
Dimensionality Reduction of the
Chemical Master Equation

by

Midhun Kathanaruparambil Sukumaran

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2019

c© Midhun Kathanaruparambil Sukumaran 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner : Roger B. Sidje
Professor,
Applied & Computational Math, Department of Mathe-
matics, University of Alabama

Supervisor : Dr. Brian P. Ingalls
Associate Professor,
Dept. Applied Mathematics,
University of Waterloo

Internal Member : Mohammad Kohandel
Associate Professor,
Dept. Applied Mathematics, University of Waterloo

Internal Member : David Siegel
Professor,
Dept. Applied Mathematics, University of Waterloo

Internal-External Member : Justin W.L. Wan
Professor,
David R. Cheriton School of Computer Science, Univer-
sity of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

The dynamics of biochemical systems show significant variability when the reactant popu-

lations are small. Standard approaches via deterministic modeling exclude such variability.

A well established stochastic model, the Chemical master equation (CME), describes the

dynamics of biochemical systems by representing the time evolution of the probability

distribution of species’ discrete states in a well-mixed reaction volume. However, the di-

mension of the CME (i.e. the number of transition states in the system) rapidly grows as the

molecular population and number of reactions in the network increases. Also, the dynam-

ics of biochemical systems typically vary over a wide range of time scales: a phenomenon

referred to as stiffness. Large dimensions and stiffness pose challenges to numerical anal-

ysis of system behavior. By eliminating the fast modes, which correspond to fast time

scales that are often not experimentally observed, a model reduction can be achieved. In

our work, we apply such a model reduction to the CME. The slow and fast modes of the

system correspond to small and large eigenvalues of the transition matrix of the CME. By

a transformation, we exclude the fast modes to arrive at a truncated model. We propose

a method based on eigenbasis transformations that provide efficient approximations that

are accurate beyond a short initial time interval. We also present efficient algorithms for

generation of the CME from a network and for computation of eigenbases. Finally, we

describe how this reduction approach can be implemented to provide efficient time-step

identification in a well-established scheme for an approximation of the CME (the so-called

finite state projection).

iv

Acknowledgements

To my life-coaches, my mother Usha Sukumaran and wife Lakshmi Ranjit: because I owe

it all to you. Many Thanks!

I am grateful to my father K. P. Sukumaran, Lakshmi’s parents Ranjit Vasavan and

Suma Ranjit, brother Jidhin K. Sukumaran, and my daughter Veda Midhun who have

provided me through moral and emotional support in my life. I am also grateful to my

other family members, especially Mohanan Velliachan, and friends who have supported me

along the way.

I would like to express my sincere gratitude to my advisor Prof. Brian P. Ingalls for the

continuous support to my Ph.D. study and related research, for his patience, motivation,

and immense knowledge. His guidance helped me in all the time of research and writing

of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D.

study. Life is wonderful with great people around. Thanks a lot, Brian, for building a fool

to someone valuable.

I would also like to thank Dr. Marc R. Roussel for bringing me to this wonderland

Canada and offering a great research opportunity to build my career.

I am extremely thankful to all math faculty members and my fellow graduate students

at the University of Waterloo for providing all kinds of possible help.

Lastly, I sincerely thank all those who have directly or indirectly helped for the work

reported herein.

v

Dedication

Ushamme, This is for you....

vi

Table of Contents

List of Figures x

List of Tables xii

Abbreviations xiii

1 Introduction 1

2 Chemical Master Equation 10

2.1 Exact Solution of the CME . 14

2.2 Approximation to the Solution of the CME 15

3 Algorithm for Generation of the State Space and Transition Matrix of of

a CME 21

3.1 State Space . 24

3.1.1 Example . 26

vii

3.2 Transition Matrix . 32

3.2.1 Example . 32

3.3 Computational Efficiency . 41

4 Dimensionality Reduction and Approximation of the Chemical Master

Equation 43

4.1 No Transformation: T = I . 50

4.2 Transformation to Achieve Probability Conservation in the Reduced System 50

4.2.1 Transformation Using Left Eigenvectors 52

4.2.2 Transformation Using Transition Matrix Components 54

4.3 Implementation of the Reduction Procedure 59

4.3.1 Selection of the Reduced Dimension d 59

4.3.2 Computation of the Initial Condition and the Transition Matrix of

the Reduced System Using a Semi-Orthogonal Eigenbasis 60

4.4 Example: Michaelis-Menten model . 67

4.4.1 Selection of the Reduced Dimension d 69

4.4.2 Identifying Initial Condition and Transition Matrix 71

4.4.3 Efficiency . 91

5 A Preconditioning for the Multi-Step FSP 93

5.1 Preconditioned FSP Algorithm . 98

viii

6 Conclusion and Future Directions 104

6.1 Future Directions . 106

APPENDIX 107

References 130

ix

List of Figures

1.1 Three levels of modeling approaches to biochemical systems 3

1.2 Exact stochastic modeling of chemical kinetics and approximations 4

1.3 Eigenspectrum of the Chemical Master Equation (CME) of Michaelis-Menten

(MM) mechanism with multiple timescale. 6

2.1 Eigenspectrum of a CME of the Michaelis-Menten system with two different

initial states. 20

4.1 Exact and approximate solution of the MM mechanism. 74

4.2 Error in the approximation due to no transformation approach for the MM

mechanism. 75

4.3 Error in the approximation due to eigenbasis transformation approach for

the MM. 78

4.4 Error in the approximation due to transition matrix transformation ap-

proach for the MM mechanism. 82

x

4.5 Eigenspectrum gap of a closed reaction chain system with 10 states. 85

4.6 Rate of change of stochastic rate constant of reduced MM network 91

5.1 Proposed workflow for approximating solutions to large CME models . . . 103

xi

List of Tables

3.1 Time, in seconds, taken to generate the CME using both methods in MAT-

LAB for different dimensions of the CME of the MM mechanism. 41

4.1 Computation times (in seconds) for computing the exact and approximate

solution of the Michaelis-Menten CME. 92

xii

Abbreviations

CLE Chemical Langevin Equation 3, 4

CME Chemical Master Equation x–xii, 3–10, 13–24, 32, 33, 41, 43, 44, 48–51, 55, 80,

82–84, 91–97, 102–106

FSP Finite State Projection 7–9, 15, 16, 19, 21, 94–98, 102, 104–106

LNA Linear Noise Approximation 4

MM Michaelis-Menten x–xii, 6, 19, 26, 32, 41, 74, 75, 78, 82, 88, 91

ODE Ordinary Differential Equation 5, 6, 8, 73, 76, 81

RRE Reaction Rate Equation 3, 4

RREF Row Reduced Echelon Form 28, 65, 66, 77

SSA Stochastic Simulation Algorithm 3, 4, 15, 93, 105

xiii

Chapter 1

Introduction

Biology is a field of science that studies the most complex system in the universe: life.

The field uses a wide range of tools to understand various parts of the living organisms.

Although the field has a long history which dates back thousands of years, we are still a

long way from understanding or predicting complex mechanisms in their entirety. Over

the past several decades, through developments in the Molecular Biology field, we have

achieved an understanding of the molecular interactions that underlie cellular behaviors in

living organisms. Historically, molecular biology analysis was done through a reductionist

approach which analyzes biochemical systems by focusing on individual parts of the system.

The reductionist approach is only effective for simple systems for which a comprehensive

behavior of a system can be formulated from knowledge of its building blocks. However,

this does not typically hold for complex systems because a change in one component may

affect multiple parts unpredictably. As an analogy, we cannot hope to understand the

complex functioning of the airplane by listing all its parts [1].

1

In earlier days of molecular biology, comprehensive study of intracellular systems was

hampered by the limited scope of available measurement technologies. In contrast, due

to improvements in high-throughput measurements in the last couple of decades, we are

able to collect a huge amount of data which paved the way to study systems in their

entirety (holism). The field of comprehensive study of the behavior of biomolecular systems

is called (Molecular) Systems Biology [1, 2]. System biology studies call for the use of

computational and mathematical modeling and analysis methods to interpret complex

system behaviors. System biology has promising applications in a variety of fields including

agriculture, manufacturing, biofuels, and most importantly health and disease.

System biology regularly employs dynamical models calibrated against high throughput

experimental data [3]. Modeling techniques are commonly characterized as either bottom-

up (built up from fundamental units) or top-down (built from the observations of the

complete system) direction. However, in system biology, most modeling projects follow

a middle-out approach, which starts with characterization of systems (such as cells or

pathways), followed by top-down or bottom-up extension.

The modeling approaches focus on identification of two system features: static struc-

ture and temporal dynamics. Static structure consist of component interactions and the

characterization of such connections, such as signaling or mass transfer. Beyond structural

information, the most important analysis is the identification of the dynamical nature of

these systems; how they perform naturally and how they respond to environmental fac-

tors. As a consequence, we can use predictions of system behavior to design interventions

to achieve specific goals.

2

Mathematical modeling and simulation of biomolecular networks are achieved through a

variety of methods, as shown in Figure 1.1. Molecular dynamics models capture biochem-

Micro-mechanical
treatments

Population
modeling

Microscopic
treatments

Molecular
Dynamics

Multivariate
(spatio-temporal)
master equation

Reaction-diffusion
equations

Chemical
Master Equations

Reaction-Rate
equations

Spatial averaging Spatial averaging

Figure 1.1: Three levels of modeling approaches to biochemical systems (modified from [4]).

ical system at the atomic level. By averaging atomic level internal degrees of freedom,

spatio-temporal master equations can be derived to describe biochemical systems. Apply-

ing continuous approximations to the molecular population, reaction-diffusion equations

can be used to approximate the system. Spatial averaging give rise to the Chemical Master

Equation (CME) and Reaction Rate Equation (RRE) from the respective treatments as

shown in the figure. Some other modeling approaches are described in the paper [5].

In the paper [6], the approximation from CME to RRE is further expanded as described

in Figure 1.2. CME and SSA are derived as exact stochastic modeling approaches. Under

the assumption of constant reaction propensity during a long time interval τ > ∆t, tau-

leaping approximates the dynamical behavior of Chemical master equation [7, 8, 9]. CLE

3

CME

Stochastic Simulation Algorithm (SSA)

Tau-leaping

Chemical Langevin Equation (CLE)

RRE

≈ constant reaction propensities during τ

≈ reaction propensities�1, ∀j

≈ thermodynamical limit

Figure 1.2: Exact stochastic modeling of chemical kinetics and approximations. Arrows
represents exact representations of the source technique and arrows with ≈ symbol repre-
sents the approximations to the source technique under the condition indicated [6].

models [10, 11] are reduced sets of stochastic differential equations (compared to the CME)

that approximate a biochemical system under the assumption of large reaction propensities.

In the thermodynamic limit, biochemical systems can be further reduced to the reaction

rate equations (derived from laws of mass-action). In a continuous population dynamics,

stochastic approaches such as Moment Closure methods [12, 13], and the Linear Noise

Approximation (LNA) [14] can also be used to approximate the dynamical behaviour of

biochemical systems. A review of these methods can be found in the recent literature [15].

4

Out of these techniques, most mathematical models of biochemical systems published

to date are represented by reaction rate equations (derived from laws of mass-action).

Many such models can be accessed from Biomodel database at http://www.ebi.ac.uk/

biomodels-main. These models are highly tractable in terms of construction, simulation,

and analysis. However, a limitation of these differential equation-based models is that they

are deterministic, and so cannot capture the variability that often dominates the behavior of

biochemical networks, especially when molecular populations are small [16, 17, 18, 19]. To

adequately address such cases, stochastic models are called for. The model most commonly

applied to capture variability in well-mixed biochemical systems is the CME [20, 14], a

linear system of Ordinary Differential Equation (ODE)s, which describes the dynamics of

the probability distribution over all states in which the system may find itself [21, 22, 23].

Linear systems of ODEs are typically thought of as highly tractable. However, simula-

tion and analysis of the CME is hampered by two major challenges. The first is dimension,

i.e., the total number of states that the system can attain. For closed reaction networks

in which all molecular populations are bounded, the CME is of finite dimension, but the

dimension size grows explosively with the reactant population sizes. For example, a closed

two step reaction chain A −−⇀↽−− B −−⇀↽−− C has 66 states when there are a total of 10

molecules present in the system. When there are 1000 molecules, the state dimension is

501501. When describing intracellular reaction networks, the state dimension is often too

high for any meaningful computation to be carried out. To make matters worse, for open

reaction networks in which molecular populations are not bounded (which is the most

common case of interest in a biochemical context) the state space is infinite.

The second challenge when dealing with the CME is stiffness, i.e., wide range (often over

5

http://www.ebi.ac.uk/biomodels-main
http://www.ebi.ac.uk/biomodels-main

orders of magnitude) of the time-scales of dynamics within the system. This often makes

direct simulation and analysis intractable. The timescales of a linear system of ODEs are

quantified by the eigenvalues of the coefficient (transition) matrix. As an example, the

eigenspectrum of the CME of a (Michaelis-Menten (MM)) biochemical system is shown

in Figure 1.3; distinct times-scales are readily identified as separate groups of eigenvalues.

Lower magnitude eigenvalues indicate slower timescales; large magnitude eigenvalues rep-

Figure 1.3: Eigenspectrum of a CME of the MM system S1 + S2

103−−−⇀↽−−−−
5×102

S3

5−−⇀↽−−
2

S2 + S4

with initial state
[
N1 N2 N3 N4

]
=
[
3 3 0 0

]
. The real part of the eigenvalues of the

corresponding matrix D are plotted in order of increasing magnitude. The zero eigenvalue
does not appear on this log scale. The system operates on two distinct timescales as given
by the eigenspectrum gap.

resent fast timescales. The gap between the two groups indicates the degree of time-scale

separation. The larger this degree of separation is, the more challenging it will be to ana-

6

lyze or simulate the system directly. In contrast, the larger this gap, the more accurate will

be a model reduction based on time-scale separation. Fast timescales are only reflected in

initial behaviors over short times. After these initial transients, the CME can be approxi-

mated in terms of the slow time-scale behavior. Timescale separation approaches neglect

fast transients to provide efficient analysis of system behavior over slower timescales. This

thesis is devoted to such timescale separation approximations for the CME.

One of the widely accepted methods to approximate the chemical master equation is

the Finite State Projection (FSP) algorithm developed by Munsky and Khammash [24].

The original algorithm presented in the paper is not a computationally efficient approach.

Several improvements have appeared in the last decade [25]. A major improvement was

achieved by implementing the method as a time-stepping algorithm [26, 27]. Alternatively,

efficiency improvements were achieved by preconditioning the FSP algorithm [28, 25]. We

follow a combined approach of multi-step FSP and preconditioning by dimensionality re-

duction using timescale separation.

Contribution of this thesis towards dynamical analysis of CME are follows:

1. Efficient generation of the components of a finite dimensional CME: State Space and

Transition Matrix.

2. An algorithm for generating a stable partial eigenbasis of a matrix.

3. A structured formulation of initial condition for the reduced model proposed by

Roussel and Zhu [4].

4. A generalized algorithm for the dimensionality reduction of a finite dimensional CME

7

using timescale separation approach without the requirement of widely separated

timescales.

5. A generalized algorithm for the generation of reduced dimensional CME and a pos-

sible extension of generating a reduced network for systems with widely separated

timescales.

6. An efficient algorithm for identifying the time-step for the multi-step FSP algorithm

proposed by Burrage et al. [26].

The thesis is organized as follows:

Chapter 2 presents a derivation of the CME and reviews some of the standard methods to

find the exact theoretical solution of a CME. Some commonly used approaches for

approximating the solution for the CME are also discussed.

Chapter 3 presents a computational algorithm to generate the state space and transition

matrix of a CME from the network description.

Chapter 4 presents algorithms for the dimensionality reduction of a CME. It begins with

an exact reduced initial condition for the reduced CME proposed by Roussel and

Zhu [4]. Next, a set of transformations is presented that facilitates reduction of a

CME to a lower dimensional system of ODEs which has solutions that approximate

the original. In particular, appropriate choice of transformation gives rise to proba-

bility conservation in the reduced system’s solution. In addition, as a special case,

for systems with significantly large separation in timescales, a reduction algorithm

that does not rely on eigenbasis is also presented.

8

Chapter 5 presents a preconditioned FSP algorithm. For a large or even infinite dimen-

sional CME, multi-step FSP is a standard approach to approximate the CME’s solu-

tion. However, the projected finite dimensional CME often has large dimension for a

reasonable time-step. In addition, using the eigenbasis transformation reduction al-

gorithm in Chapter 4, an optimal time step generation is presented. To resolve these

difficulties, a preconditioned FSP algorithm exploiting the reduction techniques from

Chapter 4 is presented.

Chapter 6 concludes with discussions and future directions.

9

Chapter 2

Chemical Master Equation

In the 1960s, Oppenheim et al. studied the relationship between stochastic and determin-

istic models for simple systems [29]. This work was later extended to complex systems

by Kurtz [30]. In 1967, McQuarrie investigated stochastic models of chemically reacting

systems [31] which laid principles for the development of the mathematical model known

as the Chemical Master Equation (CME). In 1992, Gillespie gave a rigorous derivation for

the CME [21]. A derivation of the CME is presented here.

Consider a biochemical reaction network in thermal equilibrium consisting of k chemical

species S1, S2, . . . , Sk involved in h reactions R1, R2, . . . , Rh in a well-stirred reaction vessel

of fixed volume. Each reaction has the form

Ri :
k∑
j=1

aj,iSj
ri−−→

k∑
j=1

bj,iSj (2.1)

where aj,i and bj,i ∈ Z≥0 are the stoichiometric coefficients that indicate the number of

10

molecules of chemical species Sj consumed or produced in reaction Ri. Each reaction Ri

is characterized by (i) a stochastic reaction rate constant ri ∈ R+, and (ii) a stoichiometry

vector

Si =

[
b1,i − a1,i b2,i − a2,i . . . bk,i − ak,i

]T
. (2.2)

The system behavior can be described by an update rule. To begin, we define the

following:

1. A state of the system is described by a k-dimensional vector. By indexing all possible

states of the system, a state is given by

Nj =

[
Nj,1 Nj,2 . . . Nj,k

]T
. (2.3)

where Nj,i represents the number of molecules of species Si in the jth state. The state

space N is defined as the matrix with jth column equal to Nj.

