
Augmenting Quantum Mechanics
with

Artificial Intelligence

by

Giacomo Torlai

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2018

c© Giacomo Torlai 2018



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Norbert Schuch
Professor, Max Planck Institute for Quantum Optics, Garching

Supervisor: Roger G. Melko
Professor, Dept. of Physics, University of Waterloo

Internal Member: Anton Burkov
Professor, Dept. of Physics, University of Waterloo

Internal Member: Matteo Mariantoni
Professor, Institute of Quantum Computing, Waterloo

Internal-External Member: Pierre-Nicholas Roy
Professor, Dept. of Chemistry, University of Waterloo

ii



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

The simulation of quantum matter with classical hardware plays a central role in the dis-
covery and development of quantum many-body systems, with far-reaching implications in
condensed matter physics and quantum technologies. In general, efficient and sophisticated
algorithms are required to overcome the severe challenge posed by the exponential scaling
of the Hilbert space of quantum systems. In contrast, hardware built with quantum bits of
information are inherently capable of efficiently finding solutions of quantum many-body
problems. While a universal and scalable quantum computer is still beyond the horizon,
recent advances in qubit manufacturing and coherent control of synthetic quantum matter
are leading to a new generation of intermediate scale quantum hardware.

The complexity underlying quantum many-body systems closely resembles the one en-
countered in many problems in the world of information and technology. In both contexts,
the complexity stems from a large number of interacting degrees of freedom. A powerful
strategy in the latter scenario is machine learning, a subfield of artificial intelligence where
large amounts of data are used to extract relevant features and patterns. In particular, arti-
ficial neural networks have been demonstrated to be capable of discovering low-dimensional
representations of complex objects from high-dimensional dataset, leading to the profound
technological revolution we all witness in our daily life.

In this Thesis, we envision a new paradigm for scientific discovery in quantum physics.
On the one hand, we have the essentially unlimited data generated with the increasing
amount of highly controllable quantum hardware. On the other hand, we have a set of
powerful algorithms that efficiently capture non-trivial correlations from high-dimensional
data. Therefore, we fully embrace this data-driven approach to quantum mechanics, and
anticipate new exciting possibilities in the field of quantum many-body physics and quan-
tum information science. We revive a powerful stochastic neural network called a restricted
Boltzmann machine, which slowly moved out of fashion after playing a central role in the
machine learning revolution of the early 2010s. We introduce a neural-network represen-
tation of quantum states based on this generative model. We propose a set of algorithms
to reconstruct unknown quantum states from measurement data and numerically demon-
strate their potential, with important implications for current experiments. These include
the reconstruction of experimentally inaccessible properties, such as entanglement, and
diagnostics to determine sources of noise. Furthermore, we introduce a machine learning
framework for quantum error correction, where a neural network learns the best decoding
strategy directly from data. We expect that the full integration between quantum hard-
ware and artificial intelligence will become the gold standard, and will drive the world into
the era of fault-tolerant quantum computing and large-scale quantum simulations.
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Chapter 1

Introduction

Emergence is a fundamental, and most intriguing, property of nature. From the micro-

scopic scale of particles, to the macroscopic scale of human society, emergence leads to

unseen collective behaviours from simple elementary laws. Given a collection of degrees of

freedom, mutual interactions lead to collective phenomena, impossible to predict from the

properties of the single constituents. A remarkable example of emergence at the human

scale is ant colonies. This self-organizing organisms are capable of performing complicated

tasks very efficiently, as well as collectively solving complex problems. Through a set of

simple (chemical) interactions and without any centralized coordination, ants self-organize

their division of labour according to the current need of the colony. The same type of

emergent behaviour governs the synchronized flashing of fireflies, the swarming of birds

during migrations, as well as the “self-organization” of modern society.

The concept of emergence plays a particularly important role also in the physics of

condensed matter systems [1], where the elementary components are interacting particles.

Besides traditional solid state materials, these also include synthetic quantum matter en-

gineered in laboratories, such as ultra-cold atoms in optical traps [2] or low-dimensional

quantum magnets [3, 4]. For these systems, the presence of interactions often leads to

new physical phenomena, unaccessible in the framework of single-particle physics [5]. In

particular, many exotic behaviours occur in the regime of strong interactions, such as
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fractional quantum-Hall effect [6], high-temperature superconductivity [7], topologically

ordered phases [8] and many-body localizations [9]. Intimately connected with emergent

phenomena is the inherent complexity of the description of such physical systems, arising

from an increasing number of interacting elementary constituents. In this scenario, com-

plexity leads to an exponential scaling of the phase space of the system with the number

of particles. As a consequence, given complete knowledge of the underlying microscopic

laws, the behaviour of a system becomes in practice increasingly harder, and ultimately

impossible, to be exactly determined.

1.1 The sharp end of complexity

Before venturing into the realm of quantum mechanics, let us first demonstrate the com-

plexity of many-body systems in classical physics. Imagine a gas of N classical particles

with position qj and momentum pj, and some Hamiltonian H(q,p). The time evolution of

the particles is perfectly determined, in a precise mathematical framework, by the Hamil-

ton equations of motion. Unfortunately, for a typical volume of gas containing N ∼ 1023

particles, solving this system of 6N equations is fundamentally not possible. This explod-

ing complexity at the microscopic scale stands however in contrast with the behaviour of

the system at the macroscopic scale, which is well determined by a small set of param-

eters, such as the pressure, the volume and the temperature, defining the macrostate of

the system. In turn, there are many possible microstates (specific microscopic configura-

tions) compatible with a given macrostate. The seemingly impossible task of extracting

the macroscopic behaviour from this microscopic turmoil can be however accomplished

with the probabilistic framework of statistical mechanics.

For simplicity, and in analogy with the rest of this thesis, let us now pin down the

electrons in space and consider only the interactions between their magnetic moments σzj .

Rather than position and momentum, the state of the system is now described by a vector

of magnetic orientations σz. If we allow energy fluctuations, this effective spin system is

characterized by the canonical Boltzmann distribution p(σz) ∝ e−βH(σz), where H(σz) is

2



now a magnetic Hamiltonian, and β = 1/T is the inverse temperature. If, for instance, we

are interested in the average energy U , we can calculate its expectation value as

U = 〈H〉 = Z−1
∑

σz

H(σz) e−βH(σz) , (1.1)

where Z =
∑
σz e

−βH(σz) is the partition function, and the sum runs over the full con-

figuration space 1. If the system is non-interacting, the summation can be easily carried

out, leading to an exact solution of the model. In some other cases, such as in the high-

temperature limit or for weak interactions, accurate (but approximate) solutions can be

gained through perturbative expansions. However, in the more general scenario outside

the reach of analytical tools, an approximate solution must be obtained using a numerical

technique. Unfortunately, the calculation of the partition function (as well as of any ob-

servable) requires an integration over the full configuration space. Therefore, to calculate

the energy, we need to perform a sum over all the possible states (e.g. 2N for spin-1
2
),

inevitably leading to an exponential scaling of computational resources.

Despite the system being described by a classical theory, and notwithstanding the fact

that we fully understand the underlying physical laws, this intrinsic complexity prevents

us from exploring the physics of a system composed of a large number of particles. Re-

markably, the proposal of a set of algorithms allowed classical computers to overcome this

exponential scaling, and to reliably extract macroscopic properties. A notable example is

Monte Carlo (MC). The general idea behind MC algorithms, is to simulate the evolution

of a system by generating a sequence of microstates 2. The microstates are selected via a

proposal step, followed by acceptance/rejection, which can vary with different MC imple-

mentations. One example is importance sampling, which we will cover with in more details

in Chapter 2. The result is a collection of microstates (called a Markov chain), each oc-

curring with a probability approximately equal to the Boltzmann distribution p(σz). The

Markov chain is then used to approximate the average value of some observable, thus avoid-

1Equation 1.1 holds for any physical observable.
2Note that this evolution is performed in so-called Markov time, not to be confused with real time

evolution. In fact, MC algorithms can only simulate physical systems at equilibrium.

3



ing the full enumeration of exponentially many states. In general, accurate averages can

be obtained in polynomial time 3 T ∼ O(poly(Nmc)), with a statistical error ε ∼ 1/
√
Nmc,

where Nmc is the number of samples in the Markov chain.

The scenario changes when we instead consider a system in a regime where quantum

effects are non-negligible, or possibly predominant. As the system transitions into a quan-

tum mechanical regime, the appearance of quantum coherences leads to an exponential

scaling of the Hilbert space, where the “state” governing the physics of the system is de-

fined. This exponential scaling in complexity for quantum states of matter is often referred

to as the quantum many-body problem.

1.1.1 The quantum many-body problem

In analogy to the classical spins, we now wish to extract the macroscopic physics of a

quantum many-body system, which we can imagine as N quantum spins σzj , interacting

with a Hamiltonian Ĥ. As the specific problem, we consider the stationary Schrödinger

equation

Ĥ|ψ〉 = E|ψ〉 , (1.2)

and aim to obtain the ground state |ψ0〉 and ground state energy

E0 = 〈ψ0|Ĥ|ψ0〉 . (1.3)

As a concrete example, we consider the Heisenberg model, an important model of magnetism

that will serve as a reference for the remainder of the Chapter. For a one-dimensional (1d)

chain of spin-1
2

particles with anti-ferromagnetic interactions, the Hamiltonian is

Ĥ =
N−1∑

j=1

Ŝj · Ŝj+1 . (1.4)

3This scaling applies as long as the sampling is ergodic. The ergodicity is a central issue in MC, and
prevents simpler techniques to simulate systems with a rough free energy landscape, such as spin glasses.
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where Ŝαj = 1
2
σ̂αj and σ̂αj are the Pauli matrices (α = x, y, z). The Hamiltonian can be

easily re-written in the more convenient form

Ĥ =
N−1∑

j=1

[
Ŝzj Ŝ

z
j +

1

2

(
Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1

)]
(1.5)

in terms of the raising Ŝ+
j and lowering Ŝ−j spin operators 4. Let us first consider just two

interacting spins with Hamiltonian Ĥ = Ŝ1 · Ŝ2. The energy spectrum and eigenstates can

be obtained by performing an exact diagonalization (ED) of the Hamiltonian [10]. This

requires the choice of a basis for the Hilbert space and the storage of the Hamiltonian matrix

in the computer The obvious choice for the basis is {|Sz1 , Sz2〉 = | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}.
The Hamiltonian in this basis is given by the 4×4 matrix:

〈Sz|Ĥ|Sz′〉 =




1/4 0 0 0

0 −1/4 1/2 0

0 1/2 −1/4 0

0 0 0 1/4



. (1.6)

The full spectrum, which provides the complete knowledge of the physics of the system,

can be found using standard routines of linear algebra. This produces the desired ground

state eigenvector, finding the singlet state as lowest energy state

|ψ0〉 =
1√
2

(
| ↑↓〉 − | ↓↑〉

)
(1.7)

and lowest energy eigenvalue E0 = −3/4.

4These operators act as Ŝ+
j |0〉 = |1〉, Ŝ−j |1〉 = |0〉 and Ŝ−j |0〉 = Ŝ+

j |1〉 = 0.
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For the full system of N spins, the basis is now given by {|Sz〉 = |Sz1 , Sz2 , . . . , SzN〉}, and

the Hamiltonian matrix can be constructed efficiently as follows:

H(Sz,Sz′) =





∑N−1
j=1 SzjS

z
j+1, if Sz = Sz′

+1/2 if Sz and Sz′ differ for 2 nearby spin flips

0 otherwise

(1.8)

However, the dimension of the matrix is 2N × 2N , and every time a new spin is added to

the chain, the Hamiltonian matrix of the system doubles in size. Once again we face an

exponential scaling, now of the Hilbert space of the system, which restricts us to very small

system sizes. But how small in practice? The math can illuminate us. The CPU-time for

full diagonalization of a n× n matrix is T ∼ n3 (in our case n = 2N). In order to convert

the cpu-time to computational time, we need to know how many operation per seconds

the machine can perform. For instance, for a typical laptop this number ranges around

100 GFLOPs (i.e. 1011 floating point operations per second). This implies that it would

take a few micro-seconds to obtain the full spectrum of N = 8 spins, around 45 minutes

for N = 16 and 150 years for N = 24.

We were expecting an exponential scaling of classical resources, but regardless, this

numbers seem rather disappointing. How do we expect to obtain any physical insights on

realistic samples of matter, if simulations with classical computers would require more time

than the age of the universe? Unless we own a quantum computer (more on this later), in

order to explore larger systems with classical simulations, we need to find clever ways to

fight this “curse of dimensionality”. For example, the symmetries of the Hamiltonian can

be used for reducing the computational time, by diagonalizing a block of the Hamiltonian

corresponding to a specific conserved quantum number. For the Heisenberg model, the

Hamiltonian is rotationally invariant, and thus it conserves the square of the total spin

angular momentum, Ŝ2
T = (

∑
j Ŝj)

2 and the total z-component SzT =
∑

j Ŝ
z
j . As such, we

can build blocks corresponding to a specific value of SzT , and target the sector SzT = 0 to

find the ground state. For the case of two spins, for example, the block corresponding to

6
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Lanczos - Sz
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Figure 1.1: Exact diagonalization. We show the time (in seconds) required to reach the
solution of the ED simulation for the 1d Heisenberg model. We carried out full diagonal-
ization, where the whole spectrum is obtained, as well as the Lanczos algorithm targeting
only the ground state. For both cases, we plot the results from considering the full ma-
trix Hamiltonian, the SzT = 0 sector and the parity/reflection symmetry. Simulation were
performed using the library QuSpin [11].

total magnetization SzT = 0 is

〈Sz|Ĥ|Sz′〉SzT=0 =

(
−1/4 1/2

1/2 −1/4

)
. (1.9)

This clearly helps, but the scaling O(2N/N) of the block size is still exponential. Addi-

tional symmetries can be implemented to further reduce the exponential overhead, such

as reflection symmetry for this example. Finally, if we are interested in the ground state

properties only, we don’t need to solve the problem for the full energy spectrum. Using

iterative diagonalization techniques (such as the Lanczos method [12]), one can obtain

more efficient scaling by targeting the lowest end of the spectrum, obtaining the ground

state and possibly a few low-lying excited states. In Fig. 1.1 we show the results of a set of

ED simulations for the 1d Heisenberg model. In any instance we observe the exponential
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scaling of the time to simulation. The slope of the scaling is clearly different depending on

whether we are performing full diagonalization or extracting just the lowest energy state

with the Lanczos algorithm.

Contrary to the classical scenario, where the state of the system was described by a

vector of N orientations, quantum states suffer the very same exponential scaling of the

Hilbert space. For the case above, the ground state |ψ0〉 for N spins contains a total of 2N

complex coefficients. Consequently, if we simply store all coefficients, we need to account

also for the resource scaling required for storage. We now give an example to put such

exponential scaling in perspective (Fig. 1.2). We assume the quantum state (containing

only real coefficients) is stored onto a set of hard drives as a vector of double-precision

floating point numbers (8 bytes). A 10TB hard drive (∼350$) can store the quantum state

for N ' 40 spins. By filling up a standard ship container with HardDrives (i.e. ∼88000),

we can reach N ' 56. It would take the OOCL Hong Kong (currently the largest container

ship with a capacity of 21413 containers) to get to N ' 70. Finally, for a dramatic finish,

in order to store the quantum state for N ' 90 spins we must line up around 1 million ships

(roughly the earth-moon distance), full of containers, full of hard drives. So, in practice,

even in the fortunate case where a powerful numerical technique allows us to obtain an

arbitrary large quantum state, its storage on a regular (classical) memory would become

physically impossible for more than a small number of particles.

The cutting edge of ED algorithms now ranges up to and over N = 50 (for spin-1
2

degrees of freedom [13, 14]). These simulations are realized by fully exploiting all the

symmetries in a highly structured Hamiltonian, as well as by cleverly parallelizing linear

algebra operations over many computational cores. But this is usually not enough. Large

super-computers are needed to explore these regimes, with a considerable cost in energy

and money. Nevertheless, the outcome is worth the effort, since ED provides the exact

results, the indisputable ground truth. This is in practice always required for benchmarking

any other (approximate) technique. Over and above, some physical insights can be often

obtained nonetheless from a moderate number of particles [15, 16]. Unfortunately however,

collective phenomena in condensed matter emerge as the number of particles grows large,

and become crisp in the thermodynamic limit (N → ∞). It is also in this limit that
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1 million ships

N = 90

N = 70

10TB Hard Drive

N = 40 N = 56

1TEU Container
⇠ 88000 Hard Drives 21413 Containers

. . .

OOCL Hong Kong

Figure 1.2: The quantum many-body problem. Practical picture of the exponential
scaling of the Hilbert space. The various images correspond to the amount of classical
resources (in units of a 10TB hard drives) required to fully store a quantum state |ψ〉 for
N spins. A TEU is a volumetric measure of containers, with 1 TEU = 33.2m3.

phase transitions and universal properties, a central subject of study in condensed matter,

are well defined. So, on one hand, the nature of emergent phenomena requires large-scale

simulations to obtain the correct physical properties. On the other hand, exact simulations

of such large-scale materials face an infinitely complex task and will never be feasible, no

matter the technological power we will ever possess.

Given this fundamental conundrum, it seems that the only way forward is to abandon

exact solutions, and resort to approximate techniques instead. Given the broadness of

the subject, here we will only cover two successful strategies to efficiently simulate large

condensed matter systems on classical computers (tensor network states and quantum

Monte Carlo). Before discussing these algorithms, we present first a general notation and

definitions for quantum many-body states.
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1.1.2 Quantum states

We assume a set of N discrete (generic) quantum degrees of freedom, each with a local

Hilbert space H. The many-body quantum state is defined in the Hilbert space H = H⊗N .

Given a set of quantum numbers {xj}, an orthonormal reference basis of the Hilbert space

is given by {|x〉}, with

|x〉 = |x1, x2, . . . , xN〉 . (1.10)

These could be electronic orbitals, magnetic spins projections or the logical states of qubits,

for example. If we assume that the physical system is perfectly isolated (i.e. no interac-

tion with the environment), the quantum state, called pure, is described by a quantum

wavefunction |ψ〉 ∈H. The representation of the quantum state in the reference basis is

|ψ〉 =
∑

x

ψ(x)|x〉 . (1.11)

where ψ(x) = 〈x|ψ〉 is a high-dimensional vector of complex coefficients, and normalization

imposes
∑
x |ψ(x)|2 = 1.

The quantum mechanical description differs when the purity of the state cannot be

assumed. This is often true in realistic implementations of controlled quantum systems in

the laboratory. In general, either because of thermal fluctuations or quantum correlations

between the system and the environment, the quantum wavefunction of the material (or

hardware) is not perfectly determined. Rather, the system is in a statistical mixture of

pure states |ψi〉, each with a corresponding probability pi. In this case, the representation

of the quantum state, called mixed, is formulated in terms of the density operator

ρ̂ =
∑

i

pi|ψi〉〈ψi| (1.12)

with normalized states |〈ψi|ψi〉|2 = 1 and
∑

i pi = 1. Within the reference basis {|x〉}, the
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density matrix for the system is

ρ̂ =
∑

x,x′

ρ(x,x′)|x〉〈x′| , (1.13)

with matrix elements:

ρ(x,x′) = 〈x| ρ̂ |x′〉 =
∑

i

piψi(x)ψ∗i (x
′) , ψi(x) = 〈x|ψi〉 . (1.14)

The diagonal elements of the density matrix, ρ(x,x) =
∑

i pi|ψi(x)|2, are called popula-

tions. They correspond to the set of probabilities for the system to be found in the state

|x〉 (upon a projective measurement in that basis). The off-diagonal elements ρ(x,x′) are

called coherences, as they encode the relative phase between the various basis states. 5

The density operator formalism provides the most general framework to write quantum

states. This representation however, requires more strict conditions than the pure state

representation. As for wavefunctions, the density operator must be normalized, Tr(ρ̂) = 1.

This follows directly from the normalization of the pure states |ψi〉 and the normalization

of the probability distribution pi. In addition, a physical density matrix must obey two

other conditions. First, it must be a self-adjoint operator ρ̂ = ρ̂†, and second, it must be

positive semi-definite, which means that for any state |ξ〉 in the Hilbert space H, it holds

〈ξ|ρ̂|ξ〉 ≥ 0. Provided these three condition are met, the operator ρ̂ is a physical density

matrix and can represent both a pure state and a mixed state. If the state is pure, the

statistical mixture contains only one state |ψi〉 with unit probability, and thus, the density

matrix has only one non-zero eigenvalue τi = 1, reducing to ρ(x,x′) = ψi(x)ψ∗i (x
′) in the

reference basis. Because of this, the trace squared of the density matrix is Tr(ρ̂2) = 1.

On the other hand, if the state is not pure, it follows that Tr(ρ2) =
∑

i τ
2
i < 1 (since

normalization requires
∑

i τi = 1). This is why the trace of the density matrix squared

is often referred to as the purity of the quantum state ρ̂ and, as we will see, it is strictly

related to the entanglement between disjoint sub-regions of the system.

5By writing ψi(x) = |ψi(x)|eiφi(x), we see that the coherence ρ(x,x′) depends on the set of phase
differences φi(x)− φi(x′) of the states |ψi〉, between the two basis states |x〉 and |x′〉.
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1.2 Tensor networks

The first technique we review is tensor networks (TN), one of the most powerful technique

to reduce the exponential overhead of quantum states. In this framework, a (pure) quantum

state is compressed using a networks of tensors, such that the total number of parameters

in the network is much less than the size of the Hilbert space. The idea behind this strategy

is that local Hamiltonians are characterized by only a small number of parameters O(N),

and as such, its ground state must reside in a small region of the Hilbert space, constrained

by the Hamiltonian. Let us consider again a generic state of N quantum spins ψ(σz), which

contains 2N coefficients. This is equivalent to a rank-N tensor ψ σz1 σ
z
2 ... σ

z
N , where each of the

N two-dimensional (2d) indices (called physical) represents the quantum number σzj . The

TN approach consists of replacing the big tensor ψ σz1 σ
z
2 ... σ

z
N with a set of small tensors, with

the aim of obtaining a representation with a polynomial number of parameters. Irrespective

to the specific type of TN at hand, an efficient construction of the compressed quantum

state relies then on the ability to target and parametrize this “corner” of the Hilbert space,

typically consisting of ground states of gapped local Hamiltonians. As we are about to see,

the fundamental ingredient characterizing this sub-space is entanglement.

1.2.1 The entanglement area law

Entanglement is among the most counter-intuitive properties of quantum mechanics. The

entanglement between two quantum systems refers to the quantum correlations that can-

not be captured by any local classical theory. Aside from being a fundamental resource for

quantum technologies, entanglement also provides a powerful language to describe quan-

tum many-body systems, leading to a novel perspective in condensed matter physics [17].

Consider again a pure state |ψ〉 and a bipartition of the system into two complementary

sub-regions A and B. Then, the state can be always written using a Schmidt decomposition

|ψ〉 =
∑

k

√
pk|ψkA〉 ⊗ |ψkB〉 , (1.15)
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where pk are called Schmidt coefficients. If only one coefficient is different from zero, than

that state becomes separable |ψ〉 = |ψA〉 ⊗ |ψB〉. There are no quantum correlation in

|ψ〉, and the quantum state of region A, ρ̂A = TrB(|ψ〉〈ψ|) = |ψA〉〈ψA| is fully determined

by the pure state |ψA〉. In turn, if the decomposition presents more that one term in the

sum, than the two sub-regions are entangled. This means that the state of sub-region

A, if examined separately, is not perfectly determined, i.e. it is described by a “mixed”

density operator (Tr(ρ̂2
A) < 1). Therefore, two sub-systems are said to be entangled if the

composite quantum state cannot be written in the separable form |ψ〉 = |ψA〉 ⊗ |ψB〉.

This definition leads to the natural question on how to quantify the amount of entangle-

ment. One might be tempted to use the number of non-zero Schmidt value as a candidate

for the measure. Consider for instance the following quantum state of two sub-systems A

and B, each containing one degree of freedom

|φ+〉 =
1√
2

(
|00〉+ |11〉) , (1.16)

also called a Bell state. This state is already in the Schmidt form, with two Schmidt values

p1 = p2 = 1/2. Compare this with the following state [18]

|ψε〉 =
√

(1− 2ε2)|00〉+ ε|11〉+ ε|22〉 (1.17)

in the limit of ε� 1. Clearly, even though the number of Schmidt coefficient is larger, for

small ε the quantum state is close to the product state |00〉, effectively containing a small

amount of quantum correlations.

A more appropriate measurement of entanglement is determined by the specific distri-

bution of the Schmidt values, rather than their total number. For a pure quantum state,

a measurement of entanglement is provided by the family of Renyi entropies [19]

Sα(ρ̂A) =
1

1− α log(Tr(ρ̂αA)) , (1.18)

where ρ̂A is the reduced density matrix of sub-system A, α > 0 is called the Renyi index,
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and Sα(ρ̂A) ≥ Sβ(ρ̂A) for α < β. For the specific case of α = 1, one obtains

Sα=1(ρ̂A) = −Tr(ρ̂αA log ρ̂αA)) = −
∑

k

pk log pk , (1.19)

which is called von Neumann entanglement entropy. From this definition, it is easy to

prove that the maximum entropy Smax(ρ̂A) = log n (independent of α) is obtained when

all Schmidt values are pk = 1
n

(here n is lesser of the total dimensions of the two Hilbert

spaces of sub-systems A and B). In this case, the composite state |ψAB〉 is called maximally-

entangled. The Bell state |φ+〉, for example, is maximally-entangled with Sα(ρ̂A) = log 2,

and both sub-systems described by a maximally-mixed states ρ̂A/B = 1
2
Î. For the quantum

state |ψε〉 however, for ε � 1 the von Neumann entropy is S1(ρ̂A) ∼ O(ε2 log 1
ε
) � log 2,

as expected. Finally, we point out the second Renyi entropy Sα=2(ρ̂A) = − log(Tr(ρ̂2
A)),

which is the logarithm of the purity of the quantum state ρ̂A.

A fundamental question in the study of condensed matter system is the behaviour of the

entanglement entropy for a sub-region of the system. In general, for a quantum state picked

at random in the full Hilbert space, the entanglement entropy is proportional to the number

of degrees of freedom in A [20]. This is called a volume law of entanglement. In contrast,

quantum states that are ground states of local Hamiltonians show a very different scaling

of entanglement, which is proportional only to the boundary ∂A of the sub-region [21]. An

important difference in the entanglement arises from the existence of a gap in the energy

spectrum. While in general both gapped and gapless ground states of local Hamiltonians

obey a dominant area law scaling of entanglement [22], gapless (critical) states possess sub-

leading universal corrections to the entanglement entropy [23]. The general intuition for the

area law is that the short-ranged nature of the interactions leads to quantum correlations

that are locally distributed. As such, when we define a sub-region A of the full system,

only the degrees of freedom near the boundary ∂A contributes to the entropy, with very

low entanglement between degrees of freedom far apart from each other.

The entanglement area law has been formally proven for 1d quantum systems by Hast-

ings [24], based on the existence of the Lieb-Robinson bound [25], and confirmed by many

numerical calculations [26, 27]. In this case, the entanglement entropy for ground states of
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Figure 1.3: Entanglement area law. For ground states of gapped local Hamiltonian, the
entanglement entropy Sα(ρ̂A) of a region A scales with the surface ∂A of the region.

local gapped Hamiltonians is constant and independent on the block size of the sub-region,

S(ρ̂A) ' O(1). Note that, while the Lieb-Robinson theorem is at the base of the exponen-

tial decay of correlations, the scaling of the entanglement and correlations are not directly

related. In fact, there exists states with exponentially decaying correlations and large en-

tanglement entropy [24]. Similarly, the area law can also be violated by gapped ground

states of Hamiltonians with long range interactions, which approach a volume law scal-

ing [28]. When the physical system is brought to a critical point (i.e. gapless ground state),

the correlation length diverges (ξ → ∞) and the system, which is now scale invariant, is

described by a conformal field theory. Given that, powerful methods allows the calculation

of the universal properties of the system, including entanglement entropy [29, 30]. For a

1d system containing L sites, one finds [31]

S1(ρ̂A) =
c

3
log
(L
a

)
+ A (1.20)

where a is the lattice spacing (i.e. the ultraviolet regularization cut-off), c is the central

charge of the field theory and A is a non-universal constant.
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1.2.2 Matrix product states

Matrix product states (MPS) for 1d quantum systems are the most successful realization

of a TN. Coupled with the density-matrix renormalization group (DMRG) framework [32],

MPSs allows one to solve most of the physics of strongly-correlated systems in one dimen-

sion. The (exponentially large) tensor ψ σz1 σ
z
2 ... σ

z
N is written here as a product of tensors

along a 1d array. To each quantum degree of freedom (say σzj = ±1) is associated a

rank-3 tensor M
σzj
αj ,αj+1 with one physical index σzj and two bond indices (αj, αj+1), whose

dimension can vary. The MPS is then defined as

ψ(σz) =
∑

α1

∑

α2

· · ·
∑

αN−1

[M1]σ
z
1
α1

[M2]σ
z
2
α1α2

[M3]σ
z
3
α2α3

. . . [MN ]
σzN
αN−1 (1.21)

where the two tensors at the boundary have only one bond index. This is simply done

in order to avoid taking the trace to obtain the wavefunction coefficient. To simplify the

notation and avoid to keep all the sums and indices around, TNs also come with a powerful

diagrammatic notation for both visualization and computation. Very simply, each tensor

is represented by an object (e.g. a circle/square) with a number of legs (i.e. the indices).

Connecting two tensors together corresponds to a contraction of the shared indices. Using

this notation, a MPS is simply represented by a 1d chain of connected tensor, with N un-

contracted physical indices (Fig. 1.4). To evaluate one element of the wavefunction ψ(σz)

we just need to calculate the product of N matrices M
σzj
j , each one selected according to

the specific value of the state σzj .

The dimension of each bond index αj is a free parameter of this parametrization. The

largest dimension χ = maxj∈(1,N)(dim(αj)) is called the bond dimension of the MPS, and

it is a natural convergence parameter of the representation. Note that for χ = 1 the MPS

is simply the product state

ψ(σz) = M
σz1
1 M

σz2
2 M

σz3
3 . . . M

σzN
N , (1.22)

which reduces to a mean-field theory description. However, as we increase the bond di-

mension, we obtain a MPS representation capable of sustaining an increasing amount of
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Figure 1.4: Matrix product states. Decomposition of a wavefunction into a MPS form,
carried out via a series of singular values decomposition (not shown in the figure).

entanglement. This comes at a price of a large number of parameters in the MPS, and

thus a slower computational efficiency. However, we know that ground states of gapped

local Hamiltonians obey the area law of entanglement. For a 1d system, this implies that

entanglement is independent on the block size L of the sub-system (at finite correlation

length). The same entanglement scaling, related to the geometry of the TN, is captured

by a MPS with only a polynomial number of parameters. More specifically, for a given

bond dimension χ, the total number of parameter in the MPS is equal to 2Nχ2, which

effectively reduces the scaling from exponential to polynomial (as long as the bond dimen-

sion remains sufficiently low). When the gap closes and the correlation length diverges, the

entanglement entropy picks up a logarithmic correction in the size of the block. In such

case, an MPS is still capable of obtaining a faithful representation, at a cost of a larger

bond dimensions. In general, MPSs can populate the full Hilbert space, and represent

exactly any pure quantum state, under the weak condition of an exponentially large bond

dimension χ→ 2N . As such, entanglement in a quantum state is the main limiting factor

for its representation using a MPS.
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Figure 1.5: DMRG simulation of the Heisenberg model. We perform the simulation
of the Heisenberg model in one dimension by optimizing a MPS with the DMRG algorithm.
a) We compare the time to simulation for ED with Lanczos and MPSs for both the full
Hamiltonian and the SzT = 0 sector. We can clearly see how the MPS in one dimension
overcomes the complexity of the quantum many-body problem. b) Ground state energy
per spin, as a function of system size. For N up to 28, we compare the DMRG results
with ED. In the inset we show the relative error δE0 = |Emps

0 − Eed
0 |/|Eed

0 |. The DMRG
simulations were performed using the C++ library Itensor [33].

To show the power of MPSs in practice, we performed a DMRG simulation to find the

ground state of the Heisenberg model, and compare with ED results. In Fig 1.5a, we show

the scaling of the time to simulation against the system size. We show data-points from

simulation of the full Hilbert space, as well as the sub-space corresponding to the conserved

total spin ŜzT = 0. In Fig 1.5b we show the ground state energy per spin as a function of

N , and show in the inset the relative error with respect to the ED results. This clearly

shows how MPSs are capable of taming the exponential scaling of quantum mechanics in

one dimension, under certain reasonable conditions.
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1.3 Quantum Monte Carlo

The framework of TNs has been most successful in one dimension. For higher-dimensional

systems, simulations are generally restricted to moderate sizes, either due to the large bond

dimension of an MPS representation, or the computational burden required to contract

higher dimensional TNs, such as projected entangled-pairs states [34, 35]. Therefore, if we

are interested in studying strongly-correlated systems in two or three spatial dimensions, we

might consider a different approach, where one abandons the quantum state and considers

directly expectation values of macroscopic equilibrium properties. In particular, quantum

Monte Carlo (QMC) has been revealed to be capable of handling large-scale simulations,

under certain assumptions. We will only overview the most traditional (and simplest)

flavour of QMC, the discrete imaginary-time path integral, and discuss the sign problem,

the major limitation of QMC algorithms.

1.3.1 Imaginary-time path integrals

As a system of interest, we consider a collection of quantum spins interacting with Hamilto-

nian Ĥ at inverse temperature β. The state of the system is now described by the thermal

density matrix ρ̂ = Z−1 e−βĤ , where Z = Tr(e−βĤ) is the quantum partition function. The

exact expectation value of the energy, for example, is given by

U = 〈Ĥ〉 = Z−1Tr(ρ̂Ĥ) = Z−1
∑

n

En e
−βEn|n〉〈n| (1.23)

where En are the energy eigenstates. In contrast to the case of zero-temperature, the

computation of the expectation value now requires the full spectrum of the Hamiltonian,

leading to a higher computation demand than for ground states. However, in the spirit of

the success of MC for classical system at finite temperature, if we could sample quantum

configurations |σz〉 according to the partition function Z, we could compute expectation

values as averages over Markov chains. Unfortunately, this is not possible due to the

presence of a quantum Hamiltonian in the partition function. In other words, e−βĤ has no
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naive probabilistic interpretation. On the other hand, if there is a mapping from quantum

states |σz〉 to classical states x, such that the partition function can be written exactly as

Z =
∑

x

W (x) , (1.24)

one could instead simulate the classical system using MC algorithms, under the requirement

of being able to extract physical properties of the original system from the classical one.

This is most simply done with a path integral expansion obtained from the time evolution

in imaginary time, which effectively maps a d-dimensional quantum system into a (d+ 1)-

dimensional classical system. As long as W (x) ≥ 0, the system can be described using

statistical mechanics, with W (x) being the (un-normalized) probability of the configuration

x in the (d+ 1) system.

To show how to access the distribution W (x) ≥ 0, we will look at a specific example,

restricting to a one dimensional system for graphical simplification. For the Heisenberg

model, due to the particular structure of the interaction, the Hamiltonian can be written

as Ĥ = ĤA + ĤB, with

ĤA =
∑

j∈odd

Ŝj · Ŝj+1 ĤB =
∑

j∈even

Ŝj · Ŝj+1 . (1.25)

Each term in either Hamiltonian commutes with all others, but [ĤA, ĤB] 6= 0. Essentially,

we are defining two sub-lattices A and B, containing odd and even site respectively, and

interaction only takes place between spins from different sublattices. We can then re-write

the exponential using the Suzuki-Trotter expansion, obtaining

e−βĤ =
m∏

j=1

e−∆τĤ (1.26)

with ∆τ = β/m, and

e−∆τĤ = e−∆τ(ĤA+ĤB) = e−∆τĤAe−∆τĤB +O(∆τ 2) (1.27)
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with error O(∆τ 2). The partition function becomes

Z = Tr(e−βĤ) = Tr

( m∏

j=1

e−∆τĤAe−∆τĤB

)
+O(∆τ 2)

'
∑

σz1

〈σz1|
m∏

j=1

e−∆τĤAe−∆τĤB |σz1〉 ,
(1.28)

which can be re-written, using 2m resolutions of identities
∑
σt
|σzt 〉〈σzt |, as

Z =
∑

σz1

· · ·
∑

σz2m

〈σz1|e−∆τĤA|σz2〉〈σz2|e−∆τĤB |σz2〉〈σz3| . . . 〈σz2m|e−∆τĤB |σz1〉 (1.29)

This can be viewed as a series of 2m time slice from τ = 0 to τ = β, where τ = −it is

imaginary time. Given a full configuration at each time slice, we can define the classical

configuration as

C ≡ (σz1 , . . .σ
z
2m) , (1.30)

and re-write the partition function as

Z =
∑

C

W (C) . (1.31)

Referring to Fig. 1.6, the 1d quantum system is represented as a 2d system, where the

(d + 1) configurations give rise to a set of world-lines with periodic boundary conditions

imposed by the trace in the partition function.

