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Abstract

This thesis contains three essays spanning the fields of environmental economics and

investment in a non-renewable resource under uncertainty. All essays relate to the analysis

of the clean-up of hazardous waste resulting from natural resource extraction.

The first essay addresses the problem of inadequate hazardous waste clean-up by re-

source extraction firms. It compares the impacts of an environmental bond and a strict

liability rule on a firm’s ongoing waste abatement and eventual site clean-up decisions.

The firm’s problem is modeled as a stochastic optimal control problem that results in a

system of Hamilton Jacobi Bellman equations. The model is applied to a typical copper

mine in Canada. The resource price is modeled as a stochastic differential equation, which

is calibrated to copper futures prices using a Kalman filtering approach. A numerical so-

lution is implemented to determine the optimal abatement and extraction rates as well as

the critical levels of copper prices that would motivate a firm to clean up the accumulated

waste under each policy. We have found that the effect of an environmental bond relative

to the strict liability rule depends on certain key characteristics of the bond - in partic-

ular whether the bond pays interest and whether the firm borrows at a premium above

the risk-free rate to fund the bond. If the firm can borrow at the risk-free rate, and if

the government pays the risk-free interest rate on the bond, the value of the mine prior

to construction, optimal abatement rates, and optimal operating decisions are the same

under the bonding policy and strict liability rule. In contrast, if no interest is paid on

the bond, the value of the project is reduced compared to the strict liability rule and the

firm undertakes a larger amount of waste abatement under the bond. Because the mine is

less profitable, it is less likely that the firm will invest in this mine. In the more realistic

case that the firm borrows to fund the bond at a premium over the risk-free rate, the

value of mine is reduced further and waste abatement levels are increased. The prospect

of investment in the mine is even less likely compared to the previous case.

The model developed in the first essay allows that the firm temporarily mothballs

the project, but eventually clean-up must occur at the end of the project life. However,

the possibility of firm bankruptcy was not explicitly included in that model, and thus

mothballing is the only option available to the firm to delay waste clean-up. The second
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essay contributes to our previous study by considering another important option available

to the firm, i.e., the possibility of declaring bankruptcy. A firm’s decision to declare

bankruptcy is specified as a Poisson process that treats bankruptcy as an exogenous, risky

event governed by a hazard rate. The hazard rate at a project level depends on waste

stock and output prices, while at the company wide level depends on the commodity

prices only. For both default scenarios, the paper demonstrates that the firm operating

under a bonding policy, that covers the full cost of waste clean-up, is less able to avoid

its liability costs, particularly if the bond is financed from retained earnings. If the firm

borrows to finance the bond, it is possible that the firm avoids clean-up costs by defaulting

on the loan following a bankruptcy. In contrast to the results of the first essay, if the firm

finances the bond out of its retained earnings, and if the government pays the risk-free

rate of interest on the bond, the bond and the strict liability rule do not give the same

outcome when bankruptcy is possible. Such a bond encourages a higher abatement rate

and makes site clean-up more likely compared to the strict liability rule. Firms operating

under the liability rule have stronger incentives to delay their clean-up costs by sitting idle

and they may eventually go bankrupt at the mothballed stage. Therefore, the possibility

of bankruptcy makes the firm worse off under the bonding policy, while benefits the firm

under the strict liability rule.

Modelling uncertain commodity prices is a key component of the analysis of optimal

firm behavior in hazardous waste clean-up. The third essay investigates the dynamics of

copper prices by comparing and contrasting three different stochastic models, which are a

one-factor mean-reverting model, a two-factor model, and a one-factor long-term model.

These models are calibrated to copper futures prices using a Kalman filtering approach.

The first model assumes spot prices are mean reverting in drift. The second model defines

two correlated stochastic factors that are spot prices and convenience yield. The third

model transforms the two-factor price model into a single factor model. We have found

that the first model fails to describe the term structure of copper futures prices with long

maturities. In contrast, the two-factor and the long-term models are shown to provide a

reasonable fit of the term structure of copper futures prices and can be applied to long-term

investment projects. The results highlight the importance of stochastic convenience yield

in copper price formation.
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Chapter 1

Optimal Timing of Hazardous Waste

Clean-Up under an Environmental

Bond and a Strict Liability Rule

1.1 Introduction

Hazardous waste production is a significant consequence of large natural resource projects

such as mines. Such waste is often disposed of into local ecosystems and can impose high

risks on society during mining operations and after a mine is abandoned. Without ap-

propriate regulations, profit maximizing firms are likely to generate more waste than is

desirable and are unlikely to undertake adequate waste clean-up. This problem is com-

monly dealt with through the imposition of a strict liability rule,1 whereby the agent is held

legally responsible for waste clean-up or restoration upon project termination. An obliga-

tion for restoration under the strict liability rule increases the cost of mine abandonment,

which may cause some firms to choose to remain inactive as a way to escape restoration

1Strict liability refers to the imposition of liability on a firm regardless of whether the firm has adhered
to accepted standards of care. This may be contrasted with the negligence standard, where a firm is only
liable if it has acted been negligently.
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costs,2 even when there is no hope for reactivation (Muehlenbachs, 2015). Restoration re-

quirements also increase the risk of default on environmental obligations due to insolvency

or bankruptcy. Surveys reveal that large numbers of mining operations in the US and

Canada have been abandoned due to bankruptcy resulting in significant environmental

damages and clean-up costs. In the case of firm bankruptcy, the environmental liability

may fall to government with restoration costs funded out of general tax revenue, leading to

a dead-weight loss (Campbell and Bond, 1997). For various reasons, the clean-up cost to

government may be higher than for the firm, including the need to hire outside contractors

(Ferreira et al., 2004). For governments, the potential for highly negative media cover-

age and public outrage is another undesirable consequence of firms shirking their clean-up

obligations.

In practice, environmental bonds, as a complement to the strict liability rule, have

been widely used to address these issues by attempting to ensure adequate funds are

available for end-of-activity restoration.3 Under an environmental bond, a firm estimates

and reports its expected future clean-up costs based on current knowledge and deposits a

bond of an equivalent amount. The amount deposited for the bond may be updated over

time as the firm’s expected clean-up costs are revised. The government releases the funds

upon successful closure and restoration; otherwise it retains them. Environmental bonds

are intended to simulate all future adverse effects, consider them in present terms, and

internalize the associated clean-up costs (Perrings, 1989).4 However, without a specific

template for cost estimations and also the absence of a third-party verification, firms may

underestimate their clean-up costs. If the bond amount is inadequate and if a firm walks

away from its obligation, clean-up costs will be transferred to the government. In 2009,

over 10,000 mines operating under an environmental bonding regulation in Canada were

2Waste clean-up costs are mine specific, can range from millions to billions of dollars for a single mine
(Boyd, 2002, Grant et al., 2009), and depend on the extent of activity, the expected difficulty of restoration,
etc (Grant et al., 2009).

3See World Bank (2009) for a survey of bonding practices in extractive industries world-
wide. This document is available at http://siteresources.worldbank.org/EXTOGMC/Resources/

COCPObrochureFINAL.pdf?resourceurlname=COCPObrochureFINAL.pdf.
4Peck and Sinding (2009) note that environmental bonds can be deposited through a variety of mecha-

nisms such as cash deposited in a trust fund, letters of credit, and pledge of assets. The current practice of
such different mechanisms are surveyed by Miller (2005), and the incentives for environmental protection
by US hazardous waste managers under each mechanism are compared in Zhou (2014).
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classified as abandoned without being cleaned up and with insufficient funds for restoration

(Grant et al., 2009). For instance, the Faro Mine in the Yukon Territory set aside $93.8

million for restoration resulting in a $356 million government’s liability, and the Giant Mine

in the Northwest Territories deposited only $400,000 environmental bonds and transferred

$399 million uncompensated clean-up costs to society (Grant et al., 2009). An adequate

level of environmental bond increases the likelihood that a firm will meet its obligation

to clean up a contaminated site, rather than shirking their clean-up obligations through

project mothballing or declaring bankruptcy. This fact is confirmed by an empirical study

for the US oil and gas producers (Boomhower, 2014).

Given the empirical importance of clean-up costs, it is surprising that the literature

has devoted little attention to a deep analysis of their likely impacts on mining firms’

operating decisions. Some studies assume zero costs for site restoration at the termination

date (Almansour and Insley, 2016, Brennan and Schwartz, 1985), while abandonment is

completely overlooked in some other research (Dixit, 1989, 1992, Mason, 2001, Slade, 2001).

More recently, one study has examined optimal extraction of a non-renewable resource with

the resource price modeled as regime switching stochastic process and assuming a positive

restoration cost, and has found that abandonment timing depends on the level of reserves

and the profitability of the project – which is affected by the price process (Insley, 2017).

As noted, an empirical analysis has shown that the main motivation behind temporary

closures in the Canadian oil and gas industry is to avoid high costs of environmental

liabilities, and not to keep the option to reactivate alive (Muehlenbachs, 2015). A recent

study explores optimal regulation in a deterministic model of a firm that extracts resources

and generates waste (Lappi, 2018). The socially optimal policies are found to include a

pollution tax, shut-down date, and firm deposited bond. In this setting the timing of when

the bond is paid is irrelevant.

This study contributes to the current literature by introducing a dynamic mechanism for

an environmental bond into a model of optimal decision making by a firm whose activities

generate hazardous waste. The goal of the bond is to fully collateralize the government

from the possibility that a firm may be unable or unwilling to clean up its waste. The bond

is a further regulatory requirement for the firm, in addition to strict liability for clean-up.

The main objective of this investigation is to compare the impacts of an environmental
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bond (plus liability for clean-up) versus the strict liability rule on its own, on the firm’s

optimal timing of the clean-up of hazardous waste generated by its operations.5 In the

paper we refer to the bond plus liability as the ‘bonding policy’ or just ‘the bond’, to

contrast with the strict liability rule on its own.

We abstract from any environmental damages caused by waste creation during the

production process, in order to focus on the clean-up of the stock of waste. The payment

required to the bond in each time period is determined so that clean-up costs would be fully

covered should the mine be closed immediately. It is further assumed that the bond is in

the form of a cash deposit, which is a common form of environmental bond in practice. We

consider the impact of different features of the bond, such as whether interest is paid,the

inclusion of extra (third-party) costs that the government would incur if it undertakes the

clean-up, and the risk premium the firm may pay to finance the bond.

We develop a stochastic optimal control model of a firm’s decisions regarding the con-

struction, operation, and abandonment of a mining project in an environment of uncertain

commodity prices. The price of the mine’s output is modeled as an Ito process. The mine

owner chooses the optimal timing to build, operate, mothball, and eventually abandon

the project. During operations, the mine produces waste that accumulates and by legal

requirement must be cleaned up when the firm ceases operations permanently (abandon-

ment) or by a the end of the project life, whichever comes first.6 The firm can undertake

abatement during the project to reduce the waste flow. The firm chooses the amount

of ore produced and the level of waste abatement to maximize the value of the mining

operation. The optimal control model results in a system of Hamilton Jacobi Bellman

equations, solved using a numerical approach. The results allow us to contrast the firm’s

optimal decisions under an environmental bond compared to a strict liability rule.

Note that in this paper we do not model the risk of bankruptcy. Rather, we assume that

5In this study, we are not concerned about the clean-up of environmental accidents associated with a
waste disposal facility, such as accidental release of chemicals. However, environmental bonds and liability
rules have been widely used to control environmental risks. Torsello and Vercelli (1998) provides a critical
assessment of these policies for risk control, and Poulin and Jacques (2007), Gerard and Wilson (2009),
Smith (2012), and Davis (2015) highlight their practical challenges for different case studies relevant to
environmental risks.

6The project has a fixed end date, T , and by government regulation the waste stock must be cleaned
up at this time.
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the firm operates as a going concern and does not consider the possibility of bankruptcy

in its optimal choices regarding production, waste abatement, and timing of operations.

We believe this is a reasonable assumption for many firms due to the high costs of declar-

ing bankruptcy, including loss of goodwill and reputation. The government nevertheless

requires an environmental bond for all mining operations in order to be fully collateralized

against any possible losses.7

To preview our results, we find that the effect of the bonding policy relative to the strict

liability rule on its own depends on certain key characteristics of the bond - in particular

whether the bond pays interest and whether the firm borrows at a premium above the

risk free rate to fund the bond. Note that current practice regarding payment of interest

on environmental bonds varies across jurisdictions, with some but not all, paying some

amount of interest. Also, it would normally be the case that any firm borrowing to finance

bond payments would need to pay a risk premium above the risk-free rate.8 If the firm

does not have to pay a risk premium (i.e., it can borrow at the risk-free rate) and if the

government pays the risk-free interest rate on the bond, then the value of the mine prior

to construction is the same under the bonding policy and strict liability rule. The optimal

abatement rates are also the same under the two policies, as the bond imposes no extra

costs on the firm. In contrast, if no interest is paid on the bond, the value of the project is

reduced compared to the strict liability policy and the firm undertakes a larger amount of

waste abatement under the bond. This implies a smaller stock of waste at the termination

of the project and lower final clean-up costs. Because the mine is less profitable, it is less

likely that the firm will invest in this mine. In the more realistic case that the firm borrows

to fund the bond at a premium over the risk-free rate, the value of mine is reduced further

and waste abatement levels are increased. The prospect of investment in the mine is even

less likely compared to the previous case.

A bond that covers the full cost of immediate clean-up of mine waste ensures that

the government will never have to bear the cost of mine waste clean-up. However certain

characteristics of the bond noted above (i.e., risk premium and payment of interest by

7In Chapter 2, we address different approaches to modelling bankruptcy risk and examine the impact
on firm behaviour.

8Or if the bond is funded from retained earnings or by issuing shares, the cost of capital would also
exceed the risk-free rate.
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the government) make it more costly than a strict liability rule for the firm. Whether the

added costs imposed on the firm are worth it from society’s point of view depends on the

size of the extra costs incurred when governments are forced to take on this environmental

liability.

The next section explores the existing literature about restoration, environmental bonds,

and resource-valuation models in the context of optimal decisions under uncertainty. Sec-

tion 1.3 develops the theoretical model. The dynamic programming solution of the model

and optimal strategies for extraction and abatement are in Section 1.4. The case of bor-

rowing to finance the bond is explained in Section 1.5. Section 1.6 presents a numerical

solution approach. An application of the model to the copper industry is discussed in

Section 1.7. An analysis of results is provided in Section 1.8. The last section summarizes

results and conclusions.

1.2 Literature review

1.2.1 Restoration and environmental bonds

Policy instruments which put a price on emissions, such as a Pigouvian tax or pollution

permits, are well suited to deal with damages from flow or stock externalities (Baumol

and Oates, 1988, Farzin, 1996, among others). With an emissions tax set appropriately

to reflect the marginal environmental damages from one more unit of extraction, firms

will choose an optimal rate of pollution abatement that equates marginal social benefits of

reducing pollution with its marginal costs. In practice, the main application of these policy

instruments has been to control for externalities associated with air and water pollution,

for which the quality can be maintained only through abatement because the clean-up of

the stock of the pollutant is either technologically infeasible or prohibitively expensive.

Some types of environmental damage can be controlled both through abatement of emis-

sions and through clean-up and restoration of environmental quality some time after the

pollution initially created. Abatement and restoration may be substitutes for each other,

whereby more abatement today implies the need for less restoration in future. Mine waste
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is a prime example. In such cases it is inefficient to focus solely on pollution abatement.

Keohane et al. (2007) have shown that when site restoration is feasible, it is not optimal

to depend only on abatement to improve the quality of the environment, as at some low

levels of environmental quality or high social damage costs, abatement may become more

expensive than restoration. Keohane et al. (2007) analyze the optimal trade-off between

abatement and restoration in a model in which the quality of the environment fluctuates

randomly, and there are economies of scale in restoration in the sense that restoration

entails significant fixed costs that do not increase as the environmental quality decreases.

Under these circumstances it is optimal to clean up the stock of damage only when the

quality falls to a sufficiently low level that abatement becomes costlier than restoration. In

their model, the policy maker sets a tax rate equal to the marginal value of abatement to

ensure that firms choose the optimal amount of abatement given the possibility of periodic

restoration of environmental quality. Site restoration is assumed to be the responsibility

of the government which is supported by funds raised by the tax. Keohane et al. (2007)

show that the funds raised will generally be close to the required clean-up cost, depending

on the realization of the path of uncertain environmental quality.

While an appropriate time-variable tax rate can, in theory, deal with flow and stock

externalities, in practice it may be difficult to implement, given the political realities in

many jurisdictions where taxes are strongly resisted. Command and control regulations

specifying allowed pollution levels may be more politically acceptable. However, neither

a pollution tax nor limitations on polluting emissions can by themselves deal with the

problem of ensuring firms meet their clean-up obligations in a timely manner. As noted

in the introduction, firms delaying or failing to undertake restoration is a significant prob-

lem in many jurisdictions. Liability rules and environmental bonding requirements focus

specifically on this problem.

Perrings (1989) first developed the mechanism of bonds as a means to encourage firms

to invest in research to examine the potential adverse effects of their activities. Under an

environmental bond each firm is required to conduct periodic investigation about potential

damage of its current activity, and to deposit a bond equivalent to its own best estimations

of clean-up costs for the “worst case” environmental outcome. This “worst case” outcome
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is called the “focus loss”9 of the activity, given current knowledge about the future. At

each point in time, if the firm can prove that the restoration costs are lower than estimated,

the policy maker refunds a portion of the firm’s deposit. Therefore, firms have the private

incentives to increase their research or investigations of all potential consequences of their

current activities until the costs of research10 equal the resulting benefits of reduction in

the value of bonds. At the end of the activity, the policy maker completely refunds the

firm’s deposit if the firm cleans up all damages. This bonding mechanism guarantees

the availability of funds for future restoration should a firm default on its environmental

obligation. Moreover, Shogren et al. (1993) highlighted the fact that with this bonding

system firms become aware of potential environmental costs of their current actions, and

take required measures to minimize their compliance costs.

The bond mechanism developed by Perrings (1989) mimics the idea of a deposit-refund

system,11 which dates back to 1971 when Solow (1971) developed the idea of the “mate-

rials use fee”. According to Solow (1971),12 this fee is equivalent to “the social cost to

the environment if the material were eventually returned to the environment in the most

harmful way possible. The fees would be refunded to anyone who could certify that he had

disposed of the material”. Cornwell and Costanza (1994) explained one simple application

of a refundable deposit – the fee on glass bottles. This fee is intended to encourage the

most socially desirable method of waste disposal – recycling as opposed to littering. In

their study, environmental bonding is identified as a variation of the deposit-refund sys-

tem. Unlike the former, environmental impacts of each disposal method are known in a

deposit-refund system, and also the fee is often set lower than the cost of choosing the

worst method of disposal but high enough to encourage the best method, i.e., returning

the bottle for recycling. In contrast, with the bonding system all known and predicted

unknown future impacts of the activity determine the exact value of the bonds.

An environmental bond, aimed at raising funds for future restoration projects, is a

9Focus loss does not represent the worst case scenario one can “imagine”, but it is the least surprising
severity of damage that may occur (Costanza and Perrings, 1990, Perrings, 1989).

10Research costs include expenditures on investigations of a mine site so that firms are better able to
predict damages.

11The theory of deposit-refund systems are comprehensively surveyed by Bohm (1981).
12p. 502.
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complement to the strict liability rule. Kaplow and Shavell (1996) argued that the strict

liability rule may not be a good alternative to induce firms with limited liability to pay up-

front for their potential clean-up costs due to liquidity constraints and litigation difficulties.

Limited liability firms are not required to pay for any damage beyond their asset value,

which has two implications. The first implication is that social welfare is compromised as

a result of damage residuals potentially being extended to society. The second implication

suggests that limited liability firms may simply ignore any damage costs above their asset

value, which dilutes damage prevention incentives.13 Moreover, strict liability requires

costly and lengthy processes to sue a responsible party through litigation. In this context,

several authors highlighted some advantages of environmental bonds over the strict liability

rule (Cornwell and Costanza, 1994, Costanza and Perrings, 1990, Gerard, 2000, Shogren

et al., 1993). One important advantage is that bonds shift the “burden of proof” from

governments and society to firms, reducing the need for litigation. Instead of taking the

firm to court to prove the damage caused by the firm’s activities, now the firm is legally

bound to reveal the true costs of its activity and deposits the equivalent amount of money

with the government. Another advantage is that environmental bonds mitigate the impacts

of liquidity constraints and ensure that funds are available if the constraint binds.

Bonds have disadvantages, as well, which are thoroughly discussed by Shogren et al.

(1993). The most important disadvantage is moral hazard which exists for both firms and

government. In the private sector, since the value of bonds relies on firms’ self-reporting of

expected future damage costs, firms with incentive to reduce their compliance costs may

not truthfully report their environmental costs. To deal with this issue, estimations can

be audited and verified by a third party such as an environmental authority to ensure

that firms comply with estimations standards and truthfully report the costs of their ac-

tivity. In the government sector, there is also a financial incentive to claim that firms have

shirked their environmental obligations, thus justifying seizing the bond. However, false

bond reports have reputation costs for firms, just as false claims have repercussions for

13Shavell (2005) shows that such impacts can be dealt with through a minimum asset requirement
combined with liability insurance. The minimum asset reduces individuals’ incentives to engage too often
in activities with potential harmful impacts, and if they have engaged, the liability insurance improves
damage prevention incentives. However, Poulin and Jacques (2007) argue that if a firm has not enough
assets, no insurance company will participate, restricting the firm’s engagement in such activities.
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governments. Reputation costs mitigate the incentive for any false claims in both sectors

because cheating by a firm increases the cost of bonds to start future activities, if the gov-

ernment realizes that the firm has not been truthful. Cheating by governments discourages

innovative activities, and to offset this effect, non-credible governments can offer subsidies

to investors to encourage investments.

1.2.2 Investment in non-renewable resources

Studies of environmental bonds are largely limited to conceptualizing and describing the

theory of environmental bonds and their mechanisms. There is little analysis of the effect of

this policy on firm investment decisions and its optimal choices of site clean-up, especially

in a dynamic setting. Igarashi et al. (2010) studied the effect of environmental bonds on

firms’ exploration and extraction decisions in the oil and gas sector, through a theoretical

model. They demonstrated that internalizing restoration costs only slows the resource

extraction, without affecting the level of exploration and thus increases the in-ground

reserve-to-well ratio. White et al. (2012) showed that insolvency leads to a deadweight

loss because the restoration costs must be raised from general tax revenue, and thus with

environmental bonds, the government liability will be reduced by the payout of the bonds.

Lappi (2018) examines optimal policies for a resource extraction operation that causes

pollution during production and also requires remediation of the pollution stock when

production terminates. He sets up a theoretical model of the production and remediation

stages of operations and characterizes the socially optimal extraction and rehabilitation

rates. The optimal regulation is described in the form of a pollution tax, an optimal shut

down date, and a deposit from the producer to cover remediation costs.

