A Framework for On-line Partial Evaluation

Gordon J. Vreugdenhil

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 1996

©Gordon J. Vreugdenhil 1996

i~l

National Li L)
of Canaca du Canada. e
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Weilington
Ottawa ON K1A ON4 Ottawa ON K1A N4
Canada Canada
Your filg Votre rédfdrence
Our fle Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése d la

The author retains ownership of the
copyright in his/her thesis. Neither
the thesis nor substantial extracts
from it may be printed or otherwise
reproduced with the author’s
permission.

disposition des personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa thése. Ni
la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou
autrement reproduits sans son
autorisation.

0-612-21414-1

Canadi

-ty

-

The University of Waterloo requires the signatures of all persons using or photo-
copying this thesis. Please sign below, and give address and date.

iv

Abstract

The term partial evaluation describes a class of program transformation techniques. The
heart of these techniques is to transform programs by incorporating portions of known run-
time data into the program. The resulting program has been “partially” evaluated — some of
the actions of the program can be performed at compile-time due to the known data. There
are two general classes of known data that can be used by such a process. The first class
is composed of data that is implicit in the production of the program; examples include tex-
tual constants, macro expanded values, type tag values, method dispatch tables, etc. Some
amount of such data occurs frequently in high-level programs. The second category is com-
posed of data that is explicitly provided at compile time. Such data can be used to create
customized versions of very general programs such as ray-tracing and numerical modeling
systems.

In this thesis we propose a formal framework for an on-line partial evaluation system.
The underlying model for values in the partial evaluator is not restricted to finite-height lat-
tices; the termination of the evaluator depends on the convergence of operations, rather than
on a restricted model for values in the system. The proposed framework clearly separates
the partial evaluation algorithm from the abstract domains used for representing informa-
tion during the evaluation, allowing a wide variety of evaluations to be effected by the same
core algorithm. The partial evaluation algorithm that is proposed as part of the framework
is a polyvariant on-line algorithm that makes effective use of the static information present
in program source while preserving soundness and termination. The thesis presents care-
ful proofs of termination and soundness based on characterizations of behaviour under the
natural semantics. The key to the algorithm is recognizing when exact analysis is safe with
regards to termination and when a more conservative approximation is needed.

The actual on-line algorithm depends only on the properties of the abstract domains,
not on particular choices of abstraction. The abstract domains allow the partial evaluation
algorithm to take advantage of safe computations whenever possible. The overall algorithm
we propose compares favourably to other partial evaluation systems in its ability to capture
information present in the program, and the ability of the system to execute without any
human intervention other than an indication of how much the system is permitted to increase
the size of resulting program. The ability of a general system to generate reasonable results
without human intervention is a key advantage that is a prerequisite for having this type of
technology applied in real systems.

Acknowledgements

As with any Ph.D. student, I have had the opportunity over the last number of years
to interact with many outstanding people. It is only a small measure of my appreci-
ation to acknowledge some of these people here.

First of all, I wish to acknowledge the invaluable assistance of my supervisor,
Gord Cormack. Gord supervised both my Masters thesis and my Ph.D. work so we
ended up working together for eight years. His insights about many aspects of com-
puter science helped to keep my work in focus. Particularly in the last year of work
on my Ph.D. thesis, Gord spent substantial amounts of time working through proofs
and helping to develop and improve them.

I would like to thank Dave Mason and Glenn Paulley, fellow Ph.D. students, for
the many great discussions over the last number of years. Dave and Glenn have been
not only sounding boards, but good friends who made the time spent at Waterloo
enjoyable. I also want to express my appreciation for the discussions with other
members, past and present, of the Programming Languages Group at Waterloo. In
particular, I would like to thank Charlie Clarke, Dennis Vadura, Dominic Duggan,
and Peter Buhr.

I would like to give a special note of thanks to the other members of my defense
committee, Don Cowan, Rudy Seviora, and my external examiner, Jim Cordy. Their
insights and comments helped to improve the clarity and precision of the thesis.

There are many other members of the Computer Science Department at Waterloo
that provided encouragement during the process. In particular, the support provided
by Byron Weber Becker, Naomi Nishimura, Prabhakar Ragde, and Grant Weddell
was deeply appreciated. Of course, I can’t forget the often taken-for-granted support
staff, especially Wendy Rush who helped me to stay sane at various times.

Finally, I want to acknowledge the support and love that my wife, Janet, provided
throughout the years of study. Her patience and support encouraged me and made it
possible to stay focussed on my work during times of frustration.

Contents

1 Introduction

1.1 GoalsandDirections
1.2 Compilers and Interpreters
1.3 Optimization and Interpretation
1.4 The Essentials of Abstract Interpretation

14.1 ASimpleExample
1.5 Formalizing Abstract Relationships

2 Partial Evaluation and Symbolic Execution

21 TheMizEquation.00.00...
2.2 The Futamura Projections
2.3 General Concepts of Partial Evaluation
2.3.1 Specialization
23.2 Binding-TimeAnalysis
2.3.3 TypesofPartial Evaluators
2.3.4 Polyvariant and Monovariant BTA
2.3.5 Off-line and On-line Approaches
24 Otherlssues,

........

........

........

........

........

........

........

........

........

........

........

2.4.2 Languages with Imperative Features 29

243 Termination 31
2.5 Residual Code and Specialization 34
2.6 Applications of Partial Evaluation and Specialization 36
2.6.1 Reducing Costsof Polymorphism 36
2.6.2 Traditional Language Compilation 39
2.6.3 OtherApplications0...... 43
Generalized On-line Partial Evaluation 47
3.1 DomainsforOn-LinePE 48
3.1.1 Domain Approximationsoouo.n.. 49
3.1.2 Issues for StructuredDomains 52
3.2 Improving Domain Approximations« 57
3.3 Domains and WideningOperators 58
3.3.1 Domain Requirements 59
3.3.2 TheWideningOperators0...... 61
3.3.3 OtherRequirements 64
3.4 The Language and Standard Semantics 65
3.5 TheOnlineAlgorithm 69
351 Constantsttt 69
352 Identifiers 70
353 Conditions00t 70
354 FunctionProperties 74
3.5.5 AnExampleoftheAlgorithm 79

4 Analysis of the On-line Algorithm

41 Derivationst i i i e e e e e e e et e e
4.2 Soundnessand Termination
4.3 CorrectnessofResiduals
4.4 On the Efficiency of On-line Evaluation
4.5 Parameterizing Partial Evaluation
4.6 Summaryof the On-line Framework
5 Domain Implementations
5.1 IntegerIntervalDomains
5.1.1 Definition of Integer IntervalDomains
5.1.2 Widening Operators for IntegerIntervals
5.1.3 A Larger Example using the IntegerDomain
52 StructuredDomains
5.2.1 Analysis of the Abstract StructuralDomain
5.2.2 On the Expressiveness of the List Abstract Domain
6 Implementation Issues
6.1 DesignOverview ittt vttt ennnnan
6.1.1 TheLanguage,
6.1.2 Structural Decomposition
6.1.3 ChangingAbstractDomains
6.2 SplittingScopes i i e e e e e e e e e
6.3 ImprovingResiduals
63.1 Memoization
6.3.2 CodeDuplication
6.3.3 Computations with Side-effects

82
82
83
96
99
102
103

105
105
105
110
117
120
125
130

6.4 OtherLanguagelIssues

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6

ComplexityofSemantics
Separate Compilation.

7 Conclusions and Future Work
7.1 What's New? i it e it e e e e e e e e e e e e e e e e e
7.2 What s Next? c i i it e et e e e e e e et et eeee e

7.2.1
7.2.2
7.2.3

A Lattices

Foundationso ieee...
ExtendingtheModels
AppliedProblems

B Concise Definitions
B.1 The Standard Semantics Interpreter
B.2 The Online Abstract Interpreter

B.2.1
B.2.2
B.2.3
B.2.4

Bibliography

Comstants ittt
Identifiers
Conditions
FunctionProperties

156
156
157
158
160
161

163

168
168
169
169
169
170
17

173

List of Figures

1.2.1A typicalcompiler 4
15.1Lowerboundst e 13
152U0pperBoundst 14
2.3.1BasicSpecialization e 21
2.3.2Lattice of Simple Annotations 24
25.1MemoizationMap L i e e 35
2.52Twodifferentresiduals, 36
3.1.1Restricted Subset Lattice 50
312Atree for RZLD+« o i e e e e e e e e e e e e e e e e e e 55
3.3.1Boolean ConcreteDomain 59
332@)EVpD andMWEVD it 62
5.1.1IntegerInterval Lattice. 107
5.1.2AbstractValueCovering enenen. 109
5.2.1BTA Lattice for Structural Projection 131
6.1.1Implementation Structure, 136
Al Lowerboundsttt 164
A2 UpperBounds @ittt teennennnn. 165
A3 ImtegerLattice ittt et e 166

Chapter 1

Introduction

1.1 Goals and Directions

Automatic program transformations are important in the practice of medern com-
puter science. Programmers generally take for granted that compilers and other pro-
gram transformation systems are correct and that compilers perform “good” trans-
formations. Although most program transformations occur during compilation, it
is increasingly important to express program transformations that support various
kinds automated reasoning. Such transformations range from program specification,
to real-time system behaviour, to dealing with changes to legacy code. In addition
to the more recent concerns, the more traditional roles of program optimization con-
tinue to be very important in areas such as molecular modeling, weather systems,
fluid dynamics, full motion animation, etc.

Answering questions about program behaviour is a fandamental aspect of nearly
all program transformation techniques. This thesis proposes a framework for pro-
gram transformation that is based on performing source language to source language
code transformations that exploit information present in the original source program.
The tradeoff for this focus lies in an increase in computation at compile-time and a
probable increase in the size of the resulting executable program. The focus of our
work is in a framework for program analysis. The framework that we propose can be
used as a tool for answering various questions about program behaviour; the collected
information can in turn be used for various types of transformations.

SECTION 1.1. GOALS AND DIRECTIONS 2

We propose the use of partial evaluation and symbolic execution techniques to
regularize and formalize questions about program behaviour. The proposed frame-
work generalizes the analysis methodology adopted by most comparable systems.
There are three main areas of contribution presented in this work. First, a formal
foundation for partial evaluation is presented. The foundation determines how ab-
stract values within the system can be modeled. Prior work has required that such
models be formed from finite-height lattices in order to preserve termination for the
evaluator. Our analytic approach is based on the analysis techniques of Cousot and
Cousot [27] and preserves termination without restricting the underlying model to
finite height lattices. This approach is a general application of interval analysis and
has reasonable extensions to non-integer domains such as structured types.

The second area of contribution is a partial evaluation algorithm that uses the for-
mal model and that differentiates between types of information within the system.
The algorithm allows very accurate operations on values when there is no risk of
divergence and applies more conservative operations when needed in order to guar-
antee convergence. We present proofs of termination and soundness for our algorithm
and discuss the general time complexity of the framework.

The final area of contribution deals with abstract domains for modeling integer
and structural information. The structural model was motivated by the work of Hen-
dren [39] and Launchbury [54], while the abstract integer model is based on work by
Cousot and Cousot [27].

The overall design of the system separates the language specific foundation of
the interpreter and the methods for performing the analysis. Such a design allows
one to change easily the types of analysis performed by the system without hav-
ing to change the underlying interpretation system. The overall system compares
favourably to other partial evaluation systems in its ability to capture information
present in the program, and in the system’s ability to execute without any human in-
tervention other than an indication of how much the system is permitted to increase
the size of resulting program. The ability of a general system to generate reason-
able results without human intervention is a key advantage that is a prerequisite for
having this type of technology applied in real systems.

The remainder of this chapter introduces the general concepts of compilers, opti-
mization, and abstract interpretation while Chapter 2 introduces partial evaluation
and applications of partial evaluation. Chapter 3 presents the framework that we

SECTION 1.2. COMPILERS AND INTERPRETERS 3

have developed. There are two important parts to this presentation: the require-
ments for the abstract models used by our algorithm, and the algorithm itself. Chap-
ter 4 presents a formal analysis of the algorithm and includes proofs of termination,
soundness, and correctness of transformed expressions, as well as a discussion of the
complexity of algorithm. In Chapter 5 we develop particular abstract models for inte-
ger and structural domains and discuss other possible models. Chapter 6 deals with
a number of issues related to implementing the framework and includes a discussion
of the prototype system that we have developed. Other issues, not directly related
to our implementation, are also discussed. These include problems with side-effects,
methods for producing high quality residuals, and separate compilation.

1.2 Compilers and Interpreters

The basic difference between interpretation and compilation is that an interpreter
executes programs by translating a single line of a program, performing the required
action, and then going on to the next line. After each translation and action, the
interpreter throws away the translation, so if the interpreter encounters the same
line again later, the line must be translated again. A compiler takes the original
program and translates the entire program into an executable form that may then be
used without further translation.

The interpretation/compilation border in real systems is not that well defined of
course. Inherently, every real program is interpreted — the actual processor interprets
a sequence of bits as an instruction to perform a particular action, then interprets the
next bit sequence, etc. It is important that one does not assume that all compilers
produce code that requires no further interpretation and it is equally important not
to assume that an interpreter never compiles code.

A compiler is simply a program that transforms data according to some set of
rules. Data transformations are not “magic”; any program can be seen as a data
transformer for at least a trivial data set. The reason that people become confused
about compilers is that although the result of the compiler can be understood as data,
the result is not passive but rather is itself a data transformer.

The classic compiler structure (3] is composed of a number of phases or layers
as shown in Figure 1.2.1 The first phases are syntactic or lexical analysis and pars-
ing. These two phases insure that the program is structurally correct with respect to

SECTION 1.2. COMPILERS AND INTERPRETERS

Source lProgram
lexical analyzer syntax analyzer
) Intermediate code
semantic analyzer generator
code optimizer code generator
Target (object) Program

Figure 1.2.1: A typical compiler

SECTION 1.3. OPTIMIZATION AND INTERPRETATION 5

the language definition (assuming, of course, that the compiler correctly implements
the language specification). The result of these two phases is an intermediate form
usually represented as a parse tree or some intermediate language. The semantic
analysis normally checks that language constraints are satisfied. Such constraints
may include type safety, assignment rules, etc. After (or more typically, during) se-
mantic analysis, an intermediate form of the program is produced. Intermediate
forms generally remove source language syntactic (and possibly some of the seman-
tic) constraints and are constructed to be amenable to manipulation for the remain-
ing phases. The optimizer performs transformations on the intermediate form and
produces a semantically equivalent intermediate representation that is “better” ac-
cording to some set of criteria. The name “optimizer” is somewhat misleading - it
is extremely rare that an optimized program is in fact optimal in any formal sense.
“Optimizations” are in reality “code-improving transformations”, but we will retain
the common terminology for the sake of clarity. The final step after optimization is
the generation of the target code.

The research presented in this thesis is directed primarily at the optimization
phase of the compiler although the approach could be used for code generation and
semantic analysis as well.

1.3 Optimization and Interpretation

The optimization methods presented in this thesis derive information about the source
code and makes use of this derived information when performing code transforma-

tions. Methods for deriving information about programs rely on some sort of inter-

pretation of the source code. This interpretation cannot normally be a full execution

of the program since we generally do not know run-time arguments to the program

when we are compiling the program. Compile-time interpretation can only approx-

imate the run-time behaviour of the program if there is any information that is not

present at compile-time.

Simple examples of such interpretations are the common optimizations of con-
stant folding and constant propagation. If a compiler encounters an expression such
as (a + b + 2 + 4) within a program, it is generally safe to transform the calcu-
lation by folding the two constants into a single constant, resulting in the expression
(a + b + 6). Itis important to note that such transformations are not always safe.

SECTION 1.3. OPTIMIZATION AND INTERPRETATION 6

For example, on a machine with 8-bit two’s complement arithmetic, folding (a + b
+ 120 + 20) to (a + b + 140) would not be safe since the constant 140 is not
representable in 8-bit two’s complement notation. The run-time semantics of the ex-
pression may be correct however since the programmer may have a priori knowledge
that the result of (a + b) will always be below -12. Even this a priori knowledge
however, relies on the assumption that expressions are evaluated in left to right or-
der.

Constant propagation is a similar technique but is performed across expressions.
If at a certain point in an imperative program, a variable is assigned a constant, we
can replace uses of that variable in the following code with the constant value until
the point in the program at which the variable is assigned some other value. Note
that the code “following” an assignment depends on the run-time behaviour of the
program - for example, in general all code within a loop “follows” every statement in
the loop. For example, within the loop:

x = 5;

for i := 1 to 10 do
y 1= X;
output(y) ;
X :=x + 1;

od;

it would not be correct to remove the assignment of x to y and replace the output (y)
with output (5) since the assignment statement y := x follows not only the state-
ment x := 5, but also follows the statement x := x + 1 which occurs textually at
the end of the loop.

Complicating matters in constant propagation analysis is the fact that there may
be several references to the same memory location within the program. Determining
the set of all such references involves performing some form of alias analysis.

Both of these examples rely on some form of interpretation of the source language
semantics — during folding the interpretation involved the semantics of the + operator
and the semantics of integer representation, while during constant propagation the
interpretation involved the semantics of the control flow constructs. Optimizers need
to know about the underlying semantics of the language being transformed; it is

SECTION 1.4. THE ESSENTIALS OF ABSTRACT INTERPRETATION 7

critical that the transformations performed by an optimizer are semantics preserving,
i.e. that they don’t change the meaning of the original program.

In some senses the techniques in this thesis are merely advanced versions of con-
stant propagation and folding. We wish to use information which may be inferable
from the source code for the purpose of answering various questions about the source.
As one simple example, consider our for loop again. A naive interpretation would
not be able to infer any knowledge about the state of the variable x following the
loop. However, by inspection, it is clear that the value of x following the loop is going
to be 15. The techniques that we will be introducing are able to infer not only this
information, but information that is much more general.

1.4 The Essentials of Abstract Interpretation

Fundamentally, interpretation should be understood as the implementation of se-
mantics. In other words, an interpreter is a function whose domain (input) is a pro-
gram in some language and whose range (output) represent the meaning of the pro-
gram. In any programming language (or domain), semantic definitions are provided
for expressions in the domain. These semantics may be given in varying degrees of
formality — ML [63] being on the formal side and C++ [79] being on the informal side
—~but all languages give some sort of definition of the meaning of programs within the
language. We will be using the term “standard semantics” to refer to the semantics
defined for the original language.

Formally, we may express the meaning of a program as a function [] such that
[€] is the “meaning” or interpretation of the expression e. The expression [e]. repre-
sents the meaning of the expression e when interpreted with the semantic definitions
of language L! ~ i.e. the behaviour of the expression e. Meaning functions may be
specified in a variety of ways including denotational semantics, operational seman-
tics, action semantics, or informal descriptions.

Using this notation we can more concisely describe a compiler. If ¢ is a compiler
written in language £ which translates expressions from language M to some other

!When it adds to the clarity of the presentation, the subscript indicating the domain of the meaning
function will be omitted.

SECTION 1.4. THE ESSENTIALS OF ABSTRACT INTERPRETATION 8

language M’ then the following equation should hold:

[elm = [ele(e))me .1

Intuitively, this says that the meaning of the expression in the source language
should be the same as the meaning of the expression which results from compiling
the expression. When such an equality holds we say the transformations applied by
the compiler c are semantics preserving. Traditional compilers claim to be semantics
preserving and are (more or less) accurate in their claims.

There are often circumstances in which an optimizer wishes to ask questions
about a program in order to perform transformations. Such questions may include
“is it possible for this segment of code to execute” or “can we determine the type of
the object that is referenced by this pointer”. The types of optimizations that rely on
such questions include reachability analysis, live variable analysis, array partition-
ing, and interference computations for parallel applications. These types of analysis
perform a crucial role in the optimization phases of compilation. It is useful to con-
sider each analysis as an interpretation of the original program using a set of seman-
tic definitions that is different than the semantic definitions of the original program.
This permits a precise description of the method to be given and allows termination
and performance characteristics to be established. Abstract interpretation is a gen-
eral term which includes any such “non-standard” interpretation of expressions in a
domain.

1.4.1 A Simple Example

One straightforward example of abstract interpretation is in determining whether
the value of an arithmetic expression is negative, positive, or zero. Consider a lan-
guage of mathematical expressions with addition, subtraction, and multiplication:

E::E+F | E-~-~F|F
F:: F*T|F/T|T
T :: (E) | constant

SECTION 1.4. THE ESSENTIALS OF ABSTRACT INTERPRETATION 9

We can give a standard semantics for the language as the following:

[constant] = constant
[(e)] = [e]

ler+e2] = +([ea], [e2])
[er—e2] = —([ea], [e2])
[erxes] = s([ea], [e2])
[ex/e2] = /[([ea], [e2])

This semantic definition gives the normal rules for evaluating expressions with-
out dealing with the problem of division by zero. If we are only interested in whether
the result is positive, negative, or zero we could define the following non-standard
semantics:

neg if constant < 0

[constant] = pos if constant > 0
zero if constant = 0

()] = []

[ea+e] = &([e] [e2])

[er—e2] = o([er], [e2])

[erxe:] = &([aa] [e:])

[e1/e2] = Q([e1]; [e2])

Consider the following definitions:

® | neg | pos | zero © | neg | pos | zero
neg | neg | 77?7 | neg neg | 77? | neg | neg
pos | 7?? | pos | pos pos | pos | 77? | pos
zero | neg | pos | zero zero | pos | neg | zero

In each of the abstract operations @ and © there exist evaluations that do not have
a “simple” answer composed of a single abstract value. For example, when a positive
and negative number are summed, the result could be positive, negative, or zero. In
general, many such situations can occur within abstract domains. For this particular
case, we will allow subsets of the three basic abstract values to represent values. The
abstract value NPZ will represent a set of abstract values composed of the negative,

SECTION 1.4. THE ESSENTIALS OF ABSTRACT INTERPRETATION 10

positive and zero abstract values. The abstract operators must then be defined over
all non-empty subsets of the abstract values. We will explicitly define the operators
for single elements; the operators are defined to evaluate sets by taking the union
of the results of applying the operation to all pairs in the cartesian product of the

arguments.
The proper definitions for the abstract operators are then as follows:

® neg | pos | zero [r S neg | pos | zero
neg | neg | NPZ | neg neg | NPZ | neg | neg
pos | NPZ | pos | pos pos | pos | NPZ | pos
zero | neg | pos | zero zero | pos | neg | zero
® | neg | pos | zero () neg | pos | zero
neg | pos | neg | zero neg | pos | neg | error
pos | neg | pos | zero pos | neg | pos | error
zero | zero | zero | zero Z€ero | zero | zero | error

Using these non-standard semantics as the basis for an interpreter would result
in an abstract interpreter for this language. Interpreting any expression in the lan-
guage would result in a non-empty subset of the abstract terms neg, pos and zero. We
would not know the actual result of the computation using the standard semantics,
but we would have some abstract information about the expression.

Example 1:

(5 + (4 - 4)) —» (pos + (4 - 4))

(pos + (4 - 4)) — (pos + (pos - 4))

(pos + (pos - 4)) — (pos + (pos - pos})
(pos + (pos - pos)) —~ (pos + NPZ) — NPZ.

There is one important issue to note about this style of interpretation. By in-
spection, an accurate interpretation of the subexpression 4 - 4 should result in the
abstract value zero rather than the abstract value NPz. The process of abstraction
has lost some of the information needed to reason accurately about the standard se-
mantics. Any process of abstraction suffers from this problem to some degree; the
key to a good system is to be flexible as to when information is lost. This theme will
be re-addressed when the abstract domain requirements are introduced.

SECTION 1.4. THE ESSENTIALS OF ABSTRACT INTERPRETATION 11

Example 2:

(5 - (-7 - 4)) —» (pos - (-7 - 4))

(pos - (-7 - 4)) — (pos - (neg -~ 4))
(pos - (neg - 4)) — (pos - (neg - pos))
(pos - {(neg - pos)) — (pos - neg) —+ pos.

Although the previous abstract interpretation assumes that we have full knowl-
edge about the values of constants, we can easily extend the model to admit “un-
known” or “partially known” values. Admitting an unknown abstract value to the
neg, pos and zero values changes only the abstract operators. Adding or subtracting
values with an unknown value results in an unknown value. Multiplying or divid-
ing with an unknown however, may result in a value other than unknown. Since
we know that multiplying any number by zero generates zero, we can allow our @
operator take advantage of operands which are zero. Division is similar, except that
dividing anything by an unknown could result in an error since the unknown value
might be zero. Incorporating unk as the abstract value for unknown within our model
yields the following definitions for the abstract operators:

@ neg | pos | zero | unk © | neg | pos | zero
neg | neg | NPZ | neg | unk neg | NPZ | neg | neg
pos | NPZ | pos | pos | unk pos | pos | NPZ | pos

unk
unk

zero | neg | pos | zero
unk | unk | unk | unk

zero | pos | neg | zero

BIREIEE

® | neg | pos | zero

unk
unk

pos | neg | pos | zero | unk
zero
uzk |
ro

&)] neg pos ze: unk

neg pos neg error unk, error

| pos neg pos error unk, error
zero zero zero error unk, error
unk | unk, error | unk, error | unk, error | unk, error

SECTION 1.5. FORMALIZING ABSTRACT RELATIONSHIPS 12

Example 3:
(2 = (4 -~ 222)) +— (pos * (4 - 22?))
(pos * (4 - 72?)) > (pos * (pos - 22?))
(pos * (pos - 222)) +— (pos * (pos - unk))

(pos * (pos - unk)) ~ (pos *® unk) ~ unk.

The unk value in the above is redundant. The behaviour of the unk value is
exactly the same as the abstract value NPZ. This corresponds to intuition as well; an
“unknown” value could be either negative, positive, or zero. Formalizing the
properties of abstract domains makes this recognition more straightforward, even in
complex domains.

These examples illustrate the basic method for defining any abstract interpreta-
tion: define an abstract domain (set of abstract values), define the operators on those
values, and define the method for applying those operators to expressions in the lan-
guage. Most of this work will focus on the first two of these requirements; the third
will follow in a fairly natural way from the domains and operators we define.

1.5 Formalizing Abstract Relationships

The standard models used for formalizing abstract domains are developed from lat-
tice theory. In this section, we briefly review some notation and the basics of lattice
theory; more detail is contained in Appendix A, but for a complete development, we
would recommend the introductory book by Davey and Priestley (30].

A lattice is a formal model for describing the relationships between elements in a
set. A lattice is a special case of a partial order.

Defn 1.1 (Partial Order) A partial order < S, < > isa set S and a
relation, <, on S such that for z,y,z € S, the < relation is:

e transitive: z syandy<xz=>z <z
e antisymmetric: z <yandy<z=>z=y.

¢ reflexive: z < z.

SECTION 1.5. FORMALIZING ABSTRACT RELATIONSHIPS 13

A
A
A D
B C D \ /
E
) LowerboundsBCDI (ii) Greatest lower bound (E}

No Greatest lower bound

Figure 1.5.1: Lower bounds

If z < y we may say that z is below y. Note that it may be the case that < does
not hold at all between two arbitrary elements of S. In other words, it may be the
case that for some z,y € S, 2 £ y and y £ z. In such a case we say that z and y are
incomparable, denoted as z||y.

It is useful to be able to talk about various bounds or limiting values of a subset
of some partial order < S, < >. Assume that S’ is a subset of S for some partial order
<S5, < >

Defn 1.2 '(Lower Bound) A lower bound for S’ is an element y € S such
thatvVz € S’y < 2.

Note that the lower bound of a subset of S does not have to be a member of the
subset, it is only required to be a member of S.

Defn 1.3 (Greatest Lower Bound (GLB)) NS’, the greatest lower
bound for S’ is a lower bound, y, of S’ such that Vz € { lower bounds
of S'}, 2 < y. We will also refer to the greatest lower bound of a set con-
taining elements z and y as the meet of z and y, denoted as z2Ay.

SECTION 1.5. FORMALIZING ABSTRACT RELATIONSHIPS 14

A
B\C/D \ C/D
E E
Upper bounds {B C D} ..
i Least bound {A
@ No least upper bound G upper bound {A}

Figure 1.5.2: Upper Bounds

It may be the case that a set does not have a lower bound; if there are two incom-
parable values which constitute the set then there would be no value comparable to
(and below) every element of the set.

Defn 1.4 (Upper Bound) An upper bound for S’ is an element y € S
such thatVz € S,z < y.

Defn 1.5 (Least Upper Bound (LUB)) US’, the least upper bound for
S’ is an upper bound, y, of S’ such that Vz € { upper bounds of S}, y < =.
We will also refer to the least upper bound of a set containing elements z
and y as the join of z and y, denoted as zVy.

As with lower bounds, an upper bound may not exist. Obviously it is the case that
if no upper bound exists, no least upper bound exists.

Defn 1.6 (Lattice) A lattice < S, X > is a partial order such that
V{z,y} € S : zAy and zVvy exist.

SECTION 1.5. FORMALIZING ABSTRACT RELATIONSHIPS 15

A lattice requires that a least upper bound and greatest lower bound exist for any
pair of elements. The nature of these bounds has some relationship to minimality;
the least upper bound for two elements is the “smallest” value that represents both
of the values.

A lattice may have distinguished elements, labeled T (top) and L (bottom), that
represent the greatest and least elements in the lattice. Any finite lattice will have
such elements; infinite lattices may not.

Chapter 2

Partial Evaluation and Symbolic
Execution

Partial evaluation and symbolic execution are general terms which encapsulate meth-
ods for more complete forms of abstract interpretation. The goal of partial evaluation
is to interpret programs in which only part of the input data is known at interpreta-
tion time. Given an interpreter int in language £ and data d, a traditional interpre-
tation for a program e may be expressed as:

[int]c(e, d) 2.1

Partial evaluation considers the data as being composed of two distinct parts — a
static part and a dynamic part. The static part of the data contains information which
does not change between interpretations of the program. The dynamic data contains
the information which is not available until the program actually runs. This view of
the data is reflected in the following:

[intlc(e, s, d) (2.2)

where s is the static portion of the data and d is the dynamic portion of the data. Note
that this equation factors the static data out of the entire set of program data.

16

SECTION 2.1. THE Miz EQUATION 17

2.1 The M:z Equation

Partial evaluation arises from the recognition that equation 2.2 can be rearranged to
incorporate the static data, s, into a new program that, when applied to the dynamic
data d, provides the same results as the original program. A partial evaluator, miz,
from a language L to a language M takes a program e in £ and data s and produces
a new program ¢’ in M such that the following holds:

[elc(s. d) = [eTm(d) (2.3)
Expanding ¢’ into its symbolic form we get the following:
[elc(s, d) = [[miz](e, 5)]ra(d) (2.4)

Equation 2.4 is called the Mix Equation. The name miz stems from work by Er-
shov [32] on mixed computation which was pioneering work in computation with
mixed dynamic and static data. An early partial evaluation system [48] was called
miz in recognition of this contribution. Although the term mixed computation has
been superseded by the term partial evaluation, the name miz has been retained as
the common name for symbolic interpreters.

The Mix Equation is interesting in that it reflects the same basic process as cur-
rying in functional programming [54]. Currying occurs in functional languages when
functions with multiple arguments may be viewed as functions that take a single
argument and return a function over the remaining arguments. Currying can be ex-
pressed formally through the lambda calculus as nested function definitions (lambda
expressions). Similarly, a partial evaluator views a program as taking static data
and returning a program over the dynamic data.

2.2 The Futamura Projections

Let us briefly restrict the general form of partial evaluators to consider only partial
evaluators whose target language is the same as the source language. That is, let miz
be a partial evaluator from M to M. In addition, let int be an interpreter written in
language M which interprets programs in £.

r = [miz](int, ¢) (2.5)

SECTION 2.2. THE FUTAMURA PROJECTIONS 18

Consider the result, r, of this application of miz. Applying r to static and dynamic
data will give the same result as interpreting ¢ with the same data. That is,

[elc(s, d) = [intlam(e, s,) = [[miz](int, e)jrm(s, d) = [rjm(s. d) - (2.6)

The critical observation is that » has the same behaviour as a compiled program.
This identity, called The First Futamura Projection [34], shows that miz may be used
to generate a compiled program from an interpreter and a source program.

In equation 2.4 and equation 2.5 we did not define the source language of the
partial evaluator, mtz. Let us now assume that miz is itself written in language M.
We can push the level of interpretation out an additional level.

comp = [miz](miz, int) 2.7
This makes more sense when you consider applying a program, e, and data (s, d).
[[comp] €] (s, d) = [[[miz](miz, int)] €] (s, d) (2.8)

comp is a compiler — it takes a program, e, and produces a program which, when
applied to the data, produces the result of the original program. Using this approach,
miz can automatically produce compilers from interpreters. This level of application
is called The Second Futamura Projection.

The Third Futamura Projection pushes the application of miz out one more level.
Consider the following:
cogen = [miz](miz, miz) (2.9)
Again, consider applying the rest of the arguments to cogen:
[[[(Iméz](miz, miz)] int] €] (s, d) (2.10)
cogen acts as a compiler generator. Given an interpreter, cogen produces a compiler
which may be used as described in the Second Futamura Projection.

The Futamura projections rely on having partial evaluators which are written in
the same language as the language of interpretation. Such partial evaluators are
called self-applicable. There is continuing work in self-applicable partial evaluators
with the view towards automating compiler production for realistic environments.
There are a number of difficulties with this approach; it is difficult to see how to

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 19

automatically map data layout in an interpreter to data layout in compiled code and it
is unclear whether a partial evaluator could “discover” data relationships which could
be transformed into data structures which don’t exist in either the partial evaluator
or the interpreter. [16] [43] [45] [55] [66] [84]

There are other issues for automatic compiler generation with respect to effi-
ciency, code generation, and other low-level machine specific requirements. Although
the Futamura Projections are interesting and continue to spur research, the remain-
der of this document will not deal with self-application issues. The focus will be not
on automatic compiler generation, but rather making use of the underlying tech-
niques to discover information that could be used in a somewhat more traditional
compilation system.

2.3 General Concepts of Partial Evaluation

2.3.1 Specialization

At their core, the Futamura Projections express the idea of specialization — the in-
corporation of specific data into a general program for the purpose of generating a
specialized version of the program. If we consider the Third Projection as a basis for
expressing computation then we can express any program behaviour as a specializa-
tion of some instance of cogen.

General forms of partial evaluation incorporate specialization as a fundamental
aspect of their behaviour. A specialization occurs when a partial evaluator integrates
some piece of static data into a code fragment and produces a new code fragment. A
spectalizer performs specializations based on whether a particular value is static or
dynamic. In most systems, annotations are introduced into a program which mark a
value as static or dynamic. The process by which such annotations are introduced
is called binding time analysis and will be discussed at length beginning in Sec-
tion 2.3.2.

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 20

Consider the following simple function, £, and a call to the function:

(define £
(lambda (x y)
(+ x y)
))

(£ 3 2)

Assuming that we do not know the value for z, the program is annotated as:
(define £
(lambda (x y)
(+ x5 v,)
))
(£, 35 zp)
where x, means that x is dynamic and x, means that x is static. Both function
calls and variables may be annotated. The annotation on a function call reflects
whether the function will be entirely evaluated (is static) or have a function call left
in the specialized program (is dynamic). For a variable, the static annotation means
that the specializer may use the value during the specialization while the dynamic
annotation means that the specializer may not use the value.

Specialization may be an identity operation - the specializer may not have enough
static information to perform a specialization, or the specializer may not be allowed
to perform a specialization even though some static data is present. The latter case
occurs in some special situations which will be discussed in later sections. In all
cases, the result of a specialization is called a residual.

Given the above annotations, a residual for our program might be as follows:

(define resid-f-1
(lambda (y)
(+ 3 y)
)

(resid-£-1 z)

The fundamental algorithm for a partial evaluator consists of selecting a function
for specialization, producing a residual through some specialization and repeating
until all useful static information has been used. Figure 2.3.1 gives one basic algo-
rithm for specialization.

