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Abstract 
 

As an effective way to reduce greenhouse gas emissions, goals on weight reduction has been focused by 

automotive manufacturers to meet the environmental regulations. Magnesium (Mg) alloys, with its high 

specific strength and low density, are particularly attractive to applications where light-weight is a part 

of its objective. However, Magnesium alloys with its unique crystallographic structure (Hexagonal Close 

Packing) provide different deformation mechanisms in contrast to steel or Aluminum alloys are currently 

been used for load-bearing components which have to be studied. As fatigue failure is a major concern, 

this thesis aims to characterize the stress-strain response as well as fatigue properties of ZEK100-O 

rolled sheet and to model the stress-strain responses and fatigue properties at the notch root where the 

crack is most likely to initiate due to the stress concentration when a notch is present. 

Initially, the cyclic behavior of rolled ZEK100-O Magnesium alloy sheet has been investigated by 

performing fully-reversed and strain-controlled tension-compression tests with the strain amplitude 

span from 0.3% to 2.3% on the smooth specimen and load-controlled cyclic tests on notched specimens. 

In addition, the fatigue properties of the material are also investigated by fitting the fatigue test results 

to the Smith-Watson-Topper (SWT) and Jahed-Varvani energy models. 

Next, the phenomenological stress-strain model for asymmetric materials proposed by Dallmeier et al. 

has been implemented using the fully-reversed and strain-controlled tension-compression test results 

on ZEK100-O and results available on AZ31B-H24 which have shown good agreement. A MATLAB code 

has been written to obtain all the necessary material parameters from one single hysteresis which has 

visible twin exhaustion and further investigation shown that a stress-strain hysteresis with a strain 

amplitude of 2% is sufficient. With an additional cyclic stress-strain curve (CSSC) input, the MATLAB code 

is capable of predicting the stress-strain responses for a given strain history. 

Furthermore, the cyclic behavior and fatigue properties of rolled ZEK100-O and AZ31B-H24 Magnesium 

alloy notched sample has been investigated by performing fully-reversed load-controlled tension and 

compression tests. To induce sufficient amount of plasticity yet to prevent general yielding at the notch 

root, the applied nominal load has been chosen based on its compressive yield stress, which is lower in 

contrast to its tensile yield stress. Given an elastic stress concentration factor of 2.5 at the notch root 

based on the test sample geometry, four different nominal stress levels (50%, 60%, 70% and 80% of 

compressive yield stress equivalent load) were chosen. The strain field around the notch root during the 

cyclic loading has been captured using the digital image correlation (DIC) technique. In addition, the 
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crack initiation and propagation have also been captured simultaneously using DIC for its fatigue 

properties. 

The strain predictions at the notch root at the end of each loading segment using both Neuber’s and 

Glinka’s rule have been examined on both ZEK100-O and AZ31B-H24 based on the strain measurements 

at the notch root. It has been found that the strain predictions are reasonably close to the 

experimentally obtained value for both Neuber’s and Glinka’s rule. However, the strain prediction using 

Neuber’s rule tend to give a larger value in contrast to Glinka’s rule, which is more conservative as long 

as life prediction is concerned. At the same time, the effects of the stress state at the notch root (plane 

stress or plane strain) to the axial strain measurements have also been studied by performing additional 

fully-reversed load-controlled tension and compression tests on notched samples with different 

thicknesses.  

Finally, upon the existing MATLAB code which is capable of predicting the stress-strain responses for a 

given strain history, notch analysis based on Neuber’s and Glinka’s methods have been integrated by 

applying either Neuber’s or Glinka’s rule upon the stress-strain curve generated using the 

phenomenological model for each reversal. Additionally, the plane strain correction has been used to 

obtain the stress-strain responses at the notch root under plane strain condition from the plane stress 

solution. Having the stress-strain responses at the notch root, a modified SWT and Jahed-Varvani (J-V) 

energy model based on the uniaxial fully-reversed and strain-controlled tension-compression fatigue 

test results on smooth samples incorporate with Miner’s rule have been used to ultimately predict the 

life of a notch member providing its elastic stress concentration factor and nominal load history. The life 

predictions on the notch members under both constant and variable amplitude loads have been 

examined on ZEK100-O and AZ31B-H24 which yield good results. 
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Chapter 1: Introduction 
 

The greenhouse gas emissions by human activities are believed to be the major cause of global warming 

and the rise of the sea levels over the last few decades [1] . Statistics by the United States Environmental 

Protection Agency have shown that, in 2016, the transportation sector contributes to 28% of the total 

greenhouse gas emissions in the US, as shown in Figure 1: 

 

Figure 1. Total U.S. Greenhouse gas emissions by economic sector in 2016. (Total Emissions in 2016 = 6,511 Million Metric Tons 

of CO2 equivalent) [2]  

Governments around the world have set the regulations for the automotive manufactures in order to 

suppress the carbon dioxide emission from the burn of fossil fuels. Many technologies have been 

developed over the years to reduce the emissions of the internal combustion engines, such as exhaust 

gas recirculation (EGR), lean-burn technology, etc. Additionally, electric vehicles have also been 

developed to achieve the goal of zero emission in recent years.  

To further reduce the emission and energy consumption, an effective way is to reduce the vehicle 

weight, which can ultimately reduce the amount of energy needed for the acceleration and at the same 

time, reduce the amount of energy dissipated as heat through the break during the deceleration. 

The concept of light weighting involves the use of new types of materials which is lighter in weight yet 

retains the structural integrity over time. Magnesium alloys are good candidates for this application due 

to its high specific strength and high specific stiffness. However, magnesium alloys exhibit anisotropy as 

well as tension-compression asymmetry [3] [4] , which cannot be easily modeled using the traditional 
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methods for symmetric materials. In addition to that, magnesium alloys also exhibit poor formability 

due to its unique HCP (hexagonal close-packed) crystal structure which has only a limit number of 

deformation mechanisms at room temperature. To mitigate these problems, new types of magnesium 

alloys have been developed over the years with the addition of rare-earth elements such as Ce, Nd, La, 

etc. ZEK100-O is a relatively new type of rare-earth (RE) contained magnesium alloy with good room 

temperature formability. To be able to properly design load-bearing components made of ZEK100-O 

magnesium alloy, the quasi-static and cyclic properties of ZEK100-O were studied. 

To be able to properly model the cyclic stress-strain behaviors of magnesium alloys under uniaxial load, 

the phenomenological model proposed by Dallmeier et al. [5] for wrought magnesium alloys has been 

studied and examined on ZEK100-O and AZ31B-H24, which yield good results. 

The stress-strain responses at the notch root under fully-reversed nominal stresses for both ZEK100-O 

and AZ31B-H24 were studied too. To be able to predict the stress-strain responses and ultimately 

predict the fatigue life of the notched components, both Neuber’s and Glinka’s (ESED) approximation 

methods were examined on both ZEK100-O and AZ31B-H24. With the help of the phenomenological 

model and the plane strain correction by Dowling, N. [6] , both Neuber’s and Glinka’s approximation 

methods provide notch strain predictions with a reasonable accuracy. 

Besides, two fatigue models: Smith-Watson-Topper (SWT) [7] , which is using a strain-based approach 

and Jahed-Varvani model (later referred to as the J-V energy model) [8] [9] , which is using an energy-

based approach are both examined on ZEK100-O. Due to the assumption made by SWT, which assumes 

the fully-reversed strain-controlled tests are also fully-reversed in stress is not true for ZEK100-O due to 

the tension-compression asymmetry, the strain versus life curve has been used to directly fit to the SWT 

relation instead of Coffin-Manson relation (later referred to as the SWT direct-fit). Both SWT direct-fit 

and J-V energy model yield good predictions on the fatigue life of ZEK100-O magnesium alloy. 

Finally, a notch analysis program has been developed and coded in MATLAB to incorporate the 

phenomenological model with Neuber’s and Glinka’s rule to first predict the local stress-strain responses 

at the vicinity of the notch root, then use SWT direct-fit and J-V energy model to ultimately predict the 

fatigue life of a given notched member. 

 

As a brief overview, the major objectives of this thesis are four folds: 
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1) The characterization of the stress-strain responses and fatigue behaviors of ZEK100-O on 

smooth and notched specimens 

2) Modeling of the stress-strain hysteresis loops for magnesium alloys using the phenomenological 

model proposed by Dallmeier et al. 

3) Assess and implement the Neuber’s and Glinka’s approximation method upon the 

phenomenological model for the notch analysis on magnesium alloys 

4) Assess and integrate the fatigue models (SWT direct-fit and J-V energy model) to the smooth 

sample and notch analysis 

Chapter 2 contains the literature review of the general properties of magnesium alloys and of the 

material to be investigated, namely, ZEK100. Besides, the phenomenological model by Dallmeier et al. 

[5] is discussed in detail. Finally, the knowledge about the approximation methods for the notch analysis 

(Neuber’s rule and Glinka’s rule) presented in the current literature is also reviewed. 

Chapter 3 presents the experimental characterization of the quasi-static, cyclic and fatigue properties of 

ZEK100-O. Notch responses of ZEK100-O and additional tests on notched AZ31B-H24 notched specimens 

have also been discussed, which will be used to validate the notch response predictions using the 

approximation methods. 

Chapter 4 is dedicated to the modeling of the stress-strain hysteresis loops using the phenomenological 

model by Dallmeier et al. [5] and the implementation of the approximation methods (Neuber’s and 

Glinka’s rule) for notch analysis.  

Chapter 5 discusses the two fatigue models been used to model the fatigue behaviors of ZEK100-O, 

namely, SWT and Jahed-Varvani models. Besides, Miner’s rule is also examined for the fatigue life 

predictions of both smooth and notched specimens under variable amplitude loads. 

Chapter 6 is focusing on the discussion of the capabilities and input requirements of the developed 

notch analysis MATLAB program. In addition to that, flowcharts are also presented to give a brief 

overview of how the core of the MATLAB program is working. 

Chapter 7 summarizes all the conclusions of the work presented from chapter 2 to chapter 6. 

Furthermore, some recommendations of the future work are also provided at the end. 
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Chapter 2: Literature review 
 

Magnesium and its alloys typically exhibit poor formability, anisotropy as well as tension-compression 

asymmetry at room temperature [3] [4] which is distinct from strength-differential effect reported in 

high strength steels [10] .The poor formability is due to its unique HCP (hexagonal close-packed) crystal 

structure, which has only a limit numbers of deformation mechanisms, specifically, basal <a>, prismatic 

<a>,  pyramidal <a> and pyramidal <c+a> slip systems [13] , shown in Figure 2-a. 

 

Figure 2. Schematic of the HCP unit cell showing all possible: (a) slip and (b) twinning systems [12]  

 

These slip systems can be activated at different levels of CRSS (critical resolved shear stress) and at the 

room temperature, basal <a> slip is the only slip system available since other slip systems require a 

relatively higher CRSS [14] - [16] . Another deformation mechanism dedicated to HCP crystal is twinning, 

shown in Figure 2-b. There are two active twinning mechanisms in magnesium which are the contraction 

twinning (TT1) and extension twinning (CT1) [17] The contraction twinning permits the HCP unit cell to 

contract in its c-axis, as the c-axis is re-oriented by 56.2 degrees, whereas the extension twinning 

permits the unit cell to elongate in its c-axis, while the c-axis re-oriented by 86.3 degrees [4] . It has been 
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shown that twinning can be activated by direct or indirect extension or contraction of the c-axis [20] -

[22] . Due to the manufacturing process of the rolled sheet magnesium alloy, strong basal textures are 

normally developed where the c-axis lying almost orthogonal to the surface of the sheet. As a result, 

wrought magnesium alloys normally exhibit tension-compression asymmetric and directional anisotropy 

[23] -[29] . 

It has been shown that the addition of the RE (rare-earth) elements weakens the basal texture of the 

rolled magnesium alloys, which improves the ductility and reduces the tension-compression asymmetry 

by suppressing the twinning process [30] -[32] . T. Al-Samman et al. suggested that the highly soluble 

rare-earth elements such as Ga and Nd atoms segregate to the grain boundaries and affect the grain 

boundary motion, which alters the recrystallization and grain growth. The solute clusters cause strain 

heterogeneity and influence the nucleation and growth process of recrystallization [58] . 

There have been numerous studies on fatigue of wrought magnesium alloys including AZ31B extrusion, 

forged and sheets [33] -[45] , ZK60 extrusion and forged [46] -[48] , AM30 extrusion [49] -[54] , and AZ80 

extrusion and forged [55] -[57] .  However, studies on ZEK100 has been limited. ZEK100-O is a relatively 

new type of commercial RE-containing magnesium alloy. The O-temper indicates that the material has 

been annealed to remove any cold work in the rolling process [30] . The elemental composition is given 

in Table 1: 

 

Zn Nd Zr Mn Mg 

1.3 (wt%) 0.2 (wt%) 0.25 (wt%) 0.01 (wt%) Balance 

 

Table 1. ZEK100-O elemental composition [58]  

It has been shown by few authors that, the initial texture of the RE-contained ZEK100-O magnesium 

alloy exhibit a relatively weaker basal texture and a significant spread of the basal poles along the 

transverse direction (TD) are found [4]  [22] [30] [31] . The electron backscatter diffraction (EBSD) figures 

of sheet ZEK100 and AZ31B, which is a common type of commercially available magnesium alloy are 

shown in Figure 3 by Atish K. Ray et al. [62] : 
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Figure 3. EBSD Initial texture and pole figures of (a) AZ31B and (b) ZEK100 [62]  

 

It can be seen that the basal poles for ZEK100 are scattered in the transverse direction (TD) whereas the 

majority of the basal poles are normal to the sheet surface for AZ31B. Not to mention that the 

intensities of the basal poles for ZEK100 is much lower than AZ31B, which indicates a much weaker basal 

texture found in ZEK100. In addition to the effect of the added rare-earth element neodymium (Nd) in 

ZEK100 weakens the basal texture [58] , F. Mokdad et al. suggested that the dissolved Zirconium (Zr) in 

ZEK100 could refine the grains by effectively limit the growth of nucleating magnesium grains via solute 

segregation while the subsequent constitutional undercooling promoted heterogeneous nucleation 

events ahead of the solidification front [59] -[61] . 

Due to the spread of basal poles of ZEK100 magnesium alloy in the transverse direction (TD), a relatively 

higher level of planar anisotropy can be expected. It has been experimentally shown by Waqas 

Muhammad et al. in Figure 4 [22] : 
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Figure 4. (a) AZ31B and (b) ZEK100 stress vs. plastic strain curve under monotonic tension and compression (Note that DD is the 

45% direction in between RD and TD) [22]  

 

A relatively higher planar anisotropy can be observed in ZEK100 under monotonic tension. Furthermore, 

the concaved shape of the flow curves in tension indicates a slip-dominated deformation whereas the 

sigmoidal shape of the compressive flow curves are results of the easily activated extension twinning at 

lower strain followed by the non-basal slip at higher strains due to the significantly lower CRSS value for 

extension twinning in comparison with non-basal slips under room temperature [23] [63] [64] [65] . It is 

also worthy to mention that; the flow stress is the highest in RD and lowest in TD for ZEK100. 

As mentioned earlier, the extension twinning during the in-plane compression causes an 86.3 degree of 

re-orientation of the basal poles towards the in-plane loading direction [4] [19] . During in-plane reverse 
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tension, the previous twinned crystals may undergo a second extension twinning due to the stretch in 

the c-axis. However, the second extension twinning can proceed on any of the six available twinning 

planes depending on the critical resolved shear stress where only one of them would reorient the 

twinned zone back to the parent orientation [22] [66] . Consequently, the twinning and detwinning 

during cyclic loading lead to the asymmetry of the stress-strain hysteresis loops and the Bauschinger 

effect especially at higher strain amplitudes [23] [67] [68] . 

The Ramberg-Osgood equation [69] accompanied with Masing hypothesis [70] are wildly used to model 

the stress-strain hysteresis loops for symmetric materials: 

𝜀 =
𝜎

𝐸
+ (

𝜎

𝐾′
)
1
𝑛′⁄

                                                 (1) 

∆𝜀 =
𝜎

𝐸
+ 2(

∆𝜎

2𝐾′
)
1
𝑛′⁄

                                         (2) 

Only three parameters are needed to model the stress-strain hysteresis loops, the cyclic strength 

coefficient (K’), cyclic strain hardening exponent (n’) and the elastic modulus (E). Equation (1) applies to 

the first reversal and Equation (2), which doubles the stress and strain ranges applies to all the 

subsequent reversals as described by the Masing hypothesis [70] . Despite the benefits of using only 

three parameters to model the stress-strain behaviors, the stress-strain hysteresis loops modeled using 

Ramberg-Osgood equation is point symmetric, which is incapable to capture the unique asymmetric 

type of stress-strain responses of magnesium alloys. Furthermore, due to the different deformation 

mechanisms activated in tension and compression, the shapes of the stress-strain path for upward and 

downward reversals are different. Dallmeier, J. et al. have shown that a pool result can be found by 

modeling the stress-strain hysteresis loops of AM50 magnesium alloy using the Ramberg-Osgood 

equation and Masing hypothesis in Figure 5 [5] . 
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Figure 5. comparison of the Ramberg-Osgood-Masing model with experimentally determined variable amplitude hysteresis 

loops of AM50 by Dallmeier, J et al. [5]  

 

To closely mimic the experimentally determined asymmetric stress-strain hysteresis loops of wrought 

magnesium alloys such as ZEK100-O, a phenomenological model has been proposed by Dallmeier, J et al. 