These studies have analyzed firms’ extraction and restoration behavior in the absence

of output price uncertainty, and thus the timing of initial investment and final restoration

are deterministic. Price volatility affects the optimal timing of project stages, including

the temporary mothballed stage and the restoration phase, and will thus affect waste accu-

mulation and clean-up. In addition, in these studies, there is no need for the government

to require the remediation funds be deposited prior to production being undertaken. In

contrast to these studies, our focus is on examining the impact of different liability and
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bonding policies on the firm over the life cycle of an operation, from construction to aban-

donment, if the government is to be fully protected from the risk that the firm does not

meet its clean-up obligations. Our analysis also incorporates uncertain commodity prices.

The existing literature on real options deals with price uncertainty and its implications

for optimal investment decisions in non-renewable resources. An early study by Brennan

and Schwartz (1985) used a real options approach to analyze a firm’s optimal policies

for managing natural resource projects in an uncertain environment. Their study allows

for three discrete choices after the original investment decisions have been made, i.e., to

activate, mothball, or shut down a project, and examines the impact of the sunk costs of

mothballing and reopening on the optimal timing of operation and the value of investment.

Slade (2001) looked at the managerial flexibility this choice set provides for firms, and found

that this flexibility increases the value of project. Flexibility in this case means that the

option to become inactive should a current operation incur loss, and the option to reopen

a mine when operation becomes profitable. Therefore, idle firms are willing to tolerate

some losses with the expectation that commodity prices will rise in the future and make

the operation profitable again. However, according to Dixit (1992), when the incurred

loss in the phase of inactivity exceeds the option value of reactivation, permanent closure

becomes optimal. Dixit (1989, 1992) demonstrated that once an activity is mothballed, a

firm could remain in the state of hysteresis, reflecting the fact that the critical prices for

reopening the activity tend to be higher than the prices that triggered inactivation in the

first place. The source of hysteresis is the existence of switching costs that motivate firms

to delay such irreversible costs. This phenomenon also exists when firms decide to close an

already opened activity in the sense that closure occurs at lower prices than the original

ones that caused the decision maker to open the mine. Mason (2001) extended Brennan

and Schwartz (1985) by considering that the resource stock is exhaustible, and observed

hysteresis even with low sunk costs.

The research to date has tended to evaluate the value of natural resource investment

under irreversible costs of project suspension and reactivation, and firms’ optimal response

to clean-up costs associated with permanent closure has been largely overlooked. Brennan

and Schwartz (1985) and Almansour and Insley (2016) assumed that abandonment entails

no costs, and Dixit (1989), Mason (2001) and Slade (2001) did not include the option
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of permanent closure in their choice set. However, shutting down a mine requires costly

investments to perform restoration and remediation of all disturbed areas. More recently,

Insley (2017) examined optimal extraction of a non-renewable resource with the resource

price modeled as regime switching stochastic process and assuming irreversible restoration

costs for abandonment. She found that the critical prices that trigger abandonment depend

on the stock of reserves and the profitability of the project: for low reserves and low

operational profits, firms abandon the project before the lease is expired, while when the

level of reserve is high firms keep the reopening option alive as there is an opportunity

benefit to waiting. At the end of the lease, it is assumed that all firms were required to

abandon the mine and remediate the entire site regardless of the level of remaining reserves.

Muehlenbachs (2015) has studied the effect of abandonment costs for the Canadian oil and

gas sector, and observes that such costs may motivate firms to strategically exercise the

option to suspend operation even if the future reopening option has zero value. This

phenomenon increases the likelihood that firms will walk away from their environmental

obligations due to bankruptcy or insolvency. Therefore, becoming mothballed as a way to

escape the environmental obligations is unambiguously welfare reducing and extends the

costs of damage clean-up to society.

This study contributes to the current literature by analyzing the impacts of restoration

costs on a resource extraction firm’s decisions. We develop a simple mine valuation model

that accounts for environmental quality, in terms of the stock of waste, as an additional

state variable and is capable of analyzing the influence of an environmental bonding mech-

anism on abatement decisions. Clearly, abatement reduces the stock of waste and thus the

final environmental liability costs. The model is also used to examine the strict liability

rule where no bond is required but the firm must undertake site restoration at the end

of the project. To the best of our knowledge, this is the first attempt to understand the

impacts of environmental bonds, as a complement to the strict liability rule, on a firm’s

optimal investment strategies and its project value under price uncertainty, in a dynamic

setting.
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1.3 Model formulation

1.3.1 Description of the decision problem

Consider a risk-neutral firm which extracts a non-renewable resource and thereby generates

hazardous waste disposed of into a landfill. A government regulator requires the waste be

cleaned up when the operation is terminated. This study assumes that two policies can

be implemented: 1. the strict liability rule, and 2. an environmental bond combined with

liability for clean-up. We refer to the latter as the bonding policy. For simplicity, we have

assumed that there is no risk of accidental release of pollution from the landfill. Therefore,

the only environmental obligation is the clean-up of the landfill.

As noted in the introduction, the objective of the environmental bond is to fully col-

lateralize the government for the clean-up cost. The bond addresses any inefficiencies that

arise when the government is left to clean up a mine site, including any dead weight loss

if the cost is funded by general tax revenues, as well as the extra costs involved because

the government has less expertise and experience than the mining firm. In this paper, we

assume that there are no damages from the flow of waste production or the build up of the

waste stock prior to a fixed date, denoted by T . By government regulation, waste clean-up

must happen before or on this date. This assumption is made in order to focus on the

bond, but could be relaxed through the addition of a damage function which depends on

the stock of waste.

Before being allowed to develop the mine, the firm enters into an environmental contract

with the government which specifies the firm’s clean-up obligations. Once the firm enters

into the environmental contract, it can decide the optimal timing of its initial investment

to develop the project, which entails significant capital costs. After the project is launched,

the firm manages the level of reserve and the stock of waste by choosing the optimal rates

of extraction and abatement, respectively. In addition, the firm maximizes its project value

by determining the optimal timing of production, mothballing, reopening the operation,

and abandoning the facility and site restoration.

The firm’s optimal decisions depend on four state variables: the price of the commodity,

P (t), the stock of the resources, S(t), the amount of waste in the land fill, W (t), and the
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stage of operation, δi, i = 1, 2, 3, 4. Stage 1 (i = 1) is pre-construction, Stage 2 (i = 2) is

active extraction, Stage 3 (i = 3) is mothball or temporary shut down, and Stage 4 (i = 4)

is abandonment and landfill restoration. The firm has three control variables: the rate of

resource extraction, q, the rate of waste abatement, a, and the decision to move to a new

stage of operation, δ. We note that δ serves as both a state variable and a control variable

in the model. Cash flows depend on the current δ at a particular time t, but as described

later, the firm makes choices at discrete times as to whether to move to a different stage.

The commodity price, P (t), is assumed to be described by a simple one-factor Ito

process, which is mean-reverting in the drift term. As is discussed in Section 1.7.1, this

model has been used by other researchers to describe commodity prices (Schwartz, 1997).

dP (t) = κ(µ̂− lnP )P dt+ σPdz; P (0) = p0 given (1.1)

P ∈ [pmin, pmax]

where κ, µ̂, σ are parameters reflecting the speed of mean-reversion, the long run mean of

ln(P ), and volatility, respectively. t denotes time where t ∈ [0, T ], and dz is the increment

of a Wiener process. The estimation of the parameters is described in Section 1.7.1. Pa-

rameters are estimated for the risk-neutral world, so that the term κ(µ̂− lnP )P represents

a risk-adjusted drift rate.

The level of resource stock, S(t), falls over time at the extraction rate q. The dynamic

path of resource stock is given as

dS(t) = −qdt; S(0) = s0 given. (1.2)

The waste stock, W (t), as a by-product of the operation, is assumed to be disposed

of into a landfill with a known, maximum capacity denoted by w̄. By assumption, w̄ is

specified by regulation and is optimal from society’s point of view. During the operation

phase, each unit of resource extracted adds to the stock of waste at the constant rate φ,

and abatement at the rate a reduces the waste flow. This dynamic continues until the

capacity of landfill is exhausted. Therefore, the rate of change in the volume of waste or
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in the stock of landfill is given by

dW (t) = (φq − a)dt; W (0) = w0 (1.3)

in which φq Q a, and w0 represents the initial level of waste that is required to be cleaned

up at the end of operations, where 0 ≤ w0 ≤ w̄.

For intuition, we define the environmental quality in terms of the stock of waste so that

waste accumulation deteriorates the environmental quality. Therefore, φq can be thought

of as the flow rate of the environmental deterioration, assuming zero natural decay for the

waste. The abatement effort is any action, such as recycling the waste, that occurs during

the operation phase. Consistent with the model of Keohane et al. (2007), the abatement

rate could be higher than the environmental deterioration rate (i.e., φq < a). It follows that

waste abatement could affect the previously generated waste and contributes to a positive

rate of change in the environmental quality. Abatement is restricted by the installed capital

and cannot exceed its maximum value, ā, at each point of time. By assumption, this upper

bound does not change over time.

We now specify admissible sets for δ, q, and a. Let Zδ denote the admissible set for δ

where

Zδ = {δ1, δ2, δ3, δ4}. (1.4)

We define an admissible set for the extraction rate q, which depends on both the

resource stock and stage of operation. Denote this admissible set as Zq(S, δ), which is

given as follows

q ∈ Zq(S, δ) (1.5)

Zq = [0, q̄], if S > 0, δ = δ2.

Zq = 0, if S = 0, δ = δ2.

Zq = 0, if δ = δi, i = 1, 3, 4, ∀S.

By assumption, the extraction rate cannot exceed its maximum rate q̄. This upper

bound is known as the capacity constraint and is assumed to remain constant during the
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operation.

Similarly, we define an admissible set for a, denoted Za(w, q, δ), as follows

a ∈ Za(w, q, δ) (1.6)

Za = [0, ā], if W < w̄, δ = δ2

Za = [φq, ā], if W = w̄, δ = δ2

Za = 0, if δ = δi, i = 1, 3, 4, ∀W.

It is assumed that ā > φq̄, implying that the firm can abate at a rate that exceeds the

waste level generated when extraction is at the maximum q̄. Note that Equations (1.2)–

(1.6) imply that

0 ≤ W ≤ w̄ (1.7)

0 ≤ S ≤ s0.

The characteristics of extraction costs are given in Assumption 1.

Assumption 1 The extraction cost function Cq(q) is linear in the extraction rate so that

Cq(0) = 0, C ′q(·) ≥ 0, and C ′′q(·) = 0.

Assumption 2 gives the cost of abatement as a convex function, implying that removing

each additional unit of pollution with abatement is increasingly difficult and more costly

to the firm.

Assumption 2 The abatement cost function, Ca(a), is assumed to be twice differentiable

with Ca(·) ≥ 0, Ca(0) = 0, C ′a(·) ≥ 0, C ′′a(·) ≥ 0, and C ′′′a(·) = 0.

Restoration improves the quality of the environment by affecting the stock of waste,

rather than the flow. To ease the analysis, it is assumed that periodic restoration is not

possible, and thus abatement is the only way to maintain the quality of the environment

during the active life of the project.
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An environmental bond

To model the mechanism of an environmental bond, we assume that the firm must deposit

an amount with the government prior to project commencement sufficient to cover clean-

up costs of waste generated during construction. The value of the environmental bond

has to be adjusted periodically during the life of the project based on the firm’s estimated

restoration costs. Therefore, at the end of each period, the firm submits a revised cost

estimate and the government adjusts the amount of deposited bonds according to these

estimates. The value of the environmental bond in any period must completely cover

the closure costs if the firm were to abandon the mine at the end of the current period.

We assume that the appropriate level of restoration and the associated cost are correctly

determined and thus the bond level is adequate.

One important policy consideration is that the firm is required to estimate the closure

costs based on the fact that a third party will do the restoration should the firm default. It

has been found in practice that it is more costly for a third party to clean up environmental

damages than for the firm itself by 15% to 30% (Ferreira et al., 2004). This additional

amount internalizes third-party costs such as mobilization costs (Peck and Sinding, 2009,

White et al., 2012). Therefore, requiring restoration cost estimates to be made on the basis

of expenses to a third party ensures sufficient funds for the required clean-up should the

firm walk away from its obligations (Grant et al., 2009, Otto, 2010). This study assumes a

convex cost function for clean-up given by Assumption 3. As the stock of waste increases,

it becomes increasingly more difficult to return the land to its pristine state. Therefore,

additional waste requires additional costs for removing a greater volume of waste and,

depending on the degree of toxicity, requires greater safety precautions for workers during

restoration. Moreover, the cost of stabilizing the waste to prevent geographical expansion

can increase with waste volume (Phillips and Zeckhauser, 1998). As a result, more waste

requires more clean-up effort which becomes more costly at the margin.

Assumption 3

• We define the firm’s clean-up costs by Cf (W ) and the third party’s clean-up costs by

Ctp(W ), so that Ctp(·) = νCf (·) where ν > 1 is a constant.
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• The firm’s cost of cleaning up the accumulated waste and improving the quality from

the state W to zero waste is given by Cf (W ) with C ′f (·) ≥ 0, C ′′f (·) ≥ 0, and

C ′′′f (·) = 0.

• It is assumed that Cf (W ) is truthfully estimated and reported by the firm.

Let B(t) denote the total value of the bond at each point of time. This value varies

according to rate of change in the firm’s restoration costs adjusted by potential expenses

to the third party, dCtp(W )
dt

. In fact, the variation of the environmental bonds over each

period (i.e., the annual cost of bonds to the firm) denoted by dB(t)
dt

, is equal to the rate of

change in the restoration cost, and can be written as

dB

dt
=
dCtp(W )

dt

=
dCtp

dW

dW

dt

= θ(W )(φq − a)

(1.8)

where dCtp

dW
≡ θ(W ), and dW

dt
= φq − a is given by Equation (1.3). θ(W ) is defined as the

marginal restoration cost or the marginal rate of fine that the government collects on the

waste flow over a given time interval. Therefore, the firm’s rate of payment on bonds to

the government at each time (i.e., dB
dt

) is given by θ(W )(φq − a), which could be positive,

negative, or zero depending on φq R a. If the abatement rate is such that the extraction

activities add to the stock of waste (φq > a), the firm will have to update the deposited bond

accordingly, representing an increase in bond value. In contrast, if abatement dominates

the deterioration rate (φq < a) and reduces the waste accumulation, the bond value will

decline, indicating that the firm has been reimbursed an amount equal to the reduction in

clean-up costs. If abatement fully offsets the current deterioration (φq = a), the net change

in the stock of waste and thus the compliance cost with the bonding regulation are zero.

Therefore, there is a trade-off between the decision to abate today and to post bonds for

clean-up at the terminal time. Note that θ(W ) increases linearly in W , and is determined

based on the company’s estimate of the change in restoration costs to a third party as W

changes.
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Let B0 = Ctp(W (0)) cover the potential clean-up cost of the initial waste. B0 has

to be deposited with the government before the operation starts. According to Peck and

Sinding (2009), this mechanism provides adequate assurance for the existence of funds for

future clean-up because it “raises money according to the initial footprint and [is] linked

to marginal increases or decreases in mine footprint over its life”. Since the estimated

restoration costs are higher than the costs to the firm by an amount ν (see Assumption 3),

the difference will be returned to the firm at project termination. We refer to this saving

as restoration benefit defined by Assumption 4.14

Assumption 4 Under bonding requirements, the firm’s benefit (saving) from restoration

at the terminal point, T , is (ν − 1)Cf (W ),15 which is the difference between the firm’s

estimated restoration costs to a third party and its actual costs of restoration, and ν > 1.

We allow for the possibility that interest is paid on the bond at the risk-free rate, r.16

While the project is operating, the annual compliance cost with the environmental bond

has three components: 1) the cost of abatement effort, 2) the expected bond payment, and

3) any interest paid on the bond. Therefore, the annual compliance cost is defined by

Ω = Ca(a) + 1b=trueθ(W )(φq − a)− 1b=truerB (1.9)

where 1 is the indicator function and b = true under the environmental bonding policy

and is false otherwise.

The strict liability rule

Under the strict liability rule, the regulator requires the firm to clean-up the stock of

waste once the project terminates, and does not require ex ante payments for associated

14Note that in practice, a firm may go bankrupt, and would thereby forfeit the bond refund. This case
is not considered in this paper.

15According to Assumption 3, the benefit of restoration is [Ctp(W )−Cf (W )] = [νCf (W )−Cf (W )] =
(ν − 1)Cf (W ) where ν > 1.

16Note that in Section (1.5) we also consider the case where the firm borrows at rate ρ > r to finance
the bond. For clarity in describing the model, we ignore this possibility at the moment.
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costs. Moreover, termination entails sunk costs to the firm. Therefore, we can adjust

Assumption 4 as follows

Assumption 5 Under liability requirements, the firm’s restoration cost at the terminal

point, T , is Cf (W ).

While the project is operating, the annual compliance cost with the strict liability rule

is associated with abatement efforts. In Equation (1.9) the last two terms on the right

hand side disappears as b = false.

Instantaneous cash flow

The firm’s objective is to choose controls to maximize the discounted sum of risk neutral

expected cash flows. Cash flows at any time t will depend on the firm’s stage of operations,

δ, rate of abatement, a, and extraction, q. Instantaneous cash flows are given as follows

π(t) = P (t)q − Cq(q)−
[
Ca(a) + 1b=trueθ(W )(φq − a)− 1b=truerB

]
− Cm

i , if δ = δi, i = 1, 2, 3

(1.10)

π(t) = 0, if δ = δ4

in which the term in square brackets is the compliance cost, Ω, as previously given by

Equation (1.9). Cm
i refers to fixed costs under both the bond and strict liability policies

in stage i. Because the tax treatment of bonds varies across jurisdictions, we have chosen

to ignore taxes in our model specification.17

1.3.2 Defining state and control variables, and the value function

The resource price, P (t), resource stock S(t), waste stock, W (t), and stage of operation,

δ(t), all represent state variables in the decision problem. The value of the firm’s operations

is a function of these state variables and time, t, denoted as V (P, S,W, δ, t).

17Tax issues include whether the money paid into the bond is deductible for income taxes, whether
interest paid to finance the bond is deductible, and whether the bond refund is taxable. See World Bank,
2009.
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It is assumed that at specific fixed times, the firm makes a decision about whether to

move to another stage of operation. These fixed decision times are given as follows

Td ≡ {t0 = 0 < t1 < ... < tm <, ..., tM = T − 1} (1.11)

where we assume that the optimal decision to move to another stage of operation occurs

instantaneously at t ∈ Td. Note that at the end of the project life, T , the firm’s only

option is to terminate the operations. Therefore, time T is excluded from the firm’s

optimal decisions dates in the above set. Choices regarding optimal rates of abatement, a,

and extraction, q, are made in continuous time at time intervals given as follows

Tc ≡ {(t0, t1), ..., (tm−1, tm), ..., (tM−1, tM)}. (1.12)

Since we search for the closed loop control, we assume the controls are in feedback form,

i.e., functions of the state variables. Control variables can be specified as: q(P, S,W, δ, t),

a(P, S,W, δ, t); t ∈ Tc, and δ+(P, S,W, δ, t); t ∈ Td. Admissible sets for q, a and δ are given

as Zq, Za and Zδ, specified in Equations (1.5) and (1.6), and (1.4). We specify a control

set which contains the controls for all t0 ≤ t ≤ tM as follows

K = {(δ+)t∈Td ; (q, a)t∈Tc}. (1.13)

Regardless of the controls chosen, the value function can be written as the risk neutral

expected discounted value of the integral of cash flows, given the state variables, with the

expectation taken over the controls

V (p, s, w, δ̄, t) =

EK

[∫ t′=T

t′=t

e−r(t
′−t) π(P (t′), S(t′),W (t′), δ) dt′ + e−r(T−t)V (P (T ), S(T ),W (T ), δ(T ), T )

∣∣∣P (t) = p, S(t) = s,W (t) = w, δ(t) = δ̄

]
(1.14)

where (p, s, w, δ̄) denote realizations of the random and path dependent variables (P, S,W, δ).
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r is the risk free interest rate, and E[·] is the expectation operator. The value in the final

time period, T , is assumed to be the expected net benefits from closing and restoring the

mine. This is described as a boundary condition in Appendix A.1.

1.4 Dynamic Programming Solution

Equation (1.14) is solved backwards in time using dynamic programming. For a particular

tm ∈ Td, we define t−m and t+m to represent the moments just before and after tm. Specifically

t−m = tm − ε and t+m = tm + ε, ε → 0+. As a visual aid, the times around tm and tm+1 are

depicted below, going forward in time

t−m → t+m → t−m+1 → t+m+1 . (1.15)

At tm we determine the optimal control δ+, while in the interval (t+m, t
−
m+1). We solve

for the optimal controls q and a in continuous time.

1.4.1 Determining optimal rates of abatement, a, and extraction,

q, from t−m+1 → t+m

We define LV as the differential operator as follows

LV =
1

2
σp2

∂2V

∂p2
+ κ(µ̂− ln p)p

∂V

∂p
+ rV. (1.16)

Using a standard contingent claims approach (Dixit and Pindyck, 1994), we can derive

a system of partial differential equations that describe the value of the resource, V , in the

interval (t+m, t
−
m+1) for all operating stages except for abandonment.

∂V

∂t
+ LV + max

q,a

{
− q ∂V

∂s
+ (φq − a)

∂V

∂w
+ π(t)

}
= 0, for δ = δi, i = 1, 2, 3

(1.17)
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where we maximize with respect to the control variables a and q, and π(t) refers to net

cash flows as defined in Equation (1.10).

Once the project is in Stage 4, the project value goes to zero.

V (p, s, w, δ = δ4, t) = 0. (1.18)

1.4.2 Determining optimal operating stage, δ at tm

For tm ∈ Td, the firm checks to determine whether it is optimal to switch to a different

operating stage. The firm will choose the operating stage which yields the highest value

net of any costs of switching. Let C(δ−, δ′) denote the cost of switching from stage δ− to

δ′. Recall that t = t− represents the moment before tm and t = t+ denote the instant after

tm. Solving going backward in time, and noting the optimal stage is denoted as δ+, the

value at t−m is given by

V (p, s, w, δ−, t−m) = V (p, s, δ+, t+m) − C(δ−, δ+) (1.19)

δ+ = arg max
δ′

[V (p, s, w, δ′, t+m)− C(δ−, δ′)].

Switching costs differ under the bond and strict liability policies for project commence-

ment as well as for mine abandonment. Opening the mine under the bond requires the

investment cost and initial bond payment, whereas the latter is absent under the liability

rule. Denoting the investment cost with I, the cost of opening the mine is given as

C(δ1, δ2) = I + 1b=trueB(w0). (1.20)

The cost to switch to Stage 4 (abandonment) from either Stage 2 (operating) or Stage

3 (mothballed) is given by

C(δi, δ4) = −[1b=trueC
tp(w)− Cf (w)] i = 2, 3. (1.21)

Under strict liability this is just the firm’s own clean-up cost C(δi, δ4) = Cf (w) > 0, i =
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2, 3. Under the bonding policy, the firm will receive a refund of the bond equal to Ctp(w)

which exceeds the expenditures required for the firm to implement the clean-up, Cf (w).

