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Abstract

This thesis studies the problem of optimizing and evaluating multiple directed structural
subgraph queries, i.e., those without highly selective predicates on the edges or vertices,
continuously in a changing graph. Existing techniques focus on queries with highly selective
predicates or are designed for evaluating a single query. As such, these techniques do not
scale when evaluating multiple structural queries either because their computations become
prohibitively inefficient or they use prohibitively large auxiliary data structures.

We build upon the delta subgraph query (DSQ) framework that was introduced in prior
work. This framework decomposes queries into multiple delta queries, which are then eval-
uated one query vertex at a time, without requiring any auxiliary data structures. We
study the problem of picking good query vertex orderings for a set of DSQs cumulatively
to share computation across different DSQs and achieve efficient runtimes in practice. We
describe a greedy cost-based optimizer that takes as input a set of DSQs and a subgraph
extension catalogue, and generates a single low cost combined plan that cumulatively eval-
uates all of the DSQs by sharing computation across them. Our combined plans consist
of a SCAN and multiple EXTEND /INTERSECT (E/I) operators. The E /I operator takes a
set of partial matches and extends them by one query vertex. We adopt as our cost metric
intersection cost (i-cost), which we show is a good estimate of the actual work performed
during query evaluation. We further describe an optimization to the base optimizer that
expands the DSQs algebraically to even more DSQs to allow more computation sharing
between them. On small query sets we demonstrate that our cost-based greedy optimizer
is able to find close to optimal combined plans in terms of run time. On larger query sets,
we demonstrate that our optimizer and expanded DSQ optimization can yield significant
performance improvements against several baselines.
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Chapter 1

Introduction

A subgraph query (SQ) is the problem of finding instances of a query subgraph in an input
graph. SQs are one of the most fundamental queries supported by several graph processing
systems, such as graph databases and RDF engines. Many applications require finding
instances of subgraphs on a graph that is changing, i. e. detecting the emergence or deletion
of subgraphs that were created or were deleted due to changes in the graph. We refer to SQs
issued on such dynamic graphs as continuous subgraph queries (CSQs). SQs (and CSQs)
in general have two components: a structural component that describes the attributes
of the subgraph to be matched and a filter component that limits results to subgraphs
that satisfy certain predicates on the nodes and edges of the matched subgraphs. In this
thesis we focus on the first component and study how to efficiently evaluate and optimize
multiple structural CSQs, i.e., without highly selective predicates. As one of the two main
components of subgraph queries, the insights gained by optimizing structural CSQs can
be useful in studying subgraph matching in general. In addition, several applications
directly use structural queries. For example, Twitter has reported searching for diamonds
in their who-follows-whom graph to make recommendations [1], we are aware of a financial
company that continuously searches for multiple cycle patterns with up to eight edges in
a transaction network, and detecting clique-like structures in friendship networks which
indicate emerging or dissolving communities [2].

The high-level problem we address in this work is as follows:

Given a set Q of directed subgraph queries, detect the emergence or deletion of instances
dQ of each ) €  in a graph G that is changing due to a batch of updates which include
additions and/or deletions of edges. When it is not clear from context, we refer to vertices
and edges in queries as query vertices and edges and vertices and edges in the input graph



G as data vertices and edges.

1.1 Existing Work and Challenges

Prior work on continuous subgraph queries have two main shortcomings: (i) They are
either designed for evaluating a single query instead of multiple queries [3, 1, 5], so do
not benefit from optimization possibilities across multiple queries; and/or (ii) they are
designed for queries that contain highly selective predicates on the edges and vertices of
the queries [4,5,6,7,8]. As such, for multiple structural queries, the approaches of the second
group either become prohibitively inefficient or require prohibitively large auxiliary data
structures. For example, several of existing approaches [0, 8] make the explicit assumption
that the number of partial matches of paths with more than one edge will be significantly
smaller than one-edge paths, which often will not hold in the absence of heavy predicates
in the queries. Similarly, approaches that use auxiliary data structures [/, 5] often index
some representation of partial matches of the queries, e.g., 2-edge paths or triangles, which
may be prohibitively large, limiting the scalability of these approaches. We review existing
approaches in detail in Chapters 6 and 7 and provide experimental comparisons against
some of them in Chapter 6.

1.2 Summary of Approach

As we review in Chapter 2, any SQ ) can be equivalently characterized as a multiway join
query on the replicas of the “edge table” of G. Similarly, any CSQ can be equivalently
characterized as the incremental view maintenance problem of a multiway join query. Our
approach is based on the Delta Generic Join (Delta-GJ) algorithm for continuously eval-
uating a single CSQ), first described in reference [3]. Delta-GJ adopts the multiway join
query view of subgraph queries and is based on an algebraic incremental view mainte-
nance technique called delta join query decomposition of queries [9]. This technique de-
composes a single CSQ @ into multiple delta subgraph queries (DSQs). Figure 1.1a shows
the diamond-with-edge query and Figure 1.1b the five DSQs of the diamond-with-edge
query. Let E, be the old edges of GG, Es a set of new updates, and F, the new edges of
G after the update, i.e., F, = E,U Es. Each edge of DSQs are labeled with ¢, o, or n,
indicating whether the edge should match an edge, respectively, in Fs, E,, or F,, upon an
update to G. As we review in Chapter 2, a CSQ can be computed by evaluating and taking
the union of the results of each DSQ of ). In the Delta-GJ algorithm, the evaluation of
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(a) Diamond-with-edge CSQ cISQ4

(b) DSQs of diamond-with-edge CSQ

Figure 1.1: Diamond-with-edge Continuous Subgraph Query (CSQ) and its Delta Sub-
graph Queries (DSQs)

each DSQ starts by partially matching an edge with label § and then extending these par-
tial matches one (query) vertex at a time. To extend, we intersect one or more adjacency
lists of the vertices in these partial matches, either from FE, or F,. Several prior work has
demonstrated, both in the serial and distributed settings [3,10]"', the run time and memory
benefits and theoretical properties of the overall Delta-GJ approach for evaluating a single
query. In this work, we build upon this framework and describe techniques for optimizing
multiple queries cumulatively.

The fundamental decision an optimizer has to make within this framework is to pick
an order for matching vertices for each DSQ. We describe a general greedy cost-based
optimizer that takes as input the DSQ decompositions of a set of queries ) and a subgraph
extension catalogue (catalogue for short) and decides on a query vertex ordering for each
DSQ in order to optimize some cost metric. The catalogue contains information about the
estimated cost of extending each subgraph S to its possible one-vertex extensions S’ and
the associated extension rate of each extension. The output of our optimizer is a combined

1One interesting property that was proven was that this approach is worst-case optimal under insertion
only workloads [3].



plan that evaluates all of the queries continuously as updates arrive to G. In Chapter 3 we
discuss factors that the optimizer must take into account when optimizing multiple DSQs,
such as sharing computation across DSQs and minimizing intermediate partial matches
generated during evaluation.

The combined plans are evaluated using two physical operators, a SCAN and EX-
TEND/INTERSECT (E/I) operator. Using different catalogues, we use our optimizer to
optimize three different natural cost metrics: (i) the number of operators in the combined
plan (num-ops); (ii) the number of intermediate partial matches generated (int-matches);
and (iii) a new cost metric we call intersection-cost (i-cost), which estimates the total
sizes of the adjacency lists intersected during the evaluation of a plan. We use i-cost as
our default metric of choice in our implementation. On several small queries and several
real world data sets, we demonstrate that our greedy optimizer finds optimal (or close to
optimal) plans in terms of i-cost and also run-time in practice.

We then describe one optimization we call expanded DSQ optimization to improve
the performance of combined plans. We show that the original DSQs of a CSQ can be
algebraically further expanded such that only edges with § and o labels exist on DSQ edges.
This sometimes allows more sharing opportunities that the optimizer can take advantage
of to reduce the cost of the combined plan.

1.3 The Graphflow Database and Evaluations

In addition to studying how to optimize multiple CSQs in the DSQ framework, the second
major contribution of this thesis is the implementation of a prototype active graph database
called Graphflow [10]. Graphflow supports the property graph data model and a subset of
Neodj’s declarative Cypher language. To support CSQs we extend Cypher with subgraph-
condition-action triggers and refer to this extended language as the Cypher++. The initial
version of the system was developed by the author and several colleagues. We give an
overview of this initial version of the system in Chapter 5.

We implemented our optimizer and the expanded DSQ optimization on top of Graph-
flow. On several query sets and input graphs, we show that the combined plans generated
with i-cost yield up to 2x performance improvement over a baseline which orders and
evaluates DSQs separately without combining. We also study the performances of the
combined plans generated by using catalogues based on each of the different cost metrics
we consider. We demonstrate that combined plans optimized for int-matches and i-cost
generally perform significantly better than the num-ops metric. In addition, there are cases



where plans generated with i-cost outperform the plans generated with int-matches. We
also show that the expanded DSQ optimization further improves runtime across several
query sets and datasets. Finally, on single CSQs, we present experiments comparing our
approach to the most efficient continuous subgraph query evaluation algorithm we are
aware of called Turboflux [5]. We demonstrate that on structural queries, our approach
surpasses that of Turboflux without using any extra memory. In contrast, Turboflux can
require extra memory for its auxiliary data structure that can be much larger than the
input graph, limiting its scalability.

1.4 Contributions of the Thesis

We make the following contributions in this thesis.

e We describe a general greedy optimizer that takes multiple CSQs and generates a
combined plan that can evaluate all of them together. Our optimizer effectively
decomposes each query into multiple DSQs, and for each one picks a query vertex
ordering. An important component of our optimizer is a subgraph extension cata-
logue, which contains cost and extension-rate information for extending a subgraph
S to another subgraph S’, where S’ extend S by one query vertex.

e Given a catalogue, we formally define the optimization problem that our optimizer
has to solve. We show that for arbitrary input catalogues, this problem is NP-hard.

e We analyze three important effects of query vertex orderings on run time: (i) com-
putation sharing across queries; (ii) amount of intermediate results generated; and
(iii) the amount of intersection work done during the evaluation of queries.

e We study three different natural cost metrics that can be optimized by our greedy
optimizer: (i) number of operators (num-ops); (ii) number of intermediate results
generated (int-matches); and (iii) sizes of adjacency lists intersected (i-cost). Each
of these metrics tries to capture subsets of the three run-time effects of query vertex
orderings. We show that i-cost, which captures all of the three effects together,
generally performs the best.

e We introduce the expanded DSQ optimization that further decomposes the DSQs of
each CSQ and allows for more computation sharing.

e We describe the overall architecture of the Graphflow prototype graph database on
top of which we implemented our optimizer and the expanded DSQ optimization.



We demonstrate the effectiveness of our greedy optimizer, the i-cost metric, and the
expanded DSQ optimization on several workloads, data sets, and query sets.

1.5 Outline of Thesis

The rest of this thesis is organized as follows:

e Chapter 2 provides background on the algebraic DSQ decomposition of CSQs, the
vertex at a time evaluation of DSQs, and the logical and physical plans we generate
for each DSQ. We also review alternative evaluation techniques for DSQs to discuss
why we use vertex at a time evaluation.

e Chapter 3 describes the run time effects of query vertex ordering selection for DSQs.

e Chapter 4 describes our greedy cost-based optimizer that produces a single combined
plan for a set of CSQs. We show how our optimizer can be used to optimize three
different cost metrics and justifies why we pick i-cost as our default cost metric in
Graphflow. We also describe our expanded DSQ optimization.

e Chapter 5 gives an overview of the Graphflow system and our implementation on our
optimizer.

e Chapter 6 presents experimental evaluation of our optimizer and expanded DSQ
optimization.

e Chapters 7 and 8 review related work and conclude, respectively.



