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Abstract

Explosively dispersed granular materials frequently exhibit macroscale coherent particle

clustering and jetting structures. The underlying mechanism is of significant interest to study

instability and mixing in high-speed gas-solid flows but remains unclear, primarily attributed

to the complex mesoscale multiphase interactions involved in the dispersal process. In

order to advance the understanding of particle clustering and jetting instabilities, this thesis

establishes a numerical framework for solving interface-resolved gas-solid flows with non-

deforming bodies that are able to move, contact, and collide. The developed framework

is implemented to create a computational solver and then verified using a variety of gas-

solid flow problems at different geometric scales. Employing the developed framework and

solver, this thesis further studies the particle clustering and jetting instabilities in explosively

dispersed granular materials.

A Cartesian, 3D, high-resolution, parallelized, gas-solid flow solver is created with

the capability of tackling shocked flow conditions, irregular and moving geometries, and

multibody collisions. The underlying numerical framework integrates operator splitting

for partitioned fluid-solid interaction in the time domain, 2nd/3rd order strong stability-

preserving Runge–Kutta methods and 3rd/5th order weighted essentially nonoscillatory

schemes for high-resolution tempo-spatial discretization, the front-tracking method for

evolving phase interfaces, a new field function developed for facilitating the solution of

complex and dynamic fluid-solid systems on Cartesian grids, a new collision model de-

veloped for deterministic multibody contact and collision with parameterized coefficients

of restitution and friction, and a new immersed boundary method developed for treating

arbitrarily irregular and moving boundaries. The developed framework and solver are able

to accurately, efficiently, and robustly solve coupled fluid-fluid, fluid-solid, and solid-solid

interactions with flow conditions ranging from subsonic to hypersonic states.

Employing the developed framework and solver, direct simulations that capture interface-

resolved multiphase interactions and deterministic mesoscale granular dynamics are con-

ducted to investigate particle clustering and jetting instabilities. A random sampling algo-

rithm is employed to generate stochastic payload morphologies with randomly distributed

particle positions and sizes. Through solving and analyzing cases that cover a set of

stochastic payloads, burster states, and coefficients of restitution, a valid statistical dissi-

pative property of the framework in solving explosively dispersed granular materials with

respect to Gurney velocity is demonstrated. The predicted surface expansion velocities can

extend the time range of the velocity scaling law with regard to Gurney energy in the Gur-

ney theory from the steady-state termination phase to the unsteady evolution phase. When

considering the mean surface expansion velocities, the maximum error of the unsteady

velocity scaling law is about 0.792% among the investigated Gurney energies. In addition,

a dissipation analysis of the current discrete modeling of granular payloads suggests that
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incorporating the effects of porosity can enhance the prediction of Gurney velocity for

explosively dispersed granular payloads. On the basis of direct simulations, an explanation

for particle clustering and jetting instabilities is proposed to increase the understanding of

established experimental observations in the literature. Results suggest that the development

of internal sliding and colliding lines in the shock-compacted granular payload can be crit-

ical to the subsequent fracture pattern of the payload. Particle clusters manifested through

payload fracture are then maintained by local pressure gradient between surrounding and

interstitial flows as well as by dissipative inter-grain collisions. The existence of stable

clusters introduce a more non-equilibrium momentum distribution in the overall payload,

exhibiting as a form of clustering instability.

Under the current assumptions of non-deformable grains, the mesoscale granular dy-

namics largely depends on the payload morphology as a result of packing methods. Different

payload morphologies can develop varied sliding and colliding lines, which lead to a corre-

sponding pattern for payload fracturing and particle clustering. With the rapid development

of high-performance computing technology, future direct simulations on stochastic pay-

loads with significantly increased domain sizes, number of particles, and solution times are

expected to lead to a better understanding of the flow instability in explosively dispersed

granular payloads. It is suggested that statistics collected from a large number of mesoscale

computations based on random payload morphologies can potentially evolve into a macro-

scopic theory of multiphase flow instability for particle clustering and jetting phenomena

widely observed in many areas involving dense gas-solid flows.
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Chapter 1

Introduction

In many physical problems, such as explosions with explosive charges surrounded by or

mixed with solid particles [8, 9], pulse detonation propulsion [10], explosive volcanic

eruption [11], near-surface landmine explosion [12, 13], impact crater formation [14], and

supernova explosion [15], the impulsive dispersal of granular materials commonly occurs

and exhibits interesting particle clustering and jetting behaviors. In particular, when granular

materials are explosively dispersed [8, 9], mesoscale perturbations develop within and at

the surface of the granular cloud at a timescale of shock propagating through the payload,

frequently leading to the formation of macroscale coherent particle clustering and jetting

structures with a dual hierarchy at a later time. Influencing the mass concentration and

related particle reaction and energy release, this particle clustering and jetting phenomenon

is of considerable interest to study instability and mixing in high-speed gas-solid flows.

However, the underlying mechanism remains unclear and can be largely inhibited by the

complex mesoscale multiphase interactions involved in the dispersal process.

1.1 Particle clustering and jetting phenomenon

The presence of granular scales and the rapid release of intensive driving energy are common

characteristics for the formation of coherent particle clustering and jetting structures in

different particle dispersal processes. Nonetheless, an explosive dispersal can involve

additional features related to detonation and shock waves.

1.1.1 Homogeneous detonation

Consisting of fuel and oxidizer premixed on molecular level, explosives are energetic mate-

rials that can rapidly release the contained chemical energy through combustion. Depending

on the reaction rate, combustion in explosives can happen in the form of either deflagration
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1. Introduction

or detonation. In deflagration, exothermic chemical reactions occur at the material surface,

and thermal conduction transfers the released heat to an adjacent unreacted layer for fu-

ture ignition. Compared to deflagration that is a subsonic layer-by-layer decomposition,

detonation is a supersonic combustion involving a closely coupled leading shock wave and

exothermic reaction zone propagating through the material [1]. Attaining a higher energy

release rate, detonation is the primary reaction form of high explosives [2].

The simplest model of detonation is based on the Chapman–Jouguet (CJ) detonation

theory, which treats a detonation wave as a jump discontinuity separating an upstream state

and a downstream thermochemical equilibrium state. The reaction zone is assumed to be

infinitesimally thin and has an infinite chemical reaction rate. As a jump discontinuity,

the flow crossing the detonation wave satisfies the Rankine–Hugoniot conditions, which

represent the integral conservation laws of mass, momentum, and energy.

A more physical interpretation of detonation is the Zel’dovich–von Neumann–Doering

(ZND) model. As illustrated in Fig. 1.1, the ZND model represents a detonation wave as a

shock discontinuity followed by a finite length reaction zone. The reaction zone has a finite

chemical reaction rate and terminates with the CJ equilibrium state known as the sonic

plane. In the reference frame attached to the leading shock, the flow in the reaction zone

is steady. Therefore, the shock and the reaction zone propagate together with a constant

velocity referred to as the detonation velocity VD. The flow following the CJ state is a

time-dependent rarefaction wave.

Distance

P
re

s
s
u

re

Shock

VN Spike

Steady Reaction Zone

CJ State

RarefactionConstant State

Figure 1.1 One-dimensional ZND detonation model. The schematic diagram is adapted from the

work of Fickett and Davis [1].

The structure of a self-sustaining detonation in explosives is further depicted in Fig. 1.2.

During a detonation process, the supersonic shock front instantly compresses the explosives

into a high-pressure and high-temperature state known as the von Neumann spike and

initiates explosives into chemical reaction, in which the main energy transfer occurs in the

form of shock wave compression rather than thermal conduction [2]. Meanwhile, the finite
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length reaction zone, which starts along the leading shock wave and terminates at a sonic

plane followed by an unsteady expansion flow, derives energy from the chemical reactions in

the explosives and supports the propagating shock front. This close collaboration between

shock front and reaction zone causes rapid energy liberation in explosives and generates

high-energy gaseous products, which form a fierce expansion flow and are able to do

mechanical work on surrounding materials at a remarkable rate.

Unreacted ExplosiveReaction ZoneReacted Expansion Flow

Sonic Plane Shock Front

Detonation Path

Figure 1.2 A self-sustaining detonation with a coupled leading shock wave and exothermic finite

length reaction zone. The schematic diagram is adapted from the work of Bdzil [2].

1.1.2 Heterogeneous detonation

Detonation in explosive materials rapidly releases chemical energy and amasses kinetic and

thermal energy. The accumulated energy is then dissipated through a variety of means, such

as the formation of pressure waves and thermal radiation. Granular additives such as glass

particles or aluminum powders are widely used in explosives to either mitigate or enhance

the overall performance [16–19].

Depending on the property of particles, the granular additives can be either inert or

energetic. In the former case, particles participate mechanically in the detonation process

and act as blast mitigants through absorbing kinetic and thermal energy. When particles

are energetic, the timescale of particle ignition and combustion is usually greater than that

of explosive detonation, particularly for particles with relatively large sizes. Particles are

first dispersed with a significantly increased surface area to volume ratio and then react

under the rapid mixing with the detonation products or later with air [18]. The primary

heat release from metal particle combustion often occurs behind the propagating detonation

reaction zone and has a very limited contribution to sustaining detonation.
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Therefore, although energy release from the oxidation of energetic particles can signif-

icantly enhance the pressure work and the post-detonation blast wave and hence improve

the overall performance of explosives, shock wave dispersion rather than chemical reaction

dominates the early-stage interactions between explosives and particles for both inert and

energetic particles [17, 18]. The added solid particles introduces inhomogeneities in the

explosives, which interact with detonation waves and result in heterogeneous detonation. In

general, the process of a heterogeneous detonation involves multiscale physics that comprise

microscale, mesoscale, and macroscale interactions.

1.1.2.1 Microscale interaction

At the microscale level, the propagation of detonation shock front causes molecular ex-

citation, vibration, and chemical decomposition and reaction in the condensed explosive,

which increase kinetic energy, temperature, pressure and further produce expansion work

to support the propagation of the shock front.

The pressure of the detonation shock in high explosives may reach 1.0 × 1010 − 5.0 ×
1010 Pa with propagation speed ranging from 6.0 × 103 − 9.0 × 103 m/s [2]. Heating

the explosive molecules and initiating chemical reactions, the detonation shock effectively

converts the explosives into high-pressure and high-temperature gaseous products, resulting

fierce macroscale explosion and expansion behaviors.

1.1.2.2 Mesoscale interaction

While the effects of the structural arrangement of molecules and microstructural imperfec-

tions are manifested at the microscale level, and the rapid energy release and expansion

processes can be described at the macroscale level with continuum modeling, an interme-

diate scale, which covers the geometric length scales of 1.0 × 10−7 − 1.0 × 10−3 m and the

time horizons of 1.0 × 10−6 − 1.0 × 10−3 s [3], is required to characterize the heterogeneity

of explosives at the granular scale introduced by particle additives and is referred to as the

mesoscale.

As illustrated in Fig. 1.3, grain-scale heterogeneities can cause intricate mesoscale

physics, including strongly coupled shock-shock, shock-particle, and particle-particle inter-

actions.

The presence of voids, density discontinuities, irregular material interfaces, and other

inhomogeneities causes shock reflection, diffraction, and interference patterns, especially at

the leading edges of particles, where strong wave reflection happens, and at concave regions

of neighboring particles, where shock waves collide. These shock-shock interactions not

only influence the detonation front curvature and the propagation behavior of detonation
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Unreacted ExplosiveReaction ZoneReacted Expansion Flow

Sonic Plane Shock Front

Detonation Path

Local Hotspot Solid Particle

Figure 1.3 Heterogeneous detonation with grain-scale effects introduced by particle additives. The

schematic diagram is adapted from the work of Bdzil [2] and Ripley et al. [3]. In the current diagram,

the detonation reaction zone length is assumed to be much larger than particle diameter.

waves, but also produce local hotspots and pressure fluctuations at material interfaces,

affecting the stability of detonation and granular payload motion.

When interacting with particles, detonation waves transmit strong pressure waves into

particles. Due to the shock impedance differences between explosives and particles, a wave

speed mismatch between the shock traveling in explosives and the shock propagating in

particles usually presents. The wave reflections and interactions in the detonation flow

result in local pressure jumps and velocity discontinuities around particles, which initially

and impulsively accelerates the particle material. As the detonation waves propagate over

particles, the length of detonation reaction zone may be considerably increased due to

the energy transfer from detonation waves to particles. The density ratio of explosives

to metal particles and length ratio of detonation reaction zone to particle diameter are

important measurable parameters to characterize the effectiveness of energy transfer and

the shock propagation behaviors at material interfaces, respectively. The dominance of

mesoscale shock-particle interaction changes from phase-frozen shock to shock diffraction

at interfaces when the ratio of detonation reaction zone length to particle diameter decreases

[3].

Under shock compaction, particles experience collision, agglomeration, deformation,

and even fragmentation. The granular payload is first compacted with an increased particle

volume fraction. Then, subjecting to a diverging expansion, the particle system undergoes

a dense-to-dilute transition characterized by a decreasing particle volume fraction [8].
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1.1.2.3 Macroscale cluster and jet formation

The introduced grain-scale heterogeneities lead to coupled mesoscale interactions between

the detonation reaction zone, shock waves, and solid particles. Under high rates of momen-

tum and energy transfer resulting from shock compaction and subsequent expansion flow,

the mesoscale interactions are effectively enhanced and later are manifested via complex

macroscale phenomena as the expansion proceeds. As shown in Fig. 1.4, one important

phenomenon is the formation of coherent particle clustering and jetting structures. Influenc-

ing the mass concentration and related particle reaction and energy release, the underlying

physical mechanism is of significant interest to study flow instability and turbulent mixing

in heterogeneous detonation and explosion [18, 20].

(a) t = 5 ms (b) t = 10 ms

(c) t = 25 ms (d) t = 50 ms

Figure 1.4 Particle cluster and jet formation under the explosive dispersal of a cylindrical charge that

comprises a central explosive burster surrounded by an annular Aluminum payload. Figure from

Zhang et al. [4]. Photographs from Defence Research and Development Canada, courtesy of Dr.

Fan Zhang.
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1.1.3 Clustering and jetting instability

In experiments concerning the explosive dispersal of liquids [4, 9, 17, 20], dry powders

[9, 17, 18, 20, 21], or hybrid liquid-powder mixtures [8, 9, 20, 22] in a stratified [4, 9, 17, 18,

20–22] or premixed [8] burster-payload configuration with a cylindrical [4, 9, 18, 20, 22]

or spherical [8, 9, 17, 21] charge shape, a dual hierarchy of particle jets featuring a limited

number of large primary jets accompanied by numerous small fine jets, as illustrated

in Fig. 1.5, was frequently observed, although different configurations can influence the

number and length scales of the formed jets. In general, the fine jets occurred at the outer

payload-air interface immediately after the fragmentation of casing, and the primary jets

emerged out of the surface of the fine jets at a later time. While the fine jets dissipated through

aerodynamic interaction and destroyed by payload expansion as the dispersal proceeds, the

primary jets persisted as coherent jetting structures for a longer time. This jetting structure

can be developed within an expansion length of several times the initial charge diameter

[4].

Figure 1.5 A dual hierarchy of particle jets observed in the explosive dispersal of 5, 090 kg gasoline.

Figure from Zhang et al. [4]. Photographs from Defence Research and Development Canada,

courtesy of Dr. Fan Zhang.

Casing fragmentation at the inner burster-payload and outer payload-air interfaces could

enhance the interfacial behaviors and hence the formation of particle clusters and jets,

particularly for liquid payloads [4, 22]. Strong shocks generated by detonation can induce

plastic deformation and agglomeration of solid grains such as those made of aluminum to

form a casing-like structure near the inner burster-payload interface, which subsequently

7



1. Introduction

fragments under expansion and introduces interfacial instabilities [23]. Less affected by the

compression and plastic deformation, liquids can still reveal granular behaviors after breakup

and mixing with air. The formation of coherent particle clustering and jetting structures with

a dual hierarchy was also observed in the absence of casings and plastic deformations, such

as in experiments on dispersed flour or polystyrene powders using Hele-Shaw cells with

blast of moderate overpressures [24–26], in which particle rings were confined between two

closely separated parallel plates and dispersed by a central gas burster. This consistency

suggests an inherent clustering and jetting instability in impulsively dispersed granular

materials.

Compared with 3D spherical or cylindrical settings, quasi-2D Hele-Shaw cell configu-

rations [24–26] have provided better visualization of the dispersal evolution. Nonetheless,

extra effects can be introduced by the confining plates, such as wall boundaries, burster fluid

tending to escape near the upper plate, and payload might dragged by the lower plate under

gravity and plate friction. When considered as the zero-surface-tension limit of a high

viscous fluid, granular materials such as spherical glass beads dispersed by a gas burster

can exhibit the finger-like branching pattern featured in Saffman–Taylor instabilities (STI)

[27], particularly at the early fragmentation stage of the payload. Widely studied via the

displacement of a viscous fluid by a less viscous one in Hele-Shaw cells, STI [28] has

been linked to the patten formation in granular materials among recent studies [27, 29], in

which granular dissipation instead of the classical viscous damping is characterized as the

stabilizing mechanism for counterbalancing the destabilizing pressure gradient.

From the perspective of accelerated material interfaces with density disparity and initial

interfacial nonuniformity, particle clusters and jets at the inner burster-payload and outer

payload-air interfaces can be related to the Rayleigh–Taylor instability (RTI) [30, 31] and

Richtmyer–Meshkov instability (RMI) [32, 33], in which RMI can be considered as an

impulsive RTI subjected to shock rather than continuous acceleration [34].

RTI and RMI can grow initial surface corrugations with locally misaligned pressure and

density gradients in the form of spikes, bubbles, and fingers [34]. One example is supernova

explosion generated by the energy release from the gravitational collapse of a star that has

exhausted nuclear fuel [15], in which astrophysical-scale RTI fingers develop in the process

of the core medium accelerating into the denser interstellar medium [15, 35]. Another

example is inertial confinement fusion implosion, in which a fusion target, a spherical pellet

consists of layered materials such as an ablator, a pusher, and a fuel core, is compressed to

the fuel ignition point by a high-energy source for fusion reactions [36]. RTI, accompanied

by RMI, is recognized as the primary cause of the asymmetric rupture of the outer ablator-

pusher interface in the inward acceleration phase. The amplified perturbations via RTI will

feed through the shell and subsequently seed the development of RTI at the inner pusher-fuel

interface when the pellet shell is decelerated by the high pressure building up inside the

shell [36, 37].
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The macroscale explosive dispersal of granular materials shares many similarities, such

as burster-payload interaction, layered material shells, rapid acceleration under intensive

energy release, and shock presence, with astrophysical supernova explosions and microscale

inertial confinement fusion implosions with an inverse acceleration direction. Through

measuring the growth rates of particle jets, recent Hele-Shaw cell studies [26] on blast-

dispersed flour rings suggest that the formation of fine jets at the outer payload-air interface

can also be seen as a form of RTI. Initiated very early but revealed later, primary jets are

only weakly linked to RTI due to the discrepancy in timescales and growth rates [17, 26].

Therefore, a distinct evolution process should be proposed for the primary and fine jets,

respectively, in which numerical simulations could better reveal the early time multiphase

interactions through visualizing the fluid and solid motions simultaneously, particularly

for the complex coupling between gas and granular motions and the nonlinear force-chain

networks in granular materials.

1.1.4 Modeling issues and challenges

The formation of particle clusters and jets involves a fluid-solid system that covers multiple

temporal and spatial scales. In numerical modeling of a multiphase and multiscale system,

a small-scale such as micro/mesoscale model built on the first principle of physical laws

can be very accurate but not efficient enough for large systems, while a large-scale such as

macroscale model built on continuum mechanics can be efficient but not accurate enough for

resolving small-scale structures. Therefore, multiscale modeling that employs a hierarchy

of reference frames and physical laws to describe the system on different spatial scales and

provide varying levels of details is needed to balance accuracy and efficiency. According

to the possible reference frames for the fluid and solid phases, two widely used approaches

[38] are Eulerian–Eulerian and Eulerian–Lagrangian descriptions.

An Eulerian–Eulerian approach, referred to as macroscale modeling, treats each phase as

a separate flow using a continuum model, in which the constitutive equation for granular flow

can be derived from soil mechanics [39], visco-plastic analogy [40], or kinetic theory [41]

when considering the granular flow as elastic-quasistatic, visco-plastic, and rapid collisional,

respectively, and describes the phase interactions such as drag forces via interphase exchange

source terms [38]. Due to the continuum modeling, granular physics such as particle

motions and collisions are embedded in volume-averaged field quantities, limiting the

ability for resolving grain-scale structures and physics [42]. Meanwhile, an Eulerian–

Lagrangian approach describes the fluid and solid phases using a continuum model and a

discrete model, respectively. As each solid is tracked as a discrete entity, individual granular

behaviors can be modeled in detail.

Depending on whether phase interfaces are resolved in the coupling of fluid-solid

interactions, Eulerian–Lagrangian models can be further categorized into non-resolved
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and resolved models, referred to as semi-mesoscale and mesoscale modeling, respectively.

That is, length and model scales herein characterized by molecules, non-resolved grains,

resolved grains, and continua are referred to as microscale, semi-mesoscale, mesoscale, and

macroscale, respectively. The classification of length scales can be a matter of debate in the

literature. When focusing on the modeling analogy to collisional molecular dynamics but

ignoring the physical disparity between molecules and grains, the grain-scale is referred to

as the microscale in references like [42, 43], in which granular clusters with sizes being

10− 100 times granular diameters are categorized into mesoscale. In a non-resolved model

such as the discrete element model [26, 44, 45], the Eulerian grid is usually several orders

of magnitude larger than solid sizes. While solids in the Lagrangian frame describing the

solid phase preserve a finite volume and interact through spring-based collision rules, solids

in the fluid domain are treated as point sources and sinks of momentum, whose interaction

with the fluid phase requires closure laws similar to those in Eulerian–Eulerian models [38].

In an explosive dispersal, in addition to the multiphase and multiscale properties, the

fluid-solid system experiences a flow regime with dense-to-dilute transitions characterized

by a time-dependent particle volume fraction φ, in which the flow regime changes from a

granular flow (φ > 50%) featuring inelastic multibody contact and collisions to a dense

gas-granule flow (1% ≤ φ ≤ 50%) characterizing strong gas-granule and granule-granule

interactions and further to a dilute gas-granule flow (φ < 1%) outlining aerodynamic forces

and less severe boundary layer interactions among individual particles [8]. In supplying

closure laws for Eulerian–Eulerian and non-resolved Eulerian–Lagrangian models, while

standard models perform relatively well for dilute gas-granule flows with low-pressure

conditions, momentum exchange laws that can well describe flow regimes with dense-to-

dilute transitions and shocked flow conditions still undergoes active development through

experimental correlations [8, 46, 47], numerical simulations [46, 48, 49], or surrogate

models [50].

Adopting a resolved Eulerian–Lagrangian approach can achieve direct simulations that

avoid the necessity of correlated closure laws and automatically activate interphase interac-

tions via boundary conditions at phase interfaces. The challenges are then mainly shifted

to irregular and moving boundaries, mesh generation and regeneration, computational ef-

ficiency and robustness, and particle-particle interactions. Advances in Cartesian-grid

methods such as immersed boundary methods [51], immersed interface methods [52, 53],

ghost fluid methods [54, 55], and embedded boundary methods [56, 57] have greatly sim-

plified the grid generation and regeneration for treating irregular and moving boundaries

using non-body-conformal Cartesian grids [58–62], which enable cost-effective direct sim-

ulations for explosive dispersal problems, provided a method that can robustly handle

irregular, moving, and colliding geometries with shocked flow conditions.

Under a dense setting, particle interactions can strongly influence the stresses in the

fluid-solid mixture [63–65] and generate nonlinear force-chain networks in the granular
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1. Introduction

cloud [66]. With fundamental preconditions like random, binary collision, and sufficient

inter-particle distance, kinetic theory has been extended to describe granular systems with

non-Maxwellian velocity distribution [41]. Nonetheless, multibody collisions are excluded

through assuming being comparably rare and not affecting the statistical properties of the

system. However, the dispersal problem concerned herein contains an initial granular system

with sustained contacts among inherently dissipative grains, in which multibody collisions

are responsible for the transfer of momentum and energy and can no longer be reasonably

excluded, introducing challenges in solving collision detection and response. Multibody

collision in theory remains as an unsolved problem [67]. A few approximation attempts

such as sequential pairwise collision [68] and perfectly inelastic non-contact collision [69]

have been explored in interface-resolved multibody collision modeling. Nonetheless, a

deterministic multibody contact and collision model can better facilitate the investigations

of the particle clustering and jetting problem.

1.2 Motivations and findings

For the purpose of advancing the understanding of particle clustering and jetting dynamics,

particularly the governing instability of primary jets, through capturing mesoscale multi-

phase interactions, this thesis develops a resolved Eulerian–Lagrangian approach to directly

simulate gas-solid flow with shock-shock, shock-particle, and particle-particle interactions,

in which the Eulerian gird describing the fluid phase is at least one order of magnitude less

than particle sizes to resolve phase interfaces, fluid-solid interaction is via enforcing bound-

ary conditions at phase interfaces, and particle-particle interaction is through a deterministic

multibody contact and collision model with parameterized coefficients of restitution and

friction.

The framework is implemented to create a computational solver and then validated

for solving flow with irregular, moving, and colliding granular bodies. Employing the

theory of Gurney velocity [70], a valid statistical dissipative property of the framework in

solving explosively dispersed granular materials is also demonstrated. Combining direct

simulations herein and experimental observations in the literature, an explanation for particle

clustering and jetting instabilities that admits a dual structure and concerns the effects of

shock compaction, interfacial instabilities, inelastic collisions, interstitial fluid, particle

properties, payload morphologies, and burster-payload relations is proposed.