Now that we have establish a mapping to a new classical system that can be simulated

with MC, we need to evaluate the weights W (C). This consists of computing the matrix

elements 〈σzt |e−∆τĤA|σzt 〉 for each propagator at every time-slice (similar for sub-lattice

B). Since each sub-lattice Hamiltonian is the sum of commuting terms,

〈σzt |e−∆τĤA|σzt 〉 =
∏

j∈odd

〈σzt |e−∆τ Ŝj ·Ŝj+1|σzt 〉 , (1.32)

the calculation simply reduces to a two-body problem, which we already cover earlier in
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Figure 1.6: Imaginary-time path integrals. We show a set of world-lines in imaginary
time, from the path integral expansion of the partition function. The world-lines correspond
to either spin up (blue) or spin down (red), with periodic boundary conditions in imaginary
time. a) We show an example for the 1d Heisenberg model with N = 8 spins and m = 3
Trotter steps, for a total of 2m = 6 time slices. b) We report the plaquette amplitude
(i.e. the matrix element of the imaginary-time propagator) for each of the six allowed
transitions.

this Chapter. For a N = 2 system, of all the 16 possible matrix elements, only six are

different from zero [36], and are given in Fig. 1.6. At a given time slice τk, the two-body

propagators couple two spins σzτk with two spins σzτk+∆τ at the next time slice. Because

the Hamiltonian conserves the total spin angular momentum, only matrix elements that

conserve the number of spins in a given plaquette between two sequential time slices are

permitted. The value for the weight W (C) for the full configuration is given by multiplying

together all the plaquette contributions in the path integral expansion.
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We can finally look at how to compute expectation values. For the energy, for example,

we can obtain the expectation value as

U = 〈Ĥ〉 =

∑
CW (C)E(C)∑

CW (C)
, (1.33)

where the new energy function, after being average over the time slices, is given by [36]

E(C) = − 1

m

∂

∂∆τ
logW (C) . (1.34)

As usual with MC, the expectation value is approximated by a Markov chain as

〈Ĥ〉 =
1

n

n∑

k=1

E(C(k)) (1.35)

where the configurations C(k) are sampled according to the distribution W (C(k)). Contrary

to classical MC, a different breed of sampling algorithms needs to be used in the QMC

framework. For instance, local single spin-flip updates (the simplest updates in MC),

are not allowed for the Heisenberg model as they would break world-lines, and thus the

conservation of total spin angular momentum ŜzT . The simplest update for this specific case

consists of locally creating or moving pairs of kinks in the world-lines. However, this type

of sampling is generally non-ergodic, and more sophisticated cluster updates are required,

such as the the worm update or directed loops [37, 38]. For ground state calculations,

a sufficiently large β must also be used in the simulation, leading to a larger number of

time slices, and thus an increase in computational demand. While the above path integral

is instructive in understanding the core of QMC, better algorithms are generally used

to perform large-scale simulations of both finite and zero temperature properties. For

instance, the continuum limit can be taken explicitly, avoiding the systematic error in the

Trotter decomposition. Moreover, there are several other techniques, such as the stochastic

series expansion [39] determinantal QMC [40] and variational Monte Carlo (VMC) [41].

Any further discussion goes however beyond the scope of this Section.
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1.3.2 The sign problem

The QMC framework is based on the fundamental assumption that the weights obtained

for the configurations in imaginary-time are positive-definite, W (C) ≥ 0. In turn, the

presence of a non-trivial sign structure (i.e. a pattern of different signs in the weights)

disables the probabilistic interpretation of the path integral. We proceed now to give an

overview of this sign problem, which represents the major limitation of QMC methods.

The sign problem manifests differently in different scenarios, so we will start by con-

sidering the path integral expansion. For the 1d Heisenberg model, the matrix elements of

the propagation operator for spin-exchanges are negative:

〈↑↓ |e−∆τĤA/B | ↑↓〉 = 〈↓↑ |e−∆τĤA/B | ↑↓〉 = −e∆τ/4 sinh(∆τ/2) . (1.36)

In principle, this minus sign can contribute to an overall negative weight W (x) < 0. In

practice this never happens, and the reason is the particular connectivity of the Hamilto-

nian. In fact, the interaction terms couple sites that belong to two different sub-lattices.

In this case, the lattice is bipartite, and thus the total number of spin exchanges for a

world-lines configuration can only be even, leading always to a positive weight W (x) > 0.

Instead, for non-bipartite lattices the world-lines can assume configurations with an odd

number of spin exchanges, leading in turn to negative weights. This is the case, for exam-

ple, for the Heisenberg model in the triangular lattice [42, 43], or the J1-J2 model on the

square lattice [44]. The former can be extended to (quasi) one dimension by considering a

spin ladder with Hamiltonian

Ĥ = J1

N−1∑

j=1

Ŝj · Ŝj+1 + J2

N−2∑

j=1

Ŝj · Ŝj+2 , (1.37)

and competing interactions J2 > 0. In the path integral, the presence of spin exchanges

between next-to-nearest neighbours leads to the possibility of an odd number of negative

amplitudes, and thus to an overall negative weight (Fig. 1.7a). This holds for any model

with frustration, which cannot be in general simulated using QMC.
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Aside from frustrated quantum spin models, there is another important class of system

that suffers the sign problem. Consider now a lattice (e.g. in one dimension) with L sites

and N non-interacting particles. The kinetic Hamiltonian

Ĥ =
L−1∑

j=1

ĉ†j ĉj+1 + h.c. (1.38)

contains the creation ĉ†j and annihilation ĉj operators of a particle at site j. The ob-

vious choice for the Hilbert space basis is the occupation number representation |n〉 =

|n1, . . . , nL〉, with nj = 〈ĉ†j ĉj〉. Since the particles are not interacting, the ground state

properties can be found by a Fourier transform into momentum space, where the Hamil-

tonian becomes diagonal (for any dimension). For bosonic particles, the ground state is

obtained by placing all the N bosons in the lowest energy state at momentum k = 0:

|ψB
0 〉 =

N∏

i=1

ĉ†k=0|0〉 . (1.39)

Clearly, all the wavefunction coefficients appear with a positive sign,

ψB
0 (n) = 〈n1, n2, . . . , nL|ψB

0 〉 > 0 , (1.40)

and thus there is no sign problem in this case. This extend to the case of interacting bosons

(Bose-Hubbard model [45]). On the other hand, if the particles obey Fermi statistics, the

ground state is given by a Slater determinant of single particle states, which can be neg-

ative due to the anti-symmetry of fermionic states. The presence of a sign structure in

the real-space wavefunction generates in turn a sign problem in the corresponding path

integral representation. In this case, the negative contribution to the total weight W (C)

appears when two fermions are exchanged an odd number of times, resulting from the

fermionic anti-commutation rules. We show in Fig. 1.7b a typical world-line configuration

for N = 2 fermions on a 1d lattice with L = 6 sites. Between the time slice τ = 4 and

τ = 5 the two fermions are exchanged with a global π phase shift, generating a minus

sign in the weight. We can see that the presence of a sign structure prevents QMC from
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Figure 1.7: Sign problem in imaginary-time path integrals. We show world-lines
configurations that lead to an overall negative sign for two different models. a) For the
case of a frustrated quantum magnet, such as the J1-J2 model, due to the hopping term
between next-to-nearest neighbours, there are now an odd number of spin exchanges, with
a resulting negative weight. In this particular case, the sign problem is generated by
the lattice being non-bipartite. b) An example of path integral configuration for two
non-interacting fermions on a 1d lattice. The overall negative sign is generated by the
anti-commutation rules when the two fermions are exchanged.

simulating fermionic systems, even without any interaction 6. While the properties of non-

interacting (or weakly-interacting) fermions are very well understood from analytical cal-

culations (since the corresponding field theory is Gaussian), strongly-interacting fermions

in higher-dimensions remains untouched territory for both field-theoretic techniques as well

as numerical methods.

In the search of a solution to the sign problem, a first attempt consists of sampling

the world-lines according to the absolute value of the weights |W (C)|. While this gener-

ates samples with the correct probability, it prevents to accurately estimate any physical

6The fermion sign problem can be in practice circumvented by QMC only for 1d systems.
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observables. Within this assumption, the expectation value of the energy becomes

〈Ĥ〉 =

∑
C |W (C)|E(C)∑

C |W (C)| =

∑
C |W (C)|Sign

[
W (C)

]
E(C)∑

C |W (C)|Sign
[
W (C)

]

=
〈Sign · E〉|W |
〈Sign〉|W |

.

(1.41)

It can be shown that the average sign scales as [46]

〈Sign〉|W | ∼ e−βN∆F (1.42)

where ∆F is the free energy difference between the original system and the one obtained by

considering the absolute value. For the specific case of an anti-ferromagnetic spin system,

this corresponds to the difference in free energy from its ferromagnetic counterpart. As

the system size grows, the average of the sign becomes exponentially small, leading to very

large statistical uncertainty on the average energy 〈Ĥ〉. After all, why should we hope to

extract the physics of anti-ferromagnetism by simulating a spin model with ferromagnetic

interactions?

In general, it is argued that a generic solution to the sign problem in QMC belongs

to the complexity class of NP-hard problems 7 [46]. This result does not however im-

ply that specific solutions cannot be discovered. One notable example is the calculation

of correlation functions for a resonating-valence-bond wavefunctions on a triangular and

kagome lattice, where the sign problem was solve by using a Pfiaffian representation of

the quantum state [47]. In fact, an appropriate transformation on the system could be

in general capable of removing the sign problem from the model Hamiltonian (or from a

specific quantum state). In this spirit, let us go beyond the path integral representation

in QMC, and back to the quantum states. As usual, we focus on the ground state |ψ0〉
of some model Hamiltonian Ĥ. In general, for any physical model, there is a preferential

or natural basis for the Hilbert space {|x〉}. We can then say that the model has a sign

problem if there is a sign structure (or phase structure, for complex wavefunctions) in the

7Problems that cannot be solved in polynomial time by a classical computer.
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coefficients 8 ψ0(x). The presence or lack of a non-trivial sign structure can be traced

back to a specific property of the Hamiltonian. In particular, the wavefunction is positive

(ψ(x) ≥ 0), only if all off-diagonal elements of the Hamiltonian are negative, 〈x|Ĥ|x′〉 ≤ 0,

∀x 6= x′ [48, 49]. Intuitively, it would seem that a positive quantum state can be captured

better (i.e. it is less complex) than a quantum state with a non-trivial pattern of signs

or complex phases. In general in fact, a positive state can be described with a reduced

number of parameters, and more importantly, it has an interpretation as a classical prob-

abilistic model 9. However, since the presence or not of a sign structure depends on the

off-diagonal elements of the Hamiltonian, such definition of the sign problem would be

basis-dependent [50], and as such not particularly meaningful. In fact, there could be a

basis {|y〉} where the off-diagonal elements are all negative, and thus the ground state

wavefunction is sign problem-free. In a more precise way, there might exist a canonical

transformation Û such that 〈y|ÛĤÛ †|y′〉 ≤ 0 and ψ0(y) = Ûψ0(x) ≥ 0 ∀|y〉. The obvious

solution is the basis {|φ〉} of the eigenstates of the Hamiltonian. Then, clearly we have

〈φ|Ĥ|φ′〉 = 0 ∀φ 6= φ′, but finding this basis is equivalent to solving the problem, and

thus it is exponentially hard. Given all of the above, we can imagine a classification of

complexity of quantum states based on positivity of the state, and if not, on how difficult

it is to find the appropriate canonical transformation that removes the signs, as well as

how feasible it is to implement such transformation.

We now give a simple example, and consider again the Heisenberg model for only two

spins. The ground state is the single state

|ψ0〉 =
1√
2

(
| ↑↓〉 − | ↓↑〉

)
, (1.43)

with a non-trivial sign structure. The sign however, can be obtained with the Marshall-

Peierls sign rule due to the bipartite nature of the lattice. This prescription also provides

us with a way to remove the sign structure. For two spins, this simply consists on applying

the spin rotation around the z axis 10 Û = eiπσ̂
z
2/2. This transformation leaves invariant the

8With sign structure we refer to the wavefunction coefficients ψ0(x) being both positive and negative.
9This statement will become clear by the end of Chapter 3.

10The transformation can be equivalently applied to the other spin.
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longitudinal interaction term Ŝz1 Ŝ
z
2 and flips the signs of the spin-exchange terms, leading

to the Hamiltonian

Ĥ ′ = ÛĤ ′Û † = Ŝz1 Ŝ
z
2 −

1

2

(
Ŝ+

1 Ŝ
−
2 + Ŝ−1 Ŝ

+
2

)
(1.44)

with negative off-diagonal matrix elements. In fact, if we now diagonalize the new Hamil-

tonian Ĥ ′, we find the ground state

|ψ′0〉 =
1√
2

(
| ↑↓〉+ | ↓↑〉

)
= Û |ψ0〉 (1.45)

without any sign structure 11. This result can be easily extended to a system with N

spins. Now, the rotations around the z-axis are applied to all the spins of one of the

two sub-lattices, with resulting canonical transformation Û =
⊗

j∈even e
iπσ̂zj /2 12. The full

unitary transformation is pictured in Fig 1.8a, using a TN diagram. The ground state in

the reference basis {|σz〉}, expressed as a N -rank tensor, is transformed according to Û ,

consisting of N/2 local rotations (here rank-2 tensors). Note that for this case, the depth

of this TN diagram is equal to unity and independent of N .

The Marshall sign rule holds as long as the lattice is bipartite. If, for example, we

re-introduce the next-to-nearest neighbours interactions, we observe the breakdown of the

transformation, as the competing interaction J2 > 0 grows large. This is shown in Fig 1.8c,

where we plot the average sign of the ground state wavefunction,

〈Sign〉 =
∑

σb

|ψ0(σb)|2Sign[ψ0(σb)] (1.46)

calculated using ED after the canonical transformation of the Marshall sign rule is applied.

While for small J2 the average sign remains unity, as J2 becomes larger the average sign

decreases towards zero with a stronger decay for larger system sizes, showing the break-

11The ground state energy E0 = −3/4 is clearly conserved by the transformation, as all the other
physical properties (observables).

12Note that this unitary transformation also changes the signs of the spin-exchange matrix elements in
the path integral from negative to positive. For the specific case, the transformation is then irrelevant, as
only an even number of spin exchanges can occur in the path integral.
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Figure 1.8: Breakdown of the Marshall sign rule. a) Canonical transformation as-
sociated with the Marshall sign rule. A rotation is applied to each spin of one of the two
sub-lattices, with a resulting positive wavefunction ψ(σb) > 0. b) J1-J2 model, where com-
peting interactions lead to frustration. c) Average sign of the ground state wavefunction
of the J1-J2 model, after the Marshall signe rule transformation (in a) has been applied to
the Hamiltonian (before carrying out its ED).

down of the bipartite properties of the state. As such, QMC can be implemented on the

transformed Hamiltonian Ĥ ′ = ÛĤÛ † as long as the average sign remains close to unity.

If instead we want to explore the regime of large J2, we should find a new canonical trans-

formation ÛJ2, which keeps the sign of the ground state wavefunction arbitrarily close to

one for any value of J2. Moreover, to be useful, the depth of the circuit implementing

such canonical transformation, once broken down in terms of k-local unitaries (i.e. acting

locally on at most k spins), should not scale exponentially with N . This is in general

the case for finding the basis of the energy eigenstates. While the best case scenario is

a constant depth circuit (e.g. the Marshall sign rule), a polynomial scaling can likely be

accommodated. However, proving that such a short-depth transformation exists, and actu-

ally finding the unitary circuit, remains an open challenge in quantum many-body physics

and Hamiltonian complexity theory.
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1.4 Quantum simulation

We have been navigating through the most successful techniques to simulate quantum

mechanics on classical hardware. While on one hand, efficient algorithms and large com-

putational power allowed the solution of many classes of quantum many-body problems, on

the other, there are still many model Hamiltonians out of the reach of classical simulation,

leaving open questions in condensed matter physics. It is in fact unlikely that classical

hardware will ever fully overcome the complexity of the simulation of quantum mechanics,

the sign problem being one example. Yet, nature continuously solves the quantum many-

body problem in any real-world sample of quantum matter. This suggests a different path

to solving the problem. As proposed by Feynman in his seminal paper [51], the large

complexity of many-body quantum states can be captured efficiently by using quantum

mechanics itself. In other words, instead of a simulating quantum mechanics with a clas-

sical computer, one should instead operate with a machine where the elementary degrees

of freedom are described by quantum mechanics, i.e. a quantum computer.

Since naturally any quantum hardware functions in real time, we will consider for the

problem at hand the time-dependent Schrödinger equation, whose solution (for a time-

independent Hamiltonian) is given by

ψ(r, t) = Û(t)ψ(r, 0) = e−
i
~ Ĥtψ(r, 0) . (1.47)

Here, the set of quantum degrees of freedom {|r〉} is again assumed to be binary. As we are

interested in local Hamiltonians, we will also assume Ĥ =
∑

k Ĥk, with Ĥk acting locally

on a small number of degrees of freedom. The goal of a quantum simulation is to implement

a different and controllable quantum system with quantum numbers {|x〉} to simulate or

emulate the original system undergoing dynamics with the physical Hamiltonian Ĥ. In
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Figure 1.9: Quantum simulation. The properties of a generic physical quantum system
governed by the Schroedinger equation (b) can be simulated using quantum mechanics in
two different ways. Digital quantum simulation (a) maps the specific problem into a quan-
tum circuit acting on a set of quantum bits. Instead, an analog quantum simulation (c),
the system is simulated using another physical system whose interactions can be engineered
to emulate the physics of the original system of interest.

other words, given the mapping |r〉 → |x〉 and assuming we can prepare the initial state

φ0(x) = ψ(r, 0) of the simulator, we wish to implement the propagator Ût such that

Ûtφ0(x) = φt(x) = ψ(r, t) . (1.48)

The solution of quantum simulation, i.e. the state φt(x), can be obtained with two different

approaches. In an analog quantum simulation, the dynamics is emulated with a different

physical system, where the interactions are engineered to mimic the original system. One

example are cold atoms in optical lattices. In a digital quantum simulation, the physical

degrees of freedom are mapped into quantum bits of information and processed by a quan-

tum hardware. In this latter case, the possibility to re-program the hardware to perform

arbitrary computations gives the machine the name of universal quantum simulator.
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1.4.1 Universal quantum simulators

The feasibility of universal quantum simulator, first introduced by Feynman, was later

proven by Seth Lloyd [52] in the context of the simulation of local Hamiltonians. Instead

of classical bits, such machine is made up of qubits, quantum degrees of freedom living

in the 2d Hilbert space spanned by the computational basis {|0〉, |1〉}. Depending on the

system, one needs a different mapping between the physical Hilbert space {|r〉} and the

computational basis states |x〉 ∈ {|0〉, |1〉}⊗N . For example, for spin-1
2

with basis states

|σz〉, the mapping is simply given by σzj = 1 − 2xj. For higher-dimensional local Hilbert

spaces, either a larger-dimensional computational basis or a larger number of qubits is

required to map the problem into the quantum computer. Then, given the specific mapping,

the first step is state preparation, that is the capability of preparing the qubits in the state

|φ0〉 =
∑

x

φ0(x)|x〉 , (1.49)

with φ0(x) = ψ(r, 0). We assume state preparation to be feasible, and proceed to discretize

the real-time evolution operator, assuming a local Hamiltonian. Because in general the full

dynamics cannot be broken down into individual local propagations

Û(t) 6=
∏

k

Ûk(t) = e−iĤkt , (1.50)

the time-evolution operator is then approximated via the Trotter formula

Û(t) =
(
e−iĤ∆t

)t/∆t
=
(
e−i

∑
k Ĥk∆t

)t/∆t
, (1.51)

where to propagator for time ∆t is written down as
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e−i
∑
k Ĥk∆t '

∏

k

e−iĤk∆t (1.52)

with systematic error O(∆t2). Therefore, the full dynamics can be simulated with a quan-

tum hardware using a sequence of m = t/∆t time slices, with each slice consisting of a

time evolution through a set of local propagators e−iĤk∆t. Now we need to see how such

operation can be implemented into the hardware.

A powerful property of a universal quantum simulator, is that any unitary quantum op-

eration on the qubits (such as quantum dynamics) can be compiled into a set of elementary

quantum operations, called a universal set of quantum gates. The minimum requirements

are arbitrary single qubit rotations

Rα(θ) = e−iσ̂
αθ/2 , (1.53)

where α = x, y, z, and two-qubits entangling gates, such as the controlled-NOT gate

CX =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



. (1.54)

which flips the state of a target qubit, depending on the state of a control qubit. Similarly

to the universality of the NAND operation for classical computing, given a universal set

of quantum gates, any arbitrary quantum computation can be realized. In the context

of quantum simulation, this implies that such a machine can simulate the time evolution

of an arbitrary physical system with local Hamiltonian. Finally, the ultimate step in the

quantum simulation is the read-out. We require to be capable of performing measurements

with high fidelity, which can then be used to extract physical properties of interest. We

will discuss in more details the measurement step in Chapter 4.

34



Adiabatic state preparation

So far we have been discussing the quantum simulation of the time-dependent Schrödinger

equation, obtaining the dynamics generated by an Hamiltonian. If we are in turn interested

in static properties, such as the ground state, we need to find an alternative way to perform

the simulation. In contrast with QMC and projectors methods, where the ground state is

obtained from an expansion in imaginary time, a quantum simulation is restricted to real

time only. The static properties can be however obtained, within some accuracy, using

an adiabatic evolution. If we prepare the system into the ground state of Ĥ0, and slowly

change the Hamiltonian in time, the resulting dynamics will force the quantum state to

remain close to the ground state of the instantaneous Hamiltonian [53]. As such, if we

want to adiabatically prepare the ground state of the Heisenberg model, for example, we

could proceed as follows. We initialize at t = 0 the qubits in the hardware to the anti-

ferromagnetic state

|ψ(σz, t = 0)〉 = | ↑ ↓ ↑ . . . ↓〉 , (1.55)

which is a ground state of the Hamiltonian Ĥ0 =
∑

j Ŝ
z
j Ŝ

z
j+1. If want to reach the ground

state of the Heisenberg model after time t = t∗, the Hamiltonian is changed in time as

Ĥ(t) =
(

1− t

t∗
)
Ĥ0 +

t

t∗
Ĥ =

∑

j

[
Ŝzj Ŝ

z
j+1 +

t

2t∗

(
Ŝ+
j Ŝ
−
j+1 + c.c.

)]
. (1.56)

As long as the evolution is carried out sufficiently slow, the quantum state |ψ(σz, t)〉 will

remain an eigenstate of the Hamiltonian Ĥ(t), obtaining for (large) t∗ the desired ground

state of the Heisenberg Hamiltonian Ĥ. In practice, the time t∗ to adiabatically prepare the

ground state needs to be larger that the time-scale set by the energy gap ∆0 = E1(t)−E0(t)

between the ground and first excited state [53].
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1.4.2 Digital quantum simulation with superconducting qubits

To give a more concrete example, we now show how to design and perform a quantum simu-

lation of a spin Hamiltonian on a real quantum hardware. For practical reason, we consider

the 1d transverse-field Ising model (TFIM), where spin-1
2

interact with Hamiltonian

Ĥ = −
N−1∑

j=1

σ̂zj σ̂
z
j+1 − h

N∑

j=1

σ̂xj (1.57)

and h is the strength of the magnetic field. We will discuss this model further in Chapter

4. For the sake of this experiment, let us just consider the dynamics generated by the

propagator Û(t) = e−iĤt for some initial state ψ(σz, 0). As initial state, we choose the

fully polarized state

|ψ(σz, 0)〉 = | ↑ ↑ ↑ ↑ . . . ↑〉 (1.58)

and drive the time evolution with the Hamiltonian with magnetic field h = 1. This is called

a quantum quench, i.e. the time evolution caused by an abrupt change in the Hamiltonians

parameters. In this case, the initial state is a ground state of the TFIM with h = 0 magnetic

field. At time t = 0 we switch on the transverse field h = 1 and let the system evolve in

time. Since ψ(σz, 0) is effectively a high energy state compared to the ground state ψ0(σz)

of Ĥ (with h = 1), the dynamics induces the creation of quasi-particles excitation along

the chain, responsible for the increase in entanglement entropy [54] and thus a non-trivial

dynamics. Given a fixed Trotter step ∆t, the time evolution operator is approximate as

Û(∆t) = e−iĤ∆t '
∏

j

Û z
j (∆t)

∏

j

Ûx
j (∆t) , (1.59)

where Û z
j (∆t) = ei∆tσ̂

z
j σ̂
z
j+1 and Ûx

j (∆t) = ei∆tσ̂
x
j (Fig. 1.10a).

We wish now to use a digital quantum simulators to implement the quantum dynamics

Û(t). First of all, we need to compile the unitary operations into a set of elementary

universal quantum gates. Let us start with the interaction σ̂xj between the j-th spin and

the magnetic field. We can easily see that the propagator Ûx
j (∆t) = ei∆tσ̂

x
j corresponds to a
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Digital quantum simulation
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Figure 1.10: Digital quantum simulation. a) Quantum circuit implementing one Trot-
ter step of time evolution for the TFIM with N = 3 spins. The Ising interactions are
compiled as controlled-NOT and single qubit z rotations, while the interaction with the
magnetic field (a x rotation) is compiled as a z rotation between two Hadamard gates. The
latter can be parallelized easily, its depth being constant with respect to the number of
spins. b) Real time evolution with an initial fully polarized state, generated by the TFIM
Hamiltonian at the critical point. The black line is obtained with an ED simulation of
the Schrödinger equation, while the markers are the result of a classical simulation of the
quantum circuit, with an Trotter step increasing from ∆t = 0.1 to ∆t = 1.0.

unitary single qubit rotation Rx(θ) around the x axis of an angle θ = −2∆t. For practical

implementation, this rotation is broken up further as

Ûx
j (∆t) = Rx(−2∆t) = H Rx(−2∆t) H (1.60)

where we omitted a global phase factor e2i∆t and we introduced the Hadamard gate

H =
1√
2

(
1 1

1 −1

)
. (1.61)

The other propagator Û z
j (∆t) = ei∆tσ̂

z
j σ̂
z
j+1 acts on a pair of neighbouring qubits, and can

be realized using a combination of two controlled-NOT gates and a rotation around the z

axis of an angle θ = −2∆t. As such, one Trotter step requires a total of 6N − 3 gates.
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Superconducting quantum hardware

At last, we proceed to show an actual quantum simulation run on a superconducting quan-

tum hardware. As of now, superconducting hardware has revealed to be the most powerful

platform for quantum computation and simulation. One reason is the large flexibility in

the qubits manufacturing, which can be configured in various way through the technique of

electron-beam lithography. While in principle this technology is highly scalable, in practice

the small coherence times of the hardware limits (for now) its capabilities to a relatively

small number of qubits. The different types of superconducting qubits, such as flux and

charge qubits, mostly rely on the same principles. First, there needs to be a well defined

2d sub-space encoding the computational basis. The logical |0〉 state is provided by the

ground state of a Cooper pair formed by two electrons, and the logical |1〉 is simply the first

excited state. Further, in order to avoid transitions out of the computational basis, the

energy spectrum of the qubit must be made anharmonic, usually done with a Josephson

junction [55]. Once the local Hilbert space is defined, operations on the qubits are per-

formed using pulses of microwave radiation, as well as external magnetic fields. A review

of quantum simulation with superconducting quantum hardware is given in [56].

We implement the quantum simulation on the IBM Q 5 Tenerife (ibmxq4 chip), shown

in Fig. 1.11a, and built with 5 transmon qubits [57]. This type of quantum hardware

has been already applied for the variational optimization of the ground state of small

molecules and quantum magnets [58, 59, 60]. As a demonstration, we implemented a

quantum simulation for the TFIM using only two out of the five qubits available. After

initializing the hardware to the state |00〉, we apply the quantum circuit in Fig 1.10a with

different Trotter step ∆t and up to a total time tf = 3.0. At the end of the circuit,

we performed a projective measurement on the computational basis, which outputs the

number of counts for the different configurations of the computational basis. We show the

results in Fig. 1.11b, where we plot the average longitudinal magnetization as a function

of time. We compare the results from the real quantum simulation, with the ED solution

(black line) and the full circuit (classical) simulation carried out with ∆t = 0.1 (green

markers). We can see that up to t ' 0.5− 0.7 all simulations performed with the ibmqx4
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Figure 1.11: Quantum simulation with superconducting hardware. Quantum sim-
ulation of the time evolution of the TFIM for a quantum quench from h = 0 to h = 1.
We compare the results from a simulation of the results from the ibmqx4 hardware, with
results from ED (black) and classical circuit simulation (green).

are fairly close to the correct value, while we observe substantial deviations as the time

increases. More interestingly, the simulation with smallest step ∆t = 0.1 appears to deviate

the most from the correct dynamics. This is expected since by decreasing the size of the

Trotter step, and given a fixed time t = 3.0, the number of gates increases. For instance,

for ∆t = 0.1 the dynamics is compiled with 270 gates, while ∆t = 0.3 only requires 90.

At the time of the simulation, for the two qubits used in the simulation, the single qubit

gate errors were 0.12% and 0.163%, the readout errors were 6.6% and 5.2%, while the

controlled-NOT gate had an error of 3.9%. As such, the accuracy of the simulation is

not restricted by the size of the Trotter step (with error ∼ O(∆t2)), but rather from the

errors in the hardware. In particular, as the time evolution goes, errors can build up and

eventually lead to a complete loss of coherence.
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Decoherence

The current quantum technology paradigm has been name the noisy intermediate-scale

quantum hardware era [61]. Within the past 2-3 years we have witness an important

advancement in qubits manufacturing and their coherent control. However, in order to

perform quantum simulation of even a moderate system size, a large number of quantum

gates are required. The same holds for mostly any practical application of any quantum

algorithm. During the quantum computation time, the hardware should be in principle

completely isolated with the outside world. In fact, any interaction with the surrounding

environment can degrade the quantum coherence between the qubits, and irreversibly

destroy the quantum computation/simulation. Quoting John Preskill:

“Classically there would be nothing wrong with looking at every time step, what the

state of the hardware is. That wouldn’t prevent the computer from getting the right answer.

Quantumly, if we keep looking at the computer, that will destroy these delicate superposi-

tions. It’s a secret computation...” [62].

So in practice, the hardware should be completely isolated, but at the same time it needs

to be accurately controlled from the outside. Therefore, as for classical computing, one

should develop a protocol to recover from the errors before they build up and completely

corrupt the quantum state of the hardware. We will discuss more about quantum error

correction in Chapter 5. Regardless, the current generation of quantum hardware is not

yet capable of being error-prone, and thus the name noisy. This means that arbitrary

computation can be performed up until to some time, after which coherence is lost. This

depends on many factors, such as the quality of the qubits (e.g. in terms of the interactions

with the environment), the fidelities of the quantum gates, as well as the total number of

gates in the full circuit. However, even with a moderate number of qubits, and noisy hard-

ware, many interesting application are being explored. At the same time, it is of utmost

importance to reduce the noise sources and improve the quality of qubits (rather than the

quantity), to allow longer and longer quantum computation.
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1.5 Machine learning

We now leave for a moment the microscopic scale of atoms, molecules and qubits, and

move to the human scale, where once again emergence and complexity are intimately

related with each other. We are not really interested in emergent phenomena at this scale

per se, but rather in the complexity of problems found in the world of industry, information

and technology. These can be most diverse, such as the forecasts of financial trends, the

prediction of natural disaster, risk prevention or resource optimization. So, where once

we had particles, now we have variables, where we had interactions, we have constraints.

Regardless, complexity emerges in a similar fashion because of the constraints between a

large number of variables. In the following, we narrow down the problem to a specific

case, the classification of an image. As we are about to see, this problem faces a curse of

dimensionality which resembles very much the many-body problem in physics.

1.5.1 Complexity reloaded

A close friend, who is a photographer, finds herself in trouble when facing the task of

sorting all the pictures she took over the years. More than a million digital pictures need

to be divided in groups according to the type of landscape (mountains, deserts, cities, etc).

So she started labelling them one by one, but soon realized that this would take more

than a month’s worth of full-time work. “Isn’t there some automatic way of doing so?

It does not seem such a difficult task for a computer.”. So she asks for help in writing

a computer algorithm to automate the task. Let us look at the problem more closely.

We have a very large dataset of images, to be divided between in a small number of

categories, or labels. Imagine the label “mountains”. There are many images that belong

to this category, possibly very different but strongly conveying the same concept. All these

images shares the same relevant, but unknown, features. For example, we could try to

distinguish between images by the presence of lack of particular shapes. To this end, we

could hand-craft different spatial filters corresponding to various geometrical shapes and

convolving them with a given image. A filter with a pointy-like feature, for instance, could
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detect the peak of a mountain. Unfortunately, at the same time it could very well detect

a pine treen, or a skyscraper. Even assuming that we can define all the relevant features

of a category, the very complex mutual relationship between the labels can easily lead to

ambiguities, requiring in turn more and more hard-coded “rules” to increase the accuracy.

More importantly, this approach is strictly specialized, with no generalization capabilities

to additional new labels. As we increase the number of categories, the problem becomes

increasingly complex and intractable for any practical application.

Although this might seem an unlikely situation, it was in fact very common in the

facial recognition programs ran by the various investigation agencies in the 70s. Similar to

our story, all the biometrics of the face (the features) were measured, classified with the

corresponding person’s identification (the label), and stored in a big database. Given a

new picture, the identity retrieval consisted of measuring the same set of biometrics and

compared them with the ones in the database, until the closest match was found. Let

us now be more precise. Every image is formed by a set of pixels, each containing real-

valued intensities for the red, green and blue colour. For simplicity, let assume black and

white pictures. For the total of N pixels, we can write down the “state” of the image as

x = (x1, . . . , xN). Let us also assume, though unrealistic, binary pixels xj = 0, 1. Then, the

state x lives in a space with dimension N , with the total number of possible configurations

being 2N . Each state x conveys a specific “concept”, encoded as a label y(x) living in a

much smaller space y(x) ∈ {y1, . . . , yK}, with dimension K.

Analogously to statistical mechanics, we can imagine the labels as macrostates and

the various images as microstates. For a given macrostate, there exists many different

compatible microstates. The link between macro and microstates is the set of features

Fk = (f
(k)
1 , f

(k)
2 , . . . ), which characterizes the macrostate yk. For example, for natural

images of giraffes (yk = giraffe), we could have Fgiraffe = {long neck, skinny legs, etc}. The

fundamental problem, in contrast with statistical mechanics, is that we do not know exactly

what the relevant features are, and how to encode them into an algorithm. For a classical

spin system at thermal equilibrium, the features (i.e. macroscopic properties) are defined

by the Hamiltonian H(σz) and the inverse temperature β. In this case, we know exactly
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the probability distribution of the various microstates

p(σz) = Z−1 e−βH(σz) . (1.62)

However, there is no such a thing as a simple elementary giraffe “Hamiltonian” governing

the behaviours of the images (microstates)

p(x) 6= e− (x) = ?? (1.63)

but instead, the probability distribution characteristic of the giraffe depends directly on

the features Fgiraffe in a way that is not known.

We have seen that the brute force approach of hard-coding the known features into the

algorithm leads to severe complexity issues. Yet, each human performs this task continu-

ously and very efficiently. How do we achieve that? Since we are born, we are exposed to

a constant flow of images. We received them through our eyes and process them through

various regions of our brain, where information is extracted, analyzed and stored. It is

in fact the exposure to data that enables us to build the internal representation of the

features. The data is provided by the external environment, the world around us. In

addition, a learning mechanism is required, which improves our prediction rate over time.

With enough data and training, we are capable of becoming very accurate image discrimi-

nators. We can then follow a similar approach in building a computer algorithm for image

classification. Rather than hand-crafting rules, we can seek an automated way to extract

the features directly from the data available. In fact, the data is all we had in the first

place, i.e. the large dataset of images. We are then left with the task to designing the

learning algorithm to capture the unknown hidden features.

This approach is the core principle of Machine Learning (ML), a paradigm whereby

computer algorithms are designed to learn from – and make predictions on – data. Impor-

tantly, the success of ML algorithms relies on their ability to infer the features and patterns

without explicit guidance from a human programmer. Such automatic encoding proceeds

by first “training” the algorithm on a large data set and then asking the trained machine
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to perform some task. If the ultimate goal is to perform classification, like in our example,

the algorithm is trained on a set of labelled data, using supervised learning. Supervised

here refers to the fact that for each image x we possess the correct label y(x) (i.e. the

teaching signal). The algorithms is then trained to capture to mutual relationship between

images and labels. If however labels are not available, the algorithm can be trained using

unsupervised learning, where now the full probability distribution of the images p(x) is the

learning target. We will now show the fundamental properties of supervised learning, and

devote Chapter 2 to discuss in detail unsupervised learning.