2. Let ∆t > 0 be sufficiently small such that at most one reaction occurs in the time

interval [t, t+ ∆t].

3. Let P (Nj, t) be the probability that the system is in state Nj at time t. This

probability is conditional on an initial state distribution {P (Nj, 0)} (∀j); following

common convention, we suppress the conditional dependence.

4. The propensity of a reaction is the probability of its occurrence in unit time. Let

Di(Nj) be the propensity of reaction Ri when the system is in state Nj.

11

Considering the state as a random variable, biochemical systems can be modeled as a

stochastic process. For a biochemical system, future time evolution of the state variable

only depends upon the present state of the system. Such models are called memory lacking

or Markovian [10, 32] process.

Assume the probability distribution, {P (Nj, t)} (∀j), is known at some time t. Then

to formulate the probability distribution at time t+ ∆t, consider all events that could lead

to the state being Nj at time t+ ∆t. Consider two cases:

1. No reaction occurs during the time interval [t, t+∆t]: In this case, the system

is in state Nj at time t + ∆t only if the system is in state Nj at time t. The

probability of reaction Ri firing in the interval [t, t+ ∆t] given the system is in state

Nj at time t is Di(Nj)∆t. Then the probability of any reactions firing in the time

interval [t, t + ∆t] given the system is in state Nj at time t is
h∑
i=1

Di(Nj)∆t. Then

using probability conservation,

1−
h∑
i=1

Di(Nj)∆t

is the probability of no reaction firing during the time interval [t, t+ ∆t].

2. One reaction occurs during the time interval [t, t + ∆t]: Suppose reaction Ri

fires once in the interval [t, t + ∆t] and the system is in state Nj − Si at time t.

Then the corresponding state transition would be Nj −Si → Nj. The probability of

12

reaction Ri firing given that the system is in state Nj − Si at time t is

Di(Nj − Si)∆t.

Together, these two scenarios allow us to derive the probability of attaining state Nj

at time t+ ∆t as

P (Nj, t+ ∆t) = P (Nj, t)

(
1−

h∑
i=1

Di(Nj)∆t

)
+

h∑
i=1

P (Nj − Si, t)Di(Nj − Si)∆t.

where the first term describes the probability of the system being in state Nj at time t

and no reaction occurring in the interval [t, t + ∆t] and the second term describes the

probability of the system being in states Nj − Si (i = 1, 2, . . . , h) and a corresponding

reaction Ri occurring. Note that

P (Nj, t+ ∆t) = P (Nj, t)−
h∑
i=1

P (Nj, t)Di(Nj)∆t+
h∑
i=1

P (Nj − Si, t)Di(Nj − Si)∆t.

Subtracting P (Nj, t) on both sides and dividing throughout by ∆t gives

P (Nj, t+ ∆t)− P (Nj, t)

∆t
=

h∑
i=1

P (Nj − Si, t)Di(Nj − Si)− P (Nj, t)Di(Nj).

Taking the limit ∆t→ 0 gives the CME:

d

dt
P (Nj, t) =

h∑
i=1

P (Nj − Si, t)Di(Nj − Si)− P (Nj, t)Di(Nj). (2.4)

13

Considering all possible states in the system, the CME can be expressed in matrix form as

Ṗ(t) = DP(t). (2.5)

where P(t) is a vector with jth component P (Nj, t), potentially infinite dimensional, and

D is a corresponding transition operator. In the case where n, the number of possible

states in the system, is finite, P(t) is a vector of length n and D is the transition matrix

of size n× n.

2.1 Exact Solution of the CME

A standard way of expressing the solution to a finite dimensional CME is given by

P(t) = exp(D t)P(0) ∀t ≥ 0 (2.6)

where the matrix exponential is

exp(D t) =
∞∑
k=1

(D t)k

k!
. (2.7)

Alternatively using eigenvectors,

exp(D t) = R exp(J t)R−1 (2.8)

14

where J is the Jordan block matrix with eigenvalues on the diagonal and R is an eigenma-

trix with n linearly independent (generalized) eigenvectors. Then the solution of a finite

dimensional CME (2.5) can be expressed as

P(t) = R exp(J t) R−1P(0) ∀t ≥ 0 (2.9)

2.2 Approximation to the Solution of the CME

For most systems of interest, the CME has an enormously large dimension and exhibits

a wide range of timescales. This create problems for computation of the exact solution

even though techniques for numerical computation of the matrix exponential [33, 34, 35]

and algorithms, such as ARPACK, for computing eigen-pairs of large sparse matrix [36]

are available. Furthermore, for an infinite dimensional CME, things are even worse. One

common approach for the characterization of probability distribution (solution of CME) is

using sample paths which could be generated by algorithms such as Gillespie’s Stochastic

Simulation Algorithm (SSA) [37]. However, due to wide range of timescales in most bio-

chemical systems, computation of sample paths is very slow and thus SSA is an inefficient

approach. Algorithms such as tau-leaping [7, 8, 9], Slow-scale SSA [38], and the hybrid

Slow Scale Tau-leaping Method [39] can be implemented to improve the efficiency of sample

path generation, but these approaches are still insufficient to provide useful approximations

of the CME for many systems of interest.

One widely accepted approach for approximating the CME is the Finite State Projec-

15

tion (FSP) algorithm [24]. The FSP algorithm truncates the CME1 to a lower dimensional

CME that is sufficient for capturing transitions between a subset of states that are proba-

ble in a given time interval (0, tf). However, the original FSP algorithm is not an efficient

approach to solve the CME for a long time interval due to the enormous number of states

that needs to be considered in the truncated CME. To resolve this problem, alternative ap-

proaches were introduced such as variable time-stepping algorithm [26], and precondition-

ing of the truncated transition matrix using timescale separation [28] and aggregation [40].

We introduced a combination of these three methods of aggregation, timescale separation,

and multi-time stepping FSP to approximate the transient solution of the CME.

Using a wide gap in timescales, a reduction approach has been implemented for approx-

imating solutions for the CME by Peleš et al. [28]. The algorithm is explained as follows:

Consider the CME

Ṗ(t) = DP(t) , P(0) = P0 , P ∈ Rn (2.10)

where the eigenvalues of D has the property:

0 = <(λ1) ≥ <(λ2) ≥ · · · ≥ <(λd) � <(λd+1) ≥ · · · ≥ <(λn) for some d < n

1A detailed description of the algorithm is given in the Chapter 5.

16

Next, decompose2 the transition matrix into two matrices as

D = F + ∆ (2.11)

where F and ∆ are chosen such that F has eigenvalues corresponding to fast timescales

and ∆ has eigenvalues corresponding to slow timescales. In addition, F is a block diagonal

matrix with non-zero blocks on the diagonal which can be partitioned as

F =



F1 0 0 . . . 0

0 F2 0 . . . 0

0 0 F3
. . .

...

...
...

. 0

0 0 . . . 0 Fd


(2.12)

These type of blocks for the transition matrix of a CME means the state transitions are

absent between sets of states corresponding to each block. Each block is a representation of

an independent system each of which may exhibit a steady state of their own represented

by the null space of each block Fi. In contrast, the original system, represented by D, has

transitions between the states of the blocks Fis. The transitions between these blocks are

represented by ∆.

The algorithm requires a specific left (L) and right (R) null matrix of F which is

2A detailed description of the decomposition is given in Section 4.2.2

17

generated using left and right null vectors of each blocks independently:

FiRi = 0 and FT
i Li = 0 ∀i ∈ {1, 2, . . . , d} (2.13)

Next, combining Lis and Ris to form L and R as

L =



L1 0 0 . . . 0

0 L2 0 . . . 0

0 0 L3
. . .

...

...
...

. 0

0 0 . . . 0 Ld


and R =



R1 0 0 . . . 0

0 R2 0 . . . 0

0 0 R3
. . .

...

...
...

. 0

0 0 . . . 0 Rd


(2.14)

where each Ri is a non-negative vector because they are the non-negative steady state

solutions of the CMEs with transition matrix Fi. In addition, Ris are scaled such that

column sum is equal to 1. For each left null vector Li, each component is equal to 1.

Then

P̃(t) = R exp

(
LT∆R t

)
LTP(0) (2.15)

approximates the solution P as

∥∥∥P(t)− P̃(t)
∥∥∥
∞

= O(ε) , ∀t ≥ 1

<(λd+1)
ln(ε) (2.16)

Note that (2.15) is in fact the solution of a reduced system:

Ẋ(t) =

(
LT∆R

)
X(t) , X(0) = X0 = LTP(0) (2.17)

18

where LT∆R has properties of the transition matrix of a CME.

In timescale separation approaches, as implemented in [28], one common assumption is

that timescales are well separated as shown in Figure 1.3 (reproduced here in Figure 2.1).

However, such a gap may vanish as the number of molecules increases. For example,

increasing the number of molecules of species S1 and S2 in the Michaelis-Menten (MM)

system from 3 to 60 has CME with eigenspectrum as shown in Figure 2.1(B). Lack of a gap

in the eigenspectrum makes it impossible to generate a useful decomposition into F and ∆.

Around the same time that the FSP was published, Roussel and Zhu published an algorithm

for dimensionality reduction of the CME using a timescale separation approach [4] without

the assumption of a well separated eigenspectrum. However, the algorithm was lacking

an exact initial condition for the reduced CME and hence was not directly useful. In this

thesis, we solved this problem by generating an exact initial condition for the reduced

system using a specific set of aggregations (eigenbasis projections -not necessarily using

eigenvectors). We also developed a dimensionality reduction algorithm following Roussel

and Zhu using the idea of eigenvector projection of [28]. In addition we also present an

alternate algorithm for generating a reduced CME using a projection generated from the

blocks of the transition matrix. These algorithms are presented in Chapter 4.

19

A

B

Figure 2.1: Eigenspectrum of a CME of the Michaelis-Menten system S1+S2

103−−−⇀↽−−−−
5×102

S3

5−−⇀↽−−
2

S2 +S4 with two different initial states
[
N1 N2 N3 N4

]
is equal to (A)

[
3 3 0 0

]
and

(B)
[
60 60 0 0

]
. The real part of the eigenvalues of the corresponding matrix D are

plotted in order of increasing magnitude. The zero eigenvalue does not appear on this log
scale.

20

Chapter 3

Algorithm for Generation of the

State Space and Transition Matrix of

of a CME

For simple networks with small molecule numbers, the state space and transition matrix

for a Chemical Master Equation (CME) can be produced using pen and paper. As the

dimension increases this process is inefficient. A general algorithm for this task is presented

by Kan et al. [41]. However, for use in the Finite State Projection (FSP) algorithm, which

is an iterative algorithm, this approach may be insufficient because a new CME is generated

in each iteration. This chapter presents a novel efficient algorithm to solve this problem.

The straightforward approach presented by Kan et al. [41] is given in Algorithm 1.

The algorithm accepts stoichiometry vectors {Si} (i = 1, 2, . . . , h) and stochastic reaction

21

Algorithm 1: An algorithm for the CME [41]

Input:
1 {Si} ← Stoichiometry vectors ∈ Zk×1 and i = 1, 2, . . . , h;

2 {ci} ← Stochastic reaction rates ∈ R1×h
+ and i = 1, 2, . . . , h;

3 N1 ← Initial state vector ∈ Zk×1≥0 ;

begin
4 N← N1;
5 accessible state vector size, n← 1;
6 current state index, j ← 1;
7 while j ≤ n do
8 Current reaction, r ← 1;
9 while r ≤ h do

10 Check if current reaction, Rr reacts from current state Nj;
11 if True then
12 Target state, Nk ← Nj + Sr;

13 check if target state Nk is already in N;
14 if True then
15 get the index i of the state in N that is equal to Nk;
16 else
17 add Nk to N;
18 n← n+ 1;
19 i← n;

20 hr(Nj)← # of possible combinations reaction r can happen from Nj;
21 Di,j ← cr hr(Nj);

22 r ← r + 1;

23 j ← j + 1;

24 update diagonal entries Djj = −
∑n

i=1,i 6=j Dij;

Output:
25 D← Transition matrix ∈ Rn×n;

26 N← State space ∈ Zk×n≥0 ;

22

rates {ci} (i = 1, 2, . . . , h) as the representation of the chemical reaction network. In

addition, a single state vector N1 is needed to characterize the conservations (and also act

as an initial seed for iterative construction of the state space). The algorithm iteratively

identifies the complete state space. Each iteration starts with an incomplete state space

(initially N1), called the source states, stored as a matrix. In each iteration, the algorithm

generates new states (so called target states) that are reached through firing of each of the

h reactions from the source states: {Ntarget = Nsource + Si} (i = 1, 2, . . . , h). Note that,

some of the reactions are infeasible from some source states. For each feasible target state,

a propensity is assigned to the corresponding reaction. The algorithm terminates when an

iteration produces no new states.

The computational cost of this algorithm is mostly spent on finding the index for the

assignment of the reaction propensity elements in the transition matrix. This is costly

because the expanding state space N and the reaction propensity values are generated

concurrently. Alternately, if we first generated the state space N alone, we could find all

state transitions efficiently using a vectorized approach: {Ntarget} = N + {Si}×n where

{Si}×n is a set of n column vectors with each column equal to Si. A similar approach can

be applied to generate all reaction propensity values in the transition matrix. Furthermore,

additional efficiency can be achieved by avoiding the iterative checking of the existence of

target states in the state space.

We developed an approach for upfront state space generation based on moiety conserva-

tions. We then use a vectorized computation to generate the reaction propensity elements

of the transition matrix. Optimized algorithms for the state space and the transition ma-

trix of a CME are presented in the following sections. A comparison of the computational

23

time with Algorithm 1 is presented later in this chapter.

3.1 State Space

To generate the state space of a CME, we make use of the semi-positive moiety conservation

laws as presented in the paper [42]1. The moiety conservation laws of a system can be

written in matrix form as

CNj = b ∀j ∈ {1, 2, . . . , n} (3.1)

where C represents the conservation law’s coefficient matrix, Nj is a state, and b is constant

vector of moiety totals. Note that, for C, Nj, and b, all components are non-negative

integers. The set of all non-negative integer solutions of the linear system 3.1 is the state

space N of the CME. A novel method for finding the state space is presented as Algorithm 2.

The algorithm separates the species into dependent and independent species following

conservation laws 3.1. Then the algorithm identifies feasible state components correspond-

ing to the independent species. The corresponding dependent species components are then

generated.

We introduce the algorithm through an example in the next section.

1A MATLAB implementation (sbioconsmoiety function) for generating semi-positive moiety conser-
vation is available in the SIMBIOLOGY toolbox.

24

Algorithm 2: Algorithm for finding all non negative integer solutions of the linear
system CNj = b where C, Nj, and b ≥ 0 component-wise.

Input:
1 C← (Moiety conservation law) coefficient matrix ∈ Zr×k≥0 // where r = rank(C)

2 b← CN1 ∈ Zr×1+ // where N1 is a state vector in the state space

U = Least integer upper bound of variables in the linear system

3 for i = 1, 2, . . . , k do
4 l = 0;
5 for j = 1, 2, . . . , r do
6 if Cj,i 6= 0 then
7 xl = bj/Cj,i; l = l + 1;

8 Ui = floor(min{x}) // where x = {x1, x2, . . . , xl}

N = Non-negative integer solutions of the linear system

9 I←
[
I1 I2 . . . Ik

]
such that components in U(I) are sorted in decreasing

order.;
10 U← U(I); C← C(:, I) // Re-indexing

11 CRREF ← RREF(C) // row reduced echelon form of C

12 K←
[
K1 K2 . . . Kr

]
// Index of pivotal elements in CRREF

13 J←
[
J1 J2 . . . Jk−r

]
// Index of non-pivotal elements in CRREF

14 Cpivot ← C(:,K); // Pivotal columns in C
15 Cnon−pivot ← C(:,J); // Non-pivotal columns in C

16 Nnon−pivot ←
[
0 1 . . . U(J1)

]
;

17 for j = 2,3,. . . ,k-r do

18 Nnon−pivot ←

[
Nnon−pivot Nnon−pivot . . . Nnon−pivot

~0 ~1 . . .
−−−→
U(Jj)

]
;

19 Remove columns that satisfy Cnon−pivotNnon−pivot(:, l) > b;

20 n← number of columns in Nnon−pivot;

21 B←
[
b b . . . b

]
; // where B ∈ Zr×n

22 Npivot ← C−1pivot(B−Cnon−pivotNnon−pivot);

23 N =

[
Npivot

Nnon−pivot

]
;

24 Re-index N, according to the original state indexing;

Output:
25 N← {Nj}nj=1; // State space of the system

25

3.1.1 Example

We use the Michaelis-Menten reaction network to illustrate. The Michaelis-Menten (MM)

mechanism is defined as follows:

S1 + S2

c1−−⇀↽−−
c2

S3

c3−−⇀↽−−
c4

S2 + S4 (3.2)

where Sis represents species involved in the reaction network and ci represents the stochas-

tic reaction rate constant of the reaction Ri. There are 4 species and 4 reaction channels

in the network.

We chose a molecular population of each species in the MM mechanism at some time

as N1 = N2 = N3 = N4 = 1 where Ni represents the number of molecules of the species

Si. This gives a state, say N1, as

N1 =

[
N1 N2 N3 N4

]
=

[
1 1 1 1

]
. (3.3)

The corresponding moiety conservation laws of the MM mechanism are

N1 +N3 +N4 = 3 (3.4)

N2 +N3 = 2. (3.5)

26

Equivalently, in matrix form,

1 0 1 1

0 1 1 0




N1

N2

N3

N4


=

3

2

 (3.6)

where C =

1 0 1 1

0 1 1 0

 and b =

3

2

 are the inputs of the Algorithm 2 in line 1 and 2.

