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Abstract

Several investigations have shown that the Earth’s climate is experiencing change, as
evident by rising global temperatures, receding ice sheets and reducing glacier sizes. There
is also empirical observation supporting changes in patterns of precipitation, high wind
events and snow fall as the climate change effects become more pronounced. IPCC has
outlined various emission scenarios under which the mean global temperature can increase
from 2 to 8 ◦C, which is expected to have a significant impact on the social well-being of
human population on the planet.

Structures are designed to withstand environment generated loads, such as high wind,
snow, rain, ice and flood, over the design life of the structure. Currently, structural design
codes assume that such environmental loads are stationary over the entire life of the struc-
ture ranging from 50 to 100 years. Since the assumption of stationary climate may not be
tenable in future, researchers are taking in interest in modelling of non-stationary effects
in environmental date for developing appropriate design load calculation methods.

The main objective of this thesis is to investigate probabilistic methods for modelling
the non-stationary nature of environmental data and estimating design values, i.e., upper
percentiles of extreme value distribution. The thesis focuses on non-stationary version of
two commonly used methods, namely, annual maxima method and the peak over threshold
(POT) method. The annual maxima method uses a non-stationary Gumbel distribution
with time dependent parameters. The other more general model is based on stochastic
process theory in which the arrival of events and the event magnitude are treated as
probabilistic variables. The arrival process is modelled as the non-homogeneous Poisson
process. The proposed approach is a generalization of currently used POT method which
relies on asymptotic extreme value theory. Statistical test are applied to evaluate the
presence of non-stationary effects.

The proposed approaches are illustrated by analysing the time series of daily maximum
wind speed data from a selected set of stations. For the 10 weather stations analysed,
the data analysis show that wind speed is decreasing at an average of 0.006625 KMPH
annually over the 80 year period duration from 2020 to 2100.
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Chapter 1

Introduction

1.1 General

Environmental loads of wind and precipitation are one of the dominant loads on structures
in Canada as defined in by National Research Council Canada. As reported by Johnson
(2017), 103 people died in the US because of hurricane Harvey and Irma. Moreover, these
hurricanes also resulted in a combined structural damage of $200 billion. By analysing the
historical data, these rare, extreme events can be predicted allowing us to make prepara-
tions to take preventative measures against damage to properties and life.

This means that any engineering work needs to account for extreme conditions; there-
fore, engineers, scientists, and statisticians have been drawn toward the field of extremes.
The field of extremes, by definition, deals with the maxima or the minima of random
variables.

The advance in technology has enabled NASA to collect enough facts to be able to
prove that the global climate is changing rapidly (NASA, 2019). The evidence of climate
change includes: rise in global temperature, warming oceans, shrinking ice sheets, retreat-
ing glaciers, decreasing snow cover, rise in sea level, declining Arctic sea ice, acidification
of ocean, and extreme events. This thesis concentrates on extreme events as it is one of
the factors that contribute toward the formulation of building codes of Canada. Apart
from the improvement in technology, climate change is also one of the other factors that
require the building codes to be updated regularly. That means that the future buildings
we live and work in would need to be designed according to the updated building codes
that account for the climate change.
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The main objective of this thesis is to improve the extreme wind and snow estimation
while also taking into account the non-stationary effects of climate change.

1.2 Motivations and Objectives

Management of the risk focusses on modelling the tail events; that is, the events that have
a low probability, but have a high impact. Usually, the central part of our distribution
becomes our focus while trying to estimate the whole distribution of losses, and the tails get
neglected. Therefore, it is beneficial to have a model focussing on the tails of a distribution.
Extreme Value Theory (EVT) is one such model.

In other words, the distribution of rare events can be described using EVT. It is es-
pecially useful in environmental, insurance, and financial applications. Each of these ap-
plications have the focal interest on the occurrence of rare, extreme events. Thus, EVT
is used to study the behaviour of tail distributions when the scarcity of data makes it
hard to infer the extremes. One of the popular EVT models is the Generalized Pareto
Distribution. Over an adequately high threshold, it provides a reliable extrapolation of the
exceedances. This is classified as the Stochastic Process Model. For the correct application
of this method, it is very crucial to select the right threshold because it classifies which
portion of the data is extreme and which is not.

A compromise between the actual operating conditions and the capacity of the structure
provides the design values that ensure safety. At the end of the day, it is the aim of the
designer to design a structure that withstands any catastrophic event during its lifetime.
Therefore, it is always better to overestimate the capacity in comparison to the operating
loads. In other words, the maximum value of the operating load should be less than the
minimum value of the capacity of the structure or element. Thus, finding the values of the
extreme distributions plays an important role in structural engineering. This is also why
it is important to analyse the distribution of extremes as those are the values that affect
the failure of any system (An, 2006).

The building codes list the calibrations necessary to ensure a consistent level of safety.
However, the current code assumes that the environmental loads are generated by a sta-
tionary processes. We have already discussed the evidence of change in climate. This
change in climate should also be accounted for while writing building design codes. Rather
than assuming that the distribution parameters are time invariant, it becomes necessary
to consider time variant distribution parameters to account for the climate change non-
stationarity. This poses the research questions like: How to model non-stationary loads?
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What should be the format of reliability-based design code under non-stationary loads?
What should be the basis for specifying the target reliability? The scope of this thesis is
to answer the first question by empirically investigating the non-stationary nature of wind
speed data.

1.3 Environmental Data

Environment and Climate Change Canada (ECCC) hosts a File Transfer Server (FTP)
with all historical weather data for numerous locations across Canada. Some of the data
available to download include: temperature, precipitation, degree days, relative humidity,
wind speed and direction, monthly summaries, averages, extremes, etc.

It can be accessed using the URL:

climate.weater.gc.ca

A ReadMe.txt file with instructions to download data automatically, after writing a
few lines of code, is located at:

ftp://ftp.tor.ec.gc.ca/Pub/Get_More_Data_Plus_de_donnees/Readme.txt

There are several methods for extreme value analysis. As we have already discussed,
the current analysis mainly focuses on the Gumbel model and the Stochastic Process
model. The latter requires the selection of a distribution fitting the data. For this purpose,
probability paper plot (PPP) method was employed (Saeed Far and Abd. Wahab, 2016).
This model is also the simplest of the statistical model that can be used for extreme value
analysis. Here, we first reduce the series of observations into a sequence of peaks-over-
threshold values Z1, ... , ZM (Ross, 1987). The current wind speed data acquired from
Environment Canada contains daily maximum wind speed data from which we delete the
data below the chosen threshold z0; thus, it results into a data set of peaks-over-threshold
values of Z1, ... , ZM .

The data used for the analysis of wind speed measured only the wind speed, so the
variables of wind direction and surface pressure were ignored. It was also evident from the
change in station IDs that there was a change in measuring instrument. It can be assumed
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that these changes mostly were the changes of instrumentation which are quite normal
when it comes to technology. Even after the change in the Station ID, the station still was
located at the same latitude and longitude; thus, confirming that it was just a change of
the measuring instrument and the phasing out of the old one which called for a change in
Station ID. The historical data also confirms this phasing out of the instruments by listing
two instruments that share the same latitude and longitude for a year or two.

1.4 Thesis Organization

The five chapters of the thesis effectively present the research objectives along with pro-
viding relevant background information and supporting material.

Chapter 1 introduces the motivations and objectives of the thesis along with providing
a brief general introduction of the requirement of the prediction/estimation methods. It
also provides information about the type and source of data for the analysis shown in the
thesis.

Chapter 2 details the background information necessary to develop a foundation knowl-
edge for research. It then defines Extreme Value Theory along with the several Extreme
Value distributions. Next, a brief summary of maximum likelihood method and probability
paper plots is provided followed by a quick recap of the Poisson process. The chapter ends
with an introduction to the two types of estimation methods used in the thesis which also
acts an introduction to Chapter 3.

Chapter 3 discusses the application of Gumbel Model and Stochastic Process Model to
the wind data. It also carries out hypothesis tests to test for the homogeneous Poisson pro-
cess. These two models are used to calculate the stationary and non-stationary parameters
that would be used in the following chapter.

Chapter 4 uses the stationary and non-stationary parameters calculated in the previous
chapter to calculate the forecast high wind events until the year 2100. This helps us predict
the nature of wind speed in the coming years.

Chapter 5 concludes the thesis by highlighting the major findings of the research along
with supplying future recommendations and scope of this topic.

4



Chapter 2

Background

2.1 Introduction

Natural disasters force us to think whether knowing the future would have helped us prevent
or prepare against the forces of natures. These natural calamities could include extraor-
dinary dry spells, numerous forest fires, devastating earthquakes, massive snowfalls, and
destructive hurricanes or floods. Therefore, a country like Japan that lies on the epicentre
of earthquakes may want to design buildings that could withstand higher magnitudes of
earthquakes so that the destruction to life and property could be avoided or could be kept
as low as possible. Similarly, engineers in Canada would want to concentrate on wind and
snow data as these two forces of nature result in the most amount of losses (Danard et al.,
2003).

The force of a wind gust affects the wear and tear of buildings; therefore, the engineers
are required to design structures that are able to withstand these winds. Hence, it is
necessary to estimate the extreme values of these wind speeds during the design phase of
the structure. This also requires the estimation of probabilities of such destructive winds
during the life cycle of a structure. Extreme Value Analysis is employed in these scenarios
to specify the probabilities of exceedances (Saeed Far and Abd. Wahab, 2016).

Historically, EVT has been applied mostly to flood related events. Haan (2006) even
gives an example of the town of Delfzijl in Netherlands where 1877 severe storm surges had
been observed over more than 100 years. As about half of Netherlands is below sea level it
has to be protected against the sea by dikes. These sea dikes have to be able to withstand
the flooding that might be caused by the severe storm surges. This flooding is mainly
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a set of independent observations that are recorded under similar conditions of high-tide
levels during the storm events. To avoid flooding, the problem involves designing the dikes
high enough that the probability of flooding in a given year is 10−4. For this problem,
Haan (2006) suggests that using EVT provides a solid theoretical basis and framework for
extrapolation. This is because EVT restricts the behaviour of the distribution function in
the tail. EVT is quite general if we look at just one side of the coin. However, when we
flip the coin we find out that EVT is sufficiently precise enough to help with extrapolation
or estimation (Bruce, 2017) .

Currently the extreme events are fitted by stationary Gumbel distribution, but the
change in climate is expected to introduce non-stationary loads; so, the data requires mod-
elling using non-stationary loads to account for the change in climate. The two estimation
methods that are used to analyse the wind data in this thesis are

1. Gumbel model or Annual maxima method

2. Stochastic Process model or Peaks-Over-Threshold method.

Both of these methods have been analysed for both stationary and non-stationary loads
so that the effect of non-stationarity could be observed for both the instances.

Sufficiently large values of independent and identically distributed variates, as stated by
a fundamental theorem in extreme value theory, are described by one of the three extreme
value distributions: the Frechet distribution, the Gumbel distribution, and the reverse
(negative) Weibull distribution. For a detailed exposition, refer Castillo (1988).

2.2 Extreme Value Theory

2.2.1 Introduction

Before applying EVT to a specific problem, it is important to ask as to when does EVT ap-
ply in a formal sense? The answer, fundamentally, is when the distribution to be modelled
consists of extrema. From an overall distribution of data, the sampled minima or maxima
are classified as extrema. In the words of Coles (2001) “The distinguishing feature of an
extreme value analysis is the objective to quantify the stochastic behavior of a process at
unusually large—or small—levels.”

As listed by Castillo et al. (2005), some of the applications of EVT include: Ocean Engi-
neering, Structural Engineering, Hydraulics Engineering, Meteorology, Material Strength,
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Fatigue Strength, Electrical Strength of Materials, Highway Traffic, Corrosion Resistance,
and Pollution Studies.

