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Abstract

Repairable secret sharing schemes are secret sharing schemes where, without the original
dealer who distributed the shares, the participants can combine information from their
shares to perform a computation that reconstructs a share for a participant who has lost
their share. In this work, we study the repairability of a threshold scheme with respect
to the probability that it is possible to perform a repair for a failed share, where each
participant in the scheme is available with some probability p. We measure the repairability
of a scheme in terms of probability that a repair set is available and in terms of the
expected number of available repair sets. Additionally, we design efficient algorithms for
determining who to contact when attempting to perform a repair on a failed share for
repairable threshold schemes which use 2-designs. We also introduce the use of t-designs,
for t > 2, as distribution designs to produce repairable secret sharing schemes with higher
repairing degrees and we discuss modifications to the algorithm to account for the different
attributes of the designs where t > 2.
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Chapter 1

Introduction

Secret sharing is of particular use when a group of people or an organization either lacks
trust or requires redundancy. Assume that a group has, in their possession, something that
they all value. The valuable could, for example, be a document, a bank account, or even a
treasure chest. For our example, we could consider the group of people to be employees at
a corporation, tellers at a bank, or classical pirates from novels and films [9]. In the case
of the pirates who share a treasure chest, we can see how they may have trust issues, given
their penchant in stories for betraying one another to steal the treasure for themselves.

Assume that we have a group of seven pirates who collectively have their pirate treasure.
They decide to secure the treasure in such a way that it cannot be accessed by any less than
some minimum number of them. Each pirate will possess a share which, when combined
with the shares of enough of the other pirates, will provide them with access to their
treasure. One interesting thing about using pirates as an example for secret sharing is that,
in addition to their trust issues, they also have a need for redundancy. Between storms
crashing over ships on open waters, vicious attacks from other pirates, and a dangerous
lack of lemons, the life expectancy of a pirate is too volatile to require all seven pirates in
order to recover the treasure. All it would take is one extreme act of nature to prevent
one of the pirates from ever combining their share with the others and the remaining six
pirates would never be able to recover their treasure. Therefore, the pirates can set up a
protocol such that, out of the seven pirates who share the treasure chest, at least three of
them must work together in order to recover it and no group of fewer than three should
be able to acquire the treasure. This is an example of a (3, 7)-threshold scheme with seven
participants and threshold three. Constructions for threshold schemes were independently
developed by by Blakley [2] and Shamir [15] in 1979.
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Related to redundancy, we can consider the problem of recovery in the case where a
participant loses their share. Extending our example from earlier, assume that, for one of
the pirates in the scheme, their ship was sunk in the ocean along with their share. Since
they have not violated the pirates’ secret sharing code of conduct, they should still be able
to participate in recovering the treasure. The pirates do not want to rely on the original
distributor of their shares to be around to reconstruct the share that the pirate lost. If the
pirates want to enable shares to be repaired, they therefore need to be able to reconstruct
a share using only information from pirates that are part of the threshold scheme.

In this thesis, we will be focusing on such threshold schemes, which enable a participant
who has lost their share to recover it through communication with other participants in
the scheme. After performing a repair, the participant will have regained their original
share. Further, no additional information should be revealed to them or any of the other
participants. Schemes which enable such repairability have been developed where any
subset of participants of sufficient size can perform the repair [8, 13, 19] as well as where
only certain subsets of participants of sufficient size can perform the repair [19].

In a paper from 2017, Stinson and Wei [19] presented a repairable threshold scheme
which used combinatorial designs to achieve repairability. In this thesis, we will be look-
ing at combinatorial repairability for threshold schemes, specifically with respect to the
probability that a repair can be performed using the underlying combinatorial designs.
We evaluate properties associated with the probability that a repair can be performed
and we construct generalized formulas for these probabilities. Additionally, we investigate
how best to choose other participants to contact when attempting to perform a repair and
how to design algorithms with trade-offs between storage and computation which enable a
participant to find a repair set for their failed share.

1.1 Contributions

This thesis focuses on “combinatorial” repairable threshold schemes. We are interested
in the problem of finding participants to participate in a repair and the probability that
sufficient participants are available to perform the necessary repairs, where participants in
the scheme are not always available.

In this thesis we demonstrate the following thesis statements:

• Combinatorial repairable threshold schemes can be analyzed using methods found
in network reliability to demonstrate the robustness of the scheme with respect to
performing a repair.
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• The reliability of combinatorial repairable threshold schemes can be improved by
using t-designs where t > 2.

Our contributions can be summarized here as:

• Evaluate and generalize the probability that a set of participants sufficient for per-
forming a repair is available and exists for repairable threshold schemes using 2-
designs (defined as (v, k, λ)-BIBDs in Section 2.2)

• Evaluate and generalize the expected number of available sets of participants who
are sufficient to perform a repair for repairable threshold schemes using 2-designs

• Design and analyze algorithms for contacting participants sufficient to perform a
repair

• Present t-designs, for t ≥ 2, which can be used to produce repairable threshold
schemes. Evaluate these designs against the previous 2-designs and discuss any re-
quired modifications to our original algorithms.

1.2 Organization

The organization of this thesis is as follows. Chapter 2 contains background information on
secret sharing schemes in general, as well as the combinatorial designs we will need for our
discussion of combinatorial repairability and threshold schemes. In Chapter 3, we present
some related work on repairable threshold schemes as well as corresponding definitions for
such schemes that we will use throughout this thesis. Chapter 4 presents formulas for the
probability that a repair set(s) exists, given the threshold scheme is based on a 2-design.
In Chapter 5, we present the algorithms for contacting participants in order to perform a
repair. The algorithms presented in this chapter will be analyzed under the assumption
that the underlying designs for the repairable threshold schemes are 2-designs. Finally, in
Chapter 6 we introduce the use of t-designs values of t > 2 and we evaluate the implications
for the previous repair set properties and earlier algorithms.
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Chapter 2

Background

2.1 Secret Sharing Schemes

In this thesis we will be discussing secret sharing schemes which are unconditionally secure.
This means that all security results are valid against adversaries with unlimited computa-
tional power. The schemes presented here will consist of a dealer D, who distributes the
shares using a share distribution algorithm to the set of participants P , where D /∈ P .
Each scheme will include three phases: initialization, share distribution, and reconstruc-
tion. Finally, each scheme will have a secrecy property which defines who can access the
secret and in what cases they can do so.

2.1.1 Threshold Schemes

Definition 2.1. Let n be the number of participants in the scheme and let τ be the number
of participants required to recover the secret, where τ and n are positive integers such that
2 ≤ τ ≤ n. The parameter τ is called the threshold. A (τ, n)-Threshold Scheme has a
dealer choose a secret s and additionally distribute a share to each of the n participants
such that:

• Reconstruction: Any subset of the n participants of size τ can determine the secret
from the shares they hold.

• Secrecy : No subset of the n participants consisting of fewer than τ participants is
able to gain any knowledge about the secret.
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In 1979, constructions for threshold schemes were independently developed by Blak-
ley [2] and Shamir [15]. Blakley’s scheme distributes shares as hyperplanes in a finite
geometry while Shamir’s scheme distributes points lying on a polynomial. For Shamir’s
scheme, when we combine τ shares using polynomial interpolation we are able to recon-
struct the secret. We will present Shamir’s construction here, but first we include the
following formula for polynomial interpolation.

Theorem 2.2. [18, Thm. 11.3] Suppose p is prime, suppose x1, x2, . . . , xm+1 are distinct
elements in Zp, and suppose a1, a2, . . . , am+1 are (not necessarily distinct) elements in
Zp. Then there is a unique polynomial F (x) ∈ Zp[x] having degree at most m, such that
F (xi) = ai, 1 ≤ i ≤ m+ 1. The polynomial F (x) is as follows:

F (x) =
m+1∑
j=1

aj
∏

1≤h<m+1,h6=j

x− xh
xj − xh

.

Construction 2.3. Shamir (τ, n)-threshold scheme, τ ≤ n

Initialization

Let P = {P1, P2, . . . , Pn} be a set of n participants.

Let the secret space S be a finite field Zp such that p is prime1 and p ≥ n+ 1.

Share distribution

Let s ∈ S be the secret.

1. The dealer D selects τ − 1 values independently and uniformly at random from Zp
as r1, . . . , rτ−1.

2. Choose f ∈ Zp[x] as f(x) = rτ−1x
τ−1 + rτ−2x

τ−2 + · · ·+ r1x+ s.

3. Dealer distributes si = (i, f(i)) to participant Pi for 1 ≤ i ≤ n.

Reconstruction

1Note that Shamir threshold schemes can also be constructed over fields of order q where q is a prime
power
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A collection of τ or more participants uses their combined shares and performs
polynomial interpolation using Theorem 2.2 to recover the equation f of degree
τ − 1, which allows the collection of participants to determine the value of the secret
s = f(0).

Remark 2.4. Note that there exists optimizations such that you do not have to reconstruct
the entire polynomial. See Section 11.5 in Cryptography, Theory and Practice [18].

Secrecy

Let there be a coalition of most τ − 1 participants who attempt to determine the
secret s ∈ Zp. By combining their τ−1 shares, the coalition computes a polynomial g
that is consistent with their shares and a guessed value for the secret t ∈ Zp. Observe
that t can be any value from Zp and still be consistent with a polynomial computed
from the τ − 1 shares. Therefore, the probability that s has a particular value has
not changed from the point where a coalition has 0 shares or τ − 1 shares. Without
τ shares no additional information about s can be learned.

Example 2.5. Consider an example of a (3, 5)-threshold scheme. Let the secret s = 3 ∈
Z11 and let f(x) = 9x2 + 4x+ 3.

Share distribution:

P1 is given s1 = f(1) = 5.

P2 is given s2 = f(2) = 3.

P3 is given s3 = f(3) = 8.

P4 is given s4 = f(4) = 9.

P5 is given s5 = f(5) = 6.

Reconstruction:

Let P1, P3, and P5 be the collective wanting to recover the secret.

We know f(x) = a0 + a1x+ a2x
2 for some values of a0, a1, and a2.

Determine f(xi) for each participant:
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f(1) = a0 + a2 + a3

f(3) = a0 + 3a2 + 9a3

f(5) = a0 + 5a2 + 3a3

Through solving the above system of linear equations, or through using polynomial
interpolation, we get the result a0 = 3, a1 = 4, and a2 = 9. Therefore we have
a0 = f(0) = 3 = s.

2.1.2 Ramp Schemes

Definition 2.6. Let n be the number of participants in the scheme and let τ1 and τ2 be
the lower and upper thresholds respectively such that 1 ≤ τ1 < τ2 ≤ n. A (τ1, τ2, n)-Ramp
Scheme has a dealer choose a secret s and distribute a share to each of the n participants
such that:

• Reconstruction: Any subset of the n participants of size τ2 can determine the secret
from the shares they hold.

• Secrecy : No subset of the n participants consisting of at most τ1 participants is able
to gain any knowledge about the secret.

A (τ1, τ2, n)-Ramp Scheme is equivalent to a (τ, n)-Threshold Scheme, when τ2 = τ1 +
1 = τ .

Construction 2.7. Shamir (τ1, τ2, n)-ramp scheme, τ1 < τ2 ≤ n

Initialization

Let P be a set of n participants, where P = {P1, P2, . . . , Pn}.

Let the secret space S be a finite field Zp such that p is prime and p ≥ n+ 1.

Share distribution

Let s ∈ S = (Zp)t0 be the secret, where t0 = τ2− τ1. Note that s is a t0-tuple, where
s = (r0, . . . , rt0−1).

1. The dealer D selects τ1 = τ2− t0 values independently and uniformly at random from
Zp as rt0 , . . . , rτ2−1.
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2. Choose f ∈ Zp[x] as f(x) = rτ2−1x
τ2−1 + rτ2−2x

τ2−2 + · · ·+ r0.

3. Dealer distributes si = f(i) to participant Pi for 1 ≤ i ≤ n.

Reconstruction

A collection of τ2 or more participants uses their combined shares and performs
polynomial interpolation using Theorem 2.2 to recover the equation f of degree τ2−1,
which allows the collection of participants to determine the value of the secret s =
the t0 low order coefficients of the function f .

Secrecy

Let there be a coalition of most τ1 participants who attempt to determine the secret
s ∈ (Zp)t0 . By combining their τ1 shares, the coalition computes a polynomial g that
is consistent with their shares and a secret, that is a t0-tuple, t ∈ (Zp)t0 . However, t
can be any value from (Zp)t0 and still be consistent with the polynomial computed
from the τ − 1 shares. Therefore, the probability that s has a particular value has
not changed from the point where a coalition has 0 shares or τ1 shares. Without at
least τ1 + 1 shares no additional information about s can be learned. See Example
2.10.

Remark 2.8. Any coalition of at least τ1 + 1 and at most τ2 − 1 will not learn the secret;
however, the number of possible secrets will be reduced with each additional share beyond
τ1. Therefore, any such coalition of at least τ1+1 will be require fewer guesses to determine
the secret. See Example 2.9.

Example 2.9. Consider an example of a (1, 3, 5)-ramp scheme where s ∈ (Z41)
t0 , where

t0 = τ1 − τ2 = 2. Let s = (3, 5) ∈ Z41 × Z41. Let f(x) = 19x2 + 5x+ 3 (mod 41).

Share distribution:

P1 is given s1 = f(1) = 27.

P2 is given s2 = f(2) = 7.

P3 is given s3 = f(3) = 25.

P4 is given s4 = f(4) = 40.

P5 is given s5 = f(5) = 11.

8



Reconstruction:

Let P1, P3, and P5 be the collective wanting to recover the secret.

We know f(x) = a0 + a1x+ a2x
2 for some values of a0, a1, and a2.

Determine f(xi) for each participant:

f(1) = a0 + a2 + a3

f(3) = a0 + 3a2 + 9a3

f(5) = a0 + 5a2 + 3a3

Through solving the above system of linear equations, or through using polynomial
interpolation, we get the result a0 = 3, a1 = 5, and a2 = 19. Therefore we have
(a0, a1) = (3, 5) = s.

Example 2.10. Consider an example with respect to secrecy for coalitions of size x, where
τ1 < x < τ2. We will continue with the ramp scheme from Example 2.9. Since τ1 = 1 and
τ2 = 3, the only value for x that satisfies the above conditions would be a coalition of size
x = 2.

For a coalition of size τ1 = 1, one can verify that any “guessed” secret is consistent
with the share, however, there are 412 possible solutions.

For a coalition of size x = 2, there will only be 41 possible solutions which are consistent
with both of the shares in the coalition. Therefore, for coalitions of size greater than τ1,
but less than τ2 there is a reduction in the set of possible solutions in comparison to the
possible solutions for a coalition of size τ1 or less.

2.2 Designs

Definition 2.11. A design is a pair (X,A) such that X is a finite set of elements called
points, and A is a finite collection of non-empty subsets of X called blocks, of X.

2.2.1 Balanced Incomplete Block Designs

Definition 2.12. A (v, k, λ)-Balanced Incomplete Block Design, or (v, k, λ)-BIBD, is a
design such that:

9



1. |X| = v,

2. each block contains exactly k points, and

3. every pair of distinct points is contained in exactly λ blocks.

Note that when writing a block B, we can write it as abc rather than {a, b, c}.

Example 2.13. A (7, 3, 1)-BIBD, (X,A), where

X = {1, 2, 3, 4, 5, 6, 7} and

A = {123, 145, 167, 246, 257, 347, 356}.

Theorem 2.14. [17, Thm. 1.8] Every point in a (v, k, λ)-BIBD occurs in exactly

r = λ(v−1)
k−1

blocks. The value r is termed the replication number.

Theorem 2.15. [17, Thm. 1.9] A (v, k, λ)-BIBD has exactly

b =
vr

k
=
λ(v2 − v)

k2 − k

blocks of size k.

Example 2.16. Consider the previous example of a (7, 3, 1)-BIBD. The replication number
is r = 3 and the number of blocks in the design is b = 7.

2.2.2 Steiner Triple Systems

Definition 2.17. A Steiner Triple System, or STS(v), is a (v, 3, 1)-BIBD.

Theorem 2.18. [17, Lem. 6.11] There exists an STS(v) if and only if v ≡ 1, 3 (mod 6),
v ≥ 7.

10



2.2.3 Projective Planes

Definition 2.19. An (n2 +n+ 1, n+ 1, 1)-BIBD with n ≥ 2 is called a projective plane of
order n.

Definition 2.20. A BIBD where b = v (or equivalently from Theorem 2.14, r = k, or
λ(v − 1) = k2 − k)) is called a symmetric BIBD.

Theorem 2.21. [17, Thm. 2.10] For every prime power q ≥ 2 there exists a symmetric
(q2 + q + 1, q + 1, 1)-BIBD (i.e., a projective plane of order q).

2.2.4 Difference Sets

Definition 2.22. Let G be an additively written abelian group of order v and let D be a
k-subset of G. Let ∆D be the unordered list (or multiset) of differences defined as

∆D = (d− d′ : d, d′ ∈ D, d 6= d′).

Then D is called a (v, k, λ)-difference set if ∆D = λ(G \ {0}). What this notation means
is that, if we were to consider a list of the differences in such a set, each non-zero element
from G would occur exactly λ times.

