similar to the field write case, we invert
variable typing on the field declaration to retrieve the field definition on the heap,
and then we update this definition using the (Assignment) rule.

(Lit-I) Here the focus of execution is a let binding of a literal and the literal is
simply pushed to the heap using the (Let-Lit) rule.

(Let) Here the focus of execution is a let binding of a term and the (Let-Let)
rule applies, pushing a new let frame onto the stack.

(Sub) Here the induction hypothesis applies.

Lemma (Preservation). If Γ is inert, Γ ` 〈t; s; Σ〉 : U , and 〈t; s; Σ〉 7−→ c′, then there
exists Γ′ such that the concatenation Γ++Γ′ is inert and Γ++Γ′ ` c′ : U .

Proof. Similar to the proof of the progress lemma, we invert Γ ` 〈t; s; Σ〉 : U to get the
following:

• Γ corresponds to Σ.

• Γ ` t : T for some T .

• Γ ` s : T, U .

53



We proceed by induction on the typing for the focus of execution, Γ ` t : T . The cases
are as follows:

(Var), (Rec-I), (Rec-E), (And-I) In these cases the focus of execution is a vari-
able. We invert the reduction relation to get that we either pop a return frame via
the (Return) rule or pop a let frame via the (Let-Loc) rule. In the (Return)
case, inverting stack typing tells us configuration typing is preserved, and in the
(Let-Loc) case, we apply the renaming lemma for let bindings.

(All-E) This is the function application case. We invert the reduction relation
and show that the type for the focus of execution is preserved as shown in the previous
section.

(K-E) In this case, we are calling a constructor. Similar to the function applica-
tion case, we invert the reduction relation, invert variable typing for the constructor,
and apply renaming lemmas for the constructor body and allocated object. An ad-
ditional step in this case is that we have to show heap correspondence is preserved.

({}-E) This is the field read case, where the focus of execution is y.a and Γ `
y : {a : S..T}. We invert the reduction relation, to get that the machine steps to
〈t; s; Σ〉 and y = ν (z : ) . . . {a = t} . . . ∈ Σ. Similar to the function application case,
we invert variable typing on the field declaration to get {a : T ′..T ′} ∈ Γ (y) with
Γ ` T ′ <: T . We invert heap correspondence to get Γ ` t : T ′. By subsumption, the
type of the focus of execution is preserved.

(:=-I) This is the field write case, where the focus of execution is y.a := y′

and Γ ` y : {a : T..U ′} and Γ ` y′ : T . Similar to the field write case, we invert the
reduction relation and variable typing on the field declaration to get {a : T ′..T ′} ∈
Γ (y) with Γ ` T <: T ′. By subsumption Γ ` y′ : T ′ and so Γ ` {a = y′} : {a : T ′..T ′}.
Thus heap correspondence is preserved after the update.

(Lit-I) Here the focus of execution is a let binding of a literal. We show that
pushing a literal onto the heap preserves heap correspondence, and apply a renaming
lemma for let bindings to show that the type for the focus of execution is preserved.

(Let) Here the focus of execution is a let binding of a term and preservation
follows from stack typing.

(Sub) Here the induction hypothesis applies.
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Chapter 5

Expressive Power of κDOT

In this chapter, we explore the expressive power of κDOT. We will first show that κDOT
is at least as expressive as System F<:, WadlerFest DOT, and Mutable WadlerFest DOT
by showing how their constructs can be encoded in κDOT. Next, we will discuss recursive
constructs that can be expressed in DOT calculi. While these recursive constructs can
be expressed in both WadlerFest DOT and κDOT there are some programming patterns
that cannot be expressed in WadlerFest DOT. We will end the chapter by discussing
how memoized lazy fields of Scala (lazy vals) can be expressed in κDOT, but not in
WadlerFest DOT or Mutable WadlerFest DOT.