Hence under the bond policy C(δi, δ4) will be a negative cost, i.e., it is a restoration benefit

to the firm.

1.4.3 Optimal extraction and abatement policies

The decision problem specified in Equations (1.17)–(1.19) has no closed form solutions and

is solved using a numerical approach, which is discussed in the next section. In this section,

we examine the first order conditions for extraction and abatement which hold during in

Stage 2, δ = δ2, when the firm is actively producing the ore. These first order conditions

reveal the nature of the optimal extraction and abatement rates, denoted a∗ and q∗, and

in particular whether the solutions are bang-bang.

An environmental bond

The optimal extraction rate, q∗, and the optimal abatement rate, a∗, under bonding re-

quirements are obtained by maximizing Equation (1.17) with respect to the terms that

contain q and a. The optimal extraction rate for a firm that actively extracts under a

bonding policy satisfies

P − C ′q − ∂V

∂s
+ φ
[∂V
∂w
− 1b=true θ(w)

]{ ≥ 0 ⇒ q∗ = q̄

< 0 ⇒ q∗ = 0.
(1.22)

The first three terms in Equation (1.22) are the marginal revenue from extraction,

marginal cost of extraction, and marginal value of the reserve to the firm. We have called

the term in square brackets the firm’s marginal cost of environmental deterioration which

has two components: 1) the marginal value of the waste stock to the firm, ∂V
∂w

, and 2) the

marginal restoration cost, 1b=true θ(w). The total marginal cost of extracting a reserve is

captured in the terms to the right of P .

Remark: Since both the profit function and the resource stock are linear in extraction
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rate, the optimal extraction rate, q∗, is either zero or at capacity, hence this is a bang-bang

solution.

It follows that given an optimal abatement rate, the firm extracts at capacity as long

as the marginal effect is positive. For zero marginal effect, the firm remains indifferent

between extracting at capacity or not extracting at all, and thus it is reasonable to extract

at capacity. Therefore, the firm extracts at capacity as long as the marginal revenue of

extraction is not lower than its total marginal costs.

The optimal abatement under a bonding policy is given by

− C ′a(a∗) =
∂V

∂w
− 1b=true θ(w)⇒

{
0 ≤ a∗ ≤ ā if w < w̄

φq̄ ≤ a∗ ≤ ā if w = w̄.
(1.23)

Along the optimal abatement path, the marginal cost of environmental degradation,
∂V
∂w
− θ(w), is equal to the marginal abatement cost. If abatement is costlier than envi-

ronmental degradation at the margin, the polluter reduces its abatement effort and posts

environmental bonds instead, until it remains indifferent between abating and polluting.

In contrast, if the costs of environmental degradation are larger than the abatement costs

at the margin, the optimal strategy is to increase abatement until the equality in Equa-

tion (1.23) holds. Thus according to the optimal policy rule, pollution should be abated

up to the point that the marginal costs of abatement equal the potential marginal costs of

the environmental degradation. Once the landfill capacity is reached, the lowest optimal

abatement rate equals the environmental deterioration rate. This condition ensures that

the landfill does not receive waste beyond its capacity.

A comparison between optimal criteria in Equation (1.22) and the optimal extraction

policy with no environmental interaction in Brennan and Schwartz (1985) and the subse-

quent studies reveals that in our study the firm has to take into account costs of waste

accumulation including the cost of clean-up (i.e., φ
[
∂V
∂w
− 1b=true θ(w)

]
) when choosing

the optimal extraction rate. These terms were zero in such previous studies. Therefore,

the firm may require a relatively higher price to start its operation, because accounting

for costs of waste accumulation in the profit function increases the operational costs and

reduces the private net benefit of extraction.
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The strict liability rule

The optimal rules for extraction and abatement are also given in Equations (1.22) and (1.23)

but the indicator function will be zero. The firm’s marginal cost of environmental deteri-

oration under the liability rule is simply the marginal value of the waste stock. Similar to

the bond, the firm operating under the liability rule extracts at either zero or at capacity,

because both the profit function and the resource stock are linear in extraction rate. A

comparison between optimal criteria for extraction and abatement under the bond and the

liability rule reveals that the payment for the marginal restoration cost, θ(w), does not

appear under the latter.

1.5 The case of borrowing

As noted, the value of the mine is specified in the Q-measure, which means that risk due to

uncertain commodity prices is taken into account via the risk-adjusted parameters in the

commodity price model. The solvent firm is assumed to operate as a going concern, and

hence does not consider the possibility that it might not meet its clean-up obligation due

to bankruptcy. Using standard contingent claims arguments, it is therefore appropriate

to use the risk-free discount rate in our valuation model and this fully accounts for the

opportunity cost of the bond to the firm.

However, in reality, the model as outlined in Section 1.3 for a solvent firm is unlikely

to adequately reflect the true cost of the bond to the firm. As is discussed by White et al.

(2012) and White (2015), a firm will typically be subject to additional costs, such as a bond

service charge (largely a risk premium) assessed by a surety company. The risk premium

would reflect the market’s assessment that a firm might not meet its clean-up obligations,

even though the firm fully intends to do so. To take account of this extra cost of the bond,

we consider a case in which the solvent firm is assumed to borrow to finance the bond and

must pay a premium over the risk-free rate, which accounts for the market’s perception of

risk and other bond service charges.

The model can easily be adjusted for the case where the firm borrows at rate ρ > r to

finance the bond. Assume that the government does not pay interest on the bond. Hence,
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Equation (1.9) which specifies annual compliance costs becomes

Ω = Ca(a)− 1b=trueρB (1.9b)

in which ρB denotes the interest payments the firm makes on the loan at each period prior

to abandonment.

At the time of project commencement, the firm borrows B(w0) which is deposited into

the bond. Since there will be no net cash outflow associated with the bond, the cost to

move from Stage 1 to Stage 2 is just the construction cost. Equation (1.20) is adjusted to

become

C(δ1, δ2) = I. (1.20b)

If the firm chooses to close the project (i.e. go to Stage 4), the firm receives a refund of

the bond from the government which is used to pay off the loan. Hence the net cash flow

at closure reflects the clean-up cost. Equation (1.21) becomes:

C(δi, δ4) = −Cf (w) i = 2, 3. (1.21b)

1.6 Numerical solution approach

Equations (1.17)–(1.19) represent a stochastic optimal control problem which must be

solved using numerical methods. The computational domain of Equation (1.17) is (p, s, w, δ̄, t) ∈
Γ where Γ ≡ [pmin, pmax]×[0, s0]×[0, w̄]×Zδ×[0, T ]. More details are given in Appendix A.1

where boundary conditions are specified for the PDEs. LV in Equation (1.17) can be dis-

cretized using a standard finite difference approach. The other terms in the equation are

discretized using a semi-Lagrangian scheme as described in Chen and Forsyth (2007) and

will not be described further here.

Recall that the optimal control for q which we denote by q∗ is bang-bang so that

q∗ ∈ {0, q̄}. To determine the optimal control we search over the set (q, a) ∈ {0, q̄} × Za.
We discretize the controls a ∈ Za and determine the optimal control by exhaustive search

at each point in the state space (p, s, w, t).
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κ 0.0264 (0.001) Root Mean Square Error 0.07
µ 2.7051 (0.079) Mean Absolute Error 0.05
η 2.7845 (0.026) Log-likelihood function 9652
σ2 0.0458 (0.002) Number of observation 937

Table 1.1: Estimation results for the one-factor copper price model using Kalman Filter. RMSE,
MAE, µ, and η are in terms of US $/lb. Standard errors are in parenthesis. Weekly futures data
from Aug 1st, 1997 to Jul 13th, 2015.

1.7 An application to the copper industry

To illustrate the impact of an environmental bond versus the strict liability rule on optimal

firm decisions, this study considers the case of investment decisions for a copper mine. A

numerical example is developed based on available data from an open-pit copper mine

in British Columbia, supplemented by researcher assumptions when data is lacking. The

parameters of the stochastic model assumed for copper prices are estimated using copper

futures contracts. We will use these estimated parameter values to solve the mine valuation

problem.

1.7.1 Estimating the parameters of the price process

The parameters of Equation (1.1) are estimated in the risk-neutral world. We define the

parameter µ̂ = µ − η so that the market price of risk, η, is deducted from µ which is the

long-run mean of ln(P ) before adjusting for the price risk. The market price of risk reflects

additional returns that the market demands over the risk-free interest rate per each unit

of price volatility, σ. Note that in the stochastic price process κ > 0, µ > 0, σ > 0, and

η > 0. These parameters are estimated using data for copper futures prices, reflecting

current market expectations. Estimation results are provided in Table (1.1).

To obtain estimates, we have used a Discrete Kalman Filtering approach and a Max-

imum Likelihood Function.18 This study uses weekly data for copper futures contracts

traded on the London Metal Exchange (LME).19 The estimation is done for six futures

18These methods are explained in Schwartz (1997).
19Data for this study were collected from Datastream.
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Figure 1.1: Model implied copper spot prices and market copper prices. Weekly data from Aug
1st, 1997 to Jul 13th, 2015. Nominal prices are deflated by the US Consumer Price Index, base
year=2007.

contracts dated from August 1997 to July 2015, with 1, 6, 11, 16, 21, and 24 months to

maturity.20 To find real copper prices, futures prices are deflated by the US Consumer

Price Index. Due to the lack of data on copper spot prices, futures contracts closest to

maturity proxy the market spot prices (Schwartz, 1997). The Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE) of the estimates of log futures prices are 7

cents per pound and 5 cents per pound, respectively. Moreover, the standard errors of all

parameter estimates are small. All estimates are significant. These findings suggest that

the one-factor model provides a good tracking of the copper market prices as shown in

Figure (1.1).

1.7.2 Project specification

The numerical example is based on data from Copper Mountain which is an open-pit mine

located in south-western British Columbia which had an expected mine life of 15 years when

it was first proposed. In 2007, the Copper Mountain project proceeded to a feasibility study

20Long maturity contracts are of most interest as the goal of this study is to value a long-term investment
project.
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to construct an open-pit mine at the estimated cost of US $380 million. An additional US $5

million for the feasibility study, environmental testing and geological consulting increased

the construction cost to US $385 million. This mine had a production target of 78.2 million

pounds of copper per year, starting from June 2011, with an estimated average production

cost of US $1.35 per pound of copper. The fixed cost of sustaining capital are estimated to

be US $1.66 million per year. The mine’s average strip ratio (i.e., waste/ore) is 1.5 pounds

of waste per each pound of ore extracted.

Additional assumptions required for the numerical example are described below. By

assumption, the maximum amount of waste that is allowed to be generated during the

life of project is 2200 million pounds. The parameter of the clean-up cost function is cali-

brated based on the data provided by the Financial Assurance Guideline for determining

the closure cost of a landfill provided by the government of Ontario (2011).21 It is further

assumed that the maximum feasible rate of abatement can be twice as high as the environ-

mental deterioration rate, i.e., ā = 2φq̄.22 This assumption allows for the possibility that

the abatement rate may exceed the deterioration rate.

Launching the project with liability requirements entails fixed costs of US $385 million,

whereas the bonding policy imposes an additional cost on the firm that is the initial

amount of the bond adjusted by the third-party expenses. The third-party cost that reflects

administrative costs, mobilization costs, etc is assumed to be 30% of the firm’s restoration

cost. Either mothballing the mine or resuming operations after mothballing are assumed to

entail an up-front cost of $5 million. It is further assumed that remaining in the mothballed

stage costs $1 million per year for environmental monitoring and maintenance. Note that

in Equation (1.10) in the production phase, Cm
2 equals the fixed costs of sustaining capital,

while at the mothballed stage Cm
3 is the summation of costs for sustaining capital, Cm1

3 ,

as well as for environmental monitoring and maintenance, Cm2
3 . Table (1.2) summarizes

the parameter values used for the numerical example. Recall that taxes are not included

21In this guideline, the estimated closure cost of a landfill with 60, 000 tonnes capacity is around US $3
million. After transforming tonnes to pounds, we have calculated the total closure cost of a landfill with
2200 capacity equivalent to US $49.895 million, i.e., Cf (w̄) = 49.895. Then, β = 49.895/w̄2 ' 10−5. This
estimate is intended to provide a rough order of magnitude for clean-up costs. This guideline is available
at https://www.ontario.ca/document/f-15-financial-assurance-guideline-0.

22This study sets the abatement ceiling high enough so that the likelihood it binds is small, because
abating at high rates is prohibitively expensive.
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Life of project T = 15 years
Risk-free rate∗ r = 0.02 per year

Bond service charges∗ ρ = 0.05 per year
Initial reserve s0 = 1173 million lb

Strip ratio (waste:ore) φ = 1.5 : 1
Production capacity q̄ = 78.2 million lb/year
Abatement ceiling∗ ā = 2φq̄ million lb/year
Landfill capacity∗ w̄ = 2200 million lb

Extraction cost parameter Cq(q) = γq γ = 1.35 $/lb
Abatement cost parameter∗ Ca(a) = αa2 α = 10−3

Firm’s clean-up cost parameter∗∗ Cf (w) = βw2 β = 10−5

3rd party cost adjustment factor∗∗∗ ν = 1.30
Project stages δ1, δ2, δ3, δ4

Fixed decision time∗ τd every year
Construction cost I $385 million

Cost to mothball and reactivate∗ C(δ2, δ3), C(δ3, δ2) $5 million
Fixed costs of sustaining capital Cm

2 , Cm1
3 $1.66 million/year

Fixed monitoring costs while mothballed Cm2
3 $1 million/year

Table 1.2: Parameter values and functional forms for the prototype open-pit copper mine. All
dollar values are based on 2007 US dollars. ∗Assumed by the authors. ∗∗β is calibrated based
on landfill closure costs provided by the Government of Ontario 2011. ∗∗∗From Ferreira et al.
(2004). Other values are from 2007 feasibility study conducted by the Copper Mountain Mining
Corporation.

in the analysis.

1.8 Results analysis

This section compares the impacts of the environmental bond and the strict liability rule

on the firm’s optimal investment decisions as indicated by critical prices. In addition, we

compare the project value and optimal abatement decisions under each policy. Note that

the quantitative results at each stage of the project are dependent on the current values

of the state variables – the resource stock, resource price, level of the waste stock, and

time. To depict the results graphically, we must choose representative values for the state
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variables. However, the numerical solution is available over the full ranges of the state

variables.

The results for the bonding policy depend on the particular characteristics of the bond.

In this paper, we focus on whether government pays interest on the bond and whether the

firm pays a risk premium on loans to finance the bond. Regarding the interest paid by

the government, we contrast cases when the bond pays either zero interest or the risk-free

interest rate. In the analysis, we examine the case where the bond must cover the full costs

of clean-up to the government, which are assumed to be 30% higher than if the firm did the

clean-up itself (i.e., ν = 1.3 in Assumption 3). We do not show the results for cases where

the bond is set at the firm’s own estimated clean-up costs (i.e., ν = 1) as these results are

quantitatively close to ν = 1.3, but the government is not fully collateralized for the cost

of clean-up, which is the objective of the bond.

This paper focuses on the impact of these policies on the firm’s optimal behaviour.

In Appendix A.2, we briefly discuss whether the bonding polices would give a first best

outcome.

1.8.1 Valuation results

We begin by showing how the value of the mining project varies with the price of copper,

the stock of waste, and the level of copper reserves. This is depicted in Figure (1.2) for the

case of strict liability. Diagrams for the bond paying the risk-free interest are similar, and

are not shown. The value of the investment project is depicted prior to construction at the

initial time, t = 0. The left-hand panel of Figure (1.2) shows the value of the project across

different starting prices and different levels of reserve prior to initial investment, when the

starting level of waste is at 500 million pounds.23 We observe, as expected, that there is

an increasing trend in the value of the project with respect to prices and reserve levels.

The right-hand panel in Figure (1.2) represents the value of the project across different

resource stock levels and different levels for the starting value of waste as a result of

23This initial level of waste is chosen for the purpose of illustration only. Changing the initial level of
waste changes the project value but the intuition remains the same.

32



0

1000

1000
10

2000

U
S

$
 m

ill
io

n

Solution Surface at t = 0

3000

s

500

p

4000

5

0 0

0

20

2000

40

U
S

$
 m

ill
io

n

60

1000

Solution Surface at t = 0

w

80

1000

s

100

500

0 0

Vl(p
0
=2,

s
0
=1173,

w
0
=500)

= 99.34

Vl(p
0
=10,s

0
=1173,w

0
=500) = 3739

Vl(p
0
=2,s

0
=1173,w

0
=0) = 101.1

Vl(p
0
=2,s

0
=1173,w

0
=2200) = 73.4

Figure 1.2: Project value prior to construction under the strict liability rule. In the left-hand
panel, the level of waste is fixed at w0 = 500 million pounds, and in the right-hand panel, the
price is fixed at $2/pounds. s0 : million pounds, p : US$/pound, w : million pounds.

construction, when the price of copper is $2/pound. At a given level of initial reserve,

generating a larger amount of waste during the construction phase reduces the project

value by increasing the firm’s cost of complying with the strict liability rule during the

extraction phase and at project termination. A larger initial waste implies that the landfill

capacity will bind faster during the operation, and thus once the construction is completed,

the operating firm will have to exercise more abatement to maintain space in the landfill.

In addition, the firm’s liability costs at project termination date rise as more waste builds

up. For the prototype project with s0 = 1173 million pounds, the project value prior

to construction ranges from $73.4 million to $101.1 million depending on the severity of

damage during the initial construction.

Figure (1.3) compares the project value prior to construction and during the extraction

phase under the strict liability rule and the bonding policy. This figure is shown for one

realization of the copper price and full reserves at the initial time t = 0. Three cases are

analyzed for the bond:

• Case I: The firm receives the risk-free rate of interest on the bond (r = 2%).
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Figure 1.3: A comparison of project value (a) prior to construction and (b) during the active
extraction under the strict liability rule and the three bond cases, for p0 =$2/pound and s0 = 1173
million pounds.

• Case II : The government pays no interest on the bond.

• Case III: The firm borrows at a premium over the risk-free rate (ρ = 5%) and the

government pays no interest on the bond.

Panel (a) of Figure (1.3) shows that the value of the project under the bond for Case I

(interest paid at the risk-free rate) is identical to the strict liability rule. This follows

because the interest paid on the bond is the same as the discount rate, with the implicit

assumption that the firm can borrow or lend at the risk-free rate. As long as the firm

receives the risk-free rate on the bond, it will be indifferent between paying clean-up costs

via the bond as waste accumulates, or delaying payment of clean-up costs to the end of

the project. If no interest is paid on the bond (Case II ), the bond is more burdensome to

the firm, reducing the value of project compared to Case I. Under the realistic assumption

in Case III that the firm can only borrow at rate ρ, which is higher than the risk-free rate,

the project value is reduced even further.

Panel (b) of Figure (1.3) compares the values of project in the production phase

(Stage 2) when operations have commenced. To reach Stage 2, the firm must pay an
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initial amount into the bond, which reflects the waste stock generated to initiate opera-

tions. For a firm in Stage 2, this initial payment is a sunk cost, and thus does not influence

the project value in the extraction phase. It follows that the value of the project under the

Case I bond will be higher than for the strict liability rule, where all clean-up costs will be

paid at project termination. Hence, we see in panel (b) that the curve reflecting the bond

in Case I lies above the liability curve. If the firm is paid no interest on the bond as in

Case II , the value of the project is reduced compared to the Case I, but still higher than

the liability. Under Case III, when the firm must borrow at a risk premium, the value of

the project is reduced even further and falls below that of the strict liability rule.

1.8.2 Optimal abatement rates

The left-hand panel of Figure (1.4) compares the optimal abatement rate in the production

phase (Stage 2) versus the waste stock at time zero, for the strict liability rule and the

three different bond cases. Note that the optimal abatement rates are all the same when

the landfill is at capacity, because at this point the only way that the firm can continue

production is to abate all of the waste as it is created.

For intuition about abatement rates, it is helpful to consider the optimal abatement

condition expressed in Equation (1.23), whereby the marginal cost of increasing abatement

by one unit on the left hand side is set equal to the marginal cost of environmental de-

terioration on the right hand side. The marginal cost of environmental deterioration to

the firm differs across the different cases. For the strict liability rule, the marginal cost

of environmental deterioration consists solely of ∂V
∂w

, which reflects the cost of using up

capacity in the landfill as well as adding to future clean-up costs. For the bond in Case I,

the marginal cost of environmental deterioration includes ∂V
∂w

as well as the marginal cost

of posting the bond, θ(w). Since costs of clean-up are paid immediately by posting the

bond, ∂V
∂w

in Case I reflects only the cost of using up landfill capacity net of the marginal

restoration benefit and any interest paid on the bond. As long as the firm receives the

risk-free interest rate on the bond, it will be indifferent between posting the bond when

the waste is created or paying for clean-up at project termination. Hence, the abatement

rates for Case I and the liability rule are identical.
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Figure 1.4: A comparison of (a) optimal abatement incentives and (b) marginal environmental
deterioration costs, at each level of initial waste under the strict liability rule versus three bond
cases, at p0 =$2/pound and s0 = 1173 million pounds.

If there is no interest paid on the bond (Case II ), ∂V
∂w

becomes more negative relative

to Case I, because the foregone interest represents an additional cost of paying clean-up

costs up-front. Hence the marginal cost of environmental deterioration is higher in Case II

than Case I. This motivates the firm to abate at a higher rate than under strict liability

(or the bond in Case I) over all waste levels, as can be seen in panel (a) of Figure (1.4).

The marginal cost of environmental deterioration for the firm in Case III is even higher

than in Case II. The requirement to borrow to finance the bond at a risky interest rate,

combined with the fact that no interest is paid by government on the bond, means that

increasing the waste stock becomes even more costly for the firm. ∂V
∂w

is more negative as

a result, motivating additional abatement compared to the strict liability rule or the other

bond cases.

The right-hand panel of Figure (1.4) shows the marginal environmental deterioration

cost of the strict liability rule and the three bond cases. A more negative marginal envi-

ronmental deterioration cost at a given level of waste implies a higher optimal abatement

rate. Therefore, this diagram is the mirror image of the left-hand panel of Figure (1.4).
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Figure 1.5: Optimal rate of abatement and optimal expected bond payment across waste accumu-
lation at the operating stage under the bond in Case I, for two price levels and s0 = 1173 million
pounds, at time zero.

Another interesting result that is the trade-off between abatement and the bond pay-

ment in Stage 2, as shown in Figure (1.5) for the Case I bond, panel (a) in the figure

shows the optimal abatement rate versus the waste stock for two different copper prices.