Some applications of EVT require us to estimate population central characteristics
whereas some require us to estimate the maximum or minimum. Some examples of esti-
mating the population central chracteristics include average rainfall, average temperature,
median income, etc. Contrarily, estimating the maximum or minimum includes maximum
flooding or minimum dam height, maximum earthquake intensity or minimum concrete
strength, etc. It is important to consider extremes for engineering design because maxi-
mum values such as winds, floods, earthquakes, waves, etc. and minimum values such as
strength, stress, etc. are the two key parameters that lead to the failure of any engineering
system. Therefore, having a knowledge of the distribution of these maximum and minimum
values results in getting good solutions to engineering design problems.

As discussed previously, engineering design always involves a compromise between
safety and cost. There has to a perfect balance of both otherwise it may result in ei-
ther unnecessary waste of money or a high probability of failure. It is also important to
note that, in most cases, there is also a lack of availability of enough data (Davis et al.,
1985).

Let us now assume (s1, s2, ...) to be a sequence of i.i.d. samples. Thus, the maximum
over an n-observation period is thus:

Mn = max(s1, s2, ...). (2.1)

The approximate behaviour of Mn follows from the limit arguments associated with n
approaching infinity for large values of n. An entire family of models can be calibrated
from this observation via the observed extrema values of Mn. This chapter was summarized
using the following references: Coles (2001), Haan (2006), Gumbel (1960), Reiss (2001),
(Yue, 2000), Singh (2007) and Castillo et al. (2005).

2.2.2 The Extreme Value Theorem

The first Extreme Value Theorem is also known as the Fisher-Tippett Theorem. EVT
indicates that the distribution of maximum or minimum can only assume limited forms
given a well-behaved overall distribution just as the central limit theorem indicates that the
random variable generated from a certain stochastic processes follows normal distribution.
Let us first define this theorem to find the appropriate form.

7



Theorem 2.1.1

Assume (s1, s2, ...) is a sequence of i.i.d samples and Mn = max {s1, ...sn}. If a sequence
of pairs of real numbers (an, bn) exists such that each an > 0 and

lim
x→∞

P

(
Mn − bn
an

≤ x

)
= F (x) (2.2)

then if F is a non-degenerate distribution function, it belongs to one of three extreme
value distributions: the Gumbel (I), Fréchet (II), or Reversed Weibull (III) distribution.
Gumbel and Fréchet are for unbounded distributions and Reversed Weibull for bounded.

For modelling minima, a special consideration must be made. Minima can be trans-
formed to maxima via zi = −si, since the Fisher-Tippett Theorem applies to maxima.

Consider F to be an unknown distribution function of a random sample s. Thus, the
conditional excess distribution function Fu of the variable s above a threshold u is defined
as:

Fu(x) = P (s− u ≤ x|s > u) =
F (u+ x)− F (u)

1− F (u)
(2.3)

for 0 ≤ x ≤ sF − u where sF is either the finite or infinite right endpoint of the
underlying distribution F . Fu describes the distribution of the excess values over u. Given
this definition, the Pickands-Balkema-de Haan Theorem can be stated.

Theorem 2.1.2

Let (s1, s2, ...) be a sequence of i.i.d. samples, and let Fu be their conditional excess
distribution function. For a large class of underlying distribution functions F, and a large
u, Fu is well approximated by the Generalized Pareto distribution:

Fu(x)→ GPDF (x), as u→∞ (2.4)

The Generalized Pareto distribution GPDF is defined in the next section.
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2.2.3 EVT Distributions

The Fisher-Tippett Theorem leads to three primary EVT distributions, and a number of
other related distributions. Beyond the three primary extreme value distributions (Gumbel,
Fréchet, and Reversed Weibull), the GEV, Rayleigh, and Pareto distributions are also
useful for tail modelling. For the following distributions, assume κ, λ, and τ are the shape,
scale, and location parameters, respectively.

Gumbel Distribution

The Gumbel is a distribution that applies when the data to be modeled are unbounded.
It is used for modeling maxima (or minima, if the random variables are negated). Note
that the shape of the Gumbel is not determined by the parameters—only the location and
scale (which must be positive) are defined. The Probability Density Function (PDF) of
the Gumbel distribution is given as:

f(x) =
1

λ
e−(z+e−z) (2.5)

where

z =
x− τ
λ

(2.6)

The CDF of the Gumbel distribution is given as:

F (x) = e−e
−(x−τ)/λ

(2.7)

Fréchet Distribution

The Fréchet is a distribution that applies when the data to be modeled are bounded from
below and a heavy upper tail is desirable. Like the Gumbel distribution, it is used for
modelling maxima (or minima, if the random variables are negated). The PDF of the
Fréchet distribution is given as:

f(x) =
κ

λ

(
x− τ
κ

)−1−κ

e
−
(x− τ

λ

)κ
(2.8)

The CDF of the Fréchet distribution is given as:

F (x) = e
−
(x− τ

λ

)κ
(2.9)
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Weibull Distribution

The Weibull is a distribution that applies when the data to be modeled are bounded from
below and the shape and scale parameters are positive. In contrast to the Gumbel and
Fréchet distributions, the Weibull is used for modeling minima. The PDF of the two-
parameter Weibull distribution is given as:

f(x) =

{
κ
λ

(
x
λ

)κ−1
e(x/λ)κ , x ≥ 0

0, x < 0.
(2.10)

The CDF of the Weibull distribution is given as:

F (x) =

{
1− e(x/λ)κ , x ≥ 0

0, x < 0.
(2.11)

The Rayleigh distribution is a special case of the Weibull distribution, where the shape
parameter κ = 2.

f(x) =
x

λ2
e−x

2/2λ2 (2.12)

The CDF of the Rayleigh distribution is given as:

F (x) = 1− e−x2/2λ2 (2.13)

Fragoso and Turk [2013] have argued that the Rayleigh distribution can reduce sensi-
tivity to the underlying distribution of data, and be computed efficiently, because the scale
is the only parameter that must be computed.

Reverse Weibull Distribution

The reverse Weibull distribution is simply the opposite of the Weibull’s non-degenerate
distribution function, and is appropriate when the data are bounded from above. It follows
directly from the Fisher-Tippett Theorem, and is thus used to model maxima.

F (x) =

{
e(x/λ)κ , x < 0

1, x ≥ 0.
(2.14)
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Generalized Extreme Value Distribution

The Generalized Extreme Value Distribution (GEV) is a generalization of the Gumbel,
Fréchet and reverse Weibull distributions (all three are maximum EVT distributions).
The PDF of the GEV distribution is

GEV (t) =

{
1
λ
e−ν

−1/κ
ν−(1/κ+1), κ 6= 0

1
λ
e−(x+e−x), κ = 0.

(2.15)

where

x =
t− τ
λ

, ν =

(
1 + κ

t− τ
λ

)
(2.16)

Different values of the shape parameter yield the extreme value type I, II, and III
distributions. Specifically, the three cases κ = 0, κ > 0, and κ < 0 correspond to the
Gumbel (I), Frechet (II), and Reversed Weibull (III) distributions. Thus the sign of κ can
be used as an indicator of which distribution to choose. The CDF of the GEV is given as:

GEV (t) =

{
e−(1+(x−τλ ))

−1/κ

, κ 6= 0

e−e
−(x−τ)/λ

, κ = 0.
(2.17)

Generalized Pareto Distribution

The Generalized Pareto Distribution (GPD) is a common distribution used to model the
tails drawn from other distributions. It follows from the second extreme value theorem
(i.e., the Pickands-Balkema-de Haan Theorem). Specifically, the modelling accounts for
exceedances over a high threshold (x− t , where t is a threshold).

f(x) =
1

λ
(1 + κz)−(1/κ+1) (2.18)

where

z =
x− τ
λ

(2.19)

2.3 Probability Paper Method

This section introduces probability plots and shows how they can be used to select a parent
distribution for the given sample.
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In daily practice, graphical methods are one of the important tools used by scientists
and engineers as they are simple and easy to use. In words of Castillo (1988),“The basic
idea of probability paper, of a given parametric family of distributions, is to modify the
random variable, X, and probability, P, scales in such a way that the plot against X of
any CDF, F (x), belonging to that family, appears a straight line, such that no other CDF
satisfies this property”. However, this situation isn’t possible in practice and is limited to
just being theoretical. Usually a sample obtained from a random variable is known but
not its CDF.

Thus, in probability papers, for a given family of distributions, the scales have been
changed in such a manner that the cdfs represented graphically on paper appear as a
straight line.

If F (x; θ) is a parametric family of CDFs with θ being the vector parameter, we have
the following transformations:

ξ = g(x)

η = h(y)

}
(2.20)

The family of curves of equation

y = F (x; θ) (2.21)

become a straight line when transformed using Equation 2.20.

If y = F (x; θ) is written as

y = F (x; θ) = h−1(ag(x) + b)↔ h(y) = ag(x) + b (2.22)

Here, g(x) and h(xy) are functions and h(y) is invertible.

It means, the transformation in Equation 2.20 changes Equation2.21 into a family of
straight lines.

η = aξ + b (2.23)

where, η = reduced variate.
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Normal probability paper

The cdf of normal population is given by,

F (x; θ) = Φ

(
x− µ
σ

)
(2.24)

Here, θ = (µ, σ), µ = mean, σ = standard deviation, and Φ(x) = CDF of the standard
normal N(0, 1) population.

Using Equations 2.22 and 2.24,

ξ = g(x) = x

η = h(y) = Φ−1(y)

}
(2.25)

and

a =
1

σ

b =
−µ
σ

 (2.26)

This results in a family of straight lines

η = aξ + b =
ξ + µ

σ
(2.27)

Log-normal probability paper

When X is transformed to log(X) we get log-normal probability paper. The only change
here is that the abscissas axis becomes logarithmic.

Gumbel probability paper

The CDF curve for Gumbel is given by

y = F (x;α, β) = exp

[
−exp

(
−x− α

β

)]
; −∞ < x <∞ (2.28)
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Taking logarithms twice of 1/y we get

− log
[
log

(
1

y

)]
=
x− α
β

(2.29)

Comparing Equation 2.29 with Equations 2.20 and 2.22 gives

ξ = g(x) = x

η = h(y) = −log
[
log

(
1

y

)]
= −log[−log(y)]

(2.30)

and

a = 1/β

b = −α/β

}
(2.31)

This shows that the Equation 2.30 changes Equation 2.31 into a family of straight lines

η = aξ + b =
η − α
β

(2.32)

Similarly, we can derive probability papers for other distributions (Wilk and Gnanade-
sikan, 1968).

2.4 Annual Maxima Method

2.4.1 Stationary Gumbel Model

Here an Extreme Value distribution is fitted to the annual maximum wind speeds. For
simplicity of this and the following section, we will only use the term wind speed. It is also
assumed that the maxima from different years are serially independent. In comparison to
daily or hourly measurements, the maxima taken over different years are more likely to be
independent (Cohen, 1986). However, this also reduces the number of observations to be
used for the statistical analysis. Therefore, the estimates obtained using Annual Maxima
are much more variable in comparison to any other method (Perrin et al., 2006).

14



If mj is the yearly maxima of the rounded wind speed recordings then F is the dis-
tribution of the yearly maximum wind speed. Therefore, the T-year wind uT is given
by

T (1− F (uT ) = 1 (2.33)

Here, mj is assumed to have the Extreme Value distribution function

G(X) = exp

{
−
(

1 + γ
x− µ
σ

)−1/γ

+

}

Here, µ is the location parameter, σ is the scale parameter, γ is the shape parameter, and
+ represents the “positive” part. This means that those x-values that make the expression
within the inner parenthesis negative is replaced by zero (Wolinski and Pytlowany, 2012).
The density is given by

g(x) =
1

σ

(
1 + γ

x− µ
σ

)−(1/γ)−1

+

exp

{
−
(

1 + γ
x− µ
σ

)
|−(1/γ)
+

}
(2.34)

This becomes a Gumbel distribution function when γ = 0. That is

G0(x) = exp(−exp(−x− µ
σ

)) (2.35)

The Gumbel distribution has been found to fit many types of data sets; therefore, it
reserves a special place in EVT (Hong et al., 2014). This thesis makes use of Gumbel
distribution while applying Annual Maxima method.

