
Real-Time Implementation of
Time-Varying Surface Prediction and

Projection

by

Keegan Aaron Fernandes

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Keegan Aaron Fernandes 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Spatial augmented reality makes use of projectors to transform an object into a display
surface. However, for time-varying, non-rigid surfaces this can prove to be difficult, and
often leads to image distortion. In order to avoid this highly accurate measurements
of the surface are required. Traditional methods of measuring surface deformations are
inadequate due to noise as well as potential sources of time delay, such as projector lag.
To get more accurate results, a mass spring model can be used to simulate the dynamics
of the time-varying surface. This model can be put into a nonlinear state space form to
get a first order differential equation. Numerical integration techniques can then be used
to solve the differential equation presented.

In order to reduce uncertainty in the model generated a filtering algorithm can be
used. Both, the extended Kalman filter (EKF) and the cubature Kalman filter (CKF) are
evaluated as potential candidates. To be able to run these filters in real time a reduced
order model is developed. This enables the use of fewer mass nodes in the model, allowing
for faster compute times. Additionally, to reduce visual error, an optimal node placement
algorithm is used. This ensures that the surface generated by the mass spring mesh closely
matches the real, curved surface of the system, minimizing error. The EKF and CKF
algorithms are implemented onto a hanging cloth system perturbed by an oscillating fan. A
parameter identification technique is used to create a model that accurately represents this
hanging cloth system. Additionally, noise parameters of the EKF and CKF are adjusted to
compensate for modeling errors and sensor noise. Finally, The mean squared error of the
EKF and CKF algorithms are compared to evaluate their effectiveness. Both algorithms
provide satisfactory results for use in spatial augmented reality applications. However, in
all cases tested the CKF is shown to have significantly lower error values.

Although the CKF algorithm is shown to be more accurate than its EKF counterpart,
its computation time is much larger. However, the computation time required is still within
the threshold of being able to perform real-time estimation at up to 100Hz. Furthermore,
due to the nature of the construction of the CKF, it can be applied as a multi-threaded
workload to significantly reduce computation time.

Therefore, the implementation of a CKF algorithm can be used to accurately estimate
the positions of a measured surface for use in spatial augmented reality.

iii

Acknowledgements

I would like to thank my supervisor, David Wang, for all of his guidance and feed-
back during my Master’s experience, it is greatly appreciated. I would also like to thank
Adam Gomes, who assisted me considerably by providing ideas and sharing his knowl-
edge, throughout my degree. Finally, I would like to thank my friends and family for their
undoubted support and company

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 4

2.1 Deformable Models . 4

2.1.1 Non-Physical Model . 5

2.1.2 Physical Models . 5

2.2 Spatial Augmented Reality . 8

2.2.1 Non-Rigid Projection Based SAR 9

2.2.2 Projection Mapping . 9

3 Derivation of Mass-Spring-Damper Model 12

3.1 State Space Formulation . 12

3.2 Linearization . 15

3.3 Integration Methods . 17

3.4 Node Placement . 20

3.5 Model Compression . 26

v

4 Review of Filtering Approaches 31

4.1 Least Squares Estimation . 31

4.2 Kalman Filter . 32

4.3 Extended Kalman Filter . 34

4.4 Unscented Kalman Filter . 35

4.5 Cubature Kalman Filter . 37

5 Implementation of Estimation Filtering Algorithm 40

5.1 Filtering Algorithm . 40

5.2 Experimental Setup . 44

5.3 Evaluation and Tuning . 50

6 Conclusion and Future Work 63

References 67

vi

List of Tables

3.1 Free vibration frequency values . 23

vii

List of Figures

1.1 Live performance involving projection mapping 3

1.2 Surgical simulator projector setup . 3

2.1 Comparison of original checkerboard texture map to rendered projection
onto a torso . 11

3.1 Connection of mass nodes . 13

3.2 Spring force between nodes . 15

3.3 Simulation of a falling 21× 21 node cloth mesh anchored at its top 21

3.4 Comparison of Runge-Kutta and Euler Backwards Methods 22

3.5 First four mode shapes of a fixed-free and a free-free beam 24

3.6 Evenly distributed and optimal node locations of a fixed-free and a free-free
beam, with 5 and 4 nodes respectively . 25

3.7 Final parameter vector θN values for 5× 5 compression 29

3.8 Mean squared error between compressed models and the original model . . 30

4.1 Visualisation of the of the EKF and UKF algorithms propagation accuracy 38

5.1 Filter timing diagram . 45

5.2 Flow chart of the EKF/CKF algorithm with the mass-spring model 46

5.3 Experimental setup equipment . 47

5.4 Camera location relative to towel . 48

5.5 Optimal nodal locations vs. placed node locations 48

viii

5.6 Perspective parameters in relation to a projector at the origin 50

5.7 Arduino setup with LED used for delay time identification 51

5.8 Orientation of cloth with respect to projector 52

5.9 Visual comparison of standard projection and prediction algorithms on static
deformations using the CKF algorithm without optimal node locations . . 53

5.10 CKF and EKF MSE comparison between original and optimal parameter . 55

5.11 CKF and EKF MEE comparison between original and optimal parameter . 56

5.12 CKF and EKF MSE comparison between even and optimal nodal locations 57

5.13 CKF and EKF MEE comparison between even and optimal nodal locations 58

5.14 CKF MSE for varying noise parameter Qk 59

5.15 EKF MSE for varying noise parameter Qk 60

5.16 Visual comparison of standard projection and CKF algorithms with oscil-
lating fan disturbance . 61

5.17 CKF and EKF MSE comparison between 100fps and 50 fps measurement rate 62

ix

Chapter 1

Introduction

Spatial augmented reality (SAR) is the use of projection technology for the purpose of
transforming any object into a display surface. This, currently, is most often used by
the entertainment industry to project large, sometimes user interactive, scenes onto walls
or other rigid surfaces such as tables and buildings. Projection mapping onto non-rigid
surfaces could be very useful in the entertainment and fashion industries, and the field
of training simulators. Current rigid mapping algorithms, however, would not be able
to function if significant deformations were to alter the surface, such as those involved
with textiles, leading to a lack of realism and immersion. Current methods to solve this
problem[71, 74, 78] involve the real-time tracking of surface geometry and projecting a
warped image onto the measured surface. However, for quickly changing surfaces, there
is no mention of how well these techniques perform. If a surface being tracked is moving
quickly the image processing and surface tracking time required may cause delays that
lead to image distortions. Other solutions[67] that have been shown to work for high speed
deformations rely on highly customised and expensive projector and tracking systems.
Additional issues that arise due to the nature of this problem include inherent system time
delays for real time purposes as well as occlusions.

Projectors are notorious for having slow response times, also called input lag, which
along with algorithm processing times can be a large damper on any real time effects.
Occlusions occur when an object being tracked is blocked from observation and so can
no longer be measured. A common occurrence when tracking non-rigid surfaces is self-
occlusion where by the object itself prevents it from being fully measured. A prediction
scheme can be used to approximate the position of the surface at some future time, which
can smooth the overall experience. Such a scheme is suggested by Gomes [41], where a
deformable model used in conjunction with a Kalman filter based prediction scheme was

1

shown to have accurate position approximations in simulation. To implement a prediction
scheme a physically accurate deformable model is needed. Traditionally, the field of com-
puter graphics has studied the use of deformable models for use in animation, computer
generated imaging, fashion, and video games [23, 28, 90]. These techniques often have a
trade-off between being aesthetically pleasing and quick to run or physically accurate and
computationally costly.