Panel (b) shows the corresponding payments into the bond. At low levels of waste, the

optimal abatement rate increases as more waste accumulates but is not high enough to

create a significant change in the stock of waste. Consequently, the firm’s payment to

the bond increases with waste accumulation. At higher levels of waste, when the landfill

is reaching its capacity, the firm’s optimal abatement effort progressively increases. As a

result, waste accumulates at a slower rate and thus the payments to the bond gradually

diminish. Once the landfill capacity is reached, the only way to continue operations is to

abate at least at the deterioration rate. If abatement fully offsets the deterioration rate so

that the level of waste does not change, the expected bond payment is zero. This trade-off

does not exist under the liability rule, because restoration costs are not required until the

project terminates. At the higher price, the project is more profitable which motivates

the firm to maintain more capacity in landfill by abating at a higher rate compared to the

lower copper price. Note that at a zero level of initial waste, the firm exercises a positive

abatement rate because the extraction activity is creating a flow of waste. We have not
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shown Cases II and III, as the intuition is the same. However, the expected bond payments

for Case II and Case III are lower than Case I, due to higher abatement.

1.8.3 Optimal choice of project stages

We examine the lowest copper prices at which it is optimal to switch from one stage to

another, which we refer to as critical prices. Critical prices are optimally determined based

on Equation (1.19) and change with the level of reserve, size of waste stock, and time. For

example, for s0 = 1173 and w0 = 500 million pounds, Figure (1.6) illustrates the value

of the project in Case I prior to the initial investment (Stage 1) and once the operation

has started (Stage 2) net of the up-front costs of construction and initial bond payment.

These values are plotted across copper prices up to US $10 per pound. It is optimal

to start extraction activities once the value in Stage 2 less switching costs exceeds the

value in Stage 1. Therefore, it is not optimal to incur the construction cost until copper

prices increase to US $2.6 per pound. Before this threshold, the net present value prior to

incurring switching costs is positive and higher than the net present value of the operating

option. Thus, there is an opportunity benefit to waiting for a higher price before beginning

operations.

The first column of Table (1.3) shows the critical prices to move from one stage to

another stage at time zero when switching entails up-front costs, given s0 = 1173 and

w0 = 500 million pounds, for the bond in Case I. If per pound copper prices become as low

as US $1.39, the optimal strategy is to mothball current activity and to remain idle until

the prices increase to US $1.51. This is the lowest price that encourages reactivation. The

inactive firm can also choose to terminate the project and carry out the restoration work.

Critical prices that trigger termination from the mothballed stage tend to be as low as US

$0.71 per pound.

The critical prices in Table (1.3) shown for t = 0 imply that the firm would not directly

abandon the project from the operating stage at the early life of the project. This can

be seen by noting that the critical prices to mothball from Stage 2 are above the prices

for abandonment from Stage 2. This means that the firm will always go through the

mothballed stage first before abandoning. However these critical prices reflect optimal
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Figure 1.6: Value of initial investment and begining production (Stage 1 to 2) under the bond in
Case I (identical to the strict liability rule), given s0 = 1173 and w0 = 500 million pounds.

decisions for an operating project at time zero. We would expect that if the time left in

the life of the project is small and mothballing costs are non-negligible, it may be optimal

to abandon directly from the operating stage. In this numerical example, we find that when

there are two years left in the life of the project, it is optimal to abandon without first

mothballing over all levels of waste.24 Appendix A.3 discusses critical prices for abandoning

and mothballing the extraction activities for different decision dates prior to T and different

levels of waste accumulation, under the bond in Case I.

Critical prices are sensitive to the level of reserve, which has previously been described

by Insley (2017). The second column of Table (1.3) shows that critical prices, under the

bond that pays interest, are higher at all stages if half of the reserve is used up, assuming

w0 = 500 million pounds. The initial investment occurs at higher prices for lower initial

reserves due to the sizable fixed construction costs. After the project is launched, as the

reserve depletes and becomes more scarce, its shadow value increases (i.e., a larger ∂V/∂s

in Equation (1.17)). Thus, the firm needs to obtain higher prices to reopen or mothball

24Recall that the firm that is actively extracting has an obligation to terminate the project at T = 15
directly from the extraction phase regardless of prices.
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Transition from: s0 = 1173 s0 = 587
Stages 1 to 2: Begin production 2.60 3.00

Stages 2 to 3: Mothball 1.39 1.48
Stages 3 to 2: Reactivate 1.51 1.63
Stages 2 to 4: Abandon 1.09 1.17
Stage 3 to 4: Abandon 0.71 0.77

Table 1.3: Critical prices (US$/lb) at time zero under the bond in Case I (identical to the strict
liability rule), for s0 = 1173 and s0 = 587 million lb, given w0 = 500 million lb.

the activity. Finally, the abandonment of the mine when half of the reserve is depleted

will happen at a higher price, which indicates that the mine with the lower reserve is more

likely to be abandoned.

What is interesting in the current study is how the critical prices vary in response to

changes in the size of the waste stock under each policy, at a given level of reserve. We

examine the extent to which each policy affects critical prices, in particular, to launch the

project and to abandon the mine. The decision to move from Stage 1 to Stage 2 depends

on the benefits of delaying the up-front investment costs versus the costs of delay in gaining

the value of the project commencement. In Figure (1.7), we observe that critical prices

to commence operations are identical for the strict liability policy and the Case I bond.

Referring to Equation (1.19), recall that the cost of moving to Stage 2 is higher under the

bond policy than the strict liability rule by the amount that must be paid into the bond.

As noted earlier, the value of the project in Stage 2 is higher under the bond than under the

strict liability rule. These two differences offset each other and result in the same critical

prices for the Case I bond and the strict liability rule to move from Stage 1 to Stage 2.

The bond without interest income in Case II raises the critical prices to start extraction

activities compared to the strict liability rule and thus fewer projects will be undertaken.

Clearly, critical prices to begin the project are even higher for Case III, when the firm

borrows at a risk premium. These results are also shown in Figure (1.7). Note that

more waste accumulation raises the critical prices to begin operations due to higher costs

of complying with both policies, making project commencement less likely under both

policies.
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Figure 1.7: Critical prices to launch the project versus the waste stock under the strict liability
rule and the three bond cases, at time zero, given s0 = 1173 million pounds.

Decisions to abandon the mine are compared in Figure (1.8) and some interesting results

emerge. First, both the bond and liability policies lead to the same optimal abandoning

decisions from the mothballed stage if the bond pays interest (Case I). This follows from

similar logic as described above for moving from Stage 1 to Stage 2.25 As already noted,

the Case II and Case III bonds are more burdensome to the firm, yielding lower project

values. Hence we observe it is optimal to abandon the project at higher prices than for the

Case I bond or strict liability rule.

Under the Case I bond and strict liability rule, there is a decreasing pattern for critical

abandoning prices, which implies that the firm’s motivation to abandon the site becomes

weaker as more waste builds up. Under the strict liability rule, the sizable restoration cost

at large quantities of waste provides incentives for the firm to delay paying for such costs

25The relevant equations are V (p, s0, w0, δ3) = V (p, s0, w0, δ4) + [1b=trueC
tp(w0) − Cf (w0)] with

V (p, s0, w0, δ4) = 0. With simple algebra we can derive V b(pb, s0, w0, δ3)− V l(pl, s0, w0, δ3) = Ctp(w0) in
which pb and pl denote critical prices under the bond and the liability, respectively. If the gap between
the two values at a given level of reserve and waste are equal to Ctp(·), the same critical prices satisfy
V b(pb, s0, w0, δ3) − V l(pl, s0, w0, δ3) = Ctp(w0), and thus pb = pl. The Case II bond yields a relatively
lower value in Stage 3 compared to Case I, and thus a higher pb eliminates the gap, resulting in pb > pl.
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Figure 1.8: Critical prices to abandon the mothballed project versus the waste stock under the
strict liability rule and the three bond cases, at time zero, given s0 = 1173 million pounds.

by remaining at the mothballed stage. In contrast, with bonding requirements in Case I,

the higher interest income on the deposited money at larger waste stock motivates the

firm to sit idle longer. However, if the bond does not generate interest income (Case II),

the longer the firm sits idle the higher the opportunity cost of the bond. Consequently,

increasing critical prices are observed in Figure (1.8) for the Case II bond, indicating that

as waste accumulates and the amount of bond grows, the firm’s motivation to abandon the

mine becomes stronger. For the Case III bond, as the waste stock grows, the firm will have

to repay a large loan at termination. Because the cost of the loan exceeds the risk-free

rate, the larger is the waste stock, the more costly it is to the firm to delay clean-up. This

results in an increasing trend in critical prices with a higher waste stock, and critical prices

are higher than in the other cases, implying mine abandonment is more likely.

Critical prices to mothball and reactivate operations are also higher for the mine with

greater waste as shown in Figure (1.9) under both policies and for all bond cases. More

waste accumulation results in a lower project profitability due to a higher cost of compliance

during operations with both policies. Therefore, the project with larger quantity of waste

is more likely to be mothballed following a decrease in copper price. Similarly, the idle firm
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Figure 1.9: Critical mothballing and resuming prices versus the waste stock under the strict
liability rule and the three bond cases, at time zero, given s0 = 1173 million pounds.

facing more waste is less likely to reopen its mine as the anticipated profits are smaller.

1.9 Conclusions

This paper is motivated by the observation that many resource extraction projects leave

behind a toxic legacy and taxpayers are left to fund the clean-up. Firms may walk away

from their clean-up obligations or may simply let projects sit idle, even when there is

no intent to restart operations. If designed appropriately, an environmental bond is one

mechanism to ensure that adequate funds are set aside by private firms to undertake site

clean-up. In practice, it has been observed that funds set aside in environmental bonds

are often less than needed to cover actual clean-up costs.

This study formulates a stochastic optimal control problem to examine the incentives

for waste creation and clean-up with and without an environmental bond designed to fully

cover estimated clean-up costs. The firm is obliged to clean up any waste left at the

termination of a project (strict liability), but under the bonding policy, the firm must

deposit funds up-front equal to estimated clean-up costs of a third party. These funds are
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reimbursed to the firm as waste reduction or abatement occurs. The optimal control model

is analyzed for a representative copper mine in Canada. We compare the strict liability

rule (liability for clean-up) versus the bonding policy, which also includes liability for final

site clean-up.

The objective of the bond is to fully collateralize the government from any liability for

clean-up costs. We do not model the risk of bankruptcy. Rather it is assumed the firm

chooses its optimal production and abatement, assuming it will continue to be a going

concern in the future. Our objective is to examine the impact of the bonding policy on a

firm which will remain solvent. The impact of possible bankruptcy on a firm’s decisions is

examined in Chapter 2.

Under both the strict liability and environmental bonding policies, there is no require-

ment for waste clean-up until the termination of the project. However, two factors, other

than the bond, may give an incentive for waste abatement during the life of the project.

First, there is an upper limit on the permitted size of the waste stock and when that limit

is reached, firms must abate their waste in order to maintain production. Second, abate-

ment costs and eventual clean-up costs are convex with respect to waste. Depending on

the specifics of the cost functions, firms may find it beneficial to do some waste abatement

during project operations rather than leave it all to the end. The environmental bond,

depending on its characteristics, provides a third incentive to abate waste during the life

of the project and also provides a greater incentive to abandon the project early (before

T ) which triggers final restoration of the accumulated waste.

The bond requires the firm to pay clean-up costs as the waste is generated, rather than

delay until project termination. Provided the government pays the risk-free rate on the

bond deposit, and if it is assumed that the firm can borrow or lend at the risk-free rate,

this early payment for clean-up is not detrimental to the firm. However, markets would

normally demand a risk premium from firms to finance bond payments which increases the

cost of the bond to the firm. Further, if the government does not pay interest on the bond

deposit, this imposes an additional cost on the firm. In our numerical example, our main

findings are as follows for the Case III bond in which the firm must pay a risk premium

and receives no interest income on the bond.
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• The bond has a significant effect on the operations of a prototype copper mine. The

bonding requirements in Case III reduces the project value and thus increases the

threshold price needed for the project to go ahead, making the project commencement

less likely.

• Since refunding the bond following a restoration yields a cash payment to the firm

equal to the third-party costs, the firm is more likely to abandon the mine and

undertake the required clean-up. In the absence of a bond (strict liability rule) the

firm is more likely to leave the mine inactive, rather than abandoning and cleaning

up the mine.

• The bond also causes the firm to abate more during the life of the mine, and the final

accumulated wasted is reduced.

The bonding policy we analyze is demanding of the firm in that the full cost of clean-up

must be deposited with the government and this cost must be updated over time as the

waste stock changes. This policy avoids any risk to the government of being left to clean up

mine waste. However the policy is costly to firms, and will reduce the number of projects

that are developed. Whether the additional costs imposed on firms are worthwhile depends

on the extent of avoided costs from firms not fulfilling clean-up obligations. However,

given the number of orphan waste sites in North American and elsewhere, a more stringent

bonding policy seems long overdue.
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Chapter 2

Bankruptcy Risk and Optimal

Hazardous Waste Clean-Up Decisions

under an Environmental Bond and a

Strict Liability Rule

2.1 Introduction

Inadequate hazardous waste clean-up by mining firms has been one of the most pressing

environmental issues in industrialized countries such as the US and Canada. A common

approach to dealing with such issues is based on a strict liability rule that assigns a liability

for clean-up to responsible firms. However, evidence reveals that many resource extraction

projects undertake inadequate clean-up mainly due to the large costs that this policy

imposes on firms at project termination1. They may go bankrupt due to sizable clean-

up costs or may simply let projects mothball or sit idle as a way to escape such costs.

Figure 2.1 shows a significant increase in the number of mothballed oil and gas wells in

1Clean-up costs are mine-specific, range from millions to billions of dollars for a single mine (Boyd,
2002, Lemphers et al., 2010, Parente et al., 2006), and depend on several factors such as the extent of
activity and the probable difficulty of reclamation (Gerard, 2000).
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Figure 2.1: Alberta’s inactive wells from 1994 t0 2016. Source: Alberta Energy Regulator

Alberta over the last 20 years.2 Once a project is mothballed due to low prices and large

levels of waste it may remain idle for an extended period of time, as discussed in Chapter 1.

This phenomenon is observed by a recent study of Alberta’s oil and gas industry. Between

1993 and 2007, the average and maximum inactivity durations for Alberta’s oil producers

have been around 8 years and 73 years, respectively (Muehlenbachs, 2015). Remaining at

the mothballed stage to avoid clean-up costs can increase the risk of bankruptcy, especially

if commodity prices are low (Dachis et al., 2017, Kahn et al., 2001, Muehlenbachs, 2017).

These observations affirm that a strict liability rule does not guarantee that firms clean

up their sites. However, combining a strict liability rule with an appropriate bonding

requirement helps ensure clean-up, even when bankruptcy is possible. An environmental

bond specifies a payment by a firm to the government before a project commences and/or

during its operation. The firm is obligated to periodically report its amount of waste

creation along with the required clean-up costs and deposits bonds of an equivalent value

(Perrings, 1989). This deposit will be refunded should the firm be solvent at project

termination date and do the required clean-up. Otherwise, the entire bond will be used by

government for clean-up.

2This figure is obtained from a report by the Alberta Energy Regulator (AER).
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The impacts of an environmental bond on firms’ clean-up decisions have been analyzed

by several studies, as reviewed in Chapter 1. Our study in Chapter 1 models the dynamic

effects of an environmental bond plus strict liability for clean-up (the bonding policy) versus

the strict liability rule alone and demonstrates that the optimal site clean-up decisions by

a solvent firm depend on the characteristics of the bond. If it is assumed that the firm

can borrow and lend at the risk-free rate and if the government pays interest at the risk-

free rate on the deposited money, the solvent firm’s optimal clean-up strategies under the

bonding policy and the strict liability rule are equivalent.3 As more waste accumulates,

the critical price that triggers abandonment and site clean-up falls under both policies,

meaning that site clean-up becomes less likely and the firm is more likely to sit idle in a

mothballed state.

Chapter 1 also highlights that, in practice, a firm would not be able to finance the

bond at the risk-free rate, but would have to pay a risk premium. Further, government

may pay no interest on the bond (or at less than the risk-free rate). In these cases, the

bonding policy makes the firm worse off than under the strict liability rule alone and

optimal firm strategy is affected. Notably, under these more costly bonds, critical prices

that trigger abandonment and site clean-up are increased, implying that site clean-up may

happen sooner than under the strict liability rule. Further, the probability of site clean-up

increases as the waste stock builds up, in contrast to what happens under the strict liability

rule.

The model developed in Chapter 1 allows that the firm temporarily mothball the project

but eventually clean-up must occur at the end of the project life. However, the possibility

of firm bankruptcy was not explicitly included in that model, and thus mothballing is

the only option available to the firm to delay waste clean-up. Chapter 2 contributes to

our previous study by considering another important option available to the firm, i.e., the

possibility of declaring bankruptcy. Bankruptcy is a real possibility faced by all firms,

and firms involved in commodity industries are particularly susceptible. A firm’s ability to

avoid paying for waste clean-up following bankruptcy will depend on current environmental

3As discussed in Chapter 1, this result still holds if the clean-up costs are increased by mobilization
costs to a third-party, who will perform site restoration following a default. The reason is that the solvent
firm receives interest on the higher amount of the deposited bond over the project life and eventually
receives back the third-party’s additional costs following a successful restoration.

48



policies. Under a strict liability rule, a bankrupt firm might entirely avoid waste clean-up

costs, transferring that responsibility to the government. A bond is intended to prevent

this possibility. Provided that the bond covers the full cost of clean-up, the government

will not find itself liable for any portion of the clean-up costs. The firm has to pay the bond

amount as the waste is created, and hence is less able to avoid these costs, particularly

if the firm finances the bond out of retained earnings. If the firm borrows to finance the

bond, it is possible that the firm will avoid clean-up costs by defaulting on the loan in the

event of a bankruptcy.

In Chapter 1 it was assumed that the firm acts as a going concern, ignoring the possi-

bility of bankruptcy. It was found that if the government pays the risk-free rate of interest

on the bond, and if the firm finances the bond out of its retained earnings, the bonding

policy and strict liability rule give the same outcome. This will no longer be the case once

bankruptcy risk is taken into account. Instead, we would expect the firm to behave dif-

ferently under the strict liability rule and bonding policy, particularly if the firm finances

the bond out of retained earnings. The differences in a firm’s optimal decisions between

the liability rule and bonding policy under the risk of bankruptcy will be studied in this

chapter. To contrast with the results of Chapter 1, we focus on the case in which the gov-

ernment pays the risk-free rate on the bond and the firm finances the bond from retained

earnings.

The problem of how to model the potential for bankruptcy associated with environmen-

tal clean-up has been discussed in previous studies (Dionne and Spaeter, 2003, Larson, 1996,

Merolla, 1998, Schmitt and Spaeter, 2005, Shavell, 1984, 2005, Van’t Veld and Shogren,

2012, among others). These studies concern bankruptcy associated with environmental

accidents and analyze private incentives relative to the social optimum for environmen-

tal accident prevention and for clean-up after an accident occurs. Although we are not

modeling environmental accidents, familiarity with the relevant literature is useful to un-

derstanding the main determinants of related bankruptcies. According to these studies, a

firm is bankrupt or “judgment proof” if its value is not sufficient to completely cover its

liability costs. Relevant liability costs include those related to random environmental dam-

ages conditional on an accident occurring. Most studies assume that a firm is solvent if its

asset value covers its liability costs (e.g. Merolla, 1998, Shavell, 1984, 2005, Van’t Veld and
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Shogren, 2012); Others use static models whereby operating cash flow is used as a proxy for

a firm’s value (e.g. Dionne and Spaeter, 2003, Larson, 1996, Schmitt and Spaeter, 2005).

Although a firm’s asset value and cash flows are attractive modeling frameworks in prin-

ciple, for several reasons, these may not be good indicators of the potential for bankruptcy.

If a firm expects potentially large damage costs, imposing liability may give the firm an

incentive to hold only a few assets to minimize losses in the event of bankruptcy (Lar-

son, 1996). In addition, a firm might choose to lease most of its assets, leaving it little

ability to pay for its future environmental obligations. This problem is addressed in a

study through modeling a firm’s asset value as depending on the ownership structure of its

working capital (Van’t Veld and Shogren, 2012). Cash flow is not considered a good indi-

cator of bankruptcy, in particular in dynamic models, because a significant fraction of the

eventual stock of damage of mining activities often occurs in the construction phase, prior

to the commencement of cash flow (Peck and Sinding, 2009). Linking a firm’s probability

of bankruptcy only to its cash flow implies that the firm is always bankrupt with any size

of damage generated during construction.

Similar to studies related to environmental risk, the literature on the valuation of

debt with default risk assumes that the basic underlying state variable in a model of

bankruptcy is a firm’s value (Black and Cox, 1976, Longstaff and Schwartz, 1995, Merton,

1974, among others). According to these studies, bankruptcy occurs when a firm’s value

becomes lower than its financial obligations. The more recent literature on risky-debt

valuation has proposed a framework in which the basic underlying factor associated with

bankruptcy is a firm’s stock price, which is continuously observable in a market.4 Evidence

suggests that “in most cases, default is better characterized as involving a gradual erosion

of the stock price prior to the event” (Ayache et al., 2003). Therefore, the issuing firm’s

stock prices gradually decline prior to a bankruptcy, followed by a significant decrease

upon bankruptcy. In this setting, the risk of default is exogenous, the result of a jump loss

event that occurs with a probability over the next short interval (Madan and Unal, 2000).

This default probability is specified as a decreasing function of stock prices (Ayache et al.,

2003).

4See the literature on the valuing of convertible bonds such as Ayache et al. (2003) and Kovalov and
Linetsky (2008).
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The fortunes of mining firms and other firms involved in producing and selling basic

commodities as well as their stock prices are closely tied to commodity prices. Numerous

studies have examined the relationship between commodity prices and the stock prices

of firms in different natural resource industries. For example, the findings of a study of

50 North American firms operating in the gold mining industry between 1990 and 1994

indicate that a 1% increase in gold price would increase these mines’ stock prices by 3%

to 10% (Tufano, 1998). Another study reports correlated movement in the same direction

for Canadian oil stock prices and the price of crude oil, based on monthly data that covers

the period of 1983 to 1999 (Sadorsky, 2001). This correlation supports the argument that

low commodity prices are an important factor that contribute to bankruptcy of firms in

commodity related industries.

In addition to commodity prices, another important determinant of bankruptcy at a

project level is a firm’s liability costs. For a small firm, the build-up of the waste stock

combined with low commodity prices might cause bankruptcy. However, the probability

that site clean-up costs will bankrupt larger firms with multiple projects is small. In

addition, generating more waste increases site clean-up costs, which might motivate a firm

to declare bankruptcy strategically to avoid its liabilities (White et al., 2012).

