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Abstract

The pace of innovation in quantum information science has recently exploded due to
the hope that a quantum computer will be able to solve a multitude of problems that are
intractable using classical hardware. Current quantum devices are in what has been termed
the “noisy intermediate-scale quantum”, or NISQ stage. Quantum hardware available
today with 50-100 physical qubits may be among the first to demonstrate a quantum
advantage. However, there are many challenges to overcome, such as dealing with noise,
lowering error rates, improving coherence times, and scalability.

We are at a time in the field where minimization of resources is critical so that we
can run our algorithms sooner rather than later. Running quantum algorithms “at scale”
incurs a massive amount of resources, from the number of qubits required to the circuit
depth. A large amount of this is due to the need to implement operations fault-tolerantly
using error-correcting codes.

For one, to run an algorithm we must be able to efficiently read in and output data.
Fault-tolerantly implementing quantum memories may become an input bottleneck for
quantum algorithms, including many which would otherwise yield massive improvements
in algorithm complexity. We will also need efficient methods for tomography to characterize
and verify our processes and outputs. Researchers will require tools to automate the design
of large quantum algorithms, to compile, optimize, and verify their circuits, and to do so in
a way that minimizes operations that are expensive in a fault-tolerant setting. Finally, we
will also need overarching frameworks to characterize the resource requirements themselves.
Such tools must be easily adaptable to new developments in the field, and allow users to
explore tradeoffs between their parameters of interest.

This thesis contains three contributions to this effort: improving circuit synthesis using
large-scale parallelization; designing circuits for quantum random-access memories and
analyzing various time/space tradeoffs; using the mathematical structure of discrete phase
space to select subsets of tomographic measurements. For each topic the theoretical work
is supplemented by a software package intended to allow others researchers to easily verify,
use, and expand upon the techniques herein.
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Chapter 1

Introduction

1.1 The current state of quantum computers

The work presented in this thesis was completed over the course of roughly three years,
from 2015 until 2018. During this time, the pace of innovation in the field of quantum
information and computation exploded, shifting from a largely academic venture to a full-
blown multi-billion dollar industrial one. Major technology companies such as Google,
Microsoft, IBM, Intel, Alibaba, Baidu, have all made significant investments in the devel-
opment of quantum technology. Simultaneously a diverse ecosystem of quantum startups
has emerged, ranging from the broad, with full software and hardware stacks, to more
specific endeavours focused on cryptography, cloud-based hardware, or algorithms. The
number of qubits usable for universal computing has gone from a handful to Google’s recent
72, with even larger systems planned such as a 128-bit chip from the startup Rigetti.

Even with such rapid progress, there is still much work to be done. For one, existing
machines tend to be noisy. As an example, the IBM Quantum Experience machines are
frequently calibrated (sometimes multiple times a day) due to decoherence, and have single-
qubit gate errors of 10−3 and two-qubit gate errors of 10−2 [6]. Such “noisy intermediate-
scale quantum” (NISQ) devices, and what we can use them for, are a topic under active
exploration [7].

The scalability of fabrication processes is another barrier, with some implementations
being far more scalable than others. For example, D-Wave has manufactured specialized
chips for quantum annealing with as many as 2000 superconducting qubits. Hardware for
universal computing is currently being designed with between 50 and 100 qubits. If they
are to run production-level quantum algorithms fault-tolerantly, that is, able to withstand
the inevitable errors present in such delicate processes, millions or even billions of qubits
are required.

Discussion of increasing machine size begets the idea of quantum advantage - how
many qubits are required to accomplish a task that no classical computer can accomplish?
Early estimates put this threshold at around 50 qubits. However, recent efforts in the area
of quantum simulation have shown using various techniques that, given enough classical
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processors 1 and memory, it is possibly to simulate roughly 50 qubits [8–11], and so perhaps
this threshold must be raised.

The availability of such simulators is a blessing, in that even when we don’t have
access to a powerful supercomputer, algorithms on 30 or so qubits can be run one’s laptop,
providing researchers a testbed to ensure that their algorithms work as intended. Given
the sometimes unintuitive nature of quantum mechanics, this is an indispensable resource.
However, to design by hand an algorithm on 30 qubits down to to the level of individual
gates is no easy task. Moreover, surely at some point the size of physical implementations
will surpass what can accomplish with simulators, and what will happen then?

Researchers require tools to automate the design of algorithms and circuits. We will
need quantum programming languages, in which a user can write code at a high level,
coupled with compilers that decompose the algorithms in to the ‘assembly language’ of
a universal quantum gate set. Furthermore we will need tools for verification of these
compilers for when simply plugging it into a simulator becomes intractable.

Moving from NISQ-era machines towards fully fault-tolerant computation will entail
a massive overhead in the number of qubits required. We will need additional qubits in
special circuits to prepare resource states, and additional qubits for embedding into error
correcting codes. We will need automated tools to optimize our algorithms to minimize
the amount of these additional resources, and a framework in which we can easily vary
physical parameters to produce resource estimates.

Finally, we will need efficient tools for the input and output processes of quantum com-
puters. On the input side, storing and loading data requires a quantum memory, which we
will soon see is non-trivial to implement. As for the output, the number of measurements
required to fully characterize an unknown multi-qubit state grows exponentially in the
number of qubits. We must find efficient means of reconstruction that use fewer measure-
ments, but still retain useful information. Ongoing work is being done on all these fronts,
and the work included in this thesis is a contribution to these efforts.

1.2 This thesis

We begin in Chapter 3 with quantum circuit synthesis, the decomposition of arbitrary
operations into those of a universal gate set, accomplished using advanced parallel com-
putation techniques. We demonstrate in Section 3.7 how these same techniques can be
applied to the search for large symmetric Hadamard matrices in dimensions in which their
existence was previously unknown. In Chapter 4 we perform fault-tolerant resource esti-
mation of quantum random access memories. We will explore questions such as “how many
seconds will it take to query an 8 ‘gigabyte’ quantum RAM?”. Finally in Chapter 5 we
present a systematic method to choose a subset of the tomographic measurements required
to fully reconstruct a quantum state. We show that this method, based on the discrete

1In some cases, as many as one can get on the Sunway TaihuLight, which at the time was the world’s
most powerful supercomputer.
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Wigner function and the underlying mathematical structure of the space in which qubits
live, produces ‘coarse-grained’ reconstructions that retain some key features of the original
states.

The unifying theme for this collection of papers is that they are all quantum analogs
of key processes and devices found in classical computers, as highlighted in Figure 1.1.
Quantum circuit synthesis is a large component of the quantum compiler. Our resource
estimation techniques focus on a quantum RAM. Finally, reading in data using quantum
RAM and output characterization with quantum tomography can be considered as I/O
processes.

QPU

qRAM read in / queries

CPU
linuqs:~$ python

>>> import qclibs

>>> qubits = qclibs.Qubits(1)

>>> x_rot(qubits[0], pi/2)

>>> cnot(qubits[0], qubits[1], pi/2)

>>> olivia.buy_beer(1, "first person who finds this")

>>> outcome = measure(qubits[0], basis = "comp")

>>> device = qclibs.set_device("QPU:0")

Compile

- Optimization

antum
algorithm

Translate to quantum
programming languages Characterize output

- Full tomography 
- Measurements

(state/process)

- Circuit synthesis

Figure 1.1: What it might look like to run an algorithm on a quantum computer. A
user writes up an algorithm in a high-level language on a classical computer. This is
then compiled down to the native gate set of the quantum processing unit (QPU) using
circuit synthesis and optimization. An algorithm running on the QPU may need to read
in and query data in superposition using a quantum random-access memory. After the
computation, tomography/measurements are performed, sending classical data back to
the user.

These techniques were all designed with the exponential scaling of qubit systems in
mind. As physically realizable quantum systems get bigger, we will need to use parallel
computing techniques to keep up; we will need tools that tell us whether our algorithm
requires millions of qubits, or trillions; and we may need to reduce the number of measure-
ments we take to make an algorithm run time more tractable.
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As a final note, every paper included here comes bundled with a software package.
Cumulatively they contain over 5000 lines of C++ and Python code, as well as over 3000
lines of supporting documentation. They are available online for anyone to download, and
contain usage instructions and examples. They are key components of each work; not only
do they provide transparency and an immediate means for other researchers to use and
verify results, they also serve as a tangible workbench for the theoretical ideas and circuits
in this thesis.

1.3 Other work

In addition to the four papers highlighted in this thesis, I participated in a variety of other
collaborations. Two have led to published work (discussed below); two more are on-going,
one with a manuscript in preparation.

The resource estimation techniques that will be used in Chapter 4 were originally
developed to analyze the application of Grover’s algorithm to a pre-image attack on the
SHA family of hash functions [12]. We designed a framework and cost model to assess the
level of threat posed to SHA by a quantum computer. We constructed reversible circuits for
the SHA256 and SHA3-256 functions, synthesized and optimized them over the Clifford+T
gate set, and finally embedded them into a surface code to compute the amount of physical
qubits and time required. We found, under an optimistic set of assumptions about the error
rates and operational speed of a surface code, that performing such an attack on SHA256
(SHA3-256) would require on the order of 10 (100) million physical qubits and take on
the order of 1032 (1029) years. These functions, widely in use today, are therefore in no
immediate danger of being broken by quantum devices.

In [13], we developed a recursive procedure to decompose SU(n) transformations into
SU(2) transformations. This was accomplished by factorizing the SU(n) transformations
into a single SU(2) transformation sandwiched between two SU(n − 1) transformations,
which can themselves be decomposed in the same manner. Such decompositions are used,
for example, in linear optical networks to turn arbitrary operations on n modes into op-
erations on only 2 modes, which are implemented physically using beam splitters. A
particularly nice property of our decomposition is that all the transformations occur on
adjacent modes and this greatly simplifies experimental setups. We showed how the same
recursive structure can be used to compute the Haar measure of U(n). It thus serves as
a convenient tool to parameterize the most probable regions of the space of Haar-random
unitary matrices. We provided a Python implementation of the factorization, which can
be found at https://github.com/glassnotes/Caspar.

4
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Chapter 2

Background

This chapter provides a very brief introduction to quantum computation, and background
information on the key topics of the subsequent chapters: quantum circuit synthesis, re-
source estimation, quantum RAM, and quantum tomography.

2.1 Quantum computation in a nutshell

We begin with the humble bit, the fundamental unit of information that is either 0 or 1.
The value of a bit is typically based on a physical quantity, such as if some voltage is above
or below a threshold value. In quantum computation the bit is augmented to a quantum
bit, or qubit.

A qubit is a two-level system that can be controlled quantum mechanically. The levels
may be the ground and excited states of an atom, or the spin-up and spin-down states of a
spin-1/2 particle. Independent of the physical implementation we express these two levels
as the quantum states |0〉 and |1〉.

Under the hood, the theory of quantum computation is largely based on linear algebra.
Quantum states are represented as vectors, and we typically make the correspondence

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
. (2.1)

These states live in a 2-dimensional complex vector space called the Hilbert space.

We commonly use {|0〉, |1〉} as the basis vectors of the Hilbert space, though this choice
is by no means unique. Linear combinations of these vectors,

|ψ〉 = α|0〉+ β|1〉, α, β ∈ C, (2.2)

also live in this space. This ability to prepare states in a superposition of basis states is a
critical difference between classical and quantum computing, and all successful quantum
algorithms are built to take advantage of this principle.
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States that can be represented by a single vector are known as pure states (as opposed
to mixed states, which we will encounter in Section 2.4). Equation (2.2) is the most general
expression for a single-qubit pure state.

Measurement outcomes of qubits are probabilistic. The complex numbers α and β are
called probability amplitudes, and contain information about the likelihood of the qubit
being in either |0〉 or |1〉 after a measurement in that basis:

Prob(|0〉) = |〈0|ψ〉|2 = |α|2 (2.3)

Prob(|1〉) = |〈1|ψ〉|2 = |β|2 (2.4)

After a measurement the system remains in whatever state was obtained as the outcome.
Typically we impose the additional constraint that our states are normalized such that the
probabilities satisfy |α|2 + |β|2 = 1.

Multi-qubit states are formed by composing the underlying Hilbert spaces with the
tensor product: H12 = H1 ⊗ H2. One can create multi-qubit states by simply tensoring
together the vectors of single-qubit ones. For example,

|01〉 = |0〉 ⊗ |1〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 . (2.5)

However, there also exist multi-qubit states that cannot be created by tensoring two vectors:

|Φ〉 =
1√
2

(|00〉+ |11〉) =
1√
2


1
0
0
1

 . (2.6)

The measurement outcomes of this state are correlated in the classical sense - if we measure
the first qubit in the computational basis and find it in |0〉, we know immediately that the
second qubit will also be found in state |0〉. However as this state cannot be factored as a
tensor product state, it is impossible to describe the qubits individually. To describe the
state of the system we must describe it as a whole, and so we call such states entangled.
Entangled qubits are used as a resource in numerous quantum information protocols, such
as quantum teleportation wherein a qubit state can be transferred between two parties if
they each hold one of the qubits of an entangled pair |Φ〉.

Armed with the knowledge of superposition and entanglement, we move forward and
discuss how qubit systems evolve. Suppose we have a qubit whose state, for simplicity,
we assume to be pure. This state is time-dependent, |ψ(t)〉, and as with other (closed)
quantum systems its evolution is governed by Schrödinger’s equation:

i~
d|ψ(t)〉
dt

= Ĥ|ψ(t)〉. (2.7)
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Ĥ is a Hamiltonian containing information about the energy of the system; Ĥ is Hermitian
and its real eigenvalues are interpreted as the possible outcomes of measuring the energy.
We can solve Schrödinger’s equation to obtain

|ψ(t′)〉 = e−iĤ(t′−t)|ψ(t)〉. (2.8)

When Ĥ is Hermitian, U = e−iĤ(t′−t) is unitary (UU † = 1), and so qubits evolve under
unitary transformations. Such evolution is reversible, and preserves the length of vectors
and the angles between them. Normalized quantum states evolve into other normalized
quantum states, so that the measurement probabilities after an operation still sensibly add
to 1. Multi-qubit operations can be created under composition by the tensor product, or
they may be entangling gates, i.e. gates that send some non-entangled multi-qubit state
to an entangled one. Finally, unitary operations are linear:

U (α|0〉+ β|1〉) = αU |0〉+ βU |1〉, (2.9)

and so they act distributively on all the constituent states in a superposition.

2.2 Quantum circuit synthesis

We will focus for a while on the unitary operations that closed off the previous section.
A quantum computer must be able to physically realize such unitary operations on its
qubits. However, there are many different physical implementations of quantum computers.
Unitary operations are applied to superconducting flux qubits using electromagnetic pulses,
whereas photonic qubits are mathematically rotated in Hilbert space using physical objects
such as beamsplitters. Thus it is natural that each system may have a specific set of
unitaries that it is able to implement well (i.e. with high fidelity), but others perhaps not
so well. It is necessary, then, to develop methods to decompose arbitrary operations, or
sequences of operations comprising a quantum circuit, into those that can be done well for
a specific implementation.

In a sense, this process of quantum circuit synthesis is analogous to the task of a
compiler. Some high-level operation must be broken down into the set of operations that
the machine can understand. Of course, modern compilers have other functions as well,
such as lexing and parsing code written by a human, so in this regard, circuit synthesis
will be just one facet of a future full-scale quantum compiler.

At a more fundamental level, there exists the idea of a universal gate set. This is a
finite set of unitary operations, or gates, that can be used to implement any other unitary
up to arbitrary precision ε:

||Utrue − Usynth|| < ε, (2.10)

where Usynth is the version that we have synthesized from the gates in the universal set.
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For the simplest case of a single qubit, the operations

H =
1√
2

(
1 1
1 −1

)
, T =

(
1 0

0 e
iπ
4

)
(2.11)

can be combined to produce any other single-qubit operation within some tolerance ε (and
up to a global phase). Depending on the size of ε, this sequence may be prohibitively long,
but it is always possible to find one. Mathematically the set {H,T} is dense in the space
of single-qubit unitaries, meaning that for any ε, an arbitrary unitary operation is always
within ε of some operation from the gate set.

For multiple qubits, the universal set of a single qubit must be augmented by some
entangling gate, as we mentioned in the previous section that multi-qubit states are not
necessarily simple tensor products. A common choice is {H,T,CNOT}, where

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.12)

This is known as the Clifford + T gateset, as H, S = T 2, and CNOT are the generators
that define the Clifford group.

Classical algorithms for circuit synthesis have been well-studied over the years, in par-
ticular for the case of a single qubit [14–21]. There exists the Solovay-Kitaev algorithm
which can synthesize over any fixed, finite gate set using a sequence of O(log3.97(1/ε))
gates [16]. It was later shown that this can be reduced to O(log(1/ε)) for the special case
of the Clifford+T gate set [14,22]. Specialized techniques exist also for other universal gate
sets, such as the V -basis [17, 19]. The V -basis is given by gates of the form

Vk =
1√
5

(1+ 2iσk) , σk ∈ {X, Y, Z}, (2.13)

along with their inverses, and synthesis is performed over the Vk and the Pauli operations.

Multi-qubit synthesis is a much harder problem. There exist some classes of algorithms
that decompose over CNOT gates and single-qubit rotations using cosine-sine decomposi-
tion techniques [23–25], as well as specialized techniques for diagonal operations [26].

Multi-qubit synthesis techniques over Clifford+T depend strongly on number theory
to find nearby operations in the gate set which can then be synthesized exactly [27–30].
There is a special set of multi-qubit unitaries for which we are guaranteed to be able to
synthesize exactly [15, 27]. Their matrix entries must be of the form

Umn =
a+ b

√
2 + ci+ di

√
2

2k
, a, b, c, d ∈ Z, k ≥ 0, (2.14)

i.e. they are elements of the ring Z
[
i, 1√

2

]
. Furthermore, in order for synthesis to be

performed ‘in-place’, without using any extra ancillary qubits, the determinant of U must
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be in the set of determinants obtainable from combinations of gates in the universal set.
These conditions are consequences of the fact that 1) all matrix entries in {H,T,CNOT}
are in the ring Z

[
i, 1√

2

]
, and thus so are elements in products of these matrices, and 2)

the determinant of a matrix product is the product of determinants.

Exact synthesis scales exponentially in the number of qubits, and typically relies on
some form of search technique [29,30]. Of course one could brute force this search, taking
every possible combination of gates on every possible combination of qubits, building up
a circuit until the desired operation is found. However this scales poorly; thankfully there
are more clever ways of searching.

The work presented in Chapter 3 incorporates a few such ways into a new framework
for quantum circuit synthesis that leverages parallel computing techniques. It adapts a
parallel search algorithm, originally used in cryptanalysis, for circuits by defining mappings
that send circuits to and from binary strings. Running on roughly 4,000 processors of a
Blue Gene/Q, it was able to synthesize from scratch a circuit with 4 qubits and 7 T gates,
surpassing the previous result of 3 qubits and 7 T gates. In Section 2.3 and Subsection 3.4.1
we will see why the number of T gates is an important metric. While a difference of one
qubit may seem trivial, one must recall the exponential scaling, and also that there is great
potential for more - 4,000 processors is a small amount compared to what is available on
many modern supercomputers.

2.3 Quantum RAM and resource estimation

2.3.1 The case for quantum RAM

Random-access memory (RAM) is essential to classical computers. Information about the
current state of a calculation or application is stored as bits in an array of transistors and
capacitors. Each bit is addressable and its value can be either queried or overwritten.
RAM is alive, in the sense that it is being constantly powered and refreshed to counteract
the leakage of the capacitors.

Similar to RAM is read-only memory (ROM). Here the data is written once and can
be queried, but (in its simplest form) it cannot be overwritten. ROM retains its state even
when there is no source of power. While RAM is perhaps now the more plentiful resource,
ROM still has its place in the storage of fixed data, such as in firmware for single-purpose
appliances, or storage of look-up tables for cryptographic algorithms and mathematical
functions.

In the future quantum computers will require a quantum memory, though the context
in which we use it may differ from that of a classical computer. We focus here on quantum
memories that will function as oracles to query stored data, rather than to store the
activate state of a computation. Such memories may hold classical information (which we
will denote qROM, or qRAM), or quantum states (QROM or QRAM).