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 21

fun spec (code, actual)
for each sequential line of code
for each operator or function do (in evaluation order)
if a function call
replace by the residual from spec(function, arguments)
else if an operator and arguments have static values
replace by the result from evaluating operation
return remaining code as residual

Figure 2.3.1: Basic Specialization
2.3.2 Binding-Time Analysis

As noted earlier, partial evaluation techniques consider program data as being in one
of two classes — static or dynamic. Although we expressed both sets of data as pa-
rameters to the program, in reality a great deal of static information may be present
in the text of the source program alone. This part of the program data must also
be considered as static and can conceptually be considered as part of the parameters
to the program (a simple rewriting could be performed in order to have such data
presented as parameters, but it is not necessary to do so). When we consider per-
forming partial evaluation on a program, one of our first concerns will be to decide
which of the program variables we will want to treat as containing static data and
which we will have to treat as containing dynamic data. The process by which data is
divided between the two classes is called binding-time analysis (54] [46]). Normally a
binding-time analysis will introduce annotations into a program to represent the sta-
tus of each variable. These annotations are then used by the specializer to determine
what information may be incorporated into the residual program.

There are several issues involved in binding-time analysis (BTA): termination,
accuracy, and lifetime. Binding-time analysis is in general not decidable, so all tech-
niques must approximate the actual set of static and dynamic data within the pro-
gram. The calculation of a reasonable estimate involves iteratively making an esti-
mate and then checking whether some type of fixed-point has been reached within a
solution set. The BTA process must terminate while not making an overly conserva-
tive approximation in order for the information to be useful within the specialization
phase. The termination problem is also referred to as the problem of divergent com-

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 22

putation or simply divergence.

Accuracy relates to the “resolution” of the analysis. The simplest approach is to
have a single annotation for each variable. This approach is generally not very accu-
rate since a single variable may name a compound data structure, some of which may
be dynamic and some of which may be static. A more accurate analysis involves treat-
ing each member of a compound data structure as a distinct binding by associating a
binding-time annotation with each of the elements. Issues which affect the accuracy
of the analysis include the memory model, the presence of higher-order structures,
and aliasing and side-effect mechanisms. Increased accuracy provides more informa-
tion to the specializer at the cost of increased computation time and more sensitive
termination criteria. There are two restrictions on any BTA: the BTA must be safe
in that no dynamic expression may be annotated as static, and the BTA must be
useful in that all static expressions (or at least as many as possible) are denoted as
static [73]. Both safety and usefulness effect termination and accuracy.

Finally, the lifetime aspect of a binding-time analysis relates to whether there is
a single annotation for a variable or if there may be several annotations which apply
at different points within the program. Most current techniques have only a single
annotation for each variable, although there is continued research into techniques
which allow for multiple annotations. Lifetime decisions relate to the interaction of
the binding-time analysis and the specialization phase; this interaction is the topic
of Sections 2.3.5 and 2.3.5.

2.3.3 Types of Partial Evaluators

There are four fundamental approaches to partial evaluation. These approaches com-
bine one of two methods for lifetime analysis with one of two methods for the relation-
ship between the BTA and the specializer. The two lifetime methods are monovariant
and polyvariant; the two relationships are on-line and off-line. The following sections
will discuss each of these methods. In addition to the above classifications, there are
a number of orthogonal issues. Memoization (Section 2.5) and accuracy are two of
these issues that we will discuss.

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 23

2.3.4 Polyvariant and Monovariant BTA

Monovariant BTA

The main issue concerning lifetime considerations is whether the binding time anal-
ysis (and the resulting specializations) will be monovariant or polyvariant. A mono-
variant analysis generates a single set of annotations for a particular segment of
code (usually a function). These annotations are then used for the entire specializa-
tion phase [11].

The fundamental problem with monovariant BTA lies in the fact that there is only
a single annotation for each variable in a function. The annotation for a particular
variable must then be the most general (or widest [73]) annotation for any possible
run-time binding of values. For a given formal parameter, if there exists a call site
in which the actual parameter is static and another call site at which the actual
parameter is dynamic, then the annotation for the formal parameter will be dynamic
and the specialization phase will not be able to make use of the information available
in the static parameter.

We will again use our simple function, £, as an example.

(define £
(lambda (x y)
(+ x y)

))

Assume that we have the following calls of £:
(f 3 2)
(£ z 3)

with z being dynamic. The annotated version of £ and the uses of £ would be as
follows:

(define £
(lambda (x y)
(+ x5 vp)
))
(£, 35 2zp)

(£, z, 3;)

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 24

D

S
Figure 2.3.2: Lattice of Simple Annotations

For each parameter there exists a call with a static actual argument and a call
with a dynamic actual parameter. The most general annotation for each parameter
is dynamic, so the annotations for both variables in the function body become dy-
namic. As a result of these annotations, no specialization will be performed during
the specialization phase and the original function will remain as the residual.

The two annotations, static and dynamic, form a very simple lattice as shown in
Figure 2.3.2. Note that we do not show a T or L element in the lattice. The two
elements in the lattice actually have the correct properties for T and L so we do not
need the additional elements. Alternatively, the lattice could be seen as containing
only T and L with the renamingof Tto Dand L to S.

The monovariant approach can be clarified using this simple lattice. Monovari-
ance uses the least upper bound of the annotations at all call sites as the annotation
for a function. [46] expresses this by using an analysis function B, which takes a
binding time environment (set of annotations), a function g, and an expression, e.
The result is the least upper bound of the annotations for g within e. You can then
express g’'s monovariant annotation as:

LJ ByfeilTyg (2.11)
=1
where 7 is the least upper bound of annotations for all other functions and e; is the
ith expression in the program. Given this definition, if any B, annotation results in
D (dynamic) as the annotation for a parameter to a function, the least upper bound
will necessarily be D.

The monovariant approach does not provide the generality needed for most real-
istic applications of partial evaluation. In real programs it is unlikely that all call
sites for a particular function will have a static value for any given parameter. A
great deal of static information is ignored in a monovariant approach, decreasing the
effectiveness of the entire partial evaluation process.

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 25

Polyvariant BTA

Polyvariant techniques differ from monovariant techniques in that different annota-
tions can be made at every function call site. If there is a call site in which an actual
parameter is static and another call site in which the actual parameter is dynamic,
then two sets of annotations would be made. In order to make two sets of annotations
for a single function, the source function is simply duplicated®. (73]

(define £
(lambda (x y)
(+ x vy)

)}

Again assume that we have the following calls of £:
(f 3 2)
(£ z 3)
with z being dynamic. For the first call, we shall produce an annotation with the

first parameter static and the second parameter dynamic. For the second call we will
produce a complementary annotation. Conceptually, we have the following functions

and annotations after the BTA phase:

(define f-1 (define £-2
(lambda (x y) (lambda (x y)
(+ x5 ¥p) (+ x, vg)
))))
(f-lo 35 ZD)
(£-2, 2z, 3;)
During specialization, the following functions and calls will be produced:
(define resid-f-1 {define resid-f-2
(lambda (y) (lambda (x)
(+ 3 vy) (+ x 3)
)))
(resid-£f-1 z)

(resid-f-2 z)

!Rytz et al do not in fact duplicate the actual source code, but rather keep multiple annotations for
each function.

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 26

The formal lattice model does not change in the polyvariant approach. The dif-
ference in approaches is due to the application of the model; we no longer use the
least upper bound of a set of annotations, but rather introduce sets of annotations for
each function. Since each annotation has only two possibilities (static or dynamic)
and each parameter list is finite, we have a finite number of possible annotations.

Clearly this approach is superior to the monovariant approach - if any call site
has static information which can be used, an occurrence of the function with a useful
annotation will exist. The obvious problem is that there may be many annotations
for a given function. The number of potential annotations is bounded by the number
of call sites, but could be exponential in the number of parameters if many call sites
exist. Exponential growth of the residual code during specialization is a problem for
any polyvariant approach and will be discussed in later sections.

There is however a subtle problem in the way in which polyvariant BTA is nor-
mally used. Conceptually, polyvariance creates instances of the functions which are
being annotated, but this is exactly what the specializer is supposed to be doing.
Polyvariant analyzers duplicate some of the work which is to be done during spe-
cialization if the BTA is performed strictly before the specialization phase. With
polyvariant analysis, it seems to make more sense to combine the BTA and special-
ization phases into a coherent approach. The comparison between separate BTA and
combined BTA/specialization is the topic of the next section.

2.3.5 Off-line and On-line Approaches
Off-line Techniques

Off-line BTA techniques analyze the source program before the specialization phase
and determine the status of each variable. Each variable and function call is anno-
tated as being either static or dynamic. During the specialization phase, dynamic
values are never specialized, while static values are always specialized.

There are a number of techniques for off-line BTA?. The most common techniques
are based on type inference or constraint analysis algorithms. Newer techniques [54]
employ projections to create annotations. The type inference approach incrementally
adds dynamic notations until the inference algorithm succeeds. Constraint based

*For a more detailed introduction to these techniques, see [46].

SECTION 2.3. GENERAL CONCEPTS OF PARTIAL EVALUATION 27

systems generate constraints, convert them into a normal form and then solve the
constraints to generate mappings from variables to annotations. Brief discussions
of some of these approaches are given in Section 2.4.3 when we discuss termination
1ssues.

On-line Evaluation

In on-line evaluators, the decisions regarding effective annotations are interleaved
with specialization decisions. At each step in the evaluation an on-line evaluator
must decide what to treat as dynamic and what to treat as static. For a given func-
tion or variable this decision is independently made every time that the function or
variable is encountered. Once the decision is made, the specialization takes place
immediately and the residual becomes part of the next set of evaluations. In a sense,
on-line partial evaluation is naturally polyvariant since the algorithm itself “recon-
siders” decisions on a frequent basis.

There has been relatively little work in the area of on-line partial evaluation; the
most significant implementation work has been done by Katz, Weise, and Ruf in the
FUSE evaluator [83] [71](70]. Although they had an interesting approach for dealing
with redundancy in specializations, their model for values was not very expressive.
Termination in FUSE relies on having a finite height lattice modeling values in the
system. In addition, there are circumstances in which FUSE requires user provided
“finiteness annotations” that guarantee that specialization will terminate. Although
such annotations allow FUSE to incorporate more selective residual production algo-
rithms, such annotations require user intervention. The automatic on-line approach
that we will be presenting will incorporate features similar to their approach but al-
lows infinite height lattices to model values in that system and will feature a clear
separation between models for abstract values and the algorithm itself

The most significant approach that formally proves more of the properties of on-
line partial evaluation is the work by Consel and Khoo [25][24]. This work will be
discussed in Section 4.5 after we have developed the basis of our system.

Combinations of Methods

Table 2.3.1 shows which of the four possible approaches have been investigated.
Monovariance will be discussed in the next section, and the two polyvariant meth-

SECTION 2.4. OTHER ISSUES 28

Monovariant | Polyvariant
Off-line Similix Similix-2
On-line | unknown | Our approach
_FUsE__ |

Table 2.3.1: Types of Partial Evaluators

ods will be discussed in some detail in later sections. As noted in the table, early
approaches, such as Similix, used an off-line monovariant approach, while the more
sophisticated Similix-2 uses an off-line polyvariant approach. As noted above, there
has been relatively little work in on-line approaches. The most substantial work is a
polyvariant on-line interpreter by Weise et al [83]. At this time, we do not know of
any on-line monovariant approaches.

2.4 Other Issues

2.4.1 Higher-Order Languages

The fundamental problem when dealing with higher-order languages lies in finding
all potential call sites for a higher-order function. When we do not know whether
parameters will be dynamic or static, we must assume that they are completely dy-
namic (due to the safety constraint). This is the approach taken by most systems,
such as Similix-2 [11], Schism [21] and FUSE [83]. A more accurate knowledge of
higher-order function analysis relies on some form of control-flow analysis, such as
in [72] (see [75] for control flow analysis techniques). The control fiow analysis is
used to create a conservative estimate of the call sites and then uses the least upper
bound of the argument annotations as the annotation for the function parameters.

A control flow analysis certainly improves the accuracy of the annotations, but re-
quires significantly more work. In addition, the calculation of the estimation involves
much of the same type of analysis as used in a specializer. The control flow analysis
in [72] does not create polyvariant residuals for higher order functions, but acts as a
monovariant specializer for the function. In any finite program, however, there will
be a finite number of higher order functions which could be used to create more accu-
rate, polyvariant residuals if the specializer tracked the set of possible higher-order

SECTION 2.4. OTHER ISSUES 29

functions that could be used at any call site. Such an analysis reverses the control
flow analysis approach; rather than estimating the call sites for each higher-order
function, such an approach would estimate the domain of each call site. One could
then specialize each higher-order function in the domain with the static information
available at the call site. In some ways such an approach would entail a much more
complete control flow analysis, but if integrated with the specializer, would be no
more costly.

2.4.2 Languages with Imperative Features

The major problem with off-line binding-time analysis is that the techniques assume
that annotations do not change during the specialization phase. Although this is
normally the case in (pure) functional languages, this assumption breaks down in
the face of imperative features. Consider the following imperative code:

read(x) ;
Y =X + 5;
x = 7;

In this example, x is dynamic after the read, but becomes static after the assignment
in the third line. With imperative languages the status of a variable can change
at any time due to either a direct assignment or an assignment to an alias for the
variable. This cannot be reflected in off-line techniques [62] which do not incorporate
any idea of a change of use into the binding-time analysis.

Some experiments have been conducted [5] with C that attempt to use an off-
line BTA. One of the major problems is in dealing with dynamically allocated arrays
which are then assigned static values. Due to the dynamic nature of the array allo-
cation, normal off-line BTA would treat the entire array as dynamic and miss many
opportunities for specialization. The approach taken in this work was to convert the
dynamic array into a static array which can then be analyzed more accurately by
traditional off-line techniques.

In many cases the dynamic allocation to static allocation transformation would
not pose any problems in the residual program. Unfortunately, this transformation
is not strictly semantics preserving due to the underlying memory model of the C
language. This could introduce problems in situations where stack or static data
space is severely limited; one such example is in threads-based programming support
packages such as the uSystem [15] developed at the University of Waterloo.

SECTION 2.4. OTHER ISSUES 30

Relationship to SSA

Static Single Assignment (SSA) [82] [28] is an abstract interpretation approach to
high-performance Fortran optimization problems. SSA converts a source program
into one in which each variable may be expanded into several instances of the original
variable. Each assignment statement to the variable creates a new instance of the
variable, and any use of a variable is converted to a use of the appropriate instance of
the variable. This approach guarantees that there is a unique assignment instance
for each variable at any point within the program.

For example, the following Pascal-like code:

read(a) ;
b :=a + 5;
a :=7;
c :=a * §5;
would be converted using the SSA approach into the following:
read(a-l) ;
b :=a.l + 5;
a2 :=17;

c := a2 * 5;

The SSA community uses the SSA transformations to do fairly straightforward
types of abstract interpretation - code is specialized based on the values of the ap-
propriate instances of variables. SSA does not attempt to create new specialized
instances of any code, and as such resembles the monovariant approach discussed in
Section 2.3.4. The interesting aspect of this work is in its correlation to off-line BTA,
and in its approach to imperative features. Combining the SSA transformation with
the polyvariant features of off-line partial evaluation would generate an approach
which is more powerful than either in isolation; such a system would be able to deal
with changing annotations after assignments since each assignment would have a
different instance of the variable associated with it.

Doing a “normal” annotation for the first code fragment would result in the vari-
able a being annotated as dynamic since the result of the read is not known until
run-time. Since there is only one annotation for a particular variable within a section
of code, we would have to use dynamic and would lose the static information which
occurs within the same section of code. Using the SSA converted code however, we

SECTION 2.4. OTHER ISSUES 31

would have two distinct variables from the original a. Each of these would receive
the appropriate annotation, allowing us to make use of the static information from

the second assignment to a.

There are a few potential difficulties with combining the SSA and off-line ap-
proach however. First of all, the SSA literature has not addressed imperative lan-
guages such as C in which there are arbitrary aliasing relationships. Such aliasing
would complicate the SSA conversion to such an extent that it probably would not be
viable for realistic systems. Second, the difficulties in generalizing off-line methods to
higher-order constructs is not alleviated by the introduction of the SSA conversion.
Call locations which are truly dynamic would not be resolved by SSA; a more gen-
eral domain model is required. Finally, this approach would retain the duplication
of work mentioned in Section 2.3.4. The effect of SSA conversions during a binding
time analysis can be achieved by adopting more general on-line approaches such as
our approach.

2.4.3 Termination
Off-line Evaluation

Termination for off-line partial evaluation depends entirely on the termination and
safety of the binding time analysis. When off-line methods are used, specialization
blindly follows the annotations on the variables and does not check for any special
termination conditions. The BTA has the responsibility for ensuring that the spe-
cializer will not attempt a recursive specialization which will not terminate. For
example, given the following code:
(define sum
(lambda (start, stop)
(if (= start stop)
start
(+ start (sum (+ 1 start) stop)))

})
(sum 5 z)

assume that z is dynamic. Even though the BTA knows that start is static, it
should not annotate it as such. If start were annotated as static, the specializer
would create a specialized version of sum as follows:

SECTION 2.4. OTHER ISSUES 32

(define resid-sum-1
(lambda (stop)
(if (= 5 stop)
5
(+ start (sum 6 stop)))

})

Using the same argument, the recursive call to sum would cause another specializa-
tion of sum resulting in:
(define resid-sum-2
(lambda (stop)
(i£ (= 6 stop)
6
(+ start (sum 7 stop)))

))

Continuing with this, it is clear that the specializer would create an infinite num-
ber of residuals for sum. To avoid this problem, the BTA is required to make safe
annotations — annotations which guarantee that infinite specialization does not oc-
cur. There are a number of approaches that have been investigated for performing
safe binding time analysis; examples include constraint satisfaction [41] [42], type
inference [35], program factorizations [54], and simple abstract interpretations [46].

The type inference approach is interesting in that BTA questions can be answered
by giving static values their known types and then using type inference to determine
resulting types. Annotations are progressively relaxed until the program is well-
typed. Any well-typed expressions can safely be treated as static since they would
depend only on other static values. For example, consider our prior sum example.
Initially setting start to a known type (integer) and then performing type inference
will result in a type conflict between start and the inferred type of “=” since the type
of stop is unknown. Thus the type of start would have to be modified to unknown
in order to resolve the conflict.

Another approach, based on projections, is suggested by Launchbury (54]. The
foundation of projection based approaches is in normal set projections (a form of re-
tractions, or subset selection). When we consider the set of parameters to a function,
we need to find a projection of the parameters which represents the static param-
eters. The complementary projection would then provide the dynamic parameters

SECTION 2.4. OTHER ISSUES 33

to the function. Launchbury’s Ph.D. thesis [54] summarizes previous work in this
approach and develops a formalized, extended model for BTA projections.

On-line Evaluation

The problem of divergence becomes somewhat more difficult using on-line approaches.
Again, consider the sum example. When an on-line algorithm initially evaluates the
function it will not be able to fully determine the value of the conditional since stop
is dynamic. The algorithm then has a few choices about how to proceed. One choice
would be to “give up” on the evaluation and simply to produce the original function
as the residual. It should be clear that this is not a reasonable option since following
this choice would mean that no function with any dynamic characteristics would be
specialized. The interpreter cannot arbitrarily choose to use only one of the branches
since such a choice would change the possible run-time behaviour of the resulting pro-
gram. The final option is to investigate both branches of the expression and to build
a residual based on both investigations. Unfortunately, blindly applying the third op-
tion introduces divergence if there exist any possible circular recursions within the
original program, as occurs in the code for sum.

The general approach taken by on-line partial evaluators is to follow a combina-
tion of the first and third options. There are several issues involved in deciding on
the exact method — the accuracy of the model for static and dynamic values, the
allowable size expansion in the final residual, and the time spent performing the
evaluation. Katz and Weise [83] have an interesting approach to accuracy concerns.
In their system they incorporate an explicit “use-analysis” to determine which values
are used to control recursive evaluations. The variables that are used to control recur-
sive evaluations are subject to fixed point calculations while independent variables
are allowed to “grow” in an arbitrary way. Ruf [70] presents informal arguments for
the termination of the FUSE on-line system, but does not formally prove termina-
tion. As we progress through the development of our approach in Chapter 3, we will
discuss these issues in more detail.

SECTION 2.5. RESIDUAL CODE AND SPECIALIZATION 34

2.5 Residual Code and Specialization

Within a particular code fragment there may be many calls to a particular function.
Each of these calls may have a different partitioning of static and dynamic data and
the static data which is present may differ from call to call. Partial evaluation as
described so far specializes a function each time an instance of the function is en-
countered. Following this approach blindly, however, is not very efficient as there
may be many identical residuals produced.

Recall the simple function, £, used in earlier sections:
(define £
(lambda (x y) (+ x ¥))
)

(£ 3 x)
(£ 3 vy)

In this case we have two calls to £ in which the first argument has the static value 3
and the second argument is dynamic. If we perform a simple specialization for this
calls, we generate two identical residuals.

(define resid-f-1 (define resid-f-2
(lambda (y) {lambda (y)
(+ 3 y) (+ 3 vy)

)))}

Clearly it is advantageous to have only a single instance of any particular resid-
ual. Specializers typically do this by memoizing residuals as they are produced.
Memoization is simply a form of caching for residual code; memoization associates
all static information used in the specialization with the corresponding residual. The
issue of memoization is orthogonal to the issue of choosing on-line or off-line evalu-
ation; in either case we wish to eliminate the production of duplicate residual func-
tions.

Memoization can be seen as a mapping from a source code fragment and envi-
ronment to a residual code fragment. If p is an environment mapping identifiers to
values, then memoization is a mapping, M, such that M(f, p) = r where r is a ver-
sion of f specialized with values from the environment p. Figure 2.5.1 shows how
function f and an environment with x having the known value 3 maps to the resid-
ual resid-f-1. Before a specializer produces a new residual *’ for a function f in

SECTION 2.5. RESIDUAL CODE AND SPECIALIZATION 35

(define f
(lambda (x y)
(+xy) (define resid-f-1
)} (lambda (y)
(+3y)
Environment))
{x— 3}

Figure 2.5.1: Memoization Map

an environment p’, it checks the memoization map for a mapping which matches the
current function and environment. More formally,

o= M(f.p") if M(f, p") is defined
specialize(f, p’) otherwise

If a residual exists for a given function and environment that residual is re-used,
otherwise a new residual for the function is produced.

Memoization creates equivalence classes between residual functions and repre-
sents each class as a single residual. Membership in a particular equivalence class
is determined by the function and the environment in which specialization occurs.
Viewing residuals as existing within equivalence classes encourages a clean model
for overall code expansion; if the total number of equivalence classes grows beyond
the expansion limit, equivalence classes must be combined into larger classes.

Combining two equivalence classes involves creating a new class whose argu-
ments are annotated with an annotation that covers the annotations in the classes
being combined. Memoization itself, however, is orthogonal to the different types of
partial evaluation, and combining equivalence class annotations cannot be expressed
as movement in the simple lattice given in Figure 2.3.2. For example, consider the
residuals given in Figure 2.5.2. Each residual was created from the original function
with x marked as static. Strictly from the lattice, the least upper bound of the two is
still static but this does not reflect the fact that two different values for x were used
in the specializations.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 36

(define resid-£f-1 {define resid-f£-2
(lambda (y) (lambda (y)
(+ 3 y) (+ 4 y)

)) })
Figure 2.5.2: Two different residuals

We could formally express memoization by using a disjoint union of the annota-
tion lattice and a lattice of constant values (such as the integer lattice in Figure A.3),
but as memoization is a small issue with respect to the techniques presented here,
we will ignore the formal mechanism. Intuitively however, coalescing two equiva-
lence classes means that two functions with the same static property will retain the
static property in the resulting class, whereas if the annotations or static values are
different, the result will become dynamic, or will at least lose some of the precision
of the derived knowledge about the value.

2.6 Applications of Partial Evaluation and Specialization

2.6.1 Reducing Costs of Polymorphism
Object Oriented Languages

An important aspect of any object oriented language is the separation between a
message to an object and the method that is used to respond to the message. The
particular method that is used to respond to a given message is dependent on the
object to which the message was sent. The term dynamic binding is used to refer to
this run-time binding of messages to methods. In general, the encoding of each object
will need to incorporate references to the methods that are used for its messages.
Often languages will only allow the message to method association to be changed on
a class-wide basis, but in either case, every invocation of a method will require at
least one additional level of indirection.

The choice of a method cannot generally be made at compile-time due to inher-
itance polymorphism. Inheritance polymorphism requires that any subtype object
can be used in the place of a base type object. This means that in general it is unde-
cidable whether a given method is used for a given message invocation. In [31], Dean

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 37

et al investigate applying specialization techniques to reduce the cost of method call.
The basic idea is to introduce specialized instances of methods, where each version
is specialized with respect to particular subtypes of the allowed parameter type. For
example, if a given method allows a single parameter of a type A and there exists
subtypes B and C of A, then instances of the method could be created for each of A, B
and C. These methods could then take advantage of the fact that the actual type of
the object is known and could potentially create static bindings for the following mes-
sages. Generally however, the number of potential methods that could be generated
is much larger than the number that should be generated.

Dean et al use a call-graph based estimation algorithm to estimate which object
specializations are likely to be profitable. In order to determine the effect of selective
specialization, they incorporated their technique into the Cecil [18] compiler and self-
compiled the compiler. The overall result was quite impressive; at the cost of an
increased program size of only 5%, run-time improvements of approximately 33%
were achieved.

This result is very encouraging for the future application of partial evaluation
techniques. The work by Dean et al was based on a fairly simple call analysis and
did not attempt to perform any analysis of the form that traditional off-line BTA
performs, nor apply any of the on-line evaluation techniques. They did, however,
clearly demonstrate that moderate code size increase in a polymorphic environment
can lead to substantial performance improvements.

An approach more closely tied to partial evaluation techniques is the work by
Khoo and Sundaresh [50]. Their approach was based on using continuations® which
allow for similar types of re-associations of methods and messages. Harnett and Mon-
tenyohl [38] have also investigated continuations and caching based approaches in an
object oriented language. Finally, Marquard and Steensgaard [59] have developed an
automatic on-line approach that uses similar techniques as applied in FUSE.

Run-time Overload Resolution

Run-time overload resolution, as needed in languages such as Haskell, is very similar
to dynamic binding in object oriented languages. The central idea is to have “classes”

3We discuss continuations in Section 6.3.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 38

of types on which overloaded functions (or methods) are defined. The main difference
between this model and a general inheritance model is the restriction to a specific
set of operators for which overloading is defined; fully general user class definitions
may not be made although user datatype extensions may be added to existing class
definitions.

In [44)], Jones discusses using partial evaluation and specialization to eliminate
the need for a run-time type dictionary in Haskell. Haskell implementations resolve
run-time overloading by passing an additional parameter to all overioaded functions.
The additional parameter is the dictionary which is equivalent to a method dispatch
table in object oriented languages.

The use of dictionaries has many of the same properties as object oriented dy-
namic dispatch, but in particular, not being able to resolve the method being in-
voked means that most common program analysis techniques do not work very well.
Haskell does allow the programmer to insert type information explicitly. This type
information can then be used to remove the need for the run-time dictionary search;
this is typically not possible in a more general inheritance framework.

The work by Jones is an interesting counterpoint to the object oriented work by
Dean et al. Dean takes a more “pragmatic” approach to evaluating the profitability of
particular specializations, while Jones has a more clean specialization algorithm. In
both cases, the systems must deal with the potential for exponential code expansion
due to unproductive specializations. In Dean et al this is done by making estimates
of counts in a call graph while in Jones code expansion is controlled by a set of con-
straints on instances of calls in the code. As one example, Jones does not duplicate
specializations through the use of memoization (Section 2.5). Each approach has
drawbacks — Dean’s system is less elegant and harder to implement than the Jones
system but seems to yield better overall results. It is likely that some combination
of Dean’s model for the frequency of calls and the Jones model for the overall system
might be an effective approach.

Run-time Code Generation

Although traditional compilers perform all code generation at compile-time, there
has been considerable investigation into run-time code generation. Of these, the
most notable is the Self [17].

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 39

One of the main issues during run-time code generation is when to spend time
performing optimizations, or in other words, determining when the reduction in ex-
ecution time is likely to be larger than the time spent on optimization. Leone and
Lee [56] have investigated applying partial evaluation analysis techniques to this
problem. Their basic approach is to introduce late and early annotations and to use
these annotations to determine the code that is statically compiled (early) and the
code that is dynamically compiled (late). Early code is compiled into code that per-
forms any early operations while late code is compiled into code that generates the
run-time code.

Leone and Lee compare this type of analysis with traditional binding time analy-
sis techniques such as those used by Jones et al [48] and Consel [22]. The observation
is that regular binding time analysis is more constrained in that there is an exter-
nal division between static and dynamic annotations (corresponding to early and late
annotations) while in run-time code generation, all of the static data is in fact avail-
able. The object of run-time specialization is not to take advantage of as much static
information as possible, but rather to take advantage of the subset of static data that
can lead to efficient code production.

The FABIUS system built by Leone and Lee performs an interesting form of code
inlining; in fact, their rule is similar in flavour to a rule that we present in our
on-line algorithm. In FABIUS, all loops are represented as tail-recursive functions.
The inlining rule states that functions are only inlined if a late formal parameter
does not appear in a branch of a conditional controlled by a late-stage value. In
some senses, this can interpreted as saying that partial evaluation can only safely
continue in the absence of dynamic conditionals. A similar statement will form part
of the termination criteria for the on-line algorithm presented in Chapter 3.

2.6.2 Traditional Language Compilation
C program analysis

Andersen [5] (7] has investigated a very different domain - specialization of C pro-
grams. C is in many ways an extremely difficult language on which to apply partial
evaluation techniques. C is highly imperative; nearly all operations in the language
return values that can be assigned. Pointers are generally used with “wild abandon”

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 40

by C programmers and are often used in concert with run-time memory allocation.
Coercions occur at many levels and alias relationships are very common. Finally, the
exact semantics of many operations in C is dependent on the actual implementation
making it extremely difficult to perform any substantial transformation and guaran-
tee that the resulting program has the same behaviour over all run-time input as the
original program.

Andersen followed an interesting approach in his work. Rather than directly in-
terpreting the program source, his system creates generating extensions for the orig-
inal source code. Generating extensions are not his innovation (see his thesis [7]
for related work) but his particular application of the idea works well for C. A gen-
erating extension does not actually incorporate any static data into a new program,
rather it is a program which given some static data actually generates the specialized
program. Andersen’s main motivations for following the generating extensions ap-
proach are, first, that extensions allow one to process the semantic information once
as a separate issue from the specialization, and second, extensions defer the gener-
ation of new code and can be incorporated into an execution framework so that the
generating extension and the final program execute under the same implementation-
dependent semantics.

Andersen’s work is an off-line approach in that he has separate phases to build
the generating extension and to build the final specialization. He does not perform
an automatic BTA on the C source but assumes the existence of binding time annota-
tions. Although Andersen’s use of generating extensions makes substantial progress
towards performing reasonable transformations in an imperative environment, we
feel that in order to have a fully automatic system that can perform non-trivial trans-
formations, it will be necessary to bind the analysis and specialization phases more
closely to the partial evaluation process.

Meyer [61] has also investigated imperative language specialization. His ap-
proach was between an on-line and off-line algorithm; he relies on initial annotations
supplied by the programmer but then allows the annotations to change during the
evaluation process. He does not directly address the relevance of on-line approaches
but it seems that his approach could easily be subsumed by on-line approaches.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 41

Fortran analysis

Fortran, although being an imperative language, is in many ways a much more
“friendly” language for partial evaluation than is C. One of the groups investigat-
ing Fortran is Baier et al [9]. Their approach is fairly simplistic; they apply an off-
line, monovariant BTA to Fortran programs and then blindly specialize the resulting
annotated programs.

Although the approach is not terribly sophisticated, the results are encouraging.
On a number of common Fortran applications (FFT, cubic splines interpolation, and
an n-body particle attraction problem), they achieved run-time decreases of 20-70%.
Their observation was that many Fortran programs have large sections of code that
are relatively independent of the dynamic data sets and were thus easily special-
ized. The specialization was primarily in the form of loop unrolling and they did not
compare their resulting code to a compiler that performed aggressive loop unrolling.
Their code sizes reflect this basic property of their algorithm — although they experi-
enced code reduction of 50% on one small case, more typically specialization expanded
the code by a factor of 10 to 100 on larger programs.

There are interesting questions that this work raises; the nature of the relation-
ship between this type of approach and highly aggressive vectorizing compilers is
unclear. It may be possible to use some of the unrolling analysis techniques used
in vectorizing compilers to reduce the code expansion while retaining most of the
speed improvement. Alternatively, it may be reasonable to attempt to regularize op-
timizations in the high-performance Fortran community be casting their approaches
as instances of partial evaluation problems. Frameworks such as we propose could
be a starting point for such a dialogue.

Incrementalization

Many programs calculate information redundantly as a result of particular meth-
ods for calculation. A classic case is the naive recursive definition of the Fibonacci
numbers; using the naive algorithm, exponential time is required versus a reason-
able intuitive linear time algorithm and a somewhat less obvious log-time algorithm.
In [57], Liu, Stoller, and Teitelbaum present a method for automatically discovering
inductive relationships in programs and then transforming the code into an incre-
mental version in order to take advantage of the existing inductive relationships.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 42

The presented approach is similar to naive partial evaluation with aggressive mem-
oization and residual preduction. The only equality reasoning performed by Liu et
al is based on symbolic term equality; there is no obvious reason why their approach
could have stronger equality reasoning integrated into it. There has been substantial
work performed in this area; we defer to Liu’s paper for references to related work.

A similar approach that should be mentioned is the work done independently by
Lawall [55] and Fegaras, Sheard, and Zhou [33]. In each case, the basic approach was
to create systems that automatically reason about inductive structures. In Lawall’s
case, the actual transformations are then performed by hand, while in Fegaras et
al, the transformations can automatically take place. This approach allows for non-
trivial inductive reasoning and rewriting; Fegaras et al use an approach termed cata-
morphisms to describe types of inductive relationships for which automatic transfor-
mations are viable.

Other Types of Analysis

Several groups have investigate performing data flow analysis through partial evalu-
ation [23][47] {81]. Partial evaluation naturally performs data flow estimates in order
to calculate binding times in the off-line case, or as part of the interpretation in the
on-line case. In either case, providing separate data flow analysis information does
not require a substantial change in approach. As two specific examples, Vasell [81]
uses an off-line approach in which the residuals generated by the “specializer” are
in fact the data flow graphs of interest. The on-line Fuse [70] evaluator manipulates
similar graphs as part of its internal analysis when representing “use” relationships.

Malmkjar, Heintze, and Danvy [58] perform partial evaluation on the LAMBDA
intermediate form used in earlier versions of the SML/NJ compiler. LAMBDA is a
continuations based (nearly) untyped intermediate form. The analysis performed by
Malmkjzer et al uses a simple set-based estimation to perform binding time analy-
sis, control flow analysis, and data flow analysis. The set approximation approach
adopted is a very conservative approximation; as one example, the analysis ignores
all dependencies between variables. This causes substantial information loss if there
are structural reorganizations, loop dependencies, etc. Although the approach pro-
posed in this thesis has an aspect of set based analysis, set-based analysis seems to
be much more valuable in an on-line environment where dependencies can be inter-

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 43

preted rather than ignored.

2.6.3 Other Applications

Ray Tracing

Ray tracing is in a sense the “first” application of partial evaluation. In 1986, Mo-
gensen [65] proposed the use of partial evaluation for improving the performance
of ray tracing algorithms. The most recent application of partial evaluation to ray
tracing is work by Andersen (8] in 1995.

Ray tracing is a nearly optimal application for partial evaluation. Ray tracing is
computationally expensive, there is a large static component (the scene) and there
is a large interpretive overhead for dealing with the static component. The primary
parameters in ray tracing are a set of objects, a set of light sources, an eye position
and a window onto the scene. The window is a set of pixels that represent the scene
at some given resolution with respect to the objects, light sources, and eye position.

Andersen made a fairly careful comparison with an efficient ray-tracing algorithm
compiled under both gec and a native platform (HP) compiler on an HP 9000/735.
Specialized versions of the ray-tracing algorithm were built in order to take advan-
tage of static knowledge regarding combinations of the three aspects in the algorithm.
The specialized algorithms performed well in comparison to the original (optimized)
code, ranging from a 20 to 70% reduction in computation time. The cost for the de-
creased computation time was an increase in code size by a factor of 1.1 to 10. Again,
it is unclear whether this size/speed tradeoff is in fact close to “optimal”; it would be
valuable to have a graduated specialization algorithm and attempt to characterize
the point at which further unrolling is useless or even counter-productive.