5.1 Encoding Other Calculi in κDOT

In this section we will see how κDOT can encode many of the interesting constructs of
other calculi, showing that κDOT is at least as expressive as these calculi. We will first
show how System F<:’s type abstraction and type application can be encoded in κDOT.
Next we will show how the object literals of WadlerFest DOT can be encoded in κDOT.
Lastly we will show how κDOT can encode the mutable references of Mutable WadlerFest
DOT even though it does not have a separate mutable store.

5.1.1 Encoding System F<: in κDOT

System F<: has two constructs that are not directly available in κDOT or other DOT
calculi: bounded type abstraction and type application. These can all be encoded in
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κDOT, as well as WadlerFest DOT and Mutable WadlerFest DOT, using type members.

A type abstraction of the form λ (X <: U) .t, where X is a type variable and U is a
type, can be encoded in κDOT as follows:

λ (x : {A : ⊥..U}) .t

A type application of the form (xT ) can be encoded in κDOT as:

let carryT = ν (z : {A : T..T}) {A = T} in

(x carryT )

In the above κDOT code, we use the WadlerFest DOT object notation as an abbre-
viation for creating and calling a constructor. WadlerFest DOT and Mutable WadlerFest
DOT encode type abstraction and type application in the same way, except they use object
literals directly instead of creating and calling a constructor.

5.1.2 Encoding WadlerFest DOT in κDOT

κDOT makes the following changes to WadlerFest DOT.

1. Literals must be let bound in κDOT.

2. κDOT replaces object literals with constructors.

3. κDOT adds contravariant setter types and mutation.

Function literals λ (z : T ) .t of WadlerFest DOT are simply let bound in κDOT as the
following.

let x = λ (z : T ) .t in x

Object literals can be encoded by let binding a constructor for the object and then
calling it. The WadlerFest DOT object literal ν (x : T ) d maps to κDOT as the following.

let k = κ (z : T ) {d}x in new k ()

Mutation adds its own syntax and typing rule without changing the rest of the language
and is a strict addition to WadlerFest DOT. Furthermore, a field declaration {a : S..T}
has {a : ⊥..T} as a super type. In the absence of mutation, these two types are equally
expressive since field reads only depend on getter types.
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5.1.3 Encoding Mutable WadlerFest DOT in κDOT

We now show how we can encode constructs from Mutable WadlerFest DOT in κDOT. Mu-
table WadlerFest DOT adds a mutable store and references to WadlerFest DOT. In κDOT
we can emulate ML-style references without needing a separate mutable store because our
heap is already mutable. The encodings are as follows:

ref x T let refT = κ (z : T, z′ : {a : T}) {{a = z}} z′ in
new refT (x)

!x x.a

x := y x.a := y

A reference creation just creates an object with a single field and stores the variable in
the field. A dereference is emulated by a field read and a reference update is emulated by
a field assignment.

The subtyping rule between references can also be emulated in κDOT through field
subtyping. Below, the (Ref-Sub) rule on the left is the reference subtyping rule from
Mutable WadlerFest DOT and the rule on the right is an instance of the (Fld-<:-Fld)
rule of κDOT that emulates (Ref-Sub).

Γ ` T <: U Γ ` U <: T

Γ ` Ref T <: Ref U
(Ref-Sub)

Γ ` U <: T Γ ` T <: U

Γ ` {a : T..T} <: {a : U..U}
(Fld-<:-Fld)

5.2 Recursive Constructs in κDOT

In this section, we discuss recursive constructs in DOT calculi using κDOT as the example
calculus. The programs discussed in this section can be expressed in WadlerFest DOT and
Mutable WadlerFest DOT and variants of them can be expressed in other DOT calculi.