We start with finding the least integer upper bound U of each species’ molecular pop-

ulation (lines 3-8). We chose species N1 and N3 as examples to show the procedure. For

species N1, we set up two (number of rows) linear equations using the first column (corre-

sponding to species S1) in C and b as

1 · U1 = 3 and 0 · U1 = 2 (3.7)

Canceling the inconsistent equation 0 · U1 = 2 gives U1 = 3. Similarly for species S3, linear

equations are

1 · U3 = 3 and 1 · U3 = 2 (3.8)

which has two different solutions (U3 = 3 and U3 = 2). Taking the minimum of these two

solutions provides the upper bound of species N3. In this example, the floor function is

not required due to the presence of integer solutions. Following the same procedures on

27

other species the least integer upper bound of each species’ molecular population is given

by

U =

[
U1 U2 U3 U4

]
=

[
3 2 2 3

]
(line 8) (3.9)

Next find an index, I, such that elements in U are sorted in descending order.

I =

[
1 4 2 3

]
=⇒ U(I) =

[
3 3 2 2

]
(line 9) (3.10)

Re-index U and C column-wise using the index I.

U =

[
U1 U4 U2 U3

]
=

[
3 3 2 2

]
(3.11)

C =

1 1 0 1

0 0 1 1

 (line 10) (3.12)

Let K and J be the pivotal and non-pivotal indices of species respectively found using the

Reduced Row-Echelon Form (RREF) of the matrix C. Since C is already in Row Reduced

Echelon Form (RREF),

K =

[
K1 K2

]
=

[
1 3

]
(line 12) (3.13)

J =

[
J1 J2

]
=

[
2 4

]
(line 13) (3.14)

28

Partition C using the columns corresponding to the pivotal and non-pivotal indices:

Cpivot =

1 0

0 1

 (line 14) (3.15)

Cnon−pivot =

1 1

0 1

 (line 15) (3.16)

Define Nnon−pivot =

[
0 1 . . . U(J1)

]

Nnon−pivot =

[
0 1 2 3

]
(line 16) (3.17)

Extend Nnon−pivot using U(Jj) = 2 as follows

Nnon−pivot =

0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2

 (line 18) (3.18)

Next we determine which columns satisfy Cnon−pivotNnon−pivot ≤ b

Cnon−pivotNnon−pivot =

1 1

0 1


0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2

 (3.19)

=

0 1 2 3 1 2 3 4 2 3 4 5

0 0 0 0 1 1 1 1 2 2 2 2

 (3.20)

29

Eliminating columns that do not satisfy Cnon−pivotNnon−pivot ≤ b gives

Nnon−pivot =

0 1 2 3 0 1 2 0 1

0 0 0 0 1 1 1 2 2

 (line 19) (3.21)

Recall that the state space is the non-negative integer solution of the linear system CN =[
b b . . . b

]
where the state space N can be partitioned as

N =

 Npivot

Nnon−pivot

 (3.22)

where Nnon−pivot, in the state space is already identified. To find Npivot,

CN = B (3.23)

=⇒ CpivotNpivot + Cnon−pivotNnon−pivot = B (3.24)

=⇒ CpivotNpivot = B−Cnon−pivotNnon−pivot (3.25)

=⇒ Npivot = C−1pivot(B−Cnon−pivotNnon−pivot) (3.26)

30

In this case,

Npivot =

1 0

0 1


−1

3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

−
1 1

0 1


0 1 2 3 0 1 2 0 1

0 0 0 0 1 1 1 2 2




=

3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2

−
0 1 2 3 1 2 3 2 3

0 0 0 0 1 1 1 2 2


=

3 2 1 0 2 1 0 1 0

2 2 2 2 1 1 1 0 0

 (line 22) (3.27)

Then combining 3.21 and 3.27, we have

N =

 Npivot

Nnon−pivot

 =



N1

N2

N4

N3


=



3 2 1 0 2 1 0 1 0

2 2 2 2 1 1 1 0 0

0 1 2 3 0 1 2 0 1

0 0 0 0 1 1 1 2 2


(line 23) (3.28)

Note that, due to the re-indexing using I and partitioning of C as pivotal and non-pivotal

parts, the row-index of the state space is changed to

[
1 2 4 3

]
where the first two

components represents the pivotal species and second two components represents the non-

31

pivotal species. So, re-indexing the state space back to original indexing gives

N =



N1

N2

N3

N4


=



3 2 1 0 2 1 0 1 0

2 2 2 2 1 1 1 0 0

0 0 0 0 1 1 1 2 2

0 1 2 3 0 1 2 0 1


(line 24) (3.29)

satisfying eq. (3.6). In the next section, we present an algorithm to determine the transition

matrix of a CME using the state space, N,

3.2 Transition Matrix

An element Dj,k of the transition matrix D represents the total propensity for all reactions

that transition from the state Nk to state Nj. Generation of the transition matrix is pre-

sented in Algorithm 3. As a first step, we catalog the state transitions corresponding to all

reactions. Next, reaction propensities for all such transitions are calculated. Finally, each

reaction propensity is assigned to the transition matrix using the indices of the correspond-

ing state transition. We will continue with the MM network to illustrate the algorithm.

3.2.1 Example

For the MM mechanism (3.2), the inputs to the Algorithm 3 are

32

Algorithm 3: Algorithm for finding the transition matrix of a CME

Input:
1 N← {Nj}nj=1 : State space of the system ∈ Zk×n≥0 ;

2 {Si}hi=1 ← set of Stoichiometry vectors ∈ Zk×h;
3 {Ri}hi=1 ← set of Reactant-Stoichiometry vectors ∈ Zk×h≥0 ;

4 c← Reaction rate vector;

I = Index of transition states in the state space

5 for i = 1,2,. . . , h do
6 S =

[
Si Si . . . Si

]
; // where S ∈ Zk×n

7 N̂ = N + S; // transition state matrix due to reaction Ri

8 I(i, :) =
[
I1 I2 . . . In

]
such that jth transition state N̂(:, j) = N(:, Ij);

// where Ij = 0 if N̂(:, j) /∈ N

D̂ = Reaction propensities of each transitions

9 for i = 1,2,. . . , h do
10 nr,i ← number of reactant species in the reaction Ri;

11 J =
[
J1 J2 . . . Jnr,i

]
; // Index of reactant species in the

reaction Ri

12 for j = 1,2,. . . , n do
13 Ci,j =

∏nr

r=1 nchoosek(NJr,j,RJr,i); // where C ∈ Zh×n≥0

14 D̂ = diag(c)C; // where D̂ ∈ Zh×n≥0
D = Transition matrix of the CME

15 D = 0n×n;
16 for i = 1,2,. . . , h do
17 for v = 1,2,. . . , n do

18 D = D̂i,v;
19 u = Ii,v;
20 if D 6= 0 and u 6= 0 then
21 Du,v = D;

22 for j = 1,2,. . . , h do

23 Dj,j = −
∑h

i=1

∏nr,i

i=1 N

Output:
24 D← Transition matrix of the CME ∈ Rn×n;

33

1. State space

N =



3 2 1 0 2 1 0 1 0

2 2 2 2 1 1 1 0 0

0 0 0 0 1 1 1 2 2

0 1 2 3 0 1 2 0 1


(line 1) (3.30)

2. Stoichiometry vectors

R1 R2 R3 R4

↓ ↓ ↓ ↓

{Si} =





−1

−1

1

0


,



1

1

−1

0


,



0

1

−1

1


,



0

−1

1

−1





← S

← E

← C

← P

(line 2) (3.31)

3. Reactant-Stoichiometry vectors: These are versions of the stoichiometry vectors in

34

which only reactant species appear and the signs are flipped.

R1 R2 R3 R4

↓ ↓ ↓ ↓
(3.32)

{Ri} =





1

1

0

0


,



0

0

1

0


,



0

0

1

0


,



0

1

0

1





← S

← E

← C

← P

(line 3) (3.33)

4. Stochastic reactions rates

c =

[
1000 500 5 2

]
(Line 4) (3.34)

We begin by finding the state transitions corresponding to each reaction in turn. For

the first reaction R1, we construct an n dimensional array by repeating the stoichiometry

vector corresponding to reaction R1 as

S =



−1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0


(line 6) (3.35)

35

Then all potential target states reached through reaction R1 are given by

N̂ = N + S =



2 1 0 −1 1 0 −1 0 −1

1 1 1 1 0 0 0 −1 −1

1 1 1 1 2 2 2 3 3

0 1 2 3 0 1 2 0 1


(line 7) (3.36)

Next, for each feasible target state, we identify its index in the state space N, recorded

as follows. Let I be a matrix with element Ij,k representing the index of the jth column

of N̂ in N reached through reaction Rk. If a column of N̂ is not in N, then we set the

corresponding value to 0. Then for the first iteration, the first row of I is given by

I1 =

[
5 6 7 0 8 9 0 0 0

]
(line 8) (3.37)

Repeating for each reaction, the index matrix I is generated as

I =



5 6 7 0 8 9 0 0 0

0 0 0 0 1 2 3 5 6

0 0 0 0 2 3 4 6 7

0 5 6 7 0 8 9 0 0


(line 8) (3.38)

Calculation of reaction propensities

We next use collision theory [21] to identify the propensity of a reaction. For reactions

in which the stoichiometric coefficients for the reactant species are all 1 (a typical case),

36

the reaction propensity of Ri :
k∑
j=1

Sj
ci−−→

l∑
j=1

bj,iPj, following mass action law, can be

calculated as

ci

k∏
j=1

Nj (3.39)

where Nj is the number of molecules of species Sj available. In the case where multiple

copies of a reactant appear, we need to carefully address the number of possible collision

combinations.

The number of possible collision combinations that can lead to reaction Ri from state

state Nj is given by

Ci,j =

nr,i∏
r=1

(
Nr,j

Rr,i

)
=

nri∏
r=1

Nr,j!

(Rr,i!)(Nr,j −Rr,i)!
(3.40)

where Rr,i is the rth non-zero component in the Reactant-Stoichiometry vector Ri, Nr,j is

the component in the state vector Nj corresponding to the rth reactant species, and nr,i is

the number of reactant species. As an example, C1,3 is calculated as follows:

The Reactant-Stoichiometry vector, R1 is

R1 =

[
1 1 0 0

]T
(3.41)

and state N3 is

N3 =

[
1 2 0 2

]T
(3.42)

37

The indices of the reactant species (non-zero elements in R1) are

J =

[
1 2

]
(3.43)

Then

NJ,3 =

[
1 2

]
and RJ,1 =

[
1 1

]
(3.44)

Then

C1,3 =
2∏
r=1

(
NJ,3(r)

RJ,1(r)

)
=

(
1

1

)
×
(

2

1

)
= 2

Considering each reaction and each state, collision combinations matrix C is

C =



6 4 2 0 2 1 0 0 0

0 0 0 0 1 1 1 2 2

0 0 0 0 1 1 1 2 2

0 2 4 6 0 1 2 0 0


(line 13) (3.45)

38

We then determine the reaction propensity matrix D̂ using the stochastic reaction rates c:

D̂ = diag(c)C (3.46)

=



1000 0 0 0

0 500 0 0

0 0 5 0

0 0 0 2





6 4 2 0 2 1 0 0 0

0 0 0 0 1 1 1 2 2

0 0 0 0 1 1 1 2 2

0 2 4 6 0 1 2 0 0


(3.47)

=



6000 4000 2000 0 2000 1000 0 0 0

0 0 0 0 500 500 500 1000 1000

0 0 0 0 5 5 5 10 10

0 4 8 12 0 2 4 0 0


(line 14) (3.48)

Next we use the indices collected in matrix I (3.38) to populate the off-diagonal entries

39

of D.

D =



∗ 0 0 0 500 0 0 0 0

0 ∗ 0 0 5 500 0 0 0

0 0 ∗ 0 0 5 500 0 0

0 0 0 ∗ 0 0 5 0 0

6000 4 0 0 ∗ 0 0 1000 0

0 4000 8 0 0 ∗ 0 10 1000

0 0 2000 12 0 0 ∗ 0 10

0 0 0 0 2000 2 0 ∗ 0

0 0 0 0 0 1000 4 0 ∗



(line 21) (3.49)

Finally, as mentioned before, the diagonal element in the jth column is negative the

column sum of jth column of D excluding the diagonal element,

Dj,j = −
n∑

i=1,i 6=j

Di,j (3.50)

40

In conclusion, for the MM Mechanism, the transition matrix D is

D =



−6000 0 0 0 500 0 0 0 0

0 −4004 0 0 5 500 0 0 0

0 0 −2008 0 0 5 500 0 0

0 0 0 −12 0 0 5 0 0

6000 4 0 0 −2505 0 0 1000 0

0 4000 8 0 0 −1507 0 10 1000

0 0 2000 12 0 0 −509 0 10

0 0 0 0 2000 2 0 −1010 0

0 0 0 0 0 1000 4 0 −1010



(line 23)

(3.51)

3.3 Computational Efficiency

Dimension (n) Algorithm 2 & 3 Algorithm 1
66 0.05 0.02

5151 0.08 2.5
20301 0.2 28
45451 0.4 358
125751 1.1 3526

Table 3.1: Time, in seconds, taken to generate the CME using both methods in MATLAB
for different dimensions of the CME of the MM mechanism. Computer configuration:
Windows, Intel i5-6300U CPU, 2.4 GHz and 8GB RAM.

The computational time required to generate the state space and transition matrix in

41

MATLAB, of Algorithm 2 and 3 is compared to Algorithm 1 in Table 3.1.

Improvements were achieved in the Algorithm 2 and 3 by consolidating most of the

steps into functions and vectorizing iterative steps. MATLAB scripts are available in the

Github repository https://github.com/midhunks/Chemical-Master-Equation.

42

https://github.com/midhunks/Chemical-Master-Equation

Chapter 4

Dimensionality Reduction and

Approximation of the Chemical

Master Equation

A finite (n) dimensional Chemical Master Equation (CME), with initial condition P(0)

can be written in matrix form as

Ṗ(t) = D P(t) , P(0) = P0 , P(t) ∈ Rn. (4.1)

Because the CME is a linear system, its solution can be expressed as

P(t) = R exp(Jt) a ∀t ≥ 0 (4.2)

43

where J is the Jordan matrix with eigenvalue λi on the ith diagonal, R is an eigenmatrix

with n linearly independent (generalized) eigenvector Ri at the column index i, and a =

R−1 P0.

If R is composed of n linearly independent eigenvectors, i.e.

D R = R Λ, (4.3)

where Λ = diag(λ1, λ2, . . . , λn), then the solution (4.2) has the form

P(t) = R exp(Λt) a ∀t ≥ 0 (4.4)

which can be expressed in summation form as

P(t) =
n∑
i=1

ai exp(λit) Ri ∀t ≥ 0 (4.5)

For a CME, the real part of all eigenvalues (<(λ)) are non-positive [43]. Furthermore,

assume the eigenvalues satisfy:

0 ≥ <(λ1) ≥ . . . ≥ <(λd) > <(λd+1) ≥ . . . ≥ <(λn) , for some d ∈ {1, 2, . . . , n−1}

(4.6)

Writing the solution (4.5) as

P(t) =
d∑
i=1

ai exp(λit) Ri +
n∑

i=d+1

ai exp(λit) Ri ∀t ≥ 0, (4.7)

44

the condition (4.6) implies that, as t increases , exp(λjt) decays more rapidly for j ∈

{d+ 1, . . . , n} compared to j ∈ {1, . . . , d}, and consequently

P(t) ≈ P̃(t) =
d∑
i=1

ai exp(λit) Ri ∀ sufficiently large t (4.8)

This thesis is devoted to exploiting this observation to arrive at an accurate approximation

(past an initial transient) to the full system behavior from simulations of a reduced d-

dimensional system. A theoretical formulation of this idea is presented in Theorem 1 using

the notations in InfoBox 4.1 and assumptions in InfoBox 4.2.

Theorem 1. Choose d ∈ {1, 2, . . . , n} such that the assumption in InfoBox 4.2 is true.

Consider the solution P(t) of an n-dimensional linear initial value problem

Ṗ(t) = DP(t) , P(0) = P0 , P(t) ∈ Rn (4.11)

in partitioned form as

P(t) =

Rdd Rdm

Rmd Rmm

 exp


Λdd 0dm

0md Λmm

 t


Ad

Am

 (4.12)

where

Ad

Am

 =

Rdd Rdm

Rmd Rmm


−1

P(0).

45

InfoBox 4.1: Notations

Let D ∈ Rn×n be a matrix with right and left eigenrelations

DR = RΛ , DTL = LΛ (4.9a)

where Λ = diag(λ1, λ2, . . . , λn). Also, let T ∈ Rn×n be an invertible matrix. Define

D̂ = TDT−1 , R̂ = TR , L̂ = T−TL. (4.9b)

Partition D, L, R, Λ, T, D̂, L̂, and R̂ as

D =

[
Ddd Ddm

Dmd Dmm

]
, L =

[
Ldd Ldm

Lmd Lmm

]
, R =

[
Rdd Rdm

Rmd Rmm

]
, Λ =

[
Λdd 0dm
0md Λmm

]
D̂ =

[
D̂dd D̂dm

D̂md D̂mm

]
, L̂ =

[
L̂dd L̂dm

L̂md L̂mm

]
, R̂ =

[
R̂dd R̂dm

R̂md R̂mm

]
, T =

[
Tdd Tdm

Tmd Tmm

]
(4.9c)

where the sub-indices of each block in the partitioned matrices indicate the dimension of
the sub-matrix and d+m = n.

InfoBox 4.2: Core Assumption

Assume D ∈ Rn×n has linearly independent eigenvectors and eigenvalues λ1, λ2, . . . , λn
satisfying

0 ≥ <(λ1) ≥ · · · ≥ <(λd) > <(λd+1) ≥ · · · ≥ <(λn) , d ∈ {1, 2, . . . , n− 1}

(4.10)
Follow notations in InfoBox 4.1 and assume the matrix D̂ and T are indexed such that the
block matrices Tdd and R̂dd are invertible.

46

Define

P̃(t) =

Rdd

Rmd

 exp

(
Λdd t

)
Ad. (4.13)

Then for any given ε > 0, with tε = 1
<(λd+1)

ln(ε),

∥∥∥P(t)− P̃(t)
∥∥∥
∞

= O(ε) , ∀t ≥ tε. (4.14)

The proof is given in the appendix (page 107).