The objective of this chapter is to further our understanding of the firm’s optimal on-

going abatement and eventual clean-up decisions under both the bond and the liability

policies, when there is a risk for bankruptcy. This study explicitly models a firm’s de-

cision to declare bankruptcy specified as a Poisson process that treats bankruptcy as an

exogenous, risky event governed by a hazard rate5. The determinants of the bankruptcy

depend on our assumptions about the size of the firm relative to the resource project. We

first examine a case in which the resource project is assumed to be owned by a large firm

that also owns multiple other projects. In this case, the firm might go bankrupt even

if the value of the individual project is positive. We assume that there is an exogenous

probability of bankruptcy that depends solely on the price of the commodity. We also

examine a second scenario in which the probability of bankruptcy depends on the stock of

5A Poisson process has been widely used by authors to model risks in different contexts. For example,
this process is used by Insley and Lei (2007) to specify the risk of fire in an optimal tree harvesting model,
by Nkuiya (2015) to capture jumps in climate change damage, and by Ayache et al. (2003) to model a
default risk for valuing risky convertible debt.
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waste, which determines the firm’s clean-up liability, as well as on commodity prices. In

this case, the project is a large enough component of the firm’s portfolio of projects that a

large waste stock for this one project, combined with low commodity prices, could trigger

in bankruptcy. Under this scenario, the firm can influence the probability of bankruptcy

through its production and abatement decisions.

We analyze abatement and waste clean-up decisions for a prototype copper mine based

on data from the Copper Mountain mine in B.C. We implement a numerical solution similar

to the approach used in Chapter 1. Our findings reveal that the bond and liability policies

have the same impacts on the solvent firm’s optimal decisions. However, when bankruptcy

is allowed, these two policies are not equal. Bankruptcy results in a lower project value

under the bond than the liability and thus creates a gap between the abatement rates and

critical prices obtained under the two policies. The firm exercises a lower abatement rate

under the liability rule than the bonding policy. In addition, the bonding policy requires

higher critical prices for project commencement, and project termination is more likely

under the bond as more waste accumulates.

This paper is organized as follows: the next section presents the theoretical model.

Section 2.2 explains the theoretical model. The dynamic programming solution of the

model is in Section 2.3 and Section 2.4 presents a numerical solution approach. Section 2.5

shows an application of the model to the copper industry. An analysis of results is provided

in Section 2.6. The last section concludes.

2.2 Model formulation

This section models the optimal decision of a resource extraction firm under an environ-

mental bonding policy and the strict liability rule, when there is risk of bankruptcy. The

problem formulation is developed based on that described in Chapter 1 and incorporates

the risk of bankruptcy into the firm’s optimal operating decisions. For the convenience of

reader and completeness of the paper, we briefly overview the model in this chapter, while

formulating the risk of bankruptcy and explaining our contributions.

Consider a risk-neutral firm whose extraction from a non-renewable resource generates
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hazardous waste disposed of into a landfill. The landfill is required to be cleaned up

when the project terminates or at the end of the project life. To ensure site clean-up or

restoration, a government regulator can implement one of two policies: 1. the strict liability

rule, and 2. an environmental bond combined with liability for clean-up. For simplicity,

we have assumed that there is no risk of accidental release of pollution from the landfill.

Therefore, the only environmental obligation is the clean-up of the landfill.

The firm’s optimal operating decisions depend on four state variables: the commodity

price, P (t), the stock of the resource, S(t), the amount of waste in the landfill, W (t), and

the stage of operation, δi, i = 1, 2, 3, 4. We define the four stages as follows

• Stage 1 (i = 1) is pre-construction

• Stage 2 (i = 2) is active extraction

• Stage 3 (i = 3) is mothball or temporary shut down

• Stage 4 (i = 4) is abandonment.

The firm has three control variables: the resource extraction rate, q, the waste abate-

ment rate, a, and the decision to move to a new stage of operation, δ.

We have assumed the paths governing the commodity prices, the level of reserve, and

the stock of waste are respectively given by

dP (t) = κ(µ̂− lnP )P dt+ σPdz; P (0) = p0 given (2.1)

dS(t) = −qdt; S(0) = s0 given (2.2)

dW (t) = (φq − a)dt; W (0) = w0. (2.3)

Equation (2.1) represents the risk-adjusted one-factor price model in which κ, µ̂, σ are

parameters reflecting the speed of mean reversion, the long run mean of ln(P ), and volatil-

ity, respectively. t denotes time where t ∈ [0, T ], and dz is the increment of a Wiener

process. In Equations (2.2) and (2.3), q is the extraction rate, a represents the abatement

rate, and φ denotes the waste flow rate or landfill deterioration rate. We have assumed
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that w0 represents the initial level of waste generated during the construction phase. Recall

from Chapter 1 that q ∈ [0, q̄] and a ∈ [0, ā] in which the upper bounds on extraction and

abatement represent the maximum feasible rates based on the best available technology

(Roan and Martin, 1996). Consistent with Keohane et al. (2007), ā > φq̄, implying that

the firm can abate at a rate that exceeds the waste level generated when extraction is at

the maximum rate, q̄. In addition, we have 0 ≤ W ≤ w̄ and 0 ≤ S ≤ s0 where w̄ is landfill

capacity and s0 denotes the initial level of reserve.

Assumptions 6 and 7 give the characteristics of extraction cost and abatement cost

functions, respectively.

Assumption 6 The extraction cost function Cq(q) is linear in the extraction rate so that

Cq(0) = 0, C ′q(·) ≥ 0, and C ′′q(·) = 0.

Assumption 7 The abatement cost function, Ca(a), is assumed to be twice differentiable

with Ca(·) ≥ 0, Ca(0) = 0, C ′a(·) ≥ 0, C ′′a(·) ≥ 0, and C ′′′a(·) = 0.

2.2.1 Bankruptcy as a Poisson process

Restoration improves the quality of the environment by affecting the stock of waste, rather

than the flow. It is assumed that restoration occurs only at the termination date, and thus

abatement is the only way to maintain the quality of the environment during the project

life. However, the firm may go bankrupt before the restoration phase starts. We specify

the risk of bankruptcy, captured by dϕ, as a Poisson default process. Thus

dϕ =

{
1 with probability λ(·)dt
0 with probability 1− λ(·)dt

(2.4)

where λ(·) represents the hazard rate over the infinitesimal interval dt, and λ(·) always

takes a positive number between zero and infinity. Clearly, low commodity prices play a

key role in putting a firm in the state of bankruptcy. Other drivers of a bankruptcy and

thus the specification of the hazard function depend on our assumption about the firm’s

size. To develop the functional form of λ, we have considered two scenarios
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• Scenario I: The mine owner is a large multinational company and would not be

bankrupted by this one project. The risk of bankruptcy depends only on commodity

prices. Therefore, the company-wide hazard function is specified as

λ(P ) =
k0
P

(2.5)

in which k0 is a positive constant.

• Scenario II: The mine owner is a single small firm, so that the probability of

bankruptcy depends on commodity prices and waste accumulation in this particular

project. Therefore, the project-level hazard function can be defined as

λ(P,W ) =
k1 + k2W

P
(2.6)

in which k1 and k2 are positive constants. Adding k1 rules out the possibility that

the firm is always solvent with no waste creation.

Assumption 8 To make the outcomes of these two scenarios quantitatively comparable,

we have assumed that k0 = k1. Therefore, the firm in Scenario II compared to Scenario I

has a similar hazard rate at zero waste and experiences a relatively higher hazard rate as

waste accumulates.

The hazard function in both scenarios is defined for all P > 0 and 0 ≤ W ≤ w̄, where

w̄ can be significantly large. Equation (2.5) implies that regardless of the project liability

costs, the firm is always bankrupt at very low prices (if P → 0), and is never bankrupt at

significantly high prices (if P →∞).

According to Equation (2.6), the probability of bankruptcy decreases as commod-

ity prices rise and increases with waste accumulation. The firm’s decision to declare

bankruptcy in Equation (2.6) depends on the commodity prices and waste accumulation.

The former, which tends to be volatile, influences the firm’s financial situation in each

period, whereas the latter affects its environmental liability costs. We begin the intuition

by analyzing the extreme cases. The firm is assumed to be solvent at all times when
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prices are extremely high, regardless of the level of waste. This assumption implies that

as P →∞, λ(P,W )dt→ 0 ∀W . In addition, it is assumed that extremely low prices lead

to a bankruptcy at a given, positive level of W . Mathematically, ∀0 < W ≤ w̄, if P → ε,

where ε is a small positive infinitesimal quantity, λ(P,W )→∞ and thus λ(P,W )dt→ 1.6

Any other combination of P and W results in a different likelihood for bankruptcy between

zero and 1. The lower the prices are and the larger the accumulated waste and thus the

associated clean-up costs, the higher the probability of bankruptcy will be.

We continue the descriptions of the model for the strict liability rule and an environ-

mental bond.

2.2.2 Modeling an environmental bond and the strict liability

rule

To model the mechanism of an environmental bond, we assume that the firm must deposit

an amount with the government sufficient to cover clean-up costs of waste deposited into

the landfill. We assume that the appropriate level of restoration and the associated cost

are correctly determined and thus the bond level is appropriate. To mitigate the impacts

of bankruptcy, the firm is required to estimate the closure costs based on the fact that

a third party will do the restoration should the firm default (Grant et al., 2009, Otto,

2010). It has been found in practice that it is more costly for a third party to clean up

environmental damages than for the firm itself by 15% to 30% (Ferreira et al., 2004) due

to mobilization costs (Peck and Sinding, 2009, White et al., 2012). Assumption 9 defines

the clean-up cost function.

Assumption 9 The firm’s clean-up cost function at each level of waste is given by Cf (W )

with C ′f (·) ≥ 0, C ′′f (·) ≥ 0, and C ′′′f (·) = 0. The third party’s clean-up cost function is

given by Ctp(W ) = νCf (W ) where ν > 1 is a constant.

Let B(t) denote the total value of the bond at each point of time. Prior to project

commencement, if the firm does not go bankrupt during the construction, it deposits the

6These results hold even if we assume that w̄ is an extremely large number or infinity, w̄ →∞.
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initial bond B(0) = Ctp(W (0)) with the government to cover the potential clean-up cost

of the initial waste. During the extraction phase, the firm updates the value of the bond

according to rate of change in its restoration costs adjusted by potential expenses to the

third party, dCtp(W )
dt

. Thus, the firm’s expected bond payment at each period, dB(t)
dt

, is

dB

dt
=
dCtp(W )

dt
=
dCtp

dW

dW

dt

= θ(W )(φq − a)

(2.7)

where dCtp

dW
≡ θ(W ), and dW

dt
= φq − a is given by Equation (2.3). The firm’s expected

bond payment (i.e., the flow of revenue to the government) at each time can be positive,

negative, or zero depending on φq R a. Note that θ(W ) increases linearly in W .

Project termination can happen as an optimal decision of the firm prior to time T . If

the project is still in operation at time T , it must be terminated according to government

order. Once the project terminates, refunding the deposited bond following a successful

restoration yields a restoration benefit to the firm. If the firm goes bankrupt, no clean

up is undertaken and the entire fund will be forfeited. Under the strict liability rule, the

regulator requires the firm to clean up the stock of waste once the project terminates

(either through the firm’s choice or at time T ), and does not require ex ante payments

for associated costs. Moreover, project termination entails a significant clean-up cost to

the firm should the firm be solvent. Assume that 1 is the indicator function and b = true

under the environmental bonding policy and is false otherwise. Assumption (10) defines

the firm’s restoration benefit under the bond and the restoration cost under the liability,

at project termination given a solvent firm.

Assumption 10 The firm’s benefit/cost from restoration at the project termination date

under each policy is
[
1b=trueC

tp(W )− Cf (W )
]
.7

In the operating stage, the annual compliance cost with the environmental bond has

two components: 1) the cost of abatement effort, and 2) the expected bond payment.

7According to Assumption 9, the benefit of restoration under the bond is: Ctp(W ) − Cf (W ) =
νCf (W )− Cf (W ) = (ν − 1)Cf (W ) where ν > 1.
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However, the latter is zero under the liability rule. Therefore, the annual compliance cost

under each policy is defined by

Ω = Ca(a) + 1b=true
(
θ(W )(φq − a)− rB

)
(2.8)

implying that the interest income earned under the bond, rB, reduces the annual compli-

ance costs.

2.2.3 Instantaneous cash flow

The firm’s objective is to choose controls to maximize the discounted sum of risk neutral

expected stream of future cash flows. Cash flows at any time t will depend on the firm’s

stage of operations, δ, and rates of abatement, a, and extraction, q. Instantaneous cash

flows are given as follows

π(t) = P (t)q − Cq(q)−
[
Ca(a) + 1b=true

(
θ(W )(φq − a)− rB

)]
− Cm

i , if δ = δi, i = 1, 2, 3

(2.9)

π(t) = 0, if δ = δ4

in which the term in square brackets is the compliance cost, Ω, as previously given by

Equation (2.8). Cm
i refers to fixed costs under both the bond and strict liability policies.

2.2.4 Defining the value function

The value of the firm’s operations, denoted by V (P, S,W, δ, t), is a function of the state

variables and time, t. It is assumed that at specific fixed times, the firm makes a decision

about whether to move to another stage of operation. These discrete decision times are

given as follows

Td ≡ {t0 = 0 < t1 < ... < tm <, ..., tM = T −∆t} (2.10)

where we assume that the decision to move to another stage of operation occurs instan-

taneously at t ∈ Td. Excluding time T from the decision dates implies that bankruptcy
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cannot happen in the final instant. If bankruptcy has not occurred during the project life

and the firm reaches time T , it has to clean-up the site.

Choices regarding optimal rates of abatement, a, and extraction, q, are made in con-

tinuous time at time intervals given as follows

Tc ≡ {(t0, t1), ..., (tm−1, tm), ..., (tM−1, tM)}. (2.11)

Since we search for the closed loop control, we assume the controls are in feedback form,

i.e., functions of the state variables. Control variables can be specified as: q(P, S,W, δ, t),

a(P, S,W, δ, t); t ∈ Tc, and δ+(P, S,W, δ, t); t ∈ Td. We specify a control set which contains

the controls for all t0 ≤ t ≤ tM as follows

K = {(δ+)t∈Td ; (q, a)t∈Tc}. (2.12)

Regardless of the controls chosen, the value function can be written as the risk neutral

expected discounted value of the integral of cash flows, given the state variables, with the

expectation taken over the controls:

V (p, s, w, δ̄, t) =

EK

[∫ t′=T

t′=t

e−r(t
′−t) π(P (t′), S(t′),W (t′), δ) dt′ + e−r(T−t)V (P (T ), S(T ),W (T ), δ(T ), T )

∣∣∣P (t) = p, S(t) = s,W (t) = w, δ(t) = δ̄

]
(2.13)

where (p, s, w, δ̄) denote realizations of the random and path dependent variables (P, S,W, δ).

r is the risk free interest rate, and E[·] is the expectation operator. The value in the final

time period, T , is assumed to be the net benefits from restoring and closing the mine. This

is described as a boundary condition in Appendix B.1.
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2.3 Dynamic Programming Solution

Equation (2.13) is solved backwards in time using dynamic programming. For a particular

tm ∈ Td, we define t−m and t+m to represent the moments just before and after tm. At tm,

we determine the discrete optimal control δ+, while in the interval (t+m, t
−
m+1). We solve for

the optimal controls q and a in continuous time.

2.3.1 Determining optimal rates of abatement, a, and extraction,

q, from t−m+1 → t+m

Using a standard contingent claims approach (Dixit and Pindyck, 1994), we can derive a

system of partial differential equations that describe the value of the resource, V , in the

interval (t+m, t
−
m+1) for all operating states except for abandonment.

∂V

∂t
+

1

2
σ2p2

∂2V

∂p2
+ κ(µ̂− ln p)p

∂V

∂p

+ max
q,a

{
− q ∂V

∂s
+ (φq − a)

∂V

∂w
+ π(t)

}
− λ(·)

(
Vbankrupt − V

)
+ rV = 0, for δ = δi, i = 1, 2, 3

(2.14)

where we maximize with respect to the control variables a and q. The hazard function,

λ(·), is given by Equations (2.5) and (2.6). We set the value of the project after bankruptcy

to zero – i.e., Vbankrupt = 0. Therefore, V represents the project value prior to bankruptcy.

Let LV be the differential operator as follows

LV =
1

2
σ2p2

∂2V

∂p2
+ κ(µ̂− ln p)p

∂V

∂p
+
(
r + λ(·)

)
V. (2.15)

Substituting LV in Equation (2.14) gives

∂V

∂t
+ LV + max

q,a

{
− q ∂V

∂s
+ (φq − a)

∂V

∂w
+ π(t)

}
= 0, for δ = δi, i = 1, 2, 3

(2.16)
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Once the project is in stage 4, the project value goes to zero.

V (p, s, w, δ = δ4, t) = 0. (2.17)

Note that we analyze the firm’s investment decisions under the Q measure which allows

us to use a risk-free interest rate as well as risk-adjusted parameters for the commodity

price and for the probability of bankruptcy. The risk due to price volatility can be hedged

by deducting the market price of price risk from the drift rate (see Section (2.5)). This

market price reflects an additional return over the risk-free interest rate that the firm

demands per unit of price volatility.

As is discussed in Insley and Lei (2007) and in Ayache et al. (2003), there are two

approaches to hedging a jump risk due to bankruptcy (or other causes). One is to assume

the risk is fully diversifiable in a portfolio of assets. In this case the asset would generate

no extra return for an investor due to bankruptcy risk and it can be assumed that the

real world probability of bankruptcy is equal to the risk-neutral probability. The second

approach is to assume that the risk of bankruptcy can be hedged by trading another asset

which faces the same risk. In this case, the market price of a jump-related risk (i.e.,

bankruptcy risk in our study) will be used in the valuation model instead of the actual

probability (i.e., the historical probability of bankruptcy in our study). This implies that,

in our study, λ(·) in Equation (2.14) should be replaced by the market price of bankruptcy

risk reflecting an additional return over the risk-free interest rate that the firm requires to

obtain per each unit of potential loss in the project value due to bankruptcy.

The market price of bankruptcy risk reflects the market’s perception of the bankruptcy

risk and could be higher from the historical bankruptcy risk. It has been observed that the

corporate bond yields exceed the risk-free rate by an amount greater than what is justified

by historical default rates (Amato and Remolona, 2003).

This study assumes that the risk from price volatility can be hedged. In Chapter 1, the

risk-adjusted parameters of the commodity price including the market price for the price

risk are estimated using futures prices. In Section (2.5), we have used the same estimated

values for the price parameters in this study. However, estimating the market price of

bankruptcy risk is beyond the scope of this paper and instead we examine the sensitivity
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of our results to the parameters of the hazard function in Appendix B.2.

2.3.2 Determining optimal operating stage, δ at tm

For tm ∈ Td, the firm checks to determine whether it is optimal to switch to a different

operating stage. The firm will choose the operating stage which yields the highest value

net of any costs of switching. Let C(δ−, δ′) denote the cost of switching from stage δ− to

δ′. Recall that t = t− represents the moment before tm and t = t+ denote the instant after

tm. Solving going backward in time, and noting the optimal stage is denoted as δ+, the

value at t−m is given by

V (p, s, δ−, t−m) = V (p, s, δ+, t+m) − C(δ−, δ+) (2.18)

δ+ = arg max
δ′

[V (p, s, δ′, t+m)− C(δ−, δ′)].

Switching costs are the same under the bond or strict liability policies except for project

commencement as well as when the mine is abandoned. Opening the mine under the bond

requires investment cost and initial bond payment, whereas the latter is absent under

the liability rule. In addition, recalling from Assumption 10, the abandonment cost with

bonding requirements, C(δi, δ4), i = 2, 3, simply equals the negative of reimbursement

after clean-up has been completed. However, Assumption 10 indicates that under the

strict liability rule, C(δi, δ4), i = 2, 3, equals the firm’s expected clean-up costs. Note that

no waste is created in Stage 1.

2.4 Numerical solution approach

Equations (2.16) and (2.18) represent a stochastic optimal control problem which must

be solved using numerical methods. The computational domain of Equation (2.16) is

(p, s, w, δ̄, t) ∈ Γ where Γ ≡ [pmin, pmax] × [0, s0] × [0, w̄] × {δ1, δ2, δ3, δ4} × [0, T ]. More

details are given in Appendix B.1 where boundary conditions are specified for the PDEs.

LV in Equation (2.16) can be discretized using a standard finite difference approach. The
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κ 0.0264 (0.001) Root Mean Square Error 0.07
µ 2.7051 (0.079) Mean Absolute Error 0.05
η 2.7845 (0.026) Log-likelihood function 9652
σ2 0.0458 (0.002) Number of observation 937

Table 2.1: Estimation results for the one-factor copper price model using Kalman Filter. RMSE,
MAE, µ, and η are in terms of US $/lb. Standard errors are in parenthesis. Weekly futures data
from Aug 1st, 1997 to Jul 13th, 2015.

other terms in the equation are discretized using a semi-Lagrangian scheme as described in

Chen and Forsyth (2007) and will not be described further here. Recall that the optimal

control for q which we denote by q∗ is bang - bang so that q∗ ∈ {0, q̄}. To jointly determine

the optimal controls, (q∗, a∗), we discretize the control a ∈ [0, ā] and determine the optimal

controls by exhaustive search at each point in the state space (p, s, w, t).

2.5 An application to the copper industry

To compare the impacts of bankruptcy on the firm’s optimal decisions under each policy

with the results of Chapter 1 obtained for a solvent firm, this study considers the case

of investment decisions for a copper mine similar to Chapter 1. The parameters of the

stochastic model assumed for copper prices are already estimated in Chapter 1 using weekly

data for copper futures contracts that are traded in London Metal Exchange Market from

August 1997 to July 2015. These estimations are summarized in Table (2.1) and are

obtained by adopting a Discrete Kalman Filtering approach and a Maximum Likelihood

Function as explained in Schwartz (1997). Note that we define the parameter µ̂ = µ − η
so that the market price of price risk, η, is deducted from µ which is the long-run mean

of ln(P ) before adjusting for the price risk. The market price of price risk, η, reflects

additional returns that the firm demands over the risk-free interest rate per each unity of

price volatility. A numerical example is developed based on available data from an open-pit

copper mine in British Columbia, supplemented by our assumptions when data is lacking,

as given by Table (2.2).
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Life of project T = 15 years

Risk-free rate r = 0.02 per year

Initial reserve s0 = 1173 million lb

Strip ratio (waste:ore) φ = 1.5 : 1
Production capacity q̄ = 78.2 million lb/year

Abatement ceiling ā = 2φq̄ million lb/year

Landfill capacity w̄ = 2200 million lb

Extraction cost Cq(q) = γq γ = 1.35 $/lb
Abatement cost Ca(a) = αa2 α = 10−3

Firm’s clean-up cost Cf (w) = βw2 β = 10−5

Adjustment factor ν = 1.30
Hazard function (Scenario I) λ(p, w) = k0

p
k0 = 10−1

Hazard function (Scenario II) λ(p, w) = k1+k2w
p

k1 = 10−1

k2 = 1.5× 10−4

Project stages δ1, δ2, δ3, δ4
Fixed decision time τd every year
Construction cost I $385 million

Cost to mothball and reactivate C(δ2, δ3), C(δ3, δ2) $5 million
Fixed costs of sustaining capital Cm

2 , Cm1
3 $1.66 million/year

Fixed monitoring costs while mothballed Cm2
3 $1 million/year

Table 2.2: Parameter values and functional forms for the prototype open-pit copper mine. All
dollar values are based on 2007 US dollars.