5.2.1 Recursive Functions and Infinite Loops in κDOT

In κDOT, recursive functions are written in a direct style by putting the function in an
object and referring back to the function through the this variable of the object.
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For example, a simple infinite loop can be written as:

let carryA = ν (z : {a : ∀ (z : >)⊥}) {a = λ (z1 : >) .let z2 = z.a in z2 z1} in

let x = carryA.a in

x carryA

Running the above program causes the κDOT abstract machine to repeatedly allocate
the function λ (z1 : >) .let z2 = z.a in z2 z1 onto the heap and push let z2 = � in z2 z1 onto
the stack with appropriate substitutions.

We can also define infinite loops using lazy field reads:

Ω = let x = ν (z : {a : ⊥}) {a = z.a} in x.a

Running the above allocates the object ν (z : {a : ⊥}) {a = x.a} onto the heap, and
repeatedly accesses x.a.

〈Ω; ε; ·〉
7−→∗ 〈x.a; ε; x = ν (z : {a : ⊥}) {a = x.a}〉
7−→ 〈x.a; ε; x = ν (z : {a : ⊥}) {a = x.a}〉

Notice how both of the above programs are typed as ⊥. In Chapter 6, we will use Ω as
the notion of null reference in κDOT.

5.2.2 Recursive Types in κDOT

In κDOT, types can refer to themselves through self-references of objects the same way that
terms refer to themselves. This means, that the type system is expressive enough to type
constructs such as the Y -combinator without using a direct style of function recursion. The
following program defines a Y -combinator for functions of the type ∀ (z : T )U → ∀ (z : T )U
only using type recursion. We added extra type annotations on let bindings for the benefit
of the reader.
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let mu = ν (mu : {A : mu.A→ ∀ (z : T )U}) {A = mu.A} in

let yT = λ (f : ∀ (z : T )U → ∀ (z : T )U) .

let xf : mu.A = λ (x : mu.A) .

let y′ : ∀ (z : T )U = λ (y : T ) .

let x′ : ∀ (z : T )U = x x in

x′ y

in

f y′

in

xf xf

Here yT has the type (∀ (z : T )U → ∀ (z : T )U)→ ∀ (z : T )U . To see that the program
implements the Y -combinator, recall that the Y -combinator for the call-by-value lambda
calculus is λ f.(λx.f(λ y.xxy))(λx.f(λ y.xxy)).

5.3 Memoized Laziness in κDOT

The lazy val fields in Scala are lazily evaluated, but once evaluated the result is memoized.
So when the code in Fig. 5.1 executes, fruits.mangoes is only evaluated in the first read of
fruits.mangoes; in the second read the cached value is read. In κDOT, one possible way of
emulating this is by adding an immediate write back to every field read. Fig. 5.2 shows a
naive approach to encoding the field reads of Fig. 5.1 in κDOT.

class Fruits { x =>

lazy val mangoes = new Mangoes {}
}
val fruits = new Fruits {}
val mangoes2 = fruits.mangoes

val mangoes2Again = fruits.mangoes

Figure 5.1: lazy vals in Scala
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let mangoes2 = fruits.mangoes in

let = fruits.mangoes := mangoes2 in

let mangoes2Again = fruits.mangoes in

let = fruits.mangoes := mangoes2

Figure 5.2: Manual Memoization in κDOT

let kFruits =

κ (z : {mangoes : Mangoes} ∧ {getMangoes : > →Mangoes})
{{mangoes = new kMangoes ()}
∧ {getMangoes = λ (z1 : >) .let x = z.mangoes in z.mangoes := x}}

in

let fruits = new kFruits () in

let mangoes2 = let x = fruits.getMangoes in x x in

let mangoes2Again = let x = fruits.getMangoes in x x in

Figure 5.3: Memoization via Getter Functions in κDOT

However, since getter and setter types can be different, the above may not be typeable in
the context in which the field read occurs. One possible solution is to completely replace
lazy semantics in our calculus with a memoized lazy semantics by having the abstract
machine push update frames on field reads. We opt for a different approach and ask that
memoized lazy fields be decided at constructor definition time, just like in Scala. Memoized
lazy fields can then be accessed through getter functions. So the program in Fig. 5.1 can
be encoded in κDOT as shown in Fig. 5.3. In Fig. 5.3, calling fruits.getMangoes for the
first time evaluates the mangoes field and subsequent calls return the cached value.

