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Abstract

This thesis presents a novel approach to automatically mark programming

assignments. We hypothesize that correct student solution ASTs will be

more similar to reference solution ASTs than incorrect student solutions and

that their similarities can be quantitatively measured. Our approach first

preprocesses the ASTs before computing their tree edit distances. We then

aggregate the student’s set of edit distances from every reference solution

into a final mark for the student. We have implemented our approach in our

ClangAutoMarker tool. Our experiments demonstrate promising potential

for reducing a human marker’s workload but further refinements are needed

before its accuracy can be suitable for a live classroom.
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Chapter 1

Introduction

In many computer science courses, students complete programming assign-

ments to help them learn concepts introduced in class. In these assignments,

students often need to read data from an input file, process the data ac-

cording to the assignment specification, and finally write their results to an

output file.

Many of these assignments are evaluated based on correctness through

automated testing. To evaluate correctness, the student’s output is compared

against an instructor provided solution and the number of correct matches

determines the student’s final mark.

This approach is generally sufficient for introductory programming courses

due to the simplicity of the problems. Ideally every student assignment

should be reviewed by a human reader, similar to code reviews in the software

industry, so that students can develop good coding styles early on in their

careers. This also avoids one pitfall of input/output automated testing—

ensuring students actually implemented the assignment specifications rather

than getting lucky through incorrect or disallowed implementations such as

using built-in libraries or generating random outputs.
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Figure 1.1: The number of students enrolled in the Computer Science,

Computer Engineering, or Software Engineering programs at the University

of Waterloo continues to rise over the years [18].

In recent years at the University of Waterloo, there has been a continual

increase in enrollment in programming-related programs (see Figure 1.1). It

is not uncommon for early-year courses to have hundreds of enrolled students.

For example, the Fall 2018 offering of CS115, an introductory programming

course, has over 900 enrolled students [5].

With such large classes, it becomes near-impossible to manually mark

every assignment. In the past, hiring more markers was a temporary fix to

this growing problem. However, this solution does not scale well because of
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the increased collaboration needed between markers to ensure consistency in

marking. This is especially important for subjective criteria like code style

that often has no “correct” answer. While marker inconsistency may be

mitigated by rubrics to some extent, it still requires a deep understanding

between markers.

As a result, programming assignments are generally not manually marked

until the upper years where class sizes are only a couple dozen students.

In rare cases, popular upper-year programming courses such as ECE459, a

concurrency programming course, have hundreds of students.

Historically in ECE459, a marker would first compile and run the stu-

dent’s program, aided with an automated script, to eliminate trivial failures

such as failed compilations or incorrect output. The marker would then man-

ually inspect the code to check for correct usage of concurrency constructs.

One of the most common complaints amongst past markers for this course

was that manually reviewing code is extremely tedious. In addition, manual

marking can be error-prone because student code can greatly vary and can

be hard to reason through.

1.1 Motivating Examples

For the purpose of building a prototype automated marking tool, we focus

our efforts on two assignments from ECE459 (see Figure 1.2 and Figure 1.3)

[1]. In these assignments, the students have been provided with a working

serial version of a program written in C. The program is a client that calls

a web server using the cURL library. The web server, after a random delay,

returns a random fragment of an image. The client program then repeats the

process until it has received all the fragments. It then stitches them together

to reconstruct the original image. Since the web server is on campus, the

3



response time without the delay is usually under 20 ms. We add a Gaus-

sian random delay to simulate network lag and prevent student programs

from overwhelming the server. The students are tasked to rewrite the client

with non-blocking IO constructs from the cURL library [2] and again with

parallelism constructs from the Pthread library [12]. Since the output of all

three programs, the reconstructed image, is exactly the same, only manual

code inspection can ensure students have actually fulfilled the assignment

specifications.

In theory, a correctly parallelized algorithm should execute faster and use

more CPU cores than its non-parallel counterpart. One might think that we

should be able to check correctness by limiting the run time and checking

CPU usage; however, there are a number of problems with this idea.

Firstly, there were always at least a dozen students in every class with

poor programming habits who could correctly use the APIs but still have

horrible run times. While these students should be penalized, their remark

requests and complaints often deter markers from making deductions. To

further avoid student complaints, the markers often err on the side of caution

and give students a generous timeout limit that even non-parallel algorithms

can pass.

Secondly, if malicious students knew that we were checking for CPU us-

age, they could potentially create fake threads that busy-wait to run alongside

the unmodified serial algorithm.

Thirdly, due to the network delay and the possibility of receiving dupli-

cate fragments, a program could potentially take an unpredictably long time

before it can reconstruct the final image.

Therefore, solely relying on automated input/output testing in addition

to limiting the runtime or checking CPU usage in this course is insufficient

to fully assess students’ ability to correctly use the concurrency constructs.
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1 int main() {

2 // Initialize N non-blocking cURL calls

3 for (int i = 0; i < N; i++) {

4 curl_multi_add_handle();

5 }

6

7 do {

8 // Make the non-blocking cURL calls

9 curl_multi_perform();

10 do {

11 curl_multi_wait();

12 curl_multi_perform(&still_running);

13 } while (still_running);

14

15 // Read the N results

16 while (curl_multi_info_read()) {

17 if (CURLMSG_DONE) {

18 // Fetch an image fragment from remote web server

19 ...

20 // Write the image fragment to global image

21 ...

22 }

23 }

24 } while (!received_all_fragments);

25 }

Figure 1.2: The Non-Blocking IO assignment requires rewriting the serial

program to use non-blocking calls in the cURL library. This sample solution

shows the key parts of the program that a human marker would look at,

such as the cURL library function calls, and their relation to control-flow

constructs, such as while-loops and if-statements.
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1 pthread_mutex_t mutex;

2

3 void thread_function() {

4 // Fetch an image fragment from remote web server

5 ...

6

7 pthread_mutex_lock(mutex)

8 // Write the image fragment to global image

9 ...

10 pthread_mutex_unlock(mutex)

11 }

12

13 int main() {

14 // Initialize mutex

15 pthread_mutex_init(mutex)

16

17 // Start N threads

18 for (int i = 0; i < N; i++) {

19 pthread_create(thread_function);

20 }

21

22 // Wait for the N threads to finish

23 for (int i = 0; i < N; i++) {

24 pthread_join();

25 }

26 }

Figure 1.3: The Parallel Processing assignment requires the use of paral-

lelism provided by the Pthread library. This assignment is slightly simpler

than the Non-Blocking IO assignment because the student simply has to

move the key components of the serial program into an isolated function

that is then passed to pthread create. In this assignment, the marker

has to check for the correct usage of pthread * functions and ensure proper

shared memory protection with mutexes.

6



1.2 Approach

As described in Section 1.1, the manual work for markers is straightforward

and checklist-like. Our goal is to encode these steps into an automated

program to reduce the time needed for marking. It is important to note

that we are already automating the compilation and execution of student

programs to check for trivial failures (e.g. failed compilations or segmentation

faults); our ultimate goal is to further augment this step to also include

automated code inspection.

We hypothesize that the ASTs for correct solutions tend to be more

similar to each other than incorrect solutions. The intuition behind our

idea is that, in the context of programming assignments, there are a limited

number of ways to effectively use the concurrency constructs. We assume

students will not purposely spend excessive and unnecessary amounts of time

to obscure their code or deviate from the standard code examples from class

or from online tutorials.

As a result, markers generally look at certain library function calls with

relation to the program structure and skim over everything else. For example,

to check for correct usage in the Parallel Processing assignment (Figure 1.3),

a marker would check to see if pthread create and pthread join are

inside loops but are not in the same loop. They would generally ignore

the rest of the boilerplate code such as parameter validation and garbage

collection.