Gumbel probability paper is the standard starting point when the limit distribution of
data is unknown because Gumbel type occupies a central position between Weibull and
Frechet papers. Moreover, the plots of Weibull or Frechet probability paper requires the
knowledge of the threshold parameter (Castillo, 1988). Gumbel model is one of the most
commonly used probabilistic models when dealing with extreme wind speeds (Hong et al.,
2013). It is also known as extreme value type I distribution. The Gumbel distribution has
a CDF curve given by

y = F (x;α, β) = e−e
−
x− α
β

; ∞ < x <∞ (2.36)

15



where,
F (x) = the cumulative distribution function,
x = value of the random variable X,
α = location parameter, and
β = scale parameter.

Equation 2.36 is used to plot the Gumbel probability paper for the annual maximum
wind speed in km/h (KMPH). The process of plotting the PPPs is similar to that shown
in Section 2.3. Castillo (1988) suggests that the Gumbel probablity paper of wind speed
data will show a slight concave shape and does not show a linear trend in its range. The
greater value of the wind speeds are accurately fitted by the Gumbel model (Kang et al.,
2015). The right tail, however, will show a linear trend, which suggests a Gumbel type
limit distribution.

Return periods help us estimate the risk based on historical data.

xT = α + βyT (2.37)

where, yT = −ln
(
−ln

(
1− 1

T

))
and

1

T
= the probability of getting a wind speed with

a return period of y-years in one year.

2.4.2 Non-stationary Gumbel Model

The characteristics of non-stationary processes changes through time. A suitable model
Zt, the annual maximum wind speed in year t might be

Zt = G(α(t), β) (2.38)

where for parameters a0 and a1,

α(t) = a0 + a1t (2.39)

Thus, the location parameter for an appropriate extreme value model is modelled as a
linear trend for variations through time in the observed process. Here a1 is the parameter
for the annual rate of change in annual maximum wind-speed.
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Estimation by Maximum Likelihood Method

This method involves maximizing the likelihood of the observed sample which can be used
to derive point or interval estimates. The scope of this section is limited to point estimation
because this thesis does not use interval estimation.

Let us assume that X = {X1, X2...} are independent and iid random variables having
a common parametric family of pdfs f(x; θ) and cdfs F (x; θ). Here,

θ = {θ1, θ2, ..., θk} ∈ Θ

This is a vector-valued parameter of dimension k in the parameter space Θ.

As the variables in X are independent, their joint probability distribution function is
given by

f(x|θ) =
n∏
i=1

f(xi; θ).

The values of x = {x1, x2, ..., xn} become known when the sample has been collected.
Thus the above function can be viewed as a function of θ given x. This function, called
the likelihood function, is written as

L(θ|x) =
n∏
i=1

f(xi; θ).

Mathematically, it is often easier to deal with loglikelihood function rather than the
likelihood function. The loglikelihood function is given by

`(θ|x) = logL(θ|x) =
n∑
i=1

f(xi; θ).

The maximum likelihood of θ is obtained by maximizing either of the two functions
above with respect to θ based on whether loglikelihood is required or likelihood is required.

Maximum likelihood approach has the adaptability to changes in model structure. That
puts it at an advantage when it comes to parameter estimation.

Using a non-stationary Gumbel model to describe the distribution of Zt for t = 1, 2, ...,m :
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Zt = GEV (α(t), β(t)) (2.40)

The likelihood of which is simply,

L(η) =
m∏
t=1

g(zt;α(t), β(t)) (2.41)

where, g(zt;α(t), β(t)) = the Gumbel density function with parameters α(t), β(t) eval-
uated at zt.

Therefore, for the Gumbel case of ξ = 0, the MLE is given by

`(α, β) = −mlogβ −
m∑
t=1

(
zt − α(t)

β

)
−

m∑
t=1

exp

{
−
(
zt − α(t)

β

)}
(2.42)

where α(t) is given by Equation 2.40.

The imsev pacakge of R developed using the algorithms written by Coles (2001) could
be used easily in MATLAB using the system() command of MATLAB.

Percentile of the distribution

CDF for Gumbel distribution is given by,

F (x) = e−e
−

x− α
β


(2.43)

So, multiplying both the sides by ln,

− ln[− ln(p)] =
xp − α
β

−β[ln[− ln(p)]] = xp − α
(2.44)

∴ xp = α− β[ln[− ln(p)]] (2.45)

Thus for non-stationary case from Section 3.2.2,
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xp = α(t)− β[ln[− ln(p)]] (2.46)

Considering the parameters a0 and a1 from equation 2.40,

xp = a0 − a1(t)− β[ln[− ln(p)]] (2.47)

2.5 Stochastic Process Model

This is one of the simplest statistical models for the analysis of extreme values. In this
model, the number of observations are reduced to only peaks-over-threshold values Y1, Y2,
... , Yk. Here, the peaks over threshold values exceed a particular threshold value y0 (Ross,
1987).

When the peak magnitudes Yi are independent and identically distributed, provided
each variable Yi - y0 has an exponential distribution with the parameter λ, it results in the
simplest analysis of this model. A very high threshold makes it hard to get enough ob-
servations, and a very low threshold will take into account non-extreme values. Therefore,
for this model, the threshold value should be neither too high nor too low. The threshold
value, here onwards, will be denoted by u.

The Stochastic Process model is the probabilistic model of the

1. the arrival process and

2. the peak wind speed.

Assume that xi, i = 1, 2, ..., N is the wind speed data, and u be the value of the
threshold. That means,

y = x− u (2.48)

We know that GPD is defined by

Gξ,β(x) =

1−
(

1 + ξx
β

)−1/ξ

, ξ 6= 0.

1− exp
(
−x
β

)
, ξ = 0.

(2.49)
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and are valid

β > 0 and x ≥ 0 → ξ ≥ 0

0 ≤ x ≤ −β
ξ
→ ξ < 0

(2.50)

where ξ is the shape parameter, and β is the scale parameter.

The distribution function of exceedances above threshold u for all u < xF is,

Fu(x) = P{X − u ≤ x | X > u}, x ≥ 0 (2.51)

Fu, by the conditional probabilities, can be defined as

Fu(x) =


F (u+ x)− F (u)

1− F (u)
, x ≥ 0.

0, else.
(2.52)

Putting the exceedances in relation to GPD,

Fu(y) ≈ Gξ,β(y) (2.53)

That means,

F (x) = (1− F (u)) · Gξ,β(x− u) + F (u) for x > u (2.54)

where,

F (u) =
N −m
N

(2.55)

Here, N is the number of observations and m is the number of exceedadnces.

Therefore, the estimation is given by -

F̂ (x) = 1− m

N

(
1 +

ξ̂(x− u)

β̂

)−1/ξ̂

(2.56)

where, ξ̂, β̂ = estimated parameters of GPD.

In general, this model assumes that once we have selected a threshold value, all the
values or samples over the threshold are peaks (Rosso, 2015).
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2.5.1 Poisson Process

This section briefly summarizes both the nonhomogeneous Poisson process (NHPP) and
the homogeneous Poisson process which will be used while analysing the data using POT
method.

A discrete distribution on the non-negative integers is called the Poisson distribution. A
random variable X is said to have a Poisson distribution if it is a discrete random variable
that has the probability mass function (pmf )

p(x) = P (X = x) =
φxexp(−φ)

x!
; x = 0, 1, 2, ...

If X is a discrete random variable having the above equation as pmf then we can write
X ∼ POI(φ).

The mean and the variance of the Poisson distribution are given by E(X) = φ and
V (X) = φ respectively.

Moreover, for a Poisson process, the random variable N(a, b] has a Poisson distribution
with mean

b∫
a

λ(x)dx

This is a Poisson process with a constant intensity function. The HPP cannot be used
to model systems that deteriorate or improve because the intensity function is constant.
These situations call for the application of a Poisson process with non-constant intensity
function.

HPP is very closely related to the exponential distribution. As stated by Rigdon
(2000),“A process is an HPP with intensity λ, if and only if the times between failure
are iid exponential random variables with mean 1/λ”.

The intensity density function of HPP is given by λ(x) = λ.

The intensity function, on the other hand, is a function λ(x) that when integrated over
a given time t gives the expected value of the number of events occurring in that time.
This can be written, mathematically, as

Λ(t) =

∫
t

λ(x)dx.
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Here, the expected number of events occurring in time t is given by Λ(t).

HPP model fitting requires statistical estimation of only a single parameter called the
failure rate (λ).

λ = n/t (2.57)

If n is the number of shock events observed in a total observation period of t, then the
failure rate of the the HPP model can be calculated using Equation 2.57.

The arrival of shock events is not constant if the system is deteriorating. For such
systems, HPP is no longer applicable.

As stated by Rigdon (2000),“The nonhomogeneouos Poisson process (NHPP) is a Pois-
son process whose intensity function is non-constant”. A point process is said to be NHPP
with intensity function λ(x) if N(A), the number of events, occuring in A is a Poisson
random variable. This means,

N(A) ∼ Po(Λ(t))

For NHPP, the failure rate is a non-linear function of time. NHPP model is fitted to
the failure data using Power Law model. The mean or the expected number of events for
a Power Law model is given by

E[N(t)] = λtβ

The process is called a power law process, when the intensity function has the form
λ(t) = (β/θ)(t/θ)β−1. Here, β > 0 and θ > 0.

CROW-AMSAA method is used to fit the NHPP Power Law model graphically. In
general, it can be used to estimate the parameters λ and β.

Here, parameter β is interpreted as follows:

• β >1, the number of events is increasing over time (NHPP)

• β = 1, a stable process (the mean number of events is constant over time; HPP)

• β <1, the number of events is decreasing over time (NHPP)

This is the simplest test to verify for NHPP or HPP. However, sometimes it is required
to test for the HPP process in much detail when the value of β is very close to the value of
one but not exactly one. That is when the tests outlined in the following section are used.
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CROW-AMSAA Plots

Dr. Larry H, Crow developed this method at the U.S. Army Material Systems Analysis
Activity (AMSAA), thereby it came to be known as CROW-AMSAA. CROW-AMSAA
plots, according to the definition are simple power curves with cumulative failures on the
y − axis and the cumulative time on the x − axis. When data is plotted on a log paper,
it results in a straight line (Dawson, 2011).

The equation N(t) = λ∗tβ is used to plot the simple regression line. The slope provides
the β statistic, whereas the y − axis intercept at time t = 1 provides λ. The statistic λ,
here, is the occurrence of high wind events at time equal to 1. This is simply a hypothetical
value to allow to be able to forecast future high wind events.

2.6 Distribution of Maximum Load

Load arrival process is an NHPP with the rate function λ(t). The mean rate function is
given by

Λ(t) =

∫ t

0

λ(x)dx (2.58)

In the interval (0, t), load arrives at random times s1, s2, ..., sN(t). Here, N(t) is the
number of events in (0, t). The distribution of maximum magnitude of shock in (0, t) is
given by Xmax(t). If [Xmax(t) ≤ u] then all the shocks in (0, t) could be denoted by

[X1 ≤ u,X2 ≤ u, ..., XN(t) ≤ u] (2.59)

This is illustrated in the Figure 2.1 where the random times are the years on the y-axis.
The shocks X1, ..., XN(t) are shown as stem plots, and the threshold u is shown as a solid
line.

Therefore,

P [Xmax(t) ≤ u] = P [X1 ≤ u,X2 ≤ u, ..., XN(t) ≤ u]

=
∞∑
n=0

P [X1 ≤ u, ..., Xn ≤ u;N(t) = n]
(2.60)
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Figure 2.1: Annual Max Wind Speed vs. Years

Using the independence of X and N(t),

P [Xmax(t) ≤ u] =
∞∑
n=0

P [X1 ≤ u, ..., Xn ≤ u;N(t) = n]

=
∞∑
n=0

[Fx(u)]nP [N(t) = n]

(2.61)

For the NHPP model

P [N(t) = n] =
[Λ(t)]ne−Λ(t)

n!
(2.62)

Substituting Equation 2.62 into 2.61,

P [Xmax(t) ≤ u] = Fmax(u, t)

= exp (−Λ(t)(1− FX(u)))
(2.63)

This means that Fmax(X, t) is the cdf of the maximum value distribution in the interval
(0, t).
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2.6.1 Percentiles of Maximum Value

Suppose,

P [Xmax(t) ≤ xp] = p

or Fmax(xp, t) = p
(2.64)

where p is the pth percentile of Xmax(t).