Chapter 2

Background and Problem Statement

In this section we first draw the connection between the problem of matching CSQs and
incremental view maintenance (IVM). Then, we describe the DSQ framework for evaluating
CSQs in more detail than in Chapter 1. Finally, we review three alternative strategies
available for evaluating DSQs; (i) the query-vertez-at-a-time evaluation adopted by Delta-
GJ algorithm; (ii) query-edge-at-a-time evaluation; and (iii) bushy evaluation. We discuss
why we pick the query-vertex-at-a-time approach in our setting.

2.1 CSQs as IVM

A subgraph query is a directed graph Q(Vy, Eg) and evaluating ) on an input graph
G(V, E) is the task of finding all instances of @) in G. In this work, we primarily focus
on queries without labels or filters on vertices and edges. We adopt the relational view of
subgraph queries as done by many previous work [1 1,12 13]] in which any subgraph query
can be seen as a multiway self join on replicas of an edge table of the input graph. We
label the vertices of Q) as ay,as, ..., a,. Finding all instances of @) in G is equivalent to
the multiway join of tables F(a;,,a;,) for each edge (a;,, a;,) in @, where each F(a;,,a;,)
table contains each edge (u, v) in G. For example, the directed asymmetric triangle query,
shown in Figure 2.1b, in relational syntax is equivalent to:

Q((ll, as, a,g) = E(al, CLQ) [ E(CLQ, a3) [P E(al, a3) (21)

Continuously evaluating () is the task of finding all instances of () that emerge or
are deleted in an evolving graph. Specifically, we assume G receives a series of updates

7



(a) Es, E, and E, tables for input graph (c) Input graph with delta edge

Figure 2.1: DSQ evaluation example

Es,, Es,, ... where each Ej, is a batch of additions and/or deletions of edges. A very
important assumption in this thesis is that we assume the batch sizes are small, say several
edges, compared to existing edges in the input graph. Given the equivalence of subgraph
queries and multiway joins, CSQs are equivalent to IVM of join queries. Let Es, E,, and
E,, be defined as before. Then, for example the new triangles that emerge or are deleted
can be expressed in relational terms exactly as:

dQ(ay, asz,a3) =(E,(a1,az) < E,(ag, a3) > E,(ai,a3)) —

(Ey(a,az) > E,(ag, a3) <1 Ey(aq, as)) (2.2)

We assume added and deleted edges in Fj are identified by +/— labels, respectively.
Emerged and deleted output tuples in d() are identified similarly.

2.2 Delta Query Framework for Evaluating IVM

Let n = |Eg|. Blakeley et al. has shown that the union of the results from the following
n delta queries is equivalent to the results of Equation 2.2 [9]. Throughout this thesis we

8



refer to delta queries as delta subgraph queries (DSQs). When referring to specific DSQs,
we use the notation dSQ);

dSQy = Es(ai, a12) X Ey(ag1, az) X Ey(as, ass), . .., Ey(an1, an2)
dSQs = En((ln, (112) X E&(Gm, Cl22) > Eo((lzn, (132), .., Eo(anh %2) (2 3)
dSQ, = E,(a11,a12) X E,(ag1, an) > Ey(asy, aza), ..., Es(an, anz)

For example, the DSQs of the asymmetric triangle subgraph query are:

dSQi(ay, az,a3) = Es(a1, az) > Eo(ag, az) > Ey(ay, a3)
dSQQ(&l, a2, ag) n(al, &2) > E(S(CLQ, Clg) > Eo(al, ag) (24)
ay,

=F
dSQ3(a17a27a3) = ETL(

Note that each dS(@); has one Es, which we assume contains a very small number of
tuples. This allows each dSQ); to be efficiently evaluated.

az) > Ey(ag, az) = Es(ar, a3)

Figure 2.1 provides an example input graph, two edges (3, 6) and (4, 1) that are inserted
into this graph, and the Fj, F, and E, that result upon this insertion. The reader can
verify that dS@Qs detects the emergence of the triangle between vertices 3, 4 and 6, while
dSQs detects the emerged triangle between vertices 4, 1 and 3. dS@; does not find any
matches.

We note that there can be multiple different DSQ decompositions of a query. For ex-
ample an alternative decomposition of the triangle query could be: d@Q; = FE,(ay,as) <
E,(ay, as) > Es(as, ar), dQ2 = Ey(a1, az) > Es(az, a3) > E, (a3, a1), and dQ3 = Ejs(ay, az)
1 En(ag,a3) < E,(as,a1), which gives a different set of queries. In practice, for a given
query we saw little performance difference between different decompositions, mainly be-
cause there is very little difference between E,, and FE, relations as we assume that Fjs is
very small. So, we choose the decomposition that puts the delta relations in lexicographic
order of the attributes of the relations.

2.2.1 Delta Subgraph Query Notation

We will use labeled graphs to visually represent DSQs. We label each edge in a DSQ with
0, o, or n indicating whether the edge should match an edge in Ej, E, or E,. We will refer
to a query edge labeled with 9, o, and n as delta, old, and new query edge, respectively.
For example, Figure 2.2 shows the second DSQ of the triangle query.

9



Figure 2.2: Delta Query Notation.

2.3 DSQ Evaluation

We divide the strategies for evaluating DSQs broadly into three categories. (i) query-vertez-
at-a-time strategy adopted by the Delta-GJ algorithm which iteratively finds matches for
subsets of query vertices; (ii) query-edge-at-a-time strategy which starts from a single edge
and in each iteration extends partial matches by one more edge; and (iii) bushy evaluation
which matches and then joins subsets of the edges or vertices recursively. We first describe
in detail the query-vertex-at-a-time approach we use to evaluate DSQs, then go on to
discuss the shortcomings of the other two strategies in our setting.

2.3.1 Query-vertex-at-a-time Strategy: Delta-GJ Algorithm

We gave a brief overview of Delta-GJ algorithm in Section 1.2. We give a more detailed
overview here. Let dQ(Vo, Eag,) be the kth DSQ of Q. First, the algorithm picks a query
vertex ordering (QVO) for dQy, starting with the two query vertices forming the delta
query edge. For simplicity, let (ay, as) correspond to the delta query edge and let the QVO
be ajas . ..a,. We start evaluation of d@; with the edges in Es, which match (aj,az) in
dQ)y, giving us an initial small set of partial matches. We extend these partial matches one
query vertex at a time until we match the full dQ),. Specifically, we construct m—1 sets
of partial matches, where the j’th set contains the partial matches of d@, projected onto
the first j query vertices and all of the query edges between them. We extend a partial
match t = (v, v, ...,v;) matching query vertices (ay, ..., a;) to partial matches matching
(a1, ...,aj41) as follows.

1. For each v; which matches a; where (a;, a;11) or (a;4+1, a;) is a query edge e, in dQy, we
take v;’s forward or backward adjacency list, respectively. We take v;’s adjacency list

10
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Figure 2.3: Query-vertex-at-a-time evaluation of a single DSQ.

from E, or E, if e, is an old or new query edge, respectively. Let L = [Adjy, ..., Adj,)]
be the adjacency lists chosen. We intersect these adjacency lists to get a set of vertices
S matching a;41. In the special case where |L| =1, S equals Adj.

2. t is extended to t x 9, i.e., the Cartesian product of ¢t with S.

Recall that we assume FEj has a low cardinality. Using Ej as the first set of partial
matches reduces the number of partial matches significantly. Figure 2.3a shows an example
of a logical plan for query-vertex-at-a-time evaluation of the second DSQ of the CSQ in
Figure 1.1b when the QVO is asasa;as.

Reference [3] has called the above algorithm Delta-GJ because it combines two tech-
niques; (i) the delta query decomposition of join queries for IVM; and (ii) the worst-case
optimal GJ algorithm introduced by Ngo et al. in reference [I1], which evaluates join
queries one attribute-at-a-time. Reference [3] has also shown that for a given CSQ un-
der insertion-only updates, Delta-GJ is worst-case optimal. However neither reference [3]
nor [11] study and give guidance as to how to pick a good QVO for DSQs. The ordering
of DSQs is studied extensively in this thesis. Finally, in reference [10] the author of this
thesis and his colleagues have shown that for several simple CSQs the Delta-GJ algorithm

11
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is more efficient than evaluating the DSQs by binary joins, which is equivalent to the
query-edge-at-a-time strategy we review next.

2.3.2 Alternative DSQ Evaluation Strategies

We discuss two natural alternative approaches and argue why they will be less efficient
than the query-vertex-at-a-time approach we adopt in this thesis.

o Query-edge-at-a-time evaluation: In the case of a DSQ, the query-edge-at-a-time ap-
proach starts with the delta edge to take advantage of its low cardinality, orders the
rest of the edges, and matches the query one query edge at a time according to this
ordering. Figure 2.4a shows a logical plan for a query-edge-at-a-time strategy. On
the second DSQ of the diamond-with-edge query shown in Figure 1.1b, the evalu-
ation first finds matches for the open triangles between the delta query edge (as, a4)
and new query edge (a1, a2) and then closes these triangles. Evaluation then extends
these triangles by one edge to a3z and then closes the bottom triangle by matching
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(a3, ayq). Instead, our query-vertex-at-a-time plan would perform a single intersection
operation starting from the delta query edge (a2, a4), avoiding the explicit construc-
tion of any open triangles. In general, query-vertex-at-a-time plans are more efficient
than query-edge-at-a-time plans because they perform intersections in a single step,
instead of breaking them into multiple steps.

Bushy evaluation: Query-vertex-at-a-time (and query-edge-at-a-time) plans effec-
tively match a DSQ starting from the single delta query edge and grow a single
connected subgraph. Instead, in a bushy plan one breaks the DSQ into multiple sub-
graphs and later join them. Individual subgraphs can be evaluated using either of the
previously discussed methods. Consider dSQ)- in Figure 1.1b. For this DSQ, one can
match the upper (as, ay, a;) triangle and separately match the lower (ay, as, as) open
triangle and then later join these two intermediate results. However, because the
DSQ contains only one delta query edge, one branch of a bushy plan would contain
only old or new query edges, which we expect to have large cardinalities. For in-
stance, the bushy plan in our example computes all of the (as, a4, a;) triangles in the
entire graph, which we expect to be very large. Re-evaluating such branches of the
bushy plan after each update to the input graph would be prohibitively inefficient.
One can alternatively materialize such branches to avoid re-evaluation. However,
this would result in storing possibly a very large set of intermediate partial matches,
consuming a lot of memory. Instead, query-vertex-at-a-time and query-edge-at-a-
time plans do not maintain any partial matches and, therefore, require a very low
amount of memory. Ammar et al. in introducing Delta-GJ [3] show that such bushy
plans that materialize some branches can still be used in the DSQ framework to trade
off memory for run-time efficiency. In this thesis, we do not study approaches that
materialize large amounts of memory.