From this idea, we built the ClangAutoMarker tool to automate the man-

ual code inspection step of marking. As its name implies, this tool is built

on top of the Clang and LLVM infrastructure [8]. It first leverages the Clang

front-end to parse a student solution and an instructor-provided reference

solution into their respective ASTs. It then post-processes these tree data
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structures and computes the tree edit distance1 between the student solu-

tion’s AST and the reference solution’s AST. We then repeat this process

for all the reference solutions; there are multiple reference solutions because

most programming assignments have multiple valid approaches. Finally we

normalize and aggregate the edit distances into a single mark between 0 to

100 for the student.

However in practice we would only accept an automated mark if it was a

full mark of 100; we require manual review for assignments that did not re-

ceive full marks because these automated deductions do not have meaningful

feedback relevant for a student, other than the fact that they were notably

different from the reference solutions.

This distinction does not significantly hinder the effectiveness of our tool

because, traditionally, the course staff of ECE459 perfers to have a large num-

ber of students getting full marks despite having minor or benign problems

with their code.

1A tree T1 can be converted to another tree T2 through a series of steps (i.e. add,

remove, or rename nodes in T1 until it is equal to T2). Each step also has an associated

cost through a cost function F . The tree edit distance is the series of steps that would

result in the minimum net cost to convert T1 into T2.
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Chapter 2

ClangAutoMarker

The overall goal of the ClangAutoMarker tool is to take N student solution

files and M reference solution files as input and generate N marks, one per

student, as output.

2.1 Infrastructure

The ClangAutoMarker tool consists of two executables: a frontend and an

aggregator. The frontend (Figure 2.1) is responsible for parsing student and

reference solutions into their respective ASTs and computing their tree edit

distances. The aggregator (Figure 2.2) is responsible for consolidating tree

edit distances into a single mark for the student.

We are currently not aware of any techniques for aggregating tree edit

distances between student and reference solutions into assignment marks.

Therefore, we have done an exploratory analysis in Chapter 3 on various

approaches we devised for the aggregator based on our intuition.
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The frontend is written in C++ to leverage the LLVM infrastructure

and the aggregator is written in Python; the two executables communicate

through shared text files. While the aggregator could have been implemented

as part of the frontend so that we have a single executable, there are a couple

of engineering advantages that make Python more suitable for the aggregator.

Firstly, performing numerical calculations and generating graphs is very

simple and easy to implement and debug in Python due to the availability of

specialized libraries such as Numpy [4], Scikit-learn [6], and Matplotlib [3].

Secondly, as we will soon discuss in Chapter 3, the parameters and equa-

tions in our calculations are determined based on trial-and-error. Further-

more computing edit distances takes hours whereas aggregating edit distances

into marks only takes seconds. As a result, the lack of need to recompile the

aggregator and recompute edit distances after modifying the aggregator’s

equations greatly improves our productivity while developing the tool.

Thirdly, by having an external process i.e. the Python script, coordinate

multiple frontend processes, we can avoid crashing an entire marking job,

which could potentially take hours to complete, due to one malformed student

solution or internal assertion error.

2.2 Simplifying the Clang AST

The first step of our tool is to take a student solution file and a reference

solution file as input and parse them into ASTs using the Clang frontend

from LLVM. After obtaining the Clang ASTs, we then simplify them into

custom AST data structures.

From a conceptual point-of-view, AST simplification aims to mimic the

judgment process of a human reader. For example, a human marker may

10



Student

Solution Si

Reference

Solution Rj

Parse Code into AST with Clang

Simplify AST

Prune AST

Compute Tree Edit Distance with Apted

ClangAutoMarker

Tree Edit

Distance Ti,j

from Si to Rj

Figure 2.1: This diagram depicts the data flow inside the compiler com-

ponent of the ClangAutoMarker tool. Each run of the executable takes one

student solution Si and one reference solution Rj as input. The executable

compiles the solutions into ASTs, computes their tree edit distance Ti,j, and

prints out the result.
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Ti,1 Ti,2 . . . Ti,M

Aggregate Ti,1 . . .Ti,M into Single Mark

ClangAutoMarker

Mark for

Student Si

Figure 2.2: This diagram depicts the data flow inside the aggregator com-

ponent of the ClangAutoMarker tool. For a given student Si, the aggregator

repeats the process in Figure 2.1 for each reference solution R1 . . . RM ; it then

aggregates the results into a final mark. Since there are no data dependencies

between each reference solution, the aggregator can execute a new frontend

process for each reference solution in parallel.
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treat a while-loop, do-while-loop, and for-loop as identical even though their

exit conditions are slightly different. By canonicalizing functionally similar

sub-trees, we will be able to reduce the edit distances between functionally

similar code and ultimately allow them to receive similar marks.

From a practical point-of-view, AST simplification is the easiest way to

use the Apted library [26] to compute tree edit distances. To use this library,

we need a tree data structure that implements the library’s specific interface.

We determined that it is much easier to map the Clang AST to a custom

AST that conforms to the expected interface than it is to modify Clang’s

internal data structures.

The Clang codebase is extremely large; the internal interactions and de-

pendencies are often sparsely documented and require insider knowledge to

fully understand. As a result, any modifications that we want to make to the

tree may potentially break another module. Therefore, by utilizing our own

simplified tree data structure, we are free to make large (often destructive)

changes to the tree, without worrying about unforeseeable side effects.

Furthermore, the Clang codebase is also constantly changing; by mapping

Clang’s AST to our internal data structure, we are able to decouple our tool

from changes in future versions of LLVM.

Finally, since we are not interested in compiling the AST to bytecode, we

do not need to keep as many details. As a result, simplifying our resulting

tree data structure also saves memory and computation time.

2.2.1 If Statements

In an AST, an if-statement has at least two children: the condition and the

true branch, i.e. a list of statements to execute when the condition is true.

The if-statement may also have an optional false branch as its third child.

13



1 IfStatement

2 Condition

3 UnaryOperator: NOT

4 Variable: cond

5 TrueBranch

6 CallStatement: bar()

7 FalseBranch

8 CallStatement: foo()

1 IfStatement

2 Condition

3 Variable: cond

4 TrueBranch

5 CallStatement: foo()

6 FalseBranch

7 CallStatement: bar()

Figure 2.3: The logical equivalent of negating the condition in an if state-

ment is swapping the statements in the true branch with the statements in

the false branch.

There are countless ways to declare syntactically different but logically

equivalent if-statements. It is infeasible to enumerate all the possibilities to

canonicalize them into a common structure. Instead, we focused our efforts

on the most common types found in student assignments. From manual in-

spection of student code, we found that the most common difference amongst

logically equivalent if-statements was due to using negation in the condition

statement and swapping the true and false branches. As a result, we sim-

plify students’ if-statements by stripping out the outermost negations in the

condition statement and swapping the true and false branch if there are an

odd number of negations, as shown in Figure 2.3.

2.2.2 Loops

There are three types of loops in C: for-loops, do-loops, and do-while-loops.

For the purpose of marking, there are no distinctions between these struc-
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1 for (int i = 0; i < 5; i++) {

2 foo();

3 }

Initializer Condition Afterthought

1 LoopStatement

2 Condition

3 Operator: LessThan

4 Variable: i

5 Literal: 5

6 Body

7 CallStatement: foo()

Figure 2.4: A “standard” for-loop does not contain complex statements

in the initializer and afterthought; it only has a variable declaration in the

initializer and unary operator on the variable in the afterthought. To simplify

these kinds of for-loops, we discard the initializer and afterthought because

they are not important for markers.

tures; we are only interested to know that the student is repeatedly executing

some code under some condition. As a result, all three types of loops are

simplified into a common structure despite not necessarily being logically

equivalent, shown in Figures 2.4 to 2.6.