Example 2.23. Let the group G = Z21 and let D = {3, 6, 7, 12, 14}.
If we compute all of the differences from D we get the following:

3− 6 = 18

6− 3 = 3

7− 3 = 4

12− 3 = 9

14− 3 = 11

3− 7 = 17

6− 7 = 20

7− 6 = 1

12− 6 = 6

14− 6 = 8

3− 12 = 12

6− 12 = 15

7− 12 = 16

12− 7 = 5

14− 7 = 7

3− 14 = 10

6− 14 = 13

7− 14 = 14

12− 14 = 9

14− 12 = 2

By computing all of the differences using the elements of D, every element in Z21 \ 0 is
produced.

Definition 2.24. Let G be any finite abelian group (written additively) and let D =
{D1, . . . , D`} 6= ∅ be any subset of G. Then the design dev (D) := (G,B) with B :=
{D + x : x ∈ G} is called the development of D.
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Definition 2.25. Suppose (X,A) and (Y,B) are two designs with |X| = |Y |. (X,A) and
(Y,B) are isomorphic if there exists a bijection α : X 7→ Y such that

[{α(x) : x ∈ A} : A ∈ A] = B.

The bijection α is called an isomorphism.

Definition 2.26. For a design (X,A), an automorphism of (X,A) is an isomorphism of
the design with itself.

Definition 2.27. The automorphism group of a design consists of all automorphisms of
the design.The group operation is composition of permutations.

Definition 2.28. A group G acts transitively on a set D if, for every d1, d2 in D, there is
a permutation π ∈ G such that π maps d1 to d2.

Definition 2.29. A (v, k, λ)-BIBD with an automorphism group Γ is said to be regular if
Γ contains a subgroup Γ′ of order v which acts transitively on the elements.

Theorem 2.30. [1, Thm. 1.6] Let G be a finite abelian group, and let D be a proper,
non-empty subset of G. Then D is a (v, k, λ)-difference set if and only if dev (D) is
a symmetric (v, k, λ)-BIBD which is regular with respect to G. Moreover, every regular
symmetric (v, k, λ)-BIBD may be represented this way.

In other words, a (v, k, λ)-difference set D can serve as a base block for a (v, k, λ)-BIBD.
All of the blocks in the design can be generated from the “base block”. Note, however,
that the above theorem does not generalize to difference families, which will be discussed
later.

Example 2.31. Consider D = {031} and G = Z7. We can generate all of the blocks in
a (7, 3, 1)-BIBD by taking the base block B = 031 and increasing the value of each of its
points by each possible value x ∈ G. For example:

1. Let x = 4

2. Increase each point by x modulo 7: 0 + 4, 3 + 4, 1 + 4 to produce the block 405

If we apply this process for all values of x, we get all of the blocks:

A = {124, 235, 346, 450, 156, 260, 130}.
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Definition 2.32. Let G be an automorphism group of a design. The orbit of a block B
is the set of all blocks that can be obtained from B by applying an automorphism in G.
The orbit of B is denoted by orbit(B).

Definition 2.33. If a base block B is fixed by some automorphism g 6= 0, then its orbit(B)
is called a short orbit.

Example 2.34. Consider the base blocks {0, 1, 4}, {0, 2, 9}, {0, 5, 10} for Z15.

1. Let g = 5, and apply it to B = {0, 5, 10}.

2. Since we have 0 + 5 = 5, 5 + 5 = 10, and 10 + 5 = 0 in Z15, we return back to the
same B = {0, 5, 10}.

3. Thus, the base block {0, 5, 10} has a short orbit of size five.

2.2.5 Difference Families

Definition 2.35. Let G be an additive abelian group of order v. Then, ` k-element subsets
of G, Bi = {Bi,1, Bi,2 . . . Bi,k}, (1 ≤ i ≤ `) form a (v, k, λ)-Difference Family if every non-
zero element of G occurs λ times among the differences bi,x − bi,y, (i = 1, . . . , `;x, y =
1, . . . , k, x 6= y). The sets Bi are base blocks.

Example 2.36. Let us consider a (13, 3, 1)-difference family where G is (Z13,+) and
D = {014, 028}.

The differences in ∆D produced from 014 are 1, 3, 4, 9, 10, 12. The differences in ∆D
produced from 028 are 2, 5, 6, 7, 8, 11.

The set D = {014, 028} contains two base blocks.

Theorem 2.37. [17, Thm. 3.46] Suppose D = {D1, . . . , D`} is a (v, k, λ)-difference family
in the abelian group (G,+). Then,

1. (G, dev({D1, . . . , D`})) is a (v, k, λ)-BIBD, and

2. Aut(G, dev({D1, . . . , D`})) contains a subgroup Ĝ that is isomorphic to G.
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2.2.6 Cyclic Steiner Triple Systems

We can consider a special case of difference families for triple systems.

Definition 2.38. For each integer v, a difference triple is defined as a subset of three
distinct elements of {1, 2, . . . , v − 1} such that:

1. their sum is 0 (mod v), or

2. one element is the sum of the other two (mod v)

Definition 2.39. An STS(v) is cyclic if it has an automorphism that is a permutation
consisting of a single cycle of length v.

Definition 2.40. Heffter’s Difference Problems

1. Let v = 6m + 1. Is it possible to partition the set {1, 2, . . . , (v − 1)/2 = 3m} into
difference triples?

2. Let v = 6m+3. Is it possible to partition the set {1, 2, . . . , (v−1)/2 = 3m+1}\{v/3 =
2m+ 1} into difference triples?

Solutions to Heffter’s first difference problem HDP1 and Heffter’s second difference
problem HDP2 exist due to Peltesohn.

Theorem 2.41. [6, Thm. 2.17] For all m ≥ 1, there exists an HDP1(m) and an STS(6m+
1).

Theorem 2.42. [6, Thm. 2.18] For all m ≥ 2, there exists an HDP2(m) and an STS(6m+
3). There is no HDP2(1).

There are additional constructions for solving Heffter’s difference problems using integer
sequences.

Example 2.43. Consider Theorem 2.41 and let m = 1.

If m = 1, then v = 6(1) + 1 = 7. It is possible to partition the set {1, 2, 3} into a
difference triple.

Each triple (in this case there is only one) from the solution to the HDP1 can be used
to construct the base block for a cyclic STS(v). The difference triple 123 produces the
base block {0, 1, 1 + 2). That is, the base block for this cyclic STS(v) is B = 013.
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Example 2.44. Consider Theorem 2.41 and Theorem 2.42 for m = 2. For m = 2, we have
solutions to both HDP1 and HDP2.

If m = 2, then by Theorem 2.41 v = 6(2) + 1 = 13. It is possible to partition the set
{1, 2, 3, 4, 5, 6} into difference triples, 134 and 256.

Each triple from the solution to the HDP1 can be used to construct the base block(s)
for a cyclic STS(v). The difference triple 134 produces the base block {0, 1, 1 + 3). The
difference triple 256 produces the base block {0, 2, 2 + 5}. So, the base blocks for the
constructed STS(13) are B = {014, 027}.

If m = 2, then by Theorem 2.42 v = 6(2) + 3 = 15. It is possible to partition the
set {1, 2, 3, 4, 5, 6, 7} \ {5} into difference triples. For this example we can partition the
set such that the set of difference triples is {134, 267}. These result in the base blocks
B = {014, 028}. Each of these base blocks can generate 15 blocks including itself. This
would result in a total of 30 of the 35 blocks in the design. For this solution we also need to
include a base block that has a short orbit. A base block with a short orbit for this design
can be specified as {0, 5, 10}. Therefore, the base blocks for the STS(15) constructed here
are B = {014, 028, {0, 5, 10}}.
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Chapter 3

Related Work

In this section we will discuss the concept of share repairability and the corresponding
related work. For a threshold scheme, assume that a participant P` has lost their share.
We want P` to be able to recover their share without intervention form the dealer (who
we assume is no longer part of the scheme) through communication with the other partic-
ipants. Additionally, we assume that for each participant in the scheme that there exists
secure connections2 with each of the other participants in the scheme that they can use to
communicate.

3.1 Repairable Secret Sharing Schemes

Definition 3.1. A threshold scheme with n participants and a threshold τ is repairable if
in addition to reconstruction and secrecy we have the following property:

• Repairability: Assume a participant P` has lost their share. Then, there exists a
subset of the n participants of size d, where d ≥ τ , such that each of the d participants
can use their share which when combined results in the reconstruction of the failed
share. Additionally, after the repair takes place, none of the participants will have
gained any information they did not already possess.

Within the repairability property, the results may be combined by either the partic-
ipants who are providing the “subshares” and who together perform a computation, or

2We assume both authentication and confidentiality.
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by the participant with the failed share, once they have received all of the required com-
ponents to recover their share. Note that, when we are discussing performing a repair,
we are considering scenarios in which the share cannot be reissued by a dealer, who is
unavailable, or “offline”. Additionally note that the reconstruction of the share is not the
same as recovering the secret.

For a repairable threshold scheme to maintain its threshold it is apparent that it is
necessary to require no fewer than τ participants, excluding P`, to perform a repair, so
d ≥ τ . When evaluating the security of the scheme, it is additionally important to note
that it must retain security against coalitions of participants of size τ − 1 who may pool
their information in an attempt to learn the secret. In the case of a coalition of size τ − 1,
the participant with the failed share, P`, may be a part of the coalition but is not required
to be. In the repairable threshold schemes presented here, the participants involved in
performing a repair do not acquire any additional information that they did not hold
before the repair. They will still only possess their own shares. Therefore, we will see
throughout that we retain security against a coalition of τ − 1 participants.

Definition 3.2. The repairing degree d is the minimum size of the subset of participants
required to perform a repair on a failed share.

Definition 3.3. A (τ, d, n)-RTS is a repairable threshold scheme with n participants,
threshold τ and repairing degree d. It is necessary to have d ≥ τ .

When discussing repairable secret sharing schemes there are two types of repairability.

Definition 3.4. Universal repairability is the case where any subset of d participants is
able to perform a repair for a participant with a failed share.

Definition 3.5. Restricted repairability is the case where there exists at least one (possibly
more) subset(s) of d participants which is able to perform a repair for a participant with
a failed share.

The repairable threshold schemes in this thesis all have only restricted repairability.

3.2 Combinatorial Repairability

We can construct repairable threshold schemes from other secret sharing schemes (such
as the Shamir scheme shown in Construction 2.3) through using combinatorial designs
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to “expand” the scheme. The following presents the expansion of a threshold scheme to
a repairable threshold scheme using designs, but this idea also can be applied to ramp
schemes.

Definition 3.6. A combinatorial repairable threshold scheme consists of the following:

• a base scheme, such as an (`,m)-threshold scheme or an (`1, `2,m)-ramp scheme,

• a distribution design with m points and n blocks of size k; see Definition 3.8 for when
the base scheme is a threshold scheme and Definition 3.11 for when the base scheme
is ramp scheme,

• the resulting expanded (τ, d, n)-repairable threshold scheme.

Definition 3.7. A (τ, d, n)-repairable threshold scheme has the following components:

• A set of n participants P = {P1, P2, . . . , Pn}.

• Each participant Pj has a share Sj which corresponds to a block from the distribution
design, consisting of k points (subshares).

• Each subshare in a share Sj is represented as sjim . The superscript j indicates which
share the subshare corresponds to and im indicates the point in the design corre-
sponding to the mth subshare, for the share Sj = {sji1 , s

j
i2
, . . . sjik}.

Definition 3.8. A (τ, `)-distribution design is a design with n blocks of size k and m
points. The distribution design yields an expanded scheme with threshold τ if the following
conditions are satisfied:

1. The union of any τ blocks contains at least ` points.

2. The union of any τ − 1 blocks contains at most `− 1 points.

Before presenting Definition 3.11, it is useful to motivate it with some efficiency metrics.

Definition 3.9. The information rate of a repairable threshold scheme is defined as the
ratio

ρ =
log2 |S|
log2 |V|

,

where V is defined as the set of all possible shares and S is defined as the set of all possible
secrets. This metric is used to evaluate the amount of information each player is required
to store in comparison to the size of the secret.
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Definition 3.10. The communication complexity of a repairable threshold scheme is de-
fined as the sum of the sizes of all the messages that have to be transmitted among the
players in order to successfully perform a repair for a player within the scheme, divided by
the size of the secret.

The second scheme presented by Stinson and Wei [19] includes the use of ramp schemes
as base schemes to produce repairable threshold schemes. The use of ramp schemes can
result in schemes with higher information rate and lower communication complexity. Recall
from Construction 2.7 that the secret for a ramp scheme is a t0-tuple and so it is larger
than the secret in a comparable threshold scheme. From the definition for information rate
(Definition 3.9), we know that it compares the size of the information each player stores
to the size of the secret. Since a ramp scheme results in a larger secret it is intuitive that
using a ramp scheme results in a higher information rate. This applies in a similar fashion
to communication complexity as defined in Definition 3.10. Communication complexity
divides the amount of messages to be transmitted for a repair by the size of the secret
and since the size of the secret is larger for ramp schemes we therefore have a lower
communication complexity than for threshold schemes. Essentially, using ramp schemes
leads to improvements in efficiency. In general, when using ramp schemes there is a trade-
off between the size of the share and security, however, here we have no loss of security
and therefore no such trade-off. For this reason, it is useful to consider a more general
definition of distribution designs as seen next in Definition 3.11.

Definition 3.11. A (τ, `1, `2)−distribution design is a design with n blocks and m points.
The distribution design yields an expanded scheme with threshold τ if the following con-
ditions are satisfied:

1. The set of points from the union of any τ blocks contains at least `2 points.

2. The set of points from the union of any τ−1 blocks contains at most `1 points, where
`2 − `1 ≥ 1.

Definition 3.12. A distribution design is repairable if every point in the distribution
design occurs in at least two blocks.

Consider the condition in Definition 3.12. Each of the τ participants in the scheme
correspond to one of the blocks in the distribution design. Assume that a participant, P`
has lost their share corresponding to their block. In order for a repair to be possible, and by
extension for the scheme to be repairable, it is necessary that P` can acquire all of the lost
subshares from some other participants in the scheme. If no such set of participants exists,
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Figure 3.1: Fano Plane, (7, 3, 1)−BIBD

then no participant can provide the subshares and it cannot be repaired. However, if both
P` and one additional participant possess the lost secret, then the additional participant
could communicate it to P` and the secret be repaired.

Theorem 3.13. [19, Thm. 4.1] Suppose there exists a repairable (τ, `1, `2)-distribution
design on m points with n blocks of size k, and suppose that Q is prime and Q ≥ m + 1.
Then there is a (τ, d, n)-repairable threshold scheme with restricted repairability, having
information rate (`2 − `1)/k and communication complexity k/(`2 − `1), where d ≤ k and
every share is in (FQ)d.

For Theorem 3.13, each participant Pj will be given a distinct block from the n blocks in
the distribution design to determine their share Sj. Each of the k points within that block
corresponds to a subshare belonging to Sj. In order to perform a repair, if we assume that
any other randomly chosen participant in the scheme can provide at most one subshare,
then it will require d = k participants to perform a repair. If a participant may be able to
provide more than one subshare to another participant, then it may be sufficient for d < k
participants to perform a repair. In both of these cases, it is still necessary that d ≥ τ to
preserve the secrecy requirements.

Example 3.14. Consider a (τ, d, n)−repairable threshold scheme where the underlying
distribution design is a (7, 3, 1)−BIBD such as that found in Figure 3.1. Then the n = 7
participants correspond to the b = 7 blocks in the design (here n = b). The union of any
two blocks contains at least five points and the union of any one block contains at most
three points. Therefore, we can use the (7, 3, 1)-BIBD as a (2, 3, 5)-distribution design.
The repairing degree is d = 3 as any pair of blocks has at most one point in common. The
resulting expanded scheme is a (2, 3, 7)-repairable threshold scheme.

Base Scheme
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Construct a (5, 7)-threshold scheme or a (3, 5, 7)-ramp scheme. The shares from the
base scheme are S1, S2 . . . , S7.

Distribution Design

Assign the blocks of the (7, 3, 1)-BIBD as follows:

P1 = 123

P2 = 145

P3 = 167

P4 = 246

P5 = 257

P6 = 347

P7 = 356

Distribute Base Scheme Shares to Participants

Distribute each Si to all players having point i from the block design.

P1’s expanded scheme share contains S1, S2, S3.

P2’s expanded scheme share contains S1, S4, S5.

P3’s expanded scheme share contains S1, S6, S7.

P4’s expanded scheme share contains S2, S4, S6.

P5’s expanded scheme share contains S2, S5, S7.

P6’s expanded scheme share contains S3, S4, S7.

P7’s expanded scheme share contains S3, S5, S6.

Reconstruction

Let P1 and P2 wish to reconstruct the secret.

Between them they have five distinct points S1, S2, S3, S4, and S5.

Since the base scheme has τ = 5 or τ2 = 5 (depending on the base scheme chosen),
the participants P1 and P2 can recover the secret s.

Repair

Let P6 require a repair.

Either P1 or P7 can provide S3.
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Either P2 or P4 can provide S4.

Either P3 or P5 can provide S7.

Efficiency Metrics

Information rate can be computed using Theorem 3.13.