While we have shown how lazy vals can be encoded in κDOT, lazy vals cannot
be encoded in WadlerFest DOT or Mutable WadlerFest DOT. WadlerFest DOT has no
notion of mutation and hence it has no notion of memoization. The references in Mutable
WadlerFest DOT cannot store terms and can only store references to fully evaluated values,
so a similar encoding of lazy vals will not work. Thus, in this sense, κDOT is more
expressive than WadlerFest DOT and Mutable WadlerFest DOT.
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Chapter 6

Initialization in κDOT

We started working on κDOT to design systems that could warn programmers about null
reference errors in Scala. While Scala has null references, they are absent from κDOT and
other WadlerFest DOT variants, where fields are initialized with lazily evaluated terms.

In this section, we will define a notion of null reference and initialization for κDOT and
show how strictly evaluating fields in Scala can be emulated in κDOT. We will show why
similar notions do not work for other DOT calculi such as Mutable WadlerFest DOT. We
will also show an example of a static analysis that is possible in κDOT.

Next, we will discuss how initialization influences the metatheory of κDOT. We will
discuss how bad bounds influence the operation of the abstract machine for κDOT and
discuss a conjecture about how an initialization system can be used to enrich the subtyping
relation in variants of κDOT.

6.1 Nulls in κDOT

We define Ω to be the notion of null in κDOT. We redefine it here in a more Scala-like
style for the readers benefit.

Ω = let k = κ (x : {null : ⊥}) {{null = x.null}}x in

let nPkg = new k () in

nPkg.null
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Ω has type ⊥, and executing it causes the abstract machine to allocate the object
ν (z : {null : ⊥}) {null = x.null} onto the heap and loop indefinitely reading nPkg.null.
Since Ω has type ⊥, it also has all other types via subtyping.

〈Ω; s; Σ〉
7−→∗ 〈nPkg.null; s; nPkg = ν (z : {null : ⊥}) {null = x.null} :: Σ〉
7−→ 〈nPkg.null; s; nPkg = ν (z : {null : ⊥}) {null = x.null} :: Σ〉
7−→ 〈nPkg.null; s; nPkg = ν (z : {null : ⊥}) {null = x.null} :: Σ〉

...
...

Now we can emulate Scala-like constructors in κDOT by always using Ω for the default
definitions in κDOT constructors. In this setting, the problem of initialization becomes
that fields must be written to before any of the default Ω are read and executed. Here the
notion of null reference exception is executing a default Ω.

6.2 Fully Evaluated Path-dependent Fields

Amin et al. [2016] comment that compared to simply typed strict records in other calculi,
records (objects) being lazy in WadlerFest DOT “does not limit expressiveness, as a fully
evaluated record can always be obtained by using let bindings to pre-evaluate field values
before they are combined in a record”. However, this does not hold for fields with path-
dependent types. For example, for the Scala program in Fig. 6.1, the type of mangoTree.fruit

is path-dependent on mangoTree.

In both WadlerFest DOT and κDOT, we cannot let bind terms whose types depend
on objects that are created at a later stage of evaluation in a closed term. So we cannot
express the program in Fig. 6.1 by pre-evaluating mangoTree.fruit through a let binding.

