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The term p u f i l  evaluafion describes a class of program transformation techniques. The 
heart of these techniques is to ttansform progranus by incorporating portions of known run- 
time data into the program The resulting program has been "partiallf' evaluated - some of 
the actions of the program can be performed at  compiletirne due to the known data. There 
are two general classes of known data that can be used by such a process. The first class 
is composed of data that is implicit in the production of the program; examples include tex- 
hial constants, m a m  expanded values, tgpe tag values, method match tables, etc. Some 
amount of such data occurs fhquently in higb-level programs. The second category is com- 
posed of data that is explicitly provided at compile t h e .  Such data can be used to create 
customized versions of very general programs such as rap-tracing and numerical modeling 
systems. 

In this thesis we propose a formal fiamework for an on-line partial evaluation system. 
The underlying model for values in the partial evaluator is not restricted to hite-height lat- 
tices; the termination of the evaluator depends on the convergence of operations, rather than 
on a restncted model for values in the system, The proposed b e w o r k  ciearïy separates 
the partial evaluation algorithm h m  the abstract domains used for representing informa- 
tion duriag the evaluation, allowing a wide variew of evaluations to be effected by the same 
core algorithm. The partial evaluation algorithm that is proposed as part of the framework 
is a polyvariant on-he algorithm that makes effective use of the static information present 
in program source while preserving soundness and termination. The thesis presents m e -  
ful proofs of termination and çoundness based on &aracte.rizations of behaviour under the 
natual semantics. The key to the algorithm is recognizing when exact analpis is safe with 
regards to termination and when a more consemative approximation is needed. 

The actual on-line algorithm depends only on the properties of the abs-ct domains, 
not on parti& choices of abstraction. The abstract domains allow the partial evaluation 
algorithm to take advantage of d e  computations whenever possible. The o v d  algorithm 
we propose compares favourably to other partial evaluation systems in its ability to  capture 
information present in the program, and the ability of the system to execute without any 
human intervention 0 t h  than an indication of how much the system is pennitted to inuease 
the size of resulting program. The ability of a general sgstem to generate teasonable results 
without h u m  intervention is a key advantage that is a prerequisite for having this type of 
technology applied in real systems. 
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Chapter 1 

Introduction 

1.1 Goals and Directions 

Automatic program t rdormat ions  are important in the practice of modem com- 
puter science. Programmers generally take for granted that compilers and other pro- 
gram transformation Bgstems are correct and that cornpilets perfonn &good" trans- 
formations. Although most program transformations occur during compilation, it 
is increasingly important b express program tsansformations that support various 
kinds automated reasoning. Such traasformations range fimm program speeification, 
to mal-time system behaviour, to dealing wi th  changes to legacy code. In addition 
to the more ment concerns, the more traditionai d e s  of program optimization con- 
tinue to be very important in areas such as molecular modeling, weather systems, 
fluid dynamics, fidl motion animation, etc. 

Anmering questions about program behaviour is a nindamental aspect of nearly 
all program transformation techniques. This thesis proposes a h e w o r k  for pm- 
gram transformation that is based on pedorming source language to source language 
code transformations that exploit information present in the original source program. 
The tradeoff for this fanis lies in an increase in mmputation at compile-the and a 
probable hcrease in the size of the resulting esecutable program. The foeus of our 
work is in a fiamework for program analysis. The n9mework that we propose can be 
used as a tool for anmering various questions about program behaviour; the collected 
information can in tum be used for various types of transformations. 
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We ptopose the use of partial evaluation and symbolic execution techniques to 
regularize and fonnalize questions about program behaviout The proposed fhme- 
work generalizes the analpsis methodology adopted by most comparable systems. 
There are three main areas of contribution presented in this work First, a forma1 
foundation for partial evaluation is presented. The foundation determines how ab- 
stract values within the systern can be modeled. Riot work has ~ q &  that such 
models be fonned h m  finite-height lattices in order to preseme termination for the 
evaluator. Our analytic approach is based on the analysis techniques of Cousot and 
Cousot [27] and preserves termination without restricthg the underlying model to 
hite height lattices. This appmach is a general application of intemal analysis and 
has reasonable extensions to non-integer domains Buch as stnictured types. 

The second area of contribution is a partial evaluation algoritbm that uses the for- 
mal model and that Merentiates between types of information within the system. 
The algorithm allows very accurate operations on values when there is no risk of 
divergence and applies more conserrtative operations when needed in order to guar- 
antee convergence. We present pmfb of termination and soundness for our algorithm 
and discuss the general time complexity of the fhmework. 

The final area of contribution de& with abstract domains for modeling integer 
and structural information. The structural model was motivated by the work of Hen- 
dren [39] and Launchbuy [a, w U e  the abstract integer model is based on work by 
Cousot and Cousot [273. 

The overall design of the system separates the language spedc foundation of 
the interpreter and the methods for pedorming the analysis. Such a design allows 
one to change easily the types of analysis peiformed by the system without hav- 
h g  to change the underlyiag interpretation system. The ove& system compares 
favourably to other partial evaluation systems in its ability to capture information 
present in the program, and in the system's ability to execute without any human in- 
tervention other than an indication of how much the system is permitted to increase 
the size of resulting prugram. The ability of a general system ta generate reason- 
able redts without human intervention is a key advantage that is a prerequisite for 
having this type of technology applied in real systems. 

The remahder of this chapter intmduœs the general concepts of cornpilem, opti- 
mization, and abstract interpretation while Chapter 2 infroduces partid evaluation 
and appIicattions of partiai evaluation. Chapter 3 presents the fiamework that we 
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have developed. There are two important parts to this presentatio~ the m q h -  
ments for the abstract models used by our aigorithm, and the algorithm itself Chap- 
ter 4 presents a formal anal* of the algorithm and includes proofs of termination, 
soundness, and mmctness of transformed expressions, as well as a discussion of the 
complexity of algorithm. In Chapter 5 we develop partidar abstract models for inte- 
ger and structural domains and discuss other possible models. Chapter 6 deah with 
a number of issues related to implementing the fhmework and indudes a discussion 
of the prototype system that we have developed. ûther issues, not dKectly related 
to our implementation, are also discussed. These i d u d e  problems with sideeffects, 
methods for producing high q d t y  residds,  and separate compilation. 

1.2 Compilers and Interpreters 

The basic difference betwssn interpretation and compilation is that an interpreter 
executes pmgrams by transIating a single line of a program, performing the required 
action, and then going on to the next Iine. ARer each translation and action, the 
interpreter throws away the translation, so if the interpreter encounters the same 
line again later, the line must be translateci again. A compiler takes the original 
program and translates the entire program into an executable form that may then be 
used without M e r  translation. 

The interpretation/mmpilation border in real systems is not that well defined of 
course. Inherently, every real program is interpreted - the actual processor interprets 
a sequence ofbits as an instruction to perfonn a p d c u l a r  action, then interprets the 
next bit sequence, etc. It is important that one does not assume that d compilers 
pmduce code that requires no further interpretation and it is equally important not 
to assume that an interpreter never compiles code. 

A compiler is simply a prognun that transforms data according to some set of 
d e s .  Data transformations are not alagicn; any program can be seen as a data 
transformer for at least a trivial data set. The reason that people becorne confused 
about compilers is that although the result of the compiler c m  be understood as data, 
the result is not passive but rather is itselîa data transformer. 

The classic compiler structure [31 is composed of a number of phases or layers 
as shown in Figure 1.2.1 The k t  phases-are syntactic or lexical analysis and pars- 
hg. These two phases insure that the program is st~cturally correct with respect to 
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Figure 1.2.1: A typical compiler 



the language definition (assuming, of course, that the compiler correctly implements 
the language spedication). The result of these two phases is an intermediate form 
usually represented as a parse tree or some intermediate language. The semantic 
analysis normdy checks that language constraints are satisfied. Such constraints 
may include type safety, assîgnment des, etc. Mer (or more typidy, during) se- 
mantic analpis, an intemediate form of the pmgram is produced. Intermediate 
forms generally remove source language syntactic (and possibly some of the seman- 
tic) constraints and are c o n s t ~ c t e d  to be amenable to manipulation for the remain- 
ing phases. The optimizer perforxns transformations on the intemediate fonn and 
produœs a seman t idy  equivalent intermediate representation that is "better" ac- 
cording to some set of criteria. The name "optimizer" is somewhat misleadhg - it 
is extremely rare that an optunized pmgram is in fàct optUML in any formal sense. 
Wptimizationsn are in malîty *code-impmving transformationsn, but we will retain 
the cornmon terminology for the sake of clarity. The final step after optimization is 
the generation of the target d e ,  

The research presented in this thesis is directed primarily at the optimization 
phase of the compiler although the approach could be used for code generation and 
semantic analysis as welL 

1.3 Optimization and Interpretation 

The optimization methods presented in this thesis derive information about the source 
code and rnakes use of this denved information when performing code transforma- 
tions. Methods for deriving information about pmgrams rely on some sort of inter- 
pretation of the source code. This interpretation m o t  normally be a fidl execution 
of the program since we generally do not know m-time arguments to the program 
when we are compiling the pmgram. Compile-time interpretation can only approx- 
imate the run-time behaviour of the pmgram if there is any idormation that is not 
present at compile-tirne. 

Simple examples of such interpretations are the cornmon optimizations of con- 
stant folding and constant propagation. If a compiler encouritem an expression such 
as (a + b + 2 + 4 within a program, it is generally safe to transform the calcu- 
lation by folding the two constants into a single constant, resultuig in the expression 
(a + b + 6 1 . It is important to note that such transformations are not dways safe. 
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For example, on a machine with &bit two's amplement arithmetic, folding ( a + b 

+ 120 + 20) to (a + b + 140)  wodd not be safe sinœ the c o m t  140 is not 
representable in &bit -0's mmplement notation. The nin-time semantics of the ex- 
pression may be correct however sinœ the programmer may have a priori knowledge 
that the redt  of (a + b) aill always be below -12. Even this a priori knowledge 
however, relies on the assumption that expressions are evaluated in le& to nght or- 
der. 

Constarit propagation is a similar technique but is petformed across expressions- 
If at a certain point in an imperative program, a variable is assigned a constant, we 
can replace uses of that variable in the following d e  with the constant value until 
the point in the program at which the variable is assigned some other value. Note 
that the code "followinf an assignment depends on the run-time behaviour of the 
program - for example, in g e n d  dl code within a lmp Yoilows" every statement in 
the loop. For example, within the loop: 

X := 5 ;  

f o r  i := 1 to 10 do 
y := x; 

output ( y )  ; 

X := X + 1; 

od; 

it would not be correct to remove the assignment of x to y and replaœ the output ( y )  

with output ( 5 ) since the assignment statement y : = x follows not only the state- 

ment x : = 5, but also follows the statement x : = x + 1 which occurs textually at 
the end of the loop. 

Complicating matters in constant propagation anal* is the fact that there may 
be several references to the same memory location within the program. Determining 
the set of all such references involves performing some form of dias analysis. 

Both of these examples rely on some fonn of interpretation of the source language 
semantics - during folding the interpiretation involved the semantics of the + operator 
and the semantics of integer representation, while during constant propagation the 
interpretation involved the semantics of the control flow constructs. ûptimizers need 
to know about the underlying semantics of the language king trandomed; it is 



ait ical that the transformations performed by an optimizer are semanticspreseming, 
Le. that they don't change the meaning of the origipal program. 

In some senses the techniques in this thesis are merely advanced versions of con- 
stant propagation and fol- We wish to use information whicb rnay be inferable 
fkom the source code for the purpose of anmering various questions about the source. 
As one simple example, ansider our for loop again. A naive interpretation wodd 
not be able to infer any knowledge about the state of the variable x following the 
hop. However, by inspection, it is clear that the value o f x  followïng the loop is going 
to be 15. The techniques that we wil l  be introducing are able to infer not only this 
information, but information that is much more gened 

1.4 The Essentials of Abstract Interpretation 

Fundamentally, interpretation should be understaad as the implementation of se- 
mantics. In other words, an interpreter is a function whose domain (input) is a pro- 
gram in some language and whose range (output) represent the meaning of the pro- 
gram. In a .  pmgramming language (or domain), semantic definitions are provided 
for expressions in the domain. These semantics rnay be given in varging degrees of 
fomality - ML [631 being on the formal side and C++ [79] king on the infolmal side 
- but dl languages give some sort of definition of the meaning of pmgrams wïthin the 
language. We will be using the term %andard semanticsn to refer to the semantics 
defhed for the original language. 

Fonnally, we may express the meaning of a pmgram as a fiuiction 0 such that 
[el is the keaning" or interpretation of the expression e. The expression [ e ] ~  repre- 
sents the meaning of the expression e when interpreted with the semantic definitions 
of language L1 - Le. the behaviour of the expression e. Meanhg fiinctions may be 
specified in a variety of ways including denotational semantics, operational seman- 
tics, action semantics, or idormal descriptions. 

Using this notation we c m  more concisely describe a compiler. If c is a compiler 
written in language L which t radates  expressions h m  language &t to some other 

' When it adds to the claritp of the presentation, the subscript indicating the domain of the meaning 
function will be omittd. 



language M' then the following equation should hold: 

Intuitivelx this says that the meaning of the expression in the source language 
should be the same as the meanhg of the expression which r e d t s  h m  compiling 
the expression. When such an e q d t y  holds we say the  orm mations applied by 
the compiler c are semanties prese~ing.  Traditional compilers daim to be semantics 
preserrring and are (more or less) accurate in their ciaims. 

There are often circumstances in which an optimizer wishes to ask questions 
about a program in order to perform transformations. Such questions may include 
ï s  it possible for this segment of code to executen or "can we determine the type of 
the object that is referenced by this pointer". The types of optimizations that rely on 
such questions indude reachability adysis,  bve variable andysis, array partition- 
ing, and interference computations for paralle1 applications. These types of analysis 
perform a crucial mle in the optimization phases of compilation. It is usefd to con- 
sider each analysis as an interpretation of the original program using a set ofseman- 
tic definitions that is dif5erent than the semantic definitions of the original program. 
This permïts a precise description of the method to k given and allows termination 
and pefiomance characteristics to be established. Abstract interpretation is a gen- 
eral term which includes any such "non-standard" interpretation of expressions in a 
domain. 

1.4.1 A Simple Example 

One straightforward example of abstract interpretation is in detennining whether 
the value of an arithmetic expression is negative, positive, or zero. Consider a lm-  
guage of mathematical expressions aith addition, subtraction, and multiplication: 

E : : E + F I E - P I F  
F : : F * T I F / T I T  
T :: (E l  1 constant 
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We can give a standard semantics for the language as the following: 

This semantic definition &es the normal d e s  for evaluating expressions with- 
out dealing with the problem of division by zem. If we are only interested in whether 
the result is positive, negative, or zero we could define the following non-standard 
semantics 

Consider the following definitions: 

In each of the abstract operations $ and 8 there exist evaluations that do not have 
a "simple" answer compod of a single abstract due .  For example, when a positive 
and negative number are summed, the r e d t  could be positive, negative, or zero. In 
general, many such situations can ofcur within abstract domains. For this parüdar 
case, we will allow subsets of the three basic abstract values to represent values. The 
abstract value NPZ will repitesent a set of abstract values composed of the negatiue, 



positive and zero abstract values. The abstract operators must then be defined over 
all nonernpty subsets of the abstract values. W e  will expliatly define the operators 
for single elements; the opera&= are denned to evaluate sets by taking the union 
of the rssults of applying the operation to a l l  pairs in the cartesian product of the 
arguments. 

The pmper dennitions for the a b c t  operators are then as follows: 

Using these non-standard semantics as the basis for an interpreter would result 
in an abstract interpreter for this language. Interpreting any expression in the lan- 
mage would result in a nonempty eubset of the abstract terms mg, pos and zero. We 
would not know the actual result of the computation using the standard semantics, 
but we would have some abstract information about the expression. 

Example 1: 

(5 + ( 4  - 4)) c, (pos + (4 - 4)) 
(pos + (4 - 4 ) )  +b (pos + (pos - 4)) 
(pos + (pos - 4) 1 +P (pos + (pos - pos) ) 
( ~ 0 s  +   OS - ~ 0 s ) )  ++ (pas + NPZ) ++ NPZ. 

There is one important issue to note about this style of interpretation. By in- 
spection, an accurate interpretation of the subexpression 4 - 4 should result in the 

abstract value zero rather than the abstract value NPZ. The pmcess of abstraction 
has lost some of the Somation needed to reason amately about the standard se- 

mantics. Any proeess of abstraction suffers h m  this problern to some degree; the 
key to a good system is to be flexible as to when information is lost. This theme will 
h re-addressed when the a b c t  domain requitements are introduced. 
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(5  - (-7 - 4 ) )  c, (pos - (-7 - 4 ) )  

(pos - (-7 - 4 ) )  * (pos - (neg - 4 ) )  

(pos - (neg - 4) ) c, (pos - (neg - pos) ) 
(pos - (neg - pos)) c-, (pos - neg) * pos. 
ALthough the previous abstmct interpretation assumes that we have fidl knowl- 

edge about the values of constants, we can easily extend the model to admit "un- 
known" or "partially known" values. Admitting an unknown abstract value to the 
neg pos and zero values changes only the abstract operators- Adding or subtracting 
values with an unknown value red t s  in an iinknown value. Multiplying or dïvid- 
ing with an iinlaiown however, may result in a value other than iinloiown. Since 
we know that mdtiplying any number by zero generates zero, we can allow our 
operator take advantage of operands which are zero. Division is similar, eaaept that 
dividing anything by an unknown could result in an e m r  since the unknown value 
rnight be zero. Incorporating unk as the abstract value for iinlrnown within our model 
yields the followiiig definitions for the abstract operators: 

neg I POS I zero unk n 

@ 
h 

neg 
pos 
zero 
unk 

1 unk 1 unk, e m r  1 unk, e m r  1 unk, e m r  1 unk, e m r  1 

neg 
pos 
neg 
zero 
iink 

POS 

zero 

pos 
neg 
pos 
zero 
unk 

I h 

neg 
zero 

zero 

zero 
zero 
zero 
zero 

POS 

zero 

unk 
unk 

J 

unk 
zero 

e m r  
e m r  

II 

n 

u n .  

u n k , e m r  . 
unk,error 

i 



Example 3: 

(2 * (4  - ???)  ) c, (pos * ( 4  - ???)  

(pos * (4  - ? ? ? ) )  c, (pos * (pos - ? ? ? I l  
(pos * (pos - ? ? ? ) )  c, (pos * (pos - rrnk)) 
(pos * (pos - urik)) c-, (pos unk) c, unk- 

The unk d u e  in the above is redundant. The behaviour of the unk value is 
exactly the same as the abstract value NPZ. This corresponds to intuition as well; an 
"unknown" value could be either negative, positive, or zero. Formalizing the 
properties of abstract domairidl makes this recognition more straightforward, even in 
complex domains. 

Thsse examples illustrate the basic method for defining any abstract interpreta- 
tion: define an abstract domain (set of a h c t  values), define the operators on those 
values, and define the method for applying those operators to expressions in the lan- 
guage. Most of this work will focus on the first two of these requirements; the third 
will follow in a fauy natural way h m  the domains and operators we define. 

1.5 Formalizing Abstract Relationships 

The standard models used for fonnalizing abstract domains are developed h m  lat- 
tice theory. In this section, we briefiy review some notation and the basies of lattice 
theory; more detail is contained in Appendix A, but for a complete development, we 
would recommend the introductory book by Davey and Priestley [3O]. 

A lattice is a formal model for describing the relationships between elements in a 
set. A lattice is a s p e d  case of a pattial or&. 

Deni 1.1 (Partial Order) A partial order < S, < > is a set S and a 
relation, < , on S such that fbr 2, y, z f S, the 6 relation is: 



bwer bounds (B C Dl 
(il (ii) Greatest lower bound {El 

No Greatest lower bound 

Figure 1.5.1: Lower bounds 

If z 4 y we may say that z is bdow y. Note that it may be the case that < does 
not hold at all between two arbitrarg elements of S. In other words, it may be the 
case that for some 2, y E S, z # y and y # 2. In such a case we Say that z and y are 
incomparable, denoted as 2 11 y . 

It is usefûl to be able to talk about various boicnds or limiting values of a subset 
of some partial order < S, =$ >. Assume that S' is a subset of S for some partial order 
<S, =$ >* 

Defh 1.2 &ower Bound) A lower bound for S' is an dernent y E S such 
that V2 E S', y < 2. 

Note that the lower bound of a subset of S does not have to be a member of the 
subset, it is only required to be a member of S. 

Defh 1.3 (Greatest h w e r  Bound (GLB)) nS', the greatest lower 
bound for S' U a lower bound, y, of S' sueh t h t  Vz '2 { lower bounds 
of S'}, t < y. We wdl OldO refer to the greatest lower bound of a set con- 
taining elements + and y as the meet of z and y, denoted as ZAY. 



Upper bounds (B C Dl 
NO least upper b ~ ~ n d  

(U) Least upper bound {AI 

Figure 1.5.2: Upper Bounds 

It may be the case that a set does not have a lower bound; if there are two incom- 
parable values which constitute the set then there would be no value comparable to 

(and below) every eIement of the set. 

Defn 1.4 (Upper Bound) An upper bound for S is an element y E S 
such that Vx E S, z 4 y. 

Defn 1.5 (Least Upper Bound (LU')) üSf9 the le& upper bound for 
Sr is an upper boum& p. of Sr such that Vz 'z { upper bouruh of S}, y < 2. 

We wiU a h  rem to the least upper bound of ta set containing elernents z 
and y as the j ob  of O and y. denoted as zvy. 

As with lower bounds, an upper bound may not exist. Obviously it is the case that 
if no upper bound exists, no least upper bound d t s .  

Defh 1.6 (Lattice) A lattice < S, < > is a partial order such that 
V{2, y) E S : ZAY and tvv  -t. 



A lattiœ requires that a least upper bound and greatest lower bound exist for any 
pair of elementn The nature of these bounds has aome relationship to miPimality; 
the least upper bound for two elements is the usmallest" value that represents both 
of the values, 

A lattice may have distinguished elements, labeled T (top) and 1 (bottom), that 
represent the greatest and least eiements in the lattice. Any finite lattice will have 
such elements; ïnûnite lattices may not. 



Chapter 2 

Partial Evaluation and Symbolic 
Execution 

Partial evaluation and symbolic execution are general terms which encapsulate meth- 
ods for more cmmplete forms ofabstract interpretation. The goal of partial evaluation 
is to interpret programs in which only part of the input data is known at interpreta- 
tion tirne. Given an interpreter int in language C and data d, a traditional interpre- 
tation for a program e may be expressed as: 

Partial evaluation considers the data as being composed of two distinct parts - a 
static part and a dymmic part. The static part of the data contains information which 
does not change between interpretations of the program. The dynamic data contairis 
the information which is not available until the program actually runs. This view of 
the data is reflected in the following. 

where s is the static portion of the data and d is the dynamic portion of the data. Note 
that this equation factors the static data out of the entire set of program data. 



2.1 The Mzx Equation 

Partial evaluation arises from the recognition that equation 2.2 can be rearranged to 

incorporate the static data, s, into a new program that, when applied to the dynamic 
data d, provides the same results as the original pmgram. A partial evaluator, miz, 

h m  a language f to a language M takes a program e in L and data s and produces 
a new program e' in M such that the following holds: 

Expanding e' into its symbolic form we get the following: 

Equation 2.4 is callecl the Mix Equation. The name m u  stems h m  work by Er- 
shov [32] on m&d computation which was pioneering work in computation with 
mixed dynamic and static data. An early p d  evaluation system 1481 was called 
miz in recognition of this contribution. Although the term mked computcrtion has 
been superseded by the term partial evduation, the name mü has b e n  retained as 
the common name for symbolic interpreters. 

The Mix Equation is interesthg in that it reflects the same basic process as cur- 
rying in hctional  propanunhg (541. Currying ocnvs in fimctional languages when 
functions with multiple arguments may be viewed as functiom that take a single 
argument and retum a function over the remaining arguments. CurrJring can be ex- 
pressed formally through the lambda calculus as nested fiinction definitions (lambda 
expressions). Similarlg a partial evaluator views a pmgram as taking static data 
and returning a program over the dynamic data. 

2.2 The Futamura Rojections 

Let us briefly restrict the general form of partial evaluators to consider only partial 
evaluators whose target language is the same as the source language. That is, let mix 

be a partial evaluator h m  M to M. In addition, let int be an interpreter WTitten in 
language M which interprets programs in L. 



Consider the result, r, of this application of mii.  Applying r to static and dynamic 
data will give the same r e d t  as interpreting e with the same data. That is, 

The critical observation is that r bas the same behaviour as a compiled program. 
This identim, d e d  The Fust Futamum Pro&crion [Ml, shows that miz may be used 
to generate a compiled program an interpreter and a source program. 

In equation 2.4 and equation 2.5 we did not d e h e  the source language of the 
partial evaluator, mm. Lst us now assume that mi2 is itseEwrïtten in language M. 
We can push the level of interpretation out an additional level. 

c a p  = [miz](miz, int) (2-7) 

This makes more sense when you consider applying a program, e, and data (s, d) .  

comp is a compiler - it takes a program, e, and produces a program which, when 
applied to the data, pmduœs the r e d t  of the original program. Using this approach, 
miz can automatidy produce compilers h m  interpretes. This level of application 
is called The Second Futamum hject ion.  

The Third Futamum Projection pushes the application of miz out one more level. 
Consider the following: 

cogen = [miz](rniz, mi t )  (2.9) 

Again, considei applying the rest of the arguments to cogen: 

[ [ [[mît](miz mi t ) ]  int] el (s, d )  (2-10) 

cogen acts as a compiler generator. Given an interprete~, cogen produœs a compiler 
which may be used as described in the Second Futamura Projection. 

The Futamura projections rely on ha* partial evaluators which are Wntten in 
the same language as the language of interpretation. Such partial evaluators are 
called self-oppllicable. There is continuing work in self-applicable partial evaluators 
with the view towards automating compiler pduction for realistic environmentS. 
There are a number of diflciculties with this approach; it is d i f n d t  to see how to 



automatically map data layout in an interpreter to data layout in compiled code and it 
is unclear whether a partial evaluator could Udismver" data ielationships which could 
be transfomed into data structures whïch don't .exkt in either the partial evaluator 
or the interpreter. [161 [43] [451 [55] [Ml [84] 

There are other issues for automatic compiler generation with respect to effi- 
eiency, code generation, and other low-Ievel machine speQfic quirements. Although 
the Futamma Rajections are interesting and continue to spur research, the remain- 
der of this document will not deal with self-application issues. The focus will be not 
on automatic compiler generation, but rather making use of the underlying tech- 
niques to discover information that could be used in a somewhat more traditional 
compilation system. 

2.3 General Concepts of Partial Evaluation 

At their core, the Futamura Projections express the idea of specialization - the in- 
corporation of specitic data into a general program for the purpose of generating a 
speaalized version of the program. Ifwe consider the Third Projection as a basis for 
expressing computation then we can express any program behaviour as a specializa- 
tion of some instance of cogen. 

Gened forms of partial evaluation incorporate specialization as a fundamental 
aspect of their behavio= A specialization bccurs when a partial evaluator inteptes 
some piece of static data into a code âegment and produœs a new d e  hgment. A 
specializer performs specidizations based on whether a particular value is static or 
dynamic In most systems, annotatiom are intmduced into a program which mark a 
value as static or dpnamic The procese by which such annotations are introduced 
is d e d  binding tinze andysis and d be discussed at length beginning in Sec- 
tion 2.3.2. 



Consider the following simple function, f, and a cal1 to the functïon: 
(define f 

(lambda (x y) 
(+ x Y) 

) ) 

Assuming that we do not know the d u e  for z, the pmgram îs amotated as: 

(f, 3, 5 )  

where x, means that x is dynamic and X, means that x is static Both function 
calls and variables may be annotated. The annotation on a function cal1 reflects 
whether the function wiU be entirely evduated (is static) or have a function mll left 
in the specialized program (is dynamic). For a variable, the static annotation means 
that the specializer may use the value during the specialization while the dynamic 
annotation means that the specializer may not use the value. 

Specialhation may be an identity operation - the specializer may not have enough 
static information to pediorm a specialization, or the specializer rnay not be allowed 
to perform a speciaiization even though some static data is present. The latter case 
o c m  in some special situations which WU be discussed in later sections. lii all 
cases, the result of a specialization is called a tesidual. 

Given the above annotations, a residual for our program might be as follows: 

(define resid-f-1 
(lambda ( y )  

(+ 3 y )  
1 )  

The fundamental algoritbm for a partial evaluator consists of selecting a function 
for specialization, pducing a residual tbrough some specialization and repeating 
untiI all useM static information has been wed. Figure 2.3.1 gives one basic algo- 
rithm for specialization. 



fun spec [code, actual) 
for each sequential line of code 
for each operator or function do (in evaluation order) 

if a function cal1 
replace by the residual f r o m  spec ( function, arguments 

else if an operator and arguments have static values 
replace by the result from evaluating operation 

return remaining code as residual 

Figure 2.3.1: Basic Specialization 

As noted earlier, partial evaluation techniques consider program data as being in one 
of two classes - static or dynamic. Although we eqressed both sets of data as pa- 
rameters to the program, in reality a m a t  deal of static information may be present 
in the text of the source program alone. This part of the pmgram data must also 
be considered as static and can mnceptually be considered as part of the parameters 
to the program (a simple rewriting could be performed in order to have such data 
presented as parameters, but it is not necessary to do so). When we consider per- 
forming partial evaluation on a program, one of our f h t  concem will be to decide 
whieh of the program variables we will want to treat as containing static data and 
which we wiU have to treat as containing dynamîc data. The pmeess by which data is 
divided between the two classes is d e d  binàirtg-time analysis [54l [46]. Normally a 
bindhg-the anal* will introduce annotations into a program to represent the sta- 
tus o f  each variable. These annotations are then used by the speQalizer to determine 
what information may be incorporateci into the residual program. 

There are several issues involved in binding-time analysis (BTAk temiaation, 
accurtqy, and 1ifetm.e. Binding-time analysis is in general not decidable, so all tech- 
niques must approxhate the a d  set of static and dynarnic data withïn the pro- 
gram. The calculation of a reasonable estimate Uivolves iteratively making an esti- 
mate and then checking whether some type of fixed-point has been reached within a 
solution set. The BTA process must terminate while not making an overly conserva- 
tive approximation in order for the information to be usefid within the specialization 
phase. The termiaation pmblem ia also referred to as the pmblem of divergent com- 



putofion or simpIy divegence. 

Accuracy relates to the %solution* of the analysis. The simplest approach is to 
have a single annotation for each variable. This approach is generally not very accu- 
rate since a single variable rnay name a compound data struchue, some of which may 
be dynamic and some of which may be static. A more accurate anaiysis inwlves treat- 
ing each member of a c o m p o d  data structure as a distinct binding by associating a 
binding-time annotation with each of the elementa Issues which affect the accuracy 
of the analpis include the memorg model, the presenœ of higherarder s t ~ c t u r e s ,  

and aliasing and side-effixt mechanisms. Increased accuracy provides more informa- 
tion to the specializer at the cost ofincreased computation time and more sensitive 
termination criteria. There are two restrictions on any B W  the BTA must be safe 
in that no dynamic expression may be annotated as static, and the BTA must be 
usefil in that all static expressions (or at least as many as possible) are denoted as 
static [73]. Both safety and usefhlness effect termination and accuTay. 

Finallx the lifetime aspect of a binding-time analysis relates to whether there is 
a single annotation for a variable or if there rnay be several annotations which apply 
at difTerent points within the program. Most nvtent techniques have only a single 
annotation for each variable, although the= is continueci research into techniques 
which allow for multiple annotations. Lifetime deasions relate to the interaction of 
the binding-tirne d y s i s  and the speciaüzation phase; this interaction is the topic 
of Sections 2.3.5 and 2.3.5. 

2.3.3 Tgpes of Partial Evaîuators 

There are four fuadamental approaches to partial evaluation. These approaches com- 
bine one of two methads for lifetime analysis with one of two methods for the relation- 
ship between the BTA and the specializer. The two lifetime methods are monovariant 
and polyvwiant; the two relationships are on-line and of-line. The following sections 
will discuss each of these methods. In addition to the above classifications, t h  are 
a number of orthogonal issues. Memoization (Section 2.5) and accutacy are two of 
these issues that we will discuss. 
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2.3.4 PI,Iyvdant and Monovariant B'EA 

Monovariant BTA 

The main issue conœming lifetime considerations is whether the binding time anal- 
ysis (and the redting spedîzations) will be monovariant or polyvariant. A mono- 
variant adysis  generates a a e  set of annotations for a particdar segment of 
code (usudy a iùnction). These annotations are then used for the entire specializa- 
tion phase [Il]. 