If we choose to use a (5, 7)-threshold scheme the information rate is 1/3.

If we choose to use a (3, 5, 7)-ramp scheme the information rate is 2/3.

Communication Complexity can be computed using Theorem 3.13.

For a (5, 7)-threshold scheme the communication complexity is 3.

For a (3, 5, 7)-ramp scheme the communication complexity is 3/2.

3.3 Other Schemes

In this section we will first introduce related work due to Stinson and Wei [19]. Their work
is directly related to this thesis in the sense that the reliability metrics we will define apply
directly to their scheme and our defined algorithms apply to their scheme. Furthermore,
in Chapter 6.1, we will introduce different combinatorial designs that were not included in
their scheme.

Stinson and Wei [19] present two techniques for constructing repairable threshold
schemes. The first of these schemes (the “enrollment protocol”) is based on work by
Nojoumian et al. [13]. The second scheme uses distribution designs to allocate shares from
the base scheme to the participants in order to produce an expanded repairable threshold
scheme. In Section 5 of their paper, they present and evaluate different combinatorial
designs as distribution designs. The designs they consider include Steiner triple systems,
balanced incomplete block designs with λ = 1, and projective planes. Projective planes
were used to provide more possible values for τ as well as to achieve smaller repairing sets.
Each of these designs produce repairable threshold schemes with restricted repairability.
They additionally consider possible combinatorial solutions which produce universal re-
pairability, although we will only be working with repairable threshold schemes which
have restricted repairability. The algorithms presented here can be applied when using
the designs described in Stinson and Wei’s work as distribution designs. Additionally, in
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Chapter 6 we will consider the use of different designs than those used by Stinson and
Wei as distribution designs (namely, t-designs with t > 2) which will also work with our
algorithms (although with some modifications).

In the following we include related constructions for repairable threshold schemes. None
of the following, or preceeding, or works consider the reliability of their schemes under a
model where participants can be unavailable. Therefore, they are included as reference to
other methodologies as opposed to direct comparisons to our work.

Other constructions of repairable threshold schemes are obtained from secure regenerat-
ing codes. These codes can be separated into two types: Minimum Bandwidth Regenerating
(MBR) codes, which minimize communication requirements when performing a repair; and
Minimum Storage Regenerating (MSR) codes, which, of course, minimize the storage re-
quired in order to enable share repairing. An example of a repairable threshold scheme
using MBR codes is due to Guang et al. [8]. Unlike the combinatorial schemes considered
in this thesis, the scheme due to Guang et al. provides universal repairability.

Rouayheb and Ramchandran introduced an exact MBR code in a paper in 2010 [7]
using what they call fractional repetition codes. The fractional repetition codes are based
on regular graphs and Steiner systems. The fractional repetition codes can be understood
as serving a role similar to the distribution designs, however, they do not preserve both
properties of the distribution design. In our terminology, each participant contributing
to a repair provides one subshare only. The data is distributed such that the union of
d participants will contain at least k distinct subshares. Unlike the distribution designs,
however, they do not have the property that the union of τ − 1 participants contains at
most `2 points which is necessary for maintaining the threshold property security against
coalitions of τ − 1 which we require. Therefore, their work does not yield a threshold
scheme.

In a survey due to Laing and Stinson [11], they include a comparison of the different
approaches to repairable threshold schemes. The comparison is with respect to informa-
tion rate, communication complexity, and repairing degree. One such comparison looks at
comparing an MBR based scheme due to Shah et al. [14] to the combinatorial schemes due
to Stinson and Wei [19]. When compared, these two schemes generally achieve equivalent
information rate and communication complexity with the exception of a few cases. For
the exceptions, the MBR schemes do better then the combinatorial schemes using BIBDs
for information rate and communication complexity. Laing and Stinson [11] only compare
MBR based repairable threshold schemes and combinatorial based repairable threshold
schemes as there are no secure MSR based repairable threshold schemes in the literature3

3Note that we help minimize the storage for the combinatorial schemes with Algorithm 4.
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to compare with the combinatorial based threshold schemes. The conclusion of the com-
parison accounts for this computation requirement. Combinatorial schemes, are efficient
in that they do not require further computation to repair a share. In the case of the MBR
based schemes it is necessary to compute linear combinations when performing a repair. In
the case where we are prioritizing communication complexity and when the participants are
able to compute linear combinations, then the MBR based schemes are most appropriate.
In the case where communication complexity is a priority, but such linear computations
are not possible it is most appropriate to use combinatorial based repairable threshold
schemes.
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Chapter 4

Properties of Repairability

Definition 4.1. A repair set consists of d participants from the scheme which provide a
subshare to a participant P` in order to repair P`’s share.

Definition 4.2. The reliability of a repairable threshold scheme is the probability that a
repair can be performed, given that each participant is available with some probability p,
and each probability is independent of one another.

4.1 Availability

When the need for a repair arises, a participant with a failed share can contact other par-
ticipants. Each contacted participant will respond with some probability p. The following
presents two different understandings of the probability p, with respect to the availability
of the participants in the scheme.

4.1.1 Permanent Fault

For a permanent fault, when we contact a participant Pj, it is available with probability
p. If they are not available and if we were to contact them again, they would still be
unavailable. When attempting to perform a repair, this share is therefore of no further
value to us and it would no longer be considered when contacting additional participants
for a repair.
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Figure 4.1: Intersecting participants for P` using a STS(7)

4.1.2 Transient Fault

In this case of a transient fault, when we contact a participant to request a repair, they will
be available to answer our request with probability p. This means that if we contacted a
participant Pj and we did not receive an answer, we could continue to periodically contact
them with the expectation that, at some point, we would receive a response. If a participant
with a failed share contacts Pj and does not receive a response, it can continually attempt
to contact random participants from the scheme, including Pj, until a repair is successful.

Remark 4.3. Throughout this work we will evaluate reliability metrics dependent on the
value of p. These metrics include the existence of a repair set and the expected number of
available repair sets. The computations and theorems corresponding to these metrics are
independent of the fault model. In the permanent model the status of the model does not
continually change. In the transient model the status of the model does continually change;
however, at any snapshot in time we are able to compute existence and expectation given
p.

4.2 Existence of a Repairing Set

Consider an STS(7). Each subshare occurs in r = 3 shares. For each subshare x, y, z
in a share, there exist two other shares, which also contain that subshare, with no share
containing more than one of x, y, or z.

We can begin by considering the probability that there is at least one repairing set
available. Let S1, . . . , S6, be shares, where the intersection of each share with P`’s share is
non-empty. Let x, y, and z (see Figure 4.1) represent participant P`’s share. In order to
successfully repair P`’s share, we require at least one of {S1, S2}, one of {S3, S4} and one
of {S5, S6} to be available. Let p be the probability that a participant is available and let
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Figure 4.2: Existence of an available repair set for STS(7)

R(p) = Pr{a repair set exists}. Then Pr{at least one of {S1, S2} is available} is

1− (1− p)2 = p+ (1− p)p = 2p− p2.

Since p is the probability for any Pi to be available and each probability is independent of
one another, the probability that there exists a repairing set for a failed node P` is

R(p) = (2p− p2)3.

This function is graphed in Figure 4.2 for a range of values of p.

More generally, we have the following result for the existence of a repair set in a re-
pairable threshold scheme where the underlying distribution design is a Steiner triple sys-
tem.

Theorem 4.4. For an STS(v), the probability that there exists at least one repairing set
is:

R(p) = (1− (1− p)r−1)3.

Proof. Let R(p) = Pr{a repair set exists} for a failed block B. Let p be the probability
that a participant is available.

Each subshare occurs r−1 times in the scheme other than its occurrence in B. In order
to repair any subshare within the share we need at least one of the other r−1 participants
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to be available. The probability that at least one of the other r−1 participants is available
is

1− (1− p)r−1.

The probability for any participant to be available is independent of one another and
each participant can help you recover at most one subshare. Therefore, the probability
that we can repair all three subshares is:

R(p) = (1− (1− p)r−1)3.

The graph found in Figure 4.3 shows the graph of the existence of available repair sets
for a number of different values of v. The smallest value of v is the STS(7) with r = 3
(first thin red line), followed by the STS(9) with r = 4 (first thick blue line). Alternating
colors the remaining values of v graphed are STS(13) with r = 6, STS(15) with r = 7,
STS(19) with r = 9, STS(21) with r = 10, STS(25) with r = 12, STS(27) with r = 13,
STS(31) with r = 15, STS(33) with r = 16, and STS(37) with r = 18.

We can further generalize from the case k = 3, to arbitrary values of k.

Theorem 4.5. For a (v, k, 1)−BIBD, the probability that there exists at least one repairing
set is:

R(p) = (1− (1− p)r−1)k.

Proof. This follows using the same reasoning as in the proof of Theorem 4.4. Instead of
having three subshares which are each repairable with probability (1 − (1 − p)r−1, there
are k subshares and each participant can help recover at most one subshare. Therefore,
the probability that there exists a repair set is

R(p) = ((1− (1− p)r−1)k.
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Figure 4.3: Existence of available repairing sets for STS(v)

4.3 Expectation for Steiner Triple Systems

Remark 4.6. Besides being a conventional metric, expectation is useful for understand-
ing the difference between repairable threshold schemes with restricted repairability and
repairable threshold schemes with universal repairablity. Recall, in a universal schemes,
any subset of participants of size d can perform a repair. The expected number of available
repair sets for a universal scheme would be

(
n−1
d

)
pd, where n is the number of participants

in the scheme, d is the repairing degree, and p is the probability a participant is available.

In this section, we will consider the expected number of repair sets which will be
available given the probability p that any share is available. When a single share requires
repair, there are six other shares in the set of blocks for the STS(7). If all shares are
available there are eight possible repairing sets. If any one share is unavailable, there are
then only four possible repairing sets. If two shares are unavailable such that both of
them have the same subshare (for example S1 and S2), then a repair is not possible. This
occurs with probability 3(1−p)2. If two shares are unavailable, but do not both supply the
same subshare for the repair, then there are two repairing sets available with probability
3(2p− 2p2)2p2. For there to be only one available repairing set, there are three unavailable
shares such that none of the unavailable shares contribute the same subshare for the repair.
This corresponds to the probability (2p− 2p2)3. This is summarized in Table 4.1.
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Table 4.1: Repair Set Probability Distribution for STS(7)

Number of sets X 0 1 2 4 8

Pr of X 3(1− p)2 (2p− 2p2)3 3(2p− 2p2)2p2 3(2p− 2p2)p4 p6
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Figure 4.4: Expected number of available repair sets for STS(7)

Let X be the number of available repairing sets in Table 4.1. Then,

E(X) = 1(2p− 2p2)3 + 2 · 3(2p− 2p2)2p2 + 4 · 3(2p− 2p2)p4 + 8p6

= 8p3.

Definition 4.7. Linearity of Expectation asserts that the expected value of a sum of
random variables is equal to the sum of the expected values for each of the random variables.
That is,

E[X1 +X2 + ...+Xn] = E[X1] + E[X2] + ...+ E[Xn].
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In the above example, we determined the expectation by considering the probabilities
for each possible value of X (as seen in the probability tables). However, using linearity of
expectation, the computation is simplified as follows:

Theorem 4.8. The expected number of available repair sets for an STS(v) is:

(r − 1)3p3.

Proof. Let X be the number of available repairing sets and let X = X1 + X2 + ... + Xn,
where n is the number of possible repairing sets and let

Xi =

{
1, if the ith repairing set is available

0, otherwise

Then E[X] = E[X1] + E[X2] + ...+ E[Xn].

When generalizing expectation for Steiner Triple Systems with consideration for lin-
earity of expectation, we need to consider the total number of possible repairing sets for a
failed share. For a Steiner Triple System each share consists of three subshares. Each of
these subshares occurs in (r − 1) other shares. Therefore, for any failed share there exists
(r − 1)3 possible repairing sets. The expected number of available repair sets is therefore

E[X] = E[X1] + E[X2] + ...+ E[X(r−1)3 ].

The second thing to consider is the availability of each of these possible repairing sets
which is the value for E[Xi]. Each repairing set is available with probability p3. The
expected number of available repair sets given the probability is therefore

E[X] = p3 + p3 + ...+ p3 =

(r−1)3∑
i=1

p3 = (r − 1)3p3.

4.4 Expectation for Balanced Incomplete Block De-

signs

The expectation for Balanced Incomplete Block Designs follows similarly to that for Steiner
Triple Systems. The difference is that there are (r − 1)k possible repairing sets for a
(v, k, λ)−BIBD and that each of these sets occurs with probability pk.
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Theorem 4.9. The expected number of available repairing sets for a (v, k, λ)−BIBD is

(r − 1)kpk.

Proof. This follows in a similar manner to Theorem 4.5. Instead of having three subshares,
there are k subshares.

We can further note that, if p ≥ 1
r−1 , then E[X] ≥ 1.

The equation for the expected number of available repair sets for STS(7) is graphed in
Figure 4.4. When the probability that a share is available is 0.5, the expected number of
available repairing sets E[X] = 1.
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Chapter 5

Algorithms

This section considers algorithms with trade-offs between computation complexity and
storage complexity. Algorithms within this section assume a security model where the par-
ticipants are “honest-but-curious” (hbc) in that they will follow the protocol as described
but may attempt to collude with one another to gain additional information. For exam-
ple, a node P` requesting a subshare from another participant will only request subshares
corresponding to its original share. In this chapter it is assumed that each participant has
at most one subshare in common with any other participant; however, this assumption
will not hold later on in Chapter 6. For this chapter, our assumption means that when P`
requests a subshare from another participant, then that participant can provide at most
one of the subshares held by P`.

For all of the algorithms below, each participant Pj stores their own share, which
includes each of their k subshare values Sj = {sji1 , s

j
i2
, . . . sjik}. Any additional storage

requirements will be indicated along with the corresponding probability model for that
algorithm. The probability model will either be a permanent fault or a transient fault as
discussed in Section 4.1.

The algorithms that will be presented in this chapter are:

Algorithm 1: Random Participants. This algorithm is analyzed under the transient
fault model and has the smallest storage requirements as each participant only stores
their own share. Although it has the smallest storage requirements,it has the highest
expected complexity.

Algorithm 2: Stored Intersecting Participants. This algorithm is also analyzed under
the transient fault model. It adds an additional storage requirement in order to
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achieve a complexity improvement. In addition to storing their own share, each
participant also stores a set containing all of the participants which intersect with
their share. A participant who has a failed share will not have additional complexity
from contacting participants that do not possess any common subshares because of
the additional storage.

Algorithm 3: Stored Grouped Participants. For this algorithm, we modify the storage
requirements for an additional complexity improvement. Note that for this algorithm
we will change the availability model. The algorithm is analyzed under the permanent
fault model instead of the transient fault model. For the storage requirements, each
participant, in addition to storing a list of participants which intersect with its share,
stores which of their failed subshares each participant intersects with.

Algorithm 4: Generating Participants. The final algorithm is also analyzed under
the permanent fault model. It maintains the complexity of Algorithm 3, but with
a storage improvement due to generating the appropriate intersecting participants
instead of storing them.

Remark 5.1. The value T is a constant that will be found in the analysis of all of the
algorithms. T is chosen with knowledge of the latency of the network and how long it
should take to get a reply from an available participant. Therefore, it appears only as a
constant in the analyses we do.

Remark 5.2. In this section we will present algorithms that assume a participant who
has lost their share is still able to retain information about the other participant and
the labels corresponding the block that maps to their subshares. This storage is possible
because unlike storing the share values, we can store the design, the participants, and the
information about which points from the design a participant’s subshare corresponds to,
are not sensitive. All of this information can be public and therefore can be stored in less
secure storage, such as ROM or even publicly.

5.1 Algorithm 1: Random Participants

Probability Model: In this algorithm, the probability p can be understood as a tran-
sient fault.

Storage: No additional storage beyond each participant Pj’s share Sj.
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Algorithm 1 RandomParticipants(P`,P)

1: /* Performs a repair on S` */

2: while there remains any subshare in S` requiring repair do

3: Contact a random participant from P and request values for any of {s`i1 , s
`
i2
, . . . , s`ik} that P` does not already have

4: Wait time T for a response
5: return S` = {s`i1 , s

`
i2
, . . . , s`ik} for P`

This first algorithm attempts to perform a repair on a failed node P` ∈ P without
any knowledge of which participants in the scheme have shares which intersect with the
player performing a repair. It therefore takes as input the participant P`, which includes its
associated subshare labels (but not the values), as well as the set of other participants, P .
If the algorithm is successful, it will produce the k subshare values S` = {s`i1 , s

`
i2
, . . . , s`ik}

belonging to the participant P`.

In order to perform a repair, the participant P` first contacts a random participant
Pj ∈ P from the scheme who may or not have been previously contacted in the current
repair attempt. Participant P` makes a request for any of the values from S` that they
do not already have. The participant Pj may or may not be online, and so P` waits time
T for a response. If Pj has one of the required subshares, they can then provide it to P`.
Note that it is possible that participant Pj may possess a subshare that P` has already
repaired, but this does not affect how the algorithm proceeds. If, after contacting the
current participant Pj, the participant P` still has remaining subshares requiring repair,
then P` repeats the process from the beginning.