1.3 Novelty and contribution

This thesis concentrates on modeling and solving the coupled and interface-resolved mul-

tiphase interactions in gas-solid systems, with the purpose of advancing the understanding
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1. Introduction

of particle clustering and jetting instabilities in explosively dispersed granular materials

through direct simulations. The main novelty and contribution are summarized as follows:

1. A field function [71].

• Facilitates the solution of complex and dynamic fluid-solid systems on Cartesian

grids.

• Provides single-integer-based multidomain node mapping and efficient node

remapping.

• Enables linear-time collision detection and expedient surface force integration.

2. A collision model [71].

• Adopts exact pairwise collisions with parameterized coefficients of restitution

and friction.

• Achieves deterministic multibody contact and collision response.

3. An immersed boundary method [72].

• Develops a second-order three-step flow reconstruction scheme.

• Enforces the Dirichlet, Neumann, Robin, and Cauchy boundary conditions in a

straightforward and consistent manner.

• Provides efficient, accurate, and robust boundary treatment for arbitrarily irreg-

ular and moving boundaries.

4. A Cartesian, 3D, high-resolution, parallelized, gas-solid flow solver [73].

• Establishes a numerical framework for the direct simulation of gas-solid flows.

• Solves coupled and interface-resolved fluid-fluid, fluid-solid, and solid-solid

interactions.

• Addresses shocked flow conditions, irregular and moving geometries, and multi-

body contact and collisions.

• Unifies 1D, 2D, and 3D computations with the generation of complex geometric

objects via simply positioning components.

5. Advancement in understanding particle clustering and jetting instabilities [74, 75].

• Designs a set of cases that cover different types of stochastic payloads, burster

states, and coefficients of restitution.

• Demonstrates a valid statistical dissipative property in solving explosively dis-

persed granular materials with respect to Gurney velocity.
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• Extends the time range of the velocity scaling law with regard to Gurney energy

in the Gurney theory from the steady-state termination phase to the unsteady

evolution phase.

• Proposes an explanation for particle clustering and jetting instabilities to increase

the understanding of established experimental observations in the literature.

Being a fundamental problem in many engineering applications, the interface-resolved

predictive modeling of gas-solid flows is an active area of research and requires addressing a

series of challenges. Therefore, the development of an accurate, efficient, and robust direct

simulation numerical framework contributes to numerical methods applied to complex gas-

solid flow problems. In addition, the advancement in understanding particle clustering and

jet instabilities can potentially contribute to the development and application of a number

of engineering problems, including heterogeneous explosives.

1.4 Thesis structure

This thesis is structured as the following:

• Chapter 1 first introduces the particle clustering and jetting phenomenon and its

significance. After analyzing the fundamentals and reviewing the existing studies,

the motivations and objectives of this thesis are stated and explained. Meanwhile, the

novelty and contribution of the study are summarized, and an overview of the thesis

structure is provided.

• Chapter 2 describes and justifies the research design and methodology.

• Chapter 3 presents a field function for solving complex and dynamic fluid-solid

systems and a collision model.

• Chapter 4 develops an immersed boundary method for treating arbitrarily irregular

and moving boundaries.

• Chapter 5 investigates particle clustering and jetting instabilities in explosively dis-

persed granular materials.

• Chapter 6 draws final conclusions, discusses the limitations of the current study, and

proposes areas for future research.

• Appendix A provides a detailed reference for the 3D Navier–Stokes equations, the

Jacobian matrices, and their eigendecompositions.

• Appendix B presents some additional code validation of the developed computational

solver.
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Chapter 2

Research Design and Methodology

To study particle cluster and jet formation via direct simulations, this thesis includes two

major scopes: the development of a high-fidelity gas-solid flow solver and the numerical

investigation on particle clustering and jetting instabilities in explosively dispersed granular

materials.

2.1 Solver development

In resolving the multiscale and multiphase interactions in explosively dispersed granular

materials through direct simulation, the principal challenges are associated with fluid-solid

interaction, dynamic phase interface, mesh generation and regeneration, multibody contact

and collision, complex interfacial condition, and computational efficiency and robustness.

Moreover, the presence of high-pressure shock waves further reinforces those challenges.

Therefore, in addition to integrating existing numerical techniques, to obtain a capable

computational solver also requires developing new mathematical models and numerical

methods to bridge the gap between the available tools and remaining problems.

2.1.1 Fluid-solid coupling

A fully coupled fluid-solid interaction algorithm can support the development of a general

solver for all the problem domains but usually involves implicit discretization of governing

equations and solves large matrix systems by iteration, which imposes stringent conditions

on the solution process. In contrast, a partitioned algorithm decouples physical processes in

the time domain. Adopting numerical techniques optimized for each problem domain and

physical process, a partitioned approach has advantages in flexibility and efficiency [76].

A partitioned fluid-solid interaction algorithm with second-order temporal accuracy,

which is obtained via applying Strang splitting [77] to split physical processes, is employed
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2. Research Design and Methodology

to model the coupling between fluid and solid motions:

Un+1
= Ss(

∆t

2
) Sf(
∆t

2
) Sf(
∆t

2
) Ss(
∆t

2
)Un (2.1)

in which Un and Un+1 denote the solution vectors of physical quantities at time tn and

tn+1, respectively; Ss and Sf represent the solution operators of solid dynamics and fluid

dynamics, respectively.

Traditionally, to reduce the computational load resulting from a symmetric splitting, the

group property of the solution operator, S(∆t1) S(∆t2) = S(∆t1 + ∆t2), is applied in Strang

splitting to concatenate consecutive operators of the same type [76, 77]. Consequently,

the algorithmic uniformity is not preserved at the start and end steps of the computation

cycle. By observing that a doubled range of the CFL number can be adopted, the present

ungrouped form preserves algorithmic uniformity while achieving equivalent overall effi-

ciency for temporal integration or higher efficiency when more than two solution operators

are involved.

2.1.2 Governing equations and discretization

2.1.2.1 Fluid dynamics

The motion of fluids is described by the conservative form of the Navier–Stokes equations

in Cartesian coordinates:
∂U

∂t
+

∂Fi

∂xi

=

∂Fv
i

∂xi

+Φ (2.2)

The vectors of conservative variables U , convective fluxes Fi, diffusive fluxes Fv
i
, and

source terms Φ are as follows:

U =
©­­«
ρ

ρVj

ρeT

ª®®¬
, Fi =

©­­«
ρVi

ρViVj + pδi j

(ρeT + p)Vi

ª®®¬
, Fv

i =

©­­«
0

τi j

k ∂T
∂xi
+ τilVl

ª®®¬
, Φ =

©­­«
0

f b
j

f b
l

Vl

ª®®¬
(2.3)

where ρ is the density, V is the velocity, eT = e + V · V/2 is the specific total energy, e is

the specific internal energy, p is the thermodynamic pressure, τ is the viscous stress tensor,

T is the temperature, k is the thermal conductivity, f b represents external body forces such

as gravity, i is a free index, j is an enumerator, l is a dummy index.

In order to simplify numerical discretization while preserving the principal physics of

fluid motion, the current closure of the system is through supplying the Newtonian fluid

relation with the Stokes hypothesis

τi j = µ

(
∂Vi

∂x j

+

∂Vj

∂xi

− 2

3
(∇ · V )δi j

)
(2.4)
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and the perfect gas law

p = ρRT

e = CvT
(2.5)

in which R is the specific gas constant, and Cv is the specific heat capacity at constant

volume.

The use of Navier–Stokes equations for describing fluid motion provides flexibility in the

consideration of viscous effects. When considering viscous flows, the dynamic viscosity,

µ, is non-zero and can be determined by the Sutherland viscosity law

µ =
C1T

3
2

T + C2
(2.6)

where C1 = 1.458 × 10−6 kg · m−1 · s−1 · K−1/2 and C2 = 110.4 K are two constant coeffi-

cients. When omitting flow viscosity, µ = 0 is then adopted to obtain inviscid flows. Since

the primary focus is to solve flow involving irregular, moving, and colliding geometries

under shocked flow conditions, the modeling of turbulence and the resolving of boundary

layers are not specifically concerned in the present study.

The temporal integration is performed via the second-order or third-order strong stability-

preserving (SSP) Runge–Kutta method [78, 79]. For instance, the third-order one can be

described as the following:

U (1)
= LL Un

U (2)
= 3/4Un

+ 1/4LL U (1)

Un+1
= 1/3Un

+ 2/3LL U (2)

LL = (I + ∆t L)

(2.7)

where I is the identity matrix, operator L = Lx +Ly +Lz, Lx , Ly, and Lz represent the

spatial operators of x, y, and z dimension, respectively.

For the system of conservation laws in multidimensional space, the discretization of

spatial operators can be conducted using dimension-by-dimension [78] or dimensional-

splitting [77] approximation. While the former preserves temporal accuracy, the latter has a

much less severe stability constraint. To guarantee discrete mass conservation, conservative

discretization is applied for all the spatial derivatives. Using the x dimension as an example,

the flux derivative at a node i is approximated as

∂F

∂x

����
i

=

1

∆x

[
F̂i+ 1

2
− F̂i− 1

2

]
(2.8)

where F represents either the convective flux vector or the diffusive flux vector, F̂i+1/2 is a

numerical flux at the interface between the discretization interval Ωi = [xi−1/2, xi+1/2] and

Ωi+1 = [xi+1/2, xi+3/2].
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In convective flux discretization, the system of equations is projected onto its charac-

teristic fields to locally decompose the vector system into a set of scalar conservation laws.

Then, a flux splitting method, such as Lax–Friedrichs splitting [80] or Steger–Warming

splitting [81], is conducted on the scalar fluxes to ensure upwinding property

f (u) = f +(u) + f −(u), d f +(u)
du

≥ 0,
d f −(u)

du
≤ 0 (2.9)

where f is a scalar characteristic flux.

Since both the forward flux and backward flux are discretized in conservative form, the

discretization of a scalar flux derivative has the form

∂ f

∂x

����
i

=

1

∆x

[
f̂i+ 1

2
− f̂i− 1

2

]
, f̂i+ 1

2
= f̂ +

i+ 1
2

+ f̂ −
i+ 1

2

, f̂i− 1
2
= f̂ +

i− 1
2

+ f̂ −
i− 1

2

(2.10)

The third-order or fifth-order weighted essentially nonoscillatory (WENO) scheme [82]

is then applied for the reconstruction of numerical fluxes. Since the numerical flux f̂ +
i+1/2

and f̂ −
i−1/2 are symmetric with respect to xi, only the reconstruction of the former is described

herein. The latter can be obtained via replacing all + and − signs in the superscript and

subscript of each variable in the equations by the corresponding opposite signs − and +,

respectively. For the fifth-order WENO scheme, the numerical flux f̂ +
i+1/2 has the following

form:

f̂ +
i+ 1

2

=

N∑
n=0

ω+n q+n ( f +i+n−N, . . . , f +i+n), N = (r − 1) = 2 (2.11)

where
q+0 ( f +i−2, . . . , f +i ) = (2 f +i−2 − 7 f +i−1 + 11 f +i )/6
q+1 ( f +i−1, . . . , f +i+1) = (− f +i−1 + 5 f +i + 2 f +i+1)/6

q+2 ( f +i , . . . , f +i+2) = (2 f +i + 5 f +i+1 − f +i+2)/6

ω+n =
α+n

α+
0
+ · · · + α+

N

, α+n =
Cn

(ε + IS+n )2
, ε = 10−6

C0 =
1

10
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6

10
, C2 =

3
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( f +i−2 − 2 f +i−1 + f +i )2 + 1

4
( f +i−2 − 4 f +i−1 + 3 f +i )2
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13

12
( f +i−1 − 2 f +i + f +i+1)

2
+

1

4
( f +i−1 − f +i+1)

2

IS+2 =
13

12
( f +i − 2 f +i+1 + f +i+2)

2
+

1

4
(3 f +i − 4 f +i+1 + f +i+2)

2

(2.12)

where r is the number of candidate stencils, qn are the r-th order approximations of f̂i+1/2
on the candidate stencils Sn = (xi+n−N, . . . , xi+n), ωn are the actual weights of qn, which

are determined by the smoothness of solution in the candidate stencils Sn, as measured by
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ISn, and Cn are optimal weights to ensure that the convex combination of qn converges to a

(2r − 1)-th order approximation of f̂i+1/2 on the undivided stencil S = (xi−N, . . . , xi+N ) in

smooth regions.

i,j,k

i,j+1,k

i,j,k-1

i,j-1,k

i,j,k+1

i+1,j,k

i+1,j+1,k

i+1,j,k-1

i+1,j-1,k

i+1,j,k+1

i+1/2,j,k

Figure 2.1 A schematic diagram illustrating interfacial diffusive flux reconstruction.

The second-order central difference discretization is employed for diffusive fluxes. A

conservative discretization of the diffusive fluxes involves consecutive differentiation, which

may lead to an even-odd decoupling issue [83, 84]. Therefore, the reconstruction function

should be carefully devised. In this work, the interfacial flux F̂
v
i+1/2 is reconstructed on the

discretized space [i, i+1]×[ j−1, j+1]×[k−1, k+1], as illustrated in Fig. 2.1. Let φ denote

a physical quantity in Fv, in order to avoid even-odd decoupling resulting from applying

consecutive derivative discretization, the following reconstructions can be adopted:

φi+ 1
2 , j,k
=

φi, j,k + φi+1, j,k

2
∂φ

∂x

����
i+ 1

2 , j,k

=

φi+1, j,k − φi, j,k

∆x

∂φ

∂y

����
i+ 1

2 , j,k

=

φi, j+1,k + φi+1, j+1,k − φi, j−1,k − φi+1, j−1,k

4∆y

∂φ

∂z

����
i+ 1

2 , j,k

=

φi, j,k+1 + φi+1, j,k+1 − φi, j,k−1 − φi+1, j,k−1

4∆z

(2.13)

Computation acceleration The conservative discretization of fluxes enables an acceler-

ation technique that can reduce nearly half of the computational work by using the fact that

the same interfacial flux is shared by the two neighboring cells or nodes

F̂ s− 1
2
= F̂(s−1)+ 1

2
(2.14)

where flux F is either a convective flux or a diffusive flux, and s is one of the i, j, k index.

Let Ls denote the spatial operator in the s dimension for a multidimensional problem

with dimension-by-dimension approximation, and let Ss denote the solution operator of the
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subproblem
∂U

∂t
= Ls U

(s) (2.15)

for a multidimensional problem with dimensional-splitting. When computing Ls or Ss, if

the s index is arranged as the innermost loop of the spatial sweep, then only the interfacial

flux F̂ s+1/2 is always required to be computed, while F̂ s−1/2 can be inherited from the

previous node (s − 1) unless the node (s − 1) is a boundary node. If (s − 1) is a boundary

node, then F̂ s−1/2 requires to be computed. When the type of each computational node is

classified in advance, the implementation of this acceleration technique is straightforward,

and the computational overhead of the implementation is one single conditional statement.

2.1.2.2 Solid dynamics

The motion of solids is governed by the equation system comprising the Newton’s second

law of translational motion and the Euler equations of rotational motion:

dU

dt
= Φ, U =

©­­­­«

V

xc

Icω

θ

ª®®®®¬
, Φ =

©­­­­­­«

1
m

∫
∂Ω

n · (−pI + τ) dS + g

V∫
∂Ω

(x − xc) × [n · (−pI + τ)] dS

ω

ª®®®®®®¬
(2.16)

where x is the position vector of spatial points, Ω is the spatial domain occupied by a solid,

xc is the position vector of the solid centroid, θ is the orientation (vector of Euler angles)

of the solid, V and ω are the translational and angular velocities of the solid, respectively,

m is the mass of the solid, Ic is the moment of inertia matrix, n is the unit outward surface

normal vector, p and τ are the pressure and viscous stress tensor field exerted on the solid

surface via fluid, respectively, and g is the body force per unit mass, such as gravitational

acceleration, exerted by external fields.

The time integration of the ordinary differential equation system is performed via a

second-order Runge–Kutta scheme:

k1 = Φ(tn,Un)
k2 = Φ(tn

+ ∆t,Un
+ ∆tk1)

Un+1
= Un

+ ∆t(k1 + k2)/2
(2.17)

2.1.3 Interface description and evolution

Interface description, interface evolution, and interface boundary treatment are three fun-

damental problems for solving flow involving dynamic phase interfaces [85–87]. A variety
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of interface description methods, which largely determine the choice of interface evolution

algorithm, have been successfully implemented in computing multiphase flows. These

methods are frequently categorized into two groups: interface-capturing methods and

interface-tracking methods.

In interface-capturing methods, such as volume of fluid methods [85] and level-set

methods [88], the information of an interface, for instance, its spatial position, is embedded

in and later can be reconstructed from a field function. The field function is advected either

on an Eulerian grid [88, 89] or a Lagrangian grid [90, 91] to evolve moving interfaces.

In interface-tracking methods, such as front-tracking methods [92], an interface is always

explicitly described and evolved by a Lagrangian grid. The application of an Eulerian

level-set method and a Lagrangian front-tracking method for the description of an interface

in a computational domain is illustrated in Fig. 2.2.

Ω

Ω̃

 φ(x,t) > 0 

 φ(x,t) ≤ 0  Γ(t) = {x є Ω: φ(x,t) = 0 } 
  

Eulerian Grid

V(x,t)

(a)

Ω̃

Ω Lagrangian Grid

 Γ(t)   

V(x,t)

(b)

Figure 2.2 Schematic diagrams of interface description methods. (a) Eulerian level-set method. (b)

Lagrangian front-tracking method. [Nomenclature: Ω, a computational domain; Γ, an interface in

the computational domain; Ω̃, the interface enclosed open region; ϕ, a scalar field function.]

In a volume of fluid method, the volume fraction of one material phase in each compu-

tational cell is adopted as the field function and is generally advected on an Eulerian grid

to identify and evolve the phase interface. A geometrical reconstruction using the volume

fraction is employed to rebuild the phase interface. While volume of fluid methods possess

good properties such as volume conservation, exactly locating the interfacial points and

computing interfacial quantities, such as surface normal or surface tension, are generally

considered difficult.

In a level-set method, a node-based smooth scalar function whose zero-contour rep-

resents one phase interface is employed as the field function and is either advected on an

Eulerian grid [88, 89] or a Lagrangian grid [90, 91]. For instance, in a computational

domain Ω, the interface Γ(t) = ∂Ω̃ of an open region Ω̃ ⊂ Ω can be embedded as the zero
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level-set of a signed distance function [93, 94], ϕ(x, t): R3 → R,

Γ(t) = {x ∈ Ω : ϕ(x, t) = 0} (2.18)

where the level-set function ϕ(x, t) has the following properties:

{
ϕ(x, t) > 0, x ∈ Ω̃
ϕ(x, t) ≤ 0, x < Ω̃

(2.19)

Suppose x(t) is a point trajectory on Γ(t) evolving with V = Ûx(t), then,

ϕ(x(t), t) = 0 (2.20)

Differentiate with respect to t [95], yields,

∂ϕ

∂t
+ V · ∇ϕ = 0, t > 0; ϕ(x, 0) = ϕ0(x) (2.21)

A level-set method provides convenient normal calculation and easy treatment for ge-

ometry with topological changes. However, accurate computation of interfacial physics is

not straightforward, and mass conservation is generally not preserved.

A front-tracking method explicitly tracks interfaces by individual Lagrangian grids such

as triangulated meshes and provides minimum numerical diffusion [92, 96]. However,

as interfaces are tracked by connected marker points, restructuring the deforming front

for resolution maintenance or accounting for topological changes will inevitably modify

the connectivity of maker points. The modification of topological connectivity involves

complex operations and is the primary disadvantage of a front-tracking method [92].

In the currently developed flow solver that mainly concerns non-deformable solids,

interface description and evolution are conducted using the front-tracking method [92].

Therefore, interfaces are explicitly tracked via individual Lagrangian grids such as triangu-

lated facets, and the evolution of interfaces is governed by the laws of solid motion.

2.1.4 Multidomain node mapping and multibody collision

Complex and dynamic fluid-solid systems arise in many applications such as fluidized bed

[38, 97], blood flow [51], particle-added explosives [8, 98], aerodynamic flow [99–101],

and computer graphics [68, 102]. These systems usually involve interactions that comprise

the coupled motions of solid and fluid flow. When a predictive modeling approach that

resolves the fluid-solid interfaces is employed, in addition to addressing the coupled fluid-

solid and solid-solid interactions, one inherent challenge can be the numerical discretization

complicated by a set of irregular and moving geometries.
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The development of Cartesian-grid methods [51–54, 56, 103] has provided a feasible

way to enforce boundary conditions at phase interfaces that are not conforming to the com-

putational grid, which can effectively simplify the grid generation for irregular geometries

and grid regeneration for moving geometries [60, 104]. In addition, a solid object immersed

in the computational grid can be described by the STereoLithography (STL) representation,

which approximates the object as a closed triangulated surface and is a standard format for

rapid prototyping and computer-aided design (CAD) systems. When equipped with a suit-

able Cartesian grid-based numerical framework, the STL represented solid can be directly

inputted into the numerical solver without the need of CAD/CFD geometric translations to

effectively enable automated mesh generation and numerical solution [105–107].

In applications involving multiple independent and irregular solid bodies, as each im-

mersed body occupies a corresponding spatial region, the computational domain is there-

fore segmented into a set of subdomains. The subsequent implementation of numerical

discretization and boundary conditions requires a node map that correctly classifies the type

and region of computational nodes and identifies domain boundaries [98, 106, 108]. In

addition, when the solids move in space, the requirement for node remapping also arises

during the solution process. For problems without the need of differentiating a solid domain

from the other solid domains, a binary node map that distinguishes fluid and solid domains

through flagging the nodes inside any solid as 0 and nodes outside the solids as 1, or vice

versa, has been popularly utilized to aid the enforcement of boundary conditions at solid

boundaries [61, 106, 108, 109]. When further considering interactions such as collisions

among solids or different material properties and/or boundary conditions for some solid

domains, uniquely tracking and identifying each solid domain are then necessary, for which

a possible solution can be employing an individual binary node map for each solid.

In computing a fluid-solid system with dense solids, collisions among solids can exert

a strong influence on the stresses in the fluid-solid mixture [63]. Therefore, collision

modeling can be an essential element. Models based on experimental correlations [63, 110,

111] often have limited description for flow with dense-to-dilute transitions. Short-range

repulsive-force collisions [97, 112] usually consider the position of solids and omit size and

shape effects. An interface-resolved collision model can provide a more comprehensive

description of collision dynamics and thus a wider applicability. Nonetheless, additional

challenges from collision detection and response are introduced and need to be addressed.

For each object in a solid system, collision detection is to determine the collision status

of the current solid with regard to other solids, which can include colliding or non-colliding

state, the list of colliding solids, and the line of impact for each colliding pair. Collision

response is to solve the post-collision velocity under a detected collision status. In a system

of moving solids, simultaneous multibody collisions are much less common than binary

collisions. Nonetheless, when the system contains dense solids with spherical geometries

or with sustained contacts among solids to transmit impulses, the presence of multibody
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collisions can increase greatly. Remaining as an unsolved problem [67], multibody collision

is often approximated by sequential pairwise collisions [41, 68, 113]. Due to sequential

collision, a temporal priority can be introduced into pairwise collisions in the process of

choosing which pair collides first, and the collision process may no longer be deterministic.

In collision detection, when the surfaces of solids are only explicitly represented by

triangulated meshes, checking every solid against every other solid can be inefficient if

the number of solids is large and the geometry is complex. Considerable research has

been devoted to optimizing the problem with strategies focusing on hierarchical object

representation, orientation-based pruning criteria, spatial partitioning schemes, and distance

computation algorithms [68, 114–116]. A multilevel algorithm that integrates temporal

coherence exploitation, pairwise pruning, and exact pairwise collision-detection techniques

can effectively reduce the collision-detection operations for a dense solid system with convex

shapes but can still be expensive for non-convex objects [115, 117]. Employing implicit

surfaces defined by field functions such as signed distance functions has shown success in

collision-related modeling [61, 68, 94]. While triangulated surface representation is used

for normal calculation and the determination of the line of impact, a signed distance function

per solid object can map the point-inclusion state for each computational node with regard

to the solid object. As a result, using the layer of nodes that is nearest to the zero isocontour

of a signed distance function as sample points, the collision status of a solid object can be

determined by testing the values of the sample points with regard to the signed distance

functions of other solids [68]. Since the surface resolution of implicitly defined surfaces is

proportional to the grid resolution for field functions, high accuracy can be obtained when

a well-resolved grid is employed.

Considering that using a binary node-mapping function for a multidomain problem

usually requires one field function per object and can consume memory that is proportional

to the number of involved solids, the development of a field function that can compress the

multidomain node mapping information into a single field to reduce memory requirement

can be useful. To facilitate the solution of complex and dynamic fluid-solid systems on

Cartesian grids, an integer-type field function that solves multidomain node mapping is

proposed in Chapter 3. For a Cartesian-grid-discretized computational domain segmented

by a set of solid bodies, compared with a binary node-mapping function that produces node

mapping information using one field function per subdomain, the proposed field function

can uniquely track all the subdomains with multiple layers of interfacial nodes using only

one integer field in total. As a result, the present field function enables single-integer-based

multidomain node mapping, efficient node remapping, linear-time collision detection, and

expedient surface force integration.
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2.1.5 Interface boundary treatment

Fluid-solid interaction involving complex geometric settings is an active field of research

and development, owing to the ubiquitous presence of fluid-solid interaction phenomena

and the great difficulty in tackling those problems via mathematical modeling. To solve

flow involving irregular and moving geometries, one of the main challenges is related to

enforcing boundary conditions.

In recent years, Cartesian grid-based boundary treatment methods such as embedded

boundary methods [56, 57], ghost fluid methods [54, 55], immersed interface methods

[52, 53], and immersed boundary methods [51] have gained increasing popularity in in-

terface boundary treatment [61, 62, 118–122]. As an attractive alternative to the arbitrary

Lagrangian–Eulerian method [123], in which a body-conformal grid following the move-

ment of phase interfaces is employed, Cartesian grid-based methods are able to solve prob-

lems with complex interfaces on a fixed Cartesian grid, as illustrated in Fig. 2.3. Benefiting

from the use of a Cartesian gird, grid generation is greatly simplified, and the per-grid-point

computation exempts from operations associated with grid topology or transformations.

