
A Frarnework for On-line Partial Evaluation

b~

Gordon J. Vreugdenhil

A thesis
presented to the University of Waterloo

in fiilfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Cornputer Science

Waterloo, Ontario, Canada, 1996

National Library Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibiiographic Senrices senrices bibliographiques
395 Wellington Street 395. rue Weaïngton
OttawaON K l A W -ON KIAûN4
canada Canada

The author bas granîed a non-
exclusive licence allowing the
National Liirary of Canada to
reproduce, loan, distniute or sel1
copies of mer thesis by any means
and in any form or fomiat, making
this thesis available to interestecl
persons.

The author retains ownership of the
copyright in M e r thesis. Neither
the thesis nor substantial extracts
fbm it may be printed or otherwise
reproduced with the author's
permission.

L'auteur a accordé une licence non
exclusive pemettant à la
Bibliothèque naiiode du Canada de
reproduire, prêter, distn"buer ou
vendte des copies de sa thèse de
qyelque manière et sous qyelque
forme que ce soit pour mettre des
exemplaires de cette thèse à la
disposition des personnes intéressées.

L'auteur cooserve la propriété du
droit d'auteur qui protège sa thèse. Ni
la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou
autrement reproduits sans son
auîorisation.

The Universi* of Waterloo reqyires the signatures of alI persons using or photo-
copying this thesis. Please gign below, and give address and date.

The term p u f i l evaluafion describes a class of program transformation techniques. The
heart of these techniques is to ttansform progranus by incorporating portions of known run-
time data into the program The resulting program has been "partiallf' evaluated - some of
the actions of the program can be performed at compiletirne due to the known data. There
are two general classes of known data that can be used by such a process. The first class
is composed of data that is implicit in the production of the program; examples include tex-
hial constants, m a m expanded values, tgpe tag values, method match tables, etc. Some
amount of such data occurs fhquently in higb-level programs. The second category is com-
posed of data that is explicitly provided at compile t h e . Such data can be used to create
customized versions of very general programs such as rap-tracing and numerical modeling
systems.

In this thesis we propose a formal fiamework for an on-line partial evaluation system.
The underlying model for values in the partial evaluator is not restricted to hite-height lat-
tices; the termination of the evaluator depends on the convergence of operations, rather than
on a restncted model for values in the system, The proposed b e w o r k ciearïy separates
the partial evaluation algorithm h m the abstract domains used for representing informa-
tion duriag the evaluation, allowing a wide variew of evaluations to be effected by the same
core algorithm. The partial evaluation algorithm that is proposed as part of the framework
is a polyvariant on-he algorithm that makes effective use of the static information present
in program source while preserving soundness and termination. The thesis presents m e -
ful proofs of termination and çoundness based on &aracte.rizations of behaviour under the
natual semantics. The key to the algorithm is recognizing when exact analpis is safe with
regards to termination and when a more consemative approximation is needed.

The actual on-line algorithm depends only on the properties of the abs-ct domains,
not on parti& choices of abstraction. The abstract domains allow the partial evaluation
algorithm to take advantage of d e computations whenever possible. The o v d algorithm
we propose compares favourably to other partial evaluation systems in its ability to capture
information present in the program, and the ability of the system to execute without any
human intervention 0 t h than an indication of how much the system is pennitted to inuease
the size of resulting program. The ability of a general sgstem to generate teasonable results
without h u m intervention is a key advantage that is a prerequisite for having this type of
technology applied in real systems.

Acknowledgements

As with any Ph9. student, 1 have had the opportunity over the last number of years
to interact wi th many outstanding people. It is only a small rneasure of my appreci-
ation to acknowledge some of these people here.

Fîrst of all, 1 wish to acknowledge the invaluable assistance of my supervisor,
Gord Cormack Gord supeririaed both m y Masters thesis and mg Ph.D. work so we
ended up worlring together for eight years. His insights about many aspects of com-
puter science helped to keep my work in focus. Partidarly in the last year of work
on my PhB. thesis, Gord spent substantial amounts of thne working through proofs
and helping to develop and improve them.

1 would like tu thaPk Dave Mason and Glenn Paulley, fellow Ph.D. students, for
the many great discussions over the last number of yeani. Dave and Glenn have been
not only sounding boards, but good fkiends who made the time spent at Waterloo
enjoyable. 1 also want to express my appreciation for the discussions with other
members, past and prssent, of the Programming Languages Group at Waterloo. In
partidar, 1 would like to thank Charlie Clarke, Dennis Vadura, Dominic Duggan,
and Peter Buhr,

1 would like to give a special note of thanks to the other rnembers of rny defense
cornmittee, Don Cowan, Rudy Seviora, and my Bxternal examiner, Jïm Cordy. Their
insights and eomments helped to improve the darity and precision of the thesis.

There are many other members of the Cornputer Science Department at Waterloo
that provided encouragement during the pmcess. In p8TticuIa.q the support provided
by Byron Weber Becker, Naomi Nishimura, Prabldcar Ragde, and Grant Weddeil
was deeply appreciated. Of course, 1 can't forget the often taken-for-granted support
staff, especially Wendy Rush who helped me to stay sane at various times.

Finallx 1 want to acknowledge the support and love that my wife, Janet, provided
throughout the years of studp. Her patience and support enmwaged me and made it
possible to stay focus8ed on my work during times of nustration.

Contents

1 Introduction 1

. 1.1 Goals and Directions 1

. 1.2 Cornpilem and hterpreters 3

. 1.3 ûptimizationand lnterpretation 5

. 1.4 The Essentials of Abstract Interpretation 7

. 1.4.1 A Simple Example 8

. 1.5 Formalizing Abstmct Relationships 12

2 Partial Evalmtion and Symbolic Execution 16

. 2.1 The Miz Equation 17

. 2.2 TheFutamuraPtojections 17

. 2.3 General Concepts of Partial Evaluation 19

. 2.3.1 Speciaüzation 19

. 2.3.2 Binding-Time Analpis 21

. 2.3.3 Types of Partial Evaluators 22

. 2.3.4 Poly~ariant and Monovariant BTA 23

. 2.3.5 =line and On-line Approaches 26

. 2.4 Other Issues 28

. 2.4.1 Higher-Order Languages 28

. 2.4.2 Languages with Imperative Features 29

. 2.4.3 Termination 31

. 2.5 Residual Code and SpeQalization 34

. 2.6 Applications of Partial Evaluation and Specialization 36

. 2.6.1 Reducing Costs of Polymorphism 36

. 2.6.2 Traditional Language Compilation 39

2.6.3 ûther Applications . 43

3 Generalized On-line Partial Evaltaation 47

. 3.1 Domains for On-Line PE 48

. 3.1.1 Domain Approximations 49

. 3.1.2 Issues for Structured Domains 52

. 3.2 Impmving Domain Appmsimations 57

. 3.3 Domains and Widening Operators 58

. 3.3.1 Domai n Requirements 59

. 3.3.2 The Widening Operators 61

. 3.3.3 ûther Requirements 64

. 3.4 The Language and Standard Semantics 65

. 3.5 The Online Algonthm 69

. 3.5.1 Constants 69

. 3.5.2 Identifiers 70

. 3.5.3 Conditions 70

. 3.5.4 Function Properties 74

3.5.5 An Example of the Algorith . 79

4 halymis of the On-Iine Algorithm 82

. 4.1 Derivations .. 82

. 4.2 Soundnessand'i'ermination 83

. 4.3 CorrectnessofResidiials .. 96

. 4.4 On the Efficiency of On-line Evaluation 99

. 4.5 ParameteI.izing Partial Evaluation 102

. 4.6 Summary of the On-he Framework -103

5 D o m Implementations 105

. 5.1 Lnteger Intemal Domains -105

. 5.1.1 Definition of Integer Interval Domains 105

. 5.1.2 Widening Operatms for hteger Intervals 110

. 5.1.3 A Larger Ensimple using the Integer Domain 117

. 5.2 Structured Domainfi 120

. 5.2.1 Analpis of the Abstract Structural Domain 125

5.2.2 On the Expressiveness of the List Abstract Domaia 130

6 Implementation Issues 134

. 6.1 Design Overview 134

. 6.1.1 The Language 134

. 6.1.2 Structural Decomposition -135

. 6.1.3 Changing Abertract Domaiiis 139

. 6.2 Splitting Scopes 140

. 6.3 Impmving Residuals -142

. 6.3.1 Memoization -143

. 6.3.2 Code Duplication 146

6.3.3 Computations with Side-effe . 147

. 6.4 ûther Language Issues 149

. 6.4.1 ArityRaising -149

. 6.4.2 Complexity of Semantics -150

. 6.4.3 Separate Compilation 152

. 6.4.4 Exceptions 153

. 6.4.5 Compile-the features 154

. 6.4.6 Applying Heuristics 155

7 Conclusious and Future Wotk 156

. 7.1 What's New? 156

. 7.2 What's Next? -157

. 7.2.1 Foundations 158

. 7.2.2 Extendiag the ModeIs -160

. 7.2.3 Applîed Pmblems -161

B Concise Defiaitions 168

. B.1 The Standard Semantics Interpreter 168

. B.2 The Online Abstract Interpreter 169

. B.2.1 Constants .. 169

. B.2.2 Identifiers -169

. B.2.3 Conditions 170

. B.2.4 F'unction Properties 171

List of Figures

. 1.2.1A typical compiler 4

. 1.5.lLower bounds 13

. 1.5.2UpperBounds 14

. 2.3.1Basic Specialization 21

. 2.3.2Lattice of Simple Annotations 24

. 2.5.1MemoizationMap 35

. 2.5.2'bo different residusrls 36

. 3.1.1Restricted Subset Lattice 50

3.1.2AtreeforR2LD+ . 55

. 3.3.1Boolean Concrete Domain 59

. 3.3.2(a)EVpD and(b)EvD 62

. 5.1.1 Integer Interval Lattice 107

. 5.1.2Abstract Value Covering -109

. 5.2.1BTA Lattice for Structural Projection 131

. A 1 Lower bounds -164

. A2 Upper Bounds 165

. A 3 Integer Lattice 166

Chapter 1

Introduction

1.1 Goals and Directions

Automatic program t rdormat ions are important in the practice of modem com-
puter science. Programmers generally take for granted that compilers and other pro-
gram transformation Bgstems are correct and that cornpilets perfonn &good" trans-
formations. Although most program transformations occur during compilation, it
is increasingly important b express program tsansformations that support various
kinds automated reasoning. Such traasformations range fimm program speeification,
to mal-time system behaviour, to dealing wi th changes to legacy code. In addition
to the more ment concerns, the more traditionai d e s of program optimization con-
tinue to be very important in areas such as molecular modeling, weather systems,
fluid dynamics, fidl motion animation, etc.

Anmering questions about program behaviour is a nindamental aspect of nearly
all program transformation techniques. This thesis proposes a h e w o r k for pm-
gram transformation that is based on pedorming source language to source language
code transformations that exploit information present in the original source program.
The tradeoff for this fanis lies in an increase in mmputation at compile-the and a
probable hcrease in the size of the resulting esecutable program. The foeus of our
work is in a fiamework for program analysis. The n9mework that we propose can be
used as a tool for anmering various questions about program behaviour; the collected
information can in tum be used for various types of transformations.

SECTION 1-1- AND DIRECTIONS 2

We ptopose the use of partial evaluation and symbolic execution techniques to
regularize and fonnalize questions about program behaviout The proposed fhme-
work generalizes the analpsis methodology adopted by most comparable systems.
There are three main areas of contribution presented in this work First, a forma1
foundation for partial evaluation is presented. The foundation determines how ab-
stract values within the systern can be modeled. Riot work has ~ q & that such
models be fonned h m finite-height lattices in order to preseme termination for the
evaluator. Our analytic approach is based on the analysis techniques of Cousot and
Cousot [27] and preserves termination without restricthg the underlying model to
hite height lattices. This appmach is a general application of intemal analysis and
has reasonable extensions to non-integer domains Buch as stnictured types.

The second area of contribution is a partial evaluation algoritbm that uses the for-
mal model and that Merentiates between types of information within the system.
The algorithm allows very accurate operations on values when there is no risk of
divergence and applies more conserrtative operations when needed in order to guar-
antee convergence. We present pmfb of termination and soundness for our algorithm
and discuss the general time complexity of the fhmework.

The final area of contribution de& with abstract domains for modeling integer
and structural information. The structural model was motivated by the work of Hen-
dren [39] and Launchbuy [a, w U e the abstract integer model is based on work by
Cousot and Cousot [273.

The overall design of the system separates the language spedc foundation of
the interpreter and the methods for pedorming the analysis. Such a design allows
one to change easily the types of analysis peiformed by the system without hav-
h g to change the underlyiag interpretation system. The ove& system compares
favourably to other partial evaluation systems in its ability to capture information
present in the program, and in the system's ability to execute without any human in-
tervention other than an indication of how much the system is permitted to increase
the size of resulting prugram. The ability of a general system ta generate reason-
able redts without human intervention is a key advantage that is a prerequisite for
having this type of technology applied in real systems.

The remahder of this chapter intmduœs the general concepts of cornpilem, opti-
mization, and abstract interpretation while Chapter 2 infroduces partid evaluation
and appIicattions of partiai evaluation. Chapter 3 presents the fiamework that we

SECTION 1.2. COMPUERS AND INTERPRETERs 3

have developed. There are two important parts to this presentatio~ the m q h -
ments for the abstract models used by our aigorithm, and the algorithm itself Chap-
ter 4 presents a formal anal* of the algorithm and includes proofs of termination,
soundness, and mmctness of transformed expressions, as well as a discussion of the
complexity of algorithm. In Chapter 5 we develop partidar abstract models for inte-
ger and structural domains and discuss other possible models. Chapter 6 deah with
a number of issues related to implementing the fhmework and indudes a discussion
of the prototype system that we have developed. ûther issues, not dKectly related
to our implementation, are also discussed. These i d u d e problems with sideeffects,
methods for producing high q d t y residds, and separate compilation.

1.2 Compilers and Interpreters

The basic difference betwssn interpretation and compilation is that an interpreter
executes pmgrams by transIating a single line of a program, performing the required
action, and then going on to the next Iine. ARer each translation and action, the
interpreter throws away the translation, so if the interpreter encounters the same
line again later, the line must be translateci again. A compiler takes the original
program and translates the entire program into an executable form that may then be
used without M e r translation.

The interpretation/mmpilation border in real systems is not that well defined of
course. Inherently, every real program is interpreted - the actual processor interprets
a sequence ofbits as an instruction to perfonn a p d c u l a r action, then interprets the
next bit sequence, etc. It is important that one does not assume that d compilers
pmduce code that requires no further interpretation and it is equally important not
to assume that an interpreter never compiles code.

A compiler is simply a prognun that transforms data according to some set of
d e s . Data transformations are not alagicn; any program can be seen as a data
transformer for at least a trivial data set. The reason that people becorne confused
about compilers is that although the result of the compiler c m be understood as data,
the result is not passive but rather is itselîa data transformer.

The classic compiler structure [31 is composed of a number of phases or layers
as shown in Figure 1.2.1 The k t phases-are syntactic or lexical analysis and pars-
hg. These two phases insure that the program is st~cturally correct with respect to

Source Program

1
lexical analyzer s~ntax:a-b=

L -

Intemediate code
semantic analyzer generator

code optimizer code generator

Figure 1.2.1: A typical compiler

the language definition (assuming, of course, that the compiler correctly implements
the language spedication). The result of these two phases is an intermediate form
usually represented as a parse tree or some intermediate language. The semantic
analysis normdy checks that language constraints are satisfied. Such constraints
may include type safety, assîgnment des, etc. Mer (or more typidy, during) se-
mantic analpis, an intemediate form of the pmgram is produced. Intermediate
forms generally remove source language syntactic (and possibly some of the seman-
tic) constraints and are c o n s t ~ c t e d to be amenable to manipulation for the remain-
ing phases. The optimizer perforxns transformations on the intemediate fonn and
produœs a seman t idy equivalent intermediate representation that is "better" ac-
cording to some set of criteria. The name "optimizer" is somewhat misleadhg - it
is extremely rare that an optunized pmgram is in fàct optUML in any formal sense.
Wptimizationsn are in malîty *code-impmving transformationsn, but we will retain
the cornmon terminology for the sake of clarity. The final step after optimization is
the generation of the target d e ,

The research presented in this thesis is directed primarily at the optimization
phase of the compiler although the approach could be used for code generation and
semantic analysis as welL

1.3 Optimization and Interpretation

The optimization methods presented in this thesis derive information about the source
code and rnakes use of this denved information when performing code transforma-
tions. Methods for deriving information about pmgrams rely on some sort of inter-
pretation of the source code. This interpretation m o t normally be a fidl execution
of the program since we generally do not know m-time arguments to the program
when we are compiling the pmgram. Compile-time interpretation can only approx-
imate the run-time behaviour of the pmgram if there is any idormation that is not
present at compile-tirne.

Simple examples of such interpretations are the cornmon optimizations of con-
stant folding and constant propagation. If a compiler encouritem an expression such
as (a + b + 2 + 4 within a program, it is generally safe to transform the calcu-
lation by folding the two constants into a single constant, resultuig in the expression
(a + b + 6 1 . It is important to note that such transformations are not dways safe.

SECTION 1.3- OPTIMIZATION AND INTERPRETATION 6

For example, on a machine with &bit two's amplement arithmetic, folding (a + b

+ 120 + 20) to (a + b + 140) wodd not be safe sinœ the c o m t 140 is not
representable in &bit -0's mmplement notation. The nin-time semantics of the ex-
pression may be correct however sinœ the programmer may have a priori knowledge
that the redt of (a + b) aill always be below -12. Even this a priori knowledge
however, relies on the assumption that expressions are evaluated in le& to nght or-
der.

Constarit propagation is a similar technique but is petformed across expressions-
If at a certain point in an imperative program, a variable is assigned a constant, we
can replace uses of that variable in the following d e with the constant value until
the point in the program at which the variable is assigned some other value. Note
that the code "followinf an assignment depends on the run-time behaviour of the
program - for example, in g e n d dl code within a lmp Yoilows" every statement in
the loop. For example, within the loop:

X := 5 ;

f o r i := 1 to 10 do
y := x;

output (y) ;

X := X + 1;

od;

it would not be correct to remove the assignment of x to y and replaœ the output (y)

with output (5) since the assignment statement y : = x follows not only the state-

ment x : = 5, but also follows the statement x : = x + 1 which occurs textually at
the end of the loop.

Complicating matters in constant propagation anal* is the fact that there may
be several references to the same memory location within the program. Determining
the set of all such references involves performing some form of dias analysis.

Both of these examples rely on some fonn of interpretation of the source language
semantics - during folding the interpiretation involved the semantics of the + operator
and the semantics of integer representation, while during constant propagation the
interpretation involved the semantics of the control flow constructs. ûptimizers need
to know about the underlying semantics of the language king trandomed; it is

ait ical that the transformations performed by an optimizer are semanticspreseming,
Le. that they don't change the meaning of the origipal program.

In some senses the techniques in this thesis are merely advanced versions of con-
stant propagation and fol- We wish to use information whicb rnay be inferable
fkom the source code for the purpose of anmering various questions about the source.
As one simple example, ansider our for loop again. A naive interpretation wodd
not be able to infer any knowledge about the state of the variable x following the
hop. However, by inspection, it is clear that the value o f x followïng the loop is going
to be 15. The techniques that we wil l be introducing are able to infer not only this
information, but information that is much more gened

1.4 The Essentials of Abstract Interpretation

Fundamentally, interpretation should be understaad as the implementation of se-
mantics. In other words, an interpreter is a function whose domain (input) is a pro-
gram in some language and whose range (output) represent the meaning of the pro-
gram. In a . pmgramming language (or domain), semantic definitions are provided
for expressions in the domain. These semantics rnay be given in varging degrees of
fomality - ML [631 being on the formal side and C++ [79] king on the infolmal side
- but dl languages give some sort of definition of the meaning of pmgrams wïthin the
language. We will be using the term %andard semanticsn to refer to the semantics
defhed for the original language.

Fonnally, we may express the meaning of a pmgram as a fiuiction 0 such that
[el is the keaning" or interpretation of the expression e. The expression [e] ~ repre-
sents the meaning of the expression e when interpreted with the semantic definitions
of language L1 - Le. the behaviour of the expression e. Meanhg fiinctions may be
specified in a variety of ways including denotational semantics, operational seman-
tics, action semantics, or idormal descriptions.

Using this notation we c m more concisely describe a compiler. If c is a compiler
written in language L which t radates expressions h m language &t to some other

' When it adds to the claritp of the presentation, the subscript indicating the domain of the meaning
function will be omittd.

language M' then the following equation should hold:

Intuitivelx this says that the meaning of the expression in the source language
should be the same as the meanhg of the expression which r e d t s h m compiling
the expression. When such an e q d t y holds we say the orm mations applied by
the compiler c are semanties prese~ing. Traditional compilers daim to be semantics
preserrring and are (more or less) accurate in their ciaims.

There are often circumstances in which an optimizer wishes to ask questions
about a program in order to perform transformations. Such questions may include
ï s it possible for this segment of code to executen or "can we determine the type of
the object that is referenced by this pointer". The types of optimizations that rely on
such questions indude reachability adysis, bve variable andysis, array partition-
ing, and interference computations for paralle1 applications. These types of analysis
perform a crucial mle in the optimization phases of compilation. It is usefd to con-
sider each analysis as an interpretation of the original program using a set ofseman-
tic definitions that is dif5erent than the semantic definitions of the original program.
This permïts a precise description of the method to k given and allows termination
and pefiomance characteristics to be established. Abstract interpretation is a gen-
eral term which includes any such "non-standard" interpretation of expressions in a
domain.

1.4.1 A Simple Example

One straightforward example of abstract interpretation is in detennining whether
the value of an arithmetic expression is negative, positive, or zero. Consider a lm-
guage of mathematical expressions aith addition, subtraction, and multiplication:

E : : E + F I E - P I F
F : : F * T I F / T I T
T :: (E l 1 constant

SECTION 1.4. THE ESSENTIALS OF ABSTRACT ~ R P R E T A T I O N

We can give a standard semantics for the language as the following:

This semantic definition &es the normal d e s for evaluating expressions with-
out dealing with the problem of division by zem. If we are only interested in whether
the result is positive, negative, or zero we could define the following non-standard
semantics

Consider the following definitions:

In each of the abstract operations $ and 8 there exist evaluations that do not have
a "simple" answer compod of a single abstract due . For example, when a positive
and negative number are summed, the r e d t could be positive, negative, or zero. In
general, many such situations can ofcur within abstract domains. For this parüdar
case, we will allow subsets of the three basic abstract values to represent values. The
abstract value NPZ will repitesent a set of abstract values composed of the negatiue,

positive and zero abstract values. The abstract operators must then be defined over
all nonernpty subsets of the abstract values. W e will expliatly define the operators
for single elements; the opera&= are denned to evaluate sets by taking the union
of the rssults of applying the operation to a l l pairs in the cartesian product of the
arguments.

The pmper dennitions for the a b c t operators are then as follows:

Using these non-standard semantics as the basis for an interpreter would result
in an abstract interpreter for this language. Interpreting any expression in the lan-
mage would result in a nonempty eubset of the abstract terms mg, pos and zero. We
would not know the actual result of the computation using the standard semantics,
but we would have some abstract information about the expression.

Example 1:

(5 + (4 - 4)) c, (pos + (4 - 4))
(pos + (4 - 4)) +b (pos + (pos - 4))
(pos + (pos - 4) 1 +P (pos + (pos - pos))
(~ 0 s + OS - ~ 0 s)) ++ (pas + NPZ) ++ NPZ.

There is one important issue to note about this style of interpretation. By in-
spection, an accurate interpretation of the subexpression 4 - 4 should result in the

abstract value zero rather than the abstract value NPZ. The pmcess of abstraction
has lost some of the Somation needed to reason amately about the standard se-

mantics. Any proeess of abstraction suffers h m this problern to some degree; the
key to a good system is to be flexible as to when information is lost. This theme will
h re-addressed when the a b c t domain requitements are introduced.

SECTION 1.4. THE ESSENTIALS OF ABSTRACT INTERPRETATION

(5 - (-7 - 4)) c, (pos - (-7 - 4))

(pos - (-7 - 4)) * (pos - (neg - 4))

(pos - (neg - 4)) c, (pos - (neg - pos))
(pos - (neg - pos)) c-, (pos - neg) * pos.
ALthough the previous abstmct interpretation assumes that we have fidl knowl-

edge about the values of constants, we can easily extend the model to admit "un-
known" or "partially known" values. Admitting an unknown abstract value to the
neg pos and zero values changes only the abstract operators- Adding or subtracting
values with an unknown value red t s in an iinknown value. Multiplying or dïvid-
ing with an iinlaiown however, may result in a value other than iinloiown. Since
we know that mdtiplying any number by zero generates zero, we can allow our
operator take advantage of operands which are zero. Division is similar, eaaept that
dividing anything by an unknown could result in an e m r since the unknown value
rnight be zero. Incorporating unk as the abstract value for iinlrnown within our model
yields the followiiig definitions for the abstract operators:

neg I POS I zero unk n

@
h

neg
pos
zero
unk

1 unk 1 unk, e m r 1 unk, e m r 1 unk, e m r 1 unk, e m r 1

neg
pos
neg
zero
iink

POS

zero

pos
neg
pos
zero
unk

I h

neg
zero

zero

zero
zero
zero
zero

POS

zero

unk
unk

J

unk
zero

e m r
e m r

II

n

u n .

u n k , e m r .
unk,error

i

Example 3:

(2 * (4 - ???)) c, (pos * (4 - ???)

(pos * (4 - ? ? ?)) c, (pos * (pos - ? ? ? I l
(pos * (pos - ? ? ?)) c, (pos * (pos - rrnk))
(pos * (pos - urik)) c-, (pos unk) c, unk-

The unk d u e in the above is redundant. The behaviour of the unk value is
exactly the same as the abstract value NPZ. This corresponds to intuition as well; an
"unknown" value could be either negative, positive, or zero. Formalizing the
properties of abstract domairidl makes this recognition more straightforward, even in
complex domains.

Thsse examples illustrate the basic method for defining any abstract interpreta-
tion: define an abstract domain (set of a h c t values), define the operators on those
values, and define the method for applying those operators to expressions in the lan-
guage. Most of this work will focus on the first two of these requirements; the third
will follow in a fauy natural way h m the domains and operators we define.

1.5 Formalizing Abstract Relationships

The standard models used for fonnalizing abstract domains are developed h m lat-
tice theory. In this section, we briefiy review some notation and the basies of lattice
theory; more detail is contained in Appendix A, but for a complete development, we
would recommend the introductory book by Davey and Priestley [3O].

A lattice is a formal model for describing the relationships between elements in a
set. A lattice is a s p e d case of a pattial or&.

Deni 1.1 (Partial Order) A partial order < S, < > is a set S and a
relation, < , on S such that fbr 2, y, z f S, the 6 relation is:

bwer bounds (B C Dl
(il (ii) Greatest lower bound {El

No Greatest lower bound

Figure 1.5.1: Lower bounds

If z 4 y we may say that z is bdow y. Note that it may be the case that < does
not hold at all between two arbitrarg elements of S. In other words, it may be the
case that for some 2, y E S, z # y and y # 2. In such a case we Say that z and y are
incomparable, denoted as 2 11 y .

It is usefûl to be able to talk about various boicnds or limiting values of a subset
of some partial order < S, =$ >. Assume that S' is a subset of S for some partial order
<S, =$ >*

Defh 1.2 &ower Bound) A lower bound for S' is an dernent y E S such
that V2 E S', y < 2.

Note that the lower bound of a subset of S does not have to be a member of the
subset, it is only required to be a member of S.

Defh 1.3 (Greatest h w e r Bound (GLB)) nS', the greatest lower
bound for S' U a lower bound, y, of S' sueh t h t Vz '2 { lower bounds
of S'}, t < y. We wdl OldO refer to the greatest lower bound of a set con-
taining elements + and y as the meet of z and y, denoted as ZAY.

Upper bounds (B C Dl
NO least upper b ~ ~ n d

(U) Least upper bound {AI

Figure 1.5.2: Upper Bounds

It may be the case that a set does not have a lower bound; if there are two incom-
parable values which constitute the set then there would be no value comparable to

(and below) every eIement of the set.

Defn 1.4 (Upper Bound) An upper bound for S is an element y E S
such that Vx E S, z 4 y.

Defn 1.5 (Least Upper Bound (LU')) üSf9 the le& upper bound for
Sr is an upper boum& p. of Sr such that Vz 'z { upper bouruh of S}, y < 2.

We wiU a h rem to the least upper bound of ta set containing elernents z
and y as the j ob of O and y. denoted as zvy.

As with lower bounds, an upper bound may not exist. Obviously it is the case that
if no upper bound exists, no least upper bound d t s .

Defh 1.6 (Lattice) A lattice < S, < > is a partial order such that
V{2, y) E S : ZAY and tvv -t.

A lattiœ requires that a least upper bound and greatest lower bound exist for any
pair of elementn The nature of these bounds has aome relationship to miPimality;
the least upper bound for two elements is the usmallest" value that represents both
of the values,

A lattice may have distinguished elements, labeled T (top) and 1 (bottom), that
represent the greatest and least eiements in the lattice. Any finite lattice will have
such elements; ïnûnite lattices may not.

Chapter 2

Partial Evaluation and Symbolic
Execution

Partial evaluation and symbolic execution are general terms which encapsulate meth-
ods for more cmmplete forms ofabstract interpretation. The goal of partial evaluation
is to interpret programs in which only part of the input data is known at interpreta-
tion tirne. Given an interpreter int in language C and data d, a traditional interpre-
tation for a program e may be expressed as:

Partial evaluation considers the data as being composed of two distinct parts - a
static part and a dymmic part. The static part of the data contains information which
does not change between interpretations of the program. The dynamic data contairis
the information which is not available until the program actually runs. This view of
the data is reflected in the following.

where s is the static portion of the data and d is the dynamic portion of the data. Note
that this equation factors the static data out of the entire set of program data.

2.1 The Mzx Equation

Partial evaluation arises from the recognition that equation 2.2 can be rearranged to

incorporate the static data, s, into a new program that, when applied to the dynamic
data d, provides the same results as the original pmgram. A partial evaluator, miz,

h m a language f to a language M takes a program e in L and data s and produces
a new program e' in M such that the following holds:

Expanding e' into its symbolic form we get the following:

Equation 2.4 is callecl the Mix Equation. The name m u stems h m work by Er-
shov [32] on m&d computation which was pioneering work in computation with
mixed dynamic and static data. An early p d evaluation system 1481 was called
miz in recognition of this contribution. Although the term mked computcrtion has
been superseded by the term partial evduation, the name mü has b e n retained as
the common name for symbolic interpreters.

The Mix Equation is interesthg in that it reflects the same basic process as cur-
rying in hctional propanunhg (541. Currying ocnvs in fimctional languages when
functions with multiple arguments may be viewed as functiom that take a single
argument and retum a function over the remaining arguments. CurrJring can be ex-
pressed formally through the lambda calculus as nested fiinction definitions (lambda
expressions). Similarlg a partial evaluator views a pmgram as taking static data
and returning a program over the dynamic data.

2.2 The Futamura Rojections

Let us briefly restrict the general form of partial evaluators to consider only partial
evaluators whose target language is the same as the source language. That is, let mix

be a partial evaluator h m M to M. In addition, let int be an interpreter WTitten in
language M which interprets programs in L.

Consider the result, r, of this application of mii. Applying r to static and dynamic
data will give the same r e d t as interpreting e with the same data. That is,

The critical observation is that r bas the same behaviour as a compiled program.
This identim, d e d The Fust Futamum Pro&crion [Ml, shows that miz may be used
to generate a compiled program an interpreter and a source program.

In equation 2.4 and equation 2.5 we did not d e h e the source language of the
partial evaluator, mm. Lst us now assume that mi2 is itseEwrïtten in language M.
We can push the level of interpretation out an additional level.

c a p = [miz](miz, int) (2-7)

This makes more sense when you consider applying a program, e, and data (s, d) .

comp is a compiler - it takes a program, e, and produces a program which, when
applied to the data, pmduœs the r e d t of the original program. Using this approach,
miz can automatidy produce compilers h m interpretes. This level of application
is called The Second Futamum hject ion.

The Third Futamum Projection pushes the application of miz out one more level.
Consider the following:

cogen = [miz](rniz, mi t) (2.9)

Again, considei applying the rest of the arguments to cogen:

[[[[mît](miz mi t)] int] el (s, d) (2-10)

cogen acts as a compiler generator. Given an interprete~, cogen produœs a compiler
which may be used as described in the Second Futamura Projection.

The Futamura projections rely on ha* partial evaluators which are Wntten in
the same language as the language of interpretation. Such partial evaluators are
called self-oppllicable. There is continuing work in self-applicable partial evaluators
with the view towards automating compiler pduction for realistic environmentS.
There are a number of diflciculties with this approach; it is d i f n d t to see how to

automatically map data layout in an interpreter to data layout in compiled code and it
is unclear whether a partial evaluator could Udismver" data ielationships which could
be transfomed into data structures whïch don't .exkt in either the partial evaluator
or the interpreter. [161 [43] [451 [55] [Ml [84]

There are other issues for automatic compiler generation with respect to effi-
eiency, code generation, and other low-Ievel machine speQfic quirements. Although
the Futamma Rajections are interesting and continue to spur research, the remain-
der of this document will not deal with self-application issues. The focus will be not
on automatic compiler generation, but rather making use of the underlying tech-
niques to discover information that could be used in a somewhat more traditional
compilation system.

2.3 General Concepts of Partial Evaluation

At their core, the Futamura Projections express the idea of specialization - the in-
corporation of specitic data into a general program for the purpose of generating a
speaalized version of the program. Ifwe consider the Third Projection as a basis for
expressing computation then we can express any program behaviour as a specializa-
tion of some instance of cogen.

Gened forms of partial evaluation incorporate specialization as a fundamental
aspect of their behavio= A specialization bccurs when a partial evaluator inteptes
some piece of static data into a code âegment and produœs a new d e hgment. A
specializer performs specidizations based on whether a particular value is static or
dynamic In most systems, annotatiom are intmduced into a program which mark a
value as static or dpnamic The procese by which such annotations are introduced
is d e d binding tinze andysis and d be discussed at length beginning in Sec-
tion 2.3.2.

Consider the following simple function, f, and a cal1 to the functïon:
(define f

(lambda (x y)
(+ x Y)

))

Assuming that we do not know the d u e for z, the pmgram îs amotated as:

(f, 3, 5)

where x, means that x is dynamic and X, means that x is static Both function
calls and variables may be annotated. The annotation on a function cal1 reflects
whether the function wiU be entirely evduated (is static) or have a function mll left
in the specialized program (is dynamic). For a variable, the static annotation means
that the specializer may use the value during the specialization while the dynamic
annotation means that the specializer may not use the value.