[5] . The phenomenological model is originally developed upon 1.2 mm thick twin roll cast AM50 

magnesium alloy sheet but further proved that it works well on other types of wrought magnesium 

alloys as well. As described by Dallmeier, J et al., the phenomenological model breaks down the total 

relative strain to three fundamental components: elastic strain, plastic strain, and pseudo-elastic strain, 

as shown in Equation (3). 

∆𝜀𝑡𝑜𝑡𝑎𝑙(∆𝜎) = ∆𝜀𝑒𝑙(∆𝜎) + ∆𝜀𝑝𝑙(∆𝜎) + ∆𝜀𝑝𝑠𝑒𝑢𝑑𝑜(∆𝜎)                        (3)     

There are 8 parameters needed in total to model the stress-strain hysteresis loops of magnesium alloys 

by this phenomenological model, as shown in Table 2: 
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Parameters Unit Descriptions 

E MPa Young’s modulus 

P - Material constant, representing the slope of the pseudo-elastic strain 

component 

𝜎𝑝,𝑢𝑝 MPa Pseudo-elastic cut-off stress for ascending reversals 

𝜎𝑝,𝑑𝑜𝑤𝑛 MPa Pseudo-elastic cut-off stress for descending reversals 

T - Amount of plastic strain at the inflection point of the plastic strain component 

S - Material constant, representing the slope at the inflection point of the plastic 

strain component 

𝜎𝑡𝑤 MPa Stress at the inflection point of the plastic strain component of the descending 

reversal 

𝑅𝑟 - Ratio between the reduction of both memory factors mpl and mpseudo 

 

Table 2. Parameters been used in the phenomenological model by Dallmeier, J et al. [5]  

 

The parameters 𝜎𝑝,𝑢𝑝 and 𝜎𝑝,𝑑𝑜𝑤𝑛 can be determined from the upward and downward reversals of an 

experimentally determined stress-strain hysteresis loop, where 𝜎𝑝,𝑢𝑝 and 𝜎𝑝,𝑑𝑜𝑤𝑛 are the stress ranges 

correspond to 20% of deviation in strain from linear elastic behavior from the reversing points. 

Parameter T, S and 𝝈𝒕𝒘 are all linked to the inflection point of the stress versus plastic strain curve for 

the downward reversal. Parameter T is the strain range correspond to the inflection point on the stress 

versus plastic strain curve from the reversing point for the downward reversal. Parameter S is the slope 

at the reversing point in the stress versus plastic strain curve and 𝝈𝒕𝒘 correspond to the global stress 

value at the inflection point. A visualization of these material constants using an experimentally 

determined hysteresis loop for AM50 by Dallmeier, J et al. [5] is shown in Figure 6: 
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Figure 6. Visualization of material constants using an experimentally determined envelope hysteresis loop with the 

corresponding calculated strain components (AM50) by Dallmeier, J et al. [5]  

And a list of these material parameters for various types of magnesium alloys by Dallmeier, J et al. [5] is 

shown in Table 3: 

Parameters Unit Expected ranges AM50 ME21 AZ31B AZ61A 

E GPa 40 - 46 45.0 44.0 44.8 43.3 

P - 5 ∙ 10−4 − 5 ∙ 10−3 1.4 ∙ 10−3 2.5 ∙ 10−3 2.0 ∙ 10−3 1.5 ∙ 10−3 

𝜎𝑝,𝑢𝑝 MPa 50 - 300 125 50 75 75 

𝜎𝑝,𝑑𝑜𝑤𝑛 MPa 50 - 300 175 100 225 125 

T - 0.01 - 0.1 0.037 0.04 0.04 0.05 

S - 15 - 60 35 25 50 50 

𝜎𝑡𝑤 MPa (-50) - (-200) -170 -77 -155 -135 

𝑅𝑟 - 0 - 1 0.6 0.05 0.8 0.5 

 

Table 3. Values and expected ranges for various types of magnesium alloys by Dallmeier, J et al. [5]  

The elastic strain component shown in Equation (3) is given in Equation (4): 
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∆𝜀(∆𝜎) =
∆𝜎

𝐸
                                                                    (4) 

Which is defined by the experimentally determined Young’s modulus. 

As mentioned earlier that, the deformation mechanisms for magnesium alloys are not only different for 

upward and downward reversals but also not the same at different stress levels. The alternation 

between twinning and detwinning also involved during cyclic loading, which gives the stress-strain 

hysteresis loop a distinct sigmoidal shape especially at a relatively higher stress amplitude [23] [74] . Due 

to these reasons, hyperbolic tangent functions have been used to model the plastic behaviors and the 

addition of the shape factor 𝑎𝑢𝑝/𝑑𝑜𝑤𝑛 has been used to mimic the distinct shapes of the ascending and 

descending reversals. The function being used to model the plastic strain is given by Equation (5-7): 

 

∆𝜀𝑝𝑙(∆𝜎) = [𝑈(∆𝜎) − 𝑈(∆𝜎 = 0)] ∙ 𝑇 ∙ 𝑚𝑝𝑙                                                        (5) 

𝑈(∆𝜎) =
1

2
[tanh (

∆𝜎−|𝜎𝑟𝑝|+𝑎𝑢𝑝/𝑑𝑜𝑤𝑛∙𝜎𝑡𝑤

𝑆
∙ 𝑎𝑢𝑝/𝑑𝑜𝑤𝑛) + 1]                                (6) 

𝑎𝑢𝑝/𝑑𝑜𝑤𝑛 = {
1, downward reversal

1

2
(tanh

∆𝜎𝑚𝑎𝑥−|𝜎𝑟𝑝 (𝑑𝑟)|+𝜎𝑡𝑤

𝑆
+ 1) , upward reversal

           (7) 

By having different values of 𝑎𝑢𝑝/𝑑𝑜𝑤𝑛 for upward and downward reversal in Equation (7), the 

difference in the shape of the upward and downward reversals can be properly modelled. Note that 𝜎𝑟𝑝 

is the global stress value at the reversing point for the current reversal, 𝜎𝑟𝑝 (𝑑𝑟) is the global stress value 

at the reversing point for the corresponding downward reversal, ∆𝜎𝑚𝑎𝑥 is the stress range for the 

current reversal and 𝑚𝑝𝑙 is the plastic memory factor. 

In addition to elastic and plastic behaviors, it has been observed in most of the magnesium alloys that, 

the unloading curves in both tensile and compressive regions are non-linear. This phenomenon is called 

pseudo-elastic behavior and in magnesium alloys, the pseudo-elastic strain is induced by reversible 

movement of grain boundaries due to internal driving forces [71] -[73] . The pseudo-elastic strain leads 

to a relatively larger hysteresis loop especially at lower stress amplitudes [71] . The pseudo-elastic strain 

component (∆𝜀𝑝𝑠𝑒𝑢𝑑𝑜) has been modelled using a logarithmic function shown in Equation (8): 

∆𝜀𝑝𝑠𝑒𝑢𝑑𝑜(∆𝜎) = ln(
𝑒
(∆𝜎−𝜎𝑝,𝑢𝑝/𝑑𝑜𝑤𝑛)

50𝑀𝑃𝑎
⁄

+1

𝑒
(−𝜎𝑝,𝑢𝑝/𝑑𝑜𝑤𝑛)

50𝑀𝑃𝑎
⁄

+1

) ∙ 𝑃 ∙ 𝑚𝑝𝑠𝑒𝑙                                 (8) 
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Notice that 𝜎𝑝,𝑢𝑝/𝑑𝑜𝑤𝑛 takes different values for upward and downward reversals and 𝑚𝑝𝑠𝑒𝑙  is the 

pseudo-elastic memory factor. 

One more relation correlates the pseudo-elastic memory factor (𝑚𝑝𝑠𝑒𝑙) with plastic memory factor 

(𝑚𝑝𝑙) shown in Equation (9): 

           𝑅𝑟 =
1−𝑚𝑝𝑠𝑒𝑙

1−𝑚𝑝𝑙
                                                                       (9) 

Since all the parameters shown in Table 2 are fixed for the entire simulation for certain types of 

magnesium alloy, the only parameters change from one reversal to another are the pseudo-elastic 

memory factor (𝑚𝑝𝑠𝑒𝑙) and plastic memory factor (𝑚𝑝𝑙). By substitute Equation (4-8) into Equation (3), 

the relation between the relative stress (∆𝜎) and relative total strain (∆𝜀) can be established, except 

with the pseudo-elastic memory factor (𝑚𝑝𝑠𝑒𝑙) and plastic memory factor (𝑚𝑝𝑙) remain unknown. 

However, it is known that the reversing points of each reversal will land on the cyclic stress-strain curve 

(CSSC) for a stabilized fully reversed (Rstrain=-1) strain-controlled test. Therefore, given the strain range 

(∆𝜀𝑚𝑎𝑥) for the envelope stress-strain hysteresis loop, the stress range (∆𝜎𝑚𝑎𝑥) can be determined from 

the experimental CSSC. Substitute the known stress range (∆𝜎𝑚𝑎𝑥) and strain range (∆𝜀𝑚𝑎𝑥) for each 

reversal into the relation between the relative stress (∆𝜎) and relative total strain (∆𝜀) and consider 

Equation (9), two equations with two unknows (𝑚𝑝𝑙  & 𝑚𝑝𝑠𝑒𝑙) can be established and the individual 

values for 𝑚𝑝𝑙 and 𝑚𝑝𝑠𝑒𝑙  then can be determined by solving the system of equations. Finally, known the 

values of 𝑚𝑝𝑙 and 𝑚𝑝𝑠𝑒𝑙, the direct relation between the relative stress (∆𝜎) and relative total strain 

(∆𝜀) is established. 

 

 

 

 

 

 

 



14 
 

In a situation where the current reversal starts deviating from the envelope hysteresis loop as shown in 

Figure 7: 

 

Figure 7. Determination of 𝑚𝑝𝑙 and 𝑚𝑝𝑠𝑒𝑙 values when the current reversal deviating from the envelope hysteresis loop (The 

stress-strain curve shown in red)  [5]  

The stress range is not readily available for the stress-strain curve shown in red. However, it is known 

that, by virtually extending the stress-strain curve towards the top-right corner, the loop will be closed 

and the material memory will be full-filled when it reaches 2% of strain. Furthermore, the global stress 

and strain values at -1% of strain and 2% are known from the previous calculations at this point. 

Therefore, instead of finding the stress range corresponds to the red stress-strain curve which is not 

available at this moment, the stress and strain range of the -1% to 2% hysteresis loop (∆𝜎𝑚𝑎𝑥 and 

∆𝜀𝑚𝑎𝑥) is taken to calculate the corresponding 𝑚𝑝𝑙  & 𝑚𝑝𝑠𝑒𝑙  values. Finally, the established relative 

stress and strain relation for the upward -1% to 2% then can be trimmed down and only the portion 

from -1% to 1% is taken. 

The validations of the model on AM50 for stabilized constant and variable amplitudes by Dallmeier, J et 

al. [5] are shown in Figure 8: 
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Figure 8. Validations of the model on AM50 for constant and variable amplitudes by Dallmeier, J et al. [5]  

A good agreement between the phenomenological model and experimental results can be found across 

the board on AM50.  

To be able to properly design and evaluate the fatigue lives of load bearing components using 

magnesium alloys, the effects of the stress concentrations (holes, keyways, etc.) to the localized stress-
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strain responses under monotonic or cyclic loading need to be investigated, since the failure of 

components usually initiates at these points.  

It would be straightforward if the local stress-strain responses at the notch root are purely elastic. In this 

case, the local stresses and strains can be directly evaluated using the theoretical elastic stress 

concentration factor (𝐾𝑡): 

 
𝜎

𝑆
=

𝜀

𝑒
= 𝐾𝑡                                                               (10) 

Where 𝜎 is the local stress and 𝜀 is the local strain at the notch root; S is the nominal stress and 𝑒 is the 

nominal strain away from the notch. 

However, the existing stress concentrations may induce localized plastic yielding despite the nominal 

stresses applied are well below the yield limit. The elastoplastic analysis is needed to determine the non-

linear stress-strain responses at the notch root by the far-field stresses. The elastoplastic stress and 

strain fields can be assessed by using non-linear finite element method. However, these types of 

numerical simulations are usually very expensive and time-consuming especially when fatigue life 

assessment is concerned, while components are subjected to arbitrary load histories. Neuber proposed 

an analytical method in 1968 to approximate the stresses and strains at the notch root based on the 

study of prismatic bodies with hyperbolic notches under out-of-plane steer, and it is later known as the 

Neuber’s rule [75] . The Neuber’s rule stated that, the geometrical mean of stress concentration factor 

(𝐾𝜎) and strain concentration factor (𝐾𝜀) is equal to the theoretical elastic stress concentration factor 

(𝐾𝑡): 

𝐾𝑡 = √𝐾𝜎𝐾𝜀                                                             (11) 

𝐾𝜎 =
𝜎

𝑆
                                                                       (12) 

𝐾𝜀 =
𝜀

𝑒
                                                                        (13) 

𝑒 =
𝑆

𝐸
                                                                          (14) 

By substitute Equation (12-14) into Equation (11) and re-arrange: 

 

𝜎𝜀 =
(𝑆𝐾𝑡)

2

𝐸
                                                                (15) 
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Equation (15) is often referred to as the Neuber’s hyperbola. Since there are two unknowns in this 

Equation (𝜀 and 𝜎), another relation between the local stress and strain at the notch root is also needed, 

which is given by the stress-strain curve. 

As an example, as seen in Figure 9, the plate with a circular notch in the middle is under uniaxial nominal 

stress (𝑆) and the stress-strain curve at the notch root in the y-direction is given as a Ramberg-Osgood 

equation as shown in Equation (16): 

 

Figure 9. Circular notch under uniaxial tensile load with Ramberg-Osgood stress-strain curve example [6]   

 

𝜀 =
𝜎

𝐸
+ (

𝜎

𝐾
)
1
𝑛⁄

                                                        (16) 

 

Where 𝐾 is the monotonic strength coefficient and 𝑛 is the monotonic strain hardening exponent. By 

Neuber’s rule, the stress (𝜎) and strain (𝜀) at the notch root under the applied nominal stress 𝑆 can be 

calculated by solving Equation (17): 

{
𝜎𝜀 =

(𝑆𝐾𝑡)
2

𝐸

𝜀 =
𝜎

𝐸
+ (

𝜎

𝐾
)
1
𝑛⁄

                                                     (17) 

And a graphical illustration is shown in Figure 10: 
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Figure 10. Graphical illustration of Neuber’s rule [76]  

Although the original Neuber’s rule is valid only for uniaxial situations, T. Seeger and M. Hoffmann 

extended the Neuber’s rule to multiaxial stress states in case of proportional loading by replacing an 

equivalent nominal stress equal to the reference stress [77] . Seeger et al. extended the application of 

Neuber’s rule beyond the general yielding of the material [78] . Topper, T et al. extended the Neuber’s 

rule for cyclic loading scenarios by replacing the nominal stress (𝑆) and strain (𝑒) with the nominal stress 

(∆𝑆) and strain ranges (∆𝑒), at the same time replacing the notch stress (𝜎) and strain (𝜀) with the notch 

stress (∆𝜎) and strain (∆𝜀) ranges. In addition to that, the authors also proposed to replace the theoretic 

stress concentration factor (𝐾𝑡) with the fatigue notch factor (𝐾𝑓) to improve fatigue life predictions and 

to take the effect of the stress gradient into consideration [79] . However, it has been criticized for re-

accounting the notch root plasticity effects [80] . 

As an alternative approach to the Neuber’s rule, Molski and Glinka proposed the equivalent strain 

energy density method (ESED), later known as the Glinka’s rule. It was derived upon the hypothesis that, 

the localized plastic zone at the vicinity of the notch root is controlled by the surrounding elastic stress 

field. The Glinka’s rule stated that, in the presence of localized small-scale plastic yielding, the gross 

linear elastic behavior of the material surrounding the notch also controls the deformations in the 

plastic zone, thus, the energy density 𝑊𝜎  in the plastic zone is equal to that calculated on the basis of 

the elastic solution (𝑊𝑆) [81] : 
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𝑊𝜎 = 𝑊𝑆                                                                                  (18) 

𝑊𝜎 = ∫ ∆𝑆𝑖𝑗 𝑑∆𝑒𝑖𝑗
∆𝑒𝑖𝑗
0

=
(𝐾𝑡𝑆)

2

2𝐸
                                        (19) 

 

𝑊𝑆 = ∫ ∆𝜎𝑖𝑗 𝑑∆𝜀𝑖𝑗
∆𝜀𝑖𝑗
0

                                                            (20) 

 A graphical illustration of Glinka’s rule is shown in Figure 11: 

 

Figure 11. Graphical illustration of Glinka’s rule (ESED) [6]  

 

Later in 1986, Glinka proposed the strain energy density correction factor (𝐶𝑝) to take the stress re-

distribution due to plastic yielding at the vicinity of the notch root into consideration to improve the 

prediction for ESED [82] .  

The derivation of the 𝐶𝑝 factor is based on the fact that; the actual stresses is lower than those derived 

from the linear elastic analysis within the plastic zone at the vicinity of the notch root when localized 

yielding occurs. However, the equilibrium condition still holds for the notched body and a stress re-

distribution occurs in the neighbourhood of the notch tip resulting in an increase of the plastic zone size 

as shown in Figure 12 [82] . 
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Figure 12. Plastic yielding and the elastic stress redistribution ahead of a notch tip [82] . 