In Chapter 4 we will design and analyze families of circuits where the information
stored is classical. An isolated circuit of this form may be considered a qROM, as we will
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design them by hardcoding in the addresses in which 1s are stored. However there may
also be algorithms in which the memory contents will change; then we must be constantly
updating the circuitry, more in the spirit of a qRAM.

The key difference between classical and quantum memories is that quantum mem-
ories will not be limited to querying one location at a time, but instead will query in
superposition. We must design circuits to perform the mapping∑

j

αj|j〉|0〉 →
∑
j

αj|j〉|bj〉 (2.15)

where
∑

j αj|j〉 represents a superpositions of addresses, and the state |bj〉 (where bj ∈
{0, 1}) represents the contents of the address |j〉.

Architectures for qRAM began to emerge roughly a decade ago with the bucket brigade
model of [31,32]. In this model, 2n bits of classical data (that we would like to quantumly
query) are stored in the 2n leaves of a binary tree. The nodes of the tree relate to the
address, with the j-th address bit corresponding to the j-th layer of the tree, as will be
described below.

At each node is a three-level state (a qutrit), with levels denoted by |wait〉, |left〉, |right〉.
All the qutrits begin in |wait〉. Address qubits are then sent through one by one and the
j-th bit follows a path to the j-th layer. When a qubit reaches a qutrit in its destination
layer, it changes the state of that qutrit. An address bit in 0 initiates a unitary operation
that sends |wait〉 → |left〉, while a 1 sends |wait〉 → |right〉. To reach their destination
layers, the qubit simply follows the path directed by the qutrits. After all the address
qubits are sent, a quantum ‘bus’ traverses the path, couples to the desired memory cell to
gather the data, and is reflected back the way it came. All the nodes are then re-initialized
to the |wait〉 state.

When the number of queries to the qRAM is small, the overall computation will be
resilient to a sufficiently small error per query. Even though there are an exponential
number of nodes (2n− 1), we are performing a number of operations that is polynomial in
n and so they can have error rates on the order of O(1/n) [32].

The situation is different, however, in cases where (for example) exponentially many
qRAM queries are necessary. Under assumptions made in [4], we would need error rates
that are exponentially small. This may necessitate the use of full fault-tolerant error
correction, which incurs an enormous resource overhead.

The scale of this overhead is what we address in the work within. It is currently a
very pertinent question, as numerous quantum algorithms [33–40] rely on the availability
of large amounts of classical or quantum data that can be queried by a quantum computer.
In many cases, the algorithms see a theoretical quantum speedup, but only under the
assumption that a qRAM can be queried efficiently.

We will perform resource estimates on generic (unoptimized) versions of qRAM circuits
of our own design, as well as for bucket brigade style circuits as presented in [4]. We will
analyze the cost when we make tradeoffs between the number of qubits vs. circuit depth,
and see some special cases of address structures where we can significantly reduce the
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number of resources. These preliminary estimates paint a somewhat bleak picture of the
feasibility of a fault-tolerant error-corrected qRAM - when all the fault-tolerant machinery
is included, we obtain query times on the order of milliseconds but require millions, or even
quadrillions of qubits, depending on the size and sparsity of the database. Compared to
classical RAM in which the query time is on the order of 150 ns, querying a qRAM may
prove to be a bottleneck in the quantum algorithms that rely on it.

2.3.2 Resource estimation pipeline

Though the work of Chapter 4 pertains specifically to a qRAM, the idea of resource estima-
tion in quantum computing is a more general one. As the size of available quantum com-
puting devices increases, it will become even more important. Some quantum algorithms,
in particular Shor’s algorithm, have serious implications for modern-day cryptography. It
is thus necessary to calculate how large of a quantum computer we will need to run it, and
how much time its execution will take.

The resource estimation techniques used in Chapter 4 were originally developed for use
in [12], wherein the resources required to perform a pre-image search on the cryptographic
hash functions SHA-256 and SHA3-256 were computed. In this work, we constructed a
pipeline for resource estimation that divides the process into a number of layers, beginning
at the very broad algorithmic level, down to the level of individual qubits.

While we leave most of the details to [12], we present here a brief description of the key
components of this pipeline:

a) Algorithms and the classical query model,

b) Circuits and the logical layer,

c) Error correction and the fault-tolerant layer,

d) The physical layer.

This pipeline is versatile, and modular in that it can be followed to arbitrary depth. In
some cases we may only be interested in parameters of the circuits used at the logical
layer; in others we may want a very fine-grained analysis in which we perform a massive
amount of circuit optimization and count the individual qubits needed to embed it into an
error-correcting code. Afterwards we discuss the final metric, the overall cost, a numerical
measure of the time and space requirements of an algorithm.

2.3.2.a Algorithms and the classical query model

This stage is the most high-level, and is essentially a measure of ‘how many times do we
need to run or query a black box’? In some cases, we may be interested in only a single
iteration of an algorithm or circuit. In others, we may need to perform them many times.
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For example, consider Grover’s algorithm for quantum search. A search through a
space of size 2N can be performed using 2N/2 executions of something called the Grover
iterate. In the case of [12], the Grover iterate consisted of two instances of SHA, followed
by a smaller subroutine called the Grover diffusion operator.

However, simply stopping at “we can do it with 2N/2 queries” ignores a significant
portion of the work, namely all the subroutines that are involved in each query. The next
stages of the pipeline go deeper into the inner workings of this black box.

2.3.2.b Circuits and the logical layer

At the logical layer, we analyze the particular quantum circuit that performs the query.
Here we compute parameters such as the number of qubits required, the overall depth of
the circuit, and the number of each gate required. Typically we will also perform circuit
synthesis down to our desired gate set, and then circuit optimization in order to eliminate
any redundant sequences of gates. We may also make tradeoffs at this stage: we can add
additional qubits in order to parallelize certain portions of the circuit and reduce the depth
(and as a consequence, time).

Often these processes are done with respect to the Clifford+T gate set. For this set, it
is critical to minimize parameters relating to the T gate: the T -count, and the T -depth,
i.e. the number of layers of depth in which T gates are performed. The reasons for this
will be discussed in the next section.

2.3.2.c Error correction and the fault-tolerant layer

In Section 1.1, it was mentioned that quantum computers today suffer from a great deal
of noise. This noise can compromise the implementation of many algorithms as they cause
the decoherence of states in superposition. As we scale up and begin to implement more
sophisticated algorithms, it will be necessary to ensure that our machines are fault-tolerant,
that is, able to withstand and correct any errors or failures that may occur. The search
for fault-tolerant quantum error correcting codes is an active area of research.

At the fault-tolerant layer, we choose an error-correction scheme and compute its re-
sources based on some physical assumptions. For example, we may assume that errors
occur at a fixed rate in our system, and tailor the code parameters to take this into ac-
count. A particular parameter of importance is the distance of a code, as this parameter
is directly related to the number of errors a code can correct. A code with distance d can
correct b(d− 1)/2c errors.

In order to implement error correction, we must embed the logical circuit into some
correction scheme. A simple example of this process is shown in Figure 2.1. We encode
our original qubits into logical ones, using some number of additional physical qubits, in
such a way that the collective logical qubit will be immune to any errors. We then perform
operations on these logical qubits, before decoding them back.
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Figure 2.1: A simple example of how error correction is implemented. Left: original circuit
on two qubits. Right: the two qubits are first encoded into logical states using extra
physical qubits; logical equivalents of the operations are then applied, before decoding
back to the original two qubits.

The error correcting code we choose for our resource estimation is the surface code.
We will not describe the code in detail, as this is outside the scope of this thesis; a good
introduction to the topic can be found in [41]. In a surface code, physical qubits are laid out
in a two-dimensional lattice. Some qubits are designated data qubits, and are surrounded
by what are called measure qubits. These measure qubits serve to stabilize the data qubits;
after performing a logical operation on the system, the surrounding measure qubits will
perform a stabilizer measurement of the data qubit. This is called a surface code cycle,
and is performed simultaneously across the whole lattice. Measurement outcomes are kept
track of classically and corrections are made when needed.

In the surface code framework T gates are considered expensive to implement. For
every T gate performed, one needs to prepare an additional state called a magic state:

|M〉 = |0〉+ e
iπ
4 |1〉. (2.16)

The production of these magic states occurs independently from the rest of the operations,
and is performed in separate factories or distilleries. Each factory is embedded in its own
surface code. The number of factories depends on both the T -count Tc and the T -depth Td.
In our case we use an estimate we denote as the T -width Tc/Td. This is a rough measure
of how many T gates are being done per layer of T -depth, thus determining the number of
simultaneously running factories we need.

Distillation happens in a number of layers. This is determined by the initial error rate
of the input magic states, and the desired output error rate. As errors are additive, the
desired rate is taken to be 1/Tc. Magic states are distilled through successive layers of
surface codes, each having different distances, until states with the desired error rate are
produced.

It is for these reasons that circuit synthesis and optimization techniques have been
designed with the minimization of the T -count and T -depth in mind - there is a massive
overhead due the number of qubits and the number of cycles to run the distilleries in a
fault-tolerant scheme.

The distances of the regular circuit as well as the distilleries are the important quantities
obtained at the fault-tolerant layer, and are then piped down to the physical layer.
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2.3.2.d The physical layer

Here we compute the number of physical qubits required, as well as the number of surface
code cycles and the overall run time.

The number of qubits is directly related to the surface code distance d. For every logical
qubit, we require 2.5× 1.25× d2 physical qubits [41]. We must calculate this not only for
the original circuit, but also for the distilleries. In most cases there are multiple layers of
distillation required, and so we can re-use the qubits from the most populous layers in the
subsequent ones.

The number of cycles required is different for each gate. For distillation, the number
of cycles required is 10 times the sum of the distances over all the layers [41]. Using the
T -depth, number of cycles, and a cycle time, we can calculate an overall time required to
perform all the distillation.

We can compute similar quantities for the circuit itself. Gates all take differing amount
of cycles to run: for instance, H gates require d cycles, while CNOT gates require 2
cycles [41]. One can thus produce estimates of the number of cycles required at each layer
of depth, and calculate a total time. However in both the resources estimates performed
in [12] and Chapter 4, the time required for distillation dwarfs the time required to run the
circuit itself, once again demonstrating the need to optimize with respect to the T gates.

2.3.2.e Overall cost

Incorporation of the ideas of all the previous sections leads us to a single number. We
define the cost as

Cost = log2 (# of logical qubits×# of surface code cycles) . (2.17)

This clearly represents a product of space (number of qubits) and time (number of cycles),
where lower costs are more desirable. The intention of the log2 was to make a clearer
comparison with standard cost metrics used in other cryptanalysis techniques. These are
typically given as some number 2k invocations of the cryptographic function, where k
relates to a security parameter such as key size, or hash length.

2.4 Quantum tomography

In Section 2.1, we saw quantum states represented as vectors. However, this is not the most
general representation of a quantum state, as there are some states, called mixed states
that cannot be represented by only a single vector. Instead, a mixed state is represented
by a density matrix, typically labelled ρ. A valid ρ for a d-dimensional quantum state is a
d× d Hermitian matrix that is positive semidefinite and has trace 1.

For a vector, or pure state |ψ〉, ρ = |ψ〉〈ψ|. However ρ can also be expressed as a
probabilistic mixture of pure states that is not simply an outer product of a ket and its
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bra. For example,

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1|. (2.18)

This state describes a system that, when measured in the computational basis, will be
found half the time in state |0〉, and half the time in state |1〉. While these outcomes
look identical to those of the superposition 1√

2
(|0〉+ |1〉), the mixed state is fundamentally

different in how the measurement outcomes respond to a change of basis. For example, if
we measure instead in the basis |+〉 = 1√

2
(|0〉+ |1〉) , |−〉 = 1√

2
(|0〉 − |1〉), one sees (after

re-expression in the new basis) that the mixed state is equally likely to be found in |+〉 as
it is in |−〉, whereas the superposition is now firmly found in |+〉.

In the density matrix formalism, operation by a unitary matrix is achieved through
conjugation, i.e. U [ρ] = UρU †. It is straightforward to see why this must be the case by
noting that U is a linear operation, and that the density matrix of some pure state |ψ〉
under operation by U will be (U |ψ〉) ·

(
〈ψ|U †

)
.

Suppose you are given an unknown mixed state and told to determine its density matrix
by making as few quantum measurements as possible. Two obvious questions follow: how
few measurements do you need, and what are they?

The answer to the first problem can be derived by a simple parameter counting ar-
gument. A d × d Hermitian matrix contains d2 complex numbers, or 2d2 real numbers.
The diagonal entries must be real, and so we eliminate d potential parameters. Another
consequence of the matrix being Hermitian is that we only need to determine all the up-
per triangular entries, or all the lower triangular entries. This reduces the number of
parameters by d(d − 1). Finally, since the trace of the matrix is 1, we can determine
the final diagonal element as 1 minus the rest of them. This means that we must find
2d2 − d− d(d− 1)− 1 = d2 − 1 parameters. So, we should be able to determine our state
by taking d2 − 1 measurements.

The particular choice of measurements is a less trivial problem, but thankfully a very
well-studied one. It turns out that if we take our measurements using a special set of
bases, it is possible to fully reconstruct the state using d2 − 1 measurements. Such bases
are called mutually unbiased ; their defining feature is that for any vector |a〉 in basis A,
and any vector |b〉 in basis B,

|〈a|b〉|2 =
1

d
. (2.19)

Each basis provides d−1 independent measurement outcomes, and we must find d2−1
parameters. This suggests that we need (d2 − 1)/(d − 1) = d + 1 such bases, all pairwise
mutually unbiased. It is well-known that such a complete set of d + 1 mutually unbiased
bases (MUBs) exists when d is a prime or power-of-prime number. Their existence in
composite dimensions is also a well-studied problem, but unfortunately a concrete proof of
(non-)existence has yet to be found, even in the smallest composite dimension 6 (a valiant
effort has been made over the past 15 years and suggests that no more than a triple of
such bases exist there [42–50]).

MUBs, when they exist, can be constructed in a number of ways. Early construction
methods created vectors entry-by-entry using finite field arithmetic [51,52]. Later methods
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made use of the generalized Pauli operators. There are d2− 1 non-identity Pauli operators
in dimension d [53]. They can be partitioned into d+1 disjoint sets of d−1 commuting op-
erators. Commuting operators share eigenvectors, and the eigenvectors of each set become
the mutually unbiased bases. These operators can also be considered as observables, a set
of d2 − 1 quantities that one measures in an experiments and can then use to reconstruct
the state.

The critical problem that arises here is one of scaling. In multi-particle systems such
as quantum computers, where d = 2n, n being the number of qubits, we now need 2n + 1
bases and 22n − 1 measurements.

It is thus crucial that we devise new tomographic techniques to mitigate this problem.
Recently developed methods involve adaptive measurement schemes [54] or Bayesian in-
ference [55, 56]. Others are based on improving maximum likelihood estimation [57], and
providing a means of reconstructing a positive semidefinite matrix from only a subset of
the mutually unbiased bases [58].

The work of Chapter 5 proposes a new, systematic method to select a subset of the
d2−1 generalized Pauli observables. Intuitively, it is based on the discrete Wigner function,
a graphical representation of quantum states. The discrete Wigner functions are ‘smoothed
out’ and re-expressed in an effectively smaller dimension, thus reducing the number of ob-
servables. This bears some similarity to the idea of the renormalization group in condensed
matter physics, though under the hood we will see a lot of beautiful math involving finite
fields and some combinatorial design theory.
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Chapter 3

Parallelizing quantum circuit
synthesis

The contents of this chapter from Section 3.1-Section 3.6 were published on 12 October
2016 in [1]. The associated codebase can be found at https://qsoft.iqc.uwaterloo.

ca/#software. Additional details about our decision to use cryptographic hash function
was added to the end of Section 3.2.

The contents of Section 3.7 were published on 8 October 2015 in [3].

This work provides a framework and implementation for parallel quantum circuit syn-
thesis based on pseudorandom/deterministic walk methods. It has demonstrated the abil-
ity to synthesize, with optimal T -count, 1) known circuits faster than contemporary algo-
rithms, and 2) larger circuits.

While the algorithm retains an exponential dependence on the number of qubits and
circuit depth, it inherits the scaling of the underlying parallel claw finding algorithm. A
significant majority of the algorithm takes place in parallel, and the runtime is inversely
proportional to the number of processors.

The exponential scaling may prohibit synthesis of entire algorithms on more than a few
tens of qubits, even on large-scale classical computing systems. However, these methods
can greatly expand what can be achieved with first-generation quantum devices with tens
of qubits. They can be used to optimize frequently repeated subcircuits, or combined
with optimization heuristics such as resynthesis [59–61] to substantially reduce the cost of
implementing much larger circuits. In particular when the limiting cost of the algorithm is
T -count, reduction by even a handful of T gates has the potential for substantial savings
when considered over the course of a full-scale algorithm.

The implementation was also successfully extended to the problem of finding symmetric
Hadamard matrices of order 116, simultaneously answering the question of their existence
in this dimension.
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3.1 Introduction

Quantum computers, like their classical counterparts, will require a compiler which can
translate from a human-readable input or programming language into operations which
can be executed directly on quantum hardware. Circuit synthesis is an integral part of the
compilation process. Given an arbitrary quantum circuit C and a universal gate set G, one
seeks to find a decomposition

UkUk−1 · · ·U2U1 = C, Ui ∈ G, (3.1)

where k represents the depth of the circuit. A myriad of algorithms currently exist to
find such a decomposition [14–17,19–22,26–30,62,63]. They are generally divided into two
classes, those which synthesize approximately (i.e. ||Uk · · ·U1 − C|| < ε) and others which
synthesize exactly. Some procedures work for a single qubit, whereas others have been
generalized to multiple qubits. Most of these algorithms were designed to work over the
Clifford+T universal gate set, though other gate sets such as the V -basis have also been
studied [17,19].

Many of the algorithms which perform exact synthesis fall victim to the fact that the
time and space used depend exponentially on both the number of qubits and the depth of
the circuit in question. Even on a reasonably fast machine, synthesis of circuits with more
than a handful of qubits and layers of depth becomes intractable.

In this work, we propose a method of circuit synthesis based on a heuristic search
technique commonly used in cryptanalysis: collision finding based on deterministic, or
pseudorandom walks. These are walks through a search space such that once a starting
point is chosen, the path is completely determined. More generally, we show how we can
use deterministic walks to traverse the space of possible circuits of a given depth and find
solutions to the synthesis problem. A key ingredient in our method is a mapping from the
unitary operators constructed from the gate set G to binary strings of a constant length,
and a suitable mapping back to the set of unitary operators. When such mappings are
defined, we can synthesize circuits over any universal gate set, on any number of qubits,
by applying any existing walk method which can search the space.

The structure of this article is as follows. We begin in Section 3.2 with a discussion
of deterministic walks, and how we can map quantum circuit synthesis to these types of
problems. The subsequent sections pertain to our choice of implementation of one such
method, namely parallel circuit synthesis. In Section 3.3 we briefly lay out the procedure
for parallel synthesis and provide a runtime complexity estimate, detailing the important
parameters which affect the scaling of our algorithm. Section 3.4 pertains to our software
implementation, pQCS, which performs optimal T -count synthesis using parallel search.
Section 3.5 contains the numerical results of large-scale experiments run on a Blue Gene/Q
supercomputer. Here we showcase the significant advantages afforded to us by paralleliza-
tion. We conclude in Section 3.6 and suggest avenues of future research on this topic.
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3.2 Walking through circuits

Consider a hash function h : D → R, typically considered to operate over binary strings.
If h is a good hash function, then for an arbitrary input x ∈ D, the value h(x) = y ∈ R
will be in practice indistinguishable from a random output. Suppose there exists another
function r : R → D, unrelated to h, which maps elements of its range back to the domain
(such a function is commonly termed a reduction function). Repeatedly applying r ◦ h to
an input will produce a trail of points scattered throughout D. However, once the initial
input is chosen, the progression of the trail is completely determined, hence we use the
term deterministic rather than random walk even though the path of the walk appears
random due to the natures of h and r.

Such determinism has led to a set of algorithms with a variety of applications. One
well-known variation is rainbow tables [64], which are used for finding pre-images of hash
functions (conventionally with the intention of cracking passwords). Collision finding in
one hash function, or claw finding between two functions has also been accomplished in
parallel using deterministic walks [65], and was used to find collisions in double DES [66].