The fundamental problem with monovariait BTA lies in the fa& that there is only 
a single annotation for each variable in a hction.  The annotation for a partidar 
variable must then be the most gened  (or widest [73]) annotation for any possible 
run-time binding of values. For a given formal parameter, if there eBsts a cal1 site 
in which the a d  parameter is static and another c d  site at which the actual 
parameter is dynamic, then the annotation for the formal parameter will be dynarnic 
and the specialization phase will not be able to make use of the information available 
in the static parameter. 

We d again use o u t  simple fiuiction, f, as an example. 

(define f 
(lambda (x y) 

(+ x y )  

1 )  

Assume that we have the fouowing calls of f: 

with z being dynanic. The annotated version of f and the uses of f would be as 
follow s: 

(define f 
(lambda ( x  y) 



Figure 2.3.2: Lattice of Simple h o t a t i o n s  

For each parameter there ePs+P a cal1 with a stotic actual argument and a cal1 
with a dynanic actual parameter. The most general annotation for each parameter 
is dymmic, so the annotations for both variables in the fiuiction body become dy- 
ncrmic. As a result of these annotations, no s p c d h t i o n  will be perfomed during 
the specialization phase and the original fiuiction will m a i n  as the residual. 

The two annotations, stutic and dymmic, form a very simple lattice as shown in 
Figure 2.3.2. Note that we do not show a T or I element in the lattice. The two 

elements in the lattiœ actually have the correct pmperties for T and -i so we do not 
need the additional elements. Alternativelx the lattice could be seen as containing 
onfy T and I w i t h  therenamingof T toDand I to S. 

The monovariant approach can be clarifiecl usiiig this simple lattice. Monovari- 
ance uses the least upper bound of the annotations at all dl sites as the annotation 
for a function. [46] expresses this by using an analysk bction Bv which takes a 
binding time environment (set of annotations), a fûnction g, and an expression, e. 
The result is the le& upper bound of the annotations for g within e. You can then 
express g's monova.riant annotation as: 

n 

where r is the least upper bound of annotations for all other functions and ci is the 

tlh expression in the program. Given this definition, if any Bv annotation results in 
D (dynamic) as the annotation for a parameter to a function, the least upper bound 
will necessarily be D. 

The monovariant approach does not pmvide the generality needed for most r d -  
istic applications of partial evaluation. In teal programs it is unlikely that dl call 
sites for a particular function wil l  have a static value for any given parameter. A 
great deal of static information is ignored in a monovariant approach, decreasing the 
effectiveness of the entire partial evaluation proœss. 



Polyvariant techniques differ h m  monovariant techniques in that Merent annota- 
tions can be made at every hction d site. If there is a dl site in which an actual 
parameter is static and another cal1 site in which the actual parameter is dpnamic, 
then tftro sets of annotations would be made. In order to make two sets of annotations 
for a single bction,  the source function is simply duplicatedl. [73] 

Again assume that we have the following calls off: 

(f 3 2 )  

(f z 3 )  

with z being dynamic. For the fht  call, we shall p d u œ  an annotation with the 
k t  parameter static and the second parameter dynaimic. For the second call we wül 
produce a complementary annotation- ConceptuaUg, we have the following functions 
and annotatiom after the BTA phase: 

During specialization, the foUowing firnctions and calls wil l  be pmduced: 
(de fine resid-f -1 

(lambda ( y )  

(+ 3 y )  

1 )  

(define resid-f-2 
(lambda (XI 

(+ x 3 )  
1 )  

'Rytz et ai do not in fàct duplicata the amal source d e ,  but rather keep multiple annotations for 
each fùnction. 



The formal lattice model does not change in the polyvarimt approaeh. The dif- 
ference in approaches is due to the application of the model; we no longer use the 
least upper bound ofa set ofannotations, but rather introduœ sets of annotations for 
each fiincüoa Since each annotation has only two possibilities (static or dynamic) 
and each parameter list is b i t e ,  we have a finite number of possible annotations. 

Clearly this approach is superior to the monovariant approach - ifony dl site 
has static information which caa be used, an occurrerince of the fûnction with a usefiil 
annotation will &. The obvious problem is that there may be many annotations 
for a given bc t i on .  The number of potential annotations is bounded by the number 
of c d  sites, but could be exponential in the number ofparameters ifmany cal1 sites 
exist. Eqmnential growth of the residual d e  during specialization is a problem for 
any polptariant approach and will be disnissed in later sections. 

There is however a subtle pmblem in the way in which polpariant BTA is nor- 
mally used. Conceptuall~ polyvariance mates instances of the functions which are 
king annotated, but this is exactly what the specializer is supposed to be doing. 
PoIgvariant analpers duplicate some of the work whid  is to be done dlinng spe- 
cialization if the BTA is pedormed strictly before the specialization phase. With 
polyvariant analpis, it seems to make more sense to combine the BTA and speaal- 
ization phases into a coherent approach. The cornparison between separate %TA and 
combined BTAhpecialization is the topîc of the next section. 

2.3.5 On-line and Oa-line Appmaches 

O f f h e  Techniques 

Off-Iine BTA techniques analyze the source program before the specialization phase 
and determine the statu of each variable. Each variable and firnction call is anno- 
tated as being either static or dynamic During the spetiaiization phase, dynamic 
values are never spemslized, while static values are always specialized. 

There are a number of techniques for off-line BTA2. The most ammon techniques 
are based on type inference or conetraint analysis algorithms. Newer techniques [54] 
employ projections to mate  annotations. The type inference approach incrementally 
adds dynaxnic notations until the inference algorithm succeeds. Constraint based 

2For a more detded introduction to these techniques, see kô]. 



systems generate mnstraints, convefi them into a normal fonn and then solve the 
mnstraints to generate mappings h m  variables to annotations. Brief discussions 
of some of these appmaches are given in Section 2.4.3 when we discuss termination 
issues. 

In on-1.e eduatom, the decisions regarding effctive annotations are interleaved 
with specialization decïsions. At each step in the evaluation an on-line evaluator 
must decide what to treat as dynamic and what to treat as static. For a given func- 
tion or variable this decision is independently made every time that the function or  
variable is encountered. ûnce the decision is made, the specialization takes place 
immediately and the residual becomes part of the next set of evaluations. In a sense, 
on-line partial evaluation is naturally polgvariant since the aigorithm itself "recon- 
siders" decisions on a fiequent basis. 

There has been relatively little work in the area of on-line partial evaluation; the 
most significant implementation work has been done by Katz, Weise, and Ruf in the 
FUSE evaiuator [83J pl] [70]. Although they had an interesting approach for dealing 
with redundancy in specializations, their model for values was not very expressive. 
Termination in FUSE relies on having a fmïte height lattia modeling values in the 
system. In addition, there are ornimstanœs in which E'USE requires user provided 
u ~ t e n e s s  annotationsn that guaratltee that specialization will terminate. Aithough 
such annotations allow FUSE to incorporate more selective residual production algo- 
rithms, such annotations require user intemention. The automatic on-lïne approach 
that we will be presenting wil l  incorporate features similar to their approach but al- 
lows infinite height lattices to model values in that system and will feature a clear 
separation between models for abstract values and the algorithm itself. 

The most sigaificant approach that fomally proves more of the properties of on- 
iine p a .  evaluation is the work by Consel and Khoa [25] [24]. This work will be 
discussed in Section 4.5 aRer we have developed the basis of our system. 

Combinations of Methods 

Table 2.3.1 shows which of the four possible appmaches have ken investigated. 
Monovariance will be discussed in the next section, and the two polyvariant meth- 



Table 2.3.1: Types of Partial Evaluators 

off-line 
On-line 

ods will be discussed in some detail in later sections. As noted in the table, early 
approaches, such as Similix, used an off-line monovariant appmach, while the more 
sophisticated Similin-2 uses an off-line polyvariant appmach. As noted above, there 
has ken relatively little work in on-lïne approaches. The most substantial work is a 
polyvariant on-line interpmter by Weise et  al [83]. At this t h e ,  we do not know of 
any on-line monovariant approaches. 

2.4 Other Issues 

Monovariant 
Si& 

unknown 

The fundamental problem when dealing with higher-order languages lies in finding 
alL potential cal1 sites for a h i g h e r d e r  fimctîon. When we do not know whether 
parameters wiU be dynamic or static, we must assume that they are campletely dy- 
namic (due to the safety wnstraint). This is the approach taken by most systems, 
such as Similu-2 [Il], Schism (211 and FUSE [83]. A more accurate knowledge of 
highersrder fûnction analysis relies on some form of control-flow analysis, such as 
in f721 (see [751 for control fiow analysis techniqyes). The control %ow analysis is 
used to mate a consemative estimate of the cal1 sites and then uses the least upper 
bound of the argument annotations as the annotation for the function parameters. 

Polyvariant 
Similix-2 

Our approach 
FUSE 

A control flow analpis certainly impmves the accuracy of the annotations, but re- 
quires sigdcantly more work In addition, the caldat ion of the estimation involves 
much of the same type of d y s b  as used in a speciaiizer. The control flow analysis 
in [72j does not create po1yvaTiant residuals for higher order hctions,  but acts as a 
monovariant specializsr for the fiuiction. In any finite program, however, there will 
be a finite number of higher order functions wbicb could be used to create more accu- 
rate, polyvariant residuais if the spem'rilizer tracked the set of possible higher-order 



firnctions that couid be used at any caIl site- Such an analysis reverses the control 
flow analysis approach; d e r  than estimating the cail sites for each higher-order 
bct ion,  such an approach would estimate the domain of each cal1 site- One muld 
then specialize each higher4rder f ' c t i o n  in the domain with the static information 
available at  the cal1 site. In some waps such an approach would entail a much more 
complete control flow analysis, but if integrated with the specializer, would be no 
more costly 

2.4.2 Languages with fmperative FeatPres 

The major pmblem with off-line binding-time analpis is that the techniques assume 
that annotations do not change during the specialization phase. Although this is 
normally the case in (pure) functional languages, this assumption breaks down in 
the faœ of imperative features. Consider the following imperative code: 

read (x) ; 
y := x + 5; 
x := 7; 

In this example, x is dynamic aRer the read, but becomes static after the assignment 
in the thirrl &ne. W1th imperative languages the status of a variable can change 
at any time due to either a direct assignment or an assignment to an alias for the 
variable. This cannot be reflected in off-line techniques [62] which do not incorporate 
any idea of a change of use into the binding-time analysis. 

Some experiments have been conducted [5] with C that attempt to use an off- 
line BTA. One of the major problems is in dealing with dynamically docated arrays 

which are then assigned static values. Due to the dynamic nature of the m y  allo- 
cation, nonnal off-line BTA wodd treat the entire array as dynamic and miss many 
opportunities for speciaiization. The approach taken in this work was to convert the 
dynamic array into a static array which can then be analyzed more accurately by 
traditional off-line techniques. 

In many cases the dynamic allocation to static docation trandormation would 
not pose any pmblems in the residual program. Unfortunatelly, this transtormation 
is not strictly semantics pre8eming due to the unâerlying memory mode1 of the C 
language. This could introduœ problems in situations where stack or static data 
space is severely Iimited; one such example is in threads-based pmgramming support 
packages such as the &stem [15] developed et the University of Waterloo. 



Static Single Assignment (SSA) [82] [28] is an abstract interpretation approach to 
hi&-perfomana Fortran opümization pmblems. SSA converts a source program 
into one in which each variable may be expanded into several instances of the original 
variable. Each assignment statement to the variable creates a new instance of the 
variable, and any use ofa variable is converted to a use ofthe appropriate instance of 
the variable. This approach guarantees that there is a unique assigrment instance 
for each variable a t  any point within the program. 

For example, the following Pascal-like code: 

would be converted using the SSA approach into the following: 

read (al ) ; 
b := a.-1 + 5; 
a 2  := 7 ;  
c := a 2  * 5; 

The $SA cornmunity uses the SSA transformations to do fairly straightforward 
types of a h c t  interpretation - code is specialized based on the values of the ap- 
propriate instances of variables. SSA does not attempt to mate new specialized 
instances ofany code, and as such resembles the monovariant approach discussed in 
Section 2.3.4. The interesthg aspect of this work is in its correlation to off-line BTA, 
and in its approach to irnperative features. Combining the !BA transformation with 
the polymriant features of o f f h e  partial evaluation would genenita an approach 
which is more powerîd than either in isolation; such a m m  would be able to deal 
with changing annotations &ter assignments sinee each assignment would have a 
different instance of the variable associatecl with it. 

Doing a "normal" annotation for the first code n'agment would result in the vari- 
able a king annotated as dynamic since the r e d t  of the read is not known until 
run-time. Since there is only one annotation for a particular variable within a section 
of code, we would have to use dynamic and would lose the static information which 
occurs within the same section of d e .  Using the SSA converted code however, we 



would have two distinct variables h m  the or ig ïd  a. Each of these would receive 
the appropriate annotation, dowing us to make use of the static information h m  
the second assiment to a. 

There are a few potentid düfidties with combiiiing the SSA and off-line a p  

pmach however. First of all, the SSA literature has not addressed imperative lan- 
guages such as C in which there are arbitrary aliasiiig relationships. Such aliasing 
would complicate the SSA conversion to such an extent that it probably would not be 
viable for realistic systems. Second, the difi[iculties in generaliPlig off-line methads to 
higher-order constructs is not alleviated by the introduction of the SSA conversion. 
C d  locations whîch are t d y  dynamic would not be resolved by SSA; a more gen- 
eral domain mode1 is requlled. Finallx this approach wodd retain the duplication 
of work mentioned in Section 2.3.4. The effect of SSA conversions during a binding 
t h e  analysis ain be achieved by adopting more general on-he  appmaches such as 

our approach. 

Off-Une Evaluation 

Termination for ofMine partial evaluation depends entirely on the termination and 
safety of the binding time analpsiS. When off-line methods are used, specialization 
blindly follows the annotations on the variables and does not check for any special 
texmination conditions. The BTA has the responsibility for ensuring that the spe- 
cializer will not attempt a renirsive specialization whieh will not terminate. For 
example, given the following code: 

(define sum 
(lambda (start, stop) 

(if (= start stop) 
start 
(+ start (sum (+ 1 start) stop) ) 1 

assume that z is dynamic. Even though the BTA knows that start is static, it 
should not annotate it as such. If start were annotated as static, the speaalizer 
would create a specialized version of sum as follows: 



(define resid-sm-1 
(lambda (stop) 

(if (= 5 stop) 
S 
(+ start (sum 6 stop) 1 )  

1 )  

Using the same argument. the iecursve d to suri would cause another specializa- 
tion of sum redting in: 

(def ine resid-sum-2 
(lambda ( s top)  

(if (= 6 stop) 
6 

(+ start (sum 7 stop))) 

Continuing with this, it is clear that the specializer would create an infmite num- 
ber of residuals for sum. To avoid this problem, the BTA is required to make safe 

annotations - annotations which guarantee that infinite specialization does not oc- - There are a number of approaches that have been investigated for perfi>rming 
safe binding tirne analysis; examples include constnünt satisfaction [41J [421, type 
inference 1351, program factorizations [54], and simple abstract interpretations 1461. 

The type inference appmach is interesting in that BTA questions can be answered 
by giving static values their known types and then using type inference to determine 
resulting types. Annotations are progressively relaxed until the program is well- 
typed. Any well-typed expressions can safely be treated as static since they would 
depend only on other static values. For example, consider our pnor sum example. 
Initiirlly sening start to a known type (integer) and then performing type inference 
will redt in a type confiict between s tart and the i n f e d  type of "=" since the type 
of stop is unknown. Thus the type of start would have to be modified to unknown 
in order to resolve the confiict. 

Another approach, based on projections, is mggested by Launchbuy [541. The 
foundation of projection b d  appmaches is in normal set projections (a form of re- 
tractions, or subset seledion). When we consider the set of parameters to a fiuiction, 
we need tb find a prajection of the parameters which represents the static parani- 
eters. The complementary projection would then provide the dynamic parameters 





SECTION 2.5. RESIDUAL CODE AND SPECIALIZATION 

2.5 Residual Code and Specialization 

Within a parti& code fragment there may be many calls to a partidar fiinction. 
Each of these caUs may have a different partitionhg of static and dynamic data and 
the static data which is pmsent rnay Mer h m  cal1 to d Partial evaluation as 
descRbed so far speeialiees a fuactïon each t h e  an instance of the function is en- 
countered. Following this approach blindl~ however, is not very efficient as there 
may be many identical residuals p d u œ d .  

R e d  the simple fûnction, f ,  used in earlier sections: 
(define f 

(lambda (x y )  (+ x y) )  

1 

In this case we have two c a b  to f in which the first argument has the static value 3 
and the second argument is dynamic If we perîorm a simple speaalization for this 
calls, we generate two identical residuals. 

(define resid-f-1 (define resid-f-2 
(lambda (y) (lambda ( y )  

(+ 3 y) (+ 3 Y )  
1 )  1 1  

Clearly it is advantageous to have only a single instance of any partidar resid- 
uaL Specializers typically do this by memoizing residuals as they are produceci. 
Memoization is simply a fonn of caching for residual code; memoization associates 
all static iaformation used in the Spaoalization with the corresponding residual. The 
issue of memoization is orthogonal to the issue of chwsing on-line or off-line evalu- 
ation; in either case we wish to eliminate the production of duplicate residual h c -  
tions. 

Memoization can be seen as a mapping h m  a source code kagrnent and envi- 
romnent to a residual code fkagment. If p is an environment mapping idenaers to 
values, then memoization is a mapping, M y  such that M ( f ,  p)  + r where r is a ver- 
sion of f specialized wîth values h m  the enviromnent p. Figure 2.5.1 shows how 
fûnction f and an environment with x having the known value 3 maps to the resid- 
ual res id- f - 1. Before a specializer produœs a new residual +' for a function f in 
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(define resid-f-1 
(lambda (y) 

( + 3 y )  

Figure 2.5.1: Memoization Map 

an envUonment pf, it checks the memoization map for a mapping which matches the 
m n t  fiindion and environment. More fomallg, 

If a residual exists for a given h c t i o n  and environment that residual is re-used, 
otherwise a new residual for the fùnction is pmduced. 

Memoization mates  equivalence classes between residual functions and repre- 
sents each class as a single residual. Membership in a particular equivalence dass 
is determined by the function and the enviromnent in which speaalization occurs. 
Viewing residuslls as eBsting within equivaience classes encourages a clean mode1 
for overall code expansion; if the total number of equidence elasses grows beyand 
the expansion b i t ,  equivaence classes must be combined into larger elasses. 

Combining two equivalenœ classes involves creating a new class whose argu- 
ments are annotated with an annotation that avers the annotations in the classes 
king combined. Memoization itseifl however, is orthogonal to the different types of 
partial evaluation, and combining equivdence class annotations c a ~ a t  be expresseci 
as movement in the simple lattiœ given in Figure 2.3.2. For example, consider the 
residuals given in F'igure 2.5.2. Each residual was ereated h m  the original h c t i o n  
with x marked as static. Strictly h m  the lattice, the least upper bound of the two is 
still static but this does not reflect the hct that two different values for x were used 
in the specializritions. 



(define resid-f-1 (define resid-f-2 
(lambda ( y )  (lambda (y) 

(+ 3 y )  (+ 4 y )  

1 )  1 )  
Figure 2.5.2: ' h o  different residuals 

We could formally express memoization by using a disjoint union of the annota- 
tion lattiœ and a lattice of constant values (such as the integer lattice in Figure k3), 
but as memoization is a small issue with respect to the techniques presented hem, 
we will ignore the formal mechanism. Intuitively however, coalescing two equiva- 
lenœ classes meam that two fiinctions with the same static propertg will retain the 
static property in the resulting class, whereas if the annotations or static values are 
different, the result will becorne dynamic, or wi l l  at least lose some of the precision 
of the derived knowledge about the value. 

2.6 Applications of Partial Evaluation and Specialization 

2.6.1 Reducing Co- of Polymorphism 

Object Oriented 

An important aspect of any object oriented language is the separation between a 
message to an object and the methwl that is used to respond to the message. The 
parti& method that ie used to reepond to a given message is dependent on the 
object to which the message was sent. The term dynumk binding is used to refer to 

this =-the binding of messages to methods. In general, the enooding of each object 
will need to incorporate references ir the methods that are used for its messages. 
ORen languages will ody allow the message to methad association to be changed on 
a class-wide basis, but in either case, every invocation of a method will req* at 
least one additional level of indirection. 

The choie of a method cannot generally be made at compile-time due to inher- 
itance polymorphism. hheritance polymorphism q u i r e s  that any subtype object 
can be used in the place of a base type object. This means that in general it is unde- 
cidable whether a given method is used for a given message invocation. In [31], Dean 



et al investigate applying speciaiization techniques to reduce the cost of method c d  

The basic idea is to introduœ specialized instances of methods, where each version 
is specialized with respect to parti& subtypes of the allowed parameter type. For 
example, if a given method d o w s  a single parameter ofa  type A and there exïsts 
subt~rpes e and c of A, then instances of the method could be created for each  of^, B 
and C. These methods could then take advantage of the fhct that the actual type of 
the object is known and could pote3tiaUy mate static bïndings for the following mes- 
sages. Generally howevar, the nurnber of potential methods that could be generated 
is much larger than the number that shouid be generated. 

Dean et al use a call-graph based estimation algorithm to estimate which object 
Speciaiizations are likely to be profitable. ki order to determine the effect of seleetive 
specialization, they incorporatecl their technique into the Cecil [18] compiler and sel€- 
compileci the eompik The overail ~ s u l t  was quite impressive; a t  the cost of an 
increased program size of only 5%, run-time Mprovements of approximately 33% 
were achieved. 

This result is very encouraging for the fiiture application of partial evaluation 
techniques. The work by Dean e t  al was based on a Wly simple d analysis and 
did not attempt to perform any analysis of the fonn that traditional off-line BTA 
perfoms, nor apply any of the on-lùie evaluation techniques* They did, however, 
clearly demonstrate that moderate code size increase in a polymorphic environment 
can lead to sulwtantial performance impmvements. 

An appmach more dosely tied to partial evaluation techniques is the work by 
Wm and Sundaresh [50). Their approach was based on using continuations3 which 
d o w  for similar types of re-associations of methods and messages. Haniett and Mon- 
tenyohl[38] have also investigated continuations and caching based approaches in an 
object oriented language. Finallx MarpU8Td and Steensgazvd [59] have developed an 
automatic on-line appmach that uses sunilar techniques as applied in FUSE. 

Run-time overload remlution, as needed in languages such as HaskeU, is very similar 
to dynamic binding in object oriented languages. The central idea is to have "dasses" 

' W e  discuss continuations in Section 6.3. 
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of types on which overloaded fiuictions (or methods) are dehed.  The main Merence 
between this model and a general inheritance model is the restxiction to a specific 
set of operators for which overloading is dehed ;  fidly general user class definitions 
may not be made although user datatype extensions may be added to existing class 
definitiom. 

rii [Ml, Jones discusses using partial evaluation and spcialization to eliminate 
the need for a NP-time type dictiomry in HaskeU Haskell implementations resolve 
run-time owloading by passing an additional parameter to all overloaded fitnctions. 
The additional parameter is the dictionarg which is equivaent to a method dispatch 
table in object oriented languages. 

The use of dictionaries has man? of the same properties as object oriented dy- 
namic dispatch, but in parti&? not king able to resolve the method king in- 
voked means that most ammon program analysis techniques do not work verg well. 
Haskell does allow the programmer to insert type information expliatly This type 
information can then be used to remove the need for the run-time dictïonary search; 
this is typically not possible in a more general inheritance ~ e w o r k .  

The work by Jones is an interesting counterpoint to the object oriented work by 
Dean et al Dean t a h s  a more %ragmaticm approach to evaluating the profitability of 
particular spscializations, while Jones has a more clean specialization algorithm. In 
both cases, the systems must deal with the potential for axponential code expansion 
due to unproductive speciaiizations. In Dean e t  al this is done by making esthnates 
of counts in a call graph while in Jones d e  expansion is controlled by a set of con- 
straints on instances of calls in the Code. As one example, Jones does not duplicate 
specializations through the use of memoization (Section 2.5). Each approach has 
diawbacks - Dean's system is less elegant and harder to implement than the Jones 
system but seems to yield better overall results. It is likely that some combination 
of Dean's model for the frequency of c a b  and the Jones model for the overall system 
might be an effective approach. 

Run-time Code Generation 

Although traditional cornpilem perform all cade generation at compile-tirne, there 
has been considerable investigation into run- the  d e  generation. Of these, the 
most notable is the Self 1171. 



One of the main issues during nin-tirne code generation is when to spend time 
pedorming optimilntions, or in other words, determinhg when the reduction in ex- 
ecution time is likely to be larger than the time spent on optimization. Leone and 
Lee 1561 have investigated applying partial evaluation analysis techniques to this 
pmblem. Their basic appmach is to introduœ late and early annotations and to use 
these annotations to determine the d e  that is statically eompiled (early) and the 
code that is dynamically compileci (lote). Early code is compiled into d e  that per- 
forms any early operations while late code is compiled into d e  that genemtes the 
run-the code- 

Leone and Lee compare this type of annlysis with traditional binding time analy- 
sis techniques such as those used by Jones et  al [48] and Consel [22]. The obsexvation 
is that regular binding time analysis is more consimineci in that there is an exter- 
na1 division between static and dynamic annotations (comsponding to early and late 
annotations) while in mm-time d e  generation, aIl of the static data is in faet avail- 
able. The object of run-time specialization is not to take advantage of as much static 
information as possible, but rather to take advantage of the subset of static data that 
can lead to efficient code pduction. 

The FABIUS system built by Leone and Lee performs an interesting form of code 
inliiiing; in fact, their rule is similar in fiavour to a d e  that we present in our 
on-line algorithm. ki FABIUS, d loops are represented as taihcursive fiinctions. 
The inlining d e  states that fiinctions are only inlined if a late formal parameter 
does not appear in a branch of a conditional controlled by a late-stage value. In 
some senses, this can interpreted as saying that partial evaluation can only safely 
continue in the absence of dynamic conditionals. A similar staternent wil l  form part 
of the termination criteria for the on-line algorithm presented in Chapter 3. 

2.6.2 Raditional Language Compilation 

C program analysis 

Andersen [5] [71 has investigated a very dinerent domain - spWalization of C pro- 
gram. C is in many ways an exhemely d i f n d t  language on which to apply partial 
evaluation techniques. C is highly imperative; nearly all operations in the language 
return values that can be assignecl. Pointers are generally used with W d  abandon" 



by C programmers and are o b n  used in concert with run-tirne memory allocation. 
Coercions occur at many levels and alias rehtionships are verg cornmon. Finally, the 
exact semantics of many operations in C is dependent on the actual implementation 
making it extmmely difECUIt to peiform any substantial transformation and guaran- 
tee that the redting program has the same behaviour over all  m-time input as the 
on- program. 

Andersen folowed an interesting approach in his work Rather than directly in- 
terpreting the program source, his qmtem mates genemting denswns  for the orig- 

inal source d e .  Generating extensions are not hie innovation (see his thesis [71 
for related work) but his particular apphcation of the idea works weU for C. A gen- 
erating extension does not aetually incorporate any static data into a new program, 
rather it is a program which gïven some static data achially generates the specialized 
program. Andersen's main motivations for followhg the generating extensions a p  
pmach are, fht, that extensions allow one to process the semantic information once 
as a separate issue h m  the SPeQalization, and second, extensions defer the gener- 
ation of new d e  and can be ineorporated into aa execution Çamework so that the 

generating extension and the h a l  program execute under the same implementation- 
dependent semmtics. 

Andersen's work is an off-line appmach in that he has separate phases to build 
the generating extension and to build the final specialization He does not perform 
an automatic BTA on the C source but assumes the existence of binding tirne annota- 
tions. Although Andersen's use ofgenerating extensions makes substantial progress 
towards performing masonable transformations in an imperative environment, we 
feel that in order to have a fully automatic system that can perform non-trivial trans- 
formations, it wiU be necessary to bhd the sinalysis and specialization phases more 
closely to the partial evaluation pmcess. 

Meyer [61] has ale0 investigated imperative language speciakzation. His a p  
proach was between an on-line and off-line algorithm; he relies on initial annotations 
supplied by the programmer but theo dows the annotations to change during the 
evaluation process. He does not directly address the relevance of on-line approaches 
but it seems that bis appmach could easily be submed  by on-luie appmaches. 
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Fortran, although being an irnperative language, is in many ways a much more 
%endlf' language for partial eduation than is C. One of the groups investigat- 
ing Fortran is Baier et al [9]. Their appmach is M y  simplistic; they apply an off- 
line, monovariant BTA to Fortran programs and then blindly specialize the resulting 
a ~ o t a t e d  pmgrams. 

ALthough the appmach is not tembly sophisticated, the r e d t s  are encouraging. 
On a number of common Fortran applications (FFT, cubic splines interpolation, and 
an n-body particle attraction problem), they achieved ru-tirne deaeases of 2O-'ïO%. 
Th& observation was that many Fortran pmgrams have large sections of d e  that 
are relatively independent of the dynamic data sets and were thus easily s p e d  
ized. The spûahation was primarily in the form of loop unmlling and they did not 
compare their redting d e  to a compiler that perfomed aggressive loop unmlling. 
Their code &es mflect this basic property of theïr algorithm - although they experi- 
enced code reduction of 50% on one small case, more typically spem'alization expanded 
the code by a fàctor of 10 to 100 on larger programs. 

There are interesthg questions that this work raises; the nature of the relation- 
ship between this type of approach and highly aggressive vectoripng compilers is 
unclear. It rnay be possible to use some of the unrollhg andysis techniques used 
in vectoripng compilers to reduce the code expansion while retaining most of the 
speed impmvement. ALternativelly, it may be masonable to attempt to regularize o p  
timizations in the hi&-performance Forhan corximunity be casting their approaches 
as instances of partial eduation pmblems. Frameworks such as we propose could 
be a starting point for such a dialogue. 

Many programs caldate idormation redundantly as a result of partidar meth- 
ods for calculation. A classic case is the naive recursive definition of the Fibonacci 
numbers; using the naive algorithm, exponential t h e  is required versus a reason- 
able intuitive hear time aigorithm and a somewhat less obvious log-time algorithm. 
In [57], Liu, StoUer, and Teitelbaum present a method for automatically discovering 
inductive relationships in programs and then transforming the d e  into an incre- 
mental version in order to take advantage of the ePsting inductive relationships. 
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The presented appmach is simjlar to naive partial evaluation with aggressive mem- 
oization and residud pduction. The only equality reasoning performed by Liu et 
al is based on symbolic term equali& theR is no obvious reaaon why their approach 
could have stronger equality reasoning integrated into it. There has been substantial 
work perfomed in this area; we defer to Liu's paper for references to related work 

A similar appmach that should be mentioned is the work done independently by 
Lawall(551 and Fegaras, Sheard, and Zhou [33]. ki each case, the basic appmach was 
to create systems that automatically reason about inductive structures- In Lawall's 
case, the actual tran&ormations are then performed by hand, while in Fegaras et 
al, the transformations can automatically take place- This approach allows for non- 
trivial inductive reasoning and rewriting; Fegaras et al use an approach termed cuta- 
motphisms to describe types of inductive relationships for which automatic transfor- 
mations are viable. 

Other Types of Axdysia 

Several groups have investigate performing data flow snalysis through partial evalu- 
ation [23] [471 [81]. Partial evaluation natutally pedorms data flow estimates in order 
to caldate bînding tïmes in the off-line case, or as part of the interpretation in the 
on-line case. In either case, pmviding separate data flow analysis information does 
not require a substantial change in appmach. As two specific examples, Vasell [al] 
uses an ofMine approach in which the r e s i d d  generated by the Uspeaalizer" are 
in fact the data flow graphs of interest. The on-line Fuse [70] evaluator manipulates 
similar graphs as part ofits intelpal analysis when representing "use" relationships. 

Mahkjzer, Heintze, and Danvy 1581 perform partial evaluation on the LAMBDA 
intemediate fonn used in earlier versions of the SMUNJ compiler. LAMBDA is a 
continuations based (nearly) untyped intermediate form. The adys is  pedormed by 
Malm4zer et al wes a simple set-based estimation to perform bindiag time analy- 
sis, contml flow nnalysis, and data flow d y s i s .  The set approximation approach 
adopted is a very mervat ive approximation; as one enample, the analysis ignores 
dl dependencies between variables. This causes substantial information loss if there 
are s t~~c tu ra l  reorganizations, loop dependencies, etc. Although the approach pro- 
posed in this thesis has an aspect of set based analysis, set-based analysis seems to 

be much more valuable in an on-iine environment where dependencies can be inter- 
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2.6.3 Other Applications 

Ray Tracing 

Ray tracing is in a sense the '%rst" application of partial evaluation. In 1986, Mo- 
gensen (651 proposed the use of partial evaluation for improving the pedormance 
of ray tracing algorithms. The most recent application of partial evaluation to ray 
tracing is work by Andersen (81 in 1995. 