Specialhation may be an identity operation - the specializer may not have enough
static information to pediorm a specialization, or the specializer rnay not be allowed
to perform a speciaiization even though some static data is present. The latter case
o c m in some special situations which WU be discussed in later sections. lii all
cases, the result of a specialization is called a tesidual.

Given the above annotations, a residual for our program might be as follows:

(define resid-f-1
(lambda (y)

(+ 3 y)
1)

The fundamental algoritbm for a partial evaluator consists of selecting a function
for specialization, pducing a residual tbrough some specialization and repeating
untiI all useM static information has been wed. Figure 2.3.1 gives one basic algo-
rithm for specialization.

fun spec [code, actual)
for each sequential line of code
for each operator or function do (in evaluation order)

if a function cal1
replace by the residual f r o m spec (function, arguments

else if an operator and arguments have static values
replace by the result from evaluating operation

return remaining code as residual

Figure 2.3.1: Basic Specialization

As noted earlier, partial evaluation techniques consider program data as being in one
of two classes - static or dynamic. Although we eqressed both sets of data as pa-
rameters to the program, in reality a m a t deal of static information may be present
in the text of the source program alone. This part of the pmgram data must also
be considered as static and can mnceptually be considered as part of the parameters
to the program (a simple rewriting could be performed in order to have such data
presented as parameters, but it is not necessary to do so). When we consider per-
forming partial evaluation on a program, one of our f h t concem will be to decide
whieh of the program variables we will want to treat as containing static data and
which we wiU have to treat as containing dynamîc data. The pmeess by which data is
divided between the two classes is d e d binàirtg-time analysis [54l [46]. Normally a
bindhg-the anal* will introduce annotations into a program to represent the sta-
tus o f each variable. These annotations are then used by the speQalizer to determine
what information may be incorporateci into the residual program.

There are several issues involved in binding-time analysis (BTAk temiaation,
accurtqy, and 1ifetm.e. Binding-time analysis is in general not decidable, so all tech-
niques must approxhate the a d set of static and dynarnic data withïn the pro-
gram. The calculation of a reasonable estimate Uivolves iteratively making an esti-
mate and then checking whether some type of fixed-point has been reached within a
solution set. The BTA process must terminate while not making an overly conserva-
tive approximation in order for the information to be usefid within the specialization
phase. The termiaation pmblem ia also referred to as the pmblem of divergent com-

putofion or simpIy divegence.

Accuracy relates to the %solution* of the analysis. The simplest approach is to
have a single annotation for each variable. This approach is generally not very accu-
rate since a single variable rnay name a compound data struchue, some of which may
be dynamic and some of which may be static. A more accurate anaiysis inwlves treat-
ing each member of a c o m p o d data structure as a distinct binding by associating a
binding-time annotation with each of the elementa Issues which affect the accuracy
of the analpis include the memorg model, the presenœ of higherarder s t ~ c t u r e s ,

and aliasing and side-effixt mechanisms. Increased accuracy provides more informa-
tion to the specializer at the cost ofincreased computation time and more sensitive
termination criteria. There are two restrictions on any B W the BTA must be safe
in that no dynamic expression may be annotated as static, and the BTA must be
usefil in that all static expressions (or at least as many as possible) are denoted as
static [73]. Both safety and usefhlness effect termination and accuTay.

Finallx the lifetime aspect of a binding-time analysis relates to whether there is
a single annotation for a variable or if there rnay be several annotations which apply
at difTerent points within the program. Most nvtent techniques have only a single
annotation for each variable, although the= is continueci research into techniques
which allow for multiple annotations. Lifetime deasions relate to the interaction of
the binding-tirne d y s i s and the speciaüzation phase; this interaction is the topic
of Sections 2.3.5 and 2.3.5.

2.3.3 Tgpes of Partial Evaîuators

There are four fuadamental approaches to partial evaluation. These approaches com-
bine one of two methads for lifetime analysis with one of two methods for the relation-
ship between the BTA and the specializer. The two lifetime methods are monovariant
and polyvwiant; the two relationships are on-line and of-line. The following sections
will discuss each of these methods. In addition to the above classifications, t h are
a number of orthogonal issues. Memoization (Section 2.5) and accutacy are two of
these issues that we will discuss.

SECTION 2-3. GENERAL CONCEPTS OF PARTIAL EVALUATION

2.3.4 PI,Iyvdant and Monovariant B'EA

Monovariant BTA

The main issue conœming lifetime considerations is whether the binding time anal-
ysis (and the redting spedîzations) will be monovariant or polyvariant. A mono-
variant adysis generates a a e set of annotations for a particdar segment of
code (usudy a iùnction). These annotations are then used for the entire specializa-
tion phase [Il].

The fundamental problem with monovariait BTA lies in the fa& that there is only
a single annotation for each variable in a hction. The annotation for a partidar
variable must then be the most gened (or widest [73]) annotation for any possible
run-time binding of values. For a given formal parameter, if there eBsts a cal1 site
in which the a d parameter is static and another c d site at which the actual
parameter is dynamic, then the annotation for the formal parameter will be dynarnic
and the specialization phase will not be able to make use of the information available
in the static parameter.

We d again use o u t simple fiuiction, f, as an example.

(define f
(lambda (x y)

(+ x y)

1)

Assume that we have the fouowing calls of f:

with z being dynanic. The annotated version of f and the uses of f would be as
follow s:

(define f
(lambda (x y)

Figure 2.3.2: Lattice of Simple h o t a t i o n s

For each parameter there ePs+P a cal1 with a stotic actual argument and a cal1
with a dynanic actual parameter. The most general annotation for each parameter
is dymmic, so the annotations for both variables in the fiuiction body become dy-
ncrmic. As a result of these annotations, no s p c d h t i o n will be perfomed during
the specialization phase and the original fiuiction will m a i n as the residual.

The two annotations, stutic and dymmic, form a very simple lattice as shown in
Figure 2.3.2. Note that we do not show a T or I element in the lattice. The two

elements in the lattiœ actually have the correct pmperties for T and -i so we do not
need the additional elements. Alternativelx the lattice could be seen as containing
onfy T and I w i t h therenamingof T toDand I to S.

The monovariant approach can be clarifiecl usiiig this simple lattice. Monovari-
ance uses the least upper bound of the annotations at all dl sites as the annotation
for a function. [46] expresses this by using an analysk bction Bv which takes a
binding time environment (set of annotations), a fûnction g, and an expression, e.
The result is the le& upper bound of the annotations for g within e. You can then
express g's monova.riant annotation as:

n

where r is the least upper bound of annotations for all other functions and ci is the

tlh expression in the program. Given this definition, if any Bv annotation results in
D (dynamic) as the annotation for a parameter to a function, the least upper bound
will necessarily be D.

The monovariant approach does not pmvide the generality needed for most r d -
istic applications of partial evaluation. In teal programs it is unlikely that dl call
sites for a particular function wil l have a static value for any given parameter. A
great deal of static information is ignored in a monovariant approach, decreasing the
effectiveness of the entire partial evaluation proœss.

Polyvariant techniques differ h m monovariant techniques in that Merent annota-
tions can be made at every hction d site. If there is a dl site in which an actual
parameter is static and another cal1 site in which the actual parameter is dpnamic,
then tftro sets of annotations would be made. In order to make two sets of annotations
for a single bction, the source function is simply duplicatedl. [73]

Again assume that we have the following calls off:

(f 3 2)

(f z 3)

with z being dynamic. For the fht call, we shall p d u œ an annotation with the
k t parameter static and the second parameter dynaimic. For the second call we wül
produce a complementary annotation- ConceptuaUg, we have the following functions
and annotatiom after the BTA phase:

During specialization, the foUowing firnctions and calls wil l be pmduced:
(de fine resid-f -1

(lambda (y)

(+ 3 y)

1)

(define resid-f-2
(lambda (XI

(+ x 3)
1)

'Rytz et ai do not in fàct duplicata the amal source d e , but rather keep multiple annotations for
each fùnction.

The formal lattice model does not change in the polyvarimt approaeh. The dif-
ference in approaches is due to the application of the model; we no longer use the
least upper bound ofa set ofannotations, but rather introduœ sets of annotations for
each fiincüoa Since each annotation has only two possibilities (static or dynamic)
and each parameter list is b i t e , we have a finite number of possible annotations.

Clearly this approach is superior to the monovariant approach - ifony dl site
has static information which caa be used, an occurrerince of the fûnction with a usefiil
annotation will &. The obvious problem is that there may be many annotations
for a given bc t i on . The number of potential annotations is bounded by the number
of c d sites, but could be exponential in the number ofparameters ifmany cal1 sites
exist. Eqmnential growth of the residual d e during specialization is a problem for
any polptariant approach and will be disnissed in later sections.

There is however a subtle pmblem in the way in which polpariant BTA is nor-
mally used. Conceptuall~ polyvariance mates instances of the functions which are
king annotated, but this is exactly what the specializer is supposed to be doing.
PoIgvariant analpers duplicate some of the work whid is to be done dlinng spe-
cialization if the BTA is pedormed strictly before the specialization phase. With
polyvariant analpis, it seems to make more sense to combine the BTA and speaal-
ization phases into a coherent approach. The cornparison between separate %TA and
combined BTAhpecialization is the topîc of the next section.

2.3.5 On-line and Oa-line Appmaches

O f f h e Techniques

Off-Iine BTA techniques analyze the source program before the specialization phase
and determine the statu of each variable. Each variable and firnction call is anno-
tated as being either static or dynamic During the spetiaiization phase, dynamic
values are never spemslized, while static values are always specialized.

There are a number of techniques for off-line BTA2. The most ammon techniques
are based on type inference or conetraint analysis algorithms. Newer techniques [54]
employ projections to mate annotations. The type inference approach incrementally
adds dynaxnic notations until the inference algorithm succeeds. Constraint based

2For a more detded introduction to these techniques, see kô].

systems generate mnstraints, convefi them into a normal fonn and then solve the
mnstraints to generate mappings h m variables to annotations. Brief discussions
of some of these appmaches are given in Section 2.4.3 when we discuss termination
issues.

In on-1.e eduatom, the decisions regarding effctive annotations are interleaved
with specialization decïsions. At each step in the evaluation an on-line evaluator
must decide what to treat as dynamic and what to treat as static. For a given func-
tion or variable this decision is independently made every time that the function or
variable is encountered. ûnce the decision is made, the specialization takes place
immediately and the residual becomes part of the next set of evaluations. In a sense,
on-line partial evaluation is naturally polgvariant since the aigorithm itself "recon-
siders" decisions on a fiequent basis.

There has been relatively little work in the area of on-line partial evaluation; the
most significant implementation work has been done by Katz, Weise, and Ruf in the
FUSE evaiuator [83J pl] [70]. Although they had an interesting approach for dealing
with redundancy in specializations, their model for values was not very expressive.
Termination in FUSE relies on having a fmïte height lattia modeling values in the
system. In addition, there are ornimstanœs in which E'USE requires user provided
u ~ t e n e s s annotationsn that guaratltee that specialization will terminate. Aithough
such annotations allow FUSE to incorporate more selective residual production algo-
rithms, such annotations require user intemention. The automatic on-lïne approach
that we will be presenting wil l incorporate features similar to their approach but al-
lows infinite height lattices to model values in that system and will feature a clear
separation between models for abstract values and the algorithm itself.

The most sigaificant approach that fomally proves more of the properties of on-
iine p a . evaluation is the work by Consel and Khoa [25] [24]. This work will be
discussed in Section 4.5 aRer we have developed the basis of our system.

Combinations of Methods

Table 2.3.1 shows which of the four possible appmaches have ken investigated.
Monovariance will be discussed in the next section, and the two polyvariant meth-

Table 2.3.1: Types of Partial Evaluators

off-line
On-line

ods will be discussed in some detail in later sections. As noted in the table, early
approaches, such as Similix, used an off-line monovariant appmach, while the more
sophisticated Similin-2 uses an off-line polyvariant appmach. As noted above, there
has ken relatively little work in on-lïne approaches. The most substantial work is a
polyvariant on-line interpmter by Weise et al [83]. At this t h e , we do not know of
any on-line monovariant approaches.

2.4 Other Issues

Monovariant
Si&

unknown

The fundamental problem when dealing with higher-order languages lies in finding
alL potential cal1 sites for a h i g h e r d e r fimctîon. When we do not know whether
parameters wiU be dynamic or static, we must assume that they are campletely dy-
namic (due to the safety wnstraint). This is the approach taken by most systems,
such as Similu-2 [Il], Schism (211 and FUSE [83]. A more accurate knowledge of
highersrder fûnction analysis relies on some form of control-flow analysis, such as
in f721 (see [751 for control fiow analysis techniqyes). The control %ow analysis is
used to mate a consemative estimate of the cal1 sites and then uses the least upper
bound of the argument annotations as the annotation for the function parameters.

Polyvariant
Similix-2

Our approach
FUSE

A control flow analpis certainly impmves the accuracy of the annotations, but re-
quires sigdcantly more work In addition, the caldat ion of the estimation involves
much of the same type of d y s b as used in a speciaiizer. The control flow analysis
in [72j does not create po1yvaTiant residuals for higher order hctions, but acts as a
monovariant specializsr for the fiuiction. In any finite program, however, there will
be a finite number of higher order functions wbicb could be used to create more accu-
rate, polyvariant residuais if the spem'rilizer tracked the set of possible higher-order

firnctions that couid be used at any caIl site- Such an analysis reverses the control
flow analysis approach; d e r than estimating the cail sites for each higher-order
bct ion, such an approach would estimate the domain of each cal1 site- One muld
then specialize each higher4rder f ' c t i o n in the domain with the static information
available at the cal1 site. In some waps such an approach would entail a much more
complete control flow analysis, but if integrated with the specializer, would be no
more costly

2.4.2 Languages with fmperative FeatPres

The major pmblem with off-line binding-time analpis is that the techniques assume
that annotations do not change during the specialization phase. Although this is
normally the case in (pure) functional languages, this assumption breaks down in
the faœ of imperative features. Consider the following imperative code:

read (x) ;
y := x + 5;
x := 7;

In this example, x is dynamic aRer the read, but becomes static after the assignment
in the thirrl &ne. W1th imperative languages the status of a variable can change
at any time due to either a direct assignment or an assignment to an alias for the
variable. This cannot be reflected in off-line techniques [62] which do not incorporate
any idea of a change of use into the binding-time analysis.

Some experiments have been conducted [5] with C that attempt to use an off-
line BTA. One of the major problems is in dealing with dynamically docated arrays

which are then assigned static values. Due to the dynamic nature of the m y allo-
cation, nonnal off-line BTA wodd treat the entire array as dynamic and miss many
opportunities for speciaiization. The approach taken in this work was to convert the
dynamic array into a static array which can then be analyzed more accurately by
traditional off-line techniques.

In many cases the dynamic allocation to static docation trandormation would
not pose any pmblems in the residual program. Unfortunatelly, this transtormation
is not strictly semantics pre8eming due to the unâerlying memory mode1 of the C
language. This could introduœ problems in situations where stack or static data
space is severely Iimited; one such example is in threads-based pmgramming support
packages such as the &stem [15] developed et the University of Waterloo.

Static Single Assignment (SSA) [82] [28] is an abstract interpretation approach to
hi&-perfomana Fortran opümization pmblems. SSA converts a source program
into one in which each variable may be expanded into several instances of the original
variable. Each assignment statement to the variable creates a new instance of the
variable, and any use ofa variable is converted to a use ofthe appropriate instance of
the variable. This approach guarantees that there is a unique assigrment instance
for each variable a t any point within the program.

For example, the following Pascal-like code:

would be converted using the SSA approach into the following:

read (al) ;
b := a.-1 + 5;
a 2 := 7 ;
c := a 2 * 5;

The $SA cornmunity uses the SSA transformations to do fairly straightforward
types of a h c t interpretation - code is specialized based on the values of the ap-
propriate instances of variables. SSA does not attempt to mate new specialized
instances ofany code, and as such resembles the monovariant approach discussed in
Section 2.3.4. The interesthg aspect of this work is in its correlation to off-line BTA,
and in its approach to irnperative features. Combining the !BA transformation with
the polymriant features of o f f h e partial evaluation would genenita an approach
which is more powerîd than either in isolation; such a m m would be able to deal
with changing annotations &ter assignments sinee each assignment would have a
different instance of the variable associatecl with it.

Doing a "normal" annotation for the first code n'agment would result in the vari-
able a king annotated as dynamic since the r e d t of the read is not known until
run-time. Since there is only one annotation for a particular variable within a section
of code, we would have to use dynamic and would lose the static information which
occurs within the same section of d e . Using the SSA converted code however, we

would have two distinct variables h m the or ig ïd a. Each of these would receive
the appropriate annotation, dowing us to make use of the static information h m
the second assiment to a.

There are a few potentid düfidties with combiiiing the SSA and off-line a p

pmach however. First of all, the SSA literature has not addressed imperative lan-
guages such as C in which there are arbitrary aliasiiig relationships. Such aliasing
would complicate the SSA conversion to such an extent that it probably would not be
viable for realistic systems. Second, the difi[iculties in generaliPlig off-line methads to
higher-order constructs is not alleviated by the introduction of the SSA conversion.
C d locations whîch are t d y dynamic would not be resolved by SSA; a more gen-
eral domain mode1 is requlled. Finallx this approach wodd retain the duplication
of work mentioned in Section 2.3.4. The effect of SSA conversions during a binding
t h e analysis ain be achieved by adopting more general on-he appmaches such as

our approach.

Off-Une Evaluation

Termination for ofMine partial evaluation depends entirely on the termination and
safety of the binding time analpsiS. When off-line methods are used, specialization
blindly follows the annotations on the variables and does not check for any special
texmination conditions. The BTA has the responsibility for ensuring that the spe-
cializer will not attempt a renirsive specialization whieh will not terminate. For
example, given the following code:

(define sum
(lambda (start, stop)

(if (= start stop)
start
(+ start (sum (+ 1 start) stop)) 1

assume that z is dynamic. Even though the BTA knows that start is static, it
should not annotate it as such. If start were annotated as static, the speaalizer
would create a specialized version of sum as follows:

(define resid-sm-1
(lambda (stop)

(if (= 5 stop)
S
(+ start (sum 6 stop) 1)

1)

Using the same argument. the iecursve d to suri would cause another specializa-
tion of sum redting in:

(def ine resid-sum-2
(lambda (s top)

(if (= 6 stop)
6

(+ start (sum 7 stop)))

Continuing with this, it is clear that the specializer would create an infmite num-
ber of residuals for sum. To avoid this problem, the BTA is required to make safe

annotations - annotations which guarantee that infinite specialization does not oc- - There are a number of approaches that have been investigated for perfi>rming
safe binding tirne analysis; examples include constnünt satisfaction [41J [421, type
inference 1351, program factorizations [54], and simple abstract interpretations 1461.

The type inference appmach is interesting in that BTA questions can be answered
by giving static values their known types and then using type inference to determine
resulting types. Annotations are progressively relaxed until the program is well-
typed. Any well-typed expressions can safely be treated as static since they would
depend only on other static values. For example, consider our pnor sum example.
Initiirlly sening start to a known type (integer) and then performing type inference
will redt in a type confiict between s tart and the i n f e d type of "=" since the type
of stop is unknown. Thus the type of start would have to be modified to unknown
in order to resolve the confiict.

Another approach, based on projections, is mggested by Launchbuy [541. The
foundation of projection b d appmaches is in normal set projections (a form of re-
tractions, or subset seledion). When we consider the set of parameters to a fiuiction,
we need tb find a prajection of the parameters which represents the static parani-
eters. The complementary projection would then provide the dynamic parameters

SECTION 2.5. RESIDUAL CODE AND SPECIALIZATION

2.5 Residual Code and Specialization

Within a parti& code fragment there may be many calls to a partidar fiinction.
Each of these caUs may have a different partitionhg of static and dynamic data and
the static data which is pmsent rnay Mer h m cal1 to d Partial evaluation as
descRbed so far speeialiees a fuactïon each t h e an instance of the function is en-
countered. Following this approach blindl~ however, is not very efficient as there
may be many identical residuals p d u œ d .

R e d the simple fûnction, f , used in earlier sections:
(define f

(lambda (x y) (+ x y))

1

In this case we have two c a b to f in which the first argument has the static value 3
and the second argument is dynamic If we perîorm a simple speaalization for this
calls, we generate two identical residuals.

(define resid-f-1 (define resid-f-2
(lambda (y) (lambda (y)

(+ 3 y) (+ 3 Y)
1) 1 1

Clearly it is advantageous to have only a single instance of any partidar resid-
uaL Specializers typically do this by memoizing residuals as they are produceci.
Memoization is simply a fonn of caching for residual code; memoization associates
all static iaformation used in the Spaoalization with the corresponding residual. The
issue of memoization is orthogonal to the issue of chwsing on-line or off-line evalu-
ation; in either case we wish to eliminate the production of duplicate residual h c -
tions.

Memoization can be seen as a mapping h m a source code kagrnent and envi-
romnent to a residual code fkagment. If p is an environment mapping idenaers to
values, then memoization is a mapping, M y such that M (f , p) + r where r is a ver-
sion of f specialized wîth values h m the enviromnent p. Figure 2.5.1 shows how
fûnction f and an environment with x having the known value 3 maps to the resid-
ual res id- f - 1. Before a specializer produœs a new residual +' for a function f in

SECTION 2.5. RESIDUAL CODE AND SPECIAWZATION 35

(define resid-f-1
(lambda (y)

(+ 3 y)

Figure 2.5.1: Memoization Map

an envUonment pf, it checks the memoization map for a mapping which matches the
m n t fiindion and environment. More fomallg,

If a residual exists for a given h c t i o n and environment that residual is re-used,
otherwise a new residual for the fùnction is pmduced.

Memoization mates equivalence classes between residual functions and repre-
sents each class as a single residual. Membership in a particular equivalence dass
is determined by the function and the enviromnent in which speaalization occurs.
Viewing residuslls as eBsting within equivaience classes encourages a clean mode1
for overall code expansion; if the total number of equidence elasses grows beyand
the expansion b i t , equivaence classes must be combined into larger elasses.

Combining two equivalenœ classes involves creating a new class whose argu-
ments are annotated with an annotation that avers the annotations in the classes
king combined. Memoization itseifl however, is orthogonal to the different types of
partial evaluation, and combining equivdence class annotations c a ~ a t be expresseci
as movement in the simple lattiœ given in Figure 2.3.2. For example, consider the
residuals given in F'igure 2.5.2. Each residual was ereated h m the original h c t i o n
with x marked as static. Strictly h m the lattice, the least upper bound of the two is
still static but this does not reflect the hct that two different values for x were used
in the specializritions.

(define resid-f-1 (define resid-f-2
(lambda (y) (lambda (y)

(+ 3 y) (+ 4 y)

1) 1)
Figure 2.5.2: ' h o different residuals

We could formally express memoization by using a disjoint union of the annota-
tion lattiœ and a lattice of constant values (such as the integer lattice in Figure k3),
but as memoization is a small issue with respect to the techniques presented hem,
we will ignore the formal mechanism. Intuitively however, coalescing two equiva-
lenœ classes meam that two fiinctions with the same static propertg will retain the
static property in the resulting class, whereas if the annotations or static values are
different, the result will becorne dynamic, or wi l l at least lose some of the precision
of the derived knowledge about the value.

2.6 Applications of Partial Evaluation and Specialization

2.6.1 Reducing Co- of Polymorphism

Object Oriented

An important aspect of any object oriented language is the separation between a
message to an object and the methwl that is used to respond to the message. The
parti& method that ie used to reepond to a given message is dependent on the
object to which the message was sent. The term dynumk binding is used to refer to

this =-the binding of messages to methods. In general, the enooding of each object
will need to incorporate references ir the methods that are used for its messages.
ORen languages will ody allow the message to methad association to be changed on
a class-wide basis, but in either case, every invocation of a method will req* at
least one additional level of indirection.

The choie of a method cannot generally be made at compile-time due to inher-
itance polymorphism. hheritance polymorphism q u i r e s that any subtype object
can be used in the place of a base type object. This means that in general it is unde-
cidable whether a given method is used for a given message invocation. In [31], Dean

et al investigate applying speciaiization techniques to reduce the cost of method c d

The basic idea is to introduœ specialized instances of methods, where each version
is specialized with respect to parti& subtypes of the allowed parameter type. For
example, if a given method d o w s a single parameter ofa type A and there exïsts
subt~rpes e and c of A, then instances of the method could be created for each of^, B
and C. These methods could then take advantage of the fhct that the actual type of
the object is known and could pote3tiaUy mate static bïndings for the following mes-
sages. Generally howevar, the nurnber of potential methods that could be generated
is much larger than the number that shouid be generated.

Dean et al use a call-graph based estimation algorithm to estimate which object
Speciaiizations are likely to be profitable. ki order to determine the effect of seleetive
specialization, they incorporatecl their technique into the Cecil [18] compiler and sel€-
compileci the eompik The overail ~ s u l t was quite impressive; a t the cost of an
increased program size of only 5%, run-time Mprovements of approximately 33%
were achieved.

This result is very encouraging for the fiiture application of partial evaluation
techniques. The work by Dean e t al was based on a Wly simple d analysis and
did not attempt to perform any analysis of the fonn that traditional off-line BTA
perfoms, nor apply any of the on-lùie evaluation techniques* They did, however,
clearly demonstrate that moderate code size increase in a polymorphic environment
can lead to sulwtantial performance impmvements.

An appmach more dosely tied to partial evaluation techniques is the work by
Wm and Sundaresh [50). Their approach was based on using continuations3 which
d o w for similar types of re-associations of methods and messages. Haniett and Mon-
tenyohl[38] have also investigated continuations and caching based approaches in an
object oriented language. Finallx MarpU8Td and Steensgazvd [59] have developed an
automatic on-line appmach that uses sunilar techniques as applied in FUSE.

Run-time overload remlution, as needed in languages such as HaskeU, is very similar
to dynamic binding in object oriented languages. The central idea is to have "dasses"

' W e discuss continuations in Section 6.3.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 38

of types on which overloaded fiuictions (or methods) are dehed. The main Merence
between this model and a general inheritance model is the restxiction to a specific
set of operators for which overloading is dehed ; fidly general user class definitions
may not be made although user datatype extensions may be added to existing class
definitiom.

rii [Ml, Jones discusses using partial evaluation and spcialization to eliminate
the need for a NP-time type dictiomry in HaskeU Haskell implementations resolve
run-time owloading by passing an additional parameter to all overloaded fitnctions.
The additional parameter is the dictionarg which is equivaent to a method dispatch
table in object oriented languages.

The use of dictionaries has man? of the same properties as object oriented dy-
namic dispatch, but in parti&? not king able to resolve the method king in-
voked means that most ammon program analysis techniques do not work verg well.
Haskell does allow the programmer to insert type information expliatly This type
information can then be used to remove the need for the run-time dictïonary search;
this is typically not possible in a more general inheritance ~ e w o r k .

The work by Jones is an interesting counterpoint to the object oriented work by
Dean et al Dean t a h s a more %ragmaticm approach to evaluating the profitability of
particular spscializations, while Jones has a more clean specialization algorithm. In
both cases, the systems must deal with the potential for axponential code expansion
due to unproductive speciaiizations. In Dean e t al this is done by making esthnates
of counts in a call graph while in Jones d e expansion is controlled by a set of con-
straints on instances of calls in the Code. As one example, Jones does not duplicate
specializations through the use of memoization (Section 2.5). Each approach has
diawbacks - Dean's system is less elegant and harder to implement than the Jones
system but seems to yield better overall results. It is likely that some combination
of Dean's model for the frequency of c a b and the Jones model for the overall system
might be an effective approach.

Run-time Code Generation

Although traditional cornpilem perform all cade generation at compile-tirne, there
has been considerable investigation into run- the d e generation. Of these, the
most notable is the Self 1171.

One of the main issues during nin-tirne code generation is when to spend time
pedorming optimilntions, or in other words, determinhg when the reduction in ex-
ecution time is likely to be larger than the time spent on optimization. Leone and
Lee 1561 have investigated applying partial evaluation analysis techniques to this
pmblem. Their basic appmach is to introduœ late and early annotations and to use
these annotations to determine the d e that is statically eompiled (early) and the
code that is dynamically compileci (lote). Early code is compiled into d e that per-
forms any early operations while late code is compiled into d e that genemtes the
run-the code-

Leone and Lee compare this type of annlysis with traditional binding time analy-
sis techniques such as those used by Jones et al [48] and Consel [22]. The obsexvation
is that regular binding time analysis is more consimineci in that there is an exter-
na1 division between static and dynamic annotations (comsponding to early and late
annotations) while in mm-time d e generation, aIl of the static data is in faet avail-
able. The object of run-time specialization is not to take advantage of as much static
information as possible, but rather to take advantage of the subset of static data that
can lead to efficient code pduction.

The FABIUS system built by Leone and Lee performs an interesting form of code
inliiiing; in fact, their rule is similar in fiavour to a d e that we present in our
on-line algorithm. ki FABIUS, d loops are represented as taihcursive fiinctions.
The inlining d e states that fiinctions are only inlined if a late formal parameter
does not appear in a branch of a conditional controlled by a late-stage value. In
some senses, this can interpreted as saying that partial evaluation can only safely
continue in the absence of dynamic conditionals. A similar staternent wil l form part
of the termination criteria for the on-line algorithm presented in Chapter 3.

2.6.2 Raditional Language Compilation

C program analysis

Andersen [5] [71 has investigated a very dinerent domain - spWalization of C pro-
gram. C is in many ways an exhemely d i f n d t language on which to apply partial
evaluation techniques. C is highly imperative; nearly all operations in the language
return values that can be assignecl. Pointers are generally used with W d abandon"

by C programmers and are o b n used in concert with run-tirne memory allocation.
Coercions occur at many levels and alias rehtionships are verg cornmon. Finally, the
exact semantics of many operations in C is dependent on the actual implementation
making it extmmely difECUIt to peiform any substantial transformation and guaran-
tee that the redting program has the same behaviour over all m-time input as the
on- program.

Andersen folowed an interesting approach in his work Rather than directly in-
terpreting the program source, his qmtem mates genemting denswns for the orig-

inal source d e . Generating extensions are not hie innovation (see his thesis [71
for related work) but his particular apphcation of the idea works weU for C. A gen-
erating extension does not aetually incorporate any static data into a new program,
rather it is a program which gïven some static data achially generates the specialized
program. Andersen's main motivations for followhg the generating extensions a p
pmach are, fht, that extensions allow one to process the semantic information once
as a separate issue h m the SPeQalization, and second, extensions defer the gener-
ation of new d e and can be ineorporated into aa execution Çamework so that the

generating extension and the h a l program execute under the same implementation-
dependent semmtics.

Andersen's work is an off-line appmach in that he has separate phases to build
the generating extension and to build the final specialization He does not perform
an automatic BTA on the C source but assumes the existence of binding tirne annota-
tions. Although Andersen's use ofgenerating extensions makes substantial progress
towards performing masonable transformations in an imperative environment, we
feel that in order to have a fully automatic system that can perform non-trivial trans-
formations, it wiU be necessary to bhd the sinalysis and specialization phases more
closely to the partial evaluation pmcess.

Meyer [61] has ale0 investigated imperative language speciakzation. His a p
proach was between an on-line and off-line algorithm; he relies on initial annotations
supplied by the programmer but theo dows the annotations to change during the
evaluation process. He does not directly address the relevance of on-line approaches
but it seems that bis appmach could easily be submed by on-luie appmaches.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 41

Fortran, although being an irnperative language, is in many ways a much more
%endlf' language for partial eduation than is C. One of the groups investigat-
ing Fortran is Baier et al [9]. Their appmach is M y simplistic; they apply an off-
line, monovariant BTA to Fortran programs and then blindly specialize the resulting
a ~ o t a t e d pmgrams.

ALthough the appmach is not tembly sophisticated, the r e d t s are encouraging.
On a number of common Fortran applications (FFT, cubic splines interpolation, and
an n-body particle attraction problem), they achieved ru-tirne deaeases of 2O-'ïO%.
Th& observation was that many Fortran pmgrams have large sections of d e that
are relatively independent of the dynamic data sets and were thus easily s p e d
ized. The spûahation was primarily in the form of loop unmlling and they did not
compare their redting d e to a compiler that perfomed aggressive loop unmlling.
Their code &es mflect this basic property of theïr algorithm - although they experi-
enced code reduction of 50% on one small case, more typically spem'alization expanded
the code by a fàctor of 10 to 100 on larger programs.

There are interesthg questions that this work raises; the nature of the relation-
ship between this type of approach and highly aggressive vectoripng compilers is
unclear. It rnay be possible to use some of the unrollhg andysis techniques used
in vectoripng compilers to reduce the code expansion while retaining most of the
speed impmvement. ALternativelly, it may be masonable to attempt to regularize o p
timizations in the hi&-performance Forhan corximunity be casting their approaches
as instances of partial eduation pmblems. Frameworks such as we propose could
be a starting point for such a dialogue.

Many programs caldate idormation redundantly as a result of partidar meth-
ods for calculation. A classic case is the naive recursive definition of the Fibonacci
numbers; using the naive algorithm, exponential t h e is required versus a reason-
able intuitive hear time aigorithm and a somewhat less obvious log-time algorithm.
In [57], Liu, StoUer, and Teitelbaum present a method for automatically discovering
inductive relationships in programs and then transforming the d e into an incre-
mental version in order to take advantage of the ePsting inductive relationships.

SECT'ION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 42

The presented appmach is simjlar to naive partial evaluation with aggressive mem-
oization and residud pduction. The only equality reasoning performed by Liu et
al is based on symbolic term equali& theR is no obvious reaaon why their approach
could have stronger equality reasoning integrated into it. There has been substantial
work perfomed in this area; we defer to Liu's paper for references to related work

A similar appmach that should be mentioned is the work done independently by
Lawall(551 and Fegaras, Sheard, and Zhou [33]. ki each case, the basic appmach was
to create systems that automatically reason about inductive structures- In Lawall's
case, the actual tran&ormations are then performed by hand, while in Fegaras et
al, the transformations can automatically take place- This approach allows for non-
trivial inductive reasoning and rewriting; Fegaras et al use an approach termed cuta-
motphisms to describe types of inductive relationships for which automatic transfor-
mations are viable.

Other Types of Axdysia

Several groups have investigate performing data flow snalysis through partial evalu-
ation [23] [471 [81]. Partial evaluation natutally pedorms data flow estimates in order
to caldate bînding tïmes in the off-line case, or as part of the interpretation in the
on-line case. In either case, pmviding separate data flow analysis information does
not require a substantial change in appmach. As two specific examples, Vasell [al]
uses an ofMine approach in which the r e s i d d generated by the Uspeaalizer" are
in fact the data flow graphs of interest. The on-line Fuse [70] evaluator manipulates
similar graphs as part ofits intelpal analysis when representing "use" relationships.

