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ABSTRACT

Dark matter is predicted to be the main contribution to the matter content in the
universe, in addition to ordinary baryonic matter such as protons and neutrons. However,
we are limited in our knowledge of the nature of this main content of matter and some of its
characteristics, hence the term ”"the Foggy Universe”. The majority of the work included
in this thesis is related to dark matter. It includes an investigation of the characteristics
of dark matter haloes — structures expected to hold the galaxies/clusters — and a proposal
to effectively search for dark matter particles through dark matter annihilation products
such as gamma rays. In the last part of the thesis, we include a novel large-scale effect of
cosmological neutrinos on haloes in the universe that is dependent on the neutrino mass.

In more detail, this thesis is a collection of the contributions we made to cosmological
research regarding the nature of dark matter. Motivated by the non-existence of halo
concentrations for small mass haloes due to the poor mass resolution of N-body simulations,
we propose and verify the agreement of an analytical mass-concentration model using the
ellipsoidal collapse theory and assuming the conservation of total energy. Thereafter, and
guided by the success of this prediction, we use this model to make analytical calculations
that may be relevant for the indirect detection of dark matter particles using gamma-rays
as by-products of dark matter annihilation. We consider noise estimates to include the
expected gamma rays due to the formation of stars in the galaxies hosted by these haloes
and the presence of the isotropic gamma-ray background to predict a signal-to-noise ratio
as a function of halo mass in a bid to pinpoint the most interesting halo masses that should
be good targets for this detection.

Given that neutrinos are the second most abundant particle in the universe after the
photons, we finish off by quantifying the effect of dynamical friction from primordial neu-
trinos that may slow down haloes and presented how this effect may be extracted from
galaxy surveys using different galaxy species in redshift space. Although independent of
the number density of galaxies in the survey, the confidence level of this proposed detection
is dependent on the survey properties — such as the number of galaxies, mean redshift of
the survey — and the neutrino properties such as the mass and hierarchy of the species and
could be greater than 30 using an optimal survey.
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Chapter 1

Introduction

About 85% of the matter content of the universe is dominated by Dark Matter — a name
coined to mean matter that interacts with gravity but is non-interacting or weakly inter-
acting via electromagnetic force to emit photons. Evidence for dark matter dates back to
the measurement of the velocity dispersion of galaxies in a cluster— Coma cluster [181] and
the rotation curve of galaxies — the Andromeda galaxy [113]. Recent evidence includes the
measurement, of the Cosmic Microwave Background in the sky by the Planck Collabora-
tion [130], gravitational lensing of a galaxy due to a nearby cluster [167], and the Bullet
Cluster [38] — the collision between two clusters that shows X-rays emitted from the regions
concentrated with baryonic gas due to the heating of the gas being very different from the
region that contains the majority of the mass seen in gravitational lensing.

1.1 Some Dark Matter Candidates

There are different proposals regarding the nature of dark matter including, but not lim-
ited to, weakly interacting massive particles (WIMPs), sterile neutrinos, axions, massive
compact halo objects (MACHOs) such as brown dwarfs or black holes. MACHOs are ex-
pected to contribute a small percentage to, not entirely make up the total percentage of,
dark matter [ 1]. Large scale structure observations are compatible with dark matter being
massive and relatively cold, i.e. electrically neutral particles whose masses are higher than
the keV scale and have very low thermal velocity, restricting this thesis to the investigation
of Weakly interacting massive particles (WIMPs) in Chapter 3. Some more exotic options
include dark matter as superfluids [I1] and Bose-Einstein Condensates [11]. Detecting
the WIMP using indirect detection techniques require good knowledge of the structure



of dark mater on small scales. Our current knowledge of dark matter stems largely from
N-body simulations. However, N-body simulations are currently limited in resolution to
study small- scale structure today. Using alternative techniques, this thesis provides an
analytic understanding of the internal structure of, and studies substructures present in,
dark matter haloes while also predicting the large-scale effect of dark matter haloes in the
presence of cosmological neutrinos. In the next few sections, we cover some basic results
of simulated structure formation and dark matter halo properties such as the halo density
profile and halo concentrations, and a few basic properties of cosmological neutrinos.

1.2 Cold Dark Matter Haloes

Most of the properties we know about dark matter haloes have been studied using numerical
N-body simulations. N-body simulations numerically solve the equations of motion of N
dark matter particles interacting through Newtonian gravity. These simulations begin
from a high redshift, say z = 100 and follow through until today, z = 0. At the end of
the simulation, snapshots of the particles are taken, from which dark matter haloes are
then identified. Identification of haloes usually involve two known algorithms — spherical
Overdensity (SO) [139], a method in which the centre of the halo is located as the minimum
of the gravitational potential and the radial extent is the radius of the sphere at which
the mean density of the halo is 200 times the critical density of the universe and friends-
of-friends (FOF) [15], a method which also identifies the minimum of the gravitational
potential and links particles that are closer than 0.2 times the mean inter-particle distance.
An illustration of a density slice of the cosmic web is shown in Figure 1.1

Dark Matter haloes are theoretically believed to be the gravitational bedrock respon-
sible for creating the deep potential required to begin the formation process of galaxies.
Haloes are simply approximated as spherical objects and have been shown from early
simulations [124] to follow the cuspy two-parameter radial profile given below:

PNFW = (}) Ef; %>2, (1.1)

where p, is the critical density of the universe, r, is a scale radius where the density profile
is roughly isothermal and J,. is an over-density parameter. This form of the density profile,
initially proposed by Navarro, Frenk and White [124] (hereafter the NFW density profile,
pNFw) is seen to be universal for different masses and variants of the universe such as flat,
open, and closed universes. From the form of the profile, p oc 1/r in the innermost regions
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Figure 1.1: A slice of the density field of dark matter from an N-body simulation box from
https://wwwmpa.mpa-garching.mpg.de/galform /virgo/millennium/



of the halo and o 1/73 in the outer regions of the halo. The above density profile may be
rewritten in terms of the halo mass and halo concentration, with the concentration defined
as Cagp = ?ﬂ From N-body simulations, there exists a relation between the halo mass
and halo concentration, matter density fluctuations using a single parameter. Results from
simulations revealed that the halo concentrations in a ACDM universe increase with matter
density fluctuations using a single parameter, an increase in the normalization of the power
spectrum, og. Physically, the redshift for collapse increases with the normalization of the
power spectrum which then leads to higher concentration since the haloes are formed in the
earlier epoch of the universe. In addition, the mass dependence of the halo concentrations
for large mass haloes weaken as the spectral index becomes more negative.

1.3 Einasto Density Profile

Another profile that fits the density profile of simulated haloes is the three-parameter
Einasto density profile, given by

() () e

where similar to the p; and ry of the NF'W profile, p_5 and r_5 are defined as the char-
acteristic density and radius of the halo where the logarithmic slope of the density is -2.
The third parameter « is the shape parameter that better determines the curvature of the
inner part of the profile. A comparison of both profiles for a given mass and concentration
is shown in Figure 1.2

1.4 Basic Neutrino Properties

In this section, we will introduce some basic properties of cosmological neutrinos. The
introduction section of Chapter 4 will focus more on the role that neutrinos play in cos-
mology.

Neutrinos are the second most abundant particles of the Standard model after the
Microwave photons that permeate the Cosmic Background. According to the Big Bang
theory, neutrinos decoupled barely a second after the Big bang, prior to the decoupling of
photons. Existing in three different flavours, the average temperature of each species is

given by 7,9 = (%)1/ T oMmB, Where Toyp =~ 2.73K is the current average temperature of
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the cosmic microwave Background (CMB) photons. The current average number density

is given as
3
Ny = 6me(3) <kTy’O) ; (1.3)

4 hc
where ((3) is the Riemann-Zeta function. The contribution to the total number density is
given by
94.07h%eV
At the very early times the neutrinos were relativistic but became non-relativitstic as
the universe cooled down. The particular redshift at which each species became non-
relativistic is given by 1 4 z,, = with an average thermal velocity that is given

by (vg) = 81(1 + 2) (%) kms ™!

Qy’o - (14)

my
5.28x10~%4eV

1.4.1 Neutrino Mass Hierarchy

Neutrinos exist in three different flavours, the electron neutrino v., muon neutrino v, and
tau neutrino, v, The flavour eigenstates, v, v, - are a coherent superposition of the mass
eigenstates, vy, V5, and r3 through a unitary matrix, U such that

Ve Uel Ue2 Ue3 n
vy | = Uul U#Q ng 1) (15)
Vr UTl UT2 UT3 Vs

The mixing matrix U is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The mass hierarchy describes the assumed ordering of the masses of the different flavours
and may be classified into the normal or inverted hierarchy, i.e whether the v3 mass eigen-
state is heavier or lighter than the v, and v, mass eigenstates. Figure 1.3 illustrates this
difference diagramatically.

1.5 Outline

The outline of this thesis is as follows: Chapter 2 focuses on our model of the theoretical
derivation of the dark matter halo mass-concentration relation. This model, together
with another model, is then applied to our predictions of the signal-to-noise ratio in the
indirect search of dark matter from gamma-rays emitted through the assumed annihilation
of dark matter particles in Chapter 3. Chapter 4 explores and quantifies a new effect of
cosmological neutrinos on structures.
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Figure 1.2: A comparison of the NFW and Einasto density profiles for a given mass and
given halo concentration.
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Chapter 2

Dark Matter Halo Concentration

The concentration—mass relation gives deep insight into the formation and structure of
haloes. More accurate concentration-mass relations can also be used to search for the
elusive dark matter particles by placing limits on the dark matter annihilation flux from
(sub)structures e.g [110]. Indeed, the latter is dominated by smallest haloes not resolved in
N-body simulations by z = 0. This chapter summarizes a model of our concentration-mass
relation for haloes, derived using physical principles of energy conservation and ellipsoidal
collapse, which gives theoretical insight and clarity into the origin of such a relation. Our
results are then compared with results obtained from simulations to validate our assump-
tions. Most significantly however, as our framework is rooted in physical principles, it can
be applied and trusted well beyond the regime probed by simulations. In the next few
sections, we present a short review of halo concentrations, define our random variables,
their probability distribution and the initial total energy of a spherical region with random
Gaussian initial conditions. The mean and dispersion of our random variables are then
related to the concentration through the assumption of energy conservation. Section 2.2.2
incorporates the possibility of non-sphericity using the ellipsoidal collapse model of [150].
We discuss and conclude in Section 2.3.

2.1 A brief review of dark matter halo concentrations

Dark matter halo concentrations are mass dependent, with the high-mass haloes having the
lower concentrations. Although the dependence of halo concentration on mass was initially
thought to be a continually decreasing function of mass, [180] were the first authors to point
out that the mass-concentration relation flattens at the high mass end at z = 0, (verified
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by a number of authors such as [127, 129]) with a minimum concentration of about 3.5.
The exact mass at which the relation starts flattening is dependent on the redshift, it
decreases to lower masses as the redshift increases. In order words, the mass-concentration
relation becomes weaker at higher redshifts i.e the mass-concentration relation evolves
faster at lower redshift (z < 3) than at higher redshift (z > 3) [127, 54, 123, 170, 129]. On
the mass scales, low-mass haloes evolve more with redshift than high-mass haloes. This
correlation between concentration and mass may be explained using the mass accretion
rate [181]. According to [181], the concentration is constant at the high mass end because
the massive haloes are in a fast accretion phase (where mostly major mergers occur) and
the scale radius changes as the viral radius changes whereas the small mass haloes have
higher concentrations because they are in the slow accretion phase (with mainly minor
mergers) where the scale radius is more or less constant while the virial radius gradually
builds up.

To predict the mass-concentration relation for any cosmology, redshift or any form of
the power spectrum of matter fluctuations, concentrations may be related to a universal
model of the mass accretion history (MAH) established through the mass accretion rate
[181]. This model of concentration in terms of the MAH was the first attempt at making
halo concentrations universal and also attempts to explain the redshift evolution of halo
concentrations. The results from this model indicate that the haloes evolve in redshift not
simply as 1%2 as initially thought by [35], but in a more complex form. Therefore, a model
for the halo concentrations may be built by relating the concentration to the time when the
main progenitor had accreted 4% of its final mass (extracted from the MAH). According

to [181], the time evolution of the concentration is given by

" 8.4 1/8
SR iy pu——— 2.1

where tg o4 is the time when the main progenitor has accreted 4% of its final mass. In a
similar vein, the distribution of halo concentrations may be extracted from the distribution
of the formation times of the halo for a given mass. This approach was investigated by [69]
by characterizing a relation between the distribution of halo formation times and the mass
of the main progenitor using simulations. Defining the formation time as the earliest time
when the main progenitor of the halo has a mass m > fM, for a mass M, today, a strong
correlation was found between the halo concentrations and time provided the time when
the halo had assembled about 4% and half of its total mass is known. Given a MAH, one
can then cast the concentration-time relation into a concentration-mass relation.

Notwithstanding the fact that mass-concentration relations have been all expressed
as power law fits in terms of mass up to this point, [138] introduced a fit, closer to being
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universal, of the mass-concentration relation by expressing the halo concentrations in terms
of the root mean square (RMS) of the matter density fluctuations o(M, z). In addition,
the concentrations were measured using a more profile independent method (“//”;—(‘;;) rather
than making a given fit to an assumed density profile (say NFW or Einasto). Over six
orders of magnitude in mass and redshifts that range from 0 < z < 10, the results of the
concentrations show interesting features. The form of the halo concentrations as a function
of mass show three distinct features - a region of decreasing halo concentration with mass
(in the low-mass end), a region of flattening, and a region in which the halo concentrations
increase with mass (the high-mass end), which was first observed in [95]. This upturn in
the halo mass-concentration relation at the high-mass end is due to the massive haloes
having particles falling into mostly radial orbits. To confirm that the upturn in halo
concentrations isn’t due to non-equilibrium effects, a sample of relaxed haloes displayed
similar features. On a different note, [108] do not find the upturn at large masses when
considering only relaxed haloes and the similar concentration measurements of [138]. They
expressed concerns that the criteria by [133] for selecting the relaxed haloes was less stricter
than theirs (those of [L08]). The explanation for the supposed increase in concentration at
the high mass end is that most of the systems are not yet virialized and that the accreted
material are most likely experiencing their first pericentric passage. Intuitively, it is not
clear that the concentrations increase at the high mass end since halo concentrations are
related to the formation time of the haloes. and the high-mass systems have only being
recently formed. A universal relation for concentrations was finally presented in [19] which
is parametrized in terms of the peak height parameter and the local slope of the power
spectrum neg. Expressing halo concentrations in terms of the slope of the power spectrum
affects both the normalization and the slope of the concentration-mass relation.