Due to plastic yielding, the amount of force 𝐹1 cannot be carried through by the material inside the 

plastic zone 𝑟𝑝. In order to satisfy the equilibrium condition, the amount of force has to be carried by the 

material beyond the initially determined plastic zone (𝑟𝑝) by an increment of ∆𝑟𝑝 in which 𝐹1 = 𝐹2 [82] . 

The first approximation of the plastic zone size ahead of the notch root (𝑟𝑝) for uniaxial tension or 

compression is given by Equation (21): 

𝜎𝑦 =
𝑘𝑡𝑆

2√2
[
𝜌

𝑟𝑝
+
3

4
(
𝜌

𝑟𝑝
)
3

]

1
2⁄

                                                    (21) 

 

Where 𝜎𝑦 is the yield stress, 𝜌 is the notch radius and 𝑆 is the applied nominal stress. 

The 𝐶𝑝 correction factor for uniaxial tension or compression is given in Equation (22): 

𝐶𝑝 = 1 + (
𝜌
𝑟𝑝⁄ ) [

2(
𝑟𝑝

𝜌⁄ )
1
2⁄
−(
𝜌
𝑟𝑝⁄ )

1
2⁄

(
𝜌
𝑟𝑝⁄ )

1
2⁄
+
1

2
(
𝜌
𝑟𝑝⁄ )

3
2⁄
− (

𝑟𝑝

𝜌
−
1

2
)]                                        (22) 

 

𝑊𝜎 = 𝐶𝑝𝑊𝑆                                                              (23) 
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Where the 𝐶𝑝 factor directly applied to the energy density on the basis of the linear elastic solution in 

Equation (23). 

A study by Kilambi and Tipton has shown that the Neuber’s rule relies on the material constitutive 

relation and the model of loading while the Glinka’s rule is limited to a small plastic zone ahead of the 

notch root surrounded by predominantly elastically deformed material [83] . A comparison between the 

Neuber’s and Glinka’s prediction is shown in Figure 13: 

 

 

Figure 13. Comparison between the prediction using (a) Neuber’s and (b) Glinka’s (ESED) [83]  

 

It can be seen that, both Neuber’s and Glinka’s (ESED) methods are energy based. The Neuber’s rule sets 

the strain energy density within the blue triangle area equal to the strain energy density determined on 

the basis of the elastic solution while Glinka’s rule sets the actual elastoplastic strain energy density 

equal to the strain energy density determined on the basis of the elastic solution. Moftakhar et al. 

suggested that, the generalized Neuber’s rule, which represents the equality of the total strain energy 
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density at the notch tip gives an upper bound estimation for the elastoplastic notch tip stresses and 

strains while the Glinka’s rule (ESED) serves as the lower bound of the stresses and strains prediction 

[84] . A thermodynamic analysis has been carried out by Ye, D et al. [85] -[86] further support that, the 

Neuber’s rule prediction serves as the upper bound whereas Glinka’s (ESED) prediction serves as the 

lower bound. In addition, the thermodynamic linkage between Neuber’s rule and Glinka’s rule has been 

revealed. The authors stated that, For Glinka’s rule, the theoretical work applied to the material at the 

notch root due to the nominal remote stress is transformed into the real total strain energy absorbed by 

the material and the heat dissipated at the notch root due to plastic deformation. The Neuber’s rule, on 

the other hand, is a particular case of Glinka’s rule (ESED), while the heat dissipation due to plastic 

deformation at the vicinity of the notch root is neglected [85] . Therefore, Glinka’s rule tends to 

underpredict the notch stress (𝜎) and notch strain (𝜀) based on the assumption that all the energy 

contribute to plastic deformation at the vicinity of notch root is fully converted to heat. In contrast, 

Neuber’s rule serves as another extreme that, assuming no heat dissipation due to plastic deformation 

at the vicinity of the notch root. Since heat dissipation during the plastic yielding is inevitable, as a result, 

Neuber’s rule will always overestimate the local stresses (𝜎) and strains (𝜀). 
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Chapter 3: Experimental Work 

 

3.1. Material identification 

3.1.1 Initial microstructure 

The material investigated in this study is rolled and annealed ZEK100 magnesium alloy sheet with a 

thickness of 6.6 mm. The initial microstructure by optical micrographs on a virgin sample in all three 

planes (ND-RD, ND-TD, and RD-TD) are shown in Figure 14: 

 

Figure 14. Optical micrographs of the ZEK100-O magnesium alloy in (a). ND-RD plane (b). ND-TD plane (c). RD-TD plane 
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No significant distinction is observed among the micrographs in all three planes and it is also observed 

that the microstructure is free of twinning. The average grain size determined by the average grain 

intercept method is 7.2 𝜇𝑚. 

 

3.1.2 Initial texture 
 

The (0002) and (101̅0) pole figures for ZEK100-O are shown in Figure 15: 

 

Figure 15. (0002) and (101̅0) pole figures for ZEK100-O magnesium alloy 

 

As seen in the pole figure, the majority of the basal poles (0002) are scattered within an angle of around 

30 degrees in the normal direction, which is in agreement with the literature [4] [22] [30] [31] .  As 

suggested in the literature, this is the result of the neodymium atoms segregate to the grain boundaries 

and affect the grain boundary motion, which alters the recrystallization and grain growth. The solute 

clusters cause strain heterogeneity and influence the nucleation and growth process of recrystallization 

[58] . Due to the relatively weaker texture of ZEK100-O, less tension-compression asymmetry can be 

expected. In addition, the spread of basal poles in the transverse direction (TD) promotes a higher level 

of planar anisotropy. 
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3.2. Quasi-static tensile properties 

 

3.2.1 Specimen geometry 

The quasi-static behaviors of ZEK100-O in tensile are evaluated in the rolling direction of the material. 

The specimen geometry for the tension tests is shown in Figure 16: 

 

Figure 16. Design of smooth specimen. This design was created at FATSLAB. One of its features is an improved chance of crack 

formation near centre of specimen vs specimens with a rectangular reduced section. 

The curved gage length improves the chance of the crack formation close to the center, yet, the slight 

stress concentration will not affect the uniformity of stress distribution across the cross-section area, as 

shown in Figure 17: 

 

Figure 17. Axial strain field under quasi-static tension- ZEK100 (The strain field is captured using DIC and processed with the 

ARAMIS software). 
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3.2.2 Quasi-static tension tests setup 

The monotonic tensile tests were conducted using the smooth specimens in which the y-direction 

shown in Fig. 2 is aligned with the test direction of the material. DIC was used to capture the strain field 

in the middle section as shown: 

 

Figure 18. DIC field of view (Shaded area has been chosen inside the ARAMIS software for the properties calculations). 

As shown in Figure 18, the strain field within the shaded area (10 mm × 10 mm) is used to calculate the 

properties of the material. Two more repetitions were done to confirm the results and the properties 

for ZEK100 is taken as the average of these three tests.  

 

 

Figure 19. Quasi-static tension test DIC camera setup. 

The camera setup for the monotonic tensile tests is shown in Figure 19, where both the cameras are 

enabled. The cameras are placed in the plane of symmetry (y-z plane) and focused at the middle section 
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of the test specimen where the distance between the sample and each camera is approximately the 

same. A picture of the test setup is also shown in Figure 20. 

 

Figure 20. Quasi-static tension test setup. 

 

3.2.3 Quasi-static tension test results 

Three tests have been done to obtain the properties of ZEK100 in the rolling direction and the quasi-

static stress-strain (engineering) curve is shown in Figure 21. Severe necking is observed after reaching 

the ultimate tensile strength and the final fracture is in a ductile manner. A picture of the sample after 

the final failure is shown in Figure 22. 

The Quasi-static properties are calculated inside the ARAMIS software and a plot of the average axial 

strain (Epsilon Y (Area (large)) (Average)) within the shaded area in the longitudinal direction (loading 

direction) for ZEK100 is shown in Figure 23. The red curve is a linear fit within the first few data points 

below 50 MPa for the E- modulus calculation and the green curve is originated from 0.2% of strain on 

the horizontal axis and parallel to the red line for the 0.2% offset yield strength calculation. 
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Figure 21. Tensile engineering stress vs. strain curves for all three tests (ZEK100). 

 

Figure 22. Quasi-static tensile test sample showing the necking- ZEK100-O. 
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Figure 23. Initial portion of engineering Stress vs. strain curve of ZEK100 to calculate elastic modulus and 0.2% offset yield stress. 

 

The tensile properties calculated for ZEK100 in the rolling direction is summarized in Table 4: 

 
Specimen #1 Specimen #2 Specimen #3 Average 

Value 
Sample 

Standard 
Deviation 

E, Modulus [GPa] 41.68 42.56 44.85 43.03 1.64 

UTS 

[MPa] 

Engineering 237.33 237.52 242.38 239.08 2.86 

True 287.71 277.45 280.84 282.00 5.23 

TYS (0.2% offset) [MPa] 156.20 166.39 167.52 163.37 6.24 

Uniform Elongation [%] 16.87 16.25 15.33 16.15 0.78 

Reduction in Area (RA) 

[%] 

56.56 54.48 56.06 55.70 1.09 

True Fracture Strain 

(ln(1/(1-RA))) [%] 

87.08 85.68 89.43 87.40 1.90 

 

Table 4. ZEK100 monotonic tension material properties 

Notice that the true fracture strain is about 87.4%, which translate to a very high ductility of this 

material. As suggested in the literature, this is the result of the weakened basal texture due to the 

addition of the rare-earth element neodymium [30] -[32] . 
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3.3. Quasi-static compression properties 

 

2.3.1 Specimen geometry 

The quasi-static compression tests have been done with cubic specimens to prevent buckling and the 

geometry of the compression sample is shown in Figure 24: 

 

Figure 24. Compression test specimen geometry. 

 

The compression test specimens are well-machined to a dimension of 8mm × 6mm × 6mm and the 

angle between each side is precisely machined to 90 degrees to ensure the best accuracy. One side of 

the specimen is painted with the speckle patterns for the DIC to capture the strain field within that area. 

 

3.3.2 Quasi-static compression tests setup 

The setup for the quasi-static compression tests is shown in Figure 25, a single camera with extension 

tube has been used to capture the strain field on one side of the compression sample. The camera is 

perpendicular to the face of the sample where the speckle pattern was painted. 
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Figure 25. Monotonic compression test setup. 

The cubic samples were placed at the center of the compression test platform where the axial 

compression force is applied. The properties were evaluated by averaging the strain across a small 

section located at the center of the speckle pattern shown in Figure 26:  

 

Figure 26 Compression setup view from DIC. 
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3.3.3 Quasi-static compression test results 

 

The blue area on top of the speckle pattern is selected inside the ARAMIS software where the properties 

are evaluated. Two samples were tested in each direction to confirm the results and the stress-strain 

curves for both rolling and transverse directions are shown in Figure 27, TD and RD represent transverse 

and rolling directions, respectively: 

 

Figure 27. Monotonic stress-strain curves of ZEK100 in uniaxial compression in rolling, and transverse directions. 

All the curves terminate at the stress right before the sample fails. It is apparent that the property in 

transverse and rolling directions are different and ZEK100 is slightly stronger in rolling direction due to 

the presence of anisotropy of the material. Here is a comparison between the monotonic tensile and 

compressive stress-strain curves in a different direction: 
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Figure 28 Comparison between monotonic tensile and compressive flow curves of ZEK100. 

 

The compressive properties in both rolling and transverse direction is summarized in Table 5: 

 

 
Rolling Direction Transverse Direction 

Yield strength (0.2% offset) -136.9 MPa -122.5 MPa 

Ultimate compressive strength -396.0 MPa -352.2 MPa 

Ultimate compressive strain 12.68 % 16.1 % 

 

Table 5. ZEK100 monotonic compression material properties 

It can be observed that the tensile yield strength is higher than compressive yield strength in the rolling 

direction. However, the ultimate compressive strength is much higher compared with the ultimate 

tensile strength. A picture of the fractured specimen is shown in Figure 29: 
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Figure 29. Fractured quasi-static compression specimen. 

Noticed that a 45-degree fracture surface is observed on every single sample for ZEK100, where the 

shear stress is at its maximum. 

 

3.4. Cyclic properties 

 

3.4.1 Specimen geometry and test setup 

The specimens used for the cyclic properties’ characterization is exactly the same as what has been used 

in the quasi-static tensile characterization as shown in Figure 16. However, instead of the speckle 

pattern, a 10mm width gauge length is pre-marked to mount the extensometer precisely in the middle, 

shown in Figure 30: 

 

Figure 30. Smooth cyclic test sample (the marked blue lines are where the extensometer knife edges are contacting the 

specimen) 
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As illustrated in Figure 31, the extensometer is mounted in the mid-section of the sample with a gauge 

length of 10 mm. The extensometer was mounted on the bare sample with adhesive or on top of a thin 

layer of acrylic coating held by rubber bands. 

 

Figure 31. Strain-controlled test setup for Cyclic properties characterization 

The failure criteria for all the tests are either 15% load drop or final fracture if the test was switched to 

load control. The crack or final fracture has to be within the extensometer gauge length to be 

considered as a valid test. 

 

3.4.2 Constant amplitude fully-reversed (𝑅𝜀=-1) and strain-controlled cyclic results 

Fully reversed strain-controlled tests were conducted on ZEK100 in the rolling direction for various strain 

amplitude from 0.3% to 2.3%. The second-cycle hysteresis loops for various strain amplitudes are shown 

in Figure 32 and the stabilized stress-strain hysteresis loops are shown in Figure 33.The comparisons of 

the second-cycle and stabilized stress-strain hysteresis loops for each applied strain amplitude from 

0.3% to 2.3% are shown in Figure 34 to Figure 42. 



36 
 

 

Figure 32 Second-cycle hysteresis loops of ZEK100-O. 

 

Figure 33. Half-life hysteresis loops of ZEK100-O. 
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Figure 34 Second cycle and stabilized stress-strain hysteresis at 2.3% strain amplitude (ZEK100). 

 

Figure 35 Second cycle and stabilized stress-strain hysteresis at 1.5% strain amplitude (ZEK100) 

 

Figure 36 Second cycle and stabilized stress-strain hysteresis at 1.2% strain amplitude (ZEK100). 
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Figure 37 Second cycle and stabilized stress-strain hysteresis at 1.0% strain amplitude (ZEK100). 

 

Figure 38 Second cycle and stabilized stress-strain hysteresis at 0.8% strain amplitude (ZEK100). 

 

Figure 39 Second cycle and stabilized stress-strain hysteresis at 0.6% strain amplitude (ZEK100). 
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Figure 40 Second cycle and stabilized stress-strain hysteresis at 0.5% strain amplitude (ZEK100). 

 

Figure 41 Second cycle and stabilized stress-strain hysteresis at 0.4% strain amplitude (ZEK100). 

 

Figure 42 Second cycle and stabilized stress-strain hysteresis at 0.3% strain amplitude (ZEK100). 

The sigmoidal shape of the stress-strain hysteresis loops, especially the upward reversal, can be 

observed in the relatively higher strain amplitude cases (> 0.5%) due to twinning/de-twinning.  
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A relatively weak tension-compression asymmetry is also observed even at relatively high strain 

amplitudes to due to the weakened basal texture, as discussed in chapter 1. For both 2.3% and 1.5% 

stress-strain hysteresis loops, the relaxation behavior is seen by comparing the second cycle and the 

half-life cycle. 

A plot of the stress amplitude versus cycle plot is shown in Figure 43: 

 

Figure 43. Stress amplitude vs. cycles plot for ZEK100-O (strain-controlled R=-1) 

 

Hardening behavior is observed above 0.5% of strain amplitude whereas softening behavior is observed 

at and below. However, for both 1.5% and 2.3% strain amplitudes, the material seems to be softening at 

the beginning and then start to harden after some cycles for the strain amplitude equal and above 2.0%. 
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Figure 44. True strain amplitude vs. Reversals to failure (ZEK100-O R=-1 strain-controlled tests) 

 

The strain amplitude vs. life curve for the fully-reversed strain-controlled tests is shown in Figure 44, 

which will be later used to find the parameters for the fatigue models. 

 

3.4.3 Mean strain effects 

In order to study the mean-strain effect on ZEK100-O magnesium alloy, a series of strain-controlled tests 

have been done with different stain amplitudes ranged from 0.40% to 1.0% while kept R ratio equals 0. 