Since the main data structures for numerical computation are simple arrays, the memory

requirement is largely reduced, and high-order spatial discretization schemes are easy to

implement [60].

Ω
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Ω
2

Immersed Boundary

∂Ω
2

Cartesian Grid

Lagrangian Grid

Figure 2.3 A schematic diagram illustrating an immersed boundary in a Cartesian grid. [Nomencla-

ture: Ω1, domain of phase 1; Ω2, domain of phase 2; ∂Ω2, the boundary of phase 2.]

Extensions of the immersed boundary method, which was originally introduced by

Peskin [51], have been continuously developed to improve the numerical properties of the

method, particularly in aspects related to interface resolution, stability constraints, mass

conservation, computational efficiency and robustness [60, 104, 124].

To simplify numerical discretization and relax stability constraints, Mohd-Yusof [125]

and Fadlun et al. [58] proposed the direct forcing immersed boundary method, in which

24



2. Research Design and Methodology

boundary forces are implicitly imposed via flow reconstruction. Balaras [126] later im-

proved the reconstruction procedure of the direct forcing approach and applied to large-eddy

simulations. Integrating ideas from the ghost fluid method [54, 55] and the direct forcing

method [58], Tseng and Ferziger [59] systematically developed a polynomial reconstruction-

based ghost-cell immersed boundary method to further increase implementation flexibility

while maintaining sharp interfaces. Kapahi et al. [61] proposed a least squares interpolation

approach and applied to solving impact problems. Employing the adaptive mesh refinement

technique for resolving boundary layers, Brehm et al. [84] developed a locally stabilized

immersed boundary method and applied to simulating the laminar to turbulent transition

process on no-slip walls.

For a direct forcing immersed boundary method, its robustness highly depends on

the numerical stability and stencil adaption capability of the interpolation method used

[59, 61, 127]. Polynomial reconstruction-based methods involve constructing linear systems

on neighboring stencils of the interpolated node. When the stencil nodes are not well

distributed in space, the resulting linear systems may suffer from numerical singularities

[59, 127]. Additionally, a fixed minimum number of stencil nodes is needed to avoid

under-determined linear systems. Therefore, special treatments are required when strongly

concave or convex interfaces exist [61, 127]. To enhance numerical stability and stencil

adaption capability, the idea of using inverse distance weighting interpolation was firstly

introduced by Tseng and Ferziger [59], and a hybrid Taylor series expansion / inverse

distance weighting approach was later developed by Gao et al. [127] for flow with no-slip

walls.

In addition to numerical stability and stencil adaption capability, being able to enforce

different types of boundary conditions in a straightforward and consistent manner is another

vital factor in obtaining an efficient, accurate, and robust immersed boundary method,

since a variety of boundary conditions are required to be repeatedly enforced on numerical

boundaries. For instance, in solving Navier–Stokes equations, constant temperature at a

wall and velocity at a no-slip wall have Dirichlet boundary conditions, pressure at a wall

and temperature at an adiabatic wall have Neumann boundary conditions, and velocity at a

slip wall has a type of Cauchy boundary conditions.

Excluding the Dirichlet boundary conditions in which boundary values are determined

and known, the enforcement of other types of boundary conditions, particularly the Cauchy

type of boundary conditions, for immersed boundaries demands considerable efforts [121,

122, 128]. Kempe et al. [121] devised a numerical implementation of the slip-wall boundary

conditions in the context of immersed boundary methods. However, the realization is not

straightforward due to its complexity [121]. In addition, most direct forcing immersed

boundary methods require constructing and solving a designated linear system for each

type of boundary conditions. Therefore, to enforce a variety of boundary conditions in a

straightforward and consistent manner is beneficial but can be challenging.
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Employing the direct forcing approach, Chapter 4 develops an immersed boundary

method via devising a second-order three-step flow reconstruction scheme. The developed

method can enforce the Dirichlet, Neumann, Robin, and Cauchy boundary conditions in a

straightforward and consistent manner, and is able to provide efficient, accurate, and robust

boundary treatment for solving flow with arbitrarily irregular and moving geometries on

Cartesian grids.

2.2 Clustering and jetting instability investigation

After being validated for solving gas-solid flow with irregular, moving, and colliding non-

deformable granular bodies, the developed interface-resolved direct simulation framework is

then applied to the investigation of particle clustering and jetting instabilities in explosively

dispersed granular materials. In order to closely resemble realistic packing of payloads,

the numerical investigation considers granular payloads with stochastic morphologies. A

set of cases that cover a variety of randomly generated stochastic payloads, burster states,

and coefficients of restitution for pairwise collisions are designed, solved, and analyzed in

Chapter 5 to help understand the particle clustering and jetting dynamics in explosively

dispersed granular materials.
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Chapter 3

A Field Function for Solving Complex

and Dynamic Fluid-Solid Systems

3.1 Introduction

Modeling complex and dynamic fluid-solid systems requires the simulation of coupled

multiphase interactions. In this chapter, a simple field function is presented for facilitating

the solution of fluid-solid systems on Cartesian grids with interface-resolved fluid-solid and

solid-solid interactions. For a Cartesian-grid-discretized computational domain segmented

by a set of solid bodies, the proposed field function can uniquely track all the subdomains

with multiple layers of interfacial nodes using only one integer field in total. As a result,

the present field function enables single-integer-based multidomain node mapping, efficient

node remapping, linear-time collision detection, and expedient surface force integration.

Implementation algorithms for the field function and its associated functionalities are pre-

sented. Equipped with a deterministic multibody collision model, numerical experiments

involving complex and dynamic fluid-solid systems solved via immersed boundary treat-

ments are conducted to validate and demonstrate the applicability of the proposed field

function.

3.2 Method development

3.2.1 Field function description

As illustrated in Fig. 3.1, for a set of solids represented by triangulated polyhedrons {Ωp :

p = 1, . . . , P} and distributed in a spatial domain Ω, an additional subdomain Ω0 can be

introduced as

Ω0 = {x ∈ Ω : x < ∪P
p=1Ωp} (3.1)
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Figure 3.1 A schematic diagram illustrating a set of polyhedron domains distributed in a spatial

domain discretized by a Cartesian grid.

When a Cartesian grid I × J × K is used to discretize the spatial domain Ω, it is

necessary to build a node map for defining the spatial relation between computational nodes

and the individual polyhedral subdomains. In this study, a two-component integer-type field

function is developed to classify each node with regard to Ωm and also to identify R layers

of interfacial nodes for each Ωm, m = 0, . . . , P:

Φ = {(φ, ϕ) : φ ∈ {0, . . . , P}, ϕ ∈ {0, . . . , R}} (3.2)

in which φ is the domain identifier and is determined by the point inclusion state:

φi, j,k = m, if xi, j,k ∈ Ωm (3.3)

and ϕ is the interfacial layer identifier and is determined by the existence of a heterogeneous

node (i′, j′, k′), that is, a node with a different φ value, in the range L(r) surrounding the

processing node (i, j, k):

ϕi, j,k =

{
min {r}, if ∃ φi′, j ′,k ′ , φi, j,k in range L(r)

0, if r > R
(3.4)

here xi, j,k is the position vector of the node (i, j, k), and R represents the maximum layers

of interfacial nodes that needs to be identified. The range L(r) is the size of numerical

stencils used for the spatial discretization of the governing equations at the node (i, j, k).
Therefore, the range L(r) needs to be adapted according to the involved differential operators

and spatial schemes. For example, the discretization of non-mixed and mixed derivatives

requires L(r) to be the line-type stencils in Eq. (3.5) and the plane-type stencils in Eq. (3.6),
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respectively. Note that the determination of the last three criteria in Eq. (3.6) is to maximize

the overlap between the first three criteria and the last three ones.




|i′ − i | = r, | j′ − j | = 0, |k′ − k | = 0 or

|i′ − i | = 0, | j′ − j | = r, |k′ − k | = 0 or

|i′ − i | = 0, | j′ − j | = 0, |k′ − k | = r

(3.5)




|i′ − i | = r, | j′ − j | = 0, |k′ − k | = 0 or

|i′ − i | = 0, | j′ − j | = r, |k′ − k | = 0 or

|i′ − i | = 0, | j′ − j | = 0, |k′ − k | = r or

|i′ − i | = r − 1, | j′ − j | = r − 1, |k′ − k | = 0 or

|i′ − i | = r − 1, | j′ − j | = 0, |k′ − k | = r − 1 or

|i′ − i | = 0, | j′ − j | = r − 1, |k′ − k | = r − 1

(3.6)

3.2.2 Single-integer-based multidomain node mapping

The field functionΦ(φ, ϕ) can produce a complete node map for the numerical discretization

of complex fluid-solid systems. As shown in Fig. 3.2, for each node (i, j, k), φi, j,k and ϕi, j,k

can provide the subdomain and interfacial state, respectively.

In general, when Ωm is a solution domain, two approaches are available to compute the

solutions in Ωm. 1) a non-ghost-cell approach, in which Φi, j,k(φ = m, ϕ = 0) represents a

normal solution node, and Φi, j,k(φ = m, ϕ > 0) represents a node locating at the numerical

boundary of Ωm. 2) a ghost-cell approach, in which Φi, j,k(φ = m, ϕ ≥ 0) represents a

normal solution node, and Φi, j,k(φ , m, ϕ > 0) with a node Φi′, j ′,k ′(φ = m, ϕ ≥ 0) existing

in the range L(r) of the node (i, j, k) represents a node locating at the numerical boundary

of Ωm.

When the space occupied by Ωm changes in time, interfacial nodes of another domain

Ωn can change their corresponding domain and become interfacial nodes of Ωm. In a

non-ghost-cell approach, the newly joined interfacial nodes ofΩm always become boundary

nodes, whose values will be constructed by boundary treatment. However, in a ghost-cell

approach, the newly joined interfacial nodes of Ωm directly become normal solution nodes

of the solution domain Ωm. Therefore, a special treatment, such as a reconstruction for the

values of the newly joined nodes from the values of the original normal solution nodes of

Ωm is required to deal with these newly joined nodes.

For a computational domain segmented by a set of solid bodies, the proposed field

function Φ(φ, ϕ) uniquely identifies all the subdomains with multiple layers of interfacial

nodes. Therefore, it is straightforward to apply designated governing equations, constitutive

models, numerical schemes, and boundary conditions for each subdomain. In the practical
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implementation, the two-component Φ(φ, ϕ) can be mapped onto a single scalar Φ =

φ+ϕ∗(P+1), from which individual components can be extracted through ϕ = Φmod (P+1)
and φ = Φ− ϕ ∗ (P+1), respectively. As an integer-type field function that can be stored on

a single grid, the proposed field function herein enables single-integer-based multidomain

node mapping and consumes memory that is independent of the number of represented

objects. For instance, assume that the number of nodes for defining a field function is M

and the number of represented objects is P, the estimated memory consumption for using the

proposed field function is then about 1/P of that for using a binary node-mapping function.

This low-memory requirement can be particularly useful for applications involving a large

set of solid bodies, such as in solving fluid-solid systems with thousands of colliding

particles.
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Figure 3.2 A schematic diagram illustrating the field functionΦ(φ, ϕ) for multidomain node mapping.

The value of φ is represented by shapes: ◦ = 0; △ = 1; ⋆ = p; � = P. The value of ϕ is represented

by colors: • = 0; • = 1. R = 1 is adopted here for clarification.

3.2.3 Efficient node remapping

During the solution process, when the positions of polyhedrons keep changing, the re-

quirement for node remapping arises. As illustrated in Fig. 3.3, the field function Φ(φ, ϕ)
enables efficient node remapping: From time tn to tn+1, suppose the domain occupied byΩp

changing fromΩn
p toΩn+1

p . When the computational time step size is restricted by a stability

condition such as the Courant–Friedrichs–Lewy (CFL) condition [129], the boundary ofΩp

will correspondingly have restricted travelling distance. If the stability condition restricts

the value of travelling distance to no more than one grid size, and the maximum number

of identified interfacial layers has R ≥ 2, it is safe to assume that a node (i, j, k) with

Φi, j,k(φ = p, ϕ = 0) in Ωn
p will remain in Ωn+1

p , and then only the interfacial nodes need to
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be reset. As a result of this temporal coherence, nodes with Φi, j,k(φ = p, ϕ = 0) can be

exempted from future point-inclusion tests. As these non-interfacial nodes constitute the

major fraction of the computational nodes in a practical grid, this exemption from the expen-

sive point-inclusion test can significantly reduce the costs of node remapping to obtain an

acceleration rate inversely proportional to the surface-to-volume ratio of polyhedrons. An

efficient node remapping algorithm adopting the described temporal coherence is proposed

in the present study as the following:
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Figure 3.3 A schematic diagram illustrating the field functionΦ(φ, ϕ) for efficient node remapping.

The value of φ is represented by shapes: ◦ = 0; ⋆ = p. The value of ϕ is represented by colors:

• = 0; • = 1; • = 2. R = 2 is adopted, and the interfacial nodes ofΩ0 are not shown for clarification.

1. Initialization. Sweep each node (i, j, k) in I × J × K: if ϕi, j,k > 0, set Φi, j,k(φ, ϕ) =
(0, 0).

2. Compute the domain identifier φ. Sweep each polyhedronΩp in {Ωp : p = 1, . . . , P}:

(a) Find the bounding box Bp = [Imin, Imax] × [Jmin, Jmax] × [Kmin,Kmax].
(b) Sweep each node (i, j, k) in Bp: if φi, j,k = 0, do point-in-polyhedron test for the

node (i, j, k) over Ωp to determine the value of φi, j,k using Eq. (3.3).

3. Compute the interfacial layer identifier ϕ. Sweep each node (i, j, k) in I × J × K:

determine the value of ϕi, j,k using Eq. (3.4).

In the described algorithm, the point-in-polyhedron test for the node (i, j, k) over Ωp is

a point-inclusion test with regard to a single polyhedron. A variety of established methods,

such as the ray-crossing methods [130], angular methods [131], winding number methods

[132], and signed distance methods [94], are available. The angle weighted pseudonormal

signed distance computation method [93] is employed herein for a balance of efficiency and

31



3. A Field Function for Solving Complex and Dynamic Fluid-Solid Systems

robustness. Meanwhile, it finds the closest point, the distance to surface, and the surface

normal for a computational node with regard to the solid geometry, which is essential for

implementing a Cartesian grid-based boundary treatment method.

The proposed algorithm herein effectively solves the node classification and boundary

identification issues simultaneously for a Cartesian grid segmented by a set of polyhedrons

in space, which involves a set of points together with a set of polyhedrons and represents a

generalized point-in-polyhedron problem. In addition, sinceΦ(φ, ϕ) = (0, 0) is true initially,

the presented algorithm successfully unifies the procedures of the initial multidomain node

mapping and the subsequent node remapping for moving objects. This unification can

simplify the code structure and reduce the complexity of implementation.

3.2.4 Linear-time collision detection

As captured in Fig. 3.4, employing the field function Φ(φ, ϕ), polyhedrons {Ωn} colliding

with Ωp can be detected efficiently via sweeping through nodes (i, j, k) with Φi, j,k(φ =
p, ϕ = 1) in the bounding box of Ωp to detect nodes (i′, j′, k′) with Φi′, j ′,k ′(φ , p, ϕ = 1) in

the range |i − i′| ≤ 1, | j − j′| ≤ 1, and |k − k′| ≤ 1.
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Figure 3.4 A schematic diagram illustrating the field function Φ(φ, ϕ) for collision detection. The

value of φ is represented by shapes: ◦ = 0; △ = 1; ⋆ = n; � = N; ⋄ = p. The value of ϕ is

represented by colors: • = 0; • = 1. R = 1 is adopted, and the interfacial nodes ofΩ0 are not shown

here for clarification.

Comparing to explicit surfaces such as triangulated meshes, implicit surfaces, such

as the binary node-mapping functions and the proposed integer field function herein, for

collision detection have algorithm efficiency and complexity that are much less sensitive to

geometric complexity. This is because collision detection for implicit surfaces uses point-

wise data comparison rather than facet-wise distance calculation as the basic operator and

is independent of the number of facets and the level of concavity.

32



3. A Field Function for Solving Complex and Dynamic Fluid-Solid Systems

On a given Cartesian grid, let Scd represent the collision detection operator for an in-

terfacial node (i, j, k) in a polyhedron Ωp. Scd based on a binary node mapping involves

fetching and comparing of about P floating-point or integer data scattered in P field func-

tions, while Scd based on Φ requires fetching and comparing of about 2 integer data per

spatial dimension locally located on one Cartesian grid. Therefore, the algorithm complex-

ity of collision detection for P polyhedrons can be O(P2) for using a binary node mapping

but only O(P) for using the proposed field function Φ herein.

During Ωp colliding with Ωn, it is possible that several geometric elements, such as

vertices, edges, and faces, of Ωp and Ωn can be in contact simultaneously. In addition, one

element of Ωp could come into contact with a few elements of Ωn at the same time. This

multicontact issue imposes challenges in finding the line of impact for collision modeling.

Approximating the line of impact via the proposed field function Φ(φ, ϕ) can then

provide an alternative perspective to the approximation via explicit surfaces defined by

triangulated meshes. Suppose C nodes (ic, jc, kc), c = 1, . . . ,C, inΩp satisfyingΦic, jc,kc (φ =
p, ϕ = 1), and each (ic, jc, kc) comes with D neighboring nodes (i′

d
, j′

d
, k′

d
), d = 1, . . . ,D,

such thatΦi′
d
, j ′
d
,k ′

d
(φ = n, ϕ = 1), the suggested approximation of the line of impact between

Ωp and Ωn is defined as

epn =

∑C
c=1

∑D
d=1[(i′d − ic)e1 + ( j′

d
− jc)e2 + (k′d − kc)e3]

|∑C
c=1

∑D
d=1[(i′d − ic)e1 + ( j′

d
− jc)e2 + (k′d − kc)e3]|

(3.7)

where e1, e2, e3 are the unit vectors in the x, y, and z directions, respectively. This

approximation of the line of impact via the field function can simplify the multicontact

problem with adequate accuracy, as to be demonstrated in the numerical experiments later.

3.2.5 Deterministic collision response

Assume N polyhedrons {Ωn}, n = 1, . . . , N , colliding with Ωp simultaneously, the pre- and

post-collision velocity of Ωp as V p and V ′
p, respectively, and the pre-collision velocity of

Ωn as V n. A collision model that approximates multibody collision without introducing

temporal priority and also extends the applicability of the model in [73] to a wider range of

multibody collision scenarios is employed herein:

1. Conduct the n-th pairwise collision (Ωp,Ωn) with the pre-collision velocity (V p,V n)
to solve the corresponding post-collision velocity V ′

p,n and the velocity change ∆V ′
p,n

of Ωp:

∆V ′
p,n = V ′

p,n−V p = − mn

mp + mn

(1+CR)(V pn ·epn)epn−Cf[V pn−(V pn ·epn)epn] (3.8)

in which V pn = (V p −V n), CR is the coefficient of restitution in the normal direction

(CR = 0, 0 < CR < 1, and CR = 1 corresponds to perfectly inelastic collision,
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partially inelastic collision, and elastic collision, respectively), Cf represents the

effect of sliding friction, mp and mn are the mass of Ωp and Ωn, respectively.

2. Next, approximate the post-collision velocity ofΩp under the multibody collision via

a vector summation of the pre-collision velocity and velocity changes:

V ′
p = V p +

N∑
n=1

∆V ′
p,n (3.9)

3. Apply the above procedures to each Ωp, p = 1, . . . , P, in the solid system to obtain a

post-collision velocity V ′
p after multibody collision.

4. Update the velocity state of each Ωp through replacing the pre-collision velocity V p

by the post-collision velocity V ′
p.

Avoiding any temporal priority in each polyhedron and each collision, the proposed

multibody collision algorithm based on exact pairwise collision is deterministic and can be

parallelized.

3.2.6 Expedient surface force integration

In the interface-resolved modeling of fluid-solid interactions, surface force integration is an

essential part. The proposed field functionΦ(φ, ϕ) can aid the surface force integration for

irregular solids immersed in a Cartesian grid.

Employing the proposed field function and its implementation algorithm, the computed

three inner interfacial layers of an irregular solid immersed in a Cartesian grid are shown

in Fig. 3.5a. It can be observed that the ϕ = 1 layer conforms with the solid boundary

very closely, in which the distance discrepancy reduces with mesh refinement and is in the

interval [0,∆s), where ∆s = max(∆x,∆y,∆z). Therefore, for a non-ghost-cell approach,

the integration of surface forces can be conducted on the ϕ = 2 layer in the fluid domain,

of which the values of flow variables are known and the distance discrepancy with solid

boundary is in the interval [∆s, 2∆s). Meanwhile, for a ghost-cell approach, the integration

of surface forces can be properly conducted on the corresponding point layer formed by the

image points of the ϕ = 2 nodes of the solid.

Here, the surface force integration in the ghost-cell approach is discussed and applied

in this study, as the method can be easily transformed for a non-ghost-cell approach, whose

surface force integration is more straightforward. By exploring the relation between the

ghost node G, the boundary point O, and the image point I, the surface force integration in

a ghost-cell approach can be simplified as discussed below.
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Figure 3.5 Diagrams of applying the field functionΦ(φ, ϕ) for surface force integration over immersed

boundaries. (a) Computational results showing the interfacial layer identifier ϕ for an irregular solid

immersed in a Cartesian grid. The value of ϕ is represented by colors: • = 0; • = 1; • = 2; • = 3.

(b) A schematic diagram illustrating wall shear stress calculation. [Nomenclature: G, ghost node;

O, boundary point; I, image point; Ω1, fluid domain; Ω2, solid domain; IB, immersed boundary.]

Wall pressure Pressure at the wall can generally be approximated via the zero normal

gradient assumption
∂p

∂n

����
O

= 0 (3.10)

Therefore,

pO = pI = pG (3.11)

Thus, the pressure component in the surface stress vector is

− pGn (3.12)

Wall shear stress As illustrated in Fig. 3.5b, suppose a natural coordinate system, η − ξ,
is placed at the boundary point O and is located in the plane defined by the normal vector

(n×V IO), whereV IO = V I −VO is the relative velocity of the image point I to the boundary

point O. Then, the wall shear stress is defined as

τw ≡ τ(η = 0) = µ
∂V

ξ

IO

∂η

�����
η=0

(3.13)

A second-order central differencing approximation gives

τw = µ
V
ξ

IO
− V

ξ

GO

2| |x I − xO | |
(3.14)
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By using V IO = −VGO, | |x I − xO | | = | |xG − xO | |, and V
ξ

GO
= VGO − (VGO · n)n, it gives

τw = −µVGO − (VGO · n)n
| |xG − xO | |

(3.15)

Hence, the surface stress vector at the boundary point O is obtained as

T
(n)
O
= −pGn + τw = −pGn − µ

VGO − (VGO · n)n
| |xG − xO | |

(3.16)

By employing the derived relations, the surface force integration for irregular solids

can be directly computed and expressed in the global Eulerian coordinate system without

involving coordinate transformation. In addition, both the wall pressure and the wall

shear stress are explicitly computed at the ghost node G, which is a computational node

with known flow values. As a result, the proposed surface force integration method is

straightforward to implement.

3.3 Numerical experiments

3.3.1 A wind tunnel test constructed via field function

A numerical wind tunnel test is constructed to illustrate the proposed field function for

complex multidomain node mapping. As shown in Fig. 3.6a, 8 triangulated polyhedrons

{Ωp : p = 1, . . . , 8} and a spatial domain Ω are used. Ω1 is a cone with an opening

angle θ1 = 30◦ and height h1 = 0.5 m. Ω2 is a cylinder with length l2 = h1 and radius

r2 = h1 tan (θ1/2). Ω3−6 are four irregular polyhedrons with an identical geometry, of

which the thickness is w3 = 0.02 m and the lengths of the other five edges counting from

the shortest one clockwise are 0.01 m, 0.1
√

2 m, 0.1 m, 0.11 m, and 0.2 m, respectively.

Ω7 is a sphere of radius r7 = r2. Ω8 is a polyhedron whose outer profile is a box of size

l8×h8×w8 = 2.5 m×0.6 m×0.6 m and inner profile is a cylindrical cavity with length l8 and

radius r8 = 0.25 m. The spatial domainΩ is a box of size l×h×w = 2.0 m×0.55 m×0.55 m.

In order to construct the wind tunnel test shown in Fig. 3.6b, the central axes of Ω1, Ω2,

Ω8, and Ω are all positioned along the x-axis. The apex of Ω1 is at O = (0, 0, 0); the centers

of Ω2, Ω8, and Ω are located at (h1 + l2/2, 0, 0). Ω3−6 are shifted to align with the rear end

of Ω2 with the shortest edge being completely immersed into Ω2, and the center of Ω7 is at

(h1 + l2, 0, 0) so that half of Ω7 is immersed into Ω2. In addition, the spatial domain Ω is

discretized by Cartesian grids.

The proposed field function Φ(φ, ϕ) is then applied to building a node map for the

numerical discretization of the assembled domain in Fig. 3.6b. As shown in Fig. 3.6c

36



3. A Field Function for Solving Complex and Dynamic Fluid-Solid Systems

(a) (b)

(c) (d)

(e) (f)

Figure 3.6 The construction of a numerical wind tunnel test via the field function Φ(φ, ϕ). (a)

The employed polyhedrons {Ωp : p = 1, . . . , 8} and spatial domain Ω. (b) The constructed wind

tunnel test. (c) The computational nodes with Φi, j,k(φ = 0, ϕ). (d) The computational nodes with

Φi, j,k(8 ≥ φ ≥ 1, ϕ). (e) A slice plane capturing the layers of interfacial nodes. (f) A slice plane

capturing the layers of ghost nodes.