2.6 Results analysis

This section compares the impacts of the environmental bond and the strict liability rule on

the firm’s optimal investment decisions indicated by critical prices, under each scenario. In

addition, we compare the project value and optimal abatement decisions, under each policy

and each scenario, at the initial time. Results are presented for Scenario I (bankruptcy risk

depends only on commodity price) and Scenario II (bankruptcy risk depends on commodity

prices and the level of waste), as well as for no bankruptcy risk. Recall that in the case

examined, it is assumed the firm receives the risk-free rate from the government on the

bond and also that the firm finances the bond from its retained earnings. This was referred

to as Case I bond in Chapter 1. All figures in this section are shown for time zero and
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reserves at maximum level.

2.6.1 Valuation results

Figure (2.2) illustrates the value of the investment project prior to construction across

different levels of starting prices and initial waste, when the reserve is fixed at its initial

level. The top panels are for the strict liability rule and the bottom panels represent

the bonding policy. Scenarios I and II are shown in the left-hand panels and the right-

hand panels, respectively. Whether for the bonding policy or the strict liability rule,

an increase in the initial waste generated through construction reduces the value of the

project. As noted in Chapter 1, higher initial waste reduces the remaining capacity of

the landfill. In addition, the waste will have to be cleaned up upon project termination.

With no bankruptcy risk, this expected clean-up cost is the same under the either policy.

Including the risk of bankruptcy reduces the project value compared to the no bankruptcy

case over all values of the waste pile. Such lower values are to be expected since the

exogenous bankruptcy risk may cause early termination of the project under the bond,

and may increase the during of inactivity under the liability. This behaviour is discussed

in Section (2.6.3).

Figure (2.3) compares the value of project with no bankruptcy versus Scenarios I and II

for a particular price level. In this figure, we observe that the two policies no longer give

the same result. Project values under both Scenarios I and II under the bond are less than

for the liability policy. This result follows because under the bond the firm must pay the

clean-up costs up-front. If bankruptcy occurs, the firm will not receive a refund on the

bond. In contrast, under the strict liability rule, bankruptcy would allow the firm to avoid

paying the clean-up costs. Under the possibility of bankruptcy, the bond is much more

costly to the firm. This figure also highlights the difference in the firm value under the

two scenarios. When the risk of bankruptcy depends on the waste stock under Scenario II,

we observe lower values compared to Scenario I. We also observe, not surprisingly, that

the value of the project decreases much more markedly as the waste stock builds up in

Scenario II.
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Figure 2.2: Project value prior to construction, given s0 = 1173 million pounds, for all price
levels and waste piles, under the liability rule (the top panels) and the bonding policy (the bottom
panels), for Scenario I (the left-hand panels) and Scenario II (the right-hand panels). w: million
pounds and p: US$/pound.
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2.6.2 Optimal abatement decisions

Figure (2.4) shows optimal abatement rates for Scenario I for the bonding and liability

policies compared to the no bankruptcy case from Chapter 1. Recall that for the solvent

firm, the bond and liability policies give identical results. The figure is plotted for p =$2

and full reserves at time zero. We observe that optimal abatement rates increase with the

waste stock for all three cases. As the level of waste gets closer to its maximum level,

the firm must abate at a higher rate in order to maintain production capacity. The firm’s

abatement rates converge as the landfill capacity constraint binds. However, there is an

obvious gap between such rates with the solvent firm having the highest abatement rates,

followed by the bonding policy and then the strict liability rule under Scenario I. Recalling

from Chapter 1, the marginal rule for abatement under each policy is given by

− C ′a(a∗) =
∂V

∂w
− 1b=true θ(w)⇒

{
0 ≤ a∗ ≤ ā if w < w̄

φq̄ ≤ a∗ ≤ ā if w = w̄.
(2.19)

Intuitively, unlike the bond, the marginal rule for abatement under the strict liability
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Figure 2.4: Optimal abatement rates in Scenario I under the bonding and liability policies, at time
zero, p0 = $2, and s0 = 1173 million pounds.

rule does not include the full restoration costs of waste generated by extraction as future

clean-up costs may be avoided through bankruptcy. Consequently, the firm’s marginal

cost of environmental deterioration, ∂V
∂w
− 1b=true θ(w), is higher under the bond than the

liability, leading to higher abatement efforts with bonding requirements. This result is in

contrast with equal abatement rates that we have observed in Chapter 1 for the solvent

firm.

We have discussed in Chapter 1 that dV
dw

for a solvent firm operating under the liability

rule reflects the cost of using up capacity in the landfill as well as adding to future clean-up

costs. Under the bond, because the clean-up cost is paid immediately, this term for the

solvent firm reflects the cost of using up capacity net of the marginal clean-up benefit and

any interest paid. It follows that the solvent firm exercises the same abatement under both

policies. When bankruptcy is possible, dV
dw

reflects the cost of using up capacity in the

landfill as well as the impacts of bankruptcy on the eventual clean-up cost/benefit under

each policy. The value of having spare capacity in the landfill is reduced as the firm might

go bankrupt and be unable to use this capacity. It follows that abatement is less valuable
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Figure 2.5: Optimal abatement rates in Scenario II under the bonding and liability policies, at
time zero, p0 = $2, and s0 = 1173 million pounds.

to the firm, and optimal abatement rates are reduced compared to a solvent firm. The

lowest abatement rates are for the strict liability rule, because under bankruptcy the firm

would avoid its eventual clean-up costs altogether.

Another way to interpret the optimal abatement decisions when bankruptcy is possible

is to observe that the hazard rate, λ(·), increases the effective discount rate in Equa-

tion (2.15). This implies that the firm cares less about future benefits and costs. Under

both policies, the firm generates more waste today as it puts less weight on the future

impact of the loss in landfill capacity. For the liability case, it also puts less weight on the

future clean-up costs triggered by project termination.

Optimal abatement under Scenario II for the bond and liability policies compared to

the solvent firm are shown in Figure (2.5). The most obvious difference of Scenario II with

Scenario I and with the solvent firm is that the optimal abatement levels first decline and

then increase with the waste stock. In addition, at low waste levels, the optimal abatement

rates are initially higher than for the solvent firm, but then drop below the solvent firm at

higher waste levels below full capacity of w̄.
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For intuition we can identify two effects that account for the shape of the optimal

abatement curve, depending on which effect dominates. First, the optimal abatement rate

will tend to rise with the waste stock in order to maintain capacity in the landfill for

future production. This effect explains why optimal abatement rises with the waste stock

for the solvent firm, as well as for the Scenario I cases. In Scenario II, there is a second

effect to consider in that the firm is able to reduce the probability of bankruptcy through

abatement. In this case, the impact on optimal abatement choices depends on the level

of waste stock. At low levels of waste, the value of the project is relatively high (under

both the bond and liability cases) so it is beneficial for the firm to reduce bankruptcy

risk. However, this benefit declines with waste accumulation as the effective discount rate

increases with λ(·), meaning the firm is less concerned with value from future production.

At low levels of waste, this second effect dominates. Thus, we see optimal abatement rates

for the bond and liability cases decline as w increases, but are higher than for the solvent

firm. However at some point, the first effect starts to dominate and optimal abatement

increases with w and falls below the optimal rates for the solvent firm. Finally at the

maximum w̄, if the firm chooses to produce copper, the abatement level must be equal to

the deterioration rate. As a result, the abatement choices of the three cases converge at

w = w̄. Similar to Scenario I, the optimal abatement rate for the liability case is always

lower than for the bond since bankruptcy allows the firm to escape clean-up costs under

the strict liability rule.

Note that a higher λ(·) due to a higher k0 in Equation (2.5) and a higher k2 in Equa-

tion (2.6) further reduces the optimal abatement rates, under both policies. These results

are shown in Appendix B.2 using a sensitivity analysis on these parameters.

The decreasing pattern of optimal abatement under the bond in Scenario II depends

on the parameters of the clean-up cost function. As the restoration becomes costlier at

all levels of waste – i.e., a higher β in Table 2.2, bankruptcy hurts the firm more than the

base-case parameters. Consequently, the firm abates progressively as waste builds up to

post a lower bond. Creating a smaller quantity of waste reduces the risk of bankruptcy

through λ(p, w) so that with a higher probability the firm will receive the clean-up benefit.

Therefore, for a sizable restoration cost, the optimal abatement path has an increasing

pattern at all levels of waste in Scenario II. This case is shown in Appendix B.3 using a
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Figure 2.6: Critical prices to launch the project across the waste pile (million pounds) for Sce-
nario I (the left-hand panel) and for Scenario II (the right-hand panel), under the bonding and
liability policies, given s0 = 1173 million pounds.

sensitivity analysis on β.

At higher prices, with both scenarios, the risk of bankruptcy declines and the project

becomes less risky. In addition, higher prices increase the project profitability. Conse-

quently, exercising a higher abatement at all levels of waste extends the life of landfill and

the project does not terminate too early due to the exhaustion of landfill capacity (see

Appendix B.4).

2.6.3 Optimal choices of project stages

This section examines the copper prices at which it is optimal to switch from one stage to

another, which we refer to as critical prices. Critical prices vary in response to the level

of remaining reserve at a given level of waste. As discussed by Insley (2017) and shown

in Chapter 1, critical mothballing and reopening prices increase as the reserve depletes

and becomes more scarce. In addition, with lower reserve, the project commencement and

project termination occur at higher prices.
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We are interested in the impacts of bankruptcy on the firm’s operating decisions in

response to waste accumulation, under each policy, as demonstrated by how critical prices

change with the stock of waste under the risk of bankruptcy. According to Figure (2.6),

the possibility of bankruptcy creates a gap between the critical starting prices under the

two policies. The bond requires an upfront payment as well as subsequent payments

during operations, whereas the clean-up costs under the liability might be avoided through

bankruptcy. It follows that the increased compliance cost and thus the reduced profitability

of the project under the bond compared to the liability rule increase critical prices to begin

the project under the former. The gap becomes more significant for a higher stock of waste.

The firm’s lower project value in Scenario II leads to higher prices to commence the project

compared to Scenario I. Critical prices to launch the project in both scenarios are higher

under bankruptcy risk than for the solvent firm case.

Figure (2.7) shows the impact of each policy on critical prices for mothballing and

resuming the project for Scenario I (the left-hand panels) and for Scenario II (the right-hand

panels). If the landfill capacity is reached, the firm’s optimal mothballing and reopening

decisions are identical under the both policies. At other levels of waste, critical prices

for mothballing and resuming the project under the bond are higher than the liability.

Such higher prices imply that the project under the bond will more likely be mothballed,

and once mothballed, the idle firm will less likely reopen its mine. The reason for this

behaviour is lower anticipated profits due to higher annual compliance costs under the

bond. Critical prices to mothball and resume the project in both scenarios are lower under

bankruptcy risk than for the solvent firm case due to the increased effective discount rate

in Equation (2.15) by λ(·) compared to the solvent case.

Figure (2.8) shows that critical prices to abandon the mothballed mine across the waste

pile have an increasing trend under the bond and a decreasing trend under the liability.

This follows because project termination and site clean-up under the bond yield restoration

benefits that increase with waste, motivating the firm to carry out restoration projects

rather than sitting idle in the mothballed stage. In contrast, under the liability, the last

stage of operation entails restoration costs to the firm that rise with waste accumulation,

motivating the firm to remain idle as a way to escape paying for such costs. Interestingly,

with liability requirements, no critical prices are found for abandoning the mothballed
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Figure 2.7: Critical prices to mothball and resume the project across the waste pile (million
pounds) for Scenario I (the left-hand panels) and for Scenario II (the right-hand panels), under
the bonding and liability policies, given s0 = 1173 million pounds.

project for waste accumulation beyond 950 and 700 million pounds in Scenarios I and II,

respectively. Beyond such waste thresholds, the idle firm facing low prices either goes

bankrupt or remains inactive for an extended periods of time.8

8We have observed that these thresholds increase as time passes so that after 14 years such waste levels
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Figure 2.8: Critical abandoning prices from the mothballed stage across the waste pile (million
pounds) for Scenario I (the left-hand panels) and for Scenario II (the right-hand panels), under
the bonding and liability policies, given s0 = 1173 million pounds.

Under the bonding policy, higher critical abandonment prices in both scenarios com-

pared to the solvent firm case imply that the project will terminate sooner when bankruptcy

is possible. As noted, the possibility of bankruptcy reduces the project value, making the

project termination more probable. Under the strict liability rule, the critical prices in

Scenario I falls below the solvency scenario at large levels of waste, implying a longer dura-

tion for inactivity under bankruptcy. For this reason, we have observed that in Scenario I,

the critical prices under the strict liability rule at some levels of waste are lower than the

solvent firm case. In Scenario II, we have observed no critical prices at large levels of waste.

increase to 1450 and 1000 million pounds in Scenarios I and II, respectively. If the firm has not declared
bankruptcy at an instant prior to T , it will have to clean up the site at time T = 15, regardless of waste
and price levels.
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2.7 Conclusions

This study demonstrates the inclusion of bankruptcy risk in optimal waste clean-up deci-

sions under an environmental bond and the strict liability rule. We have explicitly modeled

a firm’s decision to declare bankruptcy as a Poisson jump process, and analyzed its im-

pacts on a firm’s optimal operating decisions under each policy. We have examined the

case when the firm can finance the bond from its retained earnings and the government

pays the risk-free rate on the bond. The firm’s problem is specified as a Hamilton Jacobi

Bellman equation, which is solved numerically using a finite difference approach. This

model is applied to a typical copper mine in Canada. The firm’s clean-up decisions are

based on critical levels of copper prices.

Our findings reveal that the bond and liability policies have the same impacts on the

solvent firm’s optimal decisions. However, when bankruptcy is allowed, these two policies

are not equal anymore. Bankruptcy increases the probability of early project termination

under both policies, in particular under the bond, and increases the duration of inactivity

under the liability, which results in a lower project value prior to construction compared

to a solvent firm case. In addition, when bankruptcy is allowed, the project value is higher

under the strict liability rule than the bonding policy, because the firm operating under the

liability rule may avoid paying for site clean-up costs through bankruptcy. For the same

reason, the firm exercises a lower abatement rate under the liability rule than the bonding

policy. We have also observed that the bonding policy requires higher critical prices for

project commencement, and project termination is more likely under the bond as more

waste accumulates.

We discuss that because the probability of bankruptcy is under the Q-measure, the risk

of bankruptcy reflects the extra return demanded by the market to undertake a project with

bankruptcy risk. In other words, the impact of the risk of bankruptcy is fully accounted for

in the model, eliminating the need to include a risk premium for borrowing. If the firm can

borrow the full clean-up cost and if the government pays the risk-free interest on the bond,

the project value is similar to the liability rule, as the firm may default on the borrowed

funds. Therefore, when bankruptcy is allowed, borrowing is relatively more beneficial to

the firm than the bond financed from retained earnings, as bankruptcy extends the liability
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costs to financial institutions that have lent the funds to the firm. However, both of the

bond cases fully collateralize the government.

Overall, the bond is very effective at protecting government from the liability of site

clean-up. If this is the goal of the government, bonds should be used. However, bonds

financed from retained earnings are costly for the firm, and will result in fewer investment

in mining projects, in particular when bankruptcy is possible. This issue needs to be

recognized. The private sector might solve the bonding problem for the firm by lending to

cover the cost of bonds.
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Chapter 3

Estimating the Stochastic Models of

Copper Prices

3.1 Introduction

Copper is one of the main non-ferrous metals that is traded in major markets in the

world (Lasheras et al., 2015). Specifically, the London Metal Exchange (LME) handles

more than 90% of the world’s copper trades and thus is the major futures exchange for

copper at the global level (Li and Li, 2015). The prices discovered on the LME trading

platforms have been used by investors to manage their exposure to risks, making the LME

copper futures price the global reference price.1 Copper prices play a key role in the global

economy and are very sensitive to the level of economic growth.2 This commodity has

been widely used in electrical products, medical equipment, the construction industry, and

many other industries. In addition, the economy and the national income of some countries

- such as Chile, the world’s top producer of copper, and Zambia - depend greatly on their

copper industries (Buncic and Moretto, 2015, Lasheras et al., 2015). Not surprisingly,

1See https://www.lme.com/.
2The link between copper prices and economic growth has been covered in Media, highlighting that

copper price depreciation is a sign for slowdown in the global economy. See https://www.marketwatch.

com/story/copper-prices-slump-to-2009-levels-sparking-growth-concerns-2015-01-13.
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factors affecting the level of demand by copper-dependent industries and supply by main

copper producers influence the price of this commodity. As a result, fluctuations in copper

prices reflect movements in global economic activity (Labys et al., 1998). This fact makes

forecasting copper prices an interesting research topic.

Forecasting and modeling stochastic copper prices are important for valuing projects

and assets that are contingent on the price of copper. For instance, investment decisions

by copper mining firms, whose objective is to maximize their future cash flows and to

maintain their projects value, depend significantly on the price of this commodity. An

appropriate price model helps mine managers to make decisions and determine optimal

investment strategies prior to the construction phase and during operations. The literature

on modeling commodity prices uses futures contracts as an indication of the expected

change in spot prices over time. A futures contract is an agreement to buy or sell a

commodity at a certain date in future for a price determined today. The storage theory

explains the relationship between futures prices and spot prices (Brennan and Schwartz,

1985, Kaldor, 1939, Working, 1949). According to this theory, agents who agreed to sell

a commodity at a future date may buy and carry it until the delivery date. This process

incurs storage costs as well as the opportunity cost of investing cash to purchase the

commodity, but yields a benefit from being able to trade it until maturity, particularly

when there is an unexpected increase in demand. This benefit is called convenience yield

which refers to the benefit associated with stockpiling a commodity as opposed to holding

futures contracts.

This theory implies an inverse relationship between the convenience yield and inventory

level. When the level of inventory is scarce and demand is high, spot prices rise above

futures prices, motivating firms to sell the commodity. In contrast, abundant inventory

and low demand cause spot prices fall below futures prices, motivating firms to incur the

costs of holding an inventory. As a result, two factors explain the difference between spot

prices and futures prices: 1) the net convenience yield, which is the convenience yield net

of the storage cost, and 2) the forgone interest income of buying and holding a commodity.

This difference is known as the basis. If the former dominates the latter, the spot prices

exceed the futures prices, highlighting the importance of the convenience yield to explain

the basis. Otherwise, the forgone interest is a dominant factor to explain such a difference.
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Since copper is an important production input for many industries and is an storable

commodity with low storage costs,3 the net convenience yield may play an important role in

explaining the dynamics of copper prices. Therefore, we are interested to know the impact

of net convenience yield as an stochastic factor that would affect copper price formation.

This study investigates the ability of three price models to explain the stochastic behavior

of copper prices. The first model is the one-factor mean-reverting model in which the only

stochastic factor is associated with spot prices. In addition to this stochastic factor, the

second model introduces a mean-reverting stochastic process for the convenience yield and

is known as the two-factor model. The last model, is called the one-factor long-term model

in which the convenience yield is constant but can explain the main characteristics of the

two-factor model in terms of explaining copper futures prices. The first two models are

developed by Schwartz (1997) and the third model is developed by Schwartz (1998) based

on the mathematical transformation of the two-factor model. This latter model is much

simpler in its application to asset valuation models.4

We have used the data of copper futures contracts traded in the London Metal Ex-

change and calibrated the parameters of the models using a Kalman filtering approach

and a Maximum Likelihood function. Since we are interested in futures contracts with

long maturities, we have used two sub-samples covering different periods and consisting of

shorter-term futures contracts with a maximum maturity of two years and longer-term fu-

tures contracts with five years as the longest maturity. Results suggest that the estimated

spot prices by the one-factor mean-reverting model cannot track the spot copper prices

if the longer-term data set is used, and cannot explain the term structure of market fu-

tures prices for both sub-samples. In contrast, the other two models are able to mimic the

dynamics of copper spot prices, implying the importance of convenience yield for copper

price formation. We have also observed that the two-factor model is able to explain the

term structure of market futures prices in both sub-samples. However, the term structure

of future prices implied by one-factor long-term model can approximate that of the two-

factor model after 5 years for shorter-term data and after 15 years for longer-term data.

We have argued that before these thresholds, the difference between the results of these

3See Fama and French (1987).
4Chen (2010) has adopted these models to estimate the dynamics of lumber prices. Other mean-

reverting price models are estimated by Almansour and Insley (2016) for the oil and gas industry.
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two models is not very significant. Therefore, the one-factor long-term model would be

an appropriate alternative to the two-factor model as it involves only one stochastic factor

and thus is simpler to apply in valuation models.

This paper is organized as follows: The next section analyzes the LME copper futures

data. Section (3.3) explains the price valuation models. Sections (3.4) and (3.5) provide

the Kalman filter procedure and the state-space representation of each model, respectively.

Model calibration results are discussed in Section (3.6). The ability of these models to

explain the term structure of copper futures prices is compared in Section (3.7). The last

section concludes.

3.2 LME copper spot and futures prices

This study uses a dataset that contains the price of copper futures contracts traded on

the London Metal Exchange.5 The LME futures contracts are designed with a “prompt-

date structure” whereby such contracts can be traded daily up to three months, weekly

from three months up to six months, and monthly afterward up to 123 months.6. Such

flexibility in maturity dates enables investors to accurately hedge their risks on a daily

basis, distinguishing the LME from other futures exchanges.

The data used in this study consist of weekly observations of copper futures prices. As

stated in Schwartz, due to the lack of data on copper spot prices, futures contracts closest to

maturity can be used to approximate the spot prices. Since we are interested in estimating

the stochastic process for real copper prices, futures prices are deflated by the US consumer

price index. Figure (3.1) plots weekly LME real futures prices per pound of copper with

one month or less to maturity, from August 1997 to July 2015. As shown in Table (3.1),

spot prices have been highly volatile, between $0.72 and $4.34, and the standard deviation

indicates a considerable level of volatility. The Kurtosis of the distribution is less than 3

implying that the distribution of data has a lower and flatter peak compared to a normal

5The data were collected from Datastream.
6See https://www.lme.com/Trading/Physical-market-services/Prompt-date-structure Note

that the delivery dates are daily for the first three months, every Wednesday for the next three months,
and the third Wednesday of the month for time to maturity beyond 6 months.
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Figure 3.1: Weekly LME copper futures prices with less than one month to maturity, from Aug
1st, 1997 to Jul 10th, 2015. Nominal prices are deflated by the Consumer Price Index, base
year=2007.