2.4 Logical Plans And Physical Plans

The QVO for a DSQ is effectively a logical plan. The translation of QVOs into physical
plans is straightforward. The first delta edge corresponding to the first two attributes in
the combined QVO is mapped to a SCAN operator. The partial match extension into each
possible attribute gets mapped to an EXTEND /INTERSECT (E/I) operator. Let prefiz j-
tuple be a tuple that contains j attributes. The SCAN and INTERSECT operators perform
the following computations.

e SCAN: Scans the updates in Es and appends these as prefix 2-tuples to its child
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operators.

e E/I: Takes as input prefix j-tuples and extends each tuple ¢ to one or more (j+1)-
tuples. The operator is configured with one or more adjacency list descriptors
(ALDs), describing which adjacency lists of the vertices in t to intersect. Let t[i]
be the value of the i'" vertex of t. Each ALD is an (i, dir,vrsn) triple, where i is the
index of a vertex in t, dir is forward or backward, and vrsn, for version, is delta,
old, or new. The operator takes the adjacency lists described by these ALDs, inter-
sects them to compute t’s extension set S, and computes ¢t x S. Intersections are
performed in tandem. When there are more than two adjacency lists, we do pairwise
binary intersections to intersect all of them. The resulting prefix j + 1-tuples are
appended to the next operator.

There is also a SINK operator, which collects and unions the outputs of possibly multiple
E /1 operators, which we do not discuss for simplicity. Figure 2.3b gives an example of the
physical plan for the logical plan shown in Figure 2.3a corresponding to QVO asa4a;as for
the second DSQ of the diamond-with-edge query. As in Figure 2.3a, Figure 2.3b shows
the ALDs as labeled edges, where forward and backward adjacency lists point right and
left, respectively.

In both the logical and physical plans for DSQs, we use the indices 7, e.g. 0,1,2,3 of the
tuples that are produced by the operators, instead of query vertex labels a; ... a,,. This
is done to help readers see operators from multiple logical plans that produce isomorphic
partial matches, whose computation we share in combined plans our greedy optimizer
produces (See Section 3.1).
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Chapter 3

Runtime Effects of QVOs

In the previous Chapter we discussed the DSQ framework and indicated that it will form the
basis for our solution to the general problem set out in Chapter 1. Using that background,
we are now able to state the problem we are studying in a more specific manner.

Given a set of queries QQ which expand into DSQs D, find QVOs for each D € D such
that for a set of updates Es,, ..., Es, on graph G, the cumulative time to evaluate Q) is
minimized.

k

This version of the problem statement is still underdefined as runtime is not a formal cost
metric. In this Chapter, we first review how QVOs affect runtime. In the next Chapter,
we will define our final formal optimization problem.

QVOs affect runtime in our framework in two broad ways: (i) by determining how much
computation can be shared between DSQ evaluations; and (ii) by determining the amount
of intersection work done in the E/I operators, which further depend on the number of
intermediate prefixes the E /I operators generate and the directions of the adjacency lists
being intersected. We review each of these effects next. When discussing the intersection
work effects, we also define the i-cost metric which we use in our optimizer in Chapter 4.

3.1 Shared Computation Between DSQs

When evaluating multiple DSQs at the same time, there might be opportunities to share
computation between the physical plans of the DSQs. Due to these opportunities, instead
of evaluating each DSQ separately, we evaluate all of them together using a combined plan.
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Figure 3.1: Differences in sharing opportunities of different QVOs for the DSQs of a dia-
mond query

In Figure 3.1 we give an example of a set of DSQs with opportunities for computation
sharing. Figure 3.1a shows the logical plans of the DSQs of the diamond query, shown
in Figure 3.1c for QVOs, ajasasas, ayazasas, asagaiaz and azasaias. Figure 3.1b shows
the corresponding physical plans with each set of operators which can share computation
surrounded by dashed lines. First, all the SCAN operators perform the same operation,
i.e., read the set of edges in Es. Second, the second stage E /I operators of dSQ; and dSQs
as well as dSQ3 and dSQ),, can also share computation. This is because they find partial
matches for isomorphic subgraphs of their respective DSQs, as shown in the logical plans
in Figure 3.1a. We construct the combined plan shown in Figure 3.1d for these physical
plans, where each similar operator is evaluated only once.
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If we were to pick a different QVO for one of the DSQs, the number of operators
that can be shared may change. For instance, picking QVO asasasa, for dSQ)4 means no
operators can be shared between dS(@Q)3; and dS(@)4, which adds an additional operator to
the combined plan. Therefore, QVO asasasa, is a suboptimal ordering compared to the
original set of QVOs. Sharing computation is also possible between DSQs from different
CSQs, as long as they have isomorphic subgraphs which the QVOs can exploit.

3.2 Intersection Work and the I-cost Metric

In Section 2.4 we showed that a QVO of a DSQ translates into a physical plan consisting
of one SCAN operator and a series of E /I operators. Since SCAN consumes relatively little
time, much of the evaluation time of a DSQ is spent primarily in the E /I operators, which
take as input a set of prefixes and perform the intersections indicated by their ALDs.
Therefore, the amount of time for evaluating a plan is commensurate with the cumulative
intersection work done in its E/T operators. Recall from Chapter 2 that intersections in
our implementation are performed in tandem. Therefore, we quantify the intersection work
done by an operator or plan as the sum of the lengths of all the adjacency lists it intersects.
We call this quantity the intersection-cost (i-cost) of an operator or plan.!

3.2.1 I-cost vs Runtime

To demonstrate that i-cost is a good indicator of run-time when evaluating DSQs, we
considered evaluating each of the 576 possible QVO combinations of the two DSQs shown
in Figure 3.2a in an experiment. In the experiment, we formed 576 different combined plans
for the two DSQs corresponding to the 576 different QVO combinations. Then, for each
combined plan we performed the following evaluation. We took a product co-purchasing
network called Amazon0302 from reference [15] with 1.2 million edges, loaded a random
90% of the dataset to the database and submitted the remaining 10% as insert-only updates
in batches of 5 edges and measured the cumulative run-time of the query across all of the
updates. We measured the actual i-cost in a separate profiled run where we summed the
sizes of the actual adjacency lists in the E/I operators. Figure 3.2b shows on the y-axis
the run time and on the x-axis the actual i-cost for each QVO combination. Each QVO
combination is shown as a single point in the figure. Note that there is a nearly-linear

In an ongoing work, the author and his colleagues use the i-cost metric to order one time subgraph
queries.
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Figure 3.2: Dependence of runtime on intersection work performed during query evaluation.

relationship between run-time and i-cost. We highlight this in the figure by drawing the
best fit line which minimizes the squared error. Figure 3.2b also shows the importance of
picking good QVOs. As shown in the figure, the difference between good and bad orderings
can be very large, roughly 8x in this simple experiment. Due to this strong dependency
between i-cost and run-time in combined plans, in Chapter 4 we will adopt i-cost as
the default unit of cost in our cost-based greedy optimizer.

3.2.2 Factors Affecting I-cost

There are two main factors that determine i-cost of a DSQ plan: (i) the direction and
number of ALDs in each E/I operator; and (ii) The number of intermediate prefix tuples
generated. We give brief outlines of each below.

e Number and directions of ALDs: Not surprisingly, given the same number of input
prefixes, and ALDs of the same type, an operator with more ALDs will have higher
i-cost. However, surprisingly, given the same input prefixes, operators with different
ALD directions may have different i-costs. This behaviour is observed due to the
structure of the graph, particularly the distribution of the sizes of the forward and
backward adjacency lists of vertices. We demonstrate this with a toy DSQ and query
graph in Figure 3.3. The input graph in the figure has two nodes each with 1000
incoming edges, and a single edge insertion (the edge (0,1)). We consider two QVOs
for the DSQ in Figure 3.3a, QV O : ajasazay and QV Oy : ajasasaz. In each case,
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Figure 3.3: Example for demonstrating the effect of different ALDs on i-cost.

we start by matching the § edge (aq, az) to (0,1) and intersect the forward adjacency
lists of 0 and 1, which give 2 and 3. In QV Oq, 2 and 3 match a3 and is extended by
doing two intersections: (i) 0’s forward adjacency list, 1’s forward adjacency list, and
2’s backward adjacency list; and (ii) 0’s forward adjacency list, 1’s forward adjacency
list, and 3’s backward adjacency list. In QV O, 2 and 3 match a4 and is extended by
two intersections, in which we use 0 and 1’s forwards lists as in QV O; but instead
use 2 and 3’s forward lists. Note that 2 and 3’s backward adjacency lists are of size
1000, whereas their forward adjacency lists are of size only 2. Therefore, QV O, will
do significantly less work than QV O;.

Number of intermediate prefizes: The number of intermediate prefixes input to oper-
ators directly affects the intersection work they have to do. The more intermediate
prefixes generated, the more intersections will be performed.
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Chapter 4

Cost Based Greedy CSQ
Optimization

In this Chapter we describe our greedy optimizer that generates a combined plan to evaluate
a set of CSQs. The outline of this Chapter is as follows:

e Section 4.1 describes the catalogue data structure.

e Section 4.2 defines our optimization problem formally, which depends on the contents
of the catalogue. We show that in its most generality, this optimization problem is
NP-Complete.

e Section 4.3 describes our general greedy optimizer.

e Section 4.4 describes how to make our optimizer optimize for three different cost
metrics: (i) number of operators in the combined plan; (ii) number of intermediate
prefixes generated; and (iii) i-cost.

e Section 4.5 describes our expanded DS(Q optimization.
Our optimizer takes two inputs: (a) a set of DSQs Qpsg of a set of CSQs Q; and (b) a

subgraph extension catalogue. The output is a combined plan CP with a single SCAN and
(possibly) multiple E /T operators.
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S ALDs S’ Cost (¢) | Extension Rate ()

0—1 1F .« > e — 0.15 0.2

0—1 0B — e 0.2 0.2

0—1 1B — e 1.8 1.8

0—1 0OF — o= 3.0 3.0
2+0—1 2B s e d— e 1 1
2—=1+0 0OF e el > 1 1
0—-1—2|0F, 2B Diamond 4
0—-1«2|0B,2B Diamond 0.4 0.1
0+ 1—2|0F,2F Diamond 0.6 0.06

Table 4.1: Example Subgraph Catalogue.

4.1 Subgraph Extension Catalogue

Table 4.1 shows an example catalogue. Each entry of the catalogue contains two pieces of
information about extending a subgraph S to S’ using a particular set of ALDs A:

e Estimated cost ¢ of extending a single S to S’ using A according to some cost metric.

e Estimated extension rate o of this extension, i.e., how many S’s will be generated
from S. The extension rate is a cardinality estimate.

In Table 4.1, the vertices of each subgraph S have integer IDs, e.g., 0, 1 or 2, to differentiate
between different ALD combinations that can extend S but we do not put IDs on S’
The IDs on S are put arbitrarily but consistently, i.e., we use the same IDs for multiple
instances of S. We also note that the same S can be extended to S’ using different
ALDs with different costs depending on the cost metric. The first two entries in Table 4.1
demonstrate this possibility. We review a more realistic example in Section 4.4. One can
consider more complex catalogues with &, o, and n labels on S and S’. For the expanded
DSQ optimization we describe in 4.5, we explore a catalogue with ¢ and o labels on the
edges of S. When optimizing compact DSQs, we do not differentiate between 9, o, and
n edge labels because for our purposes, each entry in the catalogue is an estimate for
the work and extension rate of extending “an average” S to S’. Therefore we do not
store information about how S was generated (for example which edge of S is the delta
edge). Finally, the number of entries in the catalogue can be prohibitively large. To tackle
this problem, we construct partial catalogues that contain only the subgraphs that are
relevant for a particular query workload Q. We discuss partial catalogue construction in
Section 5.3.2.
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4.2 Specific Problem Definition

We are now ready to define the specific optimization problem we will be solving using the
parameters defined in the earlier section.