So far, we have discussed concentration-mass relations measured from N-body simula-
tions and then calibrated using a model. [129] presented a theoretical concentration-mass
relation using arguments that include the conservation of energy and the ellipsoidal col-
lapse model of [150]. This analytic concentration-mass relation will be the subject of the
next sections in this chapter. This relation agrees very well with simulation results, in the
realm where they exist and can be extrapolated to small mass regions, where we have no
simulation data. The model also shows a flattening of the halo concentrations at large
masses.

We will assume the Planck-15 cosmological parameters [130]: €2, = 0.3089, €, =
0.0486, h = 0.677, ny, = 0.967, Q5 = 0.6911, o5 = 0.8159 when needed for our calculations.

In general, non-linear gravitational dynamics is difficult to deal with analytically; how-
ever, the assumption of the symmetry of the system simplifies the dynamics. For simplicity
and since haloes are usually approximated as spherical systems, we consider a spherical
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overdensity field. We also ignore the tidal effects of neighbouring density perturbations
upon the evolution of the isolated homogeneous spherical density perturbation. In what
follows, we calculate the initial energy of this region (Section 2.1.1) and its virialization
time (Section 2.1.2). These are then related to random variables whose probability distri-
bution will play a key role in predicting the mean and dispersion of halo concentrations
presented in Section 2.2.

2.1.1 Initial Energy

The total energy of an isolated system at a given time can be given as the sum of the
kinetic energy and potential energy at that time. Thus, we derive the initial kinetic energy
and potential energy of a spherical volume prior to collapse. For the kinetic energy of the
region, we note that the velocity can be written as a function of gravitational potential ¢;

1[ ]7

2
— Hix — ——Vé. 2.2
v X SHngb (2.2)

where H; is the Hubble constant at the initial time. However, note that our results are
independent of this choice of initial time, as long as it is in the linear regime. Writing the
initial density of the region as a perturbation to the initial mean density of the universe

p(x,ti) = pill + di(x)],

the kinetic energy, to linear order in the perturbation, is then given by

1 4
K = §pi/(Hi2|x|2 - X Vo + B (2.3)

The perturbation §; can be substituted in favour of the gravitational potential with the
aid of the Poisson equation, then simplified further using the Friedmann equation to give

1 2 4
1 4 1
= b / (H?|x)* + §x2v2¢i)d3x - gpiJa{sz@ - da, (2.5)

where we have used the divergence theorem in simplifying Equation 2.5. Neglecting devi-
ations from spherical symmetry at the boundary, we have

G(SMA AGpl
Vo, = I r=r 2 /5id3aj.

1; here stands for the initial time
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Finally, the kinetic energy is given as

ArGp? [
K, = @ / (22 + 6;(22° — RY)]d%. (2.6)
0

Clearly, the kinetic energy is the sum of that expected from spherical volume with mean
density and that due to the perturbation. Similarly, the initial gravitational potential
energy of the spherical region can be expressed as

v _Grt // LR ILERICS) P 2

X1 — X

To linear order in ¢; and using the symmetry under the interchange of x; and x4, the
potential energy is re-expressed as

_ Gy} 3 A’y
L 2
_ —ﬁpl/ (1426, (2B oy (2.8)
3 M, 4

where we arrived at the last part of Equation 2.8 by taking the second integral in a spherical
volume. The initial energy, which is the sum of the initial kinetic energy and potential
energy, is then given by

10 s[ [ 1 22\ .
Ei = _EWGPZR ; 51( )R3 l_ﬁ d’x
10
= —g’ﬂ'Gpl R5 (29)

The parameter B is thus defined as

/ 5i(x R3 (1 — ?22) dx. (2.10)

It is important to note that the integral in the definition of B is a three dimensional integral
whose domain is within a sphere of radius R;, and we assume J;(x) is a random Gaussian
field. Physically, B is the linear overdensity in the inner regions of a spherical region of
initial radius R;. For a given halo with initial radius R;, the total initial energy of the halo
fixes B.
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2.1.2 Virialization Time

In the linear regime, density perturbations grow linearly with scale factor until they reach
a critical value, after which they turn around from the uniform expansion of the universe
and collapse to form virialized dark matter haloes. Various relaxation processes occur
during the collapse of a spheroid from rest which prevents the object from collapsing to a
point. However, one can safely assume that the collapsing object virializes at around half
its radius at turnaround [72]. To examine this, consider a test particle with unit mass on
the boundary of a spherical region of radius R;, and initial mass, M, the total energy e of
the particle is given as
v GM

e = & _

2 R;
Assuming that the collapse time of the particle is approximately the same time necessary
for the particle to be virialized, the collapse time ¢ can be written as

2nGM

t= e (2.11)

With the mass, M interior to the test particle assumed to be virialized at t, we then relate
the initial density to the collapse time through

5 R By
— % = —H?R?/ 8 — . 2.12
€ 47T 1 7 0 R? ( )

Using the Friedmann equation and that M = (4/3)wR3p;, we define

R; B 9 37‘(’4 1/3
A= S = = 2.13
/0 R} 5 (t?Gpi) (2.13)

Therefore, A relates the initial density perturbation of a spherical region to the virializa-
tion/formation time of a dark matter halo. Physically, in contrast to B, A is the mean
linear overdensity of a region before collapse. Notice that Eq. (2.13) is equivalent to
the standard spherical collapse threshold, when translated into linear overdensity today:
A — by ~ T x 1.686 for Einstein-de Sitter cosmology [72].

2.1.3 Probability Distribution of the Parameters A and B

The parameters A and B are dependent on the linear density field which is a random
Gaussian field. In this subsection, we study the resulting joint probability distribution of
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A and B. Recall that we had defined

>

R;
A = /O 6Z(X)R—?,

R; 1 132

Assuming Gaussian statistics for the linear density field, the probability distribution func-
tion for A and B takes the form:

and

P(A, B)dAdB =
1
ex
27T\/Z P

[_% ((B*) A* 4+ (A%) B> + 2 (AB) AB)} dAdB,
(2.14)

where L = (A?) (B%) — (AB)?. To determine this distribution, the values of the various
spectra, (B?), (A?), and (AB) will have to be evaluated. To this end, we rewrite A as

d*x
A:/}T?(Fi(x)U(x),

where U(x) = 0(R; — |x|), is a step function. Evaluating the average of the square of A in
the Fourier space gives

1 ® k2dk |~ |2
a2y = [ |Tw] P 2.1
where U (k) is the Fourier transform of U(z) and the power spectrum, P(k) is defined by

(271')353(1{ + k,)PU{?) = <5k5k’> .

The power spectrum is the Fourier transform of the spatial correlation function, which
is invariant under spatial translations and rotations. It is pertinent to note that this
invariance is expected since the cosmological field is spatially homogeneous and isotropic.
We should note that the standard definition of the variance of a spherical top-hat linear
density perturbations is related to (A?) by

47

—2
o}(M) = <?) (A%, (2.16)
after extrapolating A using linear growth to today.

15



1.0

0.5 _
o
< 0.0t -
oA
—0.51 _
-1.0 . . .
-1.0 -0.5 0.0 0.5 1.0
B

Figure 2.1: A typical joint probability distribution of the parameters A and B (extrapolated
to today using linear growth) for a spherical region of comoving radius, R = 8h~! Mpc
(Mago =~ 3 x 10" M). The contours show the 0.68, 0.95, 0.99 confidence regions in the
distribution.
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2.1.4 Jeans Equation

The spherical Jeans equation relates the integrated mass, M (r) of a spherically symmetric,
dispersion-supported, collisionless system to its radial velocity dispersion, o(r) and mass
density, p(r), under the assumption of dynamical equilibrium. In a generalized coordinate

system, the Jeans equation governing a system in dynamical equilibrium [31] is given as
0 0 0P
57 (00 + 5 (p (its)) + 58 = 0. (2.17)

Note that if the density, p, and the potential, ®, are known, then this is a system of
three equations with six unknown second order velocity moments. To close this system of
equations, we assume that the mean velocity (streaming motion) of the particles in any
direction, and the velocity covariance among different components are zero.

Evaluating Equation 2.17 in spherical coordinates, the spherical Jeans equation in the
static limit is given by

Do) L 2, 12y~ 2 () — L (13) = —p 22 (2.18)

In terms of the dispersion, o2, the velocity anisotropy parameter is defined as,
o\ 2
B=1-— (—t) : (2.19)
T
2 2
where 02 = 09;% and o, are the tangential and radial component of the velocity dispersion

respectively. Thus, the familiar Jeans equation for a spherically symmetric system in
equilibrium is given by,

d 2 dd

e (po7) + ;Pﬁaf =P (2.20)
The velocity anisotropy parameter  measures the deviation of the motion of a system of
particles from isotropy. For purely circular orbits, o, = 0, § = —oo, whereas for purely

radial orbits oy = 04 = 0, 8 = 1. For isotropic motion, o, = 09 = 04, 8 = 0. The Jeans
equation can be solved for the dependence of the radial velocity dispersion on radius for a
fixed density profile and velocity anisotropy profile. While it is easy to solve Jeans equation
for isotropic velocity dispersions, simulations show that haloes are not isothermal and thus
have radially dependent velocity anisotropy profile. Various studies have revealed that this
velocity anisotropy profile is a nonzero radially varying function, with a value close to 0 in
the centre to approximately 0.4 in the outer regions of the halo [17, 75, 81, , 74, 82, ].
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[177] likened this relation to the ratio of the gravitational potential energy to the kinetic
energy within the NFW scale radius for haloes with the NFW-like density profiles. For the
purpose of our calculations, we assume that the anisotropic velocity dispersion parameter

B(r) is linearly related to the logarithmic slope of the density profile, d;nh’j (:) (75, 177] in an
almost universal way by
Ldlnp(r)
=1-115 |14 -———— 2.21
pr) [+6 dmr] (2:21)
The solution to the Jeans equation is thus given by
! (4! ! d<¢>(7:’)
p(r)oy(r) = Jo ) pr) (2.22)

F(r) ’
F(r) = exp (/O 2655,)) , (2.23)

where we have assumed p(r)oZ(r) — 0 as 7 — oo. Numerically calculating the velocity
dispersion as a function of radial distance for a halo with an N F'W profile, a concentration
of 4, and an anisotropy profile given by Equation 2.21 yields the velocity dispersion profile
shown in Fig. 2.2. The radial distance is in units of virial radius, 999, while the radial
velocity dispersion is normalized to its value at the virial radius. The velocity dispersion
increases rapidly with radius at small radii (near the minimum of the potential), reaches a
peak and then decreases outwards.

Although haloes are approximated to be in equilibrium at the virial radius, there is a
continuous infall of matter onto the halo boundary and therefore a considerable amount
of surface pressure at the boundary [166]. Integrating the Jeans equation (2.20) over a
spherical region, the expected correction to the virial theorem due to infalling matter at
the boundary is then given as

2K + U ~ 4rrpo? : (2.24)
T=T7200

The first term on the LHS is twice the total kinetic energy of the region, while the second
term is the gravitational potential energy. The RHS in the Eq. (2.24) appears due to the
non-vanishing external pressure at the boundary. For a vanishing pressure on the boundary,
we have the familiar virial relation — the sum of the potential energy and twice the kinetic
energy is zero. We can now solve the Jeans equation (2.20), using the anisotropy parameter
B(r) (2.21) and virial theorem (2.24), for any density profile p(r) (e.g. NFW or Einasto)

to find:
_ Amrdpo?

= U 5

T=r200

(2.25)
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Figure 2.2: Radial dependence of the radial velocity dispersion, based on solving the Jeans
equation with anisotropy parameter (2.21), for an NFW halo with ¢ = 4. The radial

distance is in units of virial radius, ro9g while the radial velocity dispersion is normalized
to its value at the virial radius.
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2.2 Halo Concentration and Mass

In this section, we derive a relation between the concentration and mass of dark matter
haloes by assuming that the total energy of a spherical region before collapse is equal to the
total energy of the virialized halo formed from the collapse. This assumption is justified
for spherical regions which are not coupled to the expansion of the background.

2.2.1 Spherical Collapse

The spherical collapse model [72] describes the formation of structure from the collapse of
a spherical region perturbed in density. Let us first define a dimensionless measure of the
total energy of the halo, F, as:

AE 1 2/3
= — . 2.26
y 3M200 (27TGM200H) ( )

We can use the modified virial theorem (Equations 2.24-2.25) to find the final energy
E; of the virialized halo in terms of its density profile:

AE; ( 1 >2/3_ 1(200)1/3r200(1—w)U

Yr =

" 3Mope \ 270G Mooy H 3\ 72 GM3Z,
1 /200\"? Um(< )

_ L2000 M=y 2.2
3 ( us ) ( CL))/o v 220

where x and m(< z) are the radius and enclosed mass in units of 7999 and Mag.