The stress-strain hysteresis loops are shown in Figure 45 to Figure 48: 
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Figure 45. Strain-controlled R=0 test @ 1.00% strain amplitude- ZEK100-O 

 

 

Figure 46. Strain-controlled R=0 test @ 0.80% strain amplitude- ZEK100-O 
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Figure 47. Strain-controlled R=0 test @ 0.60% strain amplitude- ZEK100-O 

 

 

Figure 48. Strain-controlled R=0 test @ 0.40% strain amplitude- ZEK100-O 
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Relaxation behavior has been observed in all cases from 0.40% to 1.0%, however, it is more pronounced 

at lower strain amplitudes. A comparison of the stress-strain hysteresis loops between fully-reversed 

(R=-1) and R=0 for 1.0% and 0.4% is shown in Figure 49 and Figure 50:   

 

 

Figure 49. Strain-controlled R=0 and R=-1 tests comparison @ 1.00% strain amplitude- ZEK100-O 

 

Figure 50. Strain-controlled R=0 and R=-1 tests comparison @ 0.40% strain amplitude- ZEK100-O 



45 
 

Noticed that the R=0 stabilized stress-strain hysteresis loop at 1% of strain amplitude closely resembles 

the shape of the stabilized hysteresis with 𝑅𝜀=-1, however, the hysteresis loop shifted to the right-hand 

side due to the 𝑅𝜀 ratio. At 0.4% of strain amplitude, the lower reversing point for the 𝑅𝜀=0 stress-strain 

hysteresis loop corresponds to a relatively higher compressive stress compare with the loop for 𝑅𝜀=-1, 

whereas the maximum stresses at the top reversing point remain similar for both 𝑅𝜀=0 and 𝑅𝜀=-1 

hysteresis loops. Due to the similarity of the stress-strain hysteresis loops, the damage has been down 

for each completed cycle for 𝑅𝜀=0 and 𝑅𝜀=-1 should similar. Therefore, it is likely that the mean strain 

will not have a great effect to the fatigue life of ZEK100-O magnesium alloy. By looking at the strain 

amplitude versus life curve shown in Figure 51, it seems like that, the 𝑅𝜀=0 results actually have slight 

improved fatigue lives over the 𝑅𝜀=-1 tests, however, additional tests are needed to make this 

conclusion.  

 

 

Figure 51. Strain amplitude vs. life curve for both 𝑅𝜀=0 and 𝑅𝜀=-1 tests 
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The experimental lives for 𝑅𝜀=0 tests are summarized in: 

Strain amplitude [%] Experimental life* 

1.0 584 

508 

0.8 644 

996 

0.6 2292 

2025 

0.4 12032 

9124 

 

Table 6. Summary of the fatigue lives of the 𝑅𝜀=0 fatigue tests (failure criterial: 15% of load drop or fracture)- ZEK100-O 

 

 

3.4.4 Mean stress effects 

 

Stress controlled-tests at R ratio equals -1 and 0 were conducted to study the mean stress effect on 

fatigue life for ZEK100-O magnesium alloy. Although these tests were stress-controlled, the 

extensometer was attached to get the stress-strain responses. The 𝑅𝜎=0 tests have been done at three 

different stress amplitudes (80 MPa, 100 MPa and 110 MPa) and the results are shown in Figure 52 - 

Figure 54: 
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Figure 52. The 𝑅𝜎=0 tests on smooth specimen with stress amplitude of 80 MPa (ZEK100-O) 

 

 

Figure 53. The 𝑅𝜎=0 tests on smooth specimen with stress amplitude of 100 MPa (ZEK100-O) 
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Figure 54. The 𝑅𝜎=0 tests on smooth specimen with stress amplitude of 110 MPa (ZEK100-O) 

 

Significant amount of plastic deformation is observed for the first reversal for all three tests in 

comparison with the subsequent reversals. Although the ratcheting strains were built up through the 

progression of these tests, the shape of the stress-strain hysteresis loops for each completed cycle is 

almost the same after a number of cycles at each stress amplitude level. 

 

A summary of the fatigue lives for all the stress-controlled 𝑅𝜎=0 and  𝑅𝜎=-1 tests is given in Table 7: 

 

Stress Amplitude 𝑅𝜎=-1 life 𝑅𝜎=0 life 

80 MPa N/A 
(Expected to be run-out) 

11345 
cycles 

11990 
cycles 

12816 
cycles 

100 MPa 73582 
cycles 

54586 
cycles 

3324 
cycles 

3489 
cycles 

110 MPa 22981 
cycles 

25554 
cycles 

2989 
cycles 

2897 
cycles 

 

Table 7. Fatigue lives for all the stress-controlled 𝑅𝜎=0 and  𝑅𝜎=-1 tests 
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It is apparent that the positive mean stresses are greatly detrimental to the fatigue life of ZEK100-O. The 

fatigue life at the stress amplitudes of 100 MPa and 110MPa have been reduced by an order of 

magnitude due to the positive mean stresses. The 𝑅𝜎=-1 fatigue life for 80 MPa is expected to be more 

than 10 million cycles, which is at least 3 orders of magnitude greater than the fatigue life for the 𝑅𝜎=0 

counterpart at around 12 thousand cycles. 

The stress versus life curves for 𝑅𝜎=0 and 𝑅𝜎=-1 tests are given in Figure 55: 

 

 

Figure 55. Strain-life curve for all the stress-controlled 𝑅𝜎=0 and  𝑅𝜎=-1 test 

 

These results will be later used to evaluate the mean-stress effect predictions of the fatigue models in 

chapter 5. 

 

3.4.5 Variable amplitude strain-controlled cyclic results 

Several strain-controlled variable amplitude tests on ZEK100-O magnesium alloy have been done. These 

results will be used to examine the validity of Miner’s rule on this material and to check the goodness of 

the phenomenological model. The strain histories and their corresponding stabilized stress-strain 

hysteresis loops are shown in Figure 56 to Figure 59: 
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Figure 56. Variable amplitude strain-controlled test #1 (545 blocks of the given load history applied to failure- 15% load drop) - 

ZEK100-O 

 

 

Figure 57. Variable amplitude strain-controlled test #2 (206 blocks of the given load history applied to failure- 15% load drop) - 

ZEK100-O 
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Figure 58. Variable amplitude strain-controlled test #3 (4130 blocks of the given load history applied to failure- 15% load drop) - 

ZEK100-O 

 

 

Figure 59. Variable amplitude strain-controlled test #4 (3900 blocks of the given load history applied to failure- 15% load drop) - 

ZEK100-O 

The failure criterion for these variable amplitude tests is similar to the failure criteria for the constant 

amplitude tests, which is defined by 15% of load drops for the envelope hysteresis loop or final fracture. 
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The fatigue lives for the variable amplitude tests are measured by number of blocks of the given load 

histories applied. 

3.5. Cyclic properties of the notched specimens 

 

3.5.1 Specimen geometry and test setup 

The geometric of the notched sample is shown in Figure 60: 

 

Figure 60 Notched specimen with applied speckle pattern for digital image correlation (DIC) analysis. 

 

Based on the geometry of this specimen, the elastic stress concentration factor at the notch root (𝐾𝑡) is 

2.5 relative to the net nominal stress. Similar to the test setup for quasi-static compression tests, a single 

DIC camera was used to capture the strain field at the vicinity of the notch root on the surface of the 

notched specimen. The field of view of the DIC camera is shown in Figure 61 and the corresponding 

directions associated: 
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Figure 61. DIC field of view (left) and the notched test setup (right). 

 

3.5.2 Constant nominal stress amplitude results 
 

Constant nominal stress amplitude and fully-reversed (𝑅stress (nominal)=-1) load-controlled tests were 

carried out with four different amplitudes based on the compressive yield limit of ZEK100-O.  

Supplemental notch tests on AZ31B-H24 rolled sheet, which is a common type of commercially available 

rolled, strain hardened and partially annealed magnesium alloy, with two different nominal stress 

amplitudes have also been conducted for the sake of examining the generality of the model predictions 

and fatigue life estimations associated on different types of wrought magnesium alloys in chapter 4 and 

chapter 5. 

ZEK100-O notched specimens were tested under 50%, 60%, 70% and 80% of compressive yield 

equivalent nominal stress (Correspond to 68.45, 82.14, 95.83 and 109.52 MPa, respectively) due to the 

fact that the compressive yield limit is lower than its tensile counterpart. These load levels were chosen 

to induce sufficient amount of plasticity at the vicinity of the notch root while preventing general 

yielding happen. 

 Since the material within the plastic zone at the vicinity of the notch root is nether stress controlled nor 

strain controlled, to study whether the material is going to stabilize or not, a strain progression test is 

carried out and the results are shown in Figure 62: 
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Figure 62. Axial strain progression at the notch root test for ZEK100-O at 80% of compressive yield equivalent fully-reversed 
nominal stress (3 Cycles were captured each time start at the beginning, after 50 cycles, 150 cycles, etc. Three different tests are 
shown; two of them started with compression-tension-compression and a single test started with tension-compression-tension) 

 

Three cycles were captured start at the beginning and after 50, 150, 300, 500, 700 cycles for the sake of 

consistency. In addition, three different tests are presented; one test started with tension-compression-

tension and the other two started with compression-tension-compression. It can be seen that the axial 

strain at the notch root has already been stabilized after 50 cycles for both TCT and CTC tests and no 

noticeable difference can be observed in terms of the measured notch strains after that. Besides, the 

loading pattern (TCT or CTC) does not have a noticeable effect to the cyclic notch strain responses for 

the test results presented. 

To capture the axial strain responses at each load level, three cycles were captured after stabilization for 

consistency and the axial (𝑦) strain field at the maximum tensile and compressive load are also shown in 

Figure 63-Figure 66: 
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Figure 63. Stabilized strain field at (a) maximum compressive load (b) maximum tensile load and (c) axial strain at the notch root 
progression over 3 cycles- ZEK100-O @ 50% of compressive yield equivalent nominal stress (68.45 MPa) Note that the scales in 

(a) and (b) are different 
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Figure 64. Stabilized strain field at (a) maximum compressive load (b) maximum tensile load and (c) axial strain at the notch root 
progression over 3 cycles- ZEK100-O @ 60% of compressive yield equivalent nominal stress (82.14 MPa) Note that the scales in 

(a) and (b) are different 
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Figure 65. Stabilized strain field at (a) maximum compressive load (b) maximum tensile load and (c) axial strain at the notch root 
progression over 3 cycles- ZEK100-O @ 70% of compressive yield equivalent nominal stress (95.83 MPa) Note that the scales in 

(a) and (b) are different 
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Figure 66. Stabilized strain field at (a) maximum compressive load (b) maximum tensile load and (c) axial strain at the notch root 
progression over 3 cycles- ZEK100-O @ 80% of compressive yield equivalent nominal stress (109.52 MPa) Note that the scales in 

(a) and (b) are different 

 

Due to the limitations of the measurement technique (DIC), substantial amount of noise was introduced 

due to the inconsistency of speckle patterns, lighting conditions, etc. especially when the strain to be 

measured is relatively low, as seen in Figure 63 - (a), (b).  
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A summary of the notch strains measured at the peak tensile and compressive nominal stresses as well 

as the fatigue life (if available) is shown in Table 8: 

Nominal stress 
level 

Notch axial strain at maximum 
tensile load [%] 

Notch axial strain at maximum 
compressive load [%] 

Fatigue Life* 

(Cycles) 

50% CYS equivalent 
load (68.45 MPa) 

0.36 -0.42 N/A 

60% CYS equivalent 
load (82.14 MPa) 

0.46 -0.49 ~ 4500 

70% CYS equivalent 
load (95.83 MPa) 

0.53 -0.66 N/A 

80% CYS equivalent 
load (109.52MPa) 

0.62 -0.74 ~ 1000 

 

Table 8. Axial notch strains measured at peak tensile and compressive nominal stresses at 50, 60, 70 and 80 percent of 
compressive yield equivalent fully-reversed nominal stresses- ZEK100-O (The failure criteria for the fatigue life determination is 

defined by the first surface crack of a length exceed 100 𝜇𝑚) 

 

Two of the crack initiation tests at 60% and 80% percent of compressive yield equivalent fully-reversed 

nominal stresses are also shown in Figure 67-Figure 68: 

 

Figure 67. Crack initiation test for 60% of fully-reversed compressive yield equivalent nominal stress (82.14 MPa) - ZEK100-O 



60 
 

 

Figure 68. Crack initiation test for 80% of fully-reversed compressive yield equivalent nominal stress (109.52 MPa) - ZEK100-O 

 

The fatigue crack initiation lives for all the constant amplitude notched tests on ZEK100-O are 

summarized in Table 9: 

Test 

# 

Stress amplitude 

(normalized to the compressive yield) and 

loading sequence 

Crack initiation life 

(Crack length of ~ 100𝝁𝒎) 

1 80%/ CTC 900 cycles 

2 60%/ CTC 4500 cycles 

3 80%/ TCT 710 cycles 

4 80%/ CTC 1165 cycles 

5 60%/ CTC 5065 cycles 

6 80%/ CTC 900 cycles 

 

Table 9. Fatigue crack initiation life summary on ZEK100-O magnesium alloy (The failure criteria for the fatigue life 
determination is defined by the first surface crack of a length exceed 100 𝜇𝑚) 
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Same tests at 60% (94.84 MPa) and 80% (126.45 MPa) of compressive yield equivalent fully-reversed 

nominal stresses have also been carried out on AZ31B-H24 magnesium alloy.  

The strain progression tests on AZ31B- H24 at 80% of compressive yield equivalent fully-reversed 

nominal stresses are shown in Figure 69: 

 

Figure 69. Axial strain progression at the notch root test for AZ31B-H24 at 80% of compressive yield equivalent fully-reversed 
nominal stress (3 Cycles were captured each time start at the beginning, after 50 cycles, 100 cycles, etc. Two different tests are 

shown; one test started with compression-tension-compression and another test started with tension-compression-tension) 

It can be seen that both tests on AZ31B-H24 stabilized after the first 50 cycles and no obvious difference 

in axial strain measurement at the notch root over the cycles can be spotted. The TCT results seem to 

have higher strains over the cycles in both tension and compression in this case, however, no conclusion 

can be drawn without additional experiments. 

The axial notch strain measurements as well as strain fields at peak tension/ compression at 60% and 

80% compressive yield equivalent fully-reversed nominal stresses (94.84 MPa) are shown in Figure 70 

and Figure 72. The corresponding crack initiation tests are shown in Figure 71 and Figure 73: 
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Figure 70. Stabilized strain field at (a) maximum compressive load (b) maximum tensile load and (c) axial strain at the notch root 
progression over 3 cycles- AZ31B-H24 @ 60% of compressive yield equivalent nominal stress (94.84 MPa) Note that the scales in 

(a) and (b) are different 

 

Figure 71. Crack initiation test for 60% of fully-reversed compressive yield equivalent nominal stress (94.84 MPa) – AZ31B-H24 
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Figure 72. Stabilized strain field at (a) maximum compressive load (b) maximum tensile load and (c) axial strain at the notch root 
progression over 3 cycles- AZ31B-H24 @ 80% of compressive yield equivalent nominal stress (126.45 MPa) Note that the scales 

in (a) and (b) are different 

 

Figure 73. Crack initiation test for 80% of fully-reversed compressive yield equivalent nominal stress (126.45 MPa) – AZ31B-H24 
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The fatigue crack initiation lives for all the constant amplitude notched sample tests on AZ31B-H24 are 

summarized in Table 10: 

Test 

# 

Stress amplitude 

(normalized to the compressive yield) 

and loading sequence 

Crack initiation life 

(crack length of ~ 100𝝁𝒎) 

1 60%/ CTC 5300 cycles 

2 60%/ CTC 5500 cycles 

3 80%/ TCT 1000 cycles 

4 80%/ CTC 1380 cycles 

5 80%/ CTC 900 cycles 

6 80%/ CTC 1120 cycles 

 

Table 10. Fatigue crack initiation life summary on AZ31B-H24 magnesium alloy (The failure criteria for the fatigue life 
determination is defined by the first surface crack of a length exceed 100 𝜇𝑚) 
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3.5.3 Variable nominal stress amplitude results 
 

The purposes of the variable nominal stress amplitude tests on notched specimens are two folds. First, 

the strain responses at the notch root under variable amplitude load will be used to compare with the 

model prediction in terms of stress-strain response prediction. Besides, the crack initiation life for these 

tests will be used to validate the life prediction using the fatigue models. For this reason, two types of 

tests were conducted to serve for each purpose. For the first type of tests, DIC was used to capture the 

axial strain field around the notch root after the stabilization for the given two nominal stress histories: 

 

Figure 74. Variable nominal stress amplitude test on notched specimen #1- ZEK100-O (The nominal stress history is shown on the 
top and the axial strain at the notch root is shown at the bottom) 
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Figure 75. Variable nominal stress amplitude test on notched specimen #2- ZEK100-O (The nominal stress history is shown on the 
top and the axial strain at the notch root is shown at the bottom) 

 

To get the crack initiation lives for the variable amplitude test on notched specimens, the strain field 

around the notch was not captured, instead, one side of the specimens were painted in white and the 

DIC was used to detect the crack initiation by capturing the images at the peak tensile load for each 

cycle, when the crack is opened. Three different nominal stress histories were tested as shown in Figure 

76: 
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Figure 76. Nominal stress histories for variable nominal stress amplitude crack initiation tests on notched specimen- ZEK100-O  

 

The experimental crack initiation lives correspond to the nominal stress histories provided in Figure 76 

are given in Table 11: 

 

Strain history # Experimental life (# of blocks) 

1 3980 

2 23800 

3 24100 

 

Table 11. Experimental crack initiation lives correspond to the nominal stress histories provided in Figure 76 (The failure criteria 
for the fatigue life determination is defined by the first surface crack of a length exceeding 100 𝜇𝑚) 
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Chapter 4: Stress-strain response modelling 
 

4.1 Phenomenological model calibration 
 

As described in chapter 2 and shown in Table 2 and Table 3, the phenomenological stress-strain model 

for wrought magnesium alloys by Dallmeier, J et al. [5] requires 8 parameters in total as well as the cyclic 

stress-strain curve (CSSC) to model the stress-strain responses. Other than Young’s modulus and the 

parameter 𝑅𝑟, which is a parameter used to increase the robustness of the model prediction, 6 other 

material parameters are still needed to be determined. It has been found that, all of these 6 parameters 

can be calculated from a single stabilized strain-controlled and fully-reversed stress-strain hysteresis 

loop with visible twinning exhaustion. A MATLAB routing has also been written to automatically 

determine these parameters given one stabilized stress-strain hysteresis loop for that material. By 

testing on different types of wrought magnesium alloys with the MATLAB code (AM30, AM50, ZEK100, 

AZ31B, etc.), the stabilized hysteresis loop of 2% strain amplitude seems to be sufficient to obtain those 

6 parameters for the input and the procedure it follows will be discussed below. 