Given a set of DSQs D derived by decomposing a set of CSQs Q, and a subgraph extension
catalogue C, find QVOs for D € D such that the resulting combined plan, where we merge
the common operators across the individual plans for DSQs, has the least possible cost
according to C, where the cost of C' is the sum of the costs of each ¥ /1 operator op; in C
and the cost of op; is given as:

cost(op;) : (mp="aw)e (4.1)

That is, the cost of each E/O operator is the estimated number of partial subgraphs it
will process multiplied by the estimated cost of processing each partial subgraph. We next
analyze the size of the solution space to this optimization problem and its computational
complexity.

4.2.1 Solution Space

Given a CSQ @);, with n; query vertices and m; query edges, any DSQ of the CSQ has
(n; — 2)! possible QVOs. This is because the first two query vertices are always mapped to
the delta query edge in the DSQ, and any permutation of the other n; — 2 query vertices
is a possible QVO. Given k£ CSQs, the size of the possible plan space in our setting is
((n1=2)H)™ x ((ne=2))™2 x ... x ((ng=2)!1)*, since each CSQ Q; decomposes into m;
many DSQs. This quantity is very large even for a small number of small size queries, so
adopting an exhaustive search for picking a good plan cannot work. This leads us to the
greedy optimization algorithm we describe in Section 4.3, to find good plans.

4.2.2 Computational Complexity

The computational complexity of this problem naturally depends on the contents of C'. For
example, if the cost and expansion rate of every entry in C' is zero, then any combined plan
will be optimal, so the problem is trivially solvable. Similarly, the problem also depends
on (). However, for an arbitrary catalogue C' and a @, the problem is NP-Complete.
Specifically, for the catalogue that has a value of 1 for each cost and expansion rate, the
optimal combined plan is the plan that contains the smallest number of operators. For an
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arbitrary @, we next show that the maximum common induced subgraph problem [10],
which is NP-Complete, reduces to finding the plan with the minimum number of operators.

The reduction is as follows. Take two arbitrary graphs G; and G5. Suppose the nodes
in G; are labeled with ay,as,...,a,, and each node in Gy is labeled with by, bs, ..., by,.
Label each edge of G; and G5 with o, and extend both G and Gs with a new edge (z,
y) with label § and connect both z and y to each node in Gy and G5. These labeled and
extended GG; and G5 graphs are now DSQs, and we refer to them as dS(); and dS(Q),. Recall
that we get a combined plan by picking a QVO for each DSQ and then overlapping the
common operators. So the combined plan will start with the (z, y) edge, contain a chain
of t operators that are common to both of the QVOs for dS@Q; and dSQs, and at some
point split into two branches, where one branch will contain m; — ¢ and the other branch
will contain my — t operators (and these branches will never converge again). So the total
number of E/I operators will be m; +my —t. Note also that the last operator in the chain
will be a subgraph that is common to both G; and G5 with exactly ¢ vertices (ignoring the
x and y vertices that we artificially added). Therefore the optimal combined plan, when
all the entries in the catalogue are 1, effectively computes the maximum common induced
subgraph to G; and G5, completing the proof.

4.3 Greedy Optimization Algorithm

Algorithm 1 provides an overview of our greedy optimization algorithm. We start with
an empty combined plan C'P. In each iteration, the algorithm goes through each QVO
of each DSQ in Qpsg and finds the pair <quo*, dsq*> with the minimum additional cost
to CP. This fixes the QVO of dsq* to be quo* and we merge the plan P* induced by
<quo*,dsq*> to C'P and remove dsq* from Qpsg. We repeat this until Qpsg is empty.
Note that if there are multiple <quo*, dsq*> pairs with identical minimum cost, we ran-
domly pick one of the <quo*, dsq*> pairs with minimum cost.

The additional cost of a <quo, dsq> pair is computed as follows. We first compute the
logical plan P induced by <quvo, dsq>. Recall that P is a linear plan that starts with SCAN
followed by a series of E/I operators. Then we overlap the maximum prefix of P with
C'P. This is done by simply checking for each operator op; in P starting with the first E/I
operator, whether an existing operator in C'P has the same ALDs. The suffix operators of
P that do not overlap C'P must be added as new operators to C'P, so the additional cost
of <quo,dsq> is exactly the sum of the costs of these operators. Let op; have op;...op;_1
as a prefix (we assume SCAN is opy and we ignore it). Each opy extends a subgraph S,,,
to S;pk and has an estimated cost ¢, and extension rate oy according to the catalogue C'.
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Algorithm 1 Greedy Optimization Algorithm

Input: Qpsg, catalogue C
1: combinedPlan = ()

2: minDSQ =0

3: minCost = oo

4: while QDSQ 7£ @ do

o for dsq* € QDSQ do

6: for quo* € dsq* do

7: cost = FindAdditionalCost(< quo*,dsq* >, C)
8: if cost < minCost then

9: minDSQ) =< quo*, dsq* >
10: end if

11: end for

12:  end for

13:  Px = CreatePlan(minDSQ)

14:  Merge(combinedPlan, Px)

15:  Qpsg.remove(minDSQ)
16: end while
17: return combinedPlan

Algorithm 2 FindAdditionalCost

Input: < quo,dsq >, catalogue C, combinedPlan
1: previousOperator = ()

2: P = getLogical Plan(< quo,dsq >)

3: for operator in P do

4. if operator not in combinedPlan then

5: return calculateCostIncludingDescendants(operator) —
calculateCost(previousOperator)

6: end if

7. previousOperator = operator

8: end for

9: return 0

The cost of op; is calculated by using Equation 4.1. Recall that the cost of an operator op;
is the estimated number of S partial matches op; will get times the estimated work ¢; that
will be do on a single S. This computation requires looking up the subgraphs S, and the
set of ALDs of opy, ...,op;—1 in C. We do this in a brute force fashion by checking for all
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Figure 4.1: Two DSQs for evaluation

possible integer labelings of Sy and checking if it makes Sy isomorphic to any .S in C.

Our optimizer is very efficient in its computational time. Specifically, the number of
catalogue lookups it makes is O((Xq,s,e0ps, #VQOs of Qpsq)?), so quadratic in the sum
of the different VQOs of all the DSQs in . This quantity, for all of the workloads we
consider in this paper is in the order of several thousands. In all of our query sets, our
optimization has taken less than 2 seconds. The more expensive part of our optimization
phase is the catalogue construction which we describe in Section 5.3.

Example 4.3.1 Suppose Qpsq contains the 4 DSQs of the diamond query given in Fig-
ure 3.1c¢ and the catalogue from Table 4.1. Our optimizer will consider all of the 8 possible
<VQO, DSQ> pairs of the 4 DSQs and would pick <ayasasasz, dSQ1> or <ajazasas, dSQs>,
both of which have a cost of 0.15 4 0.2 x4 = 0.95. Suppose it picks <aiasasas,dSCQ1>,
so C'P contains the plan induced by this pair, shown as the first individual plan in Fig-
ure 3.1a. Then it picks <ajazasas,dSQs>, which now has a cost of 0.8 as its first E/I
operator would be shared with the first E/1 operator of the current CP. Then, it would
pick one of <asasaiaz, dSQ3> or <agasaias, dSQ4>, both having 0.2+0.2x4 =1 cost and
then the other, again sharing the first E/1 operators of the plans induced by these picks.
The final CP returned by the optimizer would be the plan in Figure 3.1d.

Readers might suspect that one can use a dynamic programming based optimization
algorithm for this problem. Dynamic programming is an often used paradigm to find good
join plans in relational systems during optimization. However this approach will not work
because an optimal combined plan to a subset of Q psg is not necessarily part of an optimal
combined plan to Q psg- We give an example of this below.
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Example 4.3.2 Consider the problem of creating a combined plan using the two DSQs in
Figure 4.1. Suppose we first try to minimize the cost for dSQ 1). We consider the possible
QVOs asasasa; and agasaiay. Using the catalogue in Table 4.1, we see that these QVOs
have costs of 1.8 +1.8 %1 = 3.6 and 3 + 3 x 1 = 6 respectively, which suggests that the
optimal QVO for dSQ ) is agazaiay. Since the only available QVO for dSQ 2,1y is babybs,
with a cost of 3, we see that the combined plan for these orderings have a combined cost of
3.6. Now consider the alternative QVO pair asazaias and babibs for dSQi,1y and dSQ(21).
As the subgraphs matched by azasa; and bybibs are isomorphic, we can share computation
between the two DSQs. Therefore, the combined cost given these QVOs is 3+ 3 %1 = 6,
which is the optimal cost for these DSQs.

4.4 Three Natural Cost Metrics

We next describe three different natural cost metrics that combined plans can be optimized
for and how we can use different catalogues in our optimizer to optimize for each metric.
We evaluate the effectiveness of each metric in 6.

4.4.1 Number of Operators (num-ops)

One of the most natural cost metrics to optimize for is to make the output combined plans
as small as possible. Indeed, reference [7], which is the only existing work we are aware of
that optimizes multiple continuous subgraph queries, constructs a data structures similar
to our combined plan, with the goal of making these combined plans as small as possible.
Our optimizer can optimize for this metric by simply setting each cost ¢ and extension rate
a of each entry of the catalogue to 1. This will make the cost of each additional operator
op; to be 1 (recall Equation 4.1).

4.4.2 Number of Intermediate Partial Prefixes (int-matches)

Another natural cost metric is the amount of intermediate partial matches the combined
plan will generate, with the intuition that the smaller the number of partial matches, the
less computation that will be performed in the combined plan. Our optimizer can optimize
for this metric by setting, for each entry in the catalogue, the o to be an estimate of how
many partial matches an S to S’ extension will generate and the cost ¢ to 1. This will
make the cost of evaluating each operator be the number of tuples it receives.
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4.4.3 1-Cost (i-cost)

Finally, i-cost can be optimized for by using a catalogue in which, for each entry (S5,
ALD set A, S’) the « values are the same as in the int-matches metric, and the cost ¢
is the estimated amount of intersection work that will be performed on a partial match S
when performing the intersections implied by A. Note that perhaps surprisingly, a single
S can be extended to the same S’ using different ALD sets, each with different work. For
example, a single edge S : 0 — 1 to an acyclic triangle S” : a — b < ¢,a — ¢ with three
different sets of ALDs: 0F,1F, 0F, 1B, 0B, 1B and on many real world graphs the 0F, 1F
is significantly cheaper than the other alternatives. i-cost can differentiate between these
different extensions while num-ops and int-matches metrics cannot.

4.5 Expanded vs. Compact Evaluation of DSQs

Figure 4.2a shows the physical plan for the DSQs of the symmetric triangle shown in
Figure 4.2c. Note that the E/I operators cannot share computation despite the fact that
their ALDs have the same prefix indices and directions, because the ALDs differ in their
graph versions. However, since in our setting the difference between FE, and E,, is small,
almost all intersections performed by these operators are identical. In this section we
introduce an optimization that removes the E, version of the graph, which sometimes
allows more sharing of computation.