Substituting Equation 2.63 into 2.64 gives

exp (−Λ(t)(1− FX(u))) = p

1− Fx(xp) =
−ln p
Λ(t)

(2.65)

Therefore,

Fx(xp) = 1 +
ln p

Λ(t)
(2.66)

Depending on the distribution of shock height X or Fx(x), substituting the cdf of F (x)
into the Equation 2.64 gives us the percentile for the given sample of data.

In the POT method, the threshold was selected to be u, so to model shock above the
threshold we have to consider x = y − u, where y is the original data.

Our wind-speed data follows exponential distribution. Therefore,

Fx(x) = 1− e−λx (2.67)

Substituting Equation 2.67 into 2.66,

1− e−λxp = 1 +
ln p

Λ(t)

−e−λxp =
ln p

Λ(t)

(2.68)

∴ xp =

(
−1

λ

)
ln

[
−ln p
Λ(t)

]
(2.69)

Where for exponential distribution,
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Λ(t) = λ(t)β. (2.70)

Now, we know that xp is the shock above the threshold u. This means that the pth

percentile of real data is given by
yp = xp + u (2.71)

Here, yp gives the predicted wind-speed for the future years in km/h (KMPH).

We know from Equation 2.69 that xp =

(
−1

λ

)(
ln

[
− ln(p)

Λ(t)

])
.

Generalizing this equation to find the distribution of maximum wind speed in any
general interval (t1, t2),

Λ(t1, t2) = Λ(0, t2)− Λ(0, t1)

= λ(t2)β − λ(t1)β
(2.72)

where, t1 and t2 are in days, parameters λ and β are the values from Table 3.11.

Thus Equation 2.70 can be re-written using Equation 2.72

xp =

(
−1

λ

)(
ln

[
− ln(p)

Λ(t1, t2)

])
(2.73)

Accounting for the threshold u again, the solution obtained from using Equation 2.73
can be used to calculate yp using Equation 2.71.

Special Case of HPP

NHPP also has a special case HPP with parameter λ.

We know that rate,

λ(t) =
d

dt
Λ(t) =

d

dt
(αtβ) = αβtβ−1 (2.74)

Therefore, in HPP
Λ(t) = αt, because β = 1 (2.75)
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In the previous pages of this thesis the parameter α has been denoted by λ, so using
the same notation for consistency, the above equation could be written as

Λ(t) = λt (2.76)

where,

λ =
number of failures

observation period

=
total number of wind events above threshold u

total observation period in days

(2.77)

Based on Equation 2.76, for the case of any general interval of (t1, t2),

Λ(t1, t2) = Λ(0, t2)− Λ(0, t1)

= λ(t2)− λ(t1)
(2.78)

Therefore, after substituting Equation 2.78 into 2.73, we can calculate the percentile
for the HPP case using Equation 2.71

2.7 Statistical Test for HPP

The simplest statistical model to describe a failure in a system is using a Homogeneous
Poisson Process (HPP). HPP implies the following two things:

• The system does not deteriorate or exhibit reliability improvement in global time

• The system does not wear out in local time.

HPP would not be an appropriate model for the system if even one of the above two is
not satisfied. The Graphical method of Section 3.4.1 can be used to identify a HPP. One
of the earliest tests called the Laplace test could also be used for this purpose.

For our case of collecting Wind Speed data, the collection of data was terminated at
December 2018. Thus, the data is said to be time truncated because the testing stopped
at a predetermined time t.
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Laplace Test

For the time truncated case, the test statistic for the Laplace test is

L =

n∑
i=1

Ti/n− t/2

t/
√

12n
(2.79)

Here, t is the predetermined time, and the random variables T1 <T2 <···<Tn are distributed
as n order statistics from a distribution that is uniform on the interval (0,t).

The null hypothesis

H0: The process is an HPP

is rejected if

L < −zα/2 or L > zα/2

A large value of L indicates that the system is deteriorating, and a small value indicates
that the system is improving.

2.7.1 Test of Hypothesis for β

For a time truncated case, the number of failures N is random whereas the time the
testing stops t is fixed. The limitations of the Graphical tests can be overcome using these
procedures. Here the MLE is equal to

β̂ =
N

N∑
i=1

log(t/ti)

(2.80)

and the conditionally unbiased estimator for β is

β̄ =
N − 1

N
β̂ (2.81)

We begin the procedure of statistical inference for our time truncated case with the
testing of the hypothesis for β.
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The quantity 2nβ/β̂ has a chi-square distribution with 2n degrees of freedom for a time
truncated case at time t and N = n.

Here the null hypothesis, H0: HPP process, is rejected if

2nβ/β̂ < χ2
1−α/2 or 2nβ/β̂ > χ2

α/2 (2.82)

or

β̂ <
2nβ0

χ2
α/2

or β̂ >
2nβ0

χ2
1−α/2

(2.83)

2.7.2 Cramer-von Mises Test

Cramer-von Mises (CVM) test is used here to formally test the adequacy of the power law
process. Here, the hypothesis is as follows

H0: Power Law Process is an adequate model
H1: Power Law Process is not an adequate model

Small samples do not provide enough information, so they might not lead to the rejection
of the null hypothesis, or they might. Sometimes, even large samples are prone to lead
to the rejection of null hypothesis even if the data follows the power law process closely.
Because of this reason, we use charts to determine whether our time truncated data follows
a power law model. The reason behind using the CVM plots for the hypothesis is because
of the limitation of the CVM test critical value table relative to the size of our samples.
The tables that exist have the maximum sample size of 100 which is not enough for the
current weather data (Stephens, 1970).

The Cramer-Von Mises test statistic is given by

C2
R =

1

12n
+

n∑
i=1

(
R̂i −

2i− 1

2n

)2

(2.84)

where

R̂i =

(
ti
t

)β̄
(2.85)

Here, we plot R̂i on the horizontal axis, and its expectation E(R̂i) on the vertical axis.

E
(
R̂i

)
=

2i− 1

2n
(2.86)
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This plot is approximately linear along 45◦ line going through the origin when the data
follows a power law process. Such a plot with points lying close to the diagonal line going
through the origin indicates a good fit.

Efficiency of the estimator

For a HPP, the estimate of intensity, for time truncated case, is given by

ū =
n

tn
(2.87)

whereas, for NHPP the estimate of intensity is given by

û (t) =
Nβ̂

t
. (2.88)

Thus, the efficiency is given by

Efficiency =
MSE of û

MSE of ū
. (2.89)

Here ū is a better estimator when efficiency is greater than 1. Contrarily, the efficiency of
less than 1 indicates that û is a better estimator. Based on this, it is advisable to assume
a power law process for a larger sample size and a HPP for a small sample size.

2.8 Conclusion

The global consensus among scientists about the change in global climate has motivated
the non-stationary modelling of extreme wind speed. Anything that is built will need to
survive through this non-stationary climate. That is the strength of the buildings would
need to be formulated in accordance with the forecasted wind speed. The two models of
Annual Maxima and Stochastic Process model would need to be analysed from the non-
stationary point of view as these are the most commonly used models for the extreme wind
speed data. This Chapter provided a background knowledge for these two methods. For
the non-stationary Gumbel model, the parameter a1 provides the annual rate of change in
the annual maximum wind speed, whereas for the non-stationary Stochastic Process model,
the parameter λ provides the daily rate of change in the daily maximum wind speed.
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Chapter 3

Application - Wind Data

3.1 Introduction

This chapter discusses the application of two estimation methods of the Gumbel model
and the Stochastic process model(Holmes and Moriarty, 1999; Lechner et al., 1992; Simiu
and Heckert, 1996) of extreme value analysis and applies it to the wind speed data that
Environment Canada collects. This wind speed data is collected in the intervals of hours,
days, months, and years. This data is available to download using Cygwin64 Terminal.
Table 3.1 lists the stations used for the analysis of wind data. Most stations have multiple
station IDs to accommodate the introduction of new equipment and retiring of the old
one. This is evident from the example of the station of the Region of Waterloo. Waterloo
Wellington A (Station ID 4832) operated from 1970 to 2003, when it comes to collecting
the daily weather data, and was located at the latitude and longitude of 43.45 and -80.38
degrees respectively. Region of Waterloo Int’l Airport (Station ID 32008) located at the
latitude and longitude of 43.46 and -80.38 degrees respectively, operated from 2002 to
2011. Based on this, the location can be deemed to be the same with just the change in
the Station ID and name.

The latitude and longitude data, in degrees, was retrieved from Environment Canada’s
FTP url:

ftp://client_climate@ftp.tor.ec.gc.ca/Pub/Get_More_Data_Plus_de_donnees/

Station%20Inventory%20EN.csv
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3.2 Annual Maxima Method

3.2.1 Stationary Model

As we have already discussed, Gumbel probability paper is the standard starting point
when the limit distribution of data is unknown

Equation 2.36 is used to plot the Gumbel probability paper for the annual maximum
wind speed in km/h (KMPH). The process of plotting the PPPs is similar to that shown in
the previous sections. Figure 3.1 shows an example PPP for the Trenton wind speed data.
The plots for the wind speed data from the remaining nine weather stations is available
for reference in Appendix A.4. The main goal behind using these PPPs is to calculate the
stationary Gumbel parameters.
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Figure 3.1: Stationary Gumbel PPP

3.2.2 Non-stationary Model

Based on the details discussed in Section 3.2.2, the system() command of MATLAB is used
to run the imsev pacakge of R to calculate the non-stationary parameters listed in Table
3.3 (Martinez, 2008). These parameters would be later on used to make the projections.
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Table 3.2: Stationary Gumbel Parameters using PPP

Station Name Parameters

Trenton α = 90.288, β = 16.142

Region of Waterloo α = 88.312, β = 9.779

London α = 96.256, β = 13.025

Hamilton α = 96.302, β = 9.904

Sarnia α = 87.885, β = 13.289

Wiarton α = 90.821, β = 9.647

Toronto Island α = 91.765, β = 8.539

Toronto Pearson α = 93.234, β = 7.428

Kapuskasing α = 79.824, β = 9.384

Sudbury α = 85.530, β = 14.361

Table 3.3: Non-Stationary Gumbel Parameters using MLE

Station Name Parameters

Trenton a0 = 108.307, a1 = -0.472, β = 11.480

Region of Waterloo a0 = 99.985, a1 = -0.707, β = 18.839

London a0 = 117.956, a1 = -2.186, β = 19.947

Hamilton a0 = 106.323, a1 = -0.380, β = 9.543

Sarnia a0 = 94.534, a1 = -0.240, β = 12.105

Wiarton a0 = 96.937, a1 = -0.225, β = 9.944

Toronto Island a0 = 95.357, a1 = -0.055, β = 8.432

Toronto Pearson a0 = 98.105, a1 = -0.207, β = 7.775

Kapuskasing a0 = 87.105, a1 = -0.260, β = 10.991

Sudbury a0 = 104.934, a1 = -0.570, β = 11.554
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3.3 Stochastic Process Model

POT allows for the dataset to be enlarged because it considers the largest order statistics
exceeding sufficiently high threshold from the collected data. This helps with reducing
the sampling uncertainty. Simiu and Heckert (1996) has already applied this technique to
estimate the design of wind speed in the US.

1960 1970 1980 1990 2000 2010
Time

50

100

150

W
in

d 
Sp

ee
d 

K
M

PH

Windspeed vs Time for Trenton

2005 2006 2007 2008 2009 2010 2011
Time

50

100

150

W
in

d 
Sp

ee
d 

K
M

PH

Windspeed vs Time for Trenton (Only 2005-2011)

Figure 3.2: Wind Speed vs. Time Plots

3.3.1 Distribution of Event Magnitude

Figure 3.2 shows two plots of Wind Speed against Time. Here, the average rough peaks are
considered as storm events. These averagely rough peaks could be viewed as the threshold
of our data. The selection of threshold should be such that only true peaks are selected.The
distribution of the selected extremes will not converge to the generalized pareto distribution
asymptote if true peaks are not selected. However, the threshold should also not be so
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Table 3.4: Maximum Wind Speed in descending order for Trenton Weather Station

Date Total Wind Gust
(yyyy-mm-dd) (KMPH)

1958-12-22 154
1959-01-05 153
1956-11-21 145
1964-03-05 145
1978-01-26 135

. .