In the work of Roussel and Zhu [4], a reduced system is achieved using timescale

separation following (4.8). Although the procedure of Roussel and Zhu results in a reduced

system which can generate a valid approximation as in (4.17) below, it was not directly

useful because the reduced initial condition that corresponds to a particular solution of

the original system could not be systematically identified. (Roussel and Zhu did provide

a method to estimate the reduced initial condition by using knowledge of the biochemical

system. They employed a linear programming approach where the objective function relied

on the system’s behavior during the initial transient which is, in general, hard to identify.)

We propose a systematic way of identifying the reduced initial condition. The complete

reduction algorithm including a novel error bound is presented in the following theorem.

Theorem 2. Choose d ∈ {1, 2, . . . , n− 1} such that the assumptions in InfoBox 4.2 hold.

47

Consider an n-dimensional initial value problem

Ṗ(t) = DP(t) , P(0) = P0 (4.15)

Then consider the d-dimensional initial value problem1

Ẋ(t) =

(
D̂dd + D̂dmR̂mdR̂

−1
dd

)
X(t) , X(0) = R̂dd


 L̂dd

L̂md


T  R̂dd

R̂md



−1  L̂dd

L̂md


T

TP0

(4.16)

Then for any ε (0 < ε < 1), with tε = 1
<(λd+1)

ln(ε),

∥∥∥∥∥∥∥P(t)−T−1

 Idd

R̂mdR̂
−1
dd

X(t)

∥∥∥∥∥∥∥
∞

= O(ε) , ∀t ≥ tε (4.17)

The proof is given in the Appendix (page 113).

A pseudo-code implementation of the approximation in this theorem is presented in

Algorithm 4.

The approximate n-dimensional solution of the CME from Theorem 2 satisfies proba-

bility conservation as stated below.

1Note, T, L, and R are invertible (full rank n). Then the sub-matrices of transformed eigenvector

matrices

[
L̂dd

L̂md

]
and

[
R̂dd

R̂md

]
has full rank d. Then the d× d matrix

([
L̂dd

L̂md

]T [
R̂dd

R̂md

])
is invertible

48

Algorithm 4: Reduction Algorithm

Input:
1 D← Transition matrix ∈ Rn×n;
2 P0 ← Initial condition ∈ Rn;
3 d← A number ∈ {1, 2, . . . , n− 1};
4 ε← error tolerance greater than zero;

begin
5 Tnd ← Left eigenbasis of D corresponding to d slow eigenvalues;
6 I← An index such that top d columns of Tnd is an invertible matrix.;
7 Irev ← an index to re-index the solution back to the original indexing.;
8 Re-Index D, P0, Tnd using I.;
9 T← An invertible transformation matrix ∈ Rm×n where the first d rows are

equal to TT
nd;

10 Mnd ← Right eigenbasis of D corresponding to d slow eigenvalues;
11 Mnd ← Transpose of RREF((TM)T): Updated corresponding to the transformed

matrix D̂ = TDT−1;

12 Qdd ← D̂dnMnd: Reduced Transition matrix;
13 X0 ← Reduced initial condition. Varies with transformation used.;

14 X(t)← Reduced solution of the system Ẋ(t) = QddX(t) ,X(0) = X0;

15 P̃(t)← T−1MndX(t);

Output:
16 P̃(t)← Approximate solution of the CME Ṗ(t) = DP(t) ,P(0) = P0 for times

greater than tε = 1
<(λd+1)

log(ε) with error bound O(ε).

Corollary 1. Suppose the hypothesis of Theorem 2 holds and 1TnP(t) = 1TnP0 ,∀t. Then

1Tn P̃(t) = 1TnP0 ∀t (4.18)

where P̃(t) = T−1

 Idd

R̂mdR̂
−1
dd

X(t).

The proof is given in Appendix (page 117)

49

We next consider three cases for the transformation T.

4.1 No Transformation: T = I

In the work of Roussel and Zhu [4], the reduction in Theorem 2 is developed for T = I, i.e.

D̂ = D, R̂ = R, and L̂ = L. In Theorem 2 we extended the formulation of the reduced

system with a systematic generation of the initial condition as (4.16) and we provided

an upper bound for the error in the approximation as (4.17). An implementation of this

algorithm will be presented in Section 4.3.

4.2 Transformation to Achieve Probability Conserva-

tion in the Reduced System

The CME describes the time evolution of a probability distribution. In particular, the

solutions satisfy conservation of probability over time. By Corollary 1, the approximate

solution P̃(t) = T−1

 Idd

R̂mdR̂
−1
dd

X(t) (eq (4.17)) also satisfy probability conservation.

However, the reduced d dimensional system (4.16) constructed using T = I has solutions

that do not satisfy any conservation. Therefore, although it is useful for generating approx-

imate solutions to a CME, this reduced system can’t be interpreted directly as describing

the evolution of a probability distribution. However, under appropriate choice of transfor-

mation T, solutions of the reduced system satisfy a conservation, as described next.

50

Corollary 2. Suppose the hypothesis of Theorem 2 is true . Let T be an invertible matrix

such that each column sum of the first d rows is equal to 1, i.e.

1Td

[
Idd 0dm

]
T = 1Tn (4.19)

Consider the reduced differential equation (4.16)

Ẋ(t) =

(
D̂dd + D̂dmR̂mdR̂

−1
dd

)
X(t). (4.20)

Then all solutions of this system satisfy

1TdX(t) = 1TnP0 ∀t (4.21)

The proof is given in the Appendix (page 119)

In the context of a CME, the column sum of each solutions is 1 because of the proba-

bility conservation (1TnP(t) = 1 ,∀t). Then, under any transformation T that satisfies the

condition (4.19), the solution of the system (4.20) satisfies probability conservation. i.e.

1TdX(t) = 1TdX(0) = 1 (4.22)

To identify a transformation for the CME so that probability conservation is main-

tained, T should satisfy the condition 1Td

[
Idd 0dm

]
T = 1TdTdn = 1Tn which only con-

strains the top d rows. To begin a simple construction, we can fix the top-left d× d block

51

of T as an identity matrix, which also satisfies the invertibility condition of Tdd in the

assumptions InfoBox 4.2. Next, each column of the top-right block of T should have a sum

of 1. Two such transformation that we will explore in this thesis are

T =

 Idd L−Tdd LT
dm

0md Imm

 and T =

 Idd −DdmD−1mm

0md Imm

 (4.23)

where the bottom block matrices are chosen to ensure the invertibility of T. (The first

transformation is generated from the left eigenvectors of D and the second comes from

the transition matrix D itself). Lemmas 6 and 7 given in Appendix (page 123 and 125)

confirm that the column sum of the top right block of each of these transformation matrices

is equal to 1Tm. We will make use of a modified form of the second transformation to exploit

the eigenspectrum (as in Figure 2.1(A)) for improving the efficiency of the computation of

the reduced system and approximation. This modification is an alternate implementation

of the reduction presented by Peleš [28].

4.2.1 Transformation Using Left Eigenvectors

In addition to the probability conservation, the choice of

T =

 Idd L−Tdd LT
dm

0md Imm

 (4.24)

52

is particularly made to achieve the following properties :

D̂dm = 0dm (4.25a)

R̂dm = 0dm (4.25b)

L̂md = 0md (4.25c)

which are proved in Corollary 3 (page 121). Using these properties, the reduced d-

dimensional system (4.16) simplifies to

Ẋ(t) = D̂ddX(t) (4.26)

Note that, due to the structure of T, the inverse of T can be easily computed by taking

the negative of the top right block. i.e.

T−1 =

 Idd −L−Tdd LT
dm

0md Imm

 (4.27)

The initial condition associated with the reduced system (4.16) is simplified as follows:

X(0) = R̂dd


L̂dd

0md


T  R̂dd

R̂md



−1 L̂dd

0md


T

TP0 (4.28)

= R̂dd

(
L̂T
ddR̂dd

)−1 L̂dd

0md


T

TP0 (4.29)

53

Now, note that

L̂dd

0md

 is full rank d. Then, because of zero block, L̂dd is invertible. Then

X(0) = R̂ddR̂
−1
dd L̂−Tdd

L̂dd

0md


T

TP0 (4.30)

= L̂−Tdd

[
L̂T
dd 0Tmd

]
TP0 (4.31)

=

[
Idd 0Tmd

]
TP0 (4.32)

=

[
Idd L−Tdd LT

dm

]
P0 (4.33)

Combining (4.26) and (4.32), we have the reduced system of the form

Ẋ(t) = D̂ddX(t) , X(0) =

[
Idd L−Tdd LT

dm

]
P0 (4.34)

which has solution X(t) that be can be used to approximate the solution P as given in

Theorem 2:∥∥∥∥∥∥∥P(t)−T−1

 Idd

R̂ddR̂
−1
dd

X(t)

∥∥∥∥∥∥∥
∞

= O(ε) , ∀t ≥ 1

<(λd+1)
ln(ε) (4.35)

4.2.2 Transformation Using Transition Matrix Components

In this section, we develop an alternate derivation of the timescale separation algorithm

first presented in [28]. For systems with large separation in timescales, the eigenvalues

54

satisfy

0 ≥ <(λ1) ≥ <(λ2) ≥ . . . ≥ <(λd) � <(λd+1) ≥ <(λd+2) ≥ . . . ≥ <(λn) (4.36)

as shown in Figure 2.1(A).

Then setting <(λd)
<(λd+1)

= δ, we have

<(λi)

<(λd+1)
≤ δ ≈ 0 , ∀i ∈ 1, 2, . . . d (4.37)

Using this idea, we split the transition matrix D as

D = F + ∆ (4.38)

where F and ∆ are chosen 2 such that F has eigenvalues corresponding to fast timescales

and ∆ has eigenvalues corresponding to slow timescales. Also, F and ∆ are chosen such that

the eigenspectra of F and ∆ each have d zero eigenvalues. In addition, F and ∆ are proper

CME’s transition matrices. Such a splitting can be achieved through a simple iterative

procedure as follows: Assume, the eigenspectrum gap is of order 10m, i.e. , <(λd+1) =

<(λd)− c 10m for some constant c < 10. Then each iteration follows a truncation as

F = 10k+i

⌊
D

10k+i

⌉
, i ∈ {1, 2, . . . ,m} (4.39)

where 10k ≥ |<(λd)| and b·e is the function for rounding a number to nearest integer.

2In the paper [28], F and ∆ are represented using H and εV respectively.

55

The stopping criteria for this approach is when F and ∆ = D− F achieves exactly d zero

eigenvalues.

In partitioned form F can be written as

F =

Fdd Fdm

Fmd Fmm

 (4.40)

Following paper [28], the matrix F has a block structure (2.12) and rank n−d. In addition,

all d blocks contain 1 eigenvalue equal to zero and so they each have one row (and column)

dependent on other rows (and column) in the block. Re-indexing the matrix F such that

those d-dependent rows in each block are at the top d rows of F leads the bottom n − d

rows of F has rank n− d. In particular, due to row and column re-indexing, Fmm will be

invertible. A similar structural argument on correspondingly row re-indexed eigenmatrices

R and L will give top d× d blocks, Rdd and Ldd invertible and diagonal.

Under the assumption, δ → 0, we have

D = F. (4.41)

Then the transformation using blocks of D can be written in terms of F as

T =

 Idd −DdmD−1mm

0md Imm

 =

 Idd −FdmF−1mm

0md Imm

 (4.42)

Note that, due to the structure of T, the inverse of T can be easily computed by taking

56

the negative of the top right block. i.e.

T−1 =

 Idd FdmF−1mm

0md Imm

 (4.43)

Let F̂ = TFT−1. Then right and left eigenvectors of F̂ corresponding to the d-zero

eigenvalues satisfy the conditions:

 F̂dd F̂dm

F̂md F̂mm


 R̂dd

R̂md

 =

0dd

0md

 and

 F̂dd F̂dm

F̂md F̂mm


T  L̂dd

L̂md

 =

0dd

0md

 (4.44)

Using these conditions on left and right null matrices, we can simplify the initial con-

dition for the reduced system as follows:

We have the reduced initial condition (4.16) as

X(0) = R̂dd


 L̂dd

L̂md


T  R̂dd

R̂md



−1  L̂dd

L̂md


T

TP0 (4.45)

Using Lemma 8 (given in page 126), we have R̂dd and L̂dd are invertible and L̂md = 0md.

57

Then

X(0) = R̂dd


L̂dd

0md


T  R̂dd

R̂md



−1 L̂dd

0md


T

TP0 (4.46)

= R̂dd

(
L̂T
ddR̂dd

)−1 L̂dd

0md


T

TP0 (4.47)

= R̂ddR̂
−1
dd L̂−Tdd

L̂dd

0md


T

TP0 (4.48)

=

 Idd

0md


T

TP0 (4.49)

=

[
Idd 0md

] Idd −FdmF−1dm

0md Imm

P0 (4.50)

=

[
Idd −FdmF−1dm

]
P0 (4.51)

Then the reduced system (4.16) in Theorem 2 can be written as

Ẋ(t) =

(
D̂dd − D̂dmF̂−1mmF̂md

)
X(t) , X(0) =

[
Idd −FdmF−1mm

]
P0, (4.52)

which approximates the solution P as

∥∥∥∥∥∥∥P(t)−T−1

 Idd

R̂ddR̂
−1
dd

X(t)

∥∥∥∥∥∥∥
∞

= O(ε) , ∀t ≥ 1

<(λd+1)
ln(ε) (4.53)

58

Note that in this case the error is dictated not by the user, but by the size of the gap in

the eigenspectrum due to the additional assumption δ = 0.

4.3 Implementation of the Reduction Procedure

In theory, the result in Theorem 2 can be applied to any linear system with transition

matrix which has linearly independent eigenvectors. In practice, when addressing systems

for which n (and possibly also d) are large, identifying eigenvalues and eigenvectors to re-

duce the system is an ill conditioned process due to computational difficulties in generating

accurate eigenvectors. There are a number of aspects of the reduction scheme that demand

special care to avoid the accumulation of numerical errors. In this section we will consider

the following:

1. Selection of the reduced dimension d.

2. Computation of initial condition and transition matrix of the reduced system.

4.3.1 Selection of the Reduced Dimension d

For a given error tolerance ε (0 < ε < 1), Theorem 2 provides an acceptable approximation

on the order of ε for all

t ≥ tε =
1

<(λd+1)
ln(ε) > 0 (4.54)

In this condition, tε depends upon the error tolerance ε and choice of d. Then for a given

error tolerance ε, we can aim to achieve a particular tε by appropriate choice of d. In

59

particular, if the relation

<(λd+1) ≤
1

tε
ln(ε) (note that <(λd+1) < 0) (4.55)

is satisfied, then the corresponding index of the eigenvalue <(λd+1) can be used to find the

reduced dimension d for which the error is bounded by ε for all time t ≥ tε.

Even though we can identify a corresponding eigenvalue λd+1 using (4.55), we cannot

deduce the information about the reduced dimension d without computing all eigenvalues

λ1, λ2, . . . , λd+1. Algorithms such as eigs, MATLAB’s implementation of the ARPACK

routines [44, 45], efficiently computes a partial set of eigenvalues with a reasonable accuracy.

However, in our experience, the eigs function is found to be erroneous while computing a

large set of eigenvalues when the matrix is high dimensional. To resolve this, we identify

eigenvalues iteratively. In each step, two (3 or more in case of complex and repeated)

eigenvalues near to the previously identified eigenvalues are identified.

4.3.2 Computation of the Initial Condition and the Transition

Matrix of the Reduced System Using a Semi-Orthogonal

Eigenbasis

Computation of the initial condition and the transition matrix for the reduced system re-

quires identification of eigenvectors. However, due to round-off errors, eigenvectors of large

dimensional matrices loose linear independence and are not good for inverse operations. To

resolve this, we propose an alternative approach, based on a numerically stable eigenbasis,

60

as follows. Recall, the reduced initial condition from Theorem 2 is given by

X(0) = R̂dd


 L̂dd

L̂md


T  R̂dd

R̂md



−1  L̂dd

L̂md


T

TP0. (4.56)

Because R̂dd is invertible,

 R̂dd

R̂md

 =

 Idd

R̂mdR̂
−1
dd

Rdd (4.57)

where the matrix

 Idd

R̂mdR̂
−1
dd

 is a (scaled) Semi-Orthogonal matrix [46]. A semi orthogonal

matrix is defined as follows: Let A ∈ Rm×n be a semi-orthogonal matrix with m 6= n. Then

exactly one the following is true for A.

ATA = I or AAT = I (4.58)

which is a diagonal matrix in our case due to the scaling of each column to achieve an

identity block in the matrix. The semi-orthogonality is achieved in terms of rows of an

identity matrix. Because this is a basis for the eigenspace, we call this matrix a Semi-

Orthogonal Eigenbasis.

61

Next, define Mnd =

 Idd

R̂mdR̂
−1
dd

 which is a Semi-Orthogonal (right) Eigenbasis. Then

 R̂dd

R̂md

 = M̂ndR̂dd (4.59)

Because

 L̂dd

L̂md

 is a full rank matrix, we can identify d linearly independent rows in

the matrix. Let Udd be a d × d block matrix formed with those d linearly independent

rows. Then Udd is an invertible matrix. Then define Tnd =

 L̂dd

L̂md

U−1dd which is a Semi-

Orthogonal (left) Eigenbasis. Then

 L̂dd

L̂md

 = TndUdd (4.60)

Then

X(0) = R̂dd

((
TndUdd

)T
MndR̂dd

)−1(
TndUdd

)T
P0 (4.61)

= R̂dd

(
UT
ddT

T
ndMndR̂dd

)−1
UT
ddT

T
ndP0 (4.62)

= R̂ddR̂
−1
dd

(
TT
ndMnd

)−1
U−Tdd UT

ddT
T
ndP0 (4.63)

=⇒ X(0) =

(
TT
ndMnd

)−1
TT
ndP0 (4.64)

62

Recall, the transition matrix of the reduced system (4.16) in Theorem 2 is given by

D̂dd + D̂dmR̂mdR̂
−1
dd (4.65)

By factoring, we can write

[
D̂dd D̂dm

] Idd

RmdR
−1
dd

 (4.66)

Then using Mnd =

 Idd

R̂mdR̂
−1
dd

, we have

D̂dd + D̂dmR̂mdR̂
−1
dd =

[
D̂dd D̂dm

]
Mnd (4.67)

We have achieved an expression for the initial condition and transition matrix in terms

of left and right Semi-Orthogonal Eigenbases Tnd and Mnd as opposed to eigenvectors

R̂ and L̂. We next present an approach for accurate generation of a Semi-Orthogonal

Eigenbasis.