4.5.1 Expanded DSQs

In Section 2.2 we showed the decomposition of a CSQ into multiple DSQs. Recall that each
E, term in the DSQs is equivalent to (Es + E,). Using the distributive property of join
operators, we can further expand the DSQs into a larger set of ezxpanded DSQs (EDSQs)
algebraically. In the case of the triangle CSQ, Equation 4.2 shows the seven expanded
DSQs derived from the three compact DSQs of Equation 2.4.
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Figure 4.2: Compact and Expanded physical plans for a symmetric triangle

dSQ; dESQq(aq,a9,a3) = Es(ay, as) < Ey(ag, az) < E,(ay, as)
dSQ2 dESQQ(CL17 Qag, a3 Eo(al, CL2> > Eg(ag, CL3) > Eo(al, Clg)
dESQs(ay, az, az) = Es(ai, az) <t Es(as, ag) > E,(ay, as3)
dSQg dESQ4(CL1, ag, a3 Eo(al, CLQ) > EO<CL2, a3) > E(;(al, CL3)
dESQs(ay, az, az) = Es(ai, az) <t E,(as, az) > Es(ay, as3)
dESQG(al, as, a3 Eo(al, CLQ) > Eg(ag, a3) > E5(a1, (13)
dESQ7(ay, az, as) = Es(ai, az) > Es(ag, ag) > Es(ay, as3)

(4.2)



Figure 4.2b shows the corresponding expanded physical plans for the EDSQs of the sym-
metric triangle query. Each compact E/I operator in Figure 4.2a with one or more ALDs
with version new splits into multiple E /T operators with versions old or delta. In contrast
to Figure 4.2a where no ops can be combined, the circled operators in Figure 4.2b can be
combined. The expanded combined plan of the triangle query is shown in Figure 4.2d.
Although it contains four E /I operators in L2 (compared to 3 operators in the compact
combined plan), only one operator has both of its ALDs with versions old. The other
three E /I operators have at least one delta ALD the size of which we assume is very
small. Therefore this optimization efficiently replaces three expensive ops with one expen-
sive and three cheap operators. We show in some workloads this can lead to performance
improvements.

4.5.2 Expanded DSQ Optimization

In our implementation we do not expand each DSQ into EDSQs purely algebraically be-
cause the number of EDSQs can get very large for even small size queries. For example, a
single DSQ for a 5-clique may decompose into as many as 512 EDSQs. Instead we modify
line 2 of Algorithm 2 where we generate and calculate the cost of each plan Ppgg of a com-
pact DSQ dsq* ordered by a quo*. We refer to the operators of Ppgg as compact operators.
Our procedure has 3 steps: (i) We first expand each operator of Ppgq and construct a new
plan Pgpsg. We refer to the operators of Prpsg as expanded operators. (ii) We try to
merge each expanded operator of Pppsg with CP starting from Scan in increasing levels;
and (iii) if any compact operator of Ppgq that has been expanded can be made compact
again, we revert them back to compact operators. We call the final plan Py The final
cost of Ppypriq is calculated, as before, as the sum of the costs of each operator of Pryprid
that has not been merged to CP. We next give an example.

Example 4.5.1 Consider the CP and Ppsg shown in Figure 4.3a. Note that no sharing is
possible between CP and Ppsg. Our expanded DSQ) optimization is implemented as follows.

(1): Constructing Pgpsq: We first expand each operator of Ppsq that has at least one
ALD with version new and construct Pppgg. For instance, in Figure 4.3a, the L2 operator
in Ppsg with ALD versions (new, new) expands into four operators in Pgpsq with ALD
versions (old, old), (delta, old), (old, delta) and (delta, delta).

(11): Merging Pgpsq and CP operators: We next try to share computation between the
operators of CP and Pgpgg n two ways. First, as in compact DSQs, starting from the
operators in L1 up to the last level, we merge operators in CP and Pgpsg that have the
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(b) After exact operator merging. (c) After partial operator merging.

Figure 4.3: Optimizing using EDSQs.

same set of ALDs and the exact same ancestors. We call this operation exact operator
merging. Figure 4.3b shows two operators of Prpsq merged into CP this way. Second,
the algorithm tries to partially merge operators in CP and Pgpsqg. The algorithm looks
for pairs of operators in CP and Pgpsq with identical ALDs where all the ancestors of
the operator from CP match a subset of the ancestors of the operator from Pgpsq. For
instance, the L3 operators shown circled in purple in Figure 4.3b have identical ALDs and
share the ancestors shown circled in blue. Note that the circled L3 operator from Pgpsg
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(L3-op) duplicates all the work performed by the corresponding circled operator from CP as
it receives the same set of prefizes (plus some more from two other operators) and has the
same ALDs. We therefore partially merge L3-op with CP by connecting the output of the
circled CP operator to all L4 operators in Pgpgg. Note that the cost of evaluating L3-op
1s now reduced as it has fewer ancestor operators and therefore will receive fewer prefizes.
Figure 4.3c shows the Pgpsg and CP after performing this partial operator merging.

(111): Reverting expanded operators to compact: Finally, we revert expanded operators in
Prpsq that have not been merged into CP back into compact operators. For instance,
the two L4 operators circled in green in the Prpsq in Figure 4.5c¢ would be reverted back
to the single compact L4 operator circled in green in Ppgsg. This operation always reduces
i1-cost because the expanded versions of compact operators always take the same amount of
prefizes but loop over, cumulatively, longer adjacency lists. For example, the two expanded
L4 operators in Figure 4.3c will loop over three old and one delta adjacency lists, whereas
the compact version will loop over one old and one new (which in the worst case is as long
as an old and a delta adjacency list combined). Therefore, in this instance, the expanded
operators loop over one extra old adjacency list.
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Chapter 5

Implementation

We implemented our optimizer on top of a prototype in-memory graph database called
Graphflow. The implementation of the initial version of Graphflow is a separate contribu-
tion of this thesis. The system is currently being improved by other researchers. We limit
our description to the first version of the system and the version we use for our work in
this thesis. In Section 5.1 we give an overview of Graphflow. Section 5.2 describes several
important implementaion details about our E/I operator. Finally, Section 5.3 describes
how our catalogues are constructed.

5.1 Graphflow System

Figure 5.1 shows the high-level architecture of Graphflow. Graphflow is a single node in-
memory system implemented in Java. The system has four main components: (1) an in-
memory property graph store; (2) the CYPHER++ query language, which extends Neo4j’s
declarative CYPHER language, described in reference [17] with subgraph-condition-action
triggers; (3) a One-time Query Processor (OQP); and (4) a Continuous Query Processor
(CQP). We next describe each component.

5.1.1 In-memory Property Graph Store
Graphflow’s data model is a property graph, i.e., a labeled graph. Graphs are directed and

vertices and edges can have arbitrary key-value properties on them. The graph is stored
in two components.
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Figure 5.1: Graphflow architecture.

Structure Store: Stores, for each vertex u, u’s incoming and outgoing adjacency lists
stored as arrays. The adjacency lists are stored in sorted order of the outgoing neighbor
IDs, which allows efficient intersections of two adjacency lists.

Property Store: Stores the key-value properties on vertices and edges. The keys can be
arbitrary strings, and values can be integers, doubles, booleans, or strings.

5.1.2 One-time Query Processor

The OQP supports two types of queries; (i) one-time SQs; and (ii) single-pair shortest path
queries (SPQs).
One-time SQs are expressed using original CYPHER’s MATCH clause. The following is

the one-time query that finds all of the triangles in the graph that are formed by transfer
type edges:

MATCH a,-[type="‘transfer’]->ay-[type=‘transfer’]->as3, az-[type="‘transfer’]->a,
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The type=‘transfer’ brackets specify a filter on the edges. One time SQs are evaluated
using the WCO GJ algorithm which was briefly discussed in Section 2.3.1. GJ evaluates
SQs one query-vertex-at-a-time.

We express SPQs using the SHORTEST PATH clause we introduced in CYPHER++.
A query which matches the shortest path between nodes 1 and 20 takes the following form:

SHORTEST PATH (1, 20)

The OQP evaluates SPQs using a bi-directional breadth-first search technique where eval-
uation moves forward from the source node and backwards from the destination node in a
breadth first manner until one or more common nodes in the middle are reached. We then
backtrack from those middle nodes to the source and destination to get the shortest path.

5.1.3 CSQ Registration and Evaluation

Continuous subgraph queries are expressed through subgraph-condition-action triggers us-
ing our CONTINUOUS MATCH clause extension to CYPHER. The following is an example
of a query that detects the directed triangles in a transactions graph and calls a report-
CircularTransfer UDF for each emerged triangle.

CONTINUOUSLY MATCH a;-[:type="‘transfer’]->ay-[:type=‘transfer’]->ag,
as-[:type=‘transfer’]->a,
ON EMERGENCE ACTION UDF reportCircularTransfer IN udf.jar

The other values for the ON clause are DELETION or ALL, which detect only the deletions
or both the emergence and the deletions of the subgraph. The user specifies the action to
be invoked for any matches in the form of a user defined function (UDF). CQP stores each
registered CSQ in memory. Upon registering a new CSQ, our greedy optimizer optimizes
a new CP for all of the registered CSQs from scratch.

Updates, such as insertions or additions of edges, are one-time queries that arrive at
OQP. Upon an update, OQP first temporarily modifies the in-memory graph store, which
implicitly stores three different versions of the graph upon receiving an update:

e 01d: Version of the graph prior to the update.
e delta: Only the updates.

e new: New version of the graph after applying the updates.
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Figure 5.2: Asymmetric diamond-with-edge DSQ

OQP then notifies the CPQ of the updates, which runs the CP and for each registered
CSQ, if the subgraph specified in the trigger emerged or was deleted, runs the UDF of the
CSQ.

We perform the evaluation of CP in a depth first (DF) manner. We start evaluation
with a SCAN operator. Suppose SCAN has children oy ...0,. We next evaluate the first
child (o01) of ScAN, and then the first child of 0; and so forth recursively. When recursion
unfolds, we then evaluate oo, until all operators are executed in DF manner.

5.2 Optimizations in E/I Operator
In this section, we describe two simple optimizations we implemented in the E/I operator.

e Batching of prefizes: Each E /I operator pre-allocates a batch of integer arrays, each
of which is designed to hold one output prefix. When the operator produces a batch
of prefixes, it pushes them to the next operator. When the DFS execution returns
back to the operator, it produces more prefixes, reusing the same arrays. Batching
improves query evaluation runtime for two reasons; (i) it reduces the number of
method calls between operators; and (ii) by reusing the same arrays, it makes fewer
memory allocations, which reduces Java garbage collection time.

e (Caching: In some operators, we cache a single prefix and the extensions it produces
after intersections and reuse these if the subsequent input prefixes have the same set
of intersections. We give an example below:

Example 5.2.1 Consider the DSQ in Figure 5.2, with QVO aiasasaz and a single
new edge (0, 5) as an example. We start by getting one 2-prefiz, {(0,5)}, matching
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aray. Next, we match ayagas by intersecting the new forward adjacency lists of 0 and
5 to get a set of extensions, say {2,3}, producing two 3-prefizes {(0,5,2),(0,5,3)}.
Finally, we extend each 3-prefix to ay. For prefix (0, 5, 2), we intersect the new
backward adjacency lists of 0 and 5 and get, say, {10,20} as extensions. Note that
we will do exactly the same intersection for (0, 5, 3). To avoid this intersection,
we cache the result of the last intersection made and see if the next intersection is
identical. Note that prefixes with identical intersections will appear consecutively in
batches as they are produced consecutively in the previous operator.

5.3 Catalogue Construction

In Section 4.1 we described the subgraph extension catalogue we input to our optimizer.
Constructing and storing a full catalogue even if we limit the sizes of the subgraphs in
the catalogue can be prohibitively expensive. For example, there are roughly 2.1 million
different connected 7-vertex directed graphs [18], so a full catalogue containing all S’s
with 7 vertices would contain at least over 2 million entries. Therefore we use several
optimizations to limit the amount of work we do to construct the catalogue.