Three of these parameters are tied to the inflection point on the stress versus plastic strain curve shown 

in Table 12: 

Parameters Unit Descriptions 

T - Amount of plastic strain at the inflection point of the plastic strain component 

S - Material constant, representing the slope at the inflection point of the plastic 

strain component 

𝜎𝑡𝑤 MPa Stress at the inflection point of the plastic strain component of the descending 

reversal 

 

Table 12. Parameters used in the phenomenological model by Dallmeier, J et al. [5] which are tied to the 

inflection point on the stress versus plastic strain curve 

 

Based on the total deformation plasticity theory, the plastic strain is given as: 

𝜀𝑖𝑗
𝑝
= 𝜀𝑖𝑗 − 𝜀𝑖𝑗

𝑒                                                                 (24) 
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Where 𝜀𝑖𝑗
𝑝

 is the plastic strain component, 𝜀𝑖𝑗  is the total strain and 𝜀𝑖𝑗
𝑒  is the elastic strain component. 

And in the case of uniaxial tension/ compression: 

∆𝜀𝑝 = ∆𝜀 −
∆𝜎

𝐸
                                                              (25) 

The downward reversal of the input 2% strain amplitude stress-strain hysteresis loop from the input is 

first isolated and placed in a relative coordinate system shown in Figure 77: 

 

Figure 77. Stress vs. plastic strain curve for the downward reversal (red) in the relative coordinate system 

(top-right corner)- AZ31B-H24 

The stress versus plastic strain curve is determined using Equation (25) in the relative coordinate system 

shown at the top-right corner for the downward reversal. The inflection point then can be found by 

Equation (26):  

𝑓′′(∆𝜀𝑝) =
𝑑

𝑑∆𝜀𝑝
(
𝑑∆𝜎

𝑑∆𝜀𝑝
) = 0                                              (26) 
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However, there is no mathematical expression of the stress versus plastic strain curve available to 

directly use with Equation (26). In addition, the incremental form of Equation (26) is also not likely to 

give the true inflection point of the curve due to the fact that, the experimental determined stress-strain 

curve for the downward reversal is generally not smooth. It would be simpler to fit a hyperbolic tangent 

function to the stress versus plastic strain curve then find the inflection point using Equation (26) 

directly, however, the strain amplitude required is much larger and it is challenging to conduct such a 

test without any buckling issue. Besides, the curve fitting requires a lot of tweaks to get it right and it is 

unlikely to work every single time. 

To be able to correctly determine the inflection point of the downward reversal using a hysteresis loop 

of a relatively smaller strain amplitude, the method proposed is shown below: 

The relation between the stress range (∆𝜎𝑖) and the plastic strain range (∆𝜀𝑝𝑖) is shown in Equation (27): 

 

∆𝜎(∆𝜀𝑝𝑖) = ∆𝜎𝑖                                                             (27) 

Where 𝑖 = 1,2,3… 

A small cluster of data with (𝑎-1) data points (𝑎 ≪ the total number of data points) is chosen each time 

for a linear least-square regression start from the beginning and move to the end. For each set of chosen 

data points, the slope is given in Equation (28) and illustrated in Figure 78: 

 

𝛿∆𝜎𝑖

𝛿∆𝜀𝑝𝑖
=

𝑎∑ ∆𝜎𝑛∆𝜀
𝑝
𝑛−∑ ∆𝜎𝑛∑ ∆𝜀𝑝𝑛

𝑖+𝑎
𝑛=𝑖

𝑖+𝑎
𝑛=𝑖

𝑖+𝑎
𝑛=𝑖

𝑎∑ ∆𝜀𝑝𝑛
2𝑖+𝑎

𝑛=𝑖 −(∑ ∆𝜀𝑝𝑛
𝑖+𝑎
𝑛=𝑖 )

2                                     (28) 



71 
 

 

Figure 78. Illustration of finding the slopes on the stress vs. plastic strain curve (red) by performing linear 

least-square regressions on each set of data points - AZ31B-H24 

In order to find the inflection point, the same operation described above is repeated but on the 
𝛿∆𝜎𝑖

𝛿∆𝜀𝑝𝑖
 

versus ∆𝜀𝑝𝑖 curve, given in Equation (29): 

𝛿2∆𝜎𝑖

𝛿∆𝜀𝑝𝑖
2 =

𝑎∑
𝛿∆𝜎𝑛
𝛿∆𝜀𝑛

∆𝜀𝑝𝑛−∑
𝛿∆𝜎𝑛
𝛿∆𝜀𝑛

∑ ∆𝜀𝑝𝑛
𝑖+𝑎
𝑛=𝑖

𝑖+𝑎
𝑛=𝑖

𝑖+𝑎
𝑛=𝑖

𝑎∑ ∆𝜀𝑝𝑛
2𝑖+𝑎

𝑛=𝑖 −(∑ ∆𝜀𝑝𝑛
𝑖+𝑎
𝑛=𝑖 )

2                                 (29)                      

            

The change of plastic strain corresponds to the inflection point ∆𝜀𝑝inflection can be determined by 

finding the point where 
𝛿2∆𝜎𝑖

𝛿∆𝜀𝑝𝑖
2 changes sign. Finally, all three parameters described in Table 12 then can 

be determined simultaneously in which T is double the value of ∆𝜀𝑝inflection, S is the slope at the 

inflection point and 𝜎𝑡𝑤 is the global stress value correspond to the inflection point: 

 

𝑇 = 2∆𝜀𝑝inflection                                                         (30) 
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𝑆 =
𝛿∆𝜎inflection

𝛿∆𝜀𝑝inflection
                                                             (31) 

 

𝜎𝑡𝑤 = ∆𝜎(∆𝜀
𝑝
inflection)                                               (32) 

 

As described by Dallmeier et al. [5] , 𝜎𝑝,𝑢𝑝 and 𝜎𝑝,𝑑𝑜𝑤𝑛 correspond to the Pseudo-elastic cut-off stress 

for ascending and descending reversals, respectively and can be identified as the relative stress in the 

considered relative coordinate system at which the reversal considerably deviates from linear elastic 

behavior (20% deviation in stress). The determination of 𝜎𝑝,𝑢𝑝 and 𝜎𝑝,𝑑𝑜𝑤𝑛 parameters is illustrated in 

Figure 79: 

 

Figure 79. Illustration of the determination of parameters 𝜎𝑝,𝑢𝑝 and 𝜎𝑝,𝑑𝑜𝑤𝑛 – AZ31B-H24 
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The determination of the material constant P, which represents the slope of the pseudo-elastic strain 

component is not mentioned by Dallmeier et al [5] , however, based on Figure 6, the slope of the 

pseudo-elastic strain seems to be close to the inverse of Young’s modulus and it has been proved to 

work on both ZEK100-O and AZ31B-H24. 

Lastly, the Rr value, which enables the correct adaption of the adaption of the memory factors, so that 

the shape of the stress-strain curves coincides with experiments most accurately as described by 

Dallmeier et al. [5] modifies the transition of the stress-strain curve from elastic to plastic behavior as 

shown in Figure 80: 

 

Figure 80. The effect of Rr value on predicted stress-strain curve for AM30 Mg alloy at 3% strain amplitude 
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The parameters determined for ZEK100-O and AZ31B-H24 is summarized in: 

 

Parameters Unit ZEK100-O AZ31B-H24 

E GPa 44.08 
 

43.70 

P - 0.003571 0.00229 

𝜎𝑝,𝑢𝑝 MPa 97 157 

𝜎𝑝,𝑑𝑜𝑤𝑛 MPa 158 231 

T - 0.0558 0.02523 

S - 36.086 37.84133 

𝜎𝑡𝑤 MPa -161.113 -146.71593 

𝑅𝑟 - 0.8 0.9 

 

Table 13. Phenomenological model parameters determined for ZEK100-O and AZ31B-H24 

 

 

 

4.2 Hysteresis loop modeling of smooth specimens under uniaxial loading 
 

To model the stress-strain responses for a given strain history using the phenomenological model by 

Dallmeier et al. [5] , the rain-flow counting method by Matsuishi et al. [87] -[89] is used to track the 

material memory and identify the closed stress-strain hysteresis loops. However, due to the limitations 

of this phenomenological model in which the envelope hysteresis has to be identified prior to the 

simulation in order to define the shapes of the inner hysteresis loops, the strain history has to be 

rearranged to start and end with the maximum absolute value, shown in Figure 81:  
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Figure 81. Re-arrangement of the strain history to start/end from the absolute maximum value 

To match the model prediction with the material behavior, the reversing points of the fully-reversed-in-

strain envelope hysteresis loop have to coincide with the CSSC. Therefore, the simulation starts with the 

modeling of the envelope hysteresis loop, which is the fully-reversed (strain) hysteresis loop with the 

strain amplitude equals the value at the end of the first segment from the rearranged strain history, 

which is shown as the red curve in Figure 82: 
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 Figure 82.  Smooth sample analysis example 1- modeling of the hysteresis loops for the given strain history (ZEK100) 

Following the material cyclic stress-strain curve, which is the blue dashed lines in Figure 82 on both 

tensile and compressive branches to the absolute strain value at the end of the first strain history 

segment, the stress and strain values at both of the reversing points on the envelope hysteresis loop as 

well as the strain and stress ranges can be obtained. The envelope hysteresis loop than can be 
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constructed using the phenomenological model which provides the shape of the stress-strain path to 

follow for the next reversal, shown as the red curve in the stress vs. strain plot in Figure 82. In spite of 

the envelope hysteresis loop is always fully-reversed in strain, the largest hysteresis loop for the 

provided strain history does not have to be fully-reversed in strain since the envelope hysteresis loop is 

solely used to set the material memory and indirectly defining the shapes of the subsequent stress-

strain paths enclosed.  

By knowing the stress-strain path from the envelope hysteresis loop, the second reversal is originated 

from where the first reversal ends, shown as point 1 in Figure 82 and following the stress-strain path 

alone the envelope hysteresis loop (between point 1 to point 3) to the next strain value on the strain 

history shown as point 2, known that the stress and strain value will coincide with the CSSC when it 

reaches point 3 eventually. 

To fulfill the material memory, the stress-strain responses will follow the superior reversals after each 

completion of inner cycles. As an example, after the completion of the cycle between point 1 and point 

2 in Figure 82 (The hysteresis loop in black), the stress-strain curve between point 1 and point 3 has 

been followed started from point 1. Not to mention that, even though the hysteresis loop between 

point 1 and point 3, which happens to be the envelope hysteresis loop, in this case, was constructed at 

the very beginning of the simulation, it only serves the purpose of tracking the material memory and the 

actual hysteresis loop between point 1 and point 3 is modeled after the hysteresis loop in between point 

1 and point 2 based on the rain-flow counting method. 

Another example is shown in Figure 83, the largest hysteresis loop for the given strain history is not fully 

reversed (Inner hysteresis loop 1), however, the stress-strain path from point 1 to point 3 is still 

following the envelope hysteresis loop shown as the red dashed line from point 1 to point 2. In addition, 

the green hysteresis loop between point 6 and 7 (Inner hysteresis loop 3) has been closed first based on 

the rain-flow counting method. To fulfill the material memory, the stress-strain path between point 6 

and point 4 then followed the stress-strain path for the superior reversals, which is the curve between 

point 5 and point 4. Similarly, after the closure of the purple hysteresis loop at point 4, the stress-strain 

path between point 4 and point 1 is following the path of its superior reversal, which is the curve in 

between point 3 and point 1. 
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Figure 83 Smooth sample analysis example 2- modeling of the hysteresis loops for the given strain history (ZEK100) 

 

To efficiently track the material memory throughout the simulation using the phenomenological model, 

the stress-strain curve for each incomplete cycle is stored in an array since each of them have a different 

shape and the simulation will always pick the most recent stress-strain curve entry to follow. Once a 

cycle is completed, the most recent entry of the stress-strain curve will be removed and the stress-strain 

path after will be automatically started to follow the stress-strain path of its superior reversal. 
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To check the goodness of the model predictions, stabilized stress-strain hysteresis loops for the constant 

amplitude strain-controlled tests on ZEK100-O and AZ31B-H24 have been used to verify the model 

predictions, shown in Figure 84 and Figure 85: 

 

Figure 84. Stress-strain response comparison between experimental results and the model predictions for ZEK100. 

 

Figure 85. Stress-strain response comparison between experimental results and the model predictions for AZ31B-H24. 
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The solid lines are the stress-strain response predicted by the model and markers are the experimental 

results. It can be seen that the phenomenological model performed reasonably well for both ZEK100-O 

and AZ31B-H24. 

The stabilized stress-strain hysteresis loops for the variable amplitude strain-controlled tests for 4 

different strain histories shown in Figure 56 - Figure 59 on ZEK100-O are compared against the model 

predictions, shown in Figure 86 - Figure 89: 

 

Figure 86. Variable amplitude stress-strain response (load history #1) comparison between experimental results and the model 

predictions for ZEK100-O 

 



81 
 

 

Figure 87. Variable amplitude stress-strain response (load history #2) comparison between experimental results and the model 

predictions for ZEK100-O 
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Figure 88. Variable amplitude stress-strain response (load history #3) comparison between experimental results and the model 

predictions for ZEK100-O 
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Figure 89. Variable amplitude stress-strain response (load history #4) comparison between experimental results and the model 

predictions for ZEK100-O 
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Although there are some deviations between the model predicted and the experimental stress-strain 

hysteresis loops, the phenomenological model performs reasonably well on the variable amplitude 

stress-strain hysteresis loops prediction on ZEK100-O for the given strain histories.  
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4.3 Notch root stress-strain response modeling under uniaxial loading 
 

4.3.1 Approximation method using Neuber’s rule 
 

Knowing the local stress-strain responses at the vicinity of the notch root is vital to estimate the fatigue 

life for a mechanical component under cyclic loading. As the most frequently used approximation 

method, Neuber’s rule is capable to analyze the local plasticity at the vicinity of the notch root with a 

reasonable accuracy. 

The Neuber’s rule states that the geometric mean of the stress and strain concentration factors will 

remain equal to the elastic stress concentration factor during the plastic deformation [75] . In the case 

of cyclic loading, the Neuber’s rule is given as: 

 

𝑘𝑡 = √𝑘𝜎𝑘𝜀                                                         (33) 

𝑘𝜎 =
∆𝜎

∆𝑆
                                                                 (34) 

𝑘𝜀 =
∆𝜀

∆𝑒
                                                                  (35) 

𝑒 =
∆𝑆

∆𝐸
                                                                    (36) 

 

Substitute Equation (34-36) into Equation (33) gives: 

∆𝜎∆𝜀 =
(𝑘𝑡∆𝑆)

2

𝐸
= 𝑐𝑜𝑛𝑠𝑡.                                                  (37) 

 

In order to predict the notch responses for a given nominal load history, the Neuber’s rule has been 

applied sequentially to each of the stress-strain curves starts with the experimentally determined cyclic 

stress-strain curve shown in Figure 90. A new relative coordinate system is placed on each reversing 

point so that the following stress-strain path extends into the first quadrant of the coordinate system. 

The Neuber’s hyperbola Equation (37) is also constructed in the same relative coordinate system so that, 

according to the Neuber’s rule, the intersection between the stress-strain curve and Neuber’s hyperbola 
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gives the stress and strain value at the notch root correspond to the applied nominal stress. It is worth 

to mention that, even though the first loading segment is going into compression in Figure 90, the 

changes of strain and stress (∆𝜀 and ∆𝜎) are always remaining positive. 

 

 

Figure 90. Application of Neuber’s rule on the cyclic stress-strain curve for the first reversal going into compression 

 

To apply Neuber’s rule to the second reversal, it is essential to determine the corresponding stress-

strain curve in advance. Unlike the Ramberg-Osgood equation [69] accompanied with the Masing 

hypothesis [70] , the phenomenological model [5] requires the stress and strain ranges as well as the 

stress and strain value at the reversing point for each reversal in order to properly model the 

asymmetric behavior of magnesium alloys and the equation of the stress-strain curve is not readily 

available. However, what is known at this point is, the starting point of this reversal is on the cyclic 

stress-strain curve and the point with double the strain range (2∆𝜀first reversal) of the first reversal will 
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also be on the cyclic stress-strain curve on the opposite side; In the case of Figure 90, the tensile branch 

of the cyclic stress-strain curve. Therefore, the most natural selection of the stress-strain curve 

correspond to this reversal is the branch of fully reversed (𝑅𝜀 =-1) hysteresis loop with the strain 

amplitude equivalent to the change of strain for the first reversal (∆𝜀first reversal). The upward reversal 

of the hysteresis loop is taken in Figure 91 since the first reversal is going into compression first. In the 

case of the first reversal is going into tension first, the downward reversal will be taken as the stress-

strain path for the corresponding second reversal. Knowing the stress and strain values at the reversing 

points on the global coordinate from the first application of the Neuber’s rule on the cyclic stress-strain 

curve and stress range which is from the cyclic stress-strain curve given the strain range to be twice of 

the first reversal (2∆𝜀first reversal), it is possible to construct the corresponding stress-strain curve of this 

reversal using the phenomenological model, shown as the red curve in Figure 91. 