An application that will benefit greatly from time varying surface prediction is within
the entertainment industry, and its increased use of projection projection to convey in-
formation and effects. Figure 1.1 shows a performer dancing while interacting with a
projection being displayed onto them. The projection is set up to project onto a predeter-
mined surface and is synchronised to change purely using time alone. When there is any
movement by the performer the projection doesn’t adapt to the movement and instead
maintains the static projection on the predetermined position. The projection also doesn’t
account for the deformations on the performers clothing, or any changes in the surface
of their clothing. To allow for a more realistic, and more interactive experience, dynamic
projection mapping and surface estimation can be used. This would allow the show to be
more fluid by accounting for any geometric deformations and movements.

Additional applications of this prediction scheme include projections onto clothes for
both fashion purposes and for retail purposes. Training simulators could also greatly benefit
from this technology. Surgical simulators, looking to enhance realism, could implement this
dynamic projection scheme to allow for realistic animations to be projected onto a life like
surgical dummy, as in Figure 1.2.

The remainder of this thesis will explain the details of this algorithms developed and
the details involved their implementation. Chapter 2 reviews relevant background concepts
that are required for deformable object modelling and spatial augmented reality. Chapter
3 examines the mass spring model in detail, including the model formulation, model lin-
earization, integration methods required to simulate the system, and methods to reduce
the model to allow for easier computation while maintaining accuracy. Chapter 4 reviews
common linear least squares filtering approaches and their usefulness in the application of
nonlinear deformable model estimation. Chapter 5 discusses how the extended these filter-
ing techniques, namely the extended Kalman filter and the cubature Kalman filter, can be
applied to the model to create deformable surface prediction filters. The prediction filters
are applied to to a hanging towel experimental scenario, and the results are discussed.
Lastly, Chapter 6 summarizes the results of the experiments and presents topics for future
research.

2

Figure 1.1: Live performance involving projection mapping [2]

Figure 1.2: Surgical simulator projector setup

3

Chapter 2

Background

The use of non-rigid surfaces in spatial augmented reality, for the applications stated in
this thesis, requires the development of a deformable model. In this chapter we review
physically realistic modeling techniques commonly used in computer graphics to simulate
deformable objects. Additionally, previous work on non-rigid object projection will be
examined. Finally, projection mapping onto three-dimensional surfaces will be discussed.

2.1 Deformable Models

To properly estimate the surface of non-rigid objects, a physically accurate deformable
model is required. Deformable models allow for the realistic simulation and analysis of
objects in complex environments. The study of deformable model simulation in computer
graphics has been an active research area since the 1980s. Two main categories of modeling
techniques are non-physical and physically based methods [39]. Non-physical methods,
such as free-form deformation, use purely geometric techniques to manipulate objects.
These methods rely on the skill of the designer rather than the physical properties of
the object being manipulated. This makes them difficult to use for complex systems .
Alternatively, physical models allow the use of physical principles to compute a realistic
simulation of complex processes [39]. Techniques such as mass spring models and finite
element methods fall into this category. These approaches use numerical integration of
accelerations and velocities to solve for the positions of of a system [29].

4

2.1.1 Non-Physical Model

One type of non-physical model is Free-form deformation (FFD). FFD is a general tech-
nique for changing the shape of objects. Object deformation is achieved by manipulating
the space in which the object lies. Deformations are mapped using linear transformations
(i.e. rotation and translation matrices) of the space, which in turn affect the objects which
lie withing the space. FFDs, and non-physical models in general, are computationally
efficient; however, they are not very intuitive to design. They require a high level of user
experience and patience to be effectively utilized, since deformations need to be explicitly
specified and the system is unaware of the physical nature of the object being manipulated.
These difficulties make modelling complex structures nearly impossible using non-physical
models [39].

2.1.2 Physical Models

In this section, two forms of physical models are analysed, mass spring models, and finite
element models. The mass spring technique uses simple masses, springs, and dampers to
model a system. Finite element models treat a surface like a continuous body and model
the dynamics of a system using partial differential equations.

Mass Spring Models

Mass spring models are a technique that has been widely and effectively used for mod-
elling deformable objects in the past [68]. In this method, an object is modelled using a
collection of point masses interconnected via springs and dampers, forming the structure
of the object. The dynamics of the system are represented by Newton’s Second Law which
governs the motion of each individual mass point in the model. Chapter 3 will discuss this
method in more detail. Mass spring systems are simple physical models that are easy to
construct and are computationally efficient, enabling their use in real-time applications.
However, there are limitations. Mass spring models are developed by dividing a system
into discrete mass points and are approximations of the true physics that occur. Param-
eter selection is another hindrance of this model. Determining optimal mass, spring, and
damper parameters such that the simulation matches the real life system can be difficult.
Recent studies have found close to optimal parameter values using learning algorithms or
the physical properties of the real-world material. Teschner et al. [82] use generalized
springs which preserve distances, areas and volumes. Bridson et al. [24] and Grinspun et
al. [44] present a physically correct bending model by isolating the bending mode from all

5

other modes of deformation for triangle meshes and simulating discrete shells respectively.
Bhat et al. [16] use simulated annealing to estimate the spring constants in a cloth mesh.
Eberhardt et al. [34] and Choi and Ko [31] improved the realism of the system by modeling
nonlinear material properties.

Mass spring systems are prone to numerical instability when spring constants are chosen
to be too large. For linear differential equations, it is known that numerically solutions are
unstable if the time step (∆T) chosen is greater that the natural period of the system T0

[13]. The natural period of a linear system is given by

T0 = 2π

√
m

k
(2.1)

where m is a given mass and k is the spring constant. The critical stiffness kc can therefore
be solved to be approximately,

kc = m
4π2

T 2
0

(2.2)

Critical stiffness is the spring constant value at which the system becomes numerically un-
stable for a given time step ∆T = T0. Therefore, in order to increase the maximum value
of the spring constant k, it is required to decrease the value of ∆T to maintain numerical
stability. Several studies have tackled this issue. Provot [73] applied constraints to the
movement of the mass nodes. This improves the numerical stability of the model, with
the cost of physical accuracy. Baraff and Witkin [12] present a solution using alternate
integration techniques, such as implicit integration, to improve model convergence. Oth-
ers use both implicit integration to solve for the stiff portion of the models and explicit
integration to solve for the non-stiff parts [11, 21, 45]

Finite Element Methods

An alternative physical model to mass spring systems are continuum models. These tech-
niques treat objects like solid, continuous bodies with masses and energies distributed
throughout the system. Continuum models consider the equilibrium of a general body
acted on by external forces. The deformation is a function of these acting forces and
the objects material properties. The partial differential equation (PDE) governing the
dynamics of elastic materials is given by [68],

ρẍ = ∇ · σ + f (2.3)

6

where ρ is the material density, x is the (x, y, z) position of the material, σ is the 3 × 3
stress tensor and f is a vector of externally applied forces. The portion ∇ · σ represents
the internal forces in the deformed volume.