5.3.1 Using a Combined Plan for Catalogue Construction

In the case of the i-cost catalogue, we calculate the <i-cost, a> tuple for a <S5, A, S'>
key (recall A is a set of ALDs), using information from the original edges in G (E, in our
notation). Recall from Section 4.1 that each S is given a canonical ordering. Note that an
S with k vertices is effectively a DSQ without graph versions and that its canonicalized
0,1,...,k ordering is a QVO. For example the 2<-0—1 open triangle would match 0—1
first and extend to 0’s backward ALD. Therefore we construct a query-vertex-at-a-time
plan P to evaluate S where all ALDs of P intersect adjacency lists from E,. In order to
calculate <i-cost, a> for extending from S to S’ with ALDs A’, we extend plan P with an
E /1 operator op’ with ALDs A’. The input to op’ is the output of P, which are instances
of subgraph S. Then the <i-cost, a> of <S, A, S’> is the actual i-cost and « produced
by evaluating op’ on E,, divided by the number of S-prefixes op’ receives. When there are
other subgraphs, say S” extending S, we construct other operators, say op” for each of
them, effectively constructing a CP for computing the <i-cost,a> of multiple entries that
extend S. By recursively considering S of increasing sizes, we create one very large CP for
constructing a catalogue. We refer to this combined plan as C'P,,;.
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5.3.2 Partial Catalogue Construction and Sampling

For optimizing a given set of CSQs with max vertex size n, the catalogue only needs a
subset of all the possible entries of size upto n. Specifically, we only need the subgraphs
induced by each QVO of each DSQ. For example, for our SEED query set, which contains 6
queries and 39 DSQs over subgraphs with up to 5 vertices, we only need 46 entries, instead
of 575 which is the number of different directed graphs with up to 5 vertices. Therefore,
our system constructs partial catalogues and determines each entry needed by analyzing
the DSQs in the query set and constructs a C'P,,; for only those entries.

Finally, instead of evaluating the C'P,,; by scanning all of the edges in E,, we sample
k edges (5000 by default) uniformly at random from FE,, and compute the i-cost numbers
based on these k edges.
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Chapter 6

Evaluation

In this chapter we evaluate multiple aspects of the performance of our optimizer. First,
we validate our decision to optimize and evaluate CSQs together by comparing the per-
formance of our optimizer against baselines which optimize queries individually. Next, we
show that the i-cost based optimizer outperforms the other natural cost metrics described
in 4.4. We then evaluate the effectiveness of the expanded DSQ optimization we described
in 4.5.1. Finally, we compare the runtime of our system against Turboflux [5], which is the
most efficient system in literature we are aware of or evaluating a single CSQ. We were
not able to obtain the code for the EMVM system from reference [7], which is the only
other work that studies evaluating multiple CSQs. We do not expect this system to be
competitive with our optimizer as it does query-edge-at-a-time evaluation and is designed
for CSQs with highly selective predicates. We review EMVM in Chapter 7.

6.1 Experimental Setup

CSQ Registration: In each of our experiments, we use a query set that consists of one
or more CSQs (discussed momentarily). We register each CSQ to Graphflow, which then
optimizes the CSQs either using our greedy optimizer or a baseline optimizer we describe
in Section 6.2. We modified our code to not run the UDF of the CSQs we register. Instead,
we increment a counter in order to speed up our experiments. We also do not materialize
the final outputs of CSQs, which is a common cost of any correct plan.

Optimizers: The list of optimizers we experimented with are as follows:
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e Baseline,, guare: This is our baseline optimizer that picks a QVO for each DSQ
independently using a catalogue with i-cost information and runs each DSQ inde-
pendently.

e Greedy; ..s:: Generates a CP using our greedy optimizer and a catalogue with i-cost
information.

o Greedy,um—ops: Generates a CP using our greedy optimizer and a catalogue with all
¢ and « set to 1, which as we discussed in Section 4.1, tries to generate a CP with
the smallest number of operators.

e Greedy,um_int: Generates a CP using our greedy optimizer and a catalogue that
modifies the i-cost catalogue by setting the ¢ values to 1. As we discussed in Sec-
tion 4.1, our greedy optimizer in this case tries to generate a CP that will generate
the smallest number of intermediate partial matches.

o Greedyeypanded: Generates a CP greedily using expanded DSQs and a catalogue with
i-cost information.

Input Graphs: Table 6.1 shows the input graphs we used in our experiments. We picked
these graphs for three reasons:

e Scale: They contain both small graphs with ~3M edges and large graphs with ~69M
edges.

e Adjacency list size skew: They contain graphs with both high and low skew in the
distribution of the sizes of the forward and backward adjacency lists.

e Global clustering coefficient: Our set of graphs contains graphs with both high and
low average global clustering coefficients. Clustering coefficient is a measure of how
“clustered” a graph is. Formally, clustering coefficient is the fraction of closed trian-
gles to the sum of closed and open triangles. Intuitively, graphs with higher clustering
coefficients contain more triangles, cycles, and cliques.

We comment on these structural properties when discussing different experiments.

Updates and Execution: In each experiment, we take an input graph G, randomly pick
90% of G and preload it into Graphflow. We then submit the remaining 10% edges as a
stream of insert-only updates in random order in batches of size 5. We do not experiment
with workloads consisting of deletions. In other experiments we do not report here, we
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Dataset Num. Num. Ver- | Domain Characteristics
Edges tices
Amazon 403,394 3,387,388 Product co- | Dense and uniformly
purchasing net- | distributed
work
Google 875,713 5,105,039 Web graph Dense and skewed
Live- 4,847,571 68,993,773 Social network Moderately dense and
Journal uniformly distributed
Patents 3,774,768 16,518,948 Citation Network | Sparse

Table 6.1: Datasets used in evaluations.

used several other batch sizes from single edges to 100 edges. Batch sizes within this range
did not have visible effects on our conclusions. To get reliable numbers, we repeat each
experiment 10 times, each time starting with a new JVM process. We report the average
runtimes of these 10 runs for each optimizer we experiment with.

Query Sets: We picked query sets consisting of directed queries with 4 or 5 vertices,
each with upto six queries. Each query set has some structural property that allows us
to demonstrate how our optimizer behaves in different situations. We comment on these
properties when discussing different experiments.

e All 4-cliques (4Cs): Consists of the 4 unique directed 4-cliques.

e All 4-cliques and one 5-clique (4Cs-1-5C): Consists of the 4 unique directed 4-cliques
and the 5-clique from Figure 6.1a.

e 5 Random Sparse 5 vertex queries 5RS5: Consists of 5 randomly generated CSQs with
5 vertices, each with at least one cycle. We took all 5-vertex connected queries that
contain at most 5 edges and have at least one cycle, and picked 5 of these randomly.
These queries are shown in Figure 6.1c.

e SEED: Consists of six CSQs with 4 and 5 vertices from a workload used for evaluating
one-time SQs in reference [19]. These queries are shown in Figure 6.1b.

System Setup: We ran all experiments except those involving the LiveJournal dataset
on a Linux machine with 256GB RAM and an Intel E5-2670 processor with 8 cores. For
each run we set the initial and maximum memory allocation of the JVM to 200GB. For
experiments with LiveJournal we used a machine with 512GB RAM and initialized the
JVM memory size to 400GB. We did not perform any memory initialization for Turboflux
as it is implemented in C++.
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Figure 6.1: Query Sets

Patents Amazon Live Journal Google
4Cs 10.6 8.4 30.6 18.4
6.3 (1.7x) 6.7 (1.3x) 19.0 (1.5x) 15.5 (1.2x)
14.8 17.8 45.7 66.5
4Cs-1-5C 7.1 (2.1x) 13.1 (1.4x) 22.3 (2.0x) 55.7 (1.2x)
FRSS 110.8 97.8 839.3 915.3
103.2 (1.07x) | 92.6 (1.06x) | 844.0 (1.0x) | 910.5 (1.0x)
SEED 18.3 31.7 271.7 91.6
9.7 (1.9x) 26.1 (1.2x) 189.3 (1.4x) 79.9 (1.1x)

Table 6.2: Runtime comparison(Seconds) of Baseline,, spare and Greedy; cos
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6.2 Baseline,,_sue Optimizer Comparisons

In this experiment we compared the performance of Baseline,, spqre With Greedy; .,s On
all of our query sets and input graphs. Our goal is to compare how much runtime benefit
we get by sharing computations and generating a CP. For reference Table 6.2 shows our
results. In the table, the top and bottom rows are the runtimes for Baseline,,_spqare and
Greedy;_ ost, respectively. The bold numbers in parantheses are the runtime improvement
factors Greedy;_ o5t has over Baseline,, share-

Our first observation is that Greedy;_.,s; outperforms Baseline,, spqre across all query
and data sets. Our second observation is that the degree to which Greedy; .,s; improves
over Baseline,,_snqre varies significantly, specifically, from almost no improvement of 1.01x
to significant improvement of 2.1x. Our next key observation explains this variety in the
runtime benefits our greedy optimizer gets by sharing.

OBSERVATION: The degree to which Greedy; ..s; improves runtime over Baseline,, share
depends on the ratio of work done in the last level of the CP to the total work of the CP.

We note that in CPs no computation sharing is possible in the last level. Recall that
we share two operators at level ¢ between two DSQs, if they have exactly the same E/I
operators in every level starting from 1 to 7. If there were two DSQs which shared operators
in the last level of a CP, this would imply that the CSQs in which the DSQs come from
are already isomorphic, i.e., we have two duplicate registered CSQs. To demonstrate this,
Table 6.3 shows, for each of our query sets, the number of operators in each level that
the DSQs of Baseline,, spqare and the CP generated by Greedy; .,s: have. As seen in the
table, the CP of Greedy;_ ., and DSQs of Baseline,, spure always have the same number
of operators in the last level. Since computation sharing in CPs can only happen in earlier
levels, the amount of work done in these levels upper bounds how much Greedy; .os
optimizer can improve over Baseline,,_snare-

We have picked our query sets and input graphs to be able to control how much of
the total work is done at the last level. Specifically, in the 4Cs query set, the number of
last-level operators in CP is high compared to the total number of operators (24 out of 33
operators are in the last level). In contrast, in the 4C-1-5C query set, the number of last-
level operators is low compared to the total number of operators (only 10 out of 43 operators
are in the last level). Therefore we expect Greedy; . to outperform Baseline,, share
with a larger factor in 4C-1-5C than in 4Cs. Similarly, because all of the queries in 4Cs
and 4C-1-5C query sets are cliques, the clustering coefficients of the input graphs allow
us to control for how much of the work is done in the last levels. When the clustering
coefficient is low there will be less cliques in the graph, so the last level operators will
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Baseline,, spare | Greedy;_cost
4Cs 24,24, 24 1,8, 24
4C5C 34,34,34,10 1,8,24,10
5RS5 25,25,25,25 1,9,21,25
SEED 39,39.,39,24 1,9,22,24

Table 6.3: Number of operators in each level of the plans of Baseline,,_spare and
Greedy;_cost-

Patents Amazon
4Cs 1.7x 1.26x
0 (0%), 330m (53%), 293m (47%) | 0, 71m (11%), 555m (89%)
4C5C 2.1x 1.37x
0, 330m, 293m, 191m 0, 71m, 555m, 870m

Table 6.4: Dependence of runtime gains on the work done in the last level

do less work. Therefore, we expect Greedy; .5 to outperform Baseline,, gpqe With a
larger factor on graphs with lower clustering coefficients. Table 6.4 shows a subsets of our
experiments to demonstrate these effects clearly. The table shows the performance of 4Cs
and 4C-1-5C query sets on the Patents and Amazon graphs, which respectively have 0.08
and 0.42 clustering coefficients. In each cell of the table, the first line shows the relative
performance improvement Greedy; ., has over Baseline,, spqre- The second line shows
the amount of actual i-cost in each level in the CP of the Greedy; ... Consistent with
our expectations, Greedy; ..ss has the largest runtime improvements on the <4C-1-5C,
Patents> cell and the lowest in the <4C, Amazon> cell.