 

 

Figure 91. Application of Neuber’s rule for the second reversal (The stress-strain curve is created using the phenomenological 

model [placeholder]) 
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By having the stress-strain curve for the second reversal, a new coordinate system is placed at the first 

reversing point as shown in Figure 91. The intersect between the new Neuber’s hyperbola in the relative 

coordinate system and the stress-strain curve is then determined. After the conversion back to the 

global coordinate system, the stress and strain response correspond to the remote load is 

approximated. 

Departure from the cyclic stress-strain curve after the second reversal, the stress-strain path to be 

followed is remaining unknown since the material at the vicinity of the notch root is neither stress 

controlled nor strain controlled. However, experimental results on notched specimens under fully 

reversed nominal load shown that the material at the vicinity of the notch root stabilizes after several 

applications of the load, shown in Figure 62 and Figure 69. One reason could be that, the material at the 

vicinity of the notch is restricted by the material surrounds where both the ratcheting and relaxation 

effect are suppressed. Therefore, it is safe to conclude that the stress-strain hysteresis loop at the notch 

root will close itself under fully reversed nominal stress. Few attempts were made to find the correct 

stress-strain curve at the notch root for the third reversal shown in Figure 92 and Figure 93, given the 

hysteresis loop at the notch root will be closed for a fully reversed nominal stress applied.  

As shown in Figure 92, the downward reversal of the fully reversed (Rstrain=-1) hysteresis loop with a 

strain amplitude equivalent to the strain approximated by Neuber’s rule at the end of second reversal at 

point 2 is taken (𝜀𝑟𝑝2). By constructing the stress-strain curve in the relative coordinate system starting 

from reversing point 2 as well as the Neuber’s hyperbola in the same coordinate system, it is apparent 

that, the stress-strain curve available is insufficient to reach the Neuber’s hyperbola, thus, no 

intersection was found. By extrapolate the existing stress-strain curve, shown as the brown dashed line 

on the bottom-left corner of the graph, an intersection is found. However, the reversing point, which is 

point 3 shown in the figure does not coincide with point 1. In other words, the prediction of the stress-

strain responses at the notch root by using this stress-strain curve (solid brown curve) will not lead to 

the closure of the hysteresis loop, which is contrary to the experimental observation in Figure 62 and 

Figure 69. In fact, this choice of the stress-strain curve will always lead to an unclosed hysteresis loop in 

general regardless of the nominal stress history. 
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Figure 92. Stress-strain curve selection for the third reversal (solid brown curve)- The shape of the fully reversed (Rstrain=-1) stress-

strain hysteresis loop with the strain amplitude equivalent to the strain at the second reversing point (𝜀𝑟𝑝2); The dashed brown 

curve on the bottom-left corner extended from the solid brown curve is the extrapolated line from the stress-strain curve since 

the range of the curve is insufficient to intersect with Neuber’s hyperbola in this case 

Another option of the stress-strain curve for this reversal could be taken from the downward reversal of 

the fully reversed (Rstrain=-1) hysteresis loop with a strain range equivalent to the strain range between 

reversing point 1 and reversing point 2 (εrp2−εrp1), shown as the solid green curve in Figure 93. The 

curve is constructed using the phenomenological model and plotted in the relative coordinate system 

originated at point 2. The Neuber’s hyperbola is also plotted in the same coordinate system shown as 

the solid purple curve. Even though an intersection between the stress-strain curve and Neuber’s 

hyperbola is found shown as point 3, the hysteresis loop is still remaining unclosed. 
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Figure 93. Stress-strain curve selection for the third reversal (solid green curve)- The shape of the fully reversed (Rstrain=-1) stress-

strain hysteresis loop with the strain range equivalent to the strain range between reversing point 1 and reversing point 2 

(𝜀𝑟𝑝2 − 𝜀𝑟𝑝1) 

 

Due to the fact that the phenomenological model been used to construct the stress-strain hysteresis 

loops is not only asymmetric but also uses different functions for the upward and downward reversals to 

mimic the actual material behavior, it is very unlikely for the hysteresis loop to close itself 

simultaneously using Neuber’s rule without enforcing this condition. However, the Neuber’s hyperbola 

is point symmetric in a relative coordinate system for a rain-flow counted cycle on the nominal stress 

history since the change of the nominal stress for both upward and downward reversals are the same. In 

other words, the reversal of the hysteresis loop which closes itself will also satisfies the Neuber’s rule. As 

seen in Fig. 5, the Neuber’s hyperbola, shown as the purple curve is intersect with reversing point 1 

(𝜀𝑟𝑝1, 𝜎𝑟𝑝1) in the relative coordinate system shown on the top-right corner originated at reversing point 

2 (𝜀𝑟𝑝2, 𝜎𝑟𝑝2). Therefore, instead of finding the corresponding stress-strain curve then apply Neuber’s 

rule upon it to close the stress-strain hysteresis, it is possible to directly close the loop. As shown in 

Figure 94, the red curve is the corresponding downward reversal for the blue curve constructed using 

the phenomenological model to directly close the loop.  
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Figure 94. Stress-strain curve selection for the third reversal (solid red curve curve)- The stress-strain curve which will close the 

loop is chosen directly without applying Neuber’s rule 

 

This method is applied to any rain-flow counted cycles during the simulation that, the Neuber’s rule is 

only applied to the stress-strain curve once per cycle. Once a cycle is completed, the simulation will 

select the stress-strain curve correspond to the same stress and strain range determined using Neuber’s 

rule earlier on the previous reversal of this cycle to close the loop. 

Similar to the smooth sample analysis, the load history will be rearranged to start and end with the 

absolute maximum value, shown in Figure 95, since the envelope hysteresis loop has to be determined 

first. The method of determining the envelope hysteresis is exactly the same as shown in Figure 90, 

Figure 91 and Figure 94; assuming the nominal stress applied remotely is fully reversed and the 

amplitude is equivalent to the absolute value of the maximum nominal stress from the load history. Not 

to mention that, the envelope hysteresis loop is not necessarily fully reversed in either strain or stress 

due to the asymmetry of the cyclic stress-strain curve, as seen in Figure 94. 
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Figure 95. Re-arrangement of the nominal stress history to start/end from the absolute maximum value 

 

The rain-flow counting method [87] -[89] is used upon the nominal stress history to track the material 

memory and identify the closed stress-stain hysteresis loops. Provides the elastic stress concentration 

factor 𝐾𝑡 and Young’s modulus, Neuber’s rule is used to identify the landing point for each advance on 

the corresponding stress-strain curve generated using the phenomenological model. Once a rain-flow 

counted cycle is found to be closed, the stress-strain curve to be used for that reversal to close the loop 

is directly determined using the phenomenological model. 

4.3.2 Approximation method using Glinka’s rule 
 

The nominal stress history is used with the Glinka’s rule (ESED) [81] to approximate the stress-strain 

responses at the notch root. Different from Neuber’s rule, the application of the Glinka’s rule requires 

the calculation of the strain energy density, which is the area under the corresponding stress-strain 

curve in order to determine the next reversing point, as seen in Figure 11. 
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The Glinka’s rule stated that, in the presence of localized small-scale plastic yielding, the gross linear 

elastic behavior of the material surrounding the notch controls the deformations in the plastic zone. 

Therefore, it can be concluded that the energy density in the plastic zone is equal to that calculated on 

the basis of the elastic solution [81] : 

 

(∆𝑆𝐾𝑡)
2

2𝐸
= ∫ ∆𝜎𝑖𝑗 𝑑∆𝜖𝑖𝑗

∆𝜖𝑖𝑗
0

                                       (38) 

 

The elastoplastic stress-strain curve at the notch root is numerically integrated to find the notch stress 

range (∆𝜎) and notch strain range (∆𝜀) on the stress-strain curve in which the area under the curve is 

equivalent to the elastic solution, shown as Figure 96. 

Similar to the approach of using Neuber’s rule, a new relative coordinate system is placed at the 

beginning of each reversal at the reversing point so that the following stress-strain path extends into the 

first quadrant of the coordinate system. The simulation starts with the origin of the global coordinate 

system following the experimentally determined cyclic stress-strain curve for the first reversal as shown 

in Figure 96. If the first reversal on the rearranged load history is going into compression first, the 

compressive branch of the cyclic stress-strain curve will be used; If the first reversal is going into tension 

first, the tensile branch of the cyclic stress-strain curve will be used instead.  
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Figure 96. Calculation of the notch stress and strain ranges using Glinka’s rule (ESED) 

 

Following the compressive branch of the cyclic stress-strain curve to point 1 on the curve, where the 

area under the curve shown as the red shaded area (𝑊𝜀) is equal to the area under the elastic solution 

(We), shown as the blue shaded area. Therefore, the stress and strain value at point 1 in the global 

coordinate system correspond to the stress and strain approximation using Glinka’s rule for the first 

reversal.  

The second reversal follows the exact same logic as for how Neuber’s rule is implemented, where the 

branch of the fully reversed (𝑅𝜀=-1) stress-strain hysteresis loop with the strain amplitude equivalent to 

the strain at the first reversing point (𝜀𝑟𝑝1) will be followed. A new relative coordinate system is placed 

at point 1 (𝜀𝑟𝑝1, 𝜎𝑟𝑝1) and the area under the next corresponding stress-strain curve in the same 

coordinate system is calculated to match the elastic solution given by Equation (29). 

Unlike Neuber’s rule, the notch-response approximation using Glinka’s rule is much more sensitive to 

the shape of the stress-strain curve itself. Therefore, it is extremely unlikely that the hysteresis loop can 

close itself by applying Glinka’s rule upon the stress-strain curves due to the asymmetry of the material 

stress-strain behavior, where the upward and downward reversals have different shapes. However, it 

has been experimentally proved that the stress-strain hysteresis loop at the vicinity of the notch root 

will close itself under fully reversed nominal stress applied, as seen in Figure 62 and Figure 69. As a 

result, this condition has to be enforced to correctly mimic the stress-strain behavior at the notch root 
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under remote stresses. Accordingly, once a rain-flow counted cycle is deemed to be closed, the stress-

strain curve which will close the hysteresis loop will be picked to directly close the loop without applying 

Glinka’s rule to the stress-strain curve. 

To future improve the prediction, the strain energy density correction factor for plastic yielding (𝐶𝑝) by 

G. Glinka [82] has been used to account for the stress re-distribution due to plastic yielding at the 

vicinity of the notch root. 

As seen in Figure 12, the real stresses within the plastic zone are significantly lower than what derived 

from the linear elastic analysis (𝜎𝑦). In order to satisfy the equilibrium condition, the stress distribution 

is shifted in which the shaded area F1 is equal to F2. 

The first approximation of the plastic zone size ahead of the notch root 𝑟𝑝 for uniaxial tension or 

compression derived from the Hencky-Mises-Huber criterion under plane stress state is given as: 

𝜎𝑦 =
𝑘𝑡𝑆

2√2
[
𝜌

𝑟𝑝
+
3

4
(
𝜌

𝑟𝑝
)
3

]

1
2⁄

                                               (39) 

In which 𝜌 is the notch radius of the curvature, 𝜎𝑦 is the yield stress and S is the nominal stress applied 

remotely. 

Known the yield stress, nominal stress and notch radius, the first approximation of the plastic zone size 

ahead of the notch root 𝑟𝑝 can be easily calculated using the Newton-Raphson method. It should be 

noted that, the yield stress is different with what derived using the monotonic stress-strain curve for 

cyclic loading. Therefore, the yield stress for each reversal is individually calculated based on 0.2 percent 

plastic strain.  

Finally, the correction factor for the energy density Cp at the notch root under tension or compression 

can be calculated using: 

 

𝐶𝑝 = 1 + (
𝜌
𝑟𝑝⁄ ) [

2(
𝑟𝑝

𝜌⁄ )
1
2⁄
−(
𝜌
𝑟𝑝⁄ )

1
2⁄

(
𝜌
𝑟𝑝⁄ )

1
2⁄
+
1

2
(
𝜌
𝑟𝑝⁄ )

3
2⁄
− (

𝑟𝑝

𝜌
−
1

2
)]                                    (40) 
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The correction factor for the energy density Cp is directly applied to the elastic solution of the strain 

energy density at the notch root: 

  

𝐶𝑝
(∆𝑆∙𝐾𝑡)

2

2𝐸
= ∫ ∆𝜎𝑖𝑗 𝑑∆𝜖𝑖𝑗

∆𝜖𝑖𝑗
0

                                     (41) 

 

During the simulation, the yield stress for each reversal is first calculated based on the 0.2 percent 

plastic strain criteria. In the case of the stress-strain curve is entirely within the elastic region, a Cp factor 

of 1 is directly assigned without further calculation. If the available stress-strain extends to the plastic 

region, the yield limit will be determined and assigned to the corresponding curve. Next, the first 

approximation of the plastic zone size ahead of the notch root 𝑟𝑝 then will be calculated using Equation 

(39). Finally, the corresponding Cp factor can be determined using Equation (40).  

The Cp correction factor is applied for every single reversal. Once the Cp factor is determined, Equation 

(41) will be used to replace Equation (38) in order to find the landing point on the stress-strain curve. 

 

4.3.3 Plane strain transformation for Neuber’s and Glinka’s rule 
 

To account for the non-zero through thickness component of the stress (𝜎33) shown in Figure 97 and 

Figure 98 due to geometrical constraint, the plane strain correction by Dowling, N. [90] and lately 

explained in detail by Jahed, H. [98] has been used to transform the uniaxial plane stress stress-strain 

curve into the equivalent biaxial plane strain stress-strain curve.  
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Figure 97. Direction assigned to the notched sample 

For a notched thin sheet (t is small), the material in the through-thickness direction (33) at the notch 

root is not able to build up any stress due to a lack of support from the surrounding material where the 

Poisson’s effect occurs freely when a stress in the axial direction (22) is applied. The stress state at the 

notch root under plane stress condition shown in Figure 98 can be written as: 

𝜎𝑛𝑟(plane stress) = [
0 0 0
0 𝜎22 0
0 0 0

]                                           (42) 

 

The corresponding strain state at the notch root can be written as: 

𝜀𝑛𝑟(plane stress) = [

𝜀11 0 0
0 𝜀22 0
0 0 𝜀33

]                                     (43) 

 

Even though there are three non-zero components of strain present at the notch root, namely, 𝜀11, 𝜀22, 

and 𝜀33, only the 𝜎22 and 𝜀22 contribute to the deformation energy and the strain energy density at the 

notch root can be calculated by the area under the stress-strain curve in the axial direction (22): 

 

𝑊𝑛𝑟(plane stress) = ∫ 𝜎22 𝑑𝜀22
𝜀22
0

                                         (44) 
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Figure 98. Stress state at the notch root under an applied nominal tensile stress S [6]  

For a thicker notched plate (t is large), the deformation in the through-thickness direction (33) at the 

notch root is restricted by the surrounding material which is subject to lower stresses outside of the 

localized plastic zone in the vicinity of the notch root and the Poisson’s effect is relatively small. The 

stress at the notch root can be written as: 

 

𝜎𝑛𝑠(plane strain) = [
0 0 0
0 𝜎22 0
0 0 𝜎33

]                                      (45) 

 

And the corresponding strain at the notch root under the plane strain condition can be written as: 

 

𝜀𝑛𝑟(plane strain) = [
𝜀11 0 0
0 𝜀22 0
0 0 0

]                                      (46) 

 

Notice that the strain in the through-thickness direction (33) is zero due to the restrictions of 

deformation, which induces the stress in the same direction. However, the strain energy density at the 

notch root is only contributed by the stress and strain in the axial direction: 
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𝑊𝑛𝑟(plane strain) = ∫ 𝜎22 𝑑𝜀22
𝜀22
0

                                     (47) 

 

Although the equations used to calculate the strain energy density at the notch root under both plane 

stress and plane strain condition may look the same, the stress-strain curves for cases are very different. 

In the case of plane strain state, the geometric constraint from the surrounding material limits the 

deformation in the through-thickness direction (33), which results in the rise of the stress in both axial 

(22) and through thickness (33) direction. For this reason, it is possible to only transform the stress-

strain curve in the plane stress state to the equivalent plane strain state in the axial direction (22), yet 

still able to calculate the strain energy density at the notch root. Therefore, the energy-based 

approximations like Neuber’s rule and Glinka’s rule still hold by using the transformed stress-strain 

curve. 