. .

. .
2015-10-29 76
2016-02-29 76
2005-11-06 72
2010-09-03 69
2018-01-23 65

high that there is not enough data for the satisfactory analysis and the determination of
distribution of parameters (Lee et al., 2011).

In the figure on the top, the time extends from 1955 to 2018. Here, because the data
is so condensed the threshold comes out to be around 75 KMPH. However, in the plot
below, with the time-line of years extending from 2005 to 2011, the threshold is visible
to be about 60 KMPH. These two thresholds have been marked using a horizontal line in
the Figure 3.2. Visually finding a threshold, thus, is not effective because we are getting
two different values. For this reason, we find threshold using the method outlined in this
section.

The first step in finding the threshold involves finding the annual maximum data points.
To help with this, first, the data is arranged in a descending order as shown in Table 3.4.
It lists the Total Wind Speed in kilometres per hour (KMPH) for the Trenton Station only,
so 9 other similar tables are put together for the remaining 9 stations on our list. The
data from these 9 stations has not been listed for convenience as only the minimax and
the maximax values from these tables help with narrowing down a threshold value. For
the station of Trenton, from Table 3.4 the minimax is 65 KMPH, whereas the maximax is
154 KMPH.

The minimax and maximax data for the 10 stations is listed in Table 3.5. The thresh-
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Table 3.5: Minimax and Maximax Wind Speed in KMPH for each of the 10 stations

Minimax Minimax Maximax Maximax
Date Wind Gust Station Name Date Wind Gust

(yyyy-mm-dd) (KMPH) (yyyy-mm-dd) (Km/h)

2018-01-23 69 Toronto Airport 1978-01-26 115
2018-01-23 65 Trenton 1958-12-22 154
2018-01-17 67 Toronto Island 1978-01-26 126
2001-04-12 80 London 1992-06-17 148
2018-01-26 72 Wiarton 1984-04-30 126
2002-10-19 63 KW 1981-03-30 120
2011-12-15 78 Hamilton 1978-01-26 133
2006-07-30 65 Sarnia 1991-03-27 159
1996-01-27 59 Kapuskasing 1975-10-25 106
2004-03-20 63 Sudbury 1964-04-14 137

old is selected using this table. We are going to use two threshold values: 60KMPH
and 70KMPH. Here, only the minimax values of the wind speed were used to decide the
threshold for storm events. Anything below these two values was considered to be a normal
meteorological occurrence and not a storm event.

A MATLAB function is written to get the data ready to plot the probability paper
plots. The first step involves removing all the data below the threshold of 60KMPH. A
universal MATLAB function is written for this so that it can be reused for all the 10
stations. This function also forms the basis of the MATLAB code to plot the probability
paper plots (Sa, 2003).

Apart from removing all the data below 60 KMPH, this MATLAB function also calcu-
lates the time interval or inter-arrival time between the events and removes any inter-arrival
time that is less than 7 days. This is because a storm event has been assumed to last for
about 7 days. Deleting below 7 days ensures that we are looking at different storm events.
This function is then used for all the remaining 9 stations to form 10 tables, in total, similar
to Table 3.6.

60KMPH Threshold

The MATLAB code for this section is based on the one developed for the Section 3.3.1.
Here, we delete the data below 61KMPH. The reason behind deleting the data below
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Table 3.6: Example of extracted data above 60 KMPH for Trenton

Date Total Wind Gust Inter-arrival time
(yyyy-mm-dd) (KMPH) (days)

1955-03-13 66 45
1955-04-06 66 9
1955-04-19 64 13
1955-05-27 64 38
1955-08-05 80 69
1955-08-30 85 25

. . .

. . .

. . .
2017-10-15 76 54
2017-10-30 63 15
2017-11-09 63 10
2017-12-05 63 26
2018-01-23 65 48

61KMPH is because upon deleting the data shifts; that means, we have to offset this shift
in data to obtain the correct probability paper plots. This is achieved by subtracting
60KMPH from the extracted data. The Probability Paper Plots, comparing the four
distributions of Exponential, Log Normal, Weibull, and Gumbel, for the Wind Gust data
above 60KMPH are shown in Figure 3.3. From this figure, it can be seen that the data set
follows Exponential Distribution.

The distribution parameters and R-Squared values of the four distributions are sum-
marized in the Table 3.7. The R-Squared values in this table have been calculated using
the MATLAB function fitlm. This table also helps us compare how close is the mean and
the variance for the Trenton Weather Station relative to the four distributions: Lognormal,
Exponential, Weibull, and Gumbel.

Upon repeating the process of distribution selection for the remaining nine stations, we
find out that the distribution of data stays the same as the one selected for Trenton Station;
that is, the Wind Gust data follows an Exponential distribution and the Wind Inter-Arrival
data follows a Log Normal distribution. Table 3.8 lists the distribution parameters for the
9 weather stations not covered in the previous sections.
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Figure 3.3: Probability paper plots with Wind Speed threshold 60KMPH: Trenton
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Table 3.7: Distribution Parameters and Statistics with Wind Speed threshold 60KMPH:
Trenton

Distribution Parameters R-Squared Mean Variance COV

Log Normal ζ = 1.04, λ = 2.01 0.948 12.92 331.78 1.40
Exponential λ = 0.083 0.993 11.93 142.34 1.00

Weibull α = 1.24 β = 11.87 0.915 11.07 80.26 0.80
Gumbel α = 6.89 β = 8.95 0.949 12.06 131.97 0.95

Table 3.8: PPP Parameters for Ontario Weather Stations with a threshold of 60KMPH

Station λ

Waterloo 0.102

London 0.083

Hamilton 0.092

Sarnia 0.093

Wiarton 0.095

Toronto Island 0.097

Toronto Pearson 0.096

Kapuskasing 0.110

Sudbury 0.091
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70KMPH Threshold

Here, we delete the data below 71KMPH. Following this, the steps to execute this part are
the same as in Section 3.3.1.

The same procedure as the previous section is followed to plot the the probability paper
plots of the Figure 3.4. As can be observed from the figure, the data set follows Exponential
Distribution. Table 3.9 summarizes the distribution parameters and R-Squared values of
the distributions in the Figure 3.4.
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Figure 3.4: Probability paper plots with Wind Speed threshold 70KMPH: Trenton
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Table 3.9: Distribution Parameters and Statistics with Wind Speed threshold 70KMPH:
Trenton

Distribution Parameters R-Squared Mean Variance COV

Log Normal ζ = 1.01, λ = 1.98 0.973 12.23 271.89 1.34
Exponential λ = 0.083 0.989 11.93 142.46 1.00

Weibull α = 1.28 β = 11.38 0.920 10.53 67.89 0.78
Gumbel α = 6.47 β = 9.12 0.930 11.73 136.89 0.99

Similar to the previous section of 60KMPH, here, the wind speed data follows an Ex-
ponential distribution and the Wind Inter-Arrival data follows a Log Normal distribution.
The only exception to this scenario is the Toronto Station Wind Inter-Arrival data above
70KMPH which follows an Exponential Distribution if we use the R2 value to select the
distribution; otherwise, it follows the Log Normal Distribution. Table 3.10 lists the distri-
bution parameters for the 9 weather stations not covered in the previous sections.

Table 3.10: PPP Parameters for Ontario Weather Stations with a threshold of 70KMPH

Station λ

Region of Waterloo 0.105

London 0.081

Hamilton 0.095

Sarnia 0.092

Wiarton 0.098

Toronto Island 0.102

Toronto Pearson 0.101

Kapuskasing 0.109

Sudbury 0.091

When it comes to the Inter-Arrival PPP for the Toronto Station with the wind data
above 70KMPH, unlike the previous cases, the PPP turns out to be Exponential if we
consider the R-Squared value to be of significance. Exponential Distribution Parameter
for this case is λ = 0.024677 with R2 = 0.991373.
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3.4 NHPP Arrival Process of High Wind Events

Graphical methods are often used to select a reasonable model. These graphical methods
find out whether the time between failures is getting longer or shorter. In terms of wind
speed, we find out whether the time between storm like events is getting longer or shorter.
Based on this, one from the two commonly applied models is selected: Homogeneous
Poisson Process (HPP) or the Power Law Process.

3.4.1 Graphical Methods

The simplest graphical method involves plotting the cumulative wind inter-arrival time
ti against the cumulative number abnormal of wind speed events N(ti). If the plot is
linear then the system is said to be stable over the time data was collected. This means
that a HPP or a renewal process is an appropriate model for this scenario. A renewal
process is not a suitable model when the plot has a concave up or concave down curvature.
Systems with such a curvature are modeled by a Nonhomogenous Poisson Process (NHPP)
or a nonstationary process. NHPP is also referred to as a Power Law Process. It is
appropriate for systems that are improving or deteriorating. Figure A.1 shows the plots
using this simple graphical method. All the figures show either a slight concave up or
concave down curvature.

3.4.2 CROW-AMSAA Plots

As discussed in the previous sections and by Dawson (2011) The NHPP Power Law model
states that

E[N(t)] = λtβ (3.1)

Taking the natural log in Equation 3.1, we get

ln(E[N(t)]) = ln(λtβ) (3.2)

Equation 3.2 can be simplified to

ln(E[N(t)]) = ln(λ) + β[ln(t)] (3.3)

Thus, we can now use the Equation 3.3 to find the NHPP parameters by plotting
ln(E[N(t)]) vs. ln(t). In other words, we are using CROW-AMSAA method for fitting
NHPP Power Low model graphically.
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Figure 3.5: 60KMPH and 70KMPH NHPP Plots for Trenton

For example, when we plot the NHPP for the Trenton Station wind speed data above
60KMPH we get the following linear equation -

ln(E[N(t)]) = −2.9967 + 0.9817[ln(t)] (3.4)

Comparing equation 3.4 with 3.3, we see that

λ = e−2.9967 = 0.0499; β = 0.9817 (3.5)

Similarly, we can find the parameters for the remaining sets of data. Table 3.11 summarizes
the NHPP parameters for the 10 Ontario Stations.

We know that, parameter β is interpreted as follows:

• β >1, the number of events is increasing over time (NHPP)

• β = 1, a stable process (the mean number of events is constant over time; HPP)

• β <1, the number of events is decreasing over time (NHPP)

Figure 3.5 shows the Wind Inter-Arrival fitted with NHPP Power Law model for the
wind speed data from Trenton. Figures in the Appendix A.2 show the Wind Inter-Arrival
fitted with NHPP Power Law model for the remaining nine weather stations. As can be
observed from the table, the values of β is either greater or less than 1. Thus, we can
categorize all the weather stations under a NHPP.
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Table 3.11: NHPP Parameters for the ten Ontario weather stations for the Wind Inter-
Arrival data above, both, 60KMPH and 70KMPH.