Ray tracùig is a nearly optimal application for partial evduation. Ray tracing is 
computationally expensive, the- is a large static component (the scene) and there 
is a large interpretive overhead for dealing with the static component. The primary 
parameters in ray tracing are a set of objects, a set of light sources, an eye position 
and a window onto the sane. The window is a set of pixels that represent the scene 
at some given resolution wi th  respect to the abjects, light sources, and eye position. 

Aiidersen made a f*ly carefid cornparison with an efnaent raytraacing algorithm 
compiled under both gcc and a native platform (HP) compiler on an HP 9000/735. 
Specialized versions of the ray-tracing algorithm were built in order to take advan- 
tage of static kmwledge regarding combinations of the tbree aspects in the algorithm. 
The specialized algorithms performed well in cornparison to the original (optimized) 
code, ranging fkom a 20 to 70% reduction in camputation t h e .  The cast for the de- 
creased computation tune was an increase in code size by a fàctor of 1.1 to 10. Again, 
it is undear whether this size/speed tradeoff is in fhct close to "optimal»; it would be 
valuable to have a graduated specialization aigorithm and attempt to characterize 
the point a t  which M e r  unrolLing is useless or even counter-productive. 

Real-time systems can be parütioned into two broad classifications: so#t red-time 
sgstems and IMrd real-tim systems. SoR real-time systems are systems that have 
tune mnstraints but where moderate violation of the constraints is not a aitical 
problem. Examples of soR real-time systems indude order display in a fast-food 
restaurant or frame update in a video game. In hard mal-the systems, violating 



time constraints can lead to cafastrophic events. For example, missing a constraint 
in an automateci production environment codd lead to defective pmducts or injuq 
Similarly, Mure to meet constraints in an allcraR fiight contrai system, partidary 
in a high-perfomance jet, may cause a crash. 

In [Ml, Nirghe and Pugh investigate the application of partial evaluation to a code 
for hard mal-time systems. Perhaps surprisingl~ this is an excellent application for 
partiai evaluation. Typicallg, hard mal-time systems disallow al l  computation paths 
that have unltnown l e n g h  implying that recursion, nonanstant  bound loops, and 
other nonconstant cost operations aie disallowed. NVkhe and Pugh apply partial 
evaluation to tmxdorm programs that contain such f e a t u ~ s  into systems that meet 
constant time operation constraints. Their contention is that by performing such 
transformations automaticallg, programmers can develop cade a t  a higher level while 
maintaining the same hard guarantees. 

The model chosen by Nirkhe and Pugh is very restricted. Part of this is due to 
the nature of the problem domain, but some of this is &O theh willingness to give 
up some expressïveness in order to have weU-understood residual pmgrams. For 
example, the store model adopted by this work splits the store into a purely compile- 
time component and a purely run-time component. 

Nirkhe and Pugh use an o f f h  model. Their primary motivation for this choice 
is that having a separate BTA allows user interventions in the annotation process 
which in hirn leads to tighter control over the characteristics of the finnl residual. In 
addition, they felt that handling global values within an on-he  evaluation was prob 
lematic and that on-line appmaches tend to over-speciaiize. Both of these concems 
are addressed expbcitly to some extent in this thesis (Section 6.3) and the general 
impmvements in on-line appmaches mahe these issues cbmparably Mdt in auto- 
matic systems using both on-line and off-line techniques. The authors of this thesis 
do agree, however, that off-tine systems do permit ber user control over annotations 
than eurrent on-line pioassing and that this issue aione is suffiCient to justifil using 
only ofNine appmaches for hard rd-t ime systems. There has not been any direct re- 
search into methods for allowing user intervention in the on-line annotation process. 
Although it would certainly be possible to allow user annotations to be intmduced 
on an a priori basis, on-line evaluation is more interpretive in nature than off-line 
evaluation and as such, it would be more difficult to reason about the consequences 
of introducing p a r t i d a r  annotations. 



Deductive Database Que- Optimization 

Deductive databases are composecl ofa  normal relational extemional database and 
a small intensional database consisting of a set of Hom clauses that define relations 
between tuples Li such systems, there are two aspects to evaluating a given query: 
evaluating the Hom clauses in the intensional database! and perfonning the relevant 
queries on the relational database- When evaluating a query, the o v e d  system can 
choose either to query the relational database and then interpret the Horn dauses 
on a tuple-by-tuple basis or it may choose to "compile" the Hom clauses into a series 
of relational database queries. 

In (741, Sakama and Itoh report on the application of a simple partial evalua- 
tion model to deductive databases. Their basic approach is to first perform a partial 
evaluation of the Hom clauses and then to compile the remaining Hom clauses into 
relational queries wing the normal method. Their partial evaluation consists pri- 
marily of dolding Hom clauses until only r e d v e  relationships or extensional 
quenes remain. The method chosen by Sakama and Itoh ignores any binding tirne 
analysis and does as much wifolding as possible* The resulting system realized query 
execution impmvements of20 to 40% on lage queries, but if the partial evaluation 
time is included, the improvement is nearly negligible. The system that they propose 
seems to consist solely of uafolding; there is Little in the way of real speaalization. 

Related to this work is the larger body of work in applying a h c t  interpreta- 
tion and partial evaluation to Rolog. In parti&, there is a relatively eady (1987) 
book (21 dealing with abstract interpretation techniques for dedarative languages. 
More recent work in this area inchdes [131 [5U [S2] [67] [69]. Another related topic 
is applying partial evduation to soiving systems of constraints [36] [76]. The basic 
observation in this work is that constraints have a "declarative" component and can 
be manipulated into a new system of parüally solved constraints by applying Prolog- 
style rewritings. 

Specification Verification 

Sridhar and Vemuri [77] use partial evaluation for a rather different type of problem 
- verification of temporal specifications in hardware. This work defines a model for 
expressing hardware temporal coIIStraints at the register trader level. The lan- 
guage they define accepts trace behaviour and determines if the given traces conûict. 



Partial evaluation is used to d o w  for partidy unknown behaviour in traces which in 
tuni allows classes of specifications to be validated simultaneously. Sridhar and Ve- 
muri do not present the details of their approach, but their basic language is tightly 
constrained due ta the nature ofthe hardware and thus seems as though it would be 
amenable to partial evaluation. 



Chapter 3 

Generalized On-line Partial 
Evaluation 

O n - h e  partial eduation techniques do not use a distinct binding time analysis 
@TA) preprocessirig phase. As the speQalization phase progresses, the partial eval- 
uator decides whether it wi l l  treat each fimction cal1 or variable as dynamic or static. 
This decision is only in efféct for the current specidktion decision; each special- 
ization decision requires the partial evaluator to evaluate the status of each value 
involved in the speciabtiom This approach allows the specializer to change the 
status of any d at any point in the process. 

In some ways, on-luie techniques tend to be more cornplex than comparable off- 
Line techniques. mline methods generally have a more modular aspect - there is a 
clear separation between the BTA and specialization phases. abne methods also 
have some advantages for self-applcation [4a as well as in allowing for user inter- 
vention in the annotations [26]. However, as discussed in earlïer sections, on-line 
techniques have advantages in dealing wîth imperative features and in generaliPng 
abstract values. 

Our primary interest is in making use of partial evaluation techniques for opti- 
mization of traditional programs. ûptimizations will ocnv during the intermediate 
phases of compilation. This criterion strongly infiuences our decision to use on-iine 
methods. Self-applcation (see the discussion on the F'utamura projections in Sec- 
tion 2.2) is not an issue and it is uniikely that we would want the user to have direct 
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infiuence over annotations, although we may want ta allow indirect user influence 
through the weighting of various o p t h h t i o n  tadeoffs Le. Wspeed). 

Our appmach has s e d  key features: it incorporates uncertain knowledge, it 
promotes a consistent meehanism for modeling program behaviour, and it ineorpo- 
rates a consistent termination mechanism. The appmach that we will introduce d l  
incorporate very general domains for speeiaiization. These domains will cause in- 
creased complexity in the termination aiteria, but wil l  allow a single rnethod to ad- 
dress conœrns about imperative features and normal polyitariant specialization. 

3.1 Domains for On-Line PE 

In Section 2.4.2 we noted that traditional off-line methods do not adequately model 
imperative Ianguage features. The primary reason for the weaker model is in the 
appmach to safety and termination. Termination and safety p d  for off-liae sys- 

tems d y  on having a fixed-height lattiQ representing knowledge about the system. 
lntuitivelly, this restriction guarantees that the systems will always make progress 
towards a solution (fixed-point) that is at  most some fixed distance away. Unfortu- 
nate15 finite lattice structures cannot adequately model uncertain or partial knowl- 
edge in a system. 

Consider a statement such as the following 
if x = 5 then 

y := 7 
else 

y := 5; 

In traditional systems, if x is dynamic we unno t  model the value of y after this 
statement, other than to say that y is an integer (which we may h a d y  know if the 
language pmvides that information thrctugh the type system). htuitively, however, 
we realize that treating y as dynamic does not adequately reflect what we know 
about y, namely that afbr the statement we know that y has either the value 5 or 
the value 7. We may not know whifh value y contains, but we do know that there 
are a finite number of options. We could then use this information to make hrrther 
specializatiom. For example, assume the following statement came next: 

if y < 10 then 
2 := 7 ;  
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With a traditional approach, y would be mnsidered as dynamic and no speaalization 
could OCCUT. k, our system we would realize that this code hgment has the same be- 
haviour for dl possible values ofy or in other words, that z will dehitely be assigned 
the value 7. In this case the entire statement might dieappear since any subsequent 
use of z wodd be replaced by the static value of z, that is, 7. This general approach 
will also be used to model structures as wîll be discussed in Section 3.1.2. 

There are some difEdties with this approach. Due to the nature of the resulting 
domains, a lattice model of the domain is no longer of finite height. I fwe allow sets of 
values into our model, we will of- encoupter infinite sets of values in recursive code 
when the termination condition for the recursive code is dynamic. ln a traditional a p  
pmach this does not pose much of a problem since the BTA will treat the problematic 
variable as dynamic and the specializer wil l  not have to deal with it. Our appmach 
models the growth of a set of values and determines when to &give up" and treat the 
variable as dynamic. Due to termination concenur, our approximation to these sets of 
values will have to be consemative, but will be able to model partial knowledge more 
completely than exisüng systems. 

The easiest technique for dealing with sets of values in domains is to use a completely 
ad hoc technive. For example, simply using sets of values as an approximation and 
inserthg new values into the set as they are enmuntered is a viable approach. In 
order to determine when to convert the value to a dynamic status, the cardinality of 
the set could be used. In other words, as long as the set has a cardinality of less than 
some %igger" value, we continue to add elements to the set. If the set cardinality 
surpasses the trigger limit, we begin treating the variable as M y  dynadc Under 
a lattice model, cardinal* is actually quite clean; the lattice has one leml for each 
possible cardinality of sets, with T king above the level representing sets with the 
highest permitteci cardinality Figure 31.1 represents a lattiœ for the subset d a -  
tionship with sets of cardidi@ less than or 'equal to 4. Each level consists of an 
inftnite number of sets of the given cardinality Each of these sets is a subset to an 
infinite number of sets at the next level up the lattice. Sets of cardhality four are all 
members of T, which represents the set of al l  integers. 

Although cardinality cari be used, there are several problems wïth this method. 
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Figure 3.1.1: Restricted Subset Lattice 
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FiRt of all (and most importantly), we may perform a great deal of work before de- 
ading to treat the variable as dynamic; the computational expense would discourage 
ptactical use of the techniques- Second, one of the goals of this work is to move be- 
yond informa1 techniques. Although this wodd be a more powerful model than a 
simple lattiœ model, we would prefer to have a more consistent appmach. 

The basic appmach that we adopt is to mate a g e n d  method that is roughly 
based on work done by Cousot and Cousot [27], and Bourndoncle [14]. We need to 

have a finite model of infinite domaias, but we also need to have a computationally 
inexpensive process for making the esthate.  When using sets of values, when an 
element is added to a set there is no analysis of the set itsel£ This leads to the 
problems noted above. In [14], Boumdonde presents a method for approximating 
the behaviour of functions by using a pair of intemals. The first intemal gives the 
range of the input arguments and the second gives the interval of the output of the 

fiinction. For example the interval pair < [l, 51, [IO, 50) > would represent a function 
which, when given values in the range 1 to 5, produces values in the range 10 to 50. 

Bourdonde generates these intemals by applging a widening operation, V. The 
definition of V over integers ( VI [14] is as follows: 

This operator is very consemative - if you attempt to extend a range in either 
direction, the range is extended to infinity Essentially this models a function with a 
"base case* and a general case; the base case will be the start of the interval and the 
intemal wiil extend to infinity This type of estimate is not usually very informative 
due to its very consemative nahue. Bourndonde does introduœ more preeise widen- 
ing operators, but does not give any formal framework for deciding which operator to 
use for a given widening. 

The partitioning work done by Bourndoncle estimates the behaviour of programs 
by using abetiact contml points at which intends are calCU18ted. The abstract con- 
trol points partition the (ofken inhite) set of program control points (the set of run- 
time program States) into a finite set which are used to determine intervals. 

Interval pairs will be used in our approach to estimate the behaviour of functions 
and to mate equivaience classes of functions (which in turn d e t e d e s  termina- 
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tion). The fundamental operation in this approach is to widen domains using the (VI 
operato~, The widening operator is a consemative over-estimator for domains; it can 
be seen as an imprecise join- 

Bourndoncle's approximations are built by successïvely widening the input speci- 

fication by the next approximation to the programYs mesining. The program's meaning 
is approximated by a safe abgtract meaning function a#, which is defined individu- 
ally for each program. 

Bourndoncle's appmach is sïmilar to what we will propose - the primary Mer- 
ence is that Boumdonde does not discuss udsnown values as part of the input spe& 
ficatiom, nor how to automatically Mer a#. Our appmach must be able to deal with 
both issues. In addition, sime these estimates are performed in order to permit ter- 
mination deeisions to be made, we must distipguish several estimates for the same 
function. For esample, consider the followhg: 

where z is unknown- We must not include both of the calls to f when constructing the 
domain estimate for f. If both estimates were included in the domain, we would lose 
all information about the static value in the b t  c d .  In our work, each of the calls 
causes a distinct polgvariant specialization; them is no interaction betareen the two 
speaalizations. In general, the ody time at which a dl effects the domain estimate 
for another caU to the same fiinction is when the second call occurs within the first, 
i-e. when either direct or indirect recvsion occurs. 

3.1.2 Issues for Structured Doniriins 

A stnrctured type is a composition of basic types using type constructors. Simple ex- 
amples inelude m y s ,  iists, records, and trees. Elements of structured types may 
be composed of many gimpler elements. Structures rnay be approached in one of 
two ways for the purposes of binding time analysis: the entire structure may have 
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aegaiar Expiession Notation 

A more interesthg avenue for M e r  exploration involves the actual domain repre- 
sentations for st~ctures.  In [a and [39] Hendren intmduces a reguIar expression 
notation for describing structures. For binary trees, the regular expressions are com- 
posed of a series of the following symbals: 

L: a LeR edge 

R: a Right edge 

D: a Down edge (either a nght or teR edge) 

Each of these symbols may be repeated or may have a superscript denoting the num- 
ber of instances of the symbol. Thus CL or L2 would both represent two left links. A 
supersaipt of indicates one or more links, while a Y" following a term indicates 
zero or one occurrences of the term. 

Given a path expression such as R2LD+ for the path h m  the root of a binary 
tree to a node, C, we would have the tree shown in Figure 3.1.2. 

Hendren develops a calculus for manipulating expressions and is able to hande 
possible paths as welI as certain paths. For example* consider the following impera- 
tive code: 

Assuming that the truth of the conditional is unlrnown, the path h m  a to c afkr 
this d e  hgment will be D and the path h m  a to d will be DL. In [40]. Hendren 
gives the following example (with one variable renamed for clarity): 

C := h; 
while c.left - ni1 do 

c := c-left; 
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Figure 3.1.2: A tree for R ~ L D +  
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The path fiom h to c is approxhated iteratively util a fked point is reached; the 
approximations are S, (S, L), and (S, L+) which is the firred point. This meam that 
either h and c are the same node, or there is a series of one or more le& iinks berneen 
h and c. 

Hendrens approach to stnxctured domains is essentialIy the same as Boumdon- 
de's approach to non-structured domains. Consider the following d e :  

C := O; 
while c o z do 

C := C + 1; 

where z is iinknown. Approximating this domain usïng Boumdonde's approach re- 
dts in an approximation of [O..ooj for c. This is essentially the same result as Hen- 
dren's, as [O..w] can be understood as the set of possible "distancesn h m  O to c which 
is what the S, Lf expresses in t he  stn~ctured domain. Hendren's approximations are 
more accurate in some cases; consider the previous example where Hendren's a p  
proach captures uncertain knowledge about the direction of the link (we couldn't tell 
whether the lipk was R or L, but could s t i l l  express the link as D). Bourndonde's 
approach, using the simple widening operator, would extend the domain to infini@, 
losing some of the informatioa 

Hendren's calculus can be understood as a set of widening operators which are 
somewhat more precise than Boumdondeys simple widening operatof. Unfortunately, 
the cost for the increased precision is incorporating knowledge about the data struc- 
ture into the model. In order to model trees, Hendren has spe& abstract values 
for lep and right links. When the model is extended to a simple DAG, a tM type of 
link, M (middle), needs to be htroduced. 

In general, we will not know in advance what the data structure will look like, 
and thus we will not be able to generate estimates with the same level of arruracy 
as H e n d d s  approximations. On the other hand, our approach will not need the 
specific knowledge required in Hendren's approach. Finally, Hendren's goals are to 

characterize the paths between nodes; we are concemecl with the values on those 
paths in addition to the path descriptions. 



3.2 Improving Domain Approximations 

Tbere are two types of widenings that we will want to perform: a precise tmdening 
and a reluxed or general widening. Consider the folloaing imperative example: 

if x < y then 
z := 5 

else 
z := 7 ;  

If the conditional is static, it is easy to see how to generate exact h w l e d g e  about 
z. 4 however, the conditional is dynamic, we would like to be able to generate the 
precise information that z contakis either a S or a 7.  Usïng an imprecise widening 
operator we would extend the domain of z h m  5 to oo, which is not a very reasonable 
estimate even though it is ucorrect". 

Consider also the following two code fkagments: 
z := 0; 
while x < y do 

z := 2 + 1; 
X := X + 1; 

In both d e  fragments, if x and y are both static then we can completely evaluate 
the loop and have a single static valw remain for z. 4 however, the conditional is 
dynamic, we should not treat the code âagments in the same way Consider the b t  
fragment. If the conditional is dymmic, the best estimate that we can make for z is 
the intemal [O..ao]. In the second d e  hgmen t ,  however, the best estimate for z is 
the pair of (singleton) intervals [0..0], [6..6]. The reason that there is a difference in 
the best result is that in the second case we have a constant result and in the first 
case we have a eomputed result which depends on a dynamic value. 

Although this example only deals wi th  integers, we can e0llStrClc-t examples that 
demonstrate similar concems in other domains (characters, boolean values, lists, etc). 
Our basic appmaeh to dealing with the problem of usiiig only the basic widening oper- 
ator is to define two widening operators, each of which will be used in the appropriate 
situations. 



In the remainder of the chaptet we wiU dehe  the o n h e  partial evaluation al- 
gorithm. The development will occur in three steps: fust we define the pmperties 
that abetract domains must sa-, we then define pmperties of the widening oper- 
ators, and W p ,  we define the partial evaluation algorithm by appeahg to these 
properties. 

3.3 Domains and Widening Operators 

When a non-abtract (or concrete) interpreter is definecl for a given laquage, the 
interpreter will incorporate knowledge of various tgpes into its operation. Examples 
of such types include integer values, booleans, characters, lists, etc. As mentioned 
in Section 1.4, in order to perform an a h &  interpretation for a given language, 
we must define abstract domains that correspond to each type that a non-abstract 
interpreter would use. We wïll refer to the set of values represented by a type in the 
standard semantics as the naturd concrete &main, 

Programming Ianguages normally define primitive operations over the natural 
concrete domains; we must define corresponding ab-& operators over the abstract 
domains. We must also have some (minimal) guarantees about the behaviour of the 
abstract domains in order to be able to build a consistent abstract interpretation. 
Fin& we must have a method for trandonnhg a concrete value into an abstract 
value, and for transforming an abstract value into a conmete value. Note that for 
a gïven nahval concrete domain it may not always be possible to transfo= an ab- 
stract value into a p a r t i e  natural conaete value; for esample, consider our negu- 
tive /zero lpositiue example h m  the introduction. It is simple to convert any conmete 
natural number into the n ~ u e / z e r o / p o s i t i v e  Iattice, but it is not possible to con- 
vert a positive or negative abstract value into a single natural nwnber. 

In the next section we debe the pmperties that abstract domains must satisfjc 
These definitions will apply to a22 absb'act domains. As will be seen in Section 4.2, 
the termination and mrrectness of the partial evaluation algorithm depend on only 
the gened properties of each abstract domain; there is no dependence on any actual 
abstract domain. From a design perspective, this allows a clean distinction to be 
made between the partial evaluation algorithm and the actual abstract domains used 
in an implementation. In addition, assuming that we have a pmof of correctness for 
the system that depends on only the domain pmperties, we can then reduœ a proof of 



Figure 3.3.1: Boolean Concrete Domain 

correctness for an entire system to a proof that a set of given actual abstract domains 
satisfies the given domain and operator requirements. This w i l l  be the approach 
we adopt in Chapter 5 when we present abtract domains for the integer and list 
domains. 

Finally, it is &O important to note at this point that the termination and cor- 
rectness proofs are not related to the accuracy of the overall system. The accuracy 
of an implementation depends primariiy on the a h c t  domains that are used in a 
particular implementation. If one wishes to have a more accurate interpreter, more 
accufate domains may be introduced; the only repui~ement is that the actual abstract 
domains satisfg the given constraints. 

Within our system we will not use the natural ancrete domains directi~ Concrete 
values used by our system will be taken fimm the complete lattiœ formed by lifting 
and topping the comsponding natural ancrete domain. Lifting simply introduœs a 
-î element and topping introduœs a T element. WB wil l  refer to the liRed and topped 
natural ancrete domain as the conerete domin. This construction is important as it 
dows  the interpretation algorithm to detennine the accu18cy of abstract values. As 
one example, Figure 3.3.1 shows the ancrete domain lattice that corresponds to the 
"boolean" naturai concrete domain. 

In order to improve the acxuracy of our results, we do not simply use least upper 
bounds on lattice values since least upper bounds can over-generalize abstract val- 
ues. Rather, we want to have the interpreter decide when to make the conservative 
compromise between accwacy and termination. In order to meet this goal, values in 
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the abstract domains (or simply domains) are composeci of a set of incomparable ele- 
ments where each element is chosen fkom some lattiœ. As reviewed in Appendix A, 
lattice elements t and y are incomparable ifr  # y and y # 2. We denote the fact that 
z and y are incomparable as zl(y- 

The widening operatiom are d e k e d  in terms of a modifieci definition of down- 
sets. The normal view of dom-sets is discussed in Appendir A; we will bnefly review 
the concept hem as well. The basic idea of a down-set is that the dom-set of a lattice 
element e, denoted &e, is the set ofelements below (or equal to) that element within 
the lattice. We may a h  apply the idea of a dom-set to a set; the downiret of a set of 
elements is simply the union of the dom-sets of each element. 

The abstract models we are intemsted in can be slightly constrained h m  the nor- 
mal fully general lattices - we are interestai in modeling information about natural 
concrete domains. Natural concrete domains (or normal types) are basically sets of 
elements. Although these sets may be ordered by various relational operations, they 
are not ordered in tems of "meaning". In other words, in any natural concrete do- 
main, there do aot exist distinct elements, 2, y such that t subsumes the meaning of 
y. This means that every natural concrete domain is composecl of elements which are 
incomparable to any other element in that natural ancrete domain. This means that 
within the contrete domains, ifz + y then either z = 1 or  y = T. 

N o r m e  a down-set for a lattice element includes all elements in the lattice that 
are below the gîven element. We modify this interpretation to indude only the lattice 
atoms in the do-set. An dom in a latüce is a value 2 such that 1 4 z and if y # 1 
and y < z then y = 2. Intuitively, the atoms are the values in the lattice that are 
immediately above 1. In terms of the ancrete domains, the atoms of the concrete 
domain are exady the elements of the natural concrete domain. This in tun has 
a direct correspondence to what we want our lattiœs of a k c t  values to mean - 
we want the lattices to express idormation about some subset of the elements in the 
natural cancrete domain. 

For the rest of the presentation, we will use 1V to reprwient only the atoms below 
V. Given this definition of dom-sets, it is shaightforwad to extend the normal 
lattice ordering relationship to sets of elements. Given sets of lattice elements, t and 
y, we will say that z y if Js c $y. We will muse the term "below" for 2 y; although 
this overloads the term with the basic lattice rehtional operator ' < ", conceptually 
the two operators have similar semantics Note that we use the term "below" ta mean 
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"below or equal ton; when we intend a strict relatiomhip, we will use the term "strictly 
below". We use the terms "above" and Ustrictly above" in a similat way. Finally, we 
define equaliw by saying that two values, z and y, are equal if & = b. 

There are two additional cornments that need to be made regarding this formal 
mode1 Fllst, as discussed by Davey and Priestley [30], given an ordered set P, the 
set of all dom-sets of P, represented as O(P), is a complete lattiœ under subset 
inclusion. In effect, we will be hding upper bounds and least upper bounds in O(P) .  
We chehoose to ignore this aspect as we fée1 that simply talking about the dom-sets 
themselves is a more intuitive approach while sacrificing no formal expressiveness. 
Note that this applies to our modified interpretation of dom-sets as well; the sets are 
simply members of the powerset of P. The second comment is that these definitions 
are behaviouml and not o p e m t i o d .  For all but trivial base lattices, operationally 
manipulating dom-sets is eomputationally prohibitive. ki practice however, most 
ï.ntuitiven abstract lattices lend themselves quite well to this behavioural description 
while retaining efficient computation characterïstics. This issue is developed M e r  
in Chapter 5 when we present particular abstract domains. 

3.3.2 The Widening Operators 

AU widening operations are performed on abstract domains; although we will talk 
about pedorming widening operations on values in domains, the reader should keep 
in mind that the domains will always be abstmct domuins that sa- the require- 
ments discussed in the previous section and in paTticular that any value in a domain 
is a set of incomparable elements. 

The basic idea of any widening operator is to coalesce two pieces of abstnict in- 
formation; the nature of the resulting value depends on the actual (abstract) domain 
and the type of widening that is perfonned. There are two types of widening oper- 
ators that our algorithm uses: a precise widening operator and a rduxed widening 
operator Aprecise widening of two values (sets) of a domain results in a value which 
we expect to represent only those elements present in the two original values. A re- 
lazed wideaing will result in a value which includes at leu* those elements in the 
two original values. 

We will use O p  to denote a precise widening operator; Op will represent a par- 
ti& precise widening operator over a domain V .  Normally, we will not explicitly 
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Figure 3-32: (a) E Op D and (b) E v D 

denote the domain of a widening operator. The conditions for precise widening are 
summarized in Definition 3.1. 

Defh 3.1 (Recise Widenïng) If Vl and VI are values in some domain, 
then Vp is an opemtur such that 

On occasion it is usefùl to consider the result of widening several values; we will use 
the notation Vp (VI, V2, . . . ) to mean (. . . ((VI Vp &)VP V2) VP . - . ) - 

As noted earlier, the proposed model generalizes other models and fonnalizes the 
precision that we want in our model. In general, a simpler approach based strictly on 
least upper bounds in the underlying lattice rather than down-sets, can over gener- 
alize results. For example, Figure 3.3.2 shows the ciifference in the accllfacy between 
joining two elements and taking the union of their down-sets. In each case, the ele- 
ments c o v e d  by the result are circled. Although this is a somewhat contrived exam- 
ple, similar behaviour is manifested in intemal lattiœs and other relatively intuitive 
latfices. 

There are two fimdamental ciifferences between precise and relaxed widening. 
The k t  difference is that relaxed wideaing is less restrictive than precise widening 
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about the accuracy of resultingvalues. The second difference is that relaxed widening 
operators must guarantee that widenïngs cannot orrur indefinitdy without converg- 
ing to some stable d u e .  

We wi l l  use VR to denote a relaxed widening operator; v,' will represent a partic- 
ular relaxed widening openitor over a domain D. The conditions for relaxed widening 
are swnmarized in Definition 3.2. 

Dehi 3.2 (Relaxed Widening) If Vb Vi Wb and W2 are values in some 
domain with Wl Ç and W2 E Va then VR is an opemtor such that 

and 

for any finction f and volue 20, there ezists a k such that 
f ( zk )  t EL wkre 2i = ~ i - ~ v ~  f (ti-1) fir i > O. 

Note that in the definition for VR , we only require that the resulting abstract 
value include at least the vaiues in the two original abstract values. This implies that 
using traditional least upper bound approximations would be acceptable for relaxed 
widening operatiom. 

This approach to modeling values has two major advantages in cornparison to 
the finite height lattiœ model adopted by other systems. First, this model allows 
us to differentiate between generaluing values to capture program information and 
generalizing values for termination purposes. The former can be done exactly while 
the latter must be done in a more consemative marner in order to guarantee termi- 
nation. Second, incorporating the convergence requirements with value operations 
allows the operators to take advantage of the values that are king manipulated. In 
effect this allows the operators to mate a M t e  height projection of an infinite height 
lattice during ths eduation. This allows interaction between the program and the 
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actual set of abstract values rather than determining the enth absttact mode1 before 
any evaluation. 

Abstraction and Concretization 

For each concrete domain and comspanding abstract domain, there must be an ab- 
straction fiindion and a concretkation fûnction. Following Jones et al [461, we will 
represent an abstraction h c t i o n  as a and a conmtization fiindion as y. Given a 
value, v ,  in a concrete domain, a(v) is the corresponding abstract value for W .  Given 
an abstract d u e ,  v', in some abstract domain, y(v3 is the corresponding concrete 
value for v' in the (lifted and topped) concrete domain. As in Jones et  al, we re- 
quire that the abstraction and conmtization h ü o o n s  be monotonic. h hct ion ,  f ,  
is monotonic if a C b implies that f (a) C f (b) . 

Jones et al requires that for every abstract value, transforming the abstract value 
into the concrete domain and then back into the abstract domain is an identity oper- 
ation. More formallx for a given abstract domain it is required that Vs E {Abstract 
Domain) : a(y(s))  = S. We weaken this requirement to say that converting an ab- 
stract value into the concrete domain and then back to the abstract domain gener- 
ates a value which is above the onpinai value. More formally, we require only that 
Vs E {Abstract Domain) : s C a(y(s)). Finallp, we follow Jones et al in requiring 
that for every concrete value, ~ o & g  the concrete value into the abstract do- 
main and then back into the conmte domain pields a value that  is above the originai 
value. Fonnallp, this is stated as Vs E {Concrete Domain) : s & y(a(s)). 

We require that abstracting a concrete value s p d u c e s  a minimal, non-bottom 
abstract value that can be used to represent S. Formallp, this means that i f a ( v )  = a 

such that y(a) 3 v then a # 1 and there does not eskt a' c a where ?(at) 2 v. We 
further extend the meaning of the abstraction fûnction, a, such that if op is a prim- 
itive operation in the interpreter, then a(op)  is the abstract operation corresponding 
to op. Given an n-ary primitive fiuiction, op, the requirement for &(op) is as folows: 
given a set of values V I ,  w2, . - . , un and corresponding abstract values v t ,  v?, . . . , v,p 

such that each v r  7 cl(vi) then (a(op)  vf, v:,. - - , v:) 2  op V I ,  VZ ,  . . - , un). In addi- 
tion, we mquire that a ( o p )  only produces 1 if one of its arguments is 1 or if the o p  
erator is not total and the result of (op V I ,  4, . . . , vn) is not defmed. In other words, 



(a(op)  vf .  vp, . - . , v,O) = 1 implies that either for some 1 5 i 5 n, t$' = 1, or that 
(op V I ,  vz . . . . , un) is no t defined. 

We require that every domain provide a function, Split, that performs value "split- 
ting over the relational operations that are defined in the domain. For example, 
given a relational expression such as 2 s y over an a h &  domain that supports 
less-than comparisons, Split provides a pair of abstract values: the fh t  abstract value 
is a subset of a that contains at least those values that sa- the relation; the second 
abstract value is a subset of z that contains at  least those values that do not sa- 
the relation. Note that we dont require Split to be uarrurate", only %atY in the sense 
that each of the pair of resulting values is a superset of the set of values within 2 

that satisfjr or dont  sa- the given relation. Split could sdely return a pair in 
which each value is the original value z. The splitting fiinction d l  be used when 
we evaluate conditional expressions; it allows us to build "custom" environments for 
each branch in the conditional. The full definition of Split depends on the definition 
of the standard semantics; we will more carefiilly def ie  Split in Section 3.5.3. 