After solving the Jeans equation to find w, as described in the last section, Equation
2.27 gives yy in terms of concentration of the halo for any assumed halo profile. A fitting
relation for ¢(yy) accurate to 10% for 0.5 < yy < 20 and 0.1 < a < 0.52 for the Einasto
profile is given by:

10g Crinasto = a1(a) Iny? + ag(a) Iny; + az(a), (2.28)
where

a(a) = —1.14a* +0.89a — 0.17 (2.29)
az(a) = 0.35+0.0da" "

as(a) = 0.50a %%
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We have also already derived the initial energy, E;, of the spherical region in Section
2.1.1. Combining Equations (2.9) and (2.13), we find:

AF; 1 B )
= = = (Ht)™? 2.30
Y 3M200 (27TGM200H> A ( ) ’ ( )

which only depends on cosmology and the statistics of the linear initial density field
(through A and B). A similar relation accurate to 10% also for 0.5 < y; < 10 using
the NF'W profile is

log expw >~ 0.78 Iny s + 1.09. (2.31)

Fixing the virialization time, ¢, fixes A (or the spherical collapse threshold) through
Equation (2.13), which in turn fixes the probability distribution of B through Equation
(2.14):

— Y=~ = ~ 0.42 2.32

with a Gaussian dispersion from the mean given as,

<B> (B) _ (AB)

AB
- —_ 7!
A (A?)

~ 0.083v°% (0.1 <v <10) (2.33)

where L = (A2) (B?) — (AB)?, and v = 6,./o(M) is the standard measure of peak height
with d,. &~ 1.68. Fig 2.3 shows the behaviour of <§> and its dispersion as a function of
radius (mass). Note that, while Equations (2.32-2.33) provide accurate fits for ACDM
linear power spectrum, they can be used for arbitrary power spectra and cosmologies using
their definitions in Sec. (2.1.3)

We are therefore completely armed with all the necessary tools to derive the concentration—
mass relation, simply by assuming:
Yi = Yy (2.34)

in Equations (2.28-2.33). Fig. 2.4 shows our derived relation for the spherical collapse
model using the NFW profile. This shows a nearly constant relation, irrespective of mass,
and a scatter that decreases with mass. For the Einasto density profile, the expected
concentration is 10% higher than that of the NFW profile. These results clearly do not agree
with the well-known results from N-body simulations — the concentration—mass relation
decreases with mass [1241, 35, , , , ]. However, as we will show in Section
2.3, they agree reasonably well at large masses. One reason for this is that the spherical
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Figure 2.3: The average value of <§> and its dispersion, AB for various radii (masses).
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Figure 2.4: The mass—concentration relation of dark matter haloes with an NF'W density
profile derived from the spherical collapse model for the ACDM cosmology at z = 0. The
red dashed line gives the average value while the region between the thick black dots gives
the dispersion in concentration for a fixed halo mass.

collapse model is well suited for collapse of high mass haloes but fails at low masses [150].
The spherical collapse model also evolves weakly with redshift (our relation changes little
with redshift through the Ht variable y;), thus agrees with the results of [65] and [100] that
concentration of high mass haloes evolves weakly with redshift. In the next subsection,
we incorporate the corrections due to the ellipticity of the low mass haloes to the mass—
concentration relation.
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Figure 2.5: The concentration of dark matter haloes as a function of mass for haloes
with NF'W density profile and ACDM universe (WMAP5 Cosmology) at z = 0. The black
line shows the results of the mean concentrations derived from our model with the yellow
region as the dispersion for fixed masses. Also shown are the concentrations from recent
literature [54, , 94]. The region in darker yellow show the range of masses probed by
most N-body simulations, while lower masses use extrapolations by different groups. The
decrease in concentration with mass can be interpreted as a result of the decrease in the
critical collapse density as the mass increases. Previous results [1241, 65, 86] reveal that the
halo concentration is a measure of the density of the universe at formation since smaller
masses form earlier.
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2.2.2 Ellipsoidal Collapse Model

The spherical collapse model in its simplicity oversimplifies the formation of bound objects
from collapse. Our modifications to the spherical collapse model stems from the assertion
that perturbations in Gaussian density fields are triaxial [51]. Although the spherical
collapse model makes reasonably simple analytic predictions regarding the shape of the
mass function of bound objects, when compared to simulations, it has more low mass
haloes and less high mass haloes [150]. The considerable reduction of this discrepancy
with haloes remodelled with the ellipsoidal collapse model motivates the consideration of
a similar remodelled collapse in the concentration—mass relation. The spherical collapse
model described in Section 2.2 assumes that collapse occurs if the mean initial density of
a region exceeds a critical value, ds.. This critical value is independent of mass or radius
(only dependent on redshift, z) of the region and is thus known as the constant barrier.
This implies that at a fixed redshift, all haloes with average initial overdensity greater
than dg. will collapse. However, [150] modified this relation for assumptions of ellipsoidal
collapse, also known as the moving barrier. This modification is based on the fact that the
critical overdensity for ellipsoidal collapse, d.. depends on the mass or size of the collapsing
region. An interesting consequence of this mass dependence is that smaller objects, which
are more likely to be influenced by external tides, should have larger initial overdensities
to hold them together as they collapse. This effect leads to a higher collapse time which
verifies the results of [18]. Although a fixed mass fixes the collapse time (equation 2.13)
for the spherical collapse model, due to the range of ellipticities and prolatenesses in an
ellipsoidal collapse, there is a range of collapse times for any fixed region (mass).

po(t)
det (0x;/0q;)
po(t)

" det [6;; + D(t)(0p;/0q:)] (2.35)

p(r,1)

The tensor g;”? is known as the deformation tensor. This matrix can be diagonalized
J

at every point, q to yield a set of eigenvalues as a function of q. The eigenvalues, \;
> Ao > A3, define a coordinate system in which a certain volume preserves its original
orientation upon deformation. Alternatively, one can also describe the shape of a region

by its ellipticity, e, and prolateness, p, [150] defined by
_)\1—>\3 _)\1+>\3—2)\2
¢=—0s and p = % (2.36)
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Figure 2.6: The concentration of dark matter haloes as a function of v = §./c(M, z) for
haloes with NFW density profile for the ACDM universe (Planck Cosmology) at z = 0. The
parametrization in terms of v is preferable since it incorporates both the mass dependence
and redshift dependence of the concentration. As in Figure 2.5, the black line shows the
results of the concentrations derived from our model, while the regions in darker colour
show the mass range probed by N-body simulations. Also shown are the concentrations
from recent literature [106, 94]. The red error bars show the dispersion of the results for

[106].
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Figure 2.7:  The concentration of dark matter haloes as a function of v = §./0(M, z)
for haloes with Einasto density profile for the ACDM universe (Planck Cosmology) at
z = 0. As in 2.5, the black line (yellow region) shows the results (dispersions) of the
concentrations derived from our model. Also shown are the concentrations from [94] with

its 10% dispersion at fixed mass. The difference in color shades have the same meaning as
in Figure 2.5
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The eigenvalues are ordered such that e > 0 if 6 > 0, and —e < p < e. A spherical
region has e = 0 and p = 0. Following [150], the evolution of an ellipsoidal perturbation
is specified by the eigenvalues of the deformation tensor or alternatively by the density
contrast ¢ and the initial ellipticity, e and prolateness, p of the linear tidal field. One can
then construct the initial overdensity for collapse de.(e, p), for any e and p. An average
collapse overdensity de.(0), can be estimated on a scale R parametrized by o by averaging
over the distribution of e, p, and §. For p = 0, the relation between .. and mass is fitted
by

bec(V) ™ 0se (L4 kv7?7), with & = 0.47 and v = 0.615, (2.37)

where v = §s./o(M) is the standard definition of the peak height parameter.

All these steps can be combined into three lines to give concentration at 10% precision,
for arbitrary redshift, cosmology, and halo mass (as long as the power spectrum does not
deviate too widely from ACDM):

123 ~0.6
Y = 0.42 + O.201(/Ht>2/§: 0.083v ’ (2.38)

log Crinasto = ar () log ys® + aa(a) logys + az(a), (2.39)
log expw = 0.78Iny + 1.09. (2.40)
(2.41)

2.3 Discussion and Conclusion

Qualitatively, the concentration of dark matter haloes is a decreasing function of mass that
flattens at very low and very high masses. This feature — decrease of concentration with
mass — can be attributed to major mergers that lead to bigger haloes, but disrupt the inner
regions of haloes that subsequently decreases concentration. We have used the conservation
of energy to derive the concentration—mass relation of CDM haloes. The robustness of our
prescription lies in the fact that one can compute the concentration—mass relation for
any cosmology by using the cosmology-dependent power spectrum, cosmic age, and linear
ellipsoidal collapse threshold, d... Our results show that the concentration of a halo is
set by the initial total energy of the region prior to collapse, as well as the cosmological
parameters at collapse time. Small mass haloes mostly collapse from ellipsoidal regions
and are better described by the ellipsoidal collapse model while large mass haloes are well
described by spherical collapse model.
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Several analytical relations exist in the literature for the concentration—mass of CDM
haloes, though fitted through numerical simulations. [106]’s model generates the concen-
tration of CDM haloes from simulated and analytic mass accretion histories of haloes.
Their model predicts that at very low masses, the concentration varies slower than one
should expect from power law fits at high masses. This feature, according to the authors,
is a consequence of the shallow slope of the linear power spectrum at very low masses/small
scales. However, at high masses, it approaches a constant value. This characteristic cor-
roborates the expectations from our model and is consistent with earlier results of [130].
[145] also predict a theoretical mass-concentration relation through their theoretical den-
sity profile which relates to the accretion rate of haloes. The free parameter of their model
is then fit to the mass-concentration relation of [180]. The concentration-mass relation
agrees with ours within the simulated range, flattening around 10 M, with a surprising
upturn beyond 2 x 10'5M. Although the concentrations derived from our model may be
different when compared to those from the millennium simulations at some masses, it is
marginally consistent within the range of dispersion as shown in Fig. 2.6. Our predicted
halo concentrations also have dispersions around the median at fixed masses [35, 97]. A
novel feature of our prediction is the decrease in the dispersion of the concentration with
mass. This agrees with the results of [127], which suggests it may be the result of massive
haloes collapsing recently and are thus more homogeneous. On average for different mass
bins, [127] had dispersions in their concentrations of about gy,4,,. = 0.1 for relaxed haloes,
which is marginally consistent with our dispersions at fixed a masses for medium-sized
haloes. At z = 0, our predictions are consistent with the concentrations of [13] and [30]
for very small microhaloes. Our method does not suffer from the lack of scalability [138],
it is therefore applicable to any set of cosmological parameters. Though our results have
been exclusively reported for z = 0, it is applicable to different redshifts through the red-
shift dependence of v — the usual scaling of the variance o(m) by the cosmological growth
function, D(z) and slightly through the Ht parameter in the definition of y, Equation 2.38.
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Chapter 3

Prospects for the Indirect Detection
of Dark Matter from (Gamma rays

The ACDM (A cold dark matter) cosmological model predicts that over 25% of the total
energy density in the universe is contained in cold dark matter — particles with generally
small random velocities [136]. The gravitational effect of dark matter was originally in-
ferred from unexpected high velocity dispersion of galaxies in the Coma cluster [184]. This
evidence was further supported by the flattening of the rotation curves, with increasing
distance from the galactic centre, of spiral galaxies [113] and through gravitational lensing
— the bending of light path when it passes by a massive object The mass reconstruction
of a galaxy-cluster collision indicates that the ratio of non-luminous matter to luminous
matter is very high [38]. Given these pieces of evidence, techniques to detect the dark
matter particle abound. Candidates for dark matter include the sterile neutrinos — hy-
pothetical particles proposed to explain the mass of the Standard Model (SM) neutrinos
observed via neutrino oscillations and the see-saw mechanism; weakly interacting massive
particles (WIMPs) — hypothetical stable, neutral, massive particles with weak interaction
cross-sections and could account for the current dark matter density e.g. the neutralino
(the lightest neutral particle in an extension of the Standard Model, Supersymmetry); and
axions — a massive particle that appears in a symmetry that solves the strong CP problem
in Particle Physics (See [151] for more details). Dark matter particles may be detected
through their direct scattering with atomic nuclei [116], through their production from
Standard Model particles in particle colliders or through the products of their annihila-
tion such as neutrinos, gamma rays, matter and anti-matter [92]. Signal from products
of annihilation such as gamma rays may be detected via the Fermi gamma-ray space tele-
scope, major atmospheric gamma imaging Cherenkov (MAGIC) telescope, high energy
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stereoscopic system (HESS) or very energetic radiation imaging telescope array system
(VERITAS) at the centres of galaxies including the Milky Way. The Large Hadron Col-
lider (LHC), on the other hand, searches for dark matter particles that may be produced
from the collision of protons at high energies of 7 TeV [90]. Direct detection experiments
on the other hand search for nuclear recoils that may appear through the scattering of
a dark matter particle and a target nuclei. These experiments include DAMA, CDMS,
CRESST-II, XENON, LUX, etc; see [116] for a more comprehensive review of direct de-
tection experiments. This chapter sharpens our search for dark matter through indirect
detection using individual haloes as targets.

In order to clearly detect the signal from products of dark matter annihilation, a good
understanding of the distribution of haloes in the Universe, substructure in haloes, and
the radial distribution of particles in a halo is required. These include the density profile
of haloes, the concentration-mass relation of dark matter haloes, and the modelling of
subhaloes in individual haloes. In addition, the assumed mass of the particle and the
cross-section for interaction both play various unique roles in the predictions. Current
knowledge of these halo properties stem largely from numerical N-body simulations and are
occasionally supplemented by semi-analytic models of structure formation. Although there
is uniformity in these estimated properties within the regions explored by the simulations,
extrapolating these relations to low masses (where resolution effects prevent the direct
exploration of these regions in numerical simulations ) lead to quite a disparity in the
estimates of various authors. In addition to studying the uncertainty from dark halo
concentration and substructure models, this chapter explores and predicts the signal- to
noise ratio from gamma rays as a function of mass. The dark matter annihilation signal
from the galactic and extragalactic region have been explored in [14, 4, 2, 10] and the effects
of substructure considered in [159, 96, , 92]. This work differs from similar works in
this area through the inclusion of the noise sources of gamma rays from individual haloes
— due to activities such as star formation leading to a predicted signal-to-noise ratio as a
function of halo mass. The outline of this chapter is given as follows: we introduce and
estimate the boost from individual haloes due to structure and the different halo properties
in Section 3.1, we study the effects of including the subhaloes in haloes in Section 3.2, we

make estimates for the expected signal-to-noise ratio as a function of halo mass in Section
3.4
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3.1 Boost estimates from the individual halo proper-
ties
3.1.1 Boost over a halo

Given a neutrally-charged dark matter particle y and its antiparticle Y, its rate of annihi-
lating into another particle and antiparticle is given by

R= <;”> / P2V, (3.1)

2

X
where m, is the mass of the particle and (ov) is the velocity-averaged cross section of the
particles. The density profile of the halo of DM particles in a region of volume V' is given
by p. For a smooth halo of constant density p, the integral in Equation (3.1) is simply
given as pM;. For haloes with radially varying profiles, Equation (3.1) depends on the
details of the halo density profile. In general, Equation (3.1) is rescaled by a boost factor
for real haloes. The dimensionless boost factor B, may be defined as

2dV
Bh = f_p2h
p*V.