Since it is not always possible to find a closed-form solution to the PDE presented in
Equation (2.3), a numerical approximation is desired. One of the most popular methods
used is the finite element method (FEM) [68]. FEMs are used to turn a PDE into a set of
algebraic equations which are then solved numerically. The method takes the continuous
domain and discretize it into a finite number of elements. Therefore, instead of solving
for the solution x(t) for the PDE for the entire body, it solves the PDE for each discrete
element xi(t). The solution x(t) can be then be approximated by linear combination of
these discrete solutions, that is [68]

x̃(t) =
∑
i

bixi(t) (2.4)

where bi are the nodal basis functions. The value of bi is usually 1 at node i and 0 at all
other nodes. Substituting x̃(t) into Equation (2.3) for x(t) results in a series of equations
solving for each xi(t), converting the PDE problem into a finite order ODE. Finding the
solution is then viewed as an optimization problem minimizing the error between x(t) and
x̃(t), as x̃(t) is not the exact solution to Equation (2.3).

To solve this problem in computer graphics, the explicit FEM method is used to solve
for xi(t). This is a simple form of the FEM that does not solve a system of equations
for the positions xi(t). The method treats nodes of the mesh as mass points, as in the
mass spring model, and FEM elements as generalized springs connecting all adjacent mass
points. The relationship between nodal forces and positions happen to be nonlinear, and
when linearized, can be expressed as

fe = Keue (2.5)

where fe are the nodal forces and ue are the nodal displacements (x − x0) for all nodes
connected to spring element e. The matrix Ke is the stiffness of the element e, and the
stiffness for the entire mesh is given as the sum

K =
∑
e

Ke (2.6)

Using the linearized force-displacement relationship for each element, the equation of mo-
tion for the entire mesh becomes

Mü + Du̇ + Ku = F (2.7)

7

where M is the mass matrix, D is the damper matrix, K is the stiffness matrix, F is
the applied force vector and u is node displacement vector. Often times, to save on
computations, diagonal matrices are used for M and D in a method called mass-lumping
[68]. In this method, M contains the mass of each node along its diagonal.

Finite element methods provide more physically realistic simulations, compared to mass
spring systems, with fewer node points. However, due to the requirement of numerical
integration for parameters of FEM systems, significant pre-processing time is required.
Additionally, the linear elastic theory using FEM systems only assumes small deformations
of the objects. If the position of a node moves greatly from its equilibrium point, the model
is no longer physically accurate. Nonlinear FEM methods avoid this problem. However,
they are computationally prohibitive [39].

2.2 Spatial Augmented Reality

Spatial augmented reality (SAR) is a technological variation of augmented reality. SAR
merges the real world with a virtual world by superimposing computer-generated graphics
onto real surfaces, usually with the use of projectors [20]. Since projectors traditionally
project on flat rectangular surfaces, projection on non-planar surfaces require special ren-
dering process. To accurately project images onto an object’s surface, texture mapping
needs to be performed on virtual models of the real life object. Texture mapping is the
process by which an image is ”painted” onto a virtual object by transforming the images
coordinates to the coordinates of the object [77]. This texture mapped virtual object can
then be projected onto the real world object to augment its appearance. For an accurate
augmented mapping, a CAD model of the real world object is often used. This ensures
that the virtual model being texture mapped matches the true object and so minimizes
any projection disparities.

Projector based spatial displays have some negative qualities, namely the occurrence
of shadows and occlusion, as well as the difficulties involved in calibration and maintain-
ing alignment. Shadow and Occlusion correction methods have been studied by severally
researchers. Sukthankar et al. [79] addresses the problem of undesired shadows by re-
dundantly illuminating the display surface using multiple projectors in different locations.
Punpongsanon et al. [74] use feature tracking techniques, where occluded features are ig-
nored on each frame, to reduce projection error. Steimle et al. [78] track common elements
that block projectors, such as hands and fingers, in order to to compensate for them while
projecting.

8

2.2.1 Non-Rigid Projection Based SAR

Traditionally, projection based SAR has primarily focused on projection onto rigid objects,
and very little work has been conducted on non-rigid objects. One of the first systems for
projection on non-rigid surfaces was developed by Piper et al. [71]. In this system, users
interacted with clay terrains while a projector superimposed depth related information onto
the surface. Newer work, such as the work done by [54], project navigation information
onto a patient’s body, while the patient is undergoing surgery. To do this, the researchers
estimate the bump deformation (deformation from pushing) using visual feature tracking.
To capture the pose of a projection surface, a number of different strategies are used. These
include marker and marker-less camera systems, texture feature selection [84], optical flow
[46], and object contour analysis [30]. Recent work by Narita et al. [67] have used a special
set of dot cluster markers arranged in a means to minimize marker swapping, which is
the possibility of marker technologies to confuse one marker position for another in close
proximity. High speed projection technology, called the DynaFlash, is also used by [67].
This allows projection of up to 1000 frames per second, albeit at the cost of expensive
customised equipment. Work done by Fernandes et al. [37] and Gomes et al. [40] has
shown that an estimation algorithm can be used on cost-effective, yet slower projectors, to
accurately track moving surfaces.

2.2.2 Projection Mapping

Projection mapping is the general term used for converting irregular objects into a display
surface. The rendering process requires a mathematical model for the projector, the shape
of the display surface, and for cases where the user is not aligned with the display, the user’s
location. The display surface can be represented by a polygonal mesh using a piece-wise
planar approximation. The mesh is defined by a set of vertices along with their associated
normals to determine surface orientation. Common techniques for obtaining geometry is
by using depth cameras or multiple camera set-ups such as in [67]. This allows the tracking
of the nodes of the objects mesh.

A projector model is required to transform the real world (x, y, z) coordinates to its
corresponding pixel position, also called UV coordinates (u, v). The projector model can
be approximated by a pin-hole model, similar to a pin-hole camera model. As explained by
Low [63], the pin hole camera model is defined by a 3×4 perspective projection matrix. To
find the equivalent projection matrix for the projector model, let m = [u, v]T be the pixel
location of the projector and M = [X, Y, Z]T be the associated point in three-dimensional
space. These two points can be written as m̃ = [u, v, 1]T and M̃ = [X, Y, Z, 1]T . The

9

relationship between the pixel position m and 3D point M is found to be

wm̃ = F
[
R t

]
M̃ (2.8)

where w is a scaling factor, R and t represent the rotation and translation required to
convert the world coordinate system to the projector coordinate system, and F is the
projector’s intrinsic matrix defined as

F =

−2n
r−l 0 r+l

r−l
0 −2n

t−b
t+b
t−b

0 0 −1

 (2.9)

where n is the distance from the projector to the plane of the surface, l, r, t, and b are
the left, right, top and bottom extents of the display surface, relative to the centre of the
projector. The equivalent projection matrix can be extracted form this formulation to be

P = F
[
R t

]
(2.10)

which is a 3 × 4 matrix that completely specifies the idealized pin-hole projection for a
projector. The projection matrix P can easily be found by mapping each pixel position
and each surface point of already computed display surface.

To render an image onto a surface a texture map is created and projected onto the
the polygonal model of the display surface. UV mapping is the process by which a two-
dimensional texture is projected onto a three-dimensional model. UV mapping defines
a coordinate system (u, v) for the texture and a coordinate system (x, y, z) for the 3D
model. The mapping creates polygons in the (u, v) texture, and paints this portion of
the image onto the associated polygon in (x, y, z) coordinates. This is done by assigning
each vertex i in the 3D model with the associated values (ui, vi), and allowing the graphics
engine, usually OpenGL, to decide how to render each polygon. After the UV mapping
is complete, the textured model is then rendered from the projector’s viewpoint using
Equation (2.8), and displayed onto the object of interest. Figure 2.1b shows a 3D printed
replica torso projected with a red and white checkerboard pattern rendered upon it using
projection based AR. The checkerboard pattern itself is shown in Figure 2.1a.