3.4 The Language and Standard Semantics 

There are three important aspects to any on-line partial evaluation algorithm. First, 
the ability of the algorithm to retain static idormation directly determines the qual- 
ity of redts. Second, the algorithm must have some method for dealing with the 
issue of divergence. Finally, the algorithm must be sound, or equivalently, must pro- 
duce correct answers. In order to simplify the presentation and to focus more clearly 
on the contributions, we use a very simple language for the interpreter. The language 
is a firstorder, pure, fûnctiod language aimilar in form to Scheme [19] or Lisp [78]. 
Although it is possible to introduœ simple approaches for dealing with  higher-order 
bct ions ,  non-trivial approaches have not been investigated in any partial evalua- 
tion work; this is discussed M e r  in Section 7.2.2. 

We assume that there are a finite number of fiuictions; each fiuiction, X x .  e, is 
identifid by a unique identifier, Ax. e d .  When we give the semantic definition for 



SECTION 3.4. THE LANGUAGE AND STANDARD SE~~ANTICS 66 

function application, we assume that the fiuiction identifier is replaced by the d e h i -  
tion of the fiuiction. For the purposes of examples, we will use function names as the 
fiinction idenMers. The basic BNF of the language is as follows: 

E : : = ( i f  E E E )  1 (hc.e;a E) / 
(op 1 const 1 ident 

In general, an expression, e, may interact with the extemal world. For the simple 
language we are defining, we requiie that all such interactions occur through the 
initial identifier environment used in evaluating e; in other words, al l  "dynamicn or 
'hm-time" information is provided to e bp way of this initial enviroment. All Aue 
variables in e are assumed to use dynamic data and thus the initial identifier envi- 
mnment for N contains bindings to concrete values for al l  fke variables in the ex- 
pression e. This implies that we also assume that fiiiictions do not have free variables 
other than to dynamïc input values. Finally, we restrict non-primitive functions to 

king single argument (monadid fiuictions. The restrictions regarding free variables 
and monadic non-primitive fiinctions are not fundamental but substantidy simpiify 
the soundness statement and p m f  presented in Chapter 4. 

We define the semantics fbr our language by giving an operational semantics la- 
beled N. The semantics are defined in terms of a source expression and an environ- 
ment. N produces an expression representing the result of evaluating the expression. 
Symbolically we represent the general form as N[e] e = et. The environment e con- 
tains a mapping for each identifier to a value for the identifier. Thus @(id) = const 
for some constant value const. N may not be dehed for parti& expressions. In 
parti&, S a  primitive is not total, N may be undehed. 
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Constants 

The interpretation of a constant is simply the value of the constant. 

N[const] g = const 

The interpretation of an identifier is simply the value bound to the identifier within 
the current environment. 

Conditions 

The value of a conditional expression is the value of the appropriate branch of the 
expression. The branch is selected based on the result of evduating the controlling 
condition. Allowing side-effects would involve having the evaluation of the condition 
retum a modified environment that would then be used for the evaluation of the 
branches. 

N[(if c el ei)]e = 
let cf = N[c]e 

in 
e' 

end 



Primitive operators 

The evaluation of a primitive hction reQuires the evaluation of the arguments and 
then the application of the primitive to the resulting argument values. We will not 
conœm ourselves with a particular set of primitives but assume the existence of a 
"suffiaently rich" set. AUowing sidesffécts would simply imlve havhg a modiiied 
enviromnent returned h m  each evaluation and passing the modifieci environment 
to the next evaluation. 

Function Application 

A non-primitive fiuiction application involves little more than the evaluation of a 
primitive. First we evaluate the argument, then we mate a modifieci environment 
containing a binding h m  the forxnal argument to the aehial argument value, and 
finall~ we evaluate the body of the fiinction in the con- of this new environment. 
As with primitive function application, it is straightfomard to extend the d e  to 
d o w  impure, polyadic fûnctions. 



3.5 The Online Algorithm 

Symbolically, we wïll denote our parsial evaluator as P. The partial evaluator P takes 
a source expression, t ao  environments, and a boolean flag and produces a pair con- 
taining an abstnict value representing the result of the expression and a residual for 
the source expression. Symbolically we represent the general form as the following: 

We will use the superscript o on variables to denote that they represent an ab- 
stract value and wïll use the superscript R to denote variables that represent resid- 
uals. The first environment, p, is an environment mapping each identifier to a 
pair containing the abstract value and nurent residual for the identifier. Thus 
p(id) =< ida, idR >. The second environment, 8, maps fiinction identifie= to es- 
timates of hction arguments* As stated earlier, we assume that each function, f, 
can be identified by a unique identifier fa. Given a fiinction identifier, fid and a fùnc- 
tion application f ( v ) ,  we then have 6(fur) = va. The ( environment maps function 
identifiers to estimates of hct ion  values, Given a fiinction identifier, fa and a b c -  
tion application f (v) ,  we will have 6(fia) = fs. The final parameter, d, is a boolean 
flag that represents whether the eurrent evaluation path through the source contains 
a dynamic conditional statement. 

Given an expression e, the initial evaluation of e will have a p environment bind- 
h g  all free variab1es in e to T, 6 and environments binding a l l  function identifiers 
to I, and will have d = fâlse. R e d  that the initial environment captures the "run- 
time" values for e; binding all fiee variables in e to T in the initial environment means 
that each free variable has an "unknown" value during evaluation with P. 

We wül use the notation first(t),second(t), etc. to represent element projection 
fkom a tuple, 

3.5.1 Constants 

The simplest case for P involves a constant expression. The value of a constant 
is simply the correspondhg abstract value for that constant and the residual of a 
constant is the constant itsel£ Rewlling that a is our a b c t i o n  function, in our 



symbolic form the behaviour of? for constants is expressed as the following: 

P[cons t ] p  bc d =< cr(cons t) , cons t > (3.7) 

The environment p contains exactly the information that P returns for the identifier's 
abstract msult and r e s i d d  Thus we only need to rehvn a pair containhg the 
current binding for the identifier and the function result environment. 

3.5.3 Conditions 

The evaluation ofconditional expressions in the partial evaluation algorithm is some- 
what more interesting than either constants or identifiers. 

P[(if c el e2)]pbcd = 
let 

< cP, cR >= P[c]pdCd 

l P[e& JE d ify(ca) =truc 

P[et]~ 8 E d ify(c") =f alse < eu, eR >= (2) 
<I, (if c el e2) > i f y ( c a ) = ~  

C(cR er e2 P 86) otherwise 

in 

< ea,eR > 
end 



The edua t i on  of a conditional begins with the evaluation of the controlling ex- 
pression. We then have to deeide whether to treat the redting value as "staticn or 
"dynamicn. Recall that the intuitive meaning of %aticn is 'cknown at compile-time". 
In the case of a boolean expression, ifthe abstract value has the value "true" or Ydse" 
in the natural ancrete domain, then we have def i t e  kmwledge about the value of 
the expression. Thus in line (2) we decide on our action based on y(ca), the value of 
the controIling expression when converted to the ancrete domairi. This is where our 
Iifted and topped construction for wncrete domains is used; if the r e d t  of concretiz- 
ing the value yields T then we know that the abstract value cannot be assumed to 
represent exactly h e m  or exactly Valse". F'urther, this howledge is independent of 
the abstraction chosen by the implementor of the abstract domain. 

Ifwe have exact knowledge then we can follow an evaluation that is very similar 
to that  wïthùi the standard semantics - we simply evaluate the appmpnate branch 
of the expression (the first two cases in line 2). Note that in this case the o v e d  
residual expression is simply the residual h m  the chosen branch; the actual i f  

expression. the controhg expression, and the branch that is not chosen will not 
exkt  in the residual. 

If we do not have complete knowledge of the result of the contmlling expression 
then the overd result could be the result h m  either of the branches. Algorithm C 
deals wïth this evaluation and the construction of the appropriate residud. 

c(cR el e2 p bc)  = (3.10) 

let 

< PT* PF >= Split(cR, p )  (1) 

< ef , ef >= P[e& 6C tme (2) 

< 5, ef >= P[e2]p, b c  tme (3) 

in 
R R R  < e f V p  e;, (if c el e2 ) > (4) 

end 
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If for the time being we ignom line 1, Algoritbm C is fhirly straightfomard. The 
algorithm independently evaluates the two branches and m a t e s  the retum value 
and residual. The abstract return value is the redt  of precisely widening the values 

from the evaluations of the branches. Intuitively one can think about this as a Yunion" 
operation expressing that the o v e d  result is composed of any possible result fimm 
the branches. The residual is a new i f  statement wmposed of the residual of the 
controllhg expression and the residual of each branch. 

Algorithm C uses the additional helper, Split. Although it is always safe to inter- 
pret the branches of a conditional expression in the same enviromnent as the entire 
statement, we would like to be able to take advantage of any implicit constraints 
present in the boolean expression that controls the branches. The Split routine takes 
a boolean conditional expression and a identifier binding environment and mates 

"tnie" and Y&em resulting envïmnments. 

More formallx given a simple relational operation, O, over a parücular domain 
Z), and an environment in which identifier x is bound fn a value in domain D, then 
the following holds: 

where the following three conditions hold: 

Condition 1: y is a value in domain D 

Condition 2: for all e & p such that N[x 9, y] ,g = true it is the case 

P E PT and 

Condition3: for d e t  p suchthatN[x 9, y] e = fa ise  it is the case 

that e C P,. 

The M e "  and " f i e "  environments are c~eated by modifying the original envi- 
mnment to take advantage of relationships expressed in the conditional expression. 
For example given a binding {x ct [l - . -001) within environment p, a reasonable im- 
plementation of Split( ( x  < 5 ) , p )  would resuit in environments p, and p, where 
(X ct [l . . -41) would be the binding for x in p, and {x c, [S.. -001) would be the 
binding for x in p,. Note that when y is an identifier rather than a value, the in- 
terpreter can pedorm transformations in order to evaluate the constraints for x and 
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y independently The definition for Split is what the domains must provide; the in- 
terpreter uses this basic definition to pedorm more general fonns of environment 
manipulation. 

The general appmach to Mplementing Split is to perfonn a simple abstract in- 
terpretation over conditiod statements. In order to simpiifs the discussion at this 
point, we WU use a trivial Split b c t i o n  that m h s  no impmvements to the %me" 
and Wse"  scopes. We will diseuss an a d  implementation of Split in more detail 
in Section 6.2. 

The definition for Split that we will assume is as follows: 

In examples that we develop, we will generally assume that we have a slightly more 
accurate version of Split; any environment irnprovements that result wiU follow di- 
redly h m  simple conditional expressions. The proofb that are presented in Chap- 
ter 4 depend on only the properties of Split, the pmofk do not depend on this particu- 
lar definition of Split. 

The interface to Split pmvides very little detail to the abstract domains. In par- 
ticular, determining all of the potential constraints that might effect the redting 
environmentsi could potentially require that Split have access to the entire program 
and be able to interpret arbitrary program texte However, P P a d y  knows how 
to evaluate programs; P does not know how to manipulate abstract domain values. 
Thus the abstract domains pedorm simple abstract value splitting? whüe P performs 
the interpretation; an outhe of this appmach will be discussed in Section 6.2. 



Primitive operators 

Primitive operators are built-in to the source language. We requjre that for every 
primitive operator there exist a corresponding abstract version of the operator de- 
fined for the abstract domain. As nated earlier, we reuse the abstraction fiinction CE 

so that the abstract version of an operatm is represented as a(op). 

in 

< va, vR > 
end 

With respect to value computation, this evaluation is very simüar to the corre- 
sponding operation in the standard semantics. The actual arguments are evaluated 
and the primitive operation is applied to the resulting abstract values. The interest- 
ing aspect of this part of the algorithm is in the construction of the residual. The 
basic decision is whether to leave the application of the primitive within the residual 
or to remove the application and to leave a simple result. The critical observation 
is that if we wish to eliminate the application. the value we place into the residual 
must be representable within the natutal concrete domain. This makes the decision 
re~narkably easy within our framework. We know that the result of applying 7 to an 
abstract value yields either a p d d a r  value in the nahual concrete domain or one 
of T or 1, thus we can replace the application with a simple value exactly when y(va) 

is not T or L. 

For example. consider the expression (+ 3 ( if c 1 2 ) ) . If we assume that c 



is unlcnown, this comsponds to adding the value 3 to either 1 or 2. Even if the ab- 
stract domain is perfectly accurate and reflects the minimal set of values for (if c 
1 2 ) , the best that the abstract operation cl(+) could do for its result is to calculate 
a set of values including 4 and 5. Anp concretization function for this set of values 
would mturn T since the natural integer domain in our language m o t  express sets 
of values. Thus we would create a residual consfructed h m  the "+" operator and the 
residuals of the two arguments. By applying the d e  for constants (Equation 3.7) 
and the d e  for dynamic conditional expressions (Equation 3.10). we d e t e m e  that 
the overall residual is identical to the original espression. Note that using this par- 
ticular model, we did not perfonn the algebraïc manipulation of moving the addition 
operation into the i f  statement. Doing so would yield the residual ( i f  c 4 5 ) , but 
such a transformation is beyond the acope of out curent work. Note that in general 
such a transformation may not be desirable; in this case the only time such a trans- 
formation does make sense is if both the "3" and either the "1" or "2" evaluated to 
constants. If that did not hold then the= would be duplication of the "3" expression 
which redts in useless code expansion. 

Function Application 

In order to clarifg the algorithm, we separate the general function application d e  

into two separate des. The fmt rule deah with "unconditional" function applica- 
tions which are the applications that wiU be evaluated in any evaluation of the given 
code under the standard semantics As with the d e  for primitive applications, the 
vaIue manipulation mimics the behaviour of evaluation under the standard seman- 
tics; the argument is evaluated, a new environment binding the formal argument 
name to the abstract value is created, and the body of the function is evaluated in 
this context. The residuals for non-primitive fimction a p p l i c a t i ~ ~  are aeated usiag 
exactly the same method as for primitive applications. If the abstract value can be 
safely transformeci into a value in the corresponding nahval concrete domain, then 
the value is representable in the residual and we replace the h c t i o n  application 
with the value. If the valus cannot safely be represented, the application must re- 



main in the residual. 

< ea, eR >= P[e]p[xc t<  ef, tR >] 6c false (3) 

end 

Using this d e ,  consider the following function application: 
(define and 

(lambda ( x  y )  (if x y false) ) 
1 
(and true z )  

where z is unknown (has the value T). Assume that the cvrent identifier environ- 
ment is empty. The eduation of (and true z ) begins by creating the identifier 
environment to be used for the evaluation of the body of the and fuaction- By line 2, 
the residual for the formal argument y is bound to the identifier y because the value 
of the actual argument z is T and x is bound to the constant value true. We thus 
use the bindinp (m<true, truc>, yctcT, yz) for the evaluation of the fuaction 
body The identifier x has the value true, so we apply the rule for katic condition& 
( d e  3.91, redting in the evaluation ofthe expression y O& Applying the identifier 
d e ,  the overall result for the body is <T, p. The actual parameter z has the value 
T, so the second argument must remain in the residual, meaning that we use the 
second case for pmducing the residual. This choiœ results in the residual ( ( lambda 

( y )  y 1 z 1 . Assuming post-processing simplifications, this yields the overall result 
< T, z >. This result means that although we do not know anything about the ab- 
stract value for the function application, we are able to simplify the residual for the 
expression to just the identifier z; the application of the function can be eliminated. 



Dynamic Funetion Application 

The second case for general bction application avers the case of bction evdua- 

tions that oenu during the evaluation of a dynamic conditional expression- 

P[(Xx. e)e& bctnie = 
let 

< er, ef >= P[e& 86 tnie 

cf = ([k . eid ct ((k. %)OR ea] 

in 

if ea Ç c ( k .  w) then 

<eœ, v R >  

else 

P[(Xx.  e)e& 6Cf true 

end 

end 

As discussed in Section 2.4.3, the on-line algorithm must make a decision about 
when to M e r  investigate branches within a dynamic conditional expression. In our 
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algorithm, the deasion about when to pmceed M e r  in the investigation is based 
on the search for fited points in the series of fiinction argument values and fiinction 
retum values. 

This case is in many ways the heart of the entire on-liae partial evaluation algo- 

rithm in that this case de& with potentially divergent firaction applications R e d  
that at the beginriing of Section 3.5, we introduced the 6 and environmentS. The d 
environment maps fuIlction identifiers to estimates of argument values; the envi- 
mnment maps function identifie= to estimates of result values. 

This part of the algorithm begins in the expeeted way - simply evaluating the 
argument of the fiinction. The guard in line 3.150 then checks whether the new 
argument is below the current estimate for this fundion in 8. If the current argument 
is below the argument estimate then we simply return our curent result estimate. 

If the algorithm has found a new parameter to this fûnction, we mu& evaluate 
the function body with this new panuneter. In order to guarantee that we make 
progress towards a safe estimate, we use the relaxed widening operator to extead 
the current estimate by the new parameter value. The widening operation may pro- 
duce a new abstract value that represents arbitrarily more concrete values than the 
previous estimate. In order to produœ a correct estimate of the function tedt, we 
must evaluate the body of the fiinction with all  of the new values. Thus, rather than 
simply using the abstract parameter value, wa mu& use al l  of the new estimate Le. 
d'(Axe x.eid)). In lines 3.15(5,6) the new identifier environment is built. Line 3.15(7) 
evaluates the body of the hction using the new definitions Lines 3.15(8,9) configure 
the function residual and an aepanded result estimate- 

The guard in line 3.15(10) determines whether the current value is new. If not, 
we can can p d u œ  this value and the tesidual as the result. If the result is new, 
we must continue our evaluation. It is important to note that in line 3.15(12) we 
must re-evaluate the entire original application, including the actual parametet The 
reason for the full re-evaluation is that the achial parameter value may depend on 
the results of the function. Ifwe do not re-evalute the argument, the argument does 
not take the new result estimates into account. 



3.6.5 An Example of the Algorithm 

In order to illustrate the behaviour of the algorithm, we will consider a function that 
sums integers in the range h m  s tart to stop. 

(define (Sum start s top)  
( i f  (> start s top)  

O 

(+ start (Sum (+ 1 start) s top)  
1 )  

We will use the simple negduel zero /positive abstract domain that was disnissed 
in Section 1.4.1. Within the traces we will simply use subsets of (N,Z,P) as our ab- 
st rac t  values and use set union for both precise and relaxed widening. This example 
wiU be revisited in Section 5.1.3 but with a more accurate mode1 for integers. 

To reduœ the effort needed in follow the examples, we have included a concise 
version of the algorithm (the d e s  ody) in Appendix B. 

In order to keep the example trace to a masonable size, we wi l l  skip most of the 
*uninterestuig" steps in the denvation and WU focus on the recursive evaluations of 
Sum. In the enample, we v d  evaluate ~ u m  h m  1 to x where x is iinknown Le. Tl. 

We assume that we have an accurate Split fiuiction. 

Givenanevaluation ( ~ u m  (+ I start) stop),wewillhaveatracestepofthe 
form: 

(Sum t y 1 &tort) C(stop) c 
where z is the value of (+ 1 s tart ) , y is the value of s top,  and the 6 and C values 
are as given. In terms of the evaluation, this captures the state -of ey for each ar- 
gument and the state of b and c immediately following line 3.15~ where the actual 
parameter is evaiuated. 

Each nested evaluation of the body will be indented; since the re-evaluation of 
the entire expression with the new environment (in line 3.15(12)) is strictly tail- 
recursive, we will not indent for this case. Since all but the initial c d  to Sum accur 
as a result of evaluating the body of ~ u m ,  aRer each completed recursive evaluation 
of sw we wiU give the overall value for eu in the form "ea = ZVp (z  + y)". This 
reflects the basic evaluation for the body of ~ u m  in any cal1 for thie example - the 



conditional expression will always be iurlorown, so the o v e d  r e d t  will always be 
a precise widening of the values of each branch. The value of the nrst conditional 
b m c h  is always zero and (z  +y) is the value of the second conditional branch where 
z is the value of start during the evaluation of the body and y is the resdt of the 
r e d v e  evaluation. It is very important to note that z = b(start)VR z since, as 
defined by line 3.15(61, the body is evaluated in the p' environment found by widening 
the old 6 value by the new er value. 

Finallx a f k  giving the new eu d u e ,  we present a trace line that gives the value 
for C which determines whether eQ is the r e d t  or whether another evaluation is 
necessary 

A sequence of trace lines h m  a recursive evaluation mïght look Iüre the following: 

The two evaluated parameter values are given in the (sum P P )  fiagrnent of the 
f h t  line. In this example, it is not the case that both parameter values are below the 
respective values in 6 (represented by the next two values in the trace linel. Thus an 
evaluation ofthe body results. The evaluation of the body (eventually) yields another 
recursive evaluation of ~urn  

The two evaluated parameter values for the recursive evaluation are given in the 
second ( S m  P P) hgment. In this case each new parameter value is below the 
respective d u e  in 6 (the next two values in the trace line). This means that in the 
algorithm the value returned would be the value of e, which in this case is I. 

The next trace Iuie shows the computed value for the body of Sum for the fk t  
evaluation. Note that the 'Y value in the expression =(P + 1)" results h m  the 
value bound to s tart during the evaluation of the body This vaiue was calculated 
fkom a relased widening of the old b value (i.e. I) by the ep value (Le. P). 

The third line amputes the new Q value which is always the old 6 value widened 
by the computed ea value. in this case, the old E value is I and the ea value is 2. 
Since e" g (, we must mevalute the original expression wi th  the new cf. 





Chapter 4 

Analysis of the On-line 
Algorithm 

4.1 Derivations 

In order to characterize computations under the standard semantics, we wiU need 
to be able to ta& about derivations within mmputations in the standard semantics. 
A &rived evcrluatim is simply an evaluation that is used as part of the evaluation 
of some other expression. We can give a somewhat informal inductive definition as 
follows: 

1. cons t and ident have no derived expressions. 

2. (if c el e2) has derived computations c, and either el or ez depending on 
the value of c. 

3. ( OP el ea - - . en ) has derived computations el ez . . . h. 
4. ( X x  . e el ) has derived computations el and e [x * r ] where t is the value of 

el- 

It follows directly h m  the definition of derivations that the evaluation of N[E]~ 
must have a finite nuniber of derived evaluations if the evaluation is welldefined. 
Thus there are two conditions under which NIE]@ is not defined - if the result of a 
non-total primitive is not defined or i f N [ ~ ] ~  does not have a finite derivation. 



4.2 Soundness and Termination 

The algorithm that we have presented for partial evaluation performs an interpre- 
tation of the original program. The interpretation algorithm is not guaranteed to 
terminate in all cases. In parti&, if every possible execution of the source pro- 
gram diverges, the interpreter wil l  diverge* R e d  that in Chapter 2 we inhduced 
static and dynamic partitions of data in the context of the MUc equatiom. The first 
Mir equation expresses the idea that we incorporate the static data into the original 
program to produœ a new program that executes with the dynamic data. A (slightly 
modifiedl version of the first Mrjc equation is as follows: 

ln terms of this definition, we will show that given an expression e and static data s 
where there exists dynamic data D such that N[e](s, D) is welldehed, then P[(e,  s)] 
is well-defmed. The partial evaluation algorithm may terminate even if there is no 
D such that N[e](s, D )  is welldefhed, but we do not formally guarantee termination 
in such cases. In our approach we treat the static data s as being embedded in e; this 
is manifested in that neither P nor N take a static environment as a parameter. 

R e d  that the dynamic data D is encapeuiated in the initial environments for N 
and P. In the case of P all such bindings will be to T while for N all bindings will 
be to par t idar  conerete data. The idenmers mapped by the initial envllonments 
for either N or P are always the same - the fke variables in the expression being 
evaluated. We can appiy the concept of ordering to these environments; in partidar 
we can define a C operator for the environments. We define t between identifier 
envllonments e and p as follows: e C p if for dl identüiers x E e, there exists a map- 
ping (x ct v )  E p such that a(p(x)) t first(v). This means that an environment is 
%log  a second environment if all of the bindings contained in. the first environ- 
ment are below the bindings in the second environment. Note that we will be using 
quantifiers over the e environments used in evaluating an expression e with N. Such 
quantifications relate to the values bound to the fkee variables in e. For example, the 
statement "for a l l  p. . ." should b interpmted as îor  any set ofconcrete d u e s  bound 
to the idenaers in e . . . ". 

The definition for "below" for two function argument environments, d and O is 
more straightforward: 6 C 6' if for alI bindings Ax. 9 E d it is the case that 
qxx. eid) E ~ ' ( h  . -1. 



Finally, we defme 'hlow" for tao fiinction r e m  spvhnments in the same way 
as for fiuiction argument envllonments: & Q if for all bindings X x  . % c, Xx . ez E C 
it is thecase t h a t a h . ~ )  & ( ' ( ( X x . - e a ) -  

As noted in Section 3.3.1, we use the term "below" to mean ubelow or equal ton 
and use the term "stnctly belod' for the &ronger dationship. 

W e  begin by pmvïng several usefbl pmperties that wiU assist in the main p d  The 
basic idea of the first tbeorem is that if an a b &  value can be concretized into a 
single conaete value, the concretized value muet be the same as the original value. 

Given any ubstract v& ea where r(eQ) # {T, 1) und N[e]e y(ea) 
then N[e]g = y (ea). 

By assumption r(ea) # {T, I) so there exists a value c = y(ea) in the concrete do- 
main. Assume that there is some value c' such that c # d and N[e]p = d. Then c' 
& c. The dehition of concrete domain States that given z, y in some concrete domain 
C such that x ,  y # (T, I) and z jf y then z = y. This contradicts c # é, so it must be 
the case that N[e] e = y(ea). 
O 

The next theorem only refers to N and characterizes the nature of r e m i v e  eval- 
uations in the standard semantics The basic point of tbe theoremis that if we have 
some set of wrrect solutions for a function f ,  then for any evaluation off  that pro- 
duces a new result, there is some recursive evaluation of f that produœs a new result 
without relying on another r e d v e  evaluation of f to produce a result outside the 
estimate. A more intuitive way of stating this property is that any evaluation that 
pmduces a new resdt does so with only a finite number of renvsive c a b  that them- 
selves produce new results. 

The important thing to note with respect to this theorem is that the theorem 
is not simply a finiteness pmperty; the fundamental statement is that given a new 
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argument value there must be some paTticular evaluation that only relies on either 
known results of the fitnction, or on no M e r  remusive evaluation of the firnction. 
This property wilI be critical in proving our main theorem. 

Given sets of values D, Df, und X, such t h t  D ç Dr and r E D implies 
N[k. e r]g E X then if t h e  exists r1 E LV sueh t h t  

Assume r1 E Df such that N[k. e rl]e # X.  Either N [ k .  e ri] e derives some 
N[k. e r&' such that r2 E D' and N [ k .  e r2]e X or it does not derive any such 
evaluation. 

Assume that for all rl E Dr, N[k. e rl]e derives some N [ h .  e t2]ef such that 
r2 E Df and N [ k .  e r2]e 6 X. Then each rl E D' derives some other value in LY and 
the derivation of N [ k .  e +de ean not be not finite. 

Thus there exists t* E D' such that N [ h .  e +*le X and N [ k  . e +*le does not 
derive any N[k. e d e  where r 2  E Df and N [ h .  e r2]e g X. 

O 

AU of the following pmofs of soundness and termination only rely on properties of 
the abstract values that P produces. In order to simpIify the proofa: slightly, we wil l  
ignore the residuals that are produced. In terms of notation, this means that we will 
d o w  direct comparisons such as P[e] p 6[  d C A for an abstract value A rather than 
the fidl expression first (P[e]  p 6 6 d )  & A. 

We wiU also be somewhat iazy with respect to one additional aspect of our nota- 
tion. The statements of the theorems relate values found by N to values found by P. 
In order to have a me- C relationship, we must amvert the values pmduced 
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by N into the abstract domain using the abstraction firnction a. Rather than repeat- 
h g  the cl on every comparison, we adopt the additional convention that a comparison 
such as N[e]e & A for some abstract value A wiU mean a(N[e]e) f A. 

The following theorem is our main theorem; the actual soundness statement is 
a direct coroUarp of this theorem. The basic statemeat of the theorem is that given 
some set of correct result estimates for some set of argument values, the result of P 
is correct when evaluating any expression. 

The theorem is quantifieci over the environment given to P; the theorem holds for 
a .  environment that is a safe estimate for some set of possible environments used in 
the standard semantics. 

There are two basic preconditions for the theorem: 

1. the environments that we consider are those for which the expression is well- 
defined in the standard semantics, (Le. those for which the derivation is finite 
and does not produce bottom), and 

2. that for any function, f, the result estimates in C( f )  are correct for the argu- 
ments in b( f )  . 

Theorem 4.3 

For al1 expressions E, e C p. a d  boolean values d such that 

Ushg both of the shortcuts in notation, the theorem can be re-stated as the fol- 
lowing: 
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For all expressions E, e & p, and boolean values d such that 

2. for all functions f and expressions el derived by NIE] e, 

it is the case that 
N[E]e 5 P[E] p 6E d. 

Case 1: E = const. 

E is evaluated by N using d e  3.2 and P applies d e  3.7. By definition of 
rule 3.2, for any e, N[cons t] e = cons t. By definition of d e  3.7, P[cons t] p d = 
~(cons t ) .  Thus, by definition of a, 

Case 2: E = ident. 

E is evaluated by N using d e  3.3. Then P applies d e  3.8. Since by as- 
sumption e C p we have e(ident) & p(ident). 

Case3 E =  (if c el e2). 

E is evaluated by N ushg d e  3.4. Then P applies rule 3.9. In bath 3.4<1) 
and 3.9(1) the subexpression c is evaluated. 

By induction, a(c) C c*. 

The cases in 3.9~2) depend on whether y (ca) E (T, 1). 

Casei:Assume y(ca) E (true, faïse). By Thm. 4.1, the value of c' in 3 . 4 ~  
must be the same as y(ca). Since 7(ca) = e', we know that N and P evd- 
uate the same subexpression of E in 3.4(2) and 3.9(2) respectively. Thus, by 
induction, the result of N is below the result produœd by P. 

Case ii: Assume r(ca) = T. Then Algorithm C (3.10) is applied, and P evaluates 
both el and e2 pmducing ef and eg. 
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Assume N evaluates only el, producing e;. Consider the evaluation of el in 
d e  3.10. By definition of Split, the p, environment produced by Split must 
be above any e such that condition c is satisdied. Thus if el is evaluated by 

N, e p,. This satïdes the conditions for induction, so a(e;) ey . 

Since by induction e? satis£ies the theorem and by definition z C zVp y 

for all 2, y, we have a(ei) & e? & (eyVp eg) and thus by transitivity a(e;) 
& (erVp e;), so the theorem holds- 

A symmetric argument holds when N evaluates only e2. 

Case iii: Assume *(ca) = 1. Then N[c] e = 1. This means that no evduation 
of N[c] e is defined, which contradicts our theorem assumption. Having P 
produce I is consistent with the result h m  N - the evaluation does not 
have a defined meaning. 

Case4: E =  (op ele? ... e,,). 
E is evaluated by N using d e  3.5. Then P applies d e  3.13. 

By definition of a(op) ,  we know that i fa (e i )  & e? for all i 5 i < n then 

In d e s  3.5 and 3.13 respectiveIs each of the subexpressions is evaluated. 
By induction, the r e d t  of N is below the result produced by P for each 
subexpression S. Thus by definition the result of applying op in N must be 
below the r e d t  of applying  op) in P. Thus the theorem holds. 

Case5: E = ( A x e  el) andd=fhlse. 

E is evaluated by N using nile 3.6. Then P applies either d e  3.14 or 
d e  3.15. Assume P applies rule 3.14. 

The overall result h m  P is e". In order to show that the theorem holds, 
we only need to show that e[x c, ei] & p[x ct< e;, ef >] in order to apply 
induction. By o u  inductive hypothesis, p g p so for all identifie= other than 
x, &(&dent)) p(ident). By induction a(e;) f ep, so a(&)) = a(@;) 
& er . Thus the theorem holds. 
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The final case is when a fiinction cal1 is evaluated by N using d e  3.6 and 
by P using d e  3.15. 

There are three main cases to the proof; each case comsponds to one of the 
retuni values generated by P (lines 3.15(3,11,12)). Case 1 and Case 3 are the 
straightforaard cases, while Case 2 has a more interesting behavio- 

Case 1 holds when the d u e  of the given argument is already in our set of 
possible argument values- Since ( ( X x .  w) is the set of solutions for the given 
arguments, it is safe to r e m  the current result estimate (in e&. 

Case 2 is the most interesting case. In this case we have not àiscovered any 
new results aven though we have new possible arguments. The key to this 

case is in showing that the= cannot be any result in the standard semantics 
that is in fact outside the current estimate- 

Case 3 is the case when we have discovemd new fiiaction results. In this 
case, we m u t  re-evaluate the function taking into aecount the new results. 

The following holds by simple induction and is used in each case, so we state 

it before going iato the tbree cases. 