Station Name λ β R2 Interpretation

Trenton (60KMPH) 0.0499 0.9817 0.990 NHPP
Trenton (70KMPH) 0.0355 0.9775 0.984 NHPP

Region of Waterloo (60KMPH) 0.0708 0.9181 0.993 NHPP
Region of Waterloo (70KMPH) 0.0260 0.9708 0.988 NHPP

London (60KMPH) 0.0564 0.9485 0.996 NHPP
London (70KMPH) 0.0756 0.8509 0.982 NHPP

Hamilton (60KMPH) 0.0854 0.9251 0.999 NHPP
Hamilton (70KMPH) 0.1285 0.8453 0.996 NHPP

Sarnia (60KMPH) 0.0414 0.9868 0.989 NHPP
Sarnia (70KMPH) 0.0048 1.1751 0.970 NHPP

Wiarton (60KMPH) 0.1148 0.8786 0.997 NHPP
Wiarton (70KMPH) 0.0866 0.8580 0.996 NHPP

Toronto Island (60KMPH) 0.0500 0.9752 0.996 NHPP
Toronto Island (70KMPH) 0.0191 1.0399 0.993 NHPP

Toronto Pearson (60KMPH) 0.0525 0.9730 0.995 NHPP
Toronto Pearson (70KMPH) 0.0348 0.9712 0.997 NHPP

Kapuskasing (60KMPH) 0.0053 1.1677 0.979 NHPP
Kapuskasing (70KMPH) 0.0042 1.1082 0.973 NHPP

Sudbury (60KMPH) 0.1053 0.8992 0.990 NHPP
Sudbury (70KMPH) 0.1500 0.8283 0.969 NHPP
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3.4.3 Statistical Test for HPP

From the previous section, it can be seen that the values of β are very close to one, but not
exactly one. Therefore, we perform the following tests to verify whether the data could be
modelled as HPP.

Laplace Test

We know the null hypothesis

H0: The process is an HPP

is rejected if

L < −zα/2 or L > zα/2

A large value of L indicates that the system is deteriorating, and a small value indicates
that the system is improving.

Table 3.12 shows the results of the Laplace test for the 10 weather stations. It can be
seen that for all the stations the P-value is less than 0.025. This indicates a rejection of
null hypothesis.

Test of Hypothesis for β

As discussed in Chapter 2, we begin the procedure of statistical inference for our time
truncated case with the testing of the hypothesis for β.

Here the null hypothesis, H0: HPP process, is rejected if

2nβ/β̂ < χ2
1−α/2 or 2nβ/β̂ > χ2

α/2 (3.6)

or

β̂ <
2nβ0

χ2
α/2

or β̂ >
2nβ0

χ2
1−α/2

(3.7)

The results of size α test of the Hypothesis H0 : β = 1 versus H0 : β 6= 1 are shown in the
Table 3.13. According to the results, the process is governed by a power law process except
for the stations of the Region of Waterloo and London. Samples for both the stations are
smaller in size in comparison to the other stations. Sometimes small samples do not provide
enough information. This could be the reason behind there not being enough evidence to
reject the null hypothesis for the two cases of the Region of Waterloo and London.
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Table 3.12: Laplace Test Results

Station Name L P-value Hypothesis

Trenton -12.55 0.0001 Reject H0

Region of Waterloo -2.25 0.0241 Reject H0

London -2.54 0.0109 Reject H0

Hamilton -7.57 0.0001 Reject H0

Sarnia -3.64 0.0003 Reject H0

Wiarton -5.65 0.0001 Reject H0

Toronto Island -5.99 0.0001 Reject H0

Toronto Pearson -4.71 0.0001 Reject H0

Kapuskasing -2.70 0.0069 Reject H0

Sudbury -13.95 0.0001 Reject H0

Table 3.13: Results of Hypothesis test for β

Station Name Reject H0 if β̂ Hypothesis

Trenton β̂<1.525 or β̂ >1.765 0.7581 Reject H0

Region of Waterloo β̂<0.965 or β̂ >1.150 1.0032 Not enough evidence to reject H0

London β̂<0.8915 or β̂ >1.091 0.9123 Not enough evidence to reject H0

Hamilton β̂<1.283 or β̂ >1.529 0.8157 Reject H0

Sarnia β̂<1.097 or β̂ >1.308 0.9259 Reject H0

Wiarton β̂<1.116 or β̂ >1.330 0.8170 Reject H0

Toronto Island β̂<1.207 or β̂ >1.439 0.8568 Reject H0

Toronto Pearson β̂<1.347 or β̂ >1.605 0.8978 Reject H0

Kapuskasing β̂<0.928 or β̂ >1.106 1.0017 Not enough evidence to reject H0

Sudbury β̂<1.391 or β̂ >1.658 0.6700 Reject H0
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Cramer-von Mises test

As discussed in the previous Chapters, the Cramer-Von Mises test statistic is given by

C2
R =

1

12n
+

n∑
i=1

(
R̂i −

2i− 1

2n

)2

(3.8)

where

R̂i =

(
ti
t

)β̄
(3.9)

Here, we plot R̂i on the horizontal axis, and its expectation E(R̂i) on the vertical axis.

E
(
R̂i

)
=

2i− 1

2n
(3.10)

This plot is approximately linear along 45◦ line going through the origin when the data
follows a power law process. Such a plot with points lying close to the diagonal line going
through the origin indicates a good fit. As can be seen from the plots in the figures of
Appendix A.3, all except for the Region of Waterloo and London have scatter plot points
following a line going through the origin. This again gives us the same results as that in
the Section ??. As a conclusion, we can easily say that power law model governs the Wind
Speed data obtained from the eight weather stations within the province of Ontario.

Efficiency of the estimator

The efficiency is given by

Efficiency =
MSE of û

MSE of ū
. (3.11)

The results for the efficiency calculations are shown in the Table 3.14. From 3.14, we
can see that efficiency is less than 1 for all the cases except for the Region of Waterloo.
Therefore, we can say that power law process is an adequate model for the process as it is
followed by the data from a maximum number of weather stations.
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Table 3.14: Efficiency of estimator ū relative to û

Station Name N t β̂ ū û Efficiency

Trenton 831 22721 0.7581 0.0365 0.0277 0.759

Region of Waterloo 526 13882 1.0032 0.0379 0.0380 1.003

London 369 10002 0.9123 0.0369 0.0336 0.910

Hamilton 699 15906 0.8157 0.0439 0.0358 0.816

Sarnia 598 16059 0.9259 0.0372 0.0345 0.927

Wiarton 608 16517 0.8170 0.0368 0.0301 0.817

Toronto Island 658 15741 0.8568 0.0418 0.0358 0.856

Toronto Pearson 734 17250 0.8978 0.0425 0.0382 0.898

Kapuskasing 506 20539 1.0017 0.02463 0.02467 1.001

Sudbury 758 22170 0.6700 0.0341 0.0229 0.669

3.5 Conclusion

The basis of this analysis was to find out whether the power law process governs the Wind
Speed data gathered from the ten Ontario meteorological stations. Based on the Graphical
methods of Section 3.4.1 and tests from Sections 2.7 and 2.7.1 we can say that the power
law process is an adequate model for the process as it is followed by the data from a
maximum number of weather stations. These tests were conducted because the value of
the parameter β for NHPP was coming out to be very close to 1 but not exactly equal to
1. Moreover, from the example of Trenton the non-stationary daily rate of change of wind
speed for the Stochastic Process model was 0.0355 KMPH (λ) whereas the annual rate of
change according to the annual maxima model was 0.472 KMPH (a1). Using the same
parameters, we can interpret this rate of change for the remaining weather stations.
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Chapter 4

Forecast of Maximum Wind Speed

4.1 Introduction

This chapter evaluates the 95th percentile of annual maximum wind speed using Annual
Maxima and Stochastic Process model. From Figure 4.1 the extreme wind events show a
slight overall decrease in annual maximum wind speeds over the last few years. To further
verify this trend, we compare the two models in the following sections. Table 4.1 provides
a summary of all the important parameters.

Table 4.1: Model parameters - Summary

Station Location function a0 a1 β λ

Trenton

Constant 90.288 16.142
G-Linear 108.307 -0.472 11.480
HPP 0.0214
NHPP 0.9775 0.0355

Region of Waterloo

Constant 88.312 9.779
G-Linear 99.985 -0.707 18.839
HPP 0.0183
NHPP 0.9708 0.0260

London

Constant 96.256 13.025
G-Linear 117.956 -2.186 19.947
HPP 0.0143
NHPP 0.8509 0.0756
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Station Location function a0 a1 β λ

Hamilton

Constant 96.302 9.904
G-Linear 106.323 -0.380 9.543
HPP 0.0291
NHPP 0.8453 0.1285

Sarnia

Constant 97.885 13.289
G-Linear 94.534 -0.240 12.105
HPP 0.0200
NHPP 1.1751 0.0048

Wiarton

Constant 90.821 9.647
G-Linear 96.937 -0.225 9.944
HPP 0.0210
NHPP 0.8580 0.0866

Toronto Island

Constant 91.765 8.539
G-Linear 95.357 -0.055 8.432
HPP 0.0258
NHPP 1.0399 0.0191

Toronto Pearson

Constant 93.234 7.428
G-Linear 98.105 -0.207 7.775
HPP 0.0265
NHPP 0.9712 0.0348

Kapuskasing

Constant 79.824 9.384
G-Linear 87.105 -0.260 10.991
HPP 0.0102
NHPP 1.1082 0.0042

Sudbury

Constant 85.530 14.361
G-Linear 104.934 -0.570 11.554
HPP 0.0198
NHPP 0.8283 0.1500

4.1.1 Annual Maxima Method

From the calculations above, we know that our wind speed data for the weather station of
Trenton is for the duration of 64 years. Thus, for year 2020 the duration would change to
66 and would then increment by 1 to make predictions for the years following 2020. This
is shown in the Table B.1.
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Figure 4.1: Annual Max Wind Speed vs. Years

Therefore, substituting these values of t and the parameters from Table 3.3 in Equation
2.47

x0.95 = 173.592 km/h

Performing the same calculation for annually using Equation ??, we get

xp = 142.880 km/h

Similarly, we can make predictions for the other years the results of which are shown
in Table B.1.

pda

4.1.2 Stochastic Process Model

95th percentile: NHPP

Our wind-speed data starts in year 1955 and ends in year 2018.

∴ Total number of years = Stop Year− Start Year + 1 = 64
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Thus to calculate t in days for Equation 2.69,

(64 × 365) + 16 = 23376

Here the number 16 accounts for the additional days for the leap years between the
interval of 1955 to 2018. Based on this, we can say that the year 2020 will have 24106
days.

Considering the threshold of u = 70KMPH, from Table 3.11 we have λ = 0.0355 and
β = 0.9775.

Therefore using Equation 2.70,

Λ(t) = λ(t)β = 681.294

Now, we know from Table 3.9 that the scale parameter λ = 0.083 for exponential
distribution of wind-speed data above the threshold of 70KMPH. Moreover, as our current
calculation is for the 95th percentile, we take p = 0.95.

Substituting the scale parameter for exponential distribution and the other above cal-
culted values in Equation 2.69,

x0.95 = 114.388

From Equation 2.71,
y0.95 = 184.388 km/h

Similarly we solve for the remaining projection years. The solutions to the above
calculations for years 2020 to 2100 are shown in the Table B.2.

Moving on to finding the distribution (t1, t2), where t1 = 24106 days and t2 = 24471
days, we can now calculate the value of Λ(t1, t2) using Equation 2.72 and the values of Λ(t)
from Table B.2.

Λ(t1, t2) = Λ(0, t2)− Λ(0, t1)

= λ(t2)β − λ(t1)β

= 691.362− 681.294

= 10.067
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Using the above solution, we can now calculate x0.95 and y0.95 for the interval (t1, t2)
using Equations 2.73 and 2.71.

∴ Annual y0.95 = 133.608 km/h

Similarly, we can now calculate the remaining values shown in Table B.2.

95th percentile: HPP

In total, the number of wind events above the threshold of u = 70 KMPH are 501. We also
know from the previous section that for the duration starting from year 1955 and ending
in 2018, our total observation period is 23376 days. Substituting these values in Equation
2.77,

λ = 0.0214

Using Equations 2.70 and 2.71 we get

y0.95 = 181.055 km/h.

Now using the values in Table B.3 in Equation 2.78, we get

Λ(t1, t2) = 7.823

Thus for the interval (t1, t2), using Equations 2.73 and 2.71, we get

Annual y0.95 = 130.570 km/h.

Projections for the years starting from 2020 to 2100 are shown in Table B.3.