Supervised learning

In supervised learning, the training dataset D is made up of images and their correct labels,

D = {(x(i), y(i))} 13. The task of correctly build the classifier translates into discovering

the correct conditional relationship between images x and labels y. If we have access to the

conditional probability distribution p(yk | x;F(yk)), we can predict the label of an image

x as:

`(x) = argmax
k∈[1,K]

{
p(yk | x;F(yk))

}
. (1.64)

The problem is that this distribution implicitly depends on the set of features F(yk),

which are unknown. Instead, we parametrize the distribution using a set of parameters

λ = (λ1, λ2, . . . )

p(yk | x;F(yk)) −→ pλ(yk | x) , (1.65)

where each λj is a real number. The first natural question regards the parametric form

of the distribution. For now, let us imagine this as a black box containing some possibly

complicated circuit (parametrized by λ). Given an input image x, the circuit outputs the

probability pλ(yk | x) that the image x belong to label yk. The second question regards

the value of the parameters λ, and how to discover the optimal set λ∗ that generates the

correct conditional distribution. To this end, we require a “measure” of the performance

of the classifier, which explicitly depends on λ, and can be written as an average over the

13In supervised learning, some degree of pre-processing is required, such as manually labelling the images.
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dataset:

Cλ = ‖D‖−1

‖D‖∑

i=1

Cλ(x(i), y(i)) . (1.66)

The metric Cλ is called the cost function. For the current example, a typical choice is the

cross-entropy between the data and the model distribution [63]:

Cλ = −‖D‖−1

‖D‖∑

i=1

K∑

k=1

δ(y(i) − yk) log pλ(yk | x(i)) , (1.67)

which has a minimum in the parameter space λ when

`(x(i)) = argmax
k∈[1,K]

{
pλ(yk | x(i))

}
= y(i) ∀(x(i), y(i)) ∈ D . (1.68)

Starting from some random values of λ, if we make a small perturbation λ→ λ+ δλ, and

assuming the cost function is smooth in λ, then the change caused by δλ is δCλ = ∇λCλδλ.

This suggests a straightforward way to implement the learning mechanism, that is making

a small change in the parameters λ in such a way that the cost function decreases. The

simplest version of the learning rule is given by gradient descent

λ −→ λ− η∇λCλ (1.69)

where η is the step of the update, also called the learning rate. By repeating this pro-

cess many times, we should in principle find the optimal values λ∗ minimizing the cost

function, corresponding to a successful image classifier. In practice however, there are

many factor which can prevent this to happen, such as the choice of the cost function, the

gradient update technique, and more importantly the parametric form of the probability

distribution.

There is much freedom in choosing the specific form of the model, i.e. how the pa-

rameters λ relates to probability distribution pλ. Currently, many ML applications are

performed with artificial neural networks, which essentially fit the data to a graph struc-

ture composed of many nodes and edges (Fig. 1.12). In the context of our example of
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Figure 1.12: Feedforward neural networks. An image of a platypus is provided as
input to a feedforward neural network. The pixel intensities are processed through the
network and the output shows the probabilities for different animals (labels).

image recognition, the image is received by a layer x of input neurons, where the “state”

of each neuron xj is set of the intensity of the corresponding pixel in the image. The image

is the processed through a set of layers h(j) of interconnected neurons. Each neuron in one

layer h(j) receives a signal from the previous layer h(j−1), it processes it 14, and send it

to the neurons in the next layer h(j+1). The signal is forwarded from the input layer to

the output layer, naming the model feedforward neural network. The output layer contains

K neurons, corresponding to the K possible labels in the dataset. We can then select

the most likely label `(x) according to the state of the neurons in the output layer. For

artificial neural networks, the parameters λ are the strengths of the connections between

the neurons in adjacent layers.

14The type of computation that each neuron applies to its input signal it somehow arbitrary and can
vary between different network realizations.
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1.6 Conclusions

The fundamental interactions between many elementary components, whether for particles

in a strongly-correlated material, or entangled qubits in a quantum hardware, results into

an intractable complexity of the physics at the microscopic scale. For condensed matter

systems, such complexity often leads to the emergence of new collective behaviours. Under

some circumstances, classical algorithms running on conventional computers are capable of

extracting physical properties without the exponential overhead of quantum mechanics. If

that is not the case, solutions to the many-body problem should be found using simulations

running on quantum hardware.

Similarly to quantum many-body systems, an exploding complexity is observed in many

problems in the world of information and technology. At such different scale, ML, and in

particular artificial neural networks, provide a powerful framework to discover approx-

imate representations from raw data. Despite being researched for many decades, the

performances required for solving highly complex problems in real-world applications has

been achieved only relatively recently, using networks made up of several layers, called

deep learning [64]. The power of the deep neural networks stems from their ability to

identify the low dimensional manifold where the relevant features are encoded, effectively

compressing the high-dimensional data [65]. This led recently to solutions to long-standing

problems, such as image recognition [66], speech recognition [67] or natural language un-

derstanding [68].

There is a natural connection between the “curse of dimensionality” encountered in

ML and data science, and the quantum many-body problem. In both cases, the problem

at hand suffers an exponential scaling in complexity with the number of variables. Fur-

thermore, solutions to the problem can be in general identified with a low-dimensional

manifold within the exponentially large configurational space. In the same way that neu-

ral networks capture this low-dimensional features using training algorithms and raw data,

MPSs exploit their geometry and entanglement properties to capture the low-dimensional

“corner” of the Hilbert space, where ground states of gapped local Hamiltonian are found.
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After some early works on ML applications to physical problems, such as searching

for exotic particles in high-energy physics [69] or solving dynamical mean-field theory in

strongly-correlated materials [70], an abrupt turning point took place in early 2016, with

seminal works on supervised learning of phases of matters [71, 72] and the introduction

of a stochastic neural network called a restricted Boltzmann machine (RBM) to study the

physics of many-particle systems [73, 74]. The synergy between physics and ML is currently

being vigorously investigated in a widespread effort, covering many areas and disciplines.

These include the use of ML to improve the performances of MC algorithms [75, 76], the

implementation of neural networks as variational wavefunctions for VMC simulations [74,

77, 78, 79, 80] and the application of ML to quantum error correction (QEC) [81, 82, 83,

84, 85]. A more fundamental investigation concerns the connection between deep learning

and neural networks with TNs [86, 87, 88, 89], the renormalization group [90, 91, 92],

as well as the holographic principle [93]. Finally, we also mention the inverse approach,

where techniques and algorithms successful in many-body physics, such as TN, have been

exported to the world of ML to solve problems in data science [94, 95, 96, 97].

Much of the attention in ML from the physics community was sparked by the repre-

sentational power of neural networks as general functions approximator. In this Thesis, we

instead focus on the data, and the capability of extracting relevant features from it. We

ask whether neural networks are capable of learning physical properties of interest from

data generated by quantum systems. This can be either synthetic data generated with

computer simulation or, more interestingly, experimental data measured from controlled

quantum matter in laboratories. In the following chapters, we will present a general rep-

resentation of quantum states with neural networks, a set of algorithms to reconstruct

unknown quantum state from measurement data, and a framework based on ML for the

quantum error correction of topological qubits.
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Outline of the Thesis

In Chapter 2, we introduce generative modelling, a ML paradigm based on unsupervised

learning that allows a neural network to learn and sample an unknown probability distri-

bution. We begin with an historical overview on the first attempts to build an artificial

intelligence, with a particular focus on the early work of John Hopfield, who first estab-

lished a connection between cognitive science and statistical mechanics. We then introduce

the RBM, discussing its properties in detail, as well as the training algorithm. At last, we

demonstrate the power of generative modelling by deploying a RBM to learn the thermal

distribution of a classical spin system.

In Chapter 3, we introduce a neural-network representation of quantum states based on

the connection between generative models and the probabilistic nature of the measurement

process in quantum mechanics. We show how to parametrize quantum wavefunctions and

density operators describing pure and mixed states respectively. Then, we discuss how to

calculate expectation values of physical observables, and present an extension of the replica

trick, used to compute entanglement entropy in QCM, to our neural-network framework.

In Chapter 4, we implement the proposed neural-network representation to perform the

reconstruction of unknown quantum states from measurement data. We present a set of

algorithms that carry out the reconstruction using unsupervised learning, and demonstrate

the capability of our technique by performing numerical simulation on both synthetic and

real experimental data.

In Chapter 5, we go beyond the characterization of the current generation of quantum

hardware, and introduce a framework for quantum error correction based on a RBM. The

resulting neural decoder can be applied to a wide variety of quantum error correcting codes,

with very little specialization. We show numerical calculation for 2d toric code.

In Chapter 6, we summarize the results of this Thesis, and conclude by discussing their

implications for the current experiments on controlled quantum matter.
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Chapter 2

Generative modelling

Modern artificial intelligence relies on the representational power and computational capa-

bilities of networks of interconnected elementary processing units (neurons). This concept

came to light during the 1950s, where a collective effort, widespread over many different

disciplines, took on the daunting mystery of the nature of human intelligence and the

mechanism behind cognition and reasoning. The first proposal of artificial neurons, fol-

lowed by learning theories, gave rise to the beginning of modern cognitive science, and the

birth of neural networks. Much interest in the subject was sparked also by the possibilities

offered by the first computing machines. In fact, for the first time, the various proposals

for cognition and learning mechanisms could be simulated and tested, gaining invaluable

insight in the matter. Furthermore, this new technology raised the question whether such

computing devices, equipped with powerful algorithms and enough computational power,

could show intelligent behaviour.

2.1 Emergent intelligence

One belief that became shared among many cognitive scientists, was that the human mind

acts like a sort of complex processor. Information is received, for instance from sensory

inputs, is processed and stored internally. However, the community found itself divided
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on the nature of the internal representation of knowledge, with two competing paradigms:

symbolic manipulation and connectionism. The symbolic approach is based on the idea that

knowledge has an internal symbolic representation. It is organized in structures with well-

defined mutual relationships, and it is processed through symbolic manipulation. Symbolic

structures have the very desirable property of being easy to interpret, while still capable of

building sophisticated representation of complex concepts. However, an important short-

coming is that the learning process becomes very challenging. As a result, the symbolic

manipulation necessary to process information must follow a pre-determined set of rules,

resulting in a poor flexibility in handling exceptions and generalization. One notable ex-

ample of a symbol system is the CYC project (from EnCYClopedia [98]), founded by

Douglas Lenat in 1984. With the goal of coding into human-readable form all the pieces

of knowledge that composed human common sense, CYC is the largest symbolic artifi-

cial intelligence project ever pursued. It features around 1.5 millions ontological terms

and 25 millions common sense rules, provided as statements and instruction by human

programmers (for a total of 1000 person-years worth of work! [98]).

The other paradigm, called connectionism, relies on a distributed representation of

information into a large collection of elementary units, interacting with each other through

network connections. Contrary to the symbolic approach, each unit represents a feature

of some higher-level object, rather than entire object. The symbolic manipulation of the

higher-level objects is then approximated by the lower-level computation performed by a

neural network. Intelligent behaviour (or cognition) in connectionist models, arises as a

collective property characterized by the interactions of neurons. Here, there are no pre-

determined rules. Instead, the network learns a set of internal representations which allows

it to process information as if it knew the underlying rules. The learning process needs

a teaching signal, which must be provided by an external environment (connected to the

inputs of the network). Furthermore, the network requires a learning procedure able to

encode the relevant input space of the environment into a set of internal representations

(i.e. via interactions). Depending on the properties of the network, the nature of the

input patterns and the cognitive task at hand, the model requires a learning rule, that is

the process driven by the environment according to which the connections are modified.
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We summarize the main ingredients for these connectionist models, often called parallel

distributed processing systems [99]:

• Environment: a time-varying Markovian stochastic function over the configuration

space of the input patterns. It provides a teaching signal, parametrized as input

patterns that occur according to some probability distribution.

• Processing units: a set of elementary units that receive information from the envi-

ronment, process it internally and (possibly) send it out of the cognitive system.

• Connectivity: a particular structure of the network connections.

• Interactions: A set of strengths associated with the network connections.

• Elementary computations: a simple calculation that each unit carries out on the input

signal it receives. The specific calculation can vary between different units.

• Learning rule: the process that modifies the network connections.

2.1.1 Artificial neural networks

The connectionist school has its root in the mid-1940’s, with the work of McCullogh and

Pitts [100]. Inspired by recent advances in neurobiology, they proposed a model of compu-

tation based on a network of connected neurons. A single neuron is schematically drawn

in Fig. 2.1a. The activity of the neuron is assumed to be a “all-or-none” process, where its

state can assume one of two values 0 or 1. The neuron is connected to a set of input units,

which send either excitatory xj, or inhibitory x̄j signals. The elementary computation that

the neuron perform on the input is given by

output =





1, if
∑

j xj ≥ θ and x̄i = 0 ∀i
0, otherwise

(2.1)

which gives this neuron the name of threshold logic unit. If the neuron receives an inhibitory

signal, the results of the computation is 0. Otherwise, it computes the total excitation
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Figure 2.1: Early models of artificial neurons. a) The first model of artificial neuron,
introduced by McCulloch and Pitts in 1943. b) The Rosenblatt perceptron neuron.

and calculates the results by comparing it with its threshold θ. By carefully designing the

structure of the input signals and choosing a proper threshold θ, the neuron can implement

simple logic operations, such as AND, OR and NOT. In turn, more involved operations can

be carried out by inter-connecting a collection of single neurons. Despite the potential to

realize complex computational circuits, this neuron-like system is limited by the absence of

a learning procedure, since in order to implement a given logic circuit, the network design

has to be solved explicitly by hand-crafting the connections.

The lack of learning abilities was tackled a few years later, with the seminal work on

“cell-assemblies” of the neurophysiologist Donald Hebb. He proposed the strengths of the

connections not be fixed. In turn, learning is realized by changing their values according

to the “teaching” input signal. More precisely, the connections between two neurons are

strengthened when they are simultaneously activated by the external stimuli. This pic-

ture seemed oversimplified but, as it turns out, it captures the fundamental essence of the

learning mechanism. Shortly afterwards, the very early computing machines were invented:

It had three hundred tubes and a lot of motors. It needed some automatic electric clutches,

which we machined ourselves. The memory of the machine was stored in the positions of

its control knobs, it used the clutches to adjust its own knobs. We used a surplus gyropilot

from a B24 bomber to move the clutches. M. Minsky, New Yorker (1981) [101]
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Even though very rudimental, these early machines allowed the first simulations of cog-

nitive models and learning processes (such as the Hebbian learning). The resulting increase

in attention in neuron-like processing systems led to the true beginning of connectionism

with the invention of the perceptron by Frank Rosenblatt in 1957 [102]. The Rosenblatt

neuron resembles much of the McCulloch and Pitts neuron. The input signal is expressed

as a binary vector (x1, . . . , xN) and the neuron has a threshold θ. To allow learning, each

connection in the perceptron is weighted by a real number Wj. Once again, the neuron

computes the signal it receives from input connections and outputs the following result:

output =





1, if
∑

jWjxj + b ≥ 0

0, otherwise
(2.2)

where from now on we adopt the bias definition b = −θ. The perceptron introduces

expressivity 1 in the model by using a set of interactions W to weight the different inputs.

This also allows the perceptron to be trained from examples of the input space. For the case

of discriminating two classes of input patterns, provided a solution exists, the perceptron

learning theorem provides a systematic way to update the interactions upon convergence.

Rather than changing the weights according to the correlations between units (as for the

Hebbian learning), the perceptron learning rule minimizes the misclassification error of the

training inputs. It is worth mentioning that Rosenblatt also developed a perceptron-based

framework for spontaneous learning, such as the clustering of input vectors.

The increasing popularity of neural networks and the initial positive results in applica-

tions of the perceptron unreasonably raised the expectations of this neural model, which

ended up having an unsettling effect on the cognitive science community. Rosenblatt above

all was extremely enthusiastic about the perceptron:

1With expressivity we refer to the capability of the processing system to capture a larger class of
functions and patterns.
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“[The perceptron is ] the embryo of an electronic computer that [the navy ] expects will

be able to walk, talk, see, write, reproduce itself and be conscious of its existence.” [103]

Certainly the perceptron offered a new perspective for learning distributed representa-

tions, but it was in fact very limited in the computational tasks it could learn. The main

criticism to the perceptron was put forward in the famous book Perceptrons in 1969 - by

Minsky and Papert - where they proved that a single perceptron could only learn linearly

separable functions. As such, the perceptron can learn (from training examples) the AND

operation, but not the XOR 2. The effect of the book of Minksy and Papert (whom both

believed in the symbolic approach) was disastrous for connectionism. The period of time

following the publication of the book until the early 80s will later be called the first AI

winter, with funding cuts and a general decrease in popularity of artificial neural networks.

Minsky will later admit that more investigation should have been done before abandoning

the model:

“I now believe the book was an overkill. So after being irritated with Rosenblatt for over-

claiming and diverting all those people along a false path, I started to realize that for what

you get out of it - the kind of recognition it can do - it is such a simple machine that it

would be astonishing if nature did not make use of it somewhere.” [99]

Notwithstanding the winter, further research in neural networks led to a real resurgence

of connectionism in the early 80s. One notable example is the back-propagation algo-

rithm [104], which allowed the learning of multi-layer perceptrons. More interestingly, in

1982 John Hopfield proposed a model for associative memory based on the idea that:

“[...] the bridge between simple circuits and complex computational properties of higher

nervous system may be spontaneous emergence of new computational capabilities from the

collective behaviour of large numbers of simple processing elements”. J Hopfield 1982 [105]

2Note that this argument does not apply to networks with multiple layers of perceptron, but for this
case the learning procedure and a convergence criteria were not known.
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2.1.2 The Hopfield associative memory

Consider the problem of retrieving a memory (previously stored) from some partial infor-

mation. Instead of an error correction “software”, the idea is to find a physical system that

can spontaneously perform this task, in the sense that the memory retrieval autonomously

occurs at the hardware level. To store memories as N -bit objects, Hopfield introduced a

network of N binary neurons, described by a state x = (x1, . . . , xN), with a symmetric

connectivity (possibly fully-connected). For a memory X to be robust, the physical sys-

tem, given a distorted/corrupted version X̃ = X + δ, should spontaneously carry out the

computation to retrieve X. In other words, given an initial point X̃ in the phase space,

the equations of motion should lead the system to the stable point X.

In the Hopfield model, the interactions are encoded into a weight matrix W , according

to the connectivity. The energy function is

E(x) = −
∑

ij

Wijxixj , (2.3)

where Wij represents the strength of the interaction between neuron i and neuron j (we

consider bi = 0 without loss of generality). The dynamics is given by an update rule

identical to the one for the threshold logic unit used in the perceptron:

output =





1, if
∑

jWijxj > 0

0, otherwise
(2.4)

Note however that the connections in the Hopfield model are undirected and that each

neuron is updated asynchronously. Following the energy definition, we see that the term

in Eq. 2.4 is just the energy difference between the two states (x1, . . . , xi = 0, xi+1, . . . )

and (x1, . . . , xi = 1, xi+1, . . . ):

∆Ei = Exi=0 − Exi=1 =
∑

j

Wijxj . (2.5)

56



Hopfield

E

x

E

x

X(1) X(2)X(1) X(2)

X(2) + �

x1

x2

x3

x4

ba c

Figure 2.2: Hopfield model. a) The Hopfield network with N = 4 fully connected
neurons. b) The energy landscape where two memories X(1) and X(2) are encoded. If

the system is initialized in a corrupted memory X̃ = X(2) + δ, the dynamics leads the
network to settle to its closest energy minima, which is the correct memoryX(2). c) During
the learning, the energy is decreased for the locations of the real memories. During the
unlearning, the energy is increased for spurious minima.

Consequently, the i-th neuron is updated to xi = 1 if Exi=0 > Exi=1 (and vice versa),

decreasing the total energy ∆Ei ≤ 0. The dynamics of the network corresponds to a

trajectory in the phase space following the energy gradient until the closest local energy

minimum is found. At these stable points, the system settles down and stops evolving in

time. This physical process suggests to encode a set of memories {X(k)}nk=1 into stable

points of the energy landscape of the model. Provided that there is little overlap between

the different memories X(k), the energy minima at those points are realized by using the

following interaction strengths [105]

Wij =
n∑

k=1

(2X
(k)
i − 1)(2X

(k)
j − 1) , (2.6)

which closely resembles the Hebbian learning, where a connection is strengthened if the

two neurons are active together. The form of Eq. 2.6 suggests a way to encode/learn a

new memory X(n+1), i.e. by increasing the network interactions as

∆Wij ∝ (2X
(n+1)
i − 1)(2X

(n+1)
j − 1) , (2.7)
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which creates a new energy minimum at the positionX(n+1). One problem of this procedure

is that in general there will be spurious minima in the landscape, which can trap the system

and lead to the retrieval of a false memory. A following work, in analogy with the REM sleep

phase, showed that both limitations can be addressed by an unlearning phase [106], where

the system is allowed to reach equilibrium x′ from a random state, and the connections

are weakened by

∆Wij = −ε(2x′i − 1)(2x′j − 1) . (2.8)

We will soon discover that this learning and unlearning mechanism naturally emerges in

the learning process of a RBM.

2.2 Learning internal representations

The work of Hopfield established a connection between the problem of relaxation search

and the optimization of a “potential” energy associated with a neural network. Given a

set of network parameters (i.e. connection strengths) that maps solutions of a specific

problem into local minima of the energy potential, the Hopfield network is able to find a

solution through a relaxation process, consisting in asynchronous updates of its units. This

process is guaranteed to find a local minima, as long as the initial state is fairly close to

the solution (i.e. the deviation δ is sufficiently small). This assumption, reasonable in the

context of content-addressable memories, clearly breaks down for more generic problems,

where the solution might be encoded into the lowest energy state of the system, for example.

More often, the problem might feature a large set of weak constraints, so that any state

with a sufficiently low energy might be a good candidate for the solution of the problem.

Considering this more general scenario, Hinton and Sejnowki proposed, shortly after the

work of Hopfield, a different type of neural network, called the Boltzmann machine.
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2.2.1 The Boltzmann machine

The Boltzmann machine (BM) has a network structure similar to the Hopfield model.

A set N binary neurons xj are coupled together with a weight matrix W (given some

connectivity). The total energy is given by

E(x) = −
∑

ij

Wijxixj −
∑

j

bjxj . (2.9)

In the context of a relaxation search, the interactions/weights and biases are pre-determined

by the particular optimization problem at hand. Its solution might correspond to the global

minimum of E(x). It is clear that the dynamics generated by the Hopfield update becomes

inadequate here. Since we are interested in the global minimum, the system must be able

to escape local energy minima, which can be achieved by occasionally allowing jumps to

higher energy states. A natural way to create energy jumps is to place the system at

thermal equilibrium at inverse temperature β = 1/T . The thermal fluctuations modify the

elementary computation of each neuron from deterministic to stochastic. In the Boltzmann

machine, a neuron i updates to the state xi = 1 with probability

pi =
1

1 + e−β∆Ei
(2.10)

and to the state xi = 0 with probability 1 − pi. The energy gap is ∆Ei =
∑

jWijxj + bi.

At zero temperature (β →∞) we recover the Hopfield model with a deterministic update

rule, minimizing energy. At any finite temperature, the dynamics of the stochastic neurons

minimize free energy F = U − TS, where U = 〈E〉 is the internal energy and S is the

entropy. This means that higher energy states can be reached with a probability that

increases with the temperature. If we let the system update with the above rule, the

network will reach the following equilibrium Boltzmann distribution

p(x) ∝ e−βE(x) (2.11)

One effective strategy to exploit the thermal fluctuations to find the global minimum of

59



Boltzmann Machine
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Figure 2.3: Boltzmann machine. a) Fully-visible Boltzmann machine. b) Boltzmann
machine with hidden neurons (blue).

E(x) was invented around the same time of the Hopfield network. By starting at high

temperature and gradually decreasing it with a controlled schedule, this technique, called

simulated annealing [107], can succeed to discover, at sufficiently low temperature, a final

state corresponding to a“good” solution of the optimization problem.

Boltzmann learning

Beyond relaxation searches, another mechanism that benefits from the stochastic nature

of the neurons is learning. The optimization, now in parameters space (rather than phase

space), takes place according to a distribution of patterns in the input space, and it is solved

by modifying the interactions strengths. The flavour of the process is somehow similar to

earlier learning mechanisms used in neural networks, but with one important difference: we

now want the neural network to build an internal representation of the various constraints

underlying the input space. Given enough examples of the input space (governed by some

probability distribution), we require the network to learn the constraints and to act as a

generative model. This means that the BM, upon successful learning, should be able to

reproduce the various input patterns, each occurring with the correct probability (enforced

by the unknown constraints).
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We proceed to qualitatively describe the learning in BMs. Let us consider a N -

dimensional input space and a set of input patterns X(k) distributed according to an

unknown probability distribution. Let us also assume a BM defined on the same domain,

i.e. we associate a stochastic neuron xj with each bit of the input signal. The goal now is to

find a learning procedure which systematically modifies the BM connections W so that the

machine is more likely to generate configurations x = X(k) appearing in the input space

(i.e. the teaching environment). In other words, we want the BM to learn the unknown

probability distribution. The cost function for the corresponding optimization is given by

the (log) likelihood of the BM averaged on the data 〈log p(x)〉data. Then, contrary to the

case of multi-layer perceptrons, the BM provides a natural way to relate the change in the

“output” of the network, with the change in parameters. For a small δWij, the resulting

change in the log-probability is:

δ log p(x) = β
[
xixj − p−ij

]
δWij , (2.12)

where p−ij is the probability that the i-th and j-th neurons are both found in the state 1,

when the network runs freely at the equilibrium distribution. This equation explicitly tells

us how to modify each weight to increase the likelihood of the model. The update rule for

learning is given by

∆Wij ∝ β
[
p+
ij − p−ij

]
. (2.13)

where p+
ij is the probability that both neurons are firing when the state is “clamped” by the

environment (this rule will be formally derived in the next section for the restricted version

of the BM). We see that the change in the interaction strength Wij is determined by two

competing terms. During the positive phase, driven by the environment, the weights are

increased by the probability p+
ij. This corresponds to traditional Hebbian learning driven

by the teaching signal. In the other phase, called the negative phase, the interactions are

decreased by the probability p−ij, which is related to the correlation between the two neurons

at thermal equilibrium. Note the strong similarity with the learning and unlearning phases

in the Hopfield memory. Here, during the positive phase, the energy landscape is modified

to decrease the energy of the configuration in phase space corresponding to the input data.
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In the negative phase, a reverse learning raises the energy when driven by the equilibrium

distribution of the machine.

When the phase space of the BM coincides with the input space, the optimization

problem becomes convex, with no local minima in the parameters landscape. While this is

certainly a very desirable property, it comes at a heavy price: only second-order correlations

between input variables xi can be learned with a pair-wise interaction Wij. This can be

easily seen by considering the XOR problem, where the input space is encoded by a 3-bit

string, where two inputs (x1, x2) represent the argument of the XOR, and the third bit

x3 represents the result XOR(x1, x2). As for the environment, the teaching distribution

shows the four possible configurations: (0, 0, 1), (1, 0, 0), (0, 1, 0) and (1, 1, 0) (each with

equal probability). However, since the parity is a higher-order correlation, a BM fails to

learn the difference between this set of inputs, and a set where all possible configurations

appear with equal probability. The only way to capture higher-order correlations with pair-

wise interactions, is to enlarge the physical system with auxiliary neurons which do not

appear in the input space. The state of the system can be now written as x = (v,h), where

the visible neurons v are the original neurons (one for each bit of information in the input

state), and the new hidden neurons are used to capture the correlations among the visible.

Each hidden neuron can be thought as a detector for a particular feature/constraint of the

inputs (for the XOR example, one single hidden neuron is enough to obtain a solution).

The addition of hidden units increases the expressivity of the network, which is now

able to capture more complex constraints in the input space. There is however still one fun-

damental issue, that in practice prevents learning: the negative phase requires estimating

the correlation functions between the neurons at thermal equilibrium. This contribution

depends directly on the interaction strengthsW and continuously changes during learning.

As such, to obtain the required statistics for the parameter update ∆W , the BM must

reach thermal equilibrium at each learning iteration. The long equilibration time for large

systems and the possibly glassy landscape due to random-like connections results into a

computational bottleneck, preventing BM to be learn in a reasonable time.
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2.2.2 The restricted Boltzmann machine

Around the same years, a different model called Harmonium (yet very similar to the BM)

was proposed by Smolensky. It is a stochastic neural network with two sets of units,

visible and hidden (called representational features and knowledge atoms in the original

paper [108]). However, the connectivity in the Harmonium is restricted and only interac-

tions between different types of units are allowed (i.e. no visible-visible or hidden-hidden

connections). This neural network is now widely known as Restricted Boltzmann machine

(RBM). In the RBM, the elementary units are divided into a visible layer v = (v1, . . . , vN)

and a hidden layer h = (h1, . . . , hnh), fully connected with a symmetric interaction W .

The biases are defined as two vectors b and c for the visible and hidden units respectively.

(Fig. 2.4). The energy function becomes

Eλ(v,h) = −
N∑

j=1

nh∑

i=1

Wijhivj −
N∑

j=1

bjvj −
nh∑

i=1

cihi , (2.14)

where we defined λ = (W , b, c) as the set of network parameters. The probability distri-

bution of the network is given by the Boltzmann distribution

pλ(v,h) = Z−1
λ e−βEλ(v,h) (2.15)

with partition function

Zλ =
∑

v,h

e−βEλ(v,h) (2.16)

From now on we will always consider the RBM at the finite temperature β = 1.

We are interested in using the RBM for generative modelling. Thus, the “output” of

the network is given in terms of the probability distribution that the RBM associates with

the input space (i.e. the visible layer). This visible distribution is obtained simply by

tracing out the hidden degrees of freedom:

pλ(v) = Trh

[
pλ(v,h)

]
= Z−1

λ

∑

h

e−Eλ(v,h) . (2.17)
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Figure 2.4: Restricted Boltzmann machine. The visible nodes (green) are connected to
the hidden nodes (blue) with a symmetric matrix of weights W . Each visible and hidden
unit is also couple to an external field b and c (not drawn in the figure).

Due to the bipartite structure of the network, the probability density factorizes and the

summation can be evaluated exactly:

pλ(v) = Z−1
λ e

∑
j bjvj

∑

h

e
∑
ijWijvjhi+

∑
i cihi

= Z−1
λ e

∑
j bjvj

nh∏

i=1

∑

hi=0,1

e (
∑
jWijvj+ci)hi

= Z−1
λ e

∑
j bjvj

nh∏

i=1

(
1 + e

∑
jWijvj+ci

)

= Z−1
λ e−Eλ(v) .

(2.18)

Here, we have defined the new energy function

Eλ(v) = −
N∑

j=1

bjvj −
nh∑

i=1

log
(
1 + e

∑
jWijvj+ci

)
, (2.19)

often called free energy in the machine learning community. However, we will refer to Eλ(v)

as effective visible energy (or effective energy), not to be confused with the free energy of

the neural network F = − logZλ.
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An important property of the RBM, compared to a regular BM, is the conditional

independence of the units within the same layer. This means that the state of a hidden

unit hi, only depends on the current state of the visible layer v (and vice versa). The two

conditional distributions pλ(v | h) and pλ(h | v), factorize over each single unit:

pλ(v | h) =
N∏

j=1

pλ(vj | h) , pλ(h | v) =

nh∏

i=1

pλ(hi | v) . (2.20)

Each independent probability can be obtained using Bayes rule. For instance, the proba-

bility for a visible unit j to be active, given a hidden layer in the state h is:

pλ(vj = 1 | h) =
pλ(vj = 1,h)

pλ(h)
=

∑
v/j
pλ(v1, . . . , vj = 1, . . . ,h)
∑
v pλ(v,h)

, (2.21)

with v/j = (v1, . . . , vj−1, vj+1, . . . , vN). Since the partition function cancels out in the ratio

of the two distributions, we can easily estimate the conditional distribution

pλ(vj = 1 | h) =
����
e
∑
i cihi e bj+

∑
iWijhi

∏
j′ 6=j

∑
vj′
e (

∑
iWij′hi+bj′ )vj′

����
e
∑
i cihi

∏
j

∑
vj
e (

∑
iWijhi+bj)vj

=
e bj+

∑
iWijhi

∏
j′ 6=j

(
1 + e

∑
iWij′hi+bj′

)
∏

j

(
1 + e

∑
iWijhi+bj

)

=
e bj+

∑
iWijhi

1 + e bj+
∑
iWijhi

=
1

1 + e−∆vj

(2.22)

where we defined ∆vj =
∑

iWijhi + bj. Analogously, the conditional probability of acti-

vating hidden units i given the state v is:

pλ(hi = 1 | v) =
1

1 + e−∆hi
, (2.23)

with ∆hi =
∑

jWijvj + ci.
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Unsupervised learning

Generative modelling consists of learning the constraints underlying a distribution defined

over the input space, so that the neural network can generate by itself input patterns

according to the correct (unknown) probability distribution, which we call q(v). The

learning occurs by changing the internal parameters and discovering an optimal set λ∗,

such that the RBM distribution closely mimics the target distribution, pλ∗ ∼ q. If such set

of parameters is found, then the RBM has an internal representation of the target state.

We now proceed to derive the learning rule and show the emergence of the positive and

negative Hebbian learning phases, previously discussed for the BM.

The learning mechanism is formulated, as usual, with an optimization problem through

of a cost function Cλ. For instance, for a perceptron learning of pattern recognition,

the cost function is given by the miss-classification rate (as it is for many of supervised

learning tasks). For the case of generative modelling, the ultimate goal is to reduce the

“distance” between the input distribution q(v) and the RBM distribution pλ(v). We adopt

the standard choice of Kullbach-Leibler (KL) divergence (or relative entropy), defined as:

Cqλ ≡ KL(q || pλ) =
∑

v

q(v) log
q(v)

pλ(v)
= 〈Lλ〉q −Hq (2.24)

where

Hq = −
∑

v

q(v) log q(v) (2.25)

is the entropy of the distribution q(v) and we defined the average negative log-likelihood

〈Lλ〉q = −
∑

v

q(v) log pλ(v) . (2.26)

Note that the KL divergence is not a proper distance measure, since it is non-symmetric

and does not satisfy the triangle inequality. Nevertheless, since KL(q || pλ) > 0 ∀q, pλ and

KL(q || pλ) = 0 if and only if pλ = q, we can safely use the KL divergence to quantify how

close the two distributions are.
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We proceed now to calculate the gradient of the cost function with respect to all network

parameters λ. The unknown distribution q(v) is in practice encoded into a training dataset

D = {v1,v2, . . . } containing ‖D‖ independent configurations vk, identically distributed

according to q(v). The unknown distribution q(v) is approximated by the data distribution

q(v′) ' ‖D‖−1
∑

vk∈D

δ(v′ − vk) , (2.27)

which results into the approximate divergence

Cqλ ' CDλ = 〈Lλ〉D −HD . (2.28)

Since the entropy of the data HD is constant, the only relevant term for the optimization

is the negative log-likelihood:

〈Lλ〉D = −‖D‖−1
∑

v′

∑

vk∈D

δ(v′ − vk) log pλ(v′)

= −‖D‖−1
∑

vk∈D

log pλ(vk)

= ‖D‖−1
∑

vk∈D

Eλ(vk) + logZλ .

(2.29)

By taking the gradient of the negative log-likelihood, we obtain

∇λ〈Lλ〉D = ‖D‖−1
∑

vk∈D

∇λEλ(vk) +∇λ logZλ

= ‖D‖−1
∑

vk∈D

∇λEλ(vk) + Z−1
λ

∑

v

∇λpλ(v)

= ‖D‖−1
∑

vk∈D

∇λEλ(vk)−
∑

v

pλ(v)∇λEλ(v)

=
〈
∇λEλ(v)

〉
D −

〈
∇λEλ(v)

〉
pλ

(2.30)
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The gradients of the effective visible energy have the simple form:

∂

∂Wij

Eλ(v) = − e
∑
jWijvj+ci

1 + e
∑
jWijvj+ci

vj = − 1

1 + e−∆hi
vj

∂

∂bj
Eλ(v) = −vj

∂

∂ci
Eλ(v) = − 1

1 + e−∆hi
.