(a) t = 0.02 s (b) t = 0.03 s (c) t = 0.04 s

Figure 3.7 The time evolution of the wind tunnel test illustrated by the volume rendering of the

numerical Schlieren field solved on the grid I3 × J3 × K3.
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(a) (b) (c)

Figure 3.8 The predicted conical shock angles on three different grids at t = 0.04 s. (a) I1 × J1 × K1.

(b) I2 × J2 × K2. (c) I3 × J3 × K3. Lines denoted by square marks represent the analytical solutions.

for nodes in the solution domain Ω0 and in Fig. 3.6d for nodes in Ωp, p = 1, . . . , 8, the

field function Φ(φ, ϕ) can uniquely track all the subdomains. As illustrated via the slice

plane in Fig. 3.6e, the field function can also resolve multiple interfacial layers for each

subdomain Ωp, p = 0, . . . , 8. In the multidomain node mapping algorithm described in

Section 3.2.3, nodes inside the overlapped regions between two polyhedrons will be mapped

into the polyhedron that is indexed earlier for node mapping and then be exempted from

the point-in-polyhedron tests for the one that is indexed later. For instance, the results in

Fig. 3.6d present the case that Ω2 is indexed earlier than Ω3−6 but later than Ω7 during node

mapping. Therefore, the field function Φ(φ, ϕ) enables an automatic boolean treatment

for geometric intersections. Due to that Ω3−6 are relatively very thin objects, all nodes

inside them become interfacial nodes. Since Ω0 is the desired solution domain, numerical

boundary treatment can be conducted at the interfacial nodes of Ω0 shown in Fig. 3.6e for

a non-ghost-cell approach or at the ghost nodes of Ω0 shown in Fig. 3.6f for a ghost-cell

approach. Only related to the outer profile of the assembled object, both the interfacial

nodes and ghost nodes of Ω0 will not be affected by the index sequence of polyhedrons in

node mapping.

Three Cartesian grids I1 × J1 × K1 = 350 × 96 × 96, I2 × J2 × K2 = 525 × 145 × 145,

and I3 × J3 × K3 = 700 × 192 × 192 are used to discretize Ω. The initial flow condition in

Ω is (ρ0, u0, v0, p0) = (1.4 kg/m3, 0, 0, 400 Pa) with the speed of sound being a0 = 20 m/s.
A hypersonic inflow with condition (ρ∞, u∞, v∞, p∞) = (ρ0, M∞a0, 0, p0) and M∞ = 5 is

imposed at the front end of Ω, and an outflow boundary condition is used at the rear end of

Ω. The slip wall condition is enforced on the surfaces ofΩp, p = 1, . . . , 8. The evolution of

the system is solved to t = 2l/(M∞a0) = 0.04 s and is illustrated in Fig. 3.7. The obtained

steady conical shocks around the cone region on three grids are captured in Fig. 3.8 and are

compared with the analytical solution derived by the Taylor-Maccoll analysis [133]. The

predicted shock angles on In × Jn ×Kn, n = 1, 2, 3, are about 20.526◦, 20.487◦, and 20.118◦,

respectively, which agree very well with the analytical solution 20.051◦ and demonstrate

the success of applying the proposed field function for constructing complex fluid-solid

systems via multidomain node mapping.
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3.3.2 Supersonic shock-sphere interaction

As illustrated in Fig. 3.9, the unsteady drag force and pressure history acting on a sphere

with radius R = 0.04 m suspended in a L × H × W = 0.5 m × 0.3 m × 0.3 m test re-

gion and impacted by a Mach 1.22 planar incident shock are studied to validate the

proposed field function for surface force integration. The center of the sphere over-

laps with the center of the test region and is at the origin position O(0, 0, 0), and the

incident shock is initially positioned at x = −1.5R. The pre-shock and post-shock

states are (ρ1, u1, v1,w1, p1) = (1.205 kg/m3, 0, 0, 0, 101325 Pa) and (ρ2, u2, v2,w2, p2) =
(1.658 kg/m3, 114.477 m/s, 0, 0, 159060 Pa), respectively. The drag coefficient is computed

as CD = Fx/(0.5ρ2u2
2
πR2), where Fx is the x-component of the total force acting on the

sphere.
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Figure 3.9 Schematic diagrams illustrating the shock-sphere interaction problem. (a) The 3D problem

domain. (b) Pressure probe locations. [Nomenclature: L, domain length; H, domain height; W ,

domain width; I, incident shock; R, sphere radius; P1 and P2, pressure probes at sphere surface.]

Tanno et al. [134] experimentally measured the drag coefficient and pressure history

using a shock tube facility. In addition, employing a 2D curvilinear grid and the axisymmet-

ric Navier–Stokes equations, they also numerically simulated the flow with the no-slip wall

boundary condition and reported the obtained drag coefficient. In this study, 3D Cartesian

grids are used. To reduce computational cost, the Euler equations with the slip-wall bound-

ary condition are applied instead, since the viscous effect is very limited in this supersonic

flow, and the pressure force dominates the shock-sphere interaction [134]. Three levels of

grids, G1 = 400 × 240 × 240, G2 = 600 × 360 × 360, and G3 = 800 × 480 × 480, are used

to test grid convergence.

The evolution of the numerical Schlieren field is captured in Fig. 3.10, in which the

reflection and diffraction of the shock wave along sphere surface and the formation of

wake by shock collision are clearly illustrated. A comparison of the predicted pressure

variation ∆p = p − p1 at the two probe locations with the experimental measurements
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(a) t = 150 µs (b) t = 400 µs (c) t = 500 µs (d) t = 750 µs

Figure 3.10 The time evolution of shock-sphere interaction illustrated by the volume rendering of

the numerical Schlieren field solved on the grid G1.
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Figure 3.11 Pressure variation over time at the probe locations. (a) Probe P1. (b) Probe P2.
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Figure 3.12 Comparison of drag coefficient for shock-sphere interaction.
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in reference [134] is shown in Fig. 3.11. For t ∈ [0, 160 µs], some minor discrepancies

are observed among the solutions obtained from three different grids, and the numerical

pressure data closely resemble the experimental one, including both the arrival time and the

value of the peak pressure. At the later stage, the numerical and experimental results show

moderate discrepancies. A further comparison of the predicted drag coefficient with the

experimental and numerical data in reference [134] is depicted in Fig. 3.12. The obtained

drag coefficient herein is consistent with the numerical result in [134] and agrees well with

the experimental measurement. It is worth noting that, in the reference [134], compared

to the pressure measurement, a model configuration less affecting the flow was used in the

drag measurement, which might be one of the reasons leading to the different levels of

agreement between the numerical and experimental data on pressure and drag coefficient at

the late stage of evolution.

3.3.3 A multibody contact and collision system

As illustrated in Fig. 3.13, a fluid-solid system is employed to demonstrate the field function

for multibody contact and collision applications. In a L × H = [−5D, 5D] × [−5D, 5D]
domain with an initial flow state (ρ0, u0, v0, p0) = (1.4 kg/m3, 0, 0, 400 Pa), five circular

solids with diameter D = 1 m are placed with the centers being C1(−4D, 0), C2(0, 4D),
C3(0, 0), C4(2D,−2D), and C5(2D + 1/

√
2D,−2D − 1/

√
2D), respectively. Extending the

collision system in [73], a 90◦-angled wall with the inner corner locating at W6(2.5D +√
2D,−2.5D −

√
2D) is added to introduce a multicontact problem between C5 and W6.

During collision, both C5 and W6 will have two contact regions occurring simultaneously.

As a difficult problem to solve in rigid-body dynamics [115], the multicontact collision

between C5 and W6 is used to further demonstrate the collision detection of the proposed

field function.
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Figure 3.13 A fluid-solid system with analytically solvable multibody contact and collisions.

Initially, C1 and C2 move with V = 50m/s and Mach number M = 2.5. C3, C4, and
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C5 are stationary, and the wall W6 is fixed in space. If all the collisions are assumed to

be elastic and fluid forces acting on solids are neglected, then the motions of the solids

are analytically solvable. The fluid-solid system is solved to t = 200 ms on three grids

G1 = 300 × 300, G2 = 600 × 600, and G3 = 1200 × 1200, and the evolution is captured

in Fig. 3.14 using results obtained on G3. As shown from Fig. 3.14a to Fig. 3.14c, once

colliding with C3 simultaneously at t = 60 ms, C1 and C2 pass their momentum to C3. From

Fig. 3.14d to Fig. 3.14f, C3 moves with (u, v) = (50 m/s, 50 m/s) and collides with C4 at

t = 100 − 10
√

2 ms. As a result, a colliding chain is formed between C3, C4, and C5 to

instantly pass momentum from C3 to C5. From Fig. 3.14g to Fig. 3.14i, C5 collides with

the wall W6 and then bounces back, causing the collision sequence to be inverted. From

Fig. 3.14j to Fig. 3.14l, C5 moves with (u, v) = (50 m/s, 50 m/s) and collides with C4 at

t = 100 + 10
√

2 ms to reform the colliding chain between C5, C4, and C3 and instantly

transfer the momentum to C3. From Fig. 3.14m to Fig. 3.14o, C3 collides with C1 and

C2 simultaneously and completely transfer its x-momentum to C1 and y-momentum to C2.

Then, C1 and C2 travel back to their initial positions.

The evolution process involves multibody collisions with momentum transfer at both

aligned (Fig. 3.14e and Fig. 3.14k) and angled (Fig. 3.14c and Fig. 3.14m) directions, as

well as a multicontact collision between C5 and W6 (Fig. 3.14h). During the collisions,

solid states can instantly switch between M = 0 and M = 5
√

2, introducing computational

challenges.

The solutions obtained on Gn, n = 1, 2, 3, are compared in Fig. 3.15. The collision

dynamics, including collision detections, the lines of impacts, and collision velocities are

solved exactly on each grid. Table 3.1 presents the predicted position errors of solid centers

on Gn. The maximum position errors of the solid centers happen at C1 and C2 and are

about 11%, 5.7%, and 2.8% relative to the diameter D for G1, G2, and G3, respectively.

The obtained results demonstrate that the proposed field function can successfully facilitate

the solution of complex and dynamic fluid-solid system, and the collision detection and

response algorithms based on the field function can correctly resolve the multibody contact

and collisions present in the current fluid-solid system. Although not being able to solve

multibody collisions in general exactly, the current collision model provides a deterministic

approach for approximating multibody collision response with parameterized elasticity and

friction and effectively supports the validation of the collision detection capability of the

proposed field function.

3.3.4 Supersonic wedge penetrating a particle bed

A supersonic wedge penetrating a particle bed is simulated to further demonstrate the

applicability of the field function for solving complex and dynamic fluid-solid systems.

As illustrated in Fig. 3.16, in a L × H = [−0.5D, 13.5D] × [−3.5D, 3.5D] domain, a
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(a) t = 0 ms (b) t = 30 ms (c) t = 60 ms

(d) t = 80 ms (e) t = 86 ms (f) t = 90 ms

(g) t = 96 ms (h) t = 100 ms (i) t = 104 ms

(j) t = 110 ms (k) t = 114 ms (l) t = 120 ms

(m) t = 140 ms (n) t = 170 ms (o) t = 200 ms

Figure 3.14 Numerical solution of a fluid-solid system with analytically solvable multibody contact

and collisions.
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(a) (b) (c)

Figure 3.15 Grid sensitivity study on the solution of the fluid-solid system with multibody contact

and collisions. (a) G1. (b) G2. (c) G3.

C1 C2 C3 C4 C5

Exact (−4, 0) (0, 4) (0, 0) (2,−2) (2 + 1√
2
,−2 − 1√

2
)

G1 Error (−1.1e−1, 0) (0, 1.1e−1) (−3.6e−3, 3.6e−3) (0, 0) (1.0e−2,−1.0e−2)
G2 Error (−5.7e−2, 0) (0, 5.7e−2) (−7.8e−4, 7.8e−4) (3.0e−4,−3.0e−4) (2.9e−3,−2.9e−3)
G3 Error (−2.8e−2, 0) (0, 2.8e−2) (−6.6e−4, 6.6e−4) (−4.0e−5, 4.0e−5) (4.6e−3,−4.6e−3)

Table 3.1 The predicted position errors of solid centers at the end of solution time for the fluid-solid

system.

wedge with length D = 1 m and deflection angle θ = 15◦ is horizontally positioned

in the domain, and the front vertex of the wedge locates at O(12D, 0). In addition, in

the w × h = [2D, 4D] × [−1D, 1D] region, 64 identical circular particles with diameter

d = 0.25D are tightly packed.

Initially, the gas in the domain has the state (ρ0, u0, v0, p0) = (1.4 kg/m3, 0, 0, 400 Pa),
in which the speed of sound is a0 = 20 m/s. The wedge has a density ρs = 2700 kg/m3,

a coefficient of restitution CR = 0.5, and an initial velocity M∞ = 3. Particles have a

density ρs, a coefficient of restitution CR = 0.0, and zero initial velocity. Flow inside

the domain is assumed to be inviscid. The slip-wall condition is imposed at the top and

bottom domain boundaries as well as at the wedge and particle surfaces, while the outflow

boundary condition is enforced at the left and right domain boundaries. The evolution of

this fluid-solid system is solved to t = 0.25 s on a 2800 × 1400 Cartesian grid.

During the solution process, before the wedge collides with the particle bed (for t ≤
4/30 s), the fluid forces acting on the wedge are deactivated such that the wedge can move

with a constant supersonic speed. As a result, oblique shock waves generated at the nose

of the moving wedge can reach a steady state with a constant shock angle β. The simulated

time evolution of the system is captured in Fig. 3.17, in which the lines denoted by square

marks represent the analytical solutions of the oblique shock angles at position (4.5D, 0).
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Figure 3.16 A schematic diagram for the supersonic wedge penetrating a particle bed problem.

[Nomenclature: M∞, Mach number of the moving wedge; S, oblique shock; θ, deflection angle; β,

shock angle; D, length of wedge; O, the front vertex of wedge; L, domain length; H, domain height;

w, particle bed width; h, particle bed height.]

As shown in Fig. 3.17c, the predicted oblique shock angle βn = 32.259◦ agrees very well

with the analytical solution βe = 32.240◦ computed from the M∞ − θ − β relation [5].

After the wedge collides with the particle bed, a force chain within the contacted

particles is created due to the penetrating wedge. This force chain accelerates the particles

and fractures the particle bed. The suddenly destabilized particle bed generates strong

flow disturbances at the surrounding area, which interact with the wedge generated shocks

and waves, forming complex wave diffraction and interference patterns in space. During

the wedge penetrating the particle bed, intensive multibody contact and collisions are

successfully simulated, and an intuitive dynamic process is captured in the solution. These

results illustrate the ability of the proposed field function for facilitating the solution of

complex and dynamic fluid-solid systems involving coupled fluid-solid and solid-solid

interactions.
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(a) t = 0 ms (b) t = 50 ms

(c) t = 125 ms (d) t = 150 ms

(e) t = 200 ms (f) t = 250 ms

Figure 3.17 Time evolution of a supersonic wedge penetrating a particle bed. Lines denoted by

square marks represent the analytical solutions of the oblique shocks.
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3.4 Conclusion

A new integer-type field function has been developed to facilitate the solution of complex

and dynamic fluid-solid systems on Cartesian grids with interface-resolved fluid-solid and

solid-solid interactions. The main conclusions are summarized as follows:

• For a Cartesian-grid-discretized computational domain segmented by a set of solid

bodies, the proposed field function can uniquely track all the subdomains with multiple

layers of interfacial nodes. Employing the proposed field function, it is straightforward

to apply designated governing equations, constitutive models, numerical schemes, and

boundary conditions for each subdomain.

• Benefiting from the ability to uniquely track all the subdomains with multiple layers

of interfacial nodes using only one integer field in total, the proposed field function

can enable four types of useful functionalities. The first functionality is to provide

single-integer-based multidomain node mapping to minimize memory usage and

maximize information set. For instance, in providing node mapping information

for P subdomains, the memory consumption for using the proposed field function

can be about 1/P of that for using a binary node-mapping function. The second

functionality is to enable efficient node remapping that employs a temporal coherence

to obtain an acceleration rate inversely proportional to the surface-to-volume ratio of

subdomains. The third functionality is to perform collision detection for determining

collision queues and lines of impacts with linear time complexity, instead of the

quadric time complexity required by a binary node-mapping function. The fourth

functionality is to facilitate the surface force integration for irregular solids immersed

in a Cartesian grid. Easy-to-implement algorithms for the field function and its

associated functionalities have also been presented.

• Equipped with a deterministic multibody collision model, the applicability of the

developed field function for solving complex and dynamic fluid-solid systems has

been validated and demonstrated through a set of numerical experiments, such as a

complex wind tunnel test efficiently constructed via the field function to demonstrate

multidomain node mapping, supersonic shock-sphere interaction to validate surface

force integration, a multibody contact and collision system and a supersonic wedge

penetrating a particle bed to demonstrate collision detection and node remapping

for dynamic fluid-solid systems. The obtained numerical results are in close agree-

ment with the corresponding published numerical data, experimental observations,

or analytical solutions.
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Chapter 4

An Immersed Boundary Method for

Treating Arbitrarily Irregular and

Moving Boundaries

4.1 Introduction

To solve flow involving irregular and moving geometries, one of the main challenges is

related to enforcing boundary conditions. In this chapter, an immersed boundary method is

developed, validated, and applied. Through devising a second-order three-step flow recon-

struction scheme, the proposed method is able to enforce the Dirichlet, Neumann, Robin,

and Cauchy boundary conditions in a straightforward and consistent manner. Equipped with

a fluid-solid coupling framework that integrates high-order temporal and spatial discretiza-

tion schemes, numerical experiments concerning flow involving stationary and moving

objects, convex and concave geometries, no-slip and slip wall boundary conditions, as well

as subsonic and supersonic motions are conducted to validate the method. Using analytical

solutions, experimental observations, published numerical results, and Galilean transfor-

mations, it is demonstrated that the proposed method can provide efficient, accurate, and

robust boundary treatment for solving flow with arbitrarily irregular and moving geometries

on Cartesian grids. On the basis of the proposed method, the development of a solver that

unifies 1D, 2D, and 3D computations and the generation of complex geometric objects via

simply positioning components are described. In addition, a surface-normalized absolute

flux is proposed for interface sharpness measurement, and an analytically solvable modified

vortex preservation problem is developed for a convergence study concerning smooth flow

with irregular geometries.
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4.2 Method development

4.2.1 A generalized framework

Two- and three-dimensional Cartesian grid-based computational domains with immersed

boundaries are illustrated in Fig. 4.1, in which G denotes a ghost node, a computational

node that is outside the physical domain and locates at the numerical boundaries, O denotes

a boundary point with GO as the outward normal vector, and I is the image point of the

ghost node G reflected by the physical boundary.
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Figure 4.1 Schematic diagrams of Cartesian grid-based computational domains with immersed

boundaries. (a) 2D space. (b) 3D Space. [Nomenclature: G, ghost node; O, boundary point; I,

image point; ΩD, domain of dependence; N , neighboring fluid nodes in the domain of dependence;

Ω1, fluid domain; Ω2, solid domain; IB, immersed boundary.]

In a direct forcing immersed boundary method, boundary treatment is mainly about

constructing the flow at numerical boundaries. To obtain a proper ghost flow with the exis-

tence of physical boundaries effectively admitted, an interpolation approach incorporating

the method of images is commonly adopted:

ψG = 2ψO − ψI (4.1a)

ψI = f (xI, yI, zI) (4.1b)

where ψ denotes a generic flow variable, f (x, y, z) is a local reconstruction function of ψ at

the image point I.

As the local reconstruction function will largely determine the numerical properties of

the resulting immersed boundary method, a three-step flow reconstruction scheme is devel-

oped to achieve efficient, accurate, and robust boundary treatment for arbitrarily irregular

and moving boundaries.
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4.2.2 A three-step flow reconstruction scheme

In this study, the local reconstruction function is established on the physical boundary

conditions at the boundary point O and the known values of ψ at nearby fluid nodes:

ψI = f ({ψN }, ψO) (4.2)

where ψO is the value of ψ at the boundary point O, at which the physical boundary

conditions are enforced. Except for a Dirichlet boundary condition, the value of ψO is

unknown and implicitly subject to different types of mathematical constraints, which are

the main challenges in developing a local reconstruction function. {ψN } represents the

values of ψ at fluid nodes {N} that satisfy

dN = | |x I − xN | | ≤ RI (4.3)

in which x I and xN are the position vectors of the point I and N , respectively. RI , referred

to as the domain of dependence of the point I and illustrated in Fig. 4.1, is the maximum

distance from the point I to nearby fluid nodes that are employed for flow reconstruction.

The incorporation of physical boundary conditions in the local reconstruction function

of ψI gives

lim
| |xG−xO | |→0

ψG = 2ψO − lim
| |xG−xO | |→0

ψI

= 2ψO − lim
| |xI−xO | |→0

ψI

= 2ψO − lim
| |xI−xO | |→0

f ({ψN }, ψO)

= ψO

(4.4)

Therefore, the constructed ψG converges to the exact physical boundary conditions when

the ghost node G converges to the boundary point O.

For ψ representing a generic field variable, to construct ψI = f ({ψN }, ψO) regarding

the Dirichlet, Neumann, Robin, and Cauchy boundary conditions in a straightforward and

consistent manner, a three-step flow reconstruction scheme is proposed.

Prediction step Pre-estimate the value of ψI by applying inverse distance weighting on

the fluid nodes that locate in the domain of dependence of the image point I:

ψ∗
I =

∑
w(dN )ψN∑
w(dN )

, dN = max(dN, dtiny) and dN ≤ RI (4.5)

where ψ∗
I

denotes the predicted value of ψI , the weighting function w(d) employs an

inverse-power law 1/dq with q ∈ N, dN is the distance from the node N to the image point

I, dtiny = εmin(∆x,∆y,∆z) is a positive real number to avoid a zero denominator, ∆x,∆y,∆z
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are the mesh sizes in x, y, z directions, respectively. The power q = 2, the constant ε = 10−6,

and the domain of dependence RI = 2 max(∆x,∆y,∆z) are adopted in the test cases herein,

which are shown to be well adequate for a variety of flow problems, as demonstrated in the

numerical experiments.

Physical boundary condition enforcement step Determine the value of ψO via the

physical boundary conditions that ψ needs to satisfy at the boundary point O and the values

of ψ at interior physical domain.

Dirichlet boundary condition If ψ satisfies the Dirichlet boundary condition, the

value of ψO is exactly determined by the specified boundary condition:

ψO = g (4.6)

where g is a given value or function.

Neumann boundary condition ψ is required to satisfy

∂ψ

∂n

����
O

=

∂ψO

∂n
(4.7)

where ∂ψO/∂n is a given value or function.

In other words,

lim
l→0

ψ(xO + ln) − ψ(xO)
l

=

∂ψO

∂n
(4.8)

where xO and n are the position vector and the unit outward surface normal vector at the

boundary point O, respectively.

Since point I is on the normal direction of point O, it gives

n =
x I − xO

| |x I − xO | |
(4.9)

Therefore,

ψI − ψO

| |x I − xO | |
− ∂2ψ

∂n2

����
O

| |x I − xO | | + O(| |x I − xO | |2) =
∂ψO

∂n
(4.10)

Due to Eq. (4.1a), the second-order derivative term has

∂2ψ

∂n2

����
O

=

ψI + ψG − 2ψO

2| |x I − xO | |2
+ O(| |x I − xO | |2) = O(| |x I − xO | |2) (4.11)

Hence, a second-order accurate approximation of ψO can be given as

ψO = ψI − ||x I − xO | |
∂ψO

∂n
(4.12)
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Robin boundary condition A linear combination of the value of ψ and its normal

derivative on the boundary point O is specified:

αψO + β
∂ψ

∂n

����
O

= g (4.13)

where α and β are the linear combination coefficients, g is a given value or function.

After approximating the normal derivative with second-order accuracy, it gives

αψO + β
ψI − ψO

| |x I − xO | |
= g (4.14)

Then,

ψO =
βψI − ||x I − xO | |g
β − ||x I − xO | |α

(4.15)

Cauchy boundary condition For illustration purpose, ψ is replaced by the velocity

vector V = (u, v,w) that satisfies the slip-wall boundary condition:

(V · n)|x=xO = V S · n

∂(V · t̂)
∂n

����
x=xO

= 0

∂(V · t̃)
∂n

����
x=xO

= 0

(4.16)

where n, t̂, and t̃ are the unit normal vector, unit tangent vector, and unit bitangent vector at

the boundary point O, respectively. V S is the velocity of the boundary surface at the point

O.

After approximating the normal derivative with second-order accuracy, it gives

uOnx + vOny + wOnz = uSnx + vSny + wSnz

uO t̂x + vO t̂y + wO t̂z = uI t̂x + vI t̂y + wI t̂z

uO t̃x + vO t̃y + wO t̃z = uI t̃x + vI t̃y + wI t̃z

(4.17)

Using the orthogonality of the coefficient matrix, VO is determined as

©­­«
uO

vO

wO

ª®®¬
=


nx ny nz

t̂x t̂y t̂z

t̃x t̃y t̃z


T ©­­«

uSnx + vSny + wSnz

uI t̂x + vI t̂y + wI t̂z

uI t̃x + vI t̃y + wI t̃z

ª®®¬
(4.18)

The solution equations of ψO for different types of boundary conditions now can be

unified as

ψO = CψI + RRHS (4.19)

where the values of the coefficient C and the rest right-hand side RRHS are summarized in

Table 4.1.
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Table 4.1 Value map of C and RRHS for different types of boundary conditions.