10

(a) Checkerboard pattern

(b) SAR example of checkerboard rendered onto torso

Figure 2.1: Comparison of original checkerboard texture map to rendered projection onto
a torso

11

Chapter 3

Derivation of Mass-Spring-Damper
Model

In this chapter, the mass spring model will first be developed in state space form. The
nonlinear state space form will be then be linearized. Methods for numerical integration
and simplification of the model will be discussed for implementation into an estimation
filter.

3.1 State Space Formulation

A well defined mass spring model for applications in cloth simulation is described by Provot
in [73]. In this section, a realistic model of cloth is created by interconnecting a set of point
masses (nodes) with spring and damper elements. Point masses are connected to each other
via a combination of structural, shear, and diagonal elements. Structural elements connect
point masses to their direct neighbors above, below, to the right, and to the left. They help
constrain the mesh during compression or stretching. Additionally, shear elements connect
masses which are diagonally adjacent to one another and help constrain the mesh when
shear stresses are applied. Finally, flexion elements connect nodes that are two elements
away and help constrain the mesh under bending. Figure 3.1 shows a 3 × 3 node cloth
system with all elemental components connecting each node easily visible. The mass spring
model for a cloth can be put into a state space representation by describing it using a first
order differential equation of the form,

ẋ = f(x, t) (3.1)

12

Figure 3.1: Connection of mass nodes with structural springs (orange dashed), shear springs
(red dotted), and flexion springs (blue solid)

where, for n given nodes, x ∈ R6n is the state vector containing the position pi ∈ R3 and
velocity ṗi =: vi ∈ R3 for each node i = 1, 2, . . . , n in the space, i.e.,

x = [pT1 p
T
2 . . . p

T
nv

T
1 v

T
2 . . . v

T
n]T (3.2)

Therefore, the state vector can be rewritten as,

x =

[
p
ṗ

]
(3.3)

where p = [pT1 . . . p
T
n]T and ṗ = [vT1 . . . v

T
n]T . f(·) : R6n → R6n is a sufficiently smooth

nonlinear state transition function, i.e., f(·) ∈ C1. The function f(·) is required to be
differentiable since the Jacobian of the system is required for both numerical integration
and the filter formulation. As the model is a time invariant system, the state transition
function can be simplified to f(x) ≡ f(x, t). Therefore, the state derivative vector can be

13

written as

ẋ = f(x) =



v1
...
vn

a1(x)
...

an(x)


(3.4)

where v̇i =: ai(·) : R6n → R3 represents the acceleration of each node. The resulting
state derivative vector is composed of the point velocities concatenated with the point
accelerations. These point accelerations can be derived using the dynamics of the system
and are found to be

ai(x) =
1

mi

(mig +
∑
j∈Ai

Fji), i = 1 . . . n (3.5)

Here Fji is the force applied onto point mass mi by point mass mj, and g is the acceleration

due to gravity (i.e. g =
[
0 −9.81 0

]T
m/s). The set Ai is the set of all nodes which are

connected to the node i by a spring and damper. Since each node is connected to another
in the set Ai, the internal force on a node i can be written in the form of a second order
differential equation:

mip̈i = −ksipi − kdi ṗi. (3.6)

The force Fji, caused by each node j on node i, can be found to be [68]:

Fji = −ksij(‖pi − pj‖2 − rij)
pi − pj
‖pi − pj‖2

− kdij(vi − vj) (3.7)

the constants ksij and kdij are the spring and damper coefficients for a connection between
nodes i and j, respectively. The spring component of the force is derived using Hooke’s
law, where the resting length of the spring between nodes i and j, rij ∈ R, is used to
counteract the effect of the spring and stop it from collapsing. A visual representation
of Hooke’s law can be seen in Figure 3.2. When the spring is stretched beyond its rest
length it applies a force in the opposite direction, causing node i to move towards node
j. Similarly, when the spring is compressed below its rest length it pushes node i away
from node j. The damping force is always applied in the opposite direction of the velocity
vector created between points i and j. Spring and damper coefficients are assumed to be
linear constants for this model. More realistic models can be created with nonlinear spring
and damper coefficients[31]; however, their characteristics are difficult to determine and
could lead to significant computational delays. The set Ai can range in size from node to
node. A node on the corner of a mesh has fewer connections, compared to a node on the

14

edge of a mesh, compared to a node in the centre. A corner node, for example, will always
have two fewer structural springs, three fewer shear springs and two fewer flexion springs
than a center node. Thus, the size of the connected points set, Ai, can range from 3 to 12
elements depending on the position of the node and the order the system.

Figure 3.2: Illustration of spring force between two nodes i and j

3.2 Linearization

To be able to apply the system from Equation (3.1) into the extended Kalman filter based
prediction algorithm it will first have to be linearized. The Jacobian of a vector function
f(x1, . . . , xn) is

J =
∂fi
∂xj

=


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 (3.8)

15

For the model derived in Section 3.1, the Jacobian can be divided into four sub-matrices,
i.e.,

J(x) =

[∂v
∂p

∂v
∂v

∂a
∂p

∂a
∂v

]
(3.9)

where p, v and a are R3n vectors representing the positions, velocities and accelerations
of all nodes respectively.

The upper left quadrant of J(x) contains the derivatives of the velocity states vi with
respect to the position states pj. These derivatives are 0, therefore, the upper left sub-
matrix is a 3n× 3n zeros matrix 03n×3n, i.e.,

dvi
dpj

= 03×3 (3.10)

The upper right quadrant of J(x) is made up of the derivatives of states vi with respect to
states vj and is again trivially found. The result is a 3n × 3n identity matrix, I3n×3n. In
other words,

dvi
dvj

=

{
I3×3, i = j

03×3, i 6= j
(3.11)

The lower two sub-matrices contain the derivatives of the acceleration with respect
to the state variables p and v, and can be found using Equation (3.5). The lower right
quadrant contains the derivatives of the accelerations ai with respect to the velocity states
vk:

∂ai
∂vk

= − 1

mi

∑
j∈A

∂

∂vk
kd(vi − vj)

∂ai
∂vk

= − 1

mi

∑
j∈A

∂

∂vk
kdvi −

∂

∂vk
kdvj

(3.12)

This derivative is not zero only for values of k = j, if j ∈ A, and for k = i. Thus, the
result is as follows,

∂ai
∂vj

=
∂

∂vj

kd
mi

vj =
kd
mi

I3×3

∂ai
∂vi

= − 1

mi

∑
j∈A

∂

∂vi
kdvi = − 1

mi

∑
j∈A

kdI3×3

(3.13)

The lower right quadrant of the Jacobian contains the values −
∑

j∈A
kd
mi

along the diagonal,

and the sub-matrices kd
mi
I3×3 sparsely placed based on spring connections.