In WadlerFest DOT, dependent fields must always be lazy. In κDOT however, a field
can start off being lazy as part of the default definitions allocated by a constructor but
later be fully evaluated through assignment. For example, we can express the program
in Fig. 6.1 in κDOT as shown in Fig. 6.2. In Fig. 6.2, calling kTree allocates an object
containing the definition {fruit = Ω} and then runs the body of the constructor. When
the body of kTree is executed, the kFruit constructor is called to create a fully evaluated
path-dependent object to assign to the fruit field. In this sense, κDOT is more expressive
than WadlerFest DOT since κDOT can express fully evaluated path-dependent fields. In
particular, κDOT can emulate strict mutable fields (vars) of Scala.
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trait Fruit [T] { type A = T }
trait Tree { tree =>

type TreeFruit

val fruit : Fruit [ tree . TreeFruit ] =

new Fruit[ tree . TreeFruit ] {}
}
val mangoTree = new Tree{}

Figure 6.1: Initializing a dependently typed object

let

kTree = κ(z : {TreeFruit : z.TreeFruit}
∧ {fruit : {A : z.TreeFruit}})

{{TreeFruit = z.TreeFruit} ∧ {fruit = Ω}}
let kFruit = κ (z : {A : z.TreeFruit})

{{A = z.TreeFruit}} z
in

let x = new kFruit () in

z.fruit := x

in

let

mangoTree = new kTree ()

Figure 6.2: Fully Evaluated Fields in κDOT
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let mangoTree =

ν (z : {TreeFruit : z.TreeFruit}
∧ {fruit : Ref {A : z.TreeFruit}})
TreeFruit = z.TreeFruit

fruit = let x = Ω in

ref x {A : z.Fruit}
in

let mangoFruit =

ν (z1 : {A : mango.Fruit}) {A = mango.Fruit}
in

let mangoRef = mangoTree.fruit in

mangoRef := mangoFruit

Figure 6.3: Divergent Program in Mutable WadlerFest DOT

6.3 ML-style References Cannot Express Nulls

A similar notion of null references does not directly carry over to calculi with ML-style
references which can only contain objects or literals since programs like Ω are neither
objects nor literals. The references in the calculi discussed by Amin and Rompf [2017]
must always point to an object and the references in Mutable WadlerFest DOT must
always point to a literal. So, attempting to assign a default bottom typed program to a
reference and updating it later causes the program to diverge.

For example, a naive port of the program in Fig. 6.2 to Mutable WadlerFest DOT is
shown in Fig. 6.3. Beyond the problems highlighted in Chapter 1, here executing the field
mangoTree.fruit just once causes let x = Ω to get executed and causes the program to
diverge.

6.4 Definite Assignment Analysis in κDOT

In object-oriented languages with null references, we consider an object to be fully initial-
ized if we cannot reach null references by transitively reading fields of the object. Given
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our above notion of nulls, we can define objects to be initialized as follows.

Definition 6.4.1 (Locally Initialized). In a heap Σ, we say that a location x is locally
initialized if

• x is bound to a literal in Σ, or

• x is bound to an object ν (x : T ) d in Σ and every term declaration in x is bound to
a location.

Definition 6.4.2 (Fully Initialized). In a heap Σ, we say that a location x is fully
initialized if we cannot reach any term that is not a locally initialized location by following
a path of field reads starting from x.

In κDOT, a simple way to ensure objects produced by a constructor are locally initial-
ized is by using a definite assignment analysis to ensure the constructor assigns variables
to all fields via the this self reference in a constructor body.

Scala allows assignments of null and uninitialized paths to fields, so a definite assign-
ment analysis is not enough to ensure objects are locally initialized since an assignment
might have assigned a null to a field. However, κDOT only assigns locations to fields and
during assignment the location must refer to a heap item, so a simple definite assignment
analysis is enough to ensure that the object returned by the constructor is locally initial-
ized. In the κDOT code that follows, kBad does not pass a definite assignment analysis
since it does not assign to field a and kGood and kLoop do pass the definite assignment
analysis since their bodies always assign to every field. When the body of the kGood con-
structor, the a field is assigned the fully evaluated this variable, and therefore produces a
locally initialized object.