Real-time Systems

Real-time systems can be partitioned into two broad classifications: soft real-time
systems and hard real-time systems. Soft real-time systems are systems that have
time constraints but where moderate violation of the constraints is not a critical
problem. Examples of soft real-time systems include order display in a fast-food
restaurant or frame update in a video game. In hard real-time systems, violating

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 44

time constraints can lead to catastrophic events. For example, missing a constraint
in an automated production environment could lead to defective products or injury.
Similarly, failure to meet constraints in an aircraft flight control system, particularly
in a high-performance jet, may cause a crash.

In [68], Nirkhe and Pugh investigate the application of partial evaluation to a code
for hard real-time systems. Perhaps surprisingly, this is an excellent application for
partial evaluation. Typically, hard real-time systems disallow all computation paths
that have unknown lengths implying that recursion, non-constant bound loops, and
other non-constant cost operations are disallowed. Nirkhe and Pugh apply partial
evaluation to transform programs that contain such features into systems that meet
constant time operation constraints. Their contention is that by performing such
transformations automatically, programmers can develop code at a higher level while
maintaining the same hard guarantees.

The model chosen by Nirkhe and Pugh is very restricted. Part of this is due to
the nature of the problem domain, but some of this is also their willingness to give
up some expressiveness in order to have well-understood residual programs. For
example, the store model adopted by this work splits the store into a purely compile-
time component and a purely run-time component.

Nirkhe and Pugh use an off-line model. Their primary motivation for this choice
is that having a separate BTA allows user interventions in the annotation process
which in turn leads to tighter control over the characteristics of the final residual. In
addition, they felt that handling global values within an on-line evaluation was prob-
lematic and that on-line approaches tend to over-specialize. Both of these concerns
are addressed explicitly to some extent in this thesis (Section 6.3) and the general
improvements in on-line approaches make these issues comparably difficult in auto-
matic systems using both on-line and off-line techniques. The authors of this thesis
do agree, however, that off-line systems do permit finer user control over annotations
than current on-line processing and that this issue alone is sufficient to justify using
only off-line approaches for hard real-time systems. There has not been any direct re-
search into methods for allowing user intervention in the on-line annotation process.
Although it would certainly be possible to allow user annotations to be introduced
on an a priori basis, on-line evaluation is more interpretive in nature than off-line
evaluation and as such, it would be more difficult to reason about the consequences
of introducing particular annotations.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 45

Deductive Database Query Optimization

Deductive databases are composed of a normal relational extensional database and
a small intensional database consisting of a set of Horn clauses that define relations
between tuples. In such systems, there are two aspects to evaluating a given query:
evaluating the Horn clauses in the intensional database and performing the relevant
queries on the relational database. When evaluating a query, the overall system can
choose either to query the relational database and then interpret the Horn clauses
on a tuple-by-tuple basis or it may choose to “compile” the Horn clauses into a series
of relational database queries.

In [74], Sakama and Itoh report on the application of a simple partial evalua-
tion model to deductive databases. Their basic approach is to first perform a partial
evaluation of the Horn clauses and then to compile the remaining Horn clauses into
relational queries using the normal method. Their partial evaluation consists pri-
marily of unfolding Horn clauses until only recursive relationships or extensional
queries remain. The method chosen by Sakama and Itoh ignores any binding time
analysis and does as much unfolding as possible. The resulting system realized query
execution improvements of 20 to 40% on large queries, but if the partial evaluation
time is included, the improvement is nearly negligible. The system that they propose
seems to consist solely of unfolding; there is little in the way of real specialization.

Related to this work is the larger body of work in applying abstract interpreta-
tion and partial evaluation to Prolog. In particular, there is a relatively early (1987)
book [2] dealing with abstract interpretation techniques for declarative languages.
More recent work in this area includes [13] [51][52](67] [69]. Another related topic
is applying partial evaluation to solving systems of constraints [36] [76]. The basic
observation in this work is that constraints have a “declarative” component and can
be manipulated into a new system of partially solved constraints by applying Prolog-
style rewritings.

Specification Verification

Sridhar and Vemuri (77] use partial evaluation for a rather different type of problem
— verification of temporal specifications in hardware. This work defines a model for
expressing hardware temporal constraints at the register transfer level. The lan-
guage they define accepts trace behaviour and determines if the given traces conflict.

SECTION 2.6. APPLICATIONS OF PARTIAL EVALUATION AND SPECIALIZATION 46

Partial evaluation is used to allow for partially unknown behaviour in traces which in
turn allows classes of specifications to be validated simultaneously. Sridhar and Ve-
muri do not present the details of their approach, but their basic language is tightly
constrained due to the nature of the hardware and thus seems as though it would be
amenable to partial evaluation.

Chapter 3

Generalized On-line Partial
Evaluation

On-line partial evaluation techniques do not use a distinct binding time analysis
(BTA) preprocessing phase. As the specialization phase progresses, the partial eval-
uator decides whether it will treat each function call or variable as dynamic or static.
This decision is only in effect for the current specialization decision; each special-
ization decision requires the partial evaluator to evaluate the status of each value
involved in the specialization. This approach allows the specializer to change the
status of any call at any point in the process.

In some ways, on-line techniques tend to be more complex than comparable off-
line techniques. Off-line methods generally have a more modular aspect — there is a
clear separation between the BTA and specialization phases. Off-line methods also
have some advantages for self-application [46] as well as in allowing for user inter-
vention in the annotations [26]. However, as discussed in earlier sections, on-line
techniques have advantages in dealing with imperative features and in generalizing
abstract values.

Our primary interest is in making use of partial evaluation techniques for opti-
mization of traditional programs. Optimizations will occur during the intermediate
phases of compilation. This criterion strongly influences our decision to use on-line
methods. Self-application (see the discussion on the Futamura projections in Sec-
tion 2.2) is not an issue and it is unlikely that we would want the user to have direct

47

SECTION 3.1. DOMAINS FOR ON-LINE PE 48

influence over annotations, although we may want to allow indirect user influence
through the weighting of various optimization tradeoffs (i.e. size/speed).

Our approach has several key features: it incorporates uncertain knowledge, it
promotes a consistent mechanism for modeling program behaviour, and it incorpo-
rates a consistent termination mechanism. The approach that we will introduce will
incorporate very general domains for specialization. These domains will cause in-
creased complexity in the termination criteria, but will allow a single method to ad-
dress concerns about imperative features and normal polyvariant specialization.

3.1 Domains for On-Line PE

In Section 2.4.2 we noted that traditional off-line methods do not adequately model
imperative language features. The primary reason for the weaker model is in the
approach to safety and termination. Termination and safety proofs for off-line sys-
tems rely on having a fixed-height lattice representing knowledge about the system.
Intuitively, this restriction guarantees that the systems will always make progress
towards a solution (fixed-point) that is at most some fixed distance away. Unfortu-
nately, finite lattice structures cannot adequately model uncertain or partial knowl-
edge in a system.

Consider a statement such as the following:
if x = 5 then

y =7
else
y :=5;

In traditional systems, if x is dynamic we cannot model the value of y after this
statement, other than to say that y is an integer (which we may already know if the
language provides that information through the type system). Intuitively, however,
we realize that treating y as dynamic does not adequately reflect what we know
about y, namely that after the statement we know that y has either the value 5 or
the value 7. We may not know which value y contains, but we do know that there
are a finite number of options. We could then use this information to make further
specializations. For example, assume the following statement came next:
if y < 10 then
z := 7;

SECTION 3.1. DOMAINS FOR ON-LINE PE 49

With a traditional approach, y would be considered as dynamic and no specialization
could occur. In our system we would realize that this code fragment has the same be-
haviour for all possible values of y or in other words, that z will definitely be assigned
the value 7. In this case the entire statement might disappear since any subsequent
use of z would be replaced by the static value of z, that is, 7. This general approach
will also be used to model structures as will be discussed in Section 3.1.2.

There are some difficulties with this approach. Due to the nature of the resulting
domains, a lattice model of the domain is no longer of finite height. If we allow sets of
values into our model, we will often encounter infinite sets of values in recursive code
when the termination condition for the recursive code is dynamic. In a traditional ap-
proach this does not pose much of a problem since the BTA will treat the problematic
variable as dynamic and the specializer will not have to deal with it. Qur approach
models the growth of a set of values and determines when to “give up” and treat the
variable as dynamic. Due to termination concerns, our approximation to these sets of
values will have to be conservative, but will be able to model partial knowledge more

completely than existing systems.

3.1.1 Domain Approximations

The easiest technique for dealing with sets of values in domains is to use a completely
ad hoc technique. For example, simply using sets of values as an approximation and
inserting new values into the set as they are encountered is a viable approach. In
order to determine when to convert the value to a dynamic status, the cardinality of
the set could be used. In other words, as long as the set has a cardinality of less than
some “trigger” value, we continue to add elements to the set. If the set cardinality
surpasses the trigger limit, we begin treating the variable as fully dynamic. Under
a lattice model, cardinality is actually quite clean; the lattice has one level for each
possible cardinality of sets, with T being above the level representing sets with the
highest permitted cardinality. Figure 3.1.1 represents a lattice for the subset rela-
tionship with sets of cardinality less than or equal to 4. Each level consists of an
infinite number of sets of the given cardinality. Each of these sets is a subset to an
infinite number of sets at the next level up the lattice. Sets of cardinality four are all
members of T, which represents the set of all integers.

Although cardinality can be used, there are several problems with this method.

SECTION 3.1. DOMAINS FOR ON-LINE PE

{S such that ISI=4}

W

{S such that ISi = 3}

W

{ S such that ISI =2}

W

- o -2 -1 0 +1 +2 +co

1

Figure 3.1.1: Restricted Subset Lattice

50

SECTION 3.1. DOMAINS FOR ON-LINE PE 51

First of all (and mest importantly), we may perform a great deal of work before de-
ciding to treat the variable as dynamic; the computational expense would discourage
practical use of the techniques. Second, one of the goals of this work is to move be-
yond informal techniques. Although this would be a more powerful model than a
simple lattice model, we would prefer to have a more consistent approach.

The basic approach that we adopt is to create a general method that is roughly
based on work done by Cousot and Cousot (27], and Bourndoncle [14]. We need to
have a finite model of infinite domains, but we also need to have a computationally
inexpensive process for making the estimate. When using sets of values, when an
element is added to a set there is no analysis of the set itself This leads to the
problems noted above. In [14], Bourndoncle presents a method for approximating
the behaviour of functions by using a pair of intervals. The first interval gives the
range of the input arguments and the second gives the interval of the output of the
function. For example the interval pair <[1, 5], [10,50]> would represent a function
which, when given values in the range 1 to 5, produces values in the range 10 to 50.

Bourdoncle generates these intervals by applying a widening operation, V. The
definition of V over integers (V) [14] is as follows:

1Viz=2zVil ==
[ay, 5] V1 laz, 03] = [if a; < a; then oo~ else a;,
if by > b then oot else b, |.

This operator is very conservative — if you attempt to extend a range in either
direction, the range is extended to infinity. Essentially this models a function with a
“base case” and a general case; the base case will be the start of the interval and the
interval will extend to infinity. This type of estimate is not usually very informative
due to its very conservative nature. Bourndoncle does introduce more precise widen-
ing operators, but does not give any formal framework for deciding which operator to
use for a given widening.

The partitioning work done by Bourndoncle estimates the behaviour of programs
by using abstract control points at which intervals are calculated. The abstract con-
trol points partition the (often infinite) set of program control points (the set of run-
time program states) into a finite set which are used to determine intervals.

Interval pairs will be used in our approach to estimate the behaviour of functions
and to create equivalence classes of functions (which in turn determines termina-

SECTION 3.1. DOMAINS FOR ON-LINE PE 52

tion). The fundamental operation in this approach is to widen domains using the (V)
operator. The widening operator is a conservative over-estimator for domains; it can
be seen as an imprecise join.

Bourndoncle’s approximations are built by successively widening the input speci-
fication by the next approximation to the program’s meaning. The program’s meaning
is approximated by a safe abstract meaning function ¥, which is defined individu-
ally for each program.

Bourndoncle’s approach is similar to what we will propose — the primary differ-
ence is that Bourndoncle does not discuss unknown values as part of the input speci-
fications, nor how to automatically infer $#. Our approach must be able to deal with
both issues. In addition, since these estimates are performed in order to permit ter-
mination decisions to be made, we must distinguish several estimates for the same
function. For example, consider the following:

(define £
(lambda (x)
(+ x 10)
))
(£ 4)
(£ z)

where z is unknown. We must not include both of the calls to £ when constructing the
domain estimate for £. If both estimates were included in the domain, we would lose
all information about the static value in the first call. In our work, each of the calls
causes a distinct polyvariant specialization; there is no interaction between the two
specializations. In general, the only time at which a call effects the domain estimate
for another call to the same function is when the second call occurs within the first,
1.e. when either direct or indirect recursion occurs.

3.1.2 Issues for Structured Domains

A structured type is a composition of basic types using type constructors. Simple ex-
amples include arrays, lists, records, and trees. Elements of structured types may
be composed of many simpler elements. Structures may be approached in one of
two ways for the purposes of binding time analysis: the entire structure may have

SECTION 3.1. DOMAINS FOR ON-LINE PE 53

a single annotation, or each element within the structure may have a separate an-
notation. Using only a single annotation significantly restricts the accuracy of the
partial evaluator. Single annotations for structures correspond to monovariant BTA
for functions; the annotation for the structure must be the least upper bound of the
element annotations. With this approach structures are only considered to be static
if all elements of the structure are static.

Consider the following example:

(define head
(lambda (x)
(car x)))

(head (list '1 z))

where z is dynamic. With a single annotation, the list resulting from the cons will
be dynamic and the entire call to head will remain in the residual. The annotations
would be as follows:

(define head
(lambda (x)
(car x,)))

(head, (list 'l z),)

Using separate annotations for elements within structures would result in the fol-
lowing annotations:
(define head
(lambda (x)
(car x;,)))

(head; (list '1; z,))
Within the function head, the variable x has two annotations, each of which refers
to the corresponding element in the structure. The residual in this situation is much

more pleasing; car only depends on the first element of the structure so we can
completely evaluate the function and remove the call to head from the residual.

Structural decomposition of a domain may be approached in several ways. As
alluded to in Section 2.4.2, one method is to factor structured types into simpler
components. One must however, take great care not to change the semantics of the
source language. Since languages have different semantics for structural and base
types, using this as a general approach seems problematic at best.

SECTION 3.1. DOMAINS FOR ON-LINE PE 54

Regular Expression Notation

A more interesting avenue for further exploration involves the actual domain repre-
sentations for structures. In [40] and [39] Hendren introduces a regular expression
notation for describing structures. For binary trees, the regular expressions are com-
posed of a series of the following symbols:

e S: no edge (Same node)

o L: a Left edge

e R: a Right edge

e D: a Down edge (either a right or left edge)

Each of these symbols may be repeated or may have a superscript denoting the num-
ber of instances of the symbol. Thus LL or L2 would both represent two left links. A
superscript of “+” indicates one or more links, while a “?” following a term indicates
zero or one occurrences of the term.

Given a path expression such as R2LD+ for the path from the root of a binary
tree to a node, C, we would have the tree shown in Figure 3.1.2.

Hendren develops a calculus for manipulating expressions and is able to handle
possible paths as well as certain paths. For example, consider the following impera-
tive code:

if x < y then
a.left := ¢
else
a.right := c;
c.left := 4;
Assuming that the truth of the conditional is unknown, the path from a to c after
this code fragment will be D and the path from a to d will be DL. In [40], Hendren
gives the following example (with one variable renamed for clarity):
c := h;
while c.left <> nil do
c := c.left;

SECTION 3.1. DOMAINS FOR ON-LINE PE

Figure 3.1.2: A tree for R2.LD+

55

SECTION 3.1. DOMAINS FOR ON-LINE PE 56

The path from h to c is approximated iteratively until a fixed point is reached; the
approximations are S, {S, L}, and {S, L*+} which is the fixed point. This means that
either h and c are the same node, or there is a series of one or more left links between
h and c.

Hendren’s approach to structured domains is essentially the same as Bourndon-
cle’s approach to non-structured domains. Consider the following code:
c :=0;
while ¢ <> z do
c :=¢c + 1;

where z is unknown. Approximating this domain using Bourndoncle’s approach re-
sults in an approximation of [0..0c0] for c. This is essentially the same result as Hen-
dren’s, as [0..00] can be understood as the set of possible “distances” from 0 to ¢ which
is what the S, L* expresses in the structured domain. Hendren’s approximations are
more accurate in some cases; consider the previous example where Hendren’s ap-
proach captures uncertain knowledge about the direction of the link (we couldn’t tell
whether the link was R or L, but could still express the link as D). Bourndoncle’s
approach, using the simple widening operator, would extend the domain to infinity,
losing some of the information.

Hendren'’s calculus can be understood as a set of widening operators which are
somewhat more precise than Bourndoncle’s simple widening operator. Unfortunately,
the cost for the increased precision is incorporating knowledge about the data struc-
ture into the model. In order to model trees, Hendren has specific abstract values
for left and right links. When the model is extended to a simple DAG, a third type of
link, M (middle), needs to be introduced.

In general, we will not know in advance what the data structure will look like,
and thus we will not be able to generate estimates with the same level of accuracy
as Hendren’s approximations. On the other hand, our approach will not need the
specific knowledge required in Hendren’s approach. Finally, Hendren'’s goals are to
characterize the paths between nodes; we are concerned with the values on those
paths in addition to the path descriptions.

SECTION 3.2. IMPROVING DOMAIN APPROXIMATIONS 57

3.2 Improving Domain Approximations

There are two types of widenings that we will want to perform: a precise widening
and a relaxed or general widening. Consider the following imperative example:
if x < y then

z =5
else
z :=17;

If the conditional is static, it is easy to see how to generate exact knowledge about
z. If, however, the conditional is dynamic, we would like to be able to generate the
precise information that z contains either a 5 or a 7. Using an imprecise widening
operator we would extend the domain of z from 5 to co, which is not a very reasonable
estimate even though it is “correct”.

Consider also the following two code fragments:

z := 0;
while x < y do
z =2 + 1;
X = X+ 1;
z = 0;
while x < y do
Zz := 6;
X :=x + 1;

In both code fragments, if x and y are both static then we can completely evaluate
the loop and have a single static value remain for z. If, however, the conditional is
dynamic, we should not treat the code fragments in the same way. Consider the first
fragment. If the conditional is dynamic, the best estimate that we can make for z is
the interval [0..c0]. In the second code fragment, however, the best estimate for z is
the pair of (singleton) intervals [0..0], [6..6]. The reason that there is a difference in
the best result is that in the second case we have a constant result and in the first
case we have a computed result which depends on a dynamic value.

Although this example only deals with integers, we can construct examples that
demonstrate similar concerns in other domains (characters, boolean values, lists, etc).
Our basic approach to dealing with the problem of using only the basic widening oper-
ator is to define two widening operators, each of which will be used in the appropriate
situations.

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 58

In the remainder of the chapter we will define the on-line partial evaluation al-
gorithm. The development will occur in three steps: first we define the properties
that abstract domains must satisfy, we then define properties of the widening oper-
ators, and finally, we define the partial evaluation algorithm by appealing to these
properties.

3.3 Domains and Widening Operators

When a non-abstract (or concrete) interpreter is defined for a given language, the
interpreter will incorporate knowledge of various types into its operation. Examples
of such types include integer values, booleans, characters, lists, etc. As mentioned
in Section 1.4, in order to perform an abstract interpretation for a given language,
we must define abstract domains that correspond to each type that a non-abstract
interpreter would use. We will refer to the set of values represented by a type in the
standard semantics as the natural concrete domain.

Programming languages normally define primitive operations over the natural
concrete domains; we must define corresponding abstract operators over the abstract
domains. We must also have some (minimal) guarantees about the behaviour of the
ahstract domains in order to be able to build a consistent abstract interpretation.
Finally, we must have a method for transforming a concrete value into an abstract
value, and for transforming an abstract value into a concrete value. Note that for
a given natural concrete domain it may not always be possible to transform an ab-
stract value into a particular natural concrete value; for example, consider our nega-
tive/zero/ positive example from the introduction. It is simple to convert any concrete
natural number into the negative/zero/positive lattice, but it is not possible to con-
vert a positive or negative abstract value into a single natural number.

In the next section we define the properties that abstract domains must satisfy.
These definitions will apply to all abstract domains. As will be seen in Section 4.2,
the termination and correctness of the partial evaluation algorithm depend on only
the general properties of each abstract domain; there is no dependence on any actual
abstract domain. From a design perspective, this allows a clean distinction to be
made between the partial evaluation algorithm and the actual abstract domains used
in an implementation. In addition, assuming that we have a proof of correctness for
the system that depends on only the domain properties, we can then reduce a proof of

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 59

T
\
False

/
L

/E\

Figure 3.3.1: Boolean Concrete Domain

correctness for an entire system to a proof that a set of given actual abstract domains
satisfies the given domain and operator requirements. This will be the approach
we adopt in Chapter 5 when we present abstract domains for the integer and list
domains.

Finally, it is also important to note at this point that the termination and cor-
rectness proofs are not related to the accuracy of the overall system. The accuracy
of an implementation depends primarily on the abstract domains that are used in a
particular implementation. If one wishes to have a more accurate interpreter, more
accurate domains may be introduced; the only requirement is that the actual abstract
domains satisfy the given constraints.

3.3.1 Domain Requirements

Within our system we will not use the natural concrete domains directly. Concrete
values used by our system will be taken from the complete lattice formed by lifting
and topping the corresponding natural concrete domain. Lifting simply introduces a
1 element and topping introduces a T element. We will refer to the lifted and topped
natural concrete domain as the concrete domain. This construction is important as it
allows the interpretation algorithm to determine the accuracy of abstract values. As
one example, Figure 3.3.1 shows the concrete domain lattice that corresponds to the
“boolean” natural concrete domain.

In order to improve the accuracy of our results, we do not simply use least upper
bounds on lattice values since least upper bounds can over-generalize abstract val-
ues. Rather, we want to have the interpreter decide when to make the conservative
compromise between accuracy and termination. In order to meet this goal, values in

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 60

the abstract domains (or simply domains) are composed of a set of incomparable ele-
ments where each element is chosen from some lattice. As reviewed in Appendix A,
lattice elements z and y are incomparable if z £ y and y £ z. We denote the fact that
z and y are incomparable as z||y.

The widening operations are defined in terms of a modified definition of down-
sets. The normal view of down-sets is discussed in Appendix A; we will briefly review
the concept here as well. The basic idea of a down-set is that the down-set of a lattice
element e, denoted le, is the set of elements below (or equal to) that element within
the lattice. We may also apply the idea of a down-set to a set; the down-set of a set of
elements is simply the union of the down-sets of each element.

The abstract models we are interested in can be slightly constrained from the nor-
mal fully general lattices — we are interested in modeling information about natural
concrete domains. Natural concrete domains (or normal types) are basically sets of
elements. Although these sets may be ordered by various relational operations, they
are not ordered in terms of “meaning”. In other words, in any natural concrete do-
main, there do not exist distinct elements, z, y such that z subsumes the meaning of
y. This means that every natural concrete domain is composed of elements which are
incomparable to any other element in that natural concrete domain. This means that
within the concrete domains, if 2z < y then eitherz = Lory=T.

Normally a down-set for a lattice element includes all elements in the lattice that
are below the given element. We modify this interpretation to include only the lattice
atoms in the down-set. An afom in a lattice is a value z such that . < zand ify # L
and y < z then y = z. Intuitively, the atoms are the values in the lattice that are
immediately above L. In terms of the concrete domains, the atoms of the concrete
domain are exactly the elements of the natural concrete domain. This in turn has
a direct correspondence to what we want our lattices of abstract values to mean —
we want the lattices to express information about some subset of the elements in the
natural concrete domain.

For the rest of the presentation, we will use |V to represent only the atoms below
V. Given this definition of down-sets, it is straightforward to extend the normal
lattice ordering relationship to sets of elements. Given sets of lattice elements, z and
y, we will say that z C y if]z C |y. We will reuse the term “below” for z C y; although
this overloads the term with the basic lattice relational operator “ < ”, conceptually
the two operators have similar semantics. Note that we use the term “below” to mean

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 61

“below or equal to”; when we intend a strict relationship, we will use the term “strictly
below”. We use the terms “above” and “strictly above” in a similar way. Finally, we
define equality by saying that two values, z and y, are equal if |z = Jy.

There are two additional comments that need to be made regarding this formal
model. First, as discussed by Davey and Priestley [30], given an ordered set P, the
set of all down-sets of P, represented as O(P), is a complete lattice under subset
inclusion. In effect, we will be finding upper bounds and least upper bounds in O(P).
We choose to ignore this aspect as we feel that simply talking about the down-sets
themselves is a more intuitive approach while sacrificing no formal expressiveness.
Note that this applies to our modified interpretation of down-sets as well; the sets are
simply members of the powerset of P. The second comment is that these definitions
are behavioural and not operational. For all but trivial base lattices, operationally
manipulating down-sets is computationally prohibitive. In practice however, most
“intuitive” abstract lattices lend themselves quite well to this behavioural description
while retaining efficient computation characteristics. This issue is developed further
in Chapter 5 when we present particular abstract domains.

3.3.2 The Widening Operators

All widening operations are performed on abstract domains; although we will talk
about performing widening operations on values in domains, the reader should keep
in mind that the domains will always be abstract domains that satisfy the require-
ments discussed in the previous section and in particular that any value in a domain
is a set of incomparable elements.

The basic idea of any widening operator is to coalesce two pieces of abstract in-
formation; the nature of the resulting value depends on the actual (abstract) domain
and the type of widening that is performed. There are two types of widening oper-
ators that our algorithm uses: a precise widening operator and a relaxed widening
operator. A precise widening of two values (sets) of a domain results in a value which
we expect to represent only those elements present in the two original values. A re-
laxed widening will result in a value which includes at least those elements in the
two original values.

We will use Vp to denote a precise widening operator; V2 will represent a par-
ticular precise widening operator over a domain D. Normally, we will not explicitly

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 62

. o
Mo e
& & ®

(a) (b)

Figure 3.3.2: Q) EVp D and(b)EV D

denote the domain of a widening operator. The conditions for precise widening are
summarized in Definition 3.1.

Defn 3.1 (Precise Widening) IfV, and V; are values in some domain,
then Vp Is an operator such that
Wi=ViVa¥

W =) UV2) @

V=VVp Vo= ...
Vz,y €V :z # y=>z|ly (it)

On occasion it is useful to consider the result of widening several values; we will use
the notation Vp (V1,V3,...) tomean (...((ViVp V2)Vp V2)Vp ...).

As noted earlier, the proposed model generalizes other models and formalizes the
precision that we want in our model. In general, a simpler approach based strictly on
least upper bounds in the underlying lattice rather than down-sets, can over gener-
alize results. For example, Figure 3.3.2 shows the difference in the accuracy between
joining two elements and taking the union of their down-sets. In each case, the ele-
ments covered by the result are circled. Although this is a somewhat contrived exam-
ple, similar behaviour is manifested in interval lattices and other relatively intuitive
lattices.

There are two fundamental differences between precise and relaxed widening.
The first difference is that relaxed widening is less restrictive than precise widening

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 63

about the accuracy of resulting values. The second difference is that relaxed widening
operators must guarantee that widenings cannot occur indefinitely without converg-

ing to some stable value.

We will use Vi to denote a relaxed widening operator; V2 will represent a partic-
ular relaxed widening operator over a domain D. The conditions for relaxed widening
are summarized in Definition 3.2.

Defn 3.2 (Relaxed Widening) If V;, Va, Wy, and W are values in some
domain with W, C V; and W, C V5, then Vg is an operator such that
WW=WVrW

2 (M) U(ve) @)

V=W"Vgr Vo= .
Vz,y €V : 2 # y==2|ly (zi)

WiVe W CViVR V2

and

for any function f and value zo, there exists a k such that
f(z&) C zi where z; = z;, Vg f(2i-1) fori > 0.

Note that in the definition for Vr , we only require that the resulting abstract
value include at least the values in the two original abstract values. This implies that
using traditional least upper bound approximations would be acceptable for relaxed
widening operations.

This approach to modeling values has two major advantages in comparison to
the finite height lattice model adopted by other systems. First, this model allows
us to differentiate between generalizing values to capture program information and
generalizing values for termination purposes. The former can be done exactly while
the latter must be done in a more conservative manner in order to guarantee termi-
nation. Second, incorporating the convergence requirements with value operations
allows the operators to take advantage of the values that are being manipulated. In
effect this allows the operators to create a finite height projection of an infinite height
lattice during the evaluation. This allows interaction between the program and the

SECTION 3.3. DOMAINS AND WIDENING OPERATORS 64

actual set of abstract values rather than determining the entire abstract model before
any evaluation.

3.3.3 Other Requirements
Abstraction and Concretization

For each concrete domain and corresponding abstract domain, there must be an ab-
straction function and a concretization function. Following Jones et al [46], we will
represent an abstraction function as « and a concretization function as y. Given a
value, v, in a concrete domain, a(v) is the corresponding abstract value for v. Given
an abstract value, v/, in some abstract domain, y(v’) is the corresponding concrete
value for v’ in the (lifted and topped) concrete domain. As in Jones et al, we re-
quire that the abstraction and concretization functions be monotonic. A function, f,
is monotonic if a C b implies that f(a) C £(3).

Jones et al requires that for every abstract value, transforming the abstract value
into the concrete domain and then back into the abstract domain is an identity oper-
ation. More formally, for a given abstract domain it is required that ¥s € {Abstract
Domain} : a(y(s)) = s. We weaken this requirement to say that converting an ab-
stract value into the concrete domain and then back to the abstract domain gener-
ates a value which is above the original value. More formally, we require only that
Vs € {Abstract Domain} : sC a(y(s)). Finally, we follow Jones et al in requiring
that for every concrete value, transforming the concrete value into the abstract do-
main and then back into the concrete domain yields a value that is above the original
value. Formally, this is stated as Vs € {Concrete Domain} : s C y(a(s)).

We require that abstracting a concrete value s produces a minimal, non-bottom
abstract value that can be used to represent s. Formally, this means that if a(v) = a
such that 4(a) J v then a # L and there does not exist o’ C a where y(a’) Jv. We
further extend the meaning of the abstraction function, a, such that if op is a prim-
itive operation in the interpreter, then a(op) is the abstract operation corresponding
to op. Given an n-ary primitive function, op, the requirement for a(op) is as follows:
given a set of values v, vs,...,v, and corresponding abstract values v¥,vg,..., 12
such that each v® J a(v;) then (a(op) v, vg,...,v8) Ja(op v1,vs,..-,v,). In addi-
tion, we require that a(op) only produces L if one of its arguments is L or if the op-
erator is not total and the result of (op vy, v,...,v,) is not defined. In other words,

SECTION 3.4. THE LANGUAGE AND STANDARD SEMANTICS 65

(a(op) vE,vE, ... ,vZ) = L implies that either for some 1 < i < n,vf = 1, or that
(op v1,v2,--.,vy) is not defined.

Domain Splitting

We require that every domain provide a function, Split, that performs value “split-
ting” over the relational operations that are defined in the domain. For example,
given a relational expression such as z < y over an abstract domain that supports
less-than comparisons, Split provides a pair of abstract values: the first abstract value
is a subset of z that contains at least those values that satisfy the relation; the second
abstract value is a subset of z that contains at least those values that do not satisfy
the relation. Note that we don’t require Split to be “accurate”, only “safe” in the sense
that each of the pair of resulting values is a superset of the set of values within z
that satisfy or don’t satisfy the given relation. Split could safely return a pair in
which each value is the original value z. The splitting function will be used when
we evaluate conditional expressions; it allows us to build “custom” environments for
each branch in the conditional. The full definition of Split depends on the definition
of the standard semantics; we will more carefully define Split in Section 3.5.3.

3.4 The Language and Standard Semantics

There are three important aspects to any on-line partial evaluation algorithm. First,
the ability of the algorithm to retain static information directly determines the qual-
ity of results. Second, the algorithm must have some method for dealing with the
issue of divergence. Finally, the algorithm must be sound, or equivalently, must pro-
duce correct answers. In order to simplify the presentation and to focus more clearly
on the contributions, we use a very simple language for the interpreter. The language
is a first-order, pure, functional language similar in form to Scheme [19] or Lisp [78].
Although it is possible to introduce simple approaches for dealing with higher-order
functions, non-trivial approaches have not been investigated in any partial evalua-
tion work; this is discussed further in Section 7.2.2.

We assume that there are a finite number of functions; each function, Ax.e, is
identified by a unique identifier, Ax.e;;. When we give the semantic definition for

SECTION 3.4. THE LANGUAGE AND STANDARD SEMANTICS 66

function application, we assume that the function identifier is replaced by the defini-
tion of the function. For the purposes of examples, we will use function names as the
function identifiers. The basic BNF of the language is as follows:

Ex=(if E E BE) | (Ax.eyq E) | 3.1
(op E") | const | ident

In general, an expression, e, may interact with the external world. For the simple
language we are defining, we require that all such interactions occur through the
initial identifier environment used in evaluating e; in other words, all “dynamic” or
“run-time” information is provided to e by way of this initial environment. All free
variables in e are assumed to use dynamic data and thus the initial identifier envi-
ronment for N contains bindings to concrete values for all free variables in the ex-
pression e. This implies that we also assume that functions do not have free variables
other than to dynamic input values. Finally, we restrict non-primitive functions to
being single argument (monadic) functions. The restrictions regarding free variables
and monadic non-primitive functions are not fundamental but substantially simplify
the soundness statement and proof presented in Chapter 4.

We define the semantics for our language by giving an operational semantics la-
beled M. The semantics are defined in terms of a source expression and an environ-
ment. N produces an expression representing the result of evaluating the expression.
Symbolically we represent the general form as A'[e] ¢ = ¢’. The environment g con-
tains a mapping for each identifier to a value for the identifier. Thus ¢(id) = const
for some constant value const. A may not be defined for particular expressions. In
particular, if a primitive is not total, A’ may be undefined.

SECTION 3.4. THE LANGUAGE AND STANDARD SEMANTICS 67

Constants

The interpretation of a constant is simply the value of the constant.

N[const] g = const 3.2)

Identifiers

The interpretation of an identifier is simply the value bound to the identifier within
the current environment.

N]ident] ¢ = g(ident) 3.3)

Conditions

The value of a conditional expression is the value of the appropriate branch of the
expression. The branch is selected based on the result of evaluating the controlling
condition. Allowing side-effects would involve having the evaluation of the condition
return a modified environment that would then be used for the evaluation of the

branches.

N[(if c e ez)]g= 3.4)
let ¢ =N|[c]e 1)
, JNleide ifd =true
e = @)
Nlez]e ifd =false

e @)
end

SECTION 3.4. THE LANGUAGE AND STANDARD SEMANTICS 68

Primitive operators

The evaluation of a primitive function requires the evaluation of the arguments and
then the application of the primitive to the resulting argument values. We will not
concern ourselves with a particular set of primitives but assume the existence of a
“sufficiently rich” set. Allowing side-effects would simply involve having a modified
environment returned from each evaluation and passing the modified environment
to the next evaluation.

N[(op e1ez...enl]e= 3.5)
let
ei=N[eiJe foralll<i<n)
in
apply(op, el e;...e}) @
end
Function Application

A non-primitive function application involves little more than the evaluation of a
primitive. First we evaluate the argument, then we create a modified environment
containing a binding from the formal argument to the actual argument value, and
finally, we evaluate the body of the function in the context of this new environment.
As with primitive function application, it is straightforward to extend the rule to
allow impure, polyadic functions.

Nxx.e el]e= (3.6)
let
ey = Nei]e @
in
Nle] e[x > 1] @

end

SECTION 3.5. THE ONLINE ALGORITHM 69

3.5 The Online Algorithm

Symbolically, we will denote our partial evaluator as P. The partial evaluator P takes
a source expression, two environments, and a boolean flag and produces a pair con-
taining an abstract value representing the result of the expression and a residual for
the source expression. Symbolically we represent the general form as the following:

Plelpscd -+ < e, ef >

We will use the superscript a on variables to denote that they represent an ab-
stract value and will use the superscript R to denote variables that represent resid-
uals. The first environment, p, is an environment mapping each identifier to a
pair containing the abstract value and current residual for the identifier. Thus
p(id) =< id*,id® >. The second environment, 5, maps function identifiers to es-
timates of function arguments. As stated earlier, we assume that each function, f,
can be identified by a unique identifier f;;. Given a function identifier, f;; and a func-
tion application f(v), we then have §(f.s) = v*. The £ environment maps function
identifiers to estimates of function values. Given a function identifier, f;; and a func-
tion application f(v), we will have §(f;4) = f5. The final parameter, d, is a boolean
flag that represents whether the current evaluation path through the source contains
a dynamic conditional statement.