16

Finally, the lower left quadrant of the Jacobian is derived from taking the derivatives
of accelerations, ai, with respect to the positions, pk and results in the following:

∂ai
∂pk

= − 1

mi

∑
j∈A

∂

∂pk
[ks(‖pi − pj‖2 − r)

pi − pj
‖pi − pj‖2

]. (3.14)

Equation (3.14) can again be broken into two non-zero components; one when k = j, if
j ∈ A, and one when k = i. As seen in Gomes [41], this can be simplified using the product
rule as follows, for k = i,

∂ai
∂pi

= − ks
mi

∑
j∈A

[(1− r

‖pi − pj‖
)[I3×3 −

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
] +

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
] (3.15)

and similarly when k = j,

∂ai
∂pj

=
ks
mi

[(1− r

‖pi − pj‖
)[I3×3 −

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
] +

(pi − pj)(pi − pj)T

(pi − pj)T (pi − pj)
]. (3.16)

Altogether, the Jacobian can be written in the block matrix form of,

J(x) =

[
03n×3n I3n×3n

Jap Jav

]
(3.17)

where Jap = ∂a
∂p

is composed of the matrices from Equations (3.15) and (3.16), Jav = ∂a
∂v

is composed of the matrices from Equation (3.13). By looking at Equation (3.17) it is
important to note that 3 of the 4 components of the Jacobian J(x) (i.e. 03n×3n, I3n×3n,
and Jav) are independent of the values of the state vector x and thus remain constant.
Therefore, the only component that needs to be calculated is the 3n× 3n sub-matrix Jap,
significantly reducing the computation time required.

3.3 Integration Methods

Equation (3.4) provides an ordinary differential equation which needs to be solved in or-
der to obtain the state vector x(t). An approximate solution can be achieved by using
a numerical integration algorithm. Several studies have investigated the convergence of
numerical integration algorithms on mass spring cloth models [31]. Two broad categories
for this type of integration are explicit and implicit methods. Explicit methods calculate
the next state of the system using the current state while implicit methods solve a set of

17

coupled equations involving both the current and future states of the system [68]. Explicit
integration algorithms, such as the Euler forward method and Runge-Kutta method, are
simple to implement and quick to run. However, they can be numerically unstable if the
integration step time is chosen to be too large. Implicit integration algorithms, on the
other hand, are often inherently numerically stable. This is because they solve a system
of equations consisting on the current and next state of the system. The main drawback
of this type of method is the increased computational complexity. However, because of
the stability of the method, larger time steps can be used without the concern of unsta-
ble solutions. Additionally, implicit integration schemes allow for more robust parameter
choices for deformable models. From [73], larger spring constants require smaller explicit
integration step times for numerically stable solutions; implicit schemes however, tend to
settle when using larger step sizes, making them suitable to more rigid mass spring models.

In this section the explicit fourth order Runge-Kutta method and the implicit Eu-
ler backwards method are compared to demonstrate the trade-offs between explicit and
implicit integration methods.

Runge-Kutta Method

Given the system,
ẋ = f(t, x), x(t0) = x0

Numerical integration methods use a given time step, ∆T ,to discretely solve each integra-
tion step, x[k], defined as follows,

x[k] = x(t0 + k∆T) k = 0, 1, . . . (3.18)

The fourth order Runge-Kutta solves the next integration step x[k+ 1], given ∆T and the
current solution x[k], using the following steps [80]:

x[k + 1] = x[k] +
∆T

6
(k1 + 2k2 + 2k3 + k4) (3.19)

where,
k1 = f(tk, x[k])

k2 = f(tk +
∆T

2
, x[k] +

∆Tk1

2
)

k3 = f(tk +
∆T

2
, x[k] +

∆Tk2

2
)

k4 = f(tk + ∆T, x[k] + ∆Tk3)

18

This process is repeated as necessary to solve for x at any time step. The fourth order
Runge-Kutta method is, as the name suggests, a fourth-order method. This means that
the global truncation error, i.e. the total accumulated error over time, is on the order of
O(∆T 4). The small truncation error of this methods allows for high levels of accuracy,
especially when using the small time steps required to maintain numerical stability.

Backward Euler Method

The backward Euler method is one of the most simple implicit numerical integration meth-
ods. Its unconditional stability allows for the use of larger time steps, which, in spite of
its computational difficulties, often leads to faster run times compared to explicit methods
[31]. The backward Euler method solves the following problem,

x[k + 1] = x[k] + ∆Tf(x[k + 1]) (3.20)

For the system presented in Sections 3.1 and 3.2 this solution is as follows,

∆x =

[
∆p
∆v

]
=

[
p(tk + ∆T)− p(tk)
v(tk + ∆T)− v(tk)

]
(3.21)

taking the first order approximation we get,[
∆p
∆v

]
= ∆T

[
∆v + vk
∆a+ ak

]
(3.22)

∆a is the change in acceleration and is given by Equation (3.5). To aid in the solution of
∆v a first order Taylor approximation is used on the nonlinear a(x),

∆v ≈ ∆T (a(pk, vk) +
∂a

∂p
∆p+

∂a

∂v
∆v) (3.23)

Substituting ∆p from Equation (3.22) into Equation (3.23) and rearranging for ∆v provides
the following linear system,

(I−∆T 2∂a

∂p
−∆T

∂a

∂v
)∆v = ∆Ta(pk, vk) + ∆T 2∂a

∂p
vk (3.24)

The partial derivatives ∂a
∂p

and ∂a
∂v

are found from the Jacobian derived in Section 3.2,

J(x) =

[∂v
∂p

∂v
∂v

∂a
∂p

∂a
∂v

]
.

19

Solving Equation (3.24) for ∆v, and substituting into Equations (3.21) and (3.22), v(tk +
∆T) and p(tk + ∆T) can be found,

v(tk + ∆T) = ∆v + vk

p(tk + ∆T) = ∆p+ pk = ∆T (∆v + vk) + pk
(3.25)

The backwards Euler method is an order one integration method. Therefore the global
truncation error for this scheme is on the order of O(∆T), which is lower than the fourth
order Runge-Kutta, at O(∆T 4). However, as the main desire of the integration scheme is
overall computation time, and since the model used is already an approximation of the true
system, the magnitude in error is outweighed by the benefit of the stability of the backward
Euler method with larger step size. Additionally, the error value is further diminished by
the use of a filtering algorithm, discussed in Chapter 4, which corrects for any accumulated
error in the model with the use of measurements.

For a falling 21× 21 node cloth model, like that shown in Figure 3.3, the Runge-Kutta
method was required to run at a time step of ∆T = 0.001 to maintain stability. The
backward Euler method, on the other hand, was able to provide stability with a lower
value of ∆T = 0.01. The average relative difference between the two schemes is defined by
the average distance between the nodes of each method,

e[k] =
1

n

n∑
i=1

‖prki [k]− pebi [k]‖2, k = 0, 1, . . . (3.26)

Here prki [k] is the position of node i at time step k produced by the Runge-Kutta method,
and pebi [k] is the position of the associated node produced by the Backwards Euler method.
A comparison of these methods with Runge-Kutta using ∆T = 0.001 and backward Euler
using ∆T = 0.01 is shown in Figure 3.4. This clearly shows that the model differences are
relatively small, and that any large discrepancies will be able to be corrected using a filter
that is run with an appropriately short step size.