let kBad = κ (z : {a : T}) {{a = Ω}} z
let kGood = κ (z : {a : >}) {{a = Ω}} z.a := z

let kLoop = κ (z : {a : T}) {{a = Ω}} let x = z.a in z.a := x

A definite assignment analysis of the constructor body does not ensure that the con-
structor will always return an object, only that if it does return an object, it will be locally
initialized. In the above κDOT code, although the kLoop constructor passes a definite
assignment check, the constructor body diverges and therefore the constructor does not
ever return an object.
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6.5 Bad Bounds and Divergent Programs

As discussed in Section 4.3, bad bounds allow us to type crazy terms. For example, the
following is a well-typed κDOT term, even though it seems we are reading an arbitrary
field of a function. However, κDOT is still type-safe because f.a is never executed.

let f = λ (x : >) .x in

let x = Ω in

f.a

f : ∀ (z : >)>, x : ⊥ ` x : ⊥ (Var)

f : ∀ (z : >)>, x : ⊥ ` ⊥ <: {A : ∀ (z : >)>.. {a : >}} (Bot)

f : ∀ (z : >)>, x : ⊥ ` x : {A : ∀ (z : >)>.. {a : >}} (Sub)

f : ∀ (z : >)>, x : ⊥ ` x.A <: {a : >} (Sel-<:)

f : ∀ (z : >)>, x : ⊥ ` ∀ (z : >)> <: x.A (<:-Sel)

f : ∀ (z : >)>, x : ⊥ ` ∀ (z : >)> <: {a : >} (Trans)

f : ∀ (z : >)>, x : ⊥ ` f : ∀ (z : >)> (Var)

f : ∀ (z : >)>, x : ⊥ ` f : {a : >} (Sub)

f : ∀ (z : >)>, x : ⊥ ` f.a : > ({}-E)

f.a is typed in a context with Γ (x) = ⊥ and subtyping allows us to use the bad bounds
∀ (x : >)>..{a : >}. Then using the (<:-Sel), (Sel-<:), and (Trans) rules we give the
function type ∀ (x : >)> a super type of {a : >}. Then by subsumption, f has type {a : >}
and hence we are allowed to read the field a of f .

When proving type safety for κDOT, we noticed that the above kind of bad bounds do
not occur in inert contexts. Our preservation theorem says that if we started our machine
with a well-typed term, the heap corresponds to some inert context. This means we will
never have a machine state 〈f.a; s; Σ〉, where f is a function in Σ. If f is a function and
f.a is the body of a let frame on the stack, the machine diverges without executing f.a.
For the above term, the machine diverges while trying to execute Ω and never executes
f.a.
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6.6 Path-Dependent Subtyping via Initialization

Bad bounds are one of the reasons why κDOT and other DOT calculi currently offer only a
weak form of path-dependent types: types of the form x.A instead of x.a.b . . . c.A. To illus-
trate why κDOT disallows fully path-dependent types, consider the type µ (x : {a : {A : T..U}}).
Even if we have a location x of this type in our context, κDOT does not have T <: x.a.A <:
U . To use T <: U , we must let bind x.a to a variable in κDOT: let y = x.a.

But the above type is inert for any T and U , and we can create objects of this type
using Ω.

let k = κ (x : {a : {A : T..U}}) {{a = Ω}}x in

let x = new k ()

The program only diverges when we execute x.a (without assigning to x.a). However,
consider what happens if we are able to (at least locally) initialize x by assigning a location
y to x.a. When we assign to x.a, we provide evidence that indeed T <: U since we would
have y : {A : S} with T <: S, and S <: U . Thus we conjecture that if we are able to
track initialization, κDOT will be able to support a richer form of subtyping using the
following rules. In the rules shown on the left, since we know that x is locally initialized,
we know that x.a refers to a fully evaluated object containing a definition {A = T ′} with
S <: T ′ <: T . Thus we should be able to reason that S :< x.a.A and x.a.A <: T . Similarly,
for the rules on the right, since x is fully initialized, x . . . a refers to a fully evaluated object
with a definition {A = T ′} with S <: T ′ <: T and thus we should be able to reason that
S :< x . . . a.A and x . . . a.A <: T . Therefore there are metatheoretic reasons to care about
initialization even if we are happy with lazy semantics.