Deterministic walks are advantageous due to their low storage requirement: one need
only store the starting point of a walk, its ending point, and the number of intermedi-
ate steps, whereas conventional search techniques would store the value of every point
computed throughout.

011100101010101011011101101...

1001101110111011000111...

Figure 3.1: A schematic diagram showing the process of walking over circuits. Binary
strings are mapped to products of unitary matrices over the gate set G via some corre-
spondence µ. The product of these matrices is then mapped via ν back to a binary string,
which is then passed through a hash function h. Repeated application of h ◦ ν ◦ µ allows
us to traverse the set of possible circuits in a pseudorandom fashion.

With this in mind, we show how one can map the problem of circuit synthesis to a
problem that can be solved using an algorithm based on deterministic walks. We have, as
per Equation (3.1), a product constructed from the universal gate set G. It is possible to
specify a unique way of encoding the information about {U1, . . . , Uk} into binary strings
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{b1, . . . ,bk} of equal length ` (where we assume ` is sufficiently long as to encompass all
the information described in what follows). Suppose G contains a number of single- and
two-qubit gates. If we enumerate all the gates in G, then for each Ui we might use a few
bits to identify all the constituent gates, and maybe a few more to specify if we should
use their Hermitian conjugates. We will also need to indicate on which qubit(s) they act.
Furthermore, there must be some space to indicate controls and targets where appropriate.
Given any gate set, we can find a way of doing this such that every possible Ui can be
represented by a unique string bi. Then, the concatenation (bk| · · · |b1) will be a unique
string of length k` representing the product of unitaries Uk · · ·U1.

We can perform a deterministic walk over unitary matrices as follows; this process is
displayed graphically in Figure 3.1. Let us define a function µ which maps a binary string
of length k` to a unitary matrix over a specified gate set G. Then define a mapping ν from
the unitaries over G back to binary strings {0, 1}∗. Finally, choose a good hash function h
from {0, 1}∗ to strings of length k` (this may be a simple hash function, or a combination
of hash and reduction-type functions). Repeatedly applying h◦ ν ◦µ to a randomly chosen
binary string of length k` will allow us to traverse products of unitaries in a pseudorandom
fashion; we can then use this to search the space of possible solutions to Equation (3.1).

In theory, one could choose other methods to walk through the unitaries. The main
requirement is that the function must be deterministic, yet provide enough randomness
to not significantly bias the unitaries it outputs so that the space can be searched (ap-
proximately) uniformly. Thus, we chose to represent the unitaries as bit strings and used
cryptographic hash functions. Cryptographic hash functions have been optimized for speed,
and intensely scrutinized for their ability to produce outputs that are hard to distinguish
from true random outputs

3.3 Parallel circuit synthesis

Once we have mappings as proposed in Section 3.2, we can reformulate the circuit synthesis
problem as a problem which can be solved using search algorithms based on deterministic
walks. We specifically implemented one which performs parallel claw finding. Let h1 :
D1 → R and h2 : D2 → R be two hash functions. A claw between h1 and h2 is a pair of
inputs x1 ∈ D1, x2 ∈ D2 such that

h1(x1) = h2(x2). (3.2)

This is, in a sense, a collision search between two functions.

Our interest in claw finding stems from recent work on circuit synthesis using a meet-
in-the-middle (MITM) approach [29]. The motivation for that work is as follows. One
can of course find a decomposition of Equation (3.1) by brute force, computing all possible
combinations starting from depth 1 up until a solution is found. Let ξ represent the number
of unitaries having depth 1. Typically ξ will depend exponentially on the number of qubits,
n. Then, the runtime for brute force synthesis of a circuit with depth k takes time O(ξk).
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A MITM approach achieves a roughly square-root speedup over this, accomplished by
dividing the synthesis equation in half:

Ud k
2
e · · ·U1 = U †d k

2
e+1
· · ·U †kC, Ui ∈ G. (3.3)

Databases of unitaries having the form of each side of Equation (3.3) are sequentially
constructed (starting from depth 1), stored in binary trees, and then searched through
until a suitable decomposition is found. This reduces the size of the search space by a

square root factor, yielding runtime O
(
ξd

k
2
e log

(
ξd

k
2
e
))

, where the log factor is picked up

due to the binary search.

To parallelize circuit synthesis, we build on the principles of the MITM algorithm.
Rather than searching through static binary trees, we search the space in parallel, adapting
a search technique originally developed for cryptanalysis [65]. Though our runtime will
retain the exponential dependence on n and dk/2e, it scales inversely with the number
of processors, allowing us to tackle larger problems which were infeasible using previous
methods, as well as speed up the synthesis of some known circuits. We provide a brief
description of the algorithm here as it pertains specifically to circuit synthesis. For a more
detailed description, the reader is referred to [65] or [2].

Recall Equation (3.3), and for simplicity, let us define

V := Ud k
2
e · · ·U1, (3.4)

W := U †d k
2
e+1
· · ·U †kC, (3.5)

as representing the left and right sides of this equation. Define a suitable mapping between
unitary matrices and binary strings of length k` as in Section 3.2. Then let V ′ represent
the set of binary strings that are of the form V , and likewise W those of the form W .
When k is odd, V ′ and W may differ in size by a factor of ξ. In this case, we partition V ′
into equal sized chunks V ′0, . . . ,V ′ξ−1, and consider V = V ′i independently (a search can then
be executed with each V ′i sequentially or in parallel, adding another layer of parallelism to
the implementation). When k is even, we simply let V = V ′.

Let N = {0, 1}k`. Define functions z1 : N → N and z2 : N → N . One way these
functions might be implemented is by converting the input string into a sequence of unitary
matrices (in V for z1 andW for z2), computing their product, deriving a new binary string
with the information about each of the matrix elements, and then running that string
through a known hash function so that the outputs of both functions are in the same space
and in practice appear to be random.

Let us define a ‘super’ function f : N × {1, 2} → N × {1, 2} such that one application
of f is a single step in the deterministic walk, i.e. f(x, b) = zb(x). Finding a claw between
z1 and z2 is now equivalent to finding a collision in f with distinct values for b, i.e. we
must find two inputs x1 and x2 such that

f(x1, 1) = f(x2, 2). (3.6)
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Consider m processors all having access to a shared memory. We will denote some
fraction θ of points in N as marked, or distinguished. Every processor chooses a random
starting pair (n0, b0) in N × {1, 2}. Repeatedly applying f produces a trail through the
space of possible circuits, which roughly half the time will produce a part of Equation (3.3)
which is an element of V , and the other half of the time will produce an element of W .
The trail continues until the next input, say xd, is a distinguished point. The trail is then
terminated.

The collection of found distinguished points is stored in the shared memory. Distin-
guished points are stored as a triple consisting of the first pair (n0, b0), the last pair (nd, bd),
and the value d, which is the number of steps taken to reach the distinguished point. When
a processor finishes its trail, it will attempt to add its distinguished point to the shared
memory. If it sees that a trail ending at the given point is not present in this shared mem-
ory, it will insert it and then begin a new trail. However, if it sees that there is already a
triple in storage which ended at the same distinguished point but had a different starting
point, it means that somewhere along the way these two trails must have merged. The
processor then takes the starting points of these two trails, and traces back through them
to locate the merge point.

..
.

..
.

..
.

..
.

..
.

..
.

Figure 3.2: Possible ways two trails can merge. Let f and g be two functions between
which we want to find a claw. (Left) One trail starts before the other. (Centre) The two
trails merge after performing the same function, i.e. a collision f(x1) = f(y3). (Right) The
two trails merge after performing a different function, i.e. a claw f(x1) = g(y3).

There are a number of possibilities here, as depicted in Figure 3.2. First, it could be
that one trail started “before” the other, i.e. the merge point was at the beginning of the
shorter trail. Another possibility is that when the trails merged, both had just performed
z1, or both had just performed z2. Even if the inputs were different, this case does not
provide us with a solution to the problem at hand. The final case is that immediately
before they merged, one trail performed z1 and one performed z2; it is only in this final
case that we have found a solution. With the information about the inputs in the step just
before the collision, we can extract the unitary matrices from the binary string, and have
fully synthesized our circuit.

The runtime complexity of this algorithm can be estimated by applying the parameters
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of our problem directly to that in [65]. The size of the spaces V ′ and W are

NV ′ = ξd
k
2e, NW = ξb

k
2c. (3.7)

Our algorithm then scales as

TQCS ∝ ξd
k
2e+ 1

2b k2c 1√
w

1

m
τ, (3.8)

where w is the number of distinguished points that can be held in memory. The parameter
τ is the execution time for a single iteration of z1 or z2, the bulk of which will likely be
spent performing matrix multiplication. Let us assume in the worst case that we are taking
the product of dk

2
e 2n×2n unitaries using a multiplication algorithm which scales as (2n)α,

where α is some constant, typically 2 ≤ α ≤ 3. Thus, we obtain our final estimate

TQCS ∝ 2αnξ(d
k
2e+ 1

2b k2c) 1√
w

1

m

⌈
k

2

⌉
. (3.9)

As previously mentioned, this time is still exponential in the number of qubits as well as
the depth of the circuit. We also note that it is often the case that matrix multiplication
can be parallelized, or that some specific properties of the implementation at hand (such
as sparsity) can be leveraged so as to improve the scaling. What is key here is that
the runtime benefits from being inversely proportional to the number of processors and
available memory.

3.4 Implementation details

3.4.1 Optimal T -count synthesis

The synthesis algorithm we chose to apply our approach to is the optimal T -count algorithm
presented in [30]. Such an algorithm is relevant as in many state-of-the-art methods for
fault-tolerant quantum computation, T gates are considered to be expensive to implement
due to the need to distill magic states (see, for example, [41]).

Let Pn represent the n-qubit Pauli group. We reshuffle and rewrite the decomposition
of a circuit C as

eiφR(Pt) · · ·R(P1)D = C, (3.10)

where t is the T -count, D is a Clifford, Pi ∈ Pn, and

R(Pi) =
1

2

(
1 + e

iπ
4

)
I2n +

1

2

(
1− e

iπ
4

)
Pi. (3.11)

It thus suffices to find a set of t Paulis and a Clifford which will satisfy Equation (3.10) up
to a global phase. The dependence on the global phase can also be removed by using the
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channel representation of every matrix in the above equation:

R̂(Pt) · · · R̂(P1)D̂ = Ĉ, (3.12)

where the channel representation of some matrix U is the matrix with coefficients

Ûij =
1

2n
Tr
(
PiUPjU

†) , Pi, Pj ∈ Pn. (3.13)

The channel representation of an n-qubit unitary has dimension 4n × 4n, with each row
and column being indexed by a Pauli operator.

Using the optimal T -count algorithm has afforded us with a number of advantages. First
of all, the T -count formulation allows us to represent each unitary matrix in the sequence as
a list of n-qubit Paulis. With binary symplectic representation we can then represent each
Pauli directly as a binary string, which leads to a very simple mapping with which we can
perform our deterministic walks. Another strong point of the algorithm is that the channel
representations of R(P ) for P ∈ Pn are sparse matrices. Thus, we were able to implement
a sparse matrix multiplication algorithm which allows us to very quickly compute most
matrix products, despite the channel representations having dimension 4n × 4n.

We can apply Equation (3.8) and Equation (3.9) to the optimal T -count synthesis to
obtain a runtime estimate. Each R(P ) contributes a single T gate to the circuit, and can be
considered as a single layer of depth in this implementation. Thus, we have that ξ = 4n−1,
as all Paulis save for the identity are valid choices. Our estimate for the runtime is thus

TQCS−T ∝ 2n(2α+2d t2e+b t2c) 1√
w

1

m

⌈
t

2

⌉
. (3.14)

3.4.2 Computer specifications

We implemented the optimal T -count version of the parallel algorithm in C++11. It
is called pQCS (parallel quantum circuit synthesis), and is available for download and
research use at https://qsoft.iqc.uwaterloo.ca/#software. Parallelization was ac-
complished using the Boost.MPI compiled library [67]. A scaled down version of pQCS
which uses only OpenMP for parallelization (and can be run on a standard multi-core
personal computer) is also available in the above package.

pQCS was extensively tested on two large-scale machines. The OpenMP-only version
was tested on SHARCNET’s Orca using a single node with up to 16 processors at 2.2GHz
speed. The MPI version was tested on Scinet’s Blue Gene/Q (BG/Q) supercomputer,
which has 65536 processors at 1.6GHz speed. The largest test we have run to date involved
a total of 8192 cores. All results below are from trials on the BG/Q. A flowchart and
description of the distribution of work in the MPI version is presented in Figure 3.3.
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3.5 Results

3.5.1 Determining effective simulation parameters

pQCS has a number of tunable parameters. In what follows we will synthesize a known
circuit, the Toffoli gate, and explore the scaling of our algorithm.

In the original description of the parallel collision finding algorithm [65], each processor
was responsible for performing not only the search for a distinguished point, but also
storing it and subsequently checking the validity of any possible solutions; it is from this
setup that the heuristic runtimes are derived. In pQCS, however, processors are divided
into three categories (as per Figure 3.3) which communicate via MPI. Worker processors
perform deterministic walks and generate distinguished points. Distinguished points are
collected and stored in-core on collector processes. Each collector has access to a number
of verifier processors, to which pairs of walks are sent for verification when the possibility
of a claw occurs. The parameters m and w may not necessarily depend then on the total
number of processors, but rather only on one or more of each class. For example, w will
depend solely on the number of collectors, whereas we expect m to be a function of the
number of workers, assuming a sufficient number of collectors and verifiers are in place.
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Figure 3.4: Variation of the number of collectors and verifiers when synthesizing the Toffoli
gate. The legend V = C indicates equal amounts of collectors and verifiers, whereas
V = 2C indicates two verifiers per collector. We find that the optimal number of collectors
seems to be at about 1/8 the total number of processors, and the number of verifiers to be
twice that, at 1/4 the total number.

First, we focus on how many collectors and verifiers we should use. We chose two
values for the total number of cores, 1024 and 2048. We then varied the fraction of nodes
designated as collectors in increments of 1/16, from 1/16 to 1/4 the total (values outside
this range clearly yielded inferior results). For each fraction of collectors, we either used
the same, or double the number of verifiers. The results of these trial runs are shown
in Figure 3.4. In all these trials we let 1/4 of the points in the space be designated as
distinguished (later we will fine-tune this parameter as well). Each point is the average of
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100 independent trials. We find that for both total quantities of processors, the optimal
number of collectors is 1/8 the total number, and for verifiers 1/4 the total. When more
than 3/8 of the total processes are being used on storage and verification, there are not
enough workers to perform the deterministic walks. On the other hand, when there are too
many workers, each collector must store and process a larger collection of distinguished
points each time. Furthermore, more time will be spent by the workers gathering and
sending the increased quantity of distinguished points.

With this knowledge, we then tested the Toffoli with varying number of cores. Again,
we let 1/4 of the points be distinguished and take the average of 100 independent trials.
The results are shown in Figure 3.5. We see clearly here the expected inverse dependence
on the number of processors as predicted by Equation (3.8). We do note that there is
significant deviation from the expected trend when we reach 8192 cores. We suspect that
for a problem of this size, the parallel overhead and communication costs outweigh the
potential benefits of using this many cores.
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Figure 3.5: Varying the total number of cores when synthesizing the Toffoli gate. We used
512 collectors and 1024 verifiers with 1/4 of the points distinguished. Data follows the
inverse trend line quite closely until around the 4096 core mark. Here, it is likely that the
overhead and communication costs are too large for a problem of this size.

1

Finally, we investigate how the runtime varies with the fraction of distinguished points,
θ. In the case of the Toffoli, the amount of available memory using the above number of
processors on the BG/Q is significantly greater than that required to store even the entire
space. Variation of this parameter is thus somewhat contrived for such a (relatively) small
problem. In this case we would expect an inverse dependence on θ (see the Appendix for
more details). We ran 100 trials on 4096 processors (512 collectors and 1024 verifiers) using
fractions of distinguished points {1/2, 1/4, 1/8, 1/16, 1/32}. The results are displayed
in Figure 3.6, where we see the expected dependence. We also report here our best synthesis
times for the Toffoli gate, clocking in at roughly 26s on average. To fully explore the effects
of this parameter (and more importantly the dependence on the available memory w), we
will need to use a much larger circuit.
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Figure 3.6: Varying the fraction of distinguished points while synthesizing the Toffoli gate.
As the size of the search space is much less than the available memory, we see roughly the
expected inverse dependence on the fraction of distinguished points.

3.5.2 Benchmarking known circuits

Some of the largest circuits which were directly synthesizable by both the original MITM
algorithm and optimal T -count algorithm were those with T -count 7 on 3 qubits [29, 30].
There are a number of such circuits, shown in Figure 3.7. Using our knowledge from
optimization of parameters in the previous section (4096 cores, 1/2 points distinguished,
512 collectors and 1024 verifiers), we obtain the synthesis times reported in Table 3.1.
We note that at roughly 25s, these times are a marked improvement over those reported
in [2], which were greater than 4 minutes. This highlights the advantage of using many
processors, and is a promising sign that we will be able to synthesize circuits which are
much larger in a reasonable amount of time.

X X

X

X

X

X X

Toffoli Fredkin Peres

Quantum OR Negated Toffoli

Figure 3.7: Circuit diagrams for the five 3-qubit circuits with T -count 7 which we synthe-
sized.
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Circuit Average time (s) Std. dev. (s)

Toffoli 25.9870 11.0733
Fredkin 25.0031 9.4869
Peres 25.4931 11.1753

Quantum OR 24.1854 9.1417
Negated Toffoli 26.9162 11.1561

Table 3.1: Synthesis of a known set of 3-qubit circuits all having optimal T -count 7. All
results come from 100 independent trials using 4096 cores (512 collectors, 1024 verifiers),
and 1/2 of points distinguished as per the results of Subsection 3.5.1.

3.5.3 Pushing the boundaries

The largest circuit synthesized to date using pQCS is the 4-qubit 1-bit full adder, shown
in Figure 3.8. A synthesized version of this adder appeared in [29] with T -count 8, where
it was accomplished using peephole optimization techniques. It was suspected that it has
T -count 7 [68], which we confirm.

Figure 3.8: The 4-qubit adder. We find directly that it has T -count 7 and T -depth 3, and
that these results are optimal.

The first successful synthesis of the adder took 12.5 hours using 4096 cores (512 collec-
tors, 1024 verifiers) and 1/2 points distinguished. We note that a circuit as large as the
adder would likely benefit from a larger number of processors, and so more testing is in
progress. A full version of the circuit is shown in Figure 3.9. The initial output of pQCS is
a sequence of Paulis and a unitary corresponding to a Clifford gate as per Equation (3.10).
The Pauli portion of the circuit (R(P7) · · ·R(P1)) was generated using the algorithm given
in the appendix of [30], and the Clifford component was generated using the algorithm
in [69]. The resultant sequence of gates was then optimized for T -depth using T -par [?].
Interestingly, this new synthesis of the adder led to the observation that this adder requires
identical resources as the Toffoli gate, i.e. T -count 7, T -depth 3, and to the question of
whether this is a coincidence. In fact, it was subsequently pointed out to us that this adder
is affine equivalent to the Toffoli (i.e. unitarily equivalent up to application of CNOTs)
[70].
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Figure 3.9: A decomposition of the 4-qubit adder over Clifford+T , optimized for T -depth.
The X gates indicate swaps.

3.6 Concluding remarks

We have presented a framework for quantum circuit synthesis based on deterministic walks,
as well as an algorithm and software for parallel quantum circuit synthesis. We have
observed a clear advantage over existing techniques using a relatively modest number of
processors, and were able to directly synthesize a 4-qubit circuit which would have been
intractable using previous methods.

Ongoing and future work on pQCS includes improvements to the application structure
and parallelization routines, extensions for synthesis in general over a specified gate set,
and the implementation of approximate circuit synthesis. Furthermore, we seek to push
the application to its limits in order to fully characterize the scaling, in particular with
respect to the available memory once the circuit search spaces become sufficiently large.