This case holds when the value of the given argument is already in our set of 
possible argument values- Since ( ( X x  . w) is the set of solutions for the given 
arguments, it is safe to return the current result estimate (in C ( k .  e id ) ) .  

By transitivity of & , given the case assumption and 4.16, N [ q ]  e C J(k. a). 
Thus by the second precondition of the theorem, N[&. e el] e c ( k  - w). 
By n p t i o n  of the case, the guard in line 3.15(2) of the algorithm holds, 
so by 1i.e 3.15(3), 

Thus by substitution ( h m  4.17), 
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In this case we have not discovered any new r e d t s  even though we have 
new possible arguments. W e  must show that it cannot be the case that P 
pduces  a result below ah. w) if we would have new results h m  any 
evaluation in the standard semantics. This is a proof by contradiction; we 
assume that N produœs a redt  outside of ( ( X x .  w) and show that a con- 
tradiction results. 

Assume N[ (Xx . e el ) ] e ((Xx. a). By the contradant of the second 
theorem precondition, it follows that N[ei] e g 6 ( k .  w). 

By construction (line 3.15(4)), 6 E 6'. Since the second precondition of the 
theorem holds, by Theorem 4.2 the= must exist some r' & P ( k .  e d )  such 
that 

where 

N[k. e T'] e does not denve any N [ k  . e r2] e g C ( k .  ed) (4.19) 

Now consider the evaluation e" = P[e]pf 6' C txue in line 3.15(7). 

By construction, p' = p[x ct 6'1. B y assumption, r' C 6' ( Ax . ed), so e[x e 

r'] & pr. By 4-19 (hm Theorem 4.21, ail computations denved h m  N [ k .  e r'] e 
sa- the second precondition of the theorem. Thus by induction, it is the 
case that 

N [ h .  el r'] 5 P[e]p'#(tme. 

In this the case we have discovered new firnction results. We must re- 
evaluate the fiuiction taking into a m t  the new redts. 
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B y definition of the algorithm, in this case neither of the guards in lines 3.15(2) 
and 3,15(ro) hold, so the result is 

Thus by induction, 

N[k. e el] e & P [ k .  e el] p true. 

For dl espressiom E. e p, and boolean values d such thut NIE] g is defined it is 
the case that N[E]~ P I 4  p 6( d where b(fid) = 1 fir dl fa and ((f') = 1 fbr d l  fid- 

This follows trivially from Theorem 4.3 since L is a correct resuit for any expres- 
sion in N given I as an argument. 

Termination 

We will set the pmofe of termination in the context of the derivations introduced 
earlier, except that we now label each step in the denvation, In addition, we now 
introduce derivations for P. In order to distinguish between derivations in N and P, 
we will cali use the tenn evduotion path when talklig about denvations in P. 

A (possibly idhite) evaluatïon path is a sequence Pi, . . . representing the steps 
in a derivation by P. Each Pi represents an application of some d e  in the algorithm 
of the form P[e&i 6i di. We will use the additionai notations pl, . . . , and 61, . . . , and 
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dl ,  . . . to represent the respective SeQuences of parameters to evaluations Pt, . . . in 
some eduation path. 

The overd proof of termination is constn~cted fimm thRe lemmas. The k t  

lemma shows that if the d parameter to P becomes m e ,  it remains true- The second 
lemma shows that the the number ofsteps that P takes with d being fdse is bounded 
by the number of steps taken in an evaluation by N. The third lemma shows that 
the number of steps taken by P when d is true is bounded. 

Lemma 4 e 3 . 1  Given an euduution path P l ,  . . . and k sueh that dk = true then there 
exists jsuchthut0 5 j < kanddl ,... ,di, ... isofthefinttfal~e~, -. - , f b l ~ e ~ , t ~ ~ e j + ~ .  . .. 

Given an evaluation Pi,  then either 4 = 4 - 1  (by d e s  3.9(1,2), 3.13(1), 3.1441,3)), 
and 3.15(1,7,~)) or 4 = true (by d e s  3.10(2,3)). Thus, by induction, for any i 5 j we 
have di = false implies di = f&e and for any i 2 j + 1 we have dj+, = true implies 
d; = tnxe. 
O 

Lemma 4.3.1 does not deal with the value of the d parameter for the base case. 

The two cases are straightfomard: it follows h m  the Lemma that if dl = fdse then 
j 2 i andifdl = true then j = O .  

Lemma 43.2 Given an euduution path Pl ,  . . . fir P[E]~ b d and a finite evalwtion 
path N I , .  . . , N, for NIE] e where e p then the number of Pi evaluations with 
4 = fdse is less than or equd to the n. 

We pmve this lemma by showing that for an evaluation of E by N, i fd  = f&e then 'P 
performs no more evalmtion steps than N. 

Case 1: E = const. 

Then each of N and P return a d u e  in a single step. 
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Case 2: E = ident. 

Then each of N and 'P retum a value in a single step. 

Case3: E =  (if c el e2). 

Then E is evduated by N using 3.4 and by P using 3.9. 

In both 3 .M)  and 3.9(1) the subexpression c is evaluated. By induction we 
assume that P takes no more steps than N. 
The cases in 3.9~4) depend on whether y ( P )  E {T, 1). 

Case i: Assume y(ca) E {true, false). 

By Thm. 4.1, the value of d in 3.41) must be the same as y(F). Since 
y (P) = I, N and P evaluate the same subexpression of  E in 3.42) and 3.9(4) 
respectively. By induction we conclude that P takes no more evaluation steps 
thsin N* 

Case ii: Assume r(cQ) = 1. 

Then P returns -L in a single step and the theorem holds. 

Case iik Assume y(ca) = T. 

Then Algorithm C (3.10) io applied, and the evaluations of el and e2 have d = 
hue- T'hue P evaluates neither el nor ez with d = false whïle N evaluates 
one of el and e2. Thus P takes fewer steps with d = taise than the number 
of steps taken by N. 

Case4: E =  (op elez ...%). 

Then E is evaluated by N using d e  3.5 and by P using rule 3.13. In each 
rule each subexpressions ei is evaluated. By induction we assume that P 
takes no more steps than Non each argument, so the theorem holds. 

Cases: E =  ( k . e  el). 

Then E is evaluated by N using rule 3.6 and by P using d e  3.14 since by 
assumption d = false. 
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B y induction, the evaluations by P in lines 3.14(1,3) must take fewer steps 
than the correspondiiig eduations by N in lines 3 . 6 c i ~ .  Thus the theorem 
holds. 

Lemma 4.3.3 Given an expression E and an evduntion path ruith dl = ttue then 
there d t s  n such that the sequence that Pl, - . . tem-nates at 9,. 

By Lemma 4.3.1,4 = tnie for dl i > i since by assumption dl = me.  By definition of 
rules 3.14 and 3.15 this implies that dl function applications in Pl ,  . - . are evaluated 
using d e  3.15. 

Let fi, f2,. - - , fm be the finite universe of fiinctionidentifiers evaluated by P l , .  . -. 
Consider the sequence Ji, &, . . . of fiinction argument entnronments. 

By definition of the algorithm, for all  steps other than 3.15(4), we have = Ji. 

In 3.15(4), we have that = &[AL% ct (&(Xx.%) VR er)]. Since Si+i = 4 
holds for all d e s  other than 3.15(2), we now ignore the other stsps in the evaluation 
and consider ody  the sequence Pl, . . . where each Pi is an evaluation of a hc t ion  
application ushg d e  3.15. 

We first show that after a finite number of steps the sequenœ 4,. . . reaches a 
fixed-point; i.e. that bk+t = 4 for some 6. We will then show that if &+l = & then 
P k + l  terminates. 

Consider the separate sequencerr of values mapped to fi within 61, . - -. For each fi 
we label the sequence as zf , tf, . . . . For simpliaa well eonsidera single sequence 
xl,t2, . . . for a given funciion fi. There are two pssibilities for the sequence zl, . . . : 
if fi is evaluated only m times, then for ail j > O, zm+j = zm. If fi is evaluated an 
unbounded number of times, then by 3.15(4), Z ~ + I  = zi VR vi where v; is the value of 
er found by Pi in h e  3.15(1). By definition of VR , for any function f and value 20, 

there &ts a L sueh that f (zk) zk where zi = Z;-IVR f ( ~ ~ - 1 )  foi i > 0. 

Since by definition of 3.15(0 and 3.15(1), vi = g(vi-1) where "g" is evaluated in 
3.15(1), there must exist a k such that = zt  VR vk = Zi. Since our argument was 
made for any h c t i o n  fi, we know that for each h c t i o n  fi in fi, . . . , f, the= exists 
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a mmponding 4. By assumption, f i , .  . . , f, is finite, so aRer at most K = x b  
steps, we know that 6 ~ + i  = bK. 

We have lefi to show that if htl = dk then PI+i terminates. By definition of 
d e  3.156) the abstract values bound to identifiers in sequenœ of p environrnents 
follow the same widening operations as the d sequence. Thus when bk+i = & we also 
wiU have pk+l = pk ifwe consider only the abstract values in each pi (ie. we ignore 
the residuals in each pi). Ifpkti = pk and dk+1 = & then v ~ + l =  P[ei]pk+,+i A+i tm~e = 
P[ei]h % truc = vk. But the ked-point of the 6 envimnments is found with respect 
to the sequenœ of vi values, so vk+l bk+l(fi). Thus the guard in line 3.15<10) is 
satisfied and 3.15(11) produœs a value. 

Given an expression E such that N[E] e tenninates fOr some environment 
e, then given any p 2 e, PIE] p bc d tenninates. 

By Lemma 4.3.2, any sequence of evaluations Pl, . . . in which every 4. = fake must 
be finite. By Lemma 4.3.1 if there exists some di = true then for al1 j > i, we know 
that di = tme. Finallx by Lemma 4.3.3, any sequence of evaluations in which all 
d j  = tnie must be finite. Thus the entire evaluation must be finite. 
a 

Lemmas 4.3.1 and 4.3.3 are interesting in tenns of the 'bhaviouf of the overall 
algorithm. By selecting dl = fiilse we reaiize the termination statement we have 
given, but a comllary of Lemma 4.3.3 is that selecting dl = true results in an algo- 
rithm that guarantees termination in aü cases. Although in practice such a choice 
results in a substantial loss of accuracy, t h  observation leads to an heuristic for 
guaranteeing tennination in all cases - allow dl = false, but select a value j such 
that for any i > j the interpreter forces di = true. This metbod for termination 
forces the abstract domains to find fked-points over aLl calls in an evaluation path 
including the static h c t i o n  calls. 



The correctness r e d t s  in the previous section ignored the residuals; although we 
now know that the ab-& d u e s  are souad with respect to calculations in the stan- 
dard semantics and that the abstract calculation terminates, we still need to show 
that the residuals caldate the same r e d t  as any interpretation in the standard se- 
mantics- The argument is a straightfomard structural induction over any expression 
and relies on the mundness r e d t s  h m  the previous section. 

GNeB an expression E such that eR = sea>nd(P[E] p d)  then for all 
e Ç p, such that second(p(ident)) is a correct residud fir ident, it is 
the case that N [ f l e  = NIE]@. 

Case 1: E = const. 

E is evaluated using by N using 3.2 and by P using 3.7. Siace const is the 
residual, it must be correct. 

Case 2: E = ident. 

E is evaluated using by N using 3.3 and by P using 3.8. By assumption, 
second (p( ident ) ) is a correct residual for ident . 

Case3: E =  (if c el e2). 

Then E is evaluated by N using 3.4 and by P using 3.9. 

In both 3.4(1) and 3.9(1) the subexpression c is evaluated. By induction we 
assume that cR is correct. The overall residuai pduced in t h  case depends 
on the which choice is made in 3 . 9 ~ .  

Case i: Assume ?(cm) = true. 
%y Thm. 4.3.1, every evaluation in the standard semantics pro- 
duces true for c. Thus the original expression is equivaent to ( if 
true el e2 1. By definition of the standard semantics (line 3-42)), 



the result of this expression is the result of evaluating el in the 
same environment as the original expression. Thus it is safe to 

evduate only el. Sînce by induction ef is a safe residual for el, ef 
is a safe residual for the entire expression. A symmetric argument 
holds when y(Ç) = false. 

Case ii: Assume y(P) = 1. 
Then the original expression is the residud Trivially this is a safe 
residual, 

Case fi: Assume y(F) = T. 

Then Algorithm C (3.10) is appsed, and P evaluates both el and 
el pmduâng residuals ef and ef. Since by induction each of the 
r e s i d d  for the subexpressions are correct and since C simply re- 
places each wmponent of the overall expression with correct subex- 
pressions, the residual pmduced by C must be correct. 

Case4 E =  (op elez.--e& 

Then E is evaluated by N using d e  3.5 and by P using rule 3.13. In each 
rule each subexpressions ei is evaluated. By induction we assume that the 
residual for each subexpression is correct. 

There are two cases for the construction of the residual. 

Case i: y(P)  6 {T, L). 

Then by Thm. 4.1, y (va) is exactly the value pmduced by N[E] e, so 

we can tnvially replace the operation by this value. 

Case ii: 7 (va) E (T, LI. 

Then the residual is the original operation applied to the residuals 
of the arguments. Since the residual of each argument is correct, 
the entire residual is correct. 

Case 5: E = (Xx. e el ) and d = false. Then E is evduated by N using d e  3.6 and 
by P using rule 3.14 since by asaumption d = falae. 

W e  need to show that new residual bindhp created in p are correct and that 
the overall residual is correct. 

Part 1: The residual bound to x within p is either y(ey) or the identifier x 
itself Ify(er) is chosen as the residual then y(ey) 4 {T, 1) and by Thm. 4.1, 



this is a correct residud If the identifier x is chosen as the residual then 
the binding is correct assuming that x is a formal parameter in the final 
residual. By definition of 3,14(4), x will be a formal panuneter in the final 
residual unless the final residual is a constant in the concrete domain. If the 
final residual is a constant, then no identifiem c m  ex& in the residual in 
which case any residual for x in p would be trivially correct. 

Part 2: There are two cases for the overall residual. I€y(ef) is chosen as 
the residual then ~ ( e ? )  6 {T, 1) and by Thm. 4.1, this is a correct residual. 
If (Ux.eR ef) is the o v e d  residud then the o v e d  residual must be 
correct since by induction, eR and ef are both correct. 

Case6: E =  (Xx-e el) andd=true, 

Then E is evaluated by N using rule 3.6 and by P using d e  3.15 since by 
assumption d = true. 

By induction ef is correct, so the residual pduced in 3.15W is correct. 

By the a similar v e n t  as in Case 5 (Part 11, the residual bound to x in 
p is correct. If the residual in line 3.15Cii) is the result, then by the same 
argument as in Case 5 (Part 2), the residual must be correct. If the residual 
in line 3.15<12) is the redt,  then since the bindings passed to the r e d v e  
evaluation are the same as those passed to this dl, by induction the result- 
ing residual mu& be correct. 

There a few interesthg points to note about this p m £  First, in Case 3(i), we take 
advantage of the fact that our language is pure. This is used by appealing to the def- 
inition in the standard semantics in which the environment for the subexpressions 
is the same as the environment for the original expression. If the conditional were 
pehtted to cause side-effects within the environment we wodd have to modifjr ou.  
approach. In order to make any non-trivial transformation in such cases, we would 
have to detennine if the conditio~d d l y  contains impure computations. Such 
a computation could be made by using a two part abstraction domain in which we 
consider 'hiay-aliasn 1531 1291 information as part of the abstract domain. This would 
require fairly mail changes to the interpreter- We could then use thïs alias informa- 
tion to mate a tesidual for the conditional that causes the same side-effect as the 



evaluation of the original expression. By pedoTIIUlIig this transformation we would 
in fact remove the onginal i f  expression and replace it with a sequential evaluation 
of the residual for the conditional (Le. the d e  causing the eida-efEect) followed by 
the d e  for the appropriate branch. Any may-alias analysk would be a conserva- 
tive approximation since the existence of alieses is undecidable in generaL However, 
a may-alias d y s i s  is a relatively simple form of abstract k t e r p ~ h t i o n  and thus 
would fit nicely iPto our approach- 

4.4 On the Efficiency of On-line Evaluation 

There are two main factors that determine the complenty of on-line partial evalu- 
ation. The first fiictor is the cost of operations in the abstract domains; the second 
factor is the overhead impased by the evaluation algorithm itself In our approach, 
the partial evaluation algorithm is parameterized by the abstract domains and any 
restriction on the running tirne of the abstract operations would restrïct potential 
domains that an implementor may want to use. A complete evaluation of the com- 
plexity of evaluation given an arbitrary program has not k e n  made. Although there 
are some aspects of the analpis that are reasonably straîght$omard, there are non- 
trivial interactions between the algorithm king evaluated, the abstract domain def- 
initions, and the accuracy of the environments used when evaluating branches in a 
conditional statement. We will use the term well-behaved to mean that if the evalu- 
ation of e by N requires a t  most O(g (n)) primitive operations for any input, then P 
requires at most O(g(n)) abstract domain operations 

The first observation is that the on-line algorithm is well-behaved when no con- 
ditionais are dynamir The proof that P is well-behaved when no conditionais are 
dynamic has essentially aiready been given - Lemma 4.3.2 shows that whenever all 
conditionals are static, every evaluation step in N has a eorresponding evaluation 
step in P. 

Given that the static analysis is well-behaved, we now characterize some of the 
potential difîicuities that can be eneountered aRer a dynamic conditional statement. 
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Consider the following ftnctions: 

Function complex executes in O(1) time for all input, whüe fiindion f is O(n). Un- 
fortunately, whether our aïgorithm discovers these facts is dependent on the Split 
operation over integer domains. 4 during the evaluation of (< x 5 in function 
cornpiex, the Split operation retains the information that x must be greater than or 
equal to 10, then P operates in O(1) time for all input as well. However, given o u r  
trivial identity Mplementation of Split as presented earlier, this information would 
k lost and the algorithm would investigate the ackermans function - a very ex- 
pensive choice. With function f the situation is even worse; there is a dependency 
between the evaluation of the second recursi. cal1 and the W. If the evaluator 
does not recognize the dependency, the partial evaluation of f will require exponen- 
tial time since the algorithm investigates each braach of an i f  statement on each 
recvsive call. This choice makes the partial evaluation of fiuiction f an e n e n t i a l  
time evaluation, 

In general, the fact that abstract interpreters investigate multiple branches of 
a conditional when the standard semantics requires these branches to be mutually 
exclusive ia the cause of the exponential tirne behavioux Termination is not the issue; 
the amount of work to achieve temination is. Most abstract intetpretations, such 
as the early negah'ue/zero /positive example, have abstract values that are in some 
h i t e  (and genedy very shallow) lattice. This means that even though exponential 
behaviour can be experienced, the exponent is bounded by a very s m d  constant (the 
height of the lattice). Using the domain rsquirements that we have given, there are 
guaranteed bounds in our approach as weii, but the bauds are dependent on the 
speed of convergence for the VR operators. However, the domain convergence rate 
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is not the only fàctor - issues such as ammacg and memoization can change the 
effective complexity of the basic algorithm. 

The pmblem encountered with fiinction cornplex is not that difficult to h a d e ;  we 
eould simply require that domains provide acnuate Spfit information. Accurate SpP 
information would guarantee that we would never investigate a conditional branch 
unless it could possibly be evaluated for some real input. 

If we assume that the implementation of P performs memoization, then the par- 
t i d a r  pmblem with fiinction f can be handled as well. After the fornard analysis 
through the fmt recullsion, a memoization of f can be created. This memoized ver- 
sion of f would, by the soundness tbeorem, have a b c t  parameter values that 
amer at ieast the ni1l range of potential values for x dong that branch. Thus when 
we eventually investigate the second recursive branch, this memoized version of f 
will be available for remuse within the second nested evaluation and the b t  recur- 
sive call wi l l  not be re-evaluated. 

Finally, an additional phase could be introduœd into the algorithm. This phase 
would d y z e  each function definition and determine whether there is more than 
one path through the fiurction to a recursive cal1 of the fitnction. If more than one 
such path eBsts then the potential exponentid behaviour could be avoided by using 
more traditional shallow, hed-height lattices for that potion of the analysis. This 
type of technique is commonly used to ensure that harmful code duplication does not 
ocm. Examples of harmCul code duplication include causing redundant cornputa- 
tion and duplicating code that contains operations with eide-effeets. Although these 
partjdar issues are discussed M e r  in Sections 6.3 and 6.3.3, the application of 
these approaches to controlling exponential behaviour has not been investigated in 
any approach. 

In the implementation developed as part of this work, false erponentiai behaviour 
has not been observed. We believe that this is due to the combination of having 
accutate domains and memoization. It rem- as future work tO determine an exact 
characterization of the system interactions that would formally guarantee a well- 
behaved partial evaluation algorithm. 



4.5 Parameterizing Partial Evaluation 

There has only been one other substantial investigation into parameteripng partial 
evaluation. In 1251, Consel and ghoo report on a ficet based approach to parameter- 
izing partial evaluation. Their basic approach is to d e h e  algebras that relate the 
abstmct domains to the mncrete domains. They then hvestigate a simple on-he  
partiai evaluator and off-line binding thne d y s i s  using their algebras. The major 
restriction in thw appmach is that they assume finite-height lattices for the abstract 
domains. ALthough they make tha observation that a Cousot and Cousot type of 
widening operator would admit infinite-height iattices into the model, this appmach 
has not ben investigated furth= In [20], Colby and Lee dllectly implement Consel 
and Khoo's approach. They obseme that structured domains cannot be abstracted in 
a very expressive manner due to the restrictions of the abstract domains. 

Our approach differs in that we explicitly admit infinite-height lattices with spec- 
dications as to requïred operations on such domains. In addition, we characterize 
both precise and imprecise abstract value operations and use the precise operations 
whenever termination can be insured. This differs h m  traditional appmaches that 
solely use least-upper bounds for collecting abstract information, 

Consel and Khoo b a s i d y  ignore termination issues by leaving the decision about 
unfolding to the interpreter a t  the time that a specialization is pedomed. Their 
o u t h e  for an on-line partial evaluator abstracts away this entire decision by using 
an application function, APP, that determines w h e e t  to continue specialization or 
not. In Colby and Lee's implementation, the APP fiinction makes this choice based 
solely on the depth of the inlining. 

The most h c t l y  comparable work in terms of the proof h e w o r k  is the work 
by Woo and Consel [24] that forms the basis for their parameterized system. TheV 
appmach is to define a set of logical relations that relate an instrumented semantics, 
an on-line evaluator, and an off-line evaluato~. The main proofs deal with correct- 
ness of the correspondence between the various semantics. They do not formally 
prove any form of termination condition, but as in the parameterized system, rely 
solely on decisions by the speciaiizer to determine temination. Although the formal 
appmach characterizes the specialization decisions as a mer fiinction that monoton- 
ically increases to a hed-point, the formal approach does not address how to deal 
with non-finite height domains. This is p a r t i e  evident in the fact that struchved 
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domains are not addressed. The bias of ghoo and Consel's work is to investigate 
the relationship between on-line and off-luie evaluation and to formally character- 
ize off-tine binding üme RnalpsisC Their work effectively relates off-line binding t h e  

anaiysis (both monovariant and polyvariant) to foms of o n h e  evaluation, but is not 
as espressive for on-line parüal evaluation as the approach proposed in this thesis. 

As noted in Section 2.3.5. the FUSE system is a larger implementation efEort than 
either this work or the work by ghoo and Consel, but the analytic side of the FUSE 
work does not address the relationship between abstract and standard semantics and 
depends on a finite height lattiœ model for termination properties. 

In our approach, the model for termination is related to the abstract domains; the 
basic intuition is that unfoldïng can only be profitable if we are learning new infor- 
mation. We do not daim that thiS is a dïicient condition for usehl unf01dinp~ but at 
least at the partial evaluation level, it is necessary. In othet words, without taking 
into consideration size of code, delay slots, and othet "back-end" issues, we can O* 

determine the usefulness of d e  inlining based on information that we are enCoun- 
tering. Although our basic criteria can be implemented in Consel and Khoo's model 
(as can any model), in order to have a reasonable compromise between accuracy and 
termination, it is important to differentiate between abstract value collections that 
effect termination and those that do not. Such a differentiation cannot be made in 
Consel and Hhooys model since their only methoà for collecting abstract values is by 
using least-upper bounds in a hite height lattice describing the domaïm. Since our 

approach separates the types of collections into precise and relaxed widenings, where 
only the relaxed widenings efféct termination, we can more accu~ately manipulate 
the abstract information. 

4.6 Summary of the On-line kamework 

As we have seen in this chapter, the on-line algorithm that we have developed is 
dependent on ody a few characteristics of the actual abstract domains chosen to 
represent information during the evaluation. The algorithm itself uses precise anal- 
ysis whenever it can guarcl~ltee that divergence will not occur; whiie the accufacy 
of results i s  dependent on the accuracy of the abstract domains, the comctness is 
dependent on only the few required characteristics. The three phases in the on-line 
algorithm allow the UIterpreter to make the choie about when to switch the type of 
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analysis and to use as much of the information about the state of the analysis as 
possible. Combining the analysis and specialization phases presents opportunities 
for fiirther optimizations and fits well with most standard appmaches for producbg 
good residuals; this wiU be discussed firrther throughout Chapter 6. The proofk that 
we have presented rely only on the basic characteristics of the abstract domains cho- 
sen to mode1 information. This appmach dows  one to consider the design of flexible 
models for information as a problem that is nearly independent of the actual evalua- 
tion algorithm. 



Chapter 5 

Domain Implementations 

5.1 Integer Interval Domains 

When presenting the formal partial evaluation algorithm, we assumed that we had 
domains and widening operations for various basic types. In this section we wiU 
carefiilly introduce an absttact domain and corresponding widening operators for 
representing integers. There are several parts to this pmcess: the definition of the 
abstract domain, the definition of the widening operators, and finally, a proof that 
the operators sa- the requirements for precise and relaxed widening given in Def- 
initions 3.1 and 3.2. As was obsemed during the discussion of the d e s  of domains in 
Section 3.3, these definîtions and pmfk are suffiCient to demonstrate the correctness 
of the abstract evaluator with respect to integer values. In Section 5.2 we WU follow 
the same process for the stru- domain of Scheme lists. 

1 Dehi 5.1 (Integer Interval) An integer intemal, V, is a sequence of 

An intemal with only a single integer in the range may be represented without the 
brackets. Given two intemals, VI and V2, we will Say that Vl $ Vs if VI = I or = T 



or if Vk, k E VI-k E fi. Integer intemals fom a partial order with respect to 
4 . The intuitive meaning for T and I is that T is the unbounded interval (contains 

all of N and 1 is the empty intend (containhg no elements). Two intervals may 
be ordered by a < operation if all of the elements in one intend are less than all 
elements in the other intemal; Le. Vl < V2 S V 2  't VI, Vy /y V2 z < y. 

Theorem 5.1 Integer Interval Lottice 
The integer intemals are a complete luttke under 4 .  

We need to show that for any subset S of integer intervais, both V S and /\ S exist. 

Past1:vs 
Let sm* and sm* respectively be the minimum and maximum integer in the intemals 
in S. Then v = [sm* ..srna] is an upper bound for S since for any interval s E S, s < v. 

We now need to show that v is the leost upper bound. Assume there is some other 
upper bound v' i v. Then by definition of integer intemal and <, v' = [v;..vg where 
either v; > smin or v; < sma (or both). Assume u; > sm". Then there eBsts a set 
s E S such that smk E s and smk $ v'. Thus s # d and v must be the least upper 
bound. A symmetric argument holds when U;  < smm. 

Patt2:AS 
Let S' be a set of integer sets where each set represents the elements of a correspond- 
ing interval in S. Let v = n s'. 
Claim: v is representable as an interval. If v is empty or represents a single integer, 
v cap be expressed as an intemal. If v consists of several elements, then each i n t e ~ d  
in S must contain all of those elements. If v does not represent a contiguous series 
of integers then there exists some 2, y, z with z, z E v and y 6 v such that 2 < y < z. 

By construction this implies that there is Mme s E S' such that z, z E s and y S. 

But this contradicts the definition of an intend, so v must be representable as an 
intemal- 

Claim: u = A S.  First we show that v is a lower bouncl. By construction, Vs E ES, Vz E 

v, 2 E S. Thus by definition, v < S. Next we must show that v is the greatest lower 
bound. If v is not the greatest lower bound, then there esîsts some v' + v such that 
Vs E S, Vz E v', z E s. If a' > v then there ePsts an element 2 E v' such that 2 6 v and 



Figure 5.1.1: Integer Intemal Lanice 

Vs ~s ES, z E S. But if VS 's S, x E s then 2 is in the intersection of the sets in S' and 
then by defmition, z E v.  Thus v must be the greatest lower bound. 
O 

Next, we need to define widening operations on integeï intervals that preseive the 
nature of the domains. W e  w d l  use two additional. relationships between intervals 
to assist in these definitions. 'hvo intervals conjoin if their values overlap or are 
Unmediately next to each other. The formal definition will provide us with a method 
of indicating that tao intemals can be merged to form a larger single interval that 
contains strict1y the elements in the two original intemals. Note that the idea of 
conjoining intervals is only needed in the definition of the widening operators; no 
integer intemal domai. will be ailowed to contain a pair of amjoining intervals. 



Deai 5.2 (Coqjoint Intemals) Let VI = [a..b] and V' = [c--4 be two 
integer intervals V1-rV2 i fc  > a a d  c 5 b + 1 and d > b. If VI-+, me 
sczy that VI conjoins Vi. 

Observation 5.1 Given intervals VI and Va i f  VI < V2 then -(Vl-rV2). 

This observation follows düectly h m  the definitions of j and conjoint intervals. 
If Vl 4 V2 then al l  elements in VI are in V2, but the definition of conjoint requires 
the smallest value in VI is not in V2. 

that 

-- --  - .  

D e h  5.3 (Disjoint Intervals) Let VI and V2 be two integer intemals. 
We say that Vl und Vi are disjoint, or symbolically that Vl=Vz if: r 

This definition of disjoint is a bit stronger than normal definitions; not only can 
the intemals not share any values, but there must be a ugapn between the elements. 
More fonnally, there must exist some z such that Vl < [2..2] < Vi or V2 < [z..~] < VI- 
For any pair of intemals, (VI and V2), either the intemals are related by inclusion 
(VI < fi or 6 =$ fi), are conjoint (Vi-rG or Vj-rK), or are disjoint (Vi=Vi)- 

The conjoining formalism will be used to indicate when we will be able to marge 
a series of intervals into a single interval. For example, the intemals [l..iO] and 
[11..20] are conjoint, as are [l ..IO] and [S. .20]. In each of these cases we could replace 
the pair of intervals with a single intemal [1..20] whieh would represent exactly the 
same values as the pair of intemals. [1..10] and [12..20] are dîs~oint since there is a 
'gap" between the two intervals; replacing these intervals wi th  the single interval 
[1..20] wouid introduœ an additional element, 11, that is not present in either of the 
original intervals. 

We now extend the idea of two conjoining intemals to a series of conjoining inter- 
vals which we will cal1 a conyoinzng chin.  A conjoining chain is simply a series of 
intervals in which each interval coqjoins the next one in the Chain. 



Defn 5.4 (Coqjoininp Chah) Let K, - - . , Vn k integer intervals. 
CC(Vl, &, . . . , V,) ho& if V i  : { L n  - 11, ;- If CC(Vl, V2, . . . , V,), 
we sa), VI, V2,. . . , Vn are a cmjoining chnin. 

D e h  5.5 mteger Interval Domain) A d u e  in an integer intemal 
domah, DI is o series of intervals (K < fi < . . . < Vm) such that 
m, 5 E D* : K=Q. For a particuCar integer vdue, 2, we say that 
2 E DI if there eàsCs V E DI sueh that z E V. L is considered to be in 
any value of an integer intetvd &min.  

The given domain descriptions define a parti& normalization of sets of inte- 
gers: intervals are ordered, contiguous subsets of integers and domuin vdues are 
formed h m  an ordered set of disjoint intervals. This normalization is important as 
it dows for reasonable implementation; we codd ignore implementation issues and 
simply defme the integer abstraction as sets of integers, but in real implementations, 
manïpulating arbitrarg sets becomes very expensive. 

Figure 5.1.2: Abstract Value Covering 

R e d  that in Section 3.3.1, we defineci the C operator for abstract domains in 
terms of the atoms in the dom-sets of abstract domain values. For the integer inter- 
val domain, we can easily define a & operator that m e t s  this requkment. Given 
values Vl and & in the integer interval domain, we say that Vl & fi iffor every t E VI 
there exists y E V2 such that 2 j 8. This statement may seem trivial, but does not 



necessarily hold in abstract domains that are not normalized as the integer intervals 
are. Tô generalize thîs statement to any abstract domain, the statement implies that 
there can be no pair of abstract elements in & that "covef a single abstract element 
in VI. Figure 5.1.2 gives an example ofthis type of mirer - using the atoms in the 
dom-set, we require that {C) & { B ,  D )  since the atoms are the same, but clearly C 
is not below either B or D. 