x locally initialized
Γ ` x.a : {A : S..T}

Γ ` S <: x.a.A

x locally initialized
Γ ` x.a : {A : S..T}

Γ ` x.a.A <: T

x fully initialized
Γ ` x . . . a : {A : S..T}

Γ ` S <: x . . . a.A

x fully initialized
Γ ` x . . . a : {A : S..T}

Γ ` x . . . a.A <: T
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Chapter 7

Design Choices

In this section, we compare some of our design choices for κDOT to other DOT calculi and
Scala.

7.1 First-Class Constructors

In κDOT, we replaced the object literals of WadlerFest DOT with constructors, since they
form a natural place for initialization restrictions and initialization-related static analysis.
Constructors are first-class in κDOT; constructors can be created at runtime and references
to them passed around to functions and even other constructors. Being able to define
constructors at runtime allows us to keep all the features of WadlerFest DOT objects since
WadlerFest DOT allowed objects with different types to be defined at runtime.

Unlike constructors in Scala, constructors in κDOT do not allow constructor parameters
to be path-dependent on earlier parameters. However, this is not a strong limitation since
nested function parameters can be path-dependent on earlier function parameters and we
can always wrap a constructor inside nested functions.

κDOT does not define any subtyping relation between constructor types to keep the
calculus simple. Since we were interested in expressing ideas of object initialization in
a DOT calculus and κDOT already has subtyping between objects, subtyping between
constructor types would complicate the inversions we would need to do without helping us
toward any of our goals.
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7.2 The Abstract Machine

Standard small-step operational semantics for lambda calculi define a stepping relation
between terms and the standard preservation theorem shows that after a term takes a step,
its type is preserved. Amin et al. [2016] express the operational semantics for WadlerFest
DOT as evaluating terms inside evaluation contexts. In WadlerFest DOT, after a subterm
steps inside an evaluation context, the overall term is still typeable. This allows Amin
et al. to prove the standard preservation theorem.

In κDOT, field mutation allows objects to refer to objects that were created at a later
stage of evaluation. If we try to convert the heap in κDOT back to a set of let bindings, the
forward pointers are not typeable. We express the operational semantics for κDOT using
an abstract machine instead of evaluation contexts because in κDOT, stepping may cause
the overall term to become untypeable. In κDOT, the stepping relation and preservation
are expressed between machine states and this cannot be avoided.

7.3 Operational Differences Between κDOT and Wadler-

Fest DOT

In WadlerFest DOT, answers are defined to be evaluation contexts containing a variable,
a function literal, or an object literal. WadlerFest DOT requires the following as one of its
rules for reduction inside evaluation contexts.

let x = (let y = t in t′) in u

7−→ let y = t in (let x = t′ in u) (Let-Let)

This changes the focus of execution to t and allows WadlerFest DOT to execute nested let
bindings.

During the design process of κDOT, before we added constructors and a stack to
our abstract machine, we also had a similar rule and considered literals together with
a heap as answers. When we added constructors and constructor frames to distinguish
computations happening inside different constructors, we realized that we could use the
stack for evaluating nested let bindings as well, making the (Let-Let) rule unnecessary.
We further simplified the calculus by ensuring literals are always let bound so that only
variables were answers. This simplifies both the statements and the proofs of progress
and preservation. We note however that for closed terms, the two sides of the (Let-Let)
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rule are observationally equivalent and the κDOT abstract machine can optionally use the
(Let-Let) rule for closed terms to reduce the number of frames used.