Given an expression e, the initial evaluation of e will have a p environment bind-
ing all free variables in e to T, § and £ environments binding all function identifiers
to L, and will have d = false. Recall that the initial environment captures the “run-
time” values for ¢; binding all free variables in e to T in the initial environment means
that each free variable has an “unknown” value during evaluation with P.

We will use the notation first(t), second(t), etc. to represent element projection
from a tuple.

3.5.1 Constants

The simplest case for P involves a constant expression. The value of a constant
is simply the corresponding abstract value for that constant and the residual of a
constant is the constant itself Recalling that « is our abstraction function, in our

SECTION 3.5. THE ONLINE ALGORITHM 70

symbolic form the behaviour of P for constants is expressed as the following:

Plconst]pd€d =< a(const), const > 3.7

3.5.2 Identifiers

The environment p contains exactly the information that P returns for the identifier’s
abstract result and residual. Thus we only need to return a pair containing the
current binding for the identifier and the function result environment.

Plident]pséd = p(ident) (3.8)

3.5.3 Conditions

The evaluation of conditional expressions in the partial evaluation algorithm is some-
what more interesting than either constants or identifiers.

PL(if c e1ez)]pd€d= (3.9)
let
<c*, R >=Plclpded @
('P[edp 60&d if ¥(c*) =true
<e® eft 5= | Plez]pdéd if y(c*) =false .
<L, (if c e1e) > ify(c*)=L
LC(CR e; ez pdf) otherwise
in
<e* el > @)

end

SECTION 3.5. THE ONLINE ALGORITHM 71

The evaluation of a conditional begins with the evaluation of the controlling ex-
pression. We then have to decide whether to treat the resulting value as “static” or
“dynamic”. Recall that the intuitive meaning of “static” is “known at compile-time”.
In the case of a boolean expression, if the abstract value has the value “true” or “false”
in the natural concrete domain, then we have definite knowledge about the value of
the expression. Thus in line (2) we decide on our action based on vy(c*), the value of
the controlling expression when converted to the concrete domain. This is where our
lifted and topped construction for concrete domains is used; if the result of concretiz-
ing the value yields T then we know that the abstract value cannot be assumed to
represent exactly “true” or exactly “false”. Further, this knowledge is independent of
the abstraction chosen by the implementor of the abstract domain.

If we have exact knowledge then we can follow an evaluation that is very similar
to that within the standard semantics — we simply evaluate the appropriate branch
of the expression (the first two cases in line 2). Note that in this case the overall
residual expression is simply the residual from the chosen branch; the actual if
expression, the controlling expression, and the branch that is not chosen will not

exist in the residual. _
If we do not have complete knowledge of the result of the controlling expression

then the overall result could be the result from either of the branches. Algorithm C
deals with this evaluation and the construction of the appropriate residual.

C(cR ey e pdf) = (3.10)
let

< pr P >= Split(c?, p) o))

< ef, el >= Ple1]p, 6 € true 2

< eg, el >= Ples]p, 4 € true 3)
in

<el Vp e, (if cR ef e?) > “4)

end

SECTION 3.5. THE ONLINE ALGORITHM 72

If for the time being we ignore line 1, Algorithm C is fairly straightforward. The
algorithm independently evaluates the two branches and creates the return value
and residual. The abstract return value is the result of precisely widening the values
from the evaluations of the branches. Intuitively one can think about this as a “union”
operation expressing that the overall result is composed of any possible result from
the branches. The residual is a new if statement composed of the residual of the
controlling expression and the residual of each branch.

Algorithm C uses the additional helper, Split. Although it is always safe to inter-
pret the branches of a conditional expression in the same environment as the entire
statement, we would like to be able to take advantage of any implicit constraints
present in the boolean expression that controls the branches. The Split routine takes
a boolean conditional expression and a identifier binding environment and creates
“true” and “false” resulting environments.

More formally, given a simple relational operation, ,, over a particular domain
D, and an environment in which identifier x is bound to a value in domain D, then
the following holds:

< prpr >=Split((x 0, y), p) (3.11)

where the following three conditions hold:

Condition 1: y is a value in domain D

Condition 2: for all ¢ C p such that N[x 6, y]e = true it is the case
thatoCp, and

Condition 3: for all ¢ C p such that N[x 8, y]e = false itis the case
that o C p,.

The “true” and “false” environments are created by modifying the original envi-
ronment to take advantage of relationships expressed in the conditional expression.
For example given a binding {x ~» [1...00]} within environment p, a reasonable im-
plementation of Split((x < 5),p) would result in environments p, and p, where
{x — [1...4]} would be the binding for x in p, and {x — [5...c0]} would be the
binding for x in p,. Note that when y is an identifier rather than a value, the in-
terpreter can perform transformations in order to evaluate the constraints for x and

SECTION 3.5. THE ONLINE ALGORITHM 73

v independently. The definition for Split is what the domains must provide; the in-
terpreter uses this basic definition to perform more general forms of environment
manipulation.

The general approach to implementing Split is to perform a simple abstract in-
terpretation over conditional statements. In order to simplify the discussion at this
point, we will use a trivial Split function that makes no improvements to the “true”
and “false” scopes. We will discuss an actual implementation of Split in more detail
in Section 6.2.

The definition for Split that we will assume is as follows:
Split(c, p) =< p,p > 3.12)

In examples that we develop, we will generally assume that we have a slightly more
accurate version of Split; any environment improvements that result will follow di-
rectly from simple conditional expressions. The proofs that are presented in Chap-
ter 4 depend on only the properties of Split, the proofs do not depend on this particu-
lar definition of Split.

The interface to Split provides very little detail to the abstract domains. In par-
ticular, determining all of the potential constraints that might effect the resulting
environments could potentially require that Split have access to the entire program
and be able to interpret arbitrary program text. However, P already knows how
to evaluate programs; P does not know how to manipulate abstract domain values.
Thus the abstract domains perform simple abstract value splitting, while P performs
the interpretation; an outline of this approach will be discussed in Section 6.2.

SECTION 3.5. THE ONLINE ALGORITHM 74

3.5.4 Function Properties
Primitive operators

Primitive operators are built-in to the source language. We require that for every
primitive operator there exist a corresponding abstract version of the operator de-
fined for the abstract domain. As noted earlier, we reuse the abstraction function
so that the abstract version of an operator is represented as a(op).

Pliop ejez...e,)]pdéd= (3.13)
let
<ef, el >=Plei]pdéd foralll<i<n n
v* = apply(a(op), ef €3 .. .e7) @
A {‘Y("a) if(v?) ¢ {T, 1} o
(op eRel...eR) otherwise
in
< v, vB> 4
end

With respect to value computation, this evaluation is very similar to the corre-
sponding operation in the standard semantics. The actual arguments are evaluated
and the primitive operation is applied to the resulting abstract values. The interest-
ing aspect of this part of the algorithm is in the construction of the residual. The
basic decision is whether to leave the application of the primitive within the residual
or to remove the application and to leave a simple result. The critical observation
is that if we wish to eliminate the application, the value we place into the residual
must be representable within the natural concrete domain. This makes the decision
remarkably easy within our framework. We know that the result of applying v to an
abstract value yields either a particular value in the natural concrete domain or one
of T or L, thus we can replace the application with a simple value exactly when y(v®)
isnot Tor L.

For example, consider the expression (+ 3 (if ¢ 1 2)). If we assume that c

SECTION 3.5. THE ONLINE ALGORITHM 75

is unknown, this corresponds to adding the value 3 to either 1 or 2. Even if the ab-
stract domain is perfectly accurate and reflects the minimal set of values for (if ¢
1 2), the best that the abstract operation a(+) could do for its result is to calculate
a set of values including 4 and 5. Any concretization function for this set of values
would return T since the natural integer domain in our language cannot express sets
of values. Thus we would create a residual constructed from the “+” operator and the
residuals of the two arguments. By applying the rule for constants (Equation 3.7)
and the rule for dynamic conditional expressions (Equation 3.10), we determine that
the overall residual is identical to the original expression. Note that using this par-
ticular model, we did not perform the algebraic manipulation of moving the addition
operation into the if statement. Doing so would yield the residual (if ¢ 4 5),but
such a transformation is beyond the scope of our current work. Note that in general
such a transformation may not be desirable; in this case the only time such a trans-
formation does make sense is if both the “3” and either the “1” or “2” evaluated to
constants. If that did not hold then there would be duplication of the “3” expression
which results in useless code expansion.

Function Application

In order to clarify the algorithm, we separate the general function application rule
into two separate rules. The first rule deals with “unconditional” function applica-
tions which are the applications that will be evaluated in any evaluation of the given
code under the standard semantics. As with the rule for primitive applications, the
value manipulation mimics the behaviour of evaluation under the standard seman-
tics; the argument is evaluated, a new environment binding the formal argument
name to the abstract value is created, and the body of the function is evaluated in
this context. The residuals for non-primitive function applications are created using
exactly the same method as for primitive applications. If the abstract value can be
safely transformed into a value in the corresponding natural concrete domain, then
the value is representable in the residual and we replace the function application
with the value. If the value cannot safely be represented, the application must re-

SECTION 3.5. THE ONLINE ALGORITHM 76

main in the residual.
Pl(Ax.e) e]pd€ false = 3.14)
let < ef, ef >=Plei]pd§ false o)
oR = v(ef) ify(ef) €{T,L} @
x otherwise
< e®, ef >= Ple] p[x —< eF, 2R >]4§¢ false @)
oF = v(e®) ify(e”) ¢ {T, 1} @
(Ax.eR ef) otherwise
n
<e* vB> 5
end

Using this rule, consider the following function application:

(define and

(lambda (x y) (if x y false))

)

(and true z)
where z is unknown (has the value T). Assume that the current identifier environ-
ment is empty. The evaluation of (and true z) begins by creating the identifier
environment to be used for the evaluation of the body of the and function. By line 2,
the residual for the formal argument y is bound to the identifier y because the value
of the actual argument z is T and x is bound to the constant value true. We thus
use the bindings {x~»<true, true>, y=<T,y>} for the evaluation of the function
body. The identifier x has the value true, so we apply the rule for static conditionals
(rule 3.9), resulting in the evaluation of the expression y only. Applying the identifier
rule, the overall result for the body is <T, y>. The actual parameter z has the value
T, so the second argument must remain in the residual, meaning that we use the
second case for producing the residual. This choice results in the residual ((lambda
(y) y) z). Assuming post-processing simplifications, this yields the overall result
< T,z >. This result means that although we do not know anything about the ab-
stract value for the function application, we are able to simplify the residual for the
expression to just the identifier z; the application of the function can be eliminated.

SECTION 3.5. THE ONLINE ALGORITHM 77

Dynamic Function Application

The second case for general function application covers the case of function evalua-
tions that occur during the evaluation of a dynamic conditional expression.

Pl(Ax.e)e1]pd€ true = (3.15)
let
< ef, el >=Ple;]pdé true @
o .
if e C 8(Ax. eiq) then @
< E(Ax.ei), (Ax.eel) > @)
else
let
8’ = 8[Ax.eyg — 6(Ax.eid)Vr ef] @
r_ {‘7(5'(4\x-eu)) if y(8'(Ax. eid)) € {T, L} o
x otherwise
p' = p[x < &' (Ax.ei), 28 >])
< e* ef >=Ple]p’ &’ £ true M
R {'r(e") if7(e”) # (T, L) o
(Ax.e? ef) otherwise
§' = §[Ax. eig > §(Ax.ei) VR e7])
in
if e* C §(Ax.eiq) then 10)
<e*, v’ >] an
else
Pl(Ax.e)e1]pd§ true 12)
end

end

As discussed in Section 2.4.3, the on-line algorithm must make a decision about
when to further investigate branches within a dynamic conditional expression. In our

SECTION 3.5. THE ONLINE ALGORITHM 78

algorithm, the decision about when to proceed further in the investigation is based
on the search for fixed points in the series of function argument values and function
return values.

This case is in many ways the heart of the entire on-line partial evaluation algo-
rithm in that this case deals with potentially divergent function applications. Recall
that at the beginning of Section 3.5, we introduced the é and £ environments. The 4§
environment maps function identifiers to estimates of argument values; the £ envi-
ronment maps function identifiers to estimates of result values.

This part of the algorithm begins in the expected way — simply evaluating the
argument of the function. The guard in line 3.15(2) then checks whether the new
argument is below the current estimate for this function in 4. If the current argument
is below the argument estimate then we simply return our current result estimate.

If the algorithm has found a new parameter to this function, we must evaluate
the function body with this new parameter. In order to guarantee that we make
progress towards a safe estimate, we use the relaxed widening operator to extend
the current estimate by the new parameter value. The widening operation may pro-
duce a new abstract value that represents arbitrarily more concrete values than the
previous estimate. In order to produce a correct estimate of the function result, we
must evaluate the body of the function with all of the new values. Thus, rather than
simply using the abstract parameter value, we must use all of the new estimate (i.e.
8’(Ax.eiq)). In lines 3.15(5,6) the new identifier environment is built. Line 3.15(7)
evaluates the body of the function using the new definitions. Lines 3.15(8,9) configure
the function residual and an expanded result estimate.

The guard in line 3.15(10) determines whether the current value is new. If not,
we can can produce this value and the residual as the result. If the result is new,
we must continue our evaluation. It is important to note that in line 3.1512) we
must re-evaluate the entire original application, including the actual parameter. The
reason for the full re-evaluation is that the actual parameter value may depend on
the results of the function. If we do not re-evaluate the argument, the argument does
not take the new result estimates into account.

SECTION 3.5. THE ONLINE ALGORITHM 79

3.5.5 An Example of the Algorithm

In order to illustrate the behaviour of the algorithm, we will consider a function that
sums integers in the range from start to stop.

(define (Sum start stop)
(if (> start stop)
0
(+ start (Sum (+ 1 start) stop))

))

We will use the simple negative/zero/ positive abstract domain that was discussed
in Section 1.4.1. Within the traces we will simply use subsets of {N,Z,P} as our ab-
stract values and use set union for both precise and relaxed widening. This example
will be revisited in Section 5.1.3 but with a more accurate model for integers.

To reduce the effort needed to follow the examples, we have included a concise
version of the algorithm (the rules only) in Appendix B.

In order to keep the example trace to a reasonable size, we will skip most of the
“uninteresting” steps in the derivation and will focus on the recursive evaluations of
Sum. In the example, we will evaluate Sum from 1 to x where x is unknown (i.e. T).
We assume that we have an accurate Split function.

Given an evaluation (Sum (+ 1 start) stop), we will have a trace step of the

form:
(Sum z y) &(start) &6(stop) €

where z is the value of (+ 1 start), y is the value of stop, and the 4 and £ values
are as given. In terms of the evaluation, this captures the state of e for each ar-
gument and the state of § and £ immediately following line 3.15(1) where the actual
parameter is evaluated.

Each nested evaluation of the body will be indented; since the re-evaluation of
the entire expression with the new £ environment (in line 3.15(12)) is strictly tail-
recursive, we will not indent for this case. Since all but the initial call to Sum occur
as a result of evaluating the body of Sum, after each completed recursive evaluation
of Sum we will give the overall value for e* in the form “e®* = ZVp (2 + y)”. This
reflects the basic evaluation for the body of Sum in any call for this example — the

SECTION 3.5. THE ONLINE ALGORITHM 80

conditional expression will always be unknown, so the overall result will always be
a precise widening of the values of each branch. The value of the first conditional
branch is always zero and (z +y) is the value of the second conditional branch where
z is the value of start during the evaluation of the body and y is the result of the
recursive evaluation. It is very important to note that z = §(start)Vp z since, as
defined by line 3.15(6), the body is evaluated in the p’ environment found by widening
the old 4 value by the new ef value.

Finally, after giving the new e value, we present a trace line that gives the value
for ¢’ which determines whether e® is the result or whether another evaluation is
necessary.

A sequence of trace lines from a recursive evaluation might look like the following:

(Sum P P) L L L
(Sum P P) P P 1
e* = 2V (P + 1)
§ = LVp 2
The two evaluated parameter values are given in the (Sum P P) fragment of the
first line. In this example, it is not the case that both parameter values are below the
respective values in § (represented by the next two values in the trace line). Thus an

evaluation of the body results. The evaluation of the body (eventually) yields another
recursive evaluation of Sum.

The two evaluated parameter values for the recursive evaluation are given in the
second (Sum P P) fragment. In this case each new parameter value is below the
respective value in é (the next two values in the trace line). This means that in the
algorithm the value returned would be the value of ¢, which in this case is L.

The next trace line shows the computed value for the body of Sum for the first
evaluation. Note that the “P” value in the expression “(P + 1)” results from the
value bound to start during the evaluation of the body. This value was calculated
from a relaxed widening of the old § value (i.e. L) by the ef value (i.e. P).

The third line computes the new ¢’ value which is always the old £ value widened
by the computed e® value. In this case, the old £ value is 1 and the e value is Z.
Since e* Z £, we must re-evaluate the original expression with the new ¢’.

-ureadoxd ayq3 09

SUOT}RULIOJSURI) £ITJUIPI-UCU IYEW 03 I[qE 3] [[IM aM ‘Q'°C UOTIIaS UI PSdNPOIIUI aIe
SUTEWOP ORISR 3JBINIOE JIOW UIYA "UOTIOUNJ 33 JO Sutp[ojun S[3UIs [EIALI} € 3q 03
PUNOJ ST [ENPISal [[BISA0 Y], "S[ENPISAI [BALI} sonpoad sKem[e [[LM am ‘(8'S)QT"g sauT]
U1 pauTULI3}ap ST [[Ed B J10j [enpisal B JO ULIOJ 3y} Uaym £XoeIndoe Jo Sso[STyj 03 an(g
‘[ENPISal B Ul pasn 3q UED Jey) an[eA 33aIducd [yasn e adnpoid jou ss0p _Z, UBY)
1930 9n[eA joexsqe Ue SUrZRaIoucd ‘UTEWOp JDBIISqE 83 JO AINjeu a3y} 03 an(

18

(anI3

(esTe3

P :930N)

P :930N)

zd
(Zz2d + d) 9A Z

2d = zZd ¥AZd = 3

(zd + d) 490 z = »°

Zd d d (d 4 ung)

2d T T (d d uns)
z2d = d 8%z = 3
(z + d) Az = »
Zdd (d d ums)
Z T T (dd wms)
zZ =z 84T =3
(T +d) A2 = -
Tdd (dd wms)
TTT (dd uwms)
TTT (1L 4 wns)

WHLNOYTY ANI'INQ dHL "G°€ NOLLIOIS

Chapter 4

Analysis of the On-line
Algorithm

4.1 Derivations

In order to characterize computations under the standard semantics, we will need
to be able to talk about derivations within computations in the standard semantics.
A derived evaluation is simply an evaluation that is used as part of the evaluation
of some other expression. We can give a somewhat informal inductive definition as
follows:

1. const and ident have no derived expressions.

2. (if c ep; e;) has derived computations c, and either e, or e; depending on
the value of c.

3. (op ejez...e,) has derived computations e; e; ... e,.

4. (Ax.e e;) has derived computations e, and e[x — r] where r is the value of
e1.

It follows directly from the definition of derivations that the evaluation of N{E]e
must have a finite number of derived evaluations if the evaluation is well-defined.
Thus there are two conditions under which NE]p is not defined — if the result of a
non-total primitive is not defined or if N[E]¢ does not have a finite derivation.

82

SECTION 4.2. SOUNDNESS AND TERMINATION 83

4.2 Soundness and Termination

The algorithm that we have presented for partial evaluation performs an interpre-
tation of the original program. The interpretation algorithm is not guaranteed to
terminate in all cases. In particular, if every possible execution of the source pro-
gram diverges, the interpreter will diverge. Recall that in Chapter 2 we introduced
static and dynamic partitions of data in the context of the Mix equations. The first
Mix equation expresses the idea that we incorporate the static data into the original
program to produce a new program that executes with the dynamic data. A (slightly
modified) version of the first Mix equation is as follows:

Nel(s, D) = Pl(e, s)I(D)

In terms of this definition, we will show that given an expression e and static data s
where there exists dynamic data D such that A[e](s, D) is well-defined, then P[(e, s)]
is well-defined. The partial evaluation algorithm may terminate even if there is no
D such that Ne](s, D) is well-defined, but we do not formally guarantee termination
in such cases. In our approach we treat the static data s as being embedded in e; this
is manifested in that neither P nor A take a static environment as a parameter.

Recall that the dynamic data D is encapsulated in the initial environments for N
and P. In the case of P all such bindings will be to T while for A" all bindings will
be to particular concrete data. The identifiers mapped by the initial environments
for either A or P are always the same — the free variables in the expression being
evaluated. We can apply the concept of ordering to these environments; in particular
we can define a C operator for the environments. We define C between identifier
environments g and p as follows: ¢ C p if for all identifiers x € g, there exists a map-
ping (x — v) € p such that a(g(x)) C first(v). This means that an environment is
“below” a second environment if all of the bindings contained in the first environ-
ment are below the bindings in the second environment. Note that we will be using
quantifiers over the g environments used in evaluating an expression e with /. Such
quantifications relate to the values bound to the free variables in e. For example, the
statement “for all g . ..” should be interpreted as “for any set of concrete values bound
to the identifiersin o...".

The definition for “below” for two function argument environments, § and §’' is
more straightforward: § C &’ if for all bindings Ax.e;4 — x* € 4 it is the case that
8(Ax.eiq) C &' (Ax. eu).

SECTION 4.2. SOUNDNESS AND TERMINATION 84

Finally, we define “below” for two function return environments in the same way
as for function argument environments: £ C ¢’ if for all bindings Ax.ejy — Ax.ef € §
it is the case that §(Ax.eyg) C &'(Ax. eig)-

As noted in Section 3.3.1, we use the term “below” to mean “below or equal to”
and use the term “strictly below” for the stronger relationship.

Proof of Soundness

We begin by proving several useful properties that will assist in the main proof. The
basic idea of the first theorem is that if an abstract value can be concretized into a
single concrete value, the concretized value must be the same as the original value.

Theorem 4.1

Given any abstract value e* where v(e*) € {T, L} and NeJe C v(e%)
then Ne]o = v(e*).

Proof:

By assumption y(e*) € {T, L} so there exists a value ¢ = y(e®) in the concrete do-
main. Assume that there is some value ¢’ such that ¢ # ¢/ and AM[e]e = ¢. Then ¢
C c. The definition of concrete domain states that given z, y in some concrete domain
C suchthatz,y ¢ {T,L1} and z]| y then 2 = y. This contradicts ¢ # ¢, so it must be
the case that M[e]e = v(e?).

a

The next theorem only refers to A" and characterizes the nature of recursive eval-
uations in the standard semantics. The basic point of the theorem is that if we have
some set of correct solutions for a function f, then for any evaluation of f that pro-
duces a new result, there is some recursive evaluation of f that produces a new result
without relying on another recursive evaluation of f to produce a result outside the
estimate. A more intuitive way of stating this property is that any evaluation that
produces a new result does so with only a finite number of recursive calls that them-
selves produce new results.

The important thing to note with respect to this theorem is that the theorem
is not simply a finiteness property; the fundamental statement is that given a new

SECTION 4.2. SOUNDNESS AND TERMINATION 85

argument value there must be some particular evaluation that only relies on either
known results of the function, or on no further recursive evaluation of the function.

This property will be critical in proving our main theorem.
Theorem 4.2

Given sets of values D, D', and X, such that D C D’ and r € D implies
N[Xx.e r)o € X then if there exists r, € D’ such that

1. N[\x.e ri]o is defined and
2. N[Ax.erm]oé X

then there exists r= € D' such that N[Ax.e r~]o ¢ X does not derive any
N{Ax.e r;]o where r, € D' and N[Ax.e r;]o € X.

Proof:

Assume r; € D' such that N[Ax.e r1]o ¢ X. Either N[Ax.e r,]e derives some
N[Ax.e r;]o’ such that r, € D' and N[Ax.e r;]e € X or it does not derive any such
evaluation.

Assume that for all »;, € D', N[Ax.e r,]o derives some A[Ax.e r2]¢’ such that
r2 € D' and N[Ax.e r;Jo & X. Then each r; € D' derives some other value in D’ and
the derivation of N{Ax.e r]e can not be not finite.

Thus there exists r~ € D’ such that N[Ax.e r*]¢ ¢ X and N[Ax.e r*]o does not
derive any N[Ax.e ryJo where r; € D’ and N[Ax.e r3]o ¢ X.

a

All of the following proofs of soundness and termination only rely on properties of
the abstract values that P produces. In order to simplify the proofs slightly, we will
ignore the residuals that are produced. In terms of notation, this means that we will
allow direct comparisons such as P[e] p6£ d C A for an abstract value A rather than
the full expression first(Ple] pd¢ d) C A.

We will also be somewhat lazy with respect to one additional aspect of our nota-
tion. The statements of the theorems relate values found by A to values found by P.
In order to have a meaningful C relationship, we must convert the values produced

SECTION 4.2. SOUNDNESS AND TERMINATION 86

by N into the abstract domain using the abstraction function . Rather than repeat-
ing the a on every comparison, we adopt the additional convention that a comparison
such as N[e]e C A for some abstract value A will mean a(NM[e]o) C A.

The following theorem is our main theorem; the actual soundness statement is
a direct corollary of this theorem. The basic statement of the theorem is that given
some set of correct result estimates for some set of argument values, the result of P
is correct when evaluating any expression.

The theorem is quantified over the environment given to P; the theorem holds for
an environment that is a safe estimate for some set of possible environments used in
the standard semantics.

There are two basic preconditions for the theorem:

1. the environments that we consider are those for which the expression is well-
defined in the standard semantics, (i.e. those for which the derivation is finite
and does not produce bottom), and

2. that for any function, f, the result estimates in £(f) are correct for the argu-
ments in §(f).

Theorem 4.3

For all expressions E, ¢ C p, and boolean values d such that
1. NE]e is defined, and
2. for all functions £ and expressions e, derived by N[E] o,

a(N[e1]e) € 6(Ax. eyq) implies a(N[£ eq]e) C €(Ax.eia)

tt is the case that
a(NE]e) C first(P[E] p 4 € d).

Using both of the shortcuts in notation, the theorem can be re-stated as the fol-
lowing:

SECTION 4.2. SOUNDNESS AND TERMINATION 87

For all expressions E, ¢ C p, and boolean values d such that
1. NE] ¢ is defined, and
2. for all functions £ and expressions e; derived by N[E] o,

Nlei1Jo C 8(Ax. eiq) implies N[£ e1]e C §(rx.ew)

it is the case that
N[EJeC P[E]poE d.

Proof:

Case 1: E = const.

E is evaluated by N using rule 3.2 and P applies rule 3.7. By definition of
rule 3.2, for any g, N[const] ¢ = const. By definition of rule 3.7, P[const} pd&d =
a(const). Thus, by definition of «,

Nconst] o C Plconst]pdéd.

Case 2: E = ident.
E is evaluated by N using rule 3.3. Then P applies rule 3.8. Since by as-
sumption ¢ C p we have g(ident) C p(ident).

Cased: E= (if c el e2).
E is evaluated by N using rule 3.4. Then P applies rule 3.9. In both 3.41)
and 3.9Q1) the subexpression c is evaluated.
By induction, a(c) C c=.
The cases in 3.9(2) depend on whether y(c*) € {T, L}.

Case i: Assume v(c*) € {true, false}. By Thm. 4.1, the value of ¢ in 3.41)
must be the same as y(c*). Since y(c*) = ¢/, we know that A and P eval-
uate the same subexpression of E in 3.4(2) and 3.9(2) respectively. Thus, by
induction, the result of A is below the result produced by 7.

Case ii: Assume y(c*) = T. Then Algorithm C (3.10) is applied, and P evaluates
both e; and e; producing ef and e$.

SECTION 4.2. SOUNDNESS AND TERMINATION 88

Assume A evaluates only e;, producing e}. Consider the evaluation of e; in
rule 3.10. By definition of Split, the p, environment produced by Spiit must
be above any p such that condition c is satisfied. Thus if e; is evaluated by
N, ¢ C p,. This satisfies the conditions for induction, so a(e]) C ef.

Since by induction ef satisfies the theorem and by definition z CzVp y
for all z,y, we have a(e]) C ef C (efVr e3) and thus by transitivity a(e])
C (e}Vp e3), so the theorem holds.

A symmetric argument holds when A evaluates only e,.

Case iii: Assume 7(c®) = L. Then AM[c]e = L. This means that no evaluation

Case 4:

Case 5:

Case 6:

of Nc] ¢ is defined, which contradicts our theorem assumption. Having P
produce L is consistent with the result from A/ — the evaluation does not
have a defined meaning.

E= (op e1e2...e,).
E is evaluated by M using rule 3.5. Then P applies rule 3.13.
By definition of a(op), we know that if a(e;) C eZ forall 1 < i < n then

apply(op ej1ez...e,) C apply (a(op) ef e3 ...e7)

In rules 3.5 and 3.13 respectively, each of the subexpressions e; is evaluated.
By induction, the result of NV is below the result produced by P for each
subexpression e;. Thus by definition the result of applying op in A/ must be
below the result of applying a(op) in P. Thus the theorem holds.

E= (Ax.e e;) and d = false.

E is evaluated by N using rule 3.6. Then P applies either rule 3.14 or
rule 3.15. Assume P applies rule 3.14.

The overall result from P is e*. In order to show that the theorem holds,
we only need to show that o[x + e}] C p[x —< ef,ef! >] in order to apply
induction. By our inductive hypothesis, ¢ C p so for all identifiers other than
x, a(g(ident)) C p(ident). By induction a(e}) C ef, so a(e(x)) = a(e})
C ef. Thus the theorem holds.

E= (Ax.e e;) and d = true.

SECTION 4.2. SOUNDNESS AND TERMINATION 89

The final case is when a function call is evaluated by A using rule 3.6 and
by P using rule 3.15.

There are three main cases to the proof; each case corresponds to one of the
return values generated by P (lines 3.15(3,11,12)). Case 1 and Case 3 are the
straightforward cases, while Case 2 has a more interesting behaviour.

Case 1 holds when the value of the given argument is already in our set of
possible argument values. Since £(\x.e;4) is the set of solutions for the given
arguments, it is safe to return the current result estimate (in §(Ax.eiq)).

Case 2 is the most interesting case. In this case we have not discovered any
new results even though we have new possible arguments. The key to this
case is in showing that there cannot be any result in the standard semantics
that is in fact outside the current estimate.

Case 3 is the case when we have discovered new function results. In this
case, we must re-evaluate the function taking into account the new results.

The following holds by simple induction and is used in each case, so we state
it before going into the three cases.

Nlei]l e C Ple1] p 6§ true (4.16)

Case i: Ple1] pd€true C §(Ax . eq).

This case holds when the value of the given argument is already in our set of
possible argument values. Since £(Ax.ey) is the set of solutions for the given
arguments, it is safe to return the current result estimate (in §(Ax. e;g)).

By transitivity of C , given the case assumption and 4.16, N'[e;] ¢ C §(Ax . ei4).
Thus by the second precondition of the theorem, N[Ax.e e1] ¢ C £(Ax. eia).
By assumption of the case, the guard in line 3.15@) of the algorithm holds,
so by line 3.15(3),

PlAx.e e} pd€ true = §(Ax.eiq). 4.17)
Thus by substitution (from 4.17),

Nlix.e e1] 0 C P[Ax.e e1] pé £ true.

SECTION 4.2. SOUNDNESS AND TERMINATION 90

Case ii: P[e1] p §€ true Z 8(\x. eis) and P[e] p’ &' £ true C £(Ax. eia).

In this case we have not discovered any new results even though we have
new possible arguments. We must show that it cannot be the case that P
produces a result below £(Ax.ey) if we would have new results from any
evaluation in the standard semantics. This is a proof by contradiction; we
assume that A produces a result outside of £(A\x.e;z) and show that a con-
tradiction results.

Assume N[(Ax.e e1)]eZ é(Ax.ei4). By the contravariant of the second
theorem precondition, it follows that Ae;] ¢ Z §(Ax. eiy).

By construction (line 3.15(4)), § C4’. Since the second precondition of the
theorem holds, by Theorem 4.2 there must exist some r* C §’(Ax.e;q) such
that

NPx.er*] o Z §(Ax.eiq) (4.18)
where

NAx.e r"] o does not derive any N[Ax.e rz] o Z §(Ax.ei) (4.19)

Now consider the evaluation e* = P{e]p’ §’ £ true in line 3.15(7).

By construction, p’ = p[x — 4']. By assumption, r* C §'(Ax.e;), so g[x —
r*] C p'. By 4.19 (from Theorem 4.2), all computations derived from N[Ax.er"] o
satisfy the second precondition of the theorem. Thus by induction, it is the
case that

N[Ax.e] o[x— 7] C P[e]p’ &' £ true.

By assumption, N[Ax.e r*] ¢ Z §(Ax.eiq) so P[e]p’ 8’ Etrue Z £(A\x. eiq). But
this contradicts our case assumption.
Thus, N{(Ax.e e;)] o C &§(Ax.ey).

Case iii: P[e,] pd € true Z §(Ax. eia) and Ple] o' & € true Z £(Ax. eiq).

In this the case we have discovered new function results. We must re-
evaluate the function taking into account the new results.

SECTION 4.2. SOUNDNESS AND TERMINATION 91

By definition of the algorithm, in this case neither of the guards in lines 3.15(2)
and 3.15(10) hold, so the result is

P[Ax.e ;] pd € true.

By construction (line 3.15(4)), £(Ax. eiq) C &(Ax. eiq) So by transitivity of C,

N[x.e er] o C €(Ax. eq) implies N[Ax.e e1] o C €'(Ax. eia).

Thus by induction,

N[x.e e]e CP[Ax.e e1] pd € true.
a

Corollary 4.3.1 (P is Sound)

For all expressions E, o C p, and boolean values d such that N[E] g is defined it is
the case that N[E)e C P[E] pé £ d where 6(f:q) = L for all f;aand §(fiq) = L for all fia.

Proof:
This follows trivially from Theorem 4.3 since L is a correct result for any expres-
sion in A given L as an argument.

g

Termination

We will set the proofs of termination in the context of the derivations introduced
earlier, except that we now label each step in the derivation. In addition, we now
introduce derivations for P. In order to distinguish between derivations in A" and P,
we will call use the term evaluation path when talking about derivations in P.

A (possibly infinite) evaluation path is a sequence P,, ... representing the steps
in a derivation by P. Each P; represents an application of some rule in the algorithm
of the form P[e;]p; 5; d;. We will use the additional notations p;,..., and é;,..., and

SECTION 4.2. SOUNDNESS AND TERMINATION 92

dy, ... to represent the respective sequences of parameters to evaluations P,,... in
some evaluation path.

The overall proof of termination is constructed from three lemmas. The first
lemma shows that if the d parameter to P becomes true, it remains ¢rue. The second
lemma shows that the the number of steps that P takes with d being false is bounded
by the number of steps taken in an evaluation by A'. The third lemma shows that
the number of steps taken by P when d is true is bounded.

Lemma 4.3.1 Given an evaluation path P,, ... and k such that di. = true then there
exists j such that0 < j < kandd,, ... ,d;,... isoftheformfalsey, ... ,false;, true;y,

Proof:

Given an evaluation P;, then either d; = d;.; (by rules 3.91,2), 3.13Q1), 3.14(1,3)),
and 3.15(1,7,12)) or d; = true (by rules 3.102,3)). Thus, by induction, for any i < j we
have d; = false implies d; = false and for any i > j + 1 we have d;;; = true implies
d; = true.

Q

Lemma 4.3.1 does not deal with the value of the d parameter for the base case.
The two cases are straightforward: it follows from the Lemma that if d; = false then
j > 1and if d; = true then j = 0.

Lemma 4.3.2 Given an evaluation path P,, ... for P[E]péd and a finite evaluation
path Ny, ... Ny for N[E]l o where o C p then the number of P; evaluations with
d; = false is less than or equal to the n.