5.1.2 Wideniag Operators for hteger Intervals 

We now define the widening operators, V '  and V '  , for the integer intemal domains 
In order to dari.& this section, we will assume that the Op and V' operators will 
implicitly reference the integer interval domain. The definitions are a bit laborious 
as they must presem the d e s i d  normalization in the representation. 

Deni 5.6 (Preciae Integer Widening) Given integer domain values 
Dl = {K,fi,  ... ,K)and& = {Wl,W2, .-. , Wm}, 

(Dl VP D2) = 

{ T )  if Dl = {T) or D2 = { T )  
Dl i f 0 2  = ( 1 )  
D2 i f D 1 = { l )  

Dl U D2 (vi. 
where W;- E Di, Wj E D2 : &=Wj 



The meaning of the definition is more intuitive than the definition itself might lead 
one to believe. The intemal T a& as the multiplicative zero for widening: Vz, ((T) Vp 2) = 
(Z VP {T)) = {T) (Case i). The intemal I a& as the identity value for widening: 
VZ, ((11 Op 2) = (2 Vp (11) = o (Cases ü,iü). If the= is an interval in one domain 
that is below an intend in the other domain, the lower interval is removed (Cases 
iv, v). LfaU intends in the two domains are disjoint then the result is in its minimal 
form (Case vil. E'inally, if them is a set of intemals that form a conjoining Chain, those 
intervals are merged into a single interval in the result (Case vii). 

Given integer d o m i m  Dl and D1. the result of DI V p  D2 is a n  utteger interual do- 
main value. 

The definition of Vp is inductive; at each step the definition either produces an in- 
t e d  domain value or reduœs the number of intervals in the domain values by at 
least one. Thus we use a simple induction to show that the result is correct. 

Cases (il through (S), and (vi) form the basis for the induction since they do not 
r e d v e l y  apply Vp . Cases (il through (iii) are trivially correct. Case (vi) is correct 
since al l  intervals are disjoint. In Cases (iv) and (v) we d u c e  the size of one of 
the domains, so by induction the result is correct. In Case (vii) we d u c e  the total 
number of intemals by at l e m  one, so by induction this pmduœs an interval domain 
value. 

Precise integer widening (Defi. 5.6) satisfies the conàitions forprecise widening (DeF. 3.11. 

There am two conditions that must be satisfied for Vp tO satiSfy Deh. 3.1. Mt, if 
V = VI Vp V2 then &V = (&VI) (J (JV2). SecondVz, y E V : 2 # y-zlly. 

We will first deal with the incomparability requirement. By definition of an interval 
domain values and Thm. 5.2, we know that there no intervals 2 and y in V such that 
t < y. Thus, by definition of inmmparability, Vz , y E V : 2 # y e z  11 y). 



We now prove that if V = & Op fi then &V = ($VI) U (&fi)- Recall that JV is the 

set of atoms below the elements of V. We show that every transformation step in 
Defn. 5.6 presemes the set of atoms in the original domains- Case (il, (ii), and (iii) 
are trivial- In Cases (iv) and (v), the element king removed is below an element that 
is being preserved so the set of atoms is unchanged. In Case (vil no elements are 
being removed so the set of atoms is unchnnged. Finallx in Case (vii) we cornpress 
a conjoining chain into a single interval. In any conjoining chah the set of atoms 
is simply the set of integer values represented by the Chain. Since the new interval 
reflects exactly these elements, the ove rd  set of atoms is the same. 

O 

h c k e  intemal widening works as one might expect - it ma te s  the smallest set 
of intervais that contain effactly the information present in either of the domains. For 
example: 

The traxdormations are a straightfomard application of the definition. [1..4] is 
below [- 10 .-51 so by part (iv) of the d e ,  we remove [1..4] leaving {[- 10 ..5], [7. .Il]) Vp 
{[- 11.. - 11, [13..13]). Intervals [-Il.. - 11 and [-10..5] are conjoint, so we merge them 
by part (vii) into a single interval, leaving {[-11..5], [7..11]} Vp {[13..13]}. Since 
these intends are al1 disjoint, by part (vil the final result is simply the union of the 
intemals. 

Theorem 5.4 The rules fit precise widening are nomuùùing - the final set of inter- 
vuls  is independent of the order of application of the ruks in the definiaon. 

This observation follows h m  the use of dom-sets of atoms in the Thm. 5.3 and the 
definition ofthe precise widening operator. Let V be the result of a precise narrowing- 
The down-set of atoms in V is exactly the union of the domse t s  of atoms in each 
of the arguments. Assume then  was another interval domain value V' such that 
IV = IVf. If the representation is different in V and Vf then there must be some 
interval in z E V such that one of the following holds: 

1. t h e r e m  y €  Vrsuchthatz< yand = # y ,  



If neither (1) nor (2) hold then there mu& be some element of z that is not covered by 
V', contradicting IV = JVr. I f  (1) holds with z = [a..b] then either a - 1 or b + 1 must be 
in y and thus must also be in some interval of V. But such an interval would conjoin z 
meaning that V would not be a valid integer interval domah Thus (1) carinot hold. If 
(2) holds, then by siaiilar reasoning, y and z must be conjoint, implying that Vr is not 
a valid integer interval domain. Thus V and Vr must have the same representation. 

The requirements for the relaxed widening operator are both more and less re- 
strictive than thom for the precise widenïng operator; less restrictive in tenns of 
accuracy, but more restrictive in terms of convergence. We could simply choose to de- 
fine the widening operator as returning T. Although that s a m e s  the requirements 
due to the weak ammcy requirement, in practical terms such a definition would 
be nearly useless for discoverhg any information about expressions. On the other 
hand we obvious1y have to give away some of the accuracy in our domains in order 
to sa- the convergence requirement. W e  deal with these somewhat contradictory 
demands by definhg an operator that gives exact anmers if  there is a bound on the 
range of answers, yet converges vexy qyickly if there is no bound. We use the precise 
operator to simplify the definition of the relaxed operator. 

l ' Defn 5.7 (Relaxed Integer Widening) Giuen integer domains Dl = 
{VI, &, .. . , V,) and D2 = {Wl, W2, .  . . , Wm}, with Vl = [ai..bl], Vn = 
[cl ..dl], Wl = [a2..ba], and Wm = [c2..d2], 

u1 = { 1 if.. < a1 
othenuise 

anà 

The basic intuition for the result of a relaxed widening operation is that if we 
have discovered bounds on potential r ed t s  (represented with a domain value lïke 



{[il, [sol)) then as long as M e r  elements remain within the {[II, [50]) range, we 
can maintain exact infonnation without con= for divergence. If the range begins 
to %xpandn towards either side of this range, we immediately expand the range in 
the direction of either infinity or negative infini* This is obviously a faVly sim- 
ple mode1 but it works surprisingly well in practice due to the nature of mal code. 
Although this wïll be dieeussed in more detail in Section 6.2, a bit of intuition re- 
garding the usefulness of this operator is in order at this point. If a d e  hgment  
has (and enforces!) upper and lower bounds for expcted values, these bounds wi l l  be 
e n d e d  in the program by way of conditional expressions that either provide default 
values i f  the bounds are exceeded or perfom some sort o f e m r  handling routine. In 
either case, the "normal" computation will have the eqected range ended in the 
program- Due to the hict that we Ksplit" scopes (again, see Section 6-21 based on con- 
ditional expressions, these e n d e d  bounds will "oarrow* an estimate t o w d s  these 
encoded bounds. If a program has no encoded bounds then either no known bounds 
ezüst or the implementation is faulty in terms of not dealing with exceptional cjrcum- 
stances. In either case, we cleady cannot make any assumptions about the potential 
domain other than that the domain could be infinite. It is possible to encode more 
complex infinite domains as part of a different abstraction; this wiU be discussed in 
Section 7.2.2. In addition, we wiU discuss how to extend the implied concept of "di- 
rection" or "dimension" to deal with non-linear data models for non-integer domains. 

Relaxed integer widening m. 5.7) satisfis the conditions fir reiuxed widening 
D e f i .  3.2). 

There are three conditions that must be satisfied for OR to satîsfjt Deh. 3.2. First, 
if v = V I V ~  Vz then LV 3 ($VI) U(&K). Second, Vz, y E V : z # y a z l l y .  Third, 
for any h c t i o n  f and d u e  20, there exists a k such that f ( zk )  C 2 k  where +i = 

f ( ~ i - ~ )  for > 0- 

We Ke deal with the mt two conditions by appealing to the corresponding proof 
for the precise widening operatot. The first condition for relaxeci widening is more 
flexible; we only need to show that elements are not lost. Since the result is the 
p c i s e  widening of the original domains plus some additional elements, and since the 



precise widening operator does not lose elements, we can condude that the relaxed 
operator does not lose elements. The second requiement for relarred widening is 
satisfied using the same proof as for precise widening. 

The last part of ou. proof obligation is to show that the convergence statement holds 
for this widening operator. Consider a parti& d u e  in the abstract domain, V = 
t u l ,  q, . . . , v,) and define min and m a  as follows: 

b if v1 = [ - O D . . ~ ]  
min = 

a ifvi = [a..b] 

and 

Let the number of fiee atoms of V be O if V = T. ûtherwise let the number of fkee 
atoms be the cardinality of the set of integers between min and mux that are not in 
V plus one for each direction in V that is not extended to infinie. The intuition is 
that we count each integer that falls in the "gaps" of V as a âee atom plus a specîal 
marker atom for each direction in V that has not been extended to infiniW. Since 
we know that any pdcular intend domain value has a finite representation, the 
number of "gapsn must be finite, so the total number of fkee atoms must be finite. 

Claim: Any wideniag of V either demeases the number of h e  atoms by at least one, 
or produces V. 

Consider a partidar widening of V by some other value W. By definition, if V = T 

then VVR W = Y, satisfging the claim. If there exists an element in W either 
larger than the maximum element in V-or smaller than the minimum value in V 
then by Deh. 5.7 one of the directions is extended to infiniw This eliminates one 
of the special matker fhe atoms and thus satisiies the claim. If the elements of 
W are between the minimum and maximum vdues of V then we perfom a precise 
widening. By Defn. 5.6, if every intemal in W is below some interval in V then the 
result is V, again satisfying the claim. The final case to consider is when the= exists 
w E W such that for all  u E Y, w # v.  Then, by definition of < , there esists some 
z such that t E w and for a l l  v -E V, z v. Sime the definition of precise widening 
guarantees that the result contains s and all vdues of V, the number of fîee atoms 
in the result must be less than the number of fiee atoms in V. 



Let h' be the number of fhe atoms in 20. Since the clR;m is satisfied, the number of 
frea atoms in zi ah- zi = f m u t  be strictly less than the number of 
h e  atoms in 2;-1. Thus t h  d t s  some d u e  L 5 k' such that x i  = ziVR f (tt). 
Thus b d a t i o n  of V' , f(2k) E ot ,  and the convergence requirement is satisfied. 

Although our precise widenïng operator cornmutes, relrued widening does not. 
The reason for this is that relaxed widening conservatively extends a domain in the 
direction in which the domain is growing. The direction ofgmwth is expressed in the 
order in which widenings are performed. For example, using out previous example 
we see that 

but 

The resultiag domains correctly express the behaviour of the respective widenings 
since in the first case the (Cdirection" of the domain growth is towards infinity in 
both directions while in the second case the second domain is contained withi.  the 
range of the first estimate. When such containment ~ n v s  there is no possibility 
of infinite gruwth so we can generate a better eshate while maintaining safety 
FiPally, note that the second relaxed estimate generates exactly the same result as a 
precise widening. 

There is one aspect of domain definition that we have ignored in presenting the 
integer interval domains: we have not presented any definitions for primitive opera- 
tions over intervals. Although we are not going to give the details of the operations, it 
is important to note that such definitions are part of the overall definition that is used 
by the partial evaluation system. In the next section, when we defme the structural 
abstract domain, we WU present detailed definitions of the primitive operations for 
lists. 



5.1.3 A Larger EEemple using the Integer Domain 

In order to illustrate the operation of both the algorithm and the integer domain, we 
d l  consider a fiuiction that sums numbers in the range h m  start to stop. 

(define (Sun start stop) 

(if (> start stop) 

O 
(+ start (Sum (+ 1 start) stop)) 

1 )  

In order to have a reasonable size example, we wdl skip most of the "uninterest- 
ing" steps in the derivation and will focus on the recursive evaluations of ~ u m  In the 
example, we will evaluate ~ u m  h m  1 to x where x is unkaown (Le. Tl. We assume 
that we have an accurate Split fiindon- 

Givenanevaluation ( ~ u m  (+ 1 start) stop),wewillhaveatracestepofthe 
form: 

t sum z y ) d(s ta t )  &(stop) 

where 2 is thevalue of [+ 1 start), yisthevalueofstop, and thedand~values  
are as given. In terms of the evaluation, this captures the state of ey for each argu- 
ment and the state of d and 6 immediately foliowing line 3.15(1) in which the actual 
parameter is evaluated. 

Each nested evaluation of the body will be indented; sinœ the re-evaluation of 
the entire expression with the new environment (in h e  3.15(~)) is strictly tail- 
recusive, we will not indent for this case. Since all but the initial cal1 to Sun occur as 
a result of evaluating the body of ~ u m ,  aRer each completed recursive evaluation of 
SU we will give the overall value for eu in the form "eu = OVp (z + y)". This reflects 
the basic evaluation strategy for the body of sum - the conditional expression wil l  
always be unknown, so the o v e d  result wiU always be a precise widening of the 
values of each branch. The value of the first conditional branch is aiways zero and 
(z + y) is the value of the second conditional branch where z is the value of start 
during the evaluation of the body and y is the result of the reeursive evaluation. It is 
very important to note that z = é(start ) OR z since, as defined by line 3.1561, the body 
is evaluated in the p' environment found by widening the old 6 value by the new er 

value. 



Finallx after givïng the new eu value, we present a trace lïne that gives the value 
for Er which determines whether ea is the result or whether another evaluation is 
necessaqt 

A sequenœ oftrace h e s  h m  a recursive evaluation might look like the following: 

The two evaluated parameter values are given in the ( sum 3 [ 2 . 4  ) fragment of the 
first linet In this example, it is not the case that both parameter values are below the 
respective values in 6 (represented by the next two values in the trace line). Thus an 
evaluation of the body results. The evaluation of the body (eventudy) yields another 
recursive evaluation of Sum. 

In the renirsive evaluation, the two evaluated parameter values are given in the 
( sw [3..00] [2..00] ) hgment. In this case each parameter value is below the re- 
spective value in b (the next two values in the trace hie). This means that in the 
algorithm the value retumed would be the value of E, which in this case is L. 

The next trace line shows the computed value for the body of SUI for the first 
evaluation. Note that the [2..00] value in the exprassion ([2..oo] + L) results fimm the 
value bound to start during the evduation of the body This value was d d a t e d  
h m  a relaxed widening ofthe old b value ü.e. 2) by the ef value (Le. 3). 

The third line computes the new <' value which is always the old E value widened 
by the computed ea value. In this aise, the old ( value is L and the ea value is O. 

Since eu C, we must re-evduate the original expression with the new Cf. 

( S u m l  f )  LI. L ( N o t e :  d = false) 

(Suln 2 [l..oo]) L 1 I ( N o t e :  d = true) 



(Sum 3 [2..oo]) 2 [ l - m ]  O 

(Sum [3..00] [2..00]) [2..oo] [l-.oo] O 

ea = O V p  ([?-.ml + O) = {O, [2..m]) 

= 0 VR {0,[2-.w]) = {O, [2..00]) 

( S m  3 [2..m] ) 2 [l..m] {O, [2..m]) 

(Sm [3..00] [2..00]) [?..O01 [l..oo] {O, [ 2 4 }  

eu = O Vp ([2..ao] + {0,[2..oo])) =(0,[2..00]) 

C = {O, [2..00]) VR {O, [2..00]) = {O, [2..00]) 

€2" = 0 Vp (2 + {O, [2..m]}) = {O, 2, [4..00]) 

€' = I VR {O, 2, [4..00]) = {O, 2, [4..00]) 

( S m  2 [l..oo]) I 1 {0,2, [4..00]) 

csum 3 [2.*00]) 2 [l..a~] {0,2, [4..w]) 

( Sum [3 ..cm] [2. .cm] ) [2..oo] [ l  ..oo] {O, 2, [4. .ml) 
ea = O V p  ([2--001 + {O, 2, [4..m])) = (0, [2..00]) 

C = {O, 2, [4..oo]} OR {O, [2..00]) = {O, [2. .m]) 

( S m  3 [2-.cc]) 2 [l..oo] {O, [2..m]} 

(Sum [3..00] [2..m]) [2..m] [Loo] {O, [2..00]) 

ea = 0 OP ([2--001 + {0,[2..m])) = {0,[2..00]) 

6' = (0,[2*-~])v~ {O,[~--OD]) = {0,[2..00]) 

eQ = 0 VP (2 + {O, [2..00]}) = {O, 2, [4..ai]) 

6' = {0,2,[4..=])?~ {0,2,[4..~]){0,2,[4..6~]) 

0 VP (1 +{0,2,[4..00]) 

{O, L 3 ,  [5..001) 



The residual that we would p d u œ  is as follows: 

((lambda (s top)  
(if (> 1 stop) 

O 

(+ 1 ((lambda (s top)  
(if (> 2 s top )  

O 

(+ 2 (SuIn 3 stop) 1 )  
stop) 

The basic intuition about the structure of the residual is that the known constant 
values of start are inlined and the parameter is removed. During the evaluation, 
once start becornes an abstract value that cannot be concretized, then we revert to 
the general function c d .  In terms of the trace, the final r e d t  and the last two ea 
computations are the evaluations that actually mate the residual. Note that the for 
the call to sum in the residual is slightly different than what the formal algorithm 
wodd produce. Line 3.15(3) substitutes the body of sum rather than just its function 
identifier, The formal algorithm avoids dealuig with bc t ion  idensers in order to 
reduce the complexity of the algorithm; the substitution is trivial to make in the 
given residual. 

5.2 Structured Domains 

As with the integer abstract domain, we begin by defînïng an ab-& domain for 
struchired values. In keeping with the basic Scheme flavour of our language, we 
will adopt Scheme's S-expression mode1 for struchved domains. Each value in the 
domain is either an a t m  or a pair of values. Atoms are non-stnxctd values; for 
our purposes we wiU assume that atoms are either integers or the special d u e  NIL. 

The basic list operators are pair construction (cons), extraction of the first value of 
a pair (car), and extraction of the second value of a pair (cdr). List predicates will 
be restricted to null? and atom?; it is a straightforward exercise to build predicates 



such as lis t?. W e  will assume the simple list mode1 without imperative operators 
suchas set-car! or set -ce! .  

Due to the requirements for the precise widening operator, given two abstract 
structure values, we need to be able to represent exactly the information in the two 
representations. The basic appmach that we will adopt is to keep sequences of lists. 
The precise widening operator will then simply involve adding another list to the 
sequence. The r e M  widening operator that we will define preserves guaranteed 
structure and value estimates, but performs substantial simplifications. The basic 
approach for the relased operator is to merge cd of the lists into a single list where 
the single list preserves as much structure as possible about the original list. 

Defh 5.8 (List Domah) 
A value in a list domain, D~ = {di, . . . , +), is a sequence of lists. r 
Defn 5.9 M s e  List Wideniag) Giuen lisf domain vcùues Dl and 
D2, we &fine Dl Vp Dz to be Dl O D2 where @W is a sequence con- 
catenation operator; 

We will let V remain as an iafomal operation for now; after we define the ordering 
relationship berneen domain values we will more carefidly define the meanhg of 
concatenation- For the time being, simply assume that concatenation does not admit 
"redundant" lists into the sequence. 

As soon as we admit Scheme style Iists into our system, we allow heterogeneous 
types which, in an laquage without a compile-time type system, necessitates the 
use of some sort of type identification. We wiil use r(z)  ta denote the type of z; 
the universe of types for our system as defineci so far is {Integer, List) where NIL is 
considered to be a list, i.e.  N NIL) = List. We recwsively defina the merge of two lists 



We extend the notation for meqe by defining meqe(z i ,  y, . . . ) as being equivalent to 

merse(. . . (merge (zi , z2), z3), . . . ) . In addition, given a domain value X = (2 1 ,  . . . ) , we 
define meqe(X) = meqe(z l , .  . .) where merge(X) = X ifthere is only one list within 
x. Note that due to the relaxed widening operation perfomed by merge, a merge 
operation is not necessarily an associative operation. 

- - - - - - - - - - - - - - 

Defn 5.10 (Relaxecl List Widening) Given list domin values X = 
{ 2 1 , 2 2 ,  ...) and Y = {YI ,  y*, ..-}, we define X VR Y to be a list V = 
merge(vl, v2, . . .) where v; = m q e ( q ,  Y) 1 

We generally foUow Scheme syntax for lists: ( 1 2 3 ) represents the construction 
(cons 1 (cons 2 (cons 3 NIL) 1. If the list does not end with NIL, the list is 
represented with a dot between the last pair of elements. For example, ( 1 2 . 3  ) 

represents the construction (cons 1 (cons 2 3 ) ) . We will generally not put the 
Scheme backquote on our Iists d e s s  necessary to dari@ the meaning. The following 
are a few examples of relaxed widenïng operations using this abstract domah. 



These examples illustrate the structure preseming nature of the relaxed widening 
operatof. If the static knowledge about the structures is consistent, we are able to 

preserve the struchital idormation, even if the partidar elements become (fully 
or paraally) dynamk The first example demonstrates a complete loss of structural 
information, while the second example maintains complete structural information 
though it loses some information about eIements. The thid example is interesting in 
that there is only a paraal loss information about both the elements and the structure 
of the original lists. Note that we do know that we have at le& three elements even 
though we do not know the value of the third element. The fourth example contains 
the result of a non-trivial integer relaxed widening operation. In the fiRh example 
we lose ail information about the nested list, but retain the structural infiormation 
about the o u t e o s t  list. In the last example we lose partial information about the 
nested structure while retaining the complete structure of the outermost list. 

The basic idea of r e M  widening is first to capture the direction of growth in the 
abstract domain and then to cornpress dI of the lists into a single list. It is hportant 
to note hem that there is no concept of "direction" in the list domain itself; the reason 
that there is any concem about direction of growth is that the meqe operation could 
apply relaxed widening operators h m  other domains and these operators may have 
some idea of direction of p w t h .  In general this operation could lose a great deal 
of acmacy in directional domains such as the integer intemals due to the double 
merge. We could avoid thZs loss of accuracy by not performing the second phase of 
the merging (Le. by letting the result be the sequence V I ,  v l ,  . . . rather than the merge 
of these lists), but performing the second phase of merging provides a more efficient 
version of the list representations that is still a safé approximation, Defining relaxed 
widening such that reasonably compact notations result makes the evaluation of dy- 
namic recursions much more efficient. Thus we only pay the cost of manipulating 
potentially large sequences of lists only when we care about having very accurate 
results, namely when we are performing a static evaluation. Although we do per- 
form precise widening operations within a dynamic evaluation, due to the fa& that 
relaxed widening operations oenv on aü parameters for each dynamic c d ,  there are 
a boupded number of precise widenings before a relaxed widening operation oaws. 

The next step is to d e 5 e  the meanhg of the a h c t  primitive list operations 
and predicates. We will use cons, car, and cdr to represent the abstract versions of 
the primitive operators and atom? and null? to represent the abstract versions of the 



ptedicates. Let X = {el, . . . ), and Y = {yl, . . .) be abstract list domain values. 

I ifz(zi)  # LW or Z i  = NIL 

(car X) = {vt , vr , . . . ) where vi = 

v if+;= (cons v LI 

The most interestingof these definitions is the c m  definition. R e d  that merge(X) 

is defined ta be the merge of the lists of X. The intuition for the cons rule is that we 
first normalize the element that we are about to cons onto the iists in Y and then 
mate the new sequence of lists by adding this normalized element onto each list in 
Y. 

Although we have now dehed the domains and operations, we stiU have to insure 
that these definitions are safie to use within our hmework, In order to make such 
a daim, we must define the < ordering relation over lists, show that the widening 
operators satisb their respective constraints, and show that the operators are safe. 



5.2.1 4nalysis of the Abstract Striictorel Domain 

Given two lists, z and y, we say t < y if one of the foilowing holds: 

y = T  (5.20) 

z = NIL and r ( y )  = List (5.21) 

r(z) = r(g) and r (z)  = Infeger and z g '('1 y (5.22) 

z= (cons a 6 )  andy= (cons c d )  anda<candb<d (5.23 

Note that we use z & '(=) y within our definition of 4 for lists; this is due to the 
fact that lists are heterogeneous and we would like to be able to retain as much 
accuraccy as possible about the elements within the list- This aspect of the definition 
corresponds to the ~2' )  case for integer z in the definition for meqe given earLie~. 

There is a reasonably intuitive characterization for this ordering relationship - 
list z is below list y i f2 is prooably longer than 9 or if every element in z is below the 

corresponding element in y. There are several interesthg ineomparability aspects 
to this orderhg relatiomhip. M t ,  any integer value is incomparable to any list 
value (induding NIL). This comsponds to one's intuition that elements of Merent 
types cannot be ordered with respect to each other unless there are egplicit coercion 
operators which our language does not support. Second, lists of the same length that 
have T elements in different locations are incomparable. Findy, since the definition 
is reCUITSive, nested lists fit naturaily into the relationship. The foilowing are a few 
examples of valid j relationships: 

The &st example follows directly h m  condition 5.20. The second example uses g 
f?om condition 5.22 to verify the below relationship for the fmt two list elements; < 
holds for the third element by condition 5.20. Examples three and four are interest- 
ing in that we have what appears to be both a longer and a shortsr list being below 



the list (1 2 T.TL Theshorterlistis below (1 2 T.T) since NIL is below the 
cons œll (cons T . T) . When the longer list is compared to ( 1 2 T . T ) , the inter- 
esting cornparison is when we compare (cons 3 (cons 4 . . . ) ) to (cons T T ) . 
Since both 3 < T and (cons 4.  . . ) =$ T by 5.20, the relationship holds The basic 
observation is that if the structure of a list is not completely known, then the last 
cons c d  will be of the form (cons z T) for some 2. 

Nearly all of these examples were taken h m  the earlier examples for the widen- 
ing operator. Recall that the VR operation must guarantee that for any t and y, the 
result of t OR y must be above either z of g. By inspection, this relationship M d s  for 
the examples we have aven; we still must pmve that the V p  and OR operators are 
in fact valid precise and rehed widening operators with respect to the Iist domain. 

Before addressing the validiQ~ of the Vp and VR operations, we need to deal 
with two other issues: first, we need to clarifP the operation of the list concatenation 
operator W, and second, we need to verifjr that the operation holds for sequences 
of lists. 

When we defined Vp for the Iist domain, we describecl 'W as simple sequence 
concatenation. In malits, the conaitenation operator will only add new lists onto 
the end of the sequence when no redundant idormation will appear in the resulting 
sequence. More formdg, given sequences X = {zl , . . . , on) and Y = {y1, . . . ) we 
recursively define sequence concatenation as follows: 

The fmt case is the trivial identity operation. The second case ignores a particular 
list in Y if the information in that list is  akeady represented in X. The third case 
is sgmmetric with the second but for lists in X that are below a list in Y, and the 
final case actually adds a list to a sequenœ sinœ the added list represents different 
(incomparable) Somation.  

The next step is to discuss the Ç relation. Recall that the definition of is that 
given abstract domain values z and y, we d Say that 2 & y if & $p where & is 
the set of a t o m  below z. Note that in this con= we mean utom in the lattiœ sense, 



not in the Scheme list sense. In this section, we wiU continue to use the font "atom" 
to mean a Iattice atom rather than the font "atom" to mean Scheme atom. 

We define an atom in the list domain to be a list in which no Iist element has the 
value T and in which all components ofthe list are atoms in their respective domains. 
Thus (1 2 3 )  and (1 (2 3 ) )  areatoms but (1 (2.T) 4 )  and (1 [2. -001 4 )  

are not. The latter two lists are not do& since in the first case T appears within 
the iist, while in the second case a nonatomic integer domain value appears - the 
intemal [2 . . 00 1. A list such as ( i [ 2  . . cm 1 4)  is above every list of the form 
(1 z 4 )  wherezisaaqrintegerdomainvaluebelow [2..a]. 

Precise list w idening Defi. 5.9) satisfies the conditions fir precise widoning Def i .  3.11. 

There are two conditions that must be satisfied for Op ta sa- Defh. 3.1. First, if 
V = X Vp Y thenJV = (a) U (&Y). Second Vz, y E V : # y=-olly. 

We will first deal with the incomparability requirement. By definition of the "en 
operator, the only time that a list is added to a sequence is when the new list is 
incomparable to all existing lists. Thus the incomparability requirement must be 
satisfied- 

The second requirement is that the down-set of the result of a precise widening is 
equal to the union of the dom-sets of the of the two original abstract values. We 
prove this by showing that each side is a subset of the other. 

Part 1: IV (JX) U (ly). Let v be some atom in &V. Then, by definition of C there 
exists some list v' E V such that v < v'. By case analysis of 'a*, any list in V exists in 
at least one of X or Y. Thus v' is in at hast one of X or Y and v E (G) U (&Y). 

Part 2: IV 2 (JX) U ($Y). Let z be some atom in (a) U ($Y). Then, by definition of 
1 and U, there exists some list of in at least one of X or Y such that z < 2'. Assume 
z' E X. By case analysis of "@" either 2' E V or there exists some y' + 2' su& that 
y' E V. But then by hnsitivity, z < 2' S$ g ' a z  4 y'. Thus since E V we conclude 
that 2 E LV. 



We must now show that the relaxed widening operator is correct. The properties 
for the list domain relaxed widening are dependent on the definition of merge so we 
will h t  prove that mnpe generates safe redts .  

Theorem 5.7 

The proofis by induction over the structure of z and y. Note that we only use rnerge 

inductive1y in the final case when both 2 and y are cons cells; the other cases mver 
all other base conditions. 

Case 3: z(z) # List and r(z)  = r ( y ) .  Then rneqe(+, y )  = r v;'~) y. By definition of 
relaxed widening, z, y < z VR y so merge(z, y) b z, y. 

Case 4: 2 ,  g = NIL. Then meige(z, y) = NIL, so t r i d 4 f ,  m q e ( x ,  y) 2 ,  y .  

Case 6: 2 # NIL, y = NIL. Then m q e ( x ,  y) = T, so trividy, merge(z, y) + x ,  y. 

Case 7: z = (cons a &)  and y = (cons c d l .  Then merge(z, y) is defined to be 
(cons merge((car z) (car y)) merge((cdr s) (cdr y))). By definition of car and cdr, 

this is equivalent to (cons rnqe(a, c) mesge(b, d) 1. By induction we assume 
that meqe(a, c) + a, c and mergc(b, d )  $ b, d so by defmition of t , we can 
conciude that m w ( z ,  y) + 2, y. 

Theorem 5.8 ( ~ 2  is Rekzxed) 

Reluxed list widening mefi. 5-10) satisfies the conditions for daxed widenzng D e f i .  3.2). 



There are three conditions that must be satisfied for VR ta satisfl Defh. 3.2. First, 
iftr = XVR Y then1V 2 (JX) U(J.Y). Second, Vz,y E V : z + y-zlly. Thid, 
for any hct ion  f and value 20, there ePsts a k such that f ( z ~ )  & ok where +i = 
Z ~ , ~ V R  f ( ~ ~ - ~ )  for i > 0. 

By construction, the result of VR is a sequenœ containing a single list that results 
h m  a series of meqe operatiom. By Thm. 5.7, given elements z and y, z < merge(x, y) 

and y < merge(x, y). By transitiviity of 6 ,  for =y zi, xi < rneqe( .  . . , q, . . .). This im- 
plies that for dl si E X, < X VR Y md for dl 3; E Y, y; < X OR Y .  Thus, by the 
definition of g , X C X VR Y and Y t X VR Y. This implies that &V 2 (JX) and 
I V  2 (W. 'I'hs 1v 1 (1x1 U(1Y)- 
The second condition for relaxecl widening is trivially true since the relaxed widening 
in the list abstract domain returns a sequence containing a single list. 

The final condition requires that any sequence of widening operations converges. Let 
d(2) be the distance of z h m  T with respect to some hc t ion  f. W e  assume that 
all non-list r e l d  widening operators are valid. If r(2) # List, then let xk be the 
bound for the number of widening operations using v;(') before v'(*) converges 
with respect to fiinction f .  We then define d(z) as follows: 

Observation: Ifz # T then d(z)  > 0. 

Since each widening operation is simply a sequence of m e q e  operations, it is su& 
cient to show that each meqe(x, y )  operation is either an identity operation for 2 or 
that d(merge(x, y ) )  is strictly less than d(z). 

The proof is by induction over the s.tructure of r and y. Note that we only use merge 

indudively in the final case when both z and y are cons ceh; the other cases cover 
al1 other base conditions. 