63

Semi-Orthogonal Eigenbasis Decomposition

Consider a partial eigenvalue relation of a matrix K ∈ Rn×n with d linearly independent

eigenvectors as

KVnd = VndΛdd (4.68)

In partitioned form,

Kdd Kdm

Kmd Kmm


Vdd

Vmd

 =

Vdd

Vmd

Λdd (4.69)

Suppose Vdd invertible. Then right multiplying with V−1dd gives

Kdd Kdm

Kmd Kmm


Vdd

Vmd

V−1dd =

Vdd

Vmd

ΛddV
−1
dd (4.70)

Kdd Kdm

Kmd Kmm


 Idd

VmdV
−1
dd

 =

VddΛddV
−1
dd

VmdΛddV
−1
dd

 (4.71)

64

Define Xmd = VmdV
−1
dd . i.e., Vmd = XmdVdd. Then

Kdd Kdm

Kmd Kmm


 Idd

Xmd

 =

 VddΛddV
−1
dd

XmdVddΛddV
−1
dd

 (4.72)

Kdd Kdm

Kmd Kmm


 Idd

Xmd

 =

 Idd

Xmd

VddΛddV
−1
dd (4.73)

Here,

 Idd

Xmd

Vdd is an eigenmatrix and thus

 Idd

Xmd

 is a right Semi-Orthogonal Eigenbasis

of K. The same procedure applied to KT generates a left Semi-Orthogonal Eigenbasis.

Algorithm for the Semi-Orthogonal Eigenbasis Decomposition

We use the standard block-power iteration [47] to get the eigenvectors corresponding to

the largest d eigenvalues. In block-power iteration, the eigenvectors corresponding to the

large eigenvalues are generated as

KnV0
n→∞−−−−−−−→ VΛn (4.74)

where V is the partial set of eigenvectors. In each iteration V is normalized to avoid

overflow.

In our method, we seek an eigenbasis which is a scaled semi-orthogonal matrix with an

identity block. Then, instead of normalizing in every step as in the block-power iteration,

we use the classic Row Reduced Echelon Form (RREF) method in which we scaling pivot

65

elements to one after row reducing the whole matrix. The RREF procedure makes sure

that the new block matrix generated in every iteration has an identity block. In addition,

it also keeps each column vector linearly independent. Implementation of this eigenbasis

generation approach is given in Algorithm 5.

Algorithm 5: Implementation of the Semi-Orthogonal Eigenbasis Decomposition

Input:
1 K← A matrix ∈ Rn×n;
2 d← A number ∈ {1, 2, . . . , n− 1};
3 δ ← tolerance greater than machine epsilon;
4 I← (optional) Index of d pivotal elements;

begin
5 Vold ← A zero matrix of size n× d;
6 Vnew ← A non-zero initial seed matrix of size n× d;
7 while ‖Vnew −Vold‖∞ > δ do Power iteration
8 Vold ← Vnew;
9 for j = 1, 2, . . . , d do

10 if I is not given then
11 I(j)← Index of the absolute maximum component in the jth row of

VT
new;

12 VT
new ← pivoting (without scaling) of VT

new using the I(j)th element;

13 Vnew ← KVnew;

14 Vnew ← Scale each column such that pivot elements are equal to 1.

Output:
15 Vnew ← Desired basis matrix ∈ Rn×d with tolerance δ;
16 I← Index of d pivotal elements;

The seed vectors for the algorithm can be chosen as a set of random linearly independent

vectors. Another possibility for the seeds is the use of eigenvectors computed using eigs

which will leads to fast convergence. However, these may be linearly dependent vectors

due to the round-off errors. In our experience, we can resolve this by introducing random

66

noise in the seed eigenvectors.

Implementation of the Semi-Orthogonal Eigenbasis in the CME’s Reduction

Algorithm 5 generates an eigenbasis corresponding to the largest d eigenvalues. So, the

basis generated is not directly useful for the reduction defined in terms of eigenvectors

corresponding to the smallest eigenvalues. Recall that in Section 4.3.1, for the identification

of the reduced dimension, we shifted the matrix D such that shifted eigenvalues satisfy the

condition:

<(λ1) ≥ <(λ2) · · · ≥ <(λd) > <(λd+1) ≥ <(λd+2) · · · ≥ <(λn) ≥ 0 (4.75)

Then Algorithm 5 generates the eigenbasis of D−<(λn)Inn corresponding to small eigen-

values of D.

Next, we explain the reduction approach using an example for all transformations

discussed so far.

4.4 Example: Michaelis-Menten model

To illustrate the algorithm and results for all transformations, we use a Michaelis-Menten

model:

S1 + S2

1000−−−⇀↽−−
500

S3

5−−⇀↽−−
1

S2 + S4 (4.76)

67

We choose a small molecular population to make it easy to interpret. Here we chose a

feasible state vector as N1 =

[
N1, N2, N3, N4

]
=

[
3, 3, 0, 0

]
. Then the state

space of the system is generated using Algorithm 2 in Section 3.1 as

N =



3 2 1 0 2 1 0 1 0 0

3 2 1 0 3 2 1 3 2 3

0 1 2 3 0 1 2 0 1 0

0 0 0 0 1 1 1 2 2 3



← N1

← N2

← N3

← N4

(4.77)

Initial condition P(N, t = 0) is taken3 as

P(N, t = 0) =

[
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]T
(4.78)

3The particular choice is for a better visualization of the solution’s dynamics.

68

Next, the transition matrix is generated by Algorithm 3 in section 3.2 as

D =



−9000 500 0 0 0 0 0 0 0 0

9000 −4505 1000 0 3 0 0 0 0 0

0 4000 −2010 1500 0 2 0 0 0 0

0 0 1000 −1515 0 0 1 0 0 0

0 5 0 0 −6003 500 0 0 0 0

0 0 10 0 6000 −2507 1000 6 0 0

0 0 0 15 0 2000 −1011 0 4 0

0 0 0 0 0 5 0 −3006 500 0

0 0 0 0 0 0 10 3000 −509 9

0 0 0 0 0 0 0 0 5 −9


(4.79)

The eigenspectrum of the transition matrix D is shown in Figure 2.1 has a wide gap.

We chose the error tolerance ε equal to 10−6 which is small compared to the max

probability 1 and tε = 10−2 .

4.4.1 Selection of the Reduced Dimension d

The first step in the reduction is the choice of dimension d of the reduced model such

that user’s choice of error tolerance ε = 10−6 and tε = 10−2 are achieved. Following the

69

argument in Section 4.3.1 we seek an eigenvalue which satisfies condition (4.55), i.e.

<(λd+1) ≤
1

tε
log(ε) =

1

10−2
log(10−6) = −1381.6 (4.80)

Then using MATLAB’s eigs function, we identified two eigenvalues near zero. Next,

repeating the process nearly newly identified eigenvalue until condition (4.80) is satisfied

gives a set of eigenvalues as follows:

λ1 = 0 (4.81)

λ2 = −7.2 (4.82)

λ3 = −12.7 (4.83)

λ4 = −18.1 (4.84)

λ5 = −2129 (4.85)

The gap between eigenvalues λ4 and λ5 reflects the separation of timescale which corre-

sponds to our choice of tε.

70

4.4.2 Identifying Initial Condition and Transition Matrix

No Transformation: (T = I)

Using Algorithm 5, a right eigenbasis matrix Mnd of D was found as

Mnd =



4.89× 10−9 −4.02× 10−6 −7.54× 10−12 0.0139289

4.25× 10−8 −4.15× 10−5 −5.11× 10−11 0.250414

0 0 0 1

−7.36× 10−8 1.78× 10−4 1.13× 10−10 0.664892

−5.42× 10−5 0.041775 8.71× 10−8 2.71× 10−4

−3.79× 10−4 0.500758 2.49× 10−7 1.90× 10−3

0 1 0 0

0.166809 2.39× 10−4 −4.29× 10−4 1.77× 10−6

1 0 0 0

0 0 1 0



(4.86)

We constructed IM as a vector with components that represent row indices for re-

indexing Mnd such that top d× d block is identity matrix. For this Mnd,

IM =

[
9 7 10 3 1 2 4 5 6 8

]
(4.87)

71

Similarly, Algorithm 5 generates the left eigenbasis matrix Tnd of D as

Tnd =



1 0 0 0

0.998776 3.24× 10−10 1.22× 10−3 −5.66× 10−7

0.997123 −1.32× 10−11 2.88× 10−3 5.74× 10−7

0.994467 3.05× 10−9 5.53× 10−3 6.45× 10−6

0 0 1 0

−2.70× 10−4 −2.72× 10−7 0.998918 1.35× 10−3

−6.47× 10−4 1.74× 10−6 0.997403 3.24× 10−3

0 0 0 1.0

−5.26× 10−8 1.43× 10−3 −5.72× 10−4 0.999142

0 1 0 0



(4.88)

Next, we re-index the rows of Mnd, Tnd, and P0 using the index IM
4. A corresponding

re-indexing for D changes the index of both rows and columns.

Next, using the re-indexed Tnd, Mnd, and P0, the initial condition for the reduced

system is computed as

X(0) =

(
TT
ndMnd

)−1
TT
ndP0 =



0.2076

0.1712

0.1941

0.0999


(4.89)

4A permutation matrix M can be created using IM by assigning Mi,j = 1 if j = IMi
, otherwise 0.

Then the matrix MA is re-indexed row-wise, the matrix AMT is re-indexed column-wise, and the matrix
MAMT is re-indexed both row-wise and column-wise

72

Finally, using the re-indexed D and Mnd, the reduced transition matrix is computed

as

[
Ddd Ddm

]
Mnd =



−11 −7.0× 10−4 1.1 4.6× 10−7

5.3× 10−3 −8.6 11 7.7

14.0 3.2 −9.5 5.0× 10−4

0 5.0 0 −9.0


(4.90)

Then the solution of the reduced IVP

Ẋ =

([
Ddd Ddm

]
Mnd

)
X , X(0) =

(
TT
ndMnd

)−1
TT
ndP0 (4.91)

is computed using a non-stiff Ordinary Differential Equation (ODE) solver (ode45) or other

methods. Then the approximate solution P̃ is computed as

P̃(t) = MndX(t) (4.92)

This approximate solution is displayed in Figure 4.1(B) along with the exact solution

in panel (A). The error in the approximation is shown in Figure 4.2. As expected, the

approximate solution agrees with the exact solution after the initial transients.

73

A

B

Figure 4.1: Exact (A) and approximate (B) solution of the Michaelis-Menten (MM) mech-
anism (4.76) with N1 =

[
3 3 0 0

]
. Blue dotted line represent the time lower-bound

tε = 6.5× 10−3 (updated according to exact value of λd+1).

74

Figure 4.2: Error in the approximation due to no transformation approach for the MM
mechanism (4.76) with N1 =

[
3 3 0 0

]
. Blue dotted lines represent the time lower-

bound tε = 6.5 × 10−3 (updated according to exact value of λd+1) and error tolerance
ε = 10−6.

Transformation Using Left Eigenbasis

We constructed IT as a vector with components that represent row indices for re-indexing

Tnd such that top d× d block is identity matrix. For this Tnd,

IT =

[
1 10 5 8 2 3 4 6 7 9

]
(4.93)

Next, we re-indexed the rows of the matrices Mnd, Tnd, and P0. A corresponding

re-indexing for D changes the index of both rows and columns.

Next, using the re-indexed Tnd and P0, the initial condition for the reduced system is

75

computed as

X(0) = TT
ndP0 =



0.39894

0.10014

0.30054

0.20037


(4.94)

Note that, unlike (4.89), the initial condition here sums to 1.

Finally, using the re-indexed Tnd and the re-indexed D, the reduced transition matrix

is

D̂dd = TT
nd

Ddd

Dmd

 =



−11.0117 −4.74× 10−7 1.37527 −1.78× 10−3

2.92× 10−6 −8.98713 −1.63× 10−3 4.28886

11.0168 −5.14× 10−3 −9.48826 4.27880

−5.10× 10−3 8.99228 8.11462 −8.56588


(4.95)

Note that, as expected, column sum of D̂dd is 0 preserving probability conservation.

Next, the solution of the reduced IVP

Ẋ(t) = D̂ddX(t) , X(0) =

[
Idd 0md

]T
TP0 (4.96)

is computed using a non-stiff ODE solver (ode45) or other methods.

76

Next, compute M̂nd =

 Idd

R̂mdR̂
−1
dd

 by finding the RREF of TMnd as

M̂nd =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1.0

0.130263 −3.40× 10−11 2.82× 10−5 5.80× 10−8

0.520189 9.70× 10−12 2.20× 10−4 1.79× 10−7

0.345869 9.66× 10−11 2.62× 10−4 1.55× 10−7

−5.40× 10−4 1.21× 10−7 0.325295 −4.50× 10−5

−3.05× 10−3 2.20× 10−8 0.649603 5.60× 10−4

6.83× 10−6 3.68× 10−4 −2.32× 10−3 0.857667



(4.97)

The transformation T is defined as

T =

 Idd L−Tdd LT
dm

0md Imm

 (4.98)

Note that the top d rows form the matrix TT
nd. Due to the structure of T, the inverse of

T can be easily computed by taking the negative of the top right block. i.e.

T−1 =

 Idd −L−Tdd LT
dm

0md Imm

 (4.99)

77

where the top right block is the negative of the non-identity part of Tnd.

Then the approximate solution P̃ is computed as

P̃ = T−1

 Idd

R̂mdR̂
−1
dd

X(t) = T−1M̂ndX(t) (4.100)

The approximate solution from this reduced system is essentially identical to the Fig-

ure 4.1B. The error in the approximation is shown in the Figure 4.3.

Figure 4.3: Error in the approximation due to eigenbasis transformation approach for the
MM mechanism (4.76) with N1 =

[
3 3 0 0

]
. Blue dotted lines represent the time

lower-bound tε = 6.5×10−3 (updated according to exact value of λd+1) and error tolerance
ε = 10−6.

78

Using Transition Matrix

Using

F = 102

⌊
D

102

⌉
, i ∈ {1, 2, . . . ,m} (4.101)

we found the matrix F satisfying F = D−∆ as

F =



−9000 500 0 0 0 0 0 0 0 0

9000 −4500 1000 0 0 0 0 0 0 0

0 4000 −2000 1500 0 0 0 0 0 0

0 0 1000 −1500 0 0 0 0 0 0

0 0 0 0 −6000 500 0 0 0 0

0 0 0 0 6000 −2500 1000 0 0 0

0 0 0 0 0 2000 −1000 0 0 0

0 0 0 0 0 0 0 −3000 500 0

0 0 0 0 0 0 0 3000 −500 0

0 0 0 0 0 0 0 0 0 0


(4.102)

Next, we constructed an index IT such that the bottom right n − d × n − d block of

F is identity matrix. As mentioned before, choosing index of one row from each Fi block

as first d indices and combining with rest n − d indices will generate an index with Fmm

invertible. One such choice is

IT =

[
1 5 8 10 2 3 4 6 7 9

]
(4.103)

79

Next, we re-indexed the vector P0. A corresponding re-indexing for D and F changes

the index of both rows and columns.

Using the re-indexed P0, we computed the initial condition as

X(0) =

[
Idd −FdmF−1mm

]
P0 =



0.4

0.3

0.2

0.1


(4.104)

Note that the reduced initial condition here sums to 1.

Next, we found the transition matrix D̂ = TDT−1 which is partitioned as

D̂ =

 D̂dd D̂dm

D̂md D̂mm

 (4.105)

Then the transition matrix of the reduced system is computed as

D̂dd − D̂dmF̂−1mmF̂md =



−11.0072 1.37838 0 0

11.0072 −9.48649 4.28571 0

0 8.10811 −8.57143 9.0

0 0 4.28571 −9.0


(4.106)

Note that, this matrix is a proper CME’s transition matrix.

80

Next, the solution of the reduced IVP

Ẋ(t) = D̂dd − D̂dmF̂−1mmF̂mdX(t) , X(0) =

[
Idd −FdmF−1mm

]
P0 (4.107)

is computed using a non-stiff ODE solver (ode45) or other methods.

Next, computed

 Idd

−F̂−1mmF̂md

 as

 Idd

−F̂−1mmF̂md

 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0.00719424 0 0 0

0.129496 0 0 0

0.517986 0 0 0

0 0.027027 0 0

0 0.324324 0 0

0 0 0.857143 0



(4.108)

Then the approximate solution P̃ is computed as

P̃ = T−1

 Idd

−F̂−1mmF̂md

X(t) (4.109)

81

The approximate solution from this reduced system is virtually identical to the Fig-

ure 4.1(B). Error in the approximation is shown in the Figure 4.4. Also, note that, this

approximation and error are identical for the reduced system (2.17).

Figure 4.4: Error in the approximation due to transition matrix transformation approach
for the MM mechanism (4.76) with N1 =

[
3 3 0 0

]
.

Reduced Network Generation Using The Reduced System

Note that the reduced transition matrix 4.106 has the properties of a proper CME’s tran-

sition matrix:

1. Diagonal elements are non-positive

2. Off-diagonal elements are non-negative

3. Each column sums to 0

82

The reduction achieved here is same as the reduction proposed by Peleš in paper [28].

However, in that paper these structural advantages of the reduced transition matrix were

not identified. These structural properties open the possibility of generating a reduced

network from the reduced system. We have explored such reduced network for simple

systems, as discussed below. A comprehensive analysis is expected to supply a bridge

between time-scale lumping approaches and CME-based time-scale separation.