(2.31)

where we recall the definition:

∆hi =
∑

j

Wijvj + ci . (2.32)

Note how the process of learning and unlearning emerges as a natural property the Boltz-

mann distribution. In the positive phase driven by the data 〈∇λEλ(v)〉D, the energy is

lowered for input data configurations (thus increasing their probabilities). During the

negative phase, the learning occurs in reverse, with the signal generated by the RBM

equilibrium distribution

〈
∇λEλ(v)

〉
pλ

=
∑

v

pλ(v)∇λEλ(v) (2.33)

Since the evaluation of the negative phase requires a summation over an exponential num-

ber of states v, we calculate this term using MC sampling of the RBM as

〈
∇λEλ(v)

〉
pλ
' 1

M

M∑

`=1

∇λEλ(v`) . (2.34)

The effective energy gradient is averaged over M configurations v` sampled from the RBM

partition function Zλ. Given the restricted conditional independence of the RBM graph,

a sampling technique called Gibbs sampling allows a fast evaluation of the negative phase.
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Block Gibbs sampling

The general philosophy behind the MC is to simulate the evolution of the system (in our

case the visible layer) state by state, and consider the expectation value of some observables

(such as the effective energy gradient) as a time average in Markov time (not to be confused

with real time evolution). Contrary to full enumeration, where each state v is weighted in

the sum, we build a sequence of M � 2N states in such a way that each state v appears

with a probability pλ(v) (also called importance sampling). The key to the algorithm is

the type of transitions allowed from a state to another. In particular, we consider Markov

chains, where a configuration v(k+1) only depends on the previous one v(k) through a non-

deterministic process (e.g. memoryless). The protocol driving the Markov-time evolution

is characterized by a transition operator T associating a probability T (v → v′), with the

transition (v → v′). The transition operator satisfies

T (v → v′) ≥ 0 ,
∑

v′

T (v → v′) = 1 . (2.35)

At each step in Markov time, a new state v′ is selected using T (v → v′). The condition

for obtaining a stationary distribution is written as

pλ(v′) =
∑

v

T (v → v′) pλ(v) , (2.36)

and a solution is the so-called detailed balance condition:

T (v′ → v) pλ(v′) = T (v → v′) pλ(v) . (2.37)

In general, we can split the transition probability as

T (v → v′) = g(v → v′)A(v → v′) , (2.38)

where g(v → v′) is the probability of proposing the move v → v′ (selection probability)

and A(v → v′) is the probability the move accepted (acceptance probability).
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There exist many different algorithms based on these general principles. One exam-

ple, commonly used to simulate equilibrium properties of spin systems, is the Metropolis-

Hastings algorithm [109]. A new configuration is chosen by flipping the state of a spin,

randomly chosen with equal probability. If the energy is lowered by the move (∆E < 0),

the update is accepted; otherwise it is accepted with probability pλ(v′)/pλ(v) = e−∆E. As

you can see, the likelihood of the move depends on the ratio of probabilities, where the

partition function cancels out. A different strategy consists into updating each variable

sequentially, conditioned on the values of all the other variables. This sampling technique

is called Gibbs sampling, also known as heat bath or Glauber dynamics. For the case of the

RBM, this corresponds to samping each visible unit vj from the conditional distribution

pλ(vj | v/j,h), and each hidden unit hi from the conditional distribution pλ(hi | v,h/i).
However, the RBM structure has the special property the each unit is conditionally in-

dependent from the others of the same layer. Thus, we can instead sample all the units

in one layer simultaneously (Block Gibbs sampling). Given an initial state v, the selec-

tion probability to sample a new state v′ is given by the two RBM layer-wise conditional

distributions

g(v → v′) = pλ(v′ | h) pλ(h | v) , (2.39)

corresponding to the transitions v → h and h→ v′. Given this expression, we can easily

verify that g(v → v′) satisfy detailed balance condition. Furthermore, once a new state

has been chosen according to the selection probability, the move is always accepted with

unit probability:

A(v → v′) = Min

{
1,
pλ(v′)

pλ(v)

g(v′ → v)

g(v → v′)

}

= Min

{
1,
pλ(v′)

pλ(v)

pλ(v | h) pλ(h | v′)
pλ(v′ | h) pλ(h | v)

}

= Min

{
1,
pλ(v′)

pλ(v)

pλ(v,h)

pλ(h)

pλ(v′,h)

pλ(v′)

pλ(h)

pλ(v,h)

pλ(v)

pλ(v′,h)

}

= 1

(2.40)

Note that such property does not necessarily imply that Block Gibbs sampling allows to
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Block Gibbs Sampling

v(0) v(1) v(`�1) v(`)

h(`�1)h(1)h(0)

. . .

Figure 2.5: Block Gibbs sampling. Given some initial state v(0), a new state v(1)

is sampled from the distribution pλ(v) in two steps: first the hidden state is sampled
from the conditional distribution pλ(h(0) | v(0)) and then the visible state is sampled from
pλ(v(1) | h(0)). Because of the bipartite structure of the RBM graph, each variable in a
layer can be samples simultaneously, leading to layer-wise block sampling.

rapidly converge to the equilibrium distribution, although this is indeed true in many cases.

The calculation of the statistics for the negative phase using block Gibbs sampling

proceeds as follow. The Markov chain is initialized with a random state v(0) of the visible

layer (the sampling can start equivalently from the hidden layer). A new state h(0) of the

hidden layer is selected with the conditional distribution pλ(h(0) | v(0)), where the state of

each unit i is simultaneously updated according to

pλ(h
(0)
i = 1 | v(0)) =

1

1 + e−
∑
jWijv

(0)
j −ci

(2.41)

After h(0) has been determined, the sampling proceeds by selecting a new state v(1) from

the conditional distribution

pλ(v
(1)
j = 1 | h(0)) =

1

1 + e−
∑
iWijh

(0)
i −bj

. (2.42)

This process, which constitutes one step of block Gibbs sampling, is repeated for the

duration of the Markov chain (Fig. 2.5). Note how the (Markov) dynamics following Gibbs

sampling is equivalent to the neuronal update rule of the Boltzmann machine given in

Eq. 2.10. However, the advantage of having restricted connection is that, given a fixed

number of updates, a RBM can explore a bigger pat of the phase space than a regular BM.

71



2.3 Training the machine

We have seen that the learning signal for training a RBM has two components. While the

positive phase contribution can be easily calculated from the data, the negative phase term

needs to be approximated by a MC average

〈
∇λEλ(v)

〉
pλ
≈ 1

M

M∑

k=1

∇λEλ(vk) . (2.43)

Provided the RBM has reached thermal equilibrium, the configuration vk generated with

block Gibbs sampling are distributed according to the RBM distribution pλ(v). This means

that, for any given learning iteration, the Markov chain should run for an appropriate

amount of time, before the statistics can be collected. Since the equilibrium distribution

constantly change with λ during learning, the chain need to equilibrate at each learning

step, creating then a computational bottleneck in the training. This problem was solved

by Hinton in 2002 [110], by replacing the KL divergence with an approximate distance

measure called Contrastive Divergence (CD).

2.3.1 Contrastive divergence

Recall the definition of the cost function for learning a RBM,

KL(q || pλ) =
∑

v

q(v) log q(v)−
∑

v

q(v) log pλ(v) , (2.44)

which measures the (statistical) divergence between the data distribution q(v) and the

equilibrium RBM distribution pλ(v). The possibly long equilibration time is not the only

issue of training the network using the KL divergence. In fact, the variance of the gradient

might grow large, being the difference between average gradients calculated on the data

and the RBM distributions. To introduce the new cost function, we consider a collection

of Gibbs sampling Markov chains. Instead of random initial configurations, each chain

is initialized with a sample from the training dataset. So, at Markov time k = 0, the
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distribution of the chains is given by the data distribution q(v). After performing k steps

of block Gibbs sampling, the chains are distributed with probability p
(k)
λ (v), which becomes

the equilibrium distribution in the large k limit:

lim
k→∞

p
(k)
λ (v) = pλ(v) . (2.45)

Instead of minimizing the KL divergence, Hinton considered the k-steps contrastive diver-

gence (CDk), defined as

CDk = KL(p(0) || pλ)−KL(p
(k)
λ || pλ) . (2.46)

Using this cost function, the contribution to the gradient from the equilibrium distribution

can be approximately eliminated:

∇λCDk ≈
〈
∇λEλ(v)

〉
q
−
〈
∇λEλ(v)

〉
p
(k)
λ

. (2.47)

Clearly, this approximation reduces substantially the computational burden, since we need

to run the Markov chain for only k steps, before evaluating the negative phase contribution.

Furthermore, the value of k needs not to be large in general. In fact, empirical evidence

showed that even a chain as short as k = 1 could provide a good enough learning signal to

achieve convergence in the training. Starting from the data samples, one Gibbs sampling

step generates a new visible state v. The distribution underlying the new states of the

Markov chains, is now statistically closer to the distribution pλ. If follows that [110]:

KL(p(0) || pλ) > KL(p(1) || pλ) , unless p(0) = p
(1)
λ (2.48)

If p(0) = p
(1)
λ , then p(0) = pλ , (2.49)

where in the last statement we are assuming that all the elements of the transition matrix

T of the Markov chains are non-zero.

Let us now take a closer look at the gradient of CDk, and derive the learning rule. We

already know the gradient of the first term, so let us consider the KL divergence between
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the distribution at equilibrium and Markov time k:

KL(p
(k)
λ || pλ) =

∑

v

p
(k)
λ (v) log p

(k)
λ (v)−

∑

v

p
(k)
λ (v) log pλ(v) (2.50)

where now the entropy contribution H(p
(k)
λ ) =

∑
v p

(k)
λ log p

(k)
λ also depends on the param-

eters λ. By taking the gradient ∇λ of this KL divergence we obtain

∇λKL(p
(k)
λ || pλ) =

∑

v

∇λp(k)
λ (v) log

p
(k)
λ (v)

pλ(v)
−
∑

v

pλ(v)∇λEλ(v) +
����������∑

v

p
(k)
λ ∇λE

(k)
λ (v)

−
����������∑

v

p
(k)
λ ∇λE

(k)
λ (v) +

∑

v

p
(k)
λ (v)∇λEλ(v)

=
∑

v

∇λp(k)
λ (v) log

p
(k)
λ (v)

pλ(v)
−
〈
∇λEλ(v)

〉
pλ

+
〈
∇λEλ(v)

〉
p
(k)
λ

.

(2.51)

Therefore, the gradient of CDk is:

∇λCDk = ∇λKL(q || p(∞)
λ )−∇λKL(p

(k)
λ || p

(∞)
λ )

=
〈
∇λEλ(v)

〉
q
−

�������〈
∇λEλ(v)

〉
pλ

−
∑

v

∇λp(k)
λ (v) log

p
(k)
λ (v)

pλ(v)
+

�������〈
∇λEλ(v)

〉
pλ
−
〈
∇λEλ(v)

〉
p
(k)
λ

=
〈
∇λEλ(v)

〉
q
−
〈
∇λEλ(v)

〉
p
(k)
λ

−
∑

v

∇λp(k)
λ (v) log

p
(k)
λ (v)

pλ(v)
.

(2.52)

We can see that by considering the difference between the two KL divergences, the averages

of the gradients of the effective energy with respect the equilibrium distribution cancel out.

We are left with two averages: one is over the data distribution (and trivial to compute)

and the other is over the RBM distribution after k steps of block Gibbs sampling (tractable
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for moderate values of k). The approximation consists into neglecting the last term

δCD =
∑

v

∇λp(k)
λ (v) log

p
(k)
λ (v)

pλ(v)
(2.53)

whose contribution was found to be small in numerical experiments. A rigorous calculation

of this approximation error was given later, in the form of two upper bounds, from Bengio

and Delalleau [111] and Fischer and Igel [112]. The latter, considering an expansion of the

log-probability into irreducible Markov chains, showed that the CD bias is bounded by:

δCD ≤
1

2

∑

v

|q(v)− pλ(v)|(1 + e−(N+nh)∆)k (2.54)

where ∆ is the maximum energy gap in the RBM obtained by changing the value of one

unit, i.e. ∆ = max{∆v,∆h}, with parameters

∆v = sup
`=1,...,N

{
|E(v,h)− E(v′,h)|, ∀(v,v′,h) s.t. vj = v′j ∀j 6= `

}
(2.55)

∆h = sup
`=1,...,nh

{
|E(v,h)− E(v,h′)|, ∀(v,h,h′) s.t. hi = h′i ∀i 6= `

}
(2.56)

The first term |q(v)− pλ(v)| decreases during the learning as pλ(v) becomes closer to the

data distribution. The other term approach zero when k grows large, where we retrieve

the original KL divergence

lim
k→∞

CDk = KL(p(0) || pλ)− lim
k→∞

KL(p
(k)
λ || pλ) ≈ KL(p(0) || pλ) . (2.57)

For a moderate to small value of k, the approximation error depends on the size of the RBM

and the energy gap. As such, it is a good practice to keep the weights small during the

training, for examples by using a weight penalty. However, numerical experiments showed

that, even for a small k and large weights (leading to a large bias δCD), the learning signal

provided by the CD is in general still a good approximation of the KL divergence, in the

sense that the sign of the learning is mostly correct [113].
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2.3.2 Stochastic optimization

For the RBM, the cost function Cλ to minimize is given by a constant entropy term H(q̂)

(which we omit), plus the average negative log-likelihood over the entire dataset D:

〈Lλ〉D = −‖D‖−1
∑

σk∈D

log pλ(vk) (2.58)

The most simple and straightforward way to approach this problem is gradient descent,

which consists into sequentially updating each parameter λj in the opposite direction of

the gradient of the cost function with respect to such parameter. Starting from some initial

guess λ(0), the parameter at optimization time (t+ 1) is given by

λ
(t+1)
j = λ

(t)
j − η G(t)

λ,j (2.59)

where the learning rate η controls the size of the update step. We also introduced the

“full” gradient Gλ,j, evaluated over the entire dataset:

Gλ,j =
∂

∂λj
〈Lλ〉D = −‖D‖−1

∑

σk∈D

∂

∂λj
log pλ(vk) (2.60)

This optimization procedure is guaranteed to converge to the global minimum, if the ob-

jective function Cλ is convex. As this is false for RBMs, the trajectory of the system in

parameter space following the gradient Gλ only guarantees to converge to a local mini-

mum of Cλ. Once the system settles in one of these minima, it won’t be able to escape it.

Further, the evaluation of the full gradient Gλ is also computationally expensive, since it

scales with the data-set size as O(‖D‖ dim(λ)).

Stochastic gradient descent

The vanilla gradient descent is plagued by a similar problem encountered before in the

retrieval of memories in the Hopfield network. The system is unable to escape the local

minima. Note however that here we have learning trajectories in parameter space (λ),
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while in the Hopfield network the dynamics to retrieve a memory was in the network

phase space (x). The phase space trajectories of the RBM are governed by the stochastic

dynamics at temperature T = 1, which allows one to extract the statistic for the learning.

At a different time-scale, the RBM flows in the parameter space, according to the gradient

of the KL divergence. To aid this latter process and avoid getting trapped in local minima,

we restrict the calculation of the gradient over a small subset of M of training samples

(with M � ‖D‖). The update rule becomes

λ
(t+1)
j = λ

(t)
j − η gλ,j (2.61)

where the batch gradient is

gλ,j =
∂

∂λj
〈Lλ〉D[M ] = − 1

M

M∑

k=1

∂

∂λj
log pλ(vk) (2.62)

Note how this optimization strategy, called batch stochastic gradient descent (SGD), is not

performing a true descent in the parameters landscape. In fact, since gλ,j 6= Gλ,j, the cost

function Cλ can eventually increase within small optimization transients, due to the noise

present in the stochastic gradient gλ,j. We then tackled both problems of vanilla gradient:

noise can help escape local minima and the reduced size of the batch leads to a faster

convergence (more gradient updates per unit time).

One problem of SGD is given by ravines, i.e. regions where the gradient is more steep in

one dimension with respect to others, thus resulting into oscillations in that dimension and

slow progression in others. This is solve with the momentum technique [114], by adding a

fraction γ of the previous gradient updates to the current move:

λ
(t+1)
j = λ

(t)
j − η gλ,j − γ(λ

(t)
j − λ(t−1)

j ) (2.63)

Further, there are several ways to make the SGD adaptive to each weights, so that the

learning rate now becomes a vector, where ηj represent the step size of the update along

the dimension λj. Some examples are Adam [115], AdaGrad [116] and AdaDelta [117].
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The effect of SGD (compared to the vanilla gradient descent) can be understood in

analogy with the noise present in Langevin dynamics of system of classical particles. The

gradient gλ,j used for SGD updates is an estimator of the true gradient Gλ,j (computed over

a very large number of samples). According to the central limit theorem, gλ is Gaussian

distributed around ḡλ = Gλ with variance Var(Gλ)/
√
M . The update rule for SGD can

be re-written as

λ
(t+1)
j = λ

(t)
j − η Gλ − η N (0,

Var(Gλ)√
M

)

= λ
(t)
j − η Gλ − η

Var(Gλ)√
M
N (0, 1)

(2.64)

where N (µ, σ) is a Gaussian centered at µ and with variance σ. This expression is identical

to the equation governing the discrete Langevin dynamics of a system of classical particle

interacting with a potential V at temperature T . In this case, the positions R
(t+1)
j of

particle j after a discrete evolution of time ∆t from position R
(t)
j is:

R
(t+1)
j = R

(t)
j −∆t ∇RV (R) +

√
2T∆t N (0, 1) (2.65)

By comparing the two equation, we see that the learning dynamics in SGD is equivalent of

the Langevin dynamics of the network parameters. We can define an effective temperature

for the SGD as

Teff ∝
√
η

M
(2.66)

which is perfectly reasonable. As we decrease the batch size M , the gradient used in the

move becomes a biased estimator, corresponding to a noisier trajectory, and thus to a

higher effective temperature. The opposite argument goes for the learning rate η.

Natural gradient descent

In the numerical calculation performed, SGD (possibly with momentum) was able to con-

verge to an acceptable solution of the optimization for most of the cases of study. How-

ever, for a few instances, first order optimization techniques failed to find a solution. For
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these cases, we resorted to second-order methods, specifically the natural gradient descent

(NGD) [118, 119]. We found this optimization method to be in general more effective,

though at the cost of increased computational resources. In this case we update the pa-

rameters as

λ
(t+1)
j = λ

(t)
j − η

∑

i

S−1
ij gλ,j , (2.67)

where we have introduced the Fisher information matrix

Sij = ‖D‖−1
∑

σk∈D

∂ log pλ(vk)

∂λi

∂ log pλ(vk)

∂λj
. (2.68)

The update can be either computed on the entire dataset or a small batch of samples. The

learning rate magnitude η is usually set to

η =
η0√∑

ij Sij gλ,i gλ,j
(2.69)

and changed during learning, starting from an initial learning rate η0 [120]. The matrix

Sij takes into account the fact that, since the parametric dependence of the RBM function

is non-linear, a small change of some parameters may correspond to a very large change

of the distribution. In this way one implicitly uses an adaptive learning rate for each

parameter λj and speed-up the optimization compared to the simplest SGD. We notice

that a very similar technique is successfully used in QMC for optimizing high-dimensional

variational wavefunctions [121]. Similarly to our case, noisy gradients, which come from the

MC statistical evaluation of energy derivatives with respect to the parameters, are present,

while the matrix S is instead given by the covariance matrix of these forces. Finally, since

the matrix Sij is affected by statistical noise, we regularize it by adding a small diagonal

offset, thus improving the stability of the optimization.
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Hyper-parameters

In addition to the optimization problem in the parameter space λ, the RBM training

requires another level of optimization, for the so-called hyper-parameters. These includes

all the “knobs” that control the RBM representation (such as the number of hidden units)

and the training algorithm (such as the learning rate). These parameters do not appear

explicitly in the cost function, and has to be carefully chosen in a different way. Although

there exist strategies to automate this hyper-optimization (such as Bayesian optimization),

we obtained the optimal hyper-parameters using a simple grid search (optimal here means

that the values discovered allowed convergence in the training). The complete set of hyper-

parameters are:

• Number of hidden units nh: the amount of resources required to represent a given

distribution. The scaling of performances with nh naturally provides a convergence

parameters for the simulations.

• Order of Contrastive Divergence: number of block Gibbs sampling of the visible layer

performed before obtaining the statistics.

• Learning rate η: the step size for the gradient descent update. The learning rate can

made adaptive to the parameters and decreases during the training.

• Batch size M : the number of training configurations used to evaluate the gradient

of the cost function at each training step.

• Number of Markov Chains MC : total number of parallel Markov chains used to

compute the negative phase of contrastive divergence.

• Regularizations: the amount of weight decay regularization used for the gradients [122],

as well as the regularization γNG used in NGD.

• Initial conditions: the distribution used to initialize the parameters. Unless otherwise

stated, all initial parameters are drawn from a Gaussian distribution centered around

zero and with variance equal to the hyper-parameter w0.
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Evaluation

The evaluation of the training for generative models is in general more involved than

discriminative models. If the goal of the training is the classification of input patterns, the

model can be simply evaluated by calculating the miss-classification rate on a validation

dataset, containing input samples not included in the training dataset. For generative

models, a RBM model with parameters λ faithfully capture the target distribution when

the cost function

Cλ = 〈Lλ〉D + HD (2.70)

approaches zero. Since the target distribution is unknown, this is equivalent of saying that

the negative log-likelihood

〈Lλ〉D = −‖D‖−1
∑

σk∈D

log pλ(vk) (2.71)

reaches its minimum value (equal to the negative entropy of the data). This evaluation

criterion is somehow problematic, since to estimate the negative log-likelihood we need to

know the RBM partition function Zλ. Depending on the size N of the system, and the

insights we have on the target distribution, we choose one of the followings criteria for the

grid-search selection of hyper-parameters:

1. Exact NLL. When the number of degrees of freedom N is small, we evaluate the

partition function Zλ exactly by full enumeration. This gives us access to the nor-

malized RBM distribution, and thus to the exact NLL. The best set parameters λ∗

is simply chosen as the one with minimum NLL computed on a validation set.

2. Physical observables. For larger systems, the partition function cannot be directly

calculated. Since the objective of the learning are physical states, we have in general

a set of physical observables we can probe. As long as such observables can be

calculated directly on the input configurations, we can use this information to select

the best parameters. Two simple examples are the activation profile over the visible

layer, and the correlation function between visible units.
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3. Approximate NLL. In some situations, the analysis of the physical observables was

inconclusive. In this cases, an estimate of the NLL was obtained by using approximate

techniques to compute the partition function, such as parallel tempering [123] or

annealed importance sampling [124, 125]. In this case, several Markov chains are

run in parallel, with increasing temperature. The bottom chain runs at temperature

β = 1, and corresponds to the RBM distribution. The top chain should run at

sufficiently high temperature, so that the partition function of the corresponding

distribution can be approximated as Ztop
λ ' 2(N+nh). Provided there are enough

chains, so that distributions of adjacent chains overlap, the algorithm can be used to

provide an approximation to the partition function Zλ.

2.4 Spins at thermal equilibrium

We proceed to show a first implementation of generative modelling of a physical system.

For now, we restrict to classical states, and examine a magnetic system at finite temper-

ature. Because of the similar structure of the phase space, we consider a collection N

magnetic Ising spins σz = (σz1, . . . , σ
z
N) (σzj = ±1) on a lattice. The spins interacts with

a Hamiltonian H(σz), and the system can exchange energy with a thermal bath at in-

verse temperature β = 1/T . For a fixed N , the spin system is described in the canonical

ensemble by the Boltzmann distribution

pβ(σz) = Z−1
β e−βH(σz) (2.72)

with partition function

Zβ =
∑

σz

p(σz) . (2.73)

At a given β, the equilibrium state of the system minimizes the free energy F = U − TS,

where U = 〈H〉 is the average energy and S is the entropy. Depending on the dimensionality

and the structure of the Hamiltonian, different types of orders can appear below a certain

critical temperature Tc, dividing two distinct magnetic phases. Given the existence of a
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phase transition, of particular importance is the universal behaviour near the critical point,

which is quantified by a set of critical exponents. Now imagine, given such a magnetic

system, we are capable of measuring the orientation of each spin. We can then build a

dataset of spin configurations, where now the unknown distribution underlying the data is

the physical distribution q(σz) = pβ(σ). Therefore, the generative modelling leads (upon

faithful training) to an internal representation of the physical distribution. Equivalently,

the RBM has learned the partition function of the spin system, an as such, it captures all

the thermal physics and allows the scaling calculation of critical exponents.

2.4.1 The Ising model

In the spirit of a first test run, we examine the ferromagnetic Ising model, which is the sim-

plest, yet non-trivial, model of magnetism exhibiting a continuous phase transition. It has

been subject to intense studies because it provides a way to understand the emergence of a

spontaneous magnetization in some metals (such as iron or nickel), when the temperature

is lowered below a critical value, called Curie temperature. The Ising spins are placed on

the vertices of a d-dimensional cubic lattice with periodic boundaries, and interacts with

their nearest neighbours only. The Hamiltonian is

H(σz) = −J
∑

〈ij〉

σzi σ
z
j , J > 0 . (2.74)

which is invariant under time-reversal symmetry (or Z2), i.e. H(σz) = H(−σz). At high

temperature, the spins are subject to strong thermal fluctuations, and their orientation

is randomly distributed (respecting the symmetry of the Hamiltonian). This is called the

paramagnetic phase. As we cool down the system, it becomes energetically favourable

for the spins to align in the same direction. Below a critical temperature Tc, the system

becomes ferromagnetic, which is characterized by a finite magnetization

M = 〈σzj 〉 = Z−1
β Tr

[
σzj e

−βH(σz)
]
6= 0 , (2.75)
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In the ground state (T → 0), the system will be in one of the two lowest energy states,

where all the spins point either up (↑, ↑, ↑, . . . ) or down (↓, ↓, ↓, . . . ), breaking time-reversal

symmetry. When approaching the critical point from above, one of the two lowest-energy

states is randomly selected by thermal fluctuation, and the symmetry is spontaneously

broken. The emergence of magnetic order is detected by the order parameter, which is

here the magnetization M . In the paramagnetic phase the system has M ' 0, while

|M | → 1 when the system approaches the ferromagnetic ground state.

Let us first consider the simplest case of a 1d chain. In this case, the free energy density

can be calculated using a transfer matrix, exactly solving the model. The solution shows

that the 1d Ising model does not magnetize at any finite temperature (in the thermody-

namic limit). The same result can be obtained from considering the entropic contribution

of thermal fluctuations [126]. Take either one of the two ferromagnetic ground states at zero

temperature, with energy U0. Now insert a minority droplet of L anti-aligned spins, within

the ferromagnetic background (Fig. 2.6a). The new energy of the chain is U = U0 + 4J

(independent of L). When the temperature is non-zero, there is an entropic contribution

to the free energy F = U − TS, which can be estimated just by counting the number of

micro-states where a given spin σzj belongs to the droplet. This number is equal to the

droplet size L. Thus, the change in free energy caused by the a droplet of size L is

∆F = 4J − T logL (2.76)

Therefore, for any T 6= 0 there exist a large enough L so that entropy dominates over the

energy, leading to a proliferation of droplets. As such, the ferromagnetic order is destroyed

for T > 0, and the critical temperature of the 1d Ising model is then Tc = 0. We point out

that for a finite size system, there is a range of temperatures (near Tc) where the spin chain

exhibits a finite magnetization. This cross-over region becomes smaller when the system

size is increased, and disappear in the thermodynamic limit (Tc → 0)
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Figure 2.6: Peierls droplet in the Ising model. Minority droplets of anti-aligned spins
within a ferromagnetic background for a 1d chain (a) and 2d square lattice (b).

For the case of a 2d square lattice, the existence of a phase transition was first estab-

lished by duality principles [127]. The full solution of the model was given then given by

Onsager in 1944 [128], who calculated the exact value of the critical temperature

Tc
J

=
2

log(1 +
√

2)
≈ 2.2692 . (2.77)

His solution proved that the free energy can become non-analytic at the critical point, a

remarkable milestone for statistical mechanics and the study of critical phenomena. In

analogy with the 1d chain, we consider again a minority droplet in in the ferromagnetic

background. The important difference is that now the energy cost for creating a droplet

with a perimeter L is ∆U = 2JL, as we need to break L bonds in the lattice. The

bigger the droplet, the higher is the energy cost the system has to pay. The entropic

contribution is obtained considering a random walk on the lattice. Under the restrictions

of no-backtracking and a closed walk, the free energy difference is

∆F ' 2JL− TL logC = L(2J − T logC) (2.78)

where 2 < C < 3 is a constant related to structure of the random walk. We can see now

that at sufficiently low (but finite) temperature (T < Tc = 2J/ logC), the droplets are

suppressed and the ferromagnetic order survives.
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2.4.2 Learning thermodynamics

The objective of the experiment is to implement a RBM to learn the ferromagnetic Ising

model from spin measurement [73]. Given a fixed temperature, we want to encode the

equilibrium distribution of the spins system

qβ(σz) = Z−1
β e−βH(σz) = Z−1

β e−βJ
∑
〈ij〉 σ

z
i σ
z
j (2.79)

into the internal parameters λ of the RBM. To do so, we minimized the distance with the

RBM distribution

pλ(σ) = Z−1
λ e−Eλ(σ) . (2.80)

Note that we will always convert the spin degrees of freedom σz = ±1 to RBM variables

σ = 0, 1. This is done without loss of generalization, as the former representation can be

found simply by rescaling the parameters. It is clear that the problem we are considering

is particularly suited for a RBM. This is also suggested by the parametric form of the

effective visible energy

Eλ(σ) = −
N∑

j=1

bjσj −
nh∑

i=1

log
(
1 + e

∑
jWijσj+ci

)
(2.81)

which contains spin-spin correlations (mediated by the hidden layer) on top of a mean-

field contribution
∑

j bjσj. Due to the similar from of the two distributions, a successful

training implies that the RBM has learned an internal representation of the free energy

Fβ = − logZβ of the spin model.

As an instructive example we begin by training a single network on a 1d chain with

only N = 6 spins at β = 1. For such a small system it is possible to compute the partition

function, and thus the full thermal distribution, exactly. We prepare a dataset of spin

configurations by exact sampling of the target distribution q(σz) and then train a RBM

using CD5. Again, because of the limited number of degrees of freedom, it is feasible to

compute the partition function Zλ of the RBM by exact enumeration. As such, we have

access to the exact KL divergence, which we can calculate at various time-steps of the
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Figure 2.7: Learning the Ising chain. a) KL divergence as a function of training
step. b) Probability distributions for a 1d Ising model with N = 6 spins. We show
the comparison between the exact probability distribution (blue) and the approximate
distribution produced by the Boltzmann machine after 10 (orange) and 500 (red) training
steps for all of the 26 states σz.

training. In Fig. 2.7a we show the KL divergence as a function of the training steps. The

KL divergence rapidly decreases in the early transient of the optimization, and subsequently

reaches a plateau where it starts fluctuating, a sign that the optimization has reached one

of the local minima. Since we can evaluate the partition function, we can directly compared

the two distributions. In Fig. 2.7b we show this comparison by plotting the probability for

each of the 26 states σz of the phase space, measured at two different steps of the training.

We observe that, after enough parameters updates, the RBM distribution matches exactly

the target distribution.

Next, we consider the more interesting case where the spins are arranged on a 2d

square lattice. Instead of exact sampling, we use a MC simulation to importance sample

spin configurations from the Ising partition function Zβ. We use both the Metropolis-

Hastings algorithm in the form o local spin-flips, as well as the Wolff cluster update [129],

which reduces autocorrelation time near criticality. Moreover, the cluster update allows
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Figure 2.8: Learned weights for the 2d Ising model. Histogram of the relative fre-
quency of appearance of the weight amplitudes for two Boltzmann machines with nh = 32
hidden nodes, trained at low and high T for the d = 2 Ising model with N = 64 spins.

us to generate both symmetry-broken states in the ferromagnetic phase. We prepare a

dataset Dβ with ‖Dβ‖ = 105 spin configurations for several inverse temperatures in a

range centered around βc = 1/Tc. For each β we train a different RBM with CD20, using

SGD with a learning rate η = 0.01, a batch size M = 50, an initial weight distribution of

w0 = 0.001. The training runs for approximately 2000 epochs 3.

It is natural to ask how the performance of each RBM is affected when the training

samples are taken at high or low temperature. Moreover, we are interested in whether

or not a RBM is able to properly capture the fluctuations that the system undergoes at

criticality. Before discussing the quantitative analysis of the thermodynamics, we give an

insight into the functioning of these machines by showing the histogram of the matrix

elements of W (Fig. 2.8) after training at low and high temperature. In these two limits

we know what the probability distribution qβ(σ) looks like and we can thus obtain a

qualitative understanding of the training and sampling processes of the machines. At very

3One epoch corresponds to an entire sweep of the dataset, for a total of ‖D‖/M updates.
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high temperature β � 1, the spins are completely random, so qβ(σz) ' 2−N . In this case

the weights histogram of the high temperature machine (T = 3.54) displays a sharp peak

centered around zero, which means that the visible and hidden layers are quasi-decoupled.

Thus, for a given hidden configuration h, the probability of activating the j-th spin in the

visible layer is

pλ,β(σzj = 1 | h) =
1

1 + e−
∑
iWijhi−bj

' 1

2
, (2.82)

where we introduced the subscript β in the RBM distribution. Thus, for high temperature,

the visible layer is then randomly distributed. On the other hand, at low temperature the

two polarized states σ = 0,1 are most probable and this causes the histogram to be

wide and flat. When we start the sampling we initialize both visible and hidden layers

randomly. There is a spontaneous symmetry breaking and the machine chooses one of the

two polarizations. If the machine chooses the visible state σ = 1 after equilibration, we

find, by inspecting the hidden states driving the spins, that the hidden layer is arranged

such that only the nodes connected to the positive weights are active (and similarly for the

opposite state). The activations will be in this case large and positive and thus pλ(σz =

1 |h) ' 1. Note that, even though the dataset is ergodic, once the visible layer has

equilibrated into one polarization state, it is unlikely to switch to the other. This ergodicity

issue is analogous to that faced by local Metropolis-Hastings updates in MC simulations

of the low-temperature ferromagnet.

We turn now to discuss performance on the full range of temperatures. Since, for general

spin Hamiltonians with a large N , it is very challenging to compute the partition function

and thus the KL divergence, we instead characterize the performance of the machine using

Ising thermodynamics observables. Given an observable Oβ defined on the spin system,

we can compare its expectation value computed on the spins in the dataset at inverse

temperature β,

〈Oβ〉Dβ = ‖Dβ‖−1
∑

σzk∈Dβ

Oβ(σzk), (2.83)

with the average computed on the spin samples produced by the RBM trained on Dβ.

After training, we can initialize this machine with a random configuration and perform

block Gibbs sampling until equilibration. The expectation value of the observable Oβ
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evaluated on the RBM is given by

〈Oβ〉pλ,β = Z−1
λ,β

∑

σ

Oβ(σ) e−Eλ,β(σ) 'M−1
C

MC∑

k=1

Oβ(σk) , (2.84)

where the configurations σk are drawn from the conditional RBM distributions via block

Gibbs sampling. If the machine is properly trained we expect the deviations δOβ =

|〈Oβ〉Dβ − 〈Oβ〉pλ,β | to be small. Here we examine the magnetization M = 〈∑i σi〉/N ,

the energy U/N and their corresponding fluctuations: the susceptibility χ = (〈M2〉 −
〈M〉2)/(NT ) and the specific heat CV = (〈E2〉 − 〈E〉2)/(NT 2). The thermodynamic ob-

servables, measured from different system size, provide enough information to extract the

critical exponents of the model (and thus the universality class), fully characterizing its

critical behaviour. We plot the comparison of these observables in Fig. 2.9. For the mag-

netization, we find that even with a number of hidden units as low as two (not shown),

the machine is able to reproduce the exact behaviour within statistical error. This may be

expected as it is the spin state itself that the Boltzmann machine is being trained on. One

may therefore expect a similar accuracy on the correlation length ξ, which can be defined

in terms of the Fourier transform of the correlation function

S(k) =
∑

r

cos(k · rij)〈σzi σzj 〉 , (2.85)

also called static structure factor. In particular, the correlation length can be constructed

from the structure factor at q0 = (0, 0) (i.e. the wave-vector of the dominant correlation

for a ferromagnet) and q1 = (2π/L, 0) as follows [130] :

ξ =
L

2π

√
S(q0)

S(q1)
− 1 (2.86)

As shown in the inset of Fig. 2.9b, the accuracy for the correlation length is indeed very

high – only slightly worse than the magnetization for a small number of hidden units. In

contrast, in the case of the energy, even though we are computing its value using the Ising
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Figure 2.9: Thermodynamic observables. Comparison of the observables generated
with the Boltzmann machine with the exact values calculated from the dataset (black)
for a d = 2 Ising system with N = 64 spins. The observables considered are energy (a),
magnetization (b), specific heat (c) and magnetic susceptibility (d). We show the results
for Boltzmann machines with hidden nodes nH = 4, nH = 16 and nH = 64.

Hamiltonian (applied to the visible units), information about the local energy constraints

is not directly included in the training dataset. This results in a larger discrepancy between

the physical value of the energy and that generated with the RBM.

Most interestingly, it appears that for a given physical system size N , the Boltzmann

machine with a fixed nh learns best away from criticality. In Fig. 2.10a we plot the scaling

of the specific heat with the number of hidden units in the machine for five different

temperatures. When the system is in an ordered or a disordered state, the machines trained
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Figure 2.10: Finite-size scaling for the specific heat. CV with the number of hidden
nodes nH . In (a) we show scaling at different temperatures T , when the system is ordered,
disordered and critical. In (b) we show the scaling at criticality for different systems sizes
L. Dotted lines represent the exact value computed on the training dataset.

on the spins of the corresponding datasets are able to reproduce the exact values within

statistical error, irrespective to nh. This is consistent with the weight histograms in Fig. 2.8.