5.1.1 Complexity Analysis

Average Case:

The analysis for Algorithm 1 is a variant on the classic coupon collector problem.

When considering the analysis for this algorithm we can define k states to consider.
The states are as follows:

State 1: From the beginning, where no subshares have been repaired, until the first
successful subshare repair.

State 2: From the first successful subshare repair to the second successful subshare
repair.
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...

State k: From the (k − 1)th successful subshare repair to the final successful repair
which will mean that all k subshares have been repaired.

Let E[ni] be the expected number of participants contacted in the ith state. Then we
can represent the expected number of participants contacted in acquiring all k subshares
as

k∑
i=1

E[ni].

For State 1, we have to account for whether the participant Pj is online and whether
their share intersects with S`. For the first part, they are online with probability p. We
select Pj from the b = vr

k
blocks. Note that this could be b − 1 blocks, which would be

the number of blocks in the design, excluding the one corresponding to the failed share.
However, it will be simpler to use b throughout and include player P` in the possible b
participants. Of these b participants, k(r − 1) of them intersect S` in one subshare. The
probability that a randomly chosen subshare intersects S` in one subshare, and therefore
can contribute a subshare is

k(r − 1)

b
.

For State 2, we will have (r − 1) participants, who even if they intersect S` and are
online, cannot contribute a subshare. This is because there are r−1 participants where the
intersection of their share with S` is the subshare repaired in the previous state. Therefore,
instead of k(r − 1) potential intersecting participants who can provide a subshare, there
are only (k − 1)(r − 1) potential participants. Therefore, the probability that a randomly
chosen participant intersects S` and does not contain the subshare previously repaired is

(k − 1)(r − 1)

b
.

When generalized to the ith stage, we have to consider that of the k(r− 1) intersecting
participants, (i− 1)(r− 1) of them have a subshare already provided in the previous stage
as their intersecting point.The number of intersecting participants, excluding those which
contain subshares already repaired is

k(r − 1)− (i− 1)(r − 1)

= (r − 1)(k − i+ 1).
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Therefore the expected number of participants contacted in the ith stage, E[ni], (in-
cluding the probability p that they are available) is

E[ni] =
b

(r − 1)(k − i+ 1)p
.

Acquiring all k subshares has a total complexity of

b

p

k∑
i=1

1

(k − i+ 1)(r − 1)

=
b

p(r − 1)

k∑
i=1

1

(k − i+ 1)

≈ b

p(r − 1)
ln k.

Since each time we contact a participant we wait time T for a possible response, we
include it as a factor as well, and therefore we have

the expected time = T
b

p(r − 1)
ln k.

5.2 Algorithm 2: Stored Intersecting Participants

Probability Model: In this algorithm, the probability p can be understood as a tran-
sient fault.

Storage: In addition to their share Sj, each participant stores a set R ⊂ P consisting
of all participants that intersect with participant P` and therefore can potentially
provide a repair for one of their subshares. For every participant Pj ∈ R, we have
|Pj ∩ P`| = 1. This set does not indicate which subshare a participant in R can
repair.

This algorithm attempts to perform a repair on a failed node P` ∈ P . It functions
essentially the same as Algorithm 1, but instead of contacting a random participant from
the set of all participants P , it contacts a random participant from the set R. It takes as
input the participant P`, which includes its associated subshare labels (but not the values),

37



Algorithm 2 StoredIntersectingParticipants(P`,R)

1: /* Performs a repair on S` */

2: while there remains any subshare in S` requiring repair do

3: Contact a random participant Pj ∈ R and request they send values for any of {s`i1 , s
`
i2
, . . . , s`ik} that P` does not

already have

4: Wait time T for a response
5: return S` = {s`i1 , s

`
i2
, . . . , s`ik} for P`

as well as the set of other potential repairing participants, R. If the algorithm is successful,
it will produce the k subshare values S` = {s`i1 , s

`
i2
, . . . , s`ik} belonging to the participant

P`.

In order to perform a repair, the participant P` first contacts a random participant
Pj ∈ R from the scheme who may or may not have been previously contacted in the
current repair attempt. Participant P` makes a request for any of the values from S` that
it has not already repaired. The participant Pj may or may not be online, and so P` waits
time T for a response. If Pj has one of the required subshares, they can then provide it
to P`. If, after acquiring a subshare and in the case where no subshare is provided, the
participant P` still has remaining subshares requiring repair, then P` repeats the process
from the beginning.

5.2.1 Complexity Analysis

Average Case:

The analysis for Algorithm 2 is also a variant on the classic coupon collector problem.

When considering the analysis for this algorithm we again can define k states. The
states are as follows:

State 0: From the beginning, where no subshares have been repaired, until the first
successful subshare repair.

State 1: From the first successful subshare repair to the second successful subshare
repair.

...

State k: From the (k − 1)th successful subshare repair to the final kth successful
subshare repair.
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Let E[ni] be the expected number of participants contacted in the ith state. Then we
can represent the expected time for acquiring all k subshares as

k∑
i=1

E[ni].

For State 1, the probability that a subshare is repaired is only dependent upon whether
the participant is online or offline. This is because, unlike for Algorithm 1, every participant
being contacted intersects S`. Therefore, whichever participant we contact from the k(r−1)
participants who is online will be our first “success”.

For State 2, the probability is dependent on whether the participant is online and
whether the participant repairs a distinct subshare from that which was repaired in the
previous state. Of the k(r− 1) participants in the set R only (k− 1)(r− 1) can contribute
subshares distinct from the subshare repaired in the previous state. Therefore, the prob-
ability that a randomly chosen participant from R contributes a distinct share from the
previous state is

(k − 1)(r − 1)

k(r − 1)
=
k − 1

k
.

So, for each of the i states we have to account for, the availability p and the reduction
in the number of participants which can provide a subshare that has not been repaired in
a previous state.

To get E[ni], we compute
1

(k−i+1)(r−1)
k(r−1) p

,

which reduces to
k

(k − i+ 1)p
.

Therefore, acquiring all k subshares has a total expected complexity of

1

p

k∑
i=1

k

k − i+ 1
,

which reduces to
1

p
k ln k.
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Since each time we contact a participant we wait time T we include it as a factor as
well and therefore we have

the expected time =
1

p
Tk ln k.

Note that the change between this analysis and that in the previous subsection is that
instead of selecting participants from a set of size vr

k
, we select participants from a set of

size k(r − 1).

5.3 Algorithm 3: Stored Grouped Participants

Probability Model: In this algorithm, the probability p can be understood as a perma-
nent fault. Note that this is a different availability model then used for the previous
two algorithms.

Storage: In addition to their share Sj, each participant Pj, stores a set R consisting
of k sets of size r − 1, where r is the replication number for the design. So we have
R = {Ri1 , Ri2 , ..., Rik}. Each Rij comprises a list of participants from P who can
perform a repair on the subshare sij.

Algorithm 3 StoredGroupedParticipants(P`,R)

1: /* Performs a repair on S` */

2: for each subshare s`ij in S` do

3: while s`ij requires repair and there exist uncontacted participants from Rij do

4: Contact a new participant Pj from Rij ∈ R and request they send values for s`ij
5: Wait time T for a response

6: if Pj provides s`ij then Break to repair next s`ij

7: return S` = {s`i1 , s
`
i2
, . . . , s`ik} for P`

This algorithm attempts to perform a repair on a failed node P` ∈ P with the knowledge
of which participants in the scheme have a subshare which can be used for performing a
repair for P`. Additionally, these participants are grouped into sets where all members
of a particular set have the same intersecting point s`ij . The algorithm takes as input
the participant P`, which includes its associated subshare labels (but not the values), as
well as the groups of other potential repairing participants, R = {Ri1 , Ri2 , . . . , Rik}. If
the algorithm is successful, it will produce the k subshare values S` = {s`i1 , s

`
i2
, . . . , s`ik}

belonging to the participant P`.
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In order to perform a repair, the participant P` must attempt to repair each s`ij . Begin-

ning with s`i1 , the participant P` first contacts a random participant Pj from a Ri1 who has
not been previously contacted in the current repair attempt. Since the probability p is a
permanent fault, there is no reason to attempt to contact a participant who has previously
not responded. Additionally, it is possible to attempt to contact all k(r − 1) participants
in R and not succeed in repairing S`. Participant P` makes a request for s`i1 . Since the
participant Pj may or may not be online, P` waits time T for a response. After acquiring
a subshare value, the participant P` proceeds to the next remaining s`ij requiring repair,

and repeats the process for all k subshares S`i1 .

Remark 5.3. If a repair set exists, this algorithm will find it. We defined the probability
a repair set exists with Theorem 4.5. The theorem states that a repair set exists with
probability (1− (1− p)r−1)k.

5.3.1 Complexity Analysis

Recall that, for this algorithm, the probability model is the permanent fault model. Within
the permanent fault model, we can consider a worst case execution, as once a participant
is unavailable with probability p, they remain unavailable. It therefore has a termination
point that does not exist with the transient fault model.

Worst Case:

In the worst case where a successful repair occurs, the first (r − 2) participants contacted
for each repair are unavailable and the (r− 1)st participant contacted is available, for each
of the k subshares to be repaired. In this case the algorithm will run in time

k(r − 1)T.

Note that repairing each subshare can be done independently.

Average Case:

This is the average case complexity for a successful repair. For the average case, we need
to account for which player Pi provides a subshare s required for repair. We can do this
by evaluating the sum of the probabilities a successful subshare s is provided by the ith

participant for 1 ≤ i ≤ r − 1. For every subshare s required by P` there are (r − 1) other
participants who can send s. More specifically, for any subshare s it could be the case that,
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1. P1 sends s or,

2. P1 does not send s, but P2 sends s or,

3. P1 does not send s and P2 does not send s, but P3 sends s or

...

r − 1. P1 does not send s and . . . and Pr−2 does not send s, but Pr−1 sends s.

For each of the above cases, the ith case corresponds to participant Pi providing the subshare
s. The probability of any of the above cases is dependent on the availability of the ith

participant and the participants which preceded it being unavailable.

Assume following the algorithm that participant P1 was contacted to repair s. After
contacting P1, P` will wait time T for a response. P1 will respond with probability p and
therefore the complexity associated with this first case is pT . Alternatively, P1 may not
respond with probability 1 − p. If P1 does not respond after time T , then P` moves on
to P2 and waits time T for a response from P2. P2 also responds with probability p. The
complexity in the case where P1 does not respond and P2 does respond will therefore be
2T (1− p)p. To determine the overall complexity we need to compute the probability that
P1 sends s, or P1 does not respond but P2 sends s, or P1 and P2 do not respond but P3

sends s, or Pr−1 sends s and all preceding participants did not respond. For any subshare,
this complexity can be written as:

pT + 2T (1− p)p+ 3T (1− p)2p+ ...+ (r − 1)T (1− p)r−2p.

The above sum can be rewritten as:

r−1∑
i=1

(1− p)i−1piT = pT
r−1∑
i=1

(1− p)i−1i,

where T is the time we wait, and p is the probability that a participant is available to
perform a repair. This summation is an arithmetico-geometric sequence that can be easily
simplified using a tool such as Wolfram Alpha4 to produce the following result,

T

(
(p(r − 1) + 1)(1− p)r + p− 1

(p− 1)p

)
.

4https://www.wolframalpha.com, use “Simplify Sum [k (1 - p)ˆ{(k - 1)}, {k, 1, r-1}]”.
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The above equation can be simplified further by removing a factor of (1−p) to produce,

T

(
1− (p(r − 1) + 1)(1− p)r−1

p

)
.

This equation will be the same for any subshare s being repaired. Therefore, the average
case where k subshares are repaired has the expected complexity

kT

[
1− (p(r − 1) + 1)(1− p)r−1

p

]
.

5.4 Algorithm 4: Generating Participants

Probability Model: In this algorithm, the probability p can be understood as a per-
manent fault.

Storage: In addition to their share S`, each participant stores a set B consisting of
the base blocks for the underlying distribution design. The set B is smaller than the
set R from Algorithm 3. Therefore, for this algorithm, we are reducing the required
storage for each participant.

For this algorithm, instead of storing the grouped intersecting participants R as in
Algorithm 3, each participant stores the base blocks for the underlying distribution design.
The desired intersecting blocks and corresponding participants can then be generated from
the stored base blocks for each subshare requiring repair.

Remark 5.4. You may recall from Section 3.3 that one of the advantages of the combinato-
rial based repairable threshold schemes is that they do not require additional computation.
The computation we are adding here does not remove this advantage. We are only com-
puting over the indices corresponding the blocks of the design which are quite small. In
contrast to this, other methods require performing computations on the shares, The shares
can be quite large and so we still retain the advantage by computing over only small values.

5.4.1 Generating blocks for specific subshares

From a Single Base Block

Assume for now that the underlying distribution design has only one base block, B =
x1x2 . . . xk. The distribution design has points belonging to an abelian group G of size v.
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Algorithm 4 GeneratingIntersectingParticipants(P`,B)

1: /* Performs a repair on S` */

2: for each subshare in S` do

3: while s`ij requires repair and there exist uncontacted participants do

4: Generate a new intersecting block B using the stored base blocks

5: Contact participant Pj corresponding to the generated block B and request they send the value for s`ij
6: Wait time T for a response

7: if Pj provides s`ij then Break to repair next s`ij

8: return S` = {s`i1 , s
`
i2
, . . . s`ik} for P`

Let the blocks for the design B = {B0, B1, . . . , Bb−1}, where b is the number of blocks. A
single base block can generate at most |G| blocks belonging to the design, including itself.
Label the blocks such that each block Bj would be generated using the base block B and
computing xp + j (mod v) for each point xp ∈ B.

Example 5.5. Let the distribution design be a (7, 3, 1)-BIBD with the base block B =
{013} and blocks labelled {B0, B1, B2, B3, B4, B5, B6} as per the description above. The
resulting blocks in the design are:

{013, 124, 235, 346, 450, 561, 602}.

These blocks correspond to players

{P0, P1, P2, P3, P4, P5, P6},

respectively. Going back to the earlier description of generating labelled blocks, we can
consider the block for player P3 as B3 in B. The block B3 would be generated by computing
{0 + 3 (mod 7), 1 + 3 (mod 7), 3 + 3 (mod 7)}, which is block 346.

In order to determine which participants to contact for a repair, the player P` needs
to sequentially generate intersecting participants for each subshare as needed. Using the
points from the base block B we can generate a block Bj such that it contains the value
corresponding to a subshare by computing j = (si−xp) (mod v). The value si is the point
in the design for the subshare that participant P` is attempting to repair and xp is a point
from the base block B. The resulting value from the computation will correspond to the
participant Pj. Iterating over each xp ∈ B will result in all the blocks which contain the
relevant si.

Example 5.6. Let the distribution design be a (7, 3, 1)-BIBD with the base block B =
{013} from Example 5.5. Let the participant requiring a repair be P4 with the correspond-
ing block 450.
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For each subshare that P4 has, there are two other participants in the scheme which
have the same subshare. We generate participants who can repair subshare si = 4 as
follows:

1. Begin with the first point x0 = 0 from B = 013.

2. Compute 4− 0 (mod 7) = 4. This corresponds to the participant P4 who requires a
repair. If we take each point from the block design and increment it by 4 (mod 7),
it would produce 450 (P4’s block) and it is therefore not a member of R.

3. Take the next point x1 = 1 from B = 013.

4. Compute 4− 1 (mod 7) = 3. This would give the block 346 held by participant P3.

5. Take the final point x2 = 3 from B = 013.

6. Compute 4− 3 (mod 7) = 1. This would give the block 124 held by participant P1.

The participants that P4 can contact in order to attempt to repair the value of si = 4
are therefore P1 and P3. These would correspond to one of the Ri ∈ R.

Now we generate participants who can repair si = 5 for participant P4 as follows:

1. Begin with the first point x0 = 0 from B = 013.

2. Compute 5− 0 (mod 7) = 5. This would give the block 561 held by participant P5.

3. Take the next point x1 = 1 from B = 013.

4. Compute 5− 1 (mod 7) = 4. This corresponds to the participant P4 who requires a
repair. This would give the block 450 (P4’s block) and it is therefore not a member
of R.

5. Take the final point x2 = 3 from B = 013.

6. Compute 5− 3 (mod 7) = 2. This would give the block 235 held by participant P2.

The participants that participant P4 can contact in order to attempt to repair the value
of si = 5 are therefore P5 and P2.

Generate participants who can repair si = 0 for participant P4 as follows:
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1. Begin with the first point x0 = 0 from B = 013.

2. Compute 0− 0 (mod 7) = 0. This would give the block 013 held by participant P0.

3. Take the next point x1 = 1 from B = 013.

4. Compute 0− 1 (mod 7) = 6. This would give the block 602 held by participant P6.

5. Take the final point x2 = 3 from B = 013.

6. Compute 0 − 3 (mod 7) = 4. This would give the block 450 (P4’s block) and it is
therefore not a member of R.

The participants that participant P4 can contact in order to attempt to repair the value
of si = 0 are therefore P0 and P6. Considering all the generated sets for block 450 results
in the set of participants

R = {{P1, P3}, {P5, P2}, {P0, P6}}.