Proof:

We prove this lemma by showing that for an evaluation of E by N, if d = false then P
performs no more evaluation steps than N.

Case 1: E = const.

Then each of N and P return a value in a single step.

SECTION 4.2. SOUNDNESS AND TERMINATION 93

Case 2:

Case 3:

E = ident.

Then each of A" and P return a value in a single step.

E=(if c e; ez).
Then E is evaluated by NV using 3.4 and by P using 3.9.

In both 3.4(1) and 3.9(1) the subexpression c is evaluated. By induction we
assume that P takes no more steps than V.

The cases in 3.9(2) depend on whether y(c*) € {T, L}.

Case i: Assume v(c*) € {true, false}.

By Thm. 4.1, the value of ¢ in 3.4(1) must be the same as y(¢*). Since
7(c®) = ¢, N and P evaluate the same subexpression of E in 3.4(2) and 3.94)
respectively. By induction we conclude that P takes no more evaluation steps
than V.

Case ii: Assume v(c*) = 1.

Then P returns L in a single step and the theorem holds.

Case iii: Assume ¥(c®) = T.

Case 4:

Case 5:

Then Algorithm C (3.10) is applied, and the evaluations of e; and e; haved =
true. Thus P evaluates neither e; nor e; with d = false while N evaluates
one of e; and e,. Thus P takes fewer steps with d = false than the number
of steps taken by NV.

E= (op e1ez2...eq).

Then E is evaluated by A using rule 3.5 and by P using rule 3.13. In each
rule each subexpressions e; is evaluated. By induction we assume that P
takes no more steps than A on each argument, so the theorem holds.

E= (Ax.e e;).

Then E is evaluated by A using rule 3.6 and by 7 using rule 3.14 since by
assumption d = false.

SECTION 4.2. SOUNDNESS AND TERMINATION 94

By induction, the evaluations by P in lines 3.14(1,3) must take fewer steps
than the corresponding evaluations by N in lines 3.6(1,2). Thus the theorem
holds.

(]

Lemma 4.3.3 Given an expression E and an evaluation path with d, = true then
there exists n such that the sequence that P,, - .. terminates at P,.

Proof:

By Lemma 4.3.1, d; = true for all i > 1 since by assumption d; = true. By definition of
rules 3.14 and 3.15 this implies that all function applications in Py, . . . are evaluated
using rule 3.15.

Let f1, f2, - - ., fm be the finite universe of function identifiers evaluated by P,,
Consider the sequence 4;, 4, . . . of function argument environments.

By definition of the algorithm, for all steps other than 3.15(4), we have J;,; = é;.
In 3.154), we have that d;1y = §[Ax.ey — (8(Ax.ei) VR €f)]. Since 84y = &
holds for all rules other than 3.15(2), we now ignore the other steps in the evaluation
and consider only the sequence P,,... where each P; is an evaluation of a function
application using rule 3.15.

We first show that after a finite number of steps the sequence d;, ... reaches a
fixed-point; i.e. that 8;,; = & for some k. We will then show that if 6;,; = &; then
Pr+1 terminates.

Consider the separate sequences of values mapped to f; within é;, For each f;
we label the sequence as z{*, zf , - - .. For simplicity, we'll consider a single sequence
z,,23,... for a given function f;. There are two possibilities for the sequence z;, .. .:
if f; is evaluated only m times, then for all j > 0, 2n4; = zmm. If f; is evaluated an
unbounded number of times, then by 3.15@), z;;; = z; Vg v; where v; is the value of
e found by P; in line 3.15(1). By definition of Vg , for any function f and value z,,
there exists a k such that f(zx) C z; where z; = 2;_,Vp f(z:-;) fori > 0.

Since by definition of 3.15(4) and 3.15(1), v»; = g(vi-;) where “g” is evaluated in
3.15(1), there must exist a k such that z;.,; = zx Vg v = z;. Since our argument was
made for any function f;, we know that for each function f; in f;, ..., f there exists

SECTION 4.2. SOUNDNESS AND TERMINATION 95

a corresponding k;. By assumption, fi,..., f. is finite, so after at most K = 3} k;
steps, we know that 0., = dk.

We have left to show that if §p,; = & then Py, terminates. By definition of
rule 3.15(6) the abstract values bound to identifiers in sequence of p environments
follow the same widening operations as the 4 sequence. Thus when d;+; = & we also
will have pr41 = pi if we consider only the abstract values in each p; (i.e. we ignore
the residuals in each p;). If pr41 = pi and 84y = & then viyy = Ple1]pr+1 41 true =
Ple1lpr 6k true = vi.. But the fixed-point of the é environments is found with respect
to the sequence of v; values, S0 vi41 C 641 (f;). Thus the guard in line 3.1510) is
satisfied and 3.15(11) produces a value.

Theorem 4.4 (P terminates)

Given an expression E such that N[E] e terminates for some environment
o, then given any p 1 o, P[E] p 6 £ d terminates.

Proof:

By Lemma 4.3.2, any sequence of evaluations P,, ... in which every d; = false must
be finite. By Lemma 4.3.1 if there exists some d; = true then for all j > i, we know
that d; = true. Finally, by Lemma 4.3.3, any sequence of evaluations in which all
d; = true must be finite. Thus the entire evaluation must be finite.

a

Lemmas 4.3.1 and 4.3.3 are interesting in terms of the “behaviour” of the overall
algorithm. By selecting d; = false we realize the termination statement we have
given, but a corollary of Lemma 4.3.3 is that selecting d; = true results in an algo-
rithm that guarantees termination in all cases. Although in practice such a choice
results in a substantial loss of accuracy, this observation leads to an heuristic for
guaranteeing termination in all cases — allow d, = false, but select a value j such
that for any ¢ > j the interpreter forces d; = true. This method for termination
forces the abstract domains to find fixed-points over all calls in an evaluation path
including the static function calls.

SECTION 4.3. CORRECTNESS OF RESIDUALS 96

4.3 Correctness of Residuals

The correctness results in the previous section ignored the residuals; although we
now know that the abstract values are sound with respect to calculations in the stan-
dard semantics and that the abstract calculation terminates, we still need to show
that the residuals calculate the same result as any interpretation in the standard se-
mantics. The argument is a straightforward structural induction over any expression
and relies on the soundness results from the previous section.

Theorem 4.5 (P produces correct residuals)

Given an expression E such that e® = second(P[E]pd& d) then for all
¢ C p, such that second(p(ident)) is a correct residual for ident, it is
the case that N'[e?]e = N{E]o.

Proof:

Case 1: E = const.

E is evaluated using by A using 3.2 and by P using 3.7. Since const is the
residual, it must be correct.

Case 2: E = ident.

E is evaluated using by A using 3.3 and by P using 3.8. By assumption,
second(p(ident)) is a correct residual for ident.

Case3d: E= (if c e; e2).
Then E is evaluated by A using 3.4 and by P using 3.9.

In both 3.4(1) and 3.9(1) the subexpression c is evaluated. By induction we
assume that c? is correct. The overall residual produced in this case depends
on the which choice is made in 3.9(2).

Case i: Assume vy(c®) = true.
By Thm. 4.3.1, every evaluation in the standard semantics pro-
duces true for c. Thus the original expression is equivalent to (if
true e; ez). By definition of the standard semantics (line 3.4(2)),

SECTION 4.3. CORRECTNESS OF RESIDUALS 97

Case 4:

Case 5:

the result of this expression is the result of evaluating e; in the
same environment as the original expression. Thus it is safe to
evaluate only e;. Since by induction ef is a safe residual for e;, ef
is a safe residual for the entire expression. A symmetric argument
holds when v(c*) = false.
Case ii: Assume y(c*) = L.

Then the original expression is the residual. Trivially this is a safe
residual.

Case iii: Assume 7(c*)=T.
Then Algorithm C (3.10) is applied, and P evaluates both e; and
ez producing residuals ef and e¥. Since by induction each of the
residuals for the subexpressions are correct and since C simply re-
places each component of the overall expression with correct subex-
pressions, the residual produced by C must be correct.

E=(op e1ez...e,).

Then E is evaluated by A using rule 3.5 and by P using rule 3.13. In each
rule each subexpressions e; is evaluated. By induction we assume that the
residual for each subexpression is correct.

There are two cases for the construction of the residual.

Casei: y(v*) &€ {T,L1}.
Then by Thm. 4.1, y(v®) is exactly the value produced by N[E]e, so
we can trivially replace the operation by this value.
Caseii: y(v*) € {T, L}.
Then the residual is the original operation applied to the residuals
of the arguments. Since the residual of each argument is correct,
the entire residual is correct.

E = (Ax.e e;) and d = false. Then E is evaluated by A using rule 3.6 and
by P using rule 3.14 since by assumption d = false.

We need to show that new residual bindings created in p are correct and that
the overall residual is correct.

Part 1: The residual bound to x within p is either ¥(e{) or the identifier x
itself. If y(ef') is chosen as the residual then y(e) € {T, L} and by Thm. 4.1,

SECTION 4.3. CORRECTNESS OF RESIDUALS 98

Case 6:

this is a correct residual. If the identifier x is chosen as the residual then
the binding is correct assuming that x is a formal parameter in the final
residual. By definition of 3.14(4), x will be a formal parameter in the final
residual unless the final residual is a constant in the concrete domain. If the
final residual is a constant, then no identifiers can exist in the residual in
which case any residual for x in p would be trivially correct.

Part 2: There are two cases for the overall residual. If y(ef) is chosen as
the residual then v(e¢) ¢ {T, L} and by Thm. 4.1, this is a correct residual.
If (AMx.e® eR) is the overall residual then the overall residual must be
correct since by induction, e? and ef are both correct.

E= (Ax.e e;) and d = true.

Then E is evaluated by A using rule 3.6 and by P using rule 3.15 since by
assumption d = true.

By induction e is correct, so the residual produced in 3.15(3) is correct.

By the a similar argument as in Case 5 (Part 1), the residual bound to x in
p is correct. If the residual in line 3.1511) is the result, then by the same
argument as in Case 5 (Part 2), the residual must be correct. If the residual
in line 3.15(12) is the result, then since the bindings passed to the recursive
evaluation are the same as those passed to this call, by induction the result-
ing residual must be correct.

There a few interesting points to note about this proof. First, in Case 3(i), we take
advantage of the fact that our language is pure. This is used by appealing to the def-
inition in the standard semantics in which the environment for the subexpressions
is the same as the environment for the original expression. If the conditional were
permitted to cause side-effects within the environment we would have to modify our
approach. In order to make any non-trivial transformation in such cases, we would
have to determine if the conditional actually contains impure computations. Such
a computation could be made by using a two part abstraction domain in which we
consider “may-alias” {53] [29] information as part of the abstract domain. This would
require fairly small changes to the interpreter. We could then use this alias informa-
tion to create a residual for the conditional that causes the same side-effect as the

SECTION 4.4. ON THE EFFICIENCY OF ON-LINE EVALUATION 99

evaluation of the original expression. By performing this transformation we would
in fact remove the original if expression and replace it with a sequential evaluation
of the residual for the conditional (i.e. the code causing the side-effect) followed by
the code for the appropriate branch. Any may-alias analysis would be a conserva-
tive approximation since the existence of aliases is undecidable in general. However,
a may-alias analysis is a relatively simple form of abstract interpretation and thus
would fit nicely into our approach.

4.4 On the Efficiency of On-line Evaluation

There are two main factors that determine the complexity of on-line partial evalu-
ation. The first factor is the cost of operations in the abstract domains; the second
factor is the overhead imposed by the evaluation algorithm itself In our approach,
the partial evaluation algorithm is parameterized by the abstract domains and any
restriction on the running time of the abstract operations would restrict potential
domains that an implementor may want to use. A complete evaluation of the com-
plexity of evaluation given an arbitrary program has not been made. Although there
are some aspects of the analysis that are reasonably straightforward, there are non-
trivial interactions between the algorithm being evaluated, the abstract domain def-
initions, and the accuracy of the environments used when evaluating branches in a
conditional statement. We will use the term well-behaved to mean that if the evalu-
ation of e by N requires at most O(g(n)) primitive operations for any input, then P
requires at most O(g(n)) abstract domain operations.

The first observation is that the on-line algorithm is well-behaved when no con-
ditionals are dynamic. The proof that P is well-behaved when no conditionals are
dynamic has essentially already been given — Lemma 4.3.2 shows that whenever all
conditionals are static, every evaluation step in A has a corresponding evaluation
stepin P.

Given that the static analysis is well-behaved, we now characterize some of the
potential difficulties that can be encountered after a dynamic conditional statement.

SECTION 4.4. ON THE EFFICIENCY OF ON-LINE EVALUATION 100

Consider the following functions:

(define complex
(lambda (x)
(if (<« x 10) 1
(if (< x 5) (ackermans x) 1)
)))
(define £
(lambda (x)
(if (< x 10) 1
(if (< x 20) (£ (- x 1))
(E (- x 5})))
)))

Function complex executes in O(1) time for all input, while function £ is O(n). Un-
fortunately, whether our algorithm discovers these facts is dependent on the Split
operation over integer domains. If, during the evaluation of (< x 5) in function
complex, the Split operation retains the information that x must be greater than or
equal to 10, then P operates in O(1) time for all input as well. However, given our
trivial identity implementation of Split as presented earlier, this information would
be lost and the algorithm would investigate the ackermans function — a very ex-
pensive choice. With function f the situation is even worse; there is a dependency
between the evaluation of the second recursive call and the first. If the evaluator
does not recognize the dependency, the partial evaluation of £ will require exponen-
tial time since the algorithm investigates each branch of an if statement on each
recursive call. This choice makes the partial evaluation of function f an exponential
time evaluation.

In general, the fact that abstract interpreters investigate multiple branches of
a conditional when the standard semantics requires these branches to be mutually
exclusive is the cause of the exponential time behaviour. Termination is not the issue;
the amount of work to achieve termination is. Most abstract interpretations, such
as the early negative/zero/positive example, have abstract values that are in some
finite (and generally very shallow) lattice. This means that even though exponential
behaviour can be experienced, the exponent is bounded by a very small constant (the
height of the lattice). Using the domain requirements that we have given, there are
guaranteed bounds in our approach as well, but the bounds are dependent on the
speed of convergence for the Vi operators. However, the domain convergence rate

SECTION 4.4. ON THE EFFICIENCY OF ON-LINE EVALUATION 101

is not the only factor — issues such as accuracy and memoization can change the
effective complexity of the basic algorithm.

The problem encountered with function complex is not that difficult to handle; we
could simply require that domains provide accurate Split information. Accurate Split
information would guarantee that we would never investigate a conditional branch
unless it could possibly be evaluated for some real input.

If we assume that the implementation of 7P performs memoization, then the par-
ticular problem with function £ can be handled as well. After the forward analysis
through the first recursion, a memoization of £ can be created. This memoized ver-
sion of £ would, by the soundness theorem, have abstract parameter values that
cover at least the full range of potential values for x along that branch. Thus when
we eventually investigate the second recursive branch, this memoized version of £
will be available for re-use within the second nested evaluation and the first recur-
sive call will not be re-evaluated.

Finally, an additional phase could be introduced into the algorithm. This phase
would analyze each function definition and determine whether there is more than
one path through the function to a recursive call of the function. If more than one
such path exists then the potential exponential behaviour could be avoided by using
more traditional shallow, fixed-height lattices for that portion of the analysis. This
type of technique is commonly used to ensure that harmful code duplication does not
occur. Examples of harmful code duplication include causing redundant computa-
tion and duplicating code that contains operations with side-effects. Although these
particular issues are discussed further in Sections 6.3 and 6.3.3, the application of
these approaches to controlling exponential behaviour has not been investigated in
any approach.

In the implementation developed as part of this work, false exponential behaviour
has not been observed. We believe that this is due to the combination of having
accurate domains and memoization. It remains as future work to determine an exact
characterization of the system interactions that would formally guarantee a well-
behaved partial evaluation algorithm.

SECTION 4.5. PARAMETERIZING PARTIAL EVALUATION 102

4.5 Parameterizing Partial Evaluation

There has only been one other substantial investigation into parameterizing partial
evaluation. In [25], Consel and Khoo report on a facet based approach to parameter-
izing partial evaluation. Their basic approach is to define algebras that relate the
abstract domains to the concrete domains. They then investigate a simple on-line
partial evaluator and off-line binding time analysis using their algebras. The major
restriction in their approach is that they assume finite-height lattices for the abstract
domains. Although they make the observation that a Cousot and Cousot type of
widening operator would admit infinite-height lattices into the model, this approach
has not been investigated further. In [20], Colby and Lee directly implement Consel
and Khoo's approach. They observe that structured domains cannot be abstracted in
a very expressive manner due to the restrictions of the abstract domains.

Our approach differs in that we explicitly admit infinite-height lattices with spec-
ifications as to required operations on such domains. In addition, we characterize
both precise and imprecise abstract value operations and use the precise operations
whenever termination can be insured. This differs from traditional approaches that
solely use least-upper bounds for collecting abstract information.

Consel and Khoo basically ignore termination issues by leaving the decision about
unfolding to the interpreter at the time that a specialization is performed. Their
outline for an on-line partial evaluator abstracts away this entire decision by using
an application function, APP, that determines whether to continue specialization or
not. In Colby and Lee’s implementation, the APP function makes this choice based
solely on the depth of the inlining.

The most directly comparable work in terms of the proof framework is the work
by Khoo and Consel [24] that forms the basis for their parameterized system. Their
approach is to define a set of logical relations that relate an instrumented semantics,
an on-line evaluator, and an off-line evaluator. The main proofs deal with correct-
ness of the correspondence between the various semantics. They do not formally
prove any form of termination condition, but as in the parameterized system, rely
solely on decisions by the specializer to determine termination. Although the formal
approach characterizes the specialization decisions as a filter function that monoton-
ically increases to a fixed-point, the formal approach does not address how to deal
with non-finite height domains. This is partially evident in the fact that structured

SECTION 4.6. SUMMARY OF THE ON-LINE FRAMEWORK 103

domains are not addressed. The bias of Khoo and Consel’s work is to investigate
the relationship between on-line and off-line evaluation and to formally character-
ize off-line binding time analysis. Their work effectively relates off-line binding time
analysis (both monovariant and polyvariant) to forms of on-line evaluation, but is not
as expressive for on-line partial evaluation as the approach proposed in this thesis.

As noted in Section 2.3.5, the FUSE system is a larger implementation effort than
either this work or the work by Khoo and Consel, but the analytic side of the FUSE
work does not address the relationship between abstract and standard semantics and
depends on a finite height lattice model for termination properties.

In our approach, the model for termination is related to the abstract domains; the
basic intuition is that unfolding can only be profitable if we are learning new infor-
mation. We do not claim that this is a sufficient condition for useful unfolding, but at
least at the partial evaluation level, it is necessary. In other words, without taking
into consideration size of code, delay slots, and other “back-end” issues, we can only
determine the usefulness of code inlining based on information that we are encoun-
tering. Although our basic criteria can be implemented in Consel and Khoo’s model
(as can any model), in order to have a reasonable compromise between accuracy and
termination, it is important to differentiate between abstract value collections that
effect termination and those that do not. Such a differentiation cannot be made in
Consel and Khoo’s model since their only method for collecting abstract values is by
using least-upper bounds in a finite height lattice describing the domains. Since our
approach separates the types of collections into precise and relaxed widenings, where
only the relaxed widenings effect termination, we can more accurately manipulate
the abstract information.

4.6 Summary of the On-line Framework

As we have seen in this chapter, the on-line algorithm that we have developed is
dependent on only a few characteristics of the actual abstract domains chosen to
represent information during the evaluation. The algorithm itself uses precise anal-
ysis whenever it can guarantee that divergence will not occur; while the accuracy
of results is dependent on the accuracy of the abstract domains, the correctness is
dependent on only the few required characteristics. The three phases in the on-line
algorithm allow the interpreter to make the choice about when to switch the type of

SECTION 4.6. SUMMARY OF THE ON-LINE FRAMEWORK 104

analysis and to use as much of the information about the state of the analysis as
possible. Combining the analysis and specialization phases presents opportunities
for further optimizations and fits well with most standard approaches for producing
good residuals; this will be discussed further throughout Chapter 6. The proofs that
we have presented rely only on the basic characteristics of the abstract domains cho-
sen to model information. This approach allows one to consider the design of flexible
models for information as a problem that is nearly independent of the actual evalua-
tion algorithm.

Chapter 5

Domain Implementations

5.1 Integer Interval Domains

When presenting the formal partial evaluation algorithm, we assumed that we had
domains and widening operations for various basic types. In this section we will
carefully introduce an abstract domain and corresponding widening operators for
representing integers. There are several parts to this process: the definition of the
abstract domain, the definition of the widening operators, and finally, a proof that
the operators satisfy the requirements for precise and relaxed widening given in Def-
initions 3.1 and 3.2. As was observed during the discussion of the roles of domains in
Section 3.3, these definitions and proofs are sufficient to demonstrate the correctness
of the abstract evaluator with respect to integer values. In Section 5.2 we will follow
the same process for the structured domain of Scheme lists.

5.1.1 Definition of Integer Interval Domains

Defn 5.1 (Integer Interval) An integer interval, V, is a sequence of
integers [z,..z,) such that 2, < z,. An interval contains all integers in
the range; Vk,z2) < k< z,=kc V.

An interval with only a single integer in the range may be represented without the
brackets. Given two intervals, V; and V;, we will say that Vi < Vo if Vi=LorVo=T

105

SECTION 5.1. INTEGER INTERVAL DOMAINS 106

or if Vk, k € Vi=>k € V;. Integer intervals form a partial order with respect to
< . The intuitive meaning for T and L is that T is the unbounded interval (contains
all of N and 1 is the empty interval (containing no elements). Two intervals may
be ordered by a < operation if all of the elements in one interval are less than all
elements in the other interval;ie. V; < V2 ifVz e Vi,Vy e Vaz < y.

Theorem 5.1 Integer Interval Lattice
The integer intervals are a complete lattice under <.

Proof:
We need to show that for any subset S of integer intervals, both VV S and A S exist.

Part1: VS

Let s™** and s™™ respectively be the minimum and maximum integer in the intervals
in S. Then v = [s™™..s™**] is an upper bound for S since for any interval s € S, s < v.
We now need to show that v is the least upper bound. Assume there is some other
upper bound v’ < v. Then by definition of integer interval and <, v’ = [v]..v;] where
either v, > s™" or v, < s™** (or both). Assume v] > s™". Then there exists a set
s € S such that s™™ ¢ s and s™" ¢ v’. Thus s £ v' and v must be the least upper
bound. A symmetric argument holds when v, < s™**.

Part 2: AS
Let S’ be a set of integer sets where each set represents the elements of a correspond-
ing interval in S. Let v = S".

Claim: v is representable as an interval. If v is empty or represents a single integer,
v can be expressed as an interval. If v consists of several elements, then each interval
in S must contain all of those elements. If v does not represent a contiguous series
of integers then there exists some 2,y,zwithz,z2cvandy ¢ vsuchthatz < y < z.
By construction this implies that there is some s € S’ such that z,z ¢ sandy ¢ s.
But this contradicts the definition of an interval, so v must be representable as an
interval.

Claim: » = A S. First we show that v is a lower bound. By construction, Vs € S,Vz €
v,z € s. Thus by definition, v < s. Next we must show that v is the greatest lower
bound. If v is not the greatest lower bound, then there exists some v’ > v such that
Vs € S,Vz € v/, z € s. If v > v then there exists an element z € v’ such that z ¢ v and

SECTION 5.1. INTEGER INTERVAL DOMAINS 107

Figure 5.1.1: Integer Interval Lattice

Vs € S,z € s. Butif Vs € S,z € s then z is in the intersection of the sets in S’ and
then by definition, 2 € v. Thus v must be the greatest lower bound.
o

Next, we need to define widening operations on integer intervals that preserve the
nature of the domains. We will use two additional relationships between intervals
to assist in these definitions. Two intervals conjoin if their values overlap or are
immediately next to each other. The formal definition will provide us with a method
of indicating that two intervals can be merged to form a larger single interval that
contains strictly the elements in the two original intervals. Note that the idea of
conjoining intervals is only needed in the definition of the widening operators; no
integer interval domain will be allowed to contain a pair of conjoining intervals.

SECTION 5.1. INTEGER INTERVAL DOMAINS 108

Defn 5.2 (Conjoint Intervals) Let V; = [a..b] and V> = [c..d] be two
integer intervals. Vi~Va ifc>aandc<b+1landd > b. If ViV, we
say that V; conjoins V.

Observation 5.1 Given intervals V, and V, if Vi < V3 then —~(V;~V32).

This observation follows directly from the definitions of < and conjoint intervals.
IfV; < Vs then all elements in V; are in V3, but the definition of conjoint requires that
the smallest value in V; is not in V5.

Defn 5.3 (Disjoint Intervals) Let V; and V> be two integer intervals.
We say that V; and V- are disjoint, or symbolically that V<=V, if:

1. ~(i~Vz) and ~(V2~V1) and

2. forallk, k € Vi=>k & Vaand k € Va=>k ¢ V4.

This definition of disjoint is a bit stronger than normal definitions; not only can
the intervals not share any values, but there must be a “gap” between the elements.
More formally, there must exist some z such that V; < [z..z] < Vaor V2 < [z..2] < V1.
For any pair of intervals, (V; and V3), either the intervals are related by inclusion
(V1 < Va2 or V2 < V1), are conjoint (V3 —~V; or V,—1}), or are disjoint (V;=V)3).

The conjoining formalism will be used to indicate when we will be able to merge
a series of intervals into a single interval. For example, the intervals [1..10] and
[11..20] are conjoint, as are [1..10] and [5..20]. In each of these cases we could replace
the pair of intervals with a single interval [1..20] which would represent exactly the
same values as the pair of intervals. [1..10] and [12..20] are disjoint since there is a
“gap” between the two intervals; replacing these intervals with the single interval
[1..20] would introduce an additional element, 11, that is not present in either of the
original intervals.

We now extend the idea of two conjoining intervals to a series of conjoining inter-
vals which we will call a conjoining chain. A conjoining chain is simply a series of
intervals in which each interval conjoins the next one in the chain.

SECTION 5.1. INTEGER INTERVAL DOMAINS 109

Defn 5.4 (Conjoining Chain) Let V;,V5,...,V, be integer intervals.
CC(Vi,Va, ..., V.) holds if Vi : {L.n —1},V; — Vigy. IFCC(V4, Vas - - , Vi),
we say V1, V3, ..., V, are a conjoining chain.

Defn 5.5 (Integer Interval Domain) A value in an integer interval
domain, D’ is a series of intervals {V; < V3 < ... < V,} such that
VV;,V; € D! : Vi=sV;. For a particular integer value, z, we say that
z € D! if there exists V € D* such that z € V. L is considered to be in
any value of an integer interval domain.

The given domain descriptions define a particular normalization of sets of inte-
gers: intervals are ordered, contiguous subsets of integers and domain values are
formed from an ordered set of disjoint intervals. This normalization is important as
it allows for reasonable implementation; we could ignore implementation issues and
simply define the integer abstraction as sets of integers, but in real implementations,
manipulating arbitrary sets becomes very expensive.

:
g
\ N\ /
\ /
4L

Figure 5.1.2: Abstract Value Covering

Recall that in Section 3.3.1, we defined the C operator for abstract domains in
terms of the atoms in the down-sets of abstract domain values. For the integer inter-
val domain, we can easily define a C operator that meets this requirement. Given

values V; and V; in the integer interval domain, we say that V; C V; if forevery z € V;
there exists y € V; such that z < y. This statement may seem trivial, but does not

SECTION 5.1. INTEGER INTERVAL DOMAINS 110

necessarily hold in abstract domains that are not normalized as the integer intervals
are. To generalize this statement to any abstract domain, the statement implies that
there can be no pair of abstract elements in V> that “cover” a single abstract element
in V;. Figure 5.1.2 gives an example of this type of cover — using the atoms in the
down-set, we require that {C} C { B, D} since the atoms are the same, but clearly C
is not below either B or D.

5.1.2 Widening Operators for Integer Intervals

We now define the widening operators, V{ and V} , for the integer interval domains.
In order to clarify this section, we will assume that the Vp and Vpz operators will
implicitly reference the integer interval domain. The definitions are a bit laborious
as they must preserve the desired normalization in the representation.

Defn 5.6 (Precise Integer Widening) Given integer domain values
-DI ={‘fls‘/2)’-- ,Vn}afldDz = {WLWZ'-“ !Wm};

({T} if Dy={T}or D, ={T} (i)
D, ifD;={1l} (i)
D, ifD,={Ll} (ii)
D,Vp (D2 - {W;}) (iv)

where3V; € D, : W; C V;

(D1 - {V:})Ve D; ()

(D1 Ve Dj) = | where 3W; € D, : V: C Wj;

DU D, (vi)
where YV; € D\, Wj € D, : Vi=sW;

(Dy = {Vi, ..., Vig} + {[a..0]}) VP (vii)
(D2 ~ {Wj, ... ,Wjip})
where CC({V;, . .. , Viee HLU{W;, - - - . Wisp}),
a = min({Vi, W;}), and
y b= maz({Visi, Wi4p})

SECTION 5.1. INTEGER INTERVAL DOMAINS 111

The meaning of the definition is more intuitive than the definition itself might lead
one to believe. The interval T acts as the multiplicative zero for widening: Vz,({T} Vp z) =
(z Vp {T}) = {T} (Case i). The interval L acts as the identity value for widening:

that is below an interval in the other domain, the lower interval is removed (Cases
iv, v). If all intervals in the two domains are disjoint then the result is in its minimal
form (Case vi). Finally, if there is a set of intervals that form a conjoining chain, those
intervals are merged into a single interval in the result (Case vii).

Theorem 5.2 (Vp produces an Interval Domain value)

Given integer domains D, and D,, the result of D, Vp D is an integer interval do-
main value.

Proof:

The definition of Vp is inductive; at each step the definition either produces an in-
terval domain value or reduces the number of intervals in the domain values by at
least one. Thus we use a simple induction to show that the result is correct.

Cases (i) through (iii), and (vi) form the basis for the induction since they do not
recursively apply Vp . Cases (i) through (iii) are trivially correct. Case (vi) is correct
since all intervals are disjoint. In Cases (iv) and (v) we reduce the size of one of
the domains, so by induction the result is correct. In Case (vii) we reduce the total
number of intervals by at least one, so by induction this produces an interval domain
value.

o

Theorem 5.3 (Vp is Precise)
Precise integer widening (Defn. 5.6) satisfies the conditions for precise widening (Defn. 3.1).

Proof:
There are two conditions that must be satisfied for Vp to satisfy Defn. 3.1. First, if
V =W Vp Va then [V = ({V}) J({V2). Second Vz,y € V : z # y=>z||y.

We will first deal with the incomparability requirement. By definition of an interval
domain values and Thm. 5.2, we know that there no intervals z and y in V such that
z < y. Thus, by definition of incomparability, Vz,y € V : z # y==z|y).

SECTION 5.1. INTEGER INTERVAL DOMAINS 112

We now prove that if V = V; Vp V; then |V = (V1) U ({V2). Recall that [V is the
set of atoms below the elements of V. We show that every transformation step in
Defn. 5.6 preserves the set of atoms in the original domains. Case (i), (ii), and (iii)
are trivial. In Cases (iv) and (v), the element being removed is below an element that
is being preserved so the set of atoms is unchanged. In Case (vi) no elements are
being removed so the set of atoms is unchanged. Finally, in Case (vii) we compress
a conjoining chain into a single interval. In any conjoining chain the set of atoms
is simply the set of integer values represented by the chain. Since the new interval
reflects exactly these elements, the overall set of atoms is the same.

a

Precise interval widening works as one might expect - it creates the smallest set
of intervals that contain exactly the information present in either of the domains. For

example:

{[~10..5], [7..11]} Vp {[~11..— 1], [1..4], [13..13]} = {[~11..5], [7..11], [13..13]}.

The transformations are a straightforward application of the definition. [1..4] is
below [—10..5] so by part (iv) of the rule, we remove [1..4] leaving {[-10..5], [7..11]} Vp
{[~11..-1], [13..13]}. Intervals [-11.. — 1] and [—10..5] are conjoint, so we merge them
by part (vii) into a single interval, leaving {[—11..5],(7..11]} Vp {[13..13]}. Since
these intervals are all disjoint, by part (vi) the final result is simply the union of the
intervals.

Theorem 5.4 The rules for precise widening are normalizing — the final set of inter-
vals is independent of the order of application of the rules in the definition.

Proof:

This observation follows from the use of down-sets of atoms in the Thm. 5.3 and the
definition of the precise widening operator. Let V be the result of a precise narrowing.
The down-set of atoms in V is exactly the union of the down-sets of atoms in each
of the arguments. Assume there was another interval domain value V’ such that
V = V', If the representation is different in V' and V’ then there must be some
interval in z € V such that one of the following holds:

1. thereexists y € V' suchthatz<yandz # v,

SECTION 5.1. INTEGER INTERVAL DOMAINS 113

2. there exists y, z € V' such that {z} C {y, z},

If neither (1) nor (2) hold then there must be some element of z that is not covered by
V', contradicting LV = [V". If (1) holds with z = [a..5] then either a -1 or b+ 1 must be
in y and thus must also be in some interval of V. But such an interval would conjoin z
meaning that V would not be a valid integer interval domain. Thus (1) cannot hold. If
(2) holds, then by similar reasoning, y and z must be conjoint, implying that V’ is not
a valid integer interval domain. Thus V and V' must have the same representation.

a

The requirements for the relaxed widening operator are both more and less re-
strictive than those for the precise widening operator; less restrictive in terms of
accuracy, but more restrictive in terms of convergence. We could simply choose to de-
fine the widening operator as returning T. Although that satisfies the requirements
due to the weak accuracy requirement, in practical terms such a definition would
be nearly useless for discovering any information about expressions. On the other
hand we obviously have to give away some of the accuracy in our domains in order
to satisfy the convergence requirement. We deal with these somewhat contradictory
demands by defining an operator that gives exact answers if there is a bound on the
range of answers, yet converges very quickly if there is no bound. We use the precise
operator to simplify the definition of the relaxed operator.

Defn 5.7 (Relaxed Integer Widening) Given integer domains D; =
{‘/lr 1’21 ey Vn} and D, = {W11 Wz, ey Wm}: with i = [al."bl]r Va
[cl..dﬂ, W1 = {ag..bzl, and Wm = [Cz..dz],

(D1 Ve D2) =Dy Vp D Vp {Uh,Us}

where
[-o0..a3] ifa; < ay
U 1= N
L otherwise

and
U, = { [dg..m] ifdz > dl
2 —

1 otherwise

The basic intuition for the result of a relaxed widening operation is that if we
have discovered bounds on potential results (represented with a domain value like

SECTION 5.1. INTEGER INTERVAL DOMAINS 114

{[1],[50]}) then as long as further elements remain within the {[1],[50]} range, we
can maintain exact information without concern for divergence. If the range begins
to “expand” towards either side of this range, we immediately expand the range in
the direction of either infinity or negative infinity. This is obviously a fairly sim-
ple model, but it works surprisingly well in practice due to the nature of real code.
Although this will be discussed in more detail in Section 6.2, a bit of intuition re-
garding the usefulness of this operator is in order at this point. If a code fragment
has (and enforces!) upper and lower bounds for expected values, these bounds will be
encoded in the program by way of conditional expressions that either provide default
values if the bounds are exceeded or perform some sort of error handling routine. In
either case, the “normal” computation will have the expected range encoded in the
program. Due to the fact that we “split” scopes (again, see Section 6.2) based on con-
ditional expressions, these encoded bounds will “narrow” an estimate towards these
encoded bounds. If a program has no encoded bounds then either no known bounds
exist or the implementation is faulty in terms of not dealing with exceptional circum-
stances. In either case, we clearly cannot make any assumptions about the potential
domain other than that the domain could be infinite. It is possible to encode more
complex infinite domains as part of a different abstraction; this will be discussed in
Section 7.2.2. In addition, we will discuss how to extend the implied concept of “di-
rection” or “dimension” to deal with non-linear data models for non-integer domains.

Theorem 5.5 (Vz is Relaxed)

Relaxed integer widening (Defn. 5.7) satisfies the conditions for relaxed widening
(Defn. 3.2).