Mahkjzer, Heintze, and Danvy 1581 perform partial evaluation on the LAMBDA
intemediate fonn used in earlier versions of the SMUNJ compiler. LAMBDA is a
continuations based (nearly) untyped intermediate form. The adys is pedormed by
Malm4zer et al wes a simple set-based estimation to perform bindiag time analy-
sis, contml flow nnalysis, and data flow d y s i s . The set approximation approach
adopted is a very mervat ive approximation; as one enample, the analysis ignores
dl dependencies between variables. This causes substantial information loss if there
are s t~~c tu ra l reorganizations, loop dependencies, etc. Although the approach pro-
posed in this thesis has an aspect of set based analysis, set-based analysis seems to

be much more valuable in an on-iine environment where dependencies can be inter-

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 43

2.6.3 Other Applications

Ray Tracing

Ray tracing is in a sense the '%rst" application of partial evaluation. In 1986, Mo-
gensen (651 proposed the use of partial evaluation for improving the pedormance
of ray tracing algorithms. The most recent application of partial evaluation to ray
tracing is work by Andersen (81 in 1995.

Ray tracùig is a nearly optimal application for partial evduation. Ray tracing is
computationally expensive, the- is a large static component (the scene) and there
is a large interpretive overhead for dealing with the static component. The primary
parameters in ray tracing are a set of objects, a set of light sources, an eye position
and a window onto the sane. The window is a set of pixels that represent the scene
at some given resolution wi th respect to the abjects, light sources, and eye position.

Aiidersen made a f*ly carefid cornparison with an efnaent raytraacing algorithm
compiled under both gcc and a native platform (HP) compiler on an HP 9000/735.
Specialized versions of the ray-tracing algorithm were built in order to take advan-
tage of static kmwledge regarding combinations of the tbree aspects in the algorithm.
The specialized algorithms performed well in cornparison to the original (optimized)
code, ranging fkom a 20 to 70% reduction in camputation t h e . The cast for the de-
creased computation tune was an increase in code size by a fàctor of 1.1 to 10. Again,
it is undear whether this size/speed tradeoff is in fhct close to "optimal»; it would be
valuable to have a graduated specialization aigorithm and attempt to characterize
the point a t which M e r unrolLing is useless or even counter-productive.

Real-time systems can be parütioned into two broad classifications: so#t red-time
sgstems and IMrd real-tim systems. SoR real-time systems are systems that have
tune mnstraints but where moderate violation of the constraints is not a aitical
problem. Examples of soR real-time systems indude order display in a fast-food
restaurant or frame update in a video game. In hard mal-the systems, violating

time constraints can lead to cafastrophic events. For example, missing a constraint
in an automateci production environment codd lead to defective pmducts or injuq
Similarly, Mure to meet constraints in an allcraR fiight contrai system, partidary
in a high-perfomance jet, may cause a crash.

In [Ml, Nirghe and Pugh investigate the application of partial evaluation to a code
for hard mal-time systems. Perhaps surprisingl~ this is an excellent application for
partiai evaluation. Typicallg, hard mal-time systems disallow al l computation paths
that have unltnown l e n g h implying that recursion, nonanstant bound loops, and
other nonconstant cost operations aie disallowed. NVkhe and Pugh apply partial
evaluation to tmxdorm programs that contain such f e a t u ~ s into systems that meet
constant time operation constraints. Their contention is that by performing such
transformations automaticallg, programmers can develop cade a t a higher level while
maintaining the same hard guarantees.

The model chosen by Nirkhe and Pugh is very restricted. Part of this is due to
the nature of the problem domain, but some of this is &O theh willingness to give
up some expressïveness in order to have weU-understood residual pmgrams. For
example, the store model adopted by this work splits the store into a purely compile-
time component and a purely run-time component.

Nirkhe and Pugh use an o f f h model. Their primary motivation for this choice
is that having a separate BTA allows user interventions in the annotation process
which in hirn leads to tighter control over the characteristics of the finnl residual. In
addition, they felt that handling global values within an on-he evaluation was prob
lematic and that on-line appmaches tend to over-speciaiize. Both of these concems
are addressed expbcitly to some extent in this thesis (Section 6.3) and the general
impmvements in on-line appmaches mahe these issues cbmparably Mdt in auto-
matic systems using both on-line and off-line techniques. The authors of this thesis
do agree, however, that off-tine systems do permit ber user control over annotations
than eurrent on-line pioassing and that this issue aione is suffiCient to justifil using
only ofNine appmaches for hard rd-t ime systems. There has not been any direct re-
search into methods for allowing user intervention in the on-line annotation process.
Although it would certainly be possible to allow user annotations to be intmduced
on an a priori basis, on-line evaluation is more interpretive in nature than off-line
evaluation and as such, it would be more difficult to reason about the consequences
of introducing p a r t i d a r annotations.

Deductive Database Que- Optimization

Deductive databases are composecl ofa normal relational extemional database and
a small intensional database consisting of a set of Hom clauses that define relations
between tuples Li such systems, there are two aspects to evaluating a given query:
evaluating the Hom clauses in the intensional database! and perfonning the relevant
queries on the relational database- When evaluating a query, the o v e d system can
choose either to query the relational database and then interpret the Horn dauses
on a tuple-by-tuple basis or it may choose to "compile" the Hom clauses into a series
of relational database queries.

In (741, Sakama and Itoh report on the application of a simple partial evalua-
tion model to deductive databases. Their basic approach is to first perform a partial
evaluation of the Hom clauses and then to compile the remaining Hom clauses into
relational queries wing the normal method. Their partial evaluation consists pri-
marily of dolding Hom clauses until only r e d v e relationships or extensional
quenes remain. The method chosen by Sakama and Itoh ignores any binding tirne
analysis and does as much wifolding as possible* The resulting system realized query
execution impmvements of20 to 40% on lage queries, but if the partial evaluation
time is included, the improvement is nearly negligible. The system that they propose
seems to consist solely of uafolding; there is Little in the way of real speaalization.

Related to this work is the larger body of work in applying a h c t interpreta-
tion and partial evaluation to Rolog. In parti&, there is a relatively eady (1987)
book (21 dealing with abstract interpretation techniques for dedarative languages.
More recent work in this area inchdes [131 [5U [S2] [67] [69]. Another related topic
is applying partial evduation to soiving systems of constraints [36] [76]. The basic
observation in this work is that constraints have a "declarative" component and can
be manipulated into a new system of parüally solved constraints by applying Prolog-
style rewritings.

Specification Verification

Sridhar and Vemuri [77] use partial evaluation for a rather different type of problem
- verification of temporal specifications in hardware. This work defines a model for
expressing hardware temporal coIIStraints at the register trader level. The lan-
guage they define accepts trace behaviour and determines if the given traces conûict.

Partial evaluation is used to d o w for partidy unknown behaviour in traces which in
tuni allows classes of specifications to be validated simultaneously. Sridhar and Ve-
muri do not present the details of their approach, but their basic language is tightly
constrained due ta the nature ofthe hardware and thus seems as though it would be
amenable to partial evaluation.

Chapter 3

Generalized On-line Partial
Evaluation

O n - h e partial eduation techniques do not use a distinct binding time analysis
@TA) preprocessirig phase. As the speQalization phase progresses, the partial eval-
uator decides whether it wi l l treat each fimction cal1 or variable as dynamic or static.
This decision is only in efféct for the current specidktion decision; each special-
ization decision requires the partial evaluator to evaluate the status of each value
involved in the speciabtiom This approach allows the specializer to change the
status of any d at any point in the process.

In some ways, on-luie techniques tend to be more cornplex than comparable off-
Line techniques. mline methods generally have a more modular aspect - there is a
clear separation between the BTA and specialization phases. abne methods also
have some advantages for self-applcation [4a as well as in allowing for user inter-
vention in the annotations [26]. However, as discussed in earlïer sections, on-line
techniques have advantages in dealing wîth imperative features and in generaliPng
abstract values.

Our primary interest is in making use of partial evaluation techniques for opti-
mization of traditional programs. ûptimizations will ocnv during the intermediate
phases of compilation. This criterion strongly infiuences our decision to use on-iine
methods. Self-applcation (see the discussion on the F'utamura projections in Sec-
tion 2.2) is not an issue and it is uniikely that we would want the user to have direct

SECTION 3.1. DOMAINS FOR ON-LINE PE 48

infiuence over annotations, although we may want ta allow indirect user influence
through the weighting of various o p t h h t i o n tadeoffs Le. Wspeed).

Our appmach has s e d key features: it incorporates uncertain knowledge, it
promotes a consistent meehanism for modeling program behaviour, and it ineorpo-
rates a consistent termination mechanism. The appmach that we will introduce d l
incorporate very general domains for speeiaiization. These domains will cause in-
creased complexity in the termination aiteria, but wil l allow a single rnethod to ad-
dress conœrns about imperative features and normal polyitariant specialization.

3.1 Domains for On-Line PE

In Section 2.4.2 we noted that traditional off-line methods do not adequately model
imperative Ianguage features. The primary reason for the weaker model is in the
appmach to safety and termination. Termination and safety p d for off-liae sys-

tems d y on having a fixed-height lattiQ representing knowledge about the system.
lntuitivelly, this restriction guarantees that the systems will always make progress
towards a solution (fixed-point) that is at most some fixed distance away. Unfortu-
nate15 finite lattice structures cannot adequately model uncertain or partial knowl-
edge in a system.

Consider a statement such as the following
if x = 5 then

y := 7
else

y := 5;

In traditional systems, if x is dynamic we unno t model the value of y after this
statement, other than to say that y is an integer (which we may h a d y know if the
language pmvides that information thrctugh the type system). htuitively, however,
we realize that treating y as dynamic does not adequately reflect what we know
about y, namely that afbr the statement we know that y has either the value 5 or
the value 7. We may not know whifh value y contains, but we do know that there
are a finite number of options. We could then use this information to make hrrther
specializatiom. For example, assume the following statement came next:

if y < 10 then
2 := 7 ;

SECTION 3.1. DOMAINS FOR ON-LINE PE 49

With a traditional approach, y would be mnsidered as dynamic and no speaalization
could OCCUT. k, our system we would realize that this code hgment has the same be-
haviour for dl possible values ofy or in other words, that z will dehitely be assigned
the value 7. In this case the entire statement might dieappear since any subsequent
use of z wodd be replaced by the static value of z, that is, 7. This general approach
will also be used to model structures as wîll be discussed in Section 3.1.2.

There are some difEdties with this approach. Due to the nature of the resulting
domains, a lattice model of the domain is no longer of finite height. I fwe allow sets of
values into our model, we will of- encoupter infinite sets of values in recursive code
when the termination condition for the recursive code is dynamic. ln a traditional a p
pmach this does not pose much of a problem since the BTA will treat the problematic
variable as dynamic and the specializer wil l not have to deal with it. Our appmach
models the growth of a set of values and determines when to &give up" and treat the
variable as dynamic. Due to termination concenur, our approximation to these sets of
values will have to be consemative, but will be able to model partial knowledge more
completely than exisüng systems.

The easiest technique for dealing with sets of values in domains is to use a completely
ad hoc technive. For example, simply using sets of values as an approximation and
inserthg new values into the set as they are enmuntered is a viable approach. In
order to determine when to convert the value to a dynamic status, the cardinality of
the set could be used. In other words, as long as the set has a cardinality of less than
some %igger" value, we continue to add elements to the set. If the set cardinality
surpasses the trigger limit, we begin treating the variable as M y dynadc Under
a lattice model, cardinal* is actually quite clean; the lattice has one leml for each
possible cardinality of sets, with T king above the level representing sets with the
highest permitteci cardinality Figure 31.1 represents a lattiœ for the subset d a -
tionship with sets of cardidi@ less than or 'equal to 4. Each level consists of an
inftnite number of sets of the given cardinality Each of these sets is a subset to an
infinite number of sets at the next level up the lattice. Sets of cardhality four are all
members of T, which represents the set of al l integers.

Although cardinality cari be used, there are several problems wïth this method.

SECTION 3.1. DOMAINS FOR ON-LINE PE

{S such that I S k 4)

v
{S such that ISI = 3)

v
{ S such that ISI = 2)

QD .- -2 -1 O +1 +2 ... +O>

v

Figure 3.1.1: Restricted Subset Lattice

SECTION 3-1. DOMAINS FOR ON-LINE PE 51

FiRt of all (and most importantly), we may perform a great deal of work before de-
ading to treat the variable as dynamic; the computational expense would discourage
ptactical use of the techniques- Second, one of the goals of this work is to move be-
yond informa1 techniques. Although this wodd be a more powerful model than a
simple lattiœ model, we would prefer to have a more consistent appmach.

The basic appmach that we adopt is to mate a g e n d method that is roughly
based on work done by Cousot and Cousot [27], and Bourndoncle [14]. We need to

have a finite model of infinite domaias, but we also need to have a computationally
inexpensive process for making the esthate. When using sets of values, when an
element is added to a set there is no analysis of the set itsel£ This leads to the
problems noted above. In [14], Boumdonde presents a method for approximating
the behaviour of functions by using a pair of intemals. The first intemal gives the
range of the input arguments and the second gives the interval of the output of the

fiinction. For example the interval pair < [l, 51, [IO, 50) > would represent a function
which, when given values in the range 1 to 5, produces values in the range 10 to 50.

Bourdonde generates these intemals by applging a widening operation, V. The
definition of V over integers (VI [14] is as follows:

This operator is very consemative - if you attempt to extend a range in either
direction, the range is extended to infinity Essentially this models a function with a
"base case* and a general case; the base case will be the start of the interval and the
intemal wiil extend to infinity This type of estimate is not usually very informative
due to its very consemative nahue. Bourndonde does introduœ more preeise widen-
ing operators, but does not give any formal framework for deciding which operator to
use for a given widening.

The partitioning work done by Bourndoncle estimates the behaviour of programs
by using abetiact contml points at which intends are calCU18ted. The abstract con-
trol points partition the (ofken inhite) set of program control points (the set of run-
time program States) into a finite set which are used to determine intervals.

Interval pairs will be used in our approach to estimate the behaviour of functions
and to mate equivaience classes of functions (which in turn d e t e d e s termina-

SECTION 3-1. DOMAINS FOR ON-LINE PE 52

tion). The fundamental operation in this approach is to widen domains using the (VI
operato~, The widening operator is a consemative over-estimator for domains; it can
be seen as an imprecise join-

Bourndoncle's approximations are built by successïvely widening the input speci-

fication by the next approximation to the programYs mesining. The program's meaning
is approximated by a safe abgtract meaning function a#, which is defined individu-
ally for each program.

Bourndoncle's appmach is sïmilar to what we will propose - the primary Mer-
ence is that Boumdonde does not discuss udsnown values as part of the input spe&
ficatiom, nor how to automatically Mer a#. Our appmach must be able to deal with
both issues. In addition, sime these estimates are performed in order to permit ter-
mination deeisions to be made, we must distipguish several estimates for the same
function. For esample, consider the followhg:

where z is unknown- We must not include both of the calls to f when constructing the
domain estimate for f. If both estimates were included in the domain, we would lose
all information about the static value in the b t c d . In our work, each of the calls
causes a distinct polgvariant specialization; them is no interaction betareen the two
speaalizations. In general, the ody time at which a dl effects the domain estimate
for another caU to the same fiinction is when the second call occurs within the first,
i-e. when either direct or indirect recvsion occurs.

3.1.2 Issues for Structured Doniriins

A stnrctured type is a composition of basic types using type constructors. Simple ex-
amples inelude m y s , iists, records, and trees. Elements of structured types may
be composed of many gimpler elements. Structures rnay be approached in one of
two ways for the purposes of binding time analysis: the entire structure may have

SECTION 3.1. DOMAINS FOR ON-UNE PE

aegaiar Expiession Notation

A more interesthg avenue for M e r exploration involves the actual domain repre-
sentations for st~ctures. In [a and [39] Hendren intmduces a reguIar expression
notation for describing structures. For binary trees, the regular expressions are com-
posed of a series of the following symbals:

L: a LeR edge

R: a Right edge

D: a Down edge (either a nght or teR edge)

Each of these symbols may be repeated or may have a superscript denoting the num-
ber of instances of the symbol. Thus CL or L2 would both represent two left links. A
supersaipt of indicates one or more links, while a Y" following a term indicates
zero or one occurrences of the term.

Given a path expression such as R2LD+ for the path h m the root of a binary
tree to a node, C, we would have the tree shown in Figure 3.1.2.

Hendren develops a calculus for manipulating expressions and is able to hande
possible paths as welI as certain paths. For example* consider the following impera-
tive code:

Assuming that the truth of the conditional is unlrnown, the path h m a to c afkr
this d e hgment will be D and the path h m a to d will be DL. In [40]. Hendren
gives the following example (with one variable renamed for clarity):

C := h;
while c.left - ni1 do

c := c-left;

SECTION 3.1. DOMAINS FOR ON-LINE PE

Figure 3.1.2: A tree for R ~ L D +

SECTION 3.1. DOMAINS FOR O N - L m PE 56

The path fiom h to c is approxhated iteratively util a fked point is reached; the
approximations are S, (S, L), and (S, L+) which is the firred point. This meam that
either h and c are the same node, or there is a series of one or more le& iinks berneen
h and c.

Hendrens approach to stnxctured domains is essentialIy the same as Boumdon-
de's approach to non-structured domains. Consider the following d e :

C := O;
while c o z do

C := C + 1;

where z is iinknown. Approximating this domain usïng Boumdonde's approach re-
dts in an approximation of [O..ooj for c. This is essentially the same result as Hen-
dren's, as [O..w] can be understood as the set of possible "distancesn h m O to c which
is what the S, Lf expresses in t he stn~ctured domain. Hendren's approximations are
more accurate in some cases; consider the previous example where Hendren's a p
proach captures uncertain knowledge about the direction of the link (we couldn't tell
whether the lipk was R or L, but could s t i l l express the link as D). Bourndonde's
approach, using the simple widening operator, would extend the domain to infini@,
losing some of the informatioa

Hendren's calculus can be understood as a set of widening operators which are
somewhat more precise than Boumdondeys simple widening operatof. Unfortunately,
the cost for the increased precision is incorporating knowledge about the data struc-
ture into the model. In order to model trees, Hendren has spe& abstract values
for lep and right links. When the model is extended to a simple DAG, a tM type of
link, M (middle), needs to be htroduced.

In general, we will not know in advance what the data structure will look like,
and thus we will not be able to generate estimates with the same level of arruracy
as H e n d d s approximations. On the other hand, our approach will not need the
specific knowledge required in Hendren's approach. Finally, Hendren's goals are to

characterize the paths between nodes; we are concemecl with the values on those
paths in addition to the path descriptions.

3.2 Improving Domain Approximations

Tbere are two types of widenings that we will want to perform: a precise tmdening
and a reluxed or general widening. Consider the folloaing imperative example:

if x < y then
z := 5

else
z := 7 ;

If the conditional is static, it is easy to see how to generate exact h w l e d g e about
z. 4 however, the conditional is dynamic, we would like to be able to generate the
precise information that z contakis either a S or a 7. Usïng an imprecise widening
operator we would extend the domain of z h m 5 to oo, which is not a very reasonable
estimate even though it is ucorrect".

Consider also the following two code fkagments:
z := 0;
while x < y do

z := 2 + 1;
X := X + 1;

In both d e fragments, if x and y are both static then we can completely evaluate
the loop and have a single static valw remain for z. 4 however, the conditional is
dynamic, we should not treat the code âagments in the same way Consider the b t
fragment. If the conditional is dymmic, the best estimate that we can make for z is
the intemal [O..ao]. In the second d e hgmen t , however, the best estimate for z is
the pair of (singleton) intervals [0..0], [6..6]. The reason that there is a difference in
the best result is that in the second case we have a constant result and in the first
case we have a eomputed result which depends on a dynamic value.

Although this example only deals wi th integers, we can e0llStrClc-t examples that
demonstrate similar concems in other domains (characters, boolean values, lists, etc).
Our basic appmaeh to dealing with the problem of usiiig only the basic widening oper-
ator is to define two widening operators, each of which will be used in the appropriate
situations.

In the remainder of the chaptet we wiU dehe the o n h e partial evaluation al-
gorithm. The development will occur in three steps: fust we define the pmperties
that abetract domains must sa-, we then define pmperties of the widening oper-
ators, and W p , we define the partial evaluation algorithm by appeahg to these
properties.

3.3 Domains and Widening Operators

When a non-abtract (or concrete) interpreter is definecl for a given laquage, the
interpreter will incorporate knowledge of various tgpes into its operation. Examples
of such types include integer values, booleans, characters, lists, etc. As mentioned
in Section 1.4, in order to perform an a h & interpretation for a given language,
we must define abstract domains that correspond to each type that a non-abstract
interpreter would use. We wïll refer to the set of values represented by a type in the
standard semantics as the naturd concrete &main,

Programming Ianguages normally define primitive operations over the natural
concrete domains; we must define corresponding ab-& operators over the abstract
domains. We must also have some (minimal) guarantees about the behaviour of the
abstract domains in order to be able to build a consistent abstract interpretation.
Fin& we must have a method for trandonnhg a concrete value into an abstract
value, and for transforming an abstract value into a conmete value. Note that for
a gïven nahval concrete domain it may not always be possible to transfo= an ab-
stract value into a p a r t i e natural conaete value; for esample, consider our negu-
tive /zero lpositiue example h m the introduction. It is simple to convert any conmete
natural number into the n ~ u e / z e r o / p o s i t i v e Iattice, but it is not possible to con-
vert a positive or negative abstract value into a single natural nwnber.

In the next section we debe the pmperties that abstract domains must satisfjc
These definitions will apply to a22 absb'act domains. As will be seen in Section 4.2,
the termination and mrrectness of the partial evaluation algorithm depend on only
the gened properties of each abstract domain; there is no dependence on any actual
abstract domain. From a design perspective, this allows a clean distinction to be
made between the partial evaluation algorithm and the actual abstract domains used
in an implementation. In addition, assuming that we have a pmof of correctness for
the system that depends on only the domain pmperties, we can then reduœ a proof of

Figure 3.3.1: Boolean Concrete Domain

correctness for an entire system to a proof that a set of given actual abstract domains
satisfies the given domain and operator requirements. This w i l l be the approach
we adopt in Chapter 5 when we present abtract domains for the integer and list
domains.

Finally, it is &O important to note at this point that the termination and cor-
rectness proofs are not related to the accuracy of the overall system. The accuracy
of an implementation depends primariiy on the a h c t domains that are used in a
particular implementation. If one wishes to have a more accurate interpreter, more
accufate domains may be introduced; the only repui~ement is that the actual abstract
domains satisfg the given constraints.

Within our system we will not use the natural ancrete domains directi~ Concrete
values used by our system will be taken fimm the complete lattiœ formed by lifting
and topping the comsponding natural ancrete domain. Lifting simply introduœs a
-î element and topping introduœs a T element. WB wil l refer to the liRed and topped
natural ancrete domain as the conerete domin. This construction is important as it
dows the interpretation algorithm to detennine the accu18cy of abstract values. As
one example, Figure 3.3.1 shows the ancrete domain lattice that corresponds to the
"boolean" naturai concrete domain.

In order to improve the acxuracy of our results, we do not simply use least upper
bounds on lattice values since least upper bounds can over-generalize abstract val-
ues. Rather, we want to have the interpreter decide when to make the conservative
compromise between accwacy and termination. In order to meet this goal, values in

SECTION 3-3. DOMAINS AND WIDENING OPERATORS 60

the abstract domains (or simply domains) are composeci of a set of incomparable ele-
ments where each element is chosen fkom some lattiœ. As reviewed in Appendix A,
lattice elements t and y are incomparable ifr # y and y # 2. We denote the fact that
z and y are incomparable as zl(y-

The widening operatiom are d e k e d in terms of a modifieci definition of down-
sets. The normal view of dom-sets is discussed in Appendir A; we will bnefly review
the concept hem as well. The basic idea of a down-set is that the dom-set of a lattice
element e, denoted &e, is the set ofelements below (or equal to) that element within
the lattice. We may a h apply the idea of a dom-set to a set; the downiret of a set of
elements is simply the union of the dom-sets of each element.

The abstract models we are intemsted in can be slightly constrained h m the nor-
mal fully general lattices - we are interestai in modeling information about natural
concrete domains. Natural concrete domains (or normal types) are basically sets of
elements. Although these sets may be ordered by various relational operations, they
are not ordered in tems of "meaning". In other words, in any natural concrete do-
main, there do aot exist distinct elements, 2, y such that t subsumes the meaning of
y. This means that every natural concrete domain is composecl of elements which are
incomparable to any other element in that natural ancrete domain. This means that
within the contrete domains, ifz + y then either z = 1 or y = T.

N o r m e a down-set for a lattice element includes all elements in the lattice that
are below the gîven element. We modify this interpretation to indude only the lattice
atoms in the do-set. An dom in a latüce is a value 2 such that 1 4 z and if y # 1
and y < z then y = 2. Intuitively, the atoms are the values in the lattice that are
immediately above 1. In terms of the ancrete domains, the atoms of the concrete
domain are exady the elements of the natural concrete domain. This in tun has
a direct correspondence to what we want our lattiœs of a k c t values to mean -
we want the lattices to express idormation about some subset of the elements in the
natural cancrete domain.

For the rest of the presentation, we will use 1V to reprwient only the atoms below
V. Given this definition of dom-sets, it is shaightforwad to extend the normal
lattice ordering relationship to sets of elements. Given sets of lattice elements, t and
y, we will say that z y if Js c $y. We will muse the term "below" for 2 y; although
this overloads the term with the basic lattice rehtional operator ' < ", conceptually
the two operators have similar semantics Note that we use the term "below" ta mean

SECTION 3.3. DOMAINS AND W I D E ~ G OPERATORS 61

"below or equal ton; when we intend a strict relatiomhip, we will use the term "strictly
below". We use the terms "above" and Ustrictly above" in a similat way. Finally, we
define equaliw by saying that two values, z and y, are equal if & = b.

There are two additional cornments that need to be made regarding this formal
mode1 Fllst, as discussed by Davey and Priestley [30], given an ordered set P, the
set of all dom-sets of P, represented as O(P), is a complete lattiœ under subset
inclusion. In effect, we will be hding upper bounds and least upper bounds in O(P) .
We chehoose to ignore this aspect as we fée1 that simply talking about the dom-sets
themselves is a more intuitive approach while sacrificing no formal expressiveness.
Note that this applies to our modified interpretation of dom-sets as well; the sets are
simply members of the powerset of P. The second comment is that these definitions
are behaviouml and not o p e m t i o d . For all but trivial base lattices, operationally
manipulating dom-sets is eomputationally prohibitive. ki practice however, most
ï.ntuitiven abstract lattices lend themselves quite well to this behavioural description
while retaining efficient computation characterïstics. This issue is developed M e r
in Chapter 5 when we present particular abstract domains.

3.3.2 The Widening Operators

AU widening operations are performed on abstract domains; although we will talk
about pedorming widening operations on values in domains, the reader should keep
in mind that the domains will always be abstmct domuins that sa- the require-
ments discussed in the previous section and in paTticular that any value in a domain
is a set of incomparable elements.

The basic idea of any widening operator is to coalesce two pieces of abstnict in-
formation; the nature of the resulting value depends on the actual (abstract) domain
and the type of widening that is perfonned. There are two types of widening oper-
ators that our algorithm uses: a precise widening operator and a rduxed widening
operator Aprecise widening of two values (sets) of a domain results in a value which
we expect to represent only those elements present in the two original values. A re-
lazed wideaing will result in a value which includes at leu* those elements in the
two original values.

We will use O p to denote a precise widening operator; Op will represent a par-
ti& precise widening operator over a domain V . Normally, we will not explicitly

SECTION 3.3. DOMAINS AND WIDEMNG OPERATORS

Figure 3-32: (a) E Op D and (b) E v D

denote the domain of a widening operator. The conditions for precise widening are
summarized in Definition 3.1.

Defh 3.1 (Recise Widenïng) If Vl and VI are values in some domain,
then Vp is an opemtur such that

On occasion it is usefùl to consider the result of widening several values; we will use
the notation Vp (VI, V2, . . .) to mean (. . . ((VI Vp &)VP V2) VP . - .) -

As noted earlier, the proposed model generalizes other models and fonnalizes the
precision that we want in our model. In general, a simpler approach based strictly on
least upper bounds in the underlying lattice rather than down-sets, can over gener-
alize results. For example, Figure 3.3.2 shows the ciifference in the accllfacy between
joining two elements and taking the union of their down-sets. In each case, the ele-
ments c o v e d by the result are circled. Although this is a somewhat contrived exam-
ple, similar behaviour is manifested in intemal lattiœs and other relatively intuitive
latfices.

There are two fimdamental ciifferences between precise and relaxed widening.
The k t difference is that relaxed wideaing is less restrictive than precise widening

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 63

about the accuracy of resultingvalues. The second difference is that relaxed widening
operators must guarantee that widenïngs cannot orrur indefinitdy without converg-
ing to some stable d u e .

We wi l l use VR to denote a relaxed widening operator; v,' will represent a partic-
ular relaxed widening openitor over a domain D. The conditions for relaxed widening
are swnmarized in Definition 3.2.

Dehi 3.2 (Relaxed Widening) If Vb Vi Wb and W2 are values in some
domain with Wl Ç and W2 E Va then VR is an opemtor such that

and

for any finction f and volue 20, there ezists a k such that
f (zk) t EL wkre 2i = ~ i - ~ v ~ f (ti-1) fir i > O.

Note that in the definition for VR , we only require that the resulting abstract
value include at least the vaiues in the two original abstract values. This implies that
using traditional least upper bound approximations would be acceptable for relaxed
widening operatiom.

This approach to modeling values has two major advantages in cornparison to
the finite height lattiœ model adopted by other systems. First, this model allows
us to differentiate between generaluing values to capture program information and
generalizing values for termination purposes. The former can be done exactly while
the latter must be done in a more consemative marner in order to guarantee termi-
nation. Second, incorporating the convergence requirements with value operations
allows the operators to take advantage of the values that are king manipulated. In
effect this allows the operators to mate a M t e height projection of an infinite height
lattice during ths eduation. This allows interaction between the program and the

SECTION 3.3- DOMAINS AND WIDENING OPERATORS 64

actual set of abstract values rather than determining the enth absttact mode1 before
any evaluation.

Abstraction and Concretization

For each concrete domain and comspanding abstract domain, there must be an ab-
straction fiindion and a concretkation fûnction. Following Jones et al [461, we will
represent an abstraction h c t i o n as a and a conmtization fiindion as y. Given a
value, v , in a concrete domain, a(v) is the corresponding abstract value for W . Given
an abstract d u e , v', in some abstract domain, y(v3 is the corresponding concrete
value for v' in the (lifted and topped) concrete domain. As in Jones et al, we re-
quire that the abstraction and conmtization h ü o o n s be monotonic. h hct ion , f ,
is monotonic if a C b implies that f (a) C f (b) .

Jones et al requires that for every abstract value, transforming the abstract value
into the concrete domain and then back into the abstract domain is an identity oper-
ation. More formallx for a given abstract domain it is required that Vs E {Abstract
Domain) : a(y(s)) = S. We weaken this requirement to say that converting an ab-
stract value into the concrete domain and then back to the abstract domain gener-
ates a value which is above the onpinai value. More formally, we require only that
Vs E {Abstract Domain) : s C a(y(s)). Finallp, we follow Jones et al in requiring
that for every concrete value, ~ o & g the concrete value into the abstract do-
main and then back into the conmte domain pields a value that is above the originai
value. Fonnallp, this is stated as Vs E {Concrete Domain) : s & y(a(s)).

We require that abstracting a concrete value s p d u c e s a minimal, non-bottom
abstract value that can be used to represent S. Formallp, this means that i f a (v) = a

such that y(a) 3 v then a # 1 and there does not eskt a' c a where ?(at) 2 v. We
further extend the meaning of the abstraction fûnction, a, such that if op is a prim-
itive operation in the interpreter, then a(op) is the abstract operation corresponding
to op. Given an n-ary primitive fiuiction, op, the requirement for &(op) is as folows:
given a set of values V I , w2, . - . , un and corresponding abstract values v t , v?, . . . , v,p

such that each v r 7 cl(vi) then (a(op) vf, v:,. - - , v:) 2 op V I , VZ , . . - , un). In addi-
tion, we mquire that a (o p) only produces 1 if one of its arguments is 1 or if the o p
erator is not total and the result of (op V I , 4, . . . , vn) is not defmed. In other words,

(a(op) vf . vp, . - . , v,O) = 1 implies that either for some 1 5 i 5 n, t$' = 1, or that
(op V I , vz , un) is no t defined.

We require that every domain provide a function, Split, that performs value "split-
ting over the relational operations that are defined in the domain. For example,
given a relational expression such as 2 s y over an a h & domain that supports
less-than comparisons, Split provides a pair of abstract values: the fh t abstract value
is a subset of a that contains at least those values that sa- the relation; the second
abstract value is a subset of z that contains at least those values that do not sa-
the relation. Note that we dont require Split to be uarrurate", only %atY in the sense
that each of the pair of resulting values is a superset of the set of values within 2

that satisfjr or dont sa- the given relation. Split could sdely return a pair in
which each value is the original value z. The splitting fiinction d l be used when
we evaluate conditional expressions; it allows us to build "custom" environments for
each branch in the conditional. The full definition of Split depends on the definition
of the standard semantics; we will more carefiilly def ie Split in Section 3.5.3.

3.4 The Language and Standard Semantics

There are three important aspects to any on-line partial evaluation algorithm. First,
the ability of the algorithm to retain static idormation directly determines the qual-
ity of redts. Second, the algorithm must have some method for dealing with the
issue of divergence. Finally, the algorithm must be sound, or equivalently, must pro-
duce correct answers. In order to simplify the presentation and to focus more clearly
on the contributions, we use a very simple language for the interpreter. The language
is a firstorder, pure, fûnctiod language aimilar in form to Scheme [19] or Lisp [78].
Although it is possible to introduœ simple approaches for dealing with higher-order
bct ions , non-trivial approaches have not been investigated in any partial evalua-
tion work; this is discussed M e r in Section 7.2.2.

We assume that there are a finite number of fiuictions; each fiuiction, X x . e, is
identifid by a unique identifier, Ax. e d . When we give the semantic definition for

SECTION 3.4. THE LANGUAGE AND STANDARD SE~~ANTICS 66

function application, we assume that the fiuiction identifier is replaced by the d e h i -
tion of the fiuiction. For the purposes of examples, we will use function names as the
fiinction idenMers. The basic BNF of the language is as follows:

E : : = (i f E E E) 1 (hc.e;a E) /
(op 1 const 1 ident

In general, an expression, e, may interact with the extemal world. For the simple
language we are defining, we requiie that all such interactions occur through the
initial identifier environment used in evaluating e; in other words, al l "dynamicn or
'hm-time" information is provided to e bp way of this initial enviroment. All Aue
variables in e are assumed to use dynamic data and thus the initial identifier envi-
mnment for N contains bindings to concrete values for al l fke variables in the ex-
pression e. This implies that we also assume that fiiiictions do not have free variables
other than to dynamïc input values. Finally, we restrict non-primitive functions to

king single argument (monadid fiuictions. The restrictions regarding free variables
and monadic non-primitive fiinctions are not fundamental but substantidy simpiify
the soundness statement and p m f presented in Chapter 4.