Case 2: r(z) # +(y). Then rmige(o, y) = T and d(meqe(+, y)) = O. Sime z + T, 

d(2) > O. 

- z OR(=) y. By definition of Case 3: r(z) # List and ~ ( z )  = r(y). Then meqe(z,  y) - 
d(2) and va(') , either d(z v;(*) 9)  = d ( t )  - 1 or t = + VI;((') y. Thus either 
meqe(z, y) = x or d(meqe(z, y)) < d(x ) .  

Case 6: z # NIL, y = NIL. Then merge(z, y) = T, so tnvially, d(mcrge(x, y)) < d (2). 

Case 7: z = (cons a 6) and y = ( cons c d )  . Then merge(z, y) is defined to be 
(cons meqe((car 2) (car y)) mage((& z) (cd. y))). By definition of car and càr,  

this io equivalent to (cons meqe(a, C )  merge(bo d) 1. By induction we assume 
that mcrge(a, c) = a or d(meqe(a, c ) )  < d(a) and that rneqe(b, d) = b or 
d(merye(b, d ) )  < d(b) .  Ifrneqe(a, c) = a and rnerge(b, d )  = b thenrnerge(x, y) = 
a. In each of the other three cases, d(meqe( t ,  y)) < d(z) .  

Finally, since for aag fiuiction f and value 10, there is some C such that d(zo) = k,  we 

know that any seriss of meqe operations WU converge aRer no more than k merges. 
Thus VR converges. 

The basic intuition behind the convergence condition is that the list that results 
îrom metgc(x, y) will never be a longer list than either of 2 or y. If the resulting list 
is s t ~ c t u r a l l y  the same as z and y then it will either be identical to 2 or there will be 
some value in the list that has moved doser to its k e d  point. There is a measure of 
asymmetry in these statements - our dehition for meqe (and thus for VR ) is in fact 
associative with respect to s t m c t w e  but since widening operators-in other domains, 
such as the înteger intend domain, may not be associative, the overall statement of 
convergence can not take advantage of the structural associativity. 

5.2.2 On the Expressiveness of the Lbt Ab-act Domain 

Although the List abstract domain is a very simple model, it is surprisingly expres- 
sive when cornparad to other appmaches. In parti&, we will compare this a p  
proach to the accepted "state of the art" in off-line structural BTA - Lamchbury's 



d o r m  projections approach [541. The basic intuition for Launchbury's approach is 
to create static and dynamic projections of pmgrams; each projection encapsulates 
the respective aspects of the onginal program. 

ABS 

Figure 5.2.1: BTA Lattice for Structural Projection 

One of the standard examples that Lamchbury discusses is an association list 
program. Translateci to a Scheme-like syntax, the program is as follows: 

(define lookup (lambda ( l i s t  value) 
(if (null? list) 

fail 
(if (equal? (car l ist) value) 

value 
(lookup (cdr list) value)) 

1 )  1 

When the d o m  projection appmach is applied, the possible bindùlg time annota- 
tions are the values in the lattice shown in Figure 5.2.1. The ABS value in the lattice 
means that the entire structure is "abstract", or dynamicc. The STRUCT values means 
that the structure is known but that neither the le& or right components of the List 
elements are known. The STRUCT ( LEFT ) and STRUCT ( RIGHT ) values mean that the 
structure is knom and'that, respectively, the leR or nght wmponent of each element 
is known. The ID value means that the entire structure is known. 

There are a few important differences in expressivity between this model and the 
abstract List domain that we have dehed.  Fi&, the pmjection model is a unifinn 



model which means that if any List element is given a parti& annotation, then 
cU succeeding elements must have the same annotation. Such a mode1 is not able 
to express changes in value annotations thmughout the list. For example, given a 
listsuchas ( ( ' am 1) 2 )  ( 'cm Tl ) ,  the annotation for the list would be 

STRUCT   LE^) , even though only a single d u e  in the üst is unknown. The sec- 

ond issue is that the effective model that a projectioll~ appmach builds is based on 
knowledge about h e d  stnictural camponents. This structural knowledge is discov- 
erable in Launchbufs work because the source language is a derivative of ML [64] 
and as such, has explicit constructors used to b d d  structures. Structures them- 
selves in ML are strueturally uniform, making it reasonable to apply a projections 
based appmach. It is less dear how accurate a projections-based model could be in a 
more hetemgeneous language such as Scheme. Additionalllp, languages such as C, in 
which side-effects are common, would not lend themselves to this type of model since 
a single assignment to an otherwise fdly static structure would cause the loss of a 
great deal of static information. Part of the pmblem is inherent to using off-lùie a p  
proaches, but requiring fidl u n i f o e t y  is likely to cause oveicgeneralization in many 
situations. 

In cornparison, the on-line appmach with the proposeci List abstract domain is 
both a simpler mode1 and is able to exploit additional static information. For example, 
consider the association list lookup functîon with an association list of ( ( an 1) 

( lookup lis t c m  . Using projections, none of these requests wodd be special- 
ized; d searches would occur at ND-time. Adopting the on-line approach with the 
List abstract model, the residual for the first search would be the constant 1. The 
ïookup residual for the second search would be as follows: 

(lambda (list) 
( (lambda ( l i s t )  

(if (equal? (car list) 'b') 2 fail 
1 )  

(cdr list) 
1 1 

The outer lambda is the residual for checking element 'am - notice that this has 
removed the check for element am, leaving only the c d  for checkuig the rest of 
the list (i.e. the ( cdr lis t ) ). The b e r  lambda is the residual for checking if the 
association list name for this element is l b8. If the= is a match, we return the 



inlined constant 2 ,  otherwise we check the rest of the list. The result of "checking the 
rest of the list" is fail since the spstem is able to -tee that bu does not occur 

in the rest of the list- 

Now consider the final example - (lookup list ' c m ) .  In this example, the 
system makes the same decisions regarding the first two elements in the association 
list, but is able to d e t e m e  that the result of searching the rest of the list is known 
to pmduœ the constant 3 rather than f ail. The residual is as follows: 

If the association list insertion routine guaranteed unique instances of identifiers in 
the list, we would like to have the check of the second element removed and sîmply 
generate the constant 3. However, d e s s  there were expliut uniqueness constraints 
provided to the interpreter, such a result is unlikely to be found by any system. 

It is possible for a residual to contain a general caIl to the original lookup fûnc- 
tion, but this only oenvs when the remaining part of the list is completeiy unknown. 
This is the point at which the List abstraction follows the same generalization as 
the iinifonn projections approach - once a parti& ans  œll has T in its cdr, we 
dorrnly mode1 the rest of the list as W y  dynamic. Although it may be possible 
to develop consistent models that are non-dom in this regard, that is a topic for 
future research. 



Chapter 6 

Implementation Issues 

6.1 Design Overview 

6.1.1 The Language 

We b d t  a prototype implementation of our sJrstem for a small subset of Scheme [191. 
Scheme is an mtyped functional programming language similar to Lisp [78]. The 
subset of the language that we mode1 includes global and local scoping, let bindings, 
fiinction definition (using either define or lambda style definitions), anonymous 
fiinctions, list support (cons, car, cdr , etc.), and the imperative features set ! , 
set-car ! , and set-càr ! . We do not deal with features such as arrays, association 
lists, macros, and iterative control flow. The omitted features do not introduce new 
conceptual pmblems, and were omitted due to time constraints. 

Our interpreter îs a Scheme-to-Scheme transformation system. Due to the nature 
of the system we were building, we did make one signifiant change to the normal se- 
mantics of Scheme programs. Normally, when a Scheme interpreter evaluates an 
undehed variable, the interpreter generates an error message and t e d a t e s  the 
caldation whereas in our interpreter, any undebed variable is considered as hav- 
ing the h o w n  value, T. This change allows for completely automatic evaluation 
of espressi011~ within the interpreter. For example, assume that the main driver for 
a Scheme program is a function called Main. Further, assume that Main takes as its 
argument a file-stream value from which it does input and output. To partially eval- 
uate the entire program, Main is simply applied to a variable that is not bound in the 



global smpe. The partial evaluator then interprets the entire program without know- 
ing anytbiag about the run-time input to the program and pcoduces an appropriate 
residual. 

This approach does have some implications about the state of the world at the 
time that the partial evaluation is performed. Any state in the interpreter that ex- 
ists when the partial evaluation begins could be incorporated in the residual that 
is produced. This could be dangernus in general but is easy to fix by pmviding a 
%empiler" style intenace to the evaluator that ensures that all initial run-time state 

variables (such as defaut file-Stream variables) are iininitialized before beginning 
the interptetation. We have not yet implemented such an interface to the system. 

The implementation itself was written in ML 1641 using Standard ML of New Jer- 
sey (SMGNJ) Version 0.93. This choiœ was made early in the system development 
and allowed for an implementation decomposition that corresponds to the abstract 
decomposition presented in earlier chapters. This choice also incurred performance 
penalties that could possïbly have been alleviated by adopting the CAML implemen- 
tation of ML, but as the implementation was a pmofdkoncept prototype only, the 
perfomance issue was not deemed to be worth the effort needed to port the system. 

6.1.2 Structural Decomposition 

The implementation separates the details of the abstract domains and the actual in- 
terpretation algonthm. For each natural ancrete domain the system requires the 
definition of a corresponding abstract domain. Each domain in the system is built 
h m  an ML structure; the interpreter pmvides a set of required signatures, and 
f unc tors  are used to compose appmpriate structures. In terms of other languages, 
s t r uc tu r e s  (roughly) correspond ta packages or modules in Ada [80] or Modula- 
3 [371 while functors (roughly) comspond to generies in those languages or tem- 
plates in C++ 1791. An ML signature provides the interface requirements that a 
structure is required to sa*; the polymorphic types in ML allow these signa- 
tures to be very generaL 

S-expressions are the fundamental structure desaibing entities in a Scheme pro- 
gram. An S-expression is composed of either an atom or a pair of S-expressions. In 
our system, the values of S-expressions are composed of abstract values; see Fig- 
ure 6.1.1 for a diagram of the basic design of the interface between the interpreter 
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Figure 6.1-1: Implementation Structure 

and the abstract domain definitions. The S-expression fiuictor defines the main S- 
expression datatype in tems of the abstract definitions dehed by the given abstract 
structures where each of the abstract structures must match a corresponding sig- 
nature defhed by the interpreter. The signatures for the abstract domains are de- 
fined in terms of the 1- and topped natural concrete domains as described in Sec- 
tion 3-81. AU domain constraints are defined in terms of a global datatype named 
lattice. The lattice datatype is defined as: 

datatype a latt ice = TOP 1 BOT 1 ELEM of a 

where a is typed as ' an in the actual d e .  This type means that we can mate lat- 
tices h m  other types; the conetruetor ELM takes a value of any type and retums an 
element h m  the corresponding lattice type. This constructor doesnot guaraatee for- 
mal lattice behaviour of the redting elements; it is the programmers responsibility 
to ensure that the induced ct lattice datatype is in fact a lattice. 

Before àiscussing more details of the stnieture, we should darify the status of the 
abstract list domain structure in our implementation. In the prototype, we integrated 
the abstract list operations djrectly into the interpretex This was primarily due to 
the manner in which the code evolved and does not imply that there are furidamenta1 
dif l ïdt ies in the conceptual decomposition. The dashed line in the arrow b m  this 
abstract domain to the interpreter indicates that this is a conceptual organization, 



not an a d  organization in the code. 

Given the basic Iattïce datatype, we can define the interfâœs for our abstract types. 

The boolean abstract domain signature is defiaed as: 

signature BOOLBASETYPE = sig 
type domaintype ; 
va1 alpha : bool la t t ice  -> domaintype lattice; 
va1 gamma : domaintype lattice -> bool latt ice; 
va1 equal : domaintype lattice * domaintype la t t ice  

-> bool lattice; 
val pwided : domaintype lattice * domaintype latt ice 

-> domaintype la t t ice  ; 
val rwided : domaintype lattice * domaintype latt ice 

-> domaintype la t t ice  ; 
va1 narrow : domaintype lattice * domaintype lattice 

-> domaintype latt ice ; 
val print : domaintype lattice -> u n i t  

end ; 

The definition for alpha should be read as Yalgha is a fiinction taking a bool 

lat t icel  argument and rehuning a domaintype lat t ice value". The dehition 
for equal should be read as Gqual is a function taking a 2-tuple of domaintype 
la t t ice  values andreturninga booi lattice value". 

The alpha and gamma fiiactions directly correspond to the abstraction and con- 
netization fiinclions defined in Section 3.3.1 while the pwided and rwided fiuictions 
correspond to the precise and relaxed widening operators. The purpose of the narrow 
operation wil l  be discussed when we dieeuss "splitting" sapes in Section 6.2. The 
alpha fûnction takes a value in the concrete domain for boolean and produces some- 
thing that is a domaintype lattice. The signature guanmtees that domaintype 
is in faet a type, but that is the only restriction in the signature. This permits the 
definition of arbitmy abstract representations (subject to the semantic constraints 
that cannot be checked by the type system). 

'By bool lattice we mean the lattice representing the concretedomain for boolean vaiues, we do 
not mean a "boolean lattice" as deâned in lattice theory 



The signature ucheats" a bit in the defition of the equal fùnction; equal is 
required to return a bool lattice vahe rather than an abstract domaintype 
rattice value. This choiœ in the interfhce was made purely for convenience in 
the interpreter - there wodd be no semantic difference in haring a domaintype 
ïattice value returned and baving the interpreter apply gamma a f h  equal every 
tirne that equal was applied. The signature a h  requires that there be an output 
routine for the abstract d u e s  (primarily for debugging purposes). 

Notice that the signature does not requin abstract definitions for the normal 
boolean operations such as and, or, not , etc These operations do not need direct 
support in the abstract domain as they are not primitive in the interpreter; they are 
defmed by Scheme code that only relies on conditional expressions and equal over 
boolean values. 

The signature for abstract integer values is somewhat more cornplex due to the 
number of primitive integer operations defined in the system. We wil l  omit the type 
signatures of each operation for clanty 

signature INTBASETYPE = sig 
type domaintype ; 
val alpha : . . . 
val gaxnma : . . . 
val distinct : ... 
val equiv : . ., 
val equal : . , . 
val pwided : ... 
val rwided : . . . 
val narrow : , . . 
val muld : . . . 
val subd : ... 
val addd : ... 
val negd : . . . 
val led : . . . 
val leqd : . , . 
val splitzange : . . . 
val print : . . . 

end; 



In this signature, we require firnctions for the primitive operations, and introduce 
distinct and equiv functions in addition to the equal function, The equai func- 
tion determines whether two domain values represent the same set of potential val- 
ues. The equiv fiinction determlnes whether two domain values are guaranteed to 
represent the same value a t  run-time. Using the integer interval sets, this guarantee 
can o d y  be made when both domain values conskt of the same single integer. Con- 
sider the overlapping intemals, [ 4 .  -51 and [ S .  -61 - we cannot guarantee that 
the actual ru-time value will be 5 in each case, The distinct fiinction determines 
whether two values are guaranteed to mpresent different ru-time values. This con- 
dition can be satisfied for integer interval sets i fwe know that there is no overlap 
in the two sets of intervals. For example, using the integer intervals, the interval 
[ 4 .  - 41  and [5. -63 aredistinct, but [ 4 .  .SI and [ S .  -61 arenot. Thepwidedand 
rwided operations are the widening operations for the domain; the narrow operation 
will be discussed when we discuss "splitting" scopes in Section 6.2. 

The next set of fiinctions represent the abstract versions of each primitive opera- 
tor. Each h c t i o n  takes as arguments and returns abstract domain values. In this 
case, we require support for mdtiplicatio~, subtraction, addition, negation, Jess-than 
comparison and less-thlin-or-equal comparison. Note that we do not support division 
as a primitive operation since we are not supported floating point numbers in the 
prototype. 

The splitxange firnction takes a conditional expression operator and two val- 
ues and retunis an abstract value that represents the "part" of the first value that 
satisfies the conditional. So, using integer interval sets, giving splitzange the 
conditiond"less-thsinnandtheintemalsets{[i..5], [iO..l5]) and {[6..91) 
wodd pmduœ the remit { [ 1. .5 ] ). See Section 6.2 for details on the issues involved 
with splitting values. 

6.1.3 Changing Abstract Domains 

Due to the structure of the system, we have fomd that changing abstract domains 
is a fairly straightfomard exercise. For example, we were able to b d d  a "normal* 
Scheme interpreter in our system simply by creathg a set of abstract domains that 
were identity mappings. The only Merence between the semantics of the resulting 
interpreter and a 'bonnal" semantics is that undehed values are treated as T rather 



SECTION 6.2. SplitTING SCOPES 

6.2 Splitting Scopes 

Recall that in Section 3.5.3 we assumeci the existence of a spWting fûnction. The 
purpose of a splitting b c t i o n  for a partidar domain is to take advantage of value 
constraints that can be S e r r e d  h m  conditional expressions. For example, given an 
expression such as ( i f  (> x 5 ) ( f x )  (g x) ) we would like to take advantage 
of the information that the value of x during the evaluation off must be pater  than 
5 and that the value of x must be less than or equai to 5 during the evaluation of g. 

There are two main issues involved in building a correct set of bindings given a 
conditional and an old set of bindings. First, we muet be able to split an abstract 
value into a %ruen and "fie" partition given some simple comparison involving the 
value. Second, we must be able to merge sets of bindings that are genenited by 
comparison operations joined by bool1ea.n connectives. 

Value partitioning is performed by a combination of abstract domain operations 
and interpreter transformations. Each abstract domain interface contains a sp l i  txange 

function. This fiuiction takes a cornparison operation identification and a pair of ab- 
stnict values and returns an a h c t  value considhg of at least the partition of 
the Grst abstract value that makes the condition tme. For esample, a (stylized) c d  
to splitzange for integer intervals might be l splitcrange 'cm ( 11 . .5 1 ) 3 1 .  
Hopefblly the result of this c d  would be ([1..2]); this is the case in the implemen- 
tatioa Note however, that another valid partition would be {[1..5]) since that range 
contains at least the d u e s  {[1..2]). The value (1) would not be a valid partition as 
it does not contain the value {2). 

The definition of split-range does not require the abstract domain to know any- 
thing about arbitrarg combinations of conditions, the only knowledge required of the 
abstract domain is knowledge about cornparison operations on the abstract values. 
This isn't really an additional "knowiedge" requirement on the abstract domain, but 
is simply an requitement that the interpreter must be able to extract more infor- 
mation than a boolean regarding how the ab~tract  domain evaluates conditions on 
abstract values. Note that it is always safe for splitxange to be implemented as 
an identity operation; such an implementation simply sacrifices overall accvacy 



Dealing with the composition of conditions is the role of the interpreter. When the 
interpreter encounters a condition such as ( 4 x y )  , it uses the simple spl i txange 

function to mnstruct the appropriate set of bindings. For the (c x y )  condition, 
the interpreter needs to build a M e "  scope eontaining two bindings. One of the 
"true" bindings relates x to the result of (splitsange rn c ' ( f ind x )  ( f ind y )  

where ( find x) retums the abstract value for x in the current set of bindings. The 
sefond %rue" binding needs to calculate the binding for y. The interpreter knows 
about the semantics of cornparison operations and so can pedonn a simple trans- 
formation on the condition in order to make use of s p ï i t ~ a n g e  to caldate the 
binding. The correct binding for y is caldated by ( spi i t ~ a n g e  rn > ( f ind y ) 

( f ind x )  1.  The %en bindings are caldateci in a ssmilar way; the interpreter 
inverts the conditional expression and calculates the bindings. The interpreter o p  
timizes the binding caldations such that only cornparisons that mate binding in- 
formation are generated. For example, in the cornparison ( c 5 X) we only caldate 

the %men binding for x usiiig ( spl i tzange > rn ( find x )  5 ) since literal values 
never have bindings. It ïs important to observe the 'kiivision of labour" here -the ab- 
stract domain is only responsible for the semantics of comparisons on abstract values, 
the interpreter is responsible for the semantics of relationships betueen operators. 

The final aspect of performing a generai scope split is to malesce the bindings 
generated h m  a composition of comparisons. For example, in order to correctly 
calculate bindings for the condition ( o r  ( c x y )  ( < x 10 ) ) we need to marge the 
biodings h m  each of the conditions. In Scheme, we need to wony about the and 
and o r  operations b o t  operations are handed by expression transformation). If we 
have an o r  in an expression, the ove& binding for an identifier is simpiy any value 
represented in either binding for the identifier generated by the two subexpressions. 
This caldation is exactly the behaviour of the precise widening operation. Thus 
whenever the interpreter enmuters an o r  during a split, it simpiy evaluates each 
subexpression and then generates bindings for each identifier by precisely widening 
the bindings for the identifier generated by any subexpressi0~1, It may be the case 

that a partidar identifier only occurs in one clause; in such cases no widening occurs 
(or alternativelly, the binding is widening by 1). 

Spiitting a conjunctive expression involves binding an identifier to the set of val- 
ues represented in al l  of the subexpressions. This tgpe of abstract value merging 
has not been used elsewhere; the narrow operation is present in each intedace to 



provide this fiuictionality. The requllement for a narrow operation is that the value 
generated by narrowing tao abstract values contains at least the values that are reg 
resented in both onginal abstract values. Thus, as with other operations, it is safe to 
choose an identity operation for narrow, aLthough we would normally expect narrow 
to be quivalent to intersection for set valued abstract domains. 

We know of no other parüal evaluation aigorithm that attempts to refine abstract 
value bindings aaoss branches of conditional statements. Normally, the reason for 
this is that fixed-height lattiœs are used to represent primitive types and that no 
meaningfid information could be represented by a such a splitting operation. 

6.3 Improving Residuals 

There are a number of issues re1ated to produchg "goodn residuals that are not ad- 
dressed in the formal algorithm presented in Chapter 3. Although these factors do 
not fiindamentally effect the comctness of the residuals, they do have a direct im- 
pact on the applied usefuùiess of the techniques. Many of these factors are related; 
one needs to evaluate aspects of all of them in order to produce highquality residual 
programs. The prototype implementation makes simplistic choices in most cases; the 
particulas choices made will be discussed for each topic. 

There are two concepts that are referenced several times in the following discus- 
sion: the idea of a fiinction &sure and the idea of a continuation. The basic idea of a 
function closure is that a dosure encapsulates a l l  of the dependencies that a function 
has with its environment. For example, if a parti& variable is h e  within a par- 
t i d a r  fiiaction but is defineci by an enclosing fimction, that variable is part of the 
closure of the inner fiuictïon, 

The idea of a continuafion is a bit more unusual. A continuation is a function that 
captures the %est of the amputation". For example, consider the following simple 
expression: 

(lambda (x) (+  4 x ) )  

The continuations form of the expression is as follows: 

(lambda (k x) (k (+ 4 x) 1 )  

In this case, the identifier k is the continuation for the function; when the fiuiction is 
applied, the remainder of the computation is captured by k. 



Continuations make control flow dependencies explicit - if the resdt  of a corn- 
putation is used in a subsequent computation, the subsequent amputation will esist 
as part of the continuation for some evaluation of the b t  computation. 

6.3.1 Memoization 

Recall that memoization was introduced in Section 2.5. The basic idea of memo- 
ization is to create sets of equivalence classes for functions where each equivalence 
class maps between some b c t i o n  dosure and a particular r e s i d d  Given a partic- 
ular function f with a closure c, before paitidy evaluatïng f ,  the algorithm must 
determine if the- is an ePsting residual f' with closure c' that can be used. There 
are two basic issues determining whether f' can and should k chosen. The first is- 
sue is the relationship between the information in the closures c and d. The second 
issue is how much of the information in the closure o f d  was used in determiiiing the 
residual, or in other words, how much useless information there is in c'. 

The normal requinment for choosing to reuse a parti& memoized function, 
f', for a possible specialization off ,  is that the dosure of j' must be identical to the 
closure for f. This d e  is not the only safe choie; our algorithm guarantees that 
given any dosure (environment) below the memoized closure, the result of the mem- 
oized function will be safe to use. This means that we could define the specialization 
rule such that we only speaalize if there is no current specialization with a closure 
above the c m n t  closure. Requiring closure equality means that any difference in 
the closures off and f' disqualifies f' h m  ansideration, even if the Merence in the 
closures does not have any bearing on the result of the specialization. For example, 
consider a functîon like sin. The result of sin(z) is between 1 and -1 independent of 
the value of o. Using closure equality, if sin is specialzed . . with an z value that is 
bounded to the range O to 360 (degrees) and is then speeialized again with a value in 
the range 360 to 720, the first specialïzation would not be reused even though there 
is no diffemnce in the range of potential values. Alternatively, choosing ta not spe- 
cialize when the dosure for f is below the closure for some f' can also be a problem. 
For examp1e. if we enmunter a cal1 to sin with the parameter having the range O to 

90, we would not create a specialization if there was an existing specialization of sin 

for the range O to 360. In general, using the "below" d e ,  we would lose many special- 
ization opportunities if we encounter partially static h c t i o n  calls before W y  static 
function calls. Making this entire issue even more d i fEd t  is that it is not always 



optimal to d d  or inline computations at every opportunity; expanding the code 
through inlining by some additional fàctor does not guarantee faster code and may 
in fàct increase nuuiing ümes due to cache effects, memory utilization, and other 
factors. 

The dosure "equalitf choice and the dosure "below" choiee fonn the boundaries 
of an entire range of rules. For examp1e, we could define some distance metric and 
choose to reuse an exîstîng spedization ifit was within a pdcular distance of the 
current closure. Another alternative would be to dwqys specialize if the new closure 
contains values that have a different value when concretized into the concrete do- 
m a i .  (recall that T represents a l l  values in the conmete domain that are not diredy 
representable in the natural conmete domain). K a  d u e  in the new closure has a dif- 
ferent concrete domain value then there is likely to be some %al" diffemnce that we 
can take advantage of during the specinliaation phase. E'inaUy, we could include the 
set of values that were actually used during the specialization phase as part of the 
memoization. The choice about whether to select a possible residual could then be re- 
stricted to those bindings that actually intluenced the specialization of the memoized 
function. 

Any potential solution for this problem nuis the risk of either over-pcialization 
or over-generalization. OfMine partial evaluation generally resolves the pmblem by 
allowing users to intemene and d i r d y  change the BTA annotations. Unfortunately, 
this appmach becornes an "all-or-nothing" choice; either ail of the effected code will 
be ;nlined or none or it will since BTA annotations don't reflect the idea of Iimited 
inlining. Andersen [71 bnefly disnisses the idea of k-limiteal annotations that allow 
the specializer to restrict recursive inlinings to k le&. Andersen restricts k to 1 in 
his theais and has not investigated ways of automating the choiœ of k. Even 6 t h  
this appmach however, the choice of k is fked on a global basis; i$ seems clear that 
effective partial evaluation should dynamically vary the amount of i . g  during 
specialization. 

Ruf defines a domah of specialization [701 or DOS for a parti& residual to be 
the set of values for which the residual and the original fiiaction have the same be- 
haviom It is important to differentiate this statement h m  a soundness statement; 
this is a broader statement than the requirement that the residual and the original 
program have the same behatnour on the abstract values used to create the resid- 
ual. In general, the domai. of specialization for a residual will be a superset of the 



values used for specialization. Ruf then characterizes optimal re-use as choosing to 

euse a fitnction if the conmete values represented b a particular ahtract value 
for the argument of the new d are a subset of the DOS of the memoized bction 
and if it is not the case that the DOS of the new residual is a subset of the DOS of 
the eristing res idud Using our definition of bdow, this means that the argument 
value is below the comsponding value of the existing residual and that the DOS of 
the new residual is not below the old r e s i d d  The intuition is that the DOS char- 
acterizes the pmprties (or dues) of the abstract argument value that are actudy 

"usedm dunng the specialization. Casting this as a behavioural statement, Rufs o p  
timal re-use statement requires that the new residual bas the same behaviour over 
its set of arguments as the memoized residual. This is somewhat similar in flavour 
to a contravariant typing statement. 

As Ruf observes. an exact DOS is undecidable but can be appmximated. Ruf 
introduœs an additional calculation to estimate the DOS as part of his strategy The 
basic idea of dculating the DOS is to define a seand  evaluation that is performed 
in parde l  with the normal evaluation. At each step the DOS calculation determines 
the most general value that satisfies the current dculation. As caldations use 
more information about a parti& set of values, the DOS is lowered in the lattice. 
Ruf's DOS calculation is eager and as such, can be overly conservative in certain 
instances, For example, if a parameter is involved in any let-bound caldation that 
subsequently becomes dead d e ,  the iet-bound calculation can change the DOS. 

hplementing an equivalent DOS caladation in our sgstem would be reasonably 
straightforward. Essentiallx we would only need to d e h e  DOS values for primitive 
operations within each abstract domain and propagate DOS bindings thtough the 
interpreter. As this would be a minor change to our domain requirements, imple- 
menting the Ruf's algorithm for selecting residuals would be straightforward. 

The DOS approach has much of the same range of choie as the "elosure below" 
choice diseussed earlie~, The aawacy of the DOS approach is directly related to the 
accuracy of the e s h a t e  for the abstract values achially used in the speciaiization. 
The modularity of our domain requirements makes this factor a remonable panune- 
ter in the design of the abstract domain; if fewer residuals are desired, simply return 
more specific values than necessary as the DOS estimates h m  the primitives. 

The prototype system adopts the simple closure e q d t y  strategy This implies 
that we can in fact generate duplicate fhctions within a program residuaL The 



immediate plans are to change the algorithm in two ways The first change wii l  be 
to compare a redting residual to the memoized residuals when a specialization is 
actually performed. If the residuals are eqaivaent then we will not introduce the 
new memoization en- but rather muse the existhg memoization. This means that 
we would aaste the time spent evaluating the hct ion,  but would decrease resulting 
d e  she. The second goal is to implement a domain of specialization technique for 
memoization choices. 

6.3.2 Code Duplication 

The possibility ofcreating dupliate fimction instances is not the only problem related 
to code duplication. In general, inüning residual computatiom can cause computa- 
tions to be duplicated. Consider the following example (modified h m  Jones (461): 

The let binding captures the value of the recursive call and returns the doubled 
value. If this function were blindly d o l d e d  for an &own n, the following fiinction 
would result: 

(define f 
(lambàa (n) 

(if (= n O) 
I 
(+ (f ( -  n 1)) (f ( -  n 1) 1 )  

1 ) )  
In this case, replacing the identifier y with its residual computation is a poor choice; 
the rasulting algorithm requires exponential time compared to the original linear 
time algorithm. 

The basic rule for both an on-line and off-line evaluator is the same: do not permit 
a fwiction cal1 to be duplicated in the same branch of d e .  mline speciahzers typi- 
c d y  adopt a twogtage specialization strategy (Jones [a) to avoid this problem. In 



a two-stage specialization proœss, a static annotation means that a fûnction may be 
d01ded rather than that it definitely wül be specialized. The determination about 
whether to actuaIly d o l d  is made not at BTA tune, but at specialization the .  Bind- 
ings for identifie= are called "duplicable" by Jones if there ensts a path thmugh the 
related expression in which the identifier occurs more than once. The specïalization 
decision is then made by checking whether the duplicable identifiers are constants or 
identifiem. AU nomtrivial bindings &êctively bndiorm annotations to dyncunic for 
that parti& Spaciaiization, 

The on-ine decision is similar in the sense that the determination about dupli- 
cable identifie= must occur and that a pdcu la r  in-Iining decision depends on the 
residual for duplicable identifiers. The main difference io that in the on-line approach 
this fits naturally with the overall evaluation algorithm. The on-line specializer al- 
ready considers changes to annotations, while in the off-line approach this type of 
decision is a fundamental shift in approach and forees the off-line algorithms into 
adopting a partially on-line approach. 

The prototype system impIements conditional inlining and dolding based on 
whether identifiers are duplicable. The analysis consists ofperformhg a count dong 
each path through the expression (an operation that is strictly local ta the body of the 
function or le t-errpression) and determining if each identifier ocam more than once. 
This count is performed in the same way for both let-bound identiûers and formal 
function parameters. When the binding for each identifier takes place (Le. at the 
beginning of a function evaluation and at the beginning of a let statement) the iden- 
tifier is added to a list of unsafe identifie= if it is both duplicable and a non-trivial 
computation. In the prototype implementation, non-trivial computations are a bit 
more general than simply constants or identifiers - the p r o t o w  allows the dupli- 
cation of any expression that does not involve a non-primitive function application or 
a potential side-efféct (see Section 6.3.3). Finallx when an identifier is encoutered, 
if it is not on the list of unsafe identifiers, it is replaced wîth its residual, otheIPPise it 
is not replaced. 