3.4 Node Placement

Since the mass spring model for a cloth, described in Section 3.1, is composed of discrete
nodes connected by linear elements, it would be desirable to find node locations that will
minimize the error between the surface created by the mesh and the true surface of the
cloth. This can be achieved by first determining the dynamics of a cloth. These dynamics

20

(a) Initial cloth position, t = 0s (b) Intermediate cloth position, t = 3.3s

(c) Intermediate cloth position, t = 6.6s (d) Intermediate cloth position, t = 9.9s

Figure 3.3: Simulation of a falling 21× 21 node cloth mesh anchored at its top

21

Figure 3.4: Comparison of Runge-Kutta at ∆T = 0.001s and Euler Backwards Methods
at ∆T = 0.01s

can then be used to model its displacement modes. Once these modes are determined
algorithm can be applied to minimize surface error due to node location.

A simple tool to analyse the deformations in thin plates is Kirchhoff-Love plate theory
[62], which in itself is an extension of Euler-Bernoulli beam theory. For the purposes of
simply evaluating the dynamics of a hanging cloth, Euler-Bernoulli beam theory is used.
The theory is independently applied to the two different axis of the cloths planar surface in
order to ease the analysis. The longitudinal (y) axis of the cloth is described by a cantilever
(fixed-free) beam model; where as, the lateral (x) axis is described using a free-free beam.

In Euler-Bernoulli beam theory, the beam equation for free vibrations is defined as
[26, 89],

EI
d4z

dx4
+ µ

d2z

dt2
= 0 (3.27)

where E is elastic modulus, I is the second moment of area of the cross section, and µ is
the mass per unit length. The general solution of Equation (3.27) for the displacements is,

Zn(x) = A1 cosh(knx) + A2 sinh(knx) + A3 cos(knx) + A4 sin(knx) (3.28)

22

Here Zn is the displacement and kn is a frequency constant, both dependant on the bound-
ary conditions of the system and its nth natural frequency ωn. Analysis of the natural
modes of the beam analogue provides the fundamental components of its displacement
shape. The most general motion of a system is a superposition of its modes [69]. For a
cantilevered system with length L the boundary conditions are as follows,

Zn(0) = 0 ,
dZn(0)

dx
= 0 ,

d2Zn(L)

dx2
= 0 ,

d3Zn(L)

dx3
= 0 (3.29)

Applying this to Equation (3.28), and solving for nontrivial solutions, yields,

Zn(x) = (cosh(knx)− cos(knx)) +
cos(knL) + cosh(knL)

sin(knL) + sinh(knL)
(sin(knx)− sinh(knx)) (3.30)

with the following frequency values found in Table 3.1. Similarly, for a free-free system the
initial conditions are,

d2Zn(0)

dx2
= 0 ,

d3Zn(0)

dx3
= 0 ,

d2Zn(L)

dx2
= 0 ,

d3Zn(L)

dx3
= 0 (3.31)

with solution,

Zn(x) = (sin(knx) + sinh(knx)) +
sin(knL)− sinh(knL)

cosh(knL)− cos(knL)
(cos(knx) + cosh(knx)) (3.32)

again with frequencies found in Table 3.1. Figure 3.5 shows the first four modes of both a
fixed-free and free-free beam with length L = 1. These mode shape functions can now be

Table 3.1: Free vibration frequency values

Fixed-Free Free-Free

Mode (n) knL knL

1 1.8751 4.7300
2 4.6941 7.8532
3 7.8548 10.9956
4 10.9955 14.1372

used in conjunction with an optimization algorithm to find node locations that minimizes
the distance between the flat surfaces, created by the triangle mesh, and the true surface.

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Mode 1
Mode 2
Mode 3
Mode 4

(a) Fixed-free mode shapes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Mode 1
Mode 2
Mode 3
Mode 4

(b) Free-free mode shapes

Figure 3.5: First four mode shapes of a fixed-free and a free-free beam

A least-squares solver is used to solve problem in Equation (3.33), where F is a nonlinear
function dependant on coefficients p.

min
p
‖F (p, x)− Zn(x)‖2

2 (3.33)

In the case of the model defined in Section 3.1, this function is defined by a set of nodes
that lie on the surface of the cloth and are connected by straight edges. The function takes
the form,

F =


f1 = Zn(p0) + Zn(p1)−Zn(p0)

p1−p0
(x− p0), p0 <= x <= p1

f2 = f1(p1) + Zn(p2)−Zn(p1)
p2−p1

(x− p1), p1 <= x <= p2

...

fl = fr−1(pr−1) + Zn(pr)−Zn(pr−1)
pr−pr−1

(x− pr−1), pr−1 <= x <= pr

(3.34)

where, given r nodes, pi is the location of the ith node, for i = 0, 1, . . . r.

By observation of a falling cloth, Figure 3.3, and the beam modes, Figure 3.5, it is clear
that the dominant behaviour in the longitudinal direction is best described by the second
mode of a fixed-free beam, while the behaviour in the lateral direction can be described
by the first mode of a free-free beam. By using Equations (3.30, 3.32, 3.34) to solve
for Equation (3.33) a set of optimal node points can be generated. An example of this
optimization can be seen in Figure 3.6, with L = 1, p0 = 0 , pr = L, and r = 5 and r = 4

24

for the longitudinal and lateral directions respectively. Here, it is clear that the optimal
node locations, produced by the algorithm, more closely match the object surface than an
evenly distributed set of nodes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

True Displacement
Mesh Approximation

(a) Evenly distributed node locations of
a fixed-free beam in its second mode

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

True Displacement
Mesh Approximation

(b) Evenly distributed node locations of
a free-free beam in its first mode

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

True Displacement
Mesh Approximation

(c) Optimal node locations of a fixed-free
beam in its second mode

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

True Displacement
Mesh Approximation

(d) Optimal node locations of a free-free
beam in its first mode

Figure 3.6: Evenly distributed and optimal node locations of a fixed-free and a free-free
beam, with 5 and 4 nodes respectively

25

3.5 Model Compression

In order for the model, derived in Section 3.1, to be incorporated into a real-time filtering
algorithm, it will require a computationally quick solution. To achieve this goal, the number
of nodes used in the system will have to be reduced. Although modelling the system with
a large number of nodes provides greater accuracy, the need for timely computation is
essential for real-time applications. To reduce the number of nodes in the model, optimal
spring, damper and mass parameters can be found to closely match the behaviour of a
sparse desired model to a dense actual model.

For a mass spring cloth model Gomes [41] suggests an optimization algorithm that finds
a parameter vector θ which minimizes the following cost function,

C(θ) =
N∑
i=0

eαi∆T‖Hz[i]−AHx[i]‖2
2

s.t. z[i] = f(z[i− 1], θ)

(3.35)

Here x ∈ Rm is the state vector of the higher order system, z ∈ Rn, is the state vector of the
lower order system, with m > n. Both x[i] and z[i] are solved by numerically integrating
the state space formulation from Equation (3.1). H is the observation model, A is a Rn×m

matrix that selects the states of the higher order system to compare to the lower order
system. eαi∆T is used to ensure that the error in the later part of the simulation is at
a higher cost, therefore causing the sparser model to match the higher density one for a
longer time. Here α is a scaling factor for the future time weight, and ∆T is the integration
time used to solve for both x[i] and z[i]. The parameter vector θ is a R2s+n vector, where
s is the number of spring connections in the reduced model. It is made up of s spring
constants ksi , s damper constants kdi , and n masses mi. It is written as follows,

θ =



ks1
...
kss
kd1

...
kds
m1
...
mn


(3.36)

26

The cost function in Equation (3.35) is minimized using a heuristic algorithm called
simulated annealing. Simulated annealing is chosen over other heuristic methods, such as
genetic and evolutionary algorithms [17, 61], due to its relatively low computation time.
Other algorithms require large sets of solutions to be pre-processed, and so have a significant
computational load. Simulated annealing on the other hand only finds one, usually more
optimal, solution per iteration [33].