There is one caveat to this process for “non-standard” for-loops. In an

AST, all for-loops have four components: an initializer, a condition, an af-

terthought, and the body. A standard for-loop is one that only has a variable

declaration, often called the “loop counter”, in its initializer component and

an unary operator in the afterthought component that modifies said loop

counter. Although uncommon, it is also possible to write any number of

15



1 while (i < 5) {

2 foo();

3 }

1 LoopStatement

2 Condition

3 Operator: LessThan

4 Variable: i

5 Literal: 5

6 Body

7 CallStatement: foo()

Figure 2.5: Since the while-loop is already the simplest form of loop, we

do not need to perform any additional work to simplify it.

1 do {

2 foo();

3 } while (i < 5)

1 LoopStatement

2 Condition

3 Operator: LessThan

4 Variable: i

5 Literal: 5

6 Body

7 CallStatement: foo()

Figure 2.6: A do-while-loop is essentially a while-loop except that it ex-

ecutes the body once before checking the condition. For the purpose of

marking, we simplify it by treating it exactly the same as a while-loop.

16



1 for (o = initObj(); cond; free(o)) {

2 foo();

3 }

1 Assignment

2 Variable: o

3 CallStatement: initObj()

4 LoopStatement

5 Condition

6 Variable: cond

7 Body

8 CallStatement: foo()

9 CallStatement: free()

10 Variable: o

Figure 2.7: We cannot discard the initializer and afterthought in non-

traditional for-loops because they may contain additional non-trivial infor-

mation. As a result, we place them in logically equivalent positions in the

AST: the initializer above the loop and afterthought at the end of the body.

statements in either components, separated by the comma operator; we de-

note these cases as non-standard for-loops (Figure 2.7). When we encounter

these types of for-loops, to preserve the original logic, we move the initializer

above the loop node and the afterthought to the bottom of the loop body.

It is important that “standard” for-loops only modify the loop counter

in the afterthought component and not inside the body. As the counter

is only modified by a unary operator in the afterthought, it is not partic-

ularly interesting; therefore, we can ignore it for the purpose of marking.

17



The simplification shown in Figure 2.4 demonstrates that we have essentially

discarded the loop counter from the AST.

2.2.3 Variable Usage

It is obvious that we cannot compare variables between different solutions

by name because, with the exception of common patterns such as using i

for counters, students working independently should not be using the same

variable names. As a result, we need another method to identify variables

and compare similarities across different solutions.

Recall that our ultimate goal is to compute the edit distance between two

ASTs and that we want to minimize the distance between logically similar

ASTs. For the purpose of marking, we would like to analyze variable usages

with respect to function calls. In our system, a variable is defined to be the

set of function calls that read and write to it.

After constructing the initial AST, we scan the tree for variable references.

If a variable is referenced in a function call (used as a function parameter),

then we record the called function and register a “read” use to the variable. If

a variable is on the left-hand-side of an assignment operator from a function

call or is the child of a dereference operator inside a function parameter,

then we record the called function and register a “write” use to the variable.

Figure 2.8 illustrates this process.

In addition, if a variable v appears on the right-hand-side of an assignment

operator, then the variable(s) on the left-hand-side inherit all of the read and

write uses of v. We then repeat this process until we reach a fixed-point, when

every variable’s set of usages stop changing.

Although it is possible to have two different variables (different names

in the original program) be considered logically equivalent in our system,

18



1 foo = bar(x, &y)

2

3 // foo : {write|bar}

4 // x : {read|bar}

5 // y : {read|bar} {write|bar}

Figure 2.8: The variable foo is on the left-hand-side of this function call

so it registers a write usage from the function bar. The variables x and

y are parameters for the function call so they register read usages from

bar. Furthermore, since y is passed by reference and we do not perform

interprocedural analysis, we assume the worst case and register a write usage

to the variable from bar as well.

early experiments demonstrated that merging logically equivalent variables

discards too much information from the AST and makes debugging extremely

difficult. Instead, we opted to preserve the logically equivalent variable nodes

in the AST but define their edit distance to be zero.

2.3 Pruning the AST

After simplification, the AST is still bloated with information unnecessary

for marking. As a result, the edit distance between ASTs will result in a

lot of noise and may not necessarily identify logically similar solutions. This

step attempts to find as many of these unnecessary nodes as possible and

delete them from the AST.
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1 AssnStatement

2 ImplicitCastExpr

3 Variable: i

4 ImplicitCastExpr

5 Literal: 5

1 AssnStatement

2 Variable: i

3 Literal: 5

Figure 2.9: The Clang parser generates a lot of nodes unnecessary for a

human marker. These nodes serve no purpose when trying to compute the

edit distance between two solutions. The pruning step deletes nodes that

serve no semantic meaning, such as these implicit cast expressions.

2.3.1 Useless Constructs

A human marker is generally only interested in control structures (e.g. if-

statements and loops) or statements of interest (e.g. call statements). We

denote nodes to be “useless” if they are inserted into the AST by the parser

for syntactic purposes but serve no semantic meaning for a human marker.

The most common nodes in this category include parentheses, implicit cast

expressions, compound statements, etc. Figure 2.9 illustrates the pruning

process for these useless nodes.

We remark that an alternative solution is to simply ignore these nodes

and denote their edit distances to be zero. However, deleting them from the

AST at this stage greatly reduces the computation time for work down the

pipeline and makes the AST easier to read for debugging.
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2.3.2 Uninteresting Functions

Many function calls such as malloc and free are not interesting to ana-

lyze. These statements are standard boilerplate code in every program and

have no effect on the observable behavior of the final output. Although it

is possible for these “uninteresting” functions to cause runtime exceptions

such as segmentation faults, these problems can usually be detected through

automated tools such as Valgrind [9]. As a result, human markers generally

ignore these function calls. Likewise, our tool also deletes these uninteresting

function calls from our AST.

2.3.3 Uninteresting Variables

Recall from Section 2.2.3 that we define variables to be the set of functions

that reads and writes to them. We denote a variable to be “interesting”

if its set of reader or writer functions includes an “interesting” function,

defined on a per-assignment basis. For example, the Non-Blocking IO as-

signment (Figure 1.2) would denote functions from the cURL library such as

curl multi init() as interesting.

We first scan the AST for variable declarations and check whether their

set of reader and writer functions includes an interesting function; if so, we

mark it as an interesting variable. If an interesting variable appears on the

right-hand-side of an assignment operator, variables on the left-hand-side

are automatically marked as interesting as well. We then repeat this process

until we cannot find any new interesting variables. Finally, we delete every

variable that is not marked as interesting, and their respective references,

from the AST.
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2.4 Computing Tree Edit Distance

Tree edit distance is formally defined as the minimum total cost of the steps

needed to change from a source tree to a destination tree [11]. A “step” can

either be inserting a node, deleting a node, or renaming a node. Clearly the

trivial solution is to simply delete every node in the source tree and insert a

copy of every node from the destination tree. The goal, however, is to find

the sequence of steps that minimizes the total cost.

After preprocessing the ASTs, we are now ready to compute the tree edit

distance between the student solution’s AST and the reference solution’s

AST. However before we can proceed, we first need to choose a starting

point for the root of our trees. In the context of assignment marking, there

are two potential candidates for the tree roots.

The first choice is to root our trees at the file level. In this case, we

treat the entire solution file as a single tree; functions and global variables

are the immediate children of the root. The advantage of this approach is

that we only need to compute the tree edit distance once. However, the

disadvantage is that it is easy for logically trivial changes, such as different

function orderings or function names, to significantly impact the final edit

distance value.

The second choice is to root our trees at the function level. In this case,

we need to compute a different tree edit distance for each matching function

between the student and reference solution. For example, we would have

to compute the edit distance between the tree corresponding to main() in

the student solution to the tree corresponding to main() in the reference

solution. We then repeat this process for each pair of matching functions

between the student and reference solution.