We define the semantics fbr our language by giving an operational semantics la-
beled N. The semantics are defined in terms of a source expression and an environ-
ment. N produces an expression representing the result of evaluating the expression.
Symbolically we represent the general form as N[e] e = et. The environment e con-
tains a mapping for each identifier to a value for the identifier. Thus @(id) = const
for some constant value const. N may not be dehed for parti& expressions. In
parti&, S a primitive is not total, N may be undehed.

SECTION 3.4. THE LANGWAGE AND STANDARD SEMANTICS

Constants

The interpretation of a constant is simply the value of the constant.

N[const] g = const

The interpretation of an identifier is simply the value bound to the identifier within
the current environment.

Conditions

The value of a conditional expression is the value of the appropriate branch of the
expression. The branch is selected based on the result of evduating the controlling
condition. Allowing side-effects would involve having the evaluation of the condition
retum a modified environment that would then be used for the evaluation of the
branches.

N[(if c el ei)]e =
let cf = N[c]e

in
e'

end

Primitive operators

The evaluation of a primitive hction reQuires the evaluation of the arguments and
then the application of the primitive to the resulting argument values. We will not
conœm ourselves with a particular set of primitives but assume the existence of a
"suffiaently rich" set. AUowing sidesffécts would simply imlve havhg a modiiied
enviromnent returned h m each evaluation and passing the modifieci environment
to the next evaluation.

Function Application

A non-primitive fiuiction application involves little more than the evaluation of a
primitive. First we evaluate the argument, then we mate a modifieci environment
containing a binding h m the forxnal argument to the aehial argument value, and
finall~ we evaluate the body of the fiinction in the con- of this new environment.
As with primitive function application, it is straightfomard to extend the d e to
d o w impure, polyadic fûnctions.

3.5 The Online Algorithm

Symbolically, we wïll denote our parsial evaluator as P. The partial evaluator P takes
a source expression, t ao environments, and a boolean flag and produces a pair con-
taining an abstnict value representing the result of the expression and a residual for
the source expression. Symbolically we represent the general form as the following:

We will use the superscript o on variables to denote that they represent an ab-
stract value and wïll use the superscript R to denote variables that represent resid-
uals. The first environment, p, is an environment mapping each identifier to a
pair containing the abstract value and nurent residual for the identifier. Thus
p(id) =< ida, idR >. The second environment, 8, maps fiinction identifie= to es-
timates of hction arguments* As stated earlier, we assume that each function, f,
can be identified by a unique identifier fa. Given a fiinction identifier, fid and a fùnc-
tion application f (v) , we then have 6(fur) = va. The (environment maps function
identifiers to estimates of hct ion values, Given a fiinction identifier, fa and a b c -
tion application f (v) , we will have 6(fia) = fs. The final parameter, d, is a boolean
flag that represents whether the eurrent evaluation path through the source contains
a dynamic conditional statement.

Given an expression e, the initial evaluation of e will have a p environment bind-
h g all free variab1es in e to T, 6 and environments binding a l l function identifiers
to I, and will have d = fâlse. R e d that the initial environment captures the "run-
time" values for e; binding all fiee variables in e to T in the initial environment means
that each free variable has an "unknown" value during evaluation with P.

We wül use the notation first(t),second(t), etc. to represent element projection
fkom a tuple,

3.5.1 Constants

The simplest case for P involves a constant expression. The value of a constant
is simply the correspondhg abstract value for that constant and the residual of a
constant is the constant itsel£ Rewlling that a is our a b c t i o n function, in our

symbolic form the behaviour of? for constants is expressed as the following:

P[cons t] p bc d =< cr(cons t) , cons t > (3.7)

The environment p contains exactly the information that P returns for the identifier's
abstract msult and r e s i d d Thus we only need to rehvn a pair containhg the
current binding for the identifier and the function result environment.

3.5.3 Conditions

The evaluation ofconditional expressions in the partial evaluation algorithm is some-
what more interesting than either constants or identifiers.

P[(if c el e2)]pbcd =
let

< cP, cR >= P[c]pdCd

l P[e& JE d ify(ca) =truc

P[et]~ 8 E d ify(c") =f alse < eu, eR >= (2)
<I, (if c el e2) > i f y (c a) = ~

C(cR er e2 P 86) otherwise

in

< ea,eR >
end

The edua t i on of a conditional begins with the evaluation of the controlling ex-
pression. We then have to deeide whether to treat the redting value as "staticn or
"dynamicn. Recall that the intuitive meaning of %aticn is 'cknown at compile-time".
In the case of a boolean expression, ifthe abstract value has the value "true" or Ydse"
in the natural ancrete domain, then we have def i t e kmwledge about the value of
the expression. Thus in line (2) we decide on our action based on y(ca), the value of
the controIling expression when converted to the ancrete domairi. This is where our
Iifted and topped construction for wncrete domains is used; if the r e d t of concretiz-
ing the value yields T then we know that the abstract value cannot be assumed to
represent exactly h e m or exactly Valse". F'urther, this howledge is independent of
the abstraction chosen by the implementor of the abstract domain.

Ifwe have exact knowledge then we can follow an evaluation that is very similar
to that wïthùi the standard semantics - we simply evaluate the appmpnate branch
of the expression (the first two cases in line 2). Note that in this case the o v e d
residual expression is simply the residual h m the chosen branch; the actual i f

expression. the controhg expression, and the branch that is not chosen will not
exkt in the residual.

If we do not have complete knowledge of the result of the contmlling expression
then the overd result could be the result h m either of the branches. Algorithm C
deals wïth this evaluation and the construction of the appropriate residud.

c(cR el e2 p bc) = (3.10)

let

< PT* PF >= Split(cR, p) (1)

< ef , ef >= P[e& 6C tme (2)

< 5, ef >= P[e2]p, b c tme (3)

in
R R R < e f V p e;, (if c el e2) > (4)

end

SECTION 3.5. TEfE ONfJNE ALGORITHM 72

If for the time being we ignom line 1, Algoritbm C is fhirly straightfomard. The
algorithm independently evaluates the two branches and m a t e s the retum value
and residual. The abstract return value is the redt of precisely widening the values

from the evaluations of the branches. Intuitively one can think about this as a Yunion"
operation expressing that the o v e d result is composed of any possible result fimm
the branches. The residual is a new i f statement wmposed of the residual of the
controllhg expression and the residual of each branch.

Algorithm C uses the additional helper, Split. Although it is always safe to inter-
pret the branches of a conditional expression in the same enviromnent as the entire
statement, we would like to be able to take advantage of any implicit constraints
present in the boolean expression that controls the branches. The Split routine takes
a boolean conditional expression and a identifier binding environment and mates

"tnie" and Y&em resulting envïmnments.

More formallx given a simple relational operation, O, over a parücular domain
Z), and an environment in which identifier x is bound fn a value in domain D, then
the following holds:

where the following three conditions hold:

Condition 1: y is a value in domain D

Condition 2: for all e & p such that N[x 9, y] ,g = true it is the case

P E PT and

Condition3: for d e t p suchthatN[x 9, y] e = fa ise it is the case

that e C P,.

The M e " and " f i e " environments are c~eated by modifying the original envi-
mnment to take advantage of relationships expressed in the conditional expression.
For example given a binding {x ct [l - . -001) within environment p, a reasonable im-
plementation of Split((x < 5) , p) would resuit in environments p, and p, where
(X ct [l . . -41) would be the binding for x in p, and {x c, [S.. -001) would be the
binding for x in p,. Note that when y is an identifier rather than a value, the in-
terpreter can pedorm transformations in order to evaluate the constraints for x and

SECTION 3.5. THE ONLINE ALGORITEIM 73

y independently The definition for Split is what the domains must provide; the in-
terpreter uses this basic definition to pedorm more general fonns of environment
manipulation.

The general appmach to Mplementing Split is to perfonn a simple abstract in-
terpretation over conditiod statements. In order to simpiifs the discussion at this
point, we WU use a trivial Split b c t i o n that m h s no impmvements to the %me"
and Wse" scopes. We will diseuss an a d implementation of Split in more detail
in Section 6.2.

The definition for Split that we will assume is as follows:

In examples that we develop, we will generally assume that we have a slightly more
accurate version of Split; any environment irnprovements that result wiU follow di-
redly h m simple conditional expressions. The proofb that are presented in Chap-
ter 4 depend on only the properties of Split, the pmofk do not depend on this particu-
lar definition of Split.

The interface to Split pmvides very little detail to the abstract domains. In par-
ticular, determining all of the potential constraints that might effect the redting
environmentsi could potentially require that Split have access to the entire program
and be able to interpret arbitrary program texte However, P P a d y knows how
to evaluate programs; P does not know how to manipulate abstract domain values.
Thus the abstract domains pedorm simple abstract value splitting? whüe P performs
the interpretation; an outhe of this appmach will be discussed in Section 6.2.

Primitive operators

Primitive operators are built-in to the source language. We requjre that for every
primitive operator there exist a corresponding abstract version of the operator de-
fined for the abstract domain. As nated earlier, we reuse the abstraction fiinction CE

so that the abstract version of an operatm is represented as a(op).

in

< va, vR >
end

With respect to value computation, this evaluation is very simüar to the corre-
sponding operation in the standard semantics. The actual arguments are evaluated
and the primitive operation is applied to the resulting abstract values. The interest-
ing aspect of this part of the algorithm is in the construction of the residual. The
basic decision is whether to leave the application of the primitive within the residual
or to remove the application and to leave a simple result. The critical observation
is that if we wish to eliminate the application. the value we place into the residual
must be representable within the natutal concrete domain. This makes the decision
re~narkably easy within our framework. We know that the result of applying 7 to an
abstract value yields either a p d d a r value in the nahual concrete domain or one
of T or 1, thus we can replace the application with a simple value exactly when y(va)

is not T or L.

For example. consider the expression (+ 3 (if c 1 2)) . If we assume that c

is unlcnown, this comsponds to adding the value 3 to either 1 or 2. Even if the ab-
stract domain is perfectly accurate and reflects the minimal set of values for (if c
1 2) , the best that the abstract operation cl(+) could do for its result is to calculate
a set of values including 4 and 5. Anp concretization function for this set of values
would mturn T since the natural integer domain in our language m o t express sets
of values. Thus we would create a residual consfructed h m the "+" operator and the
residuals of the two arguments. By applying the d e for constants (Equation 3.7)
and the d e for dynamic conditional expressions (Equation 3.10). we d e t e m e that
the overall residual is identical to the original espression. Note that using this par-
ticular model, we did not perfonn the algebraïc manipulation of moving the addition
operation into the i f statement. Doing so would yield the residual (i f c 4 5) , but
such a transformation is beyond the acope of out curent work. Note that in general
such a transformation may not be desirable; in this case the only time such a trans-
formation does make sense is if both the "3" and either the "1" or "2" evaluated to
constants. If that did not hold then the= would be duplication of the "3" expression
which redts in useless code expansion.

Function Application

In order to clarifg the algorithm, we separate the general function application d e

into two separate des. The fmt rule deah with "unconditional" function applica-
tions which are the applications that wiU be evaluated in any evaluation of the given
code under the standard semantics As with the d e for primitive applications, the
vaIue manipulation mimics the behaviour of evaluation under the standard seman-
tics; the argument is evaluated, a new environment binding the formal argument
name to the abstract value is created, and the body of the function is evaluated in
this context. The residuals for non-primitive fimction a p p l i c a t i ~ ~ are aeated usiag
exactly the same method as for primitive applications. If the abstract value can be
safely transformeci into a value in the corresponding nahval concrete domain, then
the value is representable in the residual and we replace the h c t i o n application
with the value. If the valus cannot safely be represented, the application must re-

main in the residual.

< ea, eR >= P[e]p[xc t< ef, tR >] 6c false (3)

end

Using this d e , consider the following function application:
(define and

(lambda (x y) (if x y false))
1
(and true z)

where z is unknown (has the value T). Assume that the cvrent identifier environ-
ment is empty. The eduation of (and true z) begins by creating the identifier
environment to be used for the evaluation of the body of the and fuaction- By line 2,
the residual for the formal argument y is bound to the identifier y because the value
of the actual argument z is T and x is bound to the constant value true. We thus
use the bindinp (m<true, truc>, yctcT, yz) for the evaluation of the fuaction
body The identifier x has the value true, so we apply the rule for katic condition&
(d e 3.91, redting in the evaluation ofthe expression y O& Applying the identifier
d e , the overall result for the body is <T, p. The actual parameter z has the value
T, so the second argument must remain in the residual, meaning that we use the
second case for pmducing the residual. This choiœ results in the residual ((lambda

(y) y 1 z 1 . Assuming post-processing simplifications, this yields the overall result
< T, z >. This result means that although we do not know anything about the ab-
stract value for the function application, we are able to simplify the residual for the
expression to just the identifier z; the application of the function can be eliminated.

Dynamic Funetion Application

The second case for general bction application avers the case of bction evdua-

tions that oenu during the evaluation of a dynamic conditional expression-

P[(Xx. e)e& bctnie =
let

< er, ef >= P[e& 86 tnie

cf = ([k . eid ct ((k. %)OR ea]

in

if ea Ç c (k . w) then

<eœ, v R >

else

P[(Xx. e)e& 6Cf true

end

end

As discussed in Section 2.4.3, the on-line algorithm must make a decision about
when to M e r investigate branches within a dynamic conditional expression. In our

SECTION 3.5. THE ONLINE ALGORITHM 78

algorithm, the deasion about when to pmceed M e r in the investigation is based
on the search for fited points in the series of fiinction argument values and fiinction
retum values.

This case is in many ways the heart of the entire on-liae partial evaluation algo-

rithm in that this case de& with potentially divergent firaction applications R e d
that at the beginriing of Section 3.5, we introduced the 6 and environmentS. The d
environment maps fuIlction identifiers to estimates of argument values; the envi-
mnment maps function identifie= to estimates of result values.

This part of the algorithm begins in the expeeted way - simply evaluating the
argument of the fiinction. The guard in line 3.150 then checks whether the new
argument is below the current estimate for this fundion in 8. If the current argument
is below the argument estimate then we simply return our curent result estimate.

If the algorithm has found a new parameter to this fûnction, we mu& evaluate
the function body with this new panuneter. In order to guarantee that we make
progress towards a safe estimate, we use the relaxed widening operator to extead
the current estimate by the new parameter value. The widening operation may pro-
duce a new abstract value that represents arbitrarily more concrete values than the
previous estimate. In order to produœ a correct estimate of the function tedt, we
must evaluate the body of the fiinction with all of the new values. Thus, rather than
simply using the abstract parameter value, wa mu& use al l of the new estimate Le.
d'(Axe x.eid)). In lines 3.15(5,6) the new identifier environment is built. Line 3.15(7)
evaluates the body of the hction using the new definitions Lines 3.15(8,9) configure
the function residual and an aepanded result estimate-

The guard in line 3.15(10) determines whether the current value is new. If not,
we can can p d u œ this value and the tesidual as the result. If the result is new,
we must continue our evaluation. It is important to note that in line 3.15(12) we
must re-evaluate the entire original application, including the actual parametet The
reason for the full re-evaluation is that the achial parameter value may depend on
the results of the function. Ifwe do not re-evalute the argument, the argument does
not take the new result estimates into account.

3.6.5 An Example of the Algorithm

In order to illustrate the behaviour of the algorithm, we will consider a function that
sums integers in the range h m s tart to stop.

(define (Sum start s top)
(i f (> start s top)

O

(+ start (Sum (+ 1 start) s top)
1)

We will use the simple negduel zero /positive abstract domain that was disnissed
in Section 1.4.1. Within the traces we will simply use subsets of (N,Z,P) as our ab-
st rac t values and use set union for both precise and relaxed widening. This example
wiU be revisited in Section 5.1.3 but with a more accurate mode1 for integers.

To reduœ the effort needed in follow the examples, we have included a concise
version of the algorithm (the d e s ody) in Appendix B.

In order to keep the example trace to a masonable size, we wi l l skip most of the
*uninterestuig" steps in the denvation and WU focus on the recursive evaluations of
Sum. In the enample, we v d evaluate ~ u m h m 1 to x where x is iinknown Le. Tl.

We assume that we have an accurate Split fiuiction.

Givenanevaluation (~ u m (+ I start) stop),wewillhaveatracestepofthe
form:

(Sum t y 1 &tort) C(stop) c
where z is the value of (+ 1 s tart) , y is the value of s top, and the 6 and C values
are as given. In terms of the evaluation, this captures the state -of ey for each ar-
gument and the state of b and c immediately following line 3.15~ where the actual
parameter is evaiuated.

Each nested evaluation of the body will be indented; since the re-evaluation of
the entire expression with the new environment (in line 3.15(12)) is strictly tail-
recursive, we will not indent for this case. Since all but the initial c d to Sum accur
as a result of evaluating the body of ~ u m , aRer each completed recursive evaluation
of sw we wiU give the overall value for eu in the form "ea = ZVp (z + y)". This
reflects the basic evaluation for the body of ~ u m in any cal1 for thie example - the

conditional expression will always be iurlorown, so the o v e d r e d t will always be
a precise widening of the values of each branch. The value of the nrst conditional
b m c h is always zero and (z +y) is the value of the second conditional branch where
z is the value of start during the evaluation of the body and y is the resdt of the
r e d v e evaluation. It is very important to note that z = b(start)VR z since, as
defined by line 3.15(61, the body is evaluated in the p' environment found by widening
the old 6 value by the new er value.

Finallx a f k giving the new eu d u e , we present a trace line that gives the value
for C which determines whether eQ is the r e d t or whether another evaluation is
necessary

A sequence of trace lines h m a recursive evaluation mïght look Iüre the following:

The two evaluated parameter values are given in the (sum P P) fiagrnent of the
f h t line. In this example, it is not the case that both parameter values are below the
respective values in 6 (represented by the next two values in the trace linel. Thus an
evaluation ofthe body results. The evaluation of the body (eventually) yields another
recursive evaluation of ~urn

The two evaluated parameter values for the recursive evaluation are given in the
second (S m P P) hgment. In this case each new parameter value is below the
respective d u e in 6 (the next two values in the trace line). This means that in the
algorithm the value returned would be the value of e, which in this case is I.

The next trace Iuie shows the computed value for the body of Sum for the fk t
evaluation. Note that the 'Y value in the expression =(P + 1)" results h m the
value bound to s tart during the evaluation of the body This vaiue was calculated
fkom a relased widening of the old b value (i.e. I) by the ep value (Le. P).

The third line amputes the new Q value which is always the old 6 value widened
by the computed ea value. in this case, the old E value is I and the ea value is 2.
Since e" g (, we must mevalute the original expression wi th the new cf.

Chapter 4

Analysis of the On-line
Algorithm

4.1 Derivations

In order to characterize computations under the standard semantics, we wiU need
to be able to ta& about derivations within mmputations in the standard semantics.
A &rived evcrluatim is simply an evaluation that is used as part of the evaluation
of some other expression. We can give a somewhat informal inductive definition as
follows:

1. cons t and ident have no derived expressions.

2. (if c el e2) has derived computations c, and either el or ez depending on
the value of c.

3. (OP el ea - - . en) has derived computations el ez . . . h.
4. (X x . e el) has derived computations el and e [x * r] where t is the value of

el-

It follows directly h m the definition of derivations that the evaluation of N[E]~
must have a finite nuniber of derived evaluations if the evaluation is welldefined.
Thus there are two conditions under which NIE]@ is not defined - if the result of a
non-total primitive is not defined or i f N [~] ~ does not have a finite derivation.

4.2 Soundness and Termination

The algorithm that we have presented for partial evaluation performs an interpre-
tation of the original program. The interpretation algorithm is not guaranteed to
terminate in all cases. In parti&, if every possible execution of the source pro-
gram diverges, the interpreter wil l diverge* R e d that in Chapter 2 we inhduced
static and dynamic partitions of data in the context of the MUc equatiom. The first
Mir equation expresses the idea that we incorporate the static data into the original
program to produœ a new program that executes with the dynamic data. A (slightly
modifiedl version of the first Mrjc equation is as follows:

ln terms of this definition, we will show that given an expression e and static data s
where there exists dynamic data D such that N[e](s, D) is welldehed, then P[(e, s)]
is well-defmed. The partial evaluation algorithm may terminate even if there is no
D such that N[e](s, D) is welldefhed, but we do not formally guarantee termination
in such cases. In our approach we treat the static data s as being embedded in e; this
is manifested in that neither P nor N take a static environment as a parameter.

R e d that the dynamic data D is encapeuiated in the initial environments for N
and P. In the case of P all such bindings will be to T while for N all bindings will
be to par t idar conerete data. The idenmers mapped by the initial envllonments
for either N or P are always the same - the fke variables in the expression being
evaluated. We can appiy the concept of ordering to these environments; in partidar
we can define a C operator for the environments. We define t between identifier
envllonments e and p as follows: e C p if for dl identüiers x E e, there exists a map-
ping (x ct v) E p such that a(p(x)) t first(v). This means that an environment is
%log a second environment if all of the bindings contained in. the first environ-
ment are below the bindings in the second environment. Note that we will be using
quantifiers over the e environments used in evaluating an expression e with N. Such
quantifications relate to the values bound to the fkee variables in e. For example, the
statement "for a l l p. . ." should b interpmted as îor any set ofconcrete d u e s bound
to the idenaers in e . . . ".

The definition for "below" for two function argument environments, d and O is
more straightforward: 6 C 6' if for alI bindings Ax. 9 E d it is the case that
qxx. eid) E ~ ' (h . -1.

Finally, we defme 'hlow" for tao fiinction r e m spvhnments in the same way
as for fiuiction argument envllonments: & Q if for all bindings X x . % c, Xx . ez E C
it is thecase t h a t a h . ~) & (' ((X x . - e a) -

As noted in Section 3.3.1, we use the term "below" to mean ubelow or equal ton
and use the term "stnctly belod' for the &ronger dationship.

W e begin by pmvïng several usefbl pmperties that wiU assist in the main p d The
basic idea of the first tbeorem is that if an a b & value can be concretized into a
single conaete value, the concretized value muet be the same as the original value.

Given any ubstract v& ea where r(eQ) # {T, 1) und N[e]e y(ea)
then N[e]g = y (ea).

By assumption r(ea) # {T, I) so there exists a value c = y(ea) in the concrete do-
main. Assume that there is some value c' such that c # d and N[e]p = d. Then c'
& c. The dehition of concrete domain States that given z, y in some concrete domain
C such that x , y # (T, I) and z jf y then z = y. This contradicts c # é, so it must be
the case that N[e] e = y(ea).
O

The next theorem only refers to N and characterizes the nature of r e m i v e eval-
uations in the standard semantics The basic point of tbe theoremis that if we have
some set of wrrect solutions for a function f , then for any evaluation off that pro-
duces a new result, there is some recursive evaluation of f that produœs a new result
without relying on another r e d v e evaluation of f to produce a result outside the
estimate. A more intuitive way of stating this property is that any evaluation that
pmduces a new resdt does so with only a finite number of renvsive c a b that them-
selves produce new results.

The important thing to note with respect to this theorem is that the theorem
is not simply a finiteness pmperty; the fundamental statement is that given a new

SECTION 4.2- SOUNDNESS AND TERMINATION 85

argument value there must be some paTticular evaluation that only relies on either
known results of the fitnction, or on no M e r remusive evaluation of the firnction.
This property wilI be critical in proving our main theorem.

Given sets of values D, Df, und X, such t h t D ç Dr and r E D implies
N[k. e r]g E X then if t h e exists r1 E LV sueh t h t

Assume r1 E Df such that N[k. e rl]e # X. Either N [k . e ri] e derives some
N[k. e r&' such that r2 E D' and N [k . e r2]e X or it does not derive any such
evaluation.

Assume that for all rl E Dr, N[k. e rl]e derives some N [h . e t2]ef such that
r2 E Df and N [k . e r2]e 6 X. Then each rl E D' derives some other value in LY and
the derivation of N [k . e +de ean not be not finite.

Thus there exists t* E D' such that N [h . e +*le X and N [k . e +*le does not
derive any N[k. e d e where r 2 E Df and N [h . e r2]e g X.

O

AU of the following pmofs of soundness and termination only rely on properties of
the abstract values that P produces. In order to simpIify the proofa: slightly, we wil l
ignore the residuals that are produced. In terms of notation, this means that we will
d o w direct comparisons such as P[e] p 6[d C A for an abstract value A rather than
the fidl expression first (P[e] p 6 6 d) & A.

We wiU also be somewhat iazy with respect to one additional aspect of our nota-
tion. The statements of the theorems relate values found by N to values found by P.
In order to have a me- C relationship, we must amvert the values pmduced

SECTION 4.2. SOUNDNESS AND TERMINATION 86

by N into the abstract domain using the abstraction firnction a. Rather than repeat-
h g the cl on every comparison, we adopt the additional convention that a comparison
such as N[e]e & A for some abstract value A wiU mean a(N[e]e) f A.

The following theorem is our main theorem; the actual soundness statement is
a direct coroUarp of this theorem. The basic statemeat of the theorem is that given
some set of correct result estimates for some set of argument values, the result of P
is correct when evaluating any expression.

The theorem is quantifieci over the environment given to P; the theorem holds for
a . environment that is a safe estimate for some set of possible environments used in
the standard semantics.

There are two basic preconditions for the theorem:

1. the environments that we consider are those for which the expression is well-
defined in the standard semantics, (Le. those for which the derivation is finite
and does not produce bottom), and

2. that for any function, f, the result estimates in C(f) are correct for the argu-
ments in b(f) .

Theorem 4.3

For al1 expressions E, e C p. a d boolean values d such that

Ushg both of the shortcuts in notation, the theorem can be re-stated as the fol-
lowing:

SECTION 4.2. SOUNDNESS AND T E ~ ~ A T I O N

For all expressions E, e & p, and boolean values d such that

2. for all functions f and expressions el derived by NIE] e,

it is the case that
N[E]e 5 P[E] p 6E d.

Case 1: E = const.

E is evaluated by N using d e 3.2 and P applies d e 3.7. By definition of
rule 3.2, for any e, N[cons t] e = cons t. By definition of d e 3.7, P[cons t] p d =
~(cons t) . Thus, by definition of a,

Case 2: E = ident.

E is evaluated by N using d e 3.3. Then P applies d e 3.8. Since by as-
sumption e C p we have e(ident) & p(ident).

Case3 E = (if c el e2).

E is evaluated by N ushg d e 3.4. Then P applies rule 3.9. In bath 3.4<1)
and 3.9(1) the subexpression c is evaluated.

By induction, a(c) C c*.

The cases in 3.9~2) depend on whether y (ca) E (T, 1).

Casei:Assume y(ca) E (true, faïse). By Thm. 4.1, the value of c' in 3 . 4 ~
must be the same as y(ca). Since 7(ca) = e', we know that N and P evd-
uate the same subexpression of E in 3.4(2) and 3.9(2) respectively. Thus, by
induction, the result of N is below the result produœd by P.

Case ii: Assume r(ca) = T. Then Algorithm C (3.10) is applied, and P evaluates
both el and e2 pmducing ef and eg.

SECTION 4.2. SOUNDNESS AND TERMINATION 88

Assume N evaluates only el, producing e;. Consider the evaluation of el in
d e 3.10. By definition of Split, the p, environment produced by Split must
be above any e such that condition c is satisdied. Thus if el is evaluated by

N, e p,. This satïdes the conditions for induction, so a(e;) ey .

Since by induction e? satis£ies the theorem and by definition z C zVp y

for all 2, y, we have a(ei) & e? & (eyVp eg) and thus by transitivity a(e;)
& (erVp e;), so the theorem holds-

A symmetric argument holds when N evaluates only e2.

Case iii: Assume *(ca) = 1. Then N[c] e = 1. This means that no evduation
of N[c] e is defined, which contradicts our theorem assumption. Having P
produce I is consistent with the result h m N - the evaluation does not
have a defined meaning.

Case4: E = (op ele? ... e,,).
E is evaluated by N using d e 3.5. Then P applies d e 3.13.

By definition of a(op) , we know that i fa (e i) & e? for all i 5 i < n then

In d e s 3.5 and 3.13 respectiveIs each of the subexpressions is evaluated.
By induction, the r e d t of N is below the result produced by P for each
subexpression S. Thus by definition the result of applying op in N must be
below the r e d t of applying op) in P. Thus the theorem holds.

Case5: E = (A x e el) andd=fhlse.

E is evaluated by N using nile 3.6. Then P applies either d e 3.14 or
d e 3.15. Assume P applies rule 3.14.

The overall result h m P is e". In order to show that the theorem holds,
we only need to show that e[x c, ei] & p[x ct< e;, ef >] in order to apply
induction. By o u inductive hypothesis, p g p so for all identifie= other than
x, &(&dent)) p(ident). By induction a(e;) f ep, so a(&)) = a(@;)
& er . Thus the theorem holds.

SECTION 4.2. SOUNDNESS AND TERMINATION 89

The final case is when a fiinction cal1 is evaluated by N using d e 3.6 and
by P using d e 3.15.

There are three main cases to the proof; each case comsponds to one of the
retuni values generated by P (lines 3.15(3,11,12)). Case 1 and Case 3 are the
straightforaard cases, while Case 2 has a more interesting behavio-

Case 1 holds when the d u e of the given argument is already in our set of
possible argument values- Since ((X x . w) is the set of solutions for the given
arguments, it is safe to r e m the current result estimate (in e&.

Case 2 is the most interesting case. In this case we have not àiscovered any
new results aven though we have new possible arguments. The key to this

case is in showing that the= cannot be any result in the standard semantics
that is in fact outside the current estimate-

Case 3 is the case when we have discovemd new fiiaction results. In this
case, we m u t re-evaluate the function taking into aecount the new results.

The following holds by simple induction and is used in each case, so we state

it before going iato the tbree cases.

This case holds when the value of the given argument is already in our set of
possible argument values- Since ((X x . w) is the set of solutions for the given
arguments, it is safe to return the current result estimate (in C (k . e id)) .

By transitivity of & , given the case assumption and 4.16, N [q] e C J(k. a).
Thus by the second precondition of the theorem, N[&. e el] e c (k - w).
By n p t i o n of the case, the guard in line 3.15(2) of the algorithm holds,
so by 1i.e 3.15(3),

Thus by substitution (h m 4.17),

SECTION 4.2. SOUNDNESS AND TERMINA~ON 90

In this case we have not discovered any new r e d t s even though we have
new possible arguments. W e must show that it cannot be the case that P
pduces a result below ah. w) if we would have new results h m any
evaluation in the standard semantics. This is a proof by contradiction; we
assume that N produœs a redt outside of ((X x . w) and show that a con-
tradiction results.

Assume N[(Xx . e el)] e ((Xx. a). By the contradant of the second
theorem precondition, it follows that N[ei] e g 6 (k . w).

By construction (line 3.15(4)), 6 E 6'. Since the second precondition of the
theorem holds, by Theorem 4.2 the= must exist some r' & P (k . e d) such
that

where

N[k. e T'] e does not denve any N [k . e r2] e g C (k . ed) (4.19)

Now consider the evaluation e" = P[e]pf 6' C txue in line 3.15(7).

By construction, p' = p[x ct 6'1. B y assumption, r' C 6' (Ax . ed), so e[x e

r'] & pr. By 4-19 (hm Theorem 4.21, ail computations denved h m N [k . e r'] e
sa- the second precondition of the theorem. Thus by induction, it is the
case that

N [h . el r'] 5 P[e]p'#(tme.

In this the case we have discovered new firnction results. We must re-
evaluate the fiuiction taking into a m t the new redts.

SECTION 4.2. SOUNDNESS AND TERMINATION 91

B y definition of the algorithm, in this case neither of the guards in lines 3.15(2)
and 3,15(ro) hold, so the result is

Thus by induction,

N[k. e el] e & P [k . e el] p true.

For dl espressiom E. e p, and boolean values d such thut NIE] g is defined it is
the case that N[E]~ P I 4 p 6(d where b(fid) = 1 fir dl fa and ((f') = 1 fbr d l fid-

This follows trivially from Theorem 4.3 since L is a correct resuit for any expres-
sion in N given I as an argument.

Termination

We will set the pmofe of termination in the context of the derivations introduced
earlier, except that we now label each step in the denvation, In addition, we now
introduce derivations for P. In order to distinguish between derivations in N and P,
we will cali use the tenn evduotion path when talklig about denvations in P.

A (possibly idhite) evaluatïon path is a sequence Pi, . . . representing the steps
in a derivation by P. Each Pi represents an application of some d e in the algorithm
of the form P[e&i 6i di. We will use the additionai notations pl, . . . , and 61, . . . , and

SECTION 4.2. SOUNDNESS AND TERMINATION 92

dl , . . . to represent the respective SeQuences of parameters to evaluations Pt, . . . in
some eduation path.

The overd proof of termination is constn~cted fimm thRe lemmas. The k t

lemma shows that if the d parameter to P becomes m e , it remains true- The second
lemma shows that the the number ofsteps that P takes with d being fdse is bounded
by the number of steps taken in an evaluation by N. The third lemma shows that
the number of steps taken by P when d is true is bounded.

Lemma 4 e 3 . 1 Given an euduution path P l , . . . and k sueh that dk = true then there
exists jsuchthut0 5 j < kanddl ,... ,di, ... isofthefinttfal~e~, -. - , f b l ~ e ~ , t ~ ~ e j + ~

Given an evaluation Pi, then either 4 = 4 - 1 (by d e s 3.9(1,2), 3.13(1), 3.1441,3)),
and 3.15(1,7,~)) or 4 = true (by d e s 3.10(2,3)). Thus, by induction, for any i 5 j we
have di = false implies di = f&e and for any i 2 j + 1 we have dj+, = true implies
d; = tnxe.
O

Lemma 4.3.1 does not deal with the value of the d parameter for the base case.

The two cases are straightfomard: it follows h m the Lemma that if dl = fdse then
j 2 i andifdl = true then j = O .

Lemma 43.2 Given an euduution path Pl , . . . fir P[E]~ b d and a finite evalwtion
path N I , . . . , N, for NIE] e where e p then the number of Pi evaluations with
4 = fdse is less than or equd to the n.

We pmve this lemma by showing that for an evaluation of E by N, i fd = f&e then 'P
performs no more evalmtion steps than N.

Case 1: E = const.

Then each of N and P return a d u e in a single step.

SECTION 4-2- SOUNDNESS AND TERMINATION

Case 2: E = ident.

Then each of N and 'P retum a value in a single step.

Case3: E = (if c el e2).

Then E is evduated by N using 3.4 and by P using 3.9.

In both 3 .M) and 3.9(1) the subexpression c is evaluated. By induction we
assume that P takes no more steps than N.
The cases in 3.9~4) depend on whether y (P) E {T, 1).

Case i: Assume y(ca) E {true, false).