The simulated annealing algorithm first takes an initial guess of the parameter vector
and considers it the current optimal solution,

θop = θ0 (3.37)

Next, a zero-mean Gaussian noise, W , is added to the previous cost to create a new
candidate solution,

θc = θop +W (3.38)

The cost function C(θ), in this case given by Equation (3.35), is then used to evaluate the
validity of the new parameter. If the cost of the candidate parameter is lower than that of
the old parameter

C(θc) ≤ C(θop) (3.39)

it may be assigned as the new optimal parameter with probability P ,

P = e
−∆C

T

where ∆C is the difference in cost between the new solution and the old solution, i.e.
∆C = C(θ1)− C(θ0), and T is a temperature term. T is initially set based on how many
iterations of the algorithm the programmer requires. After a certain number of iterations,
the temperature term T decreases in value, which causes the probability of choosing a
bad solution to decrease. This process is repeated until a termination condition, such as a
minimum value for T , is reached. The final solution, θN , at the point of termination should
produce a result that is close to the global minimum, however there is no guarantee. The
longer the algorithm is run for, the more likely the solution θN will converge to the global
minimum. The choice of initial temperature and rate of cooling have some effect on the
final solution, as they directly contribute to the number of iterations and the probability
of choosing a suboptimal solution.

This solution can now be evaluated on a higher order system to verify that a reduced
order model would still provide satisfactory results. To test this a 21 × 21 high order
model, representing a 1.5m × 1.5m cloth, is reduced down to a 5 × 5 sparse model. The
initial parameter vector θ0 is set such that ksi = 300, kdi = 0.08, and m1 = 0.025 for all i.,

27

and α = 0.001 Figure 3.7 shows the resulting parameter values of the compressed system
and the reduced cost of the optimal parameter set over the original values. It is clear
that the overall cost of the final chosen parameter vector, θN is much smaller than that of
the original parameters set. Finally, Figure 3.8 shows that the mean squared error of the
reduced order system is significantly low enough that it can be used as a valid alternative
to the full system. Additionally, this method can be used to find the parameters of a real
life system being estimated by the prediction filters discussed in Chapter 4. The measured
values of the real life system, can be used to train the parameters of a model, and will be
used in Chapter 5

28

(a) Mass parameters (b) Spring parameters

(c) Damper parameters (d) Costs for compression

Figure 3.7: Final parameter vector θN values for 5× 5 compression

29

0 1 2 3 4 5 6 7 8 9 10

Time(s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r(

m
2
)

10-3

Figure 3.8: Mean squared error between 5x5 compressed model and the original model

30

Chapter 4

Review of Filtering Approaches

Due to the approximations made by representing a real life system with a mass spring
model, along with the inherent sensor noise of measured positions on a time-varying system,
a filtering technique is required to obtain an accurate prediction of the system’s states.
Additionally, as the only states that are measurable in the dynamic model, presented
in Section 3.1, are the positions, the model velocities need to be estimated. A filtering
algorithm allows for this estimation to occur with minimal error. This is achieved by
minimizing the error between the actual state of the system and the estimated state. This
chapter discusses several filtering techniques, mainly revolved around the least squares
estimate, such as the Kalman filter, the extended Kalman filter, and the cubature Kalman
filter.

4.1 Least Squares Estimation

A common form of this type of filtering is the linear least squares method. This method
minimizes squared error of the estimate,

arg min
x̂
‖x− x̂‖2 (4.1)

where x̂ is the state estimate and x is the actual state value. The least squares method
has been applied to numerous application areas for both state estimation and parameter
identification. The problem is defined as follows [58], given a sequence of n noisy measure-
ments {yi}ni=1 and random variable Z, the true state value, the least squares estimate Ẑ is

31

the solution to the minimization problem

Ẑ = f(y1, y2, . . . , yn) = arg min
g
{E[(Z − g(y1, y2, . . . , yn))2]| g : Rn → R} (4.2)

where E[·] is the expected value function, and g(·) is a function applied to the set of noisy
measurement data. When Z and {yi}ni=1 are all normally distributed the solution to this
problem becomes,

Ẑ = E[Z|y1, y2, . . . , yn] =
n∑
i=1

αiyi + βi, αi, βi ∈ R (4.3)

This chapter will review the Kalman Filter, the extended Kalman filter, the unscented
Kalman filter, and the cubature Kalman filter. All of these techniques use the linear least
squares estimate to find the states of a dynamic system of the form

ẋ = f(x)

y = h(x)
(4.4)

where x is the state vector, f(·) is the state transition function, y is the output vector, and
h(·) is the observation model.

4.2 Kalman Filter

The Kalman filter is a recursive filter that estimates the internal state of a linear dynamic
system from a series of noisy measurements. It was developed by Kalman [51], and is able
to produce an optimal state estimate given a linear system with only independant Gaussian
additive noise. Though optimal results are only guaranteed for Gaussian noise, it is not a
requirement for the Kalman filter to be able to produce convergent results. Thus, it is used
in a wide variety of applications, including GPS tracking, signal processing, and motion
planning [38, 43].

To apply the Kalman filter a linear dynamic system must first be defined,

x[k + 1] = Fkx[k] + wk

y[k] = Hkx[k] + vk
(4.5)

where Fk ∈ Rn×n is the state transition matrix, Hk ∈ Rn×n is the observation matrix,
x[k] ∈ Rn is the state vector, y[k] ∈ Rm is the output vector, wk ∈ Rn is the process noise

32

vector, and vk ∈ Rm is the measurement noise vector, all at time step k. The noise vectors
wk and vk are assumed to be Gaussian, independent random variables with covariances of
Qk and Rk respectively, that is:

E[wkw
T
k] = Qk

E[vkv
T
k] = Rk

E[wkv
T
k] = 0.

(4.6)

By applying the least-squares estimator the state estimate vector x̂k|k at time step k can
be found, as described in Equation (4.3). The Kalman filter algorithm can be broken down
into two steps, a prediction step and an update step. The prediction step proceeds as
follows,

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

(4.7)

Here, x̂k|k−1 is the state prediction given the previous k − 1 measurements and Pk|k−1

is the state covariance matrix given the previous k − 1 measurements. In this step the
previous state estimate is used to produce an estimate of the state at the current time
step. This predicted state is known as the a priori state estimate as it does not contain
any information about the observations at the current time step. Following the predict
step, the Kalman update step, shown in Equation (4.8), can be carried out.

ỹk = y[k]−Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk

Σk|k = (I −KkHk)Pk|k−1

(4.8)

Here ỹk is the error between the measured output and the predicted output, also called
the innovation residual, Sk is the innovation covariance, Kk is the Kalman gain, x̂k|k is the
updated state estimate and Pk|k is the updated estimate covariance, all at time step k. The
update step improves the a priori state estimate by combining it with current observation
information and refining the estimate. The new estimate is called the a posteriori state
estimate.