Between these two choices, we decided the function-level approach is less

prone to miscalculating tree edit distances between logically similar solutions.
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Since the tree edit distance algorithm library we are using does not have a

“reorder” operation, we want to avoid the case where the students’ functions

are in a different order than the reference solution.

2.4.1 Inlining Unexpected Functions

Before we pass the ASTs to our tree edit distance algorithm, we need to

consider the potential case of unexpected helper functions created by the

students. In programming assignments, some students may create helper

functions to avoid duplicating code. This is problematic because the edit

distance algorithm does not take the context of the nodes to edit into account.

Research in static analysis and automated marking generally focuses on

single functions because inter-procedural analysis is exponentially more com-

plex and time consuming. Luckily in our course, students historically do not

use helper functions; of those that do, they mainly use “pure functions”, i.e.

functions that do not have any side effects and only have one return state-

ment. In addition, emperical evidence indicate that student helper functions

are rarely recursive and do not include complex logic. From this observation,

we devised a simple technique (Figure 2.10) to inline these helper functions’

ASTs into the caller’s AST prior to computing edit distances. Should a stu-

dent solution contain a more complicated helper function, their solution will

be designated for manual marking.

2.4.2 Cost Model for Comparing ASTs

The last component to consider before we pass the ASTs to our tree edit

distance algorithm is the cost function or model that determines the actual

cost of each edit step. A cost model, given an input node, returns the “cost”
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1 // int foo(int x) {

2 // return x + 1;

3 // }

4 FunctionStatement

5 Param x

6 ReturnStatement

7 OperatorStatement: Add

8 Variable: x

9 Literal: 1

10

11 // bar = foo(5)

12 OperatorStatement: Assn

13 Variable: bar

14 CallStatement: foo()

15 Literal: 5

1 // bar = 5 + 1

2 AssnStatement

3 Variable: bar

4 OperatorStatement: Add

5 Literal: 5

6 Literal: 1

Figure 2.10: Our inliner first deletes the parameter list in the function

root. It then replaces every reference to the parameters with the respective

argument from the caller. Finally, it replaces the original function call with

the child of the return statement.
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to insert a copy of it into the source tree, delete it from the source tree, or

rename it to a second input node.

By default, every node has an edit distance of one. Clearly, this is not

ideal because some nodes should more important than others. For exam-

ple, if a student forgot to call free() at the end of their program, they

should lose a few marks (small insertion cost) whereas if they forgot to call

curl multi perform(), they should lose a lot of marks (high insertion

cost). Furthermore, inconsequential node differences such as parentheses

should be penalized less, if at all. Therefore, we have added additional anal-

ysis to our cost model to ensure similar nodes and structures have reduced

edit costs and key function calls have heavier penalties.

Variables

There are two types of variables to consider in our ASTs: external and

internal variables.

External variables are variables defined outside the student or reference

solution files. These are usually library constants. For example, students

may choose to use CURLE OK from the cURL library instead of its hard-

coded value of 0 for code readability. To determine if two external variables

are “equivalent”, we check their types and names. We do not check for

literal value because we want to encourage good coding practices such as

using library defined constants. Furthermore, we do not need to worry about

naming conflicts because the Clang frontend will catch them beforehand.

Internal variables are variables defined inside the student or reference

solution files. These include global variables as well as scope-level variables

such as loop counters and function parameters. Recall from Section 2.2.3 that

variables are defined to be the set of functions that read and write to them.

When comparing internal variables, we consider them to be “equivalent” and
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thus have zero edit cost if the intersections of their reader or writer sets are

not empty.

Conditions

There are often many ways to write the same or similar behaving conditions

for if-statements and loops. Without relying on SAT solvers, it is difficult to

know whether two condition nodes are logically similar. For the purpose of

marking, we noticed that simply comparing the set of variables and function

calls between two different conditions is sufficient for determining logically

similar code.

We define the edit cost between two conditions to be zero if they share at

least one “equivalent” variable (described in Section 2.4.2). If one condition

has a function call to f , then the other condition must either contain a

function call to f or a variable that has been written to by f .

Weighting Key Function Usage

Conceptually, the key aspects to look for when marking should be how stu-

dents make their function calls to the assignment’s corresponding libraries.

As a result, we want to penalize improper usage, i.e. increase the cost to

insert the missing call statement to the student’s AST such that it matches

the reference AST.

We assign each “key function” a weight on a per-assignment basis. Any-

where that requires a call to one of these key functions will use the associated

weight—generally magnitudes higher than other edit costs.
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Chapter 3

Conversion to Mark

At this stage in the pipeline, we have tree edit distances Ti,j where i ∈ [0, N)

j ∈ [0,M) for N student solutions and M reference solutions. Our next step

is to convert these edit distances into N marks, one for each student. We

are not aware of any established techniques for this process. As a result, we

investigated several approaches based on our intuition (Section 3.2 to 3.4)

and presented our results in Section 3.5.

3.1 Experiment Setup

3.1.1 Test Data

We had student code and marks from 2017 and 2018 classes to analyze. Our

plan was to use our tool to generate marks for these classes and compare our

automated marks with human-evaluated marks (ground-truth).
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3.1.2 Cutoff Points

Recall that ClangAutoMarker’s ultimate goal was to compute a student’s

mark, a value between 0 to 100, by comparing their solution’s AST to the

reference solution’s AST. For a student to earn a full mark of 100 from

our tool, the student would need to have structurally-identical code to the

reference solution(s). However, this was essentially impossible unless the

student had cheated in some form.

Assuming that students did not plagiarize current or past students, we

erred on the side of caution and automatically rounded up our automated

marks from a certain cutoff point. In our experiments, we tested cutoff points

at 90 and 95. We chose these cutoff points from experience: in this range,

the students were close enough to full marks that if they were from a human

marker, the minor deductions resulting in a 90 or 95 might have essentially

been due to the marker’s mood and how lenient they were with minor issues.

However any marks lower than 90 from a human marker were very likely to

be indicative of actual errors in the student program.

We used the following formula to compute the students’ final marks. To

avoid confusion, we shall henceforth denote the final value to be returned to

the student as “Mark” and denote the computed value from our methods in

Sections 3.2 to 3.4 as “Score”.

Marki =

Scorei if Scorei < Cutoff

100 if Scorei ≥ Cutoff

3.1.3 Effectiveness

We measured the effectiveness of ClangAutoMarker by counting how many

assignments it could successfully automate, i.e. scored above the cutoff points
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of 90 or 95. Conversely, an assignment must be manually reviewed if we were

uncertain about the mark we generated, i.e. scored below 90 or 95. There

were two cases where this could happen.

The first case was if the student code had non-conventional coding pat-

terns. It is likely that there will be a few outlier students in every class who

write their code significantly different than what we normally expect in our

reference solutions. Even if their solution was functionally correct, their AST

would have an extremely high edit distance from our reference solutions and

thus would receive an undeserved low score.

The second case was if the student program cannot be processed by our

tool. This occurred if the student had syntactical errors or if the student’s

AST deviated from one of our assumptions and triggered an internal assertion

error. For example, we assumed that all solution files have a main function;

if this function was missing then we would not be able to perform any of our

analyses and thus would require manual intervention.

To capture both cases, we designated an assignment for manual review

if its score was too low or non-existent (e.g. process ended early due to

assertion error). For the sake of simplicity, we deemed an automated score

to be too low and thus require manual review if it was below the cutoff points

previously mentioned.

3.1.4 Accuracy and False Positives

Out of the assignments that our tool could automate, we evaluated the ac-

curacy or false positive rate of our accepted predictions. We designated an

assignment to be a false positive if its mark (not the same as score) was

significantly higher than what a human marker assigned to it. In practice,

we tolerated an excess of up to 10 points before we considered a mark to be a
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false positive because, as discussed in Section 3.1.2, human markers generally

could vary their evaluation by up to 10 points for trivial issues.