Type Example form C RRHS

Dirichlet ψO = g 0 g

Neumann
∂ψ
∂n

���
O
=
∂ψO
∂n

1 −| |x I − xO | | ∂ψO
∂n

Robin αψO + β
∂ψ
∂n

���
O
= g

β

β−||x I −xO | |α
−||x I −xO | |g
β−||x I −xO | |α

Cauchy

(V · n) |
x=xO

= V S · n

∂(V · t̂)
∂n

����
x=xO

= 0

∂(V · t̃)
∂n

����
x=xO

= 0


nx ny nz

t̂x t̂y t̂z

t̃x t̃y t̃z



T 
0 0 0

t̂x t̂y t̂z

t̃x t̃y t̃z



nx ny nz

t̂x t̂y t̂z

t̃x t̃y t̃z



T 
nx ny nz

0 0 0

0 0 0


·V S

Correction step Solve the value of ψI by adding the boundary point O as a stencil node

for the inverse distance weighting of ψI :

ψI =

∑
w(dN )ψN + w(dO)ψO∑

w(dN ) + w(dO)
=

ψ∗
I
+

w(dO)∑
w(dN )ψO

1 +
w(dO)∑
w(dN )

(4.20)

in which the repetition of calculations on fluid nodes can be avoided, since the sum of

weights and sum of weighted values are already obtained in the prediction step.

Due to the unknown ψI in Eq. (4.19), the solution equation of ψO is coupled with the

solution equation of ψI in the correction step. To solve this problem, one method is a

synchronous solving approach to solve ψO and ψI simultaneously:



ψO = CψI + RRHS

ψI =
ψ∗
I
+

w(dO )∑
w(dN )ψO

1+
w(dO )∑
w(dN )

(4.21)

The other is an asynchronous solving approach: first, solve ψO via approximating the

unknown ψI with the pre-estimated ψ∗
I
; then, solve ψI in the correction step.



ψO = Cψ∗

I
+ RRHS

ψI =
ψ∗
I
+

w(dO )∑
w(dN )ψO

1+
w(dO )∑
w(dN )

(4.22)

The enforcement of the Dirichlet and trivial Neumann boundary conditions is equivalent

in these two approaches. For the other types of boundary conditions, when the asynchronous

solving approach is used, the physical boundary condition enforcement step and the correc-

tion step can be iteratively implemented. However, numerical tests suggest that the effects

of iterative implementation on the overall solution accuracy are insignificant.

The asynchronous solving approach without iterative implementation is adopted and

examined herein, since the validity of the synchronous solving approach is established

when the validity of the asynchronous solving approach is proved.

53



4. An Immersed Boundary Method for Treating Arbitrarily Irregular and Moving Boundaries

4.2.3 Method discussion

4.2.3.1 Advantages of three-step design

As a matrix inversion-free method, the proposed three-step flow reconstruction scheme

herein exempts from the potential numerical singularities involved in solving linear sys-

tems, which is a challenging issue for polynomial reconstruction-based methods when

stencil nodes are not well distributed due to highly irregular or colliding geometries. Mean-

while, the algorithm complexity of matrix inversion for a n × n matrix, which is one of the

procedures in a polynomial reconstruction-based method, is usually O(n3), where n is the

number of stencil nodes. The number of floating-point operations of the proposed scheme

for reconstructing a field variable is about four multiplications, one division, and seven

additions/subtractions per stencil node, in which the boundary point can have additionally

about eighteen multiplications and twelve additions in the case of Cauchy boundary condi-

tion. Therefore, the algorithm complexity is O(n), and the proposed scheme is a linear-time

algorithm.

In addition to functioning as a flow reconstruction method for the image points, the

proposed scheme also effectively solves the physical quantities at the boundary point for

boundary conditions with unknown boundary values, such as the non-trivial Neumann,

Robin, and Cauchy boundary conditions. The three-step design then further enables a

consistent treatment for the Dirichlet, Neumann, Robin, and Cauchy boundary conditions

with shared weights. As the calculation of weight occupies four multiplications, one

division, and five additions/subtractions, this consistency not only simplifies implementation

but also brings efficiency through treating velocity, pressure, and temperature fields with

unified algorithm and shared weights, while polynomial reconstruction-based methods

usually require constructing and solving a designated linear system for each type of boundary

conditions.

4.2.3.2 Automatic adaptation to geometric irregularity

The domain of dependence of the proposed three-step flow reconstruction scheme is solely

distance-based, and no spatial dimension-related parameters are involved, as well as no

stencil structures are imposed in the scheme. These properties can easily facilitate the

development of a solver that unifies 1D, 2D, and 3D computations, avoiding the necessity

of maintaining separate versions of codes.

To better illustrate the idea, the generation of the rotor for the subsonic rotational flow

in the numerical experiments is shown in Fig. 4.2. The solver developed herein employs

the equivalence between a 2D space and a 3D space with the zero gradient condition on the

collapsed dimension. As shown in Fig. 4.2a, a 2D geometry is extruded with unit thickness

on the third dimension to form a 3D geometry in Fig. 4.2b. The unit thickness provides the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2 Diagrams illustrating ideas related to automatic adaptation to geometric irregularity. (a) A

2D geometry represented by an NACA 0012 airfoil. (b) A 3D geometry generated by extrusion. (c) A

3D complex geometric object generated by component-based assembling and a single computational

node layer on the collapsed dimension. The other numerical boundary layers are not shown. (d)

The 2D cutting plane for immersed boundary treatment. (e) The node map at the tip region. (f) The

node map at the joint region. Colors represent the type of nodes: red, 1st layer ghost nodes; blue,

2nd layer ghost nodes; black, 3rd layer ghost nodes; gray, fluid or solid nodes for nodes inside the

fluid and solid region, respectively. The airfoil profiles are shown in solid curves.
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feasibility of directly deriving the perimeter and area of the 2D geometry from the surface

area and volume of the 3D geometry.

Benefiting from the robustness of the proposed three-step flow reconstruction scheme, a

complex geometric object such as the one in Fig. 4.2c can be generated through assembling

its multiple components via positioning while allowing overlapped surfaces, which avoids

the cost and cumbersome of producing a single topology. In addition, one computational

layer and as many as needed numerical boundary layers, such as three numerical boundary

layers on each side for a 7-point-stencil spatial discretization scheme, on the collapsed

dimension are used to establish a 3D numerical space, in which the 3D governing equations

and the proposed immersed boundary method with 3D spherical domain of dependence are

implemented.

When the zero gradient condition is applied to the numerical boundary layers on the

collapsed dimension, the 3D governing equations will be computationally equivalent to 2D

equations. Since immersed boundary treatment should only be applied to the computational

domain, and there is only one computational layer for a 3D space with a collapsed dimension,

the implemented 3D spherical domain of dependence for the proposed immersed boundary

treatment herein will automatically collapse to a 2D circle. Hence, the method automatically

conducts 2D immersed boundary treatment for the 2D cutting plane shown in Fig. 4.2d.

Similarly, a 1D space is equivalent to a 3D space with two collapsed dimensions. As a

summary, all computations are unified in a 3D space with 3D geometries. The number of

computational layers and the applied boundary conditions are used to control the collapse

of a specific dimension without modifying the underlying numerical discretization.

The tip and the joint denoted in Fig. 4.2d represent convex and concave regions, re-

spectively. A node map classifying the types of computational nodes is generated using

algorithms developed in the reference [71] for facilitating the numerical discretization on a

1200 × 1200 Cartesian grid. The zoomed tip and joint regions are then shown in Fig. 4.2e

and Fig. 4.2f, respectively.

As shown in Fig. 4.2e, for an under-resolved convex region, nodes inside the solid

geometry will largely be classified as ghost nodes. In general, due to the convex feature,

there will be sufficient neighboring fluid nodes for the corresponding image points, which

reduces stencil-related difficulties in flow reconstruction. The tip and the Cartesian grid

shown herein are arranged to illustrate a dilemma concerning ghost nodes at the median of

a convex angle: each ghost node has two boundary points in 2D space or infinitely many

boundary points in 3D space with equal distance but can only store one set of ghost flow.

On an under-resolved grid, this dilemma can be alleviated when the median line is not

aligned with a node line but placed centrally between two node lines so that there are no

shared ghost nodes. Since the underlying cause is the insufficient grid resolution, and this

dilemma will be automatically addressed by improving grid resolution, no special treatment

is incorporated into the proposed boundary treatment method herein.
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As shown in Fig. 4.2f, ghost nodes at a concave region are less affected by that dilemma.

However, due to the concave feature, there can be a very limited number of neighboring

fluid nodes for the corresponding image points within the domain of dependence. This

issue imposes challenges for a polynomial reconstruction-based method, as a fixed number

of stencil nodes is needed to avoid under-determined linear systems. On the contrary, the

proposed three-step flow reconstruction scheme herein is scalable to the number of stencil

nodes and can automatically adapt to a varying number of stencil nodes. Even in the

worst situation, in which only one fluid node exists in the domain of dependence of an

image point, the proposed method can still be consistently applied. This stencil scalability

provides robustness for solving flow with strongly irregular and moving geometries that

involve multibody contact and collisions, as demonstrated in the numerical experiment

concerning the explosive dispersal of dense particles, in which a significant number of

convex and concave regions exist, form, and destroy in the solution process.

4.2.3.3 Fresh node treatment

In solving flow with moving geometries, a ghost node will become a fresh node in the fluid

domain when the ghost node moves out from the solid domain after updating the motions

of the solids. Therefore, valid field quantities should be reconstructed for these fresh nodes.

An idea that consistently treats the image points and fresh nodes is used herein. That

is, suppose ψ being a generic flow variable at a fresh node, the proposed three-step flow

reconstruction scheme is also applied for the fresh node to reconstruct ψ from the physical

boundary conditions at the corresponding boundary point O and the known values of ψ at

nearby non-fresh fluid nodes at the same time level. In the numerical experiment involving

a supersonic translating wedge, the effectiveness of this approach is demonstrated through

comparing the solved solution functionals with analytical solutions as well as via examining

the entire solution field using Galilean transformation.

4.3 Numerical experiments

4.3.1 Supersonic flow over a wedge

As illustrated in Fig. 4.3a, when a supersonic flow with Mach number M∞ passes over a

wedge with an adequate deflection angle θ, stationary oblique shock waves with a shock

angle β can be created at the nose of the wedge. The M∞− θ − β relation can be analytically

obtained via a control volume analysis based on conservation laws and has the following

form [5]:

tan θ =
2

tan β

M2
∞ sin2 β − 1

M2
∞(γ + cos(2β)) + 2

(4.23)
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where γ is the heat capacity ratio.
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Figure 4.3 Schematic diagrams for the supersonic flow over a wedge problem. (a) Oblique shock

relation. (b) Computational configuration. [Nomenclature: M∞, Mach number of the approaching

flow; S, oblique shock; θ, deflection angle; β, shock angle; D, length of wedge; O, the front vertex

of wedge; L, domain length; H, domain height.] The schematic diagrams are adapted from the work

of Anderson Jr [5].

To validate the proposed method, this supersonic flow over a wedge problem is solved.

As illustrated in Fig. 4.3b, in a L × H = [−0.5D, 9.5D] × [−2.5D, 2.5D] domain with an

initial flow state of (ρ0, u0, v0, p0) = (1.4 kg/m3, 40 m/s, 0, 400 Pa), in which the speed of

sound is a0 = 20 m/s, a stationary wedge with D = 1 m is positioned at O(0, 0) and has

the slip-wall boundary condition. The right domain boundary has the outflow condition,

and the top and bottom boundaries are treated as slip walls. The left domain boundary has

an inflow condition (ρ∞, u∞, v∞, p∞) = (ρ0, M∞a0, 0, p0), and the inviscid flow is solved to

t = 4L/(M∞a0) for obtaining a steady state.

In order to simplify the discussion, notation M∞(M̂) − θ(θ̂) − βe(β̂e) − βn(β̂n) −G(Ĝ) is

used to denote a case with Mach number M̂ , deflection angle θ̂, analytical shock angle β̂e,

and numerical shock angle β̂n solved on grid Ĝ. It is worth mentioning that the measurement

of numerical shock angles is through manually picking up two points at the center of the

computed oblique shock line and then computing the slope angle of that line. Therefore, the

presented numerical shock angles herein are subject to sampling errors. To better facilitate

the comparison of numerical and analytical solutions, straight lines with slope angles being

equal to the analytical shock angles are visualized in the figures of results.

A grid sensitivity study is conducted for case M∞(2) − θ(15◦) − βe(45.344◦) on a series

of successively refined grids, and the results on four chosen grids are shown in Fig. 4.4. As

the grid resolution increases, the sharpness of the computed shocks improves accordingly,

and the perturbations in the wakes are less dissipated. The generation of oscillating wakes

in the inviscid flow may be partially due to the numerical viscosity in the numerical

schemes. Nonetheless, the predicted oblique shock angles are in excellent agreement with
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the analytical solution over a wide range of grid resolution, and Prandtl-Meyer expansion

waves are also physically resolved at each rear corner of the wedge. Since good numerical

accuracy and shock sharpness can be obtained on the 1200×600 grid, this grid is employed

for the investigation of other cases.

(a) (b)

(c) (d)

Figure 4.4 Grid sensitivity study of supersonic flow over a wedge for case M∞(2) − θ(15◦) −
βe(45.344◦). Lines denoted by square marks represent the analytical solutions. (a) βn(44.927◦) −
G(600×300). (b) βn(45.198◦)−G(1200×600). (c) βn(45.726◦)−G(1800×900). (d) βn(45.352◦)−
G(2400 × 1200).

The prediction capability on oblique shock relation over different deflection angles and

Mach numbers are illustrated in Fig. 4.5 and Fig. 4.6, respectively. Under the same Mach

number, a higher deflection angle leads to a higher shock angle. For a fixed deflection

angle, as the Mach number increases, the shock angle decreases. Due to the finite length of

the wedge, oblique shocks with low shock angles may strongly interfere with the Prandtl-

Meyer expansion waves and incline toward the rear corners of the wedge. For the oblique

shock angles, the excellent agreement between the numerical and analytical solutions is

consistently presented among all the cases, demonstrating the high validity of the proposed

method.
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(a)

(b)

(c)

Figure 4.5 Oblique shock relation of supersonic flow over a wedge for case M∞(4) − G(1200 × 600)
over different deflection angles. Lines denoted by square marks represent the analytical solutions.

(a) θ(10◦) − βe(22.234◦) − βn(22.227◦). (b) θ(15◦) − βe(27.063◦) − βn(27.325◦). (c) θ(20◦) −
βe(32.464◦) − βn(32.293◦).
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(a)

(b)

(c)

Figure 4.6 Oblique shock relation of supersonic flow over a wedge for case θ(15◦) − G(1200 × 600)
over different Mach numbers. Lines denoted by square marks represent the analytical solutions.

(a) M∞(6) − βe(22.672◦) − βn(22.585◦). (b) M∞(8) − βe(20.860◦) − βn(20.595◦). (c) M∞(10) −
βe(19.942◦) − βn(18.930◦).
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4.3.2 Supersonic translating wedge

In order to test the proposed method for solving flow involving moving geometries,

the supersonic translating wedge problem is solved, which is a Galilean transforma-

tion of the supersonic flow over a wedge problem. As illustrated in Fig. 4.7, in a

L×H = [−0.5D, 9.5D]×[−2.5D, 2.5D] domain with an initial flow state of (ρ0, u0, v0, p0) =
(1.4 kg/m3, 0, 0, 400 Pa), in which the speed of sound is a0 = 20 m/s, a wedge with D = 1 m

and M∞ = 2 is initially positioned at O(8D, 0) and has the slip-wall boundary condition.

The outflow condition is enforced at the left and right domain boundaries, while the slip-

wall condition is imposed at the top and bottom boundaries. To limit the required size

of the computational domain, the evolution is solved to t = 0.8L/(M∞a0). Although the

most parts of the flow region are still in an unsteady state, and the transient perturbations

generated from the sudden motion of the wedge in the initial stationary flow are not advected

out of the domain, the oblique shocks are well-developed within the given computational

time.
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Figure 4.7 Schematic diagrams for the supersonic translating wedge problem. (a) Oblique shock

relation. (b) Computational configuration. [Nomenclature: M∞, Mach number of the moving

wedge; S, oblique shock; θ, deflection angle; β, shock angle; D, length of wedge; O, the front vertex

of wedge; L, domain length; H, domain height.] The schematic diagrams are adapted from the work

of Anderson Jr [5].

The time evolution of both the supersonic flow over a wedge and the supersonic trans-

lating wedge under the condition M∞(2)− θ(15◦)−G(1200×600) is captured in Fig. 4.8, in

which the dynamic process of oblique shock formation at the wedge nose and Prandtl-Meyer

expansion wave generation at the rear corners is clearly depicted.

Main flow features exempted from the extra interpolation error of fresh node treatment,

such as the oblique shocks, reflected shocks, and Prandtl-Meyer expansion waves, are well

agreed in this Galilean transformation pair. In addition, the predicted wakes are also highly

comparable. These well agreed results of this supersonic Galilean transformation pair
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demonstrate the success of the proposed three-step flow reconstruction scheme for fresh

node treatment and the capability of the three-step flow reconstruction-based immersed

boundary method herein for solving flow with moving geometries.

To further verify the solution of the supersonic translating wedge problem, a comparison

of the numerical and analytical solutions for different deflection angles is shown in Fig. 4.9.

The excellent agreement in numerical and analytical solutions demonstrates the validity and

accuracy of the method in solving flow with moving geometries.

4.3.3 Shock diffraction over a cylinder

A Mach 2.81 planar shock interacting with a stationary circular cylinder is studied to further

evaluate the validity of the developed method. This classical shock diffraction problem

has been widely investigated in the literature, including both experimental observations

[6, 135, 136] and numerical studies [6, 109, 137].

As a time-dependent process, the interaction between the incident shock and cylinder

encompasses complex compressible flow features such as shocks and contact discontinuities.

As illustrated in Fig. 4.10, the incident shock initially propagates freely toward the cylinder.

Once colliding with the cylinder, the shock reflects as well as diffracts over the convex solid

surface with the formation of a curved Mach stem and a slip line at each side of the plane of

symmetry. During the evolution, triple points are produced through the intersection of the

incident shock, reflected shock, and diffracted shock. At the later stage of evolution, the two

diffracting Mach stems collide and form a shock-induced wake at the rear of the cylinder.

In the numerical configuration, a circular cylinder with diameter D = 1 m is positioned

at the center of a 6D×6D square domain while an initial shock is positioned 0.5D upstream

of the cylinder. This computational configuration is similar to Ripley et al. [137] except

that a full domain size without symmetric boundary assumption is used herein. The flow

is assumed to be inviscid, and the slip-wall boundary condition is enforced at the cylinder

surface. The evolution process is solved to t = 1.0 s.

The computed density contours over a series of grids are shown in Fig. 4.11. An

acceptable shock curvature profile can be observed even on the 150 × 150 grid, which

has a grid resolution of about 0.04D (25 nodes per diameter). In addition, the plane of

symmetry is well preserved over all the employed grids. The numerical Schlieren fields are

presented in Fig. 4.12. Compared to the Schlieren photograph measured by Bryson and

Gross [135] and the interferometric measurements by Kaca [6] as well as the numerical

results in references [109, 137, 138], the slip line, reflected shock, and diffracted shock

over the immersed boundary are already resolved very well on the 600 × 600 grid, which

illustrates the high accuracy of the developed method.

As illustrated in Fig. 4.10b, the intersection of the incident shock, reflected shock, and

diffracted shock forms a triple point. During the time-dependent evolution process, this
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(a) t = 0.05 s (b) t = 0.05 s

(c) t = 0.10 s (d) t = 0.10 s

(e) t = 0.15 s (f) t = 0.15 s

(g) t = 0.20 s (h) t = 0.20 s

Figure 4.8 Time evolution of solution for case M∞(2) − θ(15◦) −G(1200× 600). (a), (c), (e), (g) The

supersonic flow over a wedge problem. (b), (d), (f), (h) The supersonic translating wedge problem.
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(a)

(b)

(c)

Figure 4.9 Oblique shock relation of supersonic translating wedge for case M∞(2) − G(1200 × 600)
over different deflection angles. Lines denoted by square marks represent the analytical solutions.

(a) θ(10◦) − βe(39.314◦) − βn(39.313◦). (b) θ(15◦) − βe(45.344◦) − βn(45.034◦). (c) θ(20◦) −
βe(53.423◦) − βn(53.425◦).
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I

(a)

I
R

MS

T

(b)

Figure 4.10 Schematic diagrams for a planar shock interacting with a stationary circular cylinder. (a)

Initial state. (b) Well-developed diffraction. [Nomenclature: I, incident shock; R, reflected shock;

M , Mach stem (diffracted shock); S, slip line (contact discontinuity); T , triple point.] The schematic

diagrams are adapted from the work of Kaca [6].

(a) (b) (c) (d)

Figure 4.11 Density contour of shock diffraction over a cylinder solved on different grid sizes. (a)

150 × 150. (b) 300 × 300. (c) 600 × 600. (d) 1200 × 1200.

(a) (b) (c) (d)

Figure 4.12 Numerical Schlieren of shock diffraction over a cylinder solved on different grid sizes.

(a) 150 × 150. (b) 300 × 300. (c) 600 × 600. (d) 1200 × 1200.
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(a) (b) (c) (d)

Figure 4.13 Superimposition of density contours showing the predicted propagation path of the triple

point (The two straight lines are the 33◦ tangent lines of the cylinder). (a) 150× 150. (b) 300× 300.

(c) 600 × 600. (d) 1200 × 1200.

triple point travels in space and produces a triple-point path, as captured in Fig. 4.13. The

interferometric measurements of Kaca [6] predict that this triple-point path is tangent to the

cylinder at an angle of 33◦ for Mach numbers in the range of 1.42 − 5.96.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0
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y
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150× 150

300× 300

600× 600

1200× 1200

Figure 4.14 Comparison of the predicted triple-point paths with experimental correlation.

The predicted triple-point paths are extracted and plotted in Fig. 4.14. The least squares

linear regressions of the predicted triple-point paths on the grids of 150 × 150, 300 × 300,

600 × 600, and 1200 × 1200 nodes are about 28.2◦, 29.8◦, 30.3◦, and 30.9◦, respectively.

These results, which agree well with the experimental correlation of Kaca [6] and very well

with the polynomial reconstruction-based results of Sambasivan and Udaykumar [109],

cut-cell method-based results of Ji et al. [138], and unstructured mesh-based results of

Ripley et al. [137], further demonstrate the validity of the developed method.
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4.3.4 A modified vortex preservation problem

One of the challenges in testing the order of accuracy for an immersed boundary method is

the lack of analytically solvable smooth flow with irregular geometries. In order to partially

address this challenge, a modified vortex preservation problem adapted from the reference

[139] is developed. As shown in Fig. 4.15, in a L × H = [−2.5R, 2.5R] × [−R, R] domain

with a uniform inviscid background flow (ρ∞, u∞, v∞, p∞) = (1, 1, 1, 1), an isentropic vortex

initially centered at O(0, 0)with radius R = 5 is created by adding the following perturbation

to the mean flow

L

H

O

R

θ

Periodic Path

Slip Wall

Slip Wall

Figure 4.15 A schematic diagram for the modified vortex preservation problem. [Nomenclature: O,

vortex center; R, vortex radius; θ, path angle; L, domain length; H, domain height.]

(δu, δv) = Γ
2π

e0.5(1−r2)(−y, x)

δT = −(γ − 1)Γ2

8γπ2
e(1−r2)

(4.24)

where the vortex strength Γ = 5, the ratio of specific heat γ = 1.4, r2
= x2

+ y
2 ≤ R2.

Under the isentropic flow condition, the temperature and entropy are defined as T = p/ρ
and s = p/ργ, respectively. When s = 1 and δs = 0 are assumed for the flow, the initial

conditions are then taken as follows

u = u∞ + δu, v = v∞ + δv, T = p∞/ρ∞ + δT, ρ = T
1
γ−1 , p = T

γ
γ−1 (4.25)

Since the perturbation induced by the vortex is weak enough to avoid producing a strongly

nonlinear effect, the exact solution of the problem with a specific initial state is the passive

convection of the vortex with the mean velocity [139].

In order to incorporate the effects of boundary treatment, two relatively large triangles

are positioned at the two horizontal ends of the domain to shape the computational domain

into a parallelogram with the length of each edge being 2
√

2R. The slip wall boundary

condition is enforced on the triangles. The number of mesh cells for each direction is

chosen to ensure that (H/my)/(L/mx) , tan θ. Therefore, the two slip walls are not aligned

with the grid to manifest the effects of immersed boundary treatment. In addition, each slip
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wall is tangent to the vortex edge to further manifest the boundary effects. Convected by

the chosen background flow, the vortex will propagate at θ = 45◦ while slipping along with

the two slip walls. When the periodic boundary condition with translation path (2R, 2R) is

enforced on the two vertical ends of the domain, and the flow is solved to t = 10, the solution

should remain unchanged as the time evolves to a complete period of vortex convection, as

demonstrated by the computed results shown in Fig. 4.16.

(a) t = 0 (b) t = 5 (c) t = 10

Figure 4.16 Density contour of the propagating isentropic vortex solved on a 320 × 160 grid.

In order to better examine the order of accuracy of boundary treatment via spatial con-

vergence behavior, the discretization of convective fluxes for this problem is switched to the

second-order central difference scheme. The third-order Runge–Kutta scheme with a small

CFL coefficient CCFL = 0.2 is used to reduce the influence from temporal discretization

errors. The global spatial convergence of the solutions over successively refined grids is

shown in Table 4.2. As captured by the results, the solution algorithm is operating closely

to its designed order of accuracy measured in L1, L2, and L∞ norms. As the solution of

this problem involves the adiabatic condition for the temperature field, zero normal gradient

condition for the pressure field, and the slip wall condition, the most complicated type

of boundary conditions, for the velocity field, the developed immersed boundary method

can therefore preserve the designed second-order accuracy for solving flow with irregular

geometries and complex boundary conditions.

mx × my L1 error L1 order L2 error L2 order L∞ error L∞ order

40 × 20 3.536e−2 − 6.097e−2 − 4.105e−1 −
80 × 40 9.113e−3 1.956 2.497e−2 1.288 1.997e−1 1.039

160 × 80 2.034e−3 2.163 6.548e−3 1.931 5.236e−2 1.931

320 × 160 5.114e−4 1.992 1.640e−3 1.997 1.278e−2 2.035

640 × 320 1.287e−4 1.990 4.097e−4 2.001 3.119e−3 2.034

1280 × 640 3.233e−5 1.993 1.024e−4 2.000 7.818e−4 1.996

Table 4.2 Global solution error and convergence rate for the modified vortex preservation problem.
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4.3.5 Mass flux examination

Due to using non-body conformal Cartesian grids, mass flux over immersed boundary is a

fundamental issue in immersed boundary methods [60], and efforts such as adopting cut-cell

approaches have been devoted in existing studies [140–142] in an attempt to alleviate this

issue. This section examines the mass flux produced by the proposed method herein on

generic Cartesian grids with practical grid sizes.