Algorithm 5 RepairBlocksFromSingleBaseBlock(P`,B)

1: /* Generates all intersecting blocks for P` using B */

2: /* Assume base (v, k, 1)-BIBD */

3: for each point xp in B do

4: for each point p in P` do

5: Compute x = p− xp (mod v)

6: if x 6= ` then Construct the next intersecting block as {p1 + x, p2 + x, p3 + x}
7: return R = {R1, R2, . . . , Rk} for P`

In general, we can generate all the relevant intersecting blocks for a participant P`
where there is one base block in the underlying design using Algorithm 5.

From Multiple Base Blocks

In the case of a distribution design which has more than one base block, each base block
will generate |G| blocks for the design, with the noted exception of base blocks with short
orbits (see Definition 2.33). For multiple base blocks, we modify the labeling technique to
indicate which base block generated the block. So, where before we labelled a block Bj

we will now label it as Bi,j. The value i indicates the block is generated from the ith base
block from the set B. The value j is the same value as for our original labeling scheme
except that it is reset back to zero for each base block.
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Example 5.7. Let B = {B0, B1} be the set of base blocks for a distribution design over
a group G, |G| = n. Following the original ordering with the additional labeling, and
assuming no block results in a short orbit, then the resulting blocks would be:

{B0,0, B0,1, . . . B0,n, B1,0, B1,1 . . . B1,n}.

The labelled blocks are ordered such that each block Bi,j is in the order it would be
generated using the base block Bi and computing xp + j (mod v) for each xp ∈ Bi.

Example 5.8. Let the distribution design be a (13, 3, 1)-BIBD with base blocks B =
{014, 027}. Let participant P1,12 have the share corresponding to block {12, 0, 3} in the
design. For each subshare that P1,12 has, there are five other participants in the scheme
which have the same subshare.

We generate participants who can repair si = 12 for participant P12 as follows:

From first base block 014

1. Begin with the first point x0 = 0 from 014.

2. Compute 12− 0 (mod 13) = 12. This corresponds to the participant P0,12 who
requires repair and would give the block {12, 0, 3}. It is therefore not part of
this R.

3. Take the next point x1 = 1 from 014.

4. Compute 12 − 1 (mod 13) = 11. This would give the block {11, 12, 2} held by
participant P0,11.

5. Take the final point from the first base block x2 = 4.

6. Compute 12 − 4 (mod 13) = 8. This would give the block {8, 9, 12} held by
participant P0,8.

From second base block 027

1. Begin with the first point x0 = 0 from 027.

2. Compute 12 − 0 (mod 13) = 12. This would give the block {12, 1, 6} held by
participant P1,12.

3. Take the next point x1 = 2 from 027.

4. Compute 12− 2 (13) = 10. This would give the block {10, 12, 4} held by P1,10.

5. Take the final point from the second base block x2 = 7.
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6. Compute 12 − 7 (mod 13) = 5. This would give the block {5, 7, 12} held by
participant P1,5.

The participants that participant P0,12 can contact in order to attempt to repair the
value of si = 12 are therefore:

R0 = {P0,11, P0,8, P1,12, P1,10, P1,5}.

The same process as shown for si = 12 can be applied to each of the other si which
require a repair.

Algorithm 6 RepairBlocksFromMultipleBaseBlocks(P`,B)

1: /* Generates all relevant blocks for P` using B */
2: /* Assume base (v, k, 1)-BIBD */

3: for each base block B in B do

4: for each point xp in B do

5: for each point p in P` do

6: Compute x = p− xp (mod v)

7: if x 6= ` then Construct the next repair block as {p1 + x, p2 + x, . . . , pk + x}
8: return R = {R1, R2, . . . , Rk} for P`

In general, we can generate all the relevant intersecting blocks for a participant P` where
there are multiple base blocks in the underlying distribution design using Algorithm 6.

5.4.2 Complexity Analysis

Note that for the complexity analysis, this algorithm essentially reduces down to Algo-
rithm 3. It performs an additional calculation in order to determine who to contact in-
stead of storing these participant labels. The motivation here is therefore not to reduce
complexity, but to reduce the storage requirements for each participant.

Worst Case:

In the worst case, it will be necessary to generate and contact all k(r− 1) possible partic-
ipants before the repair is complete. This would therefore require time Tk(r − 1).
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Average Case:

For our average case analysis it follows from Algorithm 3 that it will take time

kT

[
1− (p(r − 1) + 1)(1− p)r−1

p

]
.
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Chapter 6

Beyond 2-Designs

In the schemes discussed so far, including the work of Stinson and Wei [19], all of the
distribution designs produced repairable schemes such that, during a repair, each partici-
pant is able to provide at most one subshare to help repair the failed share. Each of these
distribution designs was a t − (v, k, λ) design (see Definition 6.1) with t = 2 and λ = 1.
In the following, we will consider t-designs with t ≥ 3, which will result in cases where
participants can provide more than one share during a repair.

The following defines t-designs where t > 2, outlines their use as distribution designs
and compares the resulting repairable threshold schemes to the resulting schemes from
distribution designs with t = 2.

6.1 t-Designs

Definition 6.1. A t − (v , k , λ) design is a design where:

1. |X| = v,

2. Each block is of size k,

3. Every set of t points from the set X occurs in exactly λ blocks.

Definition 6.2. A 3 − (v, 4, 1) design is a Steiner quadruple system of order v, denoted
SQS(v). For all SQS(v), v ≡ 2, 4 (mod 6).

Theorem 6.3. [17, Thm. 9.16] If there exists an SQS(v) then there exists an SQS(2v).
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Theorem 6.4. [17, Thm. 9.18] There exists an SQS(2n) for all integers n ≥ 3.

There are a number of Steiner quadruple systems for which we can explicitly write
out the blocks. The smallest of these are the SQS(8) and SQS(10). These will serve
as examples for using t-designs (t ≥ 3) as distribution designs for repairable threshold
schemes.

Example 6.5. For an example with t = 3, we can consider an SQS(8), which is a 3 −
(8, 4, 1) design. Let X = {1, 2, 3, 4, 5, 6, 7, 8}. Then the corresponding blocks are

1234 5678

1256 3478

1278 3456

1357 2468

1368 2457

1458 2367

1467 2358.

The focus going forward will be on 3-designs and comparing them to 2-designs through-
out this chapter. However, first we can make note of examples for both t = 3 and t = 4.

Example 6.6. The following is a 4− (11, 5, 1) design.

2 5 7 8 10

1 3 6 9 10

2 5 7 9 11

1 3 4 7 11

2 8 9 10 11

3 4 6 10 11

3 4 5 9 11

1 2 3 9 11

4 5 8 10 11

1 4 5 7 8

1 2 5 9 10

1 4 6 7 10

2 4 7 10 11

1 2 4 7 9

1 3 8 10 11

1 7 8 9 10

1 2 7 8 11

1 5 8 9 11

1 3 5 6 11

4 7 8 9 11

1 4 5 6 9

1 5 7 10 11

1 2 4 8 10

4 5 7 9 10

1 4 6 8 11

2 3 4 8 11

2 4 5 8 9

1 2 3 7 10

2 3 4 9 10

1 2 3 4 6

3 4 7 8 10

1 3 6 7 8

1 3 4 5 10

1 2 4 5 11

5 6 7 8 9

2 3 5 6 9

2 6 7 9 10

3 5 6 7 10

1 3 5 7 9

2 5 6 8 11
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3 4 5 6 8

1 3 4 8 9

1 2 6 10 11

2 3 6 8 10

1 2 3 5 8

3 7 9 10 11

1 6 7 9 11

6 7 8 10 11

3 4 6 7 9

2 4 6 9 11

5 6 9 10 11

2 3 5 10 11

4 5 6 7 11

2 3 4 5 7

4 6 8 9 10

2 3 6 7 11

1 4 9 10 11

2 3 7 8 9

3 5 7 8 11

3 5 8 9 10

2 4 5 6 10

1 2 5 6 7

1 5 6 8 10

2 4 6 7 8

1 2 6 8 9

3 6 8 9 11

Example 6.7. The following is a 5− (12, 6, 1) design.

1 2 5 7 8 10

1 3 6 9 10 12

1 2 5 7 9 11

1 3 4 7 11 12

1 2 8 9 10 11

2 4 6 9 10 12

2 3 5 6 10 12

5 7 8 9 10 11

2 5 7 8 9 12

3 4 7 9 10 12

1 2 5 9 10 12

1 4 6 7 10 12

3 5 6 8 9 12

3 4 5 8 11 12

4 6 7 8 9 12

1 7 8 9 10 12

1 2 7 8 11 12

1 5 8 9 11 12

1 3 5 6 11 12

2 4 6 7 11 12

1 4 5 6 9 12

1 5 7 10 11 12

2 4 5 6 8 12

2 5 8 10 11 12

1 4 6 8 11 12

2 3 6 7 9 12

2 3 6 8 11 12

2 7 9 10 11 12

3 4 6 9 11 12

2 3 4 10 11 12

4 6 7 9 10 11

1 3 6 7 8 12

1 3 4 5 10 12

4 5 6 10 11 12

1 5 6 7 8 9

2 4 6 8 10 11

1 2 6 7 9 10

2 5 6 8 9 10

2 3 6 9 10 11

1 2 5 6 8 11

1 3 4 5 6 8

1 3 4 8 9 12

2 3 4 5 9 12

4 5 6 8 9 11

2 6 7 8 9 11

2 5 6 7 10 11

3 5 6 8 10 11

1 6 7 8 10 11

1 3 4 6 7 9

1 2 4 6 9 11

1 5 6 9 10 11

2 3 4 7 8 12

1 4 5 6 7 11

2 3 4 6 8 9

1 4 6 8 9 10

3 4 8 9 10 11

2 3 4 6 7 10

1 2 3 7 8 9

4 5 6 7 8 10

3 4 6 8 10 12

1 2 4 5 6 10

1 2 5 6 7 12

2 4 5 6 7 9

2 3 5 7 9 10
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1 2 6 8 9 12

1 3 6 8 9 11

3 5 6 7 9 11

1 2 4 6 7 8

1 5 6 8 10 12

3 6 7 10 11 12

2 6 7 8 10 12

1 3 5 8 9 10

3 4 5 6 9 10

5 6 7 9 10 12

1 3 5 7 8 11

1 4 9 10 11 12

1 2 3 6 7 11

3 6 7 8 9 10

2 3 5 8 9 11

4 7 8 10 11 12

1 2 3 4 5 7

1 2 3 5 10 11

2 3 4 5 6 11

5 6 7 8 11 12

2 5 6 9 11 12

2 3 7 8 10 11

1 6 7 9 11 12

2 4 8 9 11 12

1 3 7 9 10 11

4 5 7 9 11 12

1 2 3 5 8 12

1 2 3 6 8 10

3 4 5 7 10 11

1 2 6 10 11 12

1 3 5 7 9 12

3 4 6 7 8 11

1 3 5 6 7 10

1 2 3 5 6 9

2 3 5 6 7 8

3 4 5 6 7 12

3 4 5 7 8 9

1 2 4 5 11 12

2 3 4 5 8 10

1 3 4 7 8 10

1 2 3 4 6 12

1 2 3 4 9 10

1 2 3 7 10 12

3 5 9 10 11 12

3 5 7 8 10 12

6 8 9 10 11 12

4 5 8 9 10 12

1 2 4 5 8 9

2 3 8 9 10 12

1 2 3 4 8 11

1 4 5 7 9 10

1 2 4 8 10 12

2 4 7 8 9 10

2 4 5 7 8 11

2 4 5 7 10 12

2 3 5 7 11 12

1 4 7 8 9 11

1 3 8 10 11 12

1 2 4 7 9 12

1 2 4 7 10 11

1 4 5 7 8 12

1 4 5 8 10 11

1 2 3 9 11 12

1 3 4 5 9 11

3 7 8 9 11 12

2 4 5 9 10 11

1 3 4 6 10 11

2 3 4 7 9 11

Theorem 6.8. [17, Thm. 9.4] The replication number ri represents the number of times
any set of points from X of size i is repeated in a t− (v, k, 1) design. It is known that

ri =
λ
(
v−i
t−i

)(
k−i
t−i

) , for 1 ≤ i ≤ t.

We previously computed the replication number r = r1 using the equation from Theo-
rem 2.14. This determined the number of times a single point occurred in the design. We
can compute this same value using Theorem 6.8 with i = 1.
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Example 6.9. The replication number r1 for the 2− (7, 3, 1)-BIBD is

r1 =
1
(
7−1
2−1

)(
3−1
2−1

) = 3.

In the specific case of the replication number for sets of size t− 1, we can use another
formula that reduces to the replication number r1 = r from Theorem 2.14.

Theorem 6.10. The replication number rt−1 represents the number of times any t − 1
points from the set X are repeated in the design.

rt−1 =
λ(v − (t− 1))

k − (t− 1)
.

Proof. Consider Theorem 6.8 with i = t− 1.

rt−1 =
λ
(
v−(t−1)
t−(t−1)

)(
k−(t−1)
t−(t−1)

) =
λ (v−t+1)!

(v−t)!
(k−t+1)!
(k−t)!

=
λ(v − t+ 1)

k − t+ 1
=
λ(v − (t− 1))

k − (t− 1)

Example 6.11. For a 2− (9, 3, 1)-BIBD we can determine rt−1 as:

r2−1 =
λ(v − (2− 1))

k − (2− 1)
,

which reduces to the original equation for the replication number r shown in Theorem 2.14

r =
λ(v − 1)

k − 1
= 4.

Theorem 6.12. The number of blocks in the design is:

b =

(
v
t

)(
k
t

) =
vr1
k
.
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6.2 Distribution Designs

We can use the t-designs discussed in the previous section as distribution designs in the
same way we used balanced incomplete block designs. This section discusses some valid
distribution designs, with t ≥ 2, and the resulting repairable threshold schemes.

Theorem 6.13. The repairing degree d for a t− (v, k, 1) design is:

d =

⌈
k

t− 1

⌉
.

Proof. We use the fact that two blocks contain at most t− 1 common points.

Recall d is the minimum number of participants required to perform a repair. It is
optimal if each participant who provides subshares provides the maximum they can, namely
t− 1.

If the maximum number of subshares provided by each participant is t − 1 and k is a
multiple of t− 1, then we can write k as:

k = m(t− 1), for some integer m.

then the number of sufficient participants is:

d =
m(t− 1)

t− 1
= m.

If the maximum number of subshares are provided by each participant and k is not a
multiple of t− 1, then we can write k as:

k = m(t− 1) + n, for some integers, m and n, where 0 < n < t− 1.

Then, the participant with the failed share could contact m other participants who would
provide t − 1 subshares and then contact an additional participant who would provide n
subshares. So, the repairing degree in this case is:

d = m+ 1.

Since we have m ≤ k
t−1 < m+ 1, the repairing degree in general is:

d =

⌈
k

t− 1

⌉
.
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Example 6.14. Consider the SQS(8) from Example 6.5. The parameters of the design
are:

b = 14,

r1 = 7,

r2 = 3.

Consider this example as a (τ, `1, `2) distribution design (dd) such that the union of
any τ blocks produces at least `1 points and the union of any τ − 1 blocks produces at
most `2 points.

For this example, the union of any τ = 2 blocks is going to have at least six points as
any two blocks have at most t − 1 = 2 points in common. The union of any τ − 1 = 1
blocks has at most four points. Therefore, following the definition for using a ramp scheme
as a base scheme, we can use the SQS(8) as a (2, 4, 6)-distribution design. If we use a
(4, 6, 8)-Ramp Scheme as our base scheme with this (2, 4, 6)-distribution design, we can
produce a (2, 2, 14)-Repairable threshold scheme.

See Theorem 6.13 for elaboration on repairing degree d.

Example 6.15. Consider an SQS(10) and let X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Then the
corresponding blocks are

1245 1237 1358

2356 2348 2469

3467 3459 3570

4578 4560 1468

5689 1567 2579

6790 2678 3680

1780 3789 1479

1289 4890 2580

2390 1590 1369

1340 1260 2470.

The other parameters of the design are:

56



b = 30,

r1 = 12,

r2 = 4.

Consider this example as a (τ, `1, `2) distribution design as in Example 6.14. Again, the
union of any two blocks will contain at least six points since any two blocks has at most
two points in common. Any one block will contain at most four points. This example can
therefore also serve as a (2, 4, 6)-distribution design. If we use a (4, 6, 10)-Ramp Scheme as
our base scheme we can produce a (2, 2, 30)-Repairable threshold scheme.

See Theorem 6.13 for elaboration on repairing degree d.

Theorem 6.16. An SQS(v) can be used as a (2, 4, 6)-distribution design to produce a
(2, 2, b)-repairable threshold scheme, where b = vr

k
is the number of blocks in the SQS(v).

Proof. From Definition 3.11, we know that a design is a (2, 4, 6)-distribution design if the
union of any two blocks contains at least six points, any one block contains at most four
points, and 6− 4 ≥ 1.

For an SQS(v), any two blocks have at most two points in common because any three
points occurs in the design exactly once by definition. Therefore, the union of any two
blocks has at least 4 + 4− (3− 1) = 6 points.

For an SQS(v), any one block is of size four. Therefore, the union of any one block
contains at most four points. Since, 6 − 4 = 2 ≥ 1, a SQS(v) is a (2, 4, 6)-distribution
design.