By Thm. 4.1, the value of d in 3.41) must be the same as y(F). Since
y (P) = I, N and P evaluate the same subexpression of E in 3.42) and 3.9(4)
respectively. By induction we conclude that P takes no more evaluation steps
thsin N*

Case ii: Assume r(cQ) = 1.

Then P returns -L in a single step and the theorem holds.

Case iik Assume y(ca) = T.

Then Algorithm C (3.10) io applied, and the evaluations of el and e2 have d =
hue- T'hue P evaluates neither el nor ez with d = false whïle N evaluates
one of el and e2. Thus P takes fewer steps with d = taise than the number
of steps taken by N.

Case4: E = (op elez ...%).

Then E is evaluated by N using d e 3.5 and by P using rule 3.13. In each
rule each subexpressions ei is evaluated. By induction we assume that P
takes no more steps than Non each argument, so the theorem holds.

Cases: E = (k . e el).

Then E is evaluated by N using rule 3.6 and by P using d e 3.14 since by
assumption d = false.

SECTION 4.2. SOUNDNESS AND TERMINATION 94

B y induction, the evaluations by P in lines 3.14(1,3) must take fewer steps
than the correspondiiig eduations by N in lines 3 . 6 c i ~ . Thus the theorem
holds.

Lemma 4.3.3 Given an expression E and an evduntion path ruith dl = ttue then
there d t s n such that the sequence that Pl, - . . tem-nates at 9,.

By Lemma 4.3.1,4 = tnie for dl i > i since by assumption dl = me. By definition of
rules 3.14 and 3.15 this implies that dl function applications in Pl , . - . are evaluated
using d e 3.15.

Let fi, f2,. - - , fm be the finite universe of fiinctionidentifiers evaluated by P l , . . -.
Consider the sequence Ji, &, . . . of fiinction argument entnronments.

By definition of the algorithm, for all steps other than 3.15(4), we have = Ji.

In 3.15(4), we have that = &[AL% ct (&(Xx.%) VR er)]. Since Si+i = 4
holds for all d e s other than 3.15(2), we now ignore the other stsps in the evaluation
and consider ody the sequence Pl, . . . where each Pi is an evaluation of a hc t ion
application ushg d e 3.15.

We first show that after a finite number of steps the sequenœ 4,. . . reaches a
fixed-point; i.e. that bk+t = 4 for some 6. We will then show that if &+l = & then
P k + l terminates.

Consider the separate sequencerr of values mapped to fi within 61, . - -. For each fi
we label the sequence as zf , tf, For simpliaa well eonsidera single sequence
xl,t2, . . . for a given funciion fi. There are two pssibilities for the sequence zl, . . . :
if fi is evaluated only m times, then for ail j > O, zm+j = zm. If fi is evaluated an
unbounded number of times, then by 3.15(4), Z ~ + I = zi VR vi where v; is the value of
er found by Pi in h e 3.15(1). By definition of VR , for any function f and value 20,

there &ts a L sueh that f (zk) zk where zi = Z;-IVR f (~ ~ - 1) foi i > 0.

Since by definition of 3.15(0 and 3.15(1), vi = g(vi-1) where "g" is evaluated in
3.15(1), there must exist a k such that = zt VR vk = Zi. Since our argument was
made for any h c t i o n fi, we know that for each h c t i o n fi in fi, . . . , f, the= exists

SECTION 4.2. SOUNDNESS AND TERMINATION 95

a mmponding 4. By assumption, f i , . . . , f, is finite, so aRer at most K = x b
steps, we know that 6 ~ + i = bK.

We have lefi to show that if htl = dk then PI+i terminates. By definition of
d e 3.156) the abstract values bound to identifiers in sequenœ of p environrnents
follow the same widening operations as the d sequence. Thus when bk+i = & we also
wiU have pk+l = pk ifwe consider only the abstract values in each pi (ie. we ignore
the residuals in each pi). Ifpkti = pk and dk+1 = & then v ~ + l = P[ei]pk+,+i A+i tm~e =
P[ei]h % truc = vk. But the ked-point of the 6 envimnments is found with respect
to the sequenœ of vi values, so vk+l bk+l(fi). Thus the guard in line 3.15<10) is
satisfied and 3.15(11) produœs a value.

Given an expression E such that N[E] e tenninates fOr some environment
e, then given any p 2 e, PIE] p bc d tenninates.

By Lemma 4.3.2, any sequence of evaluations Pl, . . . in which every 4. = fake must
be finite. By Lemma 4.3.1 if there exists some di = true then for al1 j > i, we know
that di = tme. Finallx by Lemma 4.3.3, any sequence of evaluations in which all
d j = tnie must be finite. Thus the entire evaluation must be finite.
a

Lemmas 4.3.1 and 4.3.3 are interesting in tenns of the 'bhaviouf of the overall
algorithm. By selecting dl = fiilse we reaiize the termination statement we have
given, but a comllary of Lemma 4.3.3 is that selecting dl = true results in an algo-
rithm that guarantees termination in aü cases. Although in practice such a choice
results in a substantial loss of accuracy, t h observation leads to an heuristic for
guaranteeing tennination in all cases - allow dl = false, but select a value j such
that for any i > j the interpreter forces di = true. This metbod for termination
forces the abstract domains to find fked-points over aLl calls in an evaluation path
including the static h c t i o n calls.

The correctness r e d t s in the previous section ignored the residuals; although we
now know that the ab-& d u e s are souad with respect to calculations in the stan-
dard semantics and that the abstract calculation terminates, we still need to show
that the residuals caldate the same r e d t as any interpretation in the standard se-
mantics- The argument is a straightfomard structural induction over any expression
and relies on the mundness r e d t s h m the previous section.

GNeB an expression E such that eR = sea>nd(P[E] p d) then for all
e Ç p, such that second(p(ident)) is a correct residud fir ident, it is
the case that N [f l e = NIE]@.

Case 1: E = const.

E is evaluated using by N using 3.2 and by P using 3.7. Siace const is the
residual, it must be correct.

Case 2: E = ident.

E is evaluated using by N using 3.3 and by P using 3.8. By assumption,
second (p(ident)) is a correct residual for ident .

Case3: E = (if c el e2).

Then E is evaluated by N using 3.4 and by P using 3.9.

In both 3.4(1) and 3.9(1) the subexpression c is evaluated. By induction we
assume that cR is correct. The overall residuai pduced in t h case depends
on the which choice is made in 3 . 9 ~ .

Case i: Assume ?(cm) = true.
%y Thm. 4.3.1, every evaluation in the standard semantics pro-
duces true for c. Thus the original expression is equivaent to (if
true el e2 1. By definition of the standard semantics (line 3-42)),

the result of this expression is the result of evaluating el in the
same environment as the original expression. Thus it is safe to

evduate only el. Sînce by induction ef is a safe residual for el, ef
is a safe residual for the entire expression. A symmetric argument
holds when y(Ç) = false.

Case ii: Assume y(P) = 1.
Then the original expression is the residud Trivially this is a safe
residual,

Case fi: Assume y(F) = T.

Then Algorithm C (3.10) is appsed, and P evaluates both el and
el pmduâng residuals ef and ef. Since by induction each of the
r e s i d d for the subexpressions are correct and since C simply re-
places each wmponent of the overall expression with correct subex-
pressions, the residual pmduced by C must be correct.

Case4 E = (op elez.--e&

Then E is evaluated by N using d e 3.5 and by P using rule 3.13. In each
rule each subexpressions ei is evaluated. By induction we assume that the
residual for each subexpression is correct.

There are two cases for the construction of the residual.

Case i: y(P) 6 {T, L).

Then by Thm. 4.1, y (va) is exactly the value pmduced by N[E] e, so

we can tnvially replace the operation by this value.

Case ii: 7 (va) E (T, LI.

Then the residual is the original operation applied to the residuals
of the arguments. Since the residual of each argument is correct,
the entire residual is correct.

Case 5: E = (Xx. e el) and d = false. Then E is evduated by N using d e 3.6 and
by P using rule 3.14 since by asaumption d = falae.

W e need to show that new residual bindhp created in p are correct and that
the overall residual is correct.

Part 1: The residual bound to x within p is either y(ey) or the identifier x
itself Ify(er) is chosen as the residual then y(ey) 4 {T, 1) and by Thm. 4.1,

this is a correct residud If the identifier x is chosen as the residual then
the binding is correct assuming that x is a formal parameter in the final
residual. By definition of 3,14(4), x will be a formal panuneter in the final
residual unless the final residual is a constant in the concrete domain. If the
final residual is a constant, then no identifiem c m ex& in the residual in
which case any residual for x in p would be trivially correct.

Part 2: There are two cases for the overall residual. I€y(ef) is chosen as
the residual then ~ (e ?) 6 {T, 1) and by Thm. 4.1, this is a correct residual.
If (Ux.eR ef) is the o v e d residud then the o v e d residual must be
correct since by induction, eR and ef are both correct.

Case6: E = (Xx-e el) andd=true,

Then E is evaluated by N using rule 3.6 and by P using d e 3.15 since by
assumption d = true.

By induction ef is correct, so the residual pduced in 3.15W is correct.

By the a similar v e n t as in Case 5 (Part 11, the residual bound to x in
p is correct. If the residual in line 3.15Cii) is the result, then by the same
argument as in Case 5 (Part 2), the residual must be correct. If the residual
in line 3.15<12) is the redt, then since the bindings passed to the r e d v e
evaluation are the same as those passed to this dl, by induction the result-
ing residual mu& be correct.

There a few interesthg points to note about this p m £ First, in Case 3(i), we take
advantage of the fact that our language is pure. This is used by appealing to the def-
inition in the standard semantics in which the environment for the subexpressions
is the same as the environment for the original expression. If the conditional were
pehtted to cause side-effects within the environment we wodd have to modifjr ou.
approach. In order to make any non-trivial transformation in such cases, we would
have to detennine if the conditio~d d l y contains impure computations. Such
a computation could be made by using a two part abstraction domain in which we
consider 'hiay-aliasn 1531 1291 information as part of the abstract domain. This would
require fairly mail changes to the interpreter- We could then use thïs alias informa-
tion to mate a tesidual for the conditional that causes the same side-effect as the

evaluation of the original expression. By pedoTIIUlIig this transformation we would
in fact remove the onginal i f expression and replace it with a sequential evaluation
of the residual for the conditional (Le. the d e causing the eida-efEect) followed by
the d e for the appropriate branch. Any may-alias analysk would be a conserva-
tive approximation since the existence of alieses is undecidable in generaL However,
a may-alias d y s i s is a relatively simple form of abstract k t e r p ~ h t i o n and thus
would fit nicely iPto our approach-

4.4 On the Efficiency of On-line Evaluation

There are two main factors that determine the complenty of on-line partial evalu-
ation. The first fiictor is the cost of operations in the abstract domains; the second
factor is the overhead impased by the evaluation algorithm itself In our approach,
the partial evaluation algorithm is parameterized by the abstract domains and any
restriction on the running tirne of the abstract operations would restrïct potential
domains that an implementor may want to use. A complete evaluation of the com-
plexity of evaluation given an arbitrary program has not k e n made. Although there
are some aspects of the analpis that are reasonably straîght$omard, there are non-
trivial interactions between the algorithm king evaluated, the abstract domain def-
initions, and the accuracy of the environments used when evaluating branches in a
conditional statement. We will use the term well-behaved to mean that if the evalu-
ation of e by N requires a t most O(g (n)) primitive operations for any input, then P
requires at most O(g(n)) abstract domain operations

The first observation is that the on-line algorithm is well-behaved when no con-
ditionais are dynamir The proof that P is well-behaved when no conditionais are
dynamic has essentially aiready been given - Lemma 4.3.2 shows that whenever all
conditionals are static, every evaluation step in N has a eorresponding evaluation
step in P.

Given that the static analysis is well-behaved, we now characterize some of the
potential difîicuities that can be eneountered aRer a dynamic conditional statement.

SECTION 4.4, ON THE EFFICIENCY OF ON-UNE EVALUATION

Consider the following ftnctions:

Function complex executes in O(1) time for all input, whüe fiindion f is O(n). Un-
fortunately, whether our aïgorithm discovers these facts is dependent on the Split
operation over integer domains. 4 during the evaluation of (< x 5 in function
cornpiex, the Split operation retains the information that x must be greater than or
equal to 10, then P operates in O(1) time for all input as well. However, given o u r
trivial identity Mplementation of Split as presented earlier, this information would
k lost and the algorithm would investigate the ackermans function - a very ex-
pensive choice. With function f the situation is even worse; there is a dependency
between the evaluation of the second recursi. cal1 and the W. If the evaluator
does not recognize the dependency, the partial evaluation of f will require exponen-
tial time since the algorithm investigates each braach of an i f statement on each
recvsive call. This choice makes the partial evaluation of fiuiction f an e n e n t i a l
time evaluation,

In general, the fact that abstract interpreters investigate multiple branches of
a conditional when the standard semantics requires these branches to be mutually
exclusive ia the cause of the exponential tirne behavioux Termination is not the issue;
the amount of work to achieve temination is. Most abstract intetpretations, such
as the early negah'ue/zero /positive example, have abstract values that are in some
h i t e (and genedy very shallow) lattice. This means that even though exponential
behaviour can be experienced, the exponent is bounded by a very s m d constant (the
height of the lattice). Using the domain rsquirements that we have given, there are
guaranteed bounds in our approach as weii, but the bauds are dependent on the
speed of convergence for the VR operators. However, the domain convergence rate

SECTION 4.4. ON THE EFFICIENCY OF ON-LINE EVUUATION 101

is not the only fàctor - issues such as ammacg and memoization can change the
effective complexity of the basic algorithm.

The pmblem encountered with fiinction cornplex is not that difficult to h a d e ; we
eould simply require that domains provide acnuate Spfit information. Accurate SpP
information would guarantee that we would never investigate a conditional branch
unless it could possibly be evaluated for some real input.

If we assume that the implementation of P performs memoization, then the par-
t i d a r pmblem with fiinction f can be handled as well. After the fornard analysis
through the fmt recullsion, a memoization of f can be created. This memoized ver-
sion of f would, by the soundness tbeorem, have a b c t parameter values that
amer at ieast the ni1l range of potential values for x dong that branch. Thus when
we eventually investigate the second recursive branch, this memoized version of f
will be available for remuse within the second nested evaluation and the b t recur-
sive call wi l l not be re-evaluated.

Finally, an additional phase could be introduœd into the algorithm. This phase
would d y z e each function definition and determine whether there is more than
one path through the fiurction to a recursive cal1 of the fitnction. If more than one
such path eBsts then the potential exponentid behaviour could be avoided by using
more traditional shallow, hed-height lattices for that potion of the analysis. This
type of technique is commonly used to ensure that harmful code duplication does not
ocm. Examples of harmCul code duplication include causing redundant cornputa-
tion and duplicating code that contains operations with eide-effeets. Although these
partjdar issues are discussed M e r in Sections 6.3 and 6.3.3, the application of
these approaches to controlling exponential behaviour has not been investigated in
any approach.

In the implementation developed as part of this work, false erponentiai behaviour
has not been observed. We believe that this is due to the combination of having
accutate domains and memoization. It rem- as future work tO determine an exact
characterization of the system interactions that would formally guarantee a well-
behaved partial evaluation algorithm.

4.5 Parameterizing Partial Evaluation

There has only been one other substantial investigation into parameteripng partial
evaluation. In 1251, Consel and ghoo report on a ficet based approach to parameter-
izing partial evaluation. Their basic approach is to d e h e algebras that relate the
abstmct domains to the mncrete domains. They then hvestigate a simple on-he
partiai evaluator and off-line binding thne d y s i s using their algebras. The major
restriction in thw appmach is that they assume finite-height lattices for the abstract
domains. ALthough they make tha observation that a Cousot and Cousot type of
widening operator would admit infinite-height iattices into the model, this appmach
has not ben investigated furth= In [20], Colby and Lee dllectly implement Consel
and Khoo's approach. They obseme that structured domains cannot be abstracted in
a very expressive manner due to the restrictions of the abstract domains.

Our approach differs in that we explicitly admit infinite-height lattices with spec-
dications as to requïred operations on such domains. In addition, we characterize
both precise and imprecise abstract value operations and use the precise operations
whenever termination can be insured. This differs h m traditional appmaches that
solely use least-upper bounds for collecting abstract information,

Consel and Khoo b a s i d y ignore termination issues by leaving the decision about
unfolding to the interpreter a t the time that a specialization is pedomed. Their
o u t h e for an on-line partial evaluator abstracts away this entire decision by using
an application function, APP, that determines w h e e t to continue specialization or
not. In Colby and Lee's implementation, the APP fiinction makes this choice based
solely on the depth of the inlining.

The most h c t l y comparable work in terms of the proof h e w o r k is the work
by Woo and Consel [24] that forms the basis for their parameterized system. TheV
appmach is to define a set of logical relations that relate an instrumented semantics,
an on-line evaluator, and an off-line evaluato~. The main proofs deal with correct-
ness of the correspondence between the various semantics. They do not formally
prove any form of termination condition, but as in the parameterized system, rely
solely on decisions by the speciaiizer to determine temination. Although the formal
appmach characterizes the specialization decisions as a mer fiinction that monoton-
ically increases to a hed-point, the formal approach does not address how to deal
with non-finite height domains. This is p a r t i e evident in the fact that struchved

SECTION 4-6. SUMMARY OF THE ON-LJNE FUMEWORK 103

domains are not addressed. The bias of ghoo and Consel's work is to investigate
the relationship between on-line and off-luie evaluation and to formally character-
ize off-tine binding üme RnalpsisC Their work effectively relates off-line binding t h e

anaiysis (both monovariant and polyvariant) to foms of o n h e evaluation, but is not
as espressive for on-line parüal evaluation as the approach proposed in this thesis.

As noted in Section 2.3.5. the FUSE system is a larger implementation efEort than
either this work or the work by ghoo and Consel, but the analytic side of the FUSE
work does not address the relationship between abstract and standard semantics and
depends on a finite height lattiœ model for termination properties.

In our approach, the model for termination is related to the abstract domains; the
basic intuition is that unfoldïng can only be profitable if we are learning new infor-
mation. We do not daim that thiS is a dïicient condition for usehl unf01dinp~ but at
least at the partial evaluation level, it is necessary. In othet words, without taking
into consideration size of code, delay slots, and othet "back-end" issues, we can O*

determine the usefulness of d e inlining based on information that we are enCoun-
tering. Although our basic criteria can be implemented in Consel and Khoo's model
(as can any model), in order to have a reasonable compromise between accuracy and
termination, it is important to differentiate between abstract value collections that
effect termination and those that do not. Such a differentiation cannot be made in
Consel and Hhooys model since their only methoà for collecting abstract values is by
using least-upper bounds in a hite height lattice describing the domaïm. Since our

approach separates the types of collections into precise and relaxed widenings, where
only the relaxed widenings efféct termination, we can more accu~ately manipulate
the abstract information.

4.6 Summary of the On-line kamework

As we have seen in this chapter, the on-line algorithm that we have developed is
dependent on ody a few characteristics of the actual abstract domains chosen to
represent information during the evaluation. The algorithm itself uses precise anal-
ysis whenever it can guarcl~ltee that divergence will not occur; whiie the accufacy
of results i s dependent on the accuracy of the abstract domains, the comctness is
dependent on only the few required characteristics. The three phases in the on-line
algorithm allow the UIterpreter to make the choie about when to switch the type of

SECTION 4.6. SUMMARY OF THE ON-LINE FRAMEWORK 104

analysis and to use as much of the information about the state of the analysis as
possible. Combining the analysis and specialization phases presents opportunities
for fiirther optimizations and fits well with most standard appmaches for producbg
good residuals; this wiU be discussed firrther throughout Chapter 6. The proofk that
we have presented rely only on the basic characteristics of the abstract domains cho-
sen to mode1 information. This appmach dows one to consider the design of flexible
models for information as a problem that is nearly independent of the actual evalua-
tion algorithm.

Chapter 5

Domain Implementations

5.1 Integer Interval Domains

When presenting the formal partial evaluation algorithm, we assumed that we had
domains and widening operations for various basic types. In this section we wiU
carefiilly introduce an absttact domain and corresponding widening operators for
representing integers. There are several parts to this pmcess: the definition of the
abstract domain, the definition of the widening operators, and finally, a proof that
the operators sa- the requirements for precise and relaxed widening given in Def-
initions 3.1 and 3.2. As was obsemed during the discussion of the d e s of domains in
Section 3.3, these definîtions and pmfk are suffiCient to demonstrate the correctness
of the abstract evaluator with respect to integer values. In Section 5.2 we WU follow
the same process for the stru- domain of Scheme lists.

1 Dehi 5.1 (Integer Interval) An integer intemal, V, is a sequence of

An intemal with only a single integer in the range may be represented without the
brackets. Given two intemals, VI and V2, we will Say that Vl $ Vs if VI = I or = T

or if Vk, k E VI-k E fi. Integer intemals fom a partial order with respect to
4 . The intuitive meaning for T and I is that T is the unbounded interval (contains

all of N and 1 is the empty intend (containhg no elements). Two intervals may
be ordered by a < operation if all of the elements in one intend are less than all
elements in the other intemal; Le. Vl < V2 S V 2 't VI, Vy /y V2 z < y.

Theorem 5.1 Integer Interval Lottice
The integer intemals are a complete luttke under 4 .

We need to show that for any subset S of integer intervais, both V S and /\ S exist.

Past1:vs
Let sm* and sm* respectively be the minimum and maximum integer in the intemals
in S. Then v = [sm* ..srna] is an upper bound for S since for any interval s E S, s < v.

We now need to show that v is the leost upper bound. Assume there is some other
upper bound v' i v. Then by definition of integer intemal and <, v' = [v;..vg where
either v; > smin or v; < sma (or both). Assume u; > sm". Then there eBsts a set
s E S such that smk E s and smk $ v'. Thus s # d and v must be the least upper
bound. A symmetric argument holds when U; < smm.

Patt2:AS
Let S' be a set of integer sets where each set represents the elements of a correspond-
ing interval in S. Let v = n s'.
Claim: v is representable as an interval. If v is empty or represents a single integer,
v cap be expressed as an intemal. If v consists of several elements, then each i n t e ~ d
in S must contain all of those elements. If v does not represent a contiguous series
of integers then there exists some 2, y, z with z, z E v and y 6 v such that 2 < y < z.

By construction this implies that there is Mme s E S' such that z, z E s and y S.

But this contradicts the definition of an intend, so v must be representable as an
intemal-

Claim: u = A S. First we show that v is a lower bouncl. By construction, Vs E ES, Vz E

v, 2 E S. Thus by definition, v < S. Next we must show that v is the greatest lower
bound. If v is not the greatest lower bound, then there esîsts some v' + v such that
Vs E S, Vz E v', z E s. If a' > v then there ePsts an element 2 E v' such that 2 6 v and

Figure 5.1.1: Integer Intemal Lanice

Vs ~s ES, z E S. But if VS 's S, x E s then 2 is in the intersection of the sets in S' and
then by defmition, z E v. Thus v must be the greatest lower bound.
O

Next, we need to define widening operations on integeï intervals that preseive the
nature of the domains. W e w d l use two additional. relationships between intervals
to assist in these definitions. 'hvo intervals conjoin if their values overlap or are
Unmediately next to each other. The formal definition will provide us with a method
of indicating that tao intemals can be merged to form a larger single interval that
contains strict1y the elements in the two original intemals. Note that the idea of
conjoining intervals is only needed in the definition of the widening operators; no
integer intemal domai. will be ailowed to contain a pair of amjoining intervals.

Deai 5.2 (Coqjoint Intemals) Let VI = [a..b] and V' = [c--4 be two
integer intervals V1-rV2 i fc > a a d c 5 b + 1 and d > b. If VI-+, me
sczy that VI conjoins Vi.

Observation 5.1 Given intervals VI and Va i f VI < V2 then -(Vl-rV2).

This observation follows düectly h m the definitions of j and conjoint intervals.
If Vl 4 V2 then al l elements in VI are in V2, but the definition of conjoint requires
the smallest value in VI is not in V2.

that

-- -- - .

D e h 5.3 (Disjoint Intervals) Let VI and V2 be two integer intemals.
We say that Vl und Vi are disjoint, or symbolically that Vl=Vz if: r

This definition of disjoint is a bit stronger than normal definitions; not only can
the intemals not share any values, but there must be a ugapn between the elements.
More fonnally, there must exist some z such that Vl < [2..2] < Vi or V2 < [z..~] < VI-
For any pair of intemals, (VI and V2), either the intemals are related by inclusion
(VI < fi or 6 =$ fi), are conjoint (Vi-rG or Vj-rK), or are disjoint (Vi=Vi)-

The conjoining formalism will be used to indicate when we will be able to marge
a series of intervals into a single interval. For example, the intemals [l..iO] and
[11..20] are conjoint, as are [l ..IO] and [S. .20]. In each of these cases we could replace
the pair of intervals with a single intemal [1..20] whieh would represent exactly the
same values as the pair of intemals. [1..10] and [12..20] are dîs~oint since there is a
'gap" between the two intervals; replacing these intervals wi th the single interval
[1..20] wouid introduœ an additional element, 11, that is not present in either of the
original intervals.

We now extend the idea of two conjoining intemals to a series of conjoining inter-
vals which we will cal1 a conyoinzng chin. A conjoining chain is simply a series of
intervals in which each interval coqjoins the next one in the Chain.

Defn 5.4 (Coqjoininp Chah) Let K, - - . , Vn k integer intervals.
CC(Vl, &, . . . , V,) ho& if V i : { L n - 11, ;- If CC(Vl, V2, . . . , V,),
we sa), VI, V2,. . . , Vn are a cmjoining chnin.

D e h 5.5 mteger Interval Domain) A d u e in an integer intemal
domah, DI is o series of intervals (K < fi < . . . < Vm) such that
m, 5 E D* : K=Q. For a particuCar integer vdue, 2, we say that
2 E DI if there eàsCs V E DI sueh that z E V. L is considered to be in
any value of an integer intetvd &min.

The given domain descriptions define a parti& normalization of sets of inte-
gers: intervals are ordered, contiguous subsets of integers and domuin vdues are
formed h m an ordered set of disjoint intervals. This normalization is important as
it dows for reasonable implementation; we codd ignore implementation issues and
simply defme the integer abstraction as sets of integers, but in real implementations,
manïpulating arbitrarg sets becomes very expensive.

Figure 5.1.2: Abstract Value Covering

R e d that in Section 3.3.1, we defineci the C operator for abstract domains in
terms of the atoms in the dom-sets of abstract domain values. For the integer inter-
val domain, we can easily define a & operator that m e t s this requkment. Given
values Vl and & in the integer interval domain, we say that Vl & fi iffor every t E VI
there exists y E V2 such that 2 j 8. This statement may seem trivial, but does not

necessarily hold in abstract domains that are not normalized as the integer intervals
are. Tô generalize thîs statement to any abstract domain, the statement implies that
there can be no pair of abstract elements in & that "covef a single abstract element
in VI. Figure 5.1.2 gives an example ofthis type of mirer - using the atoms in the
dom-set, we require that {C) & { B , D) since the atoms are the same, but clearly C
is not below either B or D.

5.1.2 Wideniag Operators for hteger Intervals

We now define the widening operators, V ' and V ' , for the integer intemal domains
In order to dari.& this section, we will assume that the Op and V' operators will
implicitly reference the integer interval domain. The definitions are a bit laborious
as they must presem the d e s i d normalization in the representation.

Deni 5.6 (Preciae Integer Widening) Given integer domain values
Dl = {K,fi, ... ,K)and& = {Wl,W2, .-. , Wm},

(Dl VP D2) =

{ T) if Dl = {T) or D2 = { T)
Dl i f 0 2 = (1)
D2 i f D 1 = { l)

Dl U D2 (vi.
where W;- E Di, Wj E D2 : &=Wj

The meaning of the definition is more intuitive than the definition itself might lead
one to believe. The intemal T a& as the multiplicative zero for widening: Vz, ((T) Vp 2) =
(Z VP {T)) = {T) (Case i). The intemal I a& as the identity value for widening:
VZ, ((11 Op 2) = (2 Vp (11) = o (Cases ü,iü). If the= is an interval in one domain
that is below an intend in the other domain, the lower interval is removed (Cases
iv, v). LfaU intends in the two domains are disjoint then the result is in its minimal
form (Case vil. E'inally, if them is a set of intemals that form a conjoining Chain, those
intervals are merged into a single interval in the result (Case vii).

Given integer d o m i m Dl and D1. the result of DI V p D2 is a n utteger interual do-
main value.

The definition of Vp is inductive; at each step the definition either produces an in-
t e d domain value or reduœs the number of intervals in the domain values by at
least one. Thus we use a simple induction to show that the result is correct.

Cases (il through (S), and (vi) form the basis for the induction since they do not
r e d v e l y apply Vp . Cases (il through (iii) are trivially correct. Case (vi) is correct
since al l intervals are disjoint. In Cases (iv) and (v) we d u c e the size of one of
the domains, so by induction the result is correct. In Case (vii) we d u c e the total
number of intemals by at l e m one, so by induction this pmduœs an interval domain
value.

Precise integer widening (Defi. 5.6) satisfies the conàitions forprecise widening (DeF. 3.11.

There am two conditions that must be satisfied for Vp tO satiSfy Deh. 3.1. Mt, if
V = VI Vp V2 then &V = (&VI) (J (JV2). SecondVz, y E V : 2 # y-zlly.

We will first deal with the incomparability requirement. By definition of an interval
domain values and Thm. 5.2, we know that there no intervals 2 and y in V such that
t < y. Thus, by definition of inmmparability, Vz , y E V : 2 # y e z 11 y).

We now prove that if V = & Op fi then &V = ($VI) U (&fi)- Recall that JV is the

set of atoms below the elements of V. We show that every transformation step in
Defn. 5.6 presemes the set of atoms in the original domains- Case (il, (ii), and (iii)
are trivial- In Cases (iv) and (v), the element king removed is below an element that
is being preserved so the set of atoms is unchanged. In Case (vil no elements are
being removed so the set of atoms is unchnnged. Finallx in Case (vii) we cornpress
a conjoining chain into a single interval. In any conjoining chah the set of atoms
is simply the set of integer values represented by the Chain. Since the new interval
reflects exactly these elements, the ove rd set of atoms is the same.

O

h c k e intemal widening works as one might expect - it ma te s the smallest set
of intervais that contain effactly the information present in either of the domains. For
example:

The traxdormations are a straightfomard application of the definition. [1..4] is
below [- 10 .-51 so by part (iv) of the d e , we remove [1..4] leaving {[- 10 ..5], [7. .Il]) Vp
{[- 11.. - 11, [13..13]). Intervals [-Il.. - 11 and [-10..5] are conjoint, so we merge them
by part (vii) into a single interval, leaving {[-11..5], [7..11]} Vp {[13..13]}. Since
these intends are al1 disjoint, by part (vil the final result is simply the union of the
intemals.

Theorem 5.4 The rules fit precise widening are nomuùùing - the final set of inter-
vuls is independent of the order of application of the ruks in the definiaon.

This observation follows h m the use of dom-sets of atoms in the Thm. 5.3 and the
definition ofthe precise widening operator. Let V be the result of a precise narrowing-
The down-set of atoms in V is exactly the union of the domse t s of atoms in each
of the arguments. Assume then was another interval domain value V' such that
IV = IVf. If the representation is different in V and Vf then there must be some
interval in z E V such that one of the following holds:

1. t h e r e m y € Vrsuchthatz< yand = # y ,

If neither (1) nor (2) hold then there mu& be some element of z that is not covered by
V', contradicting IV = JVr. I f (1) holds with z = [a..b] then either a - 1 or b + 1 must be
in y and thus must also be in some interval of V. But such an interval would conjoin z
meaning that V would not be a valid integer interval domah Thus (1) carinot hold. If
(2) holds, then by siaiilar reasoning, y and z must be conjoint, implying that Vr is not
a valid integer interval domain. Thus V and Vr must have the same representation.

The requirements for the relaxed widening operator are both more and less re-
strictive than thom for the precise widenïng operator; less restrictive in tenns of
accuracy, but more restrictive in terms of convergence. We could simply choose to de-
fine the widening operator as returning T. Although that s a m e s the requirements
due to the weak ammcy requirement, in practical terms such a definition would
be nearly useless for discoverhg any information about expressions. On the other
hand we obvious1y have to give away some of the accuracy in our domains in order
to sa- the convergence requirement. W e deal with these somewhat contradictory
demands by definhg an operator that gives exact anmers if there is a bound on the
range of answers, yet converges vexy qyickly if there is no bound. We use the precise
operator to simplify the definition of the relaxed operator.

l ' Defn 5.7 (Relaxed Integer Widening) Giuen integer domains Dl =
{VI, &, .. . , V,) and D2 = {Wl, W2, . . . , Wm}, with Vl = [ai..bl], Vn =
[cl ..dl], Wl = [a2..ba], and Wm = [c2..d2],

u1 = { 1 if.. < a1
othenuise

anà

The basic intuition for the result of a relaxed widening operation is that if we
have discovered bounds on potential r ed t s (represented with a domain value lïke

{[il, [sol)) then as long as M e r elements remain within the {[II, [50]) range, we
can maintain exact infonnation without con= for divergence. If the range begins
to %xpandn towards either side of this range, we immediately expand the range in
the direction of either infinity or negative infini* This is obviously a faVly sim-
ple mode1 but it works surprisingly well in practice due to the nature of mal code.
Although this wïll be dieeussed in more detail in Section 6.2, a bit of intuition re-
garding the usefulness of this operator is in order at this point. If a d e hgment
has (and enforces!) upper and lower bounds for expcted values, these bounds wi l l be
e n d e d in the program by way of conditional expressions that either provide default
values i f the bounds are exceeded or perfom some sort o f e m r handling routine. In
either case, the "normal" computation will have the eqected range ended in the
program- Due to the hict that we Ksplit" scopes (again, see Section 6-21 based on con-
ditional expressions, these e n d e d bounds will "oarrow* an estimate t o w d s these
encoded bounds. If a program has no encoded bounds then either no known bounds
ezüst or the implementation is faulty in terms of not dealing with exceptional cjrcum-
stances. In either case, we cleady cannot make any assumptions about the potential
domain other than that the domain could be infinite. It is possible to encode more
complex infinite domains as part of a different abstraction; this wiU be discussed in
Section 7.2.2. In addition, we wiU discuss how to extend the implied concept of "di-
rection" or "dimension" to deal with non-linear data models for non-integer domains.

Relaxed integer widening m. 5.7) satisfis the conditions fir reiuxed widening
D e f i . 3.2).

There are three conditions that must be satisfied for OR to satîsfjt Deh. 3.2. First,
if v = V I V ~ Vz then LV 3 ($VI) U(&K). Second, Vz, y E V : z # y a z l l y . Third,
for any h c t i o n f and d u e 20, there exists a k such that f (zk) C 2 k where +i =

f (~ i - ~) for > 0-

We Ke deal with the mt two conditions by appealing to the corresponding proof
for the precise widening operatot. The first condition for relaxeci widening is more
flexible; we only need to show that elements are not lost. Since the result is the
p c i s e widening of the original domains plus some additional elements, and since the

precise widening operator does not lose elements, we can condude that the relaxed
operator does not lose elements. The second requiement for relarred widening is
satisfied using the same proof as for precise widening.