The streamlines of a Mach 2.81 shock diffracting over different types of particles are

presented in Fig. 4.17. The solved streamlines by the developed immersed boundary method

are closely aligned with the geometry surfaces, even in the three-dimensional problem where

a coarse grid is employed.

(a) (b) (c)

Figure 4.17 Streamlines of a Mach 2.81 shock diffracting over different types of particles with

corresponding analytical geometry boundaries presented. (a) Shock diffraction over a cylinder

solved on a 6D × 6D domain discretized by a 600 × 600 grid, no-slip wall. (b) Shock diffraction

over a cylinder solved on a 6D × 6D domain discretized by a 600 × 600 grid, slip wall. (c) Shock

diffraction over two partially overlapped spheres solved on a 6D × 6D × 6D domain discretized by

a 250 × 250 × 250 grid, no-slip wall.

For the purpose of quantitatively examining the unphysical flux, the surface-normalized

absolute flux over the immersed boundary

fibm =
1

S

∫
S

|(V − V S) · n| dS (4.26)

or in a discrete form

fibm =
1

N

N∑
n=1

|(V n − V S) · nn | (4.27)

is employed as a quantitative measure, in which, N is the number of the first layer ghost

nodes, V is the flow velocity at the ghost node, V S is the velocity of the geometry, n is the

local unit outward surface normal vector.
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The proposed fibm measures the flux at about one grid distance away from the physical

boundary without involving interpolation and will overestimate the flux through the geome-

try. Therefore, fibm can be a reliable measure of the unphysical flux and hence the interface

sharpness.

Table 4.3 The surface-normalized absolute flux fibm for the supersonic flow over a wedge problem.

Grid fibm ( m/s) fibm/(M∞a)
600 × 300 1.825e−1 0.456%

900 × 450 1.213e−1 0.303%

1200 × 600 9.126e−2 0.228%

1800 × 900 6.099e−2 0.152%

2400 × 1200 4.557e−2 0.114%

As a problem involves a steady supersonic flow passing a relatively strong convex

geometry with the intricate slip-wall boundary condition, the fibm of the supersonic flow

over a wedge problem for the case M∞(2) − θ(15◦) − βe(45.344◦) is examined and is shown

in Table 4.3. For a wide range of grids under the presence of complex shock interactions

near the geometry boundary, the proposed method generates very low surface-normalized

absolute fluxes over the immersed boundary. For instance, the value of fibm/(M∞a0) is

about 0.456% for the 600×300 grid. According to the discussed qualitative and quantitative

results, the developed immersed boundary method herein retains a very sharp interface and

is able to effectively alleviate unphysical flux over physical boundaries when grid resolution

is improved.

4.3.6 Subsonic rotational flow

A subsonic rotational flow generated by an accelerating rotor is solved to demonstrate the

applicability of the method for fluid-solid systems involving complex geometries. As shown

in Fig. 4.18a, the 2D rotor consists of three blades with each blade being the shape of NACA

0012 airfoil, whose chord is lc = 1 m. The rotor is centered in a 6lc ×6lc domain discretized

by a 1200 × 1200 grid. The rotor rotates with an initial angular velocity ω(t = 0) = 0 rad/s
and a constant angular acceleration α = 10π rad/s2. The initial ambient flow state is

(ρ0, u0, v0, p0) = (1.2047 kg/m3, 0, 0, 101325 Pa), and the no-slip wall boundary condition

is enforced on the blades.

The predicted vorticity isocontour at a series of time instants is captured in Fig. 4.18,

in which an interesting vortex-induced vortex shedding behavior is observed. As the rotor

accelerates, vortices appear at the tips of blades as well as at the sides of the blades. The

accelerating tips stretch and deform the generated vortices, causing vortices shedding. The

detached vortices soon are entrained by the flow driven by the coming blade, either being
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merged into the tip vortices of the coming blade or being advected to the front side vortices

of the coming blade. The entrained vortices then destabilize the vortex structures they

propagate toward, inducing and accelerating the vortex shedding. The above interaction

process, combining with the acceleration of the blades, produces a complex and dynamic

vortex field showing in the figures.

In the employed case setting, the geometry of the rotor is generated by positioning three

independent NACA 0012 airfoils at a common center. The rotating system is obtained by

specifying the same rotational acceleration for the three blades. Therefore, in simulating

flow with complex geometries, employing a robust immersed boundary method enables

great simplification for the model generation process. For instance, one can obtain an

engineering structure by assembling its components via positioning while allowing over-

lapped surfaces, which avoids the cost of producing a single topology, as required by many

mesh generators such as ANSYS ICEM CFD. In addition, the current grid resolution of

the domain is 200 nodes per lc. Meanwhile, the largest width of the blade is only 0.12lc,

and the tip of blade is very thin. Consequently, there is only a line of nodes in the region

near the tip, whose length is about 5% of the chord. Nonetheless, the proposed method

resolves the thin tip region with reasonable sharpness. The overall success of simulating

the transient rotational flow illustrates the capability of the presented method for solving

general fluid-solid systems.

4.3.7 Explosive dispersal of dense particles

To further demonstrate the robustness of the presented method for solving problems with

strongly irregular, moving, and colliding geometries under challenging flow conditions, a

dense particle system dispersed by a high-density and high-pressure gas driver is studied.

As shown in Fig. 4.19, in a L3
= [−0.5 m, 0.5 m]3 computational domain, a spherical

five-layer particulate payload with 2130 particles is initially centered at O(0, 0). The radius

of the 0◦ latitude of the inner-most layer is 0.1 m, and the number of particles centered on this

0◦ latitude is 24. The entire particulate payload is then generated through varying the radius

of particles in each layer such that neighboring particles in each spherical layer are tangent

with each other, and neighboring particles in neighboring layers are also tangent with each

other as much as possible. A flow state (ρc, uc, vc, pc) = (1000 kg/m3, 0, 0, 1.01325×106 Pa)
is initially filled in the center of the particulate payload. The flow state at the rest of the

region is set to (ρ0, u0, v0, p0) = (1.2047 kg/m3, 0, 0, 1.01325 × 105 Pa). In order to reduce

the discrepancy of the timescales between shock propagation and particle acceleration,

relatively light particles with a density of 27 kg/m3 are used.

This fluid-solid system is solved to t = 7 ms on a 8003 grid. In the development of the

flow solver, one design principle is to store a minimum set of information and to calculate

derived quantities on-the-fly. For instance, only five conservative variables at three time
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(a) t = 0.00 s, Vtip = 0.0 m/s (b) t = 0.25 s, Vtip = 2.5πm/s (c) t = 0.50 s, Vtip = 5.0πm/s

(d) t = 0.75 s, Vtip = 7.5πm/s (e) t = 1.00 s, Vtip = 10.0πm/s (f) t = 1.50 s, Vtip = 15.0πm/s

Figure 4.18 Vorticity isocontour at a series of time instants generated by an accelerating rotor.

[Nomenclature: Vtip, velocity magnitude of the tip of a blade.]

(a) (b)

Figure 4.19 Configuration for explosive dispersal of dense particles. (a) Computational domain. (b)

A clip view of the particulate payload.
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(a) t = 1 ms (b) t = 3 ms (c) t = 5 ms (d) t = 7 ms

Figure 4.20 The computed dispersal process of the particle system.

levels are stored for the time integration of the governing equations through a third-order

Runge–Kutta scheme, and all the other quantities such as convective fluxes are calculated

in progress.

In addition to fifteen float variables, four integers related to multidomain node mapping,

ghost node identification, fresh node tracking, and the closest facet linking, respectively,

are stored. The purpose of the closest facet linking variable is also to reduce the stored

information set. Implementing an immersed boundary method at a ghost node G requires

a set of information at the boundary point O such as coordinates, surface velocity, normal

and tangent vectors. Instead of storing multiple expensive floats, using an integer variable

to link each ghost node G to its closest geometric facet, which is a by-product of the

point-in-polyhedron test conducted at the preprocessing step, can save a significant amount

of memory while being efficient to derive all the required information through on-the-fly

point-to-facet calculations. Furthermore, in order to maintain data locality, a compound

data type is used to pack all the float and integer field variables for each node. Using the

defined compound data type as element data type, a single linear array is used as the main

data structure for improving cache performance. As a result of using a Cartesian grid and

the described design principles, the actual runtime memory allocation of this problem with

double-precision computation is about 67 gigabytes, while the theoretical requirement of

storing fifteen floats and four integers for 8073 ≈ 5.255 × 108 nodes taking account for the

global numerical boundaries is 66.567 gigabytes.

The computed dispersal process of the particle system is presented in Fig. 4.20, which

depicts the development of instabilities in the particulate payload under explosive dispersal

and the formation of coherent particle clustering and jetting structures. In the solution

process, a significant number of convex and concave regions exist, form, and destroy. These

successful solutions of the explosive dispersal of a densely packed particle system further

demonstrate that the proposed flow reconstruction scheme effectively avoids potential nu-

merical singularities and preserves high robustness in solving flow with strongly irregular,
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moving, and colliding geometries.

4.4 Conclusion

An immersed boundary method has been developed, validated, and applied. The effec-

tiveness of the method in solving flow with arbitrarily irregular and moving geometries on

Cartesian grids has been illustrated through numerical experiments concerning a variety of

flow problems. The main properties of the presented method and the primary conclusions

from the numerical experiments are summarized below.

Convergence and accuracy The accuracy of the method is established through thorough

studies of the supersonic flow over a wedge problem, the supersonic translating wedge

problem, and the shock diffraction over a cylinder problem. Employing the analytical

M∞ − θ − β relation of oblique shocks, different cases considering the deflection angle

ranging from θ = 10◦ to θ = 20◦ and the Mach number ranging from M∞ = 2 to M∞ =

10 are tested, and excellent agreement between the numerical and analytical solutions is

obtained. In addition, the accuracy of the method for solving flow with moving geometry

is demonstrated through comparing the oblique shocks with analytical solutions as well

as via examining the entire solution field using Galilean transformation. For the shock

diffraction over a cylinder problem, good agreement between the obtained numerical results

and experimental observations as well as other published numerical results is achieved. The

successful solutions of these test cases demonstrate the validity and accuracy of the proposed

method in solving flow involving irregular and moving geometries under challenging flow

conditions. In addition, an analytically solvable modified vortex preservation problem has

been developed for a convergence study concerning smooth flow with irregular geometries,

and the convergence test in L1, L2, and L∞ norms suggests that the developed method can

preserve the designed second-order accuracy for solving flow with irregular geometries and

complex boundary conditions.

The incorporation of physical boundary conditions in the proposed three-step flow

reconstruction scheme leads to the property that the constructed ψG converges to the exact

physical boundary conditions when the ghost node G converges to the boundary point O. For

non-body conformal Cartesian grids, this property is helpful in alleviating the unphysical

flux over immersed boundaries. Two- and three-dimensional streamlines of shock-particle

interactions with slip and no-slip boundary conditions have qualitatively illustrated that

the developed method maintains a very sharp interface. Through an examination of the

surface-normalized absolute flux of the supersonic flow over a wedge problem, it has been

quantitatively shown that, under the presence of a relatively strong convex geometry with

the intricate slip-wall boundary condition and complex shock interactions near immersed
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boundaries, the developed method produces surface-normalized absolute flux in very low

quantities for a wide range of grids.

Uniformity and efficiency The proposed method enforces the Dirichlet, Neumann, Robin,

and Cauchy boundary conditions in a straightforward and consistent manner and completely

avoids the necessity to solve linear systems. As a result, an arbitrary number of field

variables that satisfy different types of boundary conditions, such as velocity, pressure, and

temperature, can be efficiently and uniformly treated. In addition, the proposed method

easily facilitates the development of a solver that unifies 1D, 2D, and 3D computations as well

as the generation of a complex geometric object through assembling its multiple components

via positioning while allowing overlapped surfaces to avoid the cost of producing a single

topology. The uniformity of the method has been illustrated via the solution of two- and

three-dimensional flow problems with no-slip and slip wall boundary conditions. Benefiting

from the use of generic Cartesian grids and the linear-time algorithm complexity as well as

the matrix inversion-free property of the proposed immersed boundary method, except the

explosive dispersal of dense particle problem, all the other presented test cases herein were

solved using a single processor.

Robustness and stability The proposed method employs a three-step flow reconstruction

scheme that is scalable to the number of stencil nodes and is uniformly valid under a

varying number of stencils, even in the worst situation, in which only one fluid node

exists in the domain of dependence of an image point. In addition, as demonstrated by

the implementation of the 7-point-stencil WENO scheme, which requires 3 ghost node

layers, the method can be applied to multiple layers of ghost nodes without imposing extra

constraints. This property can greatly facilitate the application of high-order spatial schemes

to flow with complex geometries.

Utilizing the three-step reconstruction as well as the convex and extrema-preserving

properties of the inverse distance weighting, the proposed method presents strong numer-

ical stability, as demonstrated in the numerical experiments involving challenging flow

conditions and dynamic geometries, such as the supersonic translating wedge flow, the

subsonic rotational flow, and the explosive dispersal of dense particles. Equipped with

suitable discretization schemes, the developed immersed boundary method enables feasi-

ble solutions of problems with engineering level of complexity and hence enhances the

understanding of physical problems.
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Chapter 5

Mesoscale Study on Particle Cluster and

Jet Formation

5.1 Introduction

Macroscale coherent particle clustering and jetting structures can be frequently exhibited

in explosively dispersed granular materials. Influencing the mass concentration and related

particle reaction and energy release, this particle clustering and jetting phenomenon is

important to study flow instability and turbulent mixing in heterogeneous detonation and

explosion. Primarily due to the complex mesoscale multiphase interactions involved in

the dispersal process, the underlying physical mechanism remains unclear. In this chapter,

employing the developed framework, direct simulations that capture coupled multiphase

interactions and deterministic mesoscale granular dynamics are conducted to investigate

particle clustering and jetting instabilities. A random sampling algorithm is employed

to generate stochastic payload morphologies with randomly distributed particle positions

and sizes. Through solving and analyzing cases that cover a set of stochastic payloads,

burster states, and coefficients of restitution, a valid statistical dissipative property of the

framework in solving explosively dispersed granular materials with respect to Gurney

velocity is demonstrated. The predicted surface expansion velocities can extend the time

range of the velocity scaling law with regard to Gurney energy in the Gurney theory from

the steady-state termination phase to the unsteady evolution phase. In addition, a dissipation

analysis of the current discrete modeling of granular payloads suggests that incorporating the

effects of porosity can enhance the prediction of Gurney velocity for explosively dispersed

granular payloads. On the basis of direct simulations, an explanation for particle clustering

and jetting instabilities is proposed to increase the understanding of established experimental

observations in the literature.

77



5. Mesoscale Study on Particle Cluster and Jet Formation

5.2 Payload configuration with stochastic morphology

As illustrated in Fig. 5.1, a 2D stratified burster-payload configuration with a cylindrical

charge shape is considered. The computational domain is a square region of length l

and is characterized by three sub-domains: the burster region ΩB, payload region ΩL,

and ambient air region ΩA. The flow states at the payload and ambient air regions are

set to (ρa, ua, va, pa) = (1.2047 kg/m3, 0, 0, 1.01325 × 105 Pa). Since burster detonation

happens before payload expansion, and the timescale of the former can be much smaller

than that of the latter, the burster in initially condensed phase is approximated by a reacted

gas product with constant volume. The initial burster considers three different states as

B j : (ρb, ub, vb, pb) = (1.0 × 103 kg/m3, 0, 0, p j), where j = 1, . . . , 3, and p1 = 0.5 × 105pa,

p2 = 1.0 × 105pa, and p3 = 2.5 × 105pa with pa being the pressure of the ambient air.

Burster, Ω
B

r
1

r
2

Payload, Ω
L

Ambient Air, Ω
A

Figure 5.1 A schematic diagram of a 2D stratified burster-payload configuration with a cylindrical

charge shape.

In order to focus on granular dynamics, payload casings are omitted, and the payload

consists of tightly-packed, inert, rigid, and circular particles. The density of particle is

ρs = 2700 kg/m3. In the current study, the coefficient of restitution CR considers two

constant states Ck , k = 1, 2, with C1 = 1.0 for elastic pairwise collision and C2 = 0.5 for a

representative inelastic pairwise collision.

In this study, the morphology of the granular payload that occupies the region ΩL is

characterized by the inner radius r1, outer radius r2, number of particles n, particle position

variable (x, y), particle diameter variable d, particle volume fraction φ, and payload to

burster mass ratio M/C. For the generation of stochastic payload morphology, the particle

position (x, y) and diameter d are considered as the primary random variables.
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A random variable X with a continuous univariate distribution can be described by a

probability density function (PDF) f (x) such that

P(x1 ≤ X ≤ x2) =
∫ x2

x1

f (x) dx (5.1)

where P(x1 ≤ X ≤ x2) represents the probability that the random variable X satisfies

x1 ≤ X ≤ x2, and f (x) is a non-negative function that satisfies the normalization condition

P(−∞ < X < +∞) =
∫
+∞

−∞
f (x) dx = 1 (5.2)

Subsequently, the probability of X ≤ x can be measured by a cumulative distribution

function (CDF) F(x):
F(x) = P(X ≤ x) =

∫ x

−∞
f (ξ) dξ (5.3)

A random number generator usually produces a uniformly distributed value ui in [0, 1]
for each trial i. To generate a value xi distributed as a specific f (x) via a random number

generator, the inverse transform sampling method [143] that connects xi with ui is used:

xi = F−1(ui) (5.4)

in which F−1(u) is the inverse function of F(x).
In the regionΩL, the particle position (x, y) can be projected to the (r, θ) space, in which

r and θ are radius and angle, respectively. As the perimeter of a circle is a linear function

of the radius, a random sampling of particle positions with a uniform distribution in ΩL

requires that the PDF of radius r , fr(r), is a linear function on the support domain [r1, r2].
That is,

fr(r) =
1∫ r2

r1
ξ dξ

r =
2

r2
2
− r2

1

r (5.5)

Then, the CDF of radius r has

Fr(r) =
2

r2
2
− r2

1

∫ r

r1

ξ dξ =
r2 − r2

1

r2
2
− r2

1

(5.6)

Correspondingly, the inverse CDF of radius r is

F−1
r (u) =

√
u(r2

2
− r2

1
) + r2

1
(5.7)

Therefore, a random sampling of particle positions with a uniform distribution in ΩL can

be described as
θ = uθ ∗ 2π

r =

√
ur ∗ (r2

2
− r2

1
) + r2

1

x = r ∗ cos(θ)
y = r ∗ sin(θ)

(5.8)
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where uθ and ur are random variables with a uniform distribution in [0, 1]
When considering particles with finite sizes, the randomly sampled particle position

set {(x, y)} needs to satisfy a condition that each new trial (xi, yi) has a minimum distance

of 0.5(di + d j) to any previously valid trial (x j, y j) as well as of 0.5di to the boundaries

of ΩL. This distance-constrained random sampling can be seen as a varying-radii type

of Poisson-disk sampling [144, 145]. In this study, a rejection sampling that rejects any

invalid (xi, yi) is used to satisfy the distance constraint. Assuming the particle diameter

d ∈ [dmin, dmax], the termination condition of the rejection sampling is chosen as when

ni > Ni, Ni = 50(r2
2 − r2

1 )/(0.5dmin)2 (5.9)

in which ni is the number of consecutively invalid trials and is reset to ni = 0 after obtaining

each valid trial, and Ni represents a heuristic value that is 50 times the area ratio between

ΩL and a particle of diameter dmin.

As the random sampling proceeds, particles with larger diameters are subject to higher

rejection probabilities. In order to reduce the occurrence of invalid trials and potentially

increase the tightness of the payload under the given termination condition, the particle

diameter is randomly sampled as

di = dmin + ud ∗ (dmax − dmin) ∗ (1 − ni

Ni

)0.5 (5.10)

where ud is a random variable with a uniform distribution in [0, 1]. That is, the sampled

diameter di converges to dmin when ni approaches to Ni. Subsequently, the number of

particles n is determined upon the termination of the random sampling process. In addition,

the particle volume fraction, φ, of the granular payload has

φ =

∑n
i=1(di/2)2

r2
2
− r2

1

(5.11)

and the mass ratio, M/C, between the payload mass M and burster mass C has

M/C =
ρsφ(r2

2
− r2

1
)

ρbr2
1

(5.12)

As a multiscale problem, the ratio between the computational domain length l and

particle size d is limited by the available computational power. If the minimum number

of grids per particle diameter is required to be ngpd, the total number of grids per spatial

dimension ngps is then about ngpdl/d. As a result, to ensure a desired ngpd under a specific

ngps, the particle diameter needs to satisfy d ≥ ngpdl/ngps.

For the current random morphologies under an affordable computational power, l =

0.15 m, max{ngps} = 7500, and min{ngpd} = 50 are assumed. Correspondingly, the particle
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diameter is assumed to be a random variable distributed in [dmin, dmax] = [1 mm, 2 mm].
The payload region ΩL defined by r1 and r2 considers four sizes ΩLh = {r : r ∈ [r1 =

0.01 m, r2 = r̂h]}, h = 1, . . . , 4, in which r̂1 = 0.02 m, r̂2 = 0.025 m, r̂3 = 0.03 m, and

r̂4 = 0.04 m. For each size ΩLh of stochastic payload, three random samples are generated

with the i-th random sample ofΩLh denoted as Lh.i, i = 1, . . . , 3. Payload morphologies for

ΩLh.1 generated by the described sampling algorithm are shown in Fig. 5.2.

(a) (b) (c) (d)

Figure 5.2 Payload morphology samples generated by the random sampling algorithm with rejection

sampling. The color of particles is rendered by the particle diameter. (a) ΩL1.1 with n = 428,

M/C = 4.704, and φ = 0.581. (b) ΩL2.1 with n = 742, M/C = 8.310, and φ = 0.586. (c) ΩL3.1

with n = 1162, M/C = 13.040, and φ = 0.604. (c) ΩL4.1 with n = 2170, M/C = 24.700, and

φ = 0.610.

In the following discussions, Lh.i − B j − Ck is used to represent a case with the i-th

sample of payload size ΩLh, burster state B j , and coefficient of restitution Ck .

Different from a previously published work [75] on deterministic payloads, in this study,

the surface expansion velocity VE of a payload is calculated from the velocities of the entire

set of particles rather than only the particles near the payload boundaries, since the latter

can be strongly affected by the random sampling process for particle positions. Therefore,

the current choice can better depict the statistical behaviors of stochastic payloads to make

the computational analysis more robust. VE is then analyzed via the maximum VE,Max, mean

VE,Mean, and minimum VE,Min of particle velocities in VE as well as the root-mean-square of

velocity fluctuations VE,RMS. Limited by the range of computational domain, at the end of

solution time, payloads ΩLh with small sizes can reach a nearly constant expansion stage,

while payloads with large sizes may still undergo very gradual acceleration but have passed

the early phase of rapid acceleration, as captured in Fig. 5.3, in which VE,Max and VE,Min

consistently record the velocity history of two individual particles that have the maximum

and minimum velocity at the end of solution time, respectively.
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Figure 5.3 Time history of surface expansion velocity VE of case Lh.1 − B2 − C2, h = 1, . . . , 4. (a)

L1.1 − B2 − C2. (b) L2.1 − B2 − C2. (c) L3.1 − B2 − C2. (c) L4.1 − B2 − C2.
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5.3 Statistical dissipative behavior

Predicting the expansion speed and subsequent expansion range is useful in quantifying

explosive dispersal processes and understanding the clustering of particles. Through as-

suming a uniform density and a linear velocity gradient in the detonation gas products, an

intact payload shell, and axial symmetry, the maximum speed of an explosively expanding

solid shell can be modeled by the Gurney equation using 1D theoretical analysis [70]

VG =

√
2E

(
M

C
+

n

n + 2

)−0.5

(5.13)

in which VG is the maximum velocity of the accelerated shell; C is the mass of the burster;

M is the mass of the payload shell; n depends on system geometry [146], such as plane

n = 1, cylinder n = 2, and sphere n = 3; E is related to the specific total energy of the

burster and is referred to as the Gurney energy. Herein, E is determined as the difference

between the initial specific total energies of the burster and the ambient air, that is,

E =
1

γ − 1

(
pb

ρb

− pa

ρa

)
(5.14)

where γ is the heat capacity ratio.