Proof:

There are three conditions that must be satisfied for Vr to satisfy Defn. 3.2. First,
if V= V1 Ve Va then [V D (IV1) U(IV2). Second, Vz,y € V : 2z # y=>z|ly. Third,
for any function f and value 2o, there exists a k such that f(z.) C z; where z; =
z;1Vr f(zi-,) fori > 0.

We will deal with the first two conditions by appealing to the corresponding proof
for the precise widening operator. The first condition for relaxed widening is more
flexible; we only need to show that elements are not lost. Since the result is the
precise widening of the original domains plus some additional elements, and since the

SECTION 5.1. INTEGER INTERVAL DOMAINS 115

precise widening operator does not lose elements, we can conclude that the relaxed
operator does not lose elements. The second requirement for relaxed widening is
satisfied using the same proof as for precise widening.

The last part of our proof obligation is to show that the convergence statement holds
for this widening operator. Consider a particular value in the abstract domain, V' =

{v1,v2,.-.,v,} and define min and maz as follows:
. b i.fvl = [—oo..b]
min =
a ifv, =[a..b]
and

a ifv, =[a..00]
maz =
b ifv, =[a..b]

Let the number of free atoms of V be 0 if V = T. Otherwise let the number of free
atoms be the cardinality of the set of integers between min and maz that are not in
V plus one for each direction in V that is not extended to infinity. The intuition is
that we count each integer that falls in the “gaps” of V as a free atom plus a special
marker atom for each direction in V that has not been extended to infinity. Since
we know that any particular interval domain value has a finite representation, the
number of “gaps” must be finite, so the total number of free atoms must be finite.

Claim: Any widening of V either decreases the number of free atoms by at least one,
or produces V.

Consider a particular widening of V' by some other value W. By definition, if V = T
then VVr W = V, satisfying the claim. If there exists an element in W either
larger than the maximum element in V _or smaller than the minimum value in V'
then by Defn. 5.7 one of the directions is extended to infinity. This eliminates one
of the special marker free atoms and thus satisfies the claim. If the elements of
W are between the minimum and maximum values of V' then we perform a precise
widening. By Defn. 5.6, if every interval in W is below some interval in V then the
result is V', again satisfying the claim. The final case to consider is when there exists
w € W such that for all v € V, w £ v. Then, by definition of <, there exists some
z such that z € wand for all v€ V, 2 € v. Since the definition of precise widening
guarantees that the resuit contains z and all values of V', the number of free atoms
in the result must be less than the number of free atoms in V.

SECTION 5.1. INTEGER INTERVAL DOMAINS 116

Let &’ be the number of free atoms in z;. Since the claim is satisfied, the number of
free atoms in z; where z; = 2;_1 Vg f(2:~;) must be strictly less than the number of
free atoms in z;_;. Thus there exists some value £ < k&’ such that z; = z;.Vr f(z&).
Thus by definition of Vg , f(zx) C z&, and the convergence requirement is satisfied.

a

Although our precise widening operator commutes, relaxed widening does not.
The reason for this is that relaxed widening conservatively extends a domain in the
direction in which the domain is growing. The direction of growth is expressed in the
order in which widenings are performed. For example, using our previous example
we see that

{[-10..5], [7..11]} Ve {[-11..-1],[1..4], [13..13]} = {[~o0..5], [7--11], [13..00]}
but
{[-11..-1),[1..4],[13.13]} Vr {[-10..5],(7..11]} = {[-11..5], [7..11],[13..13]}.

The resulting domains correctly express the behaviour of the respective widenings
since in the first case the “direction” of the domain growth is towards infinity in
both directions while in the second case the second domain is contained within the
range of the first estimate. When such containment occurs there is no possibility
of infinite growth so we can generate a better estimate while maintaining safety.
Finally, note that the second relaxed estimate generates exactly the same result as a
precise widening.

There is one aspect of domain definition that we have ignored in presenting the
integer interval domains: we have not presented any definitions for primitive opera-
tions over intervals. Although we are not going to give the details of the operations, it
is important to note that such definitions are part of the overall definition that is used
by the partial evaluation system. In the next section, when we define the structural
abstract domain, we will present detailed definitions of the primitive operations for
lists.

SECTION 5.1. INTEGER INTERVAL DOMAINS 117

5.1.3 A Larger Example using the Integer Domain

In order to illustrate the operation of both the algorithm and the integer domain, we
will consider a function that sums numbers in the range from scart to stop.

(define (Sum start stop)
(if (> start stop)
0
(+ start (Sum (+ 1 start) stop))

))

In order to have a reasonable size example, we will skip most of the “uninterest-
ing” steps in the derivation and will focus on the recursive evaluations of Sum. In the
example, we will evaluate Sum from 1 to x where x is unknown (i.e. T). We assume
that we have an accurate Split function.

Given an evaluation (Sum (+ 1 start) stop), we will have a trace step of the

form:
(Sum z y) d(start) &(stop) €

where z is the value of (+ 1 start), yis the value of stop, and the § and £ values
are as given. In terms of the evaluation, this captures the state of e for each argu-
ment and the state of § and £ immediately following line 3.15(1) in which the actual
parameter is evaluated.

Each nested evaluation of the body will be indented; since the re-evaluation of
the entire expression with the new £ environment (in line 3.1512)) is strictly tail-
recursive, we will not indent for this case. Since all but the initial call to Sum occur as
a result of evaluating the body of Sum, after each completed recursive evaluation of
Sum we will give the overall value for e in the form “e® = 0Vp (= + y)”. This reflects
the basic evaluation strategy for the body of Sum — the conditional expression will
always be unknown, so the overall result will always be a precise widening of the
values of each branch. The value of the first conditional branch is always zero and
(z + y) is the value of the second conditional branch where 2 is the value of start
during the evaluation of the body and y is the result of the recursive evaluation. It is
very important to note that z = §(start) Vg z since, as defined by line 3.15¢6), the body
is evaluated in the p’ environment found by widening the old § value by the new ef
value.

SECTION 5.1. INTEGER INTERVAL DOMAINS 118

Finally, after giving the new e“ value, we present a trace line that gives the value
for ¢ which determines whether e* is the result or whether another evaluation is

necessary.
A sequence of trace lines from a recursive evaluation might look like the following:

(Sum 3 [2.00]) 2 [l.oo] L
(Sum [3..00] [2..00]) [2..00] [1l..00] L
e = 0Vp (2.0] + 1) = 0
£ = LVp 0 =0
The two evaluated parameter values are given in the (Sum 3 [2..00]) fragment of the
first line. In this example, it is not the case that both parameter values are below the
respective values in § (represented by the next two values in the trace line). Thus an

evaluation of the body results. The evaluation of the body (eventually) yields another
recursive evaluation of Sum.

In the recursive evaluation, the two evaluated parameter values are given in the
(Sum [3..00] [2..00]) fragment. In this case each parameter value is below the re-
spective value in é (the next two values in the trace line). This means that in the
algorithm the value returned would be the value of £, which in this case is 1.

The next trace line shows the computed value for the bedy of Sum for the first
evaluation. Note that the [2..c0] value in the expression ([2..00] + L) results from the
value bound to start during the evaluation of the body. This value was calculated
from a relaxed widening of the old é value (i.e. 2) by the ef value (i.e. 3).

The third line computes the new ¢’ value which is always the old £ value widened
by the computed e* value. In this case, the old £ value is L and the e* value is 0.
Since e* Z £, we must re-evaluate the original expression with the new §'.
(Sum 1 T) L L 1 (Note: d = false)
(Sum 2 [l.oo]) L L L (Note: d = true)
(Sum 3 [2..00]) 2 [l.oo] L
(Sum [3..00] [2..00]) [2..00] [1..00] L
e* = 0Vp ([2.0] + L) = 0
& = LVp 0 =0

SECTION 5.1. INTEGER INTERVAL DOMAINS

(Sum 3 [2..00]) 2 [l..00] 0
(Sum [3..00] [2..00]} [2..00] [l..00] O
e = 0 Vp ([2.00] + 0) = {0,[2..00]}
£ = 0V {0,200} = {0,[2.0}
(Sum 3 [2..00]) 2 [l..00] {0, [2..00]}
(Sum [3..00] [2..00]) [2..00] [1..00] {0,[2.-0]}
s = 0V (oo + {0,200]}) ={0[2-00]}
¢ = {020} Ve {0,2.c0}= {0,[2.c0]}
e* = 0Vp (2 + {0,[2.0]}) ={0,2,[4-.00]}
§ = LVr {0,2,[4.00]} = {0,2,[4..00]}
(Sum 2 [l..oo]) L L {0,2,[4..00]}
(Sum 3 [2..00]) 2 [l..c0] {0,2,[4..00]}
(Sum [3..00] [2..00]) [2..00] [1..00] {0,2,[4..00]}
e® = 0 Vp ([2.00] + {0,2,[4.0]}) = {0,[2..00]}
¢ = {02400} Va {0,2-00]} = {0,[2.c0]}
(Sum 3 [2..00]) 2 [1..c0} {0,[2..00]}
(Sum [3..00] [2..00]) [2..00] [1..00] {0,[2..00]}
e® = 0 Vp ([2..] + {0,[2..0]}) = {0,[2--o0]}
¢ = {0,[2.x]} Ve {0,[2.0]} = {0,[2..00]}
e* = 0Vp (2 + {0,2.c0]}) = {0,2,[4..0]}
§ = {0,2,[4.00]} Vr {0,2,[4..00]}{0, 2,[4..00]}

0 Ve (1 +{0,2,[4..00]}
{0,1,3,[5..00}}

119

SECTION 5.2. STRUCTURED DOMAINS 120

The residual that we would produce is as follows:

((lambda (stop)
(if (> 1 stop)
0
(+ 1 ((lambda (stop)
(if (> 2 stop)
0
(+ 2 (Sum 3 stop)}))
stop)
)))

x)

The basic intuition about the structure of the residual is that the known constant
values of start are inlined and the parameter is removed. During the evaluation,
once start becomes an abstract value that cannot be concretized, then we revert to
the general function call. In terms of the trace, the final result and the last two e~
computations are the evaluations that actually create the residual. Note that the for
the call to Sum in the residual is slightly different than what the formal algorithm
would produce. Line 3.15(3) substitutes the body of Sum rather than just its function
identifier. The formal algorithm avoids dealing with function identifiers in order to
reduce the complexity of the algorithm; the substitution is trivial to make in the
given residual.

5.2 Structured Domains

As with the integer abstract domain, we begin by defining an abstract domain for
structured values. In keeping with the basic Scheme flavour of our language, we
will adopt Scheme’s S-expression model for structured domains. Each value in the
domain is either an atom or a pair of values. Atoms are non-structural values; for
our purposes we will assume that atoms are either integers or the special value NIL.
The basic list operators are pair construction (cons), extraction of the first value of
a pair (car), and extraction of the second value of a pair (cdr). List predicates will
be restricted to null? and atom?; it is a straightforward exercise to build predicates

SECTION 5.2. STRUCTURED DOMAINS 121

such as 1ist?. We will assume the simple list model without imperative operators
such as set-car! or set-cdrt!.

Due to the requirements for the precise widening operator, given two abstract
structure values, we need to be able to represent exactly the information in the two
representations. The basic approach that we will adopt is to keep sequences of lists.
The precise widening operator will then simply involve adding another list to the
sequence. The relaxed widening operator that we will define preserves guaranteed
structure and value estimates, but performs substantial simplifications. The basic
approach for the relaxed operator is to merge all of the lists into a single list where
the single list preserves as much structure as possible about the original list.

Defn 5.8 (List Domain)
A value in a list domain, DL = {d,, ... ,d,}, is a sequence of lists.

Defn 5.9 (Precise List Widening) Given list domain values D, and
D,, we define D, Vp D, to be D, @ D, where “@” is a sequence con-
catenation operator.

We will let “@” remain as an informal operation for now; after we define the ordering
relationship between domain values we will more carefully define the meaning of
concatenation. For the time being, simply assume that concatenation does not admit
“redundant” lists into the sequence.

As soon as we admit Scheme style lists into our system, we allow heterogeneous
types which, in an language without a compile-time type system, necessitates the
use of some sort of type identification. We will use r(z) to denote the type of z;
the universe of types for our system as defined so far is {Integer, List} where NIL is
considered to be a list, i.e. 7(NIL) = List. We recursively define the merge of two lists

SECTION 5.2. STRUCTURED DOMAINS 122

as follows:
'T fz=Tory=T
T if 7(z) £ r(y)
z VE(’) y if r(2) # List and 7(z) = 7(y)
merge(z, y) = { NIL if both of z, y are NIL
T if only one of z, y are NIL
(cons merge((car z) (car y))
merge((cdr z) (cdr y))) otherwise

We extend the notation for merge by defining merge(z;, z¢, . - .) as being equivalent to
merge(. . .(merge(zy, z2), z3), - . .). In addition, given a domain value X = {z,,...}, we
define merge(X) = merge(z;,...) where merge(X) = X if there is only one list within
X. Note that due to the relaxed widening operation performed by merge, a merge
operation is not necessarily an associative gperation.

Defn 5.10 (Relaxed List Widening) Given list domain values X =
{z1,22,...}and Y = {y1,92,...}, we define X Vp Y tobealist V =
merge(v;, vg, .. .) Where v; = merge(z;, Y)

We generally follow Scheme syntax for lists: (1 2 3) represents the construction
(cons 1 (cons 2 (cons 3 NIL))). If the list does not end with NIL, the list is
represented with a dot between the last pair of elements. For example, (1 2.3)
represents the construction (cons 1 (cons 2 3)). We will generally not put the
Scheme backquote on our lists unless necessary to clarify the meaning. The following
are a few examples of relaxed widening operations using this abstract domain.

NIL Vp (1 2)=T
(123)VR (12 T)=(12T)
(12345 Vg (12T)=(12T.T)
(1 23.T)VR (1 3 T)=(1 [2..00] T.T)
(1 (2) 3)VR (1 2) =(1 T.7)
(1 (2) 5)Ve (1 (3 4) 5)=(1 ([2..00].T) 5)

SECTION 5.2. STRUCTURED DOMAINS 123

These examples illustrate the structure preserving nature of the relaxed widening
operator. If the static knowledge about the structures is consistent, we are able to
preserve the structural information, even if the particular elements become (fully
or partially) dynamic. The first example demonstrates a complete loss of structural
information, while the second example maintains complete structural information
though it loses some information about elements. The third example is interesting in
that there is only a partial loss information about both the elements and the structure
of the original lists. Note that we do know that we have at least three elements even
though we do not know the value of the third element. The fourth example contains
the result of a non-trivial integer relaxed widening operation. In the fifth example
we lose all information about the nested list, but retain the structural information
about the outermost list. In the last example we lose partial information about the
nested structure while retaining the complete structure of the outermost list.

The basic idea of relaxed widening is first to capture the direction of growth in the
abstract domain and then to compress all of the lists into a single list. It is important
to note here that there is no concept of “direction” in the list domain itself; the reason
that there is any concern about direction of growth is that the merge operation could
apply relaxed widening operators from other domains and these operators may have
some idea of direction of growth. In general this operation could lose a great deal
of accuracy in directional domains such as the integer intervals due to the double
merge. We could avoid this loss of accuracy by not performing the second phase of
the merging (i.e. by letting the result be the sequence vy, v, . . . rather than the merge
of these lists), but performing the second phase of merging provides a more efficient
version of the list representations that is still a safe approximation. Defining relaxed
widening such that reasonably compact notations result makes the evaluation of dy-
namic recursions much more efficient. Thus we only pay the cost of manipulating
potentially large sequences of lists only when we care about having very accurate
results, namely when we are performing a static evaluation. Although we do per-
form precise widening operations within a dynamic evaluation, due to the fact that
relaxed widening operations occur on all parameters for each dynamic call, there are
a bounded number of precise widenings before a relaxed widening operation occurs.

The next step is to define the meaning of the abstract primitive list operations
and predicates. We will use cons, car, and cdr to represent the abstract versions of
the primitive operators and atom? and null? to represent the abstract versions of the

SECTION 5.2. STRUCTURED DOMAINS 124

predicates. Let X = {z1,...},and Y = {1, ...} be abstract list domain values.

(true if Vz;, 2; = NIL or r(z;) = Integer
(atom? X)= { talse ifVz;,2; = (cons v L)

{ T otherwise

true ifVz;, z; =NIL
(null? X)={ talse ifVz;,2;= (cons v L)

T otherwise

L if r(z;) # List or 2; = NIL
(car X)={vs,ve,...} where v, ={T ifz; =T

v ifz; = (cons v L)

L if r(z:) # List or z; = NIL
(cdr X) ={v;,ve,...} where u=\T ifz; =T
L ifz;= (cons v L)

(cons X Y) = {v;,vs,...} where v; = (cons merge(X) y;)

The most interesting of these definitions is the cons definition. Recall that merge(X)
is defined to be the merge of the lists of X. The intuition for the cons rule is that we
first normalize the element that we are about to cons onto the lists in Y and then
create the new sequence of lists by adding this normalized element onto each list in
Y.

Although we have now defined the domains and operations, we still have to insure
that these definitions are safe to use within our framework. In order to make such
a claim, we must define the < ordering relation over lists, show that the widening
operators satisfy their respective constraints, and show that the operators are safe.

SECTION 5.2. STRUCTURED DOMAINS 125

5.2.1 Analysis of the Abstract Structural Domain

Given two lists, z and y, we say z < y if one of the following holds:

y=T (5.20)
z =NIL and r(y) = List (5.21)
r(z) = (y) and 7(z) = Integer and z C ") y (5.22)
z=(cons a b) andy= (cons ¢ d) anda<candb<d (5.23)

Note that we use z C "(*) y within our definition of < for lists; this is due to the
fact that lists are heterogeneous and we would like to be able to retain as much
accuracy as possible about the elements within the list. This aspect of the definition
corresponds to the V,;(') case for integer z in the definition for merge given earlier.

There is a reasonably intuitive characterization for this ordering relationship —
list z is below list y if z is provably longer than y or if every element in z is below the
corresponding element in y. There are several interesting incomparability aspects
to this ordering relationship. First, any integer value is incomparable to any list
value (including NIL). This corresponds to one’s intuition that elements of different
types cannot be ordered with respect to each other unless there are explicit coercion
operators which our language does not support. Second, lists of the same length that
have T elements in different locations are incomparable. Finally, since the definition
is recursive, nested lists fit naturally into the relationship. The following are a few
examples of valid < relationships:

(12)xT
(L 23)x(12T)
(12345)<K(12T.T)
(12)x(12T.T
(1 2 3.T)X(1 [2..00] T.T)
(1 (3 4) 5) <(1 ([2..00].T) 5)

The first example follows directly from condition 5.20. The second example uses C !
from condition 5.22 to verify the below relationship for the first two list elements; <

holds for the third element by condition 5.20. Examples three and four are interest-
ing in that we have what appears to be both a longer and a shorter list being below

SECTION 5.2. STRUCTURED DOMAINS 126

the list (1 2 T.T). The shorter list is below (1 2 T.T) since NIL is below the
cons cell (cons T.T). When the longer list is compared to (1 2 T.T), the inter-
esting comparison is when we compare (cons 3 (cons 4...)) to (cons T T).
Since both 3 < T and (cons 4...) < T by 5.20, the relationship holds. The basic
observation is that if the structure of a list is not completely known, then the last
cons cell will be of the form (cons z T) for some z.

Nearly all of these examples were taken from the earlier examples for the widen-
ing operator. Recall that the Vr operation must guarantee that for any z and y, the
result of z Vg y must be above either z of y. By inspection, this relationship holds for
the examples we have given; we still must prove that the Vp and Vr operators are
in fact valid precise and relaxed widening operators with respect to the list domain.

Before addressing the validity of the V» and Vr operations, we need to deal
with two other issues: first, we need to clarify the operation of the list concatenation
operator “@”, and second, we need to verify that the C operation holds for sequences
of lists.

When we defined Vp for the list domain, we described “@” as simple sequence
concatenation. In reality, the concatenation operator will only add new lists onto
the end of the sequence when no redundant information will appear in the resulting
sequence. More formally, given sequences X = {z;,...,z,} and Y = {y,...} we
recursively define sequence concatenation as follows:

,

X ifY ={}

X@Y=4X@{y,,.--} if there exists z; such that, y; C z;
{zlv~--lzi—lvzl‘+lt"'-1zﬂ}@y ifzi ;.’Il
L{zl'---szrmyl}@{yzl"'} ifforauzi: yl.”zl'

The first case is the trivial identity operation. The second case ignores a particular
list in Y if the information in that list is already represented in X. The third case
is symmetric with the second but for lists in X that are below a list in Y, and the
final case actually adds a list to a sequence since the added list represents different
(incomparable) information.

The next step is to discuss the C relation. Recall that the definition of C is that
given abstract domain values z and y, we will say that 2C y if |2 C ly where {z is
the set of atoms below z. Note that in this context we mean atom in the lattice sense,

SECTION 5.2. STRUCTURED DOMAINS 127

not in the Scheme list sense. In this section, we will continue to use the font “atom”
to mean a lattice atom rather than the font “atom” to mean Scheme atom.

We define an atom in the list domain to be a list in which no list element has the
value T and in which all components of the list are atoms in their respective domains.
Thus (1 2 3) and (1 (2 3)) areafoms but (1 (2.T) 4) and (1 [2..00] 4)
are not. The latter two lists are not atomic since in the first case T appears within
the list, while in the second case a non-atomic integer domain value appears — the
interval [2..00]. A list such as (1 [2..00] 4) is above every list of the form
(1 z 4) where z is any integer domain value below [2. .00].

Theorem 5.6 (V£ is Precise)
Precise list widening (Defn. 5.9) satisfies the conditions for precise widening (Defn. 3.1).

Proof:

There are two conditions that must be satisfied for Vp to satisfy Defn. 3.1. First, if
V=XVp Y then [V = (1X) U(Y). Second Vz,y € V : z # y=>z||y.

We will first deal with the incomparability requirement. By definition of the “@”
operator, the only time that a list is added to a sequence is when the new list is
incomparable to all existing lists. Thus the incomparability requirement must be
satisfied.

The second requirement is that the down-set of the result of a precise widening is
equal to the union of the down-sets of the of the two original abstract values. We
prove this by showing that each side is a subset of the other.

Part 1: |V C (1X) U({Y). Let v be some atom in |V. Then, by definition of |, there
exists some list v’ € V such that v < v’. By case analysis of “@”, any list in V exists in
at least one of X or Y. Thus v’ is in at least one of X or Y and v € ({X) U ({Y).

Part 2: |V 2 (1X) J({Y). Let z be some atom in ({X) |J ({1Y). Then, by definition of
| and {J, there exists some list 2’ in at least one of X or Y such that z < z’. Assume
z’ € X. By case analysis of “@” either 2’ € V or there exists some y’ > 2’ such that
y’ € V. But then by transitivity, z < 2’ < y'=>z < ¢'. Thus since ¥’ € V we conclude
thatz € [V.

a

SECTION 5.2. STRUCTURED DOMAINS 128

We must now show that the relaxed widening operator is correct. The properties
for the list domain relaxed widening are dependent on the definition of merge so we
will first prove that merge generates safe results.

Theorem 5.7

Given elements z and y, merge(z, y) > = and merge(z, y) > y.

Proof:
The proof is by induction over the structure of z and y. Note that we only use merge

inductively in the final case when both z and y are cons cells; the other cases cover

all other base conditions.

Case 1: z = T ory = 7. Then merge(z, y) = T. Bydefinition, z,y X T so merge(z, y) >z, y.
Case 2: 7(z) # 7(y). Then merge(z, y) = T. By definition, z, y < T so merge(z, y) > z, y.

Case 3: 7(z) # List and 7(z) = v(y). Then merge(z,y) = z V;(" y- By definition of
relaxed widening, z,y <z Vr y so merge(z,y) > z,y.

Case 4: z,y = NIL. Then merge(z, y) = NIL, so trivially, merge(z, y) = z,y.
Case 5: z = NIL,y # NIL. Then merge(z, y) = T, so trivially, merge(z, y) = z, y.
Case 6: z # NIL,y = NIL. Then merge(z, y) = T, so trivially, merge(z, y) = z, y.

Case7: z = (cons a b) and y = (cons c¢ d). Then merge(z, y) is defined to be
(cons merge((car z) (car y)) merge((cdr z) (cdr y))). By definition of car and cdr,
this is equivalent to (cons merge(a, c) merge(b, d)). By induction we assume
that merge(a, ¢) = a, c and merge(b, d) > b, d so by definition of >, we can
conclude that merge(z, y) >z, y.

a

Theorem 5.8 (V% is Relaxed)
Relaxed list widening (Defn. 5.10) satisfies the conditions for relaxed widening (Defn. 3.2).

SECTION 5.2. STRUCTURED DOMAINS 129

Proof:

There are three conditions that must be satisfied for Vr to satisfy Defn. 3.2. First.
if V= XVgp Y then [V D ({X)U{Y). Second, Vz,y € V : z # y=>z|ly. Third,
for any function f and value z¢, there exists a k such that f(zi) C z; where z; =
2;_1Vr f(z,-_l) fori > 0.

By construction, the result of Vr is a sequence containing a single list that results
from a series of merge operations. By Thm. 5.7, given elements z and y, z < merge(z, y)
and y < merge(z, y). By transitivity of <, for any z;, z; < merge(...,z;,...). This im-
pliesthatforall z; € X, z; < XVep Yandforall y; € Y, y; < X Vg Y. Thus, by the
definition of C, XC XVe Y and YC X Vg Y. This implies that [V D (]X) and
W 2 ({Y¥)- Thus [V 2 (IX) UY).

The second condition for relaxed widening is trivially true since the relaxed widening
in the list abstract domain returns a sequence containing a single list.

The final condition requires that any sequence of widening operations converges. Let
d(z) be the distance of z from T with respect to some function f. We assume that
all non-list relaxed widening operators are valid. If r(z) # List, then let z* be the
bound for the number of widening operations using V};(”) before V};") converges
with respect to function f. We then define d(z) as follows:

r0 fz=T

1 if 2 = NIL
d(z) = { z=N

zF if r(2) # List

(1+d((car z))+d((cdr z)) otherwise

Observation: If z # T then d(z) > 0.

Since each widening operation is simply a sequence of merge operations, it is suffi-
cient to show that each merge(z, y) operation is either an identity operation for z or
that d(merge(z, y)) is strictly less than d(z).

The proof is by induction over the structure of z and y. Note that we only use merge
inductively in the final case when both z and y are cons cells; the other cases cover
all other base conditions.

Casel: z=Tory=T. If z = T then merge(z,y) = T and merge(z,y) =z. fz # T
then d(merge(z, y)) = 0 and d(z) > 0.

SECTION 5.2. STRUCTURED DOMAINS 130

Case 2: 7(z) # 7(y). Then merge(z,y) = T and d(merge(z,y)) = 0. Since z # T,
d(z) > 0.

Case 3: 7(z) # List and 7(2) = 7(y). Then merge(z,y) = z V;("" y. By definition of
d(z) and V5@ , either d(z Vi®) y) =d(z) - Lorz = z V5* y. Thus either

merge(z,y) = z or d(merge(z, y)) < d(z).
Case 4: z,y = NIL. Then merge(z, y) = NIL, so trivially, merge(z, y) = z.
Case 5: z = NIL,y # NIL. Then merge(z, y) = T, so trivially, d(merge(z, y)) < d(z).
Case 6: z # NIL,y = NIL. Then merge(z, y) = T, so trivially, d(merge(z, y)) < d(z).

Case7: z = (cons a b) and y = (cons ¢ d). Then merge(z, y) is defined to be
(cons merge((car z) (car y)) merge((cdr z) (cdr y))). By definition of car and cdr,
this is equivalent to (cons merge(a, c) merge(b.d)). By induction we assume
that mergye(a,c) = a or d(merge(a,c)) < d(a) and that merge(b,d) = b or
d(merge(b, d)) < d(b). If merge(a, c) = a and merge(b, d) = b then merge(z, y) =
z. In each of the other three cases, d(merge(z, y)) < d(2).

Finally, since for any function f and value =z, there is some k such that d(zp) = k, we
know that any series of merge operations will converge after no more than k£ merges.
Thus Vg converges.

a

The basic intuition behind the convergence condition is that the list that results
from merge(z, y) will never be a longer list than either of z or y. If the resulting list
is structurally the same as z and y then it will either be identical to z or there will be
some value in the list that has moved closer to its fixed point. There is a measure of
asymmetry in these statements — our definition for merge (and thus for Vg) is in fact
associative with respect to structure but since widening operators in other domains,
such as the integer interval domain, may not be associative, the overall statement of
convergence can not take advantage of the structural associativity.

5.2.2 On the Expressiveness of the List Abstract Domain

Although the List abstract domain is a very simple model, it is surprisingly expres-
sive when compared to other approaches. In particular, we will compare this ap-
proach to the accepted “state of the art” in off-line structural BTA — Launchbury’s

SECTION 5.2. STRUCTURED DOMAINS 131

uniform projections approach [54]. The basic intuition for Launchbury’s approach is
to create static and dynamic projections of programs; each projection encapsulates
the respective aspects of the original program.

ID
TN
STRUCT(ILEFT) STRUCT(RIGHT)

~.

STRUCT

ABS

Figure 5.2.1: BTA Lattice for Structural Projection

One of the standard examples that Launchbury discusses is an association list
program. Translated to a Scheme-like syntax, the program is as follows:
(define lookup (lambda (list value)
(if (null? list)
fail
(if (equal? (car list) value)

value
(lookup (cdr list) value))

)))

When the uniform projection approach is applied, the possible binding time annota-
tions are the values in the lattice shown in Figure 5.2.1. The ABS value in the lattice
means that the entire structure is “abstract”, or dynamic. The STRUCT values means
that the structure is known but that neither the left or right components of the list
elements are known. The STRUCT (LEFT) and STRUCT (RIGHT) values mean that the
structure is known and that, respectively, the left or right component of each element
is known. The ID value means that the entire structure is known.

There are a few important differences in expressivity between this model and the
abstract List domain that we have defined. First, the projection model is a uniform

SECTION 5.2. STRUCTURED DOMAINS 132

model which means that if any list element is given a particular annotation, then
all succeeding elements must have the same annotation. Such a model is not able
to express changes in value annotations throughout the list. For example, given a
list such as ((*a* 1) (*b" 2) ("c* T)), the annotation for the list would be
STRUCT(LEFT), even though only a single value in the list is unknown. The sec-
ond issue is that the effective model that a projections approach builds is based on
knowledge about fixed structural components. This structural knowledge is discov-
erable in Launchbury’s work because the source language is a derivative of ML [64]
and as such, has explicit constructors used to build structures. Structures them-
selves in ML are structurally uniform, making it reasonable to apply a projections
based approach. It is less clear how accurate a projections-based model could be in a
more heterogeneous language such as Scheme. Additionally, languages such as C, in
which side-effects are common, would not lend themselves to this type of model since
a single assignment to an otherwise fully static structure would cause the loss of a
great deal of static information. Part of the problem is inherent to using off-line ap-
proaches, but requiring full uniformity is likely to cause over-generalization in many
situations.

In comparison, the on-line approach with the proposed List abstract domain is
both a simpler model and is able to exploit additional static information. For example,
consider the association list lookup function with an association list of ((*a* 1)
(T 2) (*c* T)) and the requests (lookup list "a"), (lookup list *b*),
(lookup list *c*). Using projections, none of these requests would be special-
ized; all searches would occur at run-time. Adopting the on-line approach with the
List abstract model, the residual for the first search would be the constant 1. The
lookup residual for the second search would be as follows:

(lambda (list)

((lambda (list)
(if (equal? (car list) "b") 2 fail
))
(cdr list)

))
The outer lambda is the residual for checking element "a* — notice that this has
removed the check for element "a*, leaving only the call for checking the rest of
the list (i.e. the (cdr list)). The inner lambda is the residual for checking if the
association list name for this element is "b*. If there is a match, we return the

SECTION 5.2. STRUCTURED DOMAINS 133

inlined constant 2, otherwise we check the rest of the list. The result of “checking the
rest of the list” is fail since the system is able to guarantee that "b* does not occur
in the rest of the list.

Now consider the final example — (lookup list “c®). In this example, the
system makes the same decisions regarding the first two elements in the association
list, but is able to determine that the result of searching the rest of the list is known
to produce the constant 3 rather than fail. The residual is as follows:

(lambda (list)
(
(lambda (list)
(if (equal? (car list) "b*)
2
3
))
(cdr list)
y)

If the association list insertion routine guaranteed unique instances of identifiers in
the list, we would like to have the check of the second element removed and simply
generate the constant 3. However, unless there were explicit uniqueness constraints
provided to the interpreter, such a result is unlikely to be found by any system.

It is possible for a residual to contain a general call to the original lockup func-
tion, but this only occurs when the remaining part of the list is completely unknown.
This is the point at which the List abstraction follows the same generalization as
the uniform projections approach — once a particular cons cell has T in its cdr, we
uniformly model the rest of the list as fully dynamic. Although it may be possible
to develop consistent models that are non-uniform in this regard, that is a topic for
future research.

Chapter 6

Implementation Issues

6.1 Design Overview

6.1.1 The Language

We built a prototype implementation of our system for a small subset of Scheme [19].
Scheme is an untyped functional programming language similar to Lisp [78]. The
subset of the language that we model includes global and local scoping, 1et bindings,
function definition (using either define or lambda style definitions), anonymous
functions, list support (cons, car, cdr, etc.), and the imperative features set!,
set-car!, and set-cdr!. We do not deal with features such as arrays, association
lists, macros, and iterative control flow. The omitted features do not introduce new
conceptual problems, and were omitted due to time constraints.

Our interpreter is a Scheme-to-Scheme transformation system. Due to the nature
of the system we were building, we did make one significant change to the normal se-
mantics of Scheme programs. Normally, when a Scheme interpreter evaluates an
undefined variable, the interpreter generates an error message and terminates the
calculation whereas in our interpreter, any undefined variable is considered as hav-
ing the unknown value, T. This change allows for completely automatic evaluation
of expressions within the interpreter. For example, assume that the main driver for
a Scheme program is a function called Main. Further, assume that Main takes as its
argument a file-stream value from which it does input and output. To partially eval-
uate the entire program, Main is simply applied to a variable that is not bound in the

134

SECTION 6.1. DESIGN OVERVIEW 135

global scope. The partial evaluator then interprets the entire program without know-
ing anything about the run-time input to the program and produces an appropriate
residual.

This approach does have some implications about the state of the world at the
time that the partial evaluation is performed. Any state in the interpreter that ex-
ists when the partial evaluation begins could be incorporated in the residual that
is produced. This could be dangerous in general but is easy to fix by providing a
“compiler” style interface to the evaluator that ensures that all initial run-time state
variables (such as default file-stream variables) are uninitialized before beginning
the interpretation. We have not yet implemented such an interface to the system.

The implementation itself was written in ML [64] using Standard ML of New Jer-
sey (SML-NJ) Version 0.93. This choice was made early in the system development
and allowed for an implementation decomposition that corresponds to the abstract
decomposition presented in earlier chapters. This choice also incurred performance
penalties that could possibly have been alleviated by adopting the CAML implemen-
tation of ML, but as the implementation was a proof-of-concept prototype only, the
performance issue was not deemed to be worth the effort needed to port the system.

6.1.2 Structural Decomposition

The implementation separates the details of the abstract domains and the actual in-
terpretation algorithm. For each natural concrete domain the system requires the
definition of a corresponding abstract domain. Each domain in the system is built
from an ML structure; the interpreter provides a set of required signatures, and
functors are used to compose appropriate structures. In terms of other languages,
structures (roughly) correspond to packages or modules in Ada [80] or Modula-
3 (37] while functors (roughly) correspond to generics in those languages or tem-
plates in C++ [79]. An ML signature provides the interface requirements that a
structure is required to satisfy; the polymorphic types in ML allow these signa-
tures to be very general.