3.7 Special application: the search for new symmetric

Hadamard matrices

Recall that the parallel search algorithms, originally designed for cryptanalysis, can be
adapted to a wide range of problems provided they can be represented as walks over binary
strings. In this section we showcase one such problem, which was tackled by repurposing
the pQCS software engine: searching for new symmetric Hadamard matrices.

As quantum information scientists we are very familiar with the Hadamard matrix of
order 2:

H =
1√
2

(
1 1
1 −1

)
. (3.15)

In fact, Hadamard matrices can be defined more generally, as any matrix with elements ±1
in which all the rows and columns are orthogonal. Hadamard designs, their construction
and existence, have been widely studied in combinatorial design theory and have applica-
tions in the construction of error-correcting codes [71].

Hadamard matrices exist in all orders that are multiples of 4, n = 4v, as well as
n = 1 and n = 2 [71]. However, it is unknown whether symmetric Hadamards exist in
all n = 4v. A portion of the work presented below shows how we used parallel collision
finding techniques to find 15 new symmetric Hadamard matrices of order 116, answering
the open question of their existence in this dimension. When [3] was published, order 116
(v = 29) was the smallest unknown case. Since then, symmetric Hadamards of order 156
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(v = 39) have been found [?]; at the time of writing of this thesis, the smallest unsolved
case is that of order 188 (v = 47).

3.7.1 Abstract

We construct new symmetric Hadamard matrices of orders 92, 116, and 172. While the
existence of those of order 92 was known since 1978, the orders 116 and 172 are new. Our
construction is based on a recent new combinatorial array discovered by N. A. Balonin
and J. Seberry. For order 116 we used an adaptation of an algorithm for parallel collision
search. The adaptation pertains to the modification of some aspects of the algorithm to
make it suitable to solve a 3-way matching problem. We also point out that a new infinite
series of symmetric Hadamard matrices arises by plugging into the GP array the matrices
constructed by Xia, Xia, Seberry, and Wu in 2005.

3.7.2 Introduction

A Hadamard matrix of order n is an n× n matrix H = (hij) with elements ±1 such that
HHT = HTH = nIn, where In is the n×n identity matrix and T stands for transposition.
If in addition H is symmetric, i.e. hij = hji, then it is called a symmetric Hadamard
matrix. A list of currently open cases for symmetric Hadamard matrices appears in [71],
page 277, Table 1.52, and states that the only 12 odd values of v < 100 for which a
symmetric Hadamard matrix of order 4v is not known to exist are:

23, 29, 39, 43, 47, 59, 65, 67, 73, 81, 89, 93.

However, symmetric conference matrices of order 46 were constructed by R. Mathon [72] in
1978, and it is well known that this implies the existence of symmetric Hadamard matrices
of order 2 · 46 = 92. By modifying Mathon’s construction, Balonin and Seberry [73] have
constructed two more symmetric conference matrices of order 46 inequivalent to those of
Mathon.

In this paper we construct symmetric Hadamard matrices of orders 92, 116, 172. All of
them are constructed by using the GP array of Balonin and Seberry [74]:

GP =


A BR CR DR
CR DTR −A −BTR
BR −A −DTR CTR
DR −CTR BTR −A

 , (3.16)

where R is the back-diagonal matrix obtained from the identity matrix by reversing the
order of rows. In order to obtain a symmetric Hadamard matrix of order 4v from this
array we need four circulant {±1}-matrices (also known as binary matrices) A,B,C,D of
order v such that

(i) AAT +BBT + CCT +DDT = 4vIv;
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(ii) AT = A and B = C.

Such quadruples [A,B,C,D] can be constructed from suitable difference families, also
known as supplementary difference sets (SDS), in the cyclic group Zv consisting of four
blocks. The authors of [74] refer to these quadruples as propus matrices and to the corre-
sponding symmetric Hadamard matrix as a propus-Hadamard matrix.

In the case v = 23, our construction is quite different from those in [72] and [73]. In the
case v = 29 we use a method for parallel collision search. We had to adapt this method in
order to be able to apply it to the problem of searching for suitable quadruples [A,B,C,D].
In the case v = 43 we in fact construct D-optimal matrices (see e.g. [75]) of order 86 from
two binary circulants A,D with AT = A. The blocks B and C = B are provided by the
Paley difference set in Z43.

The smallest order for which the existence question for symmetric Hadamard matrices
is still undecided is now 4 · 39 = 156.

Moreover we give a new infinite series of symmetric Hadamard matrices derived from
the series of Hadamard matrices constructed in [76, Theorem 3].

3.7.3 Some infinite series of symmetric Hadamard matrices

We summarize some results pertaining to the existence of infinite series of symmetric
Hadamard matrices. The summary is far from being exhaustive.

The following result is proved in [77, Corollary 4.6.5].

Theorem 1. If q ≡ 3 (mod 4) is a prime power and q + 2 is a prime power, then there
exists a symmetric conference matrix of order q2(q + 2) + 1 and a symmetric Hadamard
matrix of order 2q2(q + 2) + 2.

Note that for q = 3 one obtains a symmetric Hadamard matrix of order 92.

The following result is mentioned in [71, Theorem 1.48, p. 277].

Theorem 2. If n+ 1 and n− 1 are both odd prime powers, then there exists a symmetric
regular Hadamard matrix of order n2.

A list of 11 classes of orders of symmetric Hadamard matrices appears in [78], Appendix
D. Some of these classes are infinite. For example class SHIII is an infinite class, as a
consequence of Dirichlet’s theorem on the existence of primes in arithmetic progressions.

Another infinite series has been discovered recently in [74, Lemma 1]:

Theorem 3. Let q ≡ 1 (mod 4) be a prime power. Then propus matrices exist for orders
n = q+1

2
which give propus-Hadamard matrices of order 2(q + 1).

This series is derived from Turyn’s infinite series of Williamson matrices [79] and can
be plugged into the GP array. Another construction of symmetric Hadamard matrices of
the same order has been known for long time, see [78, Lemma 5.2, p. 339].

32



One of us (D.D.) has subsequently observed that the same construction is applicable to
the infinite series of Hadamard matrices of Goethals–Seidel type constructed by Xia, Xia,
Seberry, and Wu [76, Theorem 3]:

Theorem 4. Let q = 4n−1 be a prime power ≡ 3 (mod 8). Then there exists an Hadamard
matrix of order 4n of Goethals–Seidel type in which

(I − A)T = −I + A, BT = B and C = D.

In fact their matrix is not just a Hadamard matrix but also a skew Hadamard matrix.

Instead of plugging the quadruple [A,B,C,D] into the Goethals–Seidel array, we can
plug the permuted quadruple [B,C,D = C,A] into the GP array to obtain a propus-
Hadamard matrix. Thus we have the following theorem:

Theorem 5. Let q = 4n−1 be a prime power ≡ 3 (mod 8). Then there exists a symmetric
Hadamard matrix of order 4n of GP-type, i.e., obtained by using the GP array.

For n = 11, 17, 33, 35, 53, 71, 77, 83, 123, 125 these symmetric Hadamard matrices are
displayed on Balonin’s webpages http://mathscinet.ru/catalogue/propus/dragomir/.

3.7.4 Overview of the algorithm for order 116

We want to construct a SDS [A,D,B,C] in Z29 with parameters (29; 13, 13, 11, 11; 19) such
that the subset A is symmetric and B = C. This is necessary in order to use the GP array.
Thus A and D have cardinality 13, and B cardinality 11. (The other option, with A and
D of cardinality 11 and B of cardinality 13, was treated separately in the same manner.)
We generate three files, one for each of A,D,B. The A-file contains the symmetric subsets
of cardinality 13, the D-file arbitrary subsets of cardinality 13, and the B-file arbitrary
subsets of cardinality 11. (Each subset is recorded on a separate line.) We do not collect
all such subsets, but only those that pass the power spectral density (PSD) test. This test
is an important tool as it cuts down the size of the file considerably. For a description of
the PSD test see [80, section 4]. For each of these three files and subset recorded there,
we compute and record in a new file the periodic autocorrelation function (PAF) of the
corresponding binary sequence of length 29. The subsets A,D,B,C = B will form a SDS
if and only if the sum of their PAFs takes the value λ = 19 at all shifts different from 0.
Thus the search for SDSs boils down to selecting one line in each of the A,D,B PAF-files
such that the element-wise sum of the first, second and twice the third line is equal to 19.

To find such a triple of lines, we adapted the meet-in-the-middle parallel collision finding
technique of [65]. Let us represent a line in the PAF file of A as the sequence (a1 a2 · · · an),
and similarly for the PAF files of D and B. To find a triple of lines such that

ai + di + 2bi = λ, ∀ i ∈ {1, . . . , n}, (3.17)
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we define two functions, fad and fb:

fad(i, j) := Element-wise sum of line i from A and line j from D (3.18)

fb(k) := Element-wise difference of λ and twice line k from B (3.19)

With these definitions, any case where fad(i, j) = fb(k) constitutes a solution, and thus
the existence of a symmetric Hadamard.

To execute the search, we have a large number of processors perform random walks
through the space of combinations of lines. Walks start at random positions, and deter-
ministically decide at each step whether to execute fad or fb, and which lines of the file to
read. To determine which function to perform in the next step, we concatenate the values
in the result of fad or fb, and run that through a SHA-1 hash function. An indicator for the
next function to perform, and corresponding line indices, are then derived from this hash
value. A walk terminates when the resultant hash value reaches some pre-defined condition
(usually a certain number of 0s at the beginning of the hash string, the choice of which
depends on the time-memory tradeoff between computation and storage time). Starting
and ending points of all completed walks are stored in a set shared by all processors. This
means that, with high probability, if two concatenated sums from both fad and fb are the
same, then the hash value will be the same, and the two walks will ‘merge’ and arrive at
the same point in the collective set of stored walks. When such an instance occurs, we
have found our solution.

We implemented this algorithm in C++11, using Boost.MPI. The specific implementa-
tion was adapted from [2]. All the data from the files was stored in a SQLite database. As
the initial files are rather large, we perform a preprocessing step before doing the matching.
All three initial PAF files are divided into subfiles based on the first number in each line.
Then, only combinations of three subfiles such that the first numbers of each line sum to
λ are actually run through the program.

As the algorithm is random and parallel, it is difficult to benchmark its runtime. We
ran it on SHARCNET’s Orca cluster, a machine whose nodes have processors with speeds
of either 2.2GHz or 2.7GHz, and a minimum of 32GB RAM. We used 16 MPI processes: 14
of them continuously executed random walks, one held the shared set of completed walks,
and the last was responsible for receiving pairs of walks which ended at the same point,
and extracting possible solutions. Searches were done for a fixed amount of time, usually
24h. Of the 15 matches found for v = 29, the shortest time taken was 238 seconds; the
longest took over nine hours. All but five of the matches were found in less than three
hours.

3.7.5 Results

In this section we present the construction of symmetric Hadamard matrices of orders
4 · 23 = 92, 4 · 29 = 116 and 4 · 43 = 172. The order 92 is not new. The orders 116, 172 are
new.
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The solutions are listed in the form of SDSs with four base blocks. From them one
can construct the corresponding binary sequences and also the circulant matrices. To be
specific, we label the positions of a binary sequence of length v with 0, 1, . . . , v − 1 in that
order. To a given subset X ⊆ {0, 1, . . . , v − 1} we associate the binary sequence whose
−1 entries occur exactly at the positions labeled by the elements of X. Further, to such
a binary sequence we associate the circulant matrix of order v whose first row is that
sequence. These circulant matrices can be plugged in to the GP array, in a suitable order,
to obtain the symmetric Hadamard matrix. We say that a block of a SDS is symmetric if
the corresponding binary circulant matrix is symmetric.

3.7.5.a Four non-equivalent solutions for v = 23

All four SDSs have parameters (23; 10, 10, 9, 8; 14) and are written as [B,C = B,A,D]
with A symmetric. The quadruple of corresponding circulant matrices [A,B,C,D] should
be plugged in to the GP array. A graphical representation of the first solution listed below
is displayed in Figure 3.10.

[[[0,1,2,3,5,7,9,12,17,18],[0,1,2,3,5,7,9,12,17,18],

[0,2,3,6,10,13,17,20,21],[0,1,2,4,5,10,13,14]],

[[0,1,2,3,5,7,10,11,13,19],[0,1,2,3,5,7,10,11,13,19],

[0,5,7,8,11,12,15,16,18],[0,1,2,7,10,11,14,16]],

[[0,1,2,3,6,8,9,10,14,19],[0,1,2,3,6,8,9,10,14,19],

[0,1,3,8,11,12,15,20,22],[0,1,3,5,7,10,13,16]],

[[0,1,2,5,6,8,10,13,14,16],[0,1,2,5,6,8,10,13,14,16],

[0,1,3,4,10,13,19,20,22],[0,1,2,5,7,12,16,18]]]:

3.7.5.b Fifteen non-equivalent solutions for v = 29

All 15 SDSs have parameters (29; 13, 13, 11, 11; 19). The first six are written as [A,D,B,C =
B] and the remaining nine as [B,C = B,A,D], with A symmetric in all cases. The quadru-
ple of corresponding circulant matrices [A,B,C,D] should be plugged in to the GP array.
The first solution from those listed below is displayed in Figure 3.11.

[[[0,4,5,6,7,9,13,16,20,22,23,24,25],

[0,1,2,3,5,8,10,13,14,15,18,22,25],

[0,1,2,5,6,8,11,12,14,16,22],

[0,1,2,5,6,8,11,12,14,16,22]],

[[0,1,5,8,12,13,14,15,16,17,21,24,28],

[0,1,4,5,6,7,10,11,14,16,17,19,24],

[0,1,2,4,7,8,10,12,15,19,21],

[0,1,2,4,7,8,10,12,15,19,21]],

[[0,2,6,7,8,10,11,18,19,21,22,23,27],
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Figure 3.10: A visualization of the first solution of order 4·23 = 92. White indicates a
value of +1, and red -1. We can see clearly the symmetry of the matrix, as well as the
distinct blocks of the GP array.

[0,1,3,4,5,7,10,13,14,15,17,20,24],

[0,1,2,5,6,7,9,12,14,20,23],

[0,1,2,5,6,7,9,12,14,20,23]],

[[0,2,3,4,6,11,13,16,18,23,25,26,27],

[0,1,2,5,6,8,10,11,14,17,18,20,22],

[0,1,2,3,6,7,11,13,14,17,22],

[0,1,2,3,6,7,11,13,14,17,22]],

[[0,6,8,9,10,12,13,16,17,19,20,21,23],

[0,1,3,5,6,7,10,12,13,16,18,21,22],

[0,1,2,3,7,9,12,14,17,18,22],

[0,1,2,3,7,9,12,14,17,18,22]],

[[0,1,5,8,12,13,14,15,16,17,21,24,28],

[0,1,2,3,6,8,9,12,13,15,19,20,23],

[0,1,2,5,7,9,11,12,15,17,20],

[0,1,2,5,7,9,11,12,15,17,20]],

[[0,1,2,3,6,8,9,11,12,16,18,20,25],

[0,1,2,3,6,8,9,11,12,16,18,20,25],

[0,5,6,8,9,13,16,20,21,23,24],

[0,1,2,3,4,7,8,11,13,17,19]],

[[0,1,2,3,4,6,9,10,11,14,17,19,23],

[0,1,2,3,4,6,9,10,11,14,17,19,23],

[0,2,7,11,12,14,15,17,18,22,27],

[0,1,2,3,6,9,13,14,18,20,24]],

[[0,1,2,3,5,6,9,11,12,15,17,22,24],

[0,1,2,3,5,6,9,11,12,15,17,22,24],
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[0,2,6,7,8,11,18,21,22,23,27],

[0,1,2,3,5,6,10,13,14,17,21]],

[[0,1,2,4,5,6,9,10,13,15,16,17,23],

[0,1,2,4,5,6,9,10,13,15,16,17,23],

[0,1,2,7,10,12,17,19,22,27,28],

[0,1,3,5,7,10,13,16,19,21,25]],

[[0,1,3,5,7,8,10,12,13,14,18,21,22],

[0,1,3,5,7,8,10,12,13,14,18,21,22],

[0,3,6,11,12,13,16,17,18,23,26],

[0,1,2,3,4,6,10,12,16,17,20]],

[[0,1,2,3,5,7,8,10,14,16,19,20,24],

[0,1,2,3,5,7,8,10,14,16,19,20,24],

[0,1,2,4,10,11,18,19,25,27,28],

[0,1,4,5,7,9,12,13,16,20,23]],

[[0,1,2,4,6,7,8,10,11,14,17,19,22],

[0,1,2,4,6,7,8,10,11,14,17,19,22],

[0,1,2,8,10,14,15,19,21,27,28],

[0,1,2,5,7,10,14,15,18,19,24]],

[[0,1,3,4,6,7,8,11,13,15,17,22,23],

[0,1,3,4,6,7,8,11,13,15,17,22,23],

[0,1,9,11,12,14,15,17,18,20,28],

[0,1,2,5,6,10,12,17,18,21,26]],

[[0,1,2,3,5,7,9,11,12,14,15,20,24],

[0,1,2,3,5,7,9,11,12,14,15,20,24],

[0,5,6,8,9,13,16,20,21,23,24],

[0,1,4,5,7,8,10,16,17,18,23]]]:

3.7.5.c One solution for v = 43

In this case we start by constructing D-optimal matrices of order 86 by using the well known
two-circulant construction. The parameter set of the relevant SDS, [D,A], is (43; 21, 15; 15).
The important feature of this SDS is that one of the sets has to be symmetric. Our example
is the following:

[[0,1,3,4,5,8,12,13,14,18,19,20,21,23,26,27,29,30,32,34,36],

[0,1,2,4,8,11,16,21,22,27,32,35,39,41,42]].

The second block, A, is symmetric. When combined with the Paley difference set B in Z43,
we can plug [A,B,C = B,D] into the GP array Equation (3.16) to obtain a symmetric
Hadamard matrix of order 4 · 43 = 172. This matrix is visualized in Figure 3.12.
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Figure 3.11: A visualization of the first solution of order 4·29 = 116.

Figure 3.12: A visualization of the single solution found of order 4·43 = 172.
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Chapter 4

Building a fault-tolerant quantum
RAM

A paper and code repository based on the contents of this chapter are in preparation at
the time of submission.

Understanding the construction of a fault-tolerant qRAM is important for the develop-
ment of quantum algorithms. At the time of writing, there is an abundance of algorithms
being developed that hinge on being able to efficiently prepare input states or query a
qRAM. However when fault-tolerance is required, as appears to be the case for any algo-
rithm that requires a superpolynomial amount of queries [4], we will incur a large overhead
in physical resources that may limit the performance of promising new techniques.

The goal of this work is to develop an accessible framework for resource estimation of
quantum RAM, and to analyze the space-time tradeoffs for a number of circuit families that
can query classical bits in superposition. People designing or implementing algorithms that
require a qRAM can choose the tradeoff that best suits their needs and constraints. We
explore the extremes of circuit depth and width, and show circuits designed to interpolate
between the two. While the large amount of resources they require is hardly surprising,
this is a first effort in quantifying such circuits, and it is based on ‘worst case’ scenarios; we
discuss how optimization and tailoring circuit design to specific problems can help mitigate
some of the overhead.

Another contribution is the associated software, which provides a highly extensible
framework for resource estimation of any quantum circuit. The release contains the circuit
families explored herein, as well as routines for surface code resource counts in which it
is easy to change physical parameters, such as gate error rates. This enables researchers
to perform resource estimation over a broad range of parameters and values to determine
both what is required for their specific algorithm, as well as how large of a problem they
can run given the hardware they have.
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4.1 Introduction

Random-access memory (RAM) is an essential component of classical computing archi-
tectures. Many quantum algorithms require an analogous system, a so-called quantum
RAM, or qRAM, where the input is a quantum state, the routing components are inher-
ently quantum, and the information stored can be either classical, i.e. |0〉 or |1〉 but not a
superposition of both, or quantum, i.e. any arbitrary superposition of |0〉 and |1〉. In the
present paper we consider qRAM that stores only classical information. Generically, such
a memory allows for the querying of a superposition of addresses∑

j

αj|j〉|0〉
qRAM−→

∑
j

αj|j〉|bj〉, (4.1)

where
∑

j αj|j〉 is a superposition of queried addresses and |bj〉 represents the content of
the j-th memory location. A memory that stores classical information but allows queries
in superposition is required for quantum algorithms such as Grover’s search on a classical
database [33], collision finding [34], element distinctness [35], dihedral hidden subgroup
problem [36] and various practical applications mentioned in [81]. In fact, such a quantum
memory plays the role of the oracle and is ideal in implementing any oracle-based quantum
algorithm, in which the oracle is used to query classical data in superposition.