The Gurney theory [70] assumes the payload remaining intact throughout its accelera-

tion. In configurations where metals have low ultimate strains, the solid shell will fracture

at relatively small expansion ratios. Subsequently, the detonation gases will stream around

the fragments and bypass them to stop the acceleration, resulting in fragment velocities

typically about 80% of the value predicted by the Gurney equation [147]. For explosively

dispersed dry and fine aluminium powders, Ripley et al. [148] reported an as much as

35% velocity deficit to Gurney velocity using experimental measure. Employing numeri-

cal experiments based on a 1D continuum model for explosively dispersed porous shells,

Milne [146] proposed an extension to the Gurney equation accounting for velocity reduction

resulted from payload porosity

VG,φ =

√
2E

(
M

C

1

α(ρ0)
+

n

n + 2

)−0.5

∗ F(φ)

α(ρ0) = a0ρ
a1

0

F(φ) = 1 + (a2e(a3φ) − 0.5) ∗ log10(
M

C
)

(5.15)

where VG,φ is the extended Gurney velocity involving porosity; porosity φ = ρ/ρ0 with

ρ and ρ0 being the bulk density of the porous shell and material density, respectively;

constants a0 = 0.200, a1 = 0.180, a2 = 0.162, and a3 = 1.127 for cylindrical charge, and

a0 = 0.310, a1 = 0.132, a2 = 0.168, and a3 = 1.090 for spherical charge.
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5.3.1 A velocity scaling law with regard to Gurney energy

For both the Gurney equation (Eq. (5.13)) and modified Gurney equation (Eq. (5.15)), under

a given M/C and φ, the calculated velocity is proportional to
√

E:

V̂m
G

V̂n
G

=

√
Em

En

(5.16)

in which V̂m
G

represents the Gurney velocity computed using either Eq. (5.13) or Eq. (5.15)

under Gurney energy Em. Therefore, for reaching a similar expansion range, the solution

time is suggested to satisfy an inversely proportional relation:

tn

tm
=

V̂m
G

V̂n
G

=

√
Em

En

(5.17)

As captured in Fig. 5.4, the predicted solutions at the end of solution time well obey

the above scaling law. For a given payload with a certain M/C and φ, when changing the

driver states, the solution times needed to obtain a similar expansion range are inversely

proportional to the square root of Gurney energy.

(a) (b) (c)

Figure 5.4 The numerical solutions of L2.1 − Bj − C2 that include different Gurney energies Ej and

solution times tj , j = 1, . . . , 3, but reach a similar expansion range. (a) L2.1 − B1 − C2 solved to

t1 = 40.3 µs. (b) L2.1 − B2 − C2 solved to t2 = 28.5 µs ≈ t1
√

E1/E2. (c) L2.1 − B3 − C2 solved to

t3 = 18.0 µs ≈ t1
√

E1/E3.

In order to further quantify the velocity scaling law in numerical solutions, for case

Lh.i − B j − Ck , the solution time t j and expansion velocity V
j

E
are scaled to t j

√
E j/E1

and V
j

E

√
E1/E j , respectively. Then, the scaled time histories of VE under different Gurney

energies are compared in Fig. 5.5 for a variety of cases. Since the Gurney theory concerns

the maximum expansion velocity of the entire solid shell, for the rest of the discussion,

VE,Max and VE,Min now consistently record the maximum and minimum velocity among the
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entire set of particles at each time step rather than follow the time history of an individual

particle. It can be observed that the predicted expansion velocity can highly preserve the

velocity scaling law with regard to Gurney energy not only at the end of solution time

but also throughout the solution time, which includes the maximum VE,Max, mean VE,Mean,

and minimum VE,Min and is particularly true for the mean expansion velocity VE,Mean. For

instance, the maximum deviation of the scaled VE,Mean among Lh.1 − B j − C2 in Fig. 5.5

happens in the case L1.1 − B2 − C2 and is only 0.792% of that of L1.1 − B1 − C2. This

agreement among the scaled expansion velocities in time space extends the time range of

the velocity scaling law in the Gurney equation (Eq. (5.13)) and modified Gurney equation

(Eq. (5.15)) from the steady-state termination phase to the unsteady evolution phase.

5.3.2 Gurney velocity analysis

Employing the demonstrated velocity scaling law on Gurney energy, the analysis of Gurney

velocity can be naturally reduced to only concerning one type of Gurney energy. A

comparison between Gurney velocity VG, Gurney velocity with porosity VG,φ, maximum

VE,Max, mean VE,Mean, and minimum VE,Min of the terminal expansion velocity VE, that is,

the VE at the end of solution time shown in Fig. 5.5, for Lh.i − B2 − Ck , h = 1, . . . , 4,

i = 1, . . . , 3, k = 1, 2, is shown in Fig. 5.6. Comparing VE,Max with VG, the results

suggest that several particles can have velocities close to or even higher than VG. Through

animating the solutions in time, it is found that these particles in general are detached from

the neighboring particles very early by both inter-grain collisions and fast growing buster

fluid jets emerged near them and then are effectively accelerated by the surrounding high

pressure gradient generated by the burster jets, causing a much higher velocity than other

particles.

Compared to VE,Max and VE,Min, VE,Mean can better represent the collective behavior of

grains and hence the granular payload. Hence, a comparison between VG, VG,φ, and VE,Mean

is further shown in Fig. 5.7. The predicted VE,Mean is about 61%-67% of VG and 82%-90% of

VG,φ for Lh.i−B2−C2 and is about 69%-75% of VG and 86%-110% of VG,φ for Lh.i−B2−C1.

In addition, the predicted VE,Mean of each Lh.i −B2 −C2 is consistently lower than that of the

corresponding Lh.i − B2 − C1, which indicates a valid dissipation behavior resulting from

the change of coefficient of restitution for pairwise collisions.

Comparing VE,Mean with VG and VG,φ, the results show that VE,Mean can agree better with

VG,φ than VG for all the cases Lh.i − B2 − Ck . Considering the difference between the 1D

continuum modeling forVG,φ and the current 2D discrete modeling forVE,Mean, the agreement

between VE,Mean and VG,φ could be the incidentally agreed overall dissipation between the

two different modeling approaches. In the 1D continuum modeling for VG,φ, the dissipation

mainly comes from the extra PdV heating of the porous material modeled by the Herrmann

P-α equation of state [146]. In the current discrete modeling, the dissipation processes can
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Figure 5.5 A comparison of the scaled time history of VE for Lh.1−Bj−C2 with the scaling tj
√

Ej/E1

and V
j

E

√
E1/Ej , j = 1, . . . , 3. (a) VE,Max of L1.1 −Bj −C2. (b) VE,Mean of L1.1 −Bj −C2. (c) VE,Min of

L1.1−Bj −C2. (d) VE,Max of L2.1−Bj −C2. (e) VE,Mean of L2.1−Bj −C2. (f) VE,Min of L2.1−Bj −C2.

(g) VE,Max of L3.1 −Bj −C2. (h) VE,Mean of L3.1 −Bj −C2. (i) VE,Min of L3.1 −Bj −C2. (j) VE,Max of

L4.1 − Bj − C2. (k) VE,Mean of L4.1 − Bj − C2. (l) VE,Min of L4.1 − Bj − C2.
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Figure 5.6 Comparison between VG, VG,φ, VE,Max, VE,Mean, and VE,Min for Lh.i −B2−Ck , h = 1, . . . , 4,

i = 1, . . . , 3, k = 1, 2, at the end of solution time. (a) Lh.i −B2 −C2. (b) Lh.i −B2 −C1. Legend: •,

VG; +, VG,φ; H, VE,Max; ×, VE,Mean; �, VE,Min.
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Figure 5.7 Comparison between VG, VG,φ, and VE,Mean for Lh.i − B2 − Ck , h = 1, . . . , 4, i = 1, . . . , 3,

k = 1, 2, at the end of solution time. (a) Primitive values. Legend: •, VG; +, VG,φ; H, VE,Mean

of Lh.i − B2 − C2; ×, VE,Mean of Lh.i − B2 − C1. (b) Value ratios in percentage. Legend: •,

VE,Mean/VG ∗100% of Lh.i−B2−C2; +, VE,Mean/VG ∗100% of Lh.i−B2−C1; H, VE,Mean/VG,φ ∗100%

of Lh.i − B2 − C2; ×, VE,Mean/VG,φ ∗ 100% of Lh.i − B2 − C1.
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include inter-grain collisions and the escape of burster fluid, which are physical features

that cannot be naturally represented in 1D continuum models for granular materials. Since

the VE,Mean of Lh.i − B2 − C2 is about 61%-67% of VG, while the VE,Mean of Lh.i − B2 − C1

is about 69%-75% of VG, it is suggested that about 25%-31% dissipation can be roughly

attributed to the energy lose resulting from the escape of burster fluid in the current porous

payloads. The better agreement between VE,Mean and VG,φ and the major dissipation caused

by the escape of burster fluid both suggest that incorporating the effects of porosity can

enhance the prediction of Gurney velocity for explosively dispersed granular payloads.

In analyzing the surface expansion velocity VE, two critical properties of the Gurney

velocity theory, such as VG decreasing with an increase in M/C and VG proportional to
√

E ,

have been consistently produced in the direct simulations. In addition, the predicted VE,Mean

of inelastic collisions is smaller than that of elastic collisions, obeying the effects of more

dissipative collisions. Moreover, the predicted VE,Mean using a 2D discrete model herein

can broadly agree with the VG,φ concerning porosity φ via a 1D continuum model. These

findings thus effectively demonstrate a valid statistical dissipative property in the mesoscale

model for the granular payload and the subsequent dense gas-solid flow.

5.4 Particle cluster and jet evolution

The dispersal processes of the case L2.1−B2−C2 and L3.1−B2−C2 are captured in Fig. 5.8

and Fig. 5.9, respectively. On the basis of the direct simulations, an explanation for particle

clustering and jetting instabilities is proposed.

1. Shock compaction phase.

Once the burster expands in space, the granular payload is radially compacted such

that the inner particles move outward to occupy the pore spaces and subsequently

collide with nearby particles to build force-chain networks for momentum transfer.

As shown from Fig. 5.8a to Fig. 5.8c of L2.1 −B2 −C2 and from Fig. 5.9a to Fig. 5.9c

of L3.1 −B2 −C2, until the radial compaction propagates throughout the payload, the

outer payload-air interface almost stays stationary.

At the inner burster-payload interface, shock reflects and diffracts on the irregular

surfaces introduced by grains, generating inward density gradients and perturbations.

RMI/RTI can then be possibly induced into the burster side, and particles can be

entrained by the growing perturbations as well as pushed by the inner particles

to form inside clusters and jets, which are then soon disturbed by the subsequent

expansion of the converging shocks reflected from the burster center, as shown at the

burster region from Fig. 5.8b to Fig. 5.8d of L2.1 − B2 − C2 and from Fig. 5.9b to

Fig. 5.9d of L3.1 − B2 − C2.
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(a) t = 0.0 us (b) t = 1.4 us (c) t = 2.8 us

(d) t = 5.8 us (e) t = 8.6 us (f) t = 11.4 us

(g) t = 17.1 us (h) t = 22.8 us (i) t = 28.5 us

Figure 5.8 The dispersal evolution for case L2.1 − B2 − C2 captured via the superimposition of

fluid field rendered by density gradient and particle field rendered by velocity. Density gradient

in logarithmic scale: [White, Black] = [1.0, 1.7 × 107]. Particle velocity ( m/s) in linear scale:

[Blue,Red] = [0.0, 3000.0].
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(a) t = 0.0 us (b) t = 1.6 us (c) t = 3.2 us

(d) t = 6.3 us (e) t = 9.5 us (f) t = 12.6 us

(g) t = 18.9 us (h) t = 25.2 us (i) t = 31.5 us

Figure 5.9 The dispersal evolution for case L3.1 − B2 − C2 captured via the superimposition of

fluid field rendered by density gradient and particle field rendered by velocity. Density gradient

in logarithmic scale: [White, Black] = [1.0, 1.7 × 107]. Particle velocity ( m/s) in linear scale:

[Blue,Red] = [0.0, 3000.0].
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(a) t = 5.8 us (b) t = 8.6 us (c) t = 11.4 us

(d) t = 5.8 us (e) t = 8.6 us (f) t = 11.4 us

(g) t = 5.8 us (h) t = 8.6 us (i) t = 11.4 us

Figure 5.10 The development of internal sliding and colliding lines for cases L2.i − B2 − C2,

i = 1, . . . , 3. (a), (b), (c) L2.1 − B2 − C2. (d), (e), (f) L2.2 − B2 − C2. (g), (h), (i) L2.3 − B2 − C2.
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(a) t = 14.0 ms (b) t = 18.0 ms (c) t = 24.0 ms

Figure 5.11 The experimental observation of a weak shock dispersed flour powder in a Hele-Shaw

cell [7].

2. Jet initiating phase.

During shock compaction, a large pressure gradient exists between the inside and

outside regions of the payload, which accelerates not only the payload but also the

burster fluid into the payload.

(a) Fine jets. The current mesoscale simulations show that, through shock com-

paction, perturbations at the inner burster-payload interface as well as within the

payload can effectively propagate to the outer payload-air interface, as captured

from Fig. 5.8b to Fig. 5.8d of L2.1 − B2 − C2 and from Fig. 5.9b to Fig. 5.9d

of L3.1 − B2 − C2. An impulsive acceleration can then be imposed on the outer

payload-air interface via the force-chain networks in the payload, which could

induce macroscale RMI into the ambient air through impulsively growing the

initial interfacial irregularities. Under the continuous acceleration sustained by

the pressure gradient, it is suggested that the RMI-enhanced perturbations at the

outer payload-air interface may further grow as a form of RTI, as observed in

[26].

(b) Primary jets. As shown in Fig. 5.8b of L2.1−B2−C2 and Fig. 5.9b of L3.1−B2−C2,

at the inner burster-payload interface, shock diffracts at convex grain surfaces

and focuses in concave inter-grain pore spaces. The burster fluid entrances the

payload through inter-grain pores and initiates payload fractures. However, the

payload fracture patten is dominated not by the initial pores at the inner burster-

payload interface but mainly by the gas-granule interaction and force-chain

propagation within the payload, as further explained below.

Driven by pressure gradient, burster fluid penetrates the payload through the

pore spaces among particles and induce inter-grain collisions. The collisions

among particles generate a complex force chain in the granular payload. Within

the force-chain networks, internal sliding lines are regions of weak resistance
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and function as the attraction points for payload fractures and burster fluid, while

internal colliding lines are effective for momentum transfer among particles and

facilitate the formation of particle clusters. A comparison of the development

of sliding and colliding lines for cases L2.i − B2 − C2, i = 1, . . . , 3, is shown

in Fig. 5.10. It can be observed that different payload morphologies can de-

velop varied sliding and colliding lines, which lead to a corresponding pattern

for payload fracturing and particle clustering. This development of sliding and

colliding lines in a granular payload can also be found in experimental obser-

vations, such as in the time evolution of a weak shock dispersed flour powder

confined in a Hele-Shaw cell [7], as captured from Fig. 5.11a to Fig. 5.11c.

As the buster fluid penetrates the payload, the particle clusters and their low-

pressure interstitial fluid will be contained by the surrounding high-pressure

buster fluid. The local pressure gradient between the surrounding flow and

interstitial flow can help maintain the stability of the particle clusters and cause

more inelastic collisions. The increased collisions effectively induce a more

equilibrium momentum distribution in each particle cluster and again maintain

the stability of the cluster, as shown from Fig. 5.8e to Fig. 5.8g of L2.1 −B2 −C2

and from Fig. 5.9e to Fig. 5.9g of L3.1 − B2 − C2. The existence of stable

clusters introduce a more non-equilibrium momentum distribution in the overall

payload, exhibiting as a form of clustering instability.

3. Jet growing and relaxation phase.

The strained expansion of both the burster and payload eventually leads to the complete

penetration of buster fluid, as shown in Fig. 5.8e of L2.1 − B2 − C2 and Fig. 5.9g of

L3.1 − B2 − C2. The fracture of the payload causes the increase of escaping burster

fluid, and particle clusters are accelerated into the ambient air. When subjected

to a relatively small growth rate, the early formed fine jets at the outer payload-air

interface can be dissipated by aerodynamic interactions or overtaken by the payload

front comprising primary clusters or jets during fast expansion. After penetrating a

granular payload, the blast front can be highly irregular.

As captured from Fig. 5.8d to Fig. 5.8g of L2.1 − B2 − C2, during the acceleration

phase of a particle cluster, the surrounding blast flow shears with the cluster bound-

aries with the shear direction toward the front region of the cluster, causing nearby

particles converge to the shear wake at the cluster front. This shear behavior could

be responsible for the finger-like shape of particle jets observed in macroscale ex-

periments and introduce Kelvin–Helmholtz instability (KHI) at cluster boundaries.

Note that the resulting KHI has an inverse shear direction with the usual KHI accom-

panying a RTI, in which the latter KHI leads to a mushroom shape due to adverse

shear.
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As the blast expansion continues, the velocity difference between the surrounding

flows and the particle clusters gradually reduces, and particle clusters have gained

most of the momentum from the blast flow. Within the limited M/C ratios studied

in the current simulations, it is suggested that the relaxation of surrounding flows

weakens the local pressure gradients for maintaining particle clusters and jets, together

with aerodynamic interactions, leading to the relaxation of particle clusters and jets,

as shown from Fig. 5.8h to Fig. 5.8i of L2.1 − B2 − C2 and from Fig. 5.9h to Fig. 5.9i

of L3.1 − B2 − C2.

In the current dispersal of payloads with relatively small M/C ratios and number

of particles, the burst gas escapes through the limited layers of solid particles with

less energy loss, causing a quick relaxation of particle clusters and jets. For the

dispersal of granular payloads with large M/C ratios and numerous particles, it is

suggested that the blast flow subjects to a more rapid energy decay during diverging

expansion, while solid particles can largely retain the gained momentum due to inertia

and maintain the form of particle clusters or jets for a prolonged period.

5.5 Conclusion

The developed interface-resolved direct simulation framework has been applied to study

the gas-solid flow generated by explosively dispersed granular materials. The numerical

investigation considers a 2D stratified burster-payload configuration with a cylindrical charge

shape. The particle positions and sizes in the granular payloads are obtained by a random

sampling algorithm to achieve stochastic payload morphologies. In the current study, a

set of cases that cover four sizes of stochastic payloads with three random samples per

payload size, three burster states, and two types of coefficients of restitution for pairwise

collisions have been solved and analyzed to help understand the particle clustering and

jetting dynamics in explosively dispersed granular materials.

Through solving explosively dispersed stochastic payloads with shock-shock, shock-

particle, and particle-particle interactions and analyzing the surface expansion velocities, a

valid statistical dissipative property of the framework has been demonstrated. The predicted

surface expansion velocities can highly preserve the velocity scaling law with regard to

Gurney energy not only at the end of solution time but also throughout the solution time,

which extends the time range of the velocity scaling law in the Gurney theory [70, 146]

from the steady-state termination phase to the unsteady evolution phase. When considering

the mean surface expansion velocities, the maximum error of the unsteady velocity scaling

law was about 0.792% among the investigated Gurney energies. A quantitative analysis

of the dissipation in the current discrete modeling of granular payloads suggests that the

escape of burster fluid rather than granular dissipation can be the major factor for the loss of
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burster energy. As a result, incorporating the effects of porosity can enhance the prediction

of Gurney velocity for explosively dispersed granular payloads.

On the basis of direct simulations, an explanation for particle clustering and jetting

instabilities has been proposed to increase the understanding of established experimental

observations in the literature. According to the direct simulations, the development of

internal sliding and colliding lines in the shock-compacted granular payload can be critical to

the subsequent fracture pattern of the payload. Particle clusters manifested through payload

fracture are then maintained by local pressure gradient between surrounding and interstitial

flows as well as by dissipative inter-grain collisions. The existence of stable clusters

introduce a more non-equilibrium momentum distribution in the overall payload, exhibiting

as a form of clustering instability. Different payload morphologies can develop varied

sliding and colliding lines, which lead to a corresponding pattern for payload fracturing and

particle clustering.
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Chapter 6

Summary and Future Work

6.1 Summary

The explosive dispersal of granular materials involves complex multiphase interactions,

such as coupled shock-shock, shock-particle, and particle-particle interactions. Under high

rates of momentum and energy transfer resulting from shock compaction and subsequent

expansion flow, the mesoscale interactions are effectively enhanced and later are manifested

via complex macroscale phenomena as the expansion proceeds. In particular, influencing

the mass concentration and related particle reaction and energy release, the formation of

coherent particle clustering and jetting structures is of significant interest to study flow

instability and turbulent mixing in heterogeneous detonation and explosion.

In order to better understand the dynamics of particle clustering and jetting behaviors,

direct simulations that capture mesoscale multiphase interactions were adopted. Due to the

difficulties in achieving the direct simulation of explosively dispersed granular materials,

such as challenges associated with fluid-solid interaction, dynamic phase interface, mesh

generation and regeneration, multibody contact and collision, complex interfacial condition,

computational efficiency and robustness, and the presence of high-pressure shock waves,

solely integrating existing numerical techniques was not able to obtain a capable compu-

tational solver. Therefore, new mathematical models and numerical methods that bridge

the gap between the available methods and remaining problems were required. As a result,

to study particle cluster and jet formation via direct simulations, this thesis included two

major scopes: the development of a high-fidelity gas-solid flow solver and the numerical

investigation on particle clustering and jetting instabilities in explosively dispersed granular

materials.

A numerical framework that integrates operator splitting for partitioned fluid-solid

interaction in the time domain, 2nd/3rd order strong stability-preserving Runge–Kutta

methods and 3rd/5th order weighted essentially nonoscillatory schemes for high-resolution
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tempo-spatial discretization, the front-tracking method for evolving phase interfaces, a new

field function developed for facilitating the solution of complex and dynamic fluid-solid

systems on Cartesian grids, a new collision model developed for deterministic multibody

contact and collision with parameterized coefficients of restitution and friction, and a

new immersed boundary method developed for treating arbitrarily irregular and moving

boundaries has been developed and validated. On the basis of the developed framework,

a Cartesian, 3D, high-resolution, parallelized, gas-solid flow solver has been created with

the capability of tackling shocked flow conditions, irregular and moving geometries, and

multibody collisions. The developed framework and solver can accurately, efficiently,

and robustly solve coupled fluid-fluid, fluid-solid, and solid-solid interactions with flow

conditions ranging from subsonic to hypersonic states.

Employing the developed framework and solver, direct simulations that capture coupled

multiphase interactions and deterministic mesoscale granular dynamics were conducted to

investigate particle clustering and jetting instabilities. The numerical investigation con-

sidered a 2D stratified burster-payload configuration with a cylindrical charge shape, in

which the particle positions and sizes were generated by a random sampling algorithm to

achieve stochastic payload morphologies. Employing the theory of Gurney velocity, a valid

statistical dissipative property of the framework in solving explosively dispersed granular

materials was demonstrated. The predicted surface expansion velocities highly preserved

the Gurney-energy-related velocity scaling law not only at the end of but also throughout

the solution time. In addition, a dissipation analysis of the current discrete modeling of

granular payloads suggests that incorporating the effects of porosity can enhance the predic-

tion of Gurney velocity for explosively dispersed granular payloads. Using results obtained

from direct simulations, an explanation for particle clustering and jetting instabilities was

proposed.

6.2 Future work

In the investigation of particle cluster and jet formation, simplifications on the physical

model have been made to outline the main features of the physical problem and to make

the direct simulations feasible in the current stage. Nonetheless, alleviating the model

simplifications could enhance the results and potentially lead to the discovery of new

phenomena. Therefore, three main aspects of model improvements are discussed below

and can be considered as the primary research topics for future work.

Multibody collision model In the current study, a deterministic multibody collision model

built on exact pairwise collision is used. Although providing a deterministic approach for

approximating multibody collision response with parameterized elasticity and friction, the
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current model is not able to solve multibody collisions in general exactly. Therefore, the

development of a genuine multibody collision model can be of significant value in the

mesoscale modeling of granular materials.

In addition, the computational load of a mesoscale model is lower bounded by the ratio

between the largest and smallest resolved scales for the target system. Being computation-

intensive, mesoscale modeling is currently not applicable to large-scale practical systems, for

which macroscale modeling is still the most viable approach [50]. Therefore, the developed

multibody collision model can be adopted to refine binary collision-based kinetic theories

for granular materials. The refined kinetic theory can subsequently be used to develop

enhanced closure laws for macroscale models covering flow regimes with varying agitation

levels and dense-to-dilute transitions.

Deformation and fragmentation When granular materials are explosively dispersed, in-

dividual particles are compressed and accelerated by the surrounding high-pressure waves,

experiencing collision, agglomeration, deformation, and even fragmentation. In the cur-

rent study, particles are assumed to be non-deformable bodies. Therefore, in order to

enhance the physics involved in direct simulations, future research can consider extending

the current model with deformable bodies and fragmentation processes. For instance, the

Mie–Gruneisen [149, 150] equation of state and the Johnson-Cook strength model [151]

can be adopted to describe solids with deformation and fragmentation behaviors.

Parallelization and large-scale computation In the current investigation of particle

cluster and jet formation, the maximum number of particles involved in the dispersal system

is at the magnitude of 103, which is far less than that in a practical payload and could

limit the comparison between numerical results and experimentally observed particle cloud

expansions. Therefore, simulations on stochastic payloads with larger sizes and longer

run times are to be performed in future studies. To increase the number of particles

inevitably demands a higher computational capacity. The parallelization of fluid-solid

systems with dense particles imposes great challenges on the data communication and

load balancing of MPI-based parallelism, as these systems generally do not conform to

the Single Process, Multiple Data pattern of computation. Although being flexible in

parallelizing large-scale dispersed granular systems, the current OpenMP-based parallelism

restricts the computational resources that can be employed. As a result, a hybrid parallelism

that integrates OpenMP and MPI can be considered in the future studies to extend the direct

simulations into large scales.
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6.3 Concluding remarks

As a fundamental problem in many engineering applications, the interface-resolved pre-

dictive modeling of gas-solid flows is an active area of research and requires addressing a

series of challenges. Therefore, the development of an accurate, efficient, and robust direct

simulation numerical framework contributes to numerical methods applied to complex gas-

solid flow problems. In addition, the advancement in understanding particle clustering and

jet instabilities can potentially contribute to the development and application of a number

of engineering problems, including heterogeneous explosives.