S-expressions are the fundamental structure describing entities in a Scheme pro-
gram. An S-expression is composed of either an atom or a pair of S-expressions. In
our system, the values of S-expressions are composed of abstract values; see Fig-
ure 6.1.1 for a diagram of the basic design of the interface between the interpreter

SECTION 6.1. DESIGN OVERVIEW 136

Abstract List Domain Structure

Abstract Integer Domain Structure Abstract Boolean Domain Structure

'
S-Expression Functor

[Partial EvaluatorJ

Figure 6.1.1: Implementation Structure

and the abstract domain definitions. The S-expression functor defines the main S-
expression datatype in terms of the abstract definitions defined by the given abstract
structures where each of the abstract structures must match a corresponding sig-
nature defined by the interpreter. The signatures for the abstract domains are de-
fined in terms of the lifted and topped natural concrete domains as described in Sec-
tion 3.3.1. All domain constraints are defined in terms of a global datatype named
lattice. The lattice datatype is defined as:

datatype a lattice = TOP | BOT | ELEM of a

where a is typed as “ 'a” in the actual code. This type means that we can create lat-
tices from other types; the constructor ELEM takes a value of any type and returns an
element from the corresponding lattice type. This constructor does not guarantee for-
mal lattice behaviour of the resulting elements; it is the programmers responsibility
to ensure that the induced @ lattice datatype is in fact a lattice.

Before discussing more details of the structure, we should clarify the status of the
abstract list domain structure in our implementation. In the prototype, we integrated
the abstract list operations directly into the interpreter. This was primarily due to
the manner in which the code evolved and does not imply that there are fundamental
difficulties in the conceptual decomposition. The dashed line in the arrow from this
abstract domain to the interpreter indicates that this is a conceptual organization,

SECTION 6.1. DESIGN OVERVIEW 137

not an actual organization in the code.

Interfaces to Abstract Domains

Given the basic lattice datatype, we can define the interfaces for our abstract types.
The boolean abstract domain signature is defined as:

signature BOOLBASETYPE = sig
type domaintype;

val alpha : bool lattice -> domaintype lattice:;
val gamma : domaintype lattice -> bool lattice;
val equal : domaintype lattice * domaintype lattice

-> bool lattice;
val pwided : domaintype lattice * domaintype lattice
-> domaintype lattice;
val rwided : domaintype lattice * domaintype lattice
~-> domaintype lattice;
val narrow : domaintype lattice * domaintype lattice
-> domaintype lattice;
val print : domaintype lattice -> unit
end;
The definition for alpha should be read as “alpha is a function taking a bool
lattice! argument and returning a domaintype lattice value”. The definition
for equal should be read as “equal is a function taking a 2-tuple of domaintype
lattice values and returning a bool lattice value”.

The alpha and gamma functions directly correspond to the abstraction and con-
cretization functions defined in Section 3.3.1 while the pwided and rwided functions
correspond to the precise and relaxed widening operators. The purpose of the narrow
operation will be discussed when we discuss “splitting” scopes in Section 6.2. The
alpha function takes a value in the concrete domain for boolean and produces some-
thing that is a domaintype lattice. The signature guarantees that domaintype
is in fact a type, but that is the only restriction in the signature. This permits the
definition of arbitrary abstract representations (subject to the semantic constraints
that cannot be checked by the type system).

'Bybool lattice we mean the lattice representing the concrete domain for boolean values, we do
not mean a “boolean lattice” as defined in lattice theory.

SECTION 6.1. DESIGN OVERVIEW 138

The signature “cheats” a bit in the definition of the equal function; equal is
required to return a bool lattice value rather than an abstract domaintype
lattice value. This choice in the interface was made purely for convenience in
the interpreter — there would be no semantic difference in having a domaintype
lattice value returned and having the interpreter apply gamma after equal every
time that equal was applied. The signature also requires that there be an output
routine for the abstract values (primarily for debugging purposes).

Notice that the signature does not require abstract definitions for the normal
boolean operations such as and, or, not, etc. These operations do not need direct
support in the abstract domain as they are not primitive in the interpreter; they are
defined by Scheme code that only relies on conditional expressions and equal over
boolean values.

The signature for abstract integer values is somewhat more complex due to the
number of primitive integer operations defined in the system. We will omit the type
signatures of each operation for clarity.

signature INTBASETYPE = sig
type domaintype:;
val alpha :
val gamma :

val distinct :
val equiv

val equal

val pwided :
val rwided :
val narrow :

val muld :
val subd : ...
val addd : ...
val negd :
val led :
val leqd :

val split_range
val print :
end;

SECTION 6.1. DESIGN OVERVIEW 139

In this signature, we require functions for the primitive operations, and introduce
distinct and equiv functions in addition to the equal function. The equal func-
tion determines whether two domain values represent the same set of potential val-
ues. The equiv function determines whether two domain values are guaranteed to
represent the same value at run-time. Using the integer interval sets, this guarantee
can only be made when both domain values consist of the same single integer. Con-
sider the overlapping intervals, {4..5] and [5..6] — we cannot guarantee that
the actual run-time value will be 5 in each case. The distinct function determines
whether two values are guaranteed to represent different run-time values. This con-
dition can be satisfied for integer interval sets if we know that there is no overlap
in the two sets of intervals. For example, using the integer intervals, the interval
[4..4]) and [5..6] are distinct, but [4..5] and [5..6] are not. The pwided and
rwided operations are the widening operations for the domain; the narrow operation
will be discussed when we discuss “splitting” scopes in Section 6.2.

The next set of functions represent the abstract versions of each primitive opera-
tor. Each function takes as arguments and returns abstract domain values. In this
case, we require support for multiplication, subtraction, addition, negation, less-than
comparison and less-than-or-equal comparison. Note that we do not support division
as a primitive operation since we are not supported floating point numbers in the
prototype.

The split_range function takes a conditional expression operator and two val-
ues and returns an abstract value that represents the “part” of the first value that
satisfies the conditional. So, using integer interval sets, giving split.range the
conditional “less-than” and the interval sets {[1..5), [10..15]} and {[6..91}
would produce the result {[1. .5]}. See Section 6.2 for details on the issues involved
with splitting values.

6.1.3 Changing Abstract Domains

Due to the structure of the system, we have found that changing abstract domains
is a fairly straightforward exercise. For example, we were able to build a “normal”
Scheme interpreter in our system simply by creating a set of abstract domains that
were identity mappings. The only difference between the semantics of the resulting
interpreter and a “normal” semantics is that undefined values are treated as T rather

SECTION 6.2. SplitTING SCOPES 140

than causing errors.

6.2 Splitting Scopes

Recall that in Section 3.5.3 we assumed the existence of a splitting function. The
purpose of a splitting function for a particular domain is to take advantage of value
constraints that can be inferred from conditional expressions. For example, given an
expression such as (if (> x 5) (£ x) (g x)) we would like to take advantage
of the information that the value of x during the evaluation of £ must be greater than
5 and that the value of x must be less than or equal to 5 during the evaluation of g.

There are two main issues involved in building a correct set of bindings given a
conditional and an old set of bindings. First, we must be able to split an abstract
value into a “true” and “false” partition given some simple comparison involving the
value. Second, we must be able to merge sets of bindings that are generated by
comparison operations joined by boolean connectives.

Value partitioning is performed by a combination of abstract domain operations
and interpreter transformations. Each abstract domain interface contains a split_range
function. This function takes a comparison operation identification and a pair of ab-
stract values and returns an abstract value consisting of at least the partition of
the first abstract value that makes the condition true. For example, a (stylized) call
to split_range for integer intervals might be (split.range *<* {[1..51} 3).
Hopefully the result of this call would be {[1..2]}; this is the case in the implemen-
tation. Note however, that another valid partition would be {[1..5]} since that range
contains at least the values {[1..2]}. The value {1} would not be a valid partition as
it does not contain the value {2}.

The definition of split_range does not require the abstract domain to know any-
thing about arbitrary combinations of conditions, the only knowledge required of the
abstract domain is knowledge about comparison operations on the abstract values.
This isn’t really an additional “knowledge” requirement on the abstract domain, but
is simply an requirement that the interpreter must be able to extract more infor-
mation than a boolean regarding how the abstract domain evaluates conditions on
abstract values. Note that it is always safe for split_range to be implemented as
an identity operation; such an implementation simply sacrifices overall accuracy.

SECTION 6.2. SplitTING SCOPES 141

Dealing with the composition of conditions is the role of the interpreter. When the
interpreter encounters a condition such as (< x y), it uses the simple split_range
function to construct the appropriate set of bindings. For the (< x y) condition,
the interpreter needs to build a “true” scope containing two bindings. One of the
“true” bindings relates x to the result of (split.range *<* (find x) (find y))
where (£find x) returns the abstract value for x in the current set of bindings. The
second “true” binding needs to calculate the binding for y. The interpreter knows
about the semantics of comparison operations and so can perform a simple trans-
formation on the condition in order to make use of split_range to calculate the
binding. The correct binding for y is calculated by (split.range *>* (find y)
(find x)). The “false” bindings are calculated in a similar way; the interpreter
inverts the conditional expression and calculates the bindings. The interpreter op-
timizes the binding calculations such that only comparisons that create binding in-
formation are generated. For example, in the comparison (< 5 x) we only calculate
the “true” binding for x using (split_range *">" (find x) 5) since literal values
never have bindings. It is important to observe the “division of labour” here — the ab-
stract domain is only responsible for the semantics of comparisons on abstract values,
the interpreter is responsible for the semantics of relationships between operators.

The final aspect of performing a general scope split is to coalesce the bindings
generated from a composition of comparisons. For example, in order to correctly
calculate bindings for the condition (or (< x y) (< x 10)) we need to merge the
bindings from each of the conditions. In Scheme, we need to worry about the and
and or operations (not operations are handled by expression transformation). If we
have an or in an expression, the overall binding for an identifier is simply any value
represented in either binding for the identifier generated by the two subexpressions.
This calculation is exactly the behaviour of the precise widening operation. Thus
whenever the interpreter encounters an or during a split, it simply evaluates each
subexpression and then generates bindings for each identifier by precisely widening
the bindings for the identifier generated by any subexpression. It may be the case
that a particular identifier only occurs in one clause; in such cases no widening occurs
(or alternatively, the binding is widening by L).

Splitting a conjunctive expression involves binding an identifier to the set of val-
ues represented in all of the subexpressions. This type of abstract value merging
has not been used elsewhere; the narrow operation is present in each interface to

SECTION 6.3. IMPROVING RESIDUALS 142

provide this functionality. The requirement for a narrow operation is that the value
generated by narrowing two abstract values contains at least the values that are rep-
resented in both original abstract values. Thus, as with other operations, it is safe to
choose an identity operation for narrow, although we would normally expect narrow
to be equivalent to intersection for set valued abstract domains.

We know of no other partial evaluation algorithm that attempts to refine abstract
value bindings across branches of conditional statements. Normally, the reason for
this is that fixed-height lattices are used to represent primitive types and that no
meaningful information could be represented by a such a splitting operation.

6.3 Improving Residuals

There are a number of issues related to producing “good” residuals that are not ad-
dressed in the formal algorithm presented in Chapter 3. Although these factors do
not fundamentally effect the correctness of the residuals, they do have a direct im-
pact on the applied usefulness of the techniques. Many of these factors are related;
one needs to evaluate aspects of all of them in order to produce high-quality residual
programs. The prototype implementation makes simplistic choices in most cases; the
particular choices made will be discussed for each topic.

There are two concepts that are referenced several times in the following discus-
sion: the idea of a function closure and the idea of a continuation. The basic idea of a
function closure is that a closure encapsulates all of the dependencies that a function
has with its environment. For example, if a particular variable is free within a par-
ticular function but is defined by an enclosing function, that variable is part of the
closure of the inner function.

The idea of a continuation is a bit more unusual. A continuation is a function that
captures the “rest of the computation”. For example, consider the following simple
expression:

(lambda (x) (+ 4 x))
The continuations form of the expression is as follows:

(lambda (k x) (k (+ 4 x)))
In this case, the identifier k is the continuation for the function; when the function is
applied, the remainder of the computation is captured by k.

SECTION 6.3. IMPROVING RESIDUALS 143

Continuations make control flow dependencies explicit — if the result of a com-
putation is used in a subsequent computation, the subsequent computation will exist
as part of the continuation for some evaluation of the first computation.

6.3.1 Memoization

Recall that memoization was introduced in Section 2.5. The basic idea of memo-
ization is to create sets of equivalence classes for functions where each equivalence
class maps between some function closure and a particular residual. Given a partic-
ular function f with a closure ¢, before partially evaluating f, the algorithm must
determine if there is an existing residual f’ with closure ¢/ that can be used. There
are two basic issues determining whether f’ can and should be chosen. The first is-
sue is the relationship between the information in the closures c and ¢’. The second
issue is how much of the information in the closure of ¢ was used in determining the
residual, or in other words, how much useless information there isin ¢'.

The normal requirement for choosing to reuse a particular memoized function,
f', for a possible specialization of f, is that the closure of f/ must be identical to the
closure for f. This rule is not the only safe choice; our algorithm guarantees that
given any closure (environment) below the memoized closure, the result of the mem-
oized function will be safe to use. This means that we could define the specialization
rule such that we only specialize if there is no current specialization with a closure
above the current closure. Requiring closure equality means that any difference in
the closures of f and f’ disqualifies f’ from consideration, even if the difference in the
closures does not have any bearing on the result of the specialization. For example,
consider a function like sin. The result of sin(z) is between 1 and -1 independent of
the value of z. Using closure equality, if sin is specialized with an z value that is
bounded to the range 0 to 360 (degrees) and is then specialized again with a value in
the range 360 to 720, the first specialization would not be reused even though there
is no difference in the range of potential values. Alternatively, choosing to not spe-
cialize when the closure for f is below the closure for some f’ can also be a problem.
For example, if we encounter a call to sin with the parameter having the range 0 to
90, we would not create a specialization if there was an existing specialization of sin
for the range 0 to 360. In general, using the “below” rule, we would lose many special-
ization opportunities if we encounter partially static function calls before fully static
function calls. Making this entire issue even more difficult is that it is not always

SECTION 6.3. IMPROVING RESIDUALS 144

optimal to unfold or inline computations at every opportunity; expanding the code
through inlining by some additional factor does not guarantee faster code and may
in fact increase running times due to cache effects, memory utilization, and other

factors.

The closure “equality” choice and the closure “below” choice form the boundaries
of an entire range of rules. For example, we could define some distance metric and
choose to reuse an existing specialization if it was within a particular distance of the
current closure. Another alternative would be to always specialize if the new closure
contains values that have a different value when concretized into the concrete do-
main (recall that T represents all values in the concrete domain that are not directly
representable in the natural concrete domain). If a value in the new closure has a dif-
ferent concrete domain value then there is likely to be some “real” difference that we
can take advantage of during the specialization phase. Finally, we could include the
set of values that were actually used during the specialization phase as part of the
memoization. The choice about whether to select a possible residual could then be re-
stricted to those bindings that actually influenced the specialization of the memoized
function.

Any potential solution for this problem runs the risk of either over-specialization
or over-generalization. Off-line partial evaluation generally resolves the problem by
allowing users to intervene and directly change the BTA annotations. Unfortunately,
this approach becomes an “all-or-nothing” choice; either all of the effected code will
be inlined or none or it will since BTA annotations don't reflect the idea of limited
inlining. Andersen (7] briefly discusses the idea of k-limited annotations that allow
the specializer to restrict recursive inlinings to & levels. Andersen restricts 2 to 1 in
his thesis and has not investigated ways of automating the choice of .. Even with
this approach however, the choice of 4 is fixed on a global basis; it seems clear that
effective partial evaluation should dynamically vary the amount of inlining during
specialization.

Ruf defines a domain of specialization [70] or DOS for a particular residual to be
the set of values for which the residual and the original function have the same be-
haviour. It is important to differentiate this statement from a soundness statement;
this is a broader statement than the requirement that the residual and the original
program have the same behaviour on the abstract values used to create the resid-
ual. In general, the domain of specialization for a residual will be a superset of the

SECTION 6.3. IMPROVING RESIDUALS 145

values used for specialization. Ruf then characterizes optimal re-use as choosing to
re-use a function if the concrete values represented by a particular abstract value
for the argument of the new call are a subset of the DOS of the memoized function
and if it is not the case that the DOS of the new residual is a subset of the DOS of
the existing residual. Using our definition of below, this means that the argument
value is below the corresponding value of the existing residual and that the DOS of
the new residual is not below the old residual. The intuition is that the DOS char-
acterizes the properties (or values) of the abstract argument value that are actually
“used” during the specialization. Casting this as a behavioural statement, Ruf’s op-
timal re-use statement requires that the new residual has the same behaviour over
its set of arguments as the memoized residual. This is somewhat similar in flavour
to a contravariant typing statement.

As Ruf observes, an exact DOS is undecidable but can be approximated. Ruf
introduces an additional calculation to estimate the DOS as part of his strategy. The
basic idea of calculating the DOS is to define a second evaluation that is performed
in parallel with the normal evaluation. At each step the DOS calculation determines
the most general value that satisfies the current calculation. As calculations use
more information about a particular set of values, the DOS is lowered in the lattice.
Ruf’s DOS calculation is eager and as such, can be overly conservative in certain
instances. For example, if a parameter is involved in any let-bound calculation that
subsequently becomes dead code, the 1et-bound calculation can change the DOS.

Implementing an equivalent DOS calculation in our system would be reasonably
straightforward. Essentially, we would only need to define DOS values for primitive
operations within each abstract domain and propagate DOS bindings through the
interpreter. As this would be a minor change to our domain requirements, imple-
menting the Ruf’s algorithm for selecting residuals would be straightforward.

The DOS approach has much of the same range of choice as the “closure below”
choice discussed earlier. The accuracy of the DOS approach is directly related to the
accuracy of the estimate for the abstract values actually used in the specialization.
The modularity of our domain requirements makes this factor a reasonable parame-
ter in the design of the abstract domain; if fewer residuals are desired, simply return
more specific values than necessary as the DOS estimates from the primitives.

The prototype system adopts the simple closure equality strategy. This implies
that we can in fact generate duplicate functions within a program residual. The

SECTION 6.3. IMPROVING RESIDUALS 146

immediate plans are to change the algorithm in two ways. The first change will be
to compare a resulting residual to the memoized residuals when a specialization is
actually performed. If the residuals are equivalent then we will not introduce the
new memoization entry but rather reuse the existing memoization. This means that
we would waste the time spent evaluating the function, but would decrease resulting
code size. The second goal is to implement a domain of specialization technique for

memoization choices.

6.3.2 Code Duplication

The possibility of creating duplicate function instances is not the only problem related
to code duplication. In general, inlining residual computations can cause computa-
tions to be duplicated. Consider the following example (modified from Jones [46}):

(define £
(lambda (n)
(if (= n 0)
1
(let ((y (£ (- n 1))))

(+ vy v)
))))
The let binding captures the value of the recursive call and returns the doubled
value. If this function were blindly unfolded for an unknown n, the following function
would result:
(define £
(lambda (n)
(if (= n 0)
1
(+ (£ (-=n 1)) (£ (- n 1)))
)))
In this case, replacing the identifier y with its residual computation is a poor choice;
the resulting algorithm requires exponential time compared to the original linear
time algorithm.
The basic rule for both an on-line and off-line evaluator is the same: do not permit
a function call to be duplicated in the same branch of code. Off-line specializers typi-
cally adopt a two-stage specialization strategy (Jones [46]) to avoid this problem. In

SECTION 6.3. IMPROVING RESIDUALS 147

a two-stage specialization process, a static annotation means that a function may be
unfolded rather than that it definitely will be specialized. The determination about
whether to actually unfold is made not at BTA time, but at specialization time. Bind-
ings for identifiers are called “duplicable” by Jones if there exists a path through the
related expression in which the identifier occurs more than once. The specialization
decision is then made by checking whether the duplicable identifiers are constants or
identifiers. All non-trivial bindings effectively transform annotations to dynamic for
that particular specialization.

The on-line decision is similar in the sense that the determination about dupli-
cable identifiers must occur and that a pariicular in-lining decision depends on the
residual for duplicable identifiers. The main difference is that in the on-line approach
this fits naturally with the overall evaluation algorithm. The on-line specializer al-
ready considers changes to annotations, while in the off-line approach this type of
decision is a fundamental shift in approach and forces the off-line algorithms into
adopting a partially on-line approach.

The prototype system implements conditional inlining and unfolding based on
whether identifiers are duplicable. The analysis consists of performing a count along
each path through the expression (an operation that is strictly local to the body of the
function or let-expression) and determining if each identifier occurs more than once.
This count is performed in the same way for both let-bound identifiers and formal
function parameters. When the binding for each identifier takes place (i.e. at the
beginning of a function evaluation and at the beginning of a 1et statement) the iden-
tifier is added to a list of unsafe identifiers if it is both duplicable and a non-trivial
computation. In the prototype implementation, non-trivial computations are a bit
more general than simply constants or identifiers — the prototype allows the dupli-
cation of any expression that does not involve a non-primitive function application or
a potential side-effect (see Section 6.3.3). Finally, when an identifier is encountered,
if it is not on the list of unsafe identifiers, it is replaced with its residual, otherwise it
is not replaced.

6.3.3 Computations with Side-effects

Impure computations are a substantial problem in any partial evaluation algorithm.
In general, it may be difficult to determine whether a particular identifier has an

SECTION 6.3. IMPROVING RESIDUALS 148

alias; in fact, in languages such as C in which aliases can be created at will, exact
alias analysis is undecidable. There are two basic approaches that can be taken: first,
one can restrict the model so that all aliased store either has known alias relation-
ships or is treated as dynamic. This approach is adopted by Nirkhe and Pugh in their
partial evaluator for hard real-time systems (discussed in Section 2.6.3). The second
main option is to track sets of alias relationships. Sets of alias relationships provide
essentially the same information as a “may-alias” analysis [53] [29]. Andersen (7]
has implemented a simple form of pointer alias analysis in his partial evaluator for
C. His analysis does not track conditional alias relationships but basically finds the
union of all possible alias for each aliasing variable within functional units. Every
model has problems with handling truly unknown aliasing relationships — if the set
of potential aliases becomes unknown, that destroys nearly any further specialization
since every memory location must become unknown.

An additional problem is related to the issue of code duplication in the previous
section; it is generally not safe to duplicate any computation that involves a side-
effect. As mentioned in the previous section, the prototype evaluator handles this
issue by not duplicating any code that involves an imperative feature. While this is
a reasonable choice in languages in which the use of imperative features is rare, it
clearly is not acceptable in languages such as C.

The final issue relates to merging of run-time state after conditional expressions.
Consider the following expression (assume c is dynamic):
(if ¢
(begin
(set! x 5) x)
(begin
(set! x 7) x)
}

Although we can replace the two references to x, we cannot remove the assignment
statements. Consider the following incorrect residual:

(if ¢ 5 7)

This expression has the same value result as the original expression for all input. It
is not a correct residual however, since the state of the system after this expression
is not going to match the state of the original expression for all input. The standard
approach is to insert “explicators” [61] in the residual code. Explicators are simply

SECTION 6.4. OTHER LANGUAGE ISSUES 149

assignments that guarantee that the state of each branch matches the abstract state
at the end of the computation. In off-line systems this is a larger issue since this
implies creating a run-time assignment based on compile-time values. This resem-
bles the partially on-line decisions made for potential code duplications as discussed
in Section 6.3.2. Note that in general there may be a large number of assignment
statements replaced by a single explicator. For example, if there was a (set! x
9) following the use of x in the first branch of the example, the (set! x 9) would
remain as the explicator, but the (set! x 5) could be removed entirely.

In off-line systems explicators only need to be added at the end of dynamic con-
ditionals when the value abstractions are not guaranteed to generate the same run-
time value. In the proposed on-line system there is an additional case: if an as-
signment uses a value for which the concrete domain representation is not a definite
value, then the run-time behaviour is unknown and the assignment must remain in
the residual. All other state changes that involve definite values can be removed since
they are unconditional along that evaluation path. Note that comparable assignment
statements in an off-line system would also remain since such statements would nec-
essarily be annotated as dynamic due to the fact that the compile-time state of the
variable does not have a single value. The on-line system has an integrated decision
process rather than the partially on-line approach used by the off-line approaches.

Imperative features are not the main focus of our work and as such, the proto-
type implementation avoids most of these issues by always leaving imperative code
in residuals. In other words, even if all imperative statements could safely run at
compile-time, our current system will leave them in the residual. The system will
correctly use values that are created by imperative features, but will not generate
minimal residuals in code with imperative features. Future versions will adopt the
abstract store model and set-based alias analysis; such a model is consistent with the
overall approach adopted in the abstract domains.

6.4 Other Language Issues
6.4.1 Arity Raising

The general term arity raising refers to transformations that increase the number
of parameters to functions. In off-line partial evaluation, arity raising refers to the

SECTION 6.4. OTHER LANGUAGE ISSUES 150

process of separating the static and dynamic portions of a partially static structured
type into several parameters. Arity raising has similarities to Launchbury’s projec-
tions based approach that was discussed in Section 5.2.2. The static projection of a
function that takes a partially static structural parameter is parameterized by the
static portion of the structure while the dynamic projection is parameterized by the
dynamic portion of the structure. Effectively, this is raising the overall arity of the
function even though the arity of each projection may remain the same.

Arity raising in the traditional off-line sense is not directly applicable in an on-
line approach as no actual structural decomposition is necessary. There is however,
a different view of arity raising that can be useful in the on-line approach. It is
reasonable to view the closure of a function as an implicit parameter, or in fact, as a
series of implicit parameters. If all functions were “flattened” such that every closure
variable was passed in an explicit parameter, this would permit finer granularity
decisions regarding the effective annotation of the closure. In [60], Mason defines a
continuations based intermediate language that performs such a flattening as one
stage of the compilation process.

There are two major benefits for performing arity raising by flattening within
an on-line partial evaluator. First, as already mentioned, such a transformation
would allow the evaluator to make finer-grained decisions regarding the equivalence
of function memoizations. Second, flattening would more easily allow for the identi-
fication of relationships between bindings within function closures since these rela-
tionships would be explicitly present within the call graph.

The prototype implementation does not perform any form of flattening. As noted,
structural flattening provides no benefit to the on-line algorithm with the structural
domain model presented in Section 5.2. Although closure flattening may provide
some benefits, this remains as future work, possible by using Mason’s flattened in-
termediate form [60] as the basis.

6.4.2 Complexity of Semantics

The conceptual complexity of building a partial evaluation framework for a given
language is strongly related to the conceptual complexity and semantic definition of
the source language. Writing a partial evaluator is more complex than writing a

SECTION 6.4. OTHER LANGUAGE ISSUES 151

normal interpreter; as mentioned in Section 6.1.3 a standard semantics interpreter
is a special case of the partial evaluation framework that we have defined.

Consider applying our partial evaluation technique to languages such as C. The
memory model in C is closely related to real machine memory layout; there are re-
quirements on the behaviour of pointer comparisons, the layout of structures, etc.
The semantics of these operations would have to modeled within the interpreter in
order to correctly calculate the value of expressions. Unfortunately the semantics of
some operations within C are not completely defined. For example, ANSI C [1] re-
quires that type long be able to represent at least the integer values representable
by the type int. A compiler conforms to the standard if it chooses to define the
two types as structurally identical; a C-to-C partial evaluator could only choose to
transform based on the requirements in the standard. If a C-to-C partial evalua-
tor produced C code based on the assumption that long and int were structurally
equivalent, the produced C code no longer be ANSI C conformant if the assumption
was exercised within the residual.

As discussed in Section 2.6.2, Andersen’s approach to these issues is to produce
generating extensions [5] [6] and then to have these generating extensions produce
the actual code that would then be compiled. Meyer {61] performs a deeper interpre-
tation but does so in a restricted language with a much simpler semantics.

Although both off-line and on-line algorithms must implement a safe approxi-
mation to language semantics, the requirement for off-line evaluators is somewhat
weaker than for on-line algorithms. Off-line BTA is a fixed-point calculation that de-
pends only on a simple abstract semantics of the source language involving static and
dynamic annotations. Although in reality, accurate off-line BTA relies on a reason-
able model for alias relationships, such an approach can avoid implementing a safe
abstract semantics for the entire language. On-line evaluators must implement safe
semantics for the entire language. Although neither off-line nor on-line approaches
need to be “complete” in the sense that any aspect can be treated as unknown and
will cause a safe approximation, the overall effect of choosing unknown can be to
greatly reduce opportunities for specialization.

SECTION 6.4. OTHER LANGUAGE ISSUES 152

6.4.3 Separate Compilation

Partial evaluators generally assume that the entire program is available at partial
evaluation time. This assumption relates to both binding-time analysis issues and
specialization. Although for convenience the discussion will deal with the issues sep-
arately (adopting an off-line bias), the concerns apply equally to on-line systems.

First consider binding-time analysis. The basic goal of binding-time analysis is
to safely annotate program variables and function calls as being either static or dy-
namic. In terms of variables, static means that all possible values for the variable are
available at compile-time. If a language does not support any form of side-effects, the
binding time analysis can easily be performed separately as long as the BTA assumes
that any value returning from an separate module is dynamic. A more accurate es-
timate can be made by adopting Andersen’s approach and introducing binding-time
signatures [7] for each module. Such signatures provide other modules with infor-
mation about what annotations have been made. Unfortunately, in the presence of
mutually recursive modules, such an approximation is going to be extremely con-
servative unless the mutually recursive modules are analyzed at the same time or
provide explicit symbolic information regarding the external dependencies if a dy-
namic annotation is made solely due to an external module. Andersen’s approach
follows the independent analysis route, assuming that all external module values
are dynamic. Andersen did not propose any form of symbolic dependency analysis.
No one else has attempted to address languages with explicit modules and completely
separate binding-time analysis.

In addition to the relatively simple problem of dealing with a pure language, in
general a system may need to handle languages that permit cross module side-effects.
As one extreme, consider C “modules”. A C program is permitted to cause side-effects
in any externally visible variable. In addition, if any of these externally visible vari-
ables are pointer types, then without a fairly accurate value analysis, a BTA would
be forced to assume that any variable that had its address captured could become
dynamic after any function call outside the current compilation unit. Ever achiev-
ing reasonable binding-time results would be unlikely in such a model. Languages
such as Ada [80] are somewhat easier to deal with since the package interfaces con-
tain more definitive information and reference coercions are much more tightly con-
strained than in C. Even with the better interface however, a BTA would be forced to
treat as dynamic any input-output parameters or exported non-constant variables.

SECTION 6.4. OTHER LANGUAGE ISSUES 153

The second aspect within partial evaluation, namely specialization, is even more
problematic in such environments. By definition, a specialization must be able to
determine the actual values for variables that are static within the evaluation. In
order to determine static values that result from interactions with external modules,
the specializer will have to be able to perform evaluations of the external module.
It does not seem possible to resolve this issue without either abandoning separate
compilation or being satisfied with purely local specializations. It is likely that to be
highly effective, the application of partial evaluation techniques in general environ-
ments would need to occur as post-link optimizations. Early linking as suggested by
Mason [60] may help to alleviate such problems.

6.4.4 Exceptions

Exceptions permit run-time branching decisions to be made. From the perspective
of a partial evaluator, exceptions have similar characteristics to both continuations
and first-class functions. Raising an exception requires that the current evaluation
be terminated in favour of an expression that performs some recovery action. Raising
an exception is similar to calling an alternate continuation that includes the recovery
evaluation before continuing the computation at the appropriate point. Determining
the effective binding-time annotations when exceptions can occur involves consider-
ing all possible control flow paths from a given point raising the exception to any
point that might catch the exception. This is similar to determining the set of call
sites for a first-class function and generally requires some amount of value analysis
in order to preserve accuracy.

Fortunately, most exception handlers are “well-behaved” in the sense that they
either restore the state of (part of) the computation, provide a default value so that
computation can presume, or terminate the computation completely. In any of those
cases, the exception is unlikely to change the state of annotations, so conservative ap-
proximations should be reasonable. Although various people have investigate higher-
order functions, there has been no direct work on supporting exceptions.

A related language feature is call-with-current-continuation. Call-with-current-
continuation, or callcc, allows a programmer to explicitly capture the continuation
of a particular program point and to pass that continuation as a parameter to a
subsequent function. Calling that continuation is similar to raising an exception: the

SECTION 6.4. OTHER LANGUAGE ISSUES 154

execution continues at the point immediately following the site of the original callcc.

6.4.5 Compile-time features

Purely compile-time language features generally do not impact the partial evaluation
process. The basic reason is that partial evaluation transforms run-time operations
into compile-time operations; if an operation has only compile-time semantics, there
is little effect on the partial evaluator. Examples of such features are static type
checking, generics, and ad hoc polymorphism (overloading).

Partial evaluators generally assume that any static typing issues have been re-
solved prior to partial evaluation (i.e. that the program is valid). Static types then
only concern a partial evaluator as a mechanism for providing the evaluator with
additional constraints or annotations that can be applied during the evaluation pro-
cess. For example, the partial evaluator can take advantage of the fact that identifiers
that define constant values will never change annotations after being created since
the language guarantees that the values cannot be modified after creation. In fact, in
languages that permit only compile-time values for constants, constants can always
be treated as static.

A generic [80] or template [79] routine is a code fragment that is parameterized
by type and/or value information. Conceptually, instantiating a generic with par-
ticular information creates an instance of the related code suitable for use with the
given type and/or values. The overall effect of generic instantiation can be similar to
partial evaluation — incorporating specific information into more general code and
producing an optimized version that takes advantage of the particular static infor-
mation. In reality, implementations either simply “box” parameters and use a single
un-specialized version of the code or simply duplicate the code in the same fashion as
a macro expansion. Partial evaluation fits naturally into this framework by accept-
ing the instantiated generics (either the sharing code or expanded form) and applying
the normal evaluation process.

Compile-time overloading is similar to generics as far as partial evaluation is
concerned; partial evaluation assumes that the resolution has already succeeded and
that all that remains is the normal partial evaluation process. The only exception
to this assumption is when languages require run-time overloading resolution; such

SECTION 6.4. OTHER LANGUAGE ISSUES 155

models are effectively the same as limited object oriented models as was discussed in
Section 2.6.1.

6.4.6 Applying Heuristics

Heuristics have long had a major role in real compilers. These assumptions are
realized in many ways: peep-hole optimizations, loop unrolling, branch prediction,
size/space trade-offs, register allocation, instruction scheduling, and so on. Each of
these optimization techniques have a solid basis in real performance issues and have
generally been studied extensively. As a simple example, new architectures may be
tested in an exhaustive manner to find code sequences that have the same effect of
other code sequences (even if the designers of the architecture did not foresee such
an equivalence) in order to improve peep-hole optimization.

Partial evaluators have traditionally ignored these issues and focussed on trans-
formations that are set in a more formal semantic framework. There are however,
potential opportunities that should be explored. For example, one interesting method
for combining register allocation and instruction scheduling is code coagulation[49).
The basic idea is that the code “hot-spots” should be compiled independently and be
independently given free choice of registers. At each point in the code production, the
next “hot-spot” is chosen; when these locations meet, any necessary register trans-
fers are introduced. Adopting this approach can reduce the number of register spills
required within the most frequently executed code, thus improving overall perfor-
mance. -

On-line partial evaluation may be a reasonable method for estimating code “hot-
spots” and performing code coagulation. On-line partial evaluators follow the inter-
pretive flow of control in the source program and produce residual code after evaluat-
ing each expression. Residuals for code that is deepest in the evaluation is normally
encountered earlier in the evaluation process so performing register allocation dur-
ing partial evaluation may be a reasonable approximation of the code coagulation ap-
proach. Alternatively, partial evaluation could provide “expected profile” information
for use during code coagulation. One area for further study would be to investigate
the predictive power of such estimates when compared with real execution profiles.

Chapter 7

Conclusions and Future Work

7.1 What’s New?

This thesis has presented a new algorithm for on-line partial evaluation. The separa-
tion and characterization of general abstract domains is an important improvement
in that it allows domain design to focus on the abstract information that is desired
rather than on the evaluation algorithm. The algorithm itself has been proven to ter-
minate and to generate sound solutions based solely on the general characteristics of
the abstract domains used by the algorithm. A key improvement in our approach is
using both precise and relaxed operations when manipulating abstract values. Com-
parable systems compute all collections of abstract values using a single approach
— least-upper bounds in finite lattices. Our approach preserves termination while
allowing substantial improvements in the accuracy of the analysis. We have care-
fully defined the termination and soundness characteristics for the on-line partial
evaluator with respect to the standard semantics. Characterizing termination and
soundness as relationships between the environment during partial evaluation and
environments under the standard semantics provides an intuitive basis for reason-
ing about the residuals. We believe that such characterizations will be critical to the
application of partial evaluation techniques in a wider context.