Min Max Mean S.D. Skewness Kurtosis Num. of obs.
0.72 4.34 2.15 1.09 0.15 1.49 937

Table 3.1: Summary statistics for weekly copper spot prices (US $/lb) from Aug 1st, 1997 to Jul
10th, 2015.

distribution. In addition, the near zero skewness indicates that the distribution of copper

prices is approximately symmetric.

Among the data, we have chosen two sub-samples, each with 6 futures contracts that

vary in terms of time to maturity across the sub-samples. The first sub-sample covers the

period from 8/1/1997 to 7/10/2015 with complete data on contracts with 1 to 24 months

to maturity. The second sub-sample includes data from 10/4/2002 to 7/10/2015, with 62

months as the maximum maturity. The selected futures for the first sub-sample have 1, 6,

11, 16, 21, and 24 months to maturity, and for the second sub-sample have 1, 24, 30, 40,
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50, and 60 months to maturity.7 The number of observations for each futures contracts in

the first and second sub-samples are 937 and 667, respectively.

To understand whether convenience yield is an important factor in modeling copper

prices, we analyze the theory of storage using our data. Let P (t) be the spot price at time

t, and F (t, T ) be the futures price at t for delivery of copper at T . This theory defines the

return from buying the commodity at t and selling it for delivery at T as follows8

F (t, T )− P (t) = r(t, T )P (t)− δ(t, T ) (3.1)

in which r(t, T )P (t) represents the forgone interest and δ(t, T ) is the convenience yield

from an additional unit of storage net of the marginal storage cost. As noted, the spread

between futures and spot prices is called the basis in the literature.

According to Equation (3.1), the negative values for the basis indicate that the futures

prices are lower than the spot prices at time t. This situation is referred to as backwardation

which occurs when futures prices decrease with time to maturity so that the spot prices

are higher than futures prices (Routledge et al., 2000). It is argued that the underlying

cause of backwardation is a supply shortage that results in an increase in net convenience

yield. This interpretation is consistent with the theory of storage whereby convenience

yield has an inverse relationship with the level of inventory (Working, 1949). Such an

inverse correlation suggests that a constant convenience yield, in general, does not hold in

reality (Gibson and Schwartz, 1990). The market can also be in contango if the basis has

positive values, implying that the commodity supply is plentiful. In this case, futures prices

increase with time to delivery and remain higher than spot prices when the convenience

yield is lower than the forgone interest.

Figure (3.2) shows the basis versus time to maturity for the two sub-samples of this

study. Both contango and backwardation behaviour can be seen for the copper commodity.

In both panels, the spread of the basis increases with time to maturity because the futures

7Note that our data set contains complete data on contracts, with 100 months as the longest maturity
from 10/17/2008 to 7/10/2015. However, due to this short time interval and thus small sample size, we do
not analyze those contracts. Other contracts with longer maturities than 100 months are not frequently
traded and thus are not amenable to analysis.

8This formula is from Fama and French (1987).
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Figure 3.2: The spread of the basis across time to maturity for (a) the first sub-sample and (b)
the second sub-sample. Weekly data from Aug 1997 to Jul 2015 for panel (a) and from Nov
2002 to Jul 2015 for panel (b). Nominal prices are deflated by the Consumer Price Index, base
year=2007.

prices with shorter maturities are closer to the spot prices. A comparison between the

two panels shows that this spread is relatively wider in panel (b) because of longer ma-

turities of the futures contracts in the second sub-sample. This observation confirms the

role of stochastic convenience yield in explaining futures prices, in particular, with longer

maturities.

Tables (3.2) and (3.3) show detailed summary statistics of the basis for the first and

second sub-sample, respectively. In these tables, FT denotes the futures contract with

T months to maturity and F1 proxies the spot prices. The more negative values for

the mean at longer maturity dates confirm the importance of convenience yield for the

associated futures contracts, particularly for the second sub-sample. Furthermore, the

standard deviation of the basis increases with maturity, which implies the wider spread of

the basis at longer maturities, as noted before. Both of these statistics are stronger for the

second sub-sample due to longer-term futures. We have also observed that around 47% of

the data in the first sub-sample has a negative basis, whereas this number increases to 74%
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Item Min Max Mean S.D. > 0 (%) = 0 (%) < 0 (%) Maturity
F6− F1 -0.204 0.311 -0.014 0.052 60.19 0.32 39.49 6
F11− F1 -0.418 0.307 -0.035 0.098 57.21 0 42.79 11
F16− F1 -0.650 0.299 -0.058 0.141 52.08 0.43 47.49 16
F21− F1 -0.857 0.289 -0.082 0.181 47.28 0.11 52.62 21
F24− F1 -0.970 0.281 -0.096 0.204 45.04 0 54.96 24

Entire data -0.970 0.311 -0.057 0.135 52.36 0.172 47.47

Table 3.2: Summary statistics of the basis (i.e., FT −F1 where months to maturity is T ) for the
first sub-sample from Aug 1997 to Jul 2015. F1 proxies the spot prices. Sample size: 4,685

Item Min Max Mean S.D. > 0 (%) = 0 (%) < 0 (%) Maturity
F24− F1 -0.970 0.281 -0.149 0.219 30.13 0 69.87 24
F30− F1 -1.196 0.256 -0.189 0.266 27.14 0 72.86 30
F40− F1 -1.545 0.237 -0.251 0.339 25.34 0 74.66 40
F50− F1 -1.847 0.287 -0.307 0.405 24.59 0 75.41 50
F60− F1 -1.94 0.322 -0.359 0.466 23.69 0 76.31 60

Entire data -1.94 0.322 -0.251 0.339 26.18 0 73.82

Table 3.3: Summary statistics of the basis (i.e., FT −F1 where months to maturity is T ) for the
second sub-sample from Nov 2002 to Jul 2015. F1 proxies the spot prices. Sample size: 3,335

in the second sub-sample. It follows that the market is in backwardation the majority of

time in the second sub-sample and half of the time in the first sub-sample. As a conclusion,

net convenience yield and its variations are important factors in modeling copper prices in

both sub-samples.

3.3 Valuation models

In this section we present the specification of three models that we will use to explain the

dynamics of copper spot and futures prices. The price models shown in this study are

developed by Schwartz (1997) and Schwartz (1998).
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3.3.1 One-factor mean-reverting model

The one-factor mean-reverting model developed by Schwartz (1997) assumes that the nat-

ural logarithm of the commodity price reverts to its long-run mean. Denoting spot prices

by P , this process can be written as

dP = κ(µ− lnP )Pdt+ σPdz (3.2)

in which κ > 0 is the speed of mean reversion, µ > 0 denotes the expected long-run mean,

and σ > 0 represents the constant price volatility. Let S = lnP be the natural logarithm

of spot prices. Applying Ito’s lemma on S reduces this model to the Ornstein-Uhlenbeck

stochastic process given by

dS = κ(µ− σ2

2κ
− S)dt+ σdz (3.3)

The risk-adjusted version of this equation is obtained by deducting the market price of

risk, λ, from the mean of log price, µ− σ2

2κ
. Thus

dS = κ(µ̂− S)dt+ σdẑ (3.4)

where µ̂ = µ− σ2

2κ
− λ is the risk-adjusted drift rate, and dẑ is the increment of a Wiener

process under the equivalent risk-neutral measure.

The value of a futures contract with maturity T is the expected value of the spot price

in the risk-neutral world. Using the properties of the log-normal distribution, the value of

a futures contract is given by

F (P, T ) = E[P (T )] = e(E0[S(T )]+
1
2
V ar0[S(T )]). (3.5)

Mastro (2013)9 shows that the mean and the variance of S(t) can be obtained by solving

9Ch.8.
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Equation (3.4) using the variation of parameters method as follows

g(S(t), T ) =S(t)eκt = S(t) +

∫ t′=t

t′=0

eκt
′
κ µ̂ dt′ +

∫ t′=t

t′=0

eκt
′
σ dẑ(t′)

S(t) = S(t)e−κt + µ̂(1− e−κt) +

∫ t′=t

t′=0

eκ(t
′−t)σ dẑ(t′)

(3.6)

where the first two terms are the expected value. Thus

E[S(t)] = S(t)e−κt + µ̂(1− e−κt) (3.7)

The variance can be found by

V ar[S(t)] = E
[
S(t)− E[S(t)]

]2
= E[

∫ t′=t

t′=0

e2κ(t
′−t)σ2 dẑ(t′)]

= σ2e−2κtE[

∫ t′=t

t′=0

e2κ(t
′)dẑ(t′)]

=
σ2

2κ
(1− e−2κt).

(3.8)

Substituting the mean and variance from Equations (3.7) and (3.8) in Equation (3.5)

in log form gives

lnF (P, T ) = e−κT lnP + µ̂(1− e−κT ) +
σ2

4κ
(1− e−2κT ) (3.9)

This last equation shows the linear relationship between the log futures prices and the log

spot prices and will be used to estimate the price parameters.

3.3.2 Two-factor model

The two-factor model presented in this section is developed by Schwartz (1997).10 In

this model, there are two stochastic state variables - i.e., the spot prices and the net

10Schwartz (1997)’s study is based on the model developed earlier by (Gibson and Schwartz, 1990).
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instantaneous convenience yield11 denoted by δ - which are explained by a joint stochastic

process as follows

dP = (µTF − δ)Pdt+ σpPdzp

dδ = κTF (α− δ)dt+ σδdzδ

dzpdzδ = ρdt

(3.10)

in which µTF and α are the expected long-run mean of the two state variables, κTF denotes

the speed of mean reversion, and σp and σδ represent the constant volatilities of the spot

prices and the net convinced yield, respectively. In addition, ρ captures the correlation

between the increments of the Wiener process of the two paths. The subscript TF refers to

the two-factor model. Note that if we define δ(P ) = κ ln P , the two-factor model reduces

to the one-factor mean-reverting model.

The risk-adjusted version of spot price and convenience yield processes are given by

dP = (r − δ)Pdt+ σpPdẑp

dδ = [κTF (α− δ)− λTF ]dt+ σδdẑδ

dẑpdẑδ = ρdt

(3.11)

in which r − δ is the risk-adjusted drift rate of spot prices, r is the risk-free interest

rate, and λTF denotes the constant market price of risk associated with the stochastic

convenience yield. Note that the risk-adjusted price process is obtained through the no-

arbitrage argument. Such a process for the net convenience yield is obtained by deducting

the market price of δ risk from the drift.

The log form of spot prices, S = lnP , after applying Ito’s lemma is

dS = (µTF −
1

2
σ2
p − δ)dt+ σpdzp (3.12)

As shown by Gibson and Schwartz (1990), futures prices, F (P, δ, T ), should satisfy the

11The net convenience yield of holding an additional unit of inventory net of the storage cost of that
additional unit.
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partial differential equation (PDE) given by

1

2
σpP

2 ∂
2F

∂P 2
+(r−δ)P ∂F

∂P
+

1

2
σ2
δ

∂2F

∂δ2
+(κTF (µTF−δ)−λTF )

∂F

∂δ
+ρσpσδP

∂2F

∂P∂δ
− ∂F
∂t

= 0

(3.13)

with a boundary condition of F (P, δ, 0) = P , implying that the futures contract with the

maturity date, T , approaching to zero proxies the spot prices.

According to Jamshidian and Fein (1990), the solution to this PDE in the log form is

as follows

ln F (P, δ, T ) = ln P − δ 1− e−κTFT

κTF
+B(T ) (3.14)

in which

B(T ) =
(
r − α̂ +

1

2

σ2
p

κ2TF
− σpσδρ

κTF

)
T +

1

4
σ2
δ

1− e−2κTFT

κ3TF

+
(
α̂κTF + σpσδρ−

σ2
δ

κTF

)1− e−κTFT

κ2TF

α̂ = α− λTF
κTF

(3.15)

Equation (3.14) is the linear relationship between the log futures prices and log spot

prices which will be used to calibrate the model parameters.

3.3.3 One-factor long-term model

As we discussed earlier, the two-factor model introduces a stochastic process for the net

convenience yield and thus more accurately explains spot and futures prices, compared

to the one-factor mean-reverting model. However, applying the two-factor model to val-

uation problems adds one more dimension to the resulting partial differential equation

(PDE), which adds complexity to the numerical solution.12 To deal with this problem,

Schwartz (1998) developed a simpler model than the two-factor model but with almost

similar characteristics for pricing the term structure of futures prices, in particular, with

12Note that the numerical solution of problems with two stochastic factors is common in the litera-
ture, but a parsimonious one-factor model is preferred for simplicity, if it can adequately capture price
uncertainty.
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long maturities. This simpler model is known as one-factor long-term model and its results

match as closely as possible to those of the two-factor model. The objectives of this model

is to accurately estimate both the long-term futures prices and the volatility of futures

prices.

The one-factor long-term model uses one single state variable called the shadow spot

price and a constant convenience yield. Given the parameters of the two-factor model, the

shadow spot price, Z, as a function of spot prices and net convenience yield, can be defined

by13

Z(P, δ) = Pe
( c−δ
κTF

− σ2δ
4κ3
TF

)
(3.16)

in which c denotes the constant net convenience yield and is expressed as

c = µTF −
λTF
κTF
− σ2

δ

2κTF
+
ρσpσδ
κTF

. (3.17)

The shadow spot price rises with spot prices and decreases with the net convenience

yield. Schwartz (1998) has shown that the futures prices of this long-term model, denoted

by F (Z, T ), converge to the two-factor model futures prices, F (P, δ, T ), at a sufficiently

long maturity date T (i.e., when T →∞)14 and is given by

ln F (Z, T ) = ln Z + (r − c)T (3.18)

in which the convenience yield is constant and is defined by Equation (3.17). Note that

the stochastic process for Z is

dZ

Z
= (r − c)dt+ σz(t)dẑ (3.19)

where σz(t) represents the volatility of Z which is a function of time. This volatility is

13This expression is taken from Chen (2010) and is slightly different from the corresponding equation
in Schwartz (1998).

14Schwartz (1998) using the oil data obtained the close convergence of the futures prices of the two
models after 3 years.
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given by

σ2
z(t) = σ2

p + σ2
δ

(1− e−κTF t)2

κ2TF
− 2ρσpσδ

(1− e−κTF t)
κTF

. (3.20)

We will use Equations (3.16) and (3.18) to investigate the performance of this model

for copper prices.

3.4 The Kalman filter estimation method

This section explains the Kalman filter estimation procedure and the maximum likelihood

function, based on Harvey (1990)15 and Hamilton (1994)16.

3.4.1 The state-space form

To calibrate the models’ parameters using the Kalman filter, the first step is to represent

the model in the state-space form. The state-space representation of a multivariate time

series model consists of two equations: 1) the measurement equation and 2) the transition

equation. Assume that yt is an N × 1 vector of observable variables and xt is an m × 1

vector of unobservable state variables. The latter is known as the state vector.

The measurement equation relates yt to the state vector as follows

yt = d′t + Z ′txt + εt, t = 1, ..., NT (3.21)

in which d′t is an N × 1 vector, Z ′t is an N ×m matrix, and εt is an N × 1 vector of serially

uncorrelated error terms so that

E(εt) = 0 and V ar(εt) = Ht. (3.22)

As noted, the elements of the state vector, xt, are not observable. The transition

15Ch.3.
16Ch.13.
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equation assumes that xt follows a first-order Markov process as follows

xt+1 = ct + Ttxt + νt+1, t = 1, ..., T (3.23)

where ct is an m × 1 vector, Tt is an m ×m matrix, and νt is an m × 1 vector of serially

uncorrelated error terms so that

E(νt) = 0 and V ar(νt) = Qt. (3.24)

By assumption, the error terms of the measurement and transition equations are or-

thogonal in all periods. In addition, the system matrices - i.e., dt, Zt, Ht, ct, Tt, and Qt -

are assumed to be non-stochastic. Note that the system matrices change with time but

are assumed to be predetermined at each period.

3.4.2 The Kalman filter procedure

The Kalman filter can be applied to the state-space model, specified by Equations (3.21)

and (3.23), for optimally estimating the state vector at time t given available information

at that time, through a recursive procedure. The recursion starts at the initial time with

a forecast of the state vector when there is no observation of y. Therefore, the forecast of

the state vector at the current time given the past (unavailable) information, x̂1|0, is the

unconditional mean of x1.

x̂1|0 = E(x1) (3.25)

The Mean Squared Error (MSE) of this forecast (i.e., the covariance matrix of the

estimation error) is an m×m matrix given by

P1|0 = E
[
(x1 − E(x1))(x1 − E(x1))

′] (3.26)

x̂1|0 and P1|0 are the forecasted mean and the covariance matrix of the initial state vector.

These values can be computed using the transition and measurement equations. Hamilton

(1994) has found a unique solution for each of these values that holds only if the eigenvalues
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of the matrix Z in Equation (3.23) at the initial time are less than unity - i.e., inside the

unit circle. These solutions are

E(x1) = 0

vec(P1|0) =
[
Ir2 − (Zt ⊗ Zt)

]−1
. vec(Qt)

(3.27)

in which the second expression expresses the elements of the m × m matrix of P1|0 as a

column vector. Note that if the eigenvalues of Z are not inside the unit circle, the values of

x̂1|0 and P1|0 can be determined based on the researcher’s best guess. The assigned values

to the matrix of P1|0 reflect the confidence in the guess so that larger values of the diagonal

element of this matrix imply greater uncertainty about the true value of xt.

The initial values will be used by the Kalman filter for the next period forecast of the

state vector and the associated MSE. More generally, the objective for each step t is to

calculate the values of x̂t+1|t and Pt+1|t given x̂t|t−1 and Pt|t−1, respectively. The latter

terms are now conditional on the observed data of y up to time t − 1. As it is shown by

Hamilton (1994), the Kalman filter at time t = 1, ..., T uses the information of time t− 1

to produce a forecast for the state vector at time t+ 1 via the state equation given by

x̂t+1|t = Ttx̂t|t−1 +Ktηt (3.28)

with

Kt = TtPt|t−1ZtF
−1
t (3.29)

Ft = Z ′tPt|t−1Zt +Ht (3.30)

ηt = yt − d′t − Z ′tx̂t|t−1 (3.31)

in which Kt is called the gain matrix and ηt is the vector of prediction errors with an MSE

equals to Ft.

The MSE associated with the forecast of the state equation is

Pt+1|t = TtPt|t−1T
′
t −KtZ

′
tPt|t−1T

′ +Qt (3.32)

in which Kt is defined by Equation (3.29). In sum, the Kalman filter iterates on Equa-
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tions (3.28) and (3.32) for all time steps until all the information set over t = 1, ...T - i.e.,

{y1, ..., yt, ..., yT} - has been used in the iteration process. The output will be a smoothed

estimate of the state vector.

3.4.3 Maximum likelihood function

The ultimate objective of using the Kalman filter in this study is to estimate the unknown

parameters in the system matrices of dt, Zt, Ht, ct, Tt, and Qt. Such parameter estimations

can be obtained by maximizing the sample log likelihood function. By using the prediction

error decomposition, the log likelihood function is17

ln L = −NT
2

ln 2π − 1

2

T∑
t=1

ln |Ft| −
1

2

T∑
t=1

η′tF
−1
t ηt (3.33)

in which Ft and ηt are defined by Equations (3.30) and (3.31), respectively. The Kalman

filter uses this function to estimate the unknowns through numerical optimization methods.

The next section provides the state-space representation of the price valuation models of

this study.

3.5 Valuation models: the state-space representation

3.5.1 One-factor mean-reverting model

The state vector of this model contains the elements of the spot prices, as they are not

observed at all time steps. From Equation (3.9) and setting m = 1, the terms of the

17The origin of this equation is

L =

T∏
t=1

f(yt|Yt−1)

in which f(·) denotes the distribution of yt conditional on the set of information up to t − 1 given by
Yt−1 = {y1, ..., yt−2, yt−1}.
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measurement equation at each time step t can be expressed as

d′t =
[
µ̂(1− e−κTi) +

σ2

4κ
(1− e−2κTi)

]
N×1

i = 1, ..., N

Z ′t =
[
e−κTi

]
N×1

i = 1, ..., N

yt =
[
lnF (Ti)

]
N×1

i = 1, ..., N

xt = S(t)

Ht = σ2
εi
IN i = 1, ..., N

(3.34)

in which IN is the identity matrix with the dimension of N ×N .

From Equation (3.4), the terms of the transition equation at each t can be written as

ct = κ(µ− σ2

2κ
)∆t

Tt = 1− κ∆t

Qt = σ2∆t.

(3.35)

3.5.2 Two-factor model

In this model, in addition to the spot prices, the net convenience yield can not be observed

in the market. Therefore, these two variables form the state vector. From Equation (3.14),

the measurement equation at each time step t can be written as

d′t =
[
B(Ti)

]
N×1

i = 1, ..., N

Z ′t =
[
1,

1− e−κTFTi
κTF

]
N×2

i = 1, ..., N

yt =
[
lnF (Ti)

]
N×1

i = 1, ..., N

xt =
[
S(t), δ(t)

]′
2×1

Ht = σ2
εi
IN i = 1, ..., N.

(3.36)
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From Equation (3.12), the terms of the transition equation at each t can be written as

ct =
[
(µTF −

σ2
p

2
)∆t, κTFα∆t

]′
2×1

Tt =

[
1 −∆t

0 1− κ∆t

]
2×2

Qt =

[
σ2
p∆t ρσpσδ∆t

ρσpσδ∆t σ2
δ∆t

]
2×2

.

(3.37)

3.5.3 One-factor long-term model

The state-space form of this model is the same as the two-factor model. We first estimate

the state variables as well as the parameters of the two-factor model. Then, we substitute

the estimated values in Equations (3.16) and (3.18) to find the model-implied shadow

spot prices and the resulting futures prices, given the constant net convenience yield in

Equation (3.17).

3.6 Estimation results

3.6.1 One-factor mean-reverting model

Table (3.4) shows the calibration results for the one-factor mean-reverting model, using

the data of both sub-samples. As noted, each sub-sample covers a different time period

and consists of 6 contracts with different maturities, enabling us to evaluate the power of

each model to fit the data with shorter versus much longer maturities. Estimation results

are significantly different from zero. What stands out in the table is the values of the

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of log futures prices,

constructed using the vector of prediction error in Equation (3.31). These values enable

us to decide to what extent the model can explain the data.