Using the total deformation plasticity theory [91] [97] , the total strain at the notch root is then broken 

down to elastic and plastic strain components: 

𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑝
                                                 (48) 

 

 And the deviatoric stress tensor can be expressed as: 

𝑠𝑖𝑗̇= 𝜎𝑖𝑗 - 
1

3
 𝜎𝑘𝑘𝛿𝑖𝑗                                           (49)     

 

Which is the subtraction of the hydrostatic stress from the total stress. Also known that the plastic strain 

is a function of the deviatoric stress by: 

𝜀𝑖𝑗
𝑝
= 𝜙𝑠𝑖𝑗̇                                                       (50) 

 Where, 

𝜙=
3𝜀𝑒

𝑝

2𝜎𝑒
                                                               (51) 
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And the elastic strain can be expressed using Hooke’s law: 

 𝜀𝑖𝑗
𝑒 = (

1+𝑣

𝐸
) 𝜎𝑖𝑗 − (

𝑣

𝐸
)𝜎𝑘𝑘𝛿𝑖𝑗                                            (52) 

 

Combine the plastic strain and elastic strain gives: 

𝜀𝑖𝑗 = (
1+𝑣

𝐸
+ 𝜙)𝜎𝑖𝑗 − (

𝑣

𝐸
+
𝜙

3
) 𝜎𝑘𝑘𝛿𝑖𝑗                                          (53) 

 

Combine the terms to form of the elastoplastic Hooke’s law: 

𝜀𝑖𝑗 =
1+𝑣eff

𝐸eff
𝜎𝑖𝑗 −

𝑣eff

𝐸eff
𝜎𝑘𝑘𝛿𝑖𝑗                                                            (54) 

 

Where 𝐸eff is the secant modulus given in Equation (55): 

𝐸eff =
3𝐸

3+2𝐸𝜙
                                                         (55) 

 

And 𝜈eff is the effective Poisson’s ratio: 

𝑣eff =
3𝑣+𝐸𝜙

3+2𝐸𝜙
                                                         (56) 

 

Expand and substitute Equation (45-46) into the elastoplastic Hooke’s law gives: 

{
 
 

 
 𝜀11 = −

𝑣eff

𝐸eff
(𝜎22 − 𝜎33)

𝜀22 =
1

𝐸eff
𝜎22 −

𝑣eff

𝐸eff
𝜎33

0 =
1

𝐸eff
𝜎33 −

𝑣eff

𝐸eff
𝜎22

                                                (57) 

 

The third equation in Equation (57) gives: 

𝜎33 = 𝜐eff𝜎22                                                (58) 
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Substitute Equation (58) into the second equation in Equation (57) gives: 

𝜀22 =  
1

𝐸eff
𝜎22 −

𝑣eff

𝐸eff
𝜐eff𝜎22 =

1−𝜈eff
2

𝐸eff
𝜎22                               (59) 

 

Even though Equation (50) gives the relation between the stress and strain in the axial direction (22) 

under plane strain condition, the stress in the axial direction (22) is not yet available. However, known 

the relation between 𝜎22 and 𝜎33, it is possible to express the axial strain in terms of the effective stress, 

which is readily available: 

𝜎𝑒 = (𝜎22
2 − 𝜎22𝜎33 + 𝜎33

2 )
1

2                                         (60) 

 

Substitute Equation (58) into Equation (60) gives: 

𝜎𝑒 = (𝜎22
2 − 𝑣eff𝜎22 𝜎22 + 𝑣eff

2  𝜎22
2 )

1

2                                        (61) 

 

Isolate 𝜎22 gives: 

𝜎22 =
𝜎𝑒

√1−𝑣eff+𝑣eff
2

                                                           (62) 

 

This expression can then be directly used since the effective stress at the notch root under plane stress 

condition is equivalent to the axial stress since that is the only non-zero component of stress. Notice 

that the effective Poisson’s ratio (𝜐eff) is a function of the effective stress (𝜎𝑒) and effective plastic strain 

(𝜀𝑒
𝑝) which is not readily available, however, the effective Poisson’s ratio (𝜐eff) can be calculated 

discretely at each point, provided the plane stress stress-strain curve in the axial direction. Also 

substitute the Equation (62) into Equation (59) gives: 

𝜀22 =
1−𝜈eff

2

𝐸eff

𝜎𝑒

√1−𝑣eff+𝑣eff
2

                                              (63) 
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Substitute the definition of the secant modulus (𝐸eff =
𝜎𝑒
𝜀𝑒⁄ ) [99] into Equation (63) gives: 

 

𝜀22 =
1−𝜈eff

2

√1−𝑣eff+𝑣eff
2
𝜀𝑒                                                        (64) 

 

Equation (62) and Equation (64) provide the linkage between the effective stress (𝜎𝑒) and effective 

strain (𝜀𝑒) to the stress and strain in the axial direction (𝜎22 and 𝜀22) under the biaxial plane strain 

condition. Also known that the stress state at the notch root is uniaxial under plane stress condition, 

which gives: 

 

𝜀𝑒plane stress = 𝜀22plane stress                                       (65) 

𝜀𝑒
𝑝

plane stress
= 𝜀22

𝑝

plane stress
                                      (66) 

𝜎𝑒plane stress = 𝜎22plane stress                                      (67) 

 

Therefore, the final form of the plane strain transformation equations can be written as: 

𝜀′ =
1−𝜈eff

2

√1−𝑣eff+𝑣eff
2
𝜀                                                            (68) 

𝜎′ =
1

√1−𝑣eff+𝑣eff
2
𝜎                                                           (69) 

𝑣eff =
𝜈+

𝐸𝜀𝑝

2𝜎

1+
𝐸𝜀𝑝

𝜎

                                                                      (70) 

𝜀𝑝 = 𝜀 −
𝜎

𝐸
                                                                        (71) 
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Where 𝜎 and 𝜀 are the axial stress and strain under plane stress condition whereas 𝜎’ and 𝜀′ are the 

transformed axial stress and strain under plane strain condition. Given the axial stress-strain curve 

under plane stress condition, the curve is then discretized to points on the stress-strain curve and each 

point is then mapped to the points on the analogous plane strain stress-strain curve as shown in Figure 

99. Finally, the transformed plane strain stress-strain curve then can be used with either Neuber’s or 

Glinka’s rule to approximate the stress strain at the notch root under plane strain condition.  

 

Figure 99. Plane stress to plane strain stress-strain curve transformation by Dowling et al. 

 

The plane strain correction is applied reversal by reversal starts from the cyclic stress-strain curve. Once 

the stress-strain curve to be used is determined, a new relative coordinate system will be placed at the 

beginning of that reversal in which the stress-strain path extends into the first quadrant of the 

coordinate system. The plane strain correction is then applied within the same coordinate system by: 
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Δ𝜀′ =
1−𝜈eff

2

√1−𝑣eff+𝑣eff
2
Δ𝜀                                                   (72) 

Δ𝜎′ =
1

√1−𝑣eff+𝑣eff
2
Δ𝜎                                                  (73) 

𝑣eff =
𝜈+

𝐸Δ𝜀𝑝

2Δ𝜎

1+
𝐸Δ𝜀𝑝

Δ𝜎

                                                                (74) 

Δ𝜀𝑝 = Δ𝜀 −
Δ𝜎

𝐸
                                                            (75) 

 

Once the corrected plane strain stress-strain curve is obtained, it will replace the original stress-strain 

curve and either Neuber’s or Glinka’s rule will be used to predict the stress-strain response at the 

vicinity of the notch root.  

Due to the limitations of the phenomenological model which is used to obtain the shape of the stress-

strain curve, the stress and strain range, as well as the stress and strain value at the beginning of each 

reversal, are needed to construct the stress-strain curve. However, none of them would be readily 

available after the replacement of the original stress-strain curve with the corrected plane strain stress-

strain curve for the previous reversal. Even though the Neuber’s or Glinka’s approximation using the 

corrected plane strain stress-strain curve provide the stress and strain range under plane strain 

condition for the next reversal, the corresponding stress-strain curve cannot be directly obtained using 

the phenomenological model since the stress state at the notch root is not uniaxial. The corresponding 

plane stress stress-strain curve has to be known for every single reversal in order to find its plane strain 

counterpart.  
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Figure 100. Back transformation from plane strain to plane stress stress-strain curve 

For this reason, every time the prediction is made using either Neuber’s or Glinka’s rule upon the 

corrected plane strain stress-strain curve, the prediction result is stored as the plane strain response at 

the vicinity of the notch root for that load history segment and at the same time, the predicted point on 

the corrected stress-strain curve is transformed back to the point on the plane stress stress-strain curve 

to obtain the corresponding stress-strain curve to be followed for the succeed reversals as shown in 

Figure 100.  

In other words, the approximation method of Neuber’s or Glinka’s is executed upon the corrected 

stress-strain curves whereas the determination of the stress-strain curves to be followed is executed 

upon the original stress-strain curve. However, there is no analytical solution to map back to the plane 

stress curve from the corrected plane strain stress-strain curve using (equation placeholder), the 

Newton-Raphson method is used to numerically calculate the corresponding point (𝜀𝑟𝑝, 𝜎𝑟𝑝) on the 

original stress-strain curve equivalent to the prediction on the corrected stress-strain curve (𝜀′𝑟𝑝, 𝜎′𝑟𝑝). 
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4.3.4 Experimental Verification (notched) 
 

The experimental results on notched specimens under constant-amplitude nominal stresses for ZEK100-

O are compared with the model predictions. Due to the large thickness of the notched specimens have 

been used for these tests, the stress state at the notch root under load is much closer to plane strain 

and the plane strain results by the model is expected to be closer to the experimental results, however, 

all the possible output options of the model are shown for the sake of comparison in Figure 101 - Figure 

104: 

 

Figure 101. Modeled notch stress-strain hysteresis loop vs. Experimental notch stain responses @ 50% of compressive yield 
equivalent fully-reversed nominal stress (68.45 MPa) (Note that the Plane strain Neuber’s solution is not shown in this figure 

since the available stress-strain curves are insufficient to reach the Neuber’s hyperbola in this case) - ZEK100-O 
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Figure 102. Modeled notch stress-strain hysteresis loop vs. Experimental notch stain responses @ 60% of compressive yield 
equivalent fully-reversed nominal stress (82.14 MPa) - ZEK100-O 

 

Figure 103. Modeled notch stress-strain hysteresis loop vs. Experimental notch stain responses @ 70% of compressive yield 
equivalent fully-reversed nominal stress (95.83 MPa) - ZEK100-O 
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Figure 104. Modeled notch stress-strain hysteresis loop vs. Experimental notch stain responses @ 80% of compressive yield 
equivalent fully-reversed nominal stress (109.52 MPa) - ZEK100-O 

 

The brown dotted vertical lines in Figure 101 - Figure 104 represent the experimentally measured axial 

notch strain value at peak tension and compression after the stabilization summarized in Table 8. Both 

plane stress and plane strain predictions using Neuber’s and Glinka’s rules are present. In addition, the 

differences in the prediction of the stress-strain hysteresis loops by having the 𝐶𝑝 are also shown. 

It can be seen that the Neuber’s rule over-predicts the notch stresses and strains in all cases whereas 

the Glinka’s rule under-predicts the notch stresses and strains which is aligned with what has been 

suggested in the literature as discussed in chapter 2. The inclusion of the 𝐶𝑝 correction using Glinka’s 

rule improves the prediction in all cases, however, the effect of the correction is insignificant when the 

nominal stress amplitude is low, as seen in Figure 101 and Figure 102, due to a small plastic zone size 

whereas the over-prediction is now possible for a relatively larger nominal stress amplitude as seen in 

Figure 104. Besides, the plane strain solution leads to a higher notch stress value for a lower strain in all 

cases. 
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It is apparent that the plane strain solutions for both Neuber’s and Glinka’s rule give better perditions as 

what to be expected, yet, the predictions by plane strain Glinka’s rule with 𝐶𝑝 correction are the closest 

to the experiments. 

The experimental results on notched specimens under constant-amplitude nominal stresses for AZ31B-

H24 are also compared with the model predictions, shown in: 

 

Figure 105. Modeled notch stress-strain hysteresis loop vs. Experimental notch stain responses @ 60% of compressive yield 
equivalent fully-reversed nominal stress (94.84 MPa) – AZ31B-H24 
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Figure 106. Modeled notch stress-strain hysteresis loop vs. Experimental notch stain responses @ 80% of compressive yield 
equivalent fully-reversed nominal stress (126.45 MPa) – AZ31B-H24 

 

It can be seen that both Neuber’s and Glinka’s rules lead to overprediction of the notch strains on 

AZ31B-H24, which is contradicting to what has been suggested in the literature that, Glinka’s rule should 

always lead to underprediction of the notch stresses and strains. However, the Glinka’s rule is very 

sensitive to the shape of the stress-strain paths, which were generated using the phenomenological 

model by Dallmeier et al. [5] . The deviation between the model and the actual stress-strain path is 

believed to cause the overprediction in the case. 
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Chapter 5: Fatigue Modelling 
 

Engineering components are often subjected to cyclic loads in their applications, and the resulting cyclic 

stresses can cause microscopic damage to the material. These microscopic damages can accumulate 

until a crack is developed, which will lead to a catastrophic failure of the component even if the stresses 

are well below the ultimate strength of the material. Therefore, it is essential to be able to accurately 

predict the fatigue life of engineering components in their design phase as well as in service to prevent 

fatigue failure to happen. 

There are many fatigue models have been developed over the years, however, they all fall into these 

three big categories: 

i. Strain-based approach 

ii. Stress-based approach 

iii. Energy-based approach 

Since the fatigue tests have been done on ZEK100-O smooth specimens were all strain-controlled, the 

stress-based approach may not be appropriate for the modeling of the fatigue behavior. In addition, the 

increasing of the strain amplitude does not necessarily induce a higher peak stress or mean stress in 

ZEK100-O magnesium alloy, however, the impact on the fatigue life is certain. Therefore, a strain-based 

(SWT) and an energy based (J-V energy) fatigue model have been chosen to model the fatigue behavior 

of ZEK100-O magnesium alloy. 

 

 

5.1 Smith-Watson-Topper (SWT) model 
 

As one of the most widely used approaches, Smith-Watson-Topper (SWT) model was developed as a 

modification upon the Coffin-Manson relations, which taking account for mean stress effects in fatigue 

life analysis [7] : 

𝜎𝑚𝑎𝑥𝜀𝑎 = 𝑓(2𝑁𝑓)                                           (73) 
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Where 𝜎𝑚𝑎𝑥 is the maximum tensile stress, 𝜀𝑎 is the strain amplitude and 𝑁𝑓  is the number of reversals 

to failure. 

The strain amplitude versus life curve can be decomposed to elastic and plastic strain amplitude shown 

in Equation (74): 

𝜀𝑎 =
𝜀𝑒

2
+
𝜀𝑝

2
                                                                     (74) 

 

The relation between the elastic strain amplitude and life is given in Equation (75): 

 

𝜀𝑒

2
=

𝜎𝑎

𝐸
=

𝜎′𝑓

𝐸
(2𝑁𝑓)

𝑏
                                                     (75) 

 

And the relation between the plastic strain amplitude and life is given in Equation (76): 

 

𝜀𝑝

2
= 𝜀′𝑓(2𝑁𝑓)

𝑐
                                                               (76) 

 

By substitute Equation (75-76) into Equation (74): 

 

𝜀𝑎 =
𝜎′𝑓

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀′𝑓(2𝑁𝑓)

𝑐
                                     (77) 

 

Equation (77) is known as the Coffin-Manson relation, which is named by the separate development of 

related equations in the 1950s by L. F. Coffin and S. S. Manson, where 𝐸 is the Young’s modulus, 𝑁𝑓  is 

the reversals to failure, 𝜎′𝑓 is the fatigue strength coefficient, 𝑏 is the fatigue strength exponent, 𝜀′𝑓 is 

the fatigue ductility coefficient and 𝑐 is the fatigue ductility exponent. 

Known that the maximum stress can be represented by the mean stress (𝜎mean) and stress amplitude 

(𝜎𝑎) by: 

𝜎𝑚𝑎𝑥 = 𝜎mean + 𝜎𝑎                                                     (78) 

 

Substitute Equation (78) into Equation (73) gives: 
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(𝜎mean + 𝜎𝑎)𝜀𝑎 = 𝑓(2𝑁𝑓)                                         (79) 

 

Also known that the fatigue life is expected to be the same if the mean stress is zero (𝜎mean = 0): 

 

𝜎𝑚𝑎𝑥𝜀𝑎 = 𝜎𝑎𝜀𝑎       (𝜎mean = 0)                                (80) 

 

Substitute Equation (75) and Equation (77) into Equation (80) gives: 

 

𝜎𝑚𝑎𝑥𝜀𝑎 = 𝜎′𝑓(2𝑁𝑓)
𝑏
∙ [
𝜎′𝑓

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀′𝑓(2𝑁𝑓)

𝑐
]                (81) 

 

Rearrange the equation gives: 

   𝜎𝑚𝑎𝑥𝜀𝑎 =
𝜎′𝑓

2

𝐸
(2𝑁𝑓)

2𝑏
+ 𝜎′𝑓 ∙ 𝜀′𝑓(2𝑁𝑓)

𝑏+𝑐
                     (82) 

 

Equation (82) is the full-expression of the SWT model, which link the strain amplitude (𝜀𝑎), maximum 

tensile stress (𝜎𝑚𝑎𝑥) to the fatigue life of the material. 

 The Coffin-Manson relation is fitted to the experimentally determined strain amplitude versus life to 

failure curve of the fully-reversed (𝑅𝜀=-1) strain-controlled tests in Figure 44 and shown in Figure 107: 
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Figure 107. Coffin-Manson relation fitted to the strain amplitude vs. number of reversals to failure curve- ZEK100-O 

 

The Coffin-Manson parameters are summarized in Table 14: 

 

Elastic Part 
σ'f (MPa) = 389.351 

b = -0.117 

Plastic Part 
ε'f  = 0.272 

c = -0.563 

 

Table 14. Coffin-Manson parameters- ZEK100-O 

 

 

 

 

 



115 
 

The life predictions using the SWT parameters given in Table 14 versus experimental lives are shown in 

Figure 108: 

 

Figure 108. Predicted life using the SWT model vs. experimental life for 𝑅𝑠𝑡𝑟𝑎𝑖𝑛 = 0, 𝑅𝑠𝑡𝑟𝑎𝑖𝑛 = −1, 𝑅𝑠𝑡𝑟𝑒𝑠𝑠 = 0 and 𝑅𝑠𝑡𝑟𝑒𝑠𝑠 =
−1 tests using the SWT parameters given in Table 14- ZEK100-O 

 

The black diagonal line represents the best prediction whereas the dashed red lines represent the factor 

of 2 bounds between the experimental life and the model prediction.  