The abstract domains presented in Chapter 5 capture more static information
than the simpler lattices used in other approaches. At the same time, these domains
retain reasonable convergence properties. We have shown that these particular ab-
stract domains satisfy the formal requirements for domains. This modular approach

156

SECTION 7.2. WHAT’S NEXT? 157

to proving algorithm properties is useful for reducing the work involved in devel-
oping the proofs without sacrificing confidence in the results. Although it has not
been discussed throughout the thesis, the modular design also allows the domains to
be designed with little concern for the actual language being interpreted. Although
some language specific domains might be necessary, common abstract domains such
as integers, booleans, etc., should be reusable between implementations of the our
algorithm for different source languages.

We have built a basic proof of concept prototype. Though the prototype made
simplistic choices regarding many of the issues related to residual production, it has
demonstrated the viability of the analysis phases and the ease of changing abstract
domains.

7.2 What’s Next?

This thesis has focussed primarily on the theoretical aspects of the proposed frame-
work. One of the main directions for further work is to work towards a framework
for the “applied” aspects of on-line pariial evaluation. In particular, characteriza-
tions need to be developed for profitable code expansions through the use of either
estimates of code behaviour or limited profiling information. It would be particularly
interesting to investigate the amount of profiling needed to “inform” the abstract
analysis about sufficient program characteristics to allow for good specialization de-
cisions.

There are three major areas of future work. The first area is in improvements to
the algorithm and the models used for abstract domains. The second area of future
work is in applying other abstract models and characterizing the types of information
needed to apply these models. The third major area is in direct applications of these
techniques to solving traditional compiler problems and in discovering other types
of useful information. In particular, using these approaches to characterize typical
programs could be useful in determining profitable avenues for further optimization
strategies. The following sections briefly summarize future directions.

SECTION 7.2. WHAT'S NEXT? 158

7.2.1 Foundations
Improvements to the On-line Algorithm

There are three changes to the presented algorithm that need further study. The
first two changes are with respect to the d parameter in the algorithm. Recall that
the intuitive meaning of the d parameter is that it reflects computations that are
potentially divergent. Currently, the algorithm is very conservative with respect to
potentially divergent computations; as soon as a dynamic conditional is encountered,
all derived computations are assumed to be potentially divergent. This assumption is
often overly conservative. In particular, when we discover additional results that are
not in £(Ax . ei4), we currently re-evaluate the function application with the expanded
§. In order to improve accuracy, we can actually perform the re-evaluation with “d =
false” rather than “d = true”. Essentially this change is adding a hypothesis that
the expanded € will not lead to divergence. If, with the expanded £, a conditional
turns out to be dynamic, we simply regress to the conservative case and could further
expand £ and 4.

A related change to the overall algorithm that we intend to investigate involves
changing d from a simple boolean into a vector of booleans with one flag for each
function. Consider a computation such as the following:

(if x (fact S) 0)

where x is unknown. Under the current strategy, the evaluation of (fact 5) occurs
with d = true. If the integer domain converges rapidly, as does our interval domain,
the result of this computation is the interval [0..00] rather than the accurate result
{0,120}. The reason for the rather poor estimate is that we assume that the subex-
pression (fact 5) could be divergent. However, in reality, such functions are only
divergent if there is a dynamic conditional in the derivation between the outermost
evaluation of fact and a derived evaluation of fact.

The third change that we plan to investigate is related to how we produce values
when we find fixed-points. Currently, when we realize that our latest result does not
extend £, we produce that result immediately. Again, this is a fairly conservative
approximation technique. The basic intuition is that we expand our estimate until
we pass the ideal result; however, in the current algorithm we then simply return
the computed overestimate. It may be possible to refine our estimate and, in effect,

SECTION 7.2. WHAT'S NEXT? 159

reduce the size of our estimate and try to get closer to the ideal result. One possible
approach for reducing the “size” of the estimate is to increase the accuracy of the
formal parameters to functions. The proposed change is to produce the result of

Ple] plx —< ef, ef >]8 € true

as the result in line 3.15(11) when our latest result estimate does not expand £. Cur-
rently the algorithm simply produces e=. The e* estimate is likely to be a substantial
overestimate of the actual result however, since the value bound to x during the pro-
duction of e includes all of the values in §’. However, since the new result estimate
is subsumed by £ and at this point we know that the value of ef has been calculated
with respect to £, we should be able to improve our result estimate by using only the
ef portion of &’ to find the overall result.

All three of the above changes were motivated by properties of the proofs pre-
sented for the current algorithm. As such, we are fairly confident that all of these
changes would preserve the correctness and termination of the algorithm. We do not,
however, know which of the changes would be profitable in terms of the tradeoff be-
tween increasing the time for the analysis versus the expected increases in accuracy.
In order to fully explore these aspects of such changes, we need to move beyond the
current prototype implementation into a more fully developed system. As such, this
remains as future work.

The other major set of changes needed in the current implementation is to bring
the memoization and residual production into line with approaches that have fo-
cussed on those aspects. This may be incorporated into the current implementation
or may involve replacing the analysis aspects of some other system such as FUSE
with our algorithm. It is not clear which of these approaches will be most viable.

Other Abstract Domains

The representation of information within abstract domains has not received much
attention lately, particularly with respect to abstract structured domains. Most cur-
rent approaches use some form of structural decomposition; our approach is the only
exception. We would like to continue to explore aspects of representing structural in-
formation. One possibility is to allow a mix of normal structural values and functions
that are sublist generators. This could, for example, allow us to append a single value

SECTION 7.2. WHAT’S NEXT? 160

onto the end of a list of unknown length and retain information about that value. No
current system models such lists.

Another aspect to consider is modeling values based on some sort of specification
language. If, for example, a particular portion of code was originally specified in a
specification language such as Larch or VDM, it might be useful to consider whether
those specifications could be used for reasoning about what transformations should
be safe to perform. There are substantial reliability issues involved in following this
route. Arbitrary reasoning about the code and specification is not a viable approach;
it is not clear whether a code transformation system should be permitted to rely on
specifications during transformation rather than solely relying on user annotations
and language semantics.

7.2.2 Extending the Models
Higher Order Functions

This work has not addressed higher order functions. Higher order functions are nor-
mally addressed by a combination of conservative control flow analysis and a trans-
formation into a continuations based language. Generally, the number of functions
in a program is relatively small so an on-line approach that performs an incremen-
tal control flow analysis by collecting sets of potential functions bound to particular
identifiers may be a reasonable approach.

There are simple approaches to handling higher order functions within an on-
line partial evaluator. Since we have assumed that there are a finite number of
functions, we can form a complete lattice from the powerset of functions and use
simple set union as our widening operators. This approach is completely accurate,
but could potentially be computationally very expensive since each possible function
would have to be evaluated at every application of a higher order function.

Extending the model to include first class functions removes the finiteness as-
sumption. In such cases, it is much less clear how to construct any reasonable and
non-trivial abstract model. Ideally, we would like to have a model that could reason
about the types of functions that are being built. This may be possible in some very
restricted situations, but does not seem to be likely in general.

SECTION 7.2. WHAT'S NEXT? 161

Embedding Other Abstract Models

The abstract domains that we have proposed are biased towards reasoning about
“values” rather than “relationships”. One interesting avenue for future exploration
is the possibility of using other types of formal analysis within the abstract domains.
An example of such a formal analysis is constraint analysis. Adopting constraint
analysis techniques as instances of abstract domain models seems to pose some diffi-
culty. In the current approach, the interface to the domains is relatively simple and
is based solely on values; an abstract domain needs to know very little about the lan-
guage being interpreted. In order to embed constraint analysis, relationships within
the source would have to be transmitted to the domains. Doing this in a language in-
dependent manner seems somewhat problematic, although some of the recent work
in reasoning about arbitrary inductive structures is promising.

The integer list domain that we introduced incorporates a concept of “direction”.
Relaxed widening operations for integers are not associative since the widening op-
eration captures the direction of growth in the domain. It is certainly possible to
explicitly extend the number of directions to include, for example, the even or odd
numbers as a direction, the Fibonacci numbers as a direction, and so on. It would be
interesting to evaluate how many relationships in real programs could be expressed
from a small set of basic relationships. Such a study could determine whether fully
general reasoning was necessary for most optimization situations.

7.2.3 Applied Problems
Solving “Traditional” Problems

Some traditional compilation issues such as register allocation, instruction schedul-
ing, control and data flow analysis, and low-level optimizations have been briefly
mentioned in this thesis. One of the long term goals of developing the framework
for on-line partial evaluation is to express many of these optimizations and analy-
ses using a consistent method. Such a re-casting of techniques would be valuable to
regularize the discussion of the techniques as well as expressing the techniques in a
modular way. This could help in clarifying the dependencies between the techniques
and reducing surprising interactions between optimization choices.

SECTION 7.2. WHAT’'S NEXT? 162

Quantifying Program Behaviour

Every partial evaluator builds models of program behaviour; these models form the
basis of deciding on annotations and on how to specialize the program. Unfortunately,
very little empirical data is available to use when deciding what types of models are
likely to express real program behaviour. For example, in real C++ programs, how
often is multiple inheritance used? What is the average size of a record in Ada?
How often are methods overridden in Modula-3? Particularly in languages in which
abstractions are costly, there is little on which to base particular optimization choices.
There are exceptions of course; the high performance Fortran community has a fairly
clear idea about the nature of such programs, but that program domain is fairly
small.

Partial evaluation is not a panacea, nor can it stand alone. However, given the
general movement towards higher level languages, we believe that partial evaluation
can provide valuable models for program transformation.

Appendix A
Lattices

In this appendix, we briefly review some notation and the basics of lattice theory; for
a complete development, we would recommend the introductory book by Davey and
Priestley [30].

A lattice is a formal model for describing the relationships between elements in a
set. A lattice is a special case of a partial order.

Defn A.1 (Partial Order) A partial order < §, £ > isa set Sand a
relation, <, on S such that for z,y,z € S, the < relation is:

e transitive: zgyandy<z=> 25z
e antisymmetric: z yandyz=>z=y.

o reflexive: z < z.

If z < y we may say that z is below y. Note that it may be the case that < does
not hold at all between two arbitrary elements of S. In other words it may be the
case that for some z,y € S,z £ y and y £ z. In such a case we say that z and y are
incomparable, denoted as z||y.

Defn A.2 (Down-set) Given a partial order < S, < > and an element
s € S, the down-set of s, denoted |s, is a set D such that forall s' € S, if
s’ X sthens € D.

163

164

A
A
/N %
B C D \ /
E
(y Lowerbounds{BCD) (ii) Greatest lower bound (E}

No Greatest lower bound

Figure A.1: Lower bounds

We can extend the meaning of a down-set by defining the down-set of a subset of
S to be the union of the down-sets of the elements in the subset. More formally, given
a partial order < S, < > and S’ C S then

18'= U 1s;
Vs;ES'

It is useful to be able to talk about various bounds or limiting values of a subset
of some partial order < S, < >. Assume that S’ is a subset of S for some partial order
<SS, £ >.

Defn A.3 (Lower Bound) A lower bound for S’ is an element y € S
such thatVz € S,y < 2.

Note that the lower bound of a subset of S does not have to be a member of the
subset, it is only required to be a member of S.

Defn A.4 (Greatest Lower Bound) NS’, the greatest lower bound for
S' is a lower bound, y, of S’ such that Vz € { lower bounds of S'}, z X y.
We will also refer to the greatest lower bound of a set containing elements
z and y as the meet of z and y, denoted as =/ y.

165

A
B\C/D B\C/D
E E
Upper bounds {B C D} .
i bound {A
@ No least upper bound (ii) Least upper al

Figure A.2: Upper Bounds

It may be the case that a set does not have a lower bound; if there are two incom-
parable values which constitute the set then there would be no value comparable to

(and below) every element of the set.

There are symmetric definitions for “upper bounds”:

Defn A.5 (Upper Bound) An upper bound for S’ is an element y € S
such thatVz € S,z < y.

Defn A.6 (Least Upper Bound) US’, the least upper bound for S’ is
an upper bound, y, of S’ such that Vz € { upper bounds of S}, y<z. We
will also refer to the least upper bound of a set containing elements z and
y as the join of z and y, denoted as zVy.

As with lower bounds, an upper bound may not exist. Obviously it is the case that
if no upper bound exists, no least upper bound exists.

Defn A.7 (Ascending Chain) An ascending chain of elements in Sisa
sequence z),232,--- such that 2y S22 .-..

166

L

Figure A.3: Integer Lattice

An ascending chain may be infinite. We may talk about an upper bound or least
upper bound for a chain, as well as for a set. As with a set, an ascending chain may
not have a least upper bound (although any finite ascending chain will have a least
upper bound).

Defn A.8 (Lattice) A lattice < S, < > is a partial order such that
V{z,y} € S : zAy and zVy exist.

Defn A.9 (Complete Lattice) A complete lattice <S, < > isa
lattice such that ¥S' C S : US’ and NS’ exist.

Figure A.3 shows a lattice for singleton integer sets with the subset relation. Each
“set” (a single integer value) is incomparable to any other singleton set (since no
element is a subset of another), i is considered as part of any set, and T is considered
to include every singleton set. '

167

This is a fairly simple model; the intuitive meaning of 1 is “empty set” and the
intuitive meaning of T is “the set of all integers”.
We will often want to consider functions from S — S. In particular we will be

concerned with interpreting recursive functions which conceptually move through
the lattice. Functions within S — S will be required to be monotonic and continuous.

Monotonic functions preserve ordering; if an element, z, is below another element,
y, then the mapping of z will be below the mapping of y.

Defn A.10 (Monotonic Function) A function, f, on a lattice S is
monotonic if Vz,y € S,z <y = f(z) < f(y).

Continuous functions preserve least upper bounds; applying a continuous func-
tion, f, to the least upper bound of a chain results in the same element as taking the
least upper bound of the chain formed by applying f to each element in the original
chain.

Defn A.11 (Continuous Function) A function, f, on a lattice S is
continuous if, given an ascending chain X = z; $z2 % ..., f(UX) =

U(f(X))-

Given a continuous, monotonic, and total function from S —» S, any mapping of
the function is guaranteed to stay within the lattice; we don’t need to worry about
“falling off” the lattice. In any lattice (S, <), given a continuous, monotonic, and
total function f: S — S, f will have a fixed point.

Defn A.12 (Fixed Point) A fixed point, u, for a function f is a value
such that flu) = u.

Given our lattice definition, f will also have a least fixed point!, which will be the
least upper bound of the ascending chain 1 < f(1) < f(f(L1)) < ---.

! As the details of the proof are not important for our purposes, we will defer to Allison (4] for the
proof.

Appendix B

Concise Definitions

B.1 The Standard Semantics Interpreter

Constants
N[const]e = const 3.1)
Identifiers
Nident]e = p(ident) 3.2)
Conditions
N[(if c ey es)]e= A 3.3)
let ' =N]c)e (1)

if d =
o {J\f[e;]g if d =true @

Nlez]e ifd =false

e)
end

168

Primitive operators

N(op e1e;z...en)]e=

let

ei=N[eiJe foralll1<i<n
in

apply(op, €} e;...e)
end

Function Application

N[(a\x.e; e1]e=

let

ey = Nei]e
in

Ne] o[x— €]
end

B.2 The Online Abstract Interpreter
B.2.1 Constants

Plconst]pdéd =< a(const), const >

B.2.2 Identifiers

Plident]pdéd = p(ident)

169

(3.4)

Q

@

(3.5)

)

(2)

(3.6)

3.7

170

B.2.3 Conditions

Pl(if c e; ex)]pdéd= (3.8)
let
<c® B >="P[c]pdéd @
(‘P[ellpé'fd if y(c*) =true
PR S Plex]pdséd if y(c*) =false ©
<L, (if c e1ez) > ify(c*)=1
kC(cR e, e; pdf) otherwise
in
<e*ef > @
end
C(cReie2p88) = 3.9
let
< pr.pp >=Split(ck, p) (4)]
< ef, el >= Ple1]p, € true)
< e, el >= Ples]p, 6 € true 3
in
<efVp 3, (if cBellef) > @

end

B.2.4 Function Properties
Primitive operators

Pl(op erez...en)]pdéd=
let
<ef,ef >=Ple]pdéd foralll<i<n

v® = apply(a(op), ef €3 - . .e7)

A {.,(,,a) i y(v*) € {T, L}
(op el’elf...eR) otherwise
m
<v* v >
end
Function Application

Pl(Ax.e) eq]pdé& false =
let < ef, el >=Ple1]pd¢ false
n_ [16eD) v ¢ (T 1)
x otherwise

< e®, eft >= Ple] pix < e, 27 >] ¢ false

R {1(e°) if y(e®) € {T, L}

v =
(Ax.eR ef) otherwise

< e%, wR>
end

171

3.12)

¢}
@)

3)

4)

(3.13)
¢V

2)

3

4

%)

Dynamic Function Application

Pl(Ax.e)e1]pdé true =
let
< ef,ef >= Ple]pd s true
in
if ef C 0(Ax.ei) then
< &(Ax.ew), (Ax.eeft) >
else
let
&’ = 8[Ax. eiq > 8(Ax. eig) Vi ef]
2R = {7(5'(4\X-eid)) ify(6'(Ax.eiq)) € {T, L}
x otherwise
¢ = plx =< 8 (Ax. eig), 2% >]
< e* e >=Ple]p' &' § true
oR = {7(3") ify(e*) € {T, L}
(Ax.e® ef) otherwise
& =€[Ax.ei — E(Ax. eiq) VR 7]
in
if e” C €(Ax. eig) then
<e* B>
else
Pl(Ax.e)e1]pd € true
end
end

172

(3.14)

0))

(¢)]
&)

“)

6]

6)
Q)

(8)

9

10)
(68 Y

12)

Bibliography

(1]
(2]

(3]

4]

(5]

(6]

[7]

8]

(9]

Programming Languages — C, 1990. ANSI/ISO 9899-1990.

ABRAMSKY, S., AND HANKIN, C., Eds. Abstract Interpretation of Declarative
Languages. Chichester: Ellis Horwood, 1987.

AHO, A., SETHI, R., AND ULLMAN, J. Compilers. Principles, Techniques, and
Tools. Reading, MA: Addison-Wesley, 1986.

ALLISON, L. A Practical Introduction to Denotational Semantics. Cambridge:
Cambridge University Press, 1989.

ANDERSEN, L. Self-applicable C program specialization. In Partial Evaluation
and Semantics-Based Program Manipulation, San Francisco, California, June
1992 (Technical Report YALEU/DCS/RR-909) (June 1992), New Haven, CT:
Yale University, pp. 54-61.

ANDERSEN, L. Binding-time analysis and the taming of C pointers. In Partial
Evaluation and Semantics-Based Program Manipulation, Copenhagen, Den-
mark, June 1993 (1993), New York: ACM, pp. 47-58.

ANDERSEN, L. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, Denmark, 1994. DIKU
Research Report 94/19.

ANDERSEN, P. Partial evaluation applied to ray tracing. DIKU Research Report
95/2, DIKU, University of Copenhagen, Denmark, 1995.

BAIER, R., GLUCK, R., AND ZOCHLING, R. Partial evaluation of numerical
programs in Fortran. In Partial Evaluation and Semantics-Based Program Ma-

173

BIBLIOGRAPHY 174

[10]

(11]

(12}

[13]

(14]

(15]

(16]

(17]

(18]

nipulation, Orlando, Florida, June 1994 (Technical Report 94/9, Department of
Computer Science, University of Melbourne) (1994), pp. 119-132.

BJORNER, D., ERSHOV, A., AND JONES, N., Eds. Workshop Compendium, Work-
shop on Partial Evaluation and Mixed Computation, Gl. Avernaes, Denmark, Oc-
tober 1987. Department of Computer Science, Technical University of Denmark,
Lyngby, Denmark, 1987.

BONDORF, A. Automatic autoprojection of higher order recursive equations. In
ESOP ’90. 3rd European Symposium on Programming, Copenhagen, Denmark,
May 1990 (Lecture Notes in Computer Science, vol. 432) (May 1990), N. Jones,
Ed., Berlin: Springer-Verlag, pp. 70-87. Revised version in [12].

BONDORF, A. Automatic autoprojection of higher order recursive equations.
Science of Computer Programming 17 (1991), 3-34.

BONDOREF, A., AND MOGENSEN, T. Logimix: A self-applicable partial evaluator
for Prolog. DIKU, University of Copenhagen, Denmark, May 1990.

BOURNDONCLE, F. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming 2, 4 (October 1992), 407-—435.

BUHR, P. A., MACDONALD, H. 1., AND STROOBOSSCHER, R. A. uSystem an-
notated reference manual, version 4.4.3. Tech. Rep. Unnumbered (Available via
ftp to plg.uwaterloo.ca in pub/uSystem/uSystem.ps.Z.), Department of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L
3G1, Mar. 1991.

BULYONKOV, M., AND ERSHOV, A. How do ad-hoc compiler constructs appear
in universal mixed computation processes? In Partial Evaluation and Mixed
Computation (1988), D. Bjgrner, A. Ershov, and N. Jones, Eds., Amsterdam:
North-Holland, pp. 65-81.

CHAMBERS, C. The design and implementation of the Self compiler, an optimiz-
ing compiler for object-oriented programming languages. Tech. Rep. STAN-CS-
92-1420, Stanford, 1992.

CHAMBERS, C. Object-oriented multi-methods in Cecil. ECOOP 92 Conference
Proceedings (July 1992).

BIBLIOGRAPHY 175

[19] CLINGER, W., AND REES, J. Revised(4) report on the algorithmic language
Scheme. ACM Lisp Pointers IV (July—Sept. 1991).

[20] COLRY, C., AND LEE, P. A modular implementation of partial evaluation. Tech.
Rep. CMU-CS-92-123, School of Computer Science, Carnegie Mellon University,
March 1992.

[21] CoNSEL, C. Binding time analysis for higher order untyped functional lan-
guages. In 1990 ACM Conference on Lisp and Functional Programming, Nice,
France (1990), New York: ACM, pp. 264-272.

[22] CONSEL, C. Polyvariant binding-time analysis for applicative languages. In
Partial Evaluation and Semantics-Based Program Manipulation, Copenhagen,
Denmark, June 1993 (1993), New York: ACM, pp. 66-77.

[23] CONSEL, C., AND DANVY, O. For a better support of static data flow. In Func-
tional Programming Languages and Computer Architecture, Cambridge, Mas-
sachusetts, August 1991 (Lecture Notes in Computer Science, vol. 523) (1991),
J. Hughes, Ed., ACM, Berlin: Springer-Verlag, pp. 496-519.

[24] CONSEL, C., AND KHOO, S. On-line and off-line partial evaluation: Semantic
specifications and correctness proofs. Tech. Rep. YALE-DCS-tr912, Yale, 1993.
To appear in Journal of Functional Programming.

[25] CONSEL, C., AND KHOO, S. Parameterized partial evaluation. ACM Transac-
tions on Programming Languages and Systems 15, 3 (1993), 463—493.

[26] CONSEL, C., AND PAI, S. A programming environment for binding-time
based partial evaluators. In Partial Evcluation and Semantics-Based Pro-
gram Manipulation, San Francisco, California, June 1992 (Technical Report
YALEU/DCS/RR-909) (1992), New Haven, CT: Yale University, pp. 62-66.

[27] CousoOT, P., AND CoUSOT, R. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
ACM Symposium on Principles of Programming Languages (January 1977),
238-252.

(28] CYTRON, R., FERRANTE, J., ROSEN, B, WEGMAN, M., AND ZADECK, F. K.
Efficiently computing static single assignment form and the control dependence

BIBLIOGRAPHY 176

graph. ACM Transactions on Programming Languages and Systems 13, 4 (Oct.
1991), 451-490.

[29] CYTRON, R., AND GERSHBEIN, R. Efficient accomodation of may-alias infor-
mation in SSA form. SIGPLAN Notices 28, 6 (June 1993), 36-45. Proceedings
of the ACM SIGPLAN ’93 Conference on Programming Language Design and
Implementation.

[30] DAVEY, B., AND PRIESTLEY, H. Introduction to Lattices and Order. Cambridge
Press, 1990.

(31] DEAN, J., CHAMBERS, C., AND GROVE, D. Identifying profitable specializa-
tion in object-oriented languages. In Partial Evaluation and Semantics-Based
Program Manipulation, Orlando, Florida, June 1994 (Technical Report 94/9,
Department of Computer Science, University of Melbourne) (1994), pp. 85-96.

(321 ERSHOV, A. A theoretical principle of system programming. Soviet Mathematics
Doklady 18, 2 (1977), 312-315.

[33] FEGARAS, L., SHEARD, T., AND ZHOU, T. Improving programs which recurse
over multiple inductive structures. Partial Evaluation and Semantics-Based
Program Manipulation, Orlando, Florida, June 1994 (Technical Report 94/9,
Department of Computer Science, University of Melbourne) (1994), 21-32.

[34] FUTAMURA, Y. Partial evaluation of computation process — an approach to a
compiler-compiler. Systems, Computers, Controls 2, 5 (1971), 45-50.

[35] GOMARD, C., AND JONES, N. A partial evaluator for the untyped lambda-
calculus. Journal of Functional Programming 1, 1 (January 1991), 21-69.

[36] HAO, J.-K., AND CHABRIER, J.-J. Combining partial evaluation and constraint
solving: a new approach to constraint logic programming. In 2nd International
IEEE Conference on Tools for Artificial Intelligence, Herndon, VA, USA (1990),
New York: IEEE Computer Society, pp. 494-500.

(37] HARBISON, S. Modula-3. Englewood Cliffs, NJ: Prentice Hall, 1992.

(38] HARNETT, S., AND MONTENYOHL, M. Towards efficient compilation of a dy-
namic object-oriented language. In Partial Evaluation and Semantics-Based

BIBLIOGRAPHY 177

(391

{40]

[41]

[42]

[43]

[44]

[45]

[46)

(47]

Program Manipulation, San Francisco, California, June 1992 (Technical Report
YALEU/DCS/RR-909) (1992), New Haven, CT: Yale University, pp. 82—89.

HENDREN, L. Parallelizing programs with recursive data structures. Tech. Rep.
90-1114, Cornell University, 1990. (Ph.D. Thesis Chapters 3 and 4 — Interference

Analysis).

HENDREN, L., AND NICOLAU, A. Parallelizing programs with recursive data
structures. IEEE Transactions on Parallel and Distributed Systems 1, 1 (Jan-

uary 1990), 34-47.

HENGLEIN, F. Efficient type inference for higher-order binding-time analy-
sis. In Functional Programming Languages and Computer Architecture, Cam-
bridge, Massachusetts, August 1991 (Lecture Notes in Computer Science, vol.
523) (1991), J. Hughes, Ed., ACM, Berlin: Springer-Verlag, pp. 448—472.

HENGLEIN, F., AND MosSIN, C. Polymorphic binding-time analysis. In Pro-
gramming Languages and Systems — ESOP’94. 5th European Symposium on
Programming, Edinburgh, UK., April 1994 (Lecture Notes in Computer Science,
vol. 788) (1994), D. Sannella, Ed., Berlin: Springer-Verlag, pp. 287-301.

HUGHES, J. Backwards analysis of functional programs. In Partial Evalua-
tion and Mixed Computation (1988), D. Bjgrner, A. Ershov, and N. Jones, Eds.,
Amsterdam: North-Holland, pp. 187-208.

JONES, M. Dictionary-free overloading by partial evaluation. In Partial Eval-
uation and Semantics-Based Program Manipulation, Orlando, Florida, June
1994 (Technical Report 94/9, Department of Computer Science, University of
Melbourne) (1994), pp. 107-117.

JONES, N. Flow analysis of lazy higher-order functional programs. In Ab-
stract Interpretation of Declarative Languages, S. Abramsky and C. Hankin,
Eds. Chichester: Ellis Horwood, 1987, pp. 103-122.

JONES, N., GOMARD, C., AND SESTOFT, P. Partial Evaluation and Automatic
Program Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

JONES, N., AND MYCROFT, A. Data flow analysis of applicative programs using
minimal function graphs. In Thirteenth ACM Symposium on Principles of Pro-

BIBLIOGRAPHY 178

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

(56]

gramming Languages, St. Petersburg, Florida. New York: ACM, 1986, pp. 296—
306.

JONES, N., SESTOFT, P., AND SONDERGAARD, H. Mix: A self-applicable partial
evaluator for experiments in compiler generation. Lisp and Symbolic Computa-
tion 2, 1 (1989), 9-50.

KARR, M. Code generation by coagulation. In Conference Record of the 1984
ACM SIGPLAN Symposium on Compiler Construction (June 1984), vol. 19, As-
sociation for Computing Machinery, pp. 1-12.

KHOO, S., AND SUNDARESH, R. Compiling inheritance using partial evalua-
tion. In Partial Evaluation and Semantics-Based Program Manipulation, New
Haven, Connecticut (Sigplan Notices, vol. 26, no. 9, September 1991) (1991), New
York: ACM, pp. 211-222.

LAKHOTIA, A., AND STERLING, L. ProMiX: A Prolog partial evaluation system.
In The Practice of Prolog, L. Sterling, Ed. Cambridge, MA: MIT Press, 1991,
ch. 5, pp. 137-179.

LAM, J., AND KUSALIK, A. A partial evaluation of partial evaluators for pure
Prolog. Tech. Rep. TR 90-9, Department of Computational Science, University
of Saskatchewan, Canada, November 1990.

LANDI, W., AND RYDER, B. G. A safe approximate algorithm for interprocedu-
ral pointer aliasing. SIGPLAN Notices 27, 7 (July 1992), 235-248. Proceedings
of the ACM SIGPLAN ’92 Conference on Programming Language Design and
Implementation.

LAUNCHBURY, J. Projection Factorisations in Partial Evaluation. Cambridge:
Cambridge University Press, 1991.)

LAWALL, J. Proofs by structural induction using partial evaluation. In Partial
Evaluation and Semantics-Based Program Manipulation, Copenhagen, Den-
mark, June 1993 (1993), New York: ACM, pp. 155-166.

LEONE, M., AND LEE, P. Lightweight run-time code generation. In Par-
tial Evaluation and Semantics-Based Program Manipulation, Orlando, Florida,
June 1994 (Technical Report 94/9, Department of Computer Science, University
of Melbourne) (1994), pp. 97-106.

BIBLIOGRAPHY 179

(571

(58]

(59]

(60]

(61]

(62]

[63l
[64]

[65]

(66]

(67]

LIU, Y., STOLLER, S., AND TEITELBAUM, T. Discovering auxiliary information
for incremental computation. ACM Symposium on Principles of Programming
Languages (January 1996).

MALMKJZER, K., HEINTZE, N., AND DANVY, O. ML partial evaluation using
set-based analysis. In 1994 ACM SIGPLAN Workshop on ML and Its Applica-
tions, Orlando, Florida, June 1994 (Technical Report 2265, INRIA Rocquencourt,
France) (1994), pp. 112-119.

MARQUARD, M., AND STEENSGAARD, B. Partial evaluation of an object-
oriented imperative language. Master’s thesis, DIKU, University of Copen-
hagen, Denmark, April 1992 Available from ftp.diku.dk as file
pub/diku/semantics/papers/D-152.ps.2.

MasoN, D. V. A Functional intermediate from for diverse source languages.
Submitted to CASCON 1996.

MEYER, U. Techniques for partial evaluation of imperative languages. In Par-
tial Evaluation and Semantics-Based Program Manipulation, New Haven, Con-
necticut (Sigplan Notices, vol. 26, no. 9, September 1991) (1991), New York: ACM,

pp- 94-105.

MEYER, U. Correctness of online partial evaluation for a pascal-like language.
Bericht 9205, AG Informatik, Universitit Giessen, Germany, 1992.

MILNER, R. The Definition of Standard ML. Cambridge, MA: MIT Press, 1990.

MILNER, R., TOFTE, M., AND HARPER, R. The definition of Standard ML. MIT
Press, Cambridge, Mass., 1990.

MOGENSEN, T. The application of partial evaluation to ray-tracing. Master’s
thesis, DIKU, University of Copenhagen, Denmark, 1986.

MOGENSEN, T. Partially static structures in a self-applicable partial evaluator.
In Partial Evaluation and Mixed Computation (1988), D. Bjgrner, A. Ershov, and
N. Jones, Eds., Amsterdam: North-Holland, pp. 325-347.

MOGENSEN, T., AND BONDORF, A. Logimix: A self-applicable partial evaluator
for Prolog. In LOPSTR 92. Workshops in Computing (Jan. 1993), K.-K. Lau and
T. Clement, Eds., Berlin: Springer-Verlag.

BIBLIOGRAPHY 180

(68]

(69]

[70]

[71]

[72]

[73]

[74]

(75]

[76]

NIRKHE, V., AND PUGH, W. Partial evaluation and high-level imperative pro-
gramming languages with applications in hard real-time systems. In Nineteenth
ACM Symposium on Principles of Programming Languages, Albuquerque, New
Mexico, January 1992 (1992), New York: ACM, pp. 269-280.

PARRAIN, A., DEVIENNE, P., AND LEBEGUE, P. Towards optimization of full
Prolog programs guided by abstract interpretation. In WSA ’92, Static Analysis,
Bordeaux, France, September 1992. Bigre vols 81-82, 1992 (1992), M. Billaud
et al., Eds., Rennes: IRISA, pp. 295-303.

RUF, E. Topics in Online Partial Evaluation. PhD thesis, Stanford University,
California, February 1993. Published as technical report CSL-TR-93-563.

RUF, E., AND WEISE, D. Avoiding redundant specialization during partial eval-
uation. Tech. Rep. CSL-TR-92-518, Computer Systems Laboratory, Stanford
University, Stanford, CA, April 1992.

RUF, E., AND WEISE, D. Improving the accuracy of higher-order specializa-
tion using control flow analysis. In Partial Evaluation and Semantics-Based
Program Manipulation, San Francisco, California, June 1992 (Technical Report
YALEU/DCS/RR-909) (1992), New Haven, CT: Yale University, pp. 67-74.

RYTZ, B., AND GENGLER, M. A polyvariant binding time analysis. In Partial
Evaluation and Semantics-Based Program Manipulation, San Francisco, Cali-
fornia, June 1992 (Technical Report YALEU/DCS/RR-909) (1992), New Haven,
CT: Yale University, pp. 21-28.

SARAMA, C., AND ITOH, H. Partial evaluation of queries in deductive
databases. New Generation Computing 6, 2,3 (1988), 249-258.

SHIVERS, O. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991.

SMITH, D. Partial evaluation of pattern matching in constraint logic program-
ming languages. In Partial Evaluation and Semantics-Based Program Manipu-
lation, New Haven, Connecticut (Sigplan Notices, vol. 26, no. 9, September 1991)
(1991), New York: ACM, pp. 62-71.

BIBLIOGRAPHY 181

[77] SRIDHAR, A., AND VEMURI, R. Automatic precondition verification for high-
level design transformations. In 1990 IEEE International Symposium on Cir-
cuits and Systems (1990), New York: IEEE, pp. 2654-2657.

[78] STEELE JR., G. Common Lisp Lanuguage 2™ Revised Ed. Englewood Cliffs,
NJ: Prentice Hall, 1989.

[79] STROUSTRUP, B. The C++ Programming Language, second ed. Reading, MA:
Addison-Wesley, 1993.

[80] UNITED STATES DEPARTMENT OF DEFENSE. Reference Manual for the ADA
Programming Language, 1983. ANSI/MIL-STD-1815A-1983.

[81] VASELL, J. A partial evaluator for data flow graphs. In Partial Evaluation and
Semantics-Based Program Manipulation, Copenhagen, Denmark, June 1993
(1993), New York: ACM, pp. 206-215.

{82] WEGMAN, M., AND ZADECK, F. K. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems 13, 2
(April 1991), 181-210.

[83] WEISE, D., CONYBEARE, R., RUF, E., AND SELIGMAN, S. Automatic online
partial evaluation. In Functional Programming Languages and Computer Ar-
chitecture, Cambridge, Massachusetts, August 1991 (Lecture Notes in Computer
Science, vol. 523) (1991), J. Hughes, Ed., Berlin: Springer-Verlag, pp. 165-191.

[84] ZAKHAROVA, N., PETRUSHIN, V., AND YUSHCHENKO, E. Denotational seman-
tics of mixed computation processes. In /10] (1987), pp. 379-388.