(3.2)

Evaluating Bj, depends on the density profile and the truncation radius of the halo (for
the rest of these work the halo will be truncated at the virial radius — Ragp).

Figure 3.1 shows the dependence of Bj; on the concentration of haloes for the NFW
profile and the Einasto profile (for four different constant shape parameters ). The boost
from the haloes starts to steepen for haloes with concentrations ¢ > 3. Although the NFW
profile is a universal profile for different masses, the value of the shape parameter in the
Einasto profile isn’t universal. It increases as the mass of the halo increases [05, 56, 94].
In terms of the linearly extrapolated overdensity 0. and the density variance o (M, z), the
variation of the shape parameter in mass is parametrized with the peak height parameter

Y A
V= o(M2)"

a(v) = 0.155 4 (0.00950?)

alv) = 0.115+ (0.01407) (3.3)
for [05] and [94] respectively. In the following subsection, the effect of the concentration of

haloes on the boost factor is discussed.



__T200
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Figure 3.1: The range of boost predictions as a function of concentration for the NFW and
Einasto profile (with four different shape parameters).
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3.1.2 Effects of the concentration-mass relations

Following the study of the halo profile and initial modelling of halo concentrations by [124],
a number of concentration-mass relations/models have been proposed over the years. Our
aim in this section is to quantify the range of realistic concentrations allowed by a number
of concentration-mass relations in the literature. The concentration reflects the density
of the universe at the formation epoch of the haloes [35, | — high mass haloes have
smaller concentration because they recently formed and the small mass haloes have a
higher concentration because they formed at a time when the universe was denser. Halo
concentrations are also related to the different regime of a haloes history, with the rapid
accretion regime having a constant concentration and the slow accretion regime with a
higher concentration [I81] and in general the mass accretion history of a halo [170, 106].
So far, all the above prescriptions agree that the concentration is a decreasing function of
mass or plateaus at high masses at low redshifts.

Contrary to the above expectations for high masses, some concentration-mass relations
predict an increase with mass for high masses and at high redshifts especially for masses
higher than the typical collapse mass for that redshift [95, , 50, 19].  Although this
reported upturn has been controversial, a recent paper [91] aimed at investigating this
disagreement found that the concentration-mass relation has, in fact, three trends — a
regime of decreasing concentration with mass, one of roughly constant concentration with
mass and a trend in which high mass haloes have higher concentrations. Higher-than-
expected concentrations for the high v end are attributed to the fact that the high v
haloes are not well fit by the NF'W density profile but by the Einasto profiles. As expected
from [65], at z=0, the high v haloes have higher values of the alpha parameter and the
concentrations of haloes of a given mass are higher for haloes with higher alpha. Thus,
contrary to the speculations that the higher concentrations measured for high peak haloes
at high redshifts are due to non-equilibrium effects [108] or the prescription for calculating
the concentration (using the peak circular velocity or the fits to the density profile) [see
[50]], [91] concur that these relations are real and that their very large suite of simulations
had good mass resolution to probe this effect.

The concentration-mass relations have been traditionally based on the fits to the halo
mass. However as pointed out by [109], these fits in terms of mass are only good for
the cosmology for which it was fitted and may not be used for a given set of different
cosmological parameters such as €2,,, h, og. In addition, extrapolations of these relations
to lower masses lead to very high concentrations (¢ ~ 1000 at the present day) that have
been ruled out by high redshift simulations such as [13, 86]. These simulations start up
with initial conditions at z ~ 400 and run till z = 32. The masses of the microhaloes are
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Figure 3.3: The top plot shows the two variants of the a(v) relation from [65] and [94]
while the bottom plots shows the ¢ — v relation from [129] (OA16) and [94] (K16) for the
NFW profile and Einasto profile.
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Figure 3.4: The range of a single halo boost as a function of v given different choices of
the density profile, o shape parameter and halo concentrations at z = 0. The thick red

(black) curves are the concentration-nu relation from [94] ( [129]) for a given profile. The
thick lines are for the NFW profile while the thin-dashed (thick-dashed) lines are for the
Einasto profile with the «(v) relation of [65] and the c-v relation of [94] ( [129]).
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Earth-sized, which are closer to the cutoff scale of the dark matter particles. Although
the density profiles of these microhaloes were different from those of NF'W, the measured
concentrations were rescaled to those expected from an NFW profile at the present day
to give median concentrations of 60 — 70 for the [36] simulation and 94 — 124 for the [13]
results. [35], [181] and [138] are some of the models that express the concentration in terms
of o(m), the variance of density fluctuations. The parametrization in terms of ¢ or the
peak height parameter v scales out the dependence on cosmology and partly the redshift
(see [19] for more details). In the concentration-mass space, the concentration then flattens
out at very small masses [116]. Given the shortcomings of the parameterization in terms
of mass discussed earlier, we will focus on concentration relations parametrized in terms
of the mass variance o(m) or the peak height parameter v = §./c(m). Figure 3.2 bears
out the current range of the concentrations for different halo masses at 2 = 0. The high
mass end has been sampled a lot more and thus the relations agree to within 20%. The
low mass end has a wide range of median concentrations which subsequently leads to a
range of uncertainties in the boost prediction (~ an order of magnitude). For predicting
the uncertainty in concentration in the rest of this work, we will adopt the lowest and the

highest low-mass concentration estimates i.e [91] and [129] respectively which are given by:
o \3/4 oo\ -2
—0522 14737 (=) | 14004 (50 3.4
NFW { * 0.95 ] { * 0.95 (3:4)
and

0.696 2 171\ "

respectively. Similar equations may be written for the concentration of haloes with the
Einasto profile in the same order as follows:

cemNasTO = 6.5 710 (1 + 0.211/2) (3.6)
395 138
CEINASTO = 2.28 + (7) (3.7)

The above relations are usually the mean/median concentration-mass relation for a
range of masses. It is paramount to note that the for a given mass, distribution of concen-
trations is a log-normal with a scatter ojog,, . of about 0.18 [35, 35]. [127] also investigated
the distribution of concentrations and concluded that the distribution for the relaxed (un-
relaxed) haloes agrees well with a lognormal distribution with some mean and scatter
(smaller mean and larger dispersion). The dispersion also has a weak mass dependence
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in which the large mass haloes have lower values. The values include 0.106 for haloes of
~ 10*2h~1 M to 0.06 for large mass haloes of about ~ 10'°A~* M. This may be attributed
to the rarity of the large mass haloes and the fact that abundant smaller haloes have a wide
range of assembly redshifts. The cyan region in Figure 3.2 shows a mean mass independent
range of halo-to-halo scatter given the average concentrations.

For a single halo, the uncertainties in the halo profile, the various choice of the «
relation (discussed in the previous section) and overall uncertainty of the concentration-
nu(mass) relation may be combined to give an expected boost as a function of the peak
height parameter v. These combined effects are depicted in Figure 3.4. For the rest of this
chapter, the NFW profile will be used as the baseline, while allowing for about 2 orders of
magnitude on estimates for the Einasto profile, the various shape parameters and different
halo concentrations.

3.1.3 Scatter in the halo concentrations

In making the boost estimates in the previous section, we have used the mean of the halo
concentrations. However, the concentrations are log normally distributed for a given mass.
In the following, we will consider the effect of this scatter on halo concentrations on the
expected boost for a given halo. Consider the distribution of concentrations at a fixed
mass given as

P(log(c)) = \/21_7m exp {— (log CZ_U;Og 2k }dlog c (3.8)

Also, P(c) my be expressed as

P(c) = ﬁ exp {— (logCQ—Uiog 2 }dc (3.9)

Since By, is a monotonically increasing function of ¢, say h(c) as seen in Fig 3.1, one can
find the inverse function that gives ¢ as a function of By, h™'(By,). The distribution of the
boost can be derived from the distribution of the concentrations, given a relation between
the boost and the concentrations, as

dhil(Bh)

1
B, (3.10)

P(By) = P(c(By)) \

Relative to other uncertainties, we found that the effect of the scatter in halo concentrations
after all calculations, at a fixed mass, in the estimate of the boost is negligible for the range
of halo masses we are interested in and will therefore be ignored henceforth.
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3.2 Effects of substructure

3.2.1 P2SAD prescription

In this section, we investigate the effects of substructure using the particle phase space
average density (P2SAD) of [178]. This model is based on the stable clustering hypothesis
in phase space which may be simply written — that for very small separations in phase-
space coordinates Ax and Aw, the average number of particles within a particle does not
change with time. This hypothesis, together with a tidal stripping model, successfully
described the survival fraction and spatial distribution of subhaloes in a halo. Thus, the
contribution of substructure (which includes all subsequent layers of substructure if there
are any) to the boost factor may be estimated for various mass and redshift. Towards this
end, the relevant equation for the boost due to existing substructure is given by

87/26%200pc.0 fsub Ma00 /m“

Bsu =
’ 943

:u(mcol)m_2d[m(2:ola3(mcol)]7 (3.11)

col

Mmin

where By, = f p*dV is the contribution to dark matter annihilation due to substructure,
p(meer) is the mean fraction of particles that are bound for a given mass that collapsed
earlier into a larger structurem,,, d. is the spherical collapse density, b = 3.53, My, and
Mmax are the minimum and maximum masses in substructure for a given halo mass and
o(m) is the cosmological variance in density perturbations for a given mass. Thus to relate
this boost factor to our previous definitions of the boost, (i.e relative to the mean density),
we define the boost including substructure as By and is given as

Rsm + Rsub
PV

RS’LL
= B, (1 + RS,:> (3.12)

Bhs =

The P2SAD prescription thus includes the effect of the substructure to the expected boost
from the presence of structure By. Figure 3.6 illustrates the effect of substructure on the
boost using the P2SAD prescription.

3.2.2 Analytic substructure model

In this section, we consider the effect of substructure within a given halo using some
proven analytic prescriptions. Consider a main halo of mean density p and volume V', with
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the smooth component of mean density p; contained in a volume V; and the subhalo of
mean density ps contained in volume V3, then the estimated total boost from these two
subvolumes is given by

N
_ [(%) (%) FVi)+ (%) (%) f(%)} T

where M; and M, are the smooth and subhalo mass contribution to the total mass M
respectively and f(V}) and f(V3) are the boost estimates from the smooth component
and the subhalo component respectively. To first approximation, the mean density of the
smooth component is approximately same as the mean density of the halo. Thus, p ~ p;.
Assuming the mass fraction in subhaloes is X, then the fraction in the smooth component
is (I — X). The total boost may then be written as

(3.13)

V) = (1- X)f(Vi) + (%) XF(Vh). (3.15)

Till this point, we have only assumed a single subcomponent to the main halo. In
reality, however, we expect a halo to have multiple subhaloes. Generalizing equation 3.15
to include multiple components gives

fro=(0=X)fam+ Y (@) X fi. (3.16)

i € subhaloes Ph

While the properties of the smooth haloes are estimated within the virial radius r,;., the
properties of the subhaloes — such as M;, p;, f; are estimated within the tidal radius, ;.
The tidal radius is the radius where the tidal force from the host halo becomes equal or
greater then the self gravity of the subhalo. As a subhalo orbits a host halo, mass is lost due
to tidal stripping until it gets to the tidal radius. Thus to estimate the boost contribution
from subhaloes, we need to find the mass fraction contributed by subhalo i, (X;), the
average density of a subhalo, i within its tidal radius relative to the main halo’s average
density %, and the boost of the subhalo within its tidal radius, f;. We will enumerate on
how to determine these parameters below.

1. Subhalo boost of each subhalo within its tidal radius
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To estimate the subhalo boost within its tidal radius, we will use an equation anal-
ogous to equation 3.2 but with the density profile of the subhalo and the truncated
at the tidal radius. The density profile of a surviving tidally truncated subhalo is
expected to change from the initial density profile as the substructure orbits within
its host [76]. This density profile is a modification of the NF'W profile which is given
as

t

Jt , 3.17
1+ (r/rt)?’pNFW ( )
where f; measures the change in the central density due the tidal heating and r; is
the tidal radius. For the purpose of our simple estimates, we will assume that the
central density is unaffected by tidal heating and take f; = 1. Given the density
profile of a surviving subhalo in a host, the boost from that subhalo, f;,; is given as

_ f pSubdv

sub = ) y (318)

ﬁsubv

Psub =

which is estimated within the tidal radius r;. Given a subhalo that fell into the
host with some initial mass, m, and radius, r, and tidally stripped to a later mass
m and ry, we will denote the bound mass fraction as £ = . In line with [70],
we will assume that this bound mass fraction at z = 0 is given as k(z = 0) =
0.2+0.8exp(—2,,,.,), where z, ., is the infall redshift of the subhalo. This expression
implies that subhaloes/material that fell in at an earlier time are expected to be
bounded the least. For a host at a redshift, z, the bound mass fraction is given

as r(z) = 0.2 + 0.8 exp[—(-—*— — 1)], where a and a are the scale factors that

infall infall
correspond to z ad z, ., respectively. Given an expression for the bound mass
fraction, the tidal radius is chosen such that it satisfies the following equation for the
NFW profile at all redshifts:

m' (< ry)
m(< r)

= K(2).