At high temperature this follows from the two layers being quasi decoupled. For low

temperatures we have seen that only the hidden nodes that connect to positive weights (or

negative weights, depending on the polarization of the visible layer) are set to 1; increasing

the number of hidden nodes will not affect the activation of the visible units. Finally,

when the system is at criticality, it is still possible to obtain an accurate approximation

of the physical distribution, however a clear dependency on the finite number of hidden

units appears. As illustrated in Fig. 2.10a, in order to converge the specific heat at the

critical point, the required nh is significantly larger than for T far above or below the

transition. We also note that the same scaling plot for the magnetization shows no clear

dependencies on nh. Finally, we show in Fig. 2.10b the scaling curves at criticality for

different system sizes. As expected, the threshold in the number of hidden units required

for faithful learning of the specific heat grows with increasing N .
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2.5 Conclusions

In this Chapter, we have overviewed a stochastic neural network called a restricted Boltz-

mann machine. We have shown various favourable properties of this probabilistic graphi-

cal model, such as the the intra-layer conditional independence, which allows an efficient

stochastic sampling of neurons configurations. Most importantly, the natural interpre-

tation of a RBM within the framework of statistical mechanics makes the network very

appealing for exploring the physics of many-particle systems. From the perspective of

the representational power of the network, a RBM is capable of describing any function,

provided enough number of neurons [131], analogously to the bond dimension of a MPS.

Regarding unsupervised learning, there exist efficient training algorithms, such as the CD,

to build internal representations of unknown distribution from raw data.

We selected the easiest non-trivial model of magnetism, the Ising model, and performed

numerical simulations where we trained a set of RBMs on Ising data generated with MC at

various temperatures. For a small system in 1d, we confirmed through an exact calculation

that the RBM converges to the physical probability distribution with sufficient training

steps. For the case of 2d, where exact calculations are not feasible, we compared thermody-

namic observables produced by the RBM to those calculated directly by MC. We observed

that away from criticality, the RBM is able to capture the thermodynamics with only a few

hidden units, while the large fluctuations near the critical points required a large amount

of units to learn the distribution. Finally, the performance of a RBM may be evaluated

using a comparison of thermodynamic observables calculated from both the physical and

modelled distribution. The conceptual elimination of reliance on the KL divergence may

suggest alternatives to evaluating the performance of such machines in other applications.

The RBM easily learned a non-trivial distribution of classical spins. The result of this

proof-of-principle experiment is most welcomed, as we can now entertain the possibility of

learning harder distributions underlying quantum data. In order to capture quantum me-

chanical properties with RBMs, we first need to introduce an appropriate parametrization

of quantum states of matter.
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Chapter 3

Neural-network quantum states

In this Chapter, we introduce a class of quantum states based on the natural connection

between generative models and the probabilistic nature of quantum mechanics. We will

start with the simple case of positive wavefunction in Sec. 3.1, and discuss the presence of

phase structures in Sec. 3.1.1. We will then consider in Sec. 3.2 the case of mixed states,

and build a neural-network representation of a density matrix, using on a purification of

the physical Hilbert space. We discuss in Sec. 3.3 the measurement process of generic

observables, and the calculation of entanglement entropy using a two replicated RBMs.

3.1 Neural wavefunctions

We start by considering pure quantum states, described by a wave-function |Ψ〉. We choose

a reference basis |σ〉 = |σ1, . . . , σN〉 of the full Hilbert space H, where σj = 0, 1 1. The goal

is to build a parametric representation ψλ(σ) of the wavefunction, with λ the parameters of

a RBM. The specific choice of neural network is not unique, and many other configurations,

such as connectivity and type of activations, could be considered. We will restrict to a

RBM since we believe it to be an appropriate representation to capture physical states.

1This could for instance corresponds to the quantum number σz = ±1.
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More importantly, the probabilistic model defined by the RBM provides a natural way

to define a quantum state, which follows from the inherently probabilistic nature of the

measurement process in quantum mechanics.

The RBM representation of a pure quantum state is defined in terms of the outcomes

of a projective measurement on the state |Ψ〉. In this process, each degrees of freedom σj

is independently measured, with outcome σj = 0, 1. The output of a measurement is a

N -bit string σ, and the probability of this outcome is given by the Born rule:

P (σ) = |〈σ|Ψ〉|2 = |Ψ(σ)|2 . (3.1)

We make now the assumption that the wavefunction is (or can be gauged to be) positive:

Ψ(σ) ∈ R , Ψ(σ) ≥ 0 ∀ |σ〉 ∈H . (3.2)

While this condition might feel quite restrictive, it is nonetheless true for several cases of

interest, such as many quantum spin models on bipartite lattices and bosonic systems. In

this case, where there is no sign or phase structure, the probability distribution P (σ) fully

characterizes the quantum state:

Ψ(σ) =
√
P (σ) . (3.3)

This property allows us to establish the connection between the quantum state and the

generative model, defining the positive neural wavefunction as the square root of the gen-

erative model probability distribution:

Definition 3.1. Given a Hilbert space H of a N-particle system spanned by the basis

|σ〉 = |σ1, . . . , σN〉, the positive neural wavefunction is a mapping ψλ : H → R that

associates to each basis state |σ〉 ∈H a real and positive value:

ψλ(σ) =
√
pλ(σ) = Z

− 1
2

λ e−Eλ(σ)/2 . (3.4)

The wavefunction parameters are λ = {W , b, c}.
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Now that the neural-network representation of a wavefunction is well defined, a natural

question is what classes of quantum states can be efficiently represented with this ansatz.

As far for the efficient representation, a RBM with enough number of hidden units can

represent any probability distribution [131]. Clearly, the worst case scenario corresponds

to a neural wavefunction with nh = 2N hidden units, which exactly encodes each coefficient

Ψ(σ) in the parameters λ. Therefore, depending on the complexity of the quantum state to

be encoded, an increasing amount of network connections are required to faithfully capture

its properties. Consequently, the number of total parameter (dim[λ]) naturally quantifies

the convergence of this representation. We will loosely refer to efficient representation

when the number of hidden units required to achieve a certain performance threshold (i.e.

fidelity) is of the same order of magnitude of the number of physical degrees of freedom N .

3.1.1 Phase structure

The positivity of the wavefunction |Ψ〉 leads to a simple interpretation of the quantum

state in terms of a classical probabilistic model. This implies that, if there exists a set

of parameters λ of a RBM such that ψλ(σ) ' Ψ(σ) (according to some chosen metric),

then all the quantum correlations of the state |Ψ〉 have been encoded into a classical Ising

Hamiltonian Eλ. This also implies that the physical properties of the system described by

|Ψ〉 can be computed equivalently by considering the corresponding classical Ising system

at thermal equilibrium (this will be discuss later in the chapter). In fact, the distribution

of the states visited by the classical system at equilibrium matches the distribution of the

outcome of a set of projective measurements on the quantum state. In other words, if

such set of parameters exists, the two system are essentially indistinguishable, as far as

measurements of physical observables are concerned. This scenario drastically when the

state |Ψ〉 has a sign or a phase structure 2. We can now write the state as

|Ψ〉 =
∑

σ

Φ(σ) eiφ(σ)|σ〉 , (3.5)

2As seen in Chapter 1, this means the the coefficients Ψ(σ) of the quantum state can be either positive
or negative, as well as complex.
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Figure 3.1: Complex neural wavefunction. The parametrization of a wavefunction
with complex coefficient is realized using two RBMs with different parameters λ and µ,
parametrizing the modulus and phase respectively. At any point of the simulation/training,
the state of the visible layer is synched between the two networks.

which is the most general pure quantum state. This is the case for quantum systems

undergoing unitary dynamics, ground state of frustrated magnets and output states of

generic quantum circuits.

The introduction of a phase structure increases the classical resources required to rep-

resent the state. Now a single RBM with distribution pλ(σ) is clearly unable to encode the

state |Ψ〉. One possible solution to introduce the complex nature of the coefficients is to

use a RBM with complex weights. The resulting ansatz has been proposed by Carleo in the

context of the variational optimization of ground state energy of quantum spin models [74].

While this representation has proved to be efficient in many cases of study, it would lead to

complex-valued conditional probabilities, disabling the block Gibbs sampling mechanism.

In light of this, we decide to keep the RBM parameters λ real, and add an additional set

of (real) parameters µ to represent the phase. In particular, we choose a parametrization

using the effective visible energy as the phase of the wavefunction: φµ(σ) = −Eµ(σ). The

resulting neural wavefunction is built with the λ-RBM parametrizing the amplitudes, cou-

pled with the µ-RBM capturing the phase structure. The state of the visible layer of the

two machines is always kept in synch between one another (Fig. 3.1).
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Definition 3.2. Given a Hilbert space H of a N-particle system spanned by the basis

|σ〉 = |σ1, . . . , σN〉, the neural wavefunction is a mapping ψλµ : H→ C that associates

to each basis state |σ〉 ∈H an amplitude
√
pλ(σ) and a phase Eµ(σ):

ψλµ(σ) ≡
√
pλ(σ) eiφµ(σ) = Z

− 1
2

λ e−(Eλ(σ)+iEµ(σ))/2 (3.6)

The network parameters are (λ,µ) = {W λ, bλ, cλ,W µ, bµ, cµ}.

An important property of this parametrization is that the the probability distribution

of a projective measurements only depends on one sub-set of the RBMs parameters:

P (σ) =
∣∣∣
√
pλ(σ) eiφµ(σ)

∣∣∣
2

= pλ(σ) . (3.7)

This means that when running the Markov chain to sample configurations |σ〉, whether

during the training or to generate sample in a new simulation, only the hidden layer

connected with λ parameters is updated by block Gibbs sampling, while the other hidden

layer (with parameters µ) is left idling.

3.2 Neural density operators

We now turn to the case of quantum states whose purity cannot be assumed. We wish

to extend to neural-network approach applied to the wavefunction to the general case of

mixed states. In other words, we want to find a neural-network representation of a density

matrix, which we will refer to as neural density operator (NDO). In analogy to the pure

state, we define the NDO as a mapping ρ̂θ that, given two input states |σ〉 and |σ′〉,
returns the matrix element ρθ(σ,σ

′). The set θ contains the network parameters, and is

yet to be determined. Contrary to the case of the neural wavefunction, we have several

requirements that the NDO must satisfy in order to describe physical states, which leads in

turn to a more complex parametrization. In fact, the neural wavefunction representation
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is essentially unconstrained, with the only requirement being the normalization

∑

σ

|ψλµ(σ)|2 = 1 . (3.8)

Clearly, this condition can be trivially enforced with a NDO defined as

ρθ(σ,σ
′) = Z−1

θ ρ̃θ(σ,σ
′) , (3.9)

where Zθ =
∑
σ ρ̃θ(σ,σ) is the normalization constant. The self-adjoint condition is also

easy to encode. For instance, we could define the NDO using two real matrices f = f>

and g = −g>, in the following way:

ρ̃θ(σ,σ
′) = fθ(σ,σ

′) + igθ(σ,σ
′) , (3.10)

which clearly respect the hermitian condition. In contrast, there is no simple strategy to

constrain these two matrices in such a way that the density matrix result to be positive

semi-definite. A simple and straightforward solution consists of introducing an hermitian

operator T̂ = T̂ † and define the density operator as ρ̃ = T̂ †T̂ , which is positive semi-definite

by construction. In fact, for any state |ξ〉 one obtains

〈ξ|ρ̂|ξ〉 = 〈ξ|T̂ †T̂ |ξ〉 = |T̂ |ξ〉|2 ≥ 0 (3.11)

Unfortunately, this representation is not efficient, in the sense that the evaluation of one

element of the density matrix

ρ̃θ(σ,σ
′) =

∑

σ′′

T ∗σ′′σTσ′′σ′ (3.12)

requires a summation over an exponentially large number of states. Since our goal is to

obtain a scalable representation of the state, we instead consider a purification procedure,

where we enlarge the Hilbert space so that the state of the new system is pure, and the

density operator is simply obtained by tracing out the additional degrees of freedom.
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Lemma 3.1. Given a density operator ρ̂A living on the Hilbert space HA, it is always

possible to introduce an auxiliary Hilbert space HB with dimension dim(HB) ≥ dim(HA),

and a pure state |Ψ〉 ∈ HA ⊗HB, such that

ρ̂A = TrB(|Ψ〉〈Ψ|) (3.13)

The state |Ψ〉 is not unique and it is called a purification of the physical state ρ̂A, while the

auxiliary Hilbert space has in general no physical meaning. [18]

In the context of the neural-network representation, the purification procedure trans-

lates into adding a new set of variables a = (a1, . . . , ana) with na ≥ N (in general), so that

we can parametrize the composite system with a neural wavefunction

|ψθ〉 =
∑

σa

ψθ(σ,a)|σ〉 ⊗ |a〉 , (3.14)

for some set of internal parameters θ. The NDO is then obtained by tracing out the

auxiliary units from the composite density operator ρ̂σ⊕aθ = |ψθ〉〈ψθ|

ρ̂θ = Tra(|ψθ〉〈ψθ|) , (3.15)

obtaining the density matrix

ρθ(σ,σ
′) =

∑

a

ψθ(σ,a)ψ∗θ(σ
′,a) . (3.16)

Note that in this expression we have once again a summation running over 2na states,

and thus, it is in still not scalable. But the RBM provides a very convenient method to

overcome this problem. The summation over the auxiliary units can be in fact performed

analytically if we encode these degrees of freedom in the latent space of the neural network,

leading to a scalable parametrization of the density operator.
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3.2.1 Latent space purification

Let us consider again a neural wavefunction defined previously

ψλµ(σ) ≡
√
pλ(σ) eiφµ(σ) = Z

− 1
2

λ e−(Eλ(σ)+iEµ(σ))/2 , (3.17)

consisting of two RBMs synched with each other, one to parametrize the modulus and the

other the phase. In particular, recall the parametric form of the effective energy:

Eθ(σ) = − log pθ(σ) = −
∑

j

bθj σj −
∑

i

log

[
1 + exp

(∑

j

W θ
ijσj + cθi

)]
, (3.18)

for any of the two RBMs, θ = λ,µ. We now add the new hidden layer a = (a1, . . . , ana)

to each of the two RBMs in the neural wavefunction. These unit represent the additional

(unphysical) degrees of freedom used in the purification. We couple this new layers with the

visible layers using a new interaction term V θ (and a new bias dθ). With this modification,

we obtain the new new effective energy

Υθ(σ,a) = −
∑

j

bθj σj −
∑

i

log

[
1 + exp

(∑

j

W θ
ijσj + cθi

)]
−
∑

jk

V θjkakσj −
∑

k

dθkak .

(3.19)

This is equivalent of simply enlarging the latent space of the network, and as such, all the

fundamental properties of the RBMs are left unchanged. Therefore, the NDO is built using

two RBMS, as a neural wavefunction, where now the latent space has been increased with

the auxiliary degrees of freedom (Fig. 3.2).

We introduced additional units in the neural network, so that we can now describe the

quantum state of the composite system with a pure state wavefunction. In our case, we

implement a neural wavefunction with a set of parameters (λ,µ), defined as

ψλµ(σ,a) = Z
− 1

2
λ e−(Υλ(σ,a)+iΥµ(σ,a))/2 (3.20)

where Zλ =
∑
σa pλ(σ,a) is the partition function of the λ-RBM.
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Figure 3.2: Neural density operator. Graphical representation of the neural density
operator. The visible layer (green) encodes the state of the physical system σ, which
is shared between the modulus and the phase machines. The hidden layers (blue) are
implemented to represent the correlation within the physical system, while the purification
layer (red) is used to capture the coupling with the environment.

We now proceed to derive an analytical expression for the NDO, so that we can access

the matrix elements efficiently. From the definition above, the NDO is given by

ρ̂λµ =
∑

σσ′

ρλµ(σ,σ′)|σ〉〈σ′| , (3.21)

with matrix elements

ρλµ(σ,σ′) =
∑

a

ψλµ(σ,a)ψ∗λµ(σ′,a)

= Z−1
λ

∑

a

e−(Υλ(σ,a)+Υλ(σ′,a))/2 e−i(Υµ(σ,a)−Υµ(σ′,a))/2

≡ Z−1
λ ρ̃λµ(σ,σ′) .

(3.22)

102



By plugging in the expression for the effective energies we obtain

ρ̃λµ(σ,σ′) =
∑

a

exp

{∑

j

bλj (σj + σ′j) +
∑

i

log

[
1 + exp

(∑

j

Wλ
ijσj + cλi

)]

+
∑

i

log

[
1 + exp

(∑

j

Wλ
ijσ
′
j + cλi

)]

+
∑

k

ak

(∑

j

V λjkak(σj + σ′j) + 2dλk

)

+ i

[∑

j

bλj (σj − σ′j) +
∑

i

log

[
1 + exp

(∑

j

Wλ
ijσj + cλi

)]

−
∑

i

log

[
1 + exp

(∑

j

Wλ
ijσ
′
j + cλi

)]

+
∑

k

ak

(∑

j

V λjkak(σj − σ′j) + 2dλk

)]}
/2 .

(3.23)

We now write the NDO in terms of the matrices Γ
[±]
θ defined as follows:

Γ
[±]
θ (σ,σ′) = −1

2

∑

j

bθj (σj ± σ′j)−
1

2

∑

i

log

[
1 + exp

(∑

j

W θ
ijσj +

1

2
cθi

)]

∓
∑

i

log

[
1 + exp

(∑

j

W θ
ijσ
′
j + cθi

)]

=
1

2

[
Eθ(σ)± Eθ(σ′)

]

(3.24)

obtaining the following:

ρ̃λµ(σ,σ′) = e−Γ
[+]
λ (σ,σ′)−iΓ[−]

µ (σ,σ′)
∑

a

exp

{
1

2

∑

k

ak

[
dλk +

∑

j

V λjk(σj + σ′j) + i
∑

j

V µjk(σj − σ′j)
]}

.

(3.25)
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Since the above expression factorizes over the auxiliary units ak, we can carry out the sum

exactly:

∑

a

exp

{∑

k

ak

[
dλk +

∑

j

V λjk(σj − σ′j)
]}

=
∏

k

∑

ak

exp

{
ak

[
dλk +

∑

j

V λjk(σj − σ′j)
]}

= exp

{∑

k

log

[
1 + exp

(1

2

∑

j

V λjk(σj + σ′j) +
i

2

∑

j

V µjk(σj − σ′j) + dλk

)]}
(3.26)

By defining a new matrix

Πλµ(σ,σ′) = −
∑

k

log

[
1 + exp

(1

2

∑

j

V λjk(σj + σ′j) +
i

2

∑

j

V µjk(σj − σ′j) + dλk

)]
(3.27)

we can give a compact definition for the NDO:

Definition 3.3. Given a Hilbert space H of a N-particle system spanned by the basis

|σ〉 = |σ1, . . . , σN〉, we define an auxiliary system |a〉 = |a1, . . . , ana〉 embedded in the

latent space of a RBM, which purifies the physical system. The neural density operator

is obtained by tracing out the auxiliary units |a〉 from the composite pure state. The matrix

elements of the NDO are given by:

ρλµ(σ,σ′) = Z−1
λ e−Λλµ(σ,σ′) (3.28)

where

Λλµ = Γ
[+]
λ + iΓ[−]

µ + Πλµ , (3.29)

and the matrices Γ
[±]
λ/µ and Πλ,µ are given above. The network parameters are (λ,µ) =

{W λ,V λ, bλ, cλ,dλ,W µ,V µ, bµ, cµ}. The two matrices Vλ and Vµ encode the mixing of

the physical system with the auxiliary system3.

3In the case where both are set to zero, the state ψλµ(σ,a) becomes separable and the resulting NDO
describes a pure state, ρ̂λµ = |ψλµ(σ)〉〈ψλµ(σ)|.
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3.3 Measurements

We turn now to the measurement process, and assume that a set of network parameters

(λ,µ) is given. We first examine the case of generic observables and discuss how they

can be calculated using stochastic sampling (for both a neural wavefunction |ψλµ〉 and

a neural density operator ρ̂λµ). Then, assuming a positive state ψλ(σ) > 0, we use a

replicated copy of the RBM and apply the ratio trick from QMC to estimate the second

Renyi entanglement entropy, with important implications for experiments.

3.3.1 Observables

We start with a neural wavefunction |ψλµ〉 and consider a generic observable Ô, with

matrix elements Oσσ′ = 〈σ|Ô|σ′〉 in the reference basis. We wish to compute the following

expectation value

〈Ô〉 = 〈ψλµ|Ô|ψλµ〉 =
∑

σσ′

ψ∗λµ(σ′)Oσ′σψλµ(σ) . (3.30)

The simplest class of observables are operators Ô that are diagonal in the reference basis,

i.e. Oσσ′ = Oσσδσ′σ. In this case, the expectation value simply becomes

〈Ô〉 =
∑

σ

|ψλµ(σ)|2Oσσ =
1

Zλ

∑

σ

pλ(σ)Oσσ , (3.31)

which does not depends on the set of parameters µ parametrizing the phase structure.

The expectation value is computed as a MC average from samples of the visible layer

generated by the RBM. Recall that this process is particularly efficient for this choice of

neural network, due to the block Gibbs sampling. We can draw configurations {σk} from

pλ(σ) by repeatedly sampling the distributions pλ(h | σ) and pλ(σ | h) and compute the

average value of the observable as

〈Ô〉 ' 1

nMC

nMC∑

k=1

Oσk (3.32)
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with error scaling as δÔ ∼ 1/
√
nMC. Relevant examples of diagonal measurements are

the magnetization mz = 〈σ̂z〉, the spin-spin correlation function Cz
ij = 〈σ̂zi σ̂zj 〉 for quantum

spin systems, the occupation number nj = 〈ĉ†j ĉj〉 for bosons/fermions on lattice, and the

up/down polarization of photons. All of these observables can be evaluated directly from

the configurations of the visible layer of the λ-RBM.

Next, we examine the case of off-diagonal observables Oσσ′ 6= 0. As this observables

depends on the coherences of the system, their computation involves now the phases of the

state, and thus the µ-RBM. We write again the expectation value of the observable:

〈Ô〉 =
∑

σσ′

ψλµ(σ)ψ∗λµ(σ′)Oσ′σ

=
∑

σ

|ψλµ(σ)|2
∑

σ′

ψ∗λµ(σ′)

ψ∗λµ(σ)
Oσ′σ =

1

Zλ

∑

σ

pλ(σ)O[L]
σ

' 1

nMC

nMC∑

k=1

O[L]
σk
.

(3.33)

The expectation value 〈Ô〉 reduces to the MC average of the so-called “local estimate” of

the observables:

O[L]
σ =

∑

σ′

ψ∗λµ(σ′)

ψ∗λµ(σ)
Oσ′σ =

∑

σ′

e(Eλ(σ)−Eλ(σ′))/2 e−i(Eµ(σ)−Eµ(σ′))/2 Oσ′σ, (3.34)

which does not involve the unknown partition function Zλ. Note that to evaluate this sum,

we require that the matrix representation of the observable in the reference basis is sparse4.

In practice, the average is carried out again on the samples from the distribution pλ(σ).

As an example, consider the expectation value of the transverse magnetization σ̂xj on site j,

computed with neural wavefunction in the reference basis {σ = σz}. Then matrix element

of the operator is

[σ̂xj ]σσ′ = 〈σ|σxj |σ′〉 = δσj ,1−σ′j

∏

i 6=j

δσi,σ′i , (3.35)

4The number of non-zero elements of the matrix should scale sub-exponentially with the size N
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and the local estimate of the observable is

[σ̂xj ][L]
σ =

ψλ(σ1, . . . , 1− σj, σj+1, . . . )

ψλ(σ1, . . . , σj, σj+1, . . . )
(3.36)

Using the bloc Gibbs sampling, the expectation value is approximated as a MC average:

〈σ̂xj 〉 '
1

nMC

nMC∑

k=1

[σ̂xj ][L]
σk
. (3.37)

A similar procedure is used to estimate observables using a NDO ρ̂λµ. Now the expec-

tation value of an observable Ô is given by:

〈Ô〉 = Trσ{ρ̂λµÔ} (3.38)

which is calculated considering the full pure neural wavefunction on the composite system:

〈Ô〉 = 〈ψλµ|Ô ⊗ Îa|ψλµ〉 =
∑

σσ′

∑

a

ψλµ(σ,a)ψ∗λµ(σ′,a)Oσ′σ

=
∑

σa

|ψλµ(σ,a)|2
∑

σ′

ψ∗λµ(σ′,a)

ψ∗λµ(σ,a)
Oσ′σ

(3.39)

where Îa is the identity operator acting on the Hilbert space of the auxiliary degrees of

freedom. Therefore, we can approximate the expectation value of Ô with a MC average of

O[L]
(σ,a) =

∑

σ′

e[Υλ(σ,a)−Υλ(σ′,a)]/2e−iΥµ(σ,a)−Υµ(σ′,a)]/2Oσ′σ (3.40)

over a collection of samples drawn from the distribution |ψλµ(σ,a)|2 = Z−1
λ pλ(σ,a). For

the case of NDO, sampling the distribution pλ(σ,a) is equivalent to sampling the condi-

tional distributions pλ(σ | h,a), pλ(h | σ) and pλ(a | σ), which, also does not require the

knowledge of the partition function.
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3.3.2 Entanglement entropy

We finally turn to the measurement of entanglement. For the case of pure states, the

entanglement can be quantified by the Renyi entanglement entropy Sα. In particular we

consider the second Renyi entropy, which was successfully calculated in QMC simulations.

Given a partition of the physical system into a region A and its complement A⊥, the

entropy of region A with reduced density matrix ρ̂A = TrA⊥(ρ̂) = TrA⊥(|Ψ〉〈Ψ|) is given by

S2(ρ̂A) = − log(TrA(ρ̂2
A)) . (3.41)

The algorithm, proposed by Hastings and Melko in 2010 [132] in the framework of stochastic

series expansion, uses two replicated copies of the system to estimate the second Renyi

entropy S2(ρ̂A).

We will now show how this algorithms can be easily translated in the framework of

neural wavefunction. The algorithm, since it was framed on QMC, assumes a real and

positive state, which in our case is parametrized as

|ψλ〉 =
∑

σ,σ⊥

ψλ(σ,σ⊥)|σ〉 ⊗ |σ⊥〉, (3.42)

where {|σ〉} and {|σ⊥〉} are basis state for the regionsA andA⊥ respectively and ψλ(σ,σ⊥) =

(〈σ| ⊗ 〈σ⊥|)|ψλ〉. The reduced density matrix for sub-region A is

ρ̂A = TrA⊥

[ ∑

σ,σ⊥

∑

σ′,σ′⊥

ψ(σ,σ⊥)ψ(σ′,σ′⊥)|σ〉〈σ′| ⊗ |σ⊥〉〈σ′⊥|
]

=
∑

σ,σ′

[∑

σ⊥

ψ(σ,σ⊥)ψ(σ′,σ⊥)

]
|σ〉〈σ′|

(3.43)
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Swap operator
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Figure 3.3: Replica trick for entanglement entropy. The expectation value of the
swap operator computed between two replicated copies of the system. The swap operator
exchanges the tensor indices for the subregion A, and corresponds to computing the trace
of the reduced density matrix squared for sub-region A.

The trace of ρ̂2
A is then:

TrA(ρ̂2
A) = TrA

[ ∑

σ1,σ2

∑

σ⊥1 ,σ
⊥
2

∑

σ′2

ψ(σ1,σ
⊥
1 )ψ(σ2,σ

⊥
1 )ψ(σ2,σ

⊥
2 )ψ(σ′2,σ

⊥
2 )|σ1〉〈σ′2|

]

=
∑

σ1,σ2

∑

σ⊥1 ,σ
⊥
2

ψ(σ1,σ
⊥
1 )ψ(σ2,σ

⊥
1 )ψ(σ1,σ

⊥
2 )ψ(σ2,σ

⊥
2 ) .

(3.44)

We can re-weight this expression to obtain

TrA(ρ̂2
A) =

∑

σ1,σ2

∑

σ⊥1 ,σ
⊥
2

|ψ(σ1,σ
⊥
1 )ψ(σ2,σ

⊥
2 )|2ψ(σ2,σ

⊥
1 )ψ(σ1,σ

⊥
2 )

ψ(σ1,σ⊥1 )ψ(σ2,σ⊥2 )

=

〈
ψ(σ2,σ

⊥
1 )ψ(σ1,σ

⊥
2 )

ψ(σ1,σ⊥1 )ψ(σ2,σ⊥2 )

〉

|ψ1ψ2|2
,

(3.45)
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and evaluate it using MC sampling of the distribution |ψ(σ1,σ
⊥
1 )ψ(σ2,σ

⊥
2 )|2. Note that

the expectation value in the above equation corresponds to measure the expectation value

of an operator that swaps the configurations of the two replicas for region A:

S2(ρ̂A) = − log(TrA(ρ̂2
A)) = − log

〈
ψ(σ2,σ

⊥
1 )ψ(σ1,σ

⊥
2 )

ψ(σ1,σ⊥1 )ψ(σ2,σ⊥2 )

〉

|ψ1ψ2|2

= − log

[
〈ψ2| ⊗ 〈ψ1|SwapA |ψ1〉 ⊗ |ψ2〉

] (3.46)

A more intuitive explanation is obtained by adopting a TN notation (Fig. 3.3) [133].

Starting from the two copies of the system we take the expectation value of the swap

operator (a). This acts on the two copies by swapping the configuration of region A (b).

The TN can be re-arranged (c-f), resulting in the trace of the reduced density matrix

squared, which is directly related to the second Renyi entropy.

Improved ratio trick

The replica trick shown above provides a way to compute the entanglement entropy, but

in practice the expectation value of the Swap operator becomes very small when the sub-

region size grows large, leading to very high sampling noise. To avoid this issue, we instead

implement the improved ratio trick, also proposed in [132]. Assuming we are dealing with

a one-dimensional chain of N sites, the entanglement entropy for a subregion A containing

a block of M sites can be computed as

S2(ρA) = −
M−1∑

j=0

log
〈SwapAj+1〉
〈SwapAj〉

, (3.47)

where Aj contains j sites and 〈SwapA0〉 = 1. The state of the two copies is

|ψλ〉 ⊗ |ψλ〉 =
∑

σ1

∑

σ2

ψλ(σ1)ψλ(σ2)|σ1〉 ⊗ |σ2〉, (3.48)
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and the expectation value of the Swap operator is

〈SwapjA〉 =
∑

σ1

∑

σ2

ψλ(σ1)ψλ(σ2)ψλ(σj12)ψλ(σj21), (3.49)

where we defined σj12 = (σ1
1, σ

2
1, . . . , σ

j−1
1 , σj2, . . . , σ

N
2 ) and σj21 = (σ1

2, σ
2
2, . . . , σ

j−1
2 , σj1, . . . , σ

N
1 ).

The ratio of expectation values then can be rewritten as

〈Swapj+1
A 〉

〈SwapjA〉
=

∑
σ1

∑
σ2
ψλ(σ1)ψλ(σ2)ψλ(σj+1

12 )ψλ(σj+1
21 )

∑
σ1

∑
σ2
ψλ(σ1)ψλ(σ2)ψλ(σj12)ψλ(σj21)

=

∑
σ1

∑
σ2
ψλ(σ1)ψλ(σ2)ψλ(σj12)ψλ(σj21)

ψλ(σj+1
12 )ψλ(σj+1

21 )

ψλ(σj12)ψλ(σj21)∑
σ1

∑
σ2
ψλ(σ1)ψλ(σ2)ψλ(σj12)ψλ(σj21)

=

∑
σ1

∑
σ2
Qj(σ1,σ2)Rj(σ1,σ2)∑

σ1

∑
σ2
Qj(σ1,σ2)

= 〈Rj(σ1,σ2)〉Qj ,

(3.50)

where we defined the probability distribution Qj(σ1,σ2) = ψλ(σ1)ψλ(σ2)ψλ(σj12)ψλ(σj21)

and the observable

Rj(σ1,σ2) =
ψλ(σj+1

12 )ψλ(σj+1
21 )

ψλ(σj12)ψλ(σj21)
. (3.51)

To compute the expectation value 〈Rj(σ1,σ2)〉P j we employ standard MC simulation,

where spin configurations (σ1,σ2) for the two copies are sampled from the probability dis-

tribution Qj(σ1,σ2). If the system is a one-dimensional chain with sub-region A containing

M out of the N physical degrees of freedom, the entanglement entropy for sub-region A

can be computed with the improved ratio trick as

S2(ρM) = −
M−1∑

j=0

log〈Rj(σ1,σ2)〉Qj . (3.52)

where the M different simulations can be ran in parallel.
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3.4 Conclusion

We have introduced a new representation for quantum many-body states based on a RBM.

The representation is built upon the link between the probabilistic interpretation of quan-

tum states in terms of the measurement process, and the probabilistic nature of generative

models. For closed and isolated physical systems, described by a quantum wavefunction,

the quantum state is compressed into the set of network parameters λ of the RBM, pro-

vided the quantum state is positive, Ψ(σ) ≥ 0. If however the state features a non-trivial

sign (phase) structure, an additional RBM with parameters µ is required to parametrize

the state, while retaining all the probabilistic properties of the neural network, such as

block Gibbs sampling. In turn, for open quantum systems described by mixed states, we

have shown that a neural-network representation of a density operator can be constructed

using a purification scheme, where additional degrees of freedom are added to the physical

system such that the quantum state of the composite system is pure. The physical density

operator is then obtained by tracing out the auxiliary units. While this process would

usually be computationally cumbersome, the RBM provides a natural way of carrying out

the task. By embedding the ancillary units in the latent space of the neural network, we

can efficiently obtain a possibly compact representation of the physical density operator.

We point out that, even though we have only considered 2d local Hilbert spaces, the gener-

alization to higher-dimensional spaces (e.g. higher spins, bosonic states, etc) can be easily

obtained by using a multinomial RBM [134].

Given a set of network parameters for either a neural wavefunction or a NDO, expec-

tation values of physical observables can be estimated approximately as a MC average

on the sample obtained from the RBM. The process results to be efficient, as long as

the matrix representation of the observable in the reference basis is sufficiently sparse.

More interestingly, the replica trick used to compute entanglement entropy in QMC has

a straightforward implementation with neural wavefunction, where the second Renyi en-

tropy is obtained by sampling the swap operator between two replicated RBMs. As we

will see in Chapter 4, this property has important consequences for both computational

and experimental studies of strongly-correlated materials.
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Chapter 4

Quantum data reconstruction

Quantum states of many-body systems, whether pure of mixed, can be represented by

a RBM, or a combination thereof. The representation relies on a classical probability

distributions pθ(σ), parametrized by a set of network weights θ. Provided enough number

of parameters, any quantum state can be expressed in this form, but yet this number might

increase exponentially with the size N of the physical system. Now that the neural-network

representation, as well as the measurement procedures, have been defined, we turn to the

problem of discovering the parameters θ. For the case of pure quantum states, for example,

given a target state |Ψ〉, we wish to discover a set of parameters θ∗, such that the neural

wavefunction is a good approximation of the target state, |ψθ∗〉 ' |Ψ〉.
There are two main paradigm to learn a quantum state. In a knowledge-driven ap-

proach, we have some a priori information about the underlying microscopic physical laws

governing the system. For ground state problem of an Hamiltonian Ĥ, in some special

cases it is possible to find an exact neural-network representations [135, 136]. In general,

however, given a neural-network ansatz |ψθ〉, this problem should be tackled numerically,

for example through VMC. According to the variational principle, the energy functional

Eθ = 〈ψθ|Ĥ|ψθ〉 (4.1)

is greater or equal to the ground state energy E0, and Eθ = E0 if and only if the neural-
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network state is the ground state of the Hamiltonian, |ψθ〉 = |Ψ0〉. One can then optimize

the variational wavefunction ψθ with respect to the parameters θ to minimize Eθ until

convergence. Many different variational ansatz have been proposed for VMC, depending

on the a priori insights we possess on the quantum state we are trying to learn. ML

has entered the picture of VMC optimization only recently [74], using a modified RBM

with complex weights. This representation is being investigated from the perspective of

representational power [80], its relation with the entanglement of quantum states [137] and

its performance in the numerical simulations [138, 139].

The second path to discover the network parameters, which we develop in this The-

sis, assumes minimal knowledge about the quantum state under consideration, and rather

follows a data-driven approach to construct the neural-network state. More precisely, we

wish to reconstruct the quantum state from a set of data consisting of appropriate measure-

ments performed on the physical systems. This process of quantum state reconstruction

(QSR), also known as quantum state tomography [140, 141, 142], is becoming increasingly

important to validate and characterize the new generation of quantum hardware, including

both quantum circuit and synthetic quantum matter.