It is important to note that the marks we used as ground-truth also in-

cluded a written report. Furthermore, our ground-truth marks also contained

deductions from non-technical issues such as late submissions or plagiarism.

Unfortunately, detailed historical data were not kept after the course ended.

Since these unrelated deductions were included in our ground-truth, our real

false positive rate might actually be lower than what we present.

3.2 Always Full Marks

Since we expected most of the class to receive full marks for the assignment,

we used the trivial approach of always giving everyone full marks as our

baseline to measure the accuracy and effectiveness of our other approaches.

Any other marking technique must perform better than this “automatic”

technique to be considered an improvement over manual marking.

3.3 Minimum Distance

We used multiple reference solutions to cover the various approaches to solv-

ing their respective assignments. A correct student solution should closely

match at least one of these reference solutions and thus have an extremely

small edit distance from it. Therefore, we initially assumed the student’s

mark should be based on the smallest edit distance to reference solutions.

Since our cost model assigned an absolute value instead of relative dif-

ference, it was impractical to compare the actual edit distance between each

reference solution. Therefore, we needed to first normalize the edit distances
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before we could properly compare how close a student solution is to other

reference solutions.

There are many approaches to normalizing values; we chose to use the

MaxAbsScaler algorithm in the Sklearn Python library [7] because we be-

lieved it was the most suitable one for our purpose. For reference solution j,

the algorithm normalized its edit distance to each student T1,j, T2,j, . . . , TN,j

to be between 0 and 1. This algorithm also did not shift the data and was

thus able to preserve the relative distances between students.

After normalizing student i’s edit distances to each of the M reference

solutions, we calculated the student’s score as follows:

Scorei = 100 · (1−min{Ti,1, Ti,2, . . . , Ti,M})

3.4 Clustering

The next idea we attempted was using clustering algorithms to group student

solutions together. The goal was to put student solutions with similar edit

distances, to some subset of reference solutions, in the same cluster.

Under this mindset, we treated each student as an independent “data

point” and their edit distance to each reference solution as an independent

“feature”. Our data thus became an N ×M matrix with N rows for each

student and M columns for each reference solution.

We made the assumption that full-mark solutions should have very simi-

lar features and thus should be very close to each other in the same cluster.

Recall that the majority of the historical student solutions in this course had

received full marks. Therefore, the majority of each cluster’s points should

also be very close to each other as well. As a result, we believed each clus-

ter should theoretically be “centered” closer to the full-mark solutions than
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the incorrect solutions; therefore we hypothesized the closer a student solu-

tion was to the cluster’s center, the higher the probability that the student

solution should receive full marks.

Determining Number of Clusters

The K-Means and Gaussian Mixture clustering algorithms require us to spec-

ify how many clusters we want to find in our data points (student solutions).

There are no straightforward approaches to choosing this value because it

depends on the input data and use-case.

If we choose too few clusters, then we risk putting too many student

solutions in the same cluster despite them not being too closely related. If we

choose too many clusters, then we risk not getting sufficient data to compute

scores. For example, in the extreme case of N clusters, every student would

become its own cluster and, according to our original hypothesis of final score

being based on closeness to a cluster’s center, should receive full marks.

However, there are techniques such as the “Elbow Method” [30] shown in

Figure 3.1 that can be used for guidance. For our data, the Elbow Method

recommended for us to use 4 clusters.

Cleaning Up Data

Although not essential, we chose to perform Principal Component Analysis

(PCA) [32] on our data prior to clustering. PCA transforms our set of M

features into a smaller set of linearly uncorrelated features or “components”.

The components are sorted in descending order of variance. In other words,

the first few components theoretically capture the majority of the “informa-

tion” in the source data.
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Figure 3.1: The Elbow Method runs the K-Means clustering algorithm

with a range of clusters and computes the sum of squared errors. This sum

measures how close the predicted clusters match the data points; the greater

the error, the less clusters fit the data. This graph converges to 0 at N

clusters where each point is its own cluster and thus has zero error. To find

an appropriate number of clusters, we need to visually find an “elbow” point

on the graph, i.e. where adding an additional cluster will not significantly

reduce the error. In this graph, the elbow point is at 4 clusters.
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The most obvious advantage of PCA is reducing the runtime of our clus-

tering algorithms because it eliminates features (columns in our data matrix)

that represent very little information about our data points. This technique

is also useful in visualization as it allows high-dimensional data to be pre-

sented in a 2D graph while preserving the majority of the information and

relationships between data points.

To use PCA, we need to specify how many components or features to

keep. Similar to the Elbow Method to determine the number of clusters, we

can look at the graph of cumulative explained variance shown in Figure 3.2

to estimate an appropriate number of components. For our data, the graph

recommended for us to use 6 components.

3.4.1 K-Means

The first clustering algorithm we tried was K-Means [22]. It iteratively tries

to group unlabeled data points with similar features together by minimizing

the mean distance between each point in each group. Figure 3.3 visualizes

the groups labeled by the K-Means algorithm on the 2017 class for the Non-

Blocking IO assignment.

The K-Means algorithm constructs each group to minimize the average

distance from the group’s centroid to every point in its corresponding group.

Since the majority of students in our data set received full marks, we assumed

the majority of the data points in each group should also represent full-mark

solutions. As a result, the volume of full-mark solution points should draw the

centroid of each group towards “regions” representing higher marks. Based

on this idea, we calculated a student’s score based on their distance to their

corresponding group’s centroid; the closer a student was to their group’s

centroid, the higher their probability of receiving a high score.
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Figure 3.2: The explained variance conceptually represents the amount

of information in the original data that each component captures. The first

component captures almost 80% of the original information; the second com-

ponent captures another 5%; and so on. This graph show the cumulative ex-

plained variance that each additional component captures. A rule-of-thumb

for PCA is to choose the number of components at an “elbow point” where

adding an additional component will not capture significantly more informa-

tion. In this graph, the elbow point is at 6 components.
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Let Pi denote the point representing student i and Ci denote the centroid

of the student’s group. The distance from centroid di is defined as:

di =‖Pi − Ci‖

As mentioned in Figure 3.3, the scales in the axes have no tangible inter-

pretations. Therefore, the distances from centroid di we calculated for each

point also had no meaningful interpretation. As a result, we tried to evaluate

each point’s centroid distance relative to all other points. In other words,

we calculated each student’s score based on their performance relative to the

rest of their class.

Let µ denote the mean and σ denote the standard deviation of centroid

distances of every student. We calculated student i’s score as follows:

Scorei = 100− 20 · |di − µ|
σ

This equation deducted up to 20 points for each standard deviation of

centroid distance a student was from their corresponding group’s centroid.

We chose to deduct 20 points per standard deviation arbitrarily after exper-

imenting with different values. The main idea was to deduct marks based on

how far the solution was from the centroid, where we assumed majority of

the full mark solutions were located.