Several authors described algorithms that require only a polynomial amount of resources
such as computational qubits or depth, and some larger number of ‘quantumly accessible’
classical bits [82]. Such quantumly accessible classical bits are less costly for classical
simulations of quantum computers, since a quantum algorithm with n qubits and m qRAM
bits can be simulated with O(2n +m) classical bits, instead of O(2n+m).

There are also numerous algorithms, for example in quantum machine learning and
Hamiltonian simulation, that are shown to demonstrate a speedup but must assume a
qRAM can be queried efficiently (for example, [37–39]). For many algorithms this depen-
dence stems from using the HHL algorithm for solving linear systems as a subroutine [40],
which itself is successful in practice only if we can query efficiently, though we note that
the particular operation performed by the qRAM differs slightly than the one we analyze
here 1 .

One such implementation, the bucket brigade method [31], may allow algorithms that
make only a few queries to a qRAM to avoid the usual overhead associated with fault-
tolerant implementation of a binary-tree type look-up circuit. For such few-query algo-
rithms this may bring substantial savings. However for many-query algorithms, it does
not appear that one can bypass fault-tolerant error correction [4]. It remains unclear
whether there is in fact much of a savings over general purpose quantum memory when
implementing a fault-tolerant qRAM for a quantum computation.

Our work here seeks to address the question of the cost of fault-tolerant qRAM in
a quantum computation. This cost is comprised of a number of different factors. The

1In contrast to Equation (4.1), the data to be read in is a vector of complex numbers b = (b1, b2, ..., bn)
which become the amplitudes in a superposition, e.g. b→

∑
i bi|i〉.
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primary one we consider here is the execution of a quantum circuit which performs the
query, completely embedded in a fault-tolerant error correction scheme. One must also
take into account external factors that may stem from the specific physical implementation
and/or algorithm which is querying the qRAM. In principle, we can boot up our qRAM
qubits only when we need to make a query, and turn them off after the fact. However, a
combination of the overhead cost of initializing the qubits, cost of resetting them to |0〉,
as well as any idle time between queries may warrant a more active approach to error
correction so that after initialization the qRAM remains perpetually on (in a sense this
would be similar to how conventional RAMs refresh themselves).

Roughly speaking, there are two natural ways to implement a quantum query to a
classical memory. At one extreme, classical information b1, . . . , bN could be laid out in
static physical hardware which is quantumly queried. This can be accomplished using,
for example, Controlled-NOT (CNOT) gates on some target register conditioned on the
values of the bj, or by some binary tree circuit or a bucket brigade-style circuit, which
has depth logarithmic in the size of the database. Such approaches require a number of
query qubits that is proportional to the size of the database. By query qubits, we are
referring to the qubits used in essentially all such memory schemes in order to connect
the computational qubits that store the index that needs to be queried, and the (qu)bits
that store the classical information being queried. These query qubits (or qudits) are only
used ephemerally in order to perform the query, and do not store any information before
or after each query.

At the other extreme, instead of storing the classical information in a static physical
memory, one can simply implement a sequence of mixed-polarity multi-controlled CNOTs,
conditioned on the control bits representing the memory address of a 1. This implies that
the classical database is implicitly stored in the logical circuit, and this circuit will have
depth proportional to the number of 1s in the database. In this model, reading from the
qRAM consists of simply running the circuit, while writing involves the addition or removal
of a multi-controlled CNOT for the desired address. Of course, if there are more 1s than
0s, it suffices to condition instead on the control bits representing the memory addresses of
the 0s, and then finish with a single NOT gate.) Such circuits can in general be optimized
using any number of known optimization techniques for Boolean circuits.

We present variants of this latter approach that only require resources roughly pro-
portional to the number of 1s in the database. Suppose there are m 1s in the database.
We can perform a sequence of m multiple controlled gates, where each address x1x2 . . . xn
in which there is a 1 controls the output on some target bit. We can also parallelize this
process: in O(logm) depth we can compute m copies of the desired index. Then in parallel,
using the j-th copy of the desired index we compute 1 if the index equals the index of the
jth 1 in the database. Finally, using a binary tree type circuit we can in O(logm) depth
compute whether a 1 was computed on any of the m copies. We then uncompute all the
intermediate computations.

There are also many natural ways to interpolate between the two approaches, for ex-
ample using the same fan-out like operation to make 2k copies of the first k index bits, and
then use 2k parallel logical circuits to explore the remaining n− k index bits.

42



In this paper, we outline these various questions and approaches, and consider their
costs and trade-offs. Such an analysis is important for optimizing the physical resources
needed to implement a quantum algorithm in practice, using the best-known methods.
We begin by describing our general cost model and how we presume an algorithm will
query the qRAM. We then introduce a number of circuit families: circuits for the bucket
brigade qRAM model, the basic highly sequential or parallel circuits mentioned above, as
well as some interpolations between the two. We compute concrete parameters such as
real-time cost, number of qubits, etc. of our circuits embedded within a fault tolerant
implementation using a defect-based surface code [41]. We also discuss a special case of
the address structure, which offers a massive savings in the aforementioned resources. We
conclude with some final thoughts and present avenues for future research.

4.2 Modeling the cost of a qRAM

We consider a qRAM which stores quantumly accessible classical bits. Locations in memory
are addressed by n-bit strings x1x2 · · ·xn, and are queried by inputting the associated state
|x1x2 · · ·xn〉 to a circuit. We assume that the memory addresses in which 1s are stored
are all known, so that the qRAM can be represented using only a logical circuit and not
by physical qubits prepared in |0〉 or |1〉. For each address x1x2 · · ·xn, the qRAM should
implement

|x1x2 · · ·xn〉|0〉 → |x1x2 · · ·xn〉|bx1x2···xn〉 (4.2)

where bx1x2···xn is the stored value at the specified address. This form ensures the qRAM
can be queried in superposition.

Consider a quantum algorithm with a structure similar to that in Figure 4.1. Queries
to a qRAM are interspersed between some number of arbitrary unitary operations that
comprise the main portion of the algorithm. We suppose that the entire circuit is embedded
in a surface code in order to make it fault-tolerant. Then, we can use the same cost metric
as [12], wherein

Cost = log2 (Logical qubits× Surface code cycles.) (4.3)

In essence this cost represents a tradeoff of space vs. time.

The cost is calculated using a framework [12] that starts from the high-level algorith-
mic description. The algorithm begets a quantum circuit, which is then synthesized and
optimized over an elementary gate set. The optimized circuit is then embedded into a
surface code, in which the number of logical qubits and operations determine parameters
such as code distance and resources required for magic state distillation. With these, we
can compute physical layer parameters such as the number of physical qubits and surface
code cycles.

In the present work we will take a more general approach to calculating cost. We will
not be dealing with any specific algorithms or circuits, and so we will not perform any
circuit optimization, but rather we compute costs and resources in terms of parameters
like n, and the number of 1s stored in the memory.
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We will also use of a ‘rough’ estimate of cost before performing the surface code analysis:

Rough cost = log2 (Logical qubits× T -depth) . (4.4)

One often finds that magic state distillation is the most expensive part of implementation,
and so the algorithm will be time-limited to how quickly we can produce the required
magic states. We will assume in our analysis that we always have as many distillation
factories as is required to implement a single layer of T -depth. The number of T gates in
each layer, the T -width, is estimated as Tw = Tc/Td where Tc is the total T -count of the
algorithm. Thus the T -depth is an appropriate stand-in for time, and as we will see, gives
a good description of the overall scaling of cost.

Figure 4.1: An example of how an algorithm might query a qRAM. The algorithm itself
runs on NA logical qubits, n of which will be used as an input address to query a qRAM,
which itself requires NQ logical qubits. We suppose that the algorithm queries the qRAM
periodically after performing each of some number χ of unitary operations.

4.3 Should I try turning it off and on again?

One question posed in the Introduction was whether or not we should keep the qRAM “on”
between queries. By this, we mean performing active error correction on the idle qubits in
the qRAM while the algorithmic components run. We will consider this question in terms
of the difference in cost of both approaches.

For simplicity, let us assume that the algorithm performs χ instances of the same
operation U onNA qubits, and χ−1 queries to the qRAM in between these operations, using
NQ qubits, as is depicted in Figure 4.1. As we alternate between queries and operations,
the logical qubits in the algorithm (minus the n used as an address for the query) will be
in an idle state while we query the qRAM; similarly, if we keep the qRAM on, the query
qubits will be idle while the algorithmic portions run.

Let cA be the number of surface code cycles taken by one instance of U . We assume
that ci cycles are required for the initialization of a logical qubit, using for example the
procedures outlined in [41]. We assume as well that it takes ct cycles to reset and dispose
of the qubits once the query is complete. In a sense, these operations are analogous to C
memory management functions calloc() and free() [83].
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It is straightforward, from Figure 4.1, to see that we should take the following approach:

cA > ci + ct → turn the qRAM qubits off during the execution of U , (4.5)

cA < ci + ct → always keep qubits on. (4.6)

Note, however, that since cost involves multiplication by the number of logical qubits,
performing any sort of cost analysis on a qRAM is naturally most important when NQ >>
NA. The choice of query circuit, various options for which will be discussed in the ensuing
sections, may thus depend on a tradeoff between available resources and the relative size
of the algorithm circuit versus that of the qRAM.

One can also imagine situations in more complex algorithms where the operations Ui are
not identical. Here one might design a smart compiler that will choose to periodically turn
off the qRAM during comparatively long algorithm operations, but leave it on for shorter
ones. This requires prior knowledge, or a way to determine during execution whether the
query qubits have been properly returned to their initial state and are not entangled with
any of the algorithm (address) qubits. A smart compiler may also take into consideration
the relative error rates between, say, re-initializing a qubit in |0〉 versus keeping its existing
state error-corrected. This alone may warrant always turning off the qRAM, if |0〉 can be
initialized quickly and with very high accuracy.

Finally, we note that if an algorithm requires writing regular updates to the classical
database (such as in [82]), then one would need to update the query circuit during the
course of the algorithm. Thus any latency between changing the database based on a
measurement during the execution of the quantum circuit and updating the circuit in the
software must be considered. Latency would also exist for any other mechanism for storing
the database, and the precise cost for each approach would need to be considered in each
case.

4.4 Bucket brigade circuits

The first family of circuits we will analyze are a family introduced in [4] that function as a
bucket brigade qRAM [31,32]. A reproduction of the circuit is shown in Figure 4.2. These
circuits assume that the contents of the memory are stored statically in the lower register
of qubits in Figure 4.2, which is in contrast to the circuits we will see in later sections.

Bucket brigade circuits are constructed using only CNOTs and Toffolis, and we will
further decompose the Toffolis over the Clifford+T gate set. We will perform a cost esti-
mate for two types of bucket brigade circuit, those constructed precisely as in Figure 4.2,
as well as an improved version where we parallelize the execution of the Toffolis in each
layer.

For memories with n-bit addresses, a bucket brigade circuit requires 2 · 2n − 2 Toffoli
gates. We can choose from a number of different implementations of a Toffoli [84, 85],
which will affect the overall resource counts:

• No ancillae, T -depth 3,
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Figure 4.2: One method of constructing a bucket brigade style qRAM circuit. Original
image taken from [4]. The circuit is implemented using only CNOTs and Toffolis, which
we decompose over Clifford+T . The circuit is independent of the contents of the memory,
which is initialized separately in the lower register. A full qRAM query consists of running
this circuit, copying the output to an additional qubit, and then re-running it backwards.
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• One ancilla, T -depth 2,

• Four ancillae, T -depth 1.

Note that in all cases the ancillae can be reused whenever Toffolis are applied sequentially.
We focus on the third option, which while it uses the most ancillae, a cursory analysis
using Equation (4.4) found this to always produce the lowest cost due to the savings in
T -depth.

As the memory contents are stored statically, we know the full form of the circuit and
so we can perform some optimization. In particular, in the final cascade of Toffolis sharing
a target, we can reduce the number of CNOTs and Hadamards by removing ‘interior’
Hadamards and CNOTs at the beginning and end of each Toffoli that use only the target
qubit and the ancillae (see Toffoli implementation in Fig. 6 of [85]).

For a fully reversible qRAM query, we must run the circuit in Figure 4.2, copy the
output to an additional qubit, and then run it again backwards. This yields resource
counts:

NQ = n+ 2n+1 + 6 (logical qubits), (4.7)

D = 56 · 2n + 2n− 53 (depth), (4.8)

Tc = 28(2n − 1) (T -count), (4.9)

Td = 4(2n − 1) (T -depth), (4.10)

Hc = 4(2n − 1) (Hadamard count), (4.11)

CNOTc = 62 · 2n − 59 (CNOT count). (4.12)

We can also parallelize this circuit by a) copying down the address qubits to ancillae
so that the Toffolis in the first n − 1 layers can be performed in parallel, and b) adding
an extra output register of 2n qubits to collect the results of the final set Toffolis, followed
by a sequence of 2n CNOTs. While this still yields an exponential depth due to this final
set of CNOTs, it will yield a significant savings in T -depth, which is the more important
parameter later when we perform the surface code analysis.

We require enough ancillae to perform the largest amount of simultaneous Toffolis,
which will be 4 · 2n using the T -depth 1 implementation. However, we can no longer use
the same depth reduction trick for the last layer of Toffolis as they now all have different
target qubits. We obtain:

NQ = 8 · 2n + 1 (4.13)

D = 2 · 2n + n2 + 35n+ 3 (4.14)

Tc = 28(2n − 1), (4.15)

Td = 2n, (4.16)

Hc = 8(2n − 1), (4.17)

CNOTc = 78 · 2n − 2n− 73. (4.18)

47



We note here that the rough cost scaling of NQ × Td in terms of n is greatly improved
in the parallelized circuit. Moving forward we will consider only the parallel versions
of the circuit; we will return to this point and perform a more thorough comparison in
Subsection 4.5.3.

4.5 Basic query circuits

We now construct another two families of qRAM circuits that perform the operation de-
scribed by Equation (4.2). These circuits have opposite properties when it comes to logical
qubits and circuit depth. We will see in the end that they have comparable overall cost,
but vastly differing use of resources down at the physical level.

For these circuits, we suppose for simplicity that the memory contains 2q 1s, the loca-
tions of which are known, with the rest being 0. Note that this is in contrast to the bucket
brigade circuits where the contents, while unknown, were provided to us statically stored
in hardware. We note that such a memory is capable of holding arbitrary k-bit values by
simply storing the elements bitwise in the memory. Furthermore, if the number of 1s is
ever greater than the number of 0s, we can equally well build our circuits by inputting the
locations of the 0s.

We consider a small running example for the purpose of creating the circuit diagrams.
Suppose we have n = 3 and q = 2, i.e. 4 of 8 memory locations store a 1. We arbitrarily
set those locations to be 000, 001, 011, 111.

4.5.1 Large depth, small width circuit

We can easily create a circuit which will output a 1 for the valid addresses by implementing
a sequence of 2q n-bit mixed-polarity multiple control Toffolis (MPMCTs). The associated
circuit for the running example is shown in Figure 4.3. Each MPMCT is tied to one of the
addresses, and sets a target bit to 1 only if its associated address is fed in. For purposes
of the resource estimation here, we will assume the worst case: we don’t know the exact
sequence of MPMCTs, only that we have 2q such operations. As such, we will not perform
any extensive circuit optimization in our analysis.

Figure 4.3: A qRAM circuit with few qubits but large depth. The addresses of all 2q

locations known to contain a 1 are hard-coded into the circuit as mixed-polarity multiple
control Toffoli gates.
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In general, when such a sequence of MPMCTs is known, we may be able to greatly
simplify the circuit. For example, since a sequence of MPMCTs represents a Boolean
function which is a sum of product terms, we can find its ESOP expression using a tool
such as EXORCISM-4 [86]. This can offer great savings - for example, the circuit in
our example can be reduced to 2 Toffolis just by factoring some terms in the Boolean
expression. We can also use the method of [87] which first computes the ESOP, and then
breaks the expression down into common cofactors of the expression terms; cofactors are
then reversibly synthesized individually before being used in their constituent terms.

Instead we begin our analysis by performing quantum circuit synthesis to decompose
the circuit down into the 1- and 2-qubit operations of the Clifford+T gate set. Again, when
the precise sequence of MPMCTs is known, further optimization can be done to reduce
parameters such as the T -count and T -depth (see, for example, the methods in [85]).

The decomposition we choose for the MPMCTs is that of [88,89], which is an optimiza-
tion of an older algorithm from [90] that performs an n-controlled NOT using n−2 ancillae
by turning it into a cascade of 4(n− 2) Toffoli gates. We take advantage of an additional
optimization which, at the cost of one more ancilla qubit, can further parallelize some of
the T gates [84]. While it may be possible to implement such gates with fewer ancilla
qubits, recall that we are interested in plugging this circuit into the surface code, wherein
minimization of T -count and T -depth plays a critical role in reducing the overall cost in-
curred by magic state distillation. Finally, we note that this MPMCT implementation is
valid only for n ≥ 4.

The resources required for an n-controlled MPMCT gate are as follows:

D = 28n− 60, (4.19)

Tc = 12n− 20, (4.20)

Td = 4(n− 2), (4.21)

Hc = 4n− 6, (4.22)

CNOTc = 24n− 40. (4.23)

We see immediately that in theory, the circuit in Figure 4.3 requires only n+ 1 qubits,
plus n − 1 ancilla qubits. As the ancillae are returned to their initial state after each
MPMCT, we can reuse them for all 2q gates. Thus, the total number of qubits is

NQ = 2n. (4.24)

We note that the X gates to change polarity of the controls can be applied in the first
layer of depth of each MPMCT; in addition, the final polarity change can be performed
in the last layer of the last MPMCT. In all cases the X gates do not contribute to depth.
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Thus we obtain total logical resource counts,

D = 2q(28n− 60), (4.25)

Tc = 2q(12n− 20), (4.26)

Td = 2q+2(n− 2), (4.27)

Hc = 2q(4n− 6), (4.28)

CNOTc = 2q(24n− 40). (4.29)

Finally, in order to make the circuit fully reversible, we must perform the circuit of
Figure 4.3, copy down the result of the last qubit to a new qubit using a CNOT, and then
undo the computation of the full circuit. The ultimate logical resource counts come to:

NQ = 2n+ 1, (4.30)

D = 2q+1(28n− 60) + 1, (4.31)

Tc = 2q+1(12n− 20), (4.32)

Td = 2q+3(n− 2), (4.33)

Hc = 2q+1(4n− 6), (4.34)

CNOTc = 2q+1(24n− 40) + 1. (4.35)

4.5.2 Small depth, large width circuit

Whereas the circuit of the previous section performed all the MPMCTs sequentially, here
we present an implementation which can parallelize their execution. We provide an example
of such a circuit in Figure 4.4.

We begin with 2q registers of qubits, one for each address containing a 1. The address is
input to the first register of qubits and then copied down to the others using a logarithmic
number of CNOTs (this step could in theory be skipped if we could prepare 2q identical
copies of the address).

Each register performs an MPMCT which will trigger one of the qubits in an additional
register if the input address matches. The qubits in the additional register are then summed
together using a sequence of CNOTs, the result of which is passed to an output bit.

The number of qubits, including all required ancillae, is

NQ = n · 2q + 2q(n− 1) + 2q + 1

= n2q+1 + 1. (4.36)

To compute the depth of this circuit, we must take into account the sequences of
CNOTs. These are implemented in logarithmic depth; the initial copying is performed in
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Figure 4.4: A circuit with small depth but a large number of qubits. The implementation
of the MPMCTs is performed in parallel, each requiring n− 1 ancillae, which significantly
increases the number of qubits required.

depth q, the final sum in depth q, plus 1 for the terminal CNOT. Thus the depth is

D = q + (28n− 60) + q + 1

= 2q + (28n− 60) + 1, (4.37)

which scales linearly in both n and q.

The T -count will be the same as for the circuit in the previous section, however the
T -depth will now be Td = 4(n− 2) as all the MPMCTs are performed in parallel.