A (2, 4, 6)-distribution design produces a (2, 2, b)-repairable threshold scheme by The-
orem 3.13 and Theorem 6.13.

Now we show how to construct a repairable threshold scheme for τ = 3 from t-designs.

Theorem 6.17. A t − (v, k, 1) design can be used as a (3, 2k, 3k − 3(t − 1)) distribution
design to produce a (3, d k

t−1e, b)-repairable threshold scheme if k ≥ 3t − 2, where b is the
number of blocks in the t− (v, k, 1) design.

Proof. From Definition 3.11, we know that a design is (3, 2k, k+ 2(k− t+ 1)) distribution
design if the union of any three blocks contains at least k+ 2(k− t+ 1)) points, the union
of any two blocks contains at most 2k points, and 3k − 3(t− 1)− 2k ≥ 1.
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For any t−(v, k, 1) design, any two blocks have at most t−1 points in common. If each
pair has a distinct set of t− 1 points in common, then there are the maximum number of
points, namely 3(t− 1) in common among the three of them. Therefore there are at least
3k − 3(t− 1) distinct points in the union of any three blocks.

For a t− (v, k, 1) design, two different blocks from the design may have zero points in
common. Each block is of size k and if no points are repeated there can be up to 3k points
in the union of any three blocks.

The remaining requirement for a t − (v, k, 1) design to satisfy the requirements of the
specified distribution design is 3k − 3(t− 1)− 2k ≥ 1. Consider the following:

3k − 3(t− 1)− 2k ≥ 1

k − 3(t− 1) ≥ 1

k ≥ 1 + 3(t− 1)

k ≥ 3t− 2.

Therefore, a t− (v, k, 1) design can be used as a (3, 2k, 3k−3(t−1)) distribution design
if k ≥ 3t− 2.

A (3, 2k, 3k − 3(t− 1))-distribution design produces a (3, d k
t−1e, b)-repairable threshold

scheme by Theorem 3.13 and Theorem 6.13.

In the following we present two families of designs which satisfy the requirements of
Theorem 6.17.

Definition 6.18. An inversive plane is a 3−(q2, q+1, 1) design where q is a prime number.

Theorem 6.19. [17, Thm. 9.27] For all prime powers q, there exists a 3 − (q2, q + 1, 1)
design.

Theorem 6.20. An inversive plane can be used as a (3, 2(q+1), 3q−3)-distribution design
to produce a (3, d q+1

2
e, b)-repairable threshold scheme if q ≥ 6 is a prime power.

Proof. By Theorem 6.17, a (3, 2q + 2), 3(q + 1) − 6)-distribution design can be used to
produce a (3, d q+1

2
e, b)-repairable threshold scheme if k ≥ 3t− 2. We have that k = q + 1

and t = 3. Substituting those values appropriately into the inequality produces:

q + 1 ≥ 3 · 3− 2
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q ≥ 9− 2− 1

q ≥ 6

Recall that projective planes were used in Stinson and Wei [19] to achieve better thresh-
olds and smaller repair sets of size d. Inversive planes achieve better repairing degree d,
in that they only require at least d = d k

t−1e participants to perform a repair, whereas
projective planes require at least d = k participants to perform a repair. Unfortunately,
unlike with projective planes where we can achieve many values for the threshold τ , in the
case of inversive planes, we can only achieve τ = 3.

Definition 6.21. A spherical geometry is a 3− (qn + 1, q+ 1, 1) design where q is a prime
number and n ≥ 2.

As with inversive planes, the more general spherical geometry exists for all q, where q
is a prime power.

Theorem 6.22. [5, Thm. 5.11] Known infinite families of t − (v, k, 1) designs include
3− (qn + 1, q + 1, 1) designs where q is a prime number and n ≥ 2.

Theorem 6.23. A spherical geometry can be used as a (3, 2(q+1), 3(q+1)−6)-distribution
design to produce a (3, d q+1

2
e, b)-repairable threshold scheme if q ≥ 6.

Proof. This follows using the same reasoning as Theorem 6.20.

Theorem 6.24. A t − (v, k, 1) design can be used as a (τ, (τ − 1)k, τk −
(
τ
2

)
(t − 1))

distribution design to produce a (τ, d k
t−1e, b)-repairable threshold scheme if k ≥

(
τ
2

)
(t−1)+1,

where b is the number of blocks in the t− (v, k, 1) design.

Proof. From Definition 3.11, we know that a design is a (τ, (τ − 1)k, τk −
(
τ
2

)
(t − 1))

distribution design if the union of any τ blocks contains at least τk−
(
τ
2

)
(t− 1) points, the

union of any τ−1 blocks contains at most (τ−1)k points, and τk−
(
τ
2

)
(t−1)−(τ−1)k ≥ 1.

For any t − (v, k, 1) design, any two blocks have at most t − 1 points in common
between them. If, for the union of τ blocks, each pair of blocks has a distinct pair of
points in common, then the maximum number of points in common among the τ blocks is(
τ
2

)
(t− 1). Therefore, there are at least τk −

(
τ
2

)
(t− 1) distinct points in the union of any

τ blocks.
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For any t− (v, k, 1) design, τ different blocks from the design may have zero points in
common. Each block is of size k and if no points are repeated there can be up to τk points
in the union of any τ blocks. Therefore, the union of any τ − 1 blocks will have at most
(τ − 1)k distinct points.

The remaining requirement for a t − (v, k, 1) design to satisfy the requirements of the
specified distribution design is τk −

(
τ
2

)
(t− 1)− (τ − 1)k ≥ 1. Consider the following:

τk −
(
τ

2

)
(t− 1)− (τ − 1)k ≥ 1

k −
(
τ

2

)
(t− 1) ≥ 1

k ≥ 1 +

(
τ

2

)
(t− 1).

Therefore, a t−(v, k, 1) design can be used as a (τ, (τ−1)k, τk−
(
τ
2

)
(t−1)) distribution

design if k ≥
(
τ
2

)
(t− 1) + 1.

A (τ, (τ − 1)k, τk −
(
τ
2

)
(t − 1))-distribution design produces a (τ, d k

t−1e, b)-repairable
threshold scheme by Theorem 3.13 and Theorem 6.13.

For Theorem 6.24, there are examples of designs which satisfy the requirements for
different values of τ and different values of t. However, there are some restrictions. We
have designs for τ = 4 and t = 2 in the family of BIBDs. We also have designs for τ = 3
and t = 3 in the family of inversive planes and spherical geometries. Unfortunately, there
are no known designs that satisfy the restriction of k ≥

(
τ
2

)
(t − 1) + 1 when both τ > 3

and t > 2.
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Chapter 7

Repair Sets for t-designs

For distribution designs that are 2 − (v, k, 1) designs, every successful repair set consists
of k participants, each of which provided a single point. For distribution designs using
t− (v, k, 1) designs, we have repair sets of size at most k and at least d k

t−1e. If we consider
specifically the case of Steiner quadruple systems, the repair set can be of size two, three,
or four. The repair sets for an SQS(v) can be any of the following forms:

1. “pair, pair”

2. “pair, point, point”

3. “point, point, point, point”

The first form “pair, pair” is the smallest possible repair set; which has size 4
3−1 = 2. The

largest possible repair set corresponds to the last form, “point, point, point, point” which
has size k = 4.

Example 7.1. Consider the repairable secret sharing scheme from Example 6.14

Let P` require a repair for their share 1256. Let us follow a procedure along the lines
of Algorithm 2, where we contact random participants from R.

1. Assume P` contacts the participant with 1234. This provides the pair 12.

2. The next participant, Pj, may provide the required pair 56 and the repair would be
complete with a repair set of size two Alternatively, Pj might have a pair such as 16,
25, 15, or 26. This would give us only one new point, 5 or 6.
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3. If the repair was not completed at the previous stage, P` will contact an additional
participant Pk to receive the remaining subshare (either 5 or 6 depending on what
Pj provided). If Pj provided the pair 15 and Pk provided 16, then the repair set is
of size three.

Definition 7.2. A repair set of size n is minimal if no proper subset of its members form
a repair set of size m < n.

Example 7.3. Continue with the repairable secret sharing scheme from Example 6.14

Let P` require a repair for their share 1256.

1. Assume P` first receives the pair 12 from participant Pi.

2. Assume Pj provides the pair 16. This would give us only one new point, 6.

3. P` will now contact participant Pk. The participant Pk could provide subshares 25, 15,
or 26. If participant Pk provides the subshare 25, then from the set R = {Pi, Pj, Pk}
there exists a repair subset {Pj, Pk} which has size 2. Therefore, this repair set R
would not be minimal. However, if Pk provides the subshare 15, then there is no
proper subset which also is a repair set and therefore the repair set is minimal.

7.1 Existence of Repair Sets

In this section we will determine the probability that a repair set exists when using distri-
bution designs with t ≥ 3 using techniques from network reliability. These techniques, as
applied to network reliability, can be found in Section 1.2 of The Combinatorics of Network
Reliability [4]. Specifically, the method that we will be using from network reliability is to
employ the use of cutsets in calculating the reliability. Although we were able to compute
the existence equations for 2 − (v, k, 1) designs without the use of this methodology, we
can apply the use of cutsets to the analysis of 2-designs as well. As before, a repair set
exists when there is at least one subset of participants which can perform a repair for a
given participant who has lost their share. Recall that each participant is available with
probability p and unavailable with probability q = 1− p.

Definition 7.4. A cutset, is a set Ci ⊂ P for which if the available participants is P \Ci,
a repair is not possible. This is a failed state.
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Let participant P` have a failed share consisting of k subshares. Let Ci be the set of
blocks, other than the failed block, that contain a point i required by P`. In order for
there to be a possible repair set, it cannot be the case that for any Ci relevant to the failed
block, all blocks within that Ci are unavailable. This is an instance of a cutset. In other
words, the probability that there exists an available repair set is 1− Pr{at least one Ci is
unavailable}.

Definition 7.5. Ci is the set of blocks containing i, excluding the block requiring a repair.
Ci is said to be failed, denoted Ci, if every member of the set is unavailable.

Definition 7.6. A repair set is available for a block B if no Ci, i ∈ B, fails.

We can determine Pr{at least one Ci is unavailable} using the inclusion-exclusion
principle. This will be applied in Example 7.8 to show its application to 2 − (v, k, 1)
designs and then applied in Example 7.9 to show its application to 3− (v, 4, 1) designs.

Definition 7.7. The inclusion-exclusion principle for cardinalities states that given two
sets A and B,

|A ∪B| = |A|+ |B| − |A ∩B|.

The generalized form of the inclusion-exclusion principle states that

|A1 ∪ A2 ∪ · · · ∪ An| =∑
1≤i≤n

|Ai| −
∑

1≤i1<i2≤n

|Ai1 ∩ Ai2|+
∑

1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3| − · · ·+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|.

The inclusion-exclusion principle for probabilities, states that for n = 2,

Pr{A ∪B} = Pr{A}+ Pr{B} − Pr{A ∩B}.

This variation also generalizes to n as,

Pr{A1 ∪ A2 ∪ · · · ∪ An} =∑
1≤i≤n

Pr{Ai} −
∑

1≤i1<i2≤n

Pr{Ai1 ∩ Ai2}+ · · ·+ (−1)n−1Pr{A1 ∩ A2 ∩ · · · ∩ An}.

Example 7.8. Consider the STS(7), as in Theorem 4.4.

Let P` be the participant who requires a repair for block 123.
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1. We define the set Ci for each of the points in the block as C1, C2, and C3:

C1 = {145, 176}
C2 = {246, 257}
C3 = {347, 356}.

2. We have |Ci| = 2 for all i.

3. We also have |Ci ∪ Cj| = 4 for all i, j, i 6= j.

4. Finally, we have |C1 ∪ C2 ∪ C3| = 6.

Let Ci indicate that every member of Ci is unavailable. Then the probability that at
least one Ci is unavailable is

Pr{at least one Ci} = Pr{C1 ∪ C2 ∪ C3}.

Applying the inclusion-exclusion principle results in:

Pr{C1 ∪ C2 ∪ C3} = q|C1| + q|C2| + q|C3| − q|C1∪C2| − q|C1∪C3| − q|C2∪C3| + q|C1∪C2∪C3|.

Applying the computations from items 2-4 results in:

Pr{at least one Ci} = 3q2 − 3q4 + q6.

Therefore the probability that there exists a repairing set is

1− Pr{at least one Ci} = 1− 3q2 + 3q4 − q6 = (1− q2)3.

This method has produced the same equation for the probability that a repair set exists
for STS(7) as was obtained in Section 4.4.

7.1.1 Existence of a Repair Set for SQS

In the case of Steiner quadruple systems, as opposed to the Steiner triple system, the sets
Ci for each repair will not be disjoint, as each participant may be able to provide zero, one,
or two subshares.
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Example 7.9. Using the SQS(8):

A1 = 1234 A2 = 5678

B1 = 1256 B7 = 3478

B2 = 1278 B8 = 3456

B3 = 1357 B9 = 2468

B4 = 1368 B10 = 2457

B5 = 1458 B11 = 2367

B6 = 1467 B12 = 2358

Let participant P` require a repair for block A1 = 1234. Note that the block 5678 does
not contain any points in common with the failed block. This leaves 12 remaining blocks
that contain points relevant for the repair, namely B1, . . . , B12.

1. We define the set Ci for each of the points in the block as C1, C2, C3, and C4.

C1 = {B1, B2, B3, B4, B5, B6}
C2 = {B1, B2, B9, B10, B11, B12}
C3 = {B3, B4, B7, B8, B11, B12}
C4 = {B5, B6, B7, B8, B9, B10}.

2. We can observe that |Ci| = 6, for all i.

2. We have |Ci ∪ Cj| = 10, for all i, j, i 6= j.

3. We also have |Ci ∪ Cj ∪ Ck| = 12, for all i, j, k.

4. And finally, we have |C1 ∪ C2 ∪ C3 ∪ C4| = 12, for all i, j, k.

Let Ci indicate that every member of Ci is unavailable. Combining the values from above
and using the inclusion-exclusion principle as before, we get:

Pr{at least one Ci} = 4(1− p)6 − 6(1− p)10 + 4(1− p)12 − (1− p)12.

Therefore, we have:

1− Pr{at least one Ci} = 1− 4(1− p)6 + 6(1− p)10 − 3(1− p)12.
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Figure 7.1: Existence of a repair set for: SQS(8), SQS(10)

Example 7.10. Consider the SQS(10) from Example 6.15

Let participant P` require a repair for block 1245.

The relevant sets for the repair are C1, C2, C4, C5. Determining the same values as for
the SQS(8), we have:

1. |Ci| = 11, for all i

2. |Ci ∪ Cj| = 19, for all i, j, i 6= j

3. |Ci ∪ Cj ∪ Ck| = 24, for all i, j, k, i 6= j 6= k

4. |C1 ∪ C2 ∪ C3 ∪ C4| = 26

Pr{there exists a repair set} = 1− 4(1− p)11 + 6(1− p)19 − 4(1− p)24 + (1− p)26.

We can generalize the above examples for SQS(v) by applying the inclusion-exclusion
principle.

Theorem 7.11. Let q = 1 − p, where p is the probability that a share is available. Let

r1 =
(v−1

2 )
3

and r2 =
(v−2

1 )
2

. Then, the generalized formula for the probability of the existence
of a repair set for an SQS(v) is:

Pr{a repair set exists} = 1− 4qr1−1 + 6q2r1−r2−1 − 4q3r1−3r2 + q4r1−6r2+2.
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Proof. Let R(q) = Pr{a repair set exists}. As per Definition 7.6, a repair set exists if no
Ci fails. That is,

R(q) = 1− Pr{any Ci}
For a block B in a SQS(v), there are four non-disjoint sets Ci. Assume B = abcd.

Pr{any Ci} = Pr{Ca or Cb or Cc or Cd}

This requires the probability that one, two, three, or four different Ci fail.

1. |Ci| = r1 − 1, for all i ∈ B. Therefore, Pr{Ci} = qr1−1. There are
(
4
1

)
ways to select

a Ci.

2. |Ci ∪ Cj| = 2(r1 − 1) − (r2 − 1) = 2r1 − r2 − 1, for all i, j ∈ B, i 6= j. Therefore,
Pr{Ci and Cj} = q2r1−r2−1. There are

(
4
2

)
ways to select Ci and Cj.

3. |Ci ∪ Cj ∪ Ck| = 3(r1 − 1) − 3(r2 − 1) = 3r1 − 3r2, for all i, j, k ∈ B, i 6= j 6= k.
Therefore, Pr{Ci and Cj and Ck} = q3r1−3r2 . There are

(
4
3

)
ways to select Ci, Cj,

and Ck.

4. |Ci∪Cj ∪Ck ∪C`| = 4(r1− 1)− 6(r2− 1) = 4r1− 6r2 + 2, for all i, j, k, ` ∈ B, i 6= j 6=
k 6= `. Therefore, Pr{Ci and Cj and Ck and C`} = q4r1−6r2+2. There are

(
4
4

)
ways to

select Ci, Cj, Ck, and C`.