3.4.2 Gaussian Mixture

The second clustering algorithm we tried was Gaussian Mixture [14]. Similar

to the K-Means algorithm, it also groups unlabeled data points but with

different criteria. As its name suggests, it assumes the points are randomly

distributed following a Gaussian distribution. It iteratively tries to assign
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Figure 3.3: Each data point represents a student solution to the Non-

Blocking IO assignment from the 2017 class. It is important to note that

this is a 2D projection of a multidimensional data set. Since we preprocessed

the data with PCA, the first two dimensions presented here already capture

the majority of the data variance. The scales in the axes are omitted because

they have no tangible interpretations; they are meant for interpreting relative

distances. The K-Means algorithm assigned each point a group, represented

by their corresponding colour. Each set of concentric circles represent an

arbitrary distance from the centroid of each group.
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Figure 3.4: This is a probability contour graph of our data points grouped

by the Gaussian Mixture algorithm. Points closer to the center of the con-

tours, i.e. lighter areas, have a higher probability of belonging to their cor-

responding group.

groups to maximize the likelihood of each data point belonging to their as-

signed groups. Likewise, we hypothesized that the closer a point (student

solution) is to the centroid, in this case the central probability contour, the

higher the probability of the student receiving a high score. In practice, we

designated each student’s score to be equal to the probability of them belong-

ing to their assigned cluster, returned from the Gaussian Mixture algorithm.
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3.4.3 HDBSCAN

The third and last clustering algorithm we experimented with was HDB-

SCAN (Hierarchical Density-Based Spatial Clustering of Applications with

Noise) [23]. Similar to the previous two algorithms, it tries to group unla-

beled data points with its own set of criteria. As its name implies, it tries

to group points based on spatial density to ensure the resulting groups meet

some density parameter.

The advantage of HDBSCAN is that it does not require us to specify

the number of clusters we want to find. Instead, we specify the minimum

number of points in each cluster P and the algorithm will dynamically group

points such that the resulting clusters have at least P points. This gives us

more flexibility in our parameters because choosing the number of clusters is

harder than choosing the minimum number of points per cluster. We do not

know the proper the number of clusters and thus must estimate it through an

ad-hoc procedure. However, we do have a stronger conceptual understanding

of the number of points per cluster: since we know there are only a limited

number of approaches to solve an assignment and we know the majority of

the students will follow similar approaches, either through collaboration or

coincidence due to limited unique approaches, we know the P value must be

a significant fraction of the total number of students.

However, the disadvantage of this algorithm is that it is not guaranteed

to be able to label every point; outlier points that cannot satisfy the group’s

density criteria are discarded as noise. The higher the minimum cluster size

parameter P , the more points will be unlabeled. Ideally we want our groups

to be as dense as possible so that we know the grouped points are extremely

similar to each other. Ultimately, it is a balance between how many points

we can label (automation rate) and how dense the resulting groups are.

Figure 3.5 shows how the algorithm labels our data set based on varying

minimum cluster sizes. A cluster size of 5 is able to achieve 3 groups, which
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is close to the 4 groups set for the previous two algorithms. However as we

can see from the graph, the 3 groups are slightly sparse. As a result, we chose

P = 10 because it is able to label most of the points without sacrificing too

much density; at higher cluster sizes, we do not seem to significantly increase

our groups’ densities.

Once we were satisfied with our parameters, we ran the HDBSCAN al-

gorithm and designated each student’s score to be equal to the “strength” of

the student’s corresponding group prediction returned from the algorithm.

3.5 Experimental Results

Before we present our results, we will first discuss the possible outcomes from

our tool in Table 3.1. Recall that we round up the predicted scores from our

algorithms if the student scores above certain cutoff points. After rounding,

we check if their true mark from historical data is within 10 points of 100

(to account of variance in human marker leniency). Ideally, we would like

to cover the full range of marks. However because our tool does not provide

meaningful feedback for deductions, other than the fact that the student’s

solution structure was notably different from our reference solutions, we de-

cided to focus our efforts on optimizing the accuracy for scores above cutoff

points. As a result, our tool’s purpose essentially becomes “flagging” correct

solutions; any solutions not flagged will be designated for manual marking.

Ultimately, we would like to maximize the number of predicted scores

above cutoff points while minimizing the number of false positives. The more

assignments that are predicted to score above our cutoffs, the less manual

work will be required from human markers. While most students would not

complain about undeservedly receiving full marks, too many false positives

(and student knowledge thereof) would diminish the formative value of the

assignments. That is, if students were aware of a high false positive rate
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Figure 3.5: These graphs show our data points clustered with HDBSCAN

using different minimum cluster size parameters. The higher the minimum

size, the denser the resulting clusters. Furthermore, higher cluster sizes also

result in more outlier points marked as noise (dark blue) as well as fewer

total clusters. Cluster size of 5 has three different groups whereas cluster

sizes of 10 and higher only have two different groups.
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True Mark

< 90 ≥ 90

Automated

Score

< Cutoff Correct Prediction False Negative

≥ Cutoff False Positive Correct Prediction

Table 3.1: This table presents the possible outcomes from our tool’s predic-

tions. Without meaningful feedback for deductions, only automated scores

above our cutoff points (which will later be rounded up to full marks) are

relevant for us. As a result, the relevant outcomes for our tool lie in the

bottom row of this table.

due to assigning full marks, we are concerned about complacency or apathy

towards completing their assignments.

Figure 3.6 presents our experimental results. Since Always Full Marks

did not perform any analysis, it would not encounter any processing errors

and thus would always be able to automate every assignment. Clearly this

was the maximum possible value and could not be exceeded; the goal for the

other algorithms was to automate as many assignments as possible. While

near-100% automation rate was unrealistic due to potential processing er-

rors, we hoped to be able to automate at least half the assignments. The

false positives for Always Full Marks was simply the students that did not

receive full marks. Therefore, we required the other algorithms to achieve

a better false positive count than this trivial approach to be considered an

improvement.

Firstly, the Minimum Distance algorithm was able to achieve slightly

fewer false positives than Always Full Marks with an acceptable number of

automated assignments. With the exception of Non-Blocking IO in 2018,
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Figure 3.6: These graphs break down the outcomes of the assignments for

each class. The grey bars represent the number of assignments that must be

manually marked; the light blue and dark blue bars represent the number

of automated Non-Blocking IO assignments at the 90 and 95 cutoffs, respec-

tively; similarly, the green bars represent the Parallel Processing assignment;

and finally, the orange bars represent the number of automated assignments

deemed to be false positives.
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this algorithm was able to automate almost half of the classes, which would

greatly reduce the time needed for manual marking.

Secondly, the K-Means algorithm was able to achieve even fewer false

positives than Minimum Distance; conversely, it automated even fewer as-

signments. However, we note that at the 90 cutoff, K-Means was still able to

automate approximately a third of the assignments, which was a non-trivial

reduction in manual work for human markers.

Thirdly, the Gaussian Mixture algorithm was able to achieve the highest

automation rates out of all of our proposed algorithms. However, we note

that this algorithm appeared to be strictly worse than the baseline Always

Full Marks because its number of false positives was on par with the baseline

despite not being able to automate as much.

Fourthly, the HDBSCAN algorithm was able to achieve the lowest num-

ber of false positives; conversely, it automated the fewest assignments. In

addition, it appeared to be unable to flag any correct Parallel Processing so-

lutions for the 2018 class; since this was exclusive to one class and not both,

we believe this may have been due to minor assignment specification changes

over the years and that our reference solutions were not up-to-date.

Finally, one common observation for all the graphs was that increasing

the cutoff point decreased both the number of automated assignments and

false positives. This was expected because a higher cutoff enforced a higher

confidence in our prediction, i.e. the predicted score must be within 5 points

of 100 to be considered correct instead of 10 points. Naturally, with a stricter

requirement, the number of assignments that we could automate and the

number of false positives also decreased.

44



3.6 Shortcomings

None of our proposed algorithms were able to achieve any meaningful re-

duction from Always Full Mark’s number of false positives. As a result, we

investigated potential sources of error that may have been been caused by

our assumptions.

3.6.1 Too Much Noise in Edit Distance

One of the underlying assumptions that our tool made was that the edit

distance we compute must accurately reflect the closeness of two program

files. Although we tried encapsulating structural differences into a tree edit

distance and ensuring logically similar code had low edit distances, the edit

difference was still ultimately a scalar value that discarded potentially useful

information.