. Mass fraction per individual subhalo

To calculate the mass contribution to the host from each subhalo, we first need to
understand how the halo accretes mass over time. This accumulation of mass is de-
scribed using the mass accretion history (MAH) of the halo. Given an analytic form
of the MAH of the halo as a function of redshift, M (z), the mass accumulated in
small redshift steps is given as dM = (dM/dz)Az. This build-up in mass includes
both bound and smooth material. To account for the bound material, the accumu-
lated mass will be modulated by the fraction of bound haloes of a given mass in
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Figure 3.5: The range of formation times, in terms of the scale factor, for various halo
masses following the prescription of [170].
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the universe at a particular redshift, fy,(M,z). Not every bound material initially
accreted survives due to the tidal force of the host halo, thus the surviving mass of
subhaloes is the accreted material modulated by the surviving bound mass fraction,
k(z). Mathematically, the mass fraction in subhaloes of a given mass at z = 0 is
given by

1 [>*dM
Xep(M;2=0) = Mo/o Efbh(M’ 2)k(z = 0)dz, (3.19)
where M, is the host halo mass at z = 0. To estimate this subhalo mass fraction at
z = 0, we will assume the form of the mass accretion history given by [170], related to

the scale factor at the formation epoch of the halo, a. and concentration of the halo at
z =0, c. The MAH is expressed as M (z) = My exp(—2a.2z) = My exp(—222). Figure
3.5 shows the mean formation scale factor and scatter for different halo masses. For
redshifts different from zero, the mass fraction in substructure may be generalized to

X (M: 2/ 4 0) = M%z’) / /OO dd]‘j (M, 2) k(=) d= (3.20)

The fraction of a given mass in haloes at a given redshift fy,(M, z) is expressed as

A
Fan(M, 2) = /M+ Yo dN S, (3.21)

M ,o_mdm

where 9% (m, z) is the halo mass function — the number density of haloes of a given
mass at a given redshift — and p,, is the mean matter density of the universe. This
fraction has been estimated using the halo mass function of [110]. Thus, the mass

fraction in subhaloes of different masses can be estimated at different redshifts.

. Density enhancement of each subhalo relative to the main halo

The final parameter that needs to be estimated is the enhancement of the subhalo
density relative to that of the host halo. Prior to being accreted into the host, a
subhalo is assumed to be virialized on average at a given redshift z, and should have
a density of 200p.(z), where p.(z) is the critical density of the universe at that redshift.
However, since the subhalo ends up being tidally stripped, this factor increases by
the ratio of the mean density within the tidal radius to the mean density within its
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virial radius 7, at the time of accretion. Thus,

ﬁsub(z) pc(z)ﬁ(< rt)
Ph P(0)p(< Tvir)

= () (3.22)

Putting all these factors together results in the estimation of a modified form of equation
3.16 which is given as

o [ pi(z) dXiZfi(z> s
fsm_(l X))+ Y /0 (ﬁh)dz()fsmA' (3.23)

i € subhaloes

and shown in Figure 3.6 as a function of halo mass. The plot has been made assuming the
concentration-mass relation of [91]. At a given mass M, all substructure with m < M,
contribute to the substructure boost.

3.3 Free-Streaming Mass scale

There exists a minimal mass of structure in the cold dark matter universe, M;;,, due to
the cut-off in the primordial power spectrum of density fluctuations. This cut-off in the
power spectrum may be due to the damping from the kinetic decoupling of the neutralino
or that due to free-streaming after the last scattering of the neutralino [30]. The exact
value for this cut-off mass scale depends on the particular details assumed for the dark
matter particle. We investigate the effect of the cut-off mass of substructure by varying
the limit for My, between 107%M and 1M, and is shown in Figure 3.8

3.4 Signal-to-Noise Ratio

3.4.1 Signal

The gamma-ray luminosity of the halo due to dark matter annihilation is given by the
boost factor calculated previously, times the halo mass, mean density, and the particle
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Figure 3.6: The boost from substructure relative to that of the smooth halo using two
different prescriptions — P2SAD and an analytic model. Also plotted is the expectation
from the tidal stripping model of [121] for @ = 2. The halo concentrations assumed are
those of [94]. The cyan region illustrates the effect of different formation epochs for a given
halo mass from the scatter in the halo concentration.
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factors discussed in section 3.1.1:

L= % 200 x pe(0) M, N, (3.24)

2
2mX

where B is the total boost from the halo, including the effects of substructure, M, is the
mass of the halo and N, is the number of photons above a given threshold, say 1 GeV,
produced by a pair of WIMPs annihilating.

As a concrete example, we will assume (ov) = 3 x 107 cm®s™, m, = 100 GeV,
N, = 30 and At = 8 years. The effective area for the Fermi LAT is 7200 cm? !. For these
parameters, and for a source distance of D = 10 Mpc, figure 3.7 shows the expected counts
from annihilation (top panel), from star formation (middle panel), and from the IGRB
(bottom panel). The annihilation calculation assumes an NFW profile, the concentration
relation of K16, and a mass limit of my;, = 1075M,.

3.4.2 Baryonic Noise Sources of Gamma rays

Given the expected gamma ray signal from annihilation for individual haloes, in this sec-
tion we investigate other sources of gamma ray signals that can contribute to noise that
may hinder the signal. Sources of gamma rays include pulsars, cosmic rays — from their
interaction with the stellar remnants of star formation such as supernovae or the gas in the
galaxy — in the galaxies. The dominant source of gamma ray noise is expected to be the
latter due the dominance of stars the pulsars in galaxies. Therefore, we will focus on the
gamma ray signal due to activities of star formation. To this end, we will need to assign
stellar masses to our haloes and then estimate the gamma ray luminosity from the star
formation rates (SFR).

Haloes are usually populated with galaxies using a variety of techniques which include
the abundance matching, halo occupation distribution (HOD) modelling, conditional lu-
minosity function (CLF) modelling, and using observed galaxy properties. In this work,
we will use the five-parameter function for the stellar mass-halo mass (SMHM) relation at
z = 0 given by [23]. This relation, chosen to maximize the likelihood of being consistent to
the observational constraints of stellar mass function (SMF), specific star formation rate
(SSFR) of galaxies, and the cosmic star formation rate (CSFR) at redshifts (z = 0 to
z = 8), may be expressed as

http:/ /www.slac.stanford.edu/exp/glast /groups/canda/lat_Performance.htm
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Figure 3.7: Gamma-rays produced by dark matter annihilation (top panel) ,star forma-
tion (middle panel), and from the IGRB (bottom panel), as a function of halo mass.
The annihilation counts assume a velocity-averaged annihilation cross-section (ov) =
3x 107 ecm?®s™!, a WIMP mass of m, = 100 GeV, N, = 30, and an observing time of
At = 8 years, for the Fermi LAT (effective area 7200 cm?). The boost factor used assumes
a NFW profile, the concentration relation of K16, and a mass limit of my, = 1075M.
The star formation counts assume the luminosity-SFR relation from equation 3.25.
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function of halo mass, for three different values of the lower mass limit to CDM structure,

M. In each case, we have assumed a NFW profile with the concentration-mass relation
of K16.
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Star Formation

Star-forming regions produce cosmic rays, whose interactions with molecular gas in turn
lead to pion creation. The resulting decays produce gamma-ray emission at energies where
it could mask dark matter annihilation. Earlier work by [3] and [5] showed that the total
gamma-ray luminosity seen by Fermi LAT above 100 MeV correlates closely with the star
formation rate (SFR) for the nearby galaxies that have been detected individually. More
recently, gamma-ray emission from star-forming galaxies has been considered in detail by
a number of authors e.g [157, 22, |. For the purpose of this calculation, however, we
will assume the simple empirical relationship of [3]:

Lspr = 7.4 x (SFR)', (3.25)

where L is in units of 10** photons s™!, and the SFR is in M yr—t.

We use the stellar-to-halo-mass-ratio (SHMR) relation of [23] at z = 0 to estimate the
mean stellar mass of the central galaxy in a given halo. This five-parameter function was
derived by fitting the stellar mass functions and specific star formation rates of galaxies
at redshifts z = 0-8, as well as the cosmic star formation rate over this range. It may be
expressed as

logo (M. (My)) = logyo(eMy) + f (mgm [%]) o (3.26)

where
(logyo(1 + exp(z)))”

1+ exp(10—7)

For z = 0, the parameters, «, 9, 7, log,, €, and log,, M; have best-fit values -1.412, 3.508,
0.316, —1.777, and 11.514 respectively.

f(z) = —log,,(10% + 1) +§

Given the stellar mass of the central galaxy, we then estimate its mean star formation

rate, by assuming the galaxy lies on the ‘star formation main sequence’ e.g. [117], such
that

M,

My 7

where «, 3, and My, are 1.04, 1.01 and 10%7M,, respectively, and the SFR is in units of
M yr~—!. Given this rate, we can derive a gamma-ray luminosity due to star-formation
from equation 3.25 above.

With increasing exposure, Fermi LAT has detected gamma-ray emission from a num-
ber of individual galaxies e.g. [3, 7], and possibly also from some galaxy clusters [119].
Most recently, [7] found emission from the centre of M31 that could indicate dark matter
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annihilation, though it may also come from more mundane sources such as pulsars. In
general, for typical galaxies a stronger contaminant in dark matter annihilation searches
are the contributions from the isotropic gamma-ray background (IGRB) [6], ongoing star
formation within the galaxy itself, and /or emission from an active galactic nucleus. While
it should be possible to avoid galaxies with AGN and/or spatially resolve out this emission
in the nearest galaxies, star formation is more ubiquitous and spread out, and thus harder
to avoid, while the contribution from the IGRB is unavoidable. Thus, we will focus on star
formation and the IGRB as the most important noise source in annihilation searches, at
least for haloes of group-scale or lower mass.

The IGRB

The diffuse isotropic gamma ray background (IGRB) is an all-sky gamma-ray emission
from unresolved sources after accounting for resolved sources, diffuse Galactic emission,
the Cosmic Ray background, and the Solar contribution from the total all-sky background.
Measurements of the IGRB using the LAT detector of the Fermi Gamma ray Space Tele-
scope at energies from 100 MeV to 820 GeV from over fifty months of LAT data indicate
an integrated intensity for energies above 100 MeV of 7.2 x 107% photons cm—2s~tsr™! [0].
Using this intensity, the estimated luminosity from the IGRB from individual haloes is
given by

Ligrp = 7.2 x 107%471R3,,, (3.28)

where Ry is the virial radius of the halo.

3.4.3 Signal-to-Noise Ratio

Observing a source at distance D for a time At with a detector of effective area Aqet, the
signal-to-noise ratio is then given as

Ly Agqet At /47 D2
\/(LSFR + Lh + L[GRB)AdetAt/47TD2 '

where Ay is the Fermi LAT detector area, D is the estimated distance to a halo, and At
is the observation time.

SNR =

(3.29)

To estimate the signal-to-noise of the annihilation signal for an individual halo, we will
estimate the stellar mass of its central galaxy, the typical star formation rate for an object
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with that stellar mass, and the resulting gamma-ray luminosity from star formation and
the IGRB using the relation above (Equation 3.29). We will then compare this ‘noise’ to
the ‘signal’ (Section 3.4.1)

We can consider the SNR in two cases, either that we observe different haloes at a fixed
distance, or that for each halo mass, we find and observe the nearest system. The average
distance to the nearest halo of mass M in a cosmological volume will be related to the
number density of haloes of that mass by D = n(M)~'/3. Thus, given a halo mass function
n(M), we can calculate D(M) and use this in equation 3.29 to get the SNR for a typical
closest source, as a function of halo mass.

Finally, the dashed (blue) curves on figure 3.9 show the importance of halo-to-halo
scatter; considering the effect on dark matter structure alone, there should be a factor of 2
or more scatter in the SNR for individual haloes. Since the primary origin of this scatter
is the variation in halo concentration, independent estimates of this quantity could help
select more promising objects for stacking. Variations in SFR will increase this variation
further. For fixed dark matter properties, targeting passive galaxies in concentrated haloes
may yield SNRs many times those of the median relation.

3.5 Discussion and Conclusion

To estimate the signal from annihilation for individual halos, the boost factors from smooth
haloes and substructure will have to be taken into account including the uncertainties in the
halo concentration. In addition to focusing on the uncertainties that arise in the predictions
of the dark matter annihilation, we have developed an analytical estimate for the signal-
to-noise ratio(SNR) as a function of individual halo mass that includes the scatter due to
halo concentration. Our estimates have been made using a conservative model of the halo
concentration and include the effects of baryonic noise from the background gamma-ray
radiation and that due to the formation of stars in the host galaxy(ies) present in the halo.
As seen in Figure 3.6, our estimates compare pretty well with those of [121] for the same
halo concentration model.

Based on our estimates, one can see that nearby groups of galaxies are good targets for
annihilation detection. Given that the biggest source of disparity arises due to variation in
halo concentration at the low-mass end that dominates the uncertainty in the estimated
boost from structure for the annihilation signal, more work is probably needed to under-
stand the concentration of micro haloes or at least to investigate the limiting mass for
surviving substructure orbiting in haloes today through simulations or observations.
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Figure 3.9: The SNR of the annihilation signal in our fiducial calculation, as a function of
halo mass. The solid (blue) curve assumes we observe the nearest halo of that mass, at a
distance scaling as D = n(M)~'/3. The dotted (red) curve assumes we observe haloes at a
fixed distance of 10 Mpc, independent of mass. The dashed lines show the 68% halo-to-halo
scatter, due primarily to differences in concentration.
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Chapter 4

Cosmological Neutrinos

Neutrinos are an interesting component of the Standard Model of particles that play a
number of unique roles in particle physics, astroparticle physics and cosmology. In the
Standard Model of particle physics, they are depicted as massless and not clearly associated
as Majorana or Dirac particles. Observations of flavour oscillations in solar and atmospheric
neutrinos point to the existence of neutrino mass. In cosmology, the presence of massive
active! neutrinos potentially resolves some of the tension between the observed galaxy
counts and those predicted by the Planck cosmological parameters as suggested by [175,

, 29].