A reduced network reconstruction of the closed reaction chain system is given as follows:

Consider the closed reaction chain system

S1

103−−−⇀↽−−−−
5×102

S2
1−−→ S3 (4.110)

with a given state N1 =

[
S1 S2 S3

]
=

[
1 1 1

]
. Then the corresponding state space

S of the system is generated as

S =



3 0 0

2 1 0

1 2 0

0 3 0

2 0 1

1 1 1

0 2 1

1 0 2

0 1 2

0 0 3



(4.111)

83

Next, the transition matrix D of the CME is generated as

D =



−3000 500 0 0 0 0 0 0 0 0

3000 −2501 1000 0 0 0 0 0 0 0

0 2000 −2002 1500 0 0 0 0 0 0

0 0 1000 −1503 0 0 0 0 0 0

0 1 0 0 −2000 500 0 0 0 0

0 0 2 0 2000 −1501 1000 0 0 0

0 0 0 3 0 1000 −1002 0 0 0

0 0 0 0 0 1 0 −1000 500 0

0 0 0 0 0 0 2 1000 −501 0

0 0 0 0 0 0 0 0 1 0


(4.112)

The eigenspectrum of D is shown in Figure 4.5 Using the eigenspectrum of gap of 102, we

84

Figure 4.5: Eigenspectrum gap of a closed reaction chain system with 10 states.

split the matrix F and ∆ where F is given by

F =



−3000 500 0 0 0 0 0 0 0 0

3000 −2500 1000 0 0 0 0 0 0 0

0 2000 −2000 1500 0 0 0 0 0 0

0 0 1000 −1500 0 0 0 0 0 0

0 0 0 0 −2000 500 0 0 0 0

0 0 0 0 2000 −1500 1000 0 0 0

0 0 0 0 0 1000 −1000 0 0 0

0 0 0 0 0 0 0 −1000 500 0

0 0 0 0 0 0 0 1000 −500 0

0 0 0 0 0 0 0 0 0 0


(4.113)

85

Then using the procedures presented in Section 4.2.2, we generate the reduced transition

matrix (4.52) K as

K =



−2 0 0 0

2 −4/3 0 0

0 4/3 −2/3 0

0 0 2/3 0


(4.114)

Next, states corresponding to each block Fi are separated as

F1 =



−3000 500 0 0

3000 −2500 1000 0

0 2000 −2000 1500

0 0 1000 −1500


→ S1 =



3 0 0

2 1 0

1 2 0

0 3 0


(4.115)

F2 =


−2000 500 0

2000 −1500 1000

0 1000 −1000

 → S2 =


2 0 1

1 1 1

0 2 1

 (4.116)

F3 =

−1000 500

1000 −500

 → S3 =

1 0 2

0 1 2

 (4.117)

F4 =

[
0

]
→ S4 =

[
0 0 3

]
(4.118)

We note that in each group, the total population of S1 and S2 is constant. This suggests

a lumping. (Also note the abundance of species S3 is not changing.) We choose the sum

of population of species S1 and S2 as a lumped quantity, i.e., X = S1 + S2. Then a new

86

set of states of the form Si =

[
X S3

]
that represent each group will be

S1 =

[
3 0

]
(4.119)

S2 =

[
2 1

]
(4.120)

S3 =

[
1 2

]
(4.121)

S4 =

[
0 3

]
(4.122)

(4.123)

and the lumped reaction network is

X
kx−−→ S3 (4.124)

where the rate constant kx needs to be identified. For this, we compare the non-negative

reaction propensity components in the reduced matrix with respect to the states. They

are

1. K2,1 = 2⇒ Reaction propensity of transition between S1 → S2

2. K3,2 = 4/3⇒ Reaction propensity of transition between S2 → S3

3. K4,3 = 2/3⇒ Reaction propensity of transition between S3 → S4

A transition of S1 → S2 occurs when one molecule of three available molecules of

X is converted to a S3 molecule. If this has reaction propensity of 3 kx, we arrive at

87

kx = 2/3. This is consistent with the other transitions: 2 kx = 4/3 and 1 kx = 2/3 which

all gives same value for kx. Then the reduced network representing the closed reaction

chain system (4.110) is

X
2/3−−→ S3 (4.125)

We can also confirm this constant using the QSSA assumption that 103

103+5×102 = 2/3 [2].

We next apply the same approach to the to MM mechanism. Consider the MM system

as

S1 + S2

103−−−⇀↽−−−−
5×102

S3
1−−→ S2 + S4 (4.126)

and a state N1 =

[
S1 S2 S4 S4

]
=

[
3 3 0 0

]
These produce a state space parti-

tioned into blocks of Si as

S1 =



3 3 0 0

2 2 1 0

1 1 2 0

0 0 3 0


(4.127)

S3 =


2 3 0 1

1 2 1 1

0 1 2 1

 (4.128)

S1 =

1 3 0 2

0 2 1 2

 (4.129)

S1 =

[
0 3 0 3

]
(4.130)

88

Applying a similar analysis as before, we first note that the abundance of species S4 is

constant in each group. Here, there are two combination of species with constant total

abundance: S1 +S3 and S2 +S3. This can also be expressed as a single sum S1 +S2 + 2S3.

Then choosing this single sum as the lumped complex X, we define our reduced network

as

X
kx−−→ S4 (4.131)

which gives the representative states Si =

[
X S4

]
as

S1 =

[
6 0

]
(4.132)

S2 =

[
5 1

]
(4.133)

S3 =

[
4 2

]
(4.134)

S4 =

[
3 3

]
(4.135)

(4.136)

Then to identify the rate constant we compare the states Sis with the reduced reaction

89

propensities in the reduced transition matrix K which is generated as

K =



−306/139 0 0 0

306/139 −60/37 0 0

0 60/37 −6/7 0

0 0 6/7 0


(4.137)

1. K1,2 = 306/139⇒ S1 → S2 ⇒ 6 kx ⇒ kx = 306/834

2. K2,3 = 60/37⇒ S2 → S3 ⇒ 5 kx ⇒ kx = 60/185

3. K3,4 = 6/7⇒ S3 → S4 ⇒ 4 kx ⇒ kx = 6/28

Unlike the closed reaction chain system considered previously, these propensities do not

correspond to a unique value for kx. The propensity is a nonlinear function of reactant

abundance. To express this function, we explored fitting these values to a known function.

To keep this process general, we fit to a polynomial. To improve accuracy of the estimate,

we increase the dimension of the original problem from 10 states to 66 states. The analysis

then gives data points: Plotting these data points shows a hyperbolic curve as shown in

X 20 19 18 17 16 15 14 13 12 11

kx
281
684

207
511

323
825

311
839

294
857

96
311

82
307

298
1371

190
1203

20
231

Figure 4.6 which we fit with a second order polynomial as

kx = (−3.86× 10−2 ×X2) + (0.15516×X)− 1.1502 (4.138)

90

Figure 4.6: Rate of change of stochastic rate constant of reduced MM network

Then the reduced network has the form

X
(−3.86×10−2×X2)+(0.15516×X)−1.1502−−−−−−−−−−−−−−−−−−−−−−−→ S4 (4.139)

As future work, we hope to establish a general procedure for this reconstruction of a

reduced network, which should allow efficient representation of large dimensional systems.

4.4.3 Efficiency

Each of the reductions presented in this chapter can be applied to generate approximate

solutions to a CME. Table 4.1 shows computational times required when applying the

eigenbasis-based reductions to the Michaelis-Menten system (4.76). These approaches are

91

computational efficient when determining solution behaviour over long times. In particular,

these algorithms are well-suited to situations in which a number of initial value problems

need to be solved for a particular CME. In this case, the reduction step (i.e. the eigenbasis

generation) need only be carried out once.

N n d Exact Solution Eigenbasis Generation Approximate Solution

t ∈ (0, 1) t ∈ (0, 100) Left Right t ∈ (0, 1) t ∈ (0, 100)

10 66 11 1.66 2.2 0.77 0.31 0.44 0.47

30 496 31 23.43 65.1 15.0 15.2 0.67 0.72

50 1326 51 252.6 864.2 198.3 185.9 0.80 0.90

Table 4.1: Computation times (in seconds) for the Michaelis-Menten CME (4.76) for molec-
ular populations of size N and corresponding state-space dimension n. Eigenbasis gener-
ation is required for the reduction approaches that do not rely on an eigenspectrum gap.
The time to then generate the approximate solution (using ode45 on the reduced system)
is shown separately. In each case, the reduced dimension d is chosen to achieve an error
of order ε = 10−6 for times greater than tε = 10−2. Eigenbasis are generated with a toler-
ance of 10−12. Computer configuration: Windows, Intel i5-6300U CPU, 2.4 GHz and 8GB
RAM.

As shown in the previous section, for small molecular populations (N = 3), sys-

tem (4.76) exhibits an eigenspectrum gap. In such cases, the more efficient reduction

approach presented in section 4.2.2 (which, recall, was first presented in [28]) can be ap-

plied. This approach is not useful as the molecule number increases (past N = 10), because

the eigenspectrum gap shrinks as the dimension n increases.

92

Chapter 5

Efficient Time-Step Selection for the

Multi-Step Finite State Projection

Algorithm

In principle, the solution of a finite dimensional Chemical Master Equation (CME) (2.5)

at time t is given by

P(N, t) = exp(D t) P(N, 0) (5.1)

However, as discussed in Chapter 1, for most systems of interest, the dimension of the

CME is very large or infinite, raising computational challenges to find the matrix exponen-

tial term and thus the solution (5.1) of the CME. (Monte-Carlo methods like Gillespie’s

Stochastic Simulation Algorithm (SSA) reliably provides sample paths of the system. How-

93

ever, to attain a satisfactory resolution in the approximation, very large number of sample

paths needs to be generated. To achieve precise statistics, these methods are computation-

ally very expensive.)

The Finite State Projection (FSP) algorithm, developed by Munsky and Khammash [24],

approximates the probability distribution of any CME at a given time tf by truncating the

state space. It is presented here as Algorithm 6.

Algorithm 6: The Finite State Projection algorithm

Input:
1 Propensity functions and stoichiometry for all reactions.;
2 NJ ← Initial truncated state space;
3 PJ(0)← Initial probability density vector;
4 tf ← Final time of interest ∈ R+;
5 ε← error tolerance ∈ R+;

begin
6 flag ← True;
7 while flag = True do
8 DJ,J ← Transition matrix of transitions between states in NJ ;
9 PFSP

J (tf)← exp(DJ,J tf) PJ(0);
10 if 1TPFSP

J (tf)1 ≥ 1− ε then
11 flag ← False;
12 else
13 Add more states to NJ ;

Output:
14 PFSP

J (tf)← Approximate probability distribution at tf ;

For a given network, the FSP algorithm starts with a truncated state space NJ . This

truncated state space consist of states that are probable in the interval (0, tf). Next,

the solution of the system of differential equation ṖFSP
J = DJ,JP

FSP
J is determined at

tf : PFSP
J (tf) = exp(DJ,J tf) PJ(0). Then the FSP algorithm checks whether sum of the

94

probabilities PFSP
J (tf) is sufficiently close to 1:

1TPFSP (NJ , tf) ≥ 1− ε. (5.2)

If so, the components corresponding to states NJ in the exact solution {P(N, tf)} are

well-approximated as (proved in [24])

∥∥{P(N, tf)}J −PFSP (NJ , tf)
∥∥
∞ ≤ ε (5.3)

Otherwise, the state space NJ is updated by adding more states and the process is repeated

until the condition (5.2) is satisfied.

The FSP algorithm generates an approximation to the solution of a CME at a given

time point tf . Generally, for a small time interval, the number of states that have to be

retained in the truncated system is small compared to the total number of states in the

system. However, for longer intervals, the system may reach a large number of states and

the FSP algorithm is not efficient. An alternate implementation involves splitting the long

interval (0, tf) into a set of short intervals:

(0 , tf) =

(
(0 = t1, t2), (t2, t3), . . . , (tn−1, tn = tf)

)
(5.4)

Then to calculate the solution at time ti+1 (i = 1, 2, . . . , n), the solution of the CME at

time ti is used as the initial condition. Efficiency is gained by pruning non-active states in

each sub-interval.

Several algorithms for multiple time-step FSP have been presented [26, 27]. In the

95

paper [27], a multi-step FSP is presented with a fixed time step whereas in paper [26],

an adaptive time-stepping method is formulated that has the advantage of limiting the

number of states in the truncated system. In addition, Krylov-basis computation of the

matrix exponential improved the speed of the algorithm [33, 26, 48] for short time steps

(convergence using the Krylov basis is slow over longer intervals).

A concise description of the multiple time-step FSP approach by Munsky and Kham-

mash [27] is presented Algorithm 7. In this algorithm, due to a fixed time-step τ , an

Algorithm 7: Multiple time-step FSP algorithm with fixed time step [27]

Input:
1 As required in the original FSP algorithm 6;
2 n← Number of intervals;
3 τ ← Fixed time-step such that tk = kτ and tn = tf ;

begin
4 k ← 0;
5 while tk < tf do
6 Update state space and CME;
7 εk ← Maximum error in the solution for the interval (tk, tk+1);
8 while 1− ‖P(tk+1)‖1 ≤ εk do
9 Update state space and CME;

10 P(tk+1)← Solution at time tk+1;

11 k ← k + 1;

Output:
12 P(t)← Approximate probability distribution of the system at time tf ;

updated state space and the corresponding CME is calculated iteratively until the error

tolerance is satisfied. This is an inefficient method because for each time-step the error

tolerance condition must be checked iteratively by computing an approximate solution at

time tk. A better approach is by choosing a variable time step, where for a chosen state

96

space and CME, an optimal time-step will be computed such that the error tolerance is

satisfied. Such an approach is implemented in the paper [26] which is presented here in

Algorithm 8. Each iteration of this algorithm begins with an assessment of the full remain-

Algorithm 8: Multiple time-step FSP algorithm with variable time step [26]

Input:
1 As required in the original FSP algorithm 6;

begin
2 tk ← 0;
3 while tk < tf do
4 Update system and CME;
5 εk ← Maximum error;
6 τ ← tf − tk;
7 while ‖P(tk + τ)‖1 < 1− εk do
8 τ ← τ

2

9 k ← k + 1;

Output:
10 P(t)← Approximate probability distribution of the system at time tf ;

ing time-step, which is halved if it is found to be too long. These assessments demands

approximation of a solution over the potentially long interval (tk, tf), which can be com-

putationally demanding. However, these repeated assessments can be made efficient by

exploiting a pre-conditioning of the CME. Because these assessments rely on approxima-

tions generated repeatedly from a single version of the system (i.e. truncated state space),

such a pre-conditioning can be very efficient because it needs to be applied only once.

In this chapter, we present such a pre-conditioning approach and use it for efficient

assessment of the time-step. When applied with the efficient transition-matrix generation

algorithm from Chapter 3, this approach provides improved efficiency in the adaptive

97

multi-step FSP.

5.1 Preconditioned FSP Algorithm

Even with multi-step approach for FSP, the state space of the truncated system can be quite

large for some sub-intervals. This challenge is aggravated by the presence of wide range of

timescales. Algorithms such as time scale separation[28] and aggregation [40] can be used

to precondition the system for treatment of these large systems. However, these algorithms

have limitations because the resulting error, which is dictated by the eigenspectrum gap,

may be larger than required error tolerance in each sub-interval. In this chapter, We

follow a reduction approach using Theorem 2 with eigenbasis transformation that leads

to probability conservation. This method is a combination of timescale separation and

aggregation methods which is used as a preconditioning for the FSP truncated system in

each sub-interval. In contrast to the previous FSP algorithms, our approach generates an

approximate transient solution for the whole interval (t0, tf). The novel preconditioned

FSP approach is presented in Algorithm 9.

The algorithm 9 takes as inputs a description of the network, an initial probability

distribution, a time interval (t0, tf) on which the transient solution will be determined,

and an error tolerance ε for the approximate solution at time tf . It also takes a small time

length tε for generating an interval where the preconditioning is valid.

Using the initial state space and probability distribution, the algorithm updates the

state space, initial probability distribution, and transition matrix. Updating of the state

98

Algorithm 9: Transient multi-time-step finite state projection algorithm with pre-
conditioning

Input:
1 {Si}hi=1 ← set of Stoichiometry vectors ∈ Zk×h;
2 {Ri}hi=1 ← set of Reactant-Stoichiometry vectors ∈ Zk×h≥0 ;

3 c← Reaction rate vector;
4 [N0,P0]← Initial state vectors and corresponding probability distribution;
5 (t0, tf)← Time interval;
6 ε← error tolerance at time tf ;
7 tε ← Length of a small time interval;

begin
8 k ← 0;
9 while tk < tf do

10 τk ← 0;
11 while τk < tε do
12 [Nk,Pk]← Updated state space and probability distribution;
13 Dk ← Transition matrix using the algorithm 3 for the state space Nk;
14 [Dk, Zk(t), Tk, τk] ← Precondition(Dk, Pk, ε, tε);

15 tk+1 = tk + τk;
16 Zk+1 ← Zk(τ);
17 [Dk, Pk+1, Mk] ← Approximation(Dk, Tk, Zk+1);
18 InputList(k) ← A list of variables tk+1, Zk(t), Tk, Mk, and Nk ;
19 Nfull ← Set of all states that the system attained so far;
20 k ← k + 1;

Output:
21 P(t)← TransientSolution(InputList, Nfull), Approximate transient solution of

the system in the interval (t0, tf);

99

Algorithm 10: Preconditioning Algorithm

1 Function Precondition(D, P0, ε, tε):
2 d← Reduced dimension;
3 Tnd ← Left Semi-Orthogonal eigenbasis of D corresponding to slow time-scale d

eigenvalues using Algorithm 5;
4 Re-Index D, P0, Tnd using an index such that top d columns of Tnd is identity

matrix.;

5 Q←
[
TT
ndDnd 0
−1TQk 0

]
;

6 Z0 ←
[

TT
ndP0

Zε = 1− 1TTT
ndP0

]
;

7 Z(t)← Transient solution of the system Ż(t) = Q Z(t) , Z(0) = Z0 for times the
error component Zε(t) ≤ ε;

8 τk ← max(t);
9 return D, Z(t), τ , and Tnd, ;

Algorithm 11: Approximation Algorithm

1 Function Approximation(Dk, Tk, Zk+1):

2 T←
[

Idd TT
md

0dm Imm

]
where Tmd is the last m = n− d columns of Tk;

3 Mtemp ← Right Semi-Orthogonal eigenbasis of D corresponding to slow
time-scale d eigenvalues using Algorithm 5;

4 Mnd ← Transpose of RREF((TMtemp)
T);

5 Pk+1 ← T−1MndZk+1;
6 return Pk+1 and Mnd;

space can involve both addition of new states and removal of previously included states.