The last part of ou. proof obligation is to show that the convergence statement holds
for this widening operator. Consider a parti& d u e in the abstract domain, V =
t u l , q, . . . , v,) and define min and m a as follows:

b if v1 = [- O D . . ~]
min =

a ifvi = [a..b]

and

Let the number of fiee atoms of V be O if V = T. ûtherwise let the number of fkee
atoms be the cardinality of the set of integers between min and mux that are not in
V plus one for each direction in V that is not extended to infinie. The intuition is
that we count each integer that falls in the "gaps" of V as a âee atom plus a specîal
marker atom for each direction in V that has not been extended to infiniW. Since
we know that any pdcular intend domain value has a finite representation, the
number of "gapsn must be finite, so the total number of fkee atoms must be finite.

Claim: Any wideniag of V either demeases the number of h e atoms by at least one,
or produces V.

Consider a partidar widening of V by some other value W. By definition, if V = T

then VVR W = Y, satisfging the claim. If there exists an element in W either
larger than the maximum element in V-or smaller than the minimum value in V
then by Deh. 5.7 one of the directions is extended to infiniw This eliminates one
of the special matker fhe atoms and thus satisiies the claim. If the elements of
W are between the minimum and maximum vdues of V then we perfom a precise
widening. By Defn. 5.6, if every intemal in W is below some interval in V then the
result is V, again satisfying the claim. The final case to consider is when the= exists
w E W such that for all u E Y, w # v. Then, by definition of < , there esists some
z such that t E w and for a l l v -E V, z v. Sime the definition of precise widening
guarantees that the result contains s and all vdues of V, the number of fîee atoms
in the result must be less than the number of fiee atoms in V.

Let h' be the number of fhe atoms in 20. Since the clR;m is satisfied, the number of
frea atoms in zi ah- zi = f m u t be strictly less than the number of
h e atoms in 2;-1. Thus t h d t s some d u e L 5 k' such that x i = ziVR f (tt).
Thus b d a t i o n of V' , f(2k) E ot , and the convergence requirement is satisfied.

Although our precise widenïng operator cornmutes, relrued widening does not.
The reason for this is that relaxed widening conservatively extends a domain in the
direction in which the domain is growing. The direction ofgmwth is expressed in the
order in which widenings are performed. For example, using out previous example
we see that

but

The resultiag domains correctly express the behaviour of the respective widenings
since in the first case the (Cdirection" of the domain growth is towards infinity in
both directions while in the second case the second domain is contained withi. the
range of the first estimate. When such containment ~ n v s there is no possibility
of infinite gruwth so we can generate a better eshate while maintaining safety
FiPally, note that the second relaxed estimate generates exactly the same result as a
precise widening.

There is one aspect of domain definition that we have ignored in presenting the
integer interval domains: we have not presented any definitions for primitive opera-
tions over intervals. Although we are not going to give the details of the operations, it
is important to note that such definitions are part of the overall definition that is used
by the partial evaluation system. In the next section, when we defme the structural
abstract domain, we WU present detailed definitions of the primitive operations for
lists.

5.1.3 A Larger EEemple using the Integer Domain

In order to illustrate the operation of both the algorithm and the integer domain, we
d l consider a fiuiction that sums numbers in the range h m start to stop.

(define (Sun start stop)

(if (> start stop)

O
(+ start (Sum (+ 1 start) stop))

1)

In order to have a reasonable size example, we wdl skip most of the "uninterest-
ing" steps in the derivation and will focus on the recursive evaluations of ~ u m In the
example, we will evaluate ~ u m h m 1 to x where x is unkaown (Le. Tl. We assume
that we have an accurate Split fiindon-

Givenanevaluation (~ u m (+ 1 start) stop),wewillhaveatracestepofthe
form:

t sum z y) d(s ta t) &(stop)

where 2 is thevalue of [+ 1 start), yisthevalueofstop, and thedand~values
are as given. In terms of the evaluation, this captures the state of ey for each argu-
ment and the state of d and 6 immediately foliowing line 3.15(1) in which the actual
parameter is evaluated.

Each nested evaluation of the body will be indented; sinœ the re-evaluation of
the entire expression with the new environment (in h e 3.15(~)) is strictly tail-
recusive, we will not indent for this case. Since all but the initial cal1 to Sun occur as
a result of evaluating the body of ~ u m , aRer each completed recursive evaluation of
SU we will give the overall value for eu in the form "eu = OVp (z + y)". This reflects
the basic evaluation strategy for the body of sum - the conditional expression wil l
always be unknown, so the o v e d result wiU always be a precise widening of the
values of each branch. The value of the first conditional branch is aiways zero and
(z + y) is the value of the second conditional branch where z is the value of start
during the evaluation of the body and y is the result of the reeursive evaluation. It is
very important to note that z = é(start) OR z since, as defined by line 3.1561, the body
is evaluated in the p' environment found by widening the old 6 value by the new er

value.

Finallx after givïng the new eu value, we present a trace lïne that gives the value
for Er which determines whether ea is the result or whether another evaluation is
necessaqt

A sequenœ oftrace h e s h m a recursive evaluation might look like the following:

The two evaluated parameter values are given in the (sum 3 [2 . 4) fragment of the
first linet In this example, it is not the case that both parameter values are below the
respective values in 6 (represented by the next two values in the trace line). Thus an
evaluation of the body results. The evaluation of the body (eventudy) yields another
recursive evaluation of Sum.

In the renirsive evaluation, the two evaluated parameter values are given in the
(sw [3..00] [2..00]) hgment. In this case each parameter value is below the re-
spective value in b (the next two values in the trace hie). This means that in the
algorithm the value retumed would be the value of E, which in this case is L.

The next trace line shows the computed value for the body of SUI for the first
evaluation. Note that the [2..00] value in the exprassion ([2..oo] + L) results fimm the
value bound to start during the evduation of the body This value was d d a t e d
h m a relaxed widening ofthe old b value ü.e. 2) by the ef value (Le. 3).

The third line computes the new <' value which is always the old E value widened
by the computed ea value. In this aise, the old (value is L and the ea value is O.

Since eu C, we must re-evduate the original expression with the new Cf.

(S u m l f) LI. L (N o t e : d = false)

(Suln 2 [l..oo]) L 1 I (N o t e : d = true)

(Sum 3 [2..oo]) 2 [l - m] O

(Sum [3..00] [2..00]) [2..oo] [l-.oo] O

ea = O V p ([?-.ml + O) = {O, [2..m])

= 0 VR {0,[2-.w]) = {O, [2..00])

(S m 3 [2..m]) 2 [l..m] {O, [2..m])

(Sm [3..00] [2..00]) [?..O01 [l..oo] {O, [2 4 }

eu = O Vp ([2..ao] + {0,[2..oo])) =(0,[2..00])

C = {O, [2..00]) VR {O, [2..00]) = {O, [2..00])

€2" = 0 Vp (2 + {O, [2..m]}) = {O, 2, [4..00])

€' = I VR {O, 2, [4..00]) = {O, 2, [4..00])

(S m 2 [l..oo]) I 1 {0,2, [4..00])

csum 3 [2.*00]) 2 [l..a~] {0,2, [4..w])

(Sum [3 ..cm] [2. .cm]) [2..oo] [l ..oo] {O, 2, [4. .ml)
ea = O V p ([2--001 + {O, 2, [4..m])) = (0, [2..00])

C = {O, 2, [4..oo]} OR {O, [2..00]) = {O, [2. .m])

(S m 3 [2-.cc]) 2 [l..oo] {O, [2..m]}

(Sum [3..00] [2..m]) [2..m] [Loo] {O, [2..00])

ea = 0 OP ([2--001 + {0,[2..m])) = {0,[2..00])

6' = (0,[2*-~])v~ {O,[~--OD]) = {0,[2..00])

eQ = 0 VP (2 + {O, [2..00]}) = {O, 2, [4..ai])

6' = {0,2,[4..=])?~ {0,2,[4..~]){0,2,[4..6~])

0 VP (1 +{0,2,[4..00])

{O, L 3 , [5..001)

The residual that we would p d u œ is as follows:

((lambda (s top)
(if (> 1 stop)

O

(+ 1 ((lambda (s top)
(if (> 2 s top)

O

(+ 2 (SuIn 3 stop) 1)
stop)

The basic intuition about the structure of the residual is that the known constant
values of start are inlined and the parameter is removed. During the evaluation,
once start becornes an abstract value that cannot be concretized, then we revert to
the general function c d . In terms of the trace, the final r e d t and the last two ea
computations are the evaluations that actually mate the residual. Note that the for
the call to sum in the residual is slightly different than what the formal algorithm
wodd produce. Line 3.15(3) substitutes the body of sum rather than just its function
identifier, The formal algorithm avoids dealuig with bc t ion idensers in order to
reduce the complexity of the algorithm; the substitution is trivial to make in the
given residual.

5.2 Structured Domains

As with the integer abstract domain, we begin by defînïng an ab-& domain for
struchired values. In keeping with the basic Scheme flavour of our language, we
will adopt Scheme's S-expression mode1 for struchved domains. Each value in the
domain is either an a t m or a pair of values. Atoms are non-stnxctd values; for
our purposes we wiU assume that atoms are either integers or the special d u e NIL.

The basic list operators are pair construction (cons), extraction of the first value of
a pair (car), and extraction of the second value of a pair (cdr). List predicates will
be restricted to null? and atom?; it is a straightforward exercise to build predicates

such as lis t?. W e will assume the simple list mode1 without imperative operators
suchas set-car! or set -ce! .

Due to the requirements for the precise widening operator, given two abstract
structure values, we need to be able to represent exactly the information in the two
representations. The basic appmach that we will adopt is to keep sequences of lists.
The precise widening operator will then simply involve adding another list to the
sequence. The r e M widening operator that we will define preserves guaranteed
structure and value estimates, but performs substantial simplifications. The basic
approach for the relased operator is to merge cd of the lists into a single list where
the single list preserves as much structure as possible about the original list.

Defh 5.8 (List Domah)
A value in a list domain, D~ = {di, . . . , +), is a sequence of lists. r
Defn 5.9 M s e List Wideniag) Giuen lisf domain vcùues Dl and
D2, we &fine Dl Vp Dz to be Dl O D2 where @W is a sequence con-
catenation operator;

We will let V remain as an iafomal operation for now; after we define the ordering
relationship berneen domain values we will more carefidly define the meanhg of
concatenation- For the time being, simply assume that concatenation does not admit
"redundant" lists into the sequence.

As soon as we admit Scheme style Iists into our system, we allow heterogeneous
types which, in an laquage without a compile-time type system, necessitates the
use of some sort of type identification. We wiil use r(z) ta denote the type of z;
the universe of types for our system as defineci so far is {Integer, List) where NIL is
considered to be a list, i.e. N NIL) = List. We recwsively defina the merge of two lists

We extend the notation for meqe by defining meqe(z i , y, . . .) as being equivalent to

merse(. . . (merge (zi , z2), z3), . . .) . In addition, given a domain value X = (2 1 , . . .) , we
define meqe(X) = meqe(z l , . . .) where merge(X) = X ifthere is only one list within
x. Note that due to the relaxed widening operation perfomed by merge, a merge
operation is not necessarily an associative operation.

- - - - - - - - - - - - - -

Defn 5.10 (Relaxecl List Widening) Given list domin values X =
{ 2 1 , 2 2 , ...) and Y = {YI , y*, ..-}, we define X VR Y to be a list V =
merge(vl, v2, . . .) where v; = m q e (q , Y) 1

We generally foUow Scheme syntax for lists: (1 2 3) represents the construction
(cons 1 (cons 2 (cons 3 NIL) 1. If the list does not end with NIL, the list is
represented with a dot between the last pair of elements. For example, (1 2 . 3)

represents the construction (cons 1 (cons 2 3)) . We will generally not put the
Scheme backquote on our Iists d e s s necessary to dari@ the meaning. The following
are a few examples of relaxed widenïng operations using this abstract domah.

These examples illustrate the structure preseming nature of the relaxed widening
operatof. If the static knowledge about the structures is consistent, we are able to

preserve the struchital idormation, even if the partidar elements become (fully
or paraally) dynamk The first example demonstrates a complete loss of structural
information, while the second example maintains complete structural information
though it loses some information about eIements. The thid example is interesting in
that there is only a paraal loss information about both the elements and the structure
of the original lists. Note that we do know that we have at le& three elements even
though we do not know the value of the third element. The fourth example contains
the result of a non-trivial integer relaxed widening operation. In the fiRh example
we lose ail information about the nested list, but retain the structural infiormation
about the o u t e o s t list. In the last example we lose partial information about the
nested structure while retaining the complete structure of the outermost list.

The basic idea of r e M widening is first to capture the direction of growth in the
abstract domain and then to cornpress dI of the lists into a single list. It is hportant
to note hem that there is no concept of "direction" in the list domain itself; the reason
that there is any concem about direction of growth is that the meqe operation could
apply relaxed widening operators h m other domains and these operators may have
some idea of direction of p w t h . In general this operation could lose a great deal
of acmacy in directional domains such as the integer intemals due to the double
merge. We could avoid thZs loss of accuracy by not performing the second phase of
the merging (Le. by letting the result be the sequence V I , v l , . . . rather than the merge
of these lists), but performing the second phase of merging provides a more efficient
version of the list representations that is still a safé approximation, Defining relaxed
widening such that reasonably compact notations result makes the evaluation of dy-
namic recursions much more efficient. Thus we only pay the cost of manipulating
potentially large sequences of lists only when we care about having very accurate
results, namely when we are performing a static evaluation. Although we do per-
form precise widening operations within a dynamic evaluation, due to the fa& that
relaxed widening operations oenv on aü parameters for each dynamic c d , there are
a boupded number of precise widenings before a relaxed widening operation oaws.

The next step is to d e 5 e the meanhg of the a h c t primitive list operations
and predicates. We will use cons, car, and cdr to represent the abstract versions of
the primitive operators and atom? and null? to represent the abstract versions of the

ptedicates. Let X = {el, . . .), and Y = {yl, . . .) be abstract list domain values.

I ifz(zi) # LW or Z i = NIL

(car X) = {vt , vr , . . .) where vi =

v if+;= (cons v LI

The most interestingof these definitions is the c m definition. R e d that merge(X)

is defined ta be the merge of the lists of X. The intuition for the cons rule is that we
first normalize the element that we are about to cons onto the iists in Y and then
mate the new sequence of lists by adding this normalized element onto each list in
Y.

Although we have now dehed the domains and operations, we stiU have to insure
that these definitions are safie to use within our hmework, In order to make such
a daim, we must define the < ordering relation over lists, show that the widening
operators satisb their respective constraints, and show that the operators are safe.

5.2.1 4nalysis of the Abstract Striictorel Domain

Given two lists, z and y, we say t < y if one of the foilowing holds:

y = T (5.20)

z = NIL and r (y) = List (5.21)

r(z) = r(g) and r (z) = Infeger and z g '('1 y (5.22)

z= (cons a 6) andy= (cons c d) anda<candb<d (5.23

Note that we use z & '(=) y within our definition of 4 for lists; this is due to the
fact that lists are heterogeneous and we would like to be able to retain as much
accuraccy as possible about the elements within the list- This aspect of the definition
corresponds to the ~2') case for integer z in the definition for meqe given earLie~.

There is a reasonably intuitive characterization for this ordering relationship -
list z is below list y i f2 is prooably longer than 9 or if every element in z is below the

corresponding element in y. There are several interesthg ineomparability aspects
to this orderhg relatiomhip. M t , any integer value is incomparable to any list
value (induding NIL). This comsponds to one's intuition that elements of Merent
types cannot be ordered with respect to each other unless there are egplicit coercion
operators which our language does not support. Second, lists of the same length that
have T elements in different locations are incomparable. Findy, since the definition
is reCUITSive, nested lists fit naturaily into the relationship. The foilowing are a few
examples of valid j relationships:

The &st example follows directly h m condition 5.20. The second example uses g
f?om condition 5.22 to verify the below relationship for the fmt two list elements; <
holds for the third element by condition 5.20. Examples three and four are interest-
ing in that we have what appears to be both a longer and a shortsr list being below

the list (1 2 T.TL Theshorterlistis below (1 2 T.T) since NIL is below the
cons œll (cons T . T) . When the longer list is compared to (1 2 T . T) , the inter-
esting cornparison is when we compare (cons 3 (cons 4 . . .)) to (cons T T) .
Since both 3 < T and (cons 4. . .) =$ T by 5.20, the relationship holds The basic
observation is that if the structure of a list is not completely known, then the last
cons c d will be of the form (cons z T) for some 2.

Nearly all of these examples were taken h m the earlier examples for the widen-
ing operator. Recall that the VR operation must guarantee that for any t and y, the
result of t OR y must be above either z of g. By inspection, this relationship M d s for
the examples we have aven; we still must pmve that the V p and OR operators are
in fact valid precise and rehed widening operators with respect to the Iist domain.

Before addressing the validiQ~ of the Vp and VR operations, we need to deal
with two other issues: first, we need to clarifP the operation of the list concatenation
operator W, and second, we need to verifjr that the operation holds for sequences
of lists.

When we defined Vp for the Iist domain, we describecl 'W as simple sequence
concatenation. In malits, the conaitenation operator will only add new lists onto
the end of the sequence when no redundant idormation will appear in the resulting
sequence. More formdg, given sequences X = {zl , . . . , on) and Y = {y1, . . .) we
recursively define sequence concatenation as follows:

The fmt case is the trivial identity operation. The second case ignores a particular
list in Y if the information in that list is akeady represented in X. The third case
is sgmmetric with the second but for lists in X that are below a list in Y, and the
final case actually adds a list to a sequenœ sinœ the added list represents different
(incomparable) Somation.

The next step is to discuss the Ç relation. Recall that the definition of is that
given abstract domain values z and y, we d Say that 2 & y if & $p where & is
the set of a t o m below z. Note that in this con= we mean utom in the lattiœ sense,

not in the Scheme list sense. In this section, we wiU continue to use the font "atom"
to mean a Iattice atom rather than the font "atom" to mean Scheme atom.

We define an atom in the list domain to be a list in which no Iist element has the
value T and in which all components ofthe list are atoms in their respective domains.
Thus (1 2 3) and (1 (2 3)) areatoms but (1 (2.T) 4) and (1 [2. -001 4)

are not. The latter two lists are not do& since in the first case T appears within
the iist, while in the second case a nonatomic integer domain value appears - the
intemal [2 . . 00 1. A list such as (i [2 . . cm 1 4) is above every list of the form
(1 z 4) wherezisaaqrintegerdomainvaluebelow [2..a].

Precise list w idening Defi. 5.9) satisfies the conditions fir precise widoning Def i . 3.11.

There are two conditions that must be satisfied for Op ta sa- Defh. 3.1. First, if
V = X Vp Y thenJV = (a) U (&Y). Second Vz, y E V : # y=-olly.

We will first deal with the incomparability requirement. By definition of the "en
operator, the only time that a list is added to a sequence is when the new list is
incomparable to all existing lists. Thus the incomparability requirement must be
satisfied-

The second requirement is that the down-set of the result of a precise widening is
equal to the union of the dom-sets of the of the two original abstract values. We
prove this by showing that each side is a subset of the other.

Part 1: IV (JX) U (ly). Let v be some atom in &V. Then, by definition of C there
exists some list v' E V such that v < v'. By case analysis of 'a*, any list in V exists in
at least one of X or Y. Thus v' is in at hast one of X or Y and v E (G) U (&Y).

Part 2: IV 2 (JX) U ($Y). Let z be some atom in (a) U ($Y). Then, by definition of
1 and U, there exists some list of in at least one of X or Y such that z < 2'. Assume
z' E X. By case analysis of "@" either 2' E V or there exists some y' + 2' su& that
y' E V. But then by hnsitivity, z < 2' S$ g ' a z 4 y'. Thus since E V we conclude
that 2 E LV.

We must now show that the relaxed widening operator is correct. The properties
for the list domain relaxed widening are dependent on the definition of merge so we
will h t prove that mnpe generates safe redts .

Theorem 5.7

The proofis by induction over the structure of z and y. Note that we only use rnerge

inductive1y in the final case when both 2 and y are cons cells; the other cases mver
all other base conditions.

Case 3: z(z) # List and r(z) = r (y) . Then rneqe(+, y) = r v;'~) y. By definition of
relaxed widening, z, y < z VR y so merge(z, y) b z, y.

Case 4: 2 , g = NIL. Then meige(z, y) = NIL, so t r i d 4 f , m q e (x , y) 2 , y .

Case 6: 2 # NIL, y = NIL. Then m q e (x , y) = T, so trividy, merge(z, y) + x , y.

Case 7: z = (cons a &) and y = (cons c d l . Then merge(z, y) is defined to be
(cons merge((car z) (car y)) merge((cdr s) (cdr y))). By definition of car and cdr,

this is equivalent to (cons rnqe(a, c) mesge(b, d) 1. By induction we assume
that meqe(a, c) + a, c and mergc(b, d) $ b, d so by defmition of t , we can
conciude that m w (z , y) + 2, y.

Theorem 5.8 (~ 2 is Rekzxed)

Reluxed list widening mefi. 5-10) satisfies the conditions for daxed widenzng D e f i . 3.2).

There are three conditions that must be satisfied for VR ta satisfl Defh. 3.2. First,
iftr = XVR Y then1V 2 (JX) U(J.Y). Second, Vz,y E V : z + y-zlly. Thid,
for any hct ion f and value 20, there ePsts a k such that f (z ~) & ok where +i =
Z ~ , ~ V R f (~ ~ - ~) for i > 0.

By construction, the result of VR is a sequenœ containing a single list that results
h m a series of meqe operatiom. By Thm. 5.7, given elements z and y, z < merge(x, y)

and y < merge(x, y). By transitiviity of 6 , for =y zi, xi < rneqe(. . . , q, . . .). This im-
plies that for dl si E X, < X VR Y md for dl 3; E Y, y; < X OR Y . Thus, by the
definition of g , X C X VR Y and Y t X VR Y. This implies that &V 2 (JX) and
I V 2 (W. 'I'hs 1v 1 (1x1 U(1Y)-
The second condition for relaxecl widening is trivially true since the relaxed widening
in the list abstract domain returns a sequence containing a single list.

The final condition requires that any sequence of widening operations converges. Let
d(2) be the distance of z h m T with respect to some hc t ion f. W e assume that
all non-list r e l d widening operators are valid. If r(2) # List, then let xk be the
bound for the number of widening operations using v;(') before v'(*) converges
with respect to fiinction f . We then define d(z) as follows:

Observation: Ifz # T then d(z) > 0.

Since each widening operation is simply a sequence of m e q e operations, it is su&
cient to show that each meqe(x, y) operation is either an identity operation for 2 or
that d(merge(x, y)) is strictly less than d(z).

The proof is by induction over the s.tructure of r and y. Note that we only use merge

indudively in the final case when both z and y are cons ceh; the other cases cover
al1 other base conditions.

Case 2: r(z) # +(y). Then rmige(o, y) = T and d(meqe(+, y)) = O. Sime z + T,

d(2) > O.

- z OR(=) y. By definition of Case 3: r(z) # List and ~ (z) = r(y). Then meqe(z, y) -
d(2) and va(') , either d(z v;(*) 9) = d (t) - 1 or t = + VI;((') y. Thus either
meqe(z, y) = x or d(meqe(z, y)) < d(x) .

Case 6: z # NIL, y = NIL. Then merge(z, y) = T, so tnvially, d(mcrge(x, y)) < d (2).

Case 7: z = (cons a 6) and y = (cons c d) . Then merge(z, y) is defined to be
(cons meqe((car 2) (car y)) mage((& z) (cd. y))). By definition of car and càr,

this io equivalent to (cons meqe(a, C) merge(bo d) 1. By induction we assume
that mcrge(a, c) = a or d(meqe(a, c)) < d(a) and that rneqe(b, d) = b or
d(merye(b, d)) < d(b) . Ifrneqe(a, c) = a and rnerge(b, d) = b thenrnerge(x, y) =
a. In each of the other three cases, d(meqe(t , y)) < d(z) .

Finally, since for aag fiuiction f and value 10, there is some C such that d(zo) = k, we

know that any seriss of meqe operations WU converge aRer no more than k merges.
Thus VR converges.

The basic intuition behind the convergence condition is that the list that results
îrom metgc(x, y) will never be a longer list than either of 2 or y. If the resulting list
is s t ~ c t u r a l l y the same as z and y then it will either be identical to 2 or there will be
some value in the list that has moved doser to its k e d point. There is a measure of
asymmetry in these statements - our dehition for meqe (and thus for VR) is in fact
associative with respect to s t m c t w e but since widening operators-in other domains,
such as the înteger intend domain, may not be associative, the overall statement of
convergence can not take advantage of the structural associativity.

5.2.2 On the Expressiveness of the Lbt Ab-act Domain

Although the List abstract domain is a very simple model, it is surprisingly expres-
sive when cornparad to other appmaches. In parti&, we will compare this a p
proach to the accepted "state of the art" in off-line structural BTA - Lamchbury's

d o r m projections approach [541. The basic intuition for Launchbury's approach is
to create static and dynamic projections of pmgrams; each projection encapsulates
the respective aspects of the onginal program.

ABS

Figure 5.2.1: BTA Lattice for Structural Projection

One of the standard examples that Lamchbury discusses is an association list
program. Translateci to a Scheme-like syntax, the program is as follows:

(define lookup (lambda (l i s t value)
(if (null? list)

fail
(if (equal? (car l ist) value)

value
(lookup (cdr list) value))

1) 1

When the d o m projection appmach is applied, the possible bindùlg time annota-
tions are the values in the lattice shown in Figure 5.2.1. The ABS value in the lattice
means that the entire structure is "abstract", or dynamicc. The STRUCT values means
that the structure is known but that neither the le& or right components of the List
elements are known. The STRUCT (LEFT) and STRUCT (RIGHT) values mean that the
structure is knom and'that, respectively, the leR or nght wmponent of each element
is known. The ID value means that the entire structure is known.

There are a few important differences in expressivity between this model and the
abstract List domain that we have dehed. Fi&, the pmjection model is a unifinn

model which means that if any List element is given a parti& annotation, then
cU succeeding elements must have the same annotation. Such a mode1 is not able
to express changes in value annotations thmughout the list. For example, given a
listsuchas ((' am 1) 2) ('cm Tl) , the annotation for the list would be

STRUCT LE^) , even though only a single d u e in the üst is unknown. The sec-

ond issue is that the effective model that a projectioll~ appmach builds is based on
knowledge about h e d stnictural camponents. This structural knowledge is discov-
erable in Launchbufs work because the source language is a derivative of ML [64]
and as such, has explicit constructors used to b d d structures. Structures them-
selves in ML are strueturally uniform, making it reasonable to apply a projections
based appmach. It is less dear how accurate a projections-based model could be in a
more hetemgeneous language such as Scheme. Additionalllp, languages such as C, in
which side-effects are common, would not lend themselves to this type of model since
a single assignment to an otherwise fdly static structure would cause the loss of a
great deal of static information. Part of the pmblem is inherent to using off-lùie a p
proaches, but requiring fidl u n i f o e t y is likely to cause oveicgeneralization in many
situations.

In cornparison, the on-line appmach with the proposeci List abstract domain is
both a simpler mode1 and is able to exploit additional static information. For example,
consider the association list lookup functîon with an association list of ((an 1)

(lookup lis t c m . Using projections, none of these requests wodd be special-
ized; d searches would occur at ND-time. Adopting the on-line approach with the
List abstract model, the residual for the first search would be the constant 1. The
ïookup residual for the second search would be as follows:

(lambda (list)
((lambda (l i s t)

(if (equal? (car list) 'b') 2 fail
1)

(cdr list)
1 1

The outer lambda is the residual for checking element 'am - notice that this has
removed the check for element am, leaving only the c d for checkuig the rest of
the list (i.e. the (cdr lis t)). The b e r lambda is the residual for checking if the
association list name for this element is l b8. If the= is a match, we return the

inlined constant 2 , otherwise we check the rest of the list. The result of "checking the
rest of the list" is fail since the spstem is able to -tee that bu does not occur

in the rest of the list-

Now consider the final example - (lookup list ' c m) . In this example, the
system makes the same decisions regarding the first two elements in the association
list, but is able to d e t e m e that the result of searching the rest of the list is known
to pmduœ the constant 3 rather than f ail. The residual is as follows:

If the association list insertion routine guaranteed unique instances of identifiers in
the list, we would like to have the check of the second element removed and sîmply
generate the constant 3. However, d e s s there were expliut uniqueness constraints
provided to the interpreter, such a result is unlikely to be found by any system.

It is possible for a residual to contain a general caIl to the original lookup fûnc-
tion, but this only oenvs when the remaining part of the list is completeiy unknown.
This is the point at which the List abstraction follows the same generalization as
the iinifonn projections approach - once a parti& ans œll has T in its cdr, we
dorrnly mode1 the rest of the list as W y dynamic. Although it may be possible
to develop consistent models that are non-dom in this regard, that is a topic for
future research.

Chapter 6

Implementation Issues

6.1 Design Overview

6.1.1 The Language

We b d t a prototype implementation of our sJrstem for a small subset of Scheme [191.
Scheme is an mtyped functional programming language similar to Lisp [78]. The
subset of the language that we mode1 includes global and local scoping, let bindings,
fiinction definition (using either define or lambda style definitions), anonymous
fiinctions, list support (cons, car, cdr , etc.), and the imperative features set ! ,
set-car ! , and set-càr ! . We do not deal with features such as arrays, association
lists, macros, and iterative control flow. The omitted features do not introduce new
conceptual pmblems, and were omitted due to time constraints.

Our interpreter îs a Scheme-to-Scheme transformation system. Due to the nature
of the system we were building, we did make one signifiant change to the normal se-
mantics of Scheme programs. Normally, when a Scheme interpreter evaluates an
undehed variable, the interpreter generates an error message and t e d a t e s the
caldation whereas in our interpreter, any undebed variable is considered as hav-
ing the h o w n value, T. This change allows for completely automatic evaluation
of espressi011~ within the interpreter. For example, assume that the main driver for
a Scheme program is a function called Main. Further, assume that Main takes as its
argument a file-stream value from which it does input and output. To partially eval-
uate the entire program, Main is simply applied to a variable that is not bound in the

global smpe. The partial evaluator then interprets the entire program without know-
ing anytbiag about the run-time input to the program and pcoduces an appropriate
residual.

This approach does have some implications about the state of the world at the
time that the partial evaluation is performed. Any state in the interpreter that ex-
ists when the partial evaluation begins could be incorporated in the residual that
is produced. This could be dangernus in general but is easy to fix by pmviding a
%empiler" style intenace to the evaluator that ensures that all initial run-time state

variables (such as defaut file-Stream variables) are iininitialized before beginning
the interptetation. We have not yet implemented such an interface to the system.

The implementation itself was written in ML 1641 using Standard ML of New Jer-
sey (SMGNJ) Version 0.93. This choiœ was made early in the system development
and allowed for an implementation decomposition that corresponds to the abstract
decomposition presented in earlier chapters. This choice also incurred performance
penalties that could possïbly have been alleviated by adopting the CAML implemen-
tation of ML, but as the implementation was a pmofdkoncept prototype only, the
perfomance issue was not deemed to be worth the effort needed to port the system.

6.1.2 Structural Decomposition

The implementation separates the details of the abstract domains and the actual in-
terpretation algonthm. For each natural ancrete domain the system requires the
definition of a corresponding abstract domain. Each domain in the system is built
h m an ML structure; the interpreter pmvides a set of required signatures, and
f unc tors are used to compose appmpriate structures. In terms of other languages,
s t r uc tu r e s (roughly) correspond ta packages or modules in Ada [80] or Modula-
3 [371 while functors (roughly) comspond to generies in those languages or tem-
plates in C++ 1791. An ML signature provides the interface requirements that a
structure is required to sa*; the polymorphic types in ML allow these signa-
tures to be very generaL

S-expressions are the fundamental structure desaibing entities in a Scheme pro-
gram. An S-expression is composed of either an atom or a pair of S-expressions. In
our system, the values of S-expressions are composed of abstract values; see Fig-
ure 6.1.1 for a diagram of the basic design of the interface between the interpreter

Abstract List D o m Structure
1
1
t
I
1

Abstract Integer Domain Structure I Abstract Boolean Domairi Structure

",, ,'

Figure 6.1-1: Implementation Structure

and the abstract domain definitions. The S-expression fiuictor defines the main S-
expression datatype in tems of the abstract definitions dehed by the given abstract
structures where each of the abstract structures must match a corresponding sig-
nature defhed by the interpreter. The signatures for the abstract domains are de-
fined in terms of the 1- and topped natural concrete domains as described in Sec-
tion 3-81. AU domain constraints are defined in terms of a global datatype named
lattice. The lattice datatype is defined as:

datatype a latt ice = TOP 1 BOT 1 ELEM of a

where a is typed as ' an in the actual d e . This type means that we can mate lat-
tices h m other types; the conetruetor ELM takes a value of any type and retums an
element h m the corresponding lattice type. This constructor doesnot guaraatee for-
mal lattice behaviour of the redting elements; it is the programmers responsibility
to ensure that the induced ct lattice datatype is in fact a lattice.

Before àiscussing more details of the stnieture, we should darify the status of the
abstract list domain structure in our implementation. In the prototype, we integrated
the abstract list operations djrectly into the interpretex This was primarily due to
the manner in which the code evolved and does not imply that there are furidamenta1
dif l ïdt ies in the conceptual decomposition. The dashed line in the arrow b m this
abstract domain to the interpreter indicates that this is a conceptual organization,

not an a d organization in the code.

Given the basic Iattïce datatype, we can define the interfâœs for our abstract types.

The boolean abstract domain signature is defiaed as:

signature BOOLBASETYPE = sig
type domaintype ;
va1 alpha : bool la t t ice -> domaintype lattice;
va1 gamma : domaintype lattice -> bool latt ice;
va1 equal : domaintype lattice * domaintype la t t ice

-> bool lattice;
val pwided : domaintype lattice * domaintype latt ice

-> domaintype la t t ice ;
val rwided : domaintype lattice * domaintype latt ice

-> domaintype la t t ice ;
va1 narrow : domaintype lattice * domaintype lattice

-> domaintype latt ice ;
val print : domaintype lattice -> u n i t

end ;

The definition for alpha should be read as Yalgha is a fiinction taking a bool

lat t icel argument and rehuning a domaintype lat t ice value". The dehition
for equal should be read as Gqual is a function taking a 2-tuple of domaintype
la t t ice values andreturninga booi lattice value".