When we manually inspected a couple of assignments marked as false

positives (assignments that were automated to higher marks than they had

earned from human markers), we noticed some of them had glaring issues that

were not penalized as heavily relative to the overall edit distance. For exam-

ple, one student did not use the Pthread library at all for the Parallel Process-

ing assignment and thus should had failed. However, our tool only penalized

an edit distance of 100 for inserting the appropriate CallStatement nodes

whereas final edit distances were normally between 500 to 800. As a result,

this catastrophic failure went undetected as it got treated as a small outlier.

This problem might had been caught if the penalty was magnitudes higher

(e.g. 10,000). However, this might also obscure other issues because it would

be magnitudes larger than other penalties.

Overall, we believe the single scalar value has too much noise to make

accurate predictions. There are several avenues to pursue to improve this
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step: prune more unnecessary nodes from the ASTs, adjust the cost model

penalties for key function calls, or generate a multi-dimensional matrix to

represent program differences and to be used as input to our aggregator.

3.6.2 Uncertain Ground-Truth

There was some uncertainty in our ground-truth for the students’ actual

marks. Historical mark breakdowns were not archived and thus the marks

we used include non-technical deductions such as issues with the student’s

written report, late submissions, or plagiarism. In addition, there was a

discrepancy in marker leniency between the two years, as seen in Figure 3.7.

As a result, the “true” student marks that we used to measure our accuracy

were not as reliable as we originally assumed.

To verify whether the uncertainties in our ground-truth had a significant

impact on our results in Section 3.5, we randomly selected 20 students from

each class and remarked their assignments to ensure accuracy and consis-

tency. Tables 3.2 and 3.3 present the automation and false positive rates

of our sampled students with their re-evaluated marks. Since we changed

the ground-truth, only the false positive rate should change. However we

still present the automation rate to verify that our random sample is repre-

sentative of their entire class. This was indeed the case as we see that the

automation rate was roughly identical to the automation rates of the entire

class presented Figure 3.6; Gaussian Mixture had the highest automation

rate while the others fell behind with HDBSCAN as the lowest.

When we compare the false positive rates, we see that Gaussian Mixture

(the algorithm we initially observed to be strictly worse than the baseline

Always Full Marks) had a slightly better result than the baseline for both

classes. In the 2017 class, Gaussian Mixture had zero false positives whereas

the baseline had two false positives. Due to our small sample size and the
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Figure 3.7: There is a discrepancy in marker leniency between 2017 and

2018. Since markers change every semester, the two classes had different

markers. In the 2017 class, about 80% of the class received a 95 or higher

from the marker whereas in the 2018 class, only 35% of the class received a

95 or higher from the marker.
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fact that we were only able to automate 40% of the students, this might had

simply been a coincidence. However when we look at the 2018 class, we see

that Gaussian Mixture was able to automate 70% of the students with 21%

false positive rate compared to Always Full Marks at 35% false positive rate.

Despite having a lower false positive rate than our baseline, 21% is still too

high to be considered usable in a live-classroom environment. Nonetheless,

this sample has demonstrated promising potential in our tool to perform

better than blindly assigning everyone full marks. Further refinements to our

tool may eventually lead to a false positive rate low enough to be considered

usable in a regular classroom.

3.7 Summary

One common pattern we observe is the tradeoff between number of auto-

mated assignments and false positives. The more assignments that we want

to automate, the more false positives we will get.

The choice of algorithm is ultimately a decision for the user to make:

if we want to prioritize saving time, then we should use Gaussian Mixture;

conversely, if we want to prioritize minimizing the number of false positives,

then we should use K-Means or Minimum Distance.
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Table 3.2: Automated Marks With New Ground-Truth for Class of 2017

90 Cutoff 95 Cutoff

Automated False Positives Automated False Positives

Always Full Marks 20 2 20 2

Minimum Distance 5 0 5 0

K-Means 2 0 2 0

Gaussian Mixture 8 0 8 0

HDBSCAN 0 - 0 -

Table 3.3: Automated Marks With New Ground-Truth for Class of 2018

90 Cutoff 95 Cutoff

Automated False Positives Automated False Positives

Always Full Marks 20 7 20 7

Minimum Distance 1 0 1 0

K-Means 2 0 2 0

Gaussian Mixture 14 3 14 3

HDBSCAN 0 - 0 -
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Chapter 4

Related Works

Writing programs is one method used in computer science education to rein-

force and assess practical concepts taught in class. Automating the manual

marking process has been a widely studied topic due to the need for quick

feedback turnaround and, by removing or minimizing the human element,

maximizes objectivity and consistency. This chapter explores several tools

in this field; since there are too many tools to count, we will mainly focus

on tools designed for interoperability rather than ones designed for niche

domains or specific assignments.

4.1 Input/Output Marking

The earliest published example we found of automated programming as-

signment marking dates back to 1989 by Isaacson and Scott [19]. Their

approach is one of the most common automated marking techniques used in

practice today: they compile each student’s program (if possible), execute

the students’ programs with input files, and compare the programs’ out-

puts with expected output files. This process is straightforward and easy-
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to-understand for testing program functionality. There are many subsequent

works [13, 17, 20, 24, 28] that further enhance their process. These tools

ultimately all follow the same three steps.

4.2 Fill-In-The-Gap Marking

Another increasingly common assignment style and marking technique is

called “fill-in-the-gap”. As this name implies, these assignments provide stu-

dents with gaps in instructor-provided template code to fill prior to compila-

tion and analysis. For example, an instructor might provide students with a

method signature for a binary search algorithm and task them to implement

the algorithm itself. Lieberman [21] has stated that this assignment style

is the most effective way for beginner programmers to apply newly-taught

concepts. Due to the rigid nature of these assignment specifications and

extremely small analysis space, many static analysis techniques have been

developed to analyze these gaps.

The Environment for Learning to Program (ELP) marking platform de-

veloped by Truong et al. [31] is an example of the fill-in-the-gap assignment

style used in practice. After a student submits their assignment, their tool

compiles the student program and extracts the relevant “gap” from the re-

sulting AST for later analysis. Similar to our tool, they also perform some

AST normalization prior to analysis in order to minimize the amount of va-

riety among functionally-similar programs. After extracting the gaps, they

perform analysis such as checking variable states and invariants before/after

gaps and metrics such as line-length and cyclomatic complexity.

OverCode developed by Glassman et al. [16] is another marking platform

based on the idea of fill-in-the-gap style Python programming assignments in

Massive Open Online Courses (MOOC). They first clean up student programs

such as normalizing variable names. They then cluster student solutions
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based on line-by-line comparison such that programs with similar lines are

in the same clusters. The resulting clusters are presented to instructors to

manually provide feedback and scores. We note that their approach was

mainly made possible due to the simplicity of Python and of the assignment

specification as well as the massive amount of submission data available to

analyze. In offline classes such as the class we analyzed with only hundreds

of students, rather than tens of thousands, it is unlikely their approach will

be able to extract meaningful-sized clusters for analysis.

The disadvantage of these types of assignments and their corresponding

tools is that they are mostly used in beginner programming classes rather

than upper-year classes, such as the one analyzed in this thesis. Furthermore,

they do not score student assignments beyond input/output testing; however,

it is theoretically possible for them to apply a score based on their static

analysis results such as applying deductions for high cyclomatic complexity.

Nonetheless, advanced programming assignments such as our Non-Blocking

IO and Parallel Processing assignments are more open-ended and generally

consist of significantly larger non-divisible methods that are not as easily

analyzable by the aforementioned tools.