Then the transition matrix can be generated using the Algorithm 3. This algorithm helps

to speed up the iterative process as it can be used to accommodate new state additions

and pruning of states efficiently.

Next, we follow the eigenbasis transformation algorithm presented in Chapter 4 for

100

Algorithm 12: Transient Solution Function

1 Function TransientSolution(InputList, Nfull):
2 n← number of sub-intervals;
3 for k = 1, 2, . . . , n do
4 Get variables Zk(t), tε, Tk, Mk, and Nk from InputList;

5 T−1 ←
[

Idd −TT
md

0dm Imm

]
where Tmd is the last m = n− d columns of Tk;

6 Pk(t)← T−1MkZk(t);
7 Ik ← Index of Nk in Nfull;
8 P(t)← Re-indexed solution Pk(t) using Ik in the interval (tk + tε, tk+1);

9 return P(t);

the preconditioning because of its implementation as a 2-step process: Reduction and

Approximation. In this approach, by only using partial left eigenbasis, we reduce the

system as

Ṗk = DkPk , P(0) = P0 → Żk = QkZk , Z(0) = Z0. (5.5)

This reduced system is then augmented with a state Zε to captures the dynamics of the

error: Żk

Żε

 =

 Qk 0

−1TQk 0


Zk

Zε

 ,

Z0

Zε0

 =

 Z0

1− Z0

 (5.6)

The modified system (5.6) is then solved, from which we have the error Zε(t) at each

time. (Note that, to find the error, there was no need to determine an approximation of the

original solution and thus only the left eigenbasis was required for generating the reduced

101

system. This cuts the computation time by about 50%, as shown in Table 4.1). This error

description Zε is then used to find a time-step τk so that the FSP truncated system is valid

in the interval (tk, tk + τk).

Next, the approximate solution Pk(t) can be generated following Algorithm 11 (for

which the right eigenbasis must be calculated). (Alternatively, any other approximation

method could be used at this second step.) Using right eigenbasis (Mnd), inverse of the

transformation matrix (T−1), and reduced solution (Zk+1), the approximate solution is

computed as

Pk+1 = T−1MndZk+1 (5.7)

Next, after the approximated solutions are identified on each time-step, we can generate

the solution over the entire interval (t0, tf) as described in Algorithm 12. Using the variables

saved in InputList at each step, transient solution can be generated in each interval as

Pk(t) = T−1MkZk(t) (5.8)

Finally, finding the index of the corresponding states Nk in the statespace Nfull, we assign

the probability values and generates P(t) in the interval (tk + tε, tk+1). Iterating over all

time intervals, we generates the transient solution for the whole interval (t0, tf).

A main contribution of this thesis is an efficient determination of appropriate time-steps

using the preconditioning algorithm 10. This time-step determination is a computationally

expensive process in state-of-the-art implementations of multi-step FSP [49]. Using this

time-step identification, we propose a workflow for approximating solutions to large CME

102

models is shown in Figure 5.1.

SSA based state space generation [49]

Generate transition matrix using Algorithm 3

Identify time step using Algorithm 10

Approximate the solution at time tk using ExpoKit [33]

Compute an approximate transient solution using Algorithm 12

If needed

Figure 5.1: Proposed workflow for approximating solutions to large CME models

103

Chapter 6

Conclusion and Future Directions

In a biochemical system, molecular populations which are in small numbers can produce

significant variability in the dynamics of the system. In such cases, deterministic analysis

are not favored and stochastic models became a necessity. The Chemical Master Equation

(CME) is a standard stochastic modeling approach for this purpose [14, 20, 21].

The task of generating a CME (i.e. state space and transition matrix) from a network is

not often considered in the literature. In our experience, we found the published iterative

approach to be computationally expensive. The first contribution of this thesis is an

efficient generalized algorithm for generating the state space and transition matrix of the

CME. When employed within an iterative procedure like Finite State Projection (FSP) [24],

this algorithm offers significant speed-up in the computation.

The CME offers a comprehensive analysis of a biochemical system at molecular level,

but solving the CME is hindered by the curse of dimensionality and multiple timescales in

104

the biochemical system. Over the past couple of decades, several algorithms were intro-

duced to approximate the CME. One of the most acknowledged contribution is the FSP

algorithm [24]. Improvements published over the past decade significantly improved this

approach, allowing it to be applied to complex systems [49]. The time-stepping implemen-

tation is a major factor of this improvement [26]. Many optimizations, such as adaptive

state space generation through Stochastic Simulation Algorithm (SSA) based approach and

fast matrix exponential computation by Krylov approaches, also improved the speed of the

FSP algorithm [49, 33]. A final step to improve the FSP further is preconditioning the

FSP-truncated CMEs. Efforts are taken to implement preconditioning using well separated

timescales and aggregation methods [28, 40]. However, while solving the FSP, the required

assumption (e.g. a wide eigenspectrum gap) do not hold for most of the systems of interest.

In addition, these methods yield an error which is fixed by the system structure itself. To

address this gap, we built on the ideas of Roussel and Zhu to implement a generalized

reduction approach based on Semi-Orthogonal Eigenbasis transformation algorithm [4].

This reduction approach results in efficient approximation of the solution of the CME for

long times. Moreover, because the computational cost of this approach is paid primarily in

the reduction itself, it is particularly well-suited to situations in which many simulations

must be made of a single system (with different initial conditions). This would be the case,

e.g. when calibrating the initial condition of a model against experimental observations.

Finally, we applied this reduction approach to achieve efficient identification of the

variable time step in the multi time-step FSP algorithm, as well as efficient generation an

approximate solution over an entire interval (0, tf), as opposed to the standard multi-step

FSP output of an approximation only at discrete time-points.

105

6.1 Future Directions

The efficiency of the reduction algorithm proposed in Chapter 4 and its application in multi

time-step FSP is significantly depend upon the Semi-orthogonal eigenbases. Improvements

on the convergence of this algorithm will significantly speed up the process. As a future

direction, pursuing on algorithms to generate fast converging Semi-orthogonal eigenbases

will have tremendous improvement in the CME’s dynamical analysis.

Moreover, a comprehensive timing comparison for the multi-step FSP will establish

the gain of efficiency achieved by the reduction-based time-step selection. Table 4.1 gives

an idea of the timing, but a proper comparison will take into account all of the variable

aspects of multi-step FSP approaches (including state-space generation, preconditioning,

approximation, and time-step selection).

106

APPENDIX

Proof of Theorem 1. From (4.12), we have

P(t) =

Rdd Rdm

Rmd Rmm

 exp


Λdd 0dm

0md Λmm

 t


Ad

Am

 (1)

=

Rdd Rdm

Rmd Rmm


 exp(Λdd t)Ad

exp(Λmm t)Am

 (2)

=

Rdd

Rmd

 exp(Λdd t)Ad +

Rdm

Rmm

 exp(Λmm t)Am (3)

= P̃(t) +

Rdm

Rmm

 exp(Λmm t)Am (4)

107

where P̃ =

Rdd

Rmd

 exp(Λdd t)Ad from (4.13). Then

P(t)− P̃(t) =

Rdm

Rmm

 exp(Λmm t)Am (5)

Taking max-norm on both sides gives

∥∥∥P(t)− P̃(t)
∥∥∥
∞

=

∥∥∥∥∥∥∥
Rdm

Rmm

 exp(Λmm t)Am

∥∥∥∥∥∥∥
∞

(6)

In summation form,

∥∥∥P(t)− P̃(t)
∥∥∥
∞

=

∥∥∥∥∥
n∑

i=d+1

ai exp(λi t)Ri

∥∥∥∥∥
∞

(7)

≤
n∑

i=d+1

|ai| exp(λi t) ‖Ri‖∞ (8)

Since eigenvectors are normalized ‖Ri‖∞ ≤ 1. Then

∥∥∥P(t)− P̃(t)
∥∥∥
∞
≤

n∑
i=d+1

|ai| exp(λi t) (9)

Since λd+1 ≥ λi, ∀i ∈ d+ 2, . . . , n, then

exp(λd+1 t) ≥ exp(λi t) ∀t and i ∈ d+ 2, . . . , n (10)

108

Then

∥∥∥P(t)− P̃(t)
∥∥∥
∞
≤ exp(λd+1 t)

n∑
i=d+1

|ai| (11)

= exp(λd+1 t) ‖Am‖1 (12)

For complex eignvalues, because |exp(a+ ib)| = exp(a) |cos(b) + i sin(b)| ≤ exp(a)), we

have

∥∥∥P(t)− P̃(t)
∥∥∥
∞
≤ exp(<(λd+1) t) ‖Am‖1 (13)

Finally, for a given epsilon, set tε = 1
<(λd+1)

ln(ε). Then

∥∥∥P(t)− P̃(t)
∥∥∥
∞
≤ exp

(
<(λd+1)

1
<(λd+1)

ln(ε)

)
‖Am‖1 (14)

= ε ‖Am‖1 ∀t ≥ tε (15)

= O(ε) ∀t ≥ tε (16)

as required.

Lemma 1. Suppose the assumptions in InfoBox 4.2 is true.

LT
ddRdm + LT

mdRmm = 0dm (17)

Proof. Let Li and Rj be left and right eigenvectors of D corresponding to two distinct

109

eigenvalues λi and λj respectively. Then

DRj = λjRj (18)

LT
i D = λiL

T
i (19)

Left multiplying eq. (18) with LT
i and right multiplying eq. (19) with Rj gives

LT
i DRj = λjL

T
i Rj (20)

LT
i DRj = λiL

T
i Rj (21)

Then subtracting eq. (20) from eq. (21) gives

0 = (λi − λj)LT
i Rj (22)

Because λi 6= λj, we have

LT
i Rj = 0 (23)

Then, because λd > λd+1, the eigenvalues in Λdd are distinct from those in Λmm. Then

LT
dd LT

md

LT
dm LT

mm


Rdd Rdm

Rmd Rmm

 =

 ∗dd 0dm

0md ∗mm

 (24)

110

where ∗ is a non-zero square matrix. In particular, the upper right block gives

LT
ddRdm + LT

mdRmm = 0dm (25)

Lemma 2. Suppose the assumptions in InfoBox 4.2 is true. Consider an n-dimensional

initial value problem

Ṗ(t) = DP(t) P(0) = P0 (26)

and define A = R−1P0. Then the first d components of A can be expressed as

Ad =


Ldd

Lmd


T Rdd

Rmd



−1 Ldd

Lmd


T

P0 (27)

Proof. Partition A and write the initial condition as

P0 =

Rdd Rdm

Rmd Rmm


Ad

Am

 (28)

111

Left multiplying with

[
LT
dd LT

md

]
gives

[
LT
dd LT

md

]
P0 =

[
LT
dd LT

md

]Rdd Rdm

Rmd Rmm


Ad

Am

 (29)

=

[
LT
ddRdd + LT

mdRmd LT
ddRdm + LT

mdRmm

]Ad

Am

 (30)

Using Lemma 1, we have LT
ddRdm + LT

mdRmm = 0dm. Then

[
LT
dd LT

md

]
P0 =

(
LT
ddRdd + LT

mdRmd

)
Ad (31)

=⇒

Ldd

Lmd


T

P0 =


Ldd

Lmd


T Rdd

Rmd


Ad (32)

Because

Rdd

Rmd

 and

Ldd

Lmd


T

are full rank d,


Ldd

Lmd


T Rdd

Rmd


 is invertible. Then

Ad =


Ldd

Lmd


T Rdd

Rmd



−1 Ldd

Lmd


T

P0 (33)

Lemma 3. Follow InfoBox 4.1 and assume R̂dd is invertible. Then R̂dd is an eigenvector

112

matrix of D̂dd + D̂dmR̂mdR̂
−1
dd . i.e.,

D̂dd + D̂dmR̂mdR̂
−1
dd = R̂ddΛddR̂

−1
dd (34)

Proof. Partition the eigenvalue relation of D̂ as

 D̂dd D̂dm

D̂md D̂mm


 R̂dd R̂dm

R̂md R̂mm

 =

 R̂dd R̂dm

R̂md R̂mm


Λdd 0dm

0md Λmm

 (35)

Comparing the top left-hand blocks of each product, we have

D̂ddR̂dd + D̂dmR̂md = R̂ddΛdd (36)

Because R̂dd is invertible, right multiplying with R̂−1dd gives

D̂dd + D̂dmR̂mdR̂
−1
dd = R̂ddΛddR̂

−1
dd (37)

which is the eigenvalue relation of the matrix D̂dd + D̂dmR̂mdR̂
−1
dd .

Proof of Theorem 2. Partition the eigenvalue relation of D̂ as

 D̂dd D̂dm

D̂md D̂mm


 R̂dd R̂dm

R̂md R̂mm

 =

 R̂dd R̂dm

R̂md R̂mm


Λdd 0dm

0md Λmm

 (38)

113

Then using Lemma 3, we have the eigenrelation of D̂dd + D̂dmR̂mdR̂
−1
dd as

D̂dd + D̂dmR̂mdR̂
−1
dd = R̂ddΛddR̂

−1
dd (39)

Then the solution of the IVP (4.16), in terms of eigenvectors and eigenvalues, is given by

X(t) = R̂dd exp(Λddt) R̂−1dd X(0) ∀t ≥ 0 (40)

where

R̂−1dd X(0) = R̂−1dd R̂dd


 L̂dd

L̂md


T  R̂dd

R̂md



−1  L̂dd

L̂md


T

P̂0 (41)

=


 L̂dd

L̂md


T  R̂dd

R̂md



−1  L̂dd

L̂md


T

P̂0 (42)

114

Using

 L̂dd

L̂md


T

=

Ldd

Lmd


T

T−1,

 R̂dd

R̂md

 = T

Rdd

Rmd

, and P̂0 = TP0, we have

R̂−1dd X(0) =


Ldd

Lmd


T

T−1T

Rdd

Rmd



−1 Ldd

Lmd


T

T−1TP0 (43)

=


Ldd

Lmd


T Rdd

Rmd



−1 Ldd

Lmd


T

P0 (44)

= Ad (using Lemma 2) (45)

Then the solution (40) can be written as

X(t) = R̂dd exp(Λddt)Ad ∀t ≥ 0 (46)

Then

T−1

 Idd

R̂mdR̂
−1
dd

X(t) = T−1

 Idd

R̂mdR̂
−1
dd

 R̂dd exp(Λddt)Ad (47)

= T−1

 R̂dd

R̂md

 exp(Λddt)Ad (48)

=

Rdd

Rmd

 exp(Λddt)Ad (49)

= P̃ (50)

115

Then using Theorem 1, for a given ε with tε = 1
<(λd+1)

ln(ε), we have

∥∥∥P(t)− P̃(t)
∥∥∥
∞

=

∥∥∥∥∥∥∥P−T−1

 Idd

R̂mdR̂
−1
dd

X(t)

∥∥∥∥∥∥∥
∞

= O(ε) , ∀t ≥ tε (51)

Lemma 4. Consider the system

Ṗ(t) = DP(t) (52)

Suppose 1TnP(t) = c for all time where c is any constant. Then

1TnD = 0Tn (53)

Proof. We have the conservation relation

1TnP(t) = c ∀t ≥ 0 (54)

Taking the time derivative gives

d

dt
1TnP(t) = 1Tn

d

dt
P(t) = 0 ∀t ≥ 0 (55)

116

Using d
dt

P(t) = DP(t),

1TnDP(t) = 0 ∀t ≥ 0 (56)

Because P is an n-dimensional vector, there are n linearly independent solutions possible.

Assume P1,P2, . . . ,Pn are such n linearly independent solutions, Then

1TnD

[
P1 P2 . . . Pn

]
=

[
0 0 . . . 0

]
= 0Tn (57)

Since P1,P2, . . . ,Pn are linearly independent,

1TnD = 0Tn (58)

Proof of Corollary 1. Consider the eigen-relation of D as

DRi = λiRi (59)

Taking one norm on both sides gives

1TnDRi = λi1
T
nRi (60)

117

Using Lemma 4, we have 1TnD = 0Tn . Then

0TnRi = λi1
T
nRi (61)

=⇒ λi1
T
nRi = 0 (62)

=⇒ 1TnRi = 0 , if λi 6= 0 (63)

Using equations (47 - 49) from the proof of Theorem 2, we have

1Tn P̃(t) = 1TnT−1

 Idd

R̂mdR̂
−1
dd

X(t) = 1Tn

Rdd

Rmd

 exp(Λddt)Ad (64)

Then using (63), and assuming k ≤ d eigenvalues are equal to zero,

1Tn P̃(t) =

[
1Tk 0Td−k

]
exp(0k,k t) 0k,d−k

0d−k,k exp(Λd−k,d−k t)



 Ak

Ad−k

 (65)

=

[
1Tk 0Td−k

]
 Ik,k 0k,d−k

0d−k,k exp(Λd−k,d−k t)



 Ak

Ad−k

 (66)

=

[
1Tk 0Td−k

] Ak

exp(Λd−k,d−k t)Ad−k

 (67)

= 1TkAk , ∀t (68)

118

Applying a similar argument to the exact solution P gives

1TnP(t) = 1Tn

 Rk,k Rk,n−k

Rn−k,k Rn−k,n−k

 exp(Λnnt)

 Ak

An−k

 (69)

=

[
1Tk 0Tn−k

]
exp(0k,k t) 0k,n−k

0n−k,k exp(Λn−k,n−k t)



 Ak

An−k

 (70)

=

[
1Tk 0Tn−k

]
 Ik,k 0k,n−k

0n−k,k exp(Λn−k,n−k t)



 Ak

An−k

 (71)

=

[
1Tk 0Tn−k

] Ak

exp(Λn−k,n−k t)An−k

 (72)

= 1TkAk , ∀t (73)

Using (68) and (73), we have

1Tn P̃(t) = 1TT−1

 Idd

R̂mdR̂
−1
dd

X(t) = 1TnP(t) = 1TP0 , ∀t (74)

Proof of Corollary 2. We have

P̃ = T−1

 Idd

R̂mdR̂
−1
dd

X(t) (75)

119

Multiplying 1Td

[
Idd 0dm

]
T on both side gives

1Td

[
Idd 0dm

]
TP̃ = 1Td

[
Idd 0dm

] Idd

R̂mdR̂
−1
dd

X(t) (76)

=⇒ 1Tn P̃(t) = 1Td IddX(t) = 1TdX(t) (77)

Using Corollary 1, we have

1Tn P̃(t) = 1TnP0 = 1TdX(t) (78)

Lemma 5. Consider an invertible matrix E partitioned as

E =

Edd 0dm

Emd Emm

 (79)

Then Edd and Emm are invertible.