6.3 Effectiveness of the Greedy Optimizer

We experimentally demonstrate that our greedy optimizer is effective at constructing good
CPs in the following manner. First we calculated the i-cost of each possible CP of a
queryset consisting of two 4-clique queries for the Amazon dataset. We show the spectrum
of i-costs for the 4096 such CPs in Figure 6.2. Note that for our queryset it is possible
to construct CPs ranging in i-cost from 427 to 539. Next, we picked a plan using the
Greedy;_..st optimizer for the same query set on Amazon. Greedy;_ ..s: vielded a plan with
a cost of 432, which is near optimal for this query set. We make the observation that while
Greedy; ..t is capable of picking very good plans, the specific plan it picks may not be
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the optimal because Greedy; .,s: greedily picks the best ordering one DSQ at a time.

We do not perform similar experiments where we exhaustively search all possible plans
for the optimal plan for large querysets because of the large space of possible plans that
has to be searched.

6.4 Effectiveness of Different Cost Metrics

In these experiments we compared our greedy optimizer’s performance when optimizing
for three different metrics we discussed in Section 4.4: (i) num-ops (Greedy,um—ops), (ii)
num-int (Greedy,um—int) and (iii) the default metric of i-cost (Greedy; cost)-

We start by noting that our greedy optimizer sometimes has to break ties when picking
a <QVO, DSQ> pair to integrate into CP next. This is because there may be multiple
<QVO, DSQ> pairs that add the same marginal estimated cost to the CP. We break
those ties randomly. Therefore, our optimizer can generate different CPs when optimizing
the same query set if we run it multiple times. In our first experiment, we assess the
sensitivity of the plans our greedy optimizer generates to such tie-breaks under different
cost metrics. Specifically, we ran two sets of experiments. First we took the SEED query set
and Amazon data set and ran our optimizer with 100 different random seeds for each cost
metric. Then we ran the updates for Amazon on each CP generated by our greedy optimizer
once (a total of 300 executions in the end). In our second experiment, we repeated the
first experiment with the 4Cs-1-5C query set and Google graphs. Figures 6.3a and 6.3c
show our results. Each column in the figures is one cost metric and each point on each
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Figure 6.3: 100 run comparison of cost metrics

column is one experiment. The y-axes in the figures is the actual i-costs we measured for
each plan. Figures 6.3b and 6.3d show the same experiments with runtime.

Our observation here is that Greedy;_c,s: and Greedy,,ym—in+ have no and Greedy,ym—ops
has a high variability in the CPs they generate. Surprisingly, despite being a very naive
metric, Greedy,ym—qps can also find good CPs. For example, in the <Amazon, SEED> exper-
iment it can even find plans with slightly better i-cost than Greedy,;_..s; and Greedy,um—int-
However, it often finds plans that are significantly worse than the CPs generated by
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Figure 6.4: Forward and backward adjacency list histograms for Google and Live Journal
datasets.

Greedy; o5t and Greedy,um—_int- This is seen in the <Google, 4Cs-1-5C> experiment,
where at least in our 100 runs, even the best plan Greedy,um—ops finds has 1.45x worse
i-cost than Greedy; ..+ (and 1.04x worse in runtime). Essentially, Greedy,um—ops, if ex-
ecuted across many attempts, can pick good QVOs for DSQs that also share well. This
suggests a possible optimizer can run Greedy,um—ops @ large number of times and then use
the i-cost metric to estimate the i-cost of the CPs and pick the best CP. We have not
experimented with this optimizer in this thesis. However, we emphasize that this optimizer
still needs to estimate costs using the i-cost metric when picking the best plan. For ex-
ample, in <Google, 4Cs-1-5C> experiment, the plan with the highest runtime has lower
number of operators (40) than the plan with the lowest runtime (41). Therefore, picking
plans merely based on num-ops will be ineffective.

In our second experiment, we compared the performance of the CPs generated by
Greedy,um—int and Greedy;_..s; across all of our query and data sets. Table 6.5 shows our
results. In the table, each cell is an experiment for one query and data set pair. The first
and second lines in each cell is the runtimes of Greedy,ym—in: and Greedy;_.,s:, respectively.
The bold numbers in parantheses is how much runtime improvement Greedy; ., has over
Greedynum—int-

Our first observation here is that Greedy; .5 often finds better plans than Greedy,um —int
(14 out of our 16 experiments). Our second observation is that the performances of
both cost metrics is very close on every dataset except Google. This demonstrates that
Greedy,um—int 1S also a good metric. The reason Greedy; .. performs better than
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Patents Amazon Live Journal Google
ACs 6.6 7.0 21.1 18.1
6.2 (1.06x) 6.8 (1.04x) 19.8 (1.06x) 15.4 (1.17x)
7.1 15.0 24.4 66.0
4Cs-1-5C 7.1 (1.0x) 13.1 (1.15x) 22.3 (1.1x) 54.5 (1.2x)
FRS5 95.7 92.3 777.0 1001.8
103.2 (0.92x) 92.6 (1.0x) 844.1 (0.92x) | 910.5 (1.1x)
SEED 10.5 26.3 189.7 81.8
9.7 (1.07x) 26.1 (1.0x) 189.3 (1.0x) 79.9 (1.0x)

Table 6.5: Runtime comparison(Seconds) of Greedy,um—int and Greedy; cos:

Patents Amazon Live Journal Google
ACs 6.2 6.8 19.8 15.4
6.3(1.01x) 6.4(1.06x) 17.5(1.13x) | 15.3(1.01x)
SRSE 103.2 92.6 844.1 910.5
97.3(1.06x) | 72.3 (1.28x) | 602.2(1.4x) | 813.9 (1.1x)
SEED 9.7 26.1 189.3 79.9
8.0 (1.2x) 235 (1.1x) | 147.7 (1.3x) | 719 (1.1x)

Table 6.6: Runtime comparison(Seconds) of Greedy;_.,st and Greedyeapanded

Greedy,um—int ON the Google graph (up to 1.21x) is that out of our four data sets, Google
has the most skew in terms of the distribution of its forward and backward adjacency lists
sizes. To demonstrate this, Figure 6.4 shows the distributions of the forward and back-
ward adjacency lists of Google and Live Journal graphs. As seen in the figures, there is
a very big difference between the distributions of the forward and backward adjacency list
sizes of Google and significantly less in Live Journal. Therefore, picking the directions
of the adjacency lists correctly in the E /I operators is more important in Google than on
Live Journal. Recall that num-int metric only estimates the number of partial matches
that will be processed, as opposed to the intersection work done in an operator, which is
partly determined by the directions of the adjacency lists that will be intersected. Instead,

i-cost considers the directions of the adjacency lists that will be intersected.
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6.5 Performance of the Expanded DS(Q Optimization

We experimentally compared the performance of the CPs generated by Greedy; ..ss and
Greedyespanded across all of our query and data sets. Table 6.6 shows our results. In the
table, each cell is an experiment for one query and data set pair. The first and second
lines in each cell is the runtimes of Greedy; .ost and Greedyeypanded, respectively. The
bold numbers in parentheses is how much runtime improvement Greedyeypandea has over
Greein—cost-

We first make the observation that Greedyespandea improves runtime compared to
Greedy; ..s: for all dataset, queryset pairs. While the improvements are modest in some
instances (1.01x on < Patents, 4Cs>), in other cases, the improvements are significant
(1.4x for < Live Journal, 5RS5>). The gains changes across querysets and input graphs
as; (i) runtime savings depend on the number of shared operators that resulted from the
DSQ expansion, which in turn depends on the specific CSQs being optimized; and (ii) the
intersection work done in the extra operators shared in Greedy.spanded, Which depends on
the types of ALDs in the operators and the input graphs. However there is no specific
pattern that we could identify in the improvements given by Greedycypanded-

6.6 Turboflux

Reference [5] describes an algorithm called TurboFlux that evaluates a query using a data
centric graph (DCG), which is a compressed representation of partial matches of the query
in G(Eg, V). Given a query Q(Vo, Eg), TurboFlux first converts () into a rooted query
tree Q)'(Vy, Eg/) by removing some query edges that form cycles. Conceptually, the DSG
is a multigraph Gpsa(Vpsa, Epsa) where Vpse = Vi and Epge contains |Vg| — 1 parallel
edges for each e € Eg. Each parallel edge has a state of numm (N), implicit (IM) (IM),
or explicit (EX) and a label which is one of the query vertices in @)'. In practice only IM
and EX edges are stored in DCG. An EX edge epsq(v;, v;) with label v’ € Viyr indicates
that there is a path p: v, ~» v; = v;, where the last edge is (v;,v;), and p matches, in
order, all of the query vertices in the path from u, to u; in Q" (so w, matches v, and
v’ matches v;). In addition every subtree of v’ in )’ matches a subtree starting from
vj. An implicit edge epsq(vi,v;) matches path p but not the subtrees from u'. Upon
updates to GG, TurboFlux transitions the states of the edges, say from IM to EX or to N.
Transitions of edges to and from EX trigger a subgraph matching algorithm on the DSG to
detect the emerged or deleted instances of (). The reference uses a modified version of the
TurboHOM++ [20] algorithm for subgraph matching, which performs the matching using
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traversals on a DSG-like compressed representation, instead of tuple based processing as
we do in our work.

In reference [5], TurboFlux has been shown to be very efficient for queries with selective
predicates both in terms of runtime performance as well as the size of the DCG it stores.
We obtained a binary code of TurboFlux from the authors of reference [5]. The binary had
several bugs, which made TurboFlux return different number of outputs for several queries.
We verified that our numbers are correct by verifying the outputs with Neo4j. At the time
of the writing of this thesis, this bug was not fixed. TurboFlux can only run one query
instead of multiple queries. For our comparison, we picked the diamond query and the
Google data set because TurboFlux was producing a very close number of outputs to the
correct output (only a 846 deficit for 50259016 matches). In this experiment TurboFlux
took 34.6 seconds and the CP that our Greedy;_..s: optimizer produced took 3.8s seconds.

We emphasize that we did these comparisons only for completeness of this study. The
systems and implementations are very different and the binary we obtained was buggy.
Therefore, we do not interpret our runtime benefits to indicate that TurboFlux’s method
of working on compressed data structures is inefficient. We find techniques that perform
computations on compressed data structures promising and a much more detailed study is
needed to understand the advantages and disadvantages of such approaches.
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Chapter 7

Related Work

We review work in five related areas.

7.1 Multiple Continuous Subgraph Query Evaluation

Closest to our work is reference [7], which studies maintaining multiple subgraph query
views under single-edge insertion workloads. Abbreviating the title of this reference, we
refer to the technique here as EMVM. Given a set of queries Q, EMVM partitions the
queries in @Q into separate query sets Q,, ..., Q;,, one for each separate edge predicate
(called labels) in the queries. Each query set @, contains as many edge-annotated views
(EAVSs) of the same query () as there are edges with predicate [; in ). EAVs are similar
to our DSQs. For each @Q;,, EMVM constructs a larger “merged view” M, , which is a
(query) graph to which each EAV in @, is isomorphic to. Merged views are similar to our
combined plans and are used to infer common subgraphs to multiple queries during query
evaluation upon insertions. For example, upon an insertion of an edge e, the evaluation
starts from a central edge in M, which is similar to the delta edge in our DSQs. Overall,
EMVM can be viewed as constructing a specific combined plan in our framework. However,
EMVM assumes a query set with highly selective predicates, which is reflected in two main
differences between EMVM and our approach:

1. Merged views are constructed to share as many edges as possible between the queries
on M, ignoring the cyclic structures in queries!. Instead our greedy optimizer min-
imizes the i-cost of combined plans, considering cyclic structures of queries during

!To be precise, the metric the authors optimize when constructing M is slightly more complicated. For
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optimization. Considering cyclic structures, e.g., closing triangles as early as possible,
is fundamental for efficiently evaluating structural queries.