Constraints on the mass-squared difference of neutrinos via oscillation experiments give
best-fit values of Am2, = m? — m? = 7.54 x 107°eV? and Am?; = m2 — (m? +m3)/2 =

2.43(2) x 1073eV? for the normal (inverted) hierarchy [(4, 113]. These constraints lead to
a lower limit on the sum of the masses of these neutrinos, M, = ), m; > 0.058 ¢V for the
normal hierarchy and M, > 0.11eV for the inverted hierarchy. See [101, | for a more

comprehensive review of the role of massive neutrinos in cosmology. Thus, any limit on
M, < 0.1eV rules out the inverted neutrino hierarchy. Alternative limits on the sum of
the neutrino mass M, may also be placed by cosmological observations and measurements.
Although some degeneracy exists between the Hubble constant and the neutrino mass on
the background cosmology, the cosmic microwave background (CMB) temperature pertur-
bations are affected by the neutrino mass through the early-time integrated Sachs-Wolfe
(ISW) effect and the lensing effect on the power spectrum. The baryon acoustic oscillations
(BAO) and measurements of the CMB temperature anisotropy have placed limits on the
sum of the mass of the neutrinos as M, < 0.23eV [135]; albeit, slightly dependent on the

In contrast to being sterile
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assumed cosmological model parameters. First described by [33], galaxy surveys present
yet another method to constrain the mass of neutrinos as presented in [112]. Suppression
of structure below the free-streaming scale of the neutrinos, when they first become non-
relativistic, leads to a decline in the matter power spectrum (usually at the per cent level).
However, in practice, galaxy power spectra are measured and so precise knowledge of the
galaxy bias as a function of scale is required since the galaxies do not cluster as matter.
Notwithstanding, [112] explored this technique in the WiggleZ Dark Energy Survey and
placed an upper limit on the sum of the neutrino masses, M, < 0.18eV for three degener-
ate neutrino species with no prior placed on the minimum sum of neutrino masses. More
recent estimates by [13] using the WiggleZ Dark Energy Survey and SDSS-DR7 LRG, to-
gether with the BAO and CMB temperature and polarisation anisotropies measurements
by Planck have yielded even tighter constraints of M, < 0.13eV at the 95% C.L. on the
sum of the neutrino masses

A complementary technique to measure the neutrino masses using their peculiar veloc-
ities relative to dark matter has been suggested by [183]. The relative velocity between
the neutrinos and dark matter leads to an observable dipole distortion in the cross corre-
lation of different tracers. This effect is similar to the relative velocity between baryons
and cold dark matter, first suggested by [163] and explored in a number of other works,
including [176]. The neutrino particles stream coherently across the CDM haloes over a
coherence/Jeans scale of 20 — 50 h~'Mpc.

In this chapter, we provide a semi-analytic derivation of this effect in the nonlinear
regime, which is equivalent to the dynamical friction for CDM haloes moving in the pri-
mordial neutrino sea. The outline is as follows: Section 4.1 introduces the relations between
velocities and density perturbations for both neutrinos and cold dark matter in the linear
regime. Section 4.2 examines the effect of dynamical friction on the dark matter structures
due to the streaming neutrinos. We then present the methodology, and expected signal to
noise for detecting this effect in current and future surveys in Section 4.3. Finally, Sec-
tion 4.4 summarizes our results and concludes the chapter, while the appendices A.1 and
A.2 provide details of signal-to-noise calculations, and comparison to nonlinear effects in
ACDM simulations without neutrinos.

For the calculations below, we use a ACDM cAMB [104] power spectrum with Planck’
parameters (Q,0, 20, Q) = (0.32,0.68,0.049), Hubble parameter h = 0.67, rms (root
mean square) density fluctuation in 8 = Mpc spheres, og = 0.8344 and scalar spectral
index ng = 0.963. We also utilize the analytic power spectrum of [59] where necessary.
The dark energy density and total matter density Q,,0 = Qe + Qo + Qo are kept fixed

2[135]. We use the Planck-only best fit values.
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Figure 4.1: Time derivative of the transfer function, T'(k) = dT'(k)/dt, at z = 0 for cold
dark matter and neutrinos of different masses.

while the cold dark matter density 2.9 and the neutrino density €2, are adjusted as needed.
The relation between the neutrino density and neutrino mass is given by

Zil M
Oy = ==L " 4.1
07 94.07h2 eV (4.1)

with the sum being over the three neutrino species. We assume an effective number of
relativistic species Nog = 3.046 [135]necessary for estimating the power spectrum from
CAMB. The notation M, = Z?:1 m; will be mostly used to replace the sum over neutrino
mass in the rest of this chapter.
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4.1 The Neutrino - CDM relative velocity

We proceed to calculate the CDM-neutrino relative velocity power spectrum following [163]
and [183]. The relative velocity, as we will see in the next section, is relevant for estimating
the dynamical friction on a halo due to neutrinos. Assuming the linearized continuity
equation holds for both neutrinos and cold dark matter (on scales & < 1h/Mpc), in Fourier
space it is given by

ika .
where a = 1/(1 + z) is the cosmic scale factor and we have assumed that there is no
vorticity (curl of the vector perturbation is zero). This is tested in [35], where the velocity

was seen to be curl-free on scales & < 1h/Mpe.

The variance in the relative velocity v,. = v, — v. between neutrinos (v) and cold dark
matter (¢) can be calculated to be

(W (Ra) = 5= [ Kdk [5”(1“’“);56(]“’“)] W2(kR)
= o / %Azyc(k,z)WQ(kR) (4.3)

where W(k;R) is the Fourier transform of the window function, and A2, (k,z) is the neu-
trino - cold dark matter relative velocity power spectrum. The essence of the window
function is to filter the velocity perturbation field to get a smooth field. We will adopt one

of the most commonly used window functions — the spherical top-hat 3 defined as

W(x; R) = (4—“33) L forlel < R (4.4)
3 0 for|z| > R.

In Fourier space, it is given by
—~ 3j1(kR)
W(kR) = ——— 4.5

where j; is the first order spherical Bessel function. The relative velocity power spectrum
can be written in terms of the transfer functions of neutrinos and CDM as

T (k, ) — Tok, z)] ’

A2 (k,2) = Py

vrve

- (4.6)

3The advantage of using top-hat window function is that it is localized in real space, and thus can be
applied to finite real-space data. However, we do not expect our conclusions to be sensitive to this choice.
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Figure 4.2: The power spectrum of the relative velocity between the neutrinos and cold
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normal hierarchy). This plot is reproduced from [183]. The two lowest M,’s are close due
to the fact that the most massive of the three neutrinos in each sum have similar masses

and dominate in the sum.
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where P, o< k"3 /(27%) is the primordial power spectrum of density perturbations and
T'(k, z) is the time derivative of the transfer function at redshift z.

We show the derivative of the transfer function, 7', at z = 0 for cold dark matter
and neutrinos of different masses, in Figure 4.1, which demonstrates the impact of free
steaming on their density perturbations. As expected, more free streaming leads to more
suppression of growth on small scales for lighter neutrinos. The relative velocity power
spectrum for different sum of neutrino masses (unless otherwise stated, all sum of neutrino
masses assume the normal hierarchy) is shown in Figure 4.2.

Obviously in Figure 4.2, the power lies in the range k ~ [0.01,1]. The rms relative
velocity v,. within a sphere as a function of the radius of the window function used is
shown in Figure 4.3 for different sum of neutrino masses.

4.2 Dynamical Friction

Dark matter haloes sitting in a streaming background of neutrinos will experience a de-
celeration due to dynamical friction. Larger haloes experience a larger dynamical friction
force than smaller-mass haloes, and so larger- and smaller- mass haloes will have different
displacements relative to the neutrino streaming direction.

In this section, we calculate the general structure of massive neutrino wakes, and their
dynamical friction force on dark matter haloes with an NFW profile. This drag on the
halo should lead to a displacement, which is nonexistent in the absence of neutrinos. This
displacement Az, in the halo’s position, will be first estimated by approximating dark
matter haloes as single spheres in Section 4.2.1. We then develop the general formalism
for computing the neutrino wake in Fourier space in Section 4.2.2, and use it to derive
dynamical friction assuming the full halo model in Section 4.2.3. The halo model consists
of contributions from the 1-halo and 2-halo terms. We shall see that, while the 1-halo term
is equivalent to the solid sphere approximation, the 2-halo term dominates the drag on
small haloes.

4.2.1 Solid sphere approximation

The phase-space distribution of neutrinos is given by the Fermi-Dirac distribution:

dxd®p
(2mh)3

f(p) = Lrdp 2N, (4.7)

AN, = (27h)3 exp(pe/T,) + 1
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where

4

1/3

where Toump is the temperature of the CMB today, and N, is the number of massive

neutrino species. In the rest frame of a dark matter halo that moves with velocity v,.
relative to the neutrinos, the phase-space density takes the form:

2N,

L(p) = 4.9

() exp(|p + myvyelc/T,) + 1 (49)
2Ny . Nzxmuc Vye" D

exp(pc/T,)+1  pT,[1 + cosh(pc/T,)]

with the factor of 2 accounting for antineutrinos along with neutrinos. The dynamical
friction force is then given by integrating over all range of impact parameter, b and over a
dark matter halo of mass, say Mj:

F = / (27rbdb)2[GM"(b§ Hlm, / (;fr,];)gfu(p)]%

2N, miv,. [ db )

= _W/?[GM}L(< b)]

_QNVIH(A)(GMh)2m§'vVC
3rhs )

12

+O(v,),

(4.10)

Notice that the terms in the integral are similar to the well-known Chandrasekhar
dynamical friction formula [31]. The first term in the first integral accounts for the range
of impact parameters of interaction between the neutrino and the halo. The second term
in the first integral is the drag force due to an interaction between a neutrino and a halo.
The second integral incorporates the density distribution of the neutrinos. Using Newton’s
284 Jaw, F = Mv, we can find the change in relative velocity due to dynamical friction,
over a Hubble time ¢t ~ H~%:

Av,e 2N, In(A)G*Mm;,

Ve 3mHR3

InA M,
— 56x103h2 h
5610 (1n30) (1015h—1M@>
N, my, \*4
(?) <0.1 eV> ’ (4-11)
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Figure 4.3: Relative CDM-neutrino velocity v,. as a function of top hat window function
radius R, for four different neutrino masses.
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where H = H(z) is the Hubble constant, h is the Hubble parameter, and In A = [ db/b
is the Coulomb logarithm. InA = In Z’"{””, where b,,,, and b,,;, are the maximum and
minimum impact parameters respectivqu; Here we use b0 ~ 30 Mpc as the typical
neutrino free steaming length, and b,,;,, ~ 1 Mpc as the typical size of CDM haloes. This

leads to an average displacement over a Hubble time of:

1
Ar = éAvycxt

v InA
= 6.66h %k VC
0061 kpe (236 km/s) <ln30)
Mo N, ( my )4
— | | — . 4.12
(1015h1M@) ( 3 ) 0.1eV (412)
If there exist different neutrino mass eigenstates, these will have different velocities and

different displacements, which can be calculated independently. The total displacement is
equal to the sum of displacements due to each neutrino species i, so that Az, = >, Ax;.

4.2.2 Dynamical friction: general formalism

Now, let’s consider a more realistic dark matter distribution. For large thermal velocity of
neutrinos 73:0 > Vhalo, We can assume a steady state neutrino distribution, i.e. it satisfies
the time-independent Boltzmann equation:

P ofu(x,p)

m, Oz’

8fu(xl, p)

m, VZ(I) (X) apl

=0, (4.13)

where ®(x) is the gravitational potential of CDM structure. This approximation is also
valid in comoving phase space on large scales, as long as the neutrino thermal velocity
exceeds the Hubble flow, i.e. Az < 25 Mpc (m,, /0.1 eV) ™.

To linear order in ¢ (in line with the assumption of linear regime), we can consider

linear perturbations 0 f(x,p) = f(x,p) — f(p) in Fourier space:

(p- K)o fox(p) = mp Py (k-a];—(pp)) : (4.14)

The density of the neutrinos in Fourier space is:
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d3
5,0u,k = my /(27rh) fyk( )

[ &*p 1 9f(p)
_ 3(1) z/ ‘
m, ik (2rh)??p -k Opf

) d?’p
= 2N m3® k' | ——
v Pick / (2rh)?
1 0 [exp(|ple/T,) + 1]
(p ml/vl/c)'k 8pZ ’

(4.15)

where we have changed the integration variable p — p — m,v,. in the last step, and used
the shifted Fermi-Dirac distribution. We can write the integral in spherical coordinates
(using p - k = plk| cos 6):

p*dp O |exp(pc/T, !
Spuk = 2Nm(I>k|k|/ s [exp( gp) 1"

/1 cos@ -dcosf

_1 plk|cos@ — m,v,. -k

(4.16)

The integral over cosf has a singularity and therefore requires regularization. To this
end, we need to set the initial conditions upstream in the neutrino flow. Assuming that
the gravitational potential of haloes is turned on gradually as exp(—ewv,. - x), which is
equivalent to taking k — k + iev,. in the exp(ik - x) Fourier phase factor, we can use
Sokhatsky-Weierstrass Identity:

1
plk|cos @ — my, v, - k —imye|v,]?
1
r
plk|cos @ — m,v,. -k

—imop (plk| cos§ — m,v,. - k). (4.17)

This regularization ensures that neutrino wakes form behind the haloes, and is similar to
the one used in the derivation of Landau damping in plasmas. e.g [132].

Substituting into the angular integral in Eq. (4.16) yields:
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/1 cosf -dcosf

1 plk|cos O — my,v,. - k — imye|v,.|? N

2 My Ve - k plk| — myv,. - k‘
+ . -
plk| — (plk|) plk| +m, v, - k
1mTm, vy - kK
———=—0 (pk| — my|v,. - Kk|). (4.18)
(plk[)?