4.3 AST-Based Marking

There are many prior works exploring the idea of automatically comparing

student solutions to reference solutions at the solution level using ASTs. One

common element found in all of these works is the need for normalizing ASTs

by collapsing functionally-similar substructures into canonical forms prior to

analysis. This is essential to reducing the number of distinct solutions to

analyze and avoiding falsely penalizing functionally-similar code. In addition

to the field of automated program marking, normalizing AST substructures is

widely studied in other fields such as plagiarism and clone detection [10, 15].
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Singh et al. [27] developed an error-correction language for describing

steps to transform an incorrect student solution into a correct reference solu-

tion. In addition to reference solutions, the instructor must also describe com-

mon student errors and the steps to correct them using the error-correction

language. Their system then utilizes a constraint solver to find the minimum

steps needed to correct the student solutions. Finally, it scores the student

based on the steps. This is similar to our tool’s cost model described in

Section 2.4.2 where we associate a cost for any change to be made to the

student AST.

Thorburn and Rowe’s PASS tool [29] also requires additional work from

the instructors prior to scoring students. Their tool requires the instructor to

specify an hierarchical “solution plan” for each assignment; this is essentially

a breakdown of the steps to solve a problem. For example, a merge sort

problem consists of a “sort” function at the top level; it then consists of

sub-components such as checking the base case, pivoting the input, and the

making two recursive calls. Their tool attempts to find equivalent program

components in the student code. They check for equivalence by comparing

component outputs when given randomly generated inputs. Students are

then scored based on the number of equivalent components found.

The main drawback for both Singh et al.’s and Thorburn and Rowe’s

tools is the additional work needed for instructors beyond providing refer-

ence solutions. Singh et al.’s work requires instructors to anticipate and

describe common errors and corrections in a custom language. This may

prove difficult as one cannot anticipate all possible errors a student may

make. Thorburn and Rowe’s work requires instructors to describe a solution

plan by hierarchically breaking down a problem into smaller sub-problems.

This may not always be possible for every assignment as some assignments

may have large indivisible components.

AssignSim developed by Naudé et al. [25] was perhaps the most similar

prior work to ours. Their tool directly compares solution ASTs and generates
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a score based on their similarities. Our works differ in how we compare the

post-processed ASTs and score the student. They generate scores by directly

analyzing the graphs and assigning scores based on the differing nodes and

their respective neighbour nodes. On the other hand, our work utilizes a

generic tree edit distance algorithm to compare the graphs and then aggregate

the various edit distances into a mark. Their results were slightly better than

ours when their set of reference solutions contained both high quality and

low quality solutions (i.e. both high marks and low marks). However, when

they only had high quality solutions, their accuracy fell to similar levels as

ours. This led us to speculate that our choice of reference solutions (only high

marks) may also had an influence in our results; however since the majority

of past students in our data set have received full marks, we do not have

sufficient data to pursue further investigation.
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Chapter 5

Conclusion

This thesis presented a novel approach to automatically mark programming

assignments. Our approach consists of two components: (1) we first prune a

program’s AST to isolate key features relevant for assignment marking; (2)

we then compare a student solution to a set of reference solutions in order

to generate a final mark for the student. Assignments that have received

automated deductions will require manual review to provide more meaningful

and individualized feedback.

This tool assumes the majority of the students will write their programs

in specific patterns. We are concerned this may limit student creativity when

trying to solve their assignments. However, we note that the programming

assignments we tested with had rigid designs and the easiest-to-implement

solutions often fall under specific patterns. Therefore we do not believe this

to be a major concern.

We implemented our processes as the ClangAutoMarker tool and tested it

with student submissions and marks from previous offerings of the ECE459

course at the University of Waterloo. Our initial results were not as suc-

cessful as we had originally hoped. Our tool did not perform better than

55



the baseline approach of simply always assigning full marks. However, due

to the uncertainty in our ground-truth, we faithfully recollected the ground-

truth data for a smaller subset of previous classes. When we reevaluated our

tool with the more accurate sample, we were able to achieve a better false

positive rate of 21% compared to always assigning full marks which had a

false positive rate of 35%. Although this was still not very accurate, we have

demonstrated that our tool has promising potential for automated marking

and further improvements may make it viable for a live classroom.
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Appendix A

Results of Scoring Algorithms

This appendix contains the tables presenting the results of each tree edit

distance scoring method we presented in Chapter 3.

Assignments were considered “Automatable” if they scored higher than

certain cutoff points. For these assignments, we analyzed their false positive

rate; this was the percentage of assignments that scored higher than what

they had originally earned from a human marker. Conversely, if an assign-

ment scored lower than certain cutoff points or triggered processing errors

due to unexpected AST structures or assertion failures, then it was desig-

nated for manual marking because we wanted to provide meaningful feedback

to students for any deductions that they receive.
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Table A.1: Always Assigning Full Marks

2017 2018

90 Cutoff 95 Cutoff 90 Cutoff 95 Cutoff

Non-Blocking IO Assignment

Total Students 149 149 265 265

Non Automatable 0 0 0 0

Below Cutoff 0 0 0 0

Processing Error 0 0 0 0

Automatable 149 149 265 265

False Positives 10 10 38 38

Parallel Processing Assignment

Total Students 149 149 265 265

Non Automatable 0 0 0 0

Below Cutoff 0 0 0 0

Processing Error 0 0 0 0

Automatable 149 149 265 265

False Positives 8 8 29 29
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Table A.2: Using Minimum Normalized Edit Distance to Obtain Mark

2017 2018

90 Cutoff 95 Cutoff 90 Cutoff 95 Cutoff

Non-Blocking IO Assignment

Total Students 149 149 265 265

Non Automatable 65 87 238 238

Below Cutoff 54 76 223 223

Processing Error 11 11 15 15

Automatable 84 62 27 27

False Positives 6 4 3 3

Parallel Processing Assignment

Total Students 149 149 265 265

Non Automatable 45 45 69 69

Below Cutoff 0 0 0 0

Processing Error 45 45 69 69

Automatable 104 104 196 196

False Positives 8 8 29 29
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Table A.3: Using K-Means Clustering to Obtain Mark

2017 2018

90 Cutoff 95 Cutoff 90 Cutoff 95 Cutoff

Non-Blocking IO Assignment

Total Students 149 149 265 265

Non Automatable 104 126 188 233

Below Cutoff 93 115 173 218

Processing Error 11 11 15 15

Automatable 45 23 77 32

False Positives 4 3 10 5

Parallel Processing Assignment

Total Students 149 149 265 265

Non Automatable 97 122 205 239

Below Cutoff 52 77 136 170

Processing Error 45 45 69 69

Automatable 52 27 60 26

False Positives 4 2 10 4
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Table A.4: Using Gaussian Mixture Clustering to Obtain Mark

2017 2018

90 Cutoff 95 Cutoff 90 Cutoff 95 Cutoff

Non-Blocking IO Assignment

Total Students 149 149 265 265

Non Automatable 18 23 40 52

Below Cutoff 7 12 25 37

Processing Error 11 11 15 15

Automatable 131 126 225 213

False Positives 9 8 35 33

Parallel Processing Assignment

Total Students 149 149 265 265

Non Automatable 47 47 69 69

Below Cutoff 2 2 0 0

Processing Error 45 45 69 69

Automatable 102 102 196 196

False Positives 8 8 29 29
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Table A.5: Using HDBSCAN Clustering to Obtain Mark

2017 2018

90 Cutoff 95 Cutoff 90 Cutoff 95 Cutoff

Non-Blocking IO Assignment

Total Students 149 149 265 265

Non Automatable 108 118 231 242

Below Cutoff 97 107 216 227

Processing Error 11 11 15 15

Automatable 41 31 34 23

False Positives 2 1 6 3

Parallel Processing Assignment

Total Students 149 149 265 265

Non Automatable 149 149 265 265

Below Cutoff 104 104 196 196

Processing Error 45 45 69 69

Automatable 0 0 0 0

False Positives 0 0 0 0
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