Applying the principle of inclusion-exclusion,

Pr{Ca or Cb or Cc or Cd} =

(
4

1

)
qr1−1 −

(
4

2

)
q2r1−r2−1 +

(
4

3

)
q3r1−3r2 −

(
4

4

)
q4r1−6r2+2

Therefore,
R(q) = 1− 4qr1−1 + 6q2r1−r2−1 − 4q3r1−3r2 + q4r1−6r2+2

7.1.2 Generalization for the Existence of a Repair Set

We can further generalize the formula from Theorem 7.11 to arbitrary t− (v, k, 1) designs.
In order to generalize, we will need to account for the fact that there are k different points
in each block as opposed to stopping at four, as well as to account for the increase from
triples of points occurring exactly once in the design to sets of size t occurring exactly once
in the design.
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Theorem 7.12. Let q = (1 − p), where p is the probability that a share is available and

let rj =
(v−j
t−j)

(k−j
t−j)

. Then, the generalized formula for the probability of existence of a repair set

for an t− (v, k, 1) design is:

Pr{a repair set exists} = 1−
(
k

1

)
qe1 +

(
k

2

)
qe2 −

(
k

3

)
qe3 + · · ·+

(
k

k

)
qek

where

ei =
i∑

j=1

(−1)j+1

(
i

j

)
(rj − 1).

Proof. Let R(q) = Pr{a repair set exists}. As per Definition 7.6, a repair set exists if no
Ci fails. That is,

R(q) = 1− Pr{any Ci}

For a block B in a t− (v, k, 1) design, there are k non-disjoint sets Ci required for a failed
block B. Assume B = abc . . . k.

Pr{any Ci} = Pr{C1 or C2 or C3 or . . . or Ck}

This requires the probability that one, two, three,..., or k different Ci fail.

Let ei corresponds to |Cj1 ∪ Cj2 ∪ · · · ∪ Cji | for 1 ≤ i ≤ k. Apply the principle of
inclusion-exclusion to each ei.

e1 = |Cj1| = r1 − 1

e2 = |Cj1 ∪ Cj2| = 2(r1 − 1)− (r2 − 1)

e3 = |Cj1 ∪ Cj2 ∪ Cj3 | = 3(r1 − 1)− 3(r2 − 1) + (r3 − 1)

...

ek = |Cj1∪Cj2∪Cj3∪· · ·∪Cjk | =
(
k
1

)
(r1−1)−

(
k
2

)
(r2−1)+

(
k
3

)
(r3−1)−· · ·+

(
k
k

)
(rk−1).

So, the generalized form of ei, from the inclusion-exclusion principle, is:

ei =
i∑

j=1

(−1)j+1

(
i

j

)
(rj − 1).
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Now that we have ei for each i, we can evaluate the probability that any number of Ci,
for 1 ≤ i ≤ k fails. Recall q = 1 − p, where p is the probability the participant with that
share is available.

1. In the case of repairing one subshare there are
(
k
1

)
ways to select a Ci, maintaining

a minimal repair set. For any Ci, we have e1 = r1 − 1. Therefore, Pr{Ci} = qe1 .

2. In the case of repairing two subshares there are
(
k
2

)
ways to select a pair Ci and Cj,

maintaining a minimal repair set. For any such pair, we have e2 = 2(r1−1)−(r2−1).
Therefore, Pr{Ci and Cj} = qe2 .

3. In the case of repairing three subshares there are
(
k
3

)
ways to select a triple Ci, Cj,

and Ck, maintaining a minimal repair set. For any such triple, we have e3. Therefore,
Pr{Ci and Cj and Ck} = qe3 .

...

k. In the case of repairing k subshares there are
(
k
k

)
ways to select a set of k, maintaining

a minimal repair set. For any such set, we have ek. Therefore,

Pr{Ci1 and Ci2 and . . . Cik} = qek .

After applying the principle of inclusion-exclusion one last time we have,

Pr{Ca or Cb or . . . or Ck} =

(
k

1

)
qe1 −

(
k

2

)
qe2 +

(
k

3

)
qe3 − · · · −

(
k

k

)
qek

Therefore

R(q) = 1−
(
k

1

)
qe1 +

(
k

2

)
qe2 −

(
k

3

)
qe3 + · · ·+

(
k

k

)
qek .
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Figure 7.2: Existence of a repair set for: 2− (13, 4, 1), 2− (16, 4, 1), SQS(10)
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Figure 7.3: Existence of a repair set for: SQS(28) and (28, 4, 1)-BIBD
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Table 7.1: Repair Set Existence Comparison for t− (v, k, 1) Designs

t v k λ b r1 r2 Value of p for P ≥ 0.99

2 13 4 1 13 4 1 0.87

2 16 4 1 20 5 1 0.78

2 25 4 1 50 8 1 0.58

2 28 4 1 63 9 1 0.53

3 8 4 1 14 7 3 0.63

3 10 4 1 30 12 4 0.42

3 14 4 1 91 26 6 0.22

3 16 4 1 140 35 7 0.17

3 20 4 1 285 57 9 0.11

3 22 4 1 385 70 10 0.09

3 26 4 1 650 100 12 0.06

3 28 4 1 819 117 13 0.06

7.1.3 Comparing Existence for 2-designs and 3-designs

For all of the t − (v, k, 1) designs discussed here, the probability that a repair set exists
increases with v. Larger values of v correspond to larger replication numbers, and therefore
higher “slopes” in the graphs. Examples of this were shown earlier in Chapter 4 for t-designs
with t = 2. This is shown in Figure 7.1, for Steiner quadruple systems. Additionally, we
can see from Figure 7.2 that the probability that there exists a repair set is increasing at
a faster rate with respect to v for designs with t = 3 than for designs with t = 2. Within
Figure 7.2, we have the probability a repair set exists for a 2 − (13, 4, 1) design, for a
2− (16, 4, 1) design and finally for a 3− (10, 4, 1) design. These are labelled as 13, 16, and
10 respectively. Note that, although the SQS(10) has a lower value for v, it is more likely
for a repair set to exist for it than for the BIBDs when evaluated at the same value for p
(the probability a share is available).

A more direct comparison of t-designs for t = 2 and t = 3 can be found in Figure 7.3,
which shows the probability for a 2− (28, 4, 1) design and for a 3− (28, 4, 1) design. With
the same value for v and for k, the t-design with t = 3 has the probability that there
exists a repair set, P ≥ 0.99, at approximately p = 0.06 as opposed to p = 0.53 for t = 2.
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A summary of the parameters for all the designs discussed in this section along with a
comparison of the probability p that results in P ≥ 0.99 can be found in Table 7.1.

7.2 Expected Number of Repair Sets for SQS

Recall, from Chapter 7, that the repair set for a block belonging to a Steiner quadruple
system can be of size two, three, or four. When computing the number of available minimal
repair sets, we therefore must determine the number of minimal repair sets of each of the
following forms:

1. pair, pair

2. pair, point, point

3. point, point, point, point

Pair, Pair

Repair sets of this form are the smallest of the three, as we only require two pairs to be
provided in order to perform a repair. Each share can be considered as a set of two pairs.
We know that each pair of points occurs in r2 − 1 blocks in the design, other than the
failed block. For a block, say 1234, there are six possible pairs, 12, 13, 14, 23, 24, 34 which
can be combined as 12 and 34, or 13 and 24, or 14 and 23. For any failed share, there exist
3(r2 − 1)2 possible repairing sets of the form “pair, pair”. Accounting for the availability
of these repair sets, the expected number of repair sets is

3(r2−1)2∑
i=1

p2 = 3(r2 − 1)2p2 (7.1)

Pair, Point, Point

Repair sets of the form “pair, point, point”, are of size three and there are three different
cases that may produce this form. The basic form of a “pair, point, point” repair set
(shown as type (a) in Figure 7.4) has one block provide a pair while each of the two blocks
contributing a single point do not have any other points in common with the failed block
or the other members of the repair set.
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(a) Basic (b) Mixed (c) Connected

Figure 7.4: “Pair, Point, Point” Repair Set Types

Case (a): Let B = 1245 be a block requiring a repair for any SQS(v) and let R1, R2,
and R3 be the blocks forming the repair set. Assume that that {12} ⊂ R1, {4} ⊂ R2, and
{5} ⊂ R3.

Then, if the following conditions are met, we have a basic minimal repair set of the
form “pair, point, point”.

1. |R1 ∩B| = 2

2. |R2 ∩B| = 1

3. |R3 ∩B| = 1

There are six possible pairs that can belong to R1. The possible pairs to choose from
are: 12, 14, 15, 24, 25, 45. No matter which pair we choose, each of them occurs r2−1 times
in the design, other than their occurrence in the failed block requiring repair. To get an
individual point, such as in condition two and in condition three, we can consider all the
individual occurrences of the point while excluding all of the occurrences in a pair that
occurs in the failed block as well. This leaves us with (r1 − 1) − 3(r2 − 1) occurrences of
the point. Therefore, the number of basic “pair, point, point” repair sets available can be
computed as

6(r2−1)(r1−3r2+2)2∑
i=1

p3 = 6(r2 − 1)(r1 − 3r2 + 2)2p3. (7.2a)

Case (b): The next form of a “pair, point, point” repair set occurs when one of the
blocks contributing a single point has one other point in common with the failed block (as
shown in type (b) in Figure 7.4).
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Let B = 1245 be a block requiring a repair for any SQS(v) and let R1, R2, and R3 be
the blocks forming the repair set. Assume that that {12} ⊂ R1, {14} ⊂ R2, and {5} ⊂ R3.

Then if the following conditions are met, we have a basic minimal repair set of the form
“pair, point, point”.

1. |R1 ∩B| = 2

2. |R2 ∩B| = 2 and |R1 ∪R2| = 3

3. |R3 ∩B| = 1

There are once again six possible pairs that can be chosen to start with in this form
with each of them occurring r2 − 1 times outside of their occurrence in the failed block.
For the pair belonging to R2, we could have chosen 14 or 24 to meet the conditions. Each
of these pairs also occurs r2−1 times excluding the failed block. Finally, R3 is the same as
in the basic case for this form. Therefore, the number of mixed “pair, point, point” repair
sets available can be computed as

12(r2−1)2(r1−3r2+2)∑
i=1

p3 = 12(r2 − 1)2(r1 − 3r2 + 2)p3. (7.2b)

Case (c): The final form of a “pair, point, point” repair set occurs when both of the
blocks contributing a single point has one other point in common with the failed block (as
shown in type (c) in Figure 7.4).

Let B = 1245 be a block requiring a repair for an SQS(v) and let R1, R2, and R3 be the
blocks forming the repair set. Assume that that {12} ⊂ R1, {14} ⊂ R2, and {15} ⊂ R3.

Then if the following conditions are met, we have a basic minimal repair set of the form
“pair, point, point”.

1. |R1 ∩B| = 2

2. |R2 ∩B| = 2 and |R1 ∪R2| = 3

3. |R3 ∩B| = 1 and |R1 ∪R3| = 3 and |R2 ∪R3| = 3
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Assume that 1 is the connecting point for all three blocks as shown as type (c) in Figure
7.4. Each of the pairs connecting to 1 occur r2 − 1 times outside of the failed block. We
additionally could have chosen any of 1, 2, 4, or 5 as the connected point. Therefore, the
number of connected “pair, point, point” repair sets available can be computed as:

4(r2−1)3∑
i=1

p3 = 4(r2 − 1)3p3. (7.2c)

We can now combine the different forms of “pair, point, point” repair sets from equa-
tions (7.2a), (7.2b), and (7.2c) to produce, the expected number of repair sets of this
type:

6(r2 − 1)(r1 − 3r2 + 2)2p3 + 12(r2 − 1)2(r1 − 3r2 + 2)p3 + 4(r2 − 1)3p3

We can simplify this expression to the general “pair, point, point” repair set equation:

2(r2 − 1)(3r21 − 12r1r2 + 6r1 + 11r22 − 10r2 + 2)p3 (7.3)

Point, Point, Point, Point

Finally, for repair sets of the form “point, point, point, point” we can follow similar rea-
soning as for the previous cases to produce:

((r1−1)−3(r2−1))4∑
i=1

p4 = ((r1 − 1)− 3(r2 − 1))4p4 (7.4)

We can now combine the expected number of repair sets for each form to produce the
expected number of repair sets of any form in the following theorem.

Theorem 7.13. The expected number of minimal repair sets of size two, three, or four for
an SQS(v) can be computed as:

3(r2 − 1)2p2 + 2(r2 − 1)(3r21 − 12r1r2 + 6r1 + 11r22 − 10r2 + 2)p3 + (r1 − 3r2 + 2)4p4

Proof. The expected number of repair sets of size two, three, or four can be computed as
the sum of the expected number of repair sets of size two from equation 7.1, the expected
number of repair sets of size three from equation 7.3, and the expected number of repair
sets of size four from equation 7.4.
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Figure 7.5: Expected number of Repair Sets By Type: SQS(10)

7.2.1 Comparing Expectation

When considering the expected number of available repairing sets for 2-designs and 3-
designs, it is of interest to compare both the rate at which there are more repairing sets
available as well as the different sized repair sets. We only have a formula for the expected
number of available repair sets for Steiner quadruple systems. It seems to be infeasible to
generalize to larger block size or to larger values of t (See Section 7.1.2). Therefore, for
the comparisons in this section we will be evaluating 3− (v, 4, 1) designs and 2− (v, 4, 1)
designs. The smallest value of v for which there exists both a 2 − (v, 4, 1)-design and a
3− (v, 4, 1)-design is v = 28.

Table 7.2 directly compares 2− (28, 4, 1)-design and a 3− (28, 4, 1) with respect to the
expected number of available repair sets of size two, three, and four for each of the two
designs. The 2− (28, 4, 1)-design only has repair sets of size four however, it is interesting
to note the number of repair sets of size four in comparison with the SQS(28). For the
same value of p = 0.5, there are 256 repair sets of size four for the 2− (28, 4, 1) design and
2560000 available repair sets of size four for the SQS(28). Specifically for the SQS(28),
this table shows that in order to have at least one repair set of size two it is necessary to
have higher values of p than for repair sets of size four. The required value of p = 0.049
for at least one repair set of size two for the SQS(28) is still lower than the required value
of p = 0.130 for at least one repair set to exist for 2− (28, 4, 1)-design.
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Table 7.2: Available Repair Sets of Different Sizes for v = 28

Value of p for X ≥ 1 X for p = 0.5

Repair Set Size 2− (28,4,1) SQS(28) 2− (28,4,1) SQS(28)

2 - 0.049 - 108

3 - 0.012 - 75744

4 0.130 0.013 256 2560000

any 0.130 0.010 256/4096 2635850/41566384

Ratio of expected to possible repair sets: 0.0625 0.0634

Figure 7.5 is each type for SQS(10). For the same value of p, the expected number
of available repairing sets increases with the value of v. This is true for both 2 − (v, 4, 1)
designs and 3 − (v, 4, 1) designs. In the case of 3 − (v, 4, 1) designs, which are Steiner
quadruple systems, this increase happens at a higher rate.

Table 7.3 contains a summary of parameters for designs with k = 4. The table includes
minimum values for p such that the expected number of available minimal repair sets is
at least one. It additionally includes the expected number of available minimal repair sets
when p = 0.5.

7.2.2 Discussion of Generalizing Expectation

In the case of existence of a repair set for t−(v, k, 1) designs, we were able to generalize the
equations for arbitrary t, v, and k values. For expectation, it quickly gets more complicated.
To see why, consider the original case of repair sets of the form “pair, point, point” for
SQS(v). There were three different sub-cases for this one form of a repair set. Maintaining
t = 3, we can consider designs with other values of k. For these, there is already an increase
in forms of repair sets before considering the sub-cases that may occur in each of them.

Example 7.14. Consider a 3−(v, 5, 1) design. Minimal repair sets could take the following
forms:

• pair, pair, point

• pair, point, point, point

77



Table 7.3: Expected Number of Repair Sets Comparison for t− (v, k, 1) Designs

t v k λ b r1 r2 Value of p for X ≥ 1 X for p = 0.5

2 13 4 1 13 4 1 0.340 5

2 16 4 1 20 5 1 0.250 16

2 25 4 1 50 8 1 0.150 150

2 28 4 1 63 9 1 0.130 256

3 8 4 1 14 7 3 0.230 7

3 10 4 1 30 12 4 0.12 57

3 14 4 1 91 26 6 0.049 1456

3 16 4 1 140 35 7 0.036 6247

3 20 4 1 285 57 9 0.022 75056

3 22 4 1 385 70 10 0.017 211916

3 26 4 1 650 100 12 0.012 1234590

3 28 4 1 819 117 13 0.010 2635850

• point, point, point, point, point

Additionally both the “pair, pair, point” and the “pair, point, point, point” would have
sub-cases similar to that of “pair, point, point” for SQS(v) which would each need to be
evaluated and defined.

Example 7.15. Consider a 3−(v, 6, 1) design. Minimal repair sets could take the following
forms:

• pair, pair, pair

• pair, pair, point, point

• pair, point, point, point, point

• point, point, point, point, point, point

In this case “pair, pair, point, point” and “pair, point, point, point, point” would each
have sub-cases which would need to be evaluated and defined.
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We see a similar expansion in complexity if we attempt to consider a generalization
with respect to t. For an example of this we can consider the smallest odd and even k sizes
for t = 4.