The use of evaluation contexts in WadlerFest DOT required object literals to be ty-
peable without referring to any variables used to let bind them. In the following WadlerFest
DOT code, {a = t} is in the scope of z and evaluation performs a substitution. In the equiv-
alent κDOT reduction, the substitution is performed during allocation and does not need
to be performed during field reads. Hence, {a = [x/z] t} does not need to be in the scope
of z in the κDOT heap.

let x = ν (z : ) {a = t} in x.a

7−→
WadlerFest

let x = ν (z : ) {a = t} in [x/z] t

〈x.a; s; x = ν (z : ) {a = [x/z] t}〉
7−→
κDOT

〈[x/z] t; s; x = ν (z : ) {a = [x/z] t}〉

7.4 ML-style References in κDOT

We now compare κDOT to other DOT calculi that use ML-style references.

We saw the Mutable WadlerFest DOT calculus of Rapoport and Lhoták [2017] in Chap-
ter 2 and how κDOT can encode all of Mutable WadlerFest DOT. Mutable WadlerFest
DOT firstly extends WadlerFest DOT with a separate store of references which point to
locations and secondly extends typing judgments with a store typing context. In their type
safety proof, they use a separate correspondence between the mutable store and the store
typing context. This calculus does not have separate setter and getter types for references
and subtyping between references was defined by the (Ref-Sub) invariance rule.

T <: U U <: T

Ref T <: Ref U
(Ref-Sub)

In κDOT, by keeping setter and getter types separate for fields, we allow a much richer
form of subtyping between our notion of references. For example, we have the following
type of subtyping which cannot be replicated in Mutable WadlerFest DOT.

T <: U U 6<: T

{a : U..U} <: {a : T..U}

In particular, if we let T = ⊥, we can make fields behave as if they are read-only.
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Rompf and Amin [2016a] discuss adding ML-style references to DOT-like calculi, and
also add a separate mutable store and store typing context. However, their mutable store
binds locations to objects and mutation replaces an object in the store with a different
object. κDOT only allows writing locations to fields, not values. However, since locations
can point to objects, replacing one location with another is equivalent to updating one
object with another. Furthermore, fields in Scala hold references to objects, not objects
themselves, and hence κDOT corresponds to Scala more strongly.

One of the distinguishing features of κDOT compared to the above calculi is that κDOT
has a single heap and a single typing context. We wanted this simplification because we
hope to extend the calculus in the future with initialization tracking by adding more
contexts to typing relations.
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Chapter 8

Conclusion

In this thesis we presented κDOT, a calculus with path-dependent types which allows
assigning to object fields and uses constructors to build objects. We explored how it
relates to previous calculi with path-dependent types and presented soundness results for
κDOT.

The WadlerFest DOT calculus was developed to be a simple calculus containing only
the parts essential for path-dependent types and a foundation on which features of Scala
could be slowly added in a bottom up fashion till all the fundamental features could be
proven safe. In that spirit, we added field assignment and constructors to WadlerFest
DOT.

DOT calculi also act as a safe space for experimentation where features can be experi-
mented with and their soundness proven before they are added to Scala. The key aim of
κDOT was to guide the design of initialization systems for Scala and to be a base in which
interactions between object initialization and path-dependent typing could be explored.

κDOT came about as we tried to reason about initialization in Mutable WadlerFest
DOT and tried to answer questions such as “What is the analogue of null in DOT?”. As
we tried to answer these questions, a calculus emerged with not only a rich type system, but
also a very expressive operational semantics, where we could reason about fully evaluated
data structures with path-dependent types.

κDOT opens up a rich area of exploration. We are already planning to create a DOT
calculus without lazy fields based on κDOT. We plan to do this by adding an initialization
system which guarantees we never read fields containing nulls. Much more remains to be
explored.
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We hope that κDOT will be useful to a large group of people. κDOT is a simple
calculus that can be useful to Scala programmers for reasoning about fully evaluated path-
dependent data structures. We designed mutation in κDOT to closely mimic mutation
in Scala, so we hope κDOT is useful for Scala compiler writers to reason about safety of
mutation related compiler transformations.
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