In addition, we will need the Clifford counts. The number of Hadamards is unchanged.
The number of CNOTs in the initial copying layer plus the terminal parity layer is

CNOTc−init = n

q−1∑
i=0

2i +

q−1∑
i=0

2i + 1

= (n+ 1)(2q − 1) + 1 (4.38)

51



Together with the 24n− 40 CNOTs in the MPMCTs we obtain

CNOTc = (n+ 1)(2q − 1) + 2q(24n− 40) + 1

= 2q(25n− 39)− n− 1 + 1. (4.39)

Again, to make everything fully reversible, we must perform everything that takes place
before the final CNOT of Figure 4.4 again. This yields total logical resources

NQ = n2q+1 + 1, (4.40)

D = 2(2q + 28n− 60) + 1, (4.41)

Tc = 2q+1(12n− 20), (4.42)

Td = 8(n− 2), (4.43)

Hc = 2q+1(4n− 6), (4.44)

CNOTc = 2q+1(25n− 39)− 2n− 1. (4.45)

4.5.3 Preliminary cost estimate

Recall that our definition of cost is a measure of space vs time. We can analyze the product
NQ×Td to get a rough first estimate of how the cost will depend on n and q. In Figure 4.5
we plot the overall costs (including constant prefactors) for differing values of n, and q for
the circuits in which it is relevant. We summarize our observations in Table 4.1 to make
it easier to see the tradeoff between the number of qubits and the depth for each circuit.
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Figure 4.5: Analytical cost estimates NQ × Td for large depth/width and parallel bucket
brigade circuits. (Top) cost for q = n− 1, a half-full memory. Costs for large depth/width
circuits are comparable, showing a clear tradeoff between space and time. However, the
parallelized bucket brigade algorithm has lower cost overall. (Bottom) Dependence of cost
on the fullness of the memory (number of 1s). For sparser memories it may be cheaper,
up to a point, to use a large depth/width circuit over the parallel bucket brigade circuit.
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Circuit Large depth Large width Bucket brigade parallel

NQ 2n+ 1 n2q+1 + 1 8 · 2n + 1

Td 2q+3(n− 2) 8(n− 2) 2n

Cost O(n2 · 2q) O(n2 · 2q) O(n · 2n)

Table 4.1: Cost scaling for bucket brigade and large depth/width circuits.

The top panel of Figure 4.5 shows the situation of a half-full memory in which q = n−1.
This is the worst case, because as mentioned previously, if the memory is more than half-
full with 1s, we can switch the polarities of the gates to pick out the locations that are 0
instead. For a half-full memory, the parallel bucket brigade circuit is the best choice, as it
always has lower cost.

For memories that are emptier, there is a cross-over point before which it is in fact
better to use either the large depth or large width circuit as opposed to the bucket brigade
circuit (assuming, of course, that one has knowledge or control over the location of the 1s
in the memory). We can solve for this transition point by equating the cost functions of
the two circuits from 4.1 (we choose the large width one for example). Then we find that
qmax ≈ n− log2 (n− 1) and so past this memory fullness it is preferable to use the parallel
bucket brigade circuit.

4.5.4 Surface code analysis

We now embed these circuits into a surface code using the same procedure as in [12].
We will make available our Python code for performing this task at https://github.

com/glassnotes/FT_QRAM_Circuits, which contains resource estimation methods for the
surface code as well as separate classes for each circuit considered here and in future
sections. The (very optimistic) surface code parameters are input injection error probability
pin = 10−4, gate error probability of pg = 10−5, and a cycle time of tc = 200ns.

Figure 4.6 plots the numerical equivalent of Figure 4.5. While the relative relationships
remain the same, the overall cost is significantly higher due to the large amount of logical
qubits needed in the distillation factories.

Figure 4.7 is perhaps the more interesting plot, as it shows the explicit tradeoffs between
the number of physical qubits and the ‘real’ query time. Even though we observed on
Figure 4.5 that the costs of the large depth/width circuits are comparable, Figure 4.7
shows us exactly how large the space vs time tradeoff is.

We present numerical data for the largest and smallest values of n we chose, n = 15
and n = 36, in Table 4.2. The n = 36 case corresponds to 8 ‘GB’ of classical data in the
memory, whereas n = 15 corresponds to 4 ‘KB’. These particular choices are somewhat
meaningful: 4KB was the amount of RAM that the Apple I computer shipped with back
in 1976, while 8GB is a fairly standard amount of RAM on a laptop at the time of writing.
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Figure 4.6: Cost vs. memory fullness q for basic circuits with n = 36 when embedded in the
surface code. The horizontal line represents the parallel bucket brigade circuit which has
only a fixed value of n. This matches closely with the analytical predictions in Figure 4.5,
and we see that the cross-over point for memory fullness is around q = 30. The bumps in
the graph correspond to increases in surface code distances of the magic state distilleries.

Circuit n q Total time (s) Physical qubits

Bucket brigade parallel 15 - 3.60 · 10−4 8.49 · 107

Large width small depth 15 14 1.25 · 10−3 1.47 · 108

Small width large depth 15 14 15.73 1.07 · 104

Bucket brigade parallel 36 - 2.16 · 10−3 4.16 · 1014

Large width small depth 36 35 8.70 · 10−3 1.97 · 1015

Small width large depth 36 35 1.51 · 108 7.65 · 104

Table 4.2: Time and physical qubits required for fault-tolerant qRAM queries. The sizes
n = 15 and n = 36 are analogous to 4KB and 8GB memory sizes respectively.

Our analysis shows that quantumly querying the 4KB qRAM can be done with nearly
100 million qubits in roughly 0.4ms (with parallel bucket brigade), or with 10000 qubits
in roughly 16s (small width large depth), however the latter can only be used in cases
where we know where the 1s in our memory are. As a reference point, modern-day RAMs
have query times on the order of 150ns. To query this fast would first of all require
significant advances in operational speed (recall our estimate of surface code cycle time
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was an ambitious 200ns), as well as an astronomical amount of qubits.
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Figure 4.7: Space (physical qubits) vs. time tradeoff for basic circuits. Each point corre-
sponds to a different memory size n from 15-36. Memory fullness q is set to n− 1 for each
n for the large width/depth circuits.

4.6 Hybrid query circuits

We now investigate a compromise between the two circuits in Section 4.5 by creating a
sort of hybrid of the two extremes. Our motivation is to explore a wide range of options
for the tradeoff between memory and depth to enable an algorithm designer to choose a
qRAM implementation based on available resources.

We will need a larger running example: suppose our addresses are now 5 bits, and that
addresses 00000, 01001, 10010, 11011, 00100, 01101, 10110, 11111 all contain the value 1
(2q full addresses, q = 3).

4.6.1 Circuit design

The idea behind the hybrid circuit is, rather than checking the validity of all n bits of the
address, check only the first k, and then use those outputs as controls for checking the
rest of the bits. For brevity of analysis we will show here only the case where k < q. Full
details for the case k ≥ q can be found in the accompanying code. We also must have
4 ≤ k ≤ n− 3, as recall the MPMCT implementations must have at least 4 control bits.
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Figure 4.8: A basic hybrid circuit. The initial set of controlled gates recognizes the first
k bits of an address; addresses that pass this condition go on to control readout of the
remaining n− k bits (here n = 5, q = 3, k = 2).

The circuit for our running example is shown in Figure 4.8. In the worst case, there
could be 2k unique bit strings on the first k bits. Thus our top ‘tier’ consists of at most 2k

k-controlled MPMCTs, while the bottom tier will always consist of 2q n− k+ 1-controlled
MPMCTs. Again, in specific cases we could compute the ESOP of the Boolean expressions
to simplify the products of MPMCTs, but here we assume them to be unknown.

We use again the decomposition of the MPMCTs in the previous section. The number
of ancillae now depends on the size of k − 1 vs. n − k - we will need enough ancillae to
implement the larger of the two gates. As the ancillae are returned to their initial state
after use, we can use the same ancillae for all the gates in the sequence. In addition, we
need extra qubits to store the intermediate results from the first tier; this is at most 2k,
one for each MPMCT. Finally, we will need an additional qubit for when we copy down
the result before running everything backwards. Then,

NQ = n+ 2k + 1 + max(k − 1, n− k) + 1. (4.46)

We can use the results of the previous sections to estimate the other quantities as well,

D = 2(2k(28k − 60) + 2q(28(n− k + 1)− 60)) + 1 (4.47)

Tc = 2(2k(12k − 20) + 2q(12(n− k + 1)− 20)) (4.48)

Td = 2(2k · 4(k − 2) + 2q · 4(n− k + 1− 2)) (4.49)

Hc = 2(2k(4k − 6) + 2q(4(n− k + 1)− 6)) (4.50)

CNOTc = 2(2k(24k − 40) + 2q(24(n− k + 1)− 40)) + 1 (4.51)

We can, in addition, parallelize the hybrid circuit in the same way that we parallelized
the original deep circuit. There are three ways to do this: parallelize only the first tier (as
shown in Figure 4.9), parallelize only the second tier, or parallelize both tiers. Parallelizing
both tiers is clearly the best choice, as not fully parallelizing will incur additional cost (more
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qubits) without seeing the full benefit in terms of time saved. We include these other
approaches only as an intermediate step and plot them to show how they are sub-optimal.
Resource counts for the aforementioned parallelizations can be found in the companion
code https://github.com/glassnotes/FT_QRAM_Circuits.

Figure 4.9: A hybrid circuit with its first tier parallelized. Parallelizing only one tier of a
hybrid circuit leads to an increase in cost in the worst case, as a larger number of qubits
are required for parallelization, while the other tier still runs in ‘series’ which may take a
significant amount of time.

4.6.2 Surface code analysis

We now study the tradeoffs between n, q, and our new parameter k. We will again perform
this in two ways, using NQ×Td, as well as a full surface code analysis. The former is plotted
in Figure 4.10, while the surface code results are shown in Figure 4.11 for a fixed n and
two different values of q.

Unlike in the previous section where the dependence on n and q could be expressed
simply as O(n22q), the hybrid circuits carry a very complex, intertwined connection be-
tween n, q, and k. In particular, while we only ever see up to a quadratic dependence on
n, we see many terms with exponential dependence on k and q, such as nk2k, n2k+q, etc.
For the most part, Figure 4.10 shows a clear cut exponential dependence on k when n and
q are fixed, deviating only at the extremal choices of k.

We observe that despite our best intentions, when no circuit optimization is performed,
the cost of the basic hybrid circuit is actually worse - despite having the same number of
MPMCTs but with fewer controls, the exponential increase in the number of logical qubits
required (2k of them) yields a much higher cost. Similarly, parallelizing only a single
tier of the circuit was detrimental to the overall cost. As anticipated, the time saved in
parallelizing only one part did not compensate for the substantial increase in the number
of qubits required to do so.
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Analytical cost estimate of hybrid circuits, n = 36, q = 35

Figure 4.10: Analytical dependence of cost vs the hybrid splitting parameter k for a fixed
memory size n = 36 and fullness q = 35. The partially parallelized versions do very poorly
because parallelization of one half incurs a large overhead in the number of qubits, while
running the other half takes a significant amount of time. Fully parallelizing the circuit
yields lower costs overall, and we also observe an optimal value of k for a given n, q.

Where we do observe an improvement is with the fully parallelized hybrid circuit. In
fact the cost of this circuit actually decreases when k is increased, and reaches a minimum
which we can solve for analytically. For purposes of example, setting n = 36, q = 35, we
differentiate the product NQ × Td. There are two possibilities due to the presence of the
max function in NQ. Using the value (n− k)2q provides us with a first expression to solve:

2k(1 + k ln 2) = 2q+1. (4.52)

When q = 35, k ≈ 31.4. Using (k − 1)2k instead yields the second expression

2k(2− ln 2 + 2k ln 2) = 2q, (4.53)

which has solution k ≈ 29.6. This corroborates the minimum seen in Figure 4.10 which
occurs somewhere around k = 31. Furthermore, this analysis could be used by an algorithm
designer to choose an optimal value of k based only on the fullness of the memory.
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Figure 4.11: Surface code costs for hybrid circuits with n = 36, and q = 35, q = 30.

Figure 4.12 shows again the tradeoff between physical qubits and time for the hybrid
circuits. For our 8GB case, to obtain millisecond-order query times we must still use on
the order of 1015 physical qubits in the fully parallel version, while a million physical qubits
in the basic version yields query times on the order of 3 years.
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Figure 4.12: Time vs. physical qubits for the hybrid circuits for n = 36, and q = 35, q = 30.
Distinct points represent different values of k from 4 to 32. Resource requirements for the
bucket brigade circuit is fixed as there is no notion of q or k.
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4.7 Special case: Cartesian product address structure

The resource estimates in the previous sections were all performed in the worst case,
where we assume no knowledge of the structure of the address space. Armed with some
information about the structure we can presumably take advantage of it and design special-
purpose families of qRAM circuits. In this section we provide one such example of an
address structure that yields a significant reduction in the resource count.

Consider the circuit shown in Figure 4.13. This circuit picks out 1s in the address
space given by the Cartesian product {00, 01}×{000, 100, 111, 101}, i.e. 8 total addresses,
but uses only 6 MPMCTs. We will term such a circuit a ‘double qRAM’, as it looks like
two circuits in the style of Figure 4.3 stacked on top of each other. The two parts of
the address are checked for validity simultaneously, and the output is conditioned on the
success of both parts.

We can parameterize such address spaces more generally. Suppose our memory contains
2q locations with the value 1, and we are using a hybrid circuit with hybrid parameter k.
Choose b1, b2 such that b1 + b2 = q. Store the values in the address space given by 2b1 k-bit
addresses on the first k bits, and 2b2 (n− k)-bit addresses on the last n− k bits.

Figure 4.13: A double qRAM using a Cartesian product address space. Here n = 5, q =
3, k = 2, b1 = 1, b2 = 2. Such a circuit uses only 6 MPMCTs to pick out a total of 8
different addresses, as opposed to the 12 required to pick out 8 addresses in Figure 4.8.
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Figure 4.14: Cost vs. k for double qRAM circuits, highlighting the stark decrease in cost
from the parallel hybrid model, when the same-sized address space is partitioned as a
Cartesian product of two smaller spaces, i.e. a double qRAM. We chose the size of the first
partition as b1 = 17 bits. We note that the double qRAM and its fully parallelized version
have very similar cost, not unlike the original wide vs. deep circuits. We also see that the
cost of the partially parallelized versions peaks around k = 18, which makes sense due to
the symmetry of the circuit when b1 ∼ q/2.

Resource counts can again be analyzed as in previous sections. Here, however, we no
longer have at most 2k k-controlled MPMCTs and 2q (n−k+1)-controlled MPMCTs, rather
we have by design 2b1 k-controlled and 2b2(n−k)-controlled MPMCTs. Furthermore, we no
longer require 2k qubits to hold the results of the first tier as in the hybrid models; we need
only a single qubit, because all possible combinations of top-tier address and bottom-tier
address yield valid addresses.

To determine a suitable choice of b1 and b2, we plotted the cost as a function of b1 for
a fixed n, q and varying k. We found choosing b1, b2 as roughly equal to q/2 to be the best
choice, which is sensible as it is the most balanced choice, and it will not be the case that
one tier takes significantly longer than the other. In this case, k need not be larger than
n/2 due to the symmetry of the circuit structure. Figure 4.14 shows a comparison of cost
vs. k for the double qRAM and the parallel hybrid circuit. Even for the double qRAM
the tiered parallel versions have worse cost than their normal or fully parallel versions.
However, we see that all types of double qRAM circuits have cost significantly less than
any previous circuits.

Figure 4.15 shows the space vs. time tradeoffs in comparison to the parallel hybrid
circuit. We see that the double qRAM circuits have overall fewer qubits and lower time
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as compared to the analogous regular hybrid circuit. We see that we can query the 8GB
qRAM in the millisecond range with just shy of 1010 qubits, or in the tens of minutes
range with around 10000. We show for comparison the 4KB memory in Figure 4.16. Using
the double qRAM we can always achieve query time of less than 1s, while the number of
physical qubits ranges from nearly 10000 to nearly one million.

While such an address structure yields promising results, the pertinent question now
becomes whether or not we can make good use of this structure in practice. We note that
in theory it should be possible to map any address space into that of a Cartesian product,
but performing such a mapping may destroy other structural properties of the data (for
example the deliberate grouping of adjacent addresses). Furthermore, such a mapping is
unlikely to be efficient, and this may negate any advantages gained from the new structure.
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Figure 4.15: Comparison of time vs. physical qubits for n = 36, q = 35 for a double qRAM
(b1 = 17) and the parallel hybrid circuit. Each point corresponds to a different value of
k. If the address structure affords it, the double qRAMs offer a better time/qubit tradeoff
than all other circuits. In the parallelized versions, most of the cost savings comes from
the smaller number of logical qubits required.
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Figure 4.16: Comparison of time vs. physical qubits for n = 15, q = 14 for a double qRAM
(b1 = 7) and the parallel hybrid circuit. Each point corresponds to a different value of k.
Overall resource requirements are significantly reduced as compared to Figure 4.15 however
even for the double qRAM the time and number of qubits are beyond the capabilitites of
current implementations.

4.8 Conclusion

We have presented a number of different circuit families which perform the task of a
qRAM. It is important to note that our resource estimates were based on the worst-case
situations of each. One should always, of course, do what’s best for the problem at hand.
For a specific algorithm, application of circuit synthesis and optimization techniques may
yield lower cost for, e.g. one of the partially-parallelized hybrid circuits rather than the
fully-parallelized versions.

Regardless, we can still draw some interesting conclusions from our analysis. First,
unsurprisingly, to implement a fault-tolerant qRAM with as much memory as a current-
generation laptop will remain an unfeasible task for the foreseeable future. Fast fault-
tolerant query times (∼ms) require quadrillions of qubits, and millions of qubits yield
query times that are large and impractical. While circuit optimization may alleviate this
to some degree, we are skeptical that it will have an impact that shaves off so many orders
of magnitude.

Next is that we can take advantage of special address structures to reduce the amount
of resources. We showed one such case with Cartesian product structure. Such structure
is unlikely to occur in general, but when it does we can perform substantial optimization.
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Finding such structures could be an interesting area for future work.

One significant opportunity for improvement is in the implementation of the surface
code. Lattice surgery has recently shown to yield a decrease in resource estimates, in some
cases lowering the number of physical qubits by a factor of 4 to 5 [91–93]. While a factor of
5 may not have much of an effect on circuits requiring quadrillions of qubits, it is promising
for smaller qRAMs requiring on the order of 10000 qubits. Further improvements in fault-
tolerant methods as well as advances in experimental techniques for reducing physical error
rates may make small qRAMs feasible in the nearer term.
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Chapter 5

Systematic selection of measurements
for incomplete tomography

Reprinted with permission from “O. Di Matteo, L. L. Sánchez-Soto, G. Leuchs, M. Grassl,
Physical Review A, 95, 022340”. Copyright (2017) by the American Physical Society.

The associated codebase can be found at https://www.github.com/glassnotes/Balthasar.

Coarse graining techniques are used in many areas of physics. A classical example is
that of the universality hypothesis and the behaviour of Ising models at a critical point
(the ideas that eventually led to the renormalization group) [94]. We coarse grain by
subdividing a lattice of Ising spins into chunks, and assign an effective spin up (or down)
depending on which direction is more prevalent in each chunk. This gives us a ‘zoomed-out’
picture of the lattice, but in an effectively smaller space which, at criticality, retains the
same properties as the original lattice.

In general, coarse graining is a tool used to reduce the complexity of a system. Recent
work develops a more general framework for coarse graining state space in a quantum
setting, as there is no obvious direct translation from other classical methods [95]. The
work in this chapter focuses on the particular case of quantum state tomography of multi-
qubit systems, and designs a coarse graining technique to select a subset of tomographic
measurements based on the natural symmetries present in the state space.

Given an unknown multi-qubit system, it is unclear, at first, how one should partition
a state space or qubits in such a way that ‘averaging’ over them in some sense will give
us meaningful tomographic results. How should we choose such partitions? Should we
partition qubits into groups and measure only certain groups fully, or perform measure-
ments across the different groups? Should we partition in terms of qubits, or some other
properties of the space? Furthermore, how many partitions should we choose?