The real part of this integral is symmetric under v,. — —wv,., and thus only the imaginary
part contributes to the dynamical “friction” of interest. Substituting into Eq. (4.16), the
p*’s cancel, making the integrand a total derivative. Therefore, only the boundary term at
p = my|v,. - k|/|k| contributes to the integral:

N,,mﬁq)k Z"l)l/c ) k/’k|
2rh3  expl(m,c/T,) (v, - k/|k|)] + 1’

which using Gauss’s law V - g = —4nGp, leads to the gravitational field due to dynamical
friction:

5py7k|dyn.fric. = - (419)

T IN,Gmid, (Ve - Kk
Svikddynfiie. = TN expl(mue/T,)(|vpe - K| /K] + 1
2N, Gmip(|v,e]) P (v, - k)k

~ 4.2
EeE , (4.20)

where 0.7 < p < 1 captures the velocity dependence of the exponential term in the
denominator of first equation. We will assume p = 1 where necessary in our numerical
evaluations.

4.2.3 Halo Model

The halo model provides a realistic description of the nonlinear CDM distribution, which
includes modelling the profiles of individual haloes, as well as their clustering. See [10] for
a general review of the halo model formalism. As a result, clustered haloes will contribute
to each other’s wakes.
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The dynamical friction force on a halo F|gqyn fric. is given by:

Vye : F’dyn.fric. = /dgx phalo(X) Ve * gu(x>|dyn.fric.

(| vsel) N, Grgoy, ), d’k P kik;
(2n)3 kphalo,k?

h3 27)
_ 4ﬂu<|vuc’)NuGQm§U§c/ d3k Pk Phalo, k (4 21)
3h3 (2m)3 k3 '
(4.22)

where in the last two steps, we used spherical symmetry and Poisson’s equation. Using the
halo model, this can be written as:

. _Arp(|vge] ) N, GPmi v, &’k
Ve - Flayn.fric. = 353 (2mk)?

Pansi) + [ anr' opanpar)

Peom (k) prato,k (M) prato,x (M) ] ; (4.23)

where Popym (k) is the CDM linear power spectrum. The formula for the acceleration due
to dynamical friction is then given as

a|dyn.fric. = M};}OF|dyn.fric.
_ 20(|vy| )N, G vy, / dk
N 3mh3 k
[Mhalou(k’Mhalo)Q + b(Mhato) Pepm (k) u(k| Myaio)

dn
/ AM'—b(M') M u(k| M) } . (4.24)
For the halo model, we use the convention of [10] for the normalised Fourier transform of

the halo profile (their eq. 107):

d°X phato(X| M) exp(—ik - x)
uw(k|M) = / 5 ;
fd X Phalo(X| M)

(4.25)

where b(M) and dn/dM are the linear bias and mass function, respectively, estimated
using the fitting formula of [161, | and the concentration-mass relation of [129]. Our
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final predictions are not sensitive to the specifics of structure formation parameters such
as the form of the density profile, the concentration-mass relation, the linear bias model,
the mass function, etc. We will also assume the NFW halo mass profile proposed by [124]
that has the form (repeated here for clarity):

ps
pNEw (1) = T+ 1/ra)? (4.26)

where 7, is a characteristic scale radius (the radius at which the logarithmic slope of the
density is —2 ), and p; is an inner density parameter.

Incorporating the details of the halo model, the change in relative velocity for a dark
matter halo in terms of the sum of neutrino mass is given by

Avye 211( Ve, k)G? Myaio N, m? /
Vpe 3rHR?

b(Mhato) Poom (k) u (k| Mya)
Mhalo

[uthm)? N

/ d ! ! !
/dM S b(M) M u(k| M) } . (4.27)
The first term in square brackets (the 1-halo term) illustrates the contribution to dynamical
friction by the main halo (identical to what we found for a solid sphere, Eq. (4.11), for
@ = 1) while the second term (the 2-halo term) describes that due to nearby haloes
clustered with the main halo. We show the behaviour of the first and second parts of the
term in square brackets in Figure 4.4.

The integral over k in Eq. (4.27) is logarithmically divergent since both the 1- and
2-halo terms formally extend to infinity; suitable limits in & must therefore be chosen. In
order to set limits that are physically meaningful, we can multiply both sides of Eq. (4.27)
by vZ, and incorporate this relative velocity inside the integral (shown in Figure 4.5). At a
given wavenumber k, the contribution to the neutrino-CDM relative velocity is only from
larger length scales outside the scale of the halo. We also introduce the sum of the different
neutrino species. This form integrates the hierarchy of the neutrinos into our calculations
and, relaxes the assumption of the degenerate neutrino species. Thus, the equation for
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Figure 4.4: The 1-halo and 2-halo terms in square brackets in Eq. (4.27), as
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Av,. becomes

2/1('01/07 G Mhalo dk
<vucAvuc> — 37THh3 Z / zc < k >

b(Mhalo)PCDM( Ju (k| Mhnato)

|: U(k|Mhalo)2 +

Mhyato
/ dM’ dcj\/llb(M’)M’u(MM’) } , (4.28)
where "
(Bl ) = [ AL G R (4.29)

and ¢ is for the different neutrino species and v,.. is the relative velocity from all scales and
from all neutrino species.

Recall that the relative velocity between the neutrino and dark matter decreases with
scale and goes to zero on very large scales (Figure 4.3). On the other hand, the effects
of nonlinearities are expected to be more significant on smaller scales. Therefore, for
concreteness, we choose a mid-point of 16h~'Mpc to filter relative neutrino-CDM velocity
field v,,.

A good fit (for a single neutrino) for the drift velocity Av,. and displacement Ax (~
%Avyc X t) over a Hubble time in terms of the neutrino mass m, and the halo mass M)}, is
given by

<UVCAUVC>

v
()

(0.2 km/s) [b(Mh) + ( My _ )0'85]

Av,. ~ (4.30)

12

1.3 x 104A~1M,,

my 29 Vye,16 )
a1 4.31
(0.1 eV) (193 kms 1/’ (4.31)

Mh 0.85
Ar ~ (1.5k M,
v = (L5 kpe) [b< n) + (1.3 X 1014h1M@> ]

my 29 Vye,16 )
0% Lol 4.32
(0.1 eV) <193 kms—1/ (4.32)

where v,. 16 is the relative velocity of neutrinos and CDM, averaged over a sphere of
radius 16h~'Mpc, centered around the halo. The explicit dependence of the displacement,
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Figure 4.6: The 1-halo and 2-halo contribution to the displacement due to dynamical
friction for a 0.1eV neutrino. It is evident that the 2-halo term dominates for all masses
less than ~ 10h~1 M, where the 1-halo term starts dominating.

Az on the 1-halo and 2-halo terms as a function of mass is shown in Figure 4.6. Figure
4.7 shows a comparison between Az and the best fit in Eq. (4.32).

4.3 Predicted signal-to-noise for nominal surveys

In this section, we predict the observational prospects for the detection of neutrino dy-
namical friction in galaxy surveys. One may be tempted to interpret Eq. (4.32) as a
relative displacement /velocity of haloes of different mass due the drag by the neutrino
wind. However, this is only correct given the assumption that the haloes are not in the
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Figure 4.7: A plot comparing the fitting function in Eq. (4.32) with the calculated values
for different neutrino masses. The dots are the calculated values while the line is the fitting
function.

same neighbourhood and thus have their individual wakes. To make the theoretical pre-
dictions in Eq. (4.32), we have averaged over all the haloes distributed around a given
halo. In practice, this would lead to an insignificant signal in cross correlating two haloes
in the same neighbourhood. The reason for this infinitesimal signal is that they share the
same large scale neutrino wake (depicted in Figure 4.8), and thus only experience a small
fraction of Awv,.. To achieve an acceptable signal-to-noise estimate, we shall focus on the
effect on the large scale distribution of haloes due the gravity of the neutrino wake.

Recall that the effect of dynamical friction on the gravitational field of the halo is given
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by Eq. (4.20), which is repeated here for convenience,

L 20miu) Pl K
8v k|dyn.fric. = h3’k‘3 .

This extra effect modifies the total density of gravitating matter in Fourier space,
including the neutrino hierarchy, as

3 [k[3
= O (1 +igx), (4.33)

202G S mipuvie(2) - k
Omk = Omuk <1+i a*G Y mipvie(2) )7

where
b = 202G Y0 miuvie(2) - k
k = 13 [k|3

(4.34)

Thus, the density is modified by an extra time-dependent phase that manifests through
the time dependence of the v-CDM relative velocity. We aim to measure this consequence
of dynamical friction due to neutrinos. To this end, we cross-correlate the densities of two
tracers (possibly galaxies with different biases) in redshift space. The signal appears as
an imaginary term in the redshift-space cross correlation spectrum (see Appendix A.1 for
more details ). The signal-to-noise for such a measurement is proportional to the difference
in bias for the two populations, (b;—by), the effective volume of the survey Vg and the time
derivative of the phase term in Eq. (4.34). Let us make some simple theoretical predictions
for signal-to-noise for a generic redshift survey. For a given survey with two tracers that
have differing bias such as “luminous galaxies” (1) and “faint galaxies” (f), the signal to
noise for the imaginary part of the galaxy-cluster redshift-space power spectrum due to
the neutrino dynamical friction of the haloes can be calculated to be (see Appendix A.1
for further details):

S\* L W R i
(N) - o / dWP,SAbN;STk%det cl (4.35)
RSD

where Ab is the relative linear bias between the two tracers (we include only the linear bias
and consider the nonlinear bias a part of the nonlinearities in structure formation under
Section 4.4), Py is the power spectrum of matter fluctuations and Vg is the effective survey
volume®. We see that the S/N increases with the square root of the survey volume and is
larger for tracers with considerable relative bias.

4For the integral, we have assumed kyax = 1h~"Mpc.
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Figure 4.8: A sketch of the effect of shared wakes on the displacement of two haloes.



(S/N)*/N,

Figure 4.9: The signal-to-noise squared per galaxy as a function of redshift for various
neutrino masses. This signal is estimated with a number density n; ~ ny = 0.02 h*Mpc 2.
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Figure 4.9 shows our projection for (S/N)? per galaxy for the detection of the imaginary
part in the redshift-space cross-power spectrum of two tracers (in a nominal survey) with
a relative bias Ab ~ 1 (a typical relative bias between luminous and faint galaxies e.g.
[152]), as a function of redshift. These estimates are made over a filtering comoving radius
of 16 h~*Mpc. The (S/N)? per galaxy decreases as the redshift increases due to the steep
drop in ¢. For a single neutrino of mass 0.07 eV, a survey with about 2 million galaxies
at z < 0.5 can achieve a 2-30 detection. This may be already achievable by the SDSS
main sample [1] or BOSS redshift surveys [9], and will be improved by a factor of 3, in the
upcoming DEST survey [103]. Signals from higher neutrino masses due to dynamical friction
effects from the neutrino distribution are significantly easier to extract, with (S/N)? oc mS.

For a generic redshift survey, we project that

Ny 2 17 107

my, )6 : 28.5% (4.36)

0.05eV/  (N,Ab)?

galaxies can lead to > 30 detection of the neutrino drag

For constraints on the sum of neutrino masses, M,,, one will have to sum over the signal
from the various contributing species. Figure 4.10 shows these estimates as a function of
the minimum neutrino mass (which can be easily related to the sum of neutrino masses,
M,)) for the normal and inverted neutrino hierarchies. Even though we have assumed the
number density of the luminous and faint galaxies to be ~ 0.02 h3Mpc—2, Figure 4.11
confirms that the signal-to-noise squared per galaxy is insensitive of the number density of
galaxies. Thus, the total signal-to-noise squared is proportional to the number of galaxies
Ny, Ab?, and mS.

An alternative measurement of the dynamical friction effect from neutrinos comes from

a direct measurement of the velocities of galaxies, e.g., using the kinematic Sunyaev-
Zel'dovich (kSZ) effect e.g. [99, 148, 46]. In this case, the (S/N)? is given as

(%)2 -y At (4.37)

2
kz N, v

with Aw,. given by Eq. (4.32) and o, ~ 1500km/s. is the velocity error per galaxy,
expected from the future CMB S4 kSZ measurements e.g [156]. For a 0.1eV neutrino and
a halo of mass M), ~ 1013h~1 M., in future spectroscopic surveys such as DESI, EUCLID
and SPHEREX (spectro), with < 108 galaxies, we only get S/N < 1. Therefore, the next
generation of kSZ surveys will not be an efficient probe of neutrino dynamical friction.
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Figure 4.11: The signal-to-noise squared per galaxy as a function of redshift for various
number densities, n; and ny, expected from the SPHEREX all sky survey [50]. This signal
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4.4 Discussion and Conclusion

We have investigated the prospects for detecting a novel signal from the cross-correlation
of different galaxy populations in redshift space expected in the presence of neutrinos.
This is due to the dynamical friction drag experienced by dark matter haloes that move
in the primordial neutrino sea. Even though the neutrinos and dark matter cannot be
observed, these effects make imprints on the galaxies and should be detectable in future
surveys. With current surveys, a high (2 10) S/N is predicted for M, ~ 0.2eV, which are
marginally allowed by a combination of galaxy surveys and CMB. Given the current limits
on the neutrino mass, future generations of high-density redshift surveys such as DESI will
be able to detect smaller mass neutrinos or sum of masses M, < 0.1eV.

We should note that gravitational redshift can also introduce an imaginary part to the
redshift space cross-power spectrum [118]. However, the signal from this effect is smaller
than that from the effect of dynamical friction by neutrinos (for a 0.1 eV neutrino) and has
a different scale dependence (o< k=1 vs the scale-dependent neutrino signal that peaks at

k ~ 0.01 Mpc/h).