4.2 Model Comparison

Figure 4.2 shows three plots in total. Plot (a) was plot using the values from Table B.1.
Plot (b) was plot using the values from Table B.2. Finally, plot (c) was plot using the
values from Table B.3. A summary of these three tables is also available in Table 4.1.
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Table 4.2: Forecast Comparison: Trenton

Model % Change Forecast Year 2020 Forecast Year 2100
Gumbel-Linear 0.472 KMPH 111.222 KMPH 73.422 KMPH

NHPP 0.035 KMPH 133.608 KMPH 133.381 KMPH

Plot (b) for NHPP clearly shows a downward trend; that is, it shows a decrease in wind-
speed. However, this downward trend is very minor. Looking at the values of Annual x0.95

from Table B.2 we can see that only the numbers after the decimal point vary keeping the
wind-speed to stay around 133.XXX km/h. The plots (a) for the non-stationary Gumbel
shows a very steep decline. This verifies the fact that the annual maximum wind speed is
reducing. Stationary model of HPP in Figure (c) on the other hand, does not show any
change. Essentially, it says that the maximum wind-speed events should stay constant.

Because the predicted wind-speed via NHPP varies around 133 km/h, if we plot all the
three plots on a single plot for comparison, the plot (b) for NHPP appears to be almost a
straight line. That is also the reason why it was chosen to plot the three cases separately
just so that trend is visible clearly just for this one instance. Figure 4.3 shows the 95th
percentile plots for the 10 weather stations. Table 4.2 shows the amount by which the 95th
percentile of annual maximum wind speed will reduce.

The National Building Code of Canada (NBC) used annual maximum data fitted over
Gumbel distribution to calculate the 1 in 50 year chance of being exceeded in any year.
The comparision of these 1 in 50 (1/50) year wind speed with the non-stationary Gumbel
model is shown in the Table 4.3. While the NBC only predicts the wind speed for a 1/50
year using a stationary model, the current analysis of this thesis allows us to look at the
decreasing trend of the wind speeds in the coming years.
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Table 4.3: Comparison of National Building Code of Canada 1/50 year probability of wind
speed with the stationary and non-stationary Gumbel model

Station
NBC 1/50
(KMPH)

Stationary
Gumbel
(KMPH)

Non-Stationary Gumbel
Year 2020
(KMPH)

Year 2100
(KMPH)

Trenton 97.20 90.28 111.22 72.94
Region of Waterloo 86.04 88.31 121.29 64.02

London 97.20 96.25 125.47 113.71
Hamilton 96.12 96.30 116.01 85.53

Sarnia 97.20 97.88 118.69 99.19
Wiarton 97.20 90.82 114.98 96.74

Toronto Island 93.96 91.76 110.63 93.86
Toronto Pearson 93.96 93.23 117.55 113.04

Kapuskasing 78.84 79.82 104.12 83.01
Sudbury 96.12 85.53 102.71 56.47
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Figure 4.2: Plots of 95th Percentile vs. Year: Trenton
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Figure 4.3: 95th Percentile Plots

58



2020 2040 2060 2080 2100

Year

90

100

110

120

130

140

95
th

 P
er

ce
nt

ile
of

 W
in

d 
Sp

ee
d

NHPP
HPP
Gumbel

(e) Sarnia

2020 2040 2060 2080 2100

Year

90

100

110

120

130

140

95
th

 P
er

ce
nt

ile
of

 W
in

d 
Sp

ee
d

NHPP
HPP
Gumbel

(f) Wiarton

2020 2040 2060 2080 2100

Year

90

100

110

120

130

140

95
th

 P
er

ce
nt

ile
of

 W
in

d 
Sp

ee
d

NHPP
HPP
Gumbel

(g) Toronto Island

2020 2040 2060 2080 2100

Year

110

115

120

125

130

135

95
th

 P
er

ce
nt

ile
of

 W
in

d 
Sp

ee
d

NHPP
HPP
Gumbel

(h) Toronto Pearson

Figure 4.3 (cont.): 95th Percentile Plots
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Figure 4.3 (cont.): 95th Percentile Plots

4.3 Conclusion

Overall, the non-stationary plots show a downward trend. This indicates that when we
assume extreme wind events to be non-stationary, these events are forecasted to reduce
gradually over the coming years. This is also evident from the non-stationary parameters
calculated in the previous Chapter. For the example of Trenton, the 95th percentile of
annual maximum wind speed is expected to reduce at the rate of 0.0059 KMPH annually
over the period of 80 years starting from 2020 until 2100.
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Chapter 5

Summary

Global warming and climate change are being discussed all over the globe these days
because it factually evident that these changes are imperiling the planet. Prevention is
better than cure. Therefore, it is of our best interest to utilize the historical data collected
by Environment Canada to predict what the future holds. The focus of this thesis is to use
the wind speed data available on Environment Canada website to investigate probabilistic
methods for modelling the non-stationary nature of wind data.

The predictions made by this thesis can help the construction industry design buildings
that are able to withstand the changes in the climate that the Earth’s atmosphere will
experience in the coming years. Unlike electronics, buildings are made to last. The findings
of this thesis, hence, can also help while calibrating the future versions of building codes
of Canada.

The current code calibrations are made under the assumption that the environmental
loads are generated by a stationary process. Under stationarity, each year has a uniform
annual probability of failure. This is not the case when we consider climate to be non-
stationary because of global warming. The 95th and 99th percentile plots of the power law
model confirm that the wind speed is decreasing at a very slower pace, on average. This
average is much higher for few of stations where this decreasing trend is clearly visible in the
comparison plots of Annual Maxima and Stochastic Process models. It is also important
to point out, here, that the stations of Kapuskasing and Sarnia also exhibited an upward
trend for the wind speed analysis. Furthermore, it is also necessary to note that for both
the wind speed data analysis, the NHPP parameter a1 includes the values of 1, so there is
no evidence to reject the HPP model.

Based on the percentile plots for the Stochastic Process model, the probability of failure
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will change over the service life of buildings. That means that reliability would depend on a
specific calendar period. Climate change is a gradual process. If measures are are eventually
put in place to curb global warming, this change in climate will reduce gradually as well.
Therefore, the reliability in 2020-2050 could be different from the reliability in 2050-2100.

This thesis uses weather stations only from the province of Ontario. This research
could be extended to identify the changes in the wind speed for several other provinces of
Canada. Again, the results from that could be compared to the current analysis to provide
an overall perspective on weather change.

According to NBC the average 1/15 year chance of wind speed exceeding in a year
is by 93.45KMPH. This on average falls between the values of the model parameters for
wind speed data that provide us with the forecasted rate at which the wind speed will
change over the coming years. For the non-stationary case of Annual Maxima model, the
parameter a1 provides the annual rate of change of wind speed. Therefore, for the example
of Trenton the 95th percentile of annual maximum wind speed will reduce at 0.0059 KMPH
annually over the period of 80 years starting from 2020 until 2100. The rate of change can
be identified for the remaining weather stations using the same model parameters.
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Appendix A

Plots

A.1 N(t) against t

0 0.5 1 1.5 2 2.5

104

-50

0

50

100

150

200

250

(a) Kapuskasing

0 0.5 1 1.5 2 2.5

104

-100

0

100

200

300

400

500

(b) Sudbury

Figure A.1: Plots of N(t) against t
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Figure A.1 (cont.): Plots of N(t) against t
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Figure A.1 (cont.): Plots of N(t) against t
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A.2 CROW-AMSAA Plots
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Figure A.2: CROW-AMSAA Plots to estimate NHPP paramters
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Figure A.2 (cont.): CROW-AMSAA Plots to estimate NHPP paramters
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Figure A.2 (cont.): CROW-AMSAA Plots to estimate NHPP paramters
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Figure A.2 (cont.): CROW-AMSAA Plots to estimate NHPP paramters
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Figure A.2 (cont.): CROW-AMSAA Plots to estimate NHPP paramters
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A.3 CVM test Plots
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Figure A.3: Plots for Cramer-von Mises test
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Figure A.3 (cont.): Plots for Cramer-von Mises test
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Figure A.3 (cont.): Plots for Cramer-von Mises test
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A.4 Stationary Gumbel Model Plots
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Figure A.4: Plots for Gumbel Model
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Figure A.4 (cont.): Plots for Gumbel Model

80



-2 0 2 4

(-Ln(-Ln(Pi)))

60

80

100

120

140

160

D
at

a(
X

i)

data
linear fit

(g) Sarnia

-2 0 2 4

(-Ln(-Ln(Pi)))

70

80

90

100

110

120

130

D
at

a(
X

i)
data
linear fit

(h) Wiarton

-2 0 2 4

(-Ln(-Ln(Pi)))

60

80

100

120

140

D
at

a(
X

i)

data
linear fit

(i) Toronto Island

-2 0 2 4

(-Ln(-Ln(Pi)))

60

80

100

120

140

D
at

a(
X

i)

data
linear fit

(j) Toronto Pearson

Figure A.4 (cont.): Plots for Gumbel Model
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Appendix B

Tabular Solutions for 95th percentile
using Gumbel, NHPP, and HPP

B.1 95th Percentile using Gumbel: Trenton

Table B.1: 95th Percentile using Non-Stationary Gumbel: Trenton

Year Number of Year t Annual xp
2020 66 111.222
2021 67 110.750
2022 68 110.277
2023 69 109.805
2024 70 109.332
2025 71 108.860
2026 72 108.387
2027 73 107.915
2028 74 107.442
2029 75 106.970
2030 76 106.497
2031 77 106.025
2032 78 105.552
2033 79 105.080
2034 80 104.607
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Table B.1 continued from previous page
Year Number of Year t Annual xp
2035 81 104.135
2036 82 103.662
2037 83 103.190
2038 84 102.717
2039 85 102.245
2040 86 101.772
2041 87 101.300
2042 88 100.827
2043 89 100.355
2044 90 99.882
2045 91 99.410
2046 92 98.937
2047 93 98.465
2048 94 97.992
2049 95 97.520
2050 96 97.047
2051 97 96.575
2052 98 96.102
2053 99 95.630
2054 100 95.157
2055 101 94.685
2056 102 94.212
2057 103 93.740
2058 104 93.267
2059 105 92.795
2060 106 92.322
2061 107 91.850
2062 108 91.377
2063 109 90.905
2064 110 90.432
2065 111 89.960
2066 112 89.487
2067 113 89.015
2068 114 88.542
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Table B.1 continued from previous page
Year Number of Year t Annual xp
2069 115 88.070
2070 116 87.597
2071 117 87.125
2072 118 86.652
2073 119 86.180
2074 120 85.707
2075 121 85.235
2076 122 84.762
2077 123 84.290
2078 124 83.817
2079 125 83.345
2080 126 82.872
2081 127 82.400
2082 128 81.927
2083 129 81.455
2084 130 80.982
2085 131 80.510
2086 132 80.037
2087 133 79.565
2088 134 79.092
2089 135 78.620
2090 136 78.147
2091 137 77.675
2092 138 77.202
2093 139 76.730
2094 140 76.257
2095 141 75.785
2096 142 75.312
2097 143 74.840
2098 144 74.367
2099 145 73.895
2100 146 73.422
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B.2 95th Percentile using NHPP-POT: Trenton