The alpha and gamma fiiactions directly correspond to the abstraction and con-
netization fiinclions defined in Section 3.3.1 while the pwided and rwided fiuictions
correspond to the precise and relaxed widening operators. The purpose of the narrow
operation wil l be discussed when we dieeuss "splitting" sapes in Section 6.2. The
alpha fûnction takes a value in the concrete domain for boolean and produces some-
thing that is a domaintype lattice. The signature guanmtees that domaintype
is in faet a type, but that is the only restriction in the signature. This permits the
definition of arbitmy abstract representations (subject to the semantic constraints
that cannot be checked by the type system).

'By bool lattice we mean the lattice representing the concretedomain for boolean vaiues, we do
not mean a "boolean lattice" as deâned in lattice theory

The signature ucheats" a bit in the defition of the equal fùnction; equal is
required to return a bool lattice vahe rather than an abstract domaintype
rattice value. This choiœ in the interfhce was made purely for convenience in
the interpreter - there wodd be no semantic difference in haring a domaintype
ïattice value returned and baving the interpreter apply gamma a f h equal every
tirne that equal was applied. The signature a h requires that there be an output
routine for the abstract d u e s (primarily for debugging purposes).

Notice that the signature does not requin abstract definitions for the normal
boolean operations such as and, or, not , etc These operations do not need direct
support in the abstract domain as they are not primitive in the interpreter; they are
defmed by Scheme code that only relies on conditional expressions and equal over
boolean values.

The signature for abstract integer values is somewhat more cornplex due to the
number of primitive integer operations defined in the system. We wil l omit the type
signatures of each operation for clanty

signature INTBASETYPE = sig
type domaintype ;
val alpha : . . .
val gaxnma : . . .
val distinct : ...
val equiv : . .,
val equal : . , .
val pwided : ...
val rwided : . . .
val narrow : , . .
val muld : . . .
val subd : ...
val addd : ...
val negd : . . .
val led : . . .
val leqd : . , .
val splitzange : . . .
val print : . . .

end;

In this signature, we require firnctions for the primitive operations, and introduce
distinct and equiv functions in addition to the equal function, The equai func-
tion determines whether two domain values represent the same set of potential val-
ues. The equiv fiinction determlnes whether two domain values are guaranteed to
represent the same value a t run-time. Using the integer interval sets, this guarantee
can o d y be made when both domain values conskt of the same single integer. Con-
sider the overlapping intemals, [4 . -51 and [S . -61 - we cannot guarantee that
the actual ru-time value will be 5 in each case, The distinct fiinction determines
whether two values are guaranteed to mpresent different ru-time values. This con-
dition can be satisfied for integer interval sets i fwe know that there is no overlap
in the two sets of intervals. For example, using the integer intervals, the interval
[4 . - 41 and [5. -63 aredistinct, but [4 . .SI and [S . -61 arenot. Thepwidedand
rwided operations are the widening operations for the domain; the narrow operation
will be discussed when we discuss "splitting" scopes in Section 6.2.

The next set of fiinctions represent the abstract versions of each primitive opera-
tor. Each h c t i o n takes as arguments and returns abstract domain values. In this
case, we require support for mdtiplicatio~, subtraction, addition, negation, Jess-than
comparison and less-thlin-or-equal comparison. Note that we do not support division
as a primitive operation since we are not supported floating point numbers in the
prototype.

The splitxange firnction takes a conditional expression operator and two val-
ues and retunis an abstract value that represents the "part" of the first value that
satisfies the conditional. So, using integer interval sets, giving splitzange the
conditiond"less-thsinnandtheintemalsets{[i..5], [iO..l5]) and {[6..91)
wodd pmduœ the remit { [1. .5]). See Section 6.2 for details on the issues involved
with splitting values.

6.1.3 Changing Abstract Domains

Due to the structure of the system, we have fomd that changing abstract domains
is a fairly straightfomard exercise. For example, we were able to b d d a "normal*
Scheme interpreter in our system simply by creathg a set of abstract domains that
were identity mappings. The only Merence between the semantics of the resulting
interpreter and a 'bonnal" semantics is that undehed values are treated as T rather

SECTION 6.2. SplitTING SCOPES

6.2 Splitting Scopes

Recall that in Section 3.5.3 we assumeci the existence of a spWting fûnction. The
purpose of a splitting b c t i o n for a partidar domain is to take advantage of value
constraints that can be S e r r e d h m conditional expressions. For example, given an
expression such as (i f (> x 5) (f x) (g x)) we would like to take advantage
of the information that the value of x during the evaluation off must be pater than
5 and that the value of x must be less than or equai to 5 during the evaluation of g.

There are two main issues involved in building a correct set of bindings given a
conditional and an old set of bindings. First, we muet be able to split an abstract
value into a %ruen and "fie" partition given some simple comparison involving the
value. Second, we must be able to merge sets of bindings that are genenited by
comparison operations joined by bool1ea.n connectives.

Value partitioning is performed by a combination of abstract domain operations
and interpreter transformations. Each abstract domain interface contains a sp l i txange

function. This fiuiction takes a cornparison operation identification and a pair of ab-
stnict values and returns an a h c t value considhg of at least the partition of
the Grst abstract value that makes the condition tme. For esample, a (stylized) c d
to splitzange for integer intervals might be l splitcrange 'cm (11 . .5 1) 3 1 .
Hopefblly the result of this c d would be ([1..2]); this is the case in the implemen-
tatioa Note however, that another valid partition would be {[1..5]) since that range
contains at least the d u e s {[1..2]). The value (1) would not be a valid partition as
it does not contain the value {2).

The definition of split-range does not require the abstract domain to know any-
thing about arbitrarg combinations of conditions, the only knowledge required of the
abstract domain is knowledge about cornparison operations on the abstract values.
This isn't really an additional "knowiedge" requirement on the abstract domain, but
is simply an requitement that the interpreter must be able to extract more infor-
mation than a boolean regarding how the ab~tract domain evaluates conditions on
abstract values. Note that it is always safe for splitxange to be implemented as
an identity operation; such an implementation simply sacrifices overall accvacy

Dealing with the composition of conditions is the role of the interpreter. When the
interpreter encounters a condition such as (4 x y) , it uses the simple spl i txange

function to mnstruct the appropriate set of bindings. For the (c x y) condition,
the interpreter needs to build a M e " scope eontaining two bindings. One of the
"true" bindings relates x to the result of (splitsange rn c ' (f ind x) (f ind y)

where (find x) retums the abstract value for x in the current set of bindings. The
sefond %rue" binding needs to calculate the binding for y. The interpreter knows
about the semantics of cornparison operations and so can pedonn a simple trans-
formation on the condition in order to make use of s p ï i t ~ a n g e to caldate the
binding. The correct binding for y is caldated by (spi i t ~ a n g e rn > (f ind y)

(f ind x) 1. The %en bindings are caldateci in a ssmilar way; the interpreter
inverts the conditional expression and calculates the bindings. The interpreter o p
timizes the binding caldations such that only cornparisons that mate binding in-
formation are generated. For example, in the cornparison (c 5 X) we only caldate

the %men binding for x usiiig (spl i tzange > rn (find x) 5) since literal values
never have bindings. It ïs important to observe the 'kiivision of labour" here -the ab-
stract domain is only responsible for the semantics of comparisons on abstract values,
the interpreter is responsible for the semantics of relationships betueen operators.

The final aspect of performing a generai scope split is to malesce the bindings
generated h m a composition of comparisons. For example, in order to correctly
calculate bindings for the condition (o r (c x y) (< x 10)) we need to marge the
biodings h m each of the conditions. In Scheme, we need to wony about the and
and o r operations b o t operations are handed by expression transformation). If we
have an o r in an expression, the ove& binding for an identifier is simpiy any value
represented in either binding for the identifier generated by the two subexpressions.
This caldation is exactly the behaviour of the precise widening operation. Thus
whenever the interpreter enmuters an o r during a split, it simpiy evaluates each
subexpression and then generates bindings for each identifier by precisely widening
the bindings for the identifier generated by any subexpressi0~1, It may be the case

that a partidar identifier only occurs in one clause; in such cases no widening occurs
(or alternativelly, the binding is widening by 1).

Spiitting a conjunctive expression involves binding an identifier to the set of val-
ues represented in al l of the subexpressions. This tgpe of abstract value merging
has not been used elsewhere; the narrow operation is present in each intedace to

provide this fiuictionality. The requllement for a narrow operation is that the value
generated by narrowing tao abstract values contains at least the values that are reg
resented in both onginal abstract values. Thus, as with other operations, it is safe to
choose an identity operation for narrow, aLthough we would normally expect narrow
to be quivalent to intersection for set valued abstract domains.

We know of no other parüal evaluation aigorithm that attempts to refine abstract
value bindings aaoss branches of conditional statements. Normally, the reason for
this is that fixed-height lattiœs are used to represent primitive types and that no
meaningfid information could be represented by a such a splitting operation.

6.3 Improving Residuals

There are a number of issues re1ated to produchg "goodn residuals that are not ad-
dressed in the formal algorithm presented in Chapter 3. Although these factors do
not fiindamentally effect the comctness of the residuals, they do have a direct im-
pact on the applied usefuùiess of the techniques. Many of these factors are related;
one needs to evaluate aspects of all of them in order to produce highquality residual
programs. The prototype implementation makes simplistic choices in most cases; the
particulas choices made will be discussed for each topic.

There are two concepts that are referenced several times in the following discus-
sion: the idea of a fiinction &sure and the idea of a continuation. The basic idea of a
function closure is that a dosure encapsulates a l l of the dependencies that a function
has with its environment. For example, if a parti& variable is h e within a par-
t i d a r fiiaction but is defineci by an enclosing fimction, that variable is part of the
closure of the inner fiuictïon,

The idea of a continuafion is a bit more unusual. A continuation is a function that
captures the %est of the amputation". For example, consider the following simple
expression:

(lambda (x) (+ 4 x))

The continuations form of the expression is as follows:

(lambda (k x) (k (+ 4 x) 1)

In this case, the identifier k is the continuation for the function; when the fiuiction is
applied, the remainder of the computation is captured by k.

Continuations make control flow dependencies explicit - if the resdt of a corn-
putation is used in a subsequent computation, the subsequent amputation will esist
as part of the continuation for some evaluation of the b t computation.

6.3.1 Memoization

Recall that memoization was introduced in Section 2.5. The basic idea of memo-
ization is to create sets of equivalence classes for functions where each equivalence
class maps between some b c t i o n dosure and a particular r e s i d d Given a partic-
ular function f with a closure c, before paitidy evaluatïng f , the algorithm must
determine if the- is an ePsting residual f' with closure c' that can be used. There
are two basic issues determining whether f' can and should k chosen. The first is-
sue is the relationship between the information in the closures c and d. The second
issue is how much of the information in the closure o f d was used in determiiiing the
residual, or in other words, how much useless information there is in c'.

The normal requinment for choosing to reuse a parti& memoized function,
f', for a possible specialization off , is that the dosure of j' must be identical to the
closure for f. This d e is not the only safe choie; our algorithm guarantees that
given any dosure (environment) below the memoized closure, the result of the mem-
oized function will be safe to use. This means that we could define the specialization
rule such that we only speaalize if there is no current specialization with a closure
above the c m n t closure. Requiring closure equality means that any difference in
the closures off and f' disqualifies f' h m ansideration, even if the Merence in the
closures does not have any bearing on the result of the specialization. For example,
consider a functîon like sin. The result of sin(z) is between 1 and -1 independent of
the value of o. Using closure equality, if sin is specialzed . . with an z value that is
bounded to the range O to 360 (degrees) and is then speeialized again with a value in
the range 360 to 720, the first specialïzation would not be reused even though there
is no diffemnce in the range of potential values. Alternatively, choosing ta not spe-
cialize when the dosure for f is below the closure for some f' can also be a problem.
For examp1e. if we enmunter a cal1 to sin with the parameter having the range O to

90, we would not create a specialization if there was an existing specialization of sin

for the range O to 360. In general, using the "below" d e , we would lose many special-
ization opportunities if we encounter partially static h c t i o n calls before W y static
function calls. Making this entire issue even more d i fEd t is that it is not always

optimal to d d or inline computations at every opportunity; expanding the code
through inlining by some additional fàctor does not guarantee faster code and may
in fàct increase nuuiing ümes due to cache effects, memory utilization, and other
factors.

The dosure "equalitf choice and the dosure "below" choiee fonn the boundaries
of an entire range of rules. For examp1e, we could define some distance metric and
choose to reuse an exîstîng spedization ifit was within a pdcular distance of the
current closure. Another alternative would be to dwqys specialize if the new closure
contains values that have a different value when concretized into the concrete do-
m a i . (recall that T represents a l l values in the conmete domain that are not diredy
representable in the natural conmete domain). K a d u e in the new closure has a dif-
ferent concrete domain value then there is likely to be some %al" diffemnce that we
can take advantage of during the specinliaation phase. E'inaUy, we could include the
set of values that were actually used during the specialization phase as part of the
memoization. The choice about whether to select a possible residual could then be re-
stricted to those bindings that actually intluenced the specialization of the memoized
function.

Any potential solution for this problem nuis the risk of either over-pcialization
or over-generalization. OfMine partial evaluation generally resolves the pmblem by
allowing users to intemene and d i r d y change the BTA annotations. Unfortunately,
this appmach becornes an "all-or-nothing" choice; either ail of the effected code will
be ;nlined or none or it will since BTA annotations don't reflect the idea of Iimited
inlining. Andersen [71 bnefly disnisses the idea of k-limiteal annotations that allow
the specializer to restrict recursive inlinings to k le&. Andersen restricts k to 1 in
his theais and has not investigated ways of automating the choiœ of k. Even 6 t h
this appmach however, the choice of k is fked on a global basis; i$ seems clear that
effective partial evaluation should dynamically vary the amount of i . g during
specialization.

Ruf defines a domah of specialization [701 or DOS for a parti& residual to be
the set of values for which the residual and the original fiiaction have the same be-
haviom It is important to differentiate this statement h m a soundness statement;
this is a broader statement than the requirement that the residual and the original
program have the same behatnour on the abstract values used to create the resid-
ual. In general, the domai. of specialization for a residual will be a superset of the

values used for specialization. Ruf then characterizes optimal re-use as choosing to

euse a fitnction if the conmete values represented b a particular ahtract value
for the argument of the new d are a subset of the DOS of the memoized bction
and if it is not the case that the DOS of the new residual is a subset of the DOS of
the eristing res idud Using our definition of bdow, this means that the argument
value is below the comsponding value of the existing residual and that the DOS of
the new residual is not below the old r e s i d d The intuition is that the DOS char-
acterizes the pmprties (or dues) of the abstract argument value that are actudy

"usedm dunng the specialization. Casting this as a behavioural statement, Rufs o p
timal re-use statement requires that the new residual bas the same behaviour over
its set of arguments as the memoized residual. This is somewhat similar in flavour
to a contravariant typing statement.

As Ruf observes. an exact DOS is undecidable but can be appmximated. Ruf
introduœs an additional calculation to estimate the DOS as part of his strategy The
basic idea of dculating the DOS is to define a seand evaluation that is performed
in parde l with the normal evaluation. At each step the DOS calculation determines
the most general value that satisfies the current dculation. As caldations use
more information about a parti& set of values, the DOS is lowered in the lattice.
Ruf's DOS calculation is eager and as such, can be overly conservative in certain
instances, For example, if a parameter is involved in any let-bound caldation that
subsequently becomes dead d e , the iet-bound calculation can change the DOS.

hplementing an equivalent DOS caladation in our sgstem would be reasonably
straightforward. Essentiallx we would only need to d e h e DOS values for primitive
operations within each abstract domain and propagate DOS bindings thtough the
interpreter. As this would be a minor change to our domain requirements, imple-
menting the Ruf's algorithm for selecting residuals would be straightforward.

The DOS approach has much of the same range of choie as the "elosure below"
choice diseussed earlie~, The aawacy of the DOS approach is directly related to the
accuracy of the e s h a t e for the abstract values achially used in the speciaiization.
The modularity of our domain requirements makes this factor a remonable panune-
ter in the design of the abstract domain; if fewer residuals are desired, simply return
more specific values than necessary as the DOS estimates h m the primitives.

The prototype system adopts the simple closure e q d t y strategy This implies
that we can in fact generate duplicate fhctions within a program residuaL The

immediate plans are to change the algorithm in two ways The first change wii l be
to compare a redting residual to the memoized residuals when a specialization is
actually performed. If the residuals are eqaivaent then we will not introduce the
new memoization en- but rather muse the existhg memoization. This means that
we would aaste the time spent evaluating the hct ion, but would decrease resulting
d e she. The second goal is to implement a domain of specialization technique for
memoization choices.

6.3.2 Code Duplication

The possibility ofcreating dupliate fimction instances is not the only problem related
to code duplication. In general, inüning residual computatiom can cause computa-
tions to be duplicated. Consider the following example (modified h m Jones (461):

The let binding captures the value of the recursive call and returns the doubled
value. If this function were blindly d o l d e d for an &own n, the following fiinction
would result:

(define f
(lambàa (n)

(if (= n O)
I
(+ (f (- n 1)) (f (- n 1) 1)

1))
In this case, replacing the identifier y with its residual computation is a poor choice;
the rasulting algorithm requires exponential time compared to the original linear
time algorithm.

The basic rule for both an on-line and off-line evaluator is the same: do not permit
a fwiction cal1 to be duplicated in the same branch of d e . mline speciahzers typi-
c d y adopt a twogtage specialization strategy (Jones [a) to avoid this problem. In

a two-stage specialization proœss, a static annotation means that a fûnction may be
d01ded rather than that it definitely wül be specialized. The determination about
whether to actuaIly d o l d is made not at BTA tune, but at specialization the . Bind-
ings for identifie= are called "duplicable" by Jones if there ensts a path thmugh the
related expression in which the identifier occurs more than once. The specïalization
decision is then made by checking whether the duplicable identifiers are constants or
identifiem. AU nomtrivial bindings &êctively bndiorm annotations to dyncunic for
that parti& Spaciaiization,

The on-ine decision is similar in the sense that the determination about dupli-
cable identifie= must occur and that a pdcu la r in-Iining decision depends on the
residual for duplicable identifiers. The main difference io that in the on-line approach
this fits naturally with the overall evaluation algorithm. The on-line specializer al-
ready considers changes to annotations, while in the off-line approach this type of
decision is a fundamental shift in approach and forees the off-line algorithms into
adopting a partially on-line approach.

The prototype system impIements conditional inlining and dolding based on
whether identifiers are duplicable. The analysis consists ofperformhg a count dong
each path through the expression (an operation that is strictly local ta the body of the
function or le t-errpression) and determining if each identifier ocam more than once.
This count is performed in the same way for both let-bound identiûers and formal
function parameters. When the binding for each identifier takes place (Le. at the
beginning of a function evaluation and at the beginning of a let statement) the iden-
tifier is added to a list of unsafe identifie= if it is both duplicable and a non-trivial
computation. In the prototype implementation, non-trivial computations are a bit
more general than simply constants or identifiers - the p r o t o w allows the dupli-
cation of any expression that does not involve a non-primitive function application or
a potential side-efféct (see Section 6.3.3). Finallx when an identifier is encoutered,
if it is not on the list of unsafe identifiers, it is replaced wîth its residual, otheIPPise it
is not replaced.

6.3.3 Computations with Side-effects

Impure computations are a substantid problem in any partiai evaluation algorithm.
In general, it may be Mcult to determine whether a p a r t i a h identifier has an

alias; in k t , in languages such as C in which aliases ain be created at will, exact
alias analysis is undecidable. There are two basic appmaches that can be taken: first,
one can restrïct the mode1 so that all aliased store either has known ahas relation-
ships or is treated as dynamic. This appmach is adopted by Nirbhe and Pugh in their
partial evaluator for hard mal-time systems (discussed in Section 2.6.3). The second
main option is to track sets of alias relationships. Sets of alias relationsbips provide
essentially the same information as a "may-aliasn analysis [53] [ZS]. Andersen 171
has implemented a simple form of pointer alias anal* in his partial evaluator for
C. His analysis does not track conditional alias relationships but basically h d s the
union of all possible alias for each aliasing variable within functional unïts. Every
mode1 has problems with handling truiy unknown aliasing relationships - if the set
of potential aliases becomes unknown, that destroys nearly any further specialization
since every memorg location must becorne unknown.

An additional problem is related to the issue of d e duplication in the previous
section; it is generally not safe to duplicate any computation that involves a side-
effect. As mentioned in the previous section, the prototype evaluator handles this
issue by not duplicating any code that involves an imperative feature- While this is
a reasonable choice in languages in which the use of imperative features is rare, it
clearly is not acceptable in languages such as C.

The final issue relates to merging of run-time state &r conditional expressions.
Consider the following expression (assume c is dynamick

(if c
(begin

(set! x 5) x)

(begin
(set! x 7) x)

1

Although we can replace the two referen~s to x, we m o t remove the assignment
statements. Consider the following incorrect residual:

(if c 5 7)

This expression has the same value result as the original expression for all input. It
is not a correct residual however, since the state of the system afbr this expression
is not going to match the state of the original expression for all input- The standard
appmach is to insert "explicators" 1611 in the residual code. Explicators are simply

assignments that guarantee that the state of each branch matches the abstract state

at the end of the computatiom In off-liae systems this is a larger issue sina this
impiies creating a m-tirne assignment based on compile-time d u e s . This resem-
bles the partially on-line decisions made for potential code duplications as discussed
in Section 6-35. Note that in general there may be a large number of assignment
statements replaœd by a singie erplcator. For example, if there was a (set ! x

9) following the use of x in the b t branch of the example, the (set ! x 9) wodd
remain as the explicator, but the (set ! x 5) could be removed entirely

In off-line systems explicators only need to k added at the end of dynamic con-
dition& when the value abstractions are not guaranteed to generate the same nui-

time value. In the pmposed on-line system there is an additional case: if an as-
signment uses a value for which the concrete domain representation is not a deh i t e
value, then the nin-time behaviour is unknown and the assignrnent must remain in
the residual. All other state changes that involve definite values can be removed since
they are unconditional dong tbat evaluation path. Note that comparable assignment
statements in an off-line system would also rem* since such statements would nec-
essarily be annotated as dynamic due to the fact that the compile-time state of the
variable does not have a single d u e . The on-line system has an integrated decision
process rather than the parüally on-line approach used by the off-line approaches.

hperative features are not the main foeus of our work and as such, the proto-
type implementation avoids most of these issues by always leaving imperative code
in residuals. In other words, even if all imperative statements could safely run at
compile-the, out current system will leave them in the residual. The system wiU
correctly use values that are created by imperative features, but Pirill not generate
minimal residuals in d e with imperative features. Future versions wdi adopt the
abstract store model and set-based alias analysis; such a model is consistent with the
overall approach adopted in the abstract domains.

6.4 Other Language Issues

The general term a@ raising refers to transformations that increase the number
of parameters to bctions. In off-line p h a l evaluation, M t y mising refers to the

process of separating the static and dynamic portions of a partially static structured
type into several parameters. Anty raising has similarities to Launchbury's projec-
tions based approach that was diseussed in Section 5.22. The static projection of a
fiinction that takes a partially static structural parameter is parameterized by the
static portion of the structure while the dynamic projection is parameterized by the
dynamic portion of the structure. Efféctively, this is raising the overall anty of the
hct ion even though the arity of each projection may remain the same.

Arity raising in the traditional off-line sense is not directly applicable in an on-
line approach as no actual structural decomposition is neœssary. There is however,
a different view of arity raising that can be usenil in the on-line approach. It is
masonable to view the closure of a function as an implicit parameter, or in fact, as a
series of implieit parameters. I f d functions were %ttenedW such that every closure
variable was passed in an explicit parameter, this would permit fmer granularity
decisions regarding the e f f d v e annotation of the closure. In [601, Mason defiaes a
continuations based intermediate language that perfoms such a flattening as one
stage of the compilation process.

Tbere are two major benefits for performing arity raising by flattening within
an on-line partial evaluator. First, as already mentioned, such a transformation
would d o w the evaluator to make finer-grained decisions regarding the equivalence
of function memoizations. Second, flattening would more easily d o w for the identi-
fication of relationships between bindings within fiinction dosures since these rela-
tionships would be explicitly present within the call graph.

The prototype implementation does not pertorm any form of flattening. As noted,
stnictural flattening provides no benefit to the on-line algorithm wi th the structural
domain mode1 presented in Section 5.2. Although closure flattening may provide
some benefits, this remains as future work, possible by using Mason's flattened in-
termediate form [60] as the basis.

6.4.2 Complexity of Semantics

The conceptual complexity of building a partial evaluation fiamework for a given
language is strongly related to the conceptual eomplexity and semantic definition of
the source language. Writing a partial evaluator is more cornplex than writing a

normal interpreteq as mentioned in Section 6.1.3 a standard semantics interpreter
is a special case of the partial evaluation h w o r k that we have defined.

Consider applying our partial evaluation technique to languages such as C. The
rnemory model in C is closely related to mal machine memorg layout; there are re-
puirements on the behaviour of pointer comparisons, the layout of structures, etc

The semantics of these operations would have to modeled within the interpreter in
order to correctly calculate the d u e of expressions. Unfortunately the semantics of
some operations within C are not completely dehed. For example' ANS1 C [Il re-
quires that type long be able to represent at least the integer values representable
by the type int. A compiler coaforms to the standard if it chooses to define the
two types as structuraUy identical; a Gto-C partial evaluator could only choose to
t r d o r m based on the requirements in the standard. If a C-to-C partial evalua-
tor produced C code based on the assumption that long and int were structurally
equivalent, the produced C code no longer be ANSI C conformant if the assumption
was exercised within the residual.

As diseussed in Section 2.6.2, Andersen's approach to these issues is to produce
generating extensions (51 [6] and then to have these generating extensions pmduce
the actual code that would then be mmpiled. Meyer [61] performs a deeper interpre-
tation but does so in a restricted language wïth a much simpler semantics

Although both off-lure and on-line algonthms must implement a safe approxi-
mation to language semantics, the requirement for off-line evaluators is somewhat
weaker than for on-line algorithms. Off-line BTA is a fîxed-point caldation that de-
pends only on a simple abstract semantics of the source language involving siatic and
dynamic a~ota t ions . Although in reaüty, accurate off-line BTA relies on a reason-
able model for alias rehtionships, such an approach can avoid implementing a safe
abstract semantics for the entire language. On-line evaluatonr must implement safe
semantics for the entire language. Although neither off-line nor on-liae appmaches
need to be "cornplate" in the sense that any aspect can be treated as unknown and
will cause a safs appmsimation, the o v e d effect of choosing &own can be to
greatly reduce opportunities for specialization.

6.4.3 Separate Compilation

Partial evaiuators generally assume that the e n t h program is available at partial
evaluation time. This assumption relates to both binding-time analysis issues and
speeialization. Atthoug. for convenienœ the diseussion wiU deal with the issues s e p
arately (adopting an off-line bias), the concems apply equally to o n h e systems.

k t consider binding-time anal@. The basic goal of binding-time analysis is
to safiely annotate program vafiables and fùnction callo as king either static or dy-

namic. In terms of variables, st& means that all possible values for the variable are
available at compile-the. K a language does not support any form of sideeffects, the
binding time analysis can e d y be performed separately as long as the BTA assumes
that any value returning h m an separate module is dynamic A more accurate es-
timate can be made by adopting Andersen's approach and introducing binding-time
signatzues [l for each module. Such signatures provide other modules with infor-
mation about what annotations have been made. Unfortunatelg, in the presence of
mutuaily recursive modules, such an approximation is going to be extremely con-
servative unless the m u t u d g recursive modules are analyzed at the same tirne or
pmvide explicit symbolic information regardhg the extemal dependencies if a dy-
namic annotation is made solely due to an extemal module. Anderseds approach
follows the independent analysis route, assuming that all extemal module values
are dynamie Andersen did not propose any form of symbolic dependency analysis.
No one else has attempted to address languages with explicit modules and completely
separate binding-time analysis.

In addition to the relatively simple problem of dealing with a pure language, in
general a system may need to handle languages that permit cross module sideeffects.
As one extreme, consider C "modules". A C program is permitteci to cause side-effects
in m y extemally visible variable. In addition, if any of these egtemally visible vari-
ables are pointer types, then without a fhirly accurate value analysis, a BTA would
be forced to assume that any variable that had its address captured could becorne
dynamic af'ter any function c d outside the current compilation unit. Ever achiev-
ing teasonable binding-time results would be iiniiLely in such a model. Languages
such as Ada [BO] are somewhat easier to deal with since the package interfaces con-
tain more definitive information and reference coercions are much more tightly con-
strained than in C. Even with the better intefice however, a BTA would be forced to
treat as dynamic any input-output parameters or exported non-constant variables.

The second aspect within partial evaluation, name1y specialization, is even more
problematic in such envimnments. By definition, a 8peciaIization must be able to
determine the actual values for variables that are static within the evaluation. In
order to determine static values that result h m interactions with extemal modules,
the specializer will have to be able to perform evaluations of the extemal module.
I t does not seem possible to reeolve this issue without either abandoning separate
compilation or king satisfied with purely local specializations. it is likely that to be
highlS effective, the application of partial evaluation techniques in general environ-
ments would need to occur as pst-linl optirnizations. Early Illilong as suggested by
Mason [6û] may help to alleviate such problems.

Exceptions pennit m-time bmching decisions to be made. h m the perspective
of a partial evaluator, exceptions have aimilm characteristics to both continuations
and ht-class hctions. Raising an exception requires that the current evaluation
be terminateci in favour of an expression that performs some recovery action. Raishg
an exception is similar to calling an alternate continuation that includes the recovery
evaluation before continuhg the computation a t the appropriate point. Detellluaing
the effective binding-time annotations when exceptions can occur involves consider-
ing all possible control flow paths h m a given point raising the exception to any
point that might catch the exception. This is similar to determining the set of cal1
sites for a first-class function and generally requires some amount of value analysis
in order to presenre accuracy.

Fortunate1~ most exception handlers are %eu-behaved" in the sense that they
either restore the state of (part of') the computation, provide a default value so that
computation can presume, or terminate the amputation completely In any of those
cases, the exception is unlikely to change the state of annotations, so consemative ap-
proximations should be reasonable. Although various people have investigate higber-
order fiinctions, there has been no direet work on supporting exceptions.

A related language feahve is cdl-wüh-cument-continuation. Cd-with-current-
continuation, or callcc, allows a programmer to expliatly capture the continuation
of a parüdar program point and to pass that continuation as a parameter to a
subsequent fimction. Calling that continuation is similar to raising an exception: the

execution continues at the point imnrediately foilowing the site of the original callcc.

Putely compile-time language features generally do not impact the partial evaluation
proœss. The basic reason is that partiel evaluation W o r m s nin-time operations
into compüetime operations; if an operation has only compile-the semantics, there
is little effect on the partial evaluato~, h p l e s of such features are static type

checlo'ng, generics, and ad hoc poiymorphism (overloading).

Partial evaluators g e n e d y a s m e that any static typing issues have been re-
solved prior to partial evaluation (i.e. that the program is valid). Static types then
only concern a partial evaluator as a meehanism for providing the evaluator with
additional constraints or annotations that can be applied during the evaluation pro-
cess. For example, the partial evduator can take advantage of the fa& that identifiers
that define constant d u e s will never change annotations after being created since
the language guarantees that the values cannot be modified after creation. In fact, in
languages that permit only compile-time values for constants, constants can always
be treated as static.

A generic [801 or template [791 mutine is a code fragment that is parameterized
by type and/or value information. Conceptu& instantiating a generic with par-
tidar information mates an instance of the related code suitable for use with the
given type andor values. The overd effect of generic instantiation can be similar to
partial evaluation - incorporating speeific information into more general code and
producing an optimized version that takes advantage of the partidar static infor-
mation* In reaüty, implementations either simply Ubox" parameters and use a single
un-specialized version of the code or simply duplicate the code in the same fashion as
a macro expansion. Partial evaluation fits naturally into this hmework by acwpt-
ing the instantiated generics (either the sharing code or expanded form) and applying
the normal evaluation process.

Compile-the overloading is similar to generics as far as partial evaluation is
concerned; partial evaluation assumes that the resolution has aiready succeeded and
that a l l that remains is the normal partial evaluation proœss. The only exception
to this assumption is when languages require run-time overloading resolution; such

models are effectively the same as limited obect onented models as was discussed in
Section 2.6.1.

6.4.6 Applying Heuristics

Heuristics have long had a major role in real eompilers. These assumptions are
realized in many ways: peephole optimizations, Ioop unrolling, branch prediction,
size/spaœ tradeoffi, register allocation, instruction scheduling, and so on. Each of
these optimization techniques have a solid basis in real performance issues and have
g e n e d y been studied ezttensively. As a simple example, new architectures may be
tested in an exhaustive manner to fînd code sequences that have the same effect of
other d e sequences (even if the designers of the architecture did not foresee such
an equivaience) in order to impmve peephole optimization.

Partial evaluators bave traditiody ignored these issues and f m s e d on traas-
formations that are set in a more formal semantic framework There are however,
potential opportunities that should be explored. For example, one interesting method
for mmbinirig register allocation and instruction scheduling is code coagulation [49].
The basic idea is that the d e %t-spots" should be compiled independenty and be
independently given fkee choice of registers. At each point in the code production, the
next %ot-spot" is chosen; when these locations meet, any necessary register trans-
fers are introduced. Adopting this approach can reduœ the number of register spills
requVed within the most hquently executed code, thus impmving overall perfor-
mance.

On-lina partiai evaluation may be a remonable method for estimating code "hot-
spots" and perfonning code coagulation. On-line partial evaluators follow the inter-
pretive flow ofeontrol in the source program and pmduce residual code aAer evaluat-
ing each expression. Residuals for code that is deepest in the evaluation is normdy
encountered earlier in the evaluation process so peiforming register allocation dur-
ing partial evaluation may be a masonable approximation of the code coagulation a p
pmach. Altematively, partial evaluation couid provide "expected profilen information
for use during code coagulation. One area for M e r study would be to investigate
the predictive power of such estimates when compared with real execution profdes.

Chapter 7

Conclusions and Future Work

This thesis has presented a new algorithm for on-lùie partial evaluation. The separa-
tion and characterization of general abstmct domains is an important impmvement
in that it allows domain design to foeus on the abstract information that is desired
rather than on the evaluation algorithm. The algorithm itself has b e n p m n to ter-
minate and to generate sound solutions based solely on the general characteristics of
the abstract domains used by the algorithm. A key impmvement in our approach is
using both precise and relaxed operations when manipulating abstract values. Com-
parable systems cornpute all collections of abstract values using a single approach
- least-upper bounds in 6inite lattices. Our approach presemes termination while
allowing substantial impmements in the accuracy of the analysis. W e have care-
M y defined the termination and souz~dness characteristics for the on-line partial
evaluator with respect to the standard semantics. Charactexizing termination and
soundness as relationships between the environment during partial evaluation and
environments under the standard semantics provides an intuitive basis for reason-
ing about the residuals. We believe that such characterizations wilI be critical to the
application of partial evaluation techniques in a wider cuntext.