It can be seen that most of the results are falling in between the factor of 2 bound. However, as what 

have been mentioned during the derivation of the SWT model from Coffin-Manson relation, the fully-

reversed strain-controlled tests have been used to obtain the SWT parameters were assumed to be 

fully-reversed in stress as well, which is not the case for magnesium alloys due to the tension-

compression asymmetry. Although the tension-compression asymmetry for ZEK100-O is weakened by 

the additional rare-earth element neodymium compare with other types of magnesium alloys as 

mentioned in chapter 2, the asymmetry still presents. 
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To take the mean stress of the fully-reversed strain-controlled tests into consideration, instead of fitting 

the Coffin-Manson relations to the strain amplitude versus life curve, Equation (82) is directly used to fit 

the strain amplitude versus life curve in a form shown in Equation (83): 

 

𝜎𝑚𝑎𝑥𝜀𝑎 = 𝐴1(2𝑁𝑓)
𝑏1
+ 𝐴2(2𝑁𝑓)

𝑏2
                                    (83) 

 

The fitting parameters for Equation (83) is given in: 

Parameter Fitted values 

𝑨𝟏 [MPa] 3928.389 

𝑨𝟐 [MPa] -1.225 

𝒃𝟏 4.361 

𝒃𝟐 -0.231 

 

Table 15. Parameters by fitting Equation (83) to the strain amplitude versus life curve- ZEK100-O 

 

The parameters shown in Table 15 can be converted to the form of SWT parameters shown in: 

 

Elastic Part 
σ'f (MPa)  438.593 

b  -0.116 

Plastic Part 
ε'f   8.956798 

c  -1.109 

 

Table 16. SWT direct-fit parameters- ZEK100-O 

 

Using the parameters shown in Table 16 (later referred to the SWT direct-fit), the predicted life vs. 

experimental life plot for ZEK100-O is shown in Figure 109: 
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Figure 109. The predicted life using SWT direct-fit vs. experimental life- ZEK100-O 

 

It can be seen that the predictions within the low-cycle region are greatly improved and some 

improvements can also be observed in the high-cycle region. 

 

5.2 Jahed-Varvani (J-V energy) model 
 

In addition to the SWT model, an energy-based model has also been considered to model the fatigue 

behavior of ZEK100-O magnesium alloy. Energy-based fatigue models generally have the advantage on 

the modeling of asymmetric/anisotropic materials since the damage is directly linked to the strain 

energy density of each cycle. 

The Jahed-Varvani model (later referred as the J-V energy model) proposed by Jahed and Varvani [8] [9] 

and has been used widely (e.g., [100] [102] ) is given in Equation (84): 
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∆𝐸 = 𝐸′𝑒(2𝑁𝑓)
𝐵
+ 𝐸′𝑓(2𝑁𝑓)

𝐶
                                     (84) 

Where 𝐸′𝑒 is the fatigue strength coefficient, 𝐵 is the fatigue strength exponent, 𝐸′𝑓 is the fatigue 

toughness coefficient, 𝐶 is the fatigue toughness exponent, 𝑁𝑓  is the reversals to failure and ∆𝐸 is the 

total strain energy density for a completed cycle, consist of the positive elastic and plastic parts, shown 

in Equation (85): 

∆𝐸 = ∆𝐸𝑒
+ + ∆𝐸𝑝                                            (85) 

The plastic strain energy density is given by the area enclosed by the stress-strain hysteresis loop, and 

the positive elastic strain energy density is given by Equation (86): 

∆𝐸𝑒
+ =

𝜎𝑚𝑎𝑥
2

2𝐸
                                                    (86) 

The strain energy densities of the stabilized stress-strain hysteresis loops were calculated and plotted 

against the reversal to failure as shown in Figure 110: 
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Figure 110. Strain energy density vs. reversals to failure and the curve fitted with Equation (84) - ZEK100-O 

 

 

  

Equation (84) is fitted to the total energy versus reversals to failure curve analogous to Coffin-Manson 

relation and the J-V energy parameters are given in Table 17: 

Elastic Part 
𝐸′𝑒 = 2.771 

𝐵  = -0.277 

Plastic Part 
𝐸′𝑓   = 443.662 

𝐶  = -0.813 

 

Table 17. J-V energy model parameters- ZEK100-O 
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The life predictions using J-V energy parameters given in Table 17 are shown in: 

 

 

Figure 111. The predicted life using J-V energy model vs. experimental life- ZEK100-O 

 

 

Even though there are few points land outside of the factor of 2 bounds on the high-cycle side, the 

majority of the points are within the bounds and the predictions using J-V energy model are considered 

as good.  

 

5.3 Damage accumulation for variable amplitude loading 
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In the case of variable amplitude loading, because of the variation of the stress/strain amplitudes from 

cycle to cycle, some types of damage accumulation rules have to be. For this purpose, the Palmgren-

Miner rule is used to taking the damage contribution of individual cycles into consideration.  

The Palmgren-Miner rule is shown in Equation (87): 

∑
𝑛𝑖

𝑁𝑖
= 𝐶𝑘

𝑖=1                                                       (87) 

 

Where 𝑛𝑖 is the number of cycles accumulated for a certain stress/strain amplitude within a given load 

history, 𝑁𝑖  is the number of cycles to failure for that stress/strain amplitude and 𝐶 is the fraction of the 

life consumed for that load history. Failure will occur when the value of 𝐶 reaches 1. Therefore, the 

number of times a given load history can be allied before the final failure is: 

𝑁𝑓 =
1

𝐶
=

1

∑
𝑛𝑖
𝑁𝑖

𝑘
𝑖=1

                                               (88) 

Where 𝑁𝑓  is the number of blocks of a given load history can be applied before the final failure. 

The variable amplitude strain-controlled tests on smooth sample shown in Figure 56 - Figure 59 are used 

to evaluate the Palmgren-Miner rule on ZEK100-O. The damage distribution by SWT direct-fit and J-V 

energy model for all four tests aside with its corresponding strain histories are shown in Figure 112 - 

Figure 115: 
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Figure 112. Strain history and damage distribution by SWT direct-fit and J-V energy model for the variable amplitude strain-
controlled test # 1 - ZEK100-O 

 

Figure 113. Strain history and damage distribution by SWT direct-fit and J-V energy model for the variable amplitude strain-
controlled test # 2 - ZEK100-O 
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Figure 114. Strain history and damage distribution by SWT direct-fit and J-V energy model for the variable amplitude strain-
controlled test # 3 - ZEK100-O 

 

Figure 115. Strain history and damage distribution by SWT direct-fit and J-V energy model for the variable amplitude strain-
controlled test # 4 - ZEK100-O 
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The predictions using both SWT direct-fit and Jahed-Varvani models are summarized in Table 18: 

 

Test # Experimental life 
(blocks) 

SWT-direct fit 
(blocks) 

J-V energy model 
(blocks) 

1 545 520 567 

2 206 258 229 

3 4130 6538 4405 

4 3900 9571 2505 

 

Table 18. Experimental life vs. SWT direct-fit and J-V energy model predictions of variable amplitude strain-controlled tests on 
smooth specimens- ZEK100-O 

 

It can be seen that both SWT direct-fit and Jahed-Varvani models give very good predictions for all four 

tests, however, the predictions using J-V energy model give better results especially for test number 3 

and test number 4. 

Therefore, it can be concluded that: 

i. The Palmgren-Miner rule is working for ZEK100-O magnesium alloy. 

ii. Both SWT direct-fit and Jahed-Varvani models can very well predict the fatigue life of ZEK100-O. 

iii. Jahed-Varvani model gives better predictions compare with SWT-direct fit for ZEK100-O. 

 

5.4 Fatigue life prediction for notched specimens 
 

The fatigue life predictions of the notched sample tests are compared with the experimentally 

determined crack-initiation lives at the notch root. In terms of the failure criteria, the notched 

specimens are deemed as a failure when any crack of length exceeds 100 𝜇𝑚 at the vicinity of the notch 

root is observed on the surface of the specimens. Additionally, the phenomenological model by 

Dallmeier et al. [5] accompanied with either the Neuber’s or Glinka’s rule has been used to obtain the 

local stress-strain responses at the vicinity of the notch root in order to use both SWT direct-fit and 

Jahed-Varvani fatigue models. 
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The fatigue lives of the constant nominal stress amplitude fatigue tests on notched specimens 

summarized in Table 9 is compared with the predictions, shown in Table 19: 

Approximation 

method 
Fatigue model 

Fatigue life (60%) * 

(cycles) 

Fatigue life (80%) * 

(cycles) 

Experimental N/A 4500, 5065 900, 710, 1165, 900 

Neuber’s rule (plane 

strain) 

SWT-Direct fit 1203 455 

J-V energy 1418 384 

Glinka’s rule (Plane 

strain with 𝐶𝑝 

correction) 

SWT-Direct fit 1706 611 

J-V energy 2200 610 

 

Table 19. Experimental lives vs. model predictions for ZEK100-O notched specimens under fully-reversed nominal stresses (60% 
and 80% stand for 60% or 80% of compressive yield equivalent fully-reversed nominal stress been applied to the notched 

specimen) 

 

Noticed that, all the predictions made by either Neuber’s or Glinka’s approximation with SWT direct-fit 

or J-V energy model at 60% and 80% of compressive yield stress equivalent fully-reversed nominal 

stresses are underpredicting the crack initiation life of the ZEK100-O notched specimens. However, the 

Neuber’s tend to overpredict the notch strains as what has been discussed in chapter 5, which will result 

in a further underprediction. On the other hand, Glinka’s rule with 𝐶𝑝 correction has been shown to give 

a closer to experimental prediction in terms of the notch strains, therefore, a better fatigue life 

prediction from Glinka’s rule is expected. Finally, the predictions given by SWT direct-fit and J-V energy 

models are not too far away from each other, while the predictions made by J-V energy model are 

slightly closer to experiments in this case. 

In addition to ZEK100-O, the fatigue life of AZ31B-H24 notched specimens are also used to compare with 

the model predictions, shown in Table 20: 
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Approximation method Fatigue model Fatigue life (60%) * 

(cycles) 

Fatigue life (80%) * 

(cycles) 

Experimental N/A 5300, 5500 1000, 1380, 900, 1120 

Neuber’s rule (plane strain) SWT-Direct fit 980 403 

J-V energy 872 341 

Glinka’s rule (Plane strain 

with 𝐶𝑝 correction) 

SWT-Direct fit 1318 474 

J-V energy 1164 447 

 

Table 20. Experimental lives vs. model predictions for AZ31B-H24 notched specimens under fully-reversed nominal stresses (60% 
and 80% stand for 60% or 80% of compressive yield equivalent fully-reversed nominal stress been applied to the notched 

specimen) 

 

Due to the fact that, the deviation of the notch strains between the prediction and the experimental 

values are relatively larger for both Neuber’s and Glinka’s rules on AZ31B-H24 compare with ZEK100-O 

as shown in chapter 5, the relatively larger deviation between the experimental and model predicted life 

is expected, which is reflected in  

Table 20. In contrary to ZEK100-O, predictions by SWT direct-fit tend to be closer to the experiments, 

however, no conclusion can be drawn without additional tests. 

In addition to the constant nominal stress amplitude tests, variable amplitude fatigue tests have been 

done on notched ZEK100-O specimens as shown in Figure 76 are compared with the predictions using 

the phenomenological model by Dallmeier et al. with either Neuber’s or Glinka’s rule to obtain the local 

stress-strain responses at the notch root, the fatigue life then accessed with SWT direct-fit or J-V energy 

model accompanied with Palmgren-Miner rule, shown in Table 21: 
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Approximation 
method 

Fatigue model Load history #1 
(Blocks) 

Load history #2 
(Blocks) 

Load history #3 
(Blocks) 

Experimental N/A 3980 23800 24100 

Neuber’s rule 
(plane strain) 

SWT-Direct fit 1909 7564 7214 

J-V energy 1867 4465 3254 

Glinka’s rule 
(Plane strain with 
𝐶𝑝 correction) 

SWT-Direct fit 2654 9720 9373 

J-V energy 2288 4862 3675 

 

Table 21. Experimental lives vs. model predictions for ZEK100-O notched specimens under variable amplitude nominal stresses 
loading (The nominal stress histories for all three tests are given in Figure 76) 

 

A relatively larger deviation between the predicted and experimental lives has been observed for load 

history #2 and load history #3 compare with load history #1. The reason could be that the modeled 

strain amplitudes at the notch root are well under the lowest strain amplitude for the fully-reversed 

strain-controlled tests on the ZEK100-O smooth specimens were used to determine the parameters for 

SWT direct-fit or J-V energy fatigue models. Other than that, all the predictions for load history #1 are 

very close and Glinka’s rule with 𝐶𝑝 correction seems to have the best result.  
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Chapter 6: MATLAB implementation 
 

The modeling procedures for both smooth and notched samples analysis as described in chapter 4 have 

been coded in MATLAB. In addition, the fatigue modeling using SWT direct-fit and J-V energy models 

have also been integrated to predict the fatigue life for a given load history. 

There are 3 inputs needed for each analysis: 

i. A single stabilized hysteresis with visible twinning exhaustion (>2% strain amplitude) 

ii. Experimentally obtained cyclic stress-strain curve (CSSC) 

iii. Load history (strain history for smooth sample analysis and nominal stress history for notch 

samples) 

However, the built-in material library has already included ZEK100-O and AZ31B-H24 properties and can 

be expanded later as needed. Therefore, the load history will be the only input needed for the existing 

materials in the material library. 

The output capabilities for the MATLAB program are: 

i. Stress-strain hysteresis loops prediction for magnesium alloys given the strain history 

ii. Fatigue life predictions using SWT direct-fit or J-V energy model for the given strain history 

iii. The localized stress-strain hysteresis loops prediction at the vicinity of the notch root for 

magnesium alloys given the stress history using Neuber’s or Glinka’s approximation method 

iv. Fatigue crack initiation life predictions at the notch root using SWT direct-fit or J-V energy model 

for the given nominal stress history 

The flow diagrams for the phenomenological model, notch analysis using Neuber’s/Glinka’s rule and life 

prediction are shown in Figure 116 - Figure 118: 
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Figure 116. Flow diagram for the implementation of the phenomenological model by Dallmeier et al [5]  
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Figure 117. Flow diagram for the notch analysis using Neuber’s/ Glinka’s rule 
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Figure 118. Flow diagram for the implementation of the life prediction using SWT or J-V energy model 
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Chapter 7: Conclusion and Future Work 
 

7.1 Conclusions: 
 

At the end of this thesis, these things can be concluded: 

i. ZEK100-O magnesium alloy have relatively weaker basal texture due to the inclusion of the rare-

earth element neodymium, and the basal poles have a spread along the transverse direction.  

ii. ZEK100-O magnesium alloy has relatively weaker tension-compression asymmetry and relatively 

stronger planar anisotropy. 

iii. ZEK100-O magnesium alloy has good formability due to its high ductility. 

iv. The axial strain at the notch root for both ZEK100-O and AZ31B-H24 will be stabilized under 

fully-reversed nominal stress. 

v. The phenomenological model by Dallmeier et al. is able to mimic the sigmoidal-shaped stress-

strain behaviors of both ZEK100-O and AZ31B-H24 magnesium alloys. 

vi. Both Neuber’s and Glinka’s rules (ESED) are able to predict the localized notch strain with 

reasonable accuracy for both ZEK100-O and AZ31B-H24. 

vii. The notch strain predictions are given by Glinka’s rule (ESED) with 𝐶𝑝 corrections are closer to 

experiments 

viii. The original SWT model does not take the tension-compression asymmetry of the fully-reversed 

strain-controlled tests into consideration. 

ix. Direct fitting the strain-life curve to the SWT model will take the mean stresses caused by the 

tension-compression asymmetry on the fully-reversed strain-controlled tests into consideration. 

x. Both SWT direct-fit and J-V energy models give good predictions on the fatigue life of ZEK100-O 

magnesium alloy. 

xi. The MATLAB program developed is able to predict the stress-strain hysteresis loops as well as 

the fatigue life of smooth specimens given the strain history with a reasonable accuracy. 

xii. The MATLAB program developed is able to predict the stress-strain responses at the notch root 

using either Neuber’s or Glinka’s method for a given nominal stress history as well as the fatigue 

crack initiation life of the notched specimens with a reasonable accuracy. 
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7.2 Future Work: 
 

The suggested future works are listed below: 

• Additional fully-reversed strain-controlled tests at and below 0.3% strain amplitude are needed 

to improve the fatigue model predictions in the high-cycle regime. 

• Current test results have shown a trend that, the mean strains have little effect on the fatigue 

life of ZEK100-O, however, additional tests have to be done to confirm it. 

• The specimens have been used for ZEK100-O notched tests are 6.6 mm thick, which makes the 

stress state at the notch root to be close to plane strain. Additional tests on thinner specimens 

are beneficial to confirm the plane stress solution of the model predictions. 

• More efficient numerical methods can be implemented in the developed notch analysis program 

to improve efficiency and stability. 
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