The Chapter is organized as follows. In Sec. 4.1 we present a set of algorithms to

reconstruct positive and complex wavefunctions, as well as density matrices for mixed

states. In Sec. 4.2 we demonstrate the power of neural-network QSR for a variety of

quantum states, with datasets containing either synthetic measurements generated with

classical computers, or real measurement taken in laboratories. In Sec. 4.3 we conclude

by discussing the limitations and reconstruction errors of the proposed technique. The

Chapter covers material from the following references: [143, 144, 145].
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4.1 Neural-network quantum reconstruction

Let us consider an unknown target quantum state we wish to reconstruct, such as a density

operator %̂. Within an experimental scenario, the first assumptions is the ability to reliably

prepare many identical copies of the state %̂. Furthermore, one requires a set of observ-

ables {Ôγ} whose measurements are feasible in the experimental setup. Then, traditional

quantum state tomography aims to learn the full density matrix %(σ,σ′) (in some given

reference basis {σ}), from the experimental measurements outcomes of the observables,

Oexp
γ = 〈Ôγ〉exp. Among traditional techniques we find the linear inversion method, which

approximates the probability of obtaining outcome γ from measuring the observable Ôγ
with an experimental histogram [146]

P (γ | %̂) = Tr
(
%̂ Ôγ

)
' Phist(γ) , (4.2)

and finds a reconstructed density matrix ρ̂LI by inverting Eq. 4.2:

ρ̂LI =
∑

γγ′

T−1
γγ′Phist(γ

′)Ôγ , (4.3)

where Tγγ′ = Tr(ÔγÔγ′). The simplicity of this approach comes with important short-

comings. First, the reconstructed density matrix can become non positive semi-definite,

and thus unphysical. Second, the density matrix ρ̂LI is represented explicitly, leading to

an exponential overhead in the quantum state representation. Third, the reconstruction

process requires the matrix inversion, which also scales exponentially with system size.

A different approach, also related to our proposed technique, is the maximum-likelihood

estimation (MLE). Given a parametrization ρ̂MLE of the density matrix, the reconstruction

is carried out by maximizing the probability that the density matrix ρ̂MLE would generate

the measurement data:

ρ̂MLE = argmax
[
P (γ | %̂)

]
. (4.4)

In this case, the reconstruction can be in principle carried out without exponential overhead

and the density matrix can be built to be positive semi-definite by construction. A typical
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choice of representation is given by

ρ̂MLE =
T̂ †T̂

Tr(T̂ †T̂ )
(4.5)

where T̂ is a tri-diagonal hermitian matrix. The drawback of this approach is however still

in the representation, which is clearly not scalable.

Traditional brute-force approaches to QSR pose a high demand on computational re-

sources, and thus allow the reconstruction of physical systems with a only small number of

degrees of freedom [147, 148]. While there are techniques to reduce the experimental bur-

den, such as compressed sensing [149], large systems can be studied only through techniques

requiring a feasible number of measurements. For example, permutationally-invariant to-

mography [150], makes efficient use of the symmetries of prototypical quantum optics

states, and can be amenable to a large number of qubits. However, the QSR of a general

many-body systems remains very challenging. In this context, the efficient representation

of quantum states with MPS, makes TNs the state-of-the-art tool for the reconstruction of

low-entangled states [151, 152]. For highly-entangled quantum states resulting either from

deep quantum circuits or high-dimensional physical systems, alternative representations

are required.

In the task of reconstructing an unknown quantum state from measurements, there are

two fundamental complexity issues. First, we need an efficient parametrization of the state.

That is, irrespective to the procedure to learn the state coefficients, we need to be able

to store the quantum state in a compact way. In this regard, we have shown that neural

network have the potential to provide such a representation. Second, we need algorithm

that extracts as much information as possible from a limited set of measurements data.

Thus, QSR is a data-driven problem, so it is very natural to implement ML algorithms to

design a QSR framework for quantum many-body states. In the following Subsections, we

will introduce and discuss in detail the reconstruction algorithms for pure positive/complex

quantum wavefunction and mixed density operators.
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4.1.1 Positive wavefunctions

We begin with the simplest scenario where the target quantum state we wish to reconstruct

is pure and described by a quantum wavefunction |Ψ〉 with positive coefficients:

Ψ(σ) ≥ 0 ∀|σ〉 ∈H . (4.6)

Under the assumption of purity, the projective measurements in the reference basis {|σ〉}
provides sufficient information to carry out QSR reliably. The outcomes of the measure-

ments are distributed according the probability distribution P (σ) = |Ψ(σ)|2, obtained by

projecting the target wavefunction into the reference basis. We adopt the neural wave-

function representation without any phase structure:

ψλ(σ) ≡
√
pλ(σ) = Z

− 1
2

λ e−Eλ(σ)/2 . (4.7)

The strategy is to carry out the reconstruction using unsupervised learning on the distri-

bution P (σ). This corresponds to minimize the KL divergence

CPλ =
∑

σ

P (σ) log
P (σ)

|ψλ(σ)|2 . (4.8)

Upon nearly perfect training Cλ ' 0, the following condition holds:

P (σ) = |Ψ(σ)|2 ' |ψλ(σ)|2 , (4.9)

and, since both states are positive, we have discovered the quantum state ψλ(σ) ' Ψ(σ),

as required. As the quantum state, and so the probability P is unknown, we assume we

possess a dataset D of training samples distributed according to P (σ), where each sample

in the dataset consists of a N -bit measurement string (σ1, . . . , σN). As previously covered

in Chapter 2, the cost function is approximated by

CPλ ' CDλ = −‖D‖−1
∑

σ∈D

log |ψλ(σ)|2 = logZλ + ‖D‖−1
∑

σ∈D

Eλ(σ) (4.10)
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where we omit the constant data entropy term HD. This is equivalent to the case of classical

data, with the gradient of the cost function equal to

∇λCDλ = ‖D‖−1
∑

σ∈D

∇λEλ(σ)−
∑

σ

pλ(σ)∇λEλ(σ) . (4.11)

The parameters of the neural wavefunction (i.e. the single RBM) are updated following

one of the optimization algorithms covered in Chapter 3, the simplest one being SGD:

λ −→ λ− η ∇λCDλ . (4.12)

Therefore, the reconstruction problem here reduces to learning a classical probability dis-

tribution P (σ) = Ψ2(σ), over an exponentially large phase space.

4.1.2 Complex wavefunctions

We now turn to the case of a complex target wavefunction, which requires a more careful

approach. Now the quantum states has coefficients

Ψ(σ) = |Ψ(σ)|eiφ(σ) . (4.13)

Aside purely complex states, these also include the class of real-valued wavefunctions

with a sign structure, where the the real-valued coefficients can assume different signs

(φ(σ) = 0, π). If we now perform projective measurements on the reference basis, the

various configurations obtained by collapsing the state are distributed again with proba-

bility P (σ) = |Ψ(σ)|2, and thus all the information about the phase φ(σ) is lost. Instead,

after state preparation, we apply a unitary transformation U to the state |Ψ〉 (before the

projective measurements), so that the distribution of the measurements P ′(σ) = |Ψ′(σ)|2
of the resulting state Ψ′(σ) = 〈σ|U |Ψ〉 contains “some” information about the phases. In

general, many different unitaries must be independently applied to extract the full phase

structure φ(σ). The amount of measurement settings (i.e. number of unitaries) and the

structure thereof depends on the particular type of quantum state under reconstruction.
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The unitary transformations performed before the projective measurements are equiv-

alent to a change of basis of the many-body Hilbert space H. At this point, we make

the assumption of a tensor product structure U =
⊗N

j=1 Ûj. This implies that only local

changes of bases are allowed. We now introduce the following notation for a generic basis

{|σb〉 = |σb11 , . . . , σ
bN
N 〉}, where the vector b identifies the local basis bj for each site j. For

instance, if the j-th site is left unchanged by U (i.e. it is measured in the reference basis),

then bj = z. In contrast, if for example bj = x, then the site j is measured in the σx basis,

and so on. In the new basis, the target wavefunction becomes

Ψ(σb) = 〈σb|Ψ〉 =
∑

σ

〈σb|σ〉〈σ|Ψ〉

=
∑

σ

U(σb,σ)Ψ(σ) ,
(4.14)

and the distribution of the projective measurements is

Pb(σ
b) =

∣∣∣∣
∑

σ

U(σb,σ)Ψ(σ)

∣∣∣∣
2

(4.15)

If the unitary transformations are properly chosen, the distribution in the new basis con-

tains fingerprints of the phase structure, which can be learned by the neural network.

Note that Ûj quantifies the overlap between the new and old local bases |σbjj 〉 and |σzj 〉
respectively. The matrix elements of U are given by the product

U(σb,σ) =
N∏

j=1

Ûj(σbjj , σj) =
N∏

j=1

〈σbjj |σj〉 . (4.16)

Before proceeding to discuss the reconstruction algorithm, let us consider a simple example

with only two binary degrees of freedom, and show the importance of the choice of bases,

and how it affects the reconstruction procedure.
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Unitary transformation for 2 qubits

Let us consider the following generic 2-qubits state:

|Ψ〉 =
∑

σ0,σ1

Ψ(σ0, σ1)|σ0σ1〉 ≡
∑

σ0,σ1

Ψσ0σ1e
iφσ0σ1 |σ0σ1〉 (4.17)

with Ψσ0σ1 ∈ R. By learning the distribution underlying the projective measurements in

the reference basis, we can discover the value of the coefficients Ψσ0σ1 . To extract the

phase, let us perform a simple transformation, changing the local basis of the qubit j = 0

from σ0 to σx0
1. This is realized by applying the unitary rotation U = Ĥ0 ⊗ Î1, where

Ĥj =
1√
2

[
1 1

1 −1

]
(4.18)

is called the Hadamard gate. A simple way to picture the transformation consists of

interpreting the unitary U as a quantum circuit acting on the state |Ψ〉 (Fig. 4.1). Given

this local change of basis, the wavefunction becomes

Ψ(σb) = Ψ(σx0 , σ1) =
∑

σ0

〈σx0 |σz0〉Ψ(σ0, σ1) =
∑

σ0

H0(σx0 , σ0)Ψ(σ0, σ1)

=
1√
2

[
Ψ(σ0 = 0, σ1) + (1− 2σx0 )Ψ(σ0 = 1, σ1)

]

=
1√
2

[
Ψ0σ1e

iφ0σ1 + (1− 2σx0 )Ψ1σ1e
iφ1σ1

]
.

(4.19)

1Unless otherwise stated, we always imply σj = σzj .
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2 qubits

�0

�1 11010 . . .

01100 . . .

 (�)

P (�) = | (�)|2

U
�0

�1

 (�)

P (�b) = | (�b)|2 / cos��

10110 . . .

10001 . . .

H

 (�)  (�b) = h�|U | i
ba

Figure 4.1: Unitary rotations for 2 qubits. a) Measurements on the reference basis.
b) Measurement in the rotated basis. The unitary rotation (the Hadamard gate on qubit
0) is applied after state preparation and before the projective measurement.

If we now perform a projective measurement on the quantum state after this rotation, the

measurement outcomes are distributed according to the probability

Pb(σ
x
0 , σ1) = |Ψ(σx0 , σ1)|2 =

1

4

∣∣∣∣Ψ0σ1e
iφ0σ1 + (1− 2σx0 )Ψ1σ1e

iφ1σ1

∣∣∣∣
2

=
1

4

[
Ψ2

0σ1
+ Ψ2

1σ1
+ (1− 2σx0 )Ψ0σ1Ψ1σ1

(
ei(φ0σ1−φ1σ1 ) + e−i(φ0σ1−φ1σ1 )

)]

=
Ψ2

0σ1
+ Ψ2

1σ1

4
+

1− 2σx0
2

Ψ0σ1Ψ1σ1 cos(∆φ) ,

(4.20)

where ∆φ = φ0σ1 − φ1σ1 . By performing the same rotation on the other qubit we obtain

a similar expression, with ∆φ = φσ00 − φσ01. We can see that these rotations encode a

partial information about the phase structure in the measurement outcomes in the new

basis. However, note that the “signal” cos(φ0σ1−φ1σ1) is only processed by the RBM if both

Ψ1σ1 and Ψ0σ1 are different from zero. In other words, for the transformation to convey

information about the phases, the rotated wavefunction must have a non-zero overlap with

the target wavefunction in the reference basis. In fact, if the state under consideration is

the singlet state |Ψ〉 = (|01〉− |10〉)/
√

2, for example, then the probability in Eq. 4.20 does

not depend on the phase difference ∆φ. In this case, to retrieve the phase structure we
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should implement the transformation U = Ĥ0 ⊗ Ĥ1. Further, note that the information

provided by the cosines of the phase differences is not sufficient, and additional rotations

need to implemented. For example, the rotation from σj to σyj , using the elementary

rotation/gate

K̂j =
1√
2

[
1 −i
1 i

]
, (4.21)

leads to a measurement distribution proportional to sin ∆φ. This rotation, coupled with

the Hadamard gate, provides sufficient information to reconstruct both the amplitudes and

phases of the 2-qubits state |Ψ〉, as long as all coefficients Ψσ0σ1 are different from zero.

Reconstruction algorithm

We present now the reconstruction procedure, assuming that we have prepared a training

dataset D using a combination of different bases. Each instance in the dataset contains a

configuration |σb〉 and the corresponding basis b where the system was measured, such as:

|σb〉 = (1, 0, 1, 0, 0, . . . , 1, 0, 1) , b = (z, x, z, z, y, . . . , z, x, z) . (4.22)

Similarly to the case of positive wavefunctions, we aim to minimize the statistical diver-

gence between the data and the neural-network distribution. Since we have additional

bases, we now require the simultaneous minimization of the KL divergence between the

distribution Pb(σ
b) and the distribution |ψλµ(σb)|2 for any measurement basis. The neural

wavefunction in the rotated basis is simply obtained as

ψλµ(σb) =
∑

σ

U(σb,σ)ψλµ(σ) , (4.23)

with

ψλµ(σ) = Z
−1/2
λ ψ̃λµ(σ) = Z

−1/2
λ e−[Eλ(σ)+iEµ(σ)]/2 (4.24)
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The full cost function is given by

CPλµ =
∑

b

∑

σb

Pb(σ
b) log

Pb(σ
b)

|ψλµ(σb)|2 (4.25)

and approximated with the dataset as

CDλµ = −‖D‖−1
∑

σb∈D

log |ψλµ(σb)|2 (4.26)

We now plug in the expression of the neural wavefunction:

CDλµ = −‖D‖−1
∑

σb∈D

log |ψλµ(σb)|2

= logZλ − ‖D‖−1
∑

σb∈D

[
log ψ̃λµ(σb) + c.c

]

= logZλ − ‖D‖−1
∑

σb∈D

[
log

(∑

σ

U(σb,σ)ψ̃λµ(σ)

)
+ c.c

]
.

(4.27)

The gradients of the unnormalized wavefunction are

∇λψ̃λµ(σ) = −1

2
ψ̃λµ(σ)∇λEλ(σ) (4.28)

∇µψ̃λµ(σ) = − i
2
ψ̃λµ(σ)∇µEµ(σ) (4.29)
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Consequently, we obtain for the full gradient:

∇λCDλµ = ∇λ logZλ − ‖D‖−1
∑

σb∈D

[∑
σ U(σb,σ)∇λψ̃λµ(σ)
∑
σ U(σb,σ)ψ̃λµ(σ)

+ c.c

]

=
1

2
‖D‖−1

∑

σb∈D

[∑
σ U(σb,σ)ψ̃λµ(σ)∇λEλ(σ)
∑
σ U(σb,σ)ψ̃λµ(σ)

+ c.c

]
− Z−1

λ

∑

σ

pλ(σ)∇λEλ(σ)

=
1

2
‖D‖−1

∑

σb∈D

[
〈
∇λEλ(σ)

〉
Qb

+
〈
∇λEλ(σ)

〉∗
Qb

]
−
〈
Eλ(σ)

〉
pλ

= ‖D‖−1
∑

σb∈D

Re

[〈
∇λEλ(σ)

〉
Qb

]
−
〈
Eλ(σ)

〉
pλ
,

(4.30)

and

∇µCDλµ =
i

2
‖D‖−1

∑

σb∈D

[
〈
∇µEµ(σ)

〉
Qb
−
〈
∇µEµ(σ)

〉∗
Qb

]

= −‖D‖−1
∑

σb∈D

Im

[〈
∇µEµ(σ)

〉
Qb

]
.

(4.31)

We first need a function that, given some configuration |σb〉 in the dataset and the set of

network parameters θ = λ,µ, it returns the value of the rotated gradient

〈∇θEθ(σ)
〉
Qb

=

∑
σ Q

b(σ)∇θEθ(σ)∑
σ Q

b(σ)
=

∑
σ U(σb,σ)ψ̃λµ(σ)∇θEθ(σ)
∑
σ U(σb,σ)ψ̃λµ(σ)

(4.32)

We start by identifying the set of sites where the unitary rotation is non-trivial (different

from the identity). Let us assume that the local basis b` is different from the reference

basis (Û` 6= Î`) for the sites (τ1, . . . , τNU )(with a total of NU non-trivial unitaries). For

instance, if the configuration |σbk〉 was measured in the basis b = (z, x, z, x), the site-set
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would be τ = (2, 4). The full unitary matrix U is then

U =

[⊗

`∈τ

Û`
]
⊗
[⊗

`/∈τ

Î`
]
. (4.33)

Note that this unitary acts non-trivially on subspace HU of the full Hilbert space, with

dimension dim(HU) = 2NU , and it has the following matrix elements:

U(σb,σ) =

NU∏

j=1

〈σ̂bτjτj |στj〉
∏

`/∈τ

δ
σ̂
b`
` ,σ`

. (4.34)

Let’s define an orthonormal basis |S〉 = |S1, . . . , SNU 〉 for the sub-space HU , with |Sj〉 =

|στj〉. Then, the summation reduces to:

∑

σ

U(σb,σ)ψ̃λµ(σ) =
∑

S

NU∏

j=1

〈σbτjτj |Sj〉
[(⊗

`/∈τ

〈σb`=z` |
)
⊗ 〈S|

]
|ψ̃λµ〉 , (4.35)

which can be carried out efficiently for moderate values of NU .

4.1.3 Density operators

Let us now consider now the problem of reconstructing an unknown mixed quantum state

described by a density operator %̂. Given a basis b, the measurements are now distributed

according to the probability distribution P (σb) = %(σb,σb). Analogously to the case of

pure complex wavefunctions, we train the NDO to minimize the total divergence for all

the bases:

CPλµ =
∑

b

∑

σb

P (σb) log
P (σb)

ρλµ(σb,σb)
. (4.36)
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Under the same assumption of a datasets D containing snapshots σb taken in different

bases b, the cost function is approximated as

CPλµ ' CDλµ = 〈Lλ,µ〉D = −‖D‖−1
∑

σbk∈D

log ρλµ(σbk,σ
b
k) (4.37)

where once again we omit the constant entropy of the data-set.

In order to take the derivative of Eq. (4.37), we first need to rotate the density operator

from the original reference basis σ to the new basis, obtaining ρ̂bλ,µ = U ρ̂λ,µU †. As in the

previous section, the unitary rotation U is simply given by the product of unitary matrices

U =
⊗

j Ûj, each performing a local change of basis Ûj = 〈σbjj |σj〉. The gradients of the

average negative log-likelihood 〈Lλ,µ〉D with respect to the network parameters become

∇λ〈Lλ,µ〉D = ‖D‖−1
∑

σb∈D

[
〈∇λΓ[+]

λ +∇λΠλµ〉Q
σb
− 〈∇λΓ[+]

λ +∇λΠλµ〉ρλ,µ
]

(4.38)

and

∇µ〈Lλ,µ〉D = ‖D‖−1
∑

σb∈D

〈i∇µΓ[−]
µ +∇µΠλµ〉Q

σb
(4.39)

The averages

〈Ô〉Qb =

∑
σσ′ Q

b(σ,σ′)O(σ,σ′)∑
σσ′ Q

b(σ,σ′)
. (4.40)

with respect to the quasi-probability distributions

Qb(σ,σ′) = Ub(σb,σ)ρλ,µ(σ,σ′)U∗b (σb,σ′) (4.41)

can be evaluated directly on the samples in the datasets, with the double summation

running over 4t terms for a basis b where there are only t local unitaries Uj 6= Ij. On

the other hand, the average of the log-probability over the full model probability distri-

bution 〈∇λ log ρ̃λ,µ(σ,σ)〉ρλ,µ appearing in Eq. (4.38) requires the knowledge of Zλ and

can be computed exactly only for very small system sizes. For larger N , it is possible to

approximate this average by running a Markov chain MC on the distribution ρλ,µ(σ,σ),

analogously to the calculation of the negative phase in the standard RBM training.
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4.2 Numerical simulations

In this Section, we apply the neural-network QSR technique to a variety of quantum states,

demonstrating its performance through numerical simulations. We will present trainings

for positive/complex pure state and mixed states, as well as using synthetic data generated

with classical simulations and experimental data.

4.2.1 W state

The first quantum state we consider is the W state, a paradigmatic N -qubit multipartite

entangled state defined as

|Ψ〉 =
1√
N

(
|100 . . . 〉+ |010 . . . 〉+ · · ·+ | . . . 001〉

)
. (4.42)

Since all the coefficients in |Ψ〉 appear with the same sign, we will adopt the positive

neural wavefunction as a parametrization for the quantum state in the reconstruction

process. Because of the constrained structure of the state (only N basis states with equal

probability P (σ) = 1/N), it is possible to perform exact sampling of |Ψ〉 to generate

training data. We generate several datasets with an increasing number of synthetic density

measurements obtained by sampling the W state in the {|σ〉} basis. After convergence in

the training process, we can probe the performance of the reconstruction by first examining

the histogram of the frequency of the N components
(
|100 . . . 〉, |010 . . . 〉 . . . ). We use the

trained parameters to sample configurations from |ψλ(σ)|2 = pλ(σ) (by using standard

block Gibbs sampling in the RBM) and compute the histograms of the counts. We show

this in Fig. 4.2a for N = 20 and nh = N . We show three histograms obtained with a

different number of samples in the training dataset. From the histograms, we see that the

N components converge to equal frequency as we increase the number of training samples.

This result qualitatively proves the success of the reconstruction. A crude (quantitative)

estimation of the performances can be gained by calculating the variance of the average

occupation number for each of the states appearing in |ψλ〉. However, if we want a more
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Figure 4.2: W state. a) We plot, for a different number of training samples NS, the
histogram of the appearance of the N basis states found in the W state. As NS is increased,
the distribution flattens towards its true value. b) Overlap between the true and the
reconstructed state as a function of the number of training samples.

rigorous criteria, we can instead consider the overlap of the neural wavefunction with the

original W state

O = |〈Ψ|ψλ〉| =
∣∣∣∣
∑

σ

Ψ(σ) ψλ(σ)

∣∣∣∣ = Z
− 1

2
λ

∑

σ

Ψ(σ)
√
pλ(σ) . (4.43)

Unfortunately, in this form, the overlap cannot be directly estimated, since the partition

function is not known. Thus, we instead consider the overlap squared (i.e. fidelity)

F = |〈Ψ|ψλ〉|2 = 〈Ψ|ψλ〉〈Ψ|ψλ〉

=

[∑

σ

|ψλ(σ)|2 Ψ(σ)

ψλ(σ)

]
×
[∑

σ

|Ψ(σ)|2 ψλ(σ)

Ψ(σ)

]

=

〈
Ψ(σ)

ψλ(σ)

〉

|ψλ(σ)|2
×
〈
ψλ(σ)

Ψ(σ)

〉

|Ψ(σ)|2
.

(4.44)

In this way, the two contributions of the partition function cancel out and the estimator
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can be evaluated simply by sampling both the neural wavefunction and the target state.

For this specific case, the target wavefunction has a very simple representation

Ψ(σ) =
δ(σ − 2k)√

N
, (4.45)

with k ∈ [0, . . . , N − 1]. The fidelity reduces to

F =

[
1

n

n∑

k=1

eEλ(σk)/2

N−1∑

q=0

δ(σk − 2q)√
N

]
×
[
N−1∑

q=0

e−Eλ(σ=2q)/2

√
N

]
, (4.46)

where the qubits configurations σk are drawn directly from the trained neural wavefunc-

tion’s distribution |ψλ(σ)|2 = pλ(σ) by performing block Gibbs sampling from the two con-

ditional distributions pλ(σ |h) and pλ(h |σ). In Fig. 4.2b we show the overlap O =
√
F as

a function of the number of samples in the training datasets for three different values of N .

For a system size substantially larger than what is currently available in experiments [153],

an overlap O ∼ 1 can be achieved with a moderate number of samples. In particular,

for N = 8 we found a faithful reconstruction with only about 100 N -bit measurements, a

number comparable with state-of-the-art QST [149, 154, 155].

Phase-augmentation

We now include the effect of possible complex phases in the W state, and we do so by

adding a local phase shift exp(iθ(σ)) with a random phase θ(σ) to each qubit, obtaining

|Ψ〉 =
1√
N

(
eiθ1|100 . . . 〉+ eiθ2|010 . . . 〉+ · · ·+ eiθN |0 . . . 01〉

)
. (4.47)

Given the specific structure of the state |Ψ〉, we require the (N − 1) supplementary basis

b = (x, x, z, z, . . . ) , (z, x, x, z, . . . ) , (z, z, x, x, . . . ), . . . (4.48)
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realized in a collection of bases {x[b]} of the N -body98

quantum system. During this stage, the network pa-99

rameters (�, µ) are optimized to maximize the dataset100

likelihood, in a way that | �,µ(x[b])|2 ' | (x[b])|2 (see101

Suppl. Inf.). Once trained,  �,µ(x) approximates both102

the wave-function’s amplitudes and phases, thus recon-103

structing the target state. The accuracy of the recon-104

struction can be systematically improved by increasing105

the number of hidden neurons M in the RBM for fixed N ,106

or equivalently the density of hidden units ↵ = M/N .14,19107

One key feature of our QST approach, is that it only108

needs raw data, i.e. many experimental snapshots com-109

ing from single measurements, rather than estimates of110

expectation values of operators.1,4,16–18 This setup im-111

plies that we circumvent the need to achieve low levels of112

intrinsic Gaussian noise in the evaluations of mean values113

of operators.114

To demonstrate this approach, we start by considering115

QST of the W state, a paradigmatic N -qubit multipartite116

entangled wave-function defined as117
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To mimic experiments, we generate several datasets with118

an increasing number of synthetic density measurements119

obtained by sampling from the W state in the �z basis.120

These measurements are used to train an RBM model121

featuring only the set of parameters �, since the target122

| W i is real and positive in this basis. After the training,123

we sample from | �(�z)|2 and build a histogram of the124

frequency of the N components
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|100 . . .i, |010 . . .i . . .).125

In Fig. 1(a) we show three histograms obtained with a126

different number of samples in the training dataset for127

N = 20 and ↵ = 1. From the histograms, we see that the128

N components converge to equal frequency in the limit129

of large sample number, as expected for the W state.130

To better quantify the quality of this reconstruction, we131

compute the overlap OW = |h W | �i| of the RBM wave-132

function with the original W state. In Fig. 1(b) OW is133

shown as a function of the number of samples in the134

training datasets for three different values of N . For a135

system size substantially larger than what is currently136

available in experiments,26 an overlap OW ⇠ 1 can be137

achieved with a moderate number of samples. As a com-138

parison, for N = 8, a brute-force QST requires almost139

106 measurements.4 Our RBM achieves similar accuracy140

in reconstructing the wave-function with only about 100141

N -bit measurements, a number comparable with other142

state-of-the-art QST approaches.15–17 To examine a more143

challenging case for QST, one can augment the W state144

with a local phase shift exp(i✓(�z
k)/2) with random phase145

✓(�z
k) applied to each qubit. QST must now be car-146

ried out using the full RBM wave-function Eq. (1), and147

trained on 2(N � 1) additional bases. In Fig. 1 we plot a148

comparison between the exact phases (c) and the phases149

learned by the RBM (d) for N = 20 qubits, showing150

very good agreement (OW = 0.997). We expect our ap-151

proach to perform equally well for other paradigmatic152
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Figure 1. Tomography of the W state. a) Histogram
of the occurrence of each of the superposed states in the W
state for N = 20 qubits. We plot three histograms obtained
by sampling a RBM trained on a dataset containing 50 (red),
1000 (blue) and 20000 (green) independent samples. b) Over-
lap between the W state and the wave-function generated by
the trained RBM with ↵ = 1 as a function of the number of
samples Ns in the training dataset. c-d) Phases ✓(�z

k) for
each of the N = 20 states (different colors) in the phase aug-
mented W state. We show the comparison between the exact
phases (c) and the phases learned by a RBM (d), trained
using 6400 samples per basis (magnitudes of the phases are
plotted along the radial direction). RBM tomography allows
here to systematically converge to the target W state for both
cases with real and complex wave-function coefficients, upon
increasing the number of experimental samples.
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more details, including an examination of the effects of154
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and demonstrate that RBMs can encode compactly (i.e.156
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lems that are directly relevant for quantum simulators161
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Figure 4.3: Phase structure for the W state. We compare the full phase structure
between the generated target W state and the trained neural wavefunction for N = 20.
Each colour represent a different phase (out of the total N), while the value of the phase
is plotted along the radial direction.

where in the basis {xj, xj+1} we have |Ψ|2 ∝ cos(θj+1−θj), and the (N −1) supplementary

basis

b = (x, y, z, z, . . . ) , (z, x, y, z, . . . ) , (z, z, x, y, . . . ), . . . (4.49)

where in the basis {xj, yj+1} we have |Ψ|2 ∝ sin(θj+1−θj). Therefore, the neural wavefunc-

tion is trained on a total of 2N−1 bases (including the reference basis). The transformation

matrices for the j-th basis ({Xj, Xj+1}) and ({Xj, Yj+1}) are given by UXX = Ĥj ⊗ Ĥj+1

and UXY = Ĥj ⊗ K̂j+1. We performed the training for N = 20 and found a very good

agreement with an overlap of O ' 0.997. In Fig. 4.3 we plot a comparison between the

exact phases (a) and the phases structure learned by the RBM (b). Each of the 20 phases

is plotted with a different colour, and the value of the phase is plotted along the radial

direction, ranging from from 0 to 2π.
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Comparison with other tomographic techniques

We now show the comparison of performances between our QSR method and other tomo-

graphic approaches. We do so for the W state, as it is a common choice for benchmark-

ing QSR techniques. The full brute-force tomography, as expected, requires a very large

number of measurements (e.g. NS ∼ 6 × 105 for an N = 8 state [156]). To reduce the

measurements, more efficient methods exists, such as compressed sensing [149, 157] and

permutationally invariant tomography [154, 158]. It has been shown that using compressed

sensing, a drastic reduction of the number of measurements is possible (although still expo-

nentially scaling with N), allowing an efficient reconstruction of the 8 sites W state [149].

Permutationally invariant tomography can in principle be also applied on this problem.

Indeed this technique requires a number of measurements which scales as N2 for the Dicke

states [150, 159], and the W state is a particular class of such a states. Compressed sens-

ing in the permutationally invariant subspace can also be combined together to further

reduce the number of measurements for the Dicke states [160]. Large phaseless W states

have also been reconstructed using MPS-based tomography [155]. In this case we can also

quantitatively compare the number of measurement required for the tomography and show

that neural network reconstruction is as efficient as such state-of-the art method for the W

state (without phases). Following Ref. [155], for N = 20 the MPS tomography with k = 2

local reductions converges to a fidelity F ∼ 0.99 for infinite precision measurements, and

drops to an average fidelity F ∼ 0.96 if assuming a realistic Gaussian noise on the mea-

surements expectation values. If we consider that MPS tomography needs to reconstruct

N 2-sites reduced density matrices, and assuming 100 measurements per basis, we might

conclude that one needs roughly 100 × 4 × N = 8000 measurements for an high-fidelity

reconstruction. Neural network QSR achieve on the same system size a fidelity of F ∼ 0.99

using around 300 (see main text) N−qubit measurement, hence N × 300 = 6000 single bit

measurements, i.e. a number comparable to MPS tomography.
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4.2.2 Quantum spin Hamiltonians

We turn now to the more complex (and interesting) scenario of quantum spin Hamiltonians.

We consider again of a set of N interacting quantum spin-1
2

placed on the sites of a d-

dimensional hyper-cubic lattice. The system is characterized by a set of quantum numbers

{σzj}, defining the basis of the Hilbert space {|σz〉}. Our goal is to reconstruct the ground

state wavefunction Ψ(σz) from a set of projective measurements. In particular, we consider

two paradigmatic models of quantum magnetism, which both have a positive ground state.

The first Hamiltonian, briefly mentioned at the end of Chapter 2, is the transverse-field

Ising model (TFIM). Initially proposed as a model for hydrogen-bonded ferroelectrics [161],

the TFIM is a prototypical example of second order quantum phase transition. The Hamil-

tonian is obtained by simply adding a transverse magnetic field h to the classical Ising

model Hamiltonian:

Ĥ = −J
∑

〈ij〉

σ̂zi σ̂
z
j − h

N∑

i=1

σ̂xi . (4.50)

When the field is absent h = 0, the ground state is one of the two degenerate ferromagnetic

states | ↑↑, . . . , ↑〉 or | ↓↓, . . . , ↓〉, while for very large fields h � J the system is in a

paramagnetic phase, with ground state | →→, . . . ,→〉, where | →〉 = (|0〉 + |1〉)/
√

2. For

any dimension d, there exists a quantum critical point hc separating the two magnetic

phases, detected by the magnetization order parameter 〈σ̂z〉. The second Hamiltonian we

consider is the XXZ model, parametrized by the anisotropy ∆ of the interactions

Ĥ =
∑

〈ij〉

[
σ̂zi σ̂

z
j + ∆

(
σ̂xi σ̂

x
j + σ̂yi σ̂

y
j

) ]
. (4.51)

For ∆ = 0 we find the classical Ising model, while for very large ∆ the XXZ model reduces

to the XY model, characterized by a U(1) broken symmetry ground state. For ∆ = 1 we

recover the SU(2) invariant Heisenberg model, shown at the beginning of Chapter 1.
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Data generation with QMC

Since we are interested in exploring regimes where exact brute-force approaches are not

feasible, we cannot use ED to find the ground state and generate the training datasets.

Instead, we employ a discrete time path-integral QCM, where the total imaginary time β

is discretized in mτ steps, so that the simulations are exact in the β/mτ → 0 limit. As

discussed in Chapter 1, the quantum configuration of the N -spin TFIM is mapped onto a

configuration of N ×mτ classical spin variables, with suitable interactions along the imag-

inary time direction (see Ref. [162] for details). Classical MC on this (d + 1)-dimensional

system can then be performed in order to collect samples of the quantum distribution in

the {|σz〉} basis. Since we are interested in the ground state distribution, we use a suf-

ficiently large inverse temperature, in the range β = 10 − 20 and a converged number of

time slices mτ = 1024 − 2048. Statistically independent samples are collected only after

waiting for a sufficiently large number of MC moves, i.e. larger than the autocorrelation

time of the Markov chain. In order to decrease the autocorrelations between successive

MC configurations we use cluster update algorithms. In the case of the TFIM we use the

Wolff single cluster algorithm [129]. Here clusters can be un-restricted in the volume or

restricted in such a way to extend only along the imaginary time direction [163, 164]. Both

choices drastically improve the efficiency compared to the simple local update scheme. For

the XXZ model we use a single cluster update version of the Loop algorithm [165].