Proof. Because E is a triangular block matrix, the determinant of E is equal to

det(E) = det(Edd)det(Emm) (80)

120

Because E has full rank

det(E) = det(Edd)det(Emm) 6= 0 (81)

Then

det(Edd) 6= 0 and det(Emm) 6= 0 (82)

Then Edd and Emm are invertible.

Corollary 3. Suppose the assumptions in InfoBox 4.2 is true. Follow notations in In-

foBox 4.1, assume Ldd is invertible. Consider an invertible matrix T defined (in partitioned

form) as

T =

BddL
T
dd BddL

T
dm

0md Imm

 . (83)

where Bdd is any invertible matrix. Let D̂ = TDT−1. Note that R̂ = TR is a right

eigenmatrix of D̂. , and left eigenmatrix of D̂ is defined as L̂ = T−TL Partition these as

D̂ =

 D̂dd D̂dm

D̂md D̂mm

 R̂ =

 R̂dd R̂dm

R̂md R̂mm

 L̂ =

 L̂dd L̂dm

L̂md L̂mm

 (84)

Then

D̂dm = 0dm R̂dm = 0dm L̂md = 0md (85)

121

Proof. By definition, we have

 R̂dd R̂dm

R̂md R̂mm

 =

BddL
T
dd BddL

T
dm

0md Imm


Rdd Rdm

Rmd Rmm

 (86)

Comparing top left hand blocks, we have

R̂dm = BddL
T
ddRdm + BddL

T
mdRmm (87)

= Bdd(L
T
ddRdm + LT

mdRmm) (88)

Using Lemma 1, we have LT
ddRdm + LT

mdRmm = 0dm. Then

R̂dm = 0dm (89)

Because T and R are invertible matrices, R̂ = TR is also invertible. Then from Lemma 5

using (89), the blocks R̂dd and R̂mm are invertible.

Next, using the Lemma 1 on the left (L̂) and right (R̂) eigenvectors of D̂, we have

L̂T
ddR̂dm + L̂T

mdR̂mm = 0dm (90)

L̂T
mdR̂mm = 0dm (∵ R̂dm = 0dm) (91)

L̂T
md = 0dm (∵ R̂mm is invertible) (92)

Since L and T are invertible matrices, L̂ is also invertible. Then using Lemma 5, we have

L̂dd and L̂mm are invertible.

122

Next, by definition, DR = RΛ. Applying transformation T, we have D̂R̂ = R̂Λ. In

the partitioned form, and using (89), this is

 D̂dd D̂dm

D̂md D̂mm


 R̂dd 0dm

R̂md R̂mm

 =

 R̂dd 0dm

R̂md R̂mm


Λdd 0dm

0md Λmm

 (93)

Comparing top right blocks of the product gives

D̂dmR̂mm = 0dm (94)

=⇒ D̂dm = 0dm (because R̂mm is invertible) (95)

Lemma 6. Suppose the assumptions in InfoBox 4.2 are true and the matrix D is re-indexed

such that the sub-matrix Ldd in L is invertible . Then

1TdL−Tdd LT
md = −1TdRdmR−1mm = 1Tm (96)

Proof. Consider an invertible matrix constructed in the partitioned form as

LT
dd LT

md

0Tdm Imm

.

Then LT
dd LT

md

0Tdm Imm


Rdd Rdm

Rmd Rmm

 =

LT
ddRdd + LT

dmRmd LT
ddRdm + LT

dmRmm

Rmd Rmm

 (97)

123

Using Lemma 1, we have

LT
ddRdm + LT

dmRmm = 0dm (98)

Since the top right block is equal to 0dm, using Lemma 5, we have Rmm invertible. Then

LT
dmRmm = −LT

ddRdm (99)

=⇒ L−Tdd LT
md = −RdmR−1mm (100)

Next, consider the right eigenvalue relation

DR = RΛ (101)

Left multiplying 1Tn both sides of the right eigenvalue relation gives

1TnDR = 1TnRΛ (102)

Using Lemma 4, we have 1TD = 0T . Then

0Tn = 1TnRΛ (103)

124

Partitioning R and Λ gives

[
1Td 1Tm

]Rdd Rdm

Rmd Rmm


Λdd 0

0 Λmm

 =

[
0Td 0Tm

]
(104)

=⇒
[
(1TdRdd + 1TmRmd)Λdd (1TdRdm + 1TmRmm)Λmm

]
=

[
0Td 0Tm

]
(105)

Then

(1TdRdm + 1TmRmm)Λmm = 0Tm (106)

Using the invertibility of Λmm, we have

1TdRdm + 1TmRmm = 0Tm (107)

=⇒ −1TdRdm = 1TmRmm (108)

Using the invertibility of Rmm, we have

−1TdRdmR−1mm = 1Tm (109)

Then using eq. (100)

1TdL−Tdd LT
md = −1TdRdmR−1mm = 1Tm (110)

125

Lemma 7. Let D be a matrix partitioned as

D =

Ddd Ddm

Dmd Dmm

 . (111)

Suppose Dmm is invertible and 1TD = 0T , then

−1TdDdmD−1mm = 1Tm (112)

Proof. We have

[
1Td 1Tm

]Ddd Ddm

Dmd Dmm

 =

[
0Td 0Tm

]
(113)

Then comparing both sides gives

1TdDdm + 1TmDmm = 0Tm (114)

1TdDdm = −1TmDmm (115)

Using the invertibility of Dmm, we have

−1TdDdmD−1mm = 1Tm (116)

Lemma 8. Consider a matrix F and its invertible right and left eigenmatrix L and R

126

satisfying the condition

FTL = LΛ (117)

Also consider an invertible matrix T such that F̂ = TFT−1 and right eigenmatrix satisfying

F̂R̂ = R̂Λ (118)

Consider these matrices in partitioned form as

F =

Fdd Fdm

Fmd Fmm

 , T =

 Idd −FdmF−1mm

0md Imm

 , F̂ =

 F̂dd F̂dm

F̂md F̂mm

 , (119)

L =

Ldd Ldm

Lmd Lmm

 , R̂ =

 R̂dd R̂dm

R̂md R̂mm

 , Λ =

0dd 0dm

0md Λmm

 . (120)

where Fmm, Rdd and Ldd are invertible. Then the following are true:

1. L−Tdd LT
md = −FdmF−1mm

2. R̂mdR̂
−1
dd = F̂−1mmF̂md

3. F̂dm = 0dm

4. R̂dm = 0dm

5. L̂md = 0md

6. R̂dd, R̂mm, L̂dd, and L̂mm are invertible

127

Proof. Consider the partial left eigenvalue relation of F in partitioned form as

[
LT
dd LT

md

]Fdd Fdm

Fmd Fmm

 =

[
0dd 0md

]
(121)

Then

LT
ddFdm + LT

mdFmm = 0md (122)

−LT
ddFdm = LT

mdFmm (123)

Using invertibility of Fmm and Ldd, we have

−FdmF−1mm = LT
ddL

T
md (124)

Then the transformation matrix T can be written in partitioned form as

 Idd −FdmF−1mm

0md Imm

 =

 Idd L−Tdd LT
md

0md Imm

 (125)

Then using Corollary 3 for F̂, we have

F̂dm = 0dm R̂dm = 0dm L̂md = 0md (126)

128

Then using the invertibility of L, R, and T and Lemma 5, R̂dd, R̂mm, L̂dd, and L̂mm are

invertible.

Next, consider the right eigenvalue relationship of F̂ in partitioned form as

 F̂dd F̂dm

F̂md F̂mm


 R̂dd 0md

R̂md R̂mm

 =

 R̂dd 0md

R̂md R̂mm


0dd 0dm

0md Λmm

 (127)

Then F̂mmR̂mm = R̂mmΛmm. Since Λmm is a diagonal matrix with non-zero values on the

diagonal, Λmm is invertible. Then using invertibility of R̂mm, we have F̂mm invertible.

Next, comparing bottom left block of the product 127, we have

F̂mdR̂dd + F̂mmR̂md = 0md (128)

=⇒ −F̂mdR̂dd = F̂mmR̂md (129)

Using invertibility of F̂mm and R̂dd, we have

−F̂−1mmF̂md = R̂mdR̂
−1
dd (130)

129

References

[1] Eberhard Voit. A first course in systems biology. Garland Science, 2017.

[2] BP Ingalls. Mathematical modelling in systems biology: An introduction. J Chem

Inf Model, 53(9):17–42, 2014.

[3] Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, and Ralf Her-

wig. Systems biology: a textbook. John Wiley & Sons, 2016.

[4] MR Roussel and R Zhu. Exactly reduced chemical master equations. In Model Re-

duction and Coarse-Graining Approaches for Multiscale Phenomena, pages 295–315.

Springer, 2006.

[5] Nesma ElKalaawy and Amr Wassal. Methodologies for the modeling and simula-

tion of biochemical networks, illustrated for signal transduction pathways: A primer.

Biosystems, 129:1–18, 2015.

[6] Daniel T Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys.

Chem., 58:35–55, 2007.

130

[7] Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically re-

acting systems. The Journal of Chemical Physics, 115(4):1716–1733, 2001.

[8] Muruhan Rathinam, Linda R Petzold, Yang Cao, and Daniel T Gillespie. Stiffness in

stochastic chemically reacting systems: The implicit tau-leaping method. The Journal

of Chemical Physics, 119(24):12784–12794, 2003.

[9] Yang Cao, Daniel T Gillespie, and Linda R Petzold. Efficient step size selection for

the tau-leaping simulation method. The Journal of chemical physics, 124(4):044109,

2006.

[10] Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and

convergence, volume 282. John Wiley & Sons, 2009.

[11] Daniel T Gillespie. The chemical langevin equation. The Journal of Chemical Physics,

113(1):297–306, 2000.

[12] Joao Pedro Hespanha and Abhyudai Singh. Stochastic models for chemically reacting

systems using polynomial stochastic hybrid systems. International Journal of Robust

and Nonlinear Control: IFAC-Affiliated Journal, 15(15):669–689, 2005.

[13] Carlos A Gomez-Uribe and George C Verghese. Mass fluctuation kinetics: Capturing

stochastic effects in systems of chemical reactions through coupled mean-variance

computations. The Journal of chemical physics, 126(2):024109, 2007.

[14] NG Van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, 2011.

131

[15] David Schnoerr, Guido Sanguinetti, and Ramon Grima. Approximation and inference

methods for stochastic biochemical kinetics-a tutorial review. Journal of Physics A:

Mathematical and Theoretical, 50(9):093001, 2017.

[16] William J Blake, Mads Kærn, Charles R Cantor, and James J Collins. Noise in

eukaryotic gene expression. Nature, 422(6932):633, 2003.

[17] Jonathan M Raser and Erin K O’shea. Control of stochasticity in eukaryotic gene

expression. science, 304(5678):1811–1814, 2004.

[18] Leor S Weinberger, John C Burnett, Jared E Toettcher, Adam P Arkin, and David V

Schaffer. Stochastic gene expression in a lentiviral positive-feedback loop: Hiv-1 tat

fluctuations drive phenotypic diversity. Cell, 122(2):169–182, 2005.

[19] Michael Samoilov, Sergey Plyasunov, and Adam P Arkin. Stochastic amplification and

signaling in enzymatic futile cycles through noise-induced bistability with oscillations.

Proceedings of the National Academy of Sciences, 102(7):2310–2315, 2005.

[20] Crispin Gardiner. Stochastic methods, volume 4. springer Berlin, 2009.

[21] Daniel T Gillespie. A rigorous derivation of the chemical master equation. Physica

A: Statistical Mechanics and its Applications, 188(1-3):404–425, 1992.

[22] Werner Dubitzky, Olaf Wolkenhauer, Hiroki Yokota, and Kwang-Hyun Cho. Encyclo-

pedia of systems biology. Springer Publishing Company, Incorporated, 2013.

[23] Darren J Wilkinson. Stochastic Modelling for Systems Biology. CRC Press, 2011.

132

[24] Brian Munsky and Mustafa Khammash. The finite state projection algorithm for

the solution of the chemical master equation. The Journal of chemical physics,

124(4):044104, 2006.

[25] Khanh N Dinh and Roger B Sidje. Understanding the finite state projection and re-

lated methods for solving the chemical master equation. Physical biology, 13(3):035003,

2016.

[26] Kevin Burrage, MARKUS Hegland, Shev Macnamara, Roger Sidje, et al. A krylov-

based finite state projection algorithm for solving the chemical master equation arising

in the discrete modelling of biological systems. In Proc. of The AA Markov 150th

Anniversary Meeting, 2006. Paper no. 21-37.

[27] Brian Munsky and Mustafa Khammash. A multiple time interval finite state projection

algorithm for the solution to the chemical master equation. Journal of Computational

Physics, 226(1):818–835, 2007.

[28] Slaven Peleš, Brian Munsky, and Mustafa Khammash. Reduction and solution of the

chemical master equation using time scale separation and finite state projection. The

Journal of chemical physics, 125(20):204104, 2006.

[29] I Oppenheim, KE Shuler, and GH Weiss. Stochastic and deterministic formulation of

chemical rate equations. The Journal of Chemical Physics, 50(1):460–466, 1969.

[30] Thomas G Kurtz. The relationship between stochastic and deterministic models for

chemical reactions. The Journal of Chemical Physics, 57(7):2976–2978, 1972.

133

[31] Donald A McQuarrie. Stochastic approach to chemical kinetics. Journal of applied

probability, 4(3):413–478, 1967.

[32] DT Gillespie. Markov processes: An introduction for physical scientists (academic,

new york, 1992). Google Scholar, pages 111–122, 2009.

[33] Roger B Sidje. Expokit: a software package for computing matrix exponentials. ACM

Transactions on Mathematical Software (TOMS), 24(1):130–156, 1998.

[34] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential

of a matrix, twenty-five years later. SIAM review, 45(1):3–49, 2003.

[35] Awad H Al-Mohy and Nicholas J Higham. Computing the action of the matrix ex-

ponential, with an application to exponential integrators. SIAM journal on scientific

computing, 33(2):488–511, 2011.

[36] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition, vol-

ume 66. Siam, 2011.

[37] Daniel T Gillespie. A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of computational physics, 22(4):403–

434, 1976.

[38] Yang Cao, Daniel T Gillespie, and Linda R Petzold. The slow-scale stochastic simu-

lation algorithm. The Journal of chemical physics, 122(1):014116, 2005.

[39] Yang Cao and Linda Petzold. Slow-scale tau-leaping method. Computer methods in

applied mechanics and engineering, 197(43-44):3472–3479, 2008.

134

[40] Markus Hegland, Conrad Burden, Lucia Santoso, Shev MacNamara, and Hilary

Booth. A solver for the stochastic master equation applied to gene regulatory net-

works. Journal of computational and applied mathematics, 205(2):708–724, 2007.

[41] Xingye Kan, Chang Hyeong Lee, and Hans G Othmer. A multi-time-scale analysis of

chemical reaction networks: Ii. stochastic systems. Journal of mathematical biology,

73(5):1081–1129, 2016.

[42] Stefan Schuster and Thomas Höfer. Determining all extreme semi-positive conserva-

tion relations in chemical reaction systems: a test criterion for conservativity. Journal

of the Chemical Society, Faraday Transactions, 87(16):2561–2566, 1991.

[43] Fernando López-Caamal and Tatiana T Marquez-Lago. Order reduction of the chem-

ical master equation via balanced realisation. PloS one, 9(8):e103521, 2014.

[44] RB Lehoucq, K Maschhoff, D Sorensen, and C Yang. Arpack software package. Rice

University, 1996.

[45] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide:

solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods,

volume 6. Siam, 1998.

[46] RN Mohan. On orthogonalities in matrices. arXiv preprint cs/0605045, 2006.

[47] N Trefethen Lloyd. Numerical linear algebra/lloyd n. trefethen, david bau. Philadel-

phia, USA: Society for Industrial and Applied Mathematics, 263, 1997.

135

[48] Shev MacNamara, Kevin Burrage, and Roger B Sidje. Multiscale modeling of chemical

kinetics via the master equation. Multiscale Modeling & Simulation, 6(4):1146–1168,

2008.

[49] Roger B Sidje and Huy D Vo. Solving the chemical master equation by a fast adaptive

finite state projection based on the stochastic simulation algorithm. Mathematical

biosciences, 269:10–16, 2015.

136

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Chemical Master Equation
	Exact Solution of the CME
	Approximation to the Solution of the CME

	Algorithm for Generation of the State Space and Transition Matrix of of a CME
	State Space
	Example

	Transition Matrix
	Example

	Computational Efficiency

	Dimensionality Reduction and Approximation of the Chemical Master Equation
	No Transformation: T = I
	Transformation to Achieve Probability Conservation in the Reduced System
	Transformation Using Left Eigenvectors
	Transformation Using Transition Matrix Components

	Implementation of the Reduction Procedure
	Selection of the Reduced Dimension d
	Computation of the Initial Condition and the Transition Matrix of the Reduced System Using a Semi-Orthogonal Eigenbasis

	Example: Michaelis-Menten model
	Selection of the Reduced Dimension d
	Identifying Initial Condition and Transition Matrix
	Efficiency

	A Preconditioning for the Multi-Step FSP
	Preconditioned FSP Algorithm

	Conclusion and Future Directions
	Future Directions

	APPENDIX
	References