Table B.2: 95th Percentile using NHPP-POT: Trenton

Year Days t Λ(t) x0.95 y0.95 Annual Λ(t) Annual x0.95 Annual y0.95

2020 24106 681.294 114.388 184.388 10.067 63.608 133.608
2021 24471 691.362 114.565 184.565 10.064 63.604 133.604
2022 24836 701.426 114.739 184.739 10.060 63.600 133.600
2023 25201 711.486 114.910 184.910 10.057 63.596 133.596
2024 25566 721.543 115.079 185.079 10.053 63.592 133.592
2025 25931 731.596 115.246 185.246 10.050 63.588 133.588
2026 26296 741.646 115.410 185.410 10.047 63.584 133.584
2027 26661 751.693 115.573 185.573 10.043 63.580 133.580
2028 27026 761.736 115.732 185.732 10.040 63.576 133.576
2029 27391 771.776 115.890 185.890 10.037 63.572 133.572
2030 27756 781.813 116.046 186.046 10.034 63.568 133.568
2031 28121 791.847 116.200 186.200 10.031 63.564 133.564
2032 28486 801.878 116.351 186.351 10.028 63.561 133.561
2033 28851 811.905 116.501 186.501 10.025 63.557 133.557
2034 29216 821.930 116.649 186.649 10.022 63.553 133.553
2035 29581 831.951 116.795 186.795 10.019 63.550 133.550
2036 29946 841.970 116.939 186.939 10.016 63.546 133.546
2037 30311 851.986 117.082 187.082 10.013 63.543 133.543
2038 30676 861.999 117.222 187.222 10.010 63.539 133.539
2039 31041 872.009 117.361 187.361 10.007 63.536 133.536
2040 31406 882.016 117.499 187.499 10.004 63.533 133.533
2041 31771 892.020 117.635 187.635 10.002 63.529 133.529
2042 32136 902.022 117.769 187.769 9.999 63.526 133.526
2043 32501 912.021 117.902 187.902 9.996 63.523 133.523
2044 32866 922.017 118.033 188.033 9.994 63.520 133.520
2045 33231 932.011 118.163 188.163 9.991 63.517 133.517
2046 33596 942.001 118.292 188.292 9.988 63.513 133.513
2047 33961 951.990 118.419 188.419 9.986 63.510 133.510
2048 34326 961.976 118.544 188.544 9.983 63.507 133.507
2049 34691 971.959 118.669 188.669 9.981 63.504 133.504
2050 35056 981.940 118.792 188.792 9.978 63.501 133.501
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Table B.2 continued from previous page
Year Days t Λ(t) x0.95 y0.95 Annual Λ(t) Annual x0.95 Annual y0.95

2051 35421 991.918 118.914 188.914 9.976 63.498 133.498
2052 35786 1001.894 119.034 189.034 9.973 63.495 133.495
2053 36151 1011.867 119.154 189.154 9.971 63.492 133.492
2054 36516 1021.838 119.272 189.272 9.969 63.490 133.490
2055 36881 1031.807 119.389 189.389 9.966 63.487 133.487
2056 37246 1041.773 119.505 189.505 9.964 63.484 133.484
2057 37611 1051.737 119.619 189.619 9.962 63.481 133.481
2058 37976 1061.698 119.733 189.733 9.959 63.478 133.478
2059 38341 1071.658 119.845 189.845 9.957 63.476 133.476
2060 38706 1081.615 119.957 189.957 9.955 63.473 133.473
2061 39071 1091.570 120.067 190.067 9.953 63.470 133.470
2062 39436 1101.522 120.176 190.176 9.950 63.468 133.468
2063 39801 1111.473 120.285 190.285 9.948 63.465 133.465
2064 40166 1121.421 120.392 190.392 9.946 63.462 133.462
2065 40531 1131.367 120.499 190.499 9.944 63.460 133.460
2066 40896 1141.311 120.604 190.604 9.942 63.457 133.457
2067 41261 1151.252 120.708 190.708 9.940 63.455 133.455
2068 41626 1161.192 120.812 190.812 9.938 63.452 133.452
2069 41991 1171.130 120.915 190.915 9.936 63.450 133.450
2070 42356 1181.065 121.016 191.016 9.933 63.447 133.447
2071 42721 1190.999 121.117 191.117 9.931 63.445 133.445
2072 43086 1200.930 121.217 191.217 9.929 63.442 133.442
2073 43451 1210.860 121.317 191.317 9.927 63.440 133.440
2074 43816 1220.787 121.415 191.415 9.925 63.437 133.437
2075 44181 1230.712 121.513 191.513 9.924 63.435 133.435
2076 44546 1240.636 121.609 191.609 9.922 63.433 133.433
2077 44911 1250.558 121.705 191.705 9.920 63.430 133.430
2078 45276 1260.477 121.800 191.800 9.918 63.428 133.428
2079 45641 1270.395 121.895 191.895 9.916 63.426 133.426
2080 46006 1280.311 121.989 191.989 9.914 63.423 133.423
2081 46371 1290.225 122.082 192.082 9.912 63.421 133.421
2082 46736 1300.137 122.174 192.174 9.910 63.419 133.419
2083 47101 1310.047 122.265 192.265 9.908 63.417 133.417
2084 47466 1319.955 122.356 192.356 9.907 63.414 133.414
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Table B.2 continued from previous page
Year Days t Λ(t) x0.95 y0.95 Annual Λ(t) Annual x0.95 Annual y0.95

2085 47831 1329.862 122.446 192.446 9.905 63.412 133.412
2086 48196 1339.767 122.535 192.535 9.903 63.410 133.410
2087 48561 1349.670 122.624 192.624 9.901 63.408 133.408
2088 48926 1359.571 122.712 192.712 9.899 63.406 133.406
2089 49291 1369.470 122.800 192.800 9.898 63.404 133.404
2090 49656 1379.368 122.886 192.886 9.896 63.401 133.401
2091 50021 1389.264 122.973 192.973 9.894 63.399 133.399
2092 50386 1399.158 123.058 193.058 9.893 63.397 133.397
2093 50751 1409.051 123.143 193.143 9.891 63.395 133.395
2094 51116 1418.941 123.227 193.227 9.889 63.393 133.393
2095 51481 1428.831 123.311 193.311 9.887 63.391 133.391
2096 51846 1438.718 123.394 193.394 9.886 63.389 133.389
2097 52211 1448.604 123.477 193.477 9.884 63.387 133.387
2098 52576 1458.488 123.558 193.558 9.882 63.385 133.385
2099 52941 1468.370 123.640 193.640 9.881 63.383 133.383
2100 53306 1478.251 123.721 193.721 9.879 63.381 133.381

B.3 95th Percentile using HPP-POT: Trenton

Table B.3: 95th Percentile using HPP-POT: Trenton

Year Days t Λ(t) xp yp Annual Λ(t) Annual xp Annual yp
2020 24106 516.646 111.055 181.055 7.823 60.569 130.570
2021 24471 524.468 111.236 181.236 7.823 60.569 130.570
2022 24836 532.291 111.414 181.414 7.823 60.569 130.570
2023 25201 540.114 111.590 181.590 7.823 60.569 130.570
2024 25566 547.937 111.763 181.763 7.823 60.569 130.570
2025 25931 555.759 111.934 181.934 7.823 60.569 130.570
2026 26296 563.582 112.103 182.103 7.823 60.569 130.570
2027 26661 571.405 112.269 182.269 7.823 60.569 130.570
2028 27026 579.228 112.432 182.432 7.823 60.569 130.570
2029 27391 587.050 112.594 182.594 7.823 60.569 130.570
2030 27756 594.873 112.754 182.754 7.823 60.569 130.570
2031 28121 602.696 112.911 182.911 7.823 60.569 130.570
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Table B.3 continued from previous page
Year Days t Λ(t) xp yp Annual Λ(t) Annual xp Annual yp
2032 28486 610.519 113.066 183.066 7.823 60.569 130.570
2033 28851 618.342 113.220 183.220 7.823 60.569 130.570
2034 29216 626.164 113.371 183.371 7.823 60.569 130.570
2035 29581 633.987 113.521 183.521 7.823 60.569 130.570
2036 29946 641.810 113.669 183.669 7.823 60.569 130.570
2037 30311 649.633 113.814 183.814 7.823 60.569 130.570
2038 30676 657.455 113.959 183.959 7.823 60.569 130.570
2039 31041 665.278 114.101 184.101 7.823 60.569 130.570
2040 31406 673.101 114.242 184.242 7.823 60.569 130.570
2041 31771 680.924 114.381 184.381 7.823 60.569 130.570
2042 32136 688.746 114.519 184.519 7.823 60.569 130.570
2043 32501 696.569 114.655 184.655 7.823 60.569 130.570
2044 32866 704.392 114.790 184.790 7.823 60.569 130.570
2045 33231 712.215 114.923 184.923 7.823 60.569 130.570
2046 33596 720.037 115.054 185.054 7.823 60.569 130.570
2047 33961 727.860 115.184 185.184 7.823 60.569 130.570
2048 34326 735.683 115.313 185.313 7.823 60.569 130.570
2049 34691 743.506 115.441 185.441 7.823 60.569 130.570
2050 35056 751.329 115.567 185.567 7.823 60.569 130.570
2051 35421 759.151 115.692 185.692 7.823 60.569 130.570
2052 35786 766.974 115.815 185.815 7.823 60.569 130.570
2053 36151 774.797 115.937 185.937 7.823 60.569 130.570
2054 36516 782.620 116.058 186.058 7.823 60.569 130.570
2055 36881 790.442 116.178 186.178 7.823 60.569 130.570
2056 37246 798.265 116.297 186.297 7.823 60.569 130.570
2057 37611 806.088 116.414 186.414 7.823 60.569 130.570
2058 37976 813.911 116.531 186.531 7.823 60.569 130.570
2059 38341 821.733 116.646 186.646 7.823 60.569 130.570
2060 38706 829.556 116.760 186.760 7.823 60.569 130.570
2061 39071 837.379 116.873 186.873 7.823 60.569 130.570
2062 39436 845.202 116.985 186.985 7.823 60.569 130.570
2063 39801 853.025 117.096 187.096 7.823 60.569 130.570
2064 40166 860.847 117.206 187.206 7.823 60.569 130.570
2065 40531 868.670 117.315 187.315 7.823 60.569 130.570
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Table B.3 continued from previous page
Year Days t Λ(t) xp yp Annual Λ(t) Annual xp Annual yp
2066 40896 876.493 117.423 187.423 7.823 60.569 130.570
2067 41261 884.316 117.530 187.530 7.823 60.569 130.570
2068 41626 892.138 117.636 187.636 7.823 60.569 130.570
2069 41991 899.961 117.742 187.742 7.823 60.569 130.570
2070 42356 907.784 117.846 187.846 7.823 60.569 130.570
2071 42721 915.607 117.949 187.949 7.823 60.569 130.570
2072 43086 923.429 118.052 188.052 7.823 60.569 130.570
2073 43451 931.252 118.153 188.153 7.823 60.569 130.570
2074 43816 939.075 118.254 188.254 7.823 60.569 130.570
2075 44181 946.898 118.354 188.354 7.823 60.569 130.570
2076 44546 954.720 118.453 188.453 7.823 60.569 130.570
2077 44911 962.543 118.551 188.551 7.823 60.569 130.570
2078 45276 970.366 118.649 188.649 7.823 60.569 130.570
2079 45641 978.189 118.746 188.746 7.823 60.569 130.570
2080 46006 986.012 118.842 188.842 7.823 60.569 130.570
2081 46371 993.834 118.937 188.937 7.823 60.569 130.570
2082 46736 1001.657 119.031 189.031 7.823 60.569 130.570
2083 47101 1009.480 119.125 189.125 7.823 60.569 130.570
2084 47466 1017.303 119.218 189.218 7.823 60.569 130.570
2085 47831 1025.125 119.310 189.310 7.823 60.569 130.570
2086 48196 1032.948 119.402 189.402 7.823 60.569 130.570
2087 48561 1040.771 119.493 189.493 7.823 60.569 130.570
2088 48926 1048.594 119.583 189.583 7.823 60.569 130.570
2089 49291 1056.416 119.673 189.673 7.823 60.569 130.570
2090 49656 1064.239 119.762 189.762 7.823 60.569 130.570
2091 50021 1072.062 119.850 189.850 7.823 60.569 130.570
2092 50386 1079.885 119.937 189.937 7.823 60.569 130.570
2093 50751 1087.708 120.024 190.024 7.823 60.569 130.570
2094 51116 1095.530 120.111 190.111 7.823 60.569 130.570
2095 51481 1103.353 120.196 190.196 7.823 60.569 130.570
2096 51846 1111.176 120.282 190.282 7.823 60.569 130.570
2097 52211 1118.999 120.366 190.366 7.823 60.569 130.570
2098 52576 1126.821 120.450 190.450 7.823 60.569 130.570
2099 52941 1134.644 120.533 190.533 7.823 60.569 130.570
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Table B.3 continued from previous page
Year Days t Λ(t) xp yp Annual Λ(t) Annual xp Annual yp
2100 53306 1142.467 120.616 190.616 7.823 60.569 130.570
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