Example 7.16. Consider a 4−(v, 5, 1) design. Minimal repair sets could take the following
forms:

• triple, pair

• triple, point, point

• pair, pair, point

• pair, point, point, point

• point, point, point, point, point

We see an even greater increase in potential sub-cases like that for “pair, point, point” for
SQS(v) with this example. All but “point, point, point, point, point” will have multiple
sub-cases.

Example 7.17. Consider a 4−(v, 6, 1) design. Minimal repair sets could take the following
forms:

• triple, triple

• triple, pair, point,

• triple point, point, point

• pair, pair, pair

• pair, pair, point, point

• pair, point, point, point, point

• point, point, point, point, point, point

Similar to the previous example we see an increase in forms which have sub-cases. In this
case, all but “triple, triple” and “point, point, point, point, point, point” have sub-cases.

The number of cases to consider for the expected number of repair sets increases with
both k and t. It is possible to construct equations for expectation for each t − (v, k, 1)
design; however, it seems that they have much variation even within the individual cases
making computing each of them complex and a generalization of all of them more so.
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Chapter 8

Algorithms to Find a Repair Set

In this chapter we will discuss the original algorithms from Chapter 5 with respect to t-
designs. We will mainly discuss any relevant changes required to the algorithms or to the
understanding of the algorithms given the t-designs. The analysis would, of course, also
be impacted, but we do not include that as part of this thesis. The following discussions
cover the aspects that exist in the algorithms that are understood differently in the case
of t-designs for t ≥ 3.

8.1 The Basics

For all of the algorithms, it is the case that, unlike for the 2-designs where the responding
participant can only provide one subshare when participant P` requests values for any of
their k subshares, for t-designs, the participant who responds is potentially able to respond
with 0 to t− 1 subshares.

In the case of Algorithm 1, the current representation of the algorithm can remain the
same. As mentioned above, the analysis would change. To consider the simplest example
of this, we can consider the best case run-time of the algorithm for a Steiner quadruple
system. In this case the best case would be to acquire a repair set of the form “pair, pair”.
This would result in a run-time of k

2
T , where T is the time that a participant waits for a

response from the participant they contact. In comparison, the best case for a 2− (v, k, 1)
design would be kT . Note that this is the case independent of the algorithm chosen. The
probability of the best case occurring is dependent on both the algorithm being used as
well as whether a 2-design or other t-design is being used.
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8.2 Storing Intersecting Participants

Now that we have discussed the basics, we can consider storing repair sets. For Algorithm 2
each participant stores a set R consisting of all the participants which can provide a share,
or in the case of t-designs with t ≥ 3, which can provide between 1 and t − 1 shares. As
before, when a participant is contacted to help perform a repair, they will then respond
with the relevant subshares they possess.

8.3 Grouping Intersecting Participants

In previous chapters, storing intersecting participants consisted of storing k sets of r1 − 1
participants as in Algorithm 3. It is more complicated for general t − (t, k, 1) designs.
When we think of grouping intersecting participants for t-designs when t ≥ 3, we need to
consider how we want to address the minimal repair sets of each size. Let us first look at
an example of an SQS(v) and its corresponding potential repair participants.

Example 8.1. Let the underlying distribution design be an SQS(10) and let participant
P` require a repair for their share corresponding to block 1245.

Following the original algorithm description of how the grouped sets are stored we
would have k = 4 sets as follows:

R1 = {1237, 1358, 1468, 1567, 1780, 1479, 1289, 1590, 1369, 1340, 1260}

R2 = {1237, 2356, 2348, 2469, 2579, 2678, 1289, 2580, 2390, 1260, 2470}

R4 = {2348, 2469, 3467, 2469, 4578, 4560, 1468, 1479, 4890, 1340, 2470}

R5 = {1358, 2356, 3459, 3570, 4578, 4560, 5689, 1567, 2579, 2580, 1590}

If we were to simply store k sets of size r1 − 1 as we did previously, the algorithm could
work much the same. However, it could result in unnecessary work being done if P` had
already received a pair. Perhaps it makes more sense to attempt to find the corresponding
pair that completes the repair at once than to continue through each of the point repair
sets. We could in fact outline more than one algorithm, depending on what kind of repair
sets we want to prioritize, through grouping your repair sets in different ways.

We can make different choices by prioritizing “pair, pair” repair sets. One way of doing
this is to store the “pair” repair sets as follows:
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R12 = {1237, 1260, 1289}

R45 = {3459, 4578, 4560}

R14 = {1340, 1468, 1479}

R15 = {1358, 1567, 1590}

R24 = {2348, 2469, 2470}

R25 = {2356, 2579, 2580}

With the “pair, pair” stored intersecting participants, after the first success the participant
with the failed share would then contact participants from the corresponding “pair, pair”
repair list. That is, if they received a pair from R12 they would contact 45. If that failed,
and we were only storing “pair, pair” lists, we would then attempt to acquire the points by
contacting participants from other lists. We could, however, also considering repair sets of
only points which do not occur within a “pair, pair” case.

We could have participants stored grouped by which blocks contain points in isolation
as follows:

R∗1 = {1780, 1369}

R∗2 = {2678, 2390}

R∗4 = {3467, 4890}

R∗5 = {3570, 5689}

If we stored both the “pair, pair” groupings as well as the points in isolation (points
relevant to the failed block which do not occur in a relevant pair) we could then modify the
algorithm to attempt to do any or all of minimizing the amount of participants required to
repair, to only use minimal repairing sets, and to choose which type of stored participants
list to use is dependent on the previous results.

8.4 Generating Grouped Intersecting Participants

Using generated intersecting participants is also possible for at least some t − (v, k, 1)
designs.
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Theorem 8.2. [16, Thm. 2] A cyclic SQS(2 · 5n) exists for all n ∈ N.

Theorem 8.3. [16, Thm. 3] A cyclic SQS(v) exists for

v = 122, 170, 194, 314, 338, 386, 458, 578.

For necessary and sufficient conditions for the existence of cyclic t − (v, k, λ) designs,
as well as some constructions, see Kohler [10] and Brand [3].

The SQS(10) we have been working with can be generated using a cyclic automorphism.
We can define the set of base blocks B = {1245, 1237, 1358}. Then, all 30 blocks can be
generated using the base blocks and the mapping x 7→ x+ 1 (mod 10)

We can apply the same strategy as we described for Algorithm 4 earlier if we want to
generate a block which has a specific point. An interesting generalization is to define a
similar algorithm to find blocks with pairs.

Example 8.4. Let P` have the failed block 4890 requiring repair. It is sufficient to consider
pairs from the base blocks that have a difference of 4 (mod 10) between them. Generate
participants who have the pair `1`2 = 48 for participant P` as follows:

From first base block 1245:

1. Begin with the first pair x1x2 = 12 from 1245. The difference between the two
points in the pair is 2− 1 = 1 6= 4 and 1− 2 = 9 6= 4. Therefore, this pair will
not generate a block with a desired pair, and we can discard it.

2. The difference between the points for the pairs x1x2 = 14, x1x2 = 25, x1x2 = 24,
and x1x2 = 45 is not equal to four and so we can discard all of these pairs.

3. Consider the final pair, x1x2 = 15 from 1245. The difference between the points
in the pair is 5− 1 = 4, and therefore we can attempt to generate a pair block.

4. Compute `1 − x1 = 4 − 1 (mod 10) = 3 and 8 − 5 (mod 10) = 3. We have a
relevant index to get a repair block {1 + 3, 2 + 3, 4 + 3, 5 + 3} = 4578.

From second base block 1237:

1. The difference between the points for the pairs x1x2 = 12, x1x2 = 13, x1x2 = 23,
and x1x2 = 27 is not equal to four and so we can discard all of these pairs.

2. Consider the next pair x1x2 = 17 from 1237. The difference between the points
in the pair is 1− 7 = 4, and so we can generate a block.
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3. Compute `1 − x2 = 4 − 7 (mod 10) = 7. We have a relevant index to get a
repair block {1 + 7, 2 + 7, 3 + 7, 7 + 7} = 8904. However, this is our original
block for participant P`, so we ignore it.

4. Consider the final pair x1x2 = 37 from 1237. The difference is 7 − 3 = 4, and
so we can find an index to generate an appropriate block.

5. Compute `1 − x1 = 4 − 3 (mod 10) = 1. We have a relevant index to get a
repair block {1 + 1, 2 + 1, 3 + 1, 7 + 1} = 2348.

From third base block 1358:

1. The difference between the points for the pairs x1x2 = 13, x1x2 = 15, x1x2 = 35,
x1x2 = 38, and x1x2 = 18 is not equal to four and so we can discard all of these
pairs.

2. Consider the final pair x1x2 = 15 from 1358. The difference between the points
in the pair is 5− 1 = 4 and therefore we can generate a block with a pair.

3. Compute `1 − x1 = 4 − 1 (mod 10) = 3 and 8 − 5 (mod 10) = 3. We have a
relevant index to get a repair block {1 + 3, 3 + 3, 5 + 3, 8 + 3} = 4681.

The same process can be applied to any of the other pairs from the block 4890.

Algorithm 7 RepairPairBlocksFromMultipleBaseBlocks(P`,B)

1: /* Generates all relevant blocks with pairs for P` using B */
2: /* Assume base (v, k, 1)-BIBD */

3: for each base block B in B do

4: for each distinct pair x1x2 in B do

5: for each distinct pair `1`2 in P` do

6: Compute d = `2 − `1
7: if x1 − x2 6= d (mod v) and x2 − x1 6= d (mod v) then Break to next `1`2 pair

8: if x1 − x2 = d then Compute e = `1 − x2
9: if The block {p1 + e, p2 + e, . . . , pk + e} 6= P` then We have a repair block

10: if x2 − x1 = d then Compute e = `1 − x1
11: if The block {p1 + e, p2 + e, . . . , pk + e} 6= P` then We have a repair block

12: return R = {R1, R2, . . . , Rk} for P`

In general, we can generate all the relevant intersecting blocks containing a pair for a
participant P` using Algorithm 7.
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8.4.1 Efficiency Metrics

When considering communication complexity and information rate, Theorem 3.13 still
holds for designs with t > 2. We can compare 3 − (v, k, 1) designs to 2 − (v, k, 1) designs
with respect to their information rate and their communication complexity as defined
in Section 3.2. In doing so, we can see that the 2 − (v, k, 1) designs achieve the same
communication complexity and information rate as the 3− (v, k, 1) designs.

In earlier sections of this thesis, as well as in the repairable threshold scheme due to
Guang et al. [8] and the repairable threshold scheme due to Stinson and Wei [19], the
assumption was that a participant contributes a constant number β of subshares when
participating in a repair. This assumption does not necessarily hold for t− (v, k, 1) designs
where t > 2 and is dependent on the algorithm chosen. The relevant choice to determine
whether β is constant is similar to choosing how to prioritize intersecting participants
in the discussion on storing lists of participants for repairs. For instance, if we assume
the algorithm not only prioritizes the smallest sized repair set, but instead only uses the
smallest sized repair sets then β is constant. More precisely, each participant will always
provide t− 1 subshares. However, if we allow for different sized (but still minimal) repair
sets it is possible for a participant to send any number of subshares from one up to and
including t − 1 subshares. Therefore, β would no longer be constant. In the case of a
Steiner quadruple system β could take on the values of 2, 3, or 4.
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Chapter 9

Conclusion

We have shown that combinatorial repairable threshold schemes can be analyzed using
methods found in network reliability to demonstrate their robustness with respect to per-
forming a repair. The results of our analysis can by found summarized in Table 9.2).
Notably, the reliability of the scheme was improved by using t-designs where t > 2 in
Section 7.1.3 for existence and in Section 7.2.1 for expectation. We also designed efficient
algorithms (see Table 9.1) for performing a repair in a repairable threshold scheme and we
developed equations for evaluating which designs are able to produce different thresholds5.

Table 9.1: Summary of the Algorithms for t = 2

Notation: T is the time waiting for a response from another participant, k is the size of the
blocks in the distribution design, b is the number of blocks in the design, r is the replication
number, p is the probability a participant is available. Note that all algorithms require the
indices corresponding to the participants share to be stored.

Storage Expected Complexity Fault Model

Algorithm 1 Only share indices T b
p(r−1) ln k Transient

Algorithm 2 Intersecting blocks k ln k
p

Transient

Algorithm 3 Grouped blocks by index kT
[1−(p(r−1)+1)(1−p)r−1

p

]
Permanent

Algorithm 4 Base blocks kT
[1−(p(r−1)+1)(1−p)r−1

p

]
Permanent

5See Theorem 6.16, Theorem 6.17, and Theorem 6.24.
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Table 9.2: Repairable Threshold Schemes and Reliability: Summary of Results

Notation: τ is the threshold, n is the number of participants, v is the number of points
in the design, k is the number of points in a block, r is the replication number, p is
the probability a participant is available. The column heading “Existence” refers to the
probability a repair set exists for the design. The column heading “Expectation” refers to
the expected number of available repair sets for the design.

Design τ n Existence Expectation

STS, λ= 1

v ≡ 1, 3 (mod 6), v ≥ 7 2 2v
3
≤ n ≤ v(v−1)

6
(1− (1− p)r−1)3 (r − 1)3p3

BIBD, λ= 1

k = 4 2 v
2
≤ n ≤ v(v−1)

12
(1− (1− p)r−1)4 (r − 1)4p4

k = 5, v ≡ 5 (mod 20) 2 2v
5
≤ n ≤ v(v−1)

20
(1− (1− p)r−1)5 (r − 1)5p5

k = 8, v ≡ 8 (mod 56) 2 v
4
≤ n ≤ v(v−1)

56
(1− (1− p)r−1)8 (r − 1)8p8

k = 5, v ≡ 5 (mod 20) 3 2v
5
≤ n ≤ v(v−1)

20
(1− (1− p)r−1)5 (r − 1)5p5

k = 8, v ≡ 8 (mod 56) 3 v
4
≤ n ≤ v(v−1)

56
(1− (1− p)r−1)8 (r − 1)8p8

k = 8, v ≡ 8 (mod 56) 4 v
4
≤ n ≤ v(v−1)

56
(1− (1− p)r−1)8 (r − 1)8p8

SQS, λ= 1

v ≡ 2, 4 (mod 6) 2 vr1
k

See Thm. 7.11 See Thm. 7.13

t-Designs, t > 2, λ= 1

t = 3, k > 4 3 vr1
k

See Thm. 7.12 -

We designed efficient algorithms with trade-offs between storage and the expected com-
munication and computation requirements for repairable threshold schemes with 2-designs
as their underlying distribution design. The choice of combinatorial design was shown to
have implications with respect to the algorithms used for contacting participants to per-
form a repair. For example, whether Algorithm 4 can be used is dependent on whether
the design is able to generate all of the blocks in the design from a set of base blocks.
Further implications are dependent on the value of t in the design and the choices you
make for prioritizing different repair set forms (discussed in Chapter 8). To account for
these implications we discussed modifications required when using t− (v, k, 1) designs with
t > 2. The algorithms were analyzed under one of two probability models. The first model,
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which is a transient fault, meant that if a participant is unavailable when we contact them,
we could continue to contact them and they would eventually respond at some point in
the future. For our pirates, this is an example where we can assume they are cursed and
cannot be permanently removed by any of the many risks they face; however, they may
be taking an exceptionally long voyage and be out of communication range for some time.
However, if we wait long enough and they return in range, they will eventually reply and
be able to provide an appropriate subshare if they have one. The other model is the case
of a permanent fault. In this case, if a participant fails to reply, it is safe to assume that
they have lost a battle to the sea, to insufficient supplies of citrus, or to any of the other
risks they face. In this model, there is no point in attempting to contact a participant
who does not reply as after a failed response: they will not respond, no matter how many
attempts to contact them are made.

The equations for evaluating the repairable threshold schemes included equations for the
probability a repair can occur. This resulted in a generalized formula for the probability
that there exists at least one repairing set when the underlying distribution design is a
t− (v, k, 1) design, where t ≥ 2. We additionally determined generalized formulas for the
expected number of available repair sets when the underlying distribution design is either
a 2 − (v, k, 1) design or a SQS(v). Finally, we included general formulas which specify
the necessary restrictions on the block size k in order for a t − (v, k, 1) design to yield a
repairable threshold scheme with threshold τ .

Given the formulas and algorithms presented in this thesis, a group of pirates (or
other participants) can effectively choose appropriate distribution designs depending on
the desired reliability and the preferred optimization with respect to storage or time. If the
pirates have minimal storage available to them but can perform some simple computations,
then they would like want to choose designs that can use Algorithm 4. If they have as
much storage available to them as they need, and they cannot perform computations, they
would choose to use Algorithm 3. In terms of reliability, if they want greater guarantees
that a repair set exists, and they only require threshold τ = 2 or τ = 3, they would choose
to use t-designs with t > 2. If they require thresholds such that τ > 3, at this time they
will need to choose a t-design with t = 2 since constructions for suitable t-designs are not
currently known in the literature. With this thesis at their side, the pirates will now be
able to determine which algorithms and which designs are best for ensuring the secrecy
and recoverability of their treasure.
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