For the first copper data set, the RMSE and MAE are around 7 cents per pound

and 5 cents per pound of copper, respectively. However, these values for the second sub-
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Period Aug 1997-Jul 2015 Nov 2002-Jul 2015

Contracts F1, F6 , F11, F1, F24 , F30,
F16, F21, F24 F40, F50, F60

κ 0.026 (0.001) 0.006 (0.001)
µ 2.705 (0.079) 0.748 (0.069)
λ 2.784 (0.026) 4.664 (0.063)
σ2 0.046 (0.002) 0.04 (0.001)

RMSE 0.069 0.136
MAE 0.052 0.11

Log-likelihood 9652 4548
Number of obs 937 667

Table 3.4: Parameter estimation results for the one-factor mean-reverting model using the weekly
futures data. Columns 2 and 3 are associated with the first and second sub-samples, respectively.
Standard errors are in prantesis.

sample are double, reducing the power of this model to explain the longer-term futures

prices. This conclusion is consistent with our discussion earlier about the importance of

stochastic convenience yield in copper price formation, in particular, for the second sub-

sample. Figure (3.3) confirms that the model implied price path cannot track the market

spot prices if the maturity of contracts is extended. This issue should be considered when

applying the one-factor mean-reverting model to long-term investment projects that would

require futures contracts with long maturity dates. However, the first sub-sample would

still be interesting for the analysis of such projects due to the highest trading volumes as

well as the highest degree of liquidity of the futures contracts with shorter maturities.

The much weaker mean reversion (0.006 versus 0.026) as a result of increasing the

maturity dates also makes the second sub-sample less interesting compared to the first

one, when using the one-factor mean-reverting model. Schwartz (1997) argues that, in

equilibrium, an increase or decrease in prices can be offset by the entry or exit of higher-cost

producers from the market. Consequently, prices tend to revert to a long-run equilibrium.18

The mean-reversion speed, κ, implies that reducing the distance between the current log

18Note that we have not generally observed this process in the data. However, eventually we might see
upward pressure on copper prices as more of the resource is used up.

96



1995 1998 2001 2004 2006 2009 2012 2015 2017
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Estimated and market prices: Sub−sample 1

U
S

$
/l
b

 

 

2001 2004 2006 2009 2012 2015 2017
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Estimated and market prices: Sub−sample 2

U
S

$
/l
b

 

 

Market prices

Estimated prices

Market prices

Estimated prices

Figure 3.3: One-factor mean-reverting model implied spot prices versus the market spot prices for
copper using the first sub-sample data (the left-hand pannel) and the second sub-sample data (the
right-hand panel).

price and the long-run mean19 by half takes ln(2)/κ years. This implies that the half-life for

revering to the long-run mean is 116 years in the second sub-sample. Note that the long-

run mean of the price for the second sub-sample is around 0.075,20 which is unreasonably

low. These observations indicate that the one-factor model that is mean reverting in drift

fails to forecast the spot prices using much longer maturity contracts, as in the second

sub-sample.

It is worth noting that the mean absolute error of using the contracts of the first and

second sub-samples are around 8% and 13% of the average log futures prices closest to

maturity, respectively. As noted in Schwartz (1997), these percentages indicate some large

fluctuations in the prediction error, as shown in the top panel of Figure (3.4). For clarity,

the prediction errors are shown for the first, middle, and last contracts of the first sub-

sample. The gaps among the prediction errors between 2004 and 2008 could be due to a

notable difference between the futures prices and spot prices (and thus high convenience

yield) in that period, as shown in the bottom panel of this figure for corresponding futures

19i.e., µ̂− S in Equation (3.4) ignoring volatility and market price of risk.
20exp(µ− σ2/(2κ)).
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Figure 3.4: The prediction errors (the top panel) of the one-factor mean-reverting model for three
out of six contracts used in estimation and the corresponding futures prices (the bottom panel) in
the first sub-sample from Aug 1997 to Jul 2015.
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Period Aug 1997-Jul 2015 Nov 2002-Jul 2015

Contracts F1, F6 , F11, F1, F24 , F30,
F16, F21, F24 F40, F50, F60

µTF 0.303 (0.010) 0.136 (0.007)
κTF 0.089 (0.027) 0.178 (0.066)
α 0.010 (0.024) 0.069 (0.069)
σ2
p 0.071 (0.003) 0.077 (0.005)
σ2
δ 0.003 (0.000) 0.002 (0.000)
ρ 0.555 (0.023) 0.511 (0.039)
λTF -0.010 (0.021) 0.007 (0.011)

RMSE 0.039 0.047
MAE 0.028 0.033

Log-likelihood 17,635 9071
Number of obs 937 667

Table 3.5: Parameter estimation results for the two-factor model using the weekly futures data.
Columns 2 and 3 are associated with the first and second sub-samples, respectively. Standard
errors are in parenthesis and r = 2%.

prices. The prediction errors remain large over that period, implying that the one-factor

mean-reverting model cannot explain the impacts of stochastic convenience yield on copper

price dynamics.

3.6.2 Two-factor model

Table (3.5) shows the estimation results of the two-factor model, using the weekly futures

contracts of each sub-sample. The real risk-free interest rate, r, is assumed to be 2%.

The estimated value of ρ indicates a moderate, positive correlation between the copper

spot prices and the net convenience yield. The value of κTF implies that the half-distance

between δ and its long-run mean, α, will occur after 8 years for shorter maturities and 4

years for longer-term contracts. This result shows a stronger mean reversion of the net

convenience yield with much longer maturities.

We expect that, in equilibrium, the net (marginal) convenience yield goes to zero due
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Figure 3.5: Two-factor model implied spot prices versus the market spot prices for copper using
the first sub-sample data (the left-hand panel) and the second sub-sample data (the right-hand
panel).

to the convergence of the marginal benefit of holding an additional unit of inventory and

the storage cost of that additional unit. This fact is reflected by the estimated value of α,

which is close to zero for both sub-samples. Note that since the risk-free rate is a constant

parameter in this model, the variations in net convenience yield absorb any fluctuations in

the interest rate over time. Consequently, the estimated net convenience yield at each time

explains the actual net convenience yield as well as the deviations of the interest rate from

2%. For this reason, the estimate of α for the net convenience yield process is not exactly

zero. All estimation results are statistically significant due to low standard deviations.

The root mean square error and the mean absolute error for both sub-samples are low

and close to each other. It follows that the two-factor model is able to characterize the

dynamics of both short-term and long-term futures contracts, as shown in Figure (3.5). The

model prediction errors for the first, middle, and the last contracts of both sub-samples are

shown in Figure (3.6). The mean absolute errors of parameter estimations using the data

of the shorter-term and the longer-term sub-samples are respectively around 4% and 5% of

the average log futures prices closest to maturity, representing some large deviations in the

prediction error. There is no significant difference among the prediction errors, in particular
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Figure 3.6: The prediction errors of the two-factor model for three out of six contracts in the first
subsample (the top panel) and the second sub-sample (the bottom panel).

between 2004 and 2008, when there has been strong backwardation in the market, due to

including the stochastic convenience yield process. Figure (3.7) plots the model implied

state variables for both sub-samples and shows that the estimated net convenience yield

has its highest values during that period. Recall that the constant convenience yield has

been the main reason for the obvious gaps in the prediction errors of the one-factor mean-

reverting over that specific period. Therefore, introducing the stochastic convenience yield

has improved the prediction error in this model compared to the one-factor mean-reverting

model. The average net convenience yield for the first sub-sample is $0.028 and for the

second sub-sample is $0.057 per pound of copper.
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Figure 3.7: Two-factor model implied state variable using the data of the first subsample (the
left-hand panel) and the second sub-sample (the right-hand panel).

3.6.3 One-factor long-term model

Figure (3.8) plots the model implied spot prices, P (Z, δ), and shadow spot prices, Z(P, δ),

for both sub-samples. The former can be found using Equation (3.16) by writing P in

terms of Z. To obtain Z, we use the vector of each state variable, P and δ, estimated

in the two-factor model. In addition, since the shadow spot prices are a mathematical

transformation of the two-factor model, the parameters have identical values. Therefore,

the constant net convenience yield, c in Equation (3.17), is around 0.054 for the first and

0.016 for the second sub-samples. From this figure, the model implied spot prices have the

same values and dynamics as the market spot prices. The estimated shadow spot prices do

not have values equal to the market prices, but mimic the dynamics of the spot prices to a

good extent. Using the shorter term contracts, we have found a wider range for the shadow

spot prices compared to market prices, whereas this range is narrower with longer term

futures contracts. In addition, we have observed that the shadow spot prices are almost as

volatile as the actual spot prices in both sub-samples.21

21The standard deviation for the shadow spot prices and market spot prices covering the period of the
first sub-sample are 1.076 and 1.099, respectively. These values for the second sub-sample are 0.821 and
0.933, respectively.
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Figure 3.8: Two-factor model implied state variable using the data of the first subsample (the top
panel) and the second sub-sample (the bottom panel).

3.7 Model comparison

This section compares the performance of the one-factor mean-reverting model and the

one-factor long-term model relative to the two-factor model, in terms of their ability to

explain forward curves. A forward curve shows the futures prices across their maturities

at a specific time. The two main shapes of the forward curves are upward sloping and

downward sloping. The former implies that the market is in contango, whereas the latter

represents backwardation. We will use the forward curve and the term structure of futures

prices interchangeably.

In this section, we are interested to learn to what extent each model can explain the

different shapes of the copper forward curves. In addition, we investigate the implications of

these models for the term structure of futures prices with much longer maturities than the

maximum maturity in each sub-sample.22 This out-of-sample illustration of forward curves

is interesting because the main application of these models is in pricing assets contingent

on the price of copper with much longer maturities than 2 years and 5 years. We use the

22Recall that the maximum maturity date of futures contracts of the first sub-sample is 2 years, and
that of the second sub-sample is 5 years.
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two-factor model as the benchmark to evaluate the performance of the other two models

for two reasons. First, it has a lower RMSE and MAE than the one-factor mean-reverting

model and thus more accurately explains the dynamics of market spot and futures prices.

Second, the forward curves implied by the one-factor long-term model and the two-factor

model should converge as the maturity is extended.

We start our analysis with the term structure of futures prices estimated from the data

of the first sub-sample. Figure (3.9) shows all the market futures prices, with two years

as the longest maturity. It also illustrates the forward curves implied by each model for

contracts up to 15 years, for 4 specific dates. These dates are for illustration only, and the

models performance remains the same for the rest of the observations in the sub-sample.

In this figure, MR stands for the mean-reverting model, TF refers to the two-factor model,

and LT represents the long-term model. It can be seen from this figure that the two factor

model can explain the majority of the market futures prices. In contrast, futures prices of

the mean-reverting model do not fit the observed futures data and diverge significantly from

the two-factor model as the maturity increases. Interestingly, the futures prices implied by

the long-term model converge to those of the two-factor model after about 5 years. Note

that, for each date, the constant convenience yield for the long-term model is c = 0.054.

However, the estimated values of spot price, P , and instantaneous net convenience yield,

δ, as well as the corresponding shadow spot price, Z, differ across the two-factor and the

long-term models. These values for each panel at t = 0 are as follows:

• In panel (a), P = 0.626, δ = −0.061, and Z = 0.891.

• In panel (b), P = 1.343, δ = 0.169, and Z = 0.893.

• In panel (c), P = 3.347, δ = 0.106, and Z = 2.749.

• In panel (d), P = 3.536, δ = 0.002, and Z = 4.093.

Note that t = 0 refers to the less than one month maturity date, which is close to zero if

converted to a year. Recall that P and Z are both the spot prices and futures prices at time

zero. A comparison between the futures prices of the long-term model and the two-factor

model, in particular for maturities before 5 years, reveals that the gap between futures
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Figure 3.10: Market and model implied forward curves at, 4 selected dates from the second sub-
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prices of these models gets smaller with maturity and before the two curves converge. In

contrast, the gap between the mean-reverting model and the two-factor model increases

with maturity, making this model less interesting. Consequently, before the convergence

has occurred, the term structure of futures prices of the long-term model can match the

two-factor model with a small difference that can be ignored. Specially, Figure (3.10) shows

that, using the second sub-sample, the convergence occurs after 15 years. However, the gap

is very small before this threshold for the majority of dates, as shown in Appendix (C.1).

Since the one-factor mean-reverting model fails to describe the term structure of copper

futures prices in the second sub-sample, we have not shown its forward curves in this figure.

3.8 Conclusions

This study examines the performance of three stochastic models in terms of their ability to

characterize the price of copper derivatives. These models are the one-factor mean-reverting

model, two-factor model, and one-factor long-term model. The first model assumes spot

prices are mean-reverting in drift. The second model defines two correlated stochastic

factors that are spot prices and convenience yield. The third model transforms the two-

factor price model into a single factor model. These models are calibrated to copper futures

prices using a Kalman filtering approach.

We have found that the mean-reverting model cannot describe the term structure of

copper futures prices with long maturities. In contrast, the two-factor and the long-term

models are shown to provide a reasonable fit of the term structure of copper futures prices,

highlighting the importance of stochastic convenience yield in copper price formation.

However, the long-term model is relatively much simpler in its application to asset valuation

models and has the same implications as the two-factor model (Schwartz, 1998). We

conclude that the long-term model can be applied to long-term investment projects. We

also argue that because the first sub-sample has the highest trading volumes and is more

liquid, it can still be attractive for calibrating price parameters when the goal is valuing

investment projects even with long maturities.
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Appendix A

Appendix to Chapter 1

A.1 Boundary Conditions

Boundary conditions at upper and lower bounds of p, r, w, and t are described in this

section.

• Evaluation of Equation (1.17) as the commodity price p → 0 implies that

0 =
∂V

∂t
+ rV + max

q,a

{
π − q ∂V

∂s
+ (φq − a)

∂V

∂w

}
(A.1)

No special boundary condition is needed as there is no term involving p.

• As the p → pmax, we assume ∂2V
∂p2
→ 0, which from Equation (1.17) implies:

0 =
∂V

∂t
+ κ(µ̂− ln p)p

∂V

∂p
+ rV + max

q,a

{
π − q ∂V

∂s
+ (φq − a)

∂V

∂w

}
(A.2)

The assumption that V is linear in p is common in the literature (In’t Hout, 2017).

• As s → 0, the admissible set of q collapses to zero as shown in Equation (1.5). No

boundary condition is needed.
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• As s → smax, no special boundary conditions is required as Equation (1.17) has

outgoing characteristics in the s direction.

• For the boundary w = 0, no boundary condition is required as Equation (1.17) has

outgoing characteristics in the w direction.

• At the boundary w = w̄, Equation (1.6) implies that Equation (1.17) has outgoing

or zero characteristics in the w direction. Hence no special boundary condition is

needed.

• At (t = T ), the obligation to clean up the site from Stages 2 and 3, under the

liability rule and the bond in Cases I and II, implies that

V (p, s, w, δi, T ) = 0 i = 1, 4

V (p, s, w, δi, T ) = 1b=trueC
tp(W )− Cf (W ) i = 2, 3.

(A.3)

Note that if the bond is borrowed (Case III), the firm will have to repay the loan at

T , and thus the second line of the above equation becomes

V (p, s, w, δi, T ) = −Cf (W ) i = 2, 3. (A.4)

A.2 Considering the socially optimal policies

In this paper, we have focused on the effect of an environmental bond on a firm’s optimal

decisions, but have not specifically addressed whether policies are socially optimal. The

objective of the environmental bond is to ensure that firms do not shirk their clean-up

obligations. The value of the bond is set to fully cover clean-up costs at any moment in

time, so that the government will never be faced with the cost of cleaning up a mining site.

In addition, it was assumed that there would be no damages from the waste stock prior to

the terminal time, T . Clean-up must be undertaken by T , which is assumed to be chosen

optimally by the government. The Case I bond, which pays interest at the risk-free rate,

is used as a benchmark as it gives the same project value and optimal firm decisions as the

strict liability policy. Because the Case I bond collateralizes the government and imposes

117



no additional cost on the firm, it represents a socially optimal result. The other two bonds

considered impose costs on the firm. Under both Case II and Case III, the profitability of

the mine is reduced and hence the project is less likely to be undertaken. Whether these

cases represent socially optimal policies depends on the relative size of the cost of the bond

to firms versus the costs the government is avoiding by imposing the bonding requirement.

This question deserves further investigation, but is beyond the scope of this paper.

The assumption that the waste stock causes no damages prior to the mandatory clean-

up date of T is easily relaxed. Damage can be described by a damage function D(W ),

where D′(W ) > 0. These damages may reflect contamination of water sources from waste

storage, loss of enjoyment of the mine site for recreational or other uses, or potential harm

to wildlife of degraded landscapes, to name a few examples.1 In this case, an additional tool

besides the bond is needed for a socially optimal result. In particular a tax per unit could

be imposed on the waste stock. This tax would be expected to affect the firm’s choices of

abatement, production, as well as the timing of opening, mothballing, or abandoning the

mine.

A.3 Decisions to abandon the extraction activities

Consider either the Case I bond or the strict liability rule. At a given level of reserve, the

firm’s optimal decisions to abandon the mine from the production phase or to mothball

the operations depend on the remaining life of the project as well as the quantity of the

accumulated waste. Figure (A.1) shows such decisions for t = 12, t = 13, and t = 14

years, when the reserve is full. We have observed that at all decision dates (yearly) before

t = 13, the firm always plans to mothball first at all levels of waste stock. However, at

t = 13, when the landfill is almost full, the firm is indifferent between mothballing first and

abandoning directly from the production phase. At lower levels of waste, the extraction

activities terminate without mothballing, once critical prices are hit. At t = 14, critical

mothballing prices are lower at all levels of waste, making direct termination of extraction

1Syncrude paid a $3 million penalty for the death of 1600 ducks which landed on one of its tailing
ponds in Alberta, Canada, in 2008.
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Figure A.1: Decisions to mothball versus to abandon the extraction activities under the bonding
policy (Case I) across the waste stock, for full reserve and for the last three years left in the
project.
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activities optimal. As noted, at T = 15, the firm is enforced to close the mine from any

stages of the project regardless of prices.
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Appendix B

Appendix to Chapter 2

B.1 Boundary Conditions

Boundary conditions at upper and lower bounds of p, r, w, and t are described in this

section.

• Evaluation of Equation (2.16) as the commodity price p → 0 implies that

0 =
∂V

∂t
+ (r + λ(·))V + max

q,a

{
π − q ∂V

∂s
+ (φq − a)

∂V

∂w

}
(B.1)

No special boundary condition is needed as there is no term involving p. Note that

λ(p→ 0, w)→∞.

• As the p → pmax, we assume ∂2V
∂p2
→ 0, which from Equation (2.16) implies:

0 =
∂V

∂t
+ κ(µ̂− ln p)p

∂V

∂p
+ rV + max

q,a

{
π − q ∂V

∂s
+ (φq − a)

∂V

∂w

}
(B.2)

The assumption that V is linear in p is common in the literature (In’t Hout, 2017).

Note that λ(p→ pmax, w)→ 0.

• As s → 0, q collapses to zero. No boundary condition is needed.
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• As s → smax, no special boundary conditions is required as Equation (2.16) has

outgoing characteristics in the r direction.

• For the boundary w = 0, no boundary condition is required as Equation (2.16) has

outgoing characteristics in the w direction.

• At the boundary w = w̄, Equation (2.16) has outgoing or zero characteristics in the

w direction. Hence no special boundary condition is needed.

• As λ → ∞, both q and a collapse to zero and the project terminates.

• At (t = T ), the obligation to clean up the site from Stages 2 and 3, under the

liability rule and the bond implies that

V (p, s, w, δi, T ) = 0 i = 1, 4

V (p, s, w, δi, T ) = 1b=trueC
tp(W )− Cf (W ) i = 2, 3.

(B.3)

As noted, the firm receives the restoration benefit under the bond or pays the clean-up

cost under the liability if it reaches time T .

B.2 Sensitivity on the parameters of the hazard func-

tions

This section examines the sensitivity of results to the parameters of Equations (2.5)

and (2.6). We have increased the values of k0 and k2 compared to the base-case parameter

values. This new case is referred to as the higher-risk firm. In what follows, we analyze

the higher-risk firm’s optimal abatement decisions versus the base case and the solvency

case, under both policies.

Figures (B.1) and (B.2) compare the higher-risk firm’s optimal abatement rate with the

base case and solvency case, at time zero. In Scenario I, as discussed in Section 2.6.2, higher

values for λ(·) increase the effective discount rate and thus reduces the abatement rate, as

future benefits and costs become less important. For a profitable project in Scenario II, at
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Figure B.1: Optimal abatement sensitivity to the parameter k0 of λ(p) = k0/p, under both policies
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low levels of waste, the higher-risk firm leaves a lower waste for the next period compared

to the base case parameters. However, an increase in the level of waste increases the firm’s

risk of bankruptcy more sharply than in the base case, demotivating the firm to keep

abating more, resulting in a sharp decline in the firm’s abatement rate, in particular under

the liability rule. This behaviour is due to the relatively higher probability of bankruptcy,

λ(p, w), in Equation (2.15).

B.3 Sensitivity on the parameter of the clean-up cost

function

This section discusses the sensitivities of the firm’s optimal abatement decisions under the

bond in Scenario II on the scaling parameter of the clean-up cost function, β in Table (2.2).

In this analysis, the marginal restoration is 2 and 3 times costlier than its original value. To

enhance the environmental quality, governments may become more stringent over time in

terms of restoration plans, making the clean-up work more expensive. With more expensive

restoration plan, the firm’s expected bond payment is relatively higher. This higher bond

motivates the firm to abate progressively during operations to reduce its annual bond

payments as well as its risk of bankruptcy. This result is shown in Figure (B.3).

B.4 Abatement rates at higher copper prices

Optimal abatement rates under two price levels are shown in Figure (B.4). An increase in

copper prices rises the project value and thus the firm exercises a higher abatement rate

in both scenarios.
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Figure B.3: Optimal abatement sensitivity to the parameter β of C(w) = βw2, at time zero, under
the bonding policy and Scenario II, at time zero. s0 = 1173 million pounds, w: million pounds.

0 500 1000 1500 2000 2500
(a) Waste Pile

0

20

40

60

80

100

120

A
ba

te
m

en
t r

at
e

Optimal abatement, Scenario I

0 500 1000 1500 2000 2500
(b) Waste Pile

0

20

40

60

80

100

120

A
ba

te
m

en
t r

at
e

Optimal abatement, Scenario II

deterioration rate

Liability, p0=3

Bond, p0=3

deterioration rate

Liability, p0=2

Bond, p0=3

Liability, p0=3

Bond, p0=2

Bond, p0=2

Liability, p0=2

Figure B.4: Optimal abatement rates for two price levels under the bonding policy and the strict
liability rule, at time zero, in (a) Scenario I and (b) Scenario II. s0 = 1173 million pounds, w:
million pounds.

125



Appendix C

Appendix to Chapter 3

C.1 The difference in implied futures prices

Figures (C.1) and (C.2) are the gaps in forward curves shown in Figures (3.9) and (3.10),

respectively.
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Figure C.1: The difference between the forward curve implied by the two-factor model and the
long-term model, at 4 selected dates from the first sub-sample.
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Figure C.2: The difference between the forward curve implied by the two-factor model and the
long-term model, at 4 selected dates from the second sub-sample.
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