6.3.3 Computations with Side-effects 

Impure computations are a substantid problem in any partiai evaluation algorithm. 
In general, it may be Mcult to determine whether a p a r t i a h  identifier has an 



alias; in k t ,  in languages such as C in which aliases ain be created at  will, exact 
alias analysis is undecidable. There are two basic appmaches that can be taken: first, 
one can restrïct the mode1 so that all aliased store either has known ahas relation- 
ships or is treated as dynamic. This appmach is adopted by Nirbhe and Pugh in their 
partial evaluator for hard mal-time systems (discussed in Section 2.6.3). The second 
main option is to track sets of alias relationships. Sets of alias relationsbips provide 
essentially the same information as a "may-aliasn analysis [53] [ZS]. Andersen 171 
has implemented a simple form of pointer alias anal* in his partial evaluator for 
C. His analysis does not track conditional alias relationships but basically h d s  the 
union of all possible alias for each aliasing variable within functional unïts. Every 
mode1 has problems with handling truiy unknown aliasing relationships - if the set 
of potential aliases becomes unknown, that destroys nearly any further specialization 
since every memorg location must becorne unknown. 

An additional problem is related to the issue of d e  duplication in the previous 
section; it is generally not safe to duplicate any computation that involves a side- 
effect. As mentioned in the previous section, the prototype evaluator handles this 
issue by not duplicating any code that involves an imperative feature- While this is 
a reasonable choice in languages in which the use of imperative features is rare, it 
clearly is not acceptable in languages such as C. 

The final issue relates to merging of run-time state &r conditional expressions. 
Consider the following expression (assume c is dynamick 

(if c 
(begin 

(set! x 5) x ) 

(begin 
(set! x 7 )  x ) 

1 

Although we can replace the two referen~s to x, we m o t  remove the assignment 
statements. Consider the following incorrect residual: 

(if c 5 7 )  

This expression has the same value result as the original expression for all input. It 
is not a correct residual however, since the state of the system afbr this expression 
is not going to match the state of the original expression for all input- The standard 
appmach is to insert "explicators" 1611 in the residual code. Explicators are simply 



assignments that guarantee that the state of each branch matches the abstract state 

at the end of the computatiom In off-liae systems this is a larger issue sina this 
impiies creating a m-tirne assignment based on compile-time d u e s .  This resem- 
bles the partially on-line decisions made for potential code duplications as discussed 
in Section 6-35. Note that in general there may be a large number of assignment 
statements replaœd by a singie erplcator. For example, if there was a ( set ! x 

9 ) following the use of x in the b t  branch of the example, the ( set ! x 9 ) wodd 
remain as the explicator, but the (set ! x 5 )  could be removed entirely 

In off-line systems explicators only need to k added at the end of dynamic con- 
dition& when the value abstractions are not guaranteed to generate the same nui- 

time value. In the pmposed on-line system there is an additional case: if an as- 
signment uses a value for which the concrete domain representation is not a deh i t e  
value, then the nin-time behaviour is unknown and the assignrnent must remain in 
the residual. All other state changes that involve definite values can be removed since 
they are unconditional dong tbat evaluation path. Note that comparable assignment 
statements in an off-line system would also rem* since such statements would nec- 
essarily be annotated as dynamic due to the fact that the compile-time state of the 
variable does not have a single d u e .  The on-line system has an integrated decision 
process rather than the parüally on-line approach used by the off-line approaches. 

hperative features are not the main foeus of our work and as such, the proto- 
type implementation avoids most of these issues by always leaving imperative code 
in residuals. In other words, even if all imperative statements could safely run at 
compile-the, out current system will leave them in the residual. The system wiU 
correctly use values that are created by imperative features, but Pirill not generate 
minimal residuals in d e  with imperative features. Future versions wdi adopt the 
abstract store model and set-based alias analysis; such a model is consistent with the 
overall approach adopted in the abstract domains. 

6.4 Other Language Issues 

The general term a@ raising refers to transformations that increase the number 
of parameters to bctions. In off-line p h a l  evaluation, M t y  mising refers to the 



process of separating the static and dynamic portions of a partially static structured 
type into several parameters. Anty raising has similarities to Launchbury's projec- 
tions based approach that was diseussed in Section 5.22. The static projection of a 
fiinction that takes a partially static structural parameter is parameterized by the 
static portion of the structure while the dynamic projection is parameterized by the 
dynamic portion of the structure. Efféctively, this is raising the overall anty of the 
hct ion even though the arity of each projection may remain the same. 

Arity raising in the traditional off-line sense is not directly applicable in an on- 
line approach as no actual structural decomposition is neœssary. There is however, 
a different view of arity raising that can be usenil in the on-line approach. It is 
masonable to view the closure of a function as an implicit parameter, or in fact, as a 
series of implieit parameters. I f d  functions were %ttenedW such that every closure 
variable was passed in an explicit parameter, this would permit fmer granularity 
decisions regarding the e f f d v e  annotation of the closure. In [601, Mason defiaes a 
continuations based intermediate language that perfoms such a flattening as one 
stage of the compilation process. 

Tbere are two major benefits for performing arity raising by flattening within 
an on-line partial evaluator. First, as already mentioned, such a transformation 
would d o w  the evaluator to make finer-grained decisions regarding the equivalence 
of function memoizations. Second, flattening would more easily d o w  for the identi- 
fication of relationships between bindings within fiinction dosures since these rela- 
tionships would be explicitly present within the call graph. 

The prototype implementation does not pertorm any form of flattening. As noted, 
stnictural flattening provides no benefit to the on-line algorithm wi th  the structural 
domain mode1 presented in Section 5.2. Although closure flattening may provide 
some benefits, this remains as future work, possible by using Mason's flattened in- 
termediate form [60] as the basis. 

6.4.2 Complexity of Semantics 

The conceptual complexity of building a partial evaluation fiamework for a given 
language is strongly related to the conceptual eomplexity and semantic definition of 
the source language. Writing a partial evaluator is more cornplex than writing a 



normal interpreteq as mentioned in Section 6.1.3 a standard semantics interpreter 
is a special case of the partial evaluation h w o r k  that we have defined. 

Consider applying our partial evaluation technique to languages such as C. The 
rnemory model in C is closely related to mal machine memorg layout; there are re- 
puirements on the behaviour of pointer comparisons, the layout of structures, etc 

The semantics of these operations would have to modeled within the interpreter in 
order to correctly calculate the d u e  of expressions. Unfortunately the semantics of 
some operations within C are not completely dehed. For example' ANS1 C [Il re- 
quires that type long be able to represent at least the integer values representable 
by the type int. A compiler coaforms to the standard if it chooses to define the 
two types as structuraUy identical; a Gto-C partial evaluator could only choose to 
t r d o r m  based on the requirements in the standard. If a C-to-C partial evalua- 
tor produced C code based on the assumption that long and int were structurally 
equivalent, the produced C code no longer be ANSI C conformant if the assumption 
was exercised within the residual. 

As diseussed in Section 2.6.2, Andersen's approach to these issues is to produce 
generating extensions (51 [6] and then to have these generating extensions pmduce 
the actual code that would then be mmpiled. Meyer [61] performs a deeper interpre- 
tation but does so in a restricted language wïth a much simpler semantics 

Although both off-lure and on-line algonthms must implement a safe approxi- 
mation to language semantics, the requirement for off-line evaluators is somewhat 
weaker than for on-line algorithms. Off-line BTA is a fîxed-point caldation that de- 
pends only on a simple abstract semantics of the source language involving siatic and 
dynamic a~ota t ions .  Although in reaüty, accurate off-line BTA relies on a reason- 
able model for alias rehtionships, such an approach can avoid implementing a safe 
abstract semantics for the entire language. On-line evaluatonr must implement safe 
semantics for the entire language. Although neither off-line nor on-liae appmaches 
need to be "cornplate" in the sense that any aspect can be treated as unknown and 
will cause a safs appmsimation, the o v e d  effect of choosing &own can be to 
greatly reduce opportunities for specialization. 



6.4.3 Separate Compilation 

Partial evaiuators generally assume that the e n t h  program is available at partial 
evaluation time. This assumption relates to both binding-time analysis issues and 
speeialization. Atthoug. for convenienœ the diseussion wiU deal with the issues s e p  
arately (adopting an off-line bias), the concems apply equally to o n h e  systems. 

k t  consider binding-time anal@. The basic goal of binding-time analysis is 
to safiely annotate program vafiables and fùnction callo as king either static or dy- 

namic. In terms of variables, st& means that all possible values for the variable are 
available at compile-the. K a  language does not support any form of sideeffects, the 
binding time analysis can e d y  be performed separately as long as the BTA assumes 
that any value returning h m  an separate module is dynamic A more accurate es- 
timate can be made by adopting Andersen's approach and introducing binding-time 
signatzues [l for each module. Such signatures provide other modules with infor- 
mation about what annotations have been made. Unfortunatelg, in the presence of 
mutuaily recursive modules, such an approximation is going to be extremely con- 
servative unless the m u t u d g  recursive modules are analyzed at the same tirne or 
pmvide explicit symbolic information regardhg the extemal dependencies if a dy- 
namic annotation is made solely due to an extemal module. Anderseds approach 
follows the independent analysis route, assuming that all extemal module values 
are dynamie Andersen did not propose any form of symbolic dependency analysis. 
No one else has attempted to address languages with explicit modules and completely 
separate binding-time analysis. 

In addition to the relatively simple problem of dealing with a pure language, in 
general a system may need to handle languages that permit cross module sideeffects. 
As one extreme, consider C "modules". A C program is permitteci to cause side-effects 
in m y  extemally visible variable. In addition, if any of these egtemally visible vari- 
ables are pointer types, then without a fhirly accurate value analysis, a BTA would 
be forced to assume that any variable that had its address captured could becorne 
dynamic af'ter any function c d  outside the current compilation unit. Ever achiev- 
ing teasonable binding-time results would be iiniiLely in such a model. Languages 
such as Ada [BO] are somewhat easier to deal with since the package interfaces con- 
tain more definitive information and reference coercions are much more tightly con- 
strained than in C. Even with the better intefice however, a BTA would be forced to 
treat as dynamic any input-output parameters or exported non-constant variables. 



The second aspect within partial evaluation, name1y specialization, is even more 
problematic in such envimnments. By definition, a 8peciaIization must be able to 
determine the actual values for variables that are static within the evaluation. In 
order to determine static values that result h m  interactions with extemal modules, 
the specializer will have to be able to perform evaluations of the extemal module. 
I t  does not seem possible to reeolve this issue without either abandoning separate 
compilation or king satisfied with purely local specializations. it is likely that to be 
highlS effective, the application of partial evaluation techniques in general environ- 
ments would need to occur as pst-linl optirnizations. Early Illilong as suggested by 
Mason [6û] may help to alleviate such problems. 

Exceptions pennit m-time bmching decisions to be made. h m  the perspective 
of a partial evaluator, exceptions have aimilm characteristics to both continuations 
and ht-class hctions. Raising an exception requires that the current evaluation 
be terminateci in favour of an expression that performs some recovery action. Raishg 
an exception is similar to calling an alternate continuation that includes the recovery 
evaluation before continuhg the computation a t  the appropriate point. Detellluaing 
the effective binding-time annotations when exceptions can occur involves consider- 
ing all possible control flow paths h m  a given point raising the exception to any 
point that might catch the exception. This is similar to determining the set of cal1 
sites for a first-class function and generally requires some amount of value analysis 
in order to presenre accuracy. 

Fortunate1~ most exception handlers are %eu-behaved" in the sense that they 
either restore the state of (part of') the computation, provide a default value so that 
computation can presume, or terminate the amputation completely In any of those 
cases, the exception is unlikely to change the state of annotations, so consemative ap- 
proximations should be reasonable. Although various people have investigate higber- 
order fiinctions, there has been no direet work on supporting exceptions. 

A related language feahve is cdl-wüh-cument-continuation. Cd-with-current- 
continuation, or callcc, allows a programmer to expliatly capture the continuation 
of a parüdar program point and to pass that continuation as a parameter to a 
subsequent fimction. Calling that continuation is similar to raising an exception: the 



execution continues at the point imnrediately foilowing the site of the original callcc. 

Putely compile-time language features generally do not impact the partial evaluation 
proœss. The basic reason is that partiel evaluation W o r m s  nin-time operations 
into compüetime operations; if an operation has only compile-the semantics, there 
is little effect on the partial evaluato~, h p l e s  of such features are static type 

checlo'ng, generics, and ad hoc poiymorphism (overloading). 

Partial evaluators g e n e d y  a s m e  that any static typing issues have been re- 
solved prior to partial evaluation (i.e. that the program is valid). Static types then 
only concern a partial evaluator as a meehanism for providing the evaluator with 
additional constraints or annotations that can be applied during the evaluation pro- 
cess. For example, the partial evduator can take advantage of the fa& that identifiers 
that define constant d u e s  will never change annotations after being created since 
the language guarantees that the values cannot be modified after creation. In fact, in 
languages that permit only compile-time values for constants, constants can always 
be treated as static. 

A generic [801 or template [791 mutine is a code fragment that is parameterized 
by type and/or value information. Conceptu& instantiating a generic with par- 
tidar information mates  an instance of the related code suitable for use with the 
given type andor values. The overd effect of generic instantiation can be similar to 
partial evaluation - incorporating speeific information into more general code and 
producing an optimized version that takes advantage of the partidar static infor- 
mation* In reaüty, implementations either simply Ubox" parameters and use a single 
un-specialized version of the code or simply duplicate the code in the same fashion as 
a macro expansion. Partial evaluation fits naturally into this hmework by acwpt- 
ing the instantiated generics (either the sharing code or expanded form) and applying 
the normal evaluation process. 

Compile-the overloading is similar to generics as far as partial evaluation is 
concerned; partial evaluation assumes that the resolution has aiready succeeded and 
that a l l  that remains is the normal partial evaluation proœss. The only exception 
to this assumption is when languages require run-time overloading resolution; such 



models are effectively the same as limited obect onented models as was discussed in 
Section 2.6.1. 

6.4.6 Applying Heuristics 

Heuristics have long had a major role in real eompilers. These assumptions are 
realized in many ways: peephole optimizations, Ioop unrolling, branch prediction, 
size/spaœ tradeoffi, register allocation, instruction scheduling, and so on. Each of 
these optimization techniques have a solid basis in real performance issues and have 
g e n e d y  been studied ezttensively. As a simple example, new architectures may be 
tested in an exhaustive manner to fînd code sequences that have the same effect of 
other d e  sequences (even if the designers of the architecture did not foresee such 
an equivaience) in order to impmve peephole optimization. 

Partial evaluators bave traditiody ignored these issues and f m s e d  on traas- 
formations that are set in a more formal semantic framework There are however, 
potential opportunities that should be explored. For example, one interesting method 
for mmbinirig register allocation and instruction scheduling is code coagulation [49]. 
The basic idea is that the d e  %t-spots" should be compiled independenty and be 
independently given fkee choice of registers. At each point in the code production, the 
next %ot-spot" is chosen; when these locations meet, any necessary register trans- 
fers are introduced. Adopting this approach can reduœ the number of register spills 
requVed within the most hquently executed code, thus impmving overall perfor- 
mance. 

On-lina partiai evaluation may be a remonable method for estimating code "hot- 
spots" and perfonning code coagulation. On-line partial evaluators follow the inter- 
pretive flow ofeontrol in the source program and pmduce residual code aAer evaluat- 
ing each expression. Residuals for code that is deepest in the evaluation is normdy 
encountered earlier in the evaluation process so peiforming register allocation dur- 
ing partial evaluation may be a masonable approximation of the code coagulation a p  
pmach. Altematively, partial evaluation couid provide "expected profilen information 
for use during code coagulation. One area for M e r  study would be to investigate 
the predictive power of such estimates when compared with real execution profdes. 



Chapter 7 

Conclusions and Future Work 

This thesis has presented a new algorithm for on-lùie partial evaluation. The separa- 
tion and characterization of general abstmct domains is an important impmvement 
in that it allows domain design to foeus on the abstract information that is desired 
rather than on the evaluation algorithm. The algorithm itself has b e n  p m n  to ter- 
minate and to generate sound solutions based solely on the general characteristics of 
the abstract domains used by the algorithm. A key impmvement in our approach is 
using both precise and relaxed operations when manipulating abstract values. Com- 
parable systems cornpute all collections of abstract values using a single approach 
- least-upper bounds in 6inite lattices. Our approach presemes termination while 
allowing substantial impmements in the accuracy of the analysis. W e  have care- 
M y  defined the termination and souz~dness characteristics for the on-line partial 
evaluator with respect to the standard semantics. Charactexizing termination and 
soundness as relationships between the environment during partial evaluation and 
environments under the standard semantics provides an intuitive basis for reason- 
ing about the residuals. We believe that such characterizations wilI be critical to the 
application of partial evaluation techniques in a wider cuntext. 

The abstract domains presented in Chapter 5 capture more static information 
than the simplet lattices used in other approaches. At the same time, these domains 
retain reasonable convergence properties. We have shown that these partidar ab- 
stract domains sa- the forma1 requirements for domains. This modular approach 



to pmving algorithm properties is usehl for reducing the work hvolved in devel- 
opïng the proofk without sadciag confidence in the results. Although it has not 
been discussed throughout the thesis, the modular design also allows the domains to 
be designed with little concem for the actual language king interpreted. Although 
some language specific domains might be neœssary, mmmon a b c t  domains such 
as integers, booleans, etc,  should be reusable betwsen implementations of the our 
algorithm for Merent source languages. 

W e  have built a basic proof of concept prototype. Though the pmtotype made 
simplistic choies regarding many of the issues related ta residual production, it has 
demonstrated the viabikty of the nnnlysis phases and the ease of changing abstract 
domains, 

This thesis has focussed primarïly on the theoretical aspects of the proposed frame- 
work One of the main directions for ftrther work is to work towards a h e w o r k  
for the "applied" aspects of on-line partial evaluation. In partidar, characteriza- 
tions need to be developed for profitable d e  expansions thtough the use of either 
estimates of d e  behaviour or limited p r o f h g  information. It would be partidar1y 
interesting to investigate the amount of profilhg needed to "informm the abstract 
analysis about suBiCient program characteristics to allow for good specialization de- 
CisionS. 

There are three major areas of fiiture work. The f h t  area is in improvements to 
the algorithm and the models used for abstract domains. The second area of fiiture 
work is in applying other a h &  models and chamcterizing the types of information 
needed to apply these modeis. The third major area is in direct applications of these 
techniques to solving traditional compiler problems and in discovering other types 

of usefid information. In partidar, using these appmaches to characterize t y p a  
programs could be usehl in determinhg profitable avenues for M e r  optimization 
strategies. The following sections bnefly summarize fbture directions 



hprovemente to the OnIline Algorithm 

There are three changes to the presented algorithm that need M e r  study The 
Grst two changes are with respect to the d parameter in the algorithm. R e d  that 
the intuitive meanhg of the d parameter is that it reflects computations that are 
potenWy divergent. Curre!ntly, the algorithm is verp conservative with respect to 
potentially divergent computations; as soon as a dynamic conditional is encountered, 
dl derived computations are assumed to be potentially divergent. This assumption is 
oRen ovedg conservative. In parti&, when we discover additional results that are 
not in c ( k .  e i d ) ,  we currently re-evduate the function application with the expanded 
6. In order to impmve accuracy, we can actually perform the re-evaluation with V = 
f i e "  rather than "d = me*.  Essentially this change is adding a hypothesis that 
the expanded will not lead to divergence. with the expanded E, a conditional 
turns out to be dynamic, we simply regress to the consemative case and could further 
-and 6 and 6. 

A related change to the o v e d  aigorithm that we intend to investigate involves 
changing d h m  a simple boolean into a vector of booleans with one flag for each 
bction.  Consider a computation such as the foilowins 

(if x (fact 5 )  0 )  

where x is unlaiown. Under the current strategy, the evaluation of ( f ac t 5 ) occurs 
with d = true. If the integer domain converges rapidlh as does our intend domain, 
the result of this computation is the intemal [O..oo] rather than the accurate result 
{O, 120). The reason for the rather p r  estimate is that we assume that the subex- 
pression ( fact 5 ) could be divergent. However, in realie, such chctiom are only 
divergent if there is a dynamic conditional in the derivation between the outennost 
evaluation of f ac t and a denved evaluation of f ac t. 

The third change that we plan to investigate is related to how we pmduce values 
when we h d  fixed-points. Currently, when we realize that our latest result does not 
extend (, we pmduce that result immediately Again, this is a faKly conservative 
approximation technique. The basic intuition is that we expand our estimate until 
we pass the ideal result; however, in the current algorithm we then simply retum 
the mmputed overestimate. It may be possible to =fine our eatimate and, in effect, 



reduœ the size of ou .  estimate and try to get doser to the ideal rssult. One possible 
approach for reducing the "sizen of the estimate is to increase the accuracy of the 
formal parameters to fiinctions. The pmposed change is to pmduce the resuit of 

as the result in line 3.15(11) when our latest result estimate does not -and c. Cur- 
rently the algorithm simply produces ea. The ea estimate is likely to be a substantial 
overestimate of the actual result however, since the value bound to x during the pro- 
duction of eœ includes dl of the values in 8'. However, since the new result estimate 
is subsumed by [ and at this point we know that the value of ey has been caldated 
with respect to c, we should be able to improve our result estimate by using only the 
er portion of F to h d  the o v e d  result. 

AU three of the above changes were motivated by properties of the p m &  pre- 
sented for the cumnt algorithm. As such, we are fairly confident that all of these 
changes would preserve the correctness and termination of the algorithm. We do not, 
however, know which of the changes would be profitable in terms of the tradeoff be- 
tween inmasing the time for the andgsis versus the expected inmases in accuracy. 
In order to M y  explore these aspects of such changes. we need to move beyond the 
nirrent prototype implementation into a more fUly developed system. As such, this 
rem* as fbture work 

The 0th- major set of changes needed in the current implementation is to bring 
the memoization and residual production into line with approaches that have fo- 
cussed on those aspects. This may be incorporated into the current implementation 
or may involve replaeing the analysis aspects of some other system such as FUSE 
with our algorithm. It is not dear which of these approaches will be most viable. 

Other Abstract Domains 

The representation of information withîn abstract domains has not received much 
attention latelx particularly with respect to abstract struchved domains. Most cur- 
rent appmaches use some fom of structural decomposition; our approach is the only 
exception. We would like to continue to explore aspects of representing structural in- 
formation. One possibility is to d o w  a mix of normal structural d u e s  and fuactions 
that are sublist generators. This could, for example, allow us to append a single value 



onto the end of a list of unlniown length and retain information about that value. No 
current system models such Lists. 

Another aspect to consider is modeling values based on some sort of spedication 
language. Y for example, a par t idar  portion of code was origindy specified in a 
specification language such as L d  or VDM, it might be usenil to consider whether 
those specifications could be used for reasoning about what ttansformations should 
k safe to perform. There are substantial reliability issues iavolved in following this 
mute. Arbitrary reasoning about the code and specincation is not a viable approach; 
it is not dear whether a code transformation system should be permitted to rely on 
specifications during transformation rather than solely relying on user annotations 
and language semantics. 

7.2.2 Extending the Models 

Higher Order Functions 

This work has not addressed hïghet order functions. Higher order fiuictions are nor- 
m d y  addressed by a combination of consemative control flow analysis and a tram- 
formation into a continuations based language. Genedg,  the number of fiinctions 
in a pmgram is relatively small so an on-line appmach that performs an inmemen- 
ta1 control flow anslysis by collecting sets of potential fiinctions bound to partidar 
identifie= may be a reasonable approach. 

There are simple approaches to h a n h g  higher order funciions within an on- 
line partial evaluator. Since we have assumed that there are a hite number of 
fiuictions, we can form a complete lattice fkom the powerset of functions and use 
simple set union as our widening operators. This approach is completely accurate, 
but could potentially be computationally very expensive since e d  possible h c t i o n  
would have to be evaluated at every application of a higher order fiinction. 

Extending the model ta include first class functions removes the finîteness as- 
sumption. In such cases, it is much less clear how in construct any reasonable and 
non-trivial abstract model. Ideallg, we would lilce to have a model that could reason 
about the types of hctions that are king built. This may be possible in some very 
restricted situations, but does not seem to be likely in general. 



Embedding Other Abstract ModeIs 

The abstract domains that we have proposed are biased towards reasoning about 
%duesn rather than "relationshipsn. One interesting avenue for fiiture exploration 
is the possibility ofusing other types of formal analysis within the abstract domains. 
An example of such a forma1 analysis is constraint anaiysis. Adopting constra.int 
anal* techniques as instances of abstract domain models sesms to pose some difi% 
cuity, ki the -nt approach, the intefice to the domains is relatively simple and 
is based solely on d u e s ;  an abstract domain needs to know vew little about the lm- 
guage being interpreted. In order to embed constraint rinalysis, relationships within 
the source would have to be transmitted to the domains. Doing this in a language in- 
dependent mannes seems somewhat problematic, although some of the recent work 
in reasoning about arbitraIy inductive structures is promising. 

The integer list domain that we introduced incorporates a concept of "direction". 
Relaxed widening operations for integers are not asbative since the widenùig op- 
eration captures the direction of growth in the domain. It is certainly possible to 

expliatly extend the number of directions to include, for example, the even or odd 
numbers as a direction, the Fibonacci numbers as a direction, and so on. It would be 
interesthg to evaluate how many relatiomhips in mal programs could be expressed 
fiom a small set of basic relationships. Such a study could determine whether fdly 
gened reasoning was necessarg for most optimization situations. 

Solving Traditional" Problems 

Some traditional compilation issues such as register allocation, instruction schedul- 
hg, control and data flow analysis, and low-level optimizations have been bnefly 
mentioned in this thesis. One of the long term goals of developing the kamework 
for on-line partial evaluation is to express many of these optimizations and analy- 
ses using a consistent method. Such a recastiag of techniques would be valuable to 
regularize the discussion of the techniques as well as espressing the techniques in a 
moduiar way This could help in darifging the dependencies between the techniques 

and reducing surprising interactions between optimization choiœs. 



Every parfial evaluatot builds modeis of program behaviour; these models form the 
basis of deeiding on annotations and on how to speeialize the program. Unfortunately, 
verp little empmcal data is available to use when deciding what types of models are 
likely to express mal program behavio- For example, in real C++ programs, how 
often is multiple inheritance used? What is the average size of a record in Ada? 
How oRen are methods overridden in Modula-3? Partidtvly in languages in which 
abstractions are costlp, there is little on which to base partidar optimization choices. 
There are exceptions of course; the high penomanee Fortran community has a fairly 
clear idea about the nature of such pmgrarns, but that program domain is fairly 
small. 

Partial evaluation is not a panaœa, nor can it stand alone. However, given the 
general movement towards higher level laquages, we believe that partial evaluation 
can provide valuable models for program p on nation 



Appendix A 

Lattices 

In this appendix, we briefly review some notation and the basics of lattice theory; for 
a complete devdopment, we would recommend the introductory book by Davey and 
Priestley [30]. 

A lattice is a fonnal mode1 for describing the relationships between elements in a 
set. A lattice is a special case of a partial order* 

Deni Al (Partial Order) A partial order < S, < > is a set S and u 
relation. 4 . on S such that fbr z, y, z E S. the 6 relation isr 

t r d t i v ~ z ~ y a n d y < z ~ z ~ z .  

antieymmetric z < y und y ,i z 2 = y. 

reflesive 2 0 2. 

E x  < y we may Say that z is below y. Note that it may be the aise that < does 
not hold at al l  between two arbitrary elements of S. In other words it may be the 
case that for some 2, y E S, z # y and y  # z. In such a case we say that z and y are 
incompamble, denoted as 21 1 y. 

-- - - 

Dehi A.2 (Down-set) GWen a partial order < S, < > and an element 
s E S. the down-set of s, denoted b, is a set D s u d  that for dl sr E S. if 
sr g s t h  sr E D. 



Lower bounds CB C Dl 
(il (ü) Greatest lower bound 

No Greatest lower bound 

Figure Al: Lower bounds 

We can extend the meaning of a down-set by defining the down-set of a subset of 
S to be the union of the down-sets of the elements in the subset. More formdv, given 
a partial order < S, < > and S' C S then 

It is useful to be able to talk about various bounds or limitiag values of a subset 
of some partial ordar < S, < >. Assume that S' is a subset of S for some partial order 
<S, =$ >. 

- - 

Defn A 3  (Lower B o 4  A lower bound for S' is an element y E S 
such that Vx E S', y Z$ 2. r 

Note that the lower bound of a subset of S does not have to be a member of the 
subset, it is only required to be a member of S. 

Defn AA (Greatest m e r  Bound) nSt, the greatest lower bound for 
S' is a lower bound, y, of S' such that Vz E { lower bounds of S'}, z < y. 

We will &O tefer to the greatest lower bound of a set containing elements 
2 and y as the meet of z and y, denoted as ZAY. 



Upper bounds IB C D) 
(U, hast upper bound (Al 

(i) No least upper bound 

Figure A.2: Upper Bounds 

It may be the case that a set does not have a lower bound; if there are two incom- 
parable values which constitute the set then there would be no value comparable to 
(and below) every element of the set. 

There are symmetric dehitions for "upper bounds": 

' Defn A 5  (Upper Bo~nd) An upper bound for Sr is an dement y E S 
such thut VZ E S,Z $3. 

Deda 116 (Least Upper Botand) US'# the le& upper bound fir S is 
an upper b o ~ n d ~  y, of S' such thut Vz '+ { upper bounds of S}, y < z. We 
will also refer to the least upper bound of  a set containing elernents t and 
y as the join of 2 and y, denoted as 2 ~ y .  

As with lower bounds, an upper bound may not ex&. Obviously it is the case that 
if no upper bound easts, no le& upper bound exiets. 

Defn A7 (AscenrZinp Chain) An ascending chain of elements in S is a 
sequence 21, x z , .  . . such that 21 < 2 2  =$ . - .. 



Figure k3: Integer Lattice 

An ascending chain may be infinite. We may talk about an upper bound or least 
upper bound for a chah, as weU as for a set. As with a set, an ascending chah may 
not have a least upper bound (although any mite ascending chah will have a least 
upper bound). 

1 Deni A8 (Lattice) A lattice < S, 6 > is a partid order such thot 

Defn AS (CompIete Lattice) A complete lattice < S1 6 > is a 
2a-e such that V S  c S : US' and nSf e t .  

Figure A3 shows a httice for singleton integer sets with the subset relation. Each 
'set" (a single integer value) is incomparable to any other singleton set (since no 
element L a subset of another), 1 is considered as part of any set, and T is considered 
to indude every singleton set. 



This is a fàirly simple model; the intuitive meaning of L is "empty set* and the 
intuitive meiining of T is "the set of ail integers". 

We will often want to consider fiuictions h m  S + S. In particuIar we will be 
concemed with interpreting recutsive fûnctiom which conceptually move thmugh 
the lattice. Fuctions within S -+ S will be required to be monotonie and continuous. 

Monotonic fiuictiom preserve ordeiirig; if an elernent, z, is below another elernent, 
y, then the mapping of 2 wi l l  be below the mapping of y. 

Dehi Al0 (Monotonic FPnction) A finction, f, on a lattiee S is 
monotonic if Vz, y E S, 2 =$ y * f (2) < f (y ) .  

Continuous functions preserve least upper bounds; applying a continuous func- 
tion, f ,  to the te& upper bound of a chain results in the same element as taking the 

least upper bound of the chah formed by applying f to each element in the original 
Chain. 

Dehi A11 (Continuous Fmaction) A finction, f, on a lattice S is 
continuow il: given an ascending dain  X = 21 < za < . . .. f (uX) = 

ulf  (X)). 

Given a contùiuous, monotonic, and total hction h m  S -t S. any mapping of 
the fiinction is guaranteed to stay within the lattice; we don't need to worry about 
"falling o f f  the lattice. In any lattice (S, 4 ), given a continuous, monotonic, and 
total function f : S -t S, f will have a fixed point. 

Defn Al2 (Fixed Point) A f i14 point, u, f8r a fitnction f is a value 
such that KU) = u. 

Given ouf lattice definition, f will also have a least h e d  point1, which wül be the 
least upper bound of the aseending dain 1 =$ f (1) =$ f (f (1)) < - . - . 
'As the details of the proof are not important for our purposeq we will defér to Aiiisoa 141 for the 

P ~ E  



Appendix B 

Concise Definitions 

B.l The Standard Semantics Interpreter 

Constants 

N[const] ,g = const 

Conditions 

N[(if c el ez)]e= 
let cf = N[c]e 

N[erle ifë =tme 

N[e,le i f d  =faise 

in 
e ' 

end 



Primitive operators 

Function Application 

N[(Xx.e) elle = 

let 

4 = N[el]e 
in 

NCel e[x * 41 
end 

B.2 The Online Abstract Interpreter 

B.2.1 Constants 

P[const]p &Cd =< a(const), const > 



in 

< ea,eR > 

end 



Primitive operators 

in 

< va, JI > 

end 

hinction Application 

in 

< ea, vR > 
end 



Dgnamic Function Application 

7(eQ) if7(eU) $? €TV 1) 

( Ax. eR ef ) otherwise 

else 

P [ ( k .  e)el]p b<'true 

end 
end 
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