This differs from other ideas using coarse graining in tomography that have been de-
veloped at the numerical level, such as ‘binning’ the outcomes of a continuous variable to
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perform reconstruction more efficiently with a discretized version, and to perform tomog-
raphy in the presence of noisy measurements [96–98].

In this work we coarse-grain discrete Wigner functions. Constructed by associating
lines in phase space to quantum states, the values of a discrete Wigner function can be
summed along a given line to find the probability of the system being found in that state.
A coarse-grained Wigner function can give us a broader idea of what the state might be,
such as the probability of finding it over a collection of states as opposed to individual
ones.

Based on partitioning finite fields into cosets, this coarse graining can be accomplished
in different ways for the same system by varying the cosets. The procedure naturally pro-
duces a subset of the observables required for full quantum state tomography. Different
cosets produce observables with different structure - some subsets may be equivalent under
unitary transformations to fully measuring only a part of the system, whereas others pro-
duce measurements that will probe only partially but spread out over the whole system.
Therefore prior knowledge about the entanglement structure of a state might even suggest
in advance a specific choice of coset.

Such a procedure may be used as a ‘first pass’ in cases when the dimension of an un-
known system is large, and it is intractable to take the full set of measurements required.
In particular, for an N qubit system where 2N is a perfect square, we can coarse grain to
sub-select 2

N
2 + 1 bases to measure in, as opposed to the 2N + 1 that are required for full

tomography. This makes it efficient to try out different coset choices as well. One might
then develop adaptive techniques to decide on a further subset of measurements to refine
the reconstruction, taking advantage of the prior information provided by coarse graining.

Note: the published version contains an error in Equation (5.19) and Equation (C.4);
the outer sum over λ should instead be a sum over α.

5.1 Abstract

We develop a systematic coarse-graining procedure for systems of N qubits. We exploit
the underlying geometrical structures of the associated discrete phase space to produce a
coarse-grained version with reduced effective size. Our coarse-grained spaces inherit key
properties of the original ones. In particular, our procedure naturally yields a subset of the
original measurement operators, which can be used to construct a coarse discrete Wigner
function. These operators also constitute a systematic choice of incomplete measurements
for the tomographer wishing to probe an intractably large system.

5.2 Introduction

Recently, the understanding of many-body quantum systems has dramatically progressed.
Nowadays we are achieving an amazing degree of control over larger and larger systems [99,
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100]. Therefore, verification during each stage of experimental procedures is of utmost
importance; quantum tomography is the appropriate tool for that purpose.

The goal of quantum tomography is to reconstruct the state of a system by performing
multiple measurements on identically prepared copies of the system. Once the experimen-
tal data are extracted, a numerical procedure determines which density matrix fits best
the measurements. This estimation can be performed using different approaches, such as
maximum likelihood estimation [101], or Bayesian methods [55,56,102,103]. However, to-
mography becomes harder as we explore more intricate systems. If we look at the simple,
yet illustrative case of N qubits, which will serve as the consistent thread in this paper,
one has to make at least 2N + 1 measurements in different bases before one can claim to
know everything about an a priori unknown system. With such an exponential scaling
in the number of qubits, it is clear that current methods rapidly become intractable for
present state-of-the-art experiments.

As a result, more sophisticated tomographical techniques are called for. New protocols
try to simplify the process by making an educated guess about the nature of the state.
Among other assumptions, this includes rank deficiency [104–108], extra symmetries [109–
111], or Gaussianity [112]. While all these approaches are extremely efficient, their pitfall
is that when the starting guess is inaccurate, they produce significant systematic errors.

Here, we pursue a different approach, inspired by a notion from statistical mechanics:
coarse graining [113]. This operation transforms a probability density in phase space
into a “coarse-grained” density that is a piecewise constant function, a result of density
averaging in cells. This is the chief idea behind the renormalization group [114], which
allows a systematic investigation of the changes of a physical system as viewed at different
scales.

In our case, we consider a system of qubits and look at the associated phase space,
which turns out to be a discrete grid of 2N ×2N points. We assign to each suitably defined
line in phase space a specific rank-one projection operator representing a pure quantum
state. For each point of the grid, a suitable quasi-probability as the Wigner function can
be directly computed from the measurement of the states associated with the lines passing
through that point. We coarse grain by combining groups of these lines into thick lines,
which we will show to be lines in the phase space of an effectively smaller system. Our
coarse-grained phase spaces are endowed with many nice properties.

Most notably, our procedure systematically and naturally reveals a subset of measure-
ments which one could use to perform incomplete tomography. In addition, using the
coarse-grained points and lines, we show that one can define a discrete Wigner function in
largely the same way as it is defined in the original space. When plotted, the coarse func-
tions resemble smoothed out versions of the originals, preserving many of their prominent
visual features.
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5.3 Phase space of N qubits

A qubit is a two-dimensional quantum system, with Hilbert space isomorphic to C2. It is
customary to choose two normalized orthogonal states, say {|0〉, |1〉}, as a computational
basis. The unitary matrices

σz = |0〉〈0| − |1〉〈1| , σx = |0〉〈1|+ |1〉〈0| , (5.1)

generate the Pauli group P1, which consists of all the Pauli matrices plus the identity, with
multiplicative factors ±1,±i [115].

For N qubits, the corresponding Hilbert space is the tensor product C2⊗· · ·⊗C2 = C2N .
A compact way of labeling both states and elements of the corresponding Pauli group PN
is by using the finite field F2N . In Appendix B we briefly summarize the basic notions of
finite fields needed to proceed.

Let |ν〉, ν ∈ F2N , be an orthonormal basis in the Hilbert space C2N (henceforth, field
elements will be denoted by Greek letters). The elements of the basis can be labeled
by powers of a primitive element σ (i.e., a root of an irreducible primitive polynomial):
{|0〉, |σ〉, . . . , |σ2N−1 = 1〉}. Now the equivalent version of Equation (5.1) is [116–118]

Zα =
∑
ν

χ(αν) |ν〉〈ν| , Xβ =
∑
ν

|ν + β〉〈ν| , (5.2)

so that
ZαXβ = χ(αβ)XβZα , (5.3)

which is the discrete counterpart of the Weyl-Heisenberg algebra for continuous vari-
ables [119]. Here, the additive character χ is defined as χ(α) = exp[iπ tr(α)] and the
trace of a field element (we distinguish it from the trace of an operator by the lower case
“tr”) is defined in Appendix B. Moreover, Zα and Xβ are related through the finite Fourier
transform [53]

F =
1√
2N

∑
ν,ν′

χ(ν ν ′) |ν〉〈ν ′| , (5.4)

so that Xα = F ZαF †.

The operators (5.2) generate the Pauli group PN of N qubits and, with a suitable choice
of basis, they can be factorized into a tensor product of single-qubit Pauli operators. To
this end, it is convenient to consider F2N as an N -dimensional linear space over Z2. It is
spanned by an abstract basis {θ1, . . . , θN}, so that given a field element α the expansion

α =
N∑
i=1

ai θi , ai ∈ Z2 , (5.5)

allows us the identification α⇔ (a1, . . . , aN). The basis {θi} can be chosen to be orthonor-
mal with respect to the trace operation; i.e., tr(θi θj) = δij. This is a self-dual basis, which
always exist for the case of qubits. In this way, we associate each qubit with a particular
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element of the self-dual basis: qubiti ⇔ θi. Using this basis, we have the factorization

Zα = σa1z ⊗ · · · ⊗ σaNz , Xβ = σb1x ⊗ · · · ⊗ σbNx , (5.6)

where ai = tr(αθi) and bi = tr(βθi) are the corresponding expansion coefficients for α and
β in the self-dual basis.

We next recall [120, 121] that the grid defining the phase space for N qubits can be
appropriately labeled by the discrete points (α, β), which are precisely the indices of the
operators Zα and Xβ: α is the “horizontal” axis and β the “vertical” one. In this grid we
can introduce the set of displacements

D(α, β) = Φ(α, β)ZαXβ , (5.7)

where Φ(α, β) is a phase required to avoid plugging extra factors when acting with D. A
sensible choice for the case of qubits is Φ2(α, β) = χ(αβ), which ensures the Hermiticity
of the displacement operators. In addition, we impose Φ(α, 0) = 1 and Φ(0, β) = 1, which
means that the displacements along the “position” axis α and the “momentum” axis β
are not associated with any phase. These displacement operators shift phase space points,
so the action of D(α′, β′) maps (α, β)7→(α+ α′, β + β′), justifying their designation. Note
that we still have to fix the sign of the phase Φ(α, β). We choose the phase as

Φ(α, β) = itr(αβ)(−1)f(αβ) , (5.8)

where f(x) =
∑

0≤j<i≤m−1 x
2i+2j , which ensures that the operators defined in Equa-

tion (5.17) below are rank-one projections.

On the phase space grid one can introduce a variety of geometrical structures with much
the same properties as in the continuous case [122–124]. The simplest are the straight lines
passing through the origin (also called rays), with equations

α = 0, or β = λα . (5.9)

The rays have a very remarkable property: the monomials D(α, β) belonging to the same
ray commute, and thus, have a common system of eigenvectors {|ψν,λ〉},

D(α, λα)|ψν,λ〉 = exp(iξν,λ)|ψν,λ〉, (5.10)

where λ is fixed and exp(iξν,λ) is the corresponding eigenvalue, so |ψν,0〉 = |ν〉 are eigen-
states of Zα (displacement operators labeled by the ray β = 0, which we take as the
horizontal axis). The projection operators associated with the lines of equal slope are the
projections onto these eigenvactors. Indeed, we have that

|〈ψν,λ|ψν′,λ′〉|2 = δλ,λ′δν,ν′ +
1

2N
(1− δλ,λ′), (5.11)

and, in consequence, they are mutually unbiased bases (MUBs) [52].

Now suppose for each ray we disregard the origin (0, 0), whose monomial is the identity
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operator. This leaves us with 2N − 1 commuting operators. If we then consider the whole
bundle of 2N +1 rays (which are obtained by varying the “slope” λ over all of F2N ), we can
construct a complete set of MUB operators arranged in a (2N − 1)× (2N + 1) table [125].

To round up the scenario, we need to represent states in phase space. The discrete
Wigner function [126] is the appropriate tool. It can be considered as an invertible mapping

W%(α, β) =
1

2N
Tr[%∆(α, β)] , (5.12)

so that
% =

∑
α,β

∆(α, β)W%(α, β) . (5.13)

The operational kernel is defined as

∆(α, β) =
1

2N

∑
α′,β′

χ(αα′ − ββ′)D(α′, β′) , (5.14)

which, in view of Equation (5.4), can be interpreted as a double Fourier transform of
D(α, β). One can check that this kernel has all the good properties [127]: it is Hermitian,
normalized and covariant under the Pauli group. As a result, for each point on the grid,
the corresponding value of the Wigner function can be computed from the probabilities of
measuring the pure states associated with the lines passing through that point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 345 810 11 126 7 9 13 1415

0

1

2

4

5

8

10

6

7

9

13

3

11

12

14

15

Figure 5.1: Graphical sketch of coarse graining. Here we consider dimension 16, and its
diagonal ray, β = α. The first panel plots all the lines of the form β = α+γ, parametrized
by the shift γ. Points on the same line have the same colour. Axis labels correspond to
powers of the primitive element of F16, with the convention that σ0 is denoted by 0 and
σ15 = 1. The middle panel shows the original grid with the axis labels permuted such that
coset elements are grouped together. We can see that this leads to distinct 4 × 4 blocks
containing points of exactly four different colours. These are shown expanded out in the
small, lower four grids. One notices that these “coarse” blocks form the diagonal ray and
all its translates in dimension 4, which we show superimposed in the last panel.
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5.4 Coarse graining

As heralded in the Introduction, our goal is to tailor a procedure that allows us to coarse
grain the phase space of a multiqubit system; i.e., to break it down into simpler sub-
components.

To this end, we consider the number N of qubits to be composite, i.e. N = mn. Let
{µ0, . . . , µn−1} be a basis of F2mn with respect to F2m . We define

C0 =

{
n−1∑
j=1

τjµj | τj ∈ F2m

}
, (5.15)

i.e., the subspace made of linear combinations of basis elements µ1, . . . , µn−1 with coeffi-
cients in the base field F2m . We can use this set C0, which we henceforth refer to as the
initial coset, to decompose the field F2mn into cosets:

Cτ = τµ0 + C0, τ ∈ F2m . (5.16)

The coarse-grained space will be labeled according to these cosets.

We can imagine the process of coarse graining as partitioning the grid F2mn × F2mn in
such a way that we superimpose a grid of size 2m × 2m on top, with each superimposed
point indexed by cosets rather than field elements in the original grid. Each point in the
coarse grid then contains a sub-grid the same size as Fn−12m ×Fn−12m . To provide some intuition
for this, we show a visual example of this process in action in Figure 5.1.

Our procedure for coarse-graining the grid arises naturally from consideration of the
line structure of phase space. We will use the thin lines in F2mn to create thick lines in the
coarse phase space, by grouping together lines having the same slope, and with intercepts
in the same coset. We write thin lines in the big field F2mn as |`(λ)γ 〉, where λ is the slope,

and γ is the intercept. A large, coarse-grained line is denoted as |L(λ)
Cτ
〉, where now the

intercept is a whole coset.

To each line in the fine-grained phase space we can assign a projector |`(λ)γ 〉〈`(λ)γ |, con-
structed as a linear combination of the displacement operators. We choose as our conven-
tion for the rays (γ = 0) the all-positive sum

|`(λ)0 〉〈`
(λ)
0 | =

1

2mn

∑
α

D(α, λα). (5.17)

These lines are eigenstates with eigenvalue +1 for all displacement operators in the sum.
Projectors with nonzero intercepts are obtained by conjugating that of the ray with an
appropriate displacement operator.

The coarse lines are produced by grouping together lines with intercepts in the same
coset:

|L(λ)
Cτ
〉〈L(λ)

Cτ
| =

∑
γ∈Cτ

|`(λ)γ 〉〈`(λ)γ | . (5.18)
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The possible choices of slope for these lines will be limited to elements of the subfield F2m ,
as these have natural analogues between the two fields.

As discussed in more detail in Appendix C, the coarse rays of Equation (5.18) can be
simplified and rewritten as the sum of displacement operators

|L(λ)
C0
〉〈L(λ)

C0
| = 1

2mn

∑
λ

[∑
γ∈C0

χ(γα)

]
D(α, λα) . (5.19)

One can check here that the inner sum over the elements of C0 will cause some of the
displacement operators to vanish. The sum in brackets in Equation (5.19) is either zero or
a positive constant. Hence, the projection associated to the thick lines are a sum over a
subset of the displacement operators associated with the thin lines. This leads us to the
key idea of our work: rather than measuring all the displacement operators, we measure
only those which are present in the rays of the coarse-grained space.

We note here that the choice of C0 is not unique, and will ultimately determine the
resultant set of displacement operators. For example, a special case occurs when the
dimension of the system is square. In this case, we can consider the relationship between
the fields as a quadratic field extension, i.e. when n = 2. In this case we can partition F22m

into F2m×F2m . We can then choose the initial coset as the copy of the subfield F2m ⊂ F22m :

C0 = {σi(2m+1), i = 0, . . . , 2m − 1} , (5.20)

where σ is a primitive element of F2mn and we use the notation σ0 for 0. The subsequent
cosets are obtained additively from this subfield using the representatives τi = σ2m(i−1)+i.

Finally, the coarse-grained phase space inherits a coarse-grained Wigner function. A
coarse kernel can be constructed by grouping together kernel operators from the same
coset, i.e.

D(Cτ ,Cξ) =
∑
α∈Cτ

∑
β∈Cξ

∆(α, β) . (5.21)

Desired properties of a Wigner function all follow from the original kernel. As was the case
with the displacement operators, differing choices of the subset C0 will lead to differing
Wigner functions.

5.5 Examples

We illustrate the previous ideas with some relevant examples. We have written a Python
software package capable of generating all the following results, which we make available
online [128]

The first nontrivial instance we can have is the case of two qubits, so dimension 4. Using
the irreducible primitive polynomial x2 +x+1 = 0, we have that F4 = {0, 1, σ, σ2 = σ+1}.
The self-dual basis is {σ, σ + 1}, and we use it to produce the displacement operators.
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Figure 5.2: Resultant operators from coarse-graining a dimension 4 system down to di-
mension 2. Colours are indicative of particular coarse rays. The left image coarse grains
by taking C0 = {0, σ}, whereas the lower image uses the subfield C0 = {0, 1}.

Another basis for F4/F2 is {1, σ}. Taking all scalar multiples of µ1 = σ from the prime
field gives us C0 = {0, σ}. We then obtain C1 = 1 + C0 = {1, σ2}. For each ray, we can
list the operators which survive in the inner sum over C0 in Equation (5.19). Moreover,
we can label the points of the coarse-grained grids by those displacement operators. Disre-
garding the identity operator, the resulting set {1X,1Z,1Y } constitutes the appropriate
measurements to be performed to determine which coarse-grained line they are in. They
are essentially Pauli measurements on one of the two qubits in the system.

Alternatively, the dimension is a square, so we can choose as our initial coset the subfield
F2: C0 = {0, 1}. This yields the second coset Cσ = {σ, σ2}. We once again compute the
surviving operators using Equation (5.19). The final result now is {XX, Y Y, ZZ}. Here,
we see that we are making a measurement with the same Pauli operator on both qubits,
thereby capturing the full correlations between the two qubits. Figure 5.2 shows both
partitioning methods side by side.

Figure 5.3: Resultant operators from coarse-graining a dimension 8 system down to dimen-
sion 2. (Left panel) Coarse graining using the basis {1, σ, σ2}. The resultant measurements
are unitarily equivalent to a case where two of the qubits remain untouched. (Right panel)
Resultant operators when the coarse-graining uses the initial basis {σ, σ4, σ5}. Here we
obtain the interesting result that all resultant operators commute.

Our next example is the case of dimension 8. We choose σ a root of the irreducible
primitive polynomial x3 + x+ 1 = 0, and obtain a self-dual basis {σ3, σ5, σ6}. An obvious
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Figure 5.4: Resultant operators from coarse-graining a dimension 16 system down to di-
mension 4. The left panel contains the surviving operators from the general basis method,
the right panel from choosing the subfield as C0. The cosets are listed in Equation (5.25)
and Equation (5.26) respectively. In the case of the left panel, these operators are unitarily
equivalent to a set where two qubits are untouched and the 2-qubit MUB operators are
applied to the rest. The right panel has no such transformation.

choice for a basis of F8/F2 is a polynomial basis {1, σ, σ2}. To construct C0, we must take
all possible linear combinations of σ and σ2 with coefficients in F2. This produces

C0 = {0, σ, σ2, σ4}. (5.22)

We obtain the second coset by adding the remaining subfield element 1 to C0:

C1 = {1, σ3, σ5, σ6}. (5.23)

The traces of all elements in C0 are 0, and the traces for all elements in C1 are 1. The
surviving four operators are shown in Figure 5.3.

Using a Clifford transformation, we can “trace out” two of the qubits. The sequence of
CNOT gates: CNOT12 – CNOT13 – CNOT21 – CNOT31 transforms the set into {X11, Z11, Y 11},
so we see that this partitioning is, after a global change of basis, equivalent to measuring
each Pauli on only a single qubit.

If we choose instead the basis {σ, σ4, σ5} to build our cosets, we get a more interesting
result:

C0 = {0, 1, σ4, σ5}, Cσ = {σ, σ2, σ3, σ6}. (5.24)

The operators that survive have the form ZαXβ, α, β ∈ {0, σ4}, yielding the operators
in Figure 5.3, which all commute. In this case, we are already ignoring one of the three
qubits. However, it is not possible to find a Clifford which will trace out a remaining one
as was the case with the polynomial basis case. So, in a sense, using this partitioning we
are ignoring fewer qubits than before.