Neural-network reconstruction

Using quantum QMC methods, we generate synthetic datasets by sampling the exact

ground states of both the TFIM and the XXZ model. We generate a collection of datasets,

each at a different value of transverse magnetic field h and the anisotropy ∆. We restrict to

the case of a 1d chain with N = 100 spins and a 2d square lattice with linear size L = 12

(i.e. total number of spins N = 144). The neural wavefunctions are trained using CD

learning with k = 20 sampling steps. The network parameters λ are optimized using SGD

with a batch size of M = 100, a learning rate of η = 0.01 and a weight decay regularization

of l2 = 10−4. The dataset sizes range around ‖D‖ ' 105, and the training was carried out
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Figure 2. Tomography for many-body Hamiltonians. In panels (a-d) we show QST for ground states, comparing the
reconstructed observables to those obtained with quantum Monte Carlo simulations. In panels (e-g) we show QST for unitary
evolution of a 1d chain following a quantum quench with long-range Ising Hamiltonian with � = 3/4. a) Diagonal and off-
diagonal magnetizations as a function of the transverse field h for the ferromagnetic 2d-TFIM on a square lattice with linear
size L = 12 (N = 144). b) Two-point correlation function (diagonal and off-diagonal) between neighboring spins along the
diagonal of the square lattice (linear size L = 12) for the 2d-XXZ model. Each data point is obtained with a RBM from a
network trained with ↵ = 1/4 on separate datasets. RBM-QST allows here to accurately reconstruct, for each model, both
diagonal and off-diagonal observables of the target state. In the lower panels we show the reconstruction of the diagonal spin
correlation function h�z

i �
z
j i for the 1d-TFIM with N = 100 sites at the critical point h = 1. c) Direct calculation on spin

configurations from a test-set much larger than the training dataset, d) Reconstruction of the correlations by sampling the
trained RBM with ↵ = 1/2. e) Overlap between the system wave-function  (�; t) and the RBM wave-function  �,µ(�) for
t = 0.5, as a function of the number of samples NS per basis. In the inset we show the overlap as a function of time for different
values of NS . In the lower panels we show the reconstruction of the 2N phases (re-arranged as a 2d array) for N = 12 and
t = 0.5. f) Exact phases ✓(�k) for each component  (�k; t). g) Phases �µ(�k) learned by the RBM with ↵ = 1.
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where the �i are Pauli spin operators. These artificial168

datasets are used to train RBMs for our machine learning169

QST approach, detailed below.170

First, we consider groundstate wave-functions of171

Hamiltonians on the one-dimensional (1d) chain and172

two-dimensional (2d) square lattice, with nearest neigh-173

bor couplings Jij = J , and N spins. Using quan-174

tum Monte Carlo (QMC) methods, we synthesize ar-175

tificial datasets by sampling the exact groundstates of176

Eqs. (3,4) for different values of the coupling parameters177

h and �. In these examples, the many-body ground-state178

wave-function is real and positive, thus our reconstruc-179

tion scheme does not require training data in any basis180

other than �z. Once the training is complete, we can181

test the representational power of each neural network182

by computing various observables using the RBM and183

comparing with the exact values known via the QMC184

simulations.19185

We begin by examining both the longitudinal �z, and186

transverse �x magnetizations for the TFIM. For 2d,187

Fig. 2(a) illustrates how the RBMs can reproduce the188

average values of both diagonal and off-diagonal observ-189

ables to high accuracy for N & 100 spins. For the 2d190

XXZ model, Fig. 2 (b) illustrates the expectation val-191

ues of the diagonal �z
a�

z
b and off-diagonal �x

a�
x
b spin cor-192

relations, with a and b being neighbors along the lat-193

tice diagonal. Additionally, we consider the full spin-194

spin �z
i �

z
j correlation function for the 1d-TFIM, which195

involves non-local correlations. Fig. 2 (d) shows that the196

reconstructed RBM correlation function closely matches197

the exact result (obtained for large-N via QMC measure-198

ments in Fig. 2 (c)). Here, deviations between the RBM199

and QMC are compatible with statistical uncertainty due200

to the finiteness of the training set.201

These results illustrate the power of neural networks to202

accurate learn and represent ground state wavefunctions,203

even for highly entangled cases of many-body Hamiltoni-204

h�̂z
i �̂

z
j iRBMh�̂z

i �̂
z
j iQMC

ED

RBM
n = 2

n = 3

n = 4

ED

RBM

ED

RBM

h�̂z�̂ziQMC

h�̂z�̂ziRBM

h�̂x�̂xiRBM

h�̂ziRBM

h�̂xiRBM

h�̂xiQMC

h�̂ziQMC

2d TFIM 2d XXZ

1d TFIM

ba

c d

Figure 4.4: Magnetization for XXZ and Ising models in one and two dimen-
sions. Diagonal and off-diagonal observables for ground states of quantum spin chains. a)
Comparison of the average longitudinal 〈σz〉 and transverse 〈σx〉 magnetization between
the trained neural wavefunction (markers) and QMC calculations (lines), for the 2d TFIM
with N = 144 spins. b) Comparison of the average diagonal and off-diagonal correlation
function between the spin at the top-left corner and its neighbour on the diagonal for the
2d XXZ model with N = 144 spins. Below, we show the comparison of the full spin-spin
correlation function for the 1d TFIM with N = 100 spins, between the QMC results (c)
and the reconstructed neural wavefunction (d).
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for 2000 epochs. The minimum number of hidden units required to faithfully learn the

data distribution was always found to be less than the number of spins, and it was set to

nh = N/2 where otherwise stated.

After the training is converged and we discover the optimal set of parameters λ∗, we

proceed to evaluate the performance of the reconstruction. Given the system sizes of in-

terest, we cannot evaluate the overlap between the true and reconstructed wavefunction in

a feasible way. Instead, we evaluate the quality of the reconstruction by comparing differ-

ent magnetic observables computed using the neural wavefunction, with results obtained

from the QMC simulations. We show the numerical results of the neural-network QSR in

Fig. 4.4. For the TFIM we compare the values of the longitudinal 〈σ̂z〉 =
∑N

i=1〈σ̂zi 〉 and

transverse (off-diagonal) magnetization 〈σ̂x〉 =
∑N

i=1〈σ̂xi 〉, with the QMC estimate obtained

with the path-integrals 2. For a 2d model on a square lattice and N = 144 we observe

a perfect agreement for either diagonal and off-diagonal magnetizations (Fig. 4.4a). The

same agreement is also found for the TFIM in 1d (not shown). For this case however,

we show instead the full spin-spin correlation function 〈σzi σzj 〉, which involves non-local

correlations. We compare the QMC result (Fig. 4.4c) with the correlation function recon-

structed by the RBM (Fig. 4.4d), observing a good agreement. The deviations between

the neural wavefunction and QMC are compatible with statistical uncertainty due to the

finiteness of the training dataset.

We now turn to the important and highly-nonlocal quantum quantity that is perhaps

the most challenging for direct experimental observation [167], the entanglement entropy.

More specifically, we consider the second Renyi entanglement entropy

S2(ρ̂A) = − log(TrA(ρ̂2
A)) . (4.52)

where ρ̂A = TrA⊥(ρ̂) = TrA⊥(|ψ〉〈ψ|) is the reduced density matrix for the sub-region A. We

examine the same model Hamiltonian, but restrict ourselves in one dimension. We trained

the neural wavefunctions with similar hyper-parameters on data generated from the TFIM

at three different magnetic fields h and the XXZ at the Heisenberg point ∆ = 1. In both

2For the derivation of expectation values of off-diagonal operators, please refer to Ref. [166].
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Figure 4.5: Entanglement entropy via replicated RBMs. We show the second Renyi
entanglement entropy calculated using a replicated copy of the neural wavefunction and
the improved ratio trick. We plot the scaling of the entanglement entropy with the size of
the subregion A for the 1d TFIM at various strengths of the magnetic field h (a), and for
the 1d XXZ model at the Heisenberg point ∆ = 1.0 (b). We compare our results against
ED calculations (dashed lines).

instances, we consider a chain with N = 20 spins and open boundary conditions. After the

training, we implement the improved ratio trick on the replicated RBMs (as discussed in

Chapter 3), and compare our results with the exact entanglement entropy found with ED

simulations. We show the results in Fig. 4.5, where we plot for both model Hamiltonians

the entanglement entropy as a function of the size ` (i.e. number of sites) of the sub-region

A with, ` ∈ [1, N/2]. From this, we see that values generated from the neural wavefunction

agree with the exact entanglement entropy to within statistical errors.
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4.2.3 Quench dynamics

We now move beyond ground-state wavefunctions, and we consider quantum states orig-

inating from dynamics under unitary time evolution. We focus on the case of quench

dynamics that is realizable in experiments with ultra-cold ions [168]. Specifically, we study

a system of 1d Ising spins initially prepared in the state

|Ψ0〉 = | →,→, . . . ,→〉 , (4.53)

i.e. fully polarized in the |σx〉 basis. The system is then time-evolved with unitary dy-

namics enforced by the Hamiltonian

Ĥ =
N−1∑

j=1

Jijσ̂
z
i σ̂

z
j , (4.54)

with long-range anti-ferromagnetic interactions

Jij =
1

|i− j|γ . (4.55)

For a fixed time t, we obtain the time-evolved state using ED

|Ψ(t)〉 = e−
i
~ Ĥt|Ψ0〉 . (4.56)

We then use the quantum state to build a dataset of spins density measurements from the

distribution at time t

Pb(σ
b, t) = |Ψ(σb, t)|2 = |〈σb|Ψ(t)〉|2 (4.57)

in different bases {σb}. For this specific state, we employ the following bases configurations:

b = (Y, Z, Z, Z, . . . ) , (Z, Y, Z, Z, . . . ) , (Z,Z, Y, Z, . . . ), . . . (4.58)

and

b = (X,Z, Z, Z, . . . ) , (Z,X,Z, Z, . . . ) , (Z,Z,X,Z, . . . ), . . . (4.59)
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Figure 4.6: Quench dynamics. a) We show the overlap between the true and recon-
structed state as a function of the number of training samples per basis Ns, for three
system sizes N . The target state is obtained after time evolution with t = 0.5. b) Com-
parison of the full phase structure between ED and the neural wavefunction for t = 0.5,
for N = 12. Each data point in the plot is one of the 212 phase coefficients.

In Fig. 4.6a we show the overlap between the neural wavefunction ψλ,µ(σ) and the time-

evolved state Ψ(σz; t = 0.5) for different system sizes N , as a function of the number NS of

samples per basis and for γ = 0.75. Furthermore, in Fig. 4.6b-c, we compare the full phase

structure for N = 12 (re-arraged as a two-dimensional matrix) for t = 0.5, showing an

almost perfect agreement between the exact phases and the phase structure reconstructed

by a neural wavefunction with nh = N .
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4.2.4 Entangled photonic states

We now turn to the reconstruction of the density operator of a mixed state, and we ex-

amine the simple case of two entangled photons. Tomographic techniques for this class of

quantum states are widely used in a variety of tasks. These include the characterization

of optical processes [169], optical detectors [170], and the tests of local realism of quantum

mechanics [171, 172]. We first consider the ideal situation where the only fluctuations in

the measurement outcomes are of statistical nature. Thus, we generate a synthetic dataset

using the exact target quantum state %̂. In particular, given the pure Bell state

|Φ+〉 = (|00〉+ |11〉)/
√

2 , (4.60)

we consider the mixed state obtained by applying a global depolarizing channel

%̂ = (1− pdep)|Φ+〉〈Φ+|+ pdep

4
Î . (4.61)

The parameter pdep represents the strength of the noise. For pdep = 0 we recover the

pure state %̂ = |Φ+〉〈Φ+|, while for pdep = 1 the system is in the maximally-mixed state

%̂ ∝ Î. We build the datasets by measuring the system in the informationally-complete set

of Nb = 9 bases {σα0 , σβ1 } with α, β = x, y, z. Further, we generate multiple datasets with

a different number NS of measurements per basis (each containing 2 bits of information).

We set the number of hidden units to nh = 1, and initialize the weights with a uniform

distribution centered around zero with width w = 0.01 (and biases set to zero). The

network parameters are updated using AdaDelta optimization algorithm [173] over training

batches containing 10 samples, and the best network is discovered by choosing (λ∗,µ∗)

for which the average log-likelihood is maximum. We quantify the performance of the

reconstruction by computing the fidelity between ρ̂λ∗µ∗ and the target density operator %̂,

which for mixed states is defined as

F = Tr

(√√
ρ̂λ∗µ∗ %̂

√
ρ̂λ∗µ∗

)
. (4.62)

We report in Fig. 4.7 the fidelities obtained after training the NDO for three different
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Figure 4.7: Reconstruction of a depolarized Bell state. Comparison of the recon-
struction fidelities between NDO and MLE tomography for a Bell state |Φ+〉 undergoing a
depolarizing channel with strength pdep. We show the scaling of the fidelity as a function
of the number of measurements per basis NS for two different choices of network structure
(each point is plotted with standard deviation error from an average over 100 realizations
of the dataset).

depolarizing strengths and an increasing number of measurements per basis. We compare

our results with the fidelities obtained with standard MLE tomography [174, 146]. We

observe slightly better fidelities when using two auxiliary units (Fig. 4.7a), while the NDO

with na = 1 is not capable of purifying the state of the physical system (Fig. 4.7b). This

is not surprising, since for a generic mixed state, the Hilbert space of the auxiliary system

used in the purification should have at least the same dimension of the physical Hilbert

space.

We now consider the case of real experimental data, where unknown sources of noise are

present. Using the coincidence counts provided by Ref. [175], we perform NDO tomography

on the experimental measurements for the state %̂ = |Ψ〉〈|Ψ| with

|Ψ〉 =
1√
2

(|00〉+ i|11〉) , (4.63)
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Figure 4.8: Experimental reconstruction of a density matrix. Real and imaginary
part of the reconstructed NDO, trained on experimental coincidence counts for the quantum
state |Ψ〉 = 1√

2
(|00〉+ i|11〉) of two entangled photons.

where the degrees of freedom represent the polarizations of the entangled photons. In

Fig. 4.8 we plot the real and imaginary part of the reconstructed NDO, selected with the

same criterion of minimum negative log-likelihood. The fidelity between the NDO and the

ideal state is found to be FNDO = 0.9976, with MLE tomography achieving similar fidelity

FMLE = 0.992.

4.2.5 Experimental quantum simulator

In Chapter 1 we have briefly discussed the quantum simulation of a spin Hamiltonians Ĥ

with a superconducting quantum hardware. The unitary time evolution was programmed

as a sequence of quantum gates applied to some reference initial state of the hardware,

with the output of the device being the time-evolved state ψ(t) = e−iĤt/~ψ(0). This type of

quantum simulation is called digital. A different paradigm is provided by analog quantum

simulators. In this case, the simulation is done using another physical system with different

Hamiltonian Ĥsim, which can be tuned to reproduce the desired properties of the physical
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system of interest. If there is a mapping between Ĥ and Ĥsim, then this approach allows to

emulate the dynamics Û(t) = e−iĤt using the time-evolution propagator Usim(t) = e−iĤsimt

on the emulating physical system. Two examples of analog quantum simulators are ultra-

cold quantum gases in optical lattice [176] and trapped ions [177, 178]. In the following,

we will present the neural-network QSR of a quantum simulator based on trapped neutral

Rydberg atoms [179].

Quantum simulation with Rydberg atoms

The (emulating) physical system consists of a 1d array of N cold 87Rb atoms, where coher-

ent couplings to excited Rydberg states realize effective repulsive van der Waals interactions

Vij ∝ R−6
ij , with Rij the distance between atom i and j. The capability of preparing defect-

free atomic arrays [180] and the highly controlled nature of the interactions make Rydberg

atomic systems suitable for quantum simulation. Given the two-dimensional local Hilbert

space spanned by the ground and excited Rydberg state {|g〉, |r〉}, the array of atoms under

consideration interact with Hamiltonian

Ĥ =
Ω

2

N∑

j=1

σ̂xj −∆
N∑

j=1

n̂j +
∑

i<j

Vijn̂in̂j (4.64)

where n̂j = |rj〉〈rj| and σ̂xj = |gj〉〈rj| + |rj〉〈gj|. The parameter ∆ is the detuning (i.e.

the difference in frequency between the driving lasers and the Rydberg excited state),

while Ω is the Rabi frequency (i.e. the difference in frequency between the ground and

the Rydberg excited state). The strengths of interactions Vij can be set by changing the

distance between the atoms. These interaction implement and effective blockade which

prevents nearby atoms to be simultaneously excited in the Rydberg states [181].

This array of cold atoms can be readily used to perform quantum simulation of a

Ising-like model. In fact, the Hamiltonian can be easily re-written in the following form

Ĥ =
Ω

2

N∑

j=1

σ̂xj +
∆

2

N∑

j=1

σ̂zj +
1

4

∑

i<j

Vij

(
σ̂zi σ̂

z
j − σ̂zi − σ̂zj

)
+ const. , (4.65)
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which is an anti-ferromagnetic Ising model interacting with both a longitudinal and trans-

verse magnetic field. Depending on the relative value of the Hamiltonian parameters, the

ground state of the system can exhibit different spacial symmetries. For a large and neg-

ative detuning ∆, with |∆/Ω| � Vij, the ground state contains all atoms in the ground

state

|Ψ0〉 = |g0, g1, . . . , gN−1〉 . (4.66)

In turn, when the detuning is increased, the number of atoms in the excited states also

increase, activating the Rydberg blockade caused by the van der Waals interactions. As

such, by carefully choosing the relative value between the detuning and the interaction

strengths Vij, it is possible to prepare ground states behaving as (Rydberg) crystals, with

different broken spacial symmetries [182].

Among the various phases that can be engineered with this quantum simulators, we

are particularly interested in the Z2 anti-ferromagnetic order. To achieve that, in the

experimental setup, the Rabi frequency is set to Ω = 2MHz and the nearest-neighbour

interaction is set to Vj,j+1 = 30MHz. When the detuning, which is kept as a free parameter

for the experiment, is set to a value such that Vj,j+1 � ∆ � Ω � Vj,j+2, the Rydberg

blockade acts on neighbouring sites and is negligible for next-to-nearest neighbours. As

such, the ground state of the Hamiltonian breaks Z2 translational symmetry. Higher

order symmetry, such as Z3 and Z4 have also been realized with the same experimental

setup [183]. The realization of the ground state in the Z2 phase requires a slow adiabatic

evolution with time-evolution propagator

Û(t) = e−iĤ(∆(t))t/~ , (4.67)

where the detuning follows a ramp in the range ∆ ∈ [−10, 10]MHz. In practice, the atoms

are trapped by tweezers using an acousto-optic deflector, and initialized to the ground state

|gj〉 for large negative ∆ [183]. As the trap is switched off, the system follows the dynamics

Û(t) until the measurements, consisting of imaging the atoms in the ground state with

atomic fluorescence.
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Neural-network quantum reconstruction

The reference basis where we define the neural wavefunction is simply |σ〉 = |σ1, . . . , σN〉,
where σj = 0 and σj = 1 corresponds to atoms j being in the ground and Rydberg state

respectively. The main assumption is that the quantum state prepared with the detuning

sweep is pure and positive. This means that the state is described by the state

|Ψ∆〉 =
∑

σ

Ψ∆(σ)|σ〉 . (4.68)

with real coefficients Ψ∆(σ) > 0. The positivity is enforced by the Hamiltonian, since the

off-diagonal elements can be gauged to be negative with a canonical transformation. How-

ever, in general, complex phases can in principle build up during the adiabatic evolution.

We will however perform the neural-network reconstruction using a positive neural wave-

function ψλ. While in principle we could include arbitrary phases, the lack of measurements

in additional bases prevent us to learn the additional set of parameters µ capturing the

phase structure. Thus, we perform the reconstruction using a set of projective measure-

ments in the reference basis |σ〉, distributed according to P (σ) = |〈σ|Ψ∆〉|2 = |Ψ∆(σ)|2.

In our investigation, we consider a chain of N = 8 atoms. An experiment was realized

to collect the necessary data, consisting of a collection of datasets D∆ containing approxi-

mately 3000 measurements (as N -bit strings) for various detuning ∆ across the quantum

phase transition. We verified the convergence in dataset size by training the neural wave-

functions on different subsets of data with increasing number of measurements. The results

that follows are obtained by training the neural wavefunction on the full datasets using a

fixed number of hidden units nh = N = 9.

We first look at the domain wall distribution in the system, which can be used to

characterize the phase transition. A domain wall is defined as two neighbouring atoms

being in the same state, or the atoms at the edge being in the ground state. We show in

Fig. 4.9a the domain wall density as a function of the detuning. We plot the observable

computed directly on the data (black line), the RBM reconstruction (markers) and a

simulation of the model Hamiltonian Ĥ using ED (dashed line). In the disordered phase
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Figure 4.9: Domain walls. We show the domain wall density (a) and its variance (b).
We compare the RBM reconstruction with the experimental data and ED simulations of
the model Hamiltonian.

(large and negative ∆), all the atoms are in the ground state and the number of domain

wall is maximum. When the system is brought closer to the Z2 phase, the density decreases

towards its minimum. The data and ED curves are perfectly matched by the RBM with

a number of hidden units as low as nh = 1 (not shown). We also look at the variance

of the domain wall density, which has a peak at the phase transition. We expect the

reconstruction to require more resources compared to the domain wall density, since we

are now looking at the fluctuations of an observables. By performing a scaling with the

size of the latent space of the network (i.e. the number of hidden units nh) we observe that

the size required for convergence is slightly larger than the one for the density (nh = 1).

In Fig. 4.9b we show the same comparison, and note deviations as the system is closer to

the Z2 phase.

We now turn to magnetic observables. In Fig. 4.10 we plot the average longitudinal 〈σz〉
and transverse 〈σx〉 magnetizations per site. We repeat the same analysis performed for

the domain wall density. For the longitudinal magnetization we find a very good agreement

with both the data and the ED simulations. For the transverse magnetization, we cannot

compare with the experimental data, since the expectation value depends on the coherences
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Figure 4.10: Magnetizations. Average of the longitudinal (a) and transverse (b) mag-
netizations per site. For the latter, comparison with the data is not possible, being an
off-diagonal observable.

of the quantum state and it is not explicitly contained in the dataset. Similar to the variance

of the domain wall density, we perform a scaling with the number of hidden units, and

find convergence for nh < N . The result also shows a residual transverse magnetization in

the Z2 phase. This plateau, as well as the deviation of the domain wall variance, is caused

by two main factors. On the one hand, there are errors during the measurement process,

which for the current setup consists of a non-symmetric channel with probabilities pg ' 1%

and pr ' 7% of detecting a false ground and excited state respectively. On the other hand,

there is some inevitable degree of open system quantum dynamics during the adiabatic

sweep. This means that quantum correlations build up between the atomic chain and the

surrounding environment, leading to decoherence. A simple example of decoherence in this

setup is the spontaneous decay of an atom from the Rydberg excited states to the ground

state.

We finally consider the measurement of entanglement, which is out of the experimental

reach. As seen before, we take a bipartition of the chain into two sub-regions with size n

and N −n. Since we are dealing with a small system size, instead of using the replica trick
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Figure 4.11: Entanglement entropy. We compute the exact entanglement entropy from
the trained neural wavefunction. We plot the comparison of the reconstructed entanglement
entropy as a function of detuning, with the exact results from ED. We show the entropy
for three different sizes of the sub-region.

we compute the full reduced density matrix from the trained neural wavefunction |ψλ〉,

ρ̂
[n]
λ = Trσn+1,...,σN (|ψλ〉〈ψλ|) . (4.69)

Given the reduced density matrix ρ̂
[n]
λ , the second Renyi entropy is just:

S2(ρn) = − log Trσ1,...,σn
(
[ρ̂

[n]
λ ]2
)

(4.70)

In Fig. 4.11 we show the entanglement entropy as a function of the detuning ∆, for three

different sizes of the sub-region. We compare the results obtained from the neural-network

reconstruction with the calculations from ED. While in the paramagnetic phase we ob-

serve an almost perfect agreement, deep in the Z2 phase we observe some deviations, but

an overall correct behaviour. Once again, this is caused by the noise introduced by the

environment.
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Figure 4.12: Random states. Overlap between the neural wavefunction and the random
state, as a function of the number of training samples with nh = N (a) and the parameter
α = nh/N with NS = 6400 (b). Dashed lines represent the overlap between the random
state and an homogeneous state ψho(σ) = 1/

√
2N .

4.3 Remarks

Random states and overfitting

All the target quantum systems considered so far are characterized by a structured quan-

tum state, which is the reason for the very high performances of neural-network QSR. In

contrast, we now turn to a completely unstructured case and test the limitation of this

technique on a random quantum state generated from the Haar measure over the unitary

group. To this end we employ a built-in function of the Python library QuTiP [184] for

the system sizes N = 8, 12. For simplicity, we restrict again to the case of a positive state

in the reference basis {|σ〉}, and attempt to learn the amplitudes Ψ(σ). In Fig. 4.12 we

show the scaling of the overlap between the neural wavefunction and the random state

with the number of training samples NS for α = nh/N = 1 (a), and the scaling with α for

NS = 6400 (b). We also compare our results with the overlap between the target random

state and an homogeneous state ψho(σ) = 1/
√

2N (dashed lines). For N = 12 the overlap

saturates very quickly to the value obtained from the homogeneous wavefunction, and the
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Figure 4.13: Overfitting random states. Overlap between the neural wavefunction and
the random state as a function of the training steps for NS = 100 (a), NS = 400 (b),
NS = 1600 (c) and NS = 6400 (d).

improvement upon increasing the number of parameters of the RBM is very small. Such

degrading of accuracy is indeed expected for such a class of target quantum states. The

success of ML techniques stems from the ability to learn and extract some hidden structure

in the data. ML based techniques for QSR will in general fail when there is little or no

structure in the quantum state. Therefore, random or very chaotic states remain outside

the capability of this method.

As per all ML applications, the training process should be carefully designed to avoid

overfitting. This issue occurs when a complex model does not generalize well to unseen

data, even though the model fits well the training data. In our experiments with RBMs,

overfitting may manifest itself when the model is excessively powerful, i.e. when nh � N ,
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and/or when the datasets used during the training stage are statistically small. We consider

the effect of overfitting in the RBM training for this class of random quantum states.

In Fig. 4.13 we plot the value of the overlap between the neural wavefunction and the

random state as a function of the training step, for four different number NS of training

samples. When NS is too small (a-c), the overlap decreases as the parameter α grows

larger. Furthermore we observe that the overlap keeps decreasing with further training of

the RBM, a common signature of overfitting encountered in many ML experiments and

usually solved by an early stopping mechanism. By comparing the first three panels we

can see how this effect becomes smaller as the number of training samples increases, and

disappears for NS = 6400 (d). In the latter case, a network with larger α achieves higher

performances, thus showing that there are enough samples in the dataset to eliminate the

overfitting issue from the training.

Reconstruction errors for NDO

In this section we consider the different sources of error affecting the representation and

reconstruction of a quantum state, considering NDOs. We provide a detailed analysis for

the case of the Bell state |Ψ+〉 under global depolarizing noise, with density matrix

%̂ = (1− pdep)|Ψ+〉〈Ψ+|+ pdep
Î
4
. (4.71)

We start by considering the representational ability, which is quantified by the amount

of classical resources required to parametrize the target state %̂. A natural choice for a

convergence parameter is given by the size of the NDO, expressed in terms of αh = nh/N

and αa = na/N , where N = 2 is the number of qubits and nh and na the number of hidden

and auxiliary units respectively. Larger values of αh and αa allows the NDO to capture

increasingly complex correlations within the physical system and between the system and

the environment respectively. Thus, we expect the minimum number of auxiliary units

na for a faithful representation to be directly related to the purity of the target state.

Inefficiency in the NDO representation can be detected by observing higher performances

upon increasing αh and αa, which can be quantified by the fidelity F with the true target
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Figure 4.14: Measurements insufficiency. Error due to number of measurements. We
plot the scaling of the fidelity and total KL divergence CDλµ with the number of measure-
ments per basis NS for different depolarizing strengths pdep.

state, for example. This is shown in Fig. 4.7, through the scaling of the fidelities with the

number of measurements per basis NS at different strengths of the noise channel pdep. We

show that, by training two NDOs using na = 1, 2 (and nh = 1), the NDO with one auxiliary

unit does not have enough representational ability to describe the state when mixing with

the environment is present. This effect becomes more severe as the mixing rate increases

(indicated by lower fidelities). For a quantum state with arbitrary mixing, an upper bound

on the number of auxiliary units is given by the number of qubits na ≤ N , since any

mixed quantum state can be purified by using an auxiliary system whose Hilbert space has

dimension equal to the physical Hilbert space. The same type of scaling argument also

applies to the hidden units nh, and such investigation determines when the representation

of the quantum state is minimal.

A second source of error resides in insufficient training data. In this case, the error can

be attributed to two factors: the number of measurements, and the measurement settings

(i.e. the choice of bases). For the type of reconstruction algorithm we have proposed, the

number of measurements required to reconstruct a given quantum state depends mostly
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Figure 4.15: Bases insufficiency. Errors due to measurement settings: scaling of the
fidelity and KL divergence with the number of measurements per basis NS for different
depolarizing strengths pdep. We report three different choices of the measurements bases.

on the presence of structure in the state. To assess if the available measurement data is

sufficient, we train the NDO using a subset of the training dataset, and systematically

increase its size. We establish the number of measurement to be sufficient if convergence

in the total KL divergence CDλµ (or equivalently in the negative log-likelihood) computed on

the data is achieved. We show such convergence in Fig. 4.14, where we plot the scaling of

both the fidelity and the total KL divergence with the number of measurement per basis,

for different values of the depolarizing probability pdep (each data point is an averaged

over 10 realizations of the training datasets). We observe that the convergence values of

NS increases with the mixing of the target state, and the total KL divergence scales with

power law against the NS.
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The other source of error in the training data is the choice of measurements, i.e. num-

ber of bases. We can imagine the case where the training algorithm is effective (i.e. the

optimization of the KL divergence is successful), but the dataset if not informationally

complete, which means that some features of the state are not accessible from the avail-

able measurements. In general, the number measurements settings are lower for a pure

state than for a mixed state, since the coherences in the density matrix of the former are

constrained. The inefficiencies due to lack of measurements settings in the apparatus can

be detected within our framework by observing a nearly zero KL divergence, but a sub-

optimal fidelity with the true target state. We show this in Fig. 4.15, where we plot the

fidelity and KL divergence for different choices of measurement bases (again for different

mixing rates). We consider the informationally complete set of Pauli measurements (IC),

in addition to the X and the XX measurements sets given by
{

(σx0 , σ
z
1), (σz0, σ

x
1 ), (σz0, σ

z
1)
}

and
{

(σx0 , σ
x
1 ), (σx0 , σ

z
1), (σz0, σ

x
1 ), (σz0, σ

z
1)
}

respectively. We can see that the KL divergences

identically convergence to zero upon increasing NS, with no substantial differences between

the three bases choices. This means that the optimization procedures always succeed. How-

ever, the reconstruction fidelities are different depending on the bases choice, and increase

as more measurements settings are included in the dataset, as expected.

A last source of error in the reconstruction is given by ineffective training, defined as

when the training procedure fails to find the global minimum in the optimization landscape

(or equivalently one of the local minima with nearly zero KL divergence). This can be

detected simply by observing the KL divergence equilibrating to some non-zero value, and

can be dealt with by improving the optimization routines, either with better algorithms or

with a better hyper-parameter search.
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4.4 Conclusions

We have designed a new framework for the reconstruction of an unknown quantum state

from a set of measurements, based on a neural-network representation of the quantum state.

For positive pure state, the reconstruction translates into the traditional unsupervised

learning procedure, widely use in ML. For quantum states with a non-trivial sign/phase

structure and density operators, we require additional measurement to reconstruct the

state. The amount and the type of measurements depends on the specific structure of the

quantum state 3. First, we have performed a series of numerical experiments on synthetic

data. We have considered paradigmatic states in quantum magnetism and quantum optics,

demonstrating that a RBM-based representation of a quantum state, together with stan-

dard unsupervised learning, is capable of discovering a faithful representation from a set

of measurements for system sizes out of the reach of any other tomographic technique. In

contrast, a degrade in performance is observed for structureless, random quantum states.

We have also carried out the neural-network reconstruction on a set of experimental

measurements. In the first case, we have implemented a NDO to reconstruct the density

matrix of two entangled photons, using the set of coincidence counts reported in the original

paper [175]. Further, in collaboration with the California Institute of Technology and

Harvard University, a new set of experimental measurements were taken on a Rydberg-atom

quantum simulator. We performed the reconstruction of the quantum state of the simulator

using these measurements of atomic occupation number. We found perfect agreement

between observables calculated from the measurement data and the ones reconstructed by

the neural wavefunction. The neural-network representation of the quantum state can now

be used to calculate expectation values of observables not accessible in the experimental

setup. For instance, we computed the transverse magnetization, and found good agreement

with simulation with ED on the model Hamiltonian. This holds when the system is in the

paramagnetic phase, with some deviations as the model is brought deeper into the Z2

phase. Such deviations are attributed to the mixing of the quantum state due to the noise

and decoherence during the adiabatic sweep of the detuning, as well as measurements

3In the worst case scenario, the full set of 3N Pauli bases might be required
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infidelities. We also calculated the second Renyi entanglement entropy, impossible to

extract experimentally. We compared our reconstruction with the exact calculation from

ED and found also a good agreement, up to the further part of the phase diagram in the

ordered phase. This in turn show that the quantum state prepared with the adiabatic

sweep in the experiment is in fact very close to the theoretical model.

The possibility to obtain approximate estimates of important quantities out of the

reach of experimental measurements from only a moderate number of measurements, makes

neural network an important addition to the toolbox of quantum tomography. On the one

hand, the reconstruction allows calculation of otherwise unknown physical observables.

This is the case for entanglement entropy, which we showed it can be obtained using only

simple measurements of the density, currently accessible with cold atoms [185] setups and

adiabatic quantum simulators [186]. Furthermore, the reconstruction can help us to extract

informations about the interaction between the quantum system and the environment.

This is particularly important in the process of increasing the coherence time of noisy

intermediate-scale quantum hardware. Unsupervised learning of quantum data with neural

networks will guide us in discovering fingerprints of the noise and decoherence in the

hardware, providing invaluable feedback for experiments.
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Chapter 5

Neural-network protection of a

topological qubit

We have demonstrated that RBMs, equipped with unsupervised learning algorithms, have a

great potential for characterizing quantum matter and probing/verifying near-term quan-

tum devices. Most notably, techniques such as QSR will assist the development of the

current generation of quantum hardware, by extracting important information about the

underlying noise, for example. The mitigation of the noise, for instance through quality

increase in qubits manufacturing, will allow more reliable quantum operations to run for a

longer time. However, for practical applications of quantum algorithms and for the quan-

tum simulation of large scale materials, the quantum hardware must also be supplied with

quantum error correction (QEC), a protocol to recover from the errors and to maintain the

quantum coherence in the hardware. The general strategy to achieve such error-correcting

regime consist of encoding the logical state of a qubit redundantly, so that errors can be

corrected before they corrupt it [187]. A leading candidate for the implementation of such

fault-tolerant quantum hardware is the surface code, where a logical qubit is stored as a

topological state of an array of many physical qubits [188]. As the noise corrupts the state

of the physical qubits, QEC recovers from the errors before they proliferate and destroy the

logical state. The protocols performing this correction are termed “decoders”, and must
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be implemented by classical algorithms running on conventional computers [189, 190]. In

this Chapter, we demonstrate how the RBM can be used to construct a flexible decoder for

generic quantum codes within the stabilizer framework [81]. We will not present a general

or rigorous formulation of QEC, but instead consider a specific realization of a topological

code, the Kitaev toric code.

5.1 The Kitaev toric code

In topological QEC codes, the logical quantum information is stored into global degrees of

freedom in such a way that the hardware becomes robust against local perturbations. Most

topological codes can be described in terms of the stabilizers formalism [191]. A stabilizer

code is a particular class of QEC code characterized by a protected subspace C defined by

an abelian group S , called the stabilizer group. More precisely, the set of quantum states

|ψj〉 ∈ C (called codeword states) living in the protected subspace are left invariant by the

elements Ŝk ∈ S of the stabilizer group, i.e. Ŝk|ψj〉 = |ψj〉. For a stabilizer code with N

qubits and m independent stabilizers, the number k of encoded logical qubits is equal to

k = N − m. Moreover, a stabilizer code is said to be local if all the stabilizers act only

on nearby qubits. The simplest example of a topological stabilizer code is the 2d toric

code, first introduced by Kitaev [192]. For this local QEC code, the quantum information

is encoded into the homological degrees of freedom, with topological invariance given by

the first homology group [193]. The code features N qubits placed on the links of a L×L
square lattice embedded on a torus. The stabilizers group is S = {Ẑp, X̂v}, where the

plaquette and vertex stabilizers are defined respectively as

Ẑp =
⊗

`∈p

σ̂z` X̂v =
⊗

`∈v

σ̂x` , (5.1)

with σ̂z` and σ̂x` acting respectively on the links contained in the plaquette p and the links

connected to the vertex v. (Fig. 5.1). All the stabilizers commutes with each other, since

they either share no links or an even number thereof. Because of the periodic boundaries
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X̂v

Ẑp

Figure 5.1: A toric code with L = 4, for a total of N = 2L2 = 32 qubits. We show in green
and blue a vertex and a plaquette stabilizer respectively.

of the lattice, the stabilizers satisfy the condition

⊗

p

Ẑp =
⊗

v

X̂v = Î , (5.2)

and thus only 2L2−1 out of the 2L2 stabilizers are independent from each other. Therefore,

the total number of encoded logical qubit for the 2d the toric code is k = 2. The code

protected subspace is the Hilbert space spanned by the codeword basis states |ψj〉 that are

invariant under stabilizers operations:

C =

{
|ψj〉 : Ẑp|ψj〉 = X̂v|ψj〉 = |ψj〉 ∀v, p

}
. (5.3)

Note that C corresponds to the ground state manifold of the Hamiltonian

Ĥ = −
∑

p

Ẑp −
∑

v

X̂v , (5.4)

which contains many highly degenerate ground states, separated by an energy gap from

the remaining states in the energy spectrum. The model itself possesses a rich physics,

with a loop quantum gas ground state and a simple realization of topological order.
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5.1.1 Homology classes

Let us now consider a generic Pauli operator P̂ , defined as the tensor product of σ̂z’s and

Î’s acting on the physical qubits (disregarding σ̂x without loss of generality). The action

of P̂ on a given code state |ψ0〉 can be better understood in term of homology. Recall

that a 2d lattice is a collection of 0-cells (vertices), 1-cells (links) and 2-cells (plaquette).