Other effects of neutrinos on large-scale structure have been discussed by [87]. Their
study serves as a method for distinguishing the mass splitting of the neutrinos given a
measured constraint on the sum of neutrino masses M,,. The authors consider the effect of
different neutrino masses on the power spectrum on different scales — power suppression
on small scales and the change of the matter-radiation equality scale on large scales. They
also claim that this method may be used to distinguish the mass splitting of neutrinos
given a precise measurement of the matter power spectrum which constrains the sum of
neutrino mass. These effects become measurable on large linear scales and do not suffer
from nonlinearities and systematic effects. Thus, given a measured constraint on the sum
of neutrino masses, this method gives another independent confirmation/test of the mass
splitting seen in neutrino oscillation experiments. Yet another impact of neutrinos on
large-scale structure was studied by [105], who proposes a method in which neutrino mass
may be constrained by the measurement of the scale-dependent bias and the linear growth
parameter in upcoming large surveys. Notably, similar to our proposal, this measurement
is not limited by cosmic variance.

We next discuss some of the major systematics which may affect our predictions for
the signal.
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4.4.1 Galaxy and bias

Our estimates for the S/N are based on the number density of galaxies in a survey. Using
galaxies requires a good estimate of the galaxy bias. Details and precision in defining
the galaxy bias with respect to the total matter in the presence of neutrinos or to the
cold dark matter alone [37] are required in constraining the mass of neutrinos through the
suppression of power on small scales. However, we expect the exact definition of bias to be
less important in extracting the dynamical friction effect, given the large scale coherence
of neutrino wind. f The extra scale dependence of the halo bias which may be due to
nonlinearities and the free streaming scale of the neutrino is an extra observable proposed
by [105]. However, these affect the magnitude, not the phase, of the Fourier amplitudes at
percent level, and thus should not bias our projections for neutrino drag.

4.4.2 Nonlinearities in structure formation

The impact of nonlinearities on the CDM-neutrino relative velocity was investigated by [$5]
in a number of Y ACDM simulations. The authors were interested in the effectiveness of the
simple linear theory approximation given the nonlinear complexities of structure formation.
Their measurements show that the relative velocity power spectra predicted from linear
theory are higher than that in simulations, but are still within 30% of each other for the
empirically allowed neutrino masses. Reconstructing the relative velocity power spectra
using the halo density field and the dark matter density field, the authors show that they
are correlated with the simulations for scales & < 1h/Mpc and also have the right direction
of the relative velocity with a mass-dependent correlation coefficient. The magnitude of
the reconstruction may be corrected for nonlinearities by the ratio of the nonlinear to linear
CDM power spectra. This reconstruction procedure may be implemented in practice to
estimate the full neutrino-CDM relative velocity power spectrum.

A more serious issue is whether nonlinear effects in standard nonlinear structure forma-
tion can mimic the effect of dynamical friction by neutrinos. After all, the modulation of
galaxy (cross-)power spectrum, or relative velocity, by reconstructed v,. can be interpreted
as a particular contribution to the galaxy bispectrum, which might be partially degenerate
with the (much larger) nonlinear halo bispectrum. While Appendix A.2 provides a first
look at the magnitude of this degeneracy, a more complete study of this degeneracy in
vACDM simulations is planned for the future. Indeed, our preliminary analysis suggests
that nonlinear effects are not degenerate with, and only have a marginal impact on our
predictions.
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4.4.3 Prospects for detection

In practice, measuring the mass of neutrinos from the dynamical friction effect will be quite
challenging, and requires a good knowledge and control of standard nonlinear structure
formation, neutrino effects, and halo bias. Our S/N estimates have only included the
statistical error, and control of systematic uncertainties will only come from a careful
study of simulated haloes. Nevertheless, our statistical projection of S/N 2 3 for future
surveys (see Eq. 4.36 or Figure 4.9) provides an incentive for further theoretical study and
improvement. The dynamical friction effect, described here, may be a powerful complement
to the various ways in which neutrinos will be probed over the next decade.
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Chapter 5

Conclusion

Given the non — detection of dark matter yet, this thesis has investigated an internal
property of dark matter haloes — the concentration of dark matter haloes, which is a
characteristic related to the formation epoch of a halo and also plays a vital role in the
indirect detection of dark matter (detection of dark matter through the products of its
annihilation such as gamma rays, neutrinos, electrons or positrons), using a non-traditional
method — a mathematical framework based on two major assumptions — the conservation of
the energy of a halo and the inclusion of the ellipsoidal collapse. We then apply this model
and another related model of dark matter halo concentration to pinpoint more interesting
targets that will probably lead to the end of this hunt for the bulk matter content with
enough time of exposure. It is important to note that our estimates have been based on
some assumptions about the nature of this particle. Given that the Fermi Gamma ray
space telescope has been searching for signs for gamma rays produced from dark matter
annihilation, it will be interesting to focus this search to more interesting targets. In which
case a null detection may mean constraining the particle property of dark matter such as
its mass or cross section area. Like the long-awaited detection of gravitational waves, the
hunt for dark matter is possibly nearing the Eureka-moment phase.

Towards the end of the thesis, we digress from the internal properties of dark matter
haloes to focus on the large-scale effect haloes may imprint by gravitationally interacting
with neutrinos in cosmology; therefore making a prediction of the dynamical friction effect
that haloes may feel due the abundant primordial neutrinos streaming in the universe.
Although this effect is a theoretical prediction, it can be investigated in a simulation or a
galaxy survey with the right properties to make it a detection. This thesis did not cover
this interesting investigation but is an avenue for future work related to neutrinos. In any
case, cosmology is at a very interesting phase right now.
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Appendix A

APPENDIX for Chapter Four

A.1 SNR from the gravitational field due to dynami-
cal friction
Following the correction to the gravitational field due the dynamical friction effect from

neutrinos, gk — gk + 8.k, We can express this as a measurable effect to the power spectrum
of galaxies in a redshift survey. Using divergence form of Gauss’s equation for gravity,

V - g = —4maGp, the Fourier space version is given as
AmiaGprk
gk = T? (A1)
while that of the Poisson equation is
4ma*Gpy,
Thus,
8k — 8Bkt 8k
_ AmiaGprk m i2a2G S miuvi(z) -k
k|2 3 [k[? ’
_ 47tiaG pp0rk 4 Z,QaQG Zf’zl miuvi.(z) - k
k| h|k[? ’
(A.3)
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where we have used Eq. (4.20) in comoving coordinates to substitute for g, x.

We shall see that this signal can be extracted by looking at the redshift space distortion
of galaxy surveys. Recall that the redshift-space distance r® is related to the real-space
distance ¢ through

s d Uz
= — A4
rt=rtt (A4)

where v, is the velocity along the line of sight and H is the Hubble constant. Using
continuity equation for matter, we can find the redshift space overdensity for galaxies d;
in terms of its real space overdensity 53 and matter overdensity d,,:

s __ gd Uﬂ?f( s _ d k?ﬂémvk
g7k - 5g,k - v . (&H> i g,k —_— 5g,k - H‘k’Q . (A5)

Due to the dynamical friction of the neutrinos (assuming a uniform v,.) the matter over-
density has a redshift-dependent phase (A.3):

Omi(z) =~ Dr(k, z)ei‘ﬁk(z) Omo ks

202G Y0 miuvie(2) - k
(bk(z) - h3’k|3 bl

(A.6)

where Dy (k, z) is the (scale-dependent) linear growth factor for vYACDM cosmology. For
a single tracer in redshift-space, the density perturbation is given as

S o 6d k:%(sm,k
gk g’k_H]kP

d k2 Dy . k2
= O\ YT HkE D, VHD, K]
g L g
k2 Dy k2
= Gpp [0, — =2 L i) A.
k ( g H|k|2 DL ZH|k|2 ( 7)

The first two terms in the above equation are the standard RSD terms while the last term
is new, as a result of the effect of dynamical friction due to neutrinos. Measuring this
signal from a single tracer requires a very good knowledge of the linear bias term and is
also susceptible to sample variance. One may eliminate the sample variance limitation by
considering multiple tracers, as first suggested in [118]. This is because, in the absence of
shot noise, the ratio of Four ier amplitudes for two tracers can be measured perfectly, even
for a single mode. While this ratio is real in standard multi-tracer RSD [118], it finds an
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imaginary part (leading to a dipole) in the presence of a neutrino wind. There could also
be a comparable imaginary term for different tracer biases, by and b;, which we shall ignore
for our simple S/N estimate here.

We will consider cross-correlating two distinct populations of galaxies with similar co-
moving densities n; and ny, and biases b; and by. This is given as

s ks k:%émk * akiéjﬂk
Cp = (0x05%) = <<5ld,k - W) (5?,1@ T HKP )
Dik2 (1 1
1 _ZLfa (2 2
HDpk|? (bl " bf) "

ke (DL ) | dtsfiodt (1L
biby H k|4 k H|k|? by b))

As can be seen from the last equation, the dynamical friction due to neutrinos has in-
troduced an imaginary term to the redshift- space cross-power spectrum. This imaginary
term is the signal per mode we hope to capture. Recall that

e = 23: (%) k- {QaQVic(z) - aang(z)} . (A.9)

=1

= blbka

(A.8)

Ignoring the effect of neutrinos, the noise variance for every mode is given by, e.g, [118]:

(ATm Cp)?* = (| Im Cpf?) :%Cffcll CnCr)
Co = |b— \kIT;[?gL> Pk+m
Crp = |[br— |kT§§ZL> Py +nj!
Cno= (b= |kT§1?ZL>< \klrjgi)L) B

(A.10)
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Figure A.1: The amplitude of the signal from the imaginary part of the cross-power spec-
trum, the error on the signal, and the auto-power spectrum of faint galaxies, Cys, are
shown for a 0.1eV neutrino, ny = n; = 0.02 h3Mpe ™3, and b, = 2by = 2.

Consider these as the elements of a matrix C' given by

{sz Cfl]
Cpn Cyy

the noise variance is thus one half of the determinant of C, det C.

The amplitude of our signal, Im Cy, its error A Im CY;, and the auto-power spectrum
of faint galaxies is shown in Figure A.1. This figure shows that the signal is dominated by
large scale modes. The decline of the signal at small scales suggests that the measurement
isn’t improved by summing lots of modes. It is therefore not sample variance limited.
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A.2 Testing nonlinear effects using N-body simula-
tions

We shall next examine to what extent the nonlinear structure formation in standard ACDM
model could mimic the effects of neutrino dynamical friction on cosmological haloes. We
therefore use an N-body simulation without neutrinos in order to systematically account
for the nonlinear effects.

The signal we study is the difference in relative displacement due to neutrinos, A,
for two different tracers, given by (Az; — Axy) = %(Avycyl — Avyeo)t = %vrelt, where we
denote the relative velocity between tracers 1 and 2 by v,. We want to know whether
nonlinear velocities due to growth of structure on small scales could produce a signal that
could interfere with the signal from massive neutrinos.

To this end, we use an N-body simulation without massive neutrinos to investigate
the possibility of any existing contaminating signal from nonlinear effects. Assuming the
neutrino streaming direction in any given volume is the same direction as the CDM bulk
flow v, (which it should be to first order), then we would expect the relative velocity
1 between halo populations 1 and 2 to be in that direction also. So we want to know
whether there is any nonzero correlation between the direction of v, and v, in the absence
of massive neutrinos. That is, we want

(1 - 0e) = 0, (A.11)

where the averaging is over independent volumes, which we take to be spheres of radius R,
and the hat denotes the unit vector.

This effect is tested using the Gigaparsec WiggleZ (GiggleZ) N-body simulation [137].
The GiggleZ main simulation contains 2160% dark matter particles in a periodic box of
side 1h~! Gpe. The particle mass is 7.5 x 101 M, which allows bound systems with
masses > 1.5 x 101'h=t M, to be resolved. The clustering bias b of the haloes range from
~ 1 to greater than 2. Halo finding for GiggleZ was performed using SUBFIND [155], which
utilizes a friends-of-friends (FoF') algorithm to identify coherent overdensities of particles
and a substructure analysis to determine bound overdensities within each FoF halo. The
resulting SUBFIND substructure catalogues are rank-ordered by their maximum circular
velocity (Vinaxsup) @s a proxy for halo size.

vV = v, + Ny
AV, + Ny. (A.12)

(%)
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Figure A.2: (a)(Left) Fitted value of o over 100 spheres of radius r, for the (z,y,z)
components (solid, dashed and dot-dashed lines) of the bulk flow of our two halo samples.
(b)(Right) ACDM prediction for o from Eq. (A.13) [for a 10°(h~' M, halo)] as a function
of top hat window function radius R and different sum of neutrino mass.

In the absence of neutrinos, the equivalence principle implies that a = 1, so we expect
(Vo) =0, 1.e. 1 = g = 1, and (v, - v.) = 0.

In the presence of massive neutrinos, we expect that for haloes of mass M within a
volume of radius R [13],

<vc<R) : Avuc(Ma R))
(ve(R) - ve(R))

Figure (A.2a) shows the measured value of « from the relative velocity of our halo
samples, which is consistent with zero at < % level, with no evident systematic bias.
A larger sample and/or simulation box will lead to lower stochastic noise in «, and can
potentially reveal a systematic bias, albeit at a lower level.

a(R) =1+

(A.13)

The expected value of a can be calculated from our equation for Av,. and the ACDM
prediction for v.. The 1D rms velocity dispersion of CDM is

03 = [ Gl BT R

P
_ 2 X
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For the halo model estimation, Av,. is given by Eq. (4.27) and thus

<vc(R) : A’Ul,c(mh’ R)> — _2 vr/c; G Mh Z

37TH7713 —
[ vt 1) |atalany 4 TR
/ dr dcjwb(M’)M’u(MM’)] (A.15)
and b g
(00 - vie(< ) = /0 Ak, 2) MK, 2) TV (K ). (A.16)

The k integral is over the Fourier modes of the halo distribution while the &’ integral
is due to the modes from the neutrino distribution. We plot « as a function of top-hat
window function radius R and different sum of neutrino mass in Figure (A.2b) for a halo of
mass M), = 10%h"1 M. Clearly, the predicted value of o — 1 is quite small. For example,
for M, = 0.11 eV, the value of a — 1 is below 1072 for all radii requiring 0.1 percent-level
precision of the bulk flow to detect the neutrino effects.
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