2. Queries are evaluated one query edge at a time. This might work well when each
query edge matches a small number of data edges due to highly selective predicates,
but will be inefficient for structural queries. Instead, we evaluate queries one vertex
at a time utilizing intersections to filter partial matches.

7.2 Single Continuous Subgraph Query Evaluation

We review Turboflux in Chapter 6. There are several other existing work on evaluating
a single continuous subgraph query both in the serial and distributed settings. Many of
these techniques are primarily designed for queries with highly selective predicates and
ignore structural properties of the queries, making them inadequate for structural queries.
We review work on matching queries exactly here. Reference [21] studies approximate
continuous subgraph matching on Pregel-like systems, which we do not review.

BigJoin [3]: Reference [3] studies two main aspects of the DSQ framework for a single
query in the distributed setting. First, the authors study theoretically the round and
communication complexity of evaluating DSQs in a distributed bulk synchronous parallel
model of computation. Second, they study how to efficiently implement DSQs in practice
using low cluster memory in the Timely Dataflow system [22]. This work does not study
either the performance effects of different QVOs of the DSQs or optimizing multiple queries,
which is our focus here.

IncIsoMat [23]: Reference [23] describes a general search localization technique called
InclsoMat that, given an update e(u,v) to G computes a region of G called the affected
area that may include an emergence or deletion of instances of a query (). Let d be the
diameter of (). The affected area contains the vertices that are within a radius d of u and v.
IncIsoMat finds the matching instances of ) in this affected region, but how the matching is
done is unspecified, so any subgraph matching algorithm can be used with InclsoMat. Our
DSQ framework automatically localizes its search to the same and sometimes smaller area
around e, so InclsoMat’s explicit localization step would be unnecessary in our approach.
Similar to our approach, InclsoMat has no memory footprint but is designed to evaluate
only a single query instead of multiple queries.

a given M, the score of M is the sum over each edge e € M of the score of e, where score(e) is the square
of the number of EAVs that share e.
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SJ-Tree [4]: Reference [!] describes a technique called SJ-Tree which constructs a left-
deep query plan P for a query (), where each leaf is either a 1-edge or 2-edge path of (). The
decomposition of () is done by a greedy algorithm which iteratively decomposes @) into a
@' and [, where [ is the 1-edge or 2-edge subgraph in () with the lowest relative selectivity.
Relative selectivity is a cost measure that incorporates the expected number of matches to
[ based on selectivity statistics and the average degree of the vertices in the input graph G,
which captures how much more work will be done for searching for 2-edge paths compared
to l-edge paths. Upon updates to the graph, SJ-Tree maintains partial matches to each
intermediate node of P using a hash join algorithm. The original technique is described for
a streaming graph where the matches to () are searched within a window of time interval
but by keeping an unbounded time window, this technique can be adopted to our setting.

SJ-Tree has two main shortcomings for the queries we study in this thesis. First, SJ-
Tree is designed for queries with highly selective predicates. For example, the reference
assumes that the number of matches for 2-edge paths are expected to be significantly fewer
than 1-edge paths, which would not hold for structural queries. As a result, for the queries
we study here, the technique will materialize prohibitively large intermediate results, one
for each intermediate subgraph of () in the left-deep join plans. Second, the hash-join based
evaluation of left-deep plans is equivalent to a query-edge-at-a-time matching strategy and
is agnostic to cyclic structures in () unlike our query-vertex-at-a-time evaluation. A prior
study [5] has shown that even on queries with predicates, when the window interval is
unbounded, SJ-Tree can maintain very large intermediate results and is slower than the
TurboFlux technique. This is why we chose TurboFlux to compare our approach against
in this thesis.

7.2.1 Multiple One-time Subgraph Query Evaluation

PCM [&8]: Reference [3] studies the problem of evaluating multiple one-time subgraph
queries @ together. Similar to our combined plans, the authors describe a data struc-
ture called pattern containment map (PCM), which is constructed to represent common
subgraphs between groups of queries in (. The matching of the common subgraphs are
shared across queries during evaluation of queries. The PCM construction subroutine is
fundamentally designed for heterogenous graphs and queries with many predicates and
becomes degenerate in the absence of predicates. In particular, during PCM construction,
the reference uses a metric called the grouping factor of two queries to measure how much
commonality they have in terms of their edges. The grouping factor is computed as a
function of the common predicates between the queries and not their structural common-
alities. In the absence of predicates, this measure would be similar for any two queries and
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the subroutine would randomly group queries. Similar to several references we discussed
above, the PCM construction subroutine also maximizes the number of common shared
edges across queries ignoring the cyclic structures in queries.

SPARQL-MQO [6]: Reference [(] studies the problem of optimizing a set of SPARQL
queries @, each asking for a labeled, directed subgraph in an RDF dataset. We refer to
the approach in the reference as SPARQL-MQO. SPARQL-MQO is based on two high-
level steps. In the first step, @ is broken into multiple groups using k-means clustering,
using the Jaccard similarity of the common predicates that appear between queries. In
the second step, each set S of queries in each cluster are independently translated into
two components: (i) a single query (%, which is a subgraph shared by all queries in S;
and (ii) one optional subgraph Q,., to match exactly @ \ Q% for each @ € S. The way
the common subgraph Q% is constructed is based on a cost model that tries to put (i)
the most selective edge that is common to all queries in S; and (ii) as many extra edges
as possible. SPARQL-MQO has the same shortcomings for structural queries as PCM.
Specifically, its clustering technique (and selectivity information) becomes degenerate and
the construction of )% ignores the cyclic structures in queries.

7.3 Single One-time Subgraph Query Evaluation, Com-
plex Join Algorithms, and IVM

There is a rich literature on evaluating a single one-time subgraph queries on a static graph,
which is equivalent to complex join queries in relational terms. A detailed review of sub-
graph matching and complex join algorithms is beyond the scope of this thesis. Pointers to
several of these algorithms can be found in references [14,24,25]. The evaluation technique
we use for DSQs fall under the query-vertex-at-a-time technique, which in relational terms
is equivalent to attribute at a time processing of joins (in contrast to traditional table(s)
at a time join processing). Query-vertex-at-a-time join processing was introduced by the
new worst-case optimal join algorithms [1].

Similarly, the problem we study in this thesis is equivalent to multi-query IVM of com-
plex join queries in relational terms. There is a vast body of work on incrementally main-
taining views that contain selection, projection, joins, group-by-aggregates, among others.
We refer the readers to reference [20] for a survey of these techniques. Briefly, our DSQ
framework falls under the algebraic technique of representing updates to tables as delta
relations and maintaining views through a set of relational algebraic queries. Prior work
on algebraic techniques range from addressing limitations of delta query-based techniques,
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e.g., when evaluating a top-k query [27], to techniques using higher-delta queries [25], e.g.,
delta queries of delta queries of a query.

7.4 Multi Query Optimizations For XML and Rela-
tional Databases

Several papers study optimizing multiple one-time XPath queries for XML based on sharing
common prefixes of queries [29, 30]. These studies focus on path queries, where sharing
maximum prefixes is easier than general queries we study in this paper, which can be cyclic
or arbitrarily acyclic, e.g., tree-like. Reference [31] studies evaluating multiple XPath-like
queries, with same structure running on different XML document streams. In this work,
the queries do not share computation as they run on different documents. Instead, we
study multi-query optimization on queries that are running on the same data set and
share computations that are common to multiple queries.

There is a vast body of work of multi query optimizations for relational databases on
various topics such as extending existing cost-based optimizers to handle multiple queries,
sharing intermediate results between operators, or scheduling of operators in combined

plans. We do not review this work here. Some pointers to these works can be found
here [32].
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Chapter 8

Conclusions and Future Work

We studied the problem of evaluating multiple directed structural subgraph queries on a
changing graph. We built upon the DSQ framework, which decomposes a CSQ into multiple
DSQs and evaluates DSQs in a query-vertex-at-a-time manner using an E/I operator
that intersects one or more adjacency lists. We outlined three factors that affect runtime
during DSQ evaluation; (i) amount of computation sharing between DSQs; (ii) number and
direction of ALDs used in the E/I operators; and (iii) number of intermediate prefixes.
We studied how to pick good QVOs for the DSQs of a set of CSQs together to create a CP
which shares computation across DSQs and tries to minimizes the amount of intersection
work done cumulatively. We proposed a cost-based optimizer that takes as input a set
of DSQs and a subgraph extension catalogue, orders each DSQ greedily and outputs a
CP. Based on our observations, we proposed three cost metrics that can be optimized in
our greedy optimizer when constructing CPs; (i) the number of operators num-ops; (ii)
the total number of intermediate results input to operators int-matches; and (iii) the
sizes of the adjacency lists intersected (i-cost). We experimentally and analytically show
that i-cost is a good approximation for the actual work done during the evaluation of our
combined plans and adopt it as our default cost metric. We then described an optimization
which algebraically decomposes DSQs further into EDSQs in order to allow more sharing
between operators.

We experimentally justified optimizing DSQs together by comparing our greedy opti-
mizer with two baselines; i) ordering DSQs canonically without sharing; ii) canonically
ordering DSQs and sharing when possible. We showed that the greedy optimizer outper-
forms the baselines across a range of query workloads and input graphs. We further showed
that the degree of improvement of the optimizer over the baselines depends on the amount
of work done in the higher-level operators of the combined plan, which in turn depends
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on two factors; (i) the query set; (ii) the input graph and set of updates. We showed
that our CPs improve the most on query sets with smaller numbers of operators in higher
levels and input graphs which produce few matches for the given queries. On a 4-clique
CSQ we showed that our greedy optimizer using the i-cost metric finds the best possible
plan by exhaustively considering all possible plans. Finally we showed that our framework
outperforms the most efficient system we found reported in literature called Turboflux [5].

We outline three directions for future work.

o Adaptive evaluation of updates: In a continuous query setting, there is no advantage
to using a single plan for a query (or set of queries) forever. Ideally, a system should
have a set of possible plans and at different points in time pick different plans, say to
adapt to changes in the workload. In our setting, it is possible that we can generate
different CPs for different types of updates. For example, it is possible that a different
CP than the one our optimizer picks could be faster for updates (u, v) where both
u and v have low degrees or where both u and v have high degrees. Similarly, in
our experiments we always chose as updates edges from the original graph, assuming
that the update edges would look “similar” to the edges in the input graphs. If this
assumption holds, for example, if the graph starts getting random edges, then the
CP we generate might not be very efficient. Ideally, a system should be able to adapt
to such changes in the workload.

e Most of our evaluations use query sets with less than ten queries, each with less than
ten vertices. Future research can study the problem of optimizing and evaluating
large numbers or large sizes of continuous queries together using our greedy optimizer.
We have not studied the scalability of our optimizer in this thesis.

e We mentioned in Chapter 1 that our work here does not address queries with predi-
cates on nodes or edges. An interesting avenue of future work is to study how pred-
icates on nodes and edges would affect greedy optimization of DSQs, as the amount
of sharing possible would be reduced due to the predicates. A potential solution
might be to use auxiliary data structures to materialize certain computations such
that sharing is maximized, as suggested in reference [33]. Queries with predicates
are perhaps more important than the structural queries we studied here because we
expect many applications to have some predicates on queries.
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