We can define a mapping that assigns an element from the Z2 group to each element of a

n-cell, defining a n-chain. For instance, a 1-chain c ∈ C1 can be written as c =
∑

k zklk

with zk ∈ Z2 and lk identifying the links in the lattice. The group of 1-chains C1 inherits

the addition rule from Z2 (c ⊕ c = 0) and thus it is itself an abelian group. We can now

efficiently write any Pauli operator P̂ as a 1-chain c

P̂ =
⊗

k∈Links

(
σ̂zk
)zk , (5.5)

where P̂ acts with σ̂zk on the qubit on link k if zk = 1 and with the identity Ik if zk = 0.

Imagine now to initialize the code in the quantum state |ψ0〉, chosen between the

codewords basis states on the protected subspace, |ψ0〉 ∈ C . The effect of the application

of a generic Pauli operator P̂ to the state |ψ0〉 depends on the boundaries of the 1-chain c

corresponding to P̂ . In general, the boundary operator ∂n maps n-chains into (n−1)-chains:

∂n : Cn → Cn−1 . (5.6)

For the case of the 1-chain Pauli operator c, we have two possible outcomes. In the

first case, the boundary operator is different from zero, ∂1c 6= 0. The resulting 0-chain is

different than zero for a set of vertices, which are the endpoints of the 1-chain c (Fig. 5.2a).

This implies that the Pauli operator P̂ does not commute with all the stabilizers. From

the point of view of the physical Hamiltonian, this is equivalent to creating excitations in

the vertices where the stabilizers do not commute with P̂ . The system being now into an

excited states is equivalent for the state |ψ0〉 to have left the protected subspace of the

code. In the second case, the application of the boundary operator generates a chain with

no boundaries (Fig. 5.2b-c). The chain c, also called a cycle, belongs to the sub-group
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Figure 5.2: Pauli operators and boundaries. Different 1-chains corresponding to Pauli
operators acting on the state of the code. The qubits are acted upon by the identity (white)
or the σ̂z (red) operator. The non-trivial stabilizer measurements are green squares. a)
A chain with a non-zero boundary, creating an even number of defects at the endpoints
of the error strings. b) A chain with no boundary (cycle), with a trivial homology class
(i.e. enclosing a finite number of plaquette). c) A cycle with non-trivial homology class
(i.e. a non-contractible loop in the torus).

c ∈ Z1 ⊂ C1. In this case, since the cycle has no endpoints (∂1c = 0), the corresponding

operator P̂ always shares either zero or an even number of links with all the stabilizers in

S , which implies

[P̂ , Ẑp] = [P̂ , X̂v] = 0 . (5.7)

Therefore, the quantum state resulting from the application of the Pauli operator is con-

tained in the code protected subspace, |ψ′〉 = P̂ |ψ0〉 ∈ C .

We assume again a Pauli operator P̂ applied to the code state |ψ0〉 ∈ C , and described

by a cycle c. The set of cycles in the lattice can be further broken down into sub-classes by

considering their homology. We define a sub-group B1 ⊂ Z1 of cycles which are boundaries

of 2-chains, that is:

B1 =

{
c ∈ C1 : ∂1c = 0 and ∃f ∈ C2 s.t. c = ∂2f

}
. (5.8)
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Figure 5.3: Homology classes. The four homology classes for Pauli operators containing
only identities and σ̂z’s. Aside the trivial class, the other classes corresponds to either one
of the two different non-contractible loops in the torus (h1 and h2), or both loops (h3).

The boundary sub-group B1 generates a partition of the cycles group Z1 into equivalence

classes. This defines the first homology group as the quotient group H1 = Z1/B1 whose

elements are called homology classes. Further, the definition of H1 introduce the notion of

homological equivalence: two 1-chains c and c′ are homologically equivalent if c′ = c⊕ d
where d ∈ B1. In other words, the sub-group B1 contains the set of cycles that encloses a

well defined number of plaquette in the lattice. In this case, we say that the cycle c has

trivial homology, that is, the corresponding Pauli operator can be re-written as a product of

plaquette stabilizers Ẑp, and thus it is contained in the stabilizer group P̂ ∈ S . The code

state |ψ0〉 is then left invariant from the application of the Pauli operator, P̂ |ψ0〉 = |ψ0〉
(Fig. 5.2b). On the other hand, if no 2-chain f exists such that the cycle c is the boundary

of f (c = ∂2f), then c belongs to a non-trivial homology class and the corresponding

operator P̂ , even though it commutes with all the stabilizers, acts non-trivially on the

code subspace (Fig. 5.2c). If we only consider Pauli operators built with identities and σ̂z

Pauli matrices, there exists four different homology classes, corresponding to combination

of the two non-contractible loops in the real lattice on the torus (Fig. 5.3).
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Figure 5.4: Logical operators. The four logical operators for the two logical qubits.

The topological qubit

The topological invariance given by the first homology group provides a way to encode

the logical quantum information into the protected subspace of the code. In fact, given

two cycles from two different homology classes, the only operation that can transform one

cycle into the other are global operations on the code. As such, if we store the quantum

information into the homology class, local perturbations will leave the logical quantum

information untouched. As such, we can defined the logical zero state |0L〉 using the

trivial homology class, for example. In practice, there are many quantum states of the

physical qubits that corresponds to |0L〉, and they are all homologically equivalent. We

now need a mean to manipulate this logical quantum information, i.e. logical operators.

Given the commutation rules of the stabilizers, and given that the logical-Z and logical-X

must anti-commute with each other, the natural definition of the logical operators are the

non-contractible loops in the torus (Fig. 5.4). More precisely, Ẑ
(i)
L are the two non-trivial

cycles in the real lattice and X̂
(i)
L are the two non-trivial cycles in the dual lattice. The

index i = 1, 2 identifies here logical qubit. It is clear now that such logical operations, once

applied to the quantum state of the code, they change the homology class and thus they

manipulate the logical quantum information in a non-trivial way.
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5.1.2 Error correction

We consider now the resilience of the topological qubit against noise, and examine how QEC

can be used to maintain the quantum coherence in the code. The effect of noise is described

by a trace preserving completely positive map E which is applied to the quantum state of

the code ρ̂ = |ψ0〉〈ψ0|, which belongs to the protected subspace, (e.g. trivial homology).

Here, we consider the simple case of a dephasing channel, where each qubits in the code

independently undergoes the channel

ρ̂k −→ (1− perr)ρ̂k + perr σ̂
z
kρ̂ σ̂

z
k . (5.9)

In practice, we can regard this channel as a Pauli (error) operator Ê, described by a 1-chain

e, where ek = 1 with probability perr (σ̂z error) and ek = 0 with probability 1 − perr (no

error). Since the error operator Ê does not commute with a subset of vertex stabilizers X̂v,

the application of the noise channel maps the quantum state of the toric code out of the

protected subspace. We wish now to design a procedure to recover from the error operator

Ê and restore the quantum state in such a way that the homology class is left unchanged.

Clearly we cannot measure each single qubit separately without destroying the quantum

coherence, but we can instead measure all the stabilizer operators without disturbing the

quantum state of the code. Because [Ê, Ẑp] = 0 ∀p, we can extract information on Ê by

measuring the vertex stabilizers only, whose eigenvalues will be equal to -1 on a vertex v

if X̂v shares an odd number of links with the error operator. Unless c is a cycle (case in

which the eigenvalues of X̂v are all equal to unity and the error is then undetectable), the

stabilizers measurement provides the locations of the endpoints of the error strings present

in c, also called the syndrome S(e) = ∂1e (green squares in Fig. 5.5a).

Given an error operator Ê and its syndrome S(e), the first step of the recovery is

to map the code state back into the protected subspace. This translates into applying

a recovery operator R̂ (with 1-chain r), such that S(e) = S(r). This effectively change

all the stabilizer measurements from non-trivial (-1) to trivial (+1). From a different

perspective, where non-trivial measurements are quasi-particle excitations, the recovery

consists of annihilating pairwise all the quasi-particles. While this brings back the state
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Logical failureLogical recoverySyndrome

Figure 5.5: Error correction. a) An error chain e (red circles) and its syndrome S(e)
(green squares). b) A successful recover chain (orange circles), creating a trivial cycle. c)
A recovery chain generating a non-trivial cycle, and thus leading to a logical failure. This
corresponds to apply the logical operators Ẑ

(2)
L .

into the code subspace, it does not imply that the logical quantum information has been

restored. In fact, the success of the error correction depends on the homological equivalence

between e and r. If the two chains are homologically equivalent, the cycle given by the

combined error and recovery operation is trivial, e ⊕ r ∈ B1 and R̂Ê ∈ S , leading to a

successful recovery (Fig. 5.5b). If however the cycle e ⊕ r has non-trivial homology, the

combined operator can be transformed into one of the logical operators and thus it directly

manipulates the encoded logical information, leading to a logical failure (Fig. 5.5c).

Given some physical error chain e, the non-trivial task of choosing the recovery chain

r is call decoding. Several decoders have been proposed for the 2d toric code, based on

different strategies [194, 195, 196, 197, 198]. Maximum likelihood decoding consists of

finding a recovery chain r with the most likely homology class [199, 200]. A different

recovery strategy, designed to reduce computational complexity, consists of generating the

recovery chain r compatible with the syndrome simply by using the minimum number of

errors. Such a procedure, called Minimum Weight Perfect Matching (MWPM) [201], has

the advantage that can be performed without the knowledge of the error probability perr.

This algorithm is however sub-optimal (with lower threshold probability [193]) since it does

not take into account the high degeneracy of the error chains given a fixed syndrome.
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5.2 Learning error correction via pattern completion

Let us now reformulate once more the problem at hand. Given a particular (unknown)

error chain e, the stabilizer measurements provide us with the syndrome S(e), that is the

collection of the endpoints of the error strings in the lattice. Given this set of vertices, we

wish to find a recovery chain r sharing the same syndrome, and restoring the code state in

the correct homology class. Therefore, we are interested in discovering the mapping from

syndromes to the recovery chains that are homologically equivalent to the unknown error

chain. Such mapping will depends on many factors, such as the geometry of the code,

the type of noise channel, and possibly the unknown correlations between the physical

qubits, as well as the correlations in the noise. In general, one should incorporate all

the details when designing the decoder for a particular code realization. Once again, this

problem reminds us the hand-crafting of the features required in the image classification

example discussed in Chapter 1. Along the same lines, we propose to approach this problem

from a data-driven perspective, and employ a RBM to first learn the relationship between

syndromes and errors, and then to run as a decoder and carry out the error correction.

In this setup, one data sample for the training is made up by an error chain e and its

syndrome S. The data can be easily obtained in a real-world implementation of the code,

simply by initializing the code to a reference state, measure the syndrome and then each

physical qubits. Clearly this destroys the quantum coherence but, if repeated many times,

it generates a dataset D = {e,S}, implicitly containing the probabilistic relation between

the errors and the syndromes. We aim to train the RBM to learn the joint distribution

q(e,S) underlying the dataset. Once trained, given the partial information S, we can

perform the correction by generating a recovery chain r from the conditional distribution

of errors given the syndrome. In other words, the decoding reduces to a pattern completion

problem. Given the partial pattern (syndrome), the trained RBM is sampled to complete

the missing part (the error). Given the fact that RBMs were invented to solve pattern

completion problems (amongs other things), it feels particularly natural to employ a RBM

to perform the error correction.
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5.2.1 The neural decoder

We construct the neural decoder using a regular RBM, which is re-arranged in Fig. 5.6 for

clarity. There is still one hidden layer h ∈ {0, 1}nh , and one visible layer, which is however

split into a syndrome layer S ∈ {0, 1}N/2 and an error layer e ∈ {0, 1}N . The full RBM

distribution is given by

pλ(e,S,h) = Z−1
λ e−Eλ(e,S,h) , (5.10)

where λ = {U ,W , b, c,d} are the network parameters,

Eλ(e,S,h) = −
∑

ik

UikhiSk −
∑

ij

Wijhiej −
∑

j

bjej −
∑

i

cihi −
∑

k

dkSk (5.11)

is the energy of the model and

Zλ = Tr{h,S,e} e−Eλ(e,S,h) (5.12)

is the partition function. The joint probability distribution over the visible layer (e,S) is

obtained analogously to the derivation in Chapter 2, by integrating out the hidden variables

from the full distribution

pλ(e,S) =
∑

h

pλ(e,S,h) =
1

Zλ
e−Eλ(e,S) , (5.13)

with the effective visible energy

Eλ(e,S) = −
∑

j

bjej −
∑

k

dkSk −
∑

i

log
(
1 + eci+

∑
k UikSk+

∑
jWijej

)
. (5.14)

We train the RBM using generative modelling, by minimizing the average KL divergence

on the dataset:

Cλ = −‖D‖−1
∑

{e,S}

log pλ(e,S) , (5.15)
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Figure 5.6: The neural decoder. The hidden layer h is fully-connected to the syndrome
and error layers S and e After training, the syndrome is fed to the neural decoder, which
generates a compatible error recovery chain.

where again we omit the constant data entropy term. As before, the gradient of the cost

function reduces to the gradient of the log probability

∇λj log pλ(e,S) = −∇λjEλ(e,S) +
∑

e,S

log pλ(e,S)∇λjEλ(e,S) , (5.16)

which contains the positive (easy) phase and the negative phase, to be calculated using

block Gibbs sampling. The training algorithm is exactly equivalent to the one seen in

Chapter 2 for a regular RBM, where the only difference is the distinction between errors

and syndrome units within the visible layer.

Decoding

We now discuss the decoding algorithm, which proceeds assuming that we successfully

learned the distribution pλ(e,S). Given an error chain e0 with syndrome S0 we wish

to use the RBM to generate an error chain compatible with S0 to use for the recovery.

To achieve this goal we separately train networks on different datasets obtained from
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different error regimes perr. Assuming we know the error regime that generated e0, the

QEC procedure consists of sampling a recovery chain from the distribution pλ(e |S0) given

by the network trained at the same probability perr of e0. Although the RBM does not

learn this distribution directly, by sampling the error and hidden layers while keeping the

syndrome layer fixed to S0, since pλ(e,S0) = pλ(e |S0)p(S0), we are enforcing sampling

from the desired conditional distribution. An advantage of this procedure over decoders

that employ conventional MC [196, 197] on specific stabilizer codes is that specialized

sampling algorithms tied to the stabilizer structure, or multi-canonical methods such as

parallel tempering, are not required. Finally, note that the assumption of perfect learning

is not critical, since the above sampling routine can be modified with an extra rejection step

as discussed in Ref. [202] to ensure sampling occurs from the proper physical distribution.

An error correction procedure can be defined as follows: we first initialize the machine

into a random state of the error and hidden layers and to S0 for the syndrome layer. We

then let the machine equilibrate by repeatedly performing block Gibbs sampling. After

some amount of equilibration steps, we begin checking the syndrome of the error layer e

in the machine and, as soon as S(e) = S0 we select the error as recovery chain r. If such

a condition is not met before a fixed amount of sampling steps, the recovery attempt is

stopped and considered failed. This condition makes the precise computational require-

ments of the algorithm ill-defined, since the cut-off time can always be increased resulting

in better performance for a higher computational cost. Once we have found a compatible

recovery chain r, we can check the results of the correction by computing the Wilson loops

w(γ) = −
∏

k∈γ∗

(
2(e0 ⊕ r)k − 1

)
(5.17)

where γ∗ are non-contractible loops in the dual lattice. Since any cycle with trivial homol-

ogy crosses w(γ) an even number of times, we find that, if L is even, w(γ) = −1 (for any

γ) if the cycle e0 ⊕ r has non-trivial homology, signature of a logical failure.
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5.2.2 Numerical simulations

We trained the RBMs in different error regimes by building several datasets Dp = {ek,Sk}
at elementary error probabilities p = {0.5, 0.6, . . . , 0.15} of the dephasing channel. For a

given error probability, the network hyper-parameters are individually optimized via a grid

search. We also note that, in contrast with previous simulations, we have observed a more

severe overfitting, i.e. the network reproducing very well the distribution contained in the

training dataset but being unable to properly generalize the learned features. To avoid this

common issue in neural networks, we employ weight-decay regularization [122], by adding

an extra penalty term to the KL divergence, proportional to the square weights times a

coefficient l2 ' 10−5. Once training is complete, to test the performance we generate a

test set Tp = {ek} and for each error chain ek ∈ Tp, after a suitable equilibration time

(usually Neq ∝ 102 sampling steps), we collect the first error chain e compatible with the

original syndrome, S(e) = S(ek). We use this error chain for the recovery, r(k) = e.

Importantly, error recovery with r(k) chosen from the first compatible chain means that

the cycle ek + r(k) is sampled from a distribution that includes all homology classes. By

computing the Wilson loops on the cycles we can measure their homology class. This

allows us to gauge the accuracy of the decoder in term of the logical failure probability,

defined as Pfail = nfail

‖Tp‖ , where nfail is the number of cycles with non-trivial homology.

Because of the fully-connected architecture of the network, and the large complexity of the

probability distribution arising from the high degeneracy of error chains given a syndrome,

we found that the dataset size required to accurately capture the underlying statistics must

be relatively large (‖Dp‖ ∝ 105). In Fig. 5.7 we plot the logical failure probability Pfail

as a function of the elementary error probability for the neural decoding scheme. We note

that at low perr, our logical failure probabilities follow the expected [203] scaling form p
L/2
err

(not shown in the figure).

To compare our numerical results we also perform error correction using the recovery

scheme given by MWPM [204]. This algorithm creates a graph whose vertices corresponds

to the syndrome and the edges connect each vertex with a weight equal to the Manhattan

distance (the number of links connecting the vertices in the original square lattice). MWPM
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Figure 5.7: Probabilistic decoding. Logical failure probability as a function of elemen-
tary error probability for MWPM (lines) and the neural decoder (markers).

then finds an optimal matching of all the vertices pairwise using the minimum weight,

which corresponds to the minimum number of edges in the lattice [205]. Fig. 5.7 displays

the comparison between a MWPM decoder (line) and our neural decoder (markers). As is

evident, the neural decoder has an almost identical logical failure rate for error probabilities

below the threshold (perr ≈ 10.9 [193]), yet a significant higher probability above. Note

that by training the RBM on different datasets we have enforced in the neural decoder a

dependence on the error probability. This is in contrast to MWPM which is performed

without such knowledge. Another key difference is that the distributions learned by the

RBM contain the entropic contribution from the high degeneracy of error chains, which

is directly encoded into the datasets. It will be instructive to explore this further, to

determine whether the differences in Fig. 5.7 come from inefficiencies in the training, the

different decoding model of the neural network, or both. Finite-size scaling on larger L

will allow calculation of the threshold defined by the neural decoder.
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Figure 5.8: Histogram of the homology classes. The green bars represent the trivial
homology class h0 corresponding to contractible loops on the torus. The other three classes
correspond respectively to the logical operations Ẑ

(1)
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(2)
L and Ẑ
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L Ẑ
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L .

In the above algorithm, which amounts to a simple and practical implementation of the

neural decoder, our choice to use the first compatible chain for error correction means that

the resulting logical operation is sampled from a distribution that includes all homology

classes. This is illustrated in Fig. 5.8, where we plot the histogram of the homology

classes for several different elementary error probabilities. Accordingly, our neural decoder

can easily be modified to perform maximum-likelihood optimal decoding. For a given

syndrome, instead of obtaining only one error chain to use in decoding, one could sample

many error chains and build up the histogram of homology classes with respect to any

reference error state. Then, choosing the recovery chain from the largest histogram bin

will implement, by definition, maximum-likelihood decoding. Although the computational

cost of this procedure will clearly be expensive using the current fully-connected restricted

RBM, it would be interesting to explore specializations of the neural network architecture in

the future to see how its performance may compare to other maximum-likelihood decoding

algorithms [199].
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5.3 Conclusions

We have presented a decoder for topological codes using a simple algorithm implemented

with a RBM, relying on the efficient sampling of error chains distributed over all homology

classes. Numerical results show that our decoder has a logical failure probability that is

close to MWPM, but not identical, a consequence of our neural network being trained

separately at different elementary error probabilities. This leads to the natural question of

the relationship between the neural decoder and optimal decoding, which could be explored

further by a variation of our algorithm that implements maximum likelihood decoding.

In its current implementation, the RBM is restricted within a given layer of neurons,

but fully-connected between layers. This means that the decoder does not depend on

the specific geometry used to implement the code, nor on the structure of the stabilizer

group; it is trained simply using a raw data input vector, with no information on locality

or dimension. Such a high degree of generalizability, which is one of the core advantages

of this decoder, also represents a challenge for investigating bigger systems. For example,

a bottleneck in our scheme to decode larger sizes is finding an error chain compatible with

the syndrome within a reasonable cut-off time.

In order to scale up the system size on the 2d toric code, one could relax some of

the general fully-connected structure of the network, and specialize it to accommodate

the specific details of the code. Geometric specialization such as this has been explicitly

demonstrated to improve the representational efficiency of neural networks in the case

of the toric code [206, 207]. Note that, even with moderate specialization, the neural

decoder as we have presented above can immediately be extended to other choices of error

models [208], such as the more realistic case of imperfect syndrome measurement [209], or

transferred to other topological stabilizer codes, such as color codes [210, 211]. We also

point out that the training of the networks are performed off-line and have to be carried

out only once. As such, the high computational cost of the training need not be considered

when evaluating the decoder computational efficiency for any of these examples. After

our initial proposal, new decoders based on ML have been proposed, with performance

improvements and a broader range of application [82, 83, 84, 85].
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Chapter 6

Conclusions

The field of artificial intelligence has seen a tremendous advancement in the years follow-

ing 2010. In particular, ML algorithms are now widely used to solve the most disparate

problems in modern society. The approach generally relies on neural networks trained

on available data1. While the theoretical framework underlying neural networks has been

around for many decades, the high performance required to allow deployment in real world

applications has been achieved only recently. This fact is thanks to a new breed of algo-

rithms and the increase in computational power, which allows for the practical training of

large deep neural networks [213]. The solution to various long-standing problems in data

science [66, 67, 68] further increased the boost in popularity of ML, which is now being re-

searched and applied in many different scenarios. At the core of this powerful techniques is

the ability to build a hierarchy of levels of abstractions of complex objects [64], which relies

on discovering low-dimensional representations within high-dimensional datasets [214].

Among the multitude of network configurations and learning procedures, we have fo-

cussed our attention to a stochastic neural network called a restricted Boltzmann machine.

This generative model, invented in the early 80s, became a fundamental tool for pre-training

layers of deep neural networks [215, 216]. More recently however, this type of unsuper-

vised pre-training was surpassed in terms of performance by competing methods (such as

1There exist also ML algorithms for autonomous learning without data, e.g. reinforcement learning [212].
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different network connectivity and activation functions), also due to the difficult evalua-

tion of RBMs caused by the presence of the unknown partition function. Consequently,

RBMs were generally dismissed in practical applications of deep learning, in favour of more

“easy-to-train” networks, capable of reaching higher performances with less computational

burden. Nevertheless, it is likely that ML community might undertake a more deep investi-

gation of this powerful generative model. This was highlighted by Yoshua Bengio, a major

figure in the ML community, during the 2018 ICML workshop on Theoretical Foundations

and Applications of Deep Generative Models: “GANs [generative adversarial networks] are

great, but we should go back to exploring more widely the landscape of generative models,

such as ... Boltzmann Machines.” [217]. In turn, to us physicists, the very nature of the

RBM, i.e. a classical spin system at thermal equilibrium, suggests that this neural network

can be appropriately implemented to capture the features of physical states of matter.

In this Thesis, we revived the RBM and applied it to different problems in quantum

many-body physics. Embracing a data-driven approach, we defined a class of neural-

network quantum states based on the relationship between the generative properties of

the RBM and the probabilistic nature of the measurement process in quantum mechanics.

For pure and positive quantum states, we have shown that a regular RBM is capable

of parametrizing the quantum state. In the presence of a complex quantum state, an

additional RBM is necessary to capture the phase structure. Finally, for the case of mixed

states, a neural-network density operator can be defined by purifying two RBMs with a

set of auxiliary units embedded in the latent space of the machines.

After having defined pure and mixed neural-network states, we introduced a new frame-

work, based on unsupervised learning, for QSR of unknown quantum states given a set of

measurement data [143]. We argued that this problem is the natural application of genera-

tive models, and gave a demonstration by reconstructing a variety of quantum states from

synthetic data generated with classical simulations, as well as experimental data generated

by measurements on quantum hardware in laboratories [144, 145]. Once properly trained,

the RBM is capable of generating observables which might be hard to extract both from

classical simulations and experimental measurements on quantum system engineered in

the labs. One important example is entanglement entropy which plays a very important
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role in the study of condensed matter systems. We have shown that replicated RBMs can

be used to sample the “Swap” operator and obtain an approximate estimate of the second

Renyi entropy, with profound consequences for both computational and experimental stud-

ies of strongly-correlated materials. From the experimental perspective, the second Renyi

entropy has been measured in experiment [167], though is restricted to very small system.

Instead, the entanglement can be reconstructed by first training a RBM on simple density

measurements (currently available in various experimental setups), and then sampling the

Swap operator in the RBM framework. We have demonstrated this approach for experi-

mental data measured on a Rydberg-atom quantum simulator [145], and we predict its use

for quantum computers, adiabatic quantum simulators and bosonic ultra-cold atom exper-

iments. Regarding the classical simulation of quantum materials, the QMC realizations of

the replica trick, regardless of the specific realization (e.g. path integrals, stochastic series

expansion, etc) can often be difficult to implement in practice. Instead, we can imagine

running the QMC simulation for generating samples (without measuring) and train a RBM

to learn the wavefunction and use it to calculate the entanglement entropy.

The reconstruction of quantum states from measurements goes beyond extracting phys-

ical properties. RBMs can be also implemented to probe quantum devices and shed light

on underlying noise processes, providing a powerful tool for increasing the quality of the

current generation of quantum hardware. This form of analysis is just the tip of the spear.

Soon, we will witness an increasing usage of ML in experimental setups, which will create

a feedback loop to refine and improve current experiments. A recent example was the

ML reduction of measurements errors on an ion-trap quantum computer [218]. Past that,

we envision a full integration between neural networks and experiments, for instance in

the context of quantum control to mitigate decoherence [219, 220]. Finally, integration of

neural networks and quantum hardware seems the obvious choice for the real-world imple-

mentation of decoding schemes on future topologically fault-tolerant hardware. Along this

line, we have proposed the first neural-network decoder for stabilizer codes [81], which does

not depend on the specific model of the QEC code and it is trained using only raw data.

This high degree of generalizability will be crucial to accommodate the different implemen-

tations of fault-tolerant hardware, such as its geometry, dimensionality and connectivity.
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To conclude, as ML techniques continue to become integrated into the field of condensed

matter physics, quantum information science and technology, we anticipate their role in

quantum state and process tomography, error correction, quantum control and other tasks

in validation will rapidly increase. RBMs offer a powerful method for generative modelling,

with training algorithms that are well studied by the ML community. Their demonstrated

ability to provide practical tradeoffs between representation, computation, and statistics,

offers a rich field of study of quantum states, which will be important in the integration of

classical and quantum algorithms inevitable in near-term devices and computers.
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[14] Andreas M. Läuchli, Julien Sudan, and Erik S. Sørensen. Ground-state energy and

spin gap of spin-1
2
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[56] Andrew A. Houck, Hakan E. Türeci, and Jens Koch. On-chip quantum simulation

with superconducting circuits. Nature Physics, 8:292 EP –, 04 2012.

[57] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer,

Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-

insensitive qubit design derived from the cooper pair box. Phys. Rev. A, 76:042319,

Oct 2007.

[58] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus

Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quan-

tum eigensolver for small molecules and quantum magnets. Nature, 549:242 EP –,

09 2017.

[59] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross,

Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn,

Abhinav Kandala, Antonio Mezzacapo, Peter Mller, Walter Riess, Gian Salis, John

Smolin, Ivano Tavernelli, and Kristan Temme. Quantum optimization using varia-

tional algorithms on near-term quantum devices. Quantum Science and Technology,

3(3):030503, 2018.

[60] A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M. Chow, and J. M.

Gambetta. Extending the computational reach of a noisy superconducting quantum

processor. ArXiv e-prints, May 2018.

182



[61] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,

August 2018.

[62] John Preskill and Spiros Michalakis. Quantum computers animated. https://www.

youtube.com/watch?v=T2DXrs0OpHU, 2013. [Online; accessed 27-August-2018].

[63] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,

2012.

[64] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–

444, 2008.

[65] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. Science, 313(5786):504–507, 2006.

[66] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-

lutional neural networks. Proc. Advances in Neural Information Processing Systems,

25:1090–1098, 2012.

[67] G. Hinton. A practical guido to training restricted boltzmann machines. Neural

Networks: Tricks of the Trade, pages 599–619, 2012.

[68] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

Natural language processing (almost) from scratch. Journal of Machine Learning

Research, 12:2493–2537, 2011.

[69] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy

physics with deep learning. Nature Communications, 5:4308, 2014.

[70] L. F. Arsenault, O. A. von Lilienfeld, and A. J. Millis. Machine learning for many-

body physics: efficient solution of dynamical mean-field theory. arXiv:1506.08858,

2015.

[71] Juan Carrasquilla and Roger G. Melko. Machine learning phases of matter. Nature

Physics, 13:431–434, February 2017.

183

https://www.youtube.com/watch?v=T2DXrs0OpHU
https://www.youtube.com/watch?v=T2DXrs0OpHU


[72] Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebastian D. Huber. Learning phase

transitions by confusion. Nature Physics, 13:435–439, February 2017.

[73] Giacomo Torlai and Roger G. Melko. Learning thermodynamics with Boltzmann

machines. Physical Review B, 94(16):165134, October 2016.

[74] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem

with artificial neural networks. Science, 355(6325):602–606, February 2017.

[75] Li Huang and Lei Wang. Accelerated monte carlo simulations with restricted boltz-

mann machines. Phys. Rev. B, 95:035105, Jan 2017.

[76] Junwei Liu, Yang Qi, Zi Yang Meng, and Liang Fu. Self-learning monte carlo method.

Phys. Rev. B, 95:041101, Jan 2017.

[77] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Quantum entanglement in neural

network states. Phys. Rev. X, 7:021021, May 2017.

[78] Yusuke Nomura, Andrew S. Darmawan, Youhei Yamaji, and Masatoshi Imada. Re-

stricted boltzmann machine learning for solving strongly correlated quantum systems.

Phys. Rev. B, 96:205152, Nov 2017.

[79] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Machine learning topological

states. Phys. Rev. B, 96:195145, Nov 2017.

[80] Xun Gao and Lu-Ming Duan. Efficient representation of quantum many-body states

with deep neural networks. Nature Communications, 8(1):662, 2017.

[81] Giacomo Torlai and Roger G. Melko. Neural decoder for topological codes. Phys.

Rev. Lett., 119:030501, Jul 2017.

[82] Savvas Varsamopoulos, Ben Criger, and Koen Bertels. Decoding small surface codes

with feedforward neural networks. Quantum Science and Technology, 3(1):015004,

2018.

184



[83] Paul Baireuther, Thomas E. O’Brien, Brian Tarasinski, and Carlo W. J. Beenakker.

Machine-learning-assisted correction of correlated qubit errors in a topological code.

Quantum, 2:48, January 2018.

[84] Christopher Chamberland and Pooya Ronagh. Deep neural decoders for near term

fault-tolerant experiments. Quantum Science and Technology, 3(4):044002, 2018.

[85] N. Maskara, A. Kubica, and T. Jochym-O’Connor. Advantages of versatile neural-

network decoding for topological codes. ArXiv e-prints, February 2018.

[86] Jing Chen, Song Cheng, Haidong Xie, Lei Wang, and Tao Xiang. Equivalence of

restricted boltzmann machines and tensor network states. Phys. Rev. B, 97:085104,

Feb 2018.

[87] Y. Huang and J. E. Moore. Neural network representation of tensor network and

chiral states. ArXiv e-prints, January 2017.

[88] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Rodriguez, and J. Ignacio

Cirac. Neural-network quantum states, string-bond states, and chiral topological

states. Phys. Rev. X, 8:011006, Jan 2018.

[89] Y. Levine, O. Sharir, N. Cohen, and A. Shashua. Bridging Many-Body Quantum

Physics and Deep Learning via Tensor Networks. ArXiv e-prints, March 2018.

[90] P. Mehta and D. J. Schwab. An exact mapping between the Variational Renormal-

ization Group and Deep Learning. ArXiv e-prints, October 2014.

[91] Maciej Koch-Janusz and Zohar Ringel. Mutual information, neural networks and the

renormalization group. Nature Physics, 14(6):578–582, 2018.

[92] S.-H. Li and L. Wang. Neural Network Renormalization Group. ArXiv e-prints,

February 2018.

[93] Yi-Zhuang You, Zhao Yang, and Xiao-Liang Qi. Machine learning spatial geometry

from entanglement features. Phys. Rev. B, 97:045153, Jan 2018.

185



[94] Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,

Advances in Neural Information Processing Systems 29, pages 4799–4807. Curran

Associates, Inc., 2016.

[95] I. Glasser, N. Pancotti, and J. I. Cirac. Supervised learning with generalized tensor

networks. ArXiv e-prints, June 2018.

[96] Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised

generative modeling using matrix product states. Phys. Rev. X, 8:031012, Jul 2018.

[97] E Miles Stoudenmire. Learning relevant features of data with multi-scale tensor

networks. Quantum Science and Technology, 3(3):034003, 2018.

[98] Wikipedia contributors. Cyc — Wikipedia, the free encyclopedia, 2018. [Online;

accessed 1-September-2018].

[99] David E. Rumelhart, James L. McClelland, and CORPORATE PDP Re-

search Group, editors. Parallel Distributed Processing: Explorations in the Mi-

crostructure of Cognition, Vol. 1: Foundations. MIT Press, Cambridge, MA, USA,

1986.

[100] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[101] Jeremy Bernstein. A.I. https://www.newyorker.com/magazine/1981/12/14/a-i,

1981. [Online; accessed 5-September-2018].

[102] Frank Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[103] Mikel Olazaran. A sociological study of the official history of the perceptrons con-

troversy. Social Studies of Science, 26(3):611–659, 1996.

[104] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-

sentations by back-propagating errors. Nature, 323:533 EP –, 10 1986.

186

https://www.newyorker.com/magazine/1981/12/14/a-i


[105] J J Hopfield. Neural networks and physical systems with emergent collective compu-

tational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558,

1982.

[106] J. J. Hopfield, D. I. Feinstein, and R. G. Palmer. ‘unlearning’has a stabilizing effect

in collective memories. Nature, 304:158 EP –, 07 1983.

[107] P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated Annealing: Theory and

Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

[108] P. Smolensky. Parallel distributed processing: Explorations in the microstructure of

cognition, vol. 1. chapter Information Processing in Dynamical Systems: Foundations

of Harmony Theory, pages 194–281. MIT Press, Cambridge, MA, USA, 1986.

[109] W. K. Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

[110] Geoffrey E. Hinton. Training products of experts by minimizing contrastive diver-

gence. Neural Computation, 14(8):1771–1800, 2002.

[111] Y Bengio and O Delalleau. Justifying and generalizing contrastive divergence. Neural

Computation, 21:1601–21, 2009.

[112] A Fischer and C. Igel. Bounding the bias of contrastive divergence learning. Neural

Computation, 23:664–73, 2011.
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Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kevin J. Resch, and Thomas

Jennewein. Direct generation of three-photon polarization entanglement. Nature

Photonics, 8:801 EP –, 09 2014.

[170] M. Bellini S. Grandi, A. Zavatta and M. G. A. Paris. Experimental quantum tomog-

raphy of a homodyne detector. New Journal of Physics, 19:053015, 2017.

[171] J. Lavoie, R. Kaltenbaek, and K. J. Resch. Experimental violation of svetlichny’s

inequality. New Journal of Physics, page 073051, 2009.

193



[172] Milena D’Angelo, Alessandro Zavatta, Valentina Parigi, and Marco Bellini. Tomo-

graphic test of bell’s inequality for a time-delocalized single photon. Phys. Rev. A,

74:052114, Nov 2006.

[173] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. arxiv1212:5701,

2012.

[174] K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi. Maximum-likelihood

estimation of the density matrix. Phys. Rev. A, 61:010304, Dec 1999.

[175] J.B. Altepeter, E.R. Jeffrey, and P.G. Kwiat. Photonic state tomography. Advances

in Atomic, Molecular, and Optical Physics, 52, 2006.

[176] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. Quantum simulations

with ultracold quantum gases. Nature Physics, 8:267 EP –, 04 2012.

[177] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nature Physics,

8:277 EP –, 04 2012.

[178] C. Monroe and J. Kim. Scaling the ion trap quantum processor. Science,

339(6124):1164–1169, 2013.

[179] Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter Zoller, and Hans Peter
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