Dimension 16 is perhaps the first really interesting case. First of all, we can consider
it in two ways: m = 1, n = 4, or m = 2, n = 2. Essentially, to do the partitioning, we can
look at F16 as a quartic extension over F2, or a quadratic extension over F4. We consider
the quadratic case, so we can coarse grain in two ways. We work with F16 as constructed
by the irreducible primitive polynomial x4 +x+1 over F2, and x2 +x+σ′ over F4 where we
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Figure 5.5: (Top) Coarse-grained Wigner function for the state 1
2
(|00〉 + |11〉) ⊗ (|00〉 +

|11〉). (Left) The original Wigner function in dimension 16. The x-axis represents the
computational basis, in the standard ordering |0000〉, |0001〉, |0010〉, etc. The Fourier basis,
as defined via Equation (5.4), is on the y-axis and is similarly ordered. (Centre) Coarse
graining over F4 with the polynomial basis {1, σ}. Here the axes are not labeled by single
states, but rather by a set of states associated with each coset. (Right) Coarse graining
with the subfield as the initial coset. (Bottom) The same coarse graining procedure as
above, but applied to the state 1

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉).

denote a primitive element of F4 as σ′. We know from Equation (5.20) that σ′ = σ5, where
σ is the primitive element in F16. Then F4 in F16 can be written as {0, σ5, σ10, σ15 = 1}.

For the general case, we choose the basis {1, σ}. Taking all F4-multiples of σ, we obtain
C0 = {0, σ, σ6, σ11}. The full set of cosets is:

C0 = {0, σ, σ6, σ11}, Cσ5 = {σ5, σ2, σ9, σ3},
Cσ10 = {σ10, σ8, σ7, σ14}, C1 = {1, σ4, σ13, σ12}.

(5.25)

Proceeding in the standard way, and taking into account that a self-dual basis is
{σ3, σ7, σ12, σ13}, we obtain the operators in Figure 5.4. What is (un)interesting about
these operators is that we can transform them all into operators which completely ignore
two of the qubits. In particular, consider the following sequence of operations: CNOT43 –
CNOT32 – CNOT31 – CNOT14 – CNOT24. Application of this to the operators of the first
panel of Figure 5.4 yields a new set of operators where the last two qubits contain only 1,
and the first two qubits contain the full set of MUB operators on two qubits.

Alternatively, we can choose our initial coset as the subfield, and the coset representa-
tives as τi = σ4(i−1)+i. We obtain the cosets

C0 = {0, 1, σ5, σ10}, Cσ = {σ, σ4, σ2, σ8},
Cσ6 = {σ6, σ13, σ9, σ7}, Cσ11 = {σ11, σ12, σ3, σ14}.

(5.26)

Using Equation (5.19) we get the table shown in the right panel of Figure 5.4. Unlike in
the previous case, there is no transformation which will lead to us ‘tracing out’ two of the
qubits. However, we can bring these operators into a more basic form by applying the
sequence CNOT13 – CNOT24. The resultant operators have the property that on the first
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two qubits, we only have X, and on the last two qubits only Z, so that they all commute.

To conclude, we present some of the coarse-grained Wigner functions we obtain using
our method. Those in dimensions 4 and 8 are somewhat trivial, so we focus on dimension
16. Wigner functions for the states 1

2
(|00〉 + |11〉)(|00〉 + |11〉) and 1

2
(|0001〉 + |0010〉 +

|0100〉+ |1000〉) are presented in Figure 5.5.

Recall in Section 5.3 that we could associate the elements of F2N with a basis in our
Hilbert space. Then, in the coarse Wigner functions, when we group the field elements into
cosets, we can consider this also as grouping together the associated basis states. Hence, the
probabilities in these Wigner functions become distributed over the cosets which contain
the constituent basis states of our target state. As a result, the coarse Wigner functions
resemble ‘smoother’ versions of the original one to varying degrees.

5.6 Conclusions

Compared to the continuous Wigner function, the discrete Wigner function is an adolescent
formulation, slowly developing into adult maturity. Discrete phase space imposes several
new challenges, which leads to an intricate mapping of the Wigner function.

Our coarse graining procedure shows a way to facilitate our understanding when the
number of qubits is high. While it is always possible to ignore part of the system and to
determine the full Wigner function of the resulting reduced density matrix, our approach
allows more choices regarding which information of the whole system is measured. In
another extremal case, the coarse-grained Wigner function is completely determined by a
set of commuting operators that can be measured simultaneously.

However, several open questions remain. An obvious next step would be to extend
the coarse graining procedure to multi-qudit systems. Furthermore, knowing the coarse-
grained function, does there exist another subset of measurements which will allow us to
zoom in on specific areas of it and gain more information? A logical first choice would be
to extend the set of measurements such that they include all operators that correspond
to slopes in the subfield. For example, in the dimension 16 case, we would measure all
operators for the rays α = 0 and β = λα, λ ∈ {0, σ5, σ10, σ15}, rather than just three from
each. This strategy would allow us to optimize measurements in a very subtle way. Work
along these lines is in progress.
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Chapter 6

Conclusions and future directions

We have seen that large-scale parallelization can help us compile larger quantum operations;
fault-tolerantly implementing a quantum RAM may be detrimental for many quantum
algorithms; we can reconstruct ‘blurry’ representations of quantum states by choosing only
subsets of tomographic measurements. However, none of these techniques alone tells the
full story, and it is essential that we continue research along all these fronts.

We need to make better compilers, and we need to make them user-friendly so that
anyone wishing to execute an algorithm on a quantum computer can easily transform their
desired operations into the native set of gates for that machine.

One particular area of interest is implementation-specific compilers. Quantum devices
today have very different connectivity graphs, and not every qubit is coupled to every other.
We must take this into consideration in the placement of gates when we do circuit synthesis.
The study of this qubit allocation problem is only in its very early stages [129–133], and
will become very interesting as more complex hardware emerges.

Quantum RAM will soon become very important, as unless we make it efficient and
fault-tolerant, many promising algorithms will suffer from an input bottleneck. We must
explore different qRAM models, as well as different methods for resource estimation. In
particular for the surface code, a promising technique called lattice surgery has recently be-
come the gold standard due to it requiring fewer resources than the defect-based techniques
used within [91–93].

As for quantum tomography, there have been numerous new developments since the
work of Chapter 5 was carried out in mid-2015. Bayesian tomography [55], gateset to-
mography [134–136] and other machine learning techniques [137–139] are becoming more
accessible [140], and are steadily transforming tomography from the mathematical ideas
presented here to a more practical setting.

In summary, the speed at which the hardware is being developed is increasing. It is
important that we work now to develop components, tools, and techniques for quantum
computers so that in the future when we have a full-scale machine we will be ready to
make good use of the available resources.

79



Letters of copyright permission

Chapter 3

The work of Section 3.1-Section 3.6 and Appendix A was published in [1], in the open-access
journal Quantum Science and Technology, under the Creative Commons Attribution 3.0 li-
cence. A copy of the licence may be found at https://creativecommons.org/licenses/
by/3.0/legalcode. The work has been used in this thesis mostly ‘as-is’, save the addition
of a paragraph at the end of Section 3.2, and the removal of the abstract and acknowledg-
ments.

The work of Section 3.7 was published in [3] in the open-access journal Special Matrices,
under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. A copy
of the license may be found at https://creativecommons.org/licenses/by-nc-nd/3.

0/legalcode. The work has been used in this thesis ‘as-is’.

Chapter 5

The work of Chapter 5, Appendix B, and Appendix C was published in [5], https://doi.
org/10.1103/PhysRevA.95.022340, by the American Physical Society. A copyright letter
granting permission of use and license terms follows on the next two pages.

80

https://creativecommons.org/licenses/by/3.0/legalcode
https://creativecommons.org/licenses/by/3.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
https://doi.org/10.1103/PhysRevA.95.022340
https://doi.org/10.1103/PhysRevA.95.022340


Page 1 of 2

American Physical Society

Reuse and Permissions License

15-Oct-2018

This license agreement between the American Physical Society ("APS") and Olivia Di Matteo ("You") consists of your license

details and the terms and conditions provided by the American Physical Society and SciPris.

Licensed Content Information

License Number:  RNP/18/O CT/008527

License date:  15-Oct-2018

DO I:  10.1103/PhysRevA.95.022340

Title:  Coarse graining the phase space of $N$ qubits

Author:  Olivia Di Matteo et al.

Publication:  Physical Review A

Publisher:  American Physical Society

Cost:  USD $ 0.00

Request Details

Does your reuse require significant modifications: No

Specify intended distribution

locations:

 Worldwide

Reuse Category:  Reuse in a thesis/dissertation

Requestor Type:  Author of requested content

Items for Reuse:  Whole Article

Format for Reuse:  Electronic and Print

Total number of print copies:  Up to 1000

Information about New Publication:

University/Publisher:  University of Waterloo

Title  of dissertation/thesis:  Methods for parallel quantum circuit  synthesis, fault-tolerant quantum

RAM, and quantum state tomography

Author(s):  Olivia Di Matteo

Expected completion date:  Dec. 2018

License Requestor Information

Name:  Olivia Di Matteo

Affiliation:  Individual

Email Id:  odimatte@uwaterloo.ca

Country:  Canada

81



Page 2 of 2

American Physical Society

Reuse and Permissions License

TERMS AND CONDITIONS

The American Physical Society (APS) is pleased to grant the Requestor of this license a non-exclusive, non-transferable permission,

limited to Electronic and Print format, provided all criteria outlined below are followed.

1. You must also obtain permission from at least one of the lead authors for each separate work, if you haven’t done so

already. The author's name and affiliation can be found on the first  page of the published Article.

2. For electronic format permissions, Requestor agrees to provide a hyperlink from the reprinted APS material using the

source material’s DOI on the web page where the work appears. The hyperlink should use the standard DOI resolution URL,

http://dx.doi.org/{DOI}. The hyperlink may be embedded in the copyright credit line.

3. For print format permissions, Requestor agrees to print the required copyright credit line on the first  page where the

material appears: "Reprinted (abstract/excerpt/figure) with permission from [(FULL REFERENCE CITATION) as follows:

Author's Names, APS Journal T itle, Volume Number, Page Number and Year of Publication.] Copyright (YEAR) by the

American Physical Society."

4. Permission granted in this license is for a one-time use and does not include permission for any future editions, updates,

databases, formats or other matters. Permission must be sought for any additional use.

5. Use of the material does not and must not imply any endorsement by APS.

6. APS does not imply, purport or intend to grant permission to reuse materials to which it  does not hold copyright. It  is the

requestor ’s sole responsibility to ensure the licensed material is original to APS and does not contain the copyright of

another entity, and that the copyright notice of the figure, photograph, cover or table does not indicate it  was reprinted by

APS with permission from another source.

7. The permission granted herein is personal to the Requestor for the use specified and is not transferable or assignable without

express written permission of APS. This license may not be amended except in writing by APS.

8. You may not alter, edit  or modify the material in any manner.

9. You may translate the materials only when translation rights have been granted.

10. APS is not responsible for any errors or omissions due to translation.

11. You may not use the material for promotional, sales, advertising or marketing purposes.

12. The foregoing license shall not take effect unless and until APS or its agent, Aptara, receives payment in full in accordance

with Aptara Billing and Payment Terms and Conditions, which are incorporated herein by reference.

13. Should the terms of this license be violated at any time, APS or Aptara may revoke the license with no refund to you and

seek relief to the fullest extent of the laws of the USA. Official written notice will be made using the contact information

provided with the permission request. Failure to receive such notice will not nullify revocation of the permission.

14. APS reserves all rights not specifically granted herein.

15. This document, including the Aptara Billing and Payment Terms and Conditions, shall be the entire agreement between the

parties relating to the subject matter hereof.

82



Bibliography

[1] Olivia Di Matteo and Michele Mosca. Parallelizing quantum circuit synthesis. Quan-
tum Science and Technology, 1(1):015003, 2016.

[2] Olivia Di Matteo. Parallelizing quantum circuit synthesis. Master’s thesis, University
of Waterloo, Waterloo ON, April 2015.
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[51] I. D. Ivanović. Geometrical description of quantal state determination. Journal of
Physics A: Mathematical and General, 14(12):3241, 1981.

[52] W. K. Wootters and B. D. Fields. Optimal state-determination by mutually unbiased
measurements. Ann. Phys., 191(2):363–381, 1989.

[53] A. B. Klimov, L. L. Sánchez-Soto, and H. de Guise. Multicomplementary operators
via finite Fourier transform. J. Phys. A, 38(12):2747–2760, 2005.

[54] Yong Siah Teo, Berthold-Georg Englert, Jaroslav Řeháček, and Zden ěk Hradil.
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Appendix A

pQCS runtime analysis

The runtimes presented in Equation (3.8) and Equation (3.9) stem from a so-called ‘flawed’
runtime analysis originally presented in [65]. Suppose we are searching for a collision in a
space of size N , and that the available memory is full with w distinguished points. The
number of steps required to find a single collision in this case is

Nθ

w
+

2

θ
, (A.1)

where θ is the fraction of points which are distinguished. The first term comes from the
fact that to fill the memory with w distinguished points, w/θ elements in the space will be
traversed on average, and any given point in a new trail has a 1/N probability of landing
on a previously seen point; the second term comes from the need to trace back through
both trails to locate the collision, and each trail has length 1/θ on average.

The assumption is made that there is a single ‘golden’ collision. In this case N/2 ‘bad’
collisions will be found on average before the golden one is found. If we parallelize using
m processors and assume each step in a trail takes time τ , then we obtain a runtime

T ∝ 1

m

(
N2θ

2w
+
N

θ

)
τ (A.2)

The next step taken in [65] is to differentiate and find θ such that Equation (A.1) is
optimized, which is what results in the inverse-square-root dependence on w. They then
performed computational experiments for a range of w and N in order to find optimal
prefactors.

However, the optimal θ is expressed in terms of w/N , which when w >> N (as is the
case when we synthesize the Toffoli on the BG/Q) would not result in a fractional θ. So let
us continue a hypothetical analysis of this form without finding the optimal θ. Consider
the case where we are optimizing for T -count. In the most general case, the two halves of
the MITM equation will be different sizes N1 and N2 where N1 = 4nd

t
2
e and N2 = 4nb

t
2
c (t

being the T -count). Since when we have an odd depth we partition the larger space and
search sequentially (in theory this could also be done in parallel), we must add a prefactor
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of N1/N2 in front of the runtime, and the N becomes 2N2, because the full space we’re
searching is that of N2 × {1, 2}. As for τ , let’s assume τ = d t

2
e4αn where α is a constant

which reflects the complexity of the matrix multiplication algorithm. Then we have that

T ∝ 1

m
4n(d

t
2
e−b t

2
c)

(
42nb t

2
c+1θ

2w
+

2 · 4nb t2 c

θ

)⌈
t

2

⌉
4αn (A.3)

=

⌈
t

2

⌉
1

2m
4n(α+1+d t

2
e)

(
4nb

t
2
cθ

w
+

1

θ

)
(A.4)

When w >> N2, the first term disappears and the expression reduces to

T ∝
⌈
t

2

⌉
4n(α+1+d t

2
e)

mθ
, (A.5)

which is exponential in both n and t, and inversely proportional to both m and θ, precisely
what we have observed in practice.
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Appendix B

Finite fields

In this appendix we briefly recall some background needed for this paper. The reader
interested in more mathematical details is referred, e.g., to the excellent monograph by
Lidl and Niederreiter [141].

A commutative ring is a nonempty set R with two binary operations, called addition
and multiplication, such that it is an Abelian group with respect to addition, and the
multiplication is associative. The most typical example is the ring of integers Z, with the
standard sum and multiplication. On the other hand, the simplest example of a finite ring
is the set Zn of integers modulo n, which has exactly n elements.

A field F is a commutative ring with division, i.e., such that 0 does not equal 1 and all
elements of F except 0 have a multiplicative inverse (note that 0 and 1 here stand for the
identity elements for the addition and multiplication, respectively, which may differ from
the familiar real numbers 0 and 1). Elements of a field form Abelian groups with respect
to addition and multiplication (in this latter case, the zero element is excluded). Note that
the finite ring Zd is a field if and only if d is a prime number.

The characteristic of a finite field is the smallest positive integer d such that

1 + 1 + . . .+ 1︸ ︷︷ ︸
d times

= 0 (B.1)

and it is always a prime number. Any finite field contains a prime subfield Zd and has dn

elements, where n is a natural number. Moreover, the finite field containing dn elements
is unique up to isomorphism and is called the Galois field Fdn .

We denote as Zd[x] the ring of polynomials with coefficients in Zd. If P (x) is an
irreducible polynomial of degree n (that is, one that cannot be factorized over Zd), the
quotient space Zd[X]/P (x) provides an adequate representation of Fdn . Its elements can
be written as polynomials that are defined modulo the irreducible polynomial P (x). The
multiplicative group of Fdn is cyclic and its generator is called a primitive element of the
field.

As a trivial example of a nonprime field, we consider the polynomial x2 + x + 1 = 0,
which is irreducible over Z2. If σ is a root of this polynomial, the elements {0, 1, σ, σ2 =
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σ + 1 = σ−1} form the finite field F22 and σ is a primitive element.

A basic map is the trace

tr(α) = α + αd + . . .+ αd
n−1

. (B.2)

The image of the trace is always in the prime field Zd and satisfies

tr(α + α′) = tr(α) + tr(α′) . (B.3)

In terms of it we define an additive character as

χ(α) = exp

[
2πi

d
tr(α)

]
, (B.4)

which possesses two important properties:

χ(α + α′) = χ(α)χ(α′),
∑
α′∈Fdn

χ(αα′) = dnδ0,α . (B.5)

Any finite field Fdn can be also considered as an n-dimensional linear vector space over
its prime field Fd. Given a basis {θj}, (j = 1, . . . , n) in this vector space, any field element
can be represented as

α =
n∑
j=1

aj θj, (B.6)

with aj ∈ Zd. In this way, we map each element of Fdn onto an ordered set of natural
numbers α⇔ (a1, . . . , an).

Two bases {θ1, . . . , θn} and {θ′1, . . . , θ′n} are dual when

tr(θkθ
′
l) = δk,l. (B.7)

A basis that is dual to itself is called self-dual. A self-dual basis exists if and only if either
d is even or both n and d are odd.

There are several natural bases in Fdn . One is the polynomial basis, defined as

{1, σ, σ2, . . . , σn−1}, (B.8)

where σ is a primitive element. An alternative is a normal basis, constituted of

{σ, σd, . . . , σdn−1}. (B.9)

The appropriate choice of basis depends on the specific problem at hand. For example,
in F22 the elements {σ, σ2} are both roots of the irreducible polynomial. The polynomial
basis is {1, σ} and its dual is {σ2, 1}, while the normal basis {σ, σ2} is self-dual.
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Appendix C

Derivation of equation for line
operators

Here we present the derivation of our equation for the surviving displacement operators.
We begin by considering the projectors for the rays,

|`(λ)0 〉〈`
(λ)
0 | =

1

2mn

∑
α

D(α, λα) =
1

2mn

∑
α

Φ(α, λα)ZαXλα . (C.1)

As mentioned in Section 5.3, the projectors for the shifted lines can be obtained by applying
an appropriate displacement operator to induce a transformation. Let us ignore for now
the ray with infinite slope, α = 0. Then for the rest of the rays, we can shift them vertically
by applying the displacement operators of the form D(0, γ):

|`(λ)γ 〉〈`(λ)γ | =
1

2mn

∑
α

D(0, γ)D(α, λα)D†(0, γ)

=
1

2mn

∑
α

Φ(α, λα)XγZαXλαXγ , (C.2)

where we recall the convention that all the phases Φ(0, γ) = 1.

Here, we can make further use of the commutation relation in Equation (5.3). We
obtain

|`(λ)γ 〉〈`(λ)γ | =
1

2mn

∑
α

Φ(α, λα)χ(γα)ZαXλα

=
1

2mn

∑
α

χ(γα)D (α, λα) . (C.3)

It is then straightforward to see that the thick rays, which are obtained by summing over
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all intercepts γ in coset C0, can be written as

|L(λ)
C0
〉〈L(λ)

C0
| = 1

2mn

∑
λ

[∑
γ∈C0

χ(γα)

]
D(α, λα). (C.4)

Finally, we mention that for the infinite slope the analysis proceeds in exactly the same
way, but that the lines are translated by displacement operators of the form D(γ, 0) and
Equation (5.3) gives us χ(γβ) instead.

Only those operators which have a non-zero term in the sum will contribute, thus we
consider them as the effective displacement operators in the coarse phase space.
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