The abstract domains presented in Chapter 5 capture more static information
than the simplet lattices used in other approaches. At the same time, these domains
retain reasonable convergence properties. We have shown that these partidar ab-
stract domains sa- the forma1 requirements for domains. This modular approach

to pmving algorithm properties is usehl for reducing the work hvolved in devel-
opïng the proofk without sadciag confidence in the results. Although it has not
been discussed throughout the thesis, the modular design also allows the domains to
be designed with little concem for the actual language king interpreted. Although
some language specific domains might be neœssary, mmmon a b c t domains such
as integers, booleans, etc, should be reusable betwsen implementations of the our
algorithm for Merent source languages.

W e have built a basic proof of concept prototype. Though the pmtotype made
simplistic choies regarding many of the issues related ta residual production, it has
demonstrated the viabikty of the nnnlysis phases and the ease of changing abstract
domains,

This thesis has focussed primarïly on the theoretical aspects of the proposed frame-
work One of the main directions for ftrther work is to work towards a h e w o r k
for the "applied" aspects of on-line partial evaluation. In partidar, characteriza-
tions need to be developed for profitable d e expansions thtough the use of either
estimates of d e behaviour or limited p r o f h g information. It would be partidar1y
interesting to investigate the amount of profilhg needed to "informm the abstract
analysis about suBiCient program characteristics to allow for good specialization de-
CisionS.

There are three major areas of fiiture work. The f h t area is in improvements to
the algorithm and the models used for abstract domains. The second area of fiiture
work is in applying other a h & models and chamcterizing the types of information
needed to apply these modeis. The third major area is in direct applications of these
techniques to solving traditional compiler problems and in discovering other types

of usefid information. In partidar, using these appmaches to characterize t y p a
programs could be usehl in determinhg profitable avenues for M e r optimization
strategies. The following sections bnefly summarize fbture directions

hprovemente to the OnIline Algorithm

There are three changes to the presented algorithm that need M e r study The
Grst two changes are with respect to the d parameter in the algorithm. R e d that
the intuitive meanhg of the d parameter is that it reflects computations that are
potenWy divergent. Curre!ntly, the algorithm is verp conservative with respect to
potentially divergent computations; as soon as a dynamic conditional is encountered,
dl derived computations are assumed to be potentially divergent. This assumption is
oRen ovedg conservative. In parti&, when we discover additional results that are
not in c (k . e i d) , we currently re-evduate the function application with the expanded
6. In order to impmve accuracy, we can actually perform the re-evaluation with V =
f i e " rather than "d = me*. Essentially this change is adding a hypothesis that
the expanded will not lead to divergence. with the expanded E, a conditional
turns out to be dynamic, we simply regress to the consemative case and could further
-and 6 and 6.

A related change to the o v e d aigorithm that we intend to investigate involves
changing d h m a simple boolean into a vector of booleans with one flag for each
bction. Consider a computation such as the foilowins

(if x (fact 5) 0)

where x is unlaiown. Under the current strategy, the evaluation of (f ac t 5) occurs
with d = true. If the integer domain converges rapidlh as does our intend domain,
the result of this computation is the intemal [O..oo] rather than the accurate result
{O, 120). The reason for the rather p r estimate is that we assume that the subex-
pression (fact 5) could be divergent. However, in realie, such chctiom are only
divergent if there is a dynamic conditional in the derivation between the outennost
evaluation of f ac t and a denved evaluation of f ac t.

The third change that we plan to investigate is related to how we pmduce values
when we h d fixed-points. Currently, when we realize that our latest result does not
extend (, we pmduce that result immediately Again, this is a faKly conservative
approximation technique. The basic intuition is that we expand our estimate until
we pass the ideal result; however, in the current algorithm we then simply retum
the mmputed overestimate. It may be possible to =fine our eatimate and, in effect,

reduœ the size of ou . estimate and try to get doser to the ideal rssult. One possible
approach for reducing the "sizen of the estimate is to increase the accuracy of the
formal parameters to fiinctions. The pmposed change is to pmduce the resuit of

as the result in line 3.15(11) when our latest result estimate does not -and c. Cur-
rently the algorithm simply produces ea. The ea estimate is likely to be a substantial
overestimate of the actual result however, since the value bound to x during the pro-
duction of eœ includes dl of the values in 8'. However, since the new result estimate
is subsumed by [and at this point we know that the value of ey has been caldated
with respect to c, we should be able to improve our result estimate by using only the
er portion of F to h d the o v e d result.

AU three of the above changes were motivated by properties of the p m & pre-
sented for the cumnt algorithm. As such, we are fairly confident that all of these
changes would preserve the correctness and termination of the algorithm. We do not,
however, know which of the changes would be profitable in terms of the tradeoff be-
tween inmasing the time for the andgsis versus the expected inmases in accuracy.
In order to M y explore these aspects of such changes. we need to move beyond the
nirrent prototype implementation into a more fUly developed system. As such, this
rem* as fbture work

The 0th- major set of changes needed in the current implementation is to bring
the memoization and residual production into line with approaches that have fo-
cussed on those aspects. This may be incorporated into the current implementation
or may involve replaeing the analysis aspects of some other system such as FUSE
with our algorithm. It is not dear which of these approaches will be most viable.

Other Abstract Domains

The representation of information withîn abstract domains has not received much
attention latelx particularly with respect to abstract struchved domains. Most cur-
rent appmaches use some fom of structural decomposition; our approach is the only
exception. We would like to continue to explore aspects of representing structural in-
formation. One possibility is to d o w a mix of normal structural d u e s and fuactions
that are sublist generators. This could, for example, allow us to append a single value

onto the end of a list of unlniown length and retain information about that value. No
current system models such Lists.

Another aspect to consider is modeling values based on some sort of spedication
language. Y for example, a par t idar portion of code was origindy specified in a
specification language such as L d or VDM, it might be usenil to consider whether
those specifications could be used for reasoning about what ttansformations should
k safe to perform. There are substantial reliability issues iavolved in following this
mute. Arbitrary reasoning about the code and specincation is not a viable approach;
it is not dear whether a code transformation system should be permitted to rely on
specifications during transformation rather than solely relying on user annotations
and language semantics.

7.2.2 Extending the Models

Higher Order Functions

This work has not addressed hïghet order functions. Higher order fiuictions are nor-
m d y addressed by a combination of consemative control flow analysis and a tram-
formation into a continuations based language. Genedg, the number of fiinctions
in a pmgram is relatively small so an on-line appmach that performs an inmemen-
ta1 control flow anslysis by collecting sets of potential fiinctions bound to partidar
identifie= may be a reasonable approach.

There are simple approaches to h a n h g higher order funciions within an on-
line partial evaluator. Since we have assumed that there are a hite number of
fiuictions, we can form a complete lattice fkom the powerset of functions and use
simple set union as our widening operators. This approach is completely accurate,
but could potentially be computationally very expensive since e d possible h c t i o n
would have to be evaluated at every application of a higher order fiinction.

Extending the model ta include first class functions removes the finîteness as-
sumption. In such cases, it is much less clear how in construct any reasonable and
non-trivial abstract model. Ideallg, we would lilce to have a model that could reason
about the types of hctions that are king built. This may be possible in some very
restricted situations, but does not seem to be likely in general.

Embedding Other Abstract ModeIs

The abstract domains that we have proposed are biased towards reasoning about
%duesn rather than "relationshipsn. One interesting avenue for fiiture exploration
is the possibility ofusing other types of formal analysis within the abstract domains.
An example of such a forma1 analysis is constraint anaiysis. Adopting constra.int
anal* techniques as instances of abstract domain models sesms to pose some difi%
cuity, ki the -nt approach, the intefice to the domains is relatively simple and
is based solely on d u e s ; an abstract domain needs to know vew little about the lm-
guage being interpreted. In order to embed constraint rinalysis, relationships within
the source would have to be transmitted to the domains. Doing this in a language in-
dependent mannes seems somewhat problematic, although some of the recent work
in reasoning about arbitraIy inductive structures is promising.

The integer list domain that we introduced incorporates a concept of "direction".
Relaxed widening operations for integers are not asbative since the widenùig op-
eration captures the direction of growth in the domain. It is certainly possible to

expliatly extend the number of directions to include, for example, the even or odd
numbers as a direction, the Fibonacci numbers as a direction, and so on. It would be
interesthg to evaluate how many relatiomhips in mal programs could be expressed
fiom a small set of basic relationships. Such a study could determine whether fdly
gened reasoning was necessarg for most optimization situations.

Solving Traditional" Problems

Some traditional compilation issues such as register allocation, instruction schedul-
hg, control and data flow analysis, and low-level optimizations have been bnefly
mentioned in this thesis. One of the long term goals of developing the kamework
for on-line partial evaluation is to express many of these optimizations and analy-
ses using a consistent method. Such a recastiag of techniques would be valuable to
regularize the discussion of the techniques as well as espressing the techniques in a
moduiar way This could help in darifging the dependencies between the techniques

and reducing surprising interactions between optimization choiœs.

Every parfial evaluatot builds modeis of program behaviour; these models form the
basis of deeiding on annotations and on how to speeialize the program. Unfortunately,
verp little empmcal data is available to use when deciding what types of models are
likely to express mal program behavio- For example, in real C++ programs, how
often is multiple inheritance used? What is the average size of a record in Ada?
How oRen are methods overridden in Modula-3? Partidtvly in languages in which
abstractions are costlp, there is little on which to base partidar optimization choices.
There are exceptions of course; the high penomanee Fortran community has a fairly
clear idea about the nature of such pmgrarns, but that program domain is fairly
small.

Partial evaluation is not a panaœa, nor can it stand alone. However, given the
general movement towards higher level laquages, we believe that partial evaluation
can provide valuable models for program p on nation

Appendix A

Lattices

In this appendix, we briefly review some notation and the basics of lattice theory; for
a complete devdopment, we would recommend the introductory book by Davey and
Priestley [30].

A lattice is a fonnal mode1 for describing the relationships between elements in a
set. A lattice is a special case of a partial order*

Deni Al (Partial Order) A partial order < S, < > is a set S and u
relation. 4 . on S such that fbr z, y, z E S. the 6 relation isr

t r d t i v ~ z ~ y a n d y < z ~ z ~ z .

antieymmetric z < y und y ,i z 2 = y.

reflesive 2 0 2.

E x < y we may Say that z is below y. Note that it may be the aise that < does
not hold at al l between two arbitrary elements of S. In other words it may be the
case that for some 2, y E S, z # y and y # z. In such a case we say that z and y are
incompamble, denoted as 21 1 y.

-- - -

Dehi A.2 (Down-set) GWen a partial order < S, < > and an element
s E S. the down-set of s, denoted b, is a set D s u d that for dl sr E S. if
sr g s t h sr E D.

Lower bounds CB C Dl
(il (ü) Greatest lower bound

No Greatest lower bound

Figure Al: Lower bounds

We can extend the meaning of a down-set by defining the down-set of a subset of
S to be the union of the down-sets of the elements in the subset. More formdv, given
a partial order < S, < > and S' C S then

It is useful to be able to talk about various bounds or limitiag values of a subset
of some partial ordar < S, < >. Assume that S' is a subset of S for some partial order
<S, =$ >.

- -

Defn A 3 (Lower B o 4 A lower bound for S' is an element y E S
such that Vx E S', y Z$ 2. r

Note that the lower bound of a subset of S does not have to be a member of the
subset, it is only required to be a member of S.

Defn AA (Greatest m e r Bound) nSt, the greatest lower bound for
S' is a lower bound, y, of S' such that Vz E { lower bounds of S'}, z < y.

We will &O tefer to the greatest lower bound of a set containing elements
2 and y as the meet of z and y, denoted as ZAY.

Upper bounds IB C D)
(U, hast upper bound (Al

(i) No least upper bound

Figure A.2: Upper Bounds

It may be the case that a set does not have a lower bound; if there are two incom-
parable values which constitute the set then there would be no value comparable to
(and below) every element of the set.

There are symmetric dehitions for "upper bounds":

' Defn A 5 (Upper Bo~nd) An upper bound for Sr is an dement y E S
such thut VZ E S,Z $3.

Deda 116 (Least Upper Botand) US'# the le& upper bound fir S is
an upper b o ~ n d ~ y, of S' such thut Vz '+ { upper bounds of S}, y < z. We
will also refer to the least upper bound of a set containing elernents t and
y as the join of 2 and y, denoted as 2 ~ y .

As with lower bounds, an upper bound may not ex&. Obviously it is the case that
if no upper bound easts, no le& upper bound exiets.

Defn A7 (AscenrZinp Chain) An ascending chain of elements in S is a
sequence 21, x z , . . . such that 21 < 2 2 =$. - ..

Figure k3: Integer Lattice

An ascending chain may be infinite. We may talk about an upper bound or least
upper bound for a chah, as weU as for a set. As with a set, an ascending chah may
not have a least upper bound (although any mite ascending chah will have a least
upper bound).

1 Deni A8 (Lattice) A lattice < S, 6 > is a partid order such thot

Defn AS (CompIete Lattice) A complete lattice < S1 6 > is a
2a-e such that V S c S : US' and nSf e t .

Figure A3 shows a httice for singleton integer sets with the subset relation. Each
'set" (a single integer value) is incomparable to any other singleton set (since no
element L a subset of another), 1 is considered as part of any set, and T is considered
to indude every singleton set.

This is a fàirly simple model; the intuitive meaning of L is "empty set* and the
intuitive meiining of T is "the set of ail integers".

We will often want to consider fiuictions h m S + S. In particuIar we will be
concemed with interpreting recutsive fûnctiom which conceptually move thmugh
the lattice. Fuctions within S -+ S will be required to be monotonie and continuous.

Monotonic fiuictiom preserve ordeiirig; if an elernent, z, is below another elernent,
y, then the mapping of 2 wi l l be below the mapping of y.

Dehi Al0 (Monotonic FPnction) A finction, f, on a lattiee S is
monotonic if Vz, y E S, 2 =$ y * f (2) < f (y) .

Continuous functions preserve least upper bounds; applying a continuous func-
tion, f , to the te& upper bound of a chain results in the same element as taking the

least upper bound of the chah formed by applying f to each element in the original
Chain.

Dehi A11 (Continuous Fmaction) A finction, f, on a lattice S is
continuow il: given an ascending dain X = 21 < za < f (uX) =

ulf (X)).

Given a contùiuous, monotonic, and total hction h m S -t S. any mapping of
the fiinction is guaranteed to stay within the lattice; we don't need to worry about
"falling o f f the lattice. In any lattice (S, 4), given a continuous, monotonic, and
total function f : S -t S, f will have a fixed point.

Defn Al2 (Fixed Point) A f i14 point, u, f8r a fitnction f is a value
such that KU) = u.

Given ouf lattice definition, f will also have a least h e d point1, which wül be the
least upper bound of the aseending dain 1 =$ f (1) =$ f (f (1)) < - . - .
'As the details of the proof are not important for our purposeq we will defér to Aiiisoa 141 for the

P ~ E

Appendix B

Concise Definitions

B.l The Standard Semantics Interpreter

Constants

N[const] ,g = const

Conditions

N[(if c el ez)]e=
let cf = N[c]e

N[erle ifë =tme

N[e,le i f d =faise

in
e '

end

Primitive operators

Function Application

N[(Xx.e) elle =

let

4 = N[el]e
in

NCel e[x * 41
end

B.2 The Online Abstract Interpreter

B.2.1 Constants

P[const]p &Cd =< a(const), const >

in

< ea,eR >

end

Primitive operators

in

< va, JI >

end

hinction Application

in

< ea, vR >
end

Dgnamic Function Application

7(eQ) if7(eU) $? €TV 1)

(Ax. eR ef) otherwise

else

P [(k . e)el]p b<'true

end
end

121 &RAMSKY, S., AND HANI(IN, C., Eds. Absfract Interpretatiorz of Dedarative
hnguages. Chichester: EUis Ho~wood, 1987.

[3] A m , A., SETHI, R., AND UI,T,MAN, J. Compilers. Principks, Techniques, and
Tools. Reading, MA: Addison-Wesley, 1986.

[4] ALUSON, L. A Practical Intmduction to Denotational Semantics. Cambridge:
Cambridge University Press, 1989.

[5] ANDERSEN, L- SeEapplicable C program specialization. In Partial Euduation
and Semantics-Based hgr tz tn Manipulation, San htncisco, California, June
1992 (Technical Report YALEUfDCS/R.R-9091 (June 19921, New Haven, C F
Yale Universiw, pp. 54-61.

[6J ANDERSEN, L. Binding-time analysis and the taming of C pointers. In Partial
Evaluution and Semntics-Based Progran Manipulcrfion, Copenhagen, Den-
mark, Jme 1993 (19931, New York: ACM, pp. 4758.

[71 ANDERSEN, L. Program Analysis and Specicrluation fir the C Ptogramming
Language. PhD thesis, D W , University of Copenhagen, Denmark, 1994. DIKU
Research Report 9U19.

(81 ANDERSEN, P. Partial evaluation applied to ray tracing. DIKU Research Report
95/2, D m , Universie ofcopenhagen, Denmark, 1995.

[9] BAIER, R., GLUCK, R., AND ZOCHLING, R. Partial evduation of numerid
programs in Fortran. In Partial Evaluation and Semantics-Based Program Ma-

nipulafion, Orlando, norida, June 1954 (Technical Report 94/9, Department of
Computer Scieme, University of Melbourne) (19941, pp. 119-132.

[IO] BJBBNER, D., ERSHOV, A., AND JONES, N., Eds. Workshop Compendium, Work-
shop on Pa& Evduation and Mixed Computcrtion, 01. Aue- Denmark, Oc-
t o b v 1987. Department of Computer Science, Technical University of Denmark,
Lyngbp, Denmark, 1987.

[Il] BONDORF, A. Automatic autoprojection of higher order recursive equations. Ln
ESOP '90.3rd Europeun Symposium on PrognrmmUlg Copenhagen, Denmark,
May 1990 a c t u r e Notes in Computer Science, vol. 432) (May 19901, N. Jones,
Ed., Berlin: Sp~ger-Verkg. pp. 70-87. Revised version in [12].

1121 BONDORF, A. Automatic autoprojection of higher order recursive equations.
Science of Computer h g m m m i n g 17 (1991), 3-34.

[13] BONDORF, A., AND MOGENSEN, T. Logimur A self-applicable partial evduator
for Prolog. DIKU, University of Copenhagen, Denmark, May 1990.

1141 B O ~ O N C L E , F. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming 2 ,4 (October 1992), 40745 .

[15] BUHR, P. A., MACDONALD, H. I., AND STROOBOSSCHER, R. A. psystem an-
notated reference manual, version 4-43. Tech. Rep Unnumbered (Available via
ftp to pïg.uwaterloo .ca inpub/u~ystem/u~ystem.ps .z.), Department of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L
3G1, Mar. 1991.

il61 BULYONKOV, M., AND ERSHOV, A. How do ad-hoc compiler constructs appear
in universal mixed computation processes? In Partial Evalwtion and Mixed
Cornputution (1988), D. Bjdmer, A. Ershoy and N. Jones, Eds., Amsterdam:
North-HoIland, pp. 65-81.

[17] CE~AMBERS, C. The design and implementation of the Self compiler. an optimiz-
ing compiler for object-oriented pmgramming languages. Tech. Rep. STAN-CS-
92-1420, Stanford, 1992.

[18] CHAMBERS, C. Objectsnented multimethods in Cecil. ECOOP '92 Conference
Proceedings (July 1992).

[19] CLINGER, W., AND REES, J. RevisedW report on the algorithmic language
Scheme. ACM Lisp Pointers N (Jdy-Cept. 1991).

[20] COLBY, C., AND LEE, P. A modular implementation of partial evaluation. Tech.
Rep. CMU-CS-92-123, School of Computer Science, Carnegie Mellon University,
March 1992-

[2i] CONSEL, C. Binding time analysis for higher order untyped fimctional lan-
puages. In 1990 ACM Confireme on Lisp and Functiond Progmmrni~ Nice,
h n c e (1990), New York: ACM, pp. 264-272.

[22] CONSEL, C. Pol-ant bînding-time analpsis for applicative languages. In
Partial Euduation and Semantics-Based Program Manipulation, Copenhagen,
Denmark, June 1993 (19931, New York: ACM, pp. -77.

[23] CONSEL, C., AND DANVY, O. For a better support of static data flow. In Func-
tiond Rogramming Languages and Compuier Architecture, Cambtùige, Mas-
sachusetts, August 1991 Ckcture Notes in Computer Science, uol. 5231 (1991),
J. Hughes, Ed., ACM, Berlia: Springer-Verlag, pp. 496-519.

[24] CONSEL, C., AND KHOO, S. on-line and off-line partial evaluation: Semantic
speciûcations and correctness prooh. Tech. Rep. W-DCS-tr912, Yale, 1993.
To appear in Journal of Fmctional Progtumming.

[25] CONSEL, C., AND -0, S. Parameterized partial evaluation. ACM Transuc-
tions on Prognrmming Lungwgees and Systems 15,3 (19931, 463-493.

[26] CONSEL, C., AND PN, S. A programming environment for binding-time
based partial evduators. In Partiai Ev~luation and Semanties-Based Pro-
gram Manipula th , San hncisco, CaZifirnk, June 1992 .ITechnical Report
YALEU/DCS/RR-909) (19921, New Haven, C'P Yale University, pp. 62-66.

[27] COUSOT, P., AM> COUSOT, R. Abstract interpretation: A unilied lattice mode1
for static analysis of programs by construction or approximation of kpoints.
ACM Symposium on Rimiples of Programning Languages (January 1977),
2 3 ~ 5 2 .

[28] CYTRON, R., FERRANTE, J., ROSEN, B., WEGMAN, M., AND ZADECK, F. K.
Efficiently cornputhg static single assignment form and the control dependence

graph. ACM ï b d n s on hgmmming Languages and Systems I3,4 (O&.
1991),451-490.

[29] C ~ O N , R., AND GERSHBEIN, R. Efficient accomodation of m a y - a s infor-
mation in SSA form. SIGPLAN Notices 28, 6 (June 19931, 36-45. Proceedings
of the ACM SIGPLAN '93 Conference on Progmmming hnguage Design and
Implementation.

[301 DAVEY, B., AND PRIESTLEY, H. Intmduction to Lutfices and Order. Cambridge
Press, 1990.

[31] DEAN, J., CHAMBERS, C., AND GROVE, D. Identifying profitable speciahza-
tion in objectoriented languages. ln Partial Evaluation and Semontics-Bused
Program Manipulation, Orlando, Flonda, June 1994 (Technicol Report 94 /9,
Deparbnent of Computer Science, Universi@ of Melbourne) (1994, pp. 85-96.

[32] ERSHOV, A. A theoretical prinaple of system programming. Soviet Mathemtics
Doklady 18,2 (1977),312315.

[33] FEGARAS, L., SHEARD, T., AND ZHOU, 'ï! Impmving programs which recurse
over multiple inductive structures. Partial Evduation and Seïnantics-Bused
Program Manipulation, orlando. Florida, June 1994 (Technid Report 94/9,
Department of Cornputer Science, Universi& of Mdhwnel(1994), 21-32.

[341 FUTAMURA, Y. Partial evaluation of computation process - an approach to a
mmpiler-compiler. Sysïems, Cornputers, Contds 2,5 (19711, M O .

1351 GOMARD, C., AND JONES, N. A partid evaiuator for the untyped lambda-
calculus. Joumcù of Fumtional Rogmmming I, 1 (January 1991), 21-69.

[361 -0, J.-K., AND CHABRIER, J.J. Combining partial evaluation and constraint
solving: a new approach to constraint logic programrning. In 2nd International
IEEE Conference on Tools fir Artifiicrl hteZZ&encg Herdbn, VA, USA (19901,
New York: IEEE Computer Society, pp. 494-500.

1371 HARBISON, S. Modula-3. Englewood Clins, NJ: Prentice Hall, 1992.

[381 HARNETT, S., AND MONTENYOHL, M. Towards efficient compilation of a dy-
namic object-oriented language. In Partid Evduation and Sernantics-Bused

Rugram Manipulation, San lhncisco. CdifOmia. June 1992 (Technical Report
YALEU/DCS/RR-909) (19921, New Haven, CT Yale UniverSie, pp. 82-89.

[391 KENDREN, L. Parallelizing programs with recursive data structures. Tech. Rep.
90-1114, Cornell Universiw, 1990. Ph.D. Thesis Chapters 3 and 4 - Interference
Analpis).

[40] ~ N D R E N , L., AND NICOLAU, A. P d e k i n g programs with racursive data
structares. IE6E I>a11socfions on Pararlkl and Distn'buted Systems 1, 1 (Jan-
uary 19901,3447.

[411 HENGLEIN, F. Efficient type inference for higheporder binding-time analy-
sis. In Functional Prognzmming Languages and Cornputer Architecture, Cam-

bridge, August 1991 (Lecture Notes in Cornputer Science, vol.
523) (19911, J. Hughes, Ed., ACM, Berlin: Springer-Verlag, pp. 44-72.

[42] HENGLEIN, F. , AND MOSSIN, C. Polymorphic bînding-the analysis. In Pro-
gmnmt-ng hnguages and Systems - ESOP94. 5th Eumpean Symposium on
Programrning Edinburgh, UK, &rd1954 (Lecture Notes in Cornputer Science,
vol. 788) (19941, D. Sanneila, Ed., Berlin: Sprïnger-Verlag, pp. 287301.

[43] HUG~ES, J. Backwds analysis of fiiactiod pmgrams. In Partial Eualua-
tion and Mized Computation (19881, D. Bjerner, A Ershov, and N. Jones, Eds.,
Amsterdam: North-Holland, pp. 187-208.

1441 JONES, M. Dictionary-fkee overloading by partial evaluation. In Partid Eual-
uation and Semontics-Based Program Manipulation. Orlando, Flonda, June
1994 (Technical Report 34/9, Departnent of Cornputer Science, Univers@ of
Melbourne) (19941, pp. 107-117.

[451 JONES, N. Flow analysis of lazy higher-order hctional programs. In Ab-
stmct Interpretation of Declarative Languages, S. Abramsky and C. Hankin,
Eds. Chichester; E h Horwood, 1987, pp. 103-122.

1461 JONES, N., GOMARD, C., AND SESTOFT, P. Partial EvduatiOn and Automatic
Program Genetation. Englewood CliffS, NJ: Prentice Hali, 1993.

[471 JONES, N., AND M Y C R O ~ , A. Data flow analysis of applicative programs using
mipimal bction graphs. In M e e n t h A C ' Symposium on finciples of Pro-

gnrmming Languages. St. Petersbu= 8ïorid4. New York ACM, 1986, pp. 296
306.

[481 JONES, Ney SESTOFT, P., AND SBNDERGAARD, H. 1MiX: A self-applicable partial
evaluator for experiments in compiler generation. Lisp and Symbolic Cornputa-
tion 2,1(1989), 9-50.

[49] W, M. Code generation by coagulation. In Conference Record of the 1984
ACM SIGPLAN Symposium on Compiler ConstnrcLion (June 1984), vol. 19, As-
sociation for Computing Machinery, pp. 1-12.

[50] KHOO, S., AND SUNDARESH, R. Compiling ideritance using partial evalua-
tion. In Partid Evaluation and Semantics-Based Program Manipulation. New
Haven. Connecticut (S@lan Notices, vol. 26, no. 9. Septeinber 199U (1991), New
York: ACM, pp. 211-222.

[511 LA~EIoTIA, A., AND STERLING, L. Pro- A Prolog partial evaluation system.
In The Practice of Prolog, L. Sterling, Ed- Cambridge, MA: MIT Press, 1991,
ch. 5, pp. 137479-

[52] LAM, J., AND KUSALIK, A. A partial evaluation of p d evaluators for pure
Prolog. Tech. Rep. TR 90-9, Department of Computational Science, University
of Saskatchewan, Canada, November 1990.

[53] LANDI, W., AND RYDER, B. G. A safe appmximate algorithm for interprocedu-
rd pointer aliasing. SIGPLANNohes 27,7 (July 1992),235-248. Proceedings
of the ACM SIGPLAN '92 Conference on Programming Language Desm and
Implementation.

1541 LAUNCHB~Y, J. Projection Factorisations in Partial Eualuation. Cambridge:
Cambridge University Press, 1991.

[55] LAWALL, J. Rwfs by stmctural induction using partial evaluation. In Partial
Evduation and Semaniics-Based Program Manipulation, Copenhagen. Den-
mark. June 1993 (19931, New York: ACM, pp. 155-166.

[56] LEONE, M. , AND LEE, P. Lightweight ~ n - t i m e d e generation. In Par-
tial Evduation and Semantics-Based Pn,gmm Manipulafion, Orlando, norida.
June 1994 mechniml Report 94 /9, Department of Cornputer Science, University
of Melbourne) (19941, pp. 97-106.

[57] LW, Y., STOUER, S., AND TEITELBAuw, T. Discoverhg a d a r y information
for ineremental eomputation. ACM Symposium on Principles of Progrumming
Languuges (Januasy 1996).

[58] -.BR, K., HEINTZE, N., AMI D m , O. ML partial evaluation using
set-based Srnaiysïs. In 1994 ACM SIGPLAN Worhhop on ML and Its Applica-
tions, Orlarrdo. morùh, June 1994 (Technieal Repart 2265. LlWtA Rocque~court,
Bance) (19941, pp. 112119.

[59] MARQUARD, M., AND STEENSGAARD, B. Partial evaluation of an object-
oriented imperative language. Master's thesis, DIKU, University of Copen-
hagen, Denmark, A p d 1992. Available h m ftp-diku-dk as file
p~/diku/semantics/papers/D-152.ps.Z

[60] MASON, D. A Functional intermediate h m for diverse source languages.
Submitted to CASCON 1996.

[611 MEYER, U. Techniques for partial evaluation ofimperative languages. In Pur-
tiol Evdwtion and Semunties-Bad Program Manipulation, New Haven. Con-
necticut (Sigplan Notices, vol. 26, no. 9, Septeder 1991) (1991), New York: ACM,
pp. 94405.

[62] MEYER, U. Correctness of odine partial evaluation for a pascal-like language.
Bericht 9205, AG Informatik, Universitat Giessen, Germany, 1992.

[631 MILNER, R. The Definition of Stan&rd ML. Cambridge, MA: MIT Press, 1990.

[641 MILNER, R., TOFTE, M., AND HABPER, R. The defiaition of Standard ML. MIT
Press, Cambridge, Mass., 1990.

1651 MOGENSEN, T. The application of partial evaluation to ray-trachg. Master's
thesis, DIKU, University of Copenhagen, Denmark, 1986.

[66] MOGENSEN, T. Partially static st~ctures in a self-applicable partial evaluator.
In Partial Evaïunfion and Mked Computatwn (1988), D. Bjerner, A. Ershov, and
N. Jones, Eds., Amsterdam: North-Holland, pp. 325-347.

[671 MOGENSEN, T, AND BONDORP, A. Logimk A self-apphcable partial evaluator
for Prolog. In LOPSTR 92. Workshops in Computing (Jan. 19931, K-K. Lau and
'i! Clement, Eds., Berlki: Springer-Verlag.

[68] Nrapa~, V., AND PUGH, W. Partial evduation and hi&-level imperative pro-
gramrning languages with applications in hard real-the systems. In Nineteenth
ACM Symposium on Rinciples of Progmmming Urnguages, Albuquerque, New
MenCo, January 1992 (19921, New York: ACM, p p 269-280.

[69] P-, A., DEVIENNE, P., AND LEBEGUE, P. Towards optimization of fidl
h l o g programs guided by abertract interpretation. Ln WSA '92, SStcrtic Analysïs,

Bordeaux, fiance, Septeder 1992. Bigre vols 81-82, 1992 (19921, M- Billaud
et al., Eds., Rennes: IRISA, pp. 295-303.

[70] RUP, E. Top& ï~ Online Partial Evducrtion. PhD thesis, Stanford University,
California, February 1993. Published as technical report CSL-TR-93-563.

[71] RUP, E., WEISE, D. Avoiding redundant specialization during partial eval-
uation. Tech. Rep CSL-TR-92-518, Cornputer Systems Laboratory, SStanford
Universiw, Stanford, CA, April1992.

[72] RUF, E., AND WEISE, D. Improving the accuracy of higher-oder speaaliza-
tion using control flow analgsis. In Pa& Evduation and Semanth-Based
Program Manipulation, San Rancisco, CCofimia, June 1992 ITechnikd Report
YALEU/DCS/RR-909) (1992), New Haven, CT: Yale University, pp. 67-74.

[73] RYTZ, B., AND GENGLER, M. A pl-t bhding time adysis. h Partid
Eualwtion and Semantics-Bad Program Manipukraon, San fiancisco, Cali-
fornia, June 1992 (Technicd Report YALEU/DCS/RR-9û9) (19921, New Haven,
CT: Yale Universiity, pp. 21-28.

1741 SAKAMA, C., AND ITOH, H. Partial evaluation of quenes in deductive
databases. New Genemtion Computing 6,2,3 (1988), 249-258.

[751 SHNERS, O. Contd-Flaw Analysis of Htgher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991.

[76] SMITH, D. Partial evaluation of pattern matching in constraint logic program-
ming languages. In Portid Eualution and Semantic~~Bused Program Manipu-
lation, New Haven, Connecticut (Sr'gplan Notices, vol. 26, no. 9, September 1991)
t1991>, New York: ACM, pp. 62-71.

(771 SRIDHAR, A., AND V E ~ , R. Automatic precondition verification for high-
level design transformatiom. In 199û lEEE International Symposium on Cir-
cuits and Systems (1990). New York: IEEE, pp. 2654-2657.

[78] STEELE JR., G. Commo~ LUp Lanugusge 2" Revised Ed. Englewood Clins,
NJ: Prentice Hall, 1989.

[79] STROUSTRUP, B. The C++Prog~mmUig Language, second ed. Reading, MAr
Addison-Wesley, 1993.

[BO] UNITED STATES DEPARTMENT OF DEFENSE- Refetence Manual for the ADA
Progrumnùng Lcrngwge, 1983. ANSIMLSTD-1815A-1983.

[SU VASEU, J. A partial evaluator for data flow graphs. In Pa- Evaluation and
Semanth-Based Program Manipulation, Copenhtzgen, Denmrk, June 1993
(1993), New York: ACM, pp. 206215.

[82] WEGW, M., AND ZADECK, F. K. Constant propagation with conditional
branches. ACM Tra~~scu:tions on Pmgrarnrnhg hnguages and Systems 13, 2
dApril1991), 181-210.

[831 WEISE, D., CONYBEARE, R-, Rn, E-, AM> SELIGMAN, S. Automatic online
partial evaluation. In Functional Programming Languages and Computer Ar-
chitecture Cambridge, Mc~sSQChuatts, Augrcst 1991 a c t u r e Notes in Computer
Science, vol. 523) (19911, Hughes, Ed., BerIin: Sp~ger-Verlag, pp. 165-191.

[a] ZAKHAROVA, N., PETRUSHIN, K, AND YUSHCHENELO, E. Denotational seman-
tics of mked computation processes. In [IO] (1987), pp. 379-388.