Under the current assumptions of non-deformable grains, the mesoscale granular dy-

namics largely depends on the payload morphology as a result of packing methods. Different

payload morphologies can develop varied sliding and colliding lines, which lead to a corre-

sponding pattern for payload fracturing and particle clustering. With the rapid development

of high-performance computing technology, future direct simulations on stochastic pay-

loads with significantly increased domain sizes, number of particles, and solution times are

expected to lead to a better understanding of the flow instability in explosively dispersed

granular payloads. It is suggested that statistics collected from a large number of mesoscale

computations based on random payload morphologies can potentially evolve into a macro-

scopic theory of multiphase flow instability for particle clustering and jetting phenomena

widely observed in many areas involving dense gas-solid flows.
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Appendix A

3D Navier–Stokes Equations, Jacobian

Matrices, and Eigendecompositions

This chapter provides a detailed reference for the 3D Navier–Stokes equations expressed in a

variety of mathematical forms, the Jacobian matrices, and their eigendecompositions. This

reference can effectively aid the numerical discretization and code implementation for the

numerical solution of Navier–Stokes equations. In order to minimize potential errors related

to derivation and typography, the presented equations have been carefully examined both

theoretically via mathematical derivation and numerically through code implementation.

A.1 System of equations

The Navier–Stokes equations in differential form can be expressed as a system of partial

differential equations that consist of the conservation laws of mass, momentum, and energy

[152]: 


∂ρ

∂t
+ ∇ · (ρV ) = 0

∂(ρV )
∂t
+ ∇ · (ρVV ) = ∇ · (τ − pI) + f b

∂(ρeT)
∂t
+ ∇ · (ρeTV ) = ∇ · (k∇T) + ∇ · [(τ − pI) · V ] + f b · V

(A.1)

The closure of the system currently considers the Newtonian fluid relation with the

Stokes hypothesis

τi j = µ

(
∂Vi

∂x j

+

∂Vj

∂xi

− 2

3
(∇ · V )δi j

)
(A.2)

and the perfect gas law

p = ρRT

e = CvT
(A.3)
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A.2 Vector form

A.2.1 Conservative vector form

Through introducing the vector of conservative variables U , the vector of convective fluxes

Fi, the vector of diffusive fluxes Fv
i
, and the vector of source terms Φ, the system of

partial differential equations of conservation laws can be written into a vector form in a

conservative manner

∂U

∂t
+

∂F x(U)
∂x

+

∂F y(U)
∂y

+

∂F z(U)
∂z

=

∂Fv
x(U)
∂x

+

∂Fv
y
(U)

∂y
+

∂Fv
z(U)
∂z

+Φ (A.4)

U =
(
ρ, ρu, ρv, ρw, ρeT

)T

F x(U) =
(
ρu, ρuu + p, ρvu, ρwu, (ρeT + p)u

)T

= uU + p(0, 1, 0, 0, u)T

F y(U) =
(
ρv, ρuv, ρvv + p, ρwv, (ρeT + p)v

)T

= vU + p(0, 0, 1, 0, v)T

F z(U) =
(
ρw, ρuw, ρvw, ρww + p, (ρeT + p)w

)T

= wU + p(0, 0, 0, 1,w)T

Fv
x(U) =

(
0, τxx, τxy, τxz, k ∂T

∂x
+ τxxu + τxyv + τxzw

)T

Fv
y
(U) =

(
0, τyx, τyy, τyz, k ∂T

∂y
+ τyxu + τyyv + τyzw

)T

Fv
z(U) =

(
0, τzx, τzy, τzz, k ∂T

∂z
+ τzxu + τzyv + τzzw

)T

Φ =

(
0, f b

x , f b
y
, f b

z , f b
x u + f b

y
v + f b

z w

)T

τi j = µ

(
∂Vi

∂x j

+

∂Vj

∂xi

− 2

3
(∇ · V )δi j

)

eT = e +
1

2
(u2
+ v

2
+ w

2)

e = CvT =
p

(γ − 1)ρ
p = ρRT

Cv =

R

γ − 1

Cp = γCv

k =
Cpµ

Pr

c =

√
γ

p

ρ
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A.2.1.1 Dimensional form

To use the equations (Eq. (A.4)) in a dimensional form, the specific gas constant R and the

dynamical viscosity µ are dimensional parameters.

A.2.1.2 Dimensionless form

Dimensional variables

x̃, ỹ, z̃, ũ, ṽ, w̃, t̃, ρ̃, T̃, p̃, ẽT, ẽ, f̃ b
x , f̃ b

y
, f̃ b

z

Reference variables

L∗, U∗, ρ∗, T∗

Nondimensionalized variables

x =
x̃

L∗ , y =
ỹ

L∗ , z =
z̃

L∗ , u =
ũ

U∗ , v =
ṽ

U∗ , w =
w̃

U∗

t =
t̃U∗

L∗ , ρ =
ρ̃

ρ∗
, T =

T̃

T∗ , p =
p̃

ρ∗U∗2
, eT =

ẽT

U∗2
, e =

ẽ

U∗2

f b
x =

f̃ b
x

ρ∗U∗2/L∗ , f b
y
=

f̃ b
y

ρ∗U∗2/L∗ , f b
z =

f̃ b
z

ρ∗U∗2/L∗

Dimensional parameters

µ̃, R̃

Nondimensionalized parameters

µ, R, Cv, Cp, c, k

Dimensionless parameters

Re, Pr, Ma

Dimensionless parameters based on reference variables

Reref, Maref

Constants

γ

While preserving the original form of equations (Eq. (A.4)) after normalization, the

following parameters should be adopted for the nondimensionalized governing equations.

R =
1

γMa2
ref
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Maref =
U∗√
γR̃T∗

µ =
1

Reref

Reref =
ρ∗U∗L∗

µ̃

A.2.2 Nonconservative vector-matrix form

The conservative vector form of Navier–Stokes equations can be transformed into a non-

conservative vector-matrix form, which is useful for analyzing the mathematical properties

of the equations.

Denote the vector of conservative variables and the vector of fluxes as

U =

©­­­­­­­«

u1
...

um

...

uM

ª®®®®®®®¬
, F = F(U) =

©­­­­­­­«

f1(u1, . . . , um, . . . , uM)
...

fm(u1, . . . , um, . . . , uM)
...

fM(u1, . . . , um, . . . , uM)

ª®®®®®®®¬
(A.5)

where F represents either a convective flux or a diffusive flux.

The flux component fm is a multivariable function. After introducing vector notation

for the multiple variables, it gives

d fm =
∂ fm

∂un

dun = (∇ fm)TdU (A.6)

Since the flux vector F is the vector notation of the set of multivariable functions, it has

dF =

©­­­­­­­«

d f1
...

d fm
...

d fM

ª®®®®®®®¬
=

©­­­­­­­­«

∂ f1
∂u1

· · · ∂ f1
∂um

· · · ∂ f1
∂uM

...
. . .

...
. . .

...
∂ fm
∂u1

· · · ∂ fm
∂um

· · · ∂ fm
∂uM

...
. . .

...
. . .

...
∂ fM
∂u1

· · · ∂ fM
∂um

· · · ∂ fM
∂uM

ª®®®®®®®®¬

©­­­­­­­«

du1
...

dum

...

duM

ª®®®®®®®¬
(A.7)

Then, it is straightforward to introduce the Jacobian matrices via vector differentiation

A =
dF(U)

dU
, Amn =

∂Fm

∂Un

(A.8)

A nonconservative vector-matrix form of the governing equations can be obtained as

∂U

∂t
+ Ax

∂U

∂x
+ Ay

∂U

∂y
+ Az

∂U

∂z
=

∂Fv
x(U)
∂x

+

∂Fv
y
(U)

∂y
+

∂Fv
z(U)
∂z

+Φ (A.9)
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A.3 Jacobian matrices

A.3.1 Transformation

U =

©­­­­­­«

u1

u2

u3

u4

u5

ª®®®®®®¬
=

©­­­­­­«

ρ

ρu

ρv

ρw

ρeT

ª®®®®®®¬

F x(U) =

©­­­­­­­­«

u2

u2
2

u1
+ (γ − 1)[u5 − 1

2

u2
2
+u2

3
+u2

4

u1
]

u2u3

u1
u2u4

u1

u5u2

u1
+ (γ − 1)[u5 − 1

2

u2
2
+u2

3
+u2

4

u1
]u2

u1

ª®®®®®®®®¬

F y(U) =

©­­­­­­­­«

u3
u3u2

u1
u2

3

u1
+ (γ − 1)[u5 − 1

2

u2
2
+u2

3
+u2

4

u1
]

u3u4

u1

u5u3

u1
+ (γ − 1)[u5 − 1

2

u2
2
+u2

3
+u2

4

u1
]u3

u1

ª®®®®®®®®¬

F z(U) =

©­­­­­­­­«

u4
u4u2

u1
u4u3

u1
u2

4

u1
+ (γ − 1)[u5 − 1

2

u2
2
+u2

3
+u2

4

u1
]

u5u4

u1
+ (γ − 1)[u5 − 1

2

u2
2
+u2

3
+u2

4

u1
]u4

u1

ª®®®®®®®®¬
A.3.2 Definition of parameter

c =

√
γ

p

ρ

q2
= u2

+ v
2
+ w

2

e =
c2

γ(γ − 1)

eT = e +
1

2
q2
=

c2

γ(γ − 1) +
1

2
q2
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h = e +
p

ρ
=

c2

γ − 1
= γe

hT = eT +
p

ρ
= γe +

1

2
q2
= γeT − 1

2
q2(γ − 1)

b =
γ − 1

2c2

A.3.3 Jacobian matrix of convective flux

A =
dF(U)

dU
, Ai j =

∂Fi

∂U j

Ax =



0 1 0 0 0

−u2
+

γ−1
2 q2 2u − (γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1

−uv v u 0 0

−uw w 0 u 0

−[ c2

γ−1 +
2−γ

2 q2]u c2

γ−1 +
1
2 q2 − (γ − 1)u2 −(γ − 1)uv −(γ − 1)uw γu



Ay =



0 0 1 0 0

−vu v u 0 0

−v2
+

γ−1
2 q2 −(γ − 1)u 2v − (γ − 1)v −(γ − 1)w γ − 1

−vw 0 w v 0

−[ c2

γ−1 +
2−γ

2 q2]v −(γ − 1)vu c2

γ−1 +
1
2 q2 − (γ − 1)v2 −(γ − 1)vw γv



Az =



0 0 0 1 0

−wu w 0 u 0

−wv 0 w v 0

−w2
+

γ−1
2 q2 −(γ − 1)u −(γ − 1)v 2w − (γ − 1)w γ − 1

−[ c2

γ−1 +
2−γ

2 q2]w −(γ − 1)wu −(γ − 1)wv c2

γ−1 +
1
2 q2 − (γ − 1)w2 γw


A.4 Eigendecompositions

A.4.1 Eigenvalue

Λx = Rx
−1AxRx =



u − c

u

u

u

u + c



def
=



λ1
x

λ2
x

λ3
x

λ4
x

λ5
x


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Λy = Ry
−1AyRy =



v − c

v

v

v

v + c



def
=



λ1
y

λ2
y

λ3
y

λ4
y

λ5
y



Λz = Rz
−1AzRz =



w − c

w

w

w

w + c



def
=



λ1
z

λ2
z

λ3
z

λ4
z

λ5
z


A.4.2 Eigenvector

Rx =



1 1 0 0 1

u − c u 0 0 u + c

v 0 1 0 v

w 0 0 1 w

hT − uc u2 − 1
2 q2

v w hT + uc



Ry =



1 0 1 0 1

u 1 0 0 u

v − c 0 v 0 v + c

w 0 0 1 w

hT − vc u v
2 − 1

2 q2
w hT + vc



Rz =



1 0 0 1 1

u 1 0 0 u

v 0 1 0 v

w − c 0 0 w w + c

hT − wc u v w
2 − 1

2 q2 hT + wc



Lx = Rx
−1
=



1
2 bq2

+
1
2c

u −bu − 1
2c

−bv −bw b

−bq2
+ 1 2bu 2bv 2bw −2b

−bq2
v 2bvu 2bv2

+ 1 2bwv −2bv

−bq2
w 2bwu 2bwv 2bw2

+ 1 −2bw
1
2 bq2 − 1

2c
u −bu + 1

2c
−bv −bw b



Ly = Ry
−1
=



1
2 bq2

+
1
2c
v −bu −bv − 1

2c
−bw b

−bq2u 2bu2
+ 1 2bvu 2bwu −2bu

−bq2
+ 1 2bu 2bv 2bw −2b

−bq2
w 2bwu 2bwv 2bw2

+ 1 −2bw
1
2 bq2 − 1

2c
v −bu −bv + 1

2c
−bw b


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Lz = Rz
−1
=



1
2 bq2

+
1
2c
w −bu −bv −bw − 1

2c
b

−bq2u 2bu2
+ 1 2bvu 2bwu −2bu

−bq2
v 2bvu 2bv2

+ 1 2bwv −2bv

−bq2
+ 1 2bu 2bv 2bw −2b

1
2 bq2 − 1

2c
w −bu −bv −bw + 1

2c
b


Due to the important role of eigenvalues, it is useful to present the convective flux as a

function of eigenvalues according to the relation:

F = AU = RΛR−1U

which can be directly used for splitting the convective flux into subvectors associated with

specified eigenvalue spectra [81].

F x =
ρ

2γ

©­­­­­­«

λ1
x + 2(γ − 1)λ2

x + λ
5
x

[λ1
x + 2(γ − 1)λ2

x + λ
5
x]u + (λ5

x − λ1
x)c

[λ1
x + 2(γ − 1)λ3

x + λ
5
x]v

[λ1
x + 2(γ − 1)λ4

x + λ
5
x]w

[λ1
x + 2(γ − 1)λ2

x + λ
5
x](1

2 q2) + (λ1
x + λ

5
x)h + (λ5

x − λ1
x)cu

ª®®®®®®¬

F y =

ρ

2γ

©­­­­­­«

λ1
y
+ 2(γ − 1)λ3

y
+ λ5

y

[λ1
y
+ 2(γ − 1)λ2

y
+ λ5

y
]u

[λ1
y
+ 2(γ − 1)λ3

y
+ λ5

y
]v + (λ5

y
− λ1

y
)c

[λ1
y
+ 2(γ − 1)λ4

y
+ λ5

y
]w

[λ1
y
+ 2(γ − 1)λ3

y
+ λ5

y
](1

2 q2) + (λ1
y
+ λ5

y
)h + (λ5

y
− λ1

y
)cv

ª®®®®®®¬

F z =
ρ

2γ

©­­­­­­«

λ1
z + 2(γ − 1)λ4

z + λ
5
z

[λ1
z + 2(γ − 1)λ2

z + λ
5
z ]u

[λ1
z + 2(γ − 1)λ3

z + λ
5
z ]v

[λ1
z + 2(γ − 1)λ4

z + λ
5
z ]w + (λ5

z − λ1
z )c

[λ1
z + 2(γ − 1)λ4

z + λ
5
z ](1

2 q2) + (λ1
z + λ

5
z )h + (λ5

z − λ1
z )cw

ª®®®®®®¬
Unified form via a direction vector e = (e1, e2, e3)

F =
ρ

2γ

©­­­­­­«

λ1
+ 2(γ − 1)λ2

+ λ5

[λ1
+ 2(γ − 1)λ2

+ λ5]u + (λ5 − λ1)c ∗ e1

[λ1
+ 2(γ − 1)λ3

+ λ5]v + (λ5 − λ1)c ∗ e2

[λ1
+ 2(γ − 1)λ4

+ λ5]w + (λ5 − λ1)c ∗ e3

[λ1
+ 2(γ − 1)λ2

+ λ5](1
2 q2) + (λ1

+ λ5)h + (λ5 − λ1)c(u ∗ e1 + v ∗ e2 + w ∗ e3)

ª®®®®®®¬
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A.4.3 Vector space

Eigenvector sets {Lm} and {Rm} of the Jacobian matrix A are two orthogonal vector spaces

in Euclidean space RM admitting the fact that

Lm · Rn
= δn

m, m, n = 1, . . . , M

The vector ∆U = UR − UL, which measures the strength of a jump discontinuity

comprising a right state UR and a left state UL, belongs to RM , therefore, it can be

decomposed in the vector space {Rm}:

UR − UL =

M∑
m=1

αmR
m

where αm are decomposition or projection coefficients, which can be determined by

αm = Lm · (UR − UL)

Define vector α as α = (α1, . . . , αM)T, then equivalently,

UR − UL = Rα

Therefore, the jump in flux values has

FR − FL = A(UR − UL)
= ARα

= RΛR−1Rα

= RΛα

=

M∑
m=1

λmαmR
m
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Appendix B

ArtraCFD: Additional Code Validation

In numerical solutions, errors are introduced in a variety of phases such as physical model-

ing, geometric representation, computer floating-point arithmetic, iteration, and numerical

discretization. This chapter presents some additional validation of the developed compu-

tational fluid dynamics code, particularly concerning the vortex preservation problem and

standard shock tube problems. The objective is to further demonstrate the validity and accu-

racy of the computational solver and its implementation. A serial version of the developed

solver with about ten thousand lines of code is released as an open source project named as

ArtraCFD and is available on Github [153].

In the following discussions, for the purpose of clarity, the notation "RKn-WENOm-

XX" is used to represent a solution solved by the n-th order Runge–Kutta scheme for time

integration, m-th order WENO scheme for spatial discretization, and "XX" for flux splitting

with "XX=LF" and "XX=SW" representing the Lax–Friedrichs [80] and Steger–Warming

[81] splitting, respectively.

B.1 Convergence test on smooth flow

B.1.1 Vortex preservation problem

The vortex preservation test case [139], which evolves an isentropic vortex in an inviscid

uniform two-dimensional flow, is utilized to test the convergence behavior of the code for

solving system of conservation laws in multidimensional space.

The problem is built on a computational domain given by [−5R, 5R] × [−5R, 5R] and

is governed by the Euler equations. On a uniform background flow (ρ∞, u∞, v∞, p∞), an

isentropic vortex initially centered at (x, y) = (0, 0) with radius R = 5 is created by adding
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the following perturbation to the mean flow

(δu, δv) = Γ
2π

e0.5(1−r2)(−y, x)

δT = −(γ − 1)Γ2

8γπ2
e(1−r2)

(B.1)

where the vortex strength Γ = 5, the ratio of specific heat γ = 1.4, r2
= x2

+ y
2 ≤ R2.

Under isentropic flow condition, the temperature and entropy are defined as T = p/ρ
and s = p/ργ, respectively. When s = 1 and δs = 0 are assumed for the flow, the initial

conditions are taken as follows

u = u∞ + δu, v = v∞ + δv, T = p∞/ρ∞ + δT, ρ = T
1
γ−1 , p = T

γ
γ−1 (B.2)

The background flow is chosen as (ρ∞, u∞, v∞, p∞) = (1, 1, 1, 1) such that the vortex

propagates at 45◦ to the grid line, which amplifies the opportunity for manifesting the effects

of multidimensional propagation. The solution is solved to t = 10, and the CFL coefficient

is set to CCFL = 0.2. Periodic boundary conditions are used for boundary treatment of both

directions. Since the perturbation induced by the vortex is weak enough to avoid producing

a strongly nonlinear effect, the exact solution of the problem with a specific initial state

is the passive convection of the vortex with the mean velocity. Therefore, the solution

should remain unchanged when time evolves to complete periods of vortex convection, as

demonstrated by the computed results shown in Fig. B.1.

(a) t = 0 (b) t = 5 (c) t = 10

Figure B.1 Density contour of the propagating isentropic vortex solved by RK3-WENO5-LF on a

100 × 100 grid at different time instants.

RK3-WENO3-LF and RK3-WENO5-LF with dimension-by-dimension or dimensional-

splitting approximation are tested and are shown in Table B.1, Table B.2, Table B.3, and

Table B.4, respectively. For the successively refined grids used herein, the chosen CFL

number is small enough to produce a temporal step size that holds down the errors from

temporal discretization and avoids affecting the spatial accuracy. As captured by the results,
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the code is operating closely to its designed accuracy. In addition, the observed global

convergence rates of RK3-WENO5-LF agrees with the results in [139]. The current results

present very similar accuracy for the dimension-by-dimension and dimensional-splitting

approaches for solving multidimensional problems.

N × N L1 error L1 order L2 error L2 order L∞ error L∞ order

25 × 25 2.164e−2 − 5.048e−2 − 3.855e−1 −
50 × 50 1.149e−2 0.9 2.819e−2 0.8 2.015e−1 0.9

75 × 75 5.281e−3 1.9 1.315e−2 1.9 8.889e−2 2.0

100 × 100 2.651e−3 2.4 6.814e−3 2.3 4.793e−2 2.1

150 × 150 9.221e−4 2.6 2.519e−3 2.5 2.031e−2 2.1

Table B.1 Global convergence of RK3-WENO3-LF via dimension-by-dimension approximation.

N × N L1 error L1 order L2 error L2 order L∞ error L∞ order

25 × 25 2.164e−2 − 5.048e−2 − 3.855e−1 −
50 × 50 1.149e−2 0.9 2.819e−2 0.8 2.014e−1 0.9

75 × 75 5.281e−3 1.9 1.315e−2 1.9 8.889e−2 2.0

100 × 100 2.651e−3 2.4 6.813e−3 2.3 4.792e−2 2.1

150 × 150 9.220e−4 2.6 2.519e−3 2.5 2.031e−2 2.1

Table B.2 Global convergence of RK3-WENO3-LF via dimensional-splitting approximation.

N × N L1 error L1 order L2 error L2 order L∞ error L∞ order

25 × 25 6.609e−3 − 1.521e−2 − 1.091e−1 −
50 × 50 4.677e−4 3.8 1.195e−3 3.7 1.680e−2 2.7

75 × 75 9.536e−5 3.9 2.281e−4 4.1 2.577e−3 4.6

100 × 100 3.349e−5 3.6 6.909e−5 4.2 7.150e−4 4.5

150 × 150 1.088e−5 2.8 1.659e−5 3.5 9.985e−5 4.9

Table B.3 Global convergence of RK3-WENO5-LF via dimension-by-dimension approximation.

N × N L1 error L1 order L2 error L2 order L∞ error L∞ order

25 × 25 6.614e−3 − 1.522e−2 − 1.092e−1 −
50 × 50 4.682e−4 3.8 1.195e−3 3.7 1.677e−2 2.7

75 × 75 9.520e−5 3.9 2.278e−4 4.1 2.571e−3 4.6

100 × 100 3.337e−5 3.6 6.891e−5 4.2 7.109e−4 4.5

150 × 150 1.084e−5 2.8 1.652e−5 3.5 9.757e−5 4.9

Table B.4 Global convergence of RK3-WENO5-LF via dimensional-splitting approximation.
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B.2 Test cases with shocked flow

Sod’s problem [154]

ρ = 1; u = 0; p = 1 if 0 ≤ x < 1

ρ = 0.125; u = 0; p = 0.1 if 1 < x ≤ 2

t ∈ [0, 0.14], CCFL = 0.6

(B.3)
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Figure B.2 Numerical solutions of Sod’s problem. (a) n = 100. (b) n = 500.

Lax’s problem [82]

ρ = 0.445; u = 0.698; p = 3.528 if 0 ≤ x < 1

ρ = 0.5; u = 0; p = 0.571 if 1 < x ≤ 2

t ∈ [0, 0.13], CCFL = 0.6

(B.4)
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Figure B.3 Numerical solutions of Lax’s problem. (a) n = 100. (b) n = 500.
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Woodward and Colella problem [155]

ρ = 1; u = 0; p = 1000 if 0 ≤ x < 0.5

ρ = 1; u = 0; p = 0.01 if 0.5 < x ≤ 1

t ∈ [0, 0.012], CCFL = 0.6

(B.5)
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Figure B.4 Numerical solutions of Woodward and Colella problem. (a) n = 100. (b) n = 500.

Stationary contact [155]

ρ = 1; u = −19.59745; p = 1000 if 0 ≤ x < 0.8

ρ = 1; u = −19.59745; p = 0.01 if 0.8 < x ≤ 1

t ∈ [0, 0.012], CCFL = 0.6

(B.6)
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Figure B.5 Numerical solutions of stationary contact problem. (a) n = 100. (b) n = 500.

Remarks Exact solutions are computed by the exact Riemann solver provided in Toro

[155].
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Two interacting blast waves [82, 156]

U(x, 0) =




UL, if 0 < x < 0.1

UM, if 0.1 < x < 0.9

UR, if 0.9 < x < 1

,




(ρL, uL, pL) = (1, 0, 1000)
(ρM, uM, pM) = (1, 0, 0.01)
(ρR, uR, pR) = (1, 0, 100)

t ∈ [0, 0.038], CCFL = 0.6

(B.7)
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Figure B.6 Numerical solutions of two interacting blast waves. (a) n = 100. (b) n = 500. [The

"exact" solution is computed by RK3-WENO5-LF with 4096 nodes.

Shu and Osher problem [157]

ρ = 3.857143; u = 2.629369; p = 10.333333 if 0 ≤ x < 1

ρ = 1 + 0.2 sin(5x); u = 0; p = 1 if 1 < x ≤ 10

t ∈ [0, 1.8], CCFL = 0.6

(B.8)
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Figure B.7 Numerical solutions of Shu and Osher problem. (a) n = 100. (b) n = 500. [The "exact"

solution is computed by RK3-WENO5-LF with 4096 nodes.]
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2D Riemann problem [158]

ρ = 1; u = −0.75; v = −0.5; p = 1 if 0.5 < x < 1, 0.5 < y < 1

ρ = 2; u = −0.75; v = 0.5; p = 1 if 0 < x < 0.5, 0.5 < y < 1

ρ = 1; u = 0.75; v = 0.5; p = 1 if 0 < x < 0.5, 0 < y < 0.5

ρ = 3; u = 0.75; v = −0.5; p = 1 if 0.5 < x < 1, 0 < y < 0.5

t ∈ [0, 0.23], CCFL = 0.6

(B.9)

(a) (b)

Figure B.8 Density contour of 2D Riemann problem with configuration 1. (a) RK3-WENO5-LF. (b)

RK3-WENO5-SW.
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