Typical behaviour for the Kalman filter is to execute prediction and update steps al-
ternatively. However, this doesn’t always have to be the case. In the situation whereby
there is a delay in measurements, the predict step may be run multiple times until a mea-
surement is received [52]. An important aspect of the Kalman filter is the choice of initial

33

conditions, x̂0|0 and P0|0, as well as noise covariance matrices Qk and Rk. The selection
of these values can are often difficult to find and can greatly affect the performance of
the Kalman filter. These parameters can be estimated using a priori statistical knowledge
about the system [7, 76]; however, often times, they are simply tuned until the best results
are observed. A severe drawback of the Kalman filter is its limitation of only being appli-
cable to linear systems. Therefore, the algorithm will need to be adapted to be applied to
nonlinear systems.

4.3 Extended Kalman Filter

The extended Kalman filter (EKF) is an implementation of the Kalman filter, designed for
use on non-linear systems. Though it is no longer optimal, it is very useful as it enables
the estimation of state variables through linear approximation. The EKF is very similar
to the regular Kalman filter, with the caveat of linearizing the nonlinear system dynamics
at every time step [9].

For applications of the EKF a nonlinear dynamic system of the following form is given,

x[k + 1] = f(x[k]) + wk

y[k] = h(x[k]) + vk
(4.9)

where f : Rn → Rn and h : Rn → Rm are sufficiently smooth functions, x[k] is the state
vector, wk is the process noise, y[k] is the output, and vk is the measurement noise, all at
time step k. To be able to adapt this nonlinear to system to use with the standard Kalman
filter, the functions f and h need to be linearized. The Jacobian of f and h are evaluated at
every time step to arrive at the linearized system, assumed to be smooth, and as a result,
differentiable, the Jacobian of f and h can be evaluated at each time step k. Equation
(4.10) lists the Jacobians of f and h, which are used in place of the state transition matrix
Fk and observation matrix Hk in the standard Kalman filter, respectively.

Fk−1 =
∂f

∂x
|x̂k−1|k−1

Hk =
∂h

∂x
|x̂k|k−1

.

(4.10)

The EKF now recursively estimates the states of the system in a manner very similar to
the Kalman filter. The algorithm can again be broken down into two steps the predict step

34

and the update step. The EKF prediction step is as follows,

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1

(4.11)

Next the update step of the state prediction is computed,

ỹk = yk − h(x̂k|k−1)

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I−KkHk)Pk|k−1

(4.12)

An important piece of information required for the EKF are the initial state estimate x̂0|0
and the initial covariance matrix P0|0. As the system involved in the EKF is a first order
approximation of the nonlinear system, an incorrect initial value could lead to divergence;
therefore, it is important to choose these values carefully.

4.4 Unscented Kalman Filter

The unscented Kalman filter (UKF)[86] addresses the main issues of the EKF, such as
approximating the dynamics of a given system using a first order approximation, as well as
using only the mean value of the prior estimate, propagated through a nonlinear function,
to calculate the posterior mean and covariance. In contrast, the UKF provides a third
order approximation, when the noise variables are Gaussian distributed, and a second
order approximation, if not, of the estimate. It does this by utilizing several carefully
chosen sample points, called sigma points, to help capture the true mean and covariance
of the transformed random variables.

The UKF algorithm begins by choosing a set of 2n + 1 sigma points, where n is the
number of states, based on the state estimate, x̂k−1|k−1, and the state covariance matrix,
Pk−1|k−1 [81],

χ0
k−1|k−1 = x̂k−1|k−1

χik−1|k−1 = x̂k−1|k−1 + (
√

(n+ λ)Pk−1|k−1)i, i = 1, . . . , n

χik−1|k−1 = x̂k−1|k−1 − (
√

(n+ λ)Pk−1|k−1)i−n, i = n+ 1, . . . , 2n

(4.13)

35

where (
√

(n+ λ)Pk−1|k−1)i is the ith column of the matrix
√

(n+ λ)Pk−1|k−1. A matrix
B is the square root of a matrix A if BBT = A. Each χi has a corresponding weight used
to calculate the state and covariance values; they are defined as

W 0
s =

λ

n+ λ

W 0
c =

λ

n+ λ
+ 1− α2 + β

W i
s = W i

c =
1

2(n+ λ)

λ = α2(n+ κ)− n

(4.14)

where λ is a scaling parameter. α determines the spread of the sigma points around
x̂k−1|k−1, κ is a secondary scaling parameter and β is used to incorporate prior knowledge
of the distribution of x̂k−1|k−1.

For the prediction step of the UKF algorithm, the sigma points are first passed through
the nonlinear state transition function f(·) from Equation (4.9), such that

χik|k−1 = f(χik−1|k−1) (4.15)

These transformed sigma points are recombined to produce the predicted state and covari-
ance matrix,

x̂k|k−1 =
2n∑
i=0

W i
sχ

i
k|k−1

Pk|k−1 =
2n∑
i=0

W i
c(χ

i
k|k−1 − x̂k|k−1)(χik|k−1 − x̂k|k−1)T +Qk

(4.16)

After this, new sigma points χik|k−1 are found by repeating Equation (4.13) with x̂k−1|k−1

and Pk−1|k−1 replaced x̂k|k−1 and Pk|k−1 respectively. These sigma points are then passed
through the observation model h(·),

γik = h(χik|k−1) (4.17)

36

The update step is then executed,

ŷ =
2n∑
i=0

W i
sγ

i
k

Pykyk =
2n∑
i=0

W i
c(γ

i
k − ŷk)(γik − ŷk)T +Rk

Pxkyk =
2n∑
i=0

W i
c(γ

i
k − x̂k|k−1)(γik − ŷk)T

Kk = PxkykP
−1
ykyk

x̂k|k = x̂k|k−1 +Kk(yk − ŷk)
Pk|k = Pk|k−1 −KkPykykK

T
k

(4.18)

As can be seen, the UKF does not require the use of the Jacobian of the system, and so can
be used in systems that are non-differentiable or difficult to differentiate. The effectiveness
of the UKF can be significantly affected by the choice of α, κ, and β, which should be
carefully chosen in order to get good results. Figure 4.1 provides a simple illustration of
how the sigma points of the UKF allows it to be a more accurate prediction algorithm than
the EKF. Using multiple, strategically chosen, sample points more accurately capture the
mean and covariance of a non-linearly transformed system, short of using a true random
sampling technique with a significantly higher computation time.

4.5 Cubature Kalman Filter

The main drawback of the UKF is choosing the values of α, κ, and β, in Equation (4.14),
such that the filter is accurate. One way of obtaining these values is by using a set of
rules, called cubature rules, as is done in the Cubature Kalman filter (CKF). The CKF
was developed as a more accurate way of predicting the states of a nonlinear system by
take advantage of the “nice” properties of Gaussian distributions. If it is assumed that
the nonlinear system described in Equation (4.9) is modelled with error that is normally
distributed, these properties can be exploited. It is well known that the best state predic-
tion, x̂k|k−1, of a dynamic system is given by a conditional expectation [10]. Furthermore,
when the source of noise in the model is normally distributed, the state prediction can be
written as an integral of the nonlinear model f(x) and of the Gaussian density function.

37

Figure 4.1: Visualisation of the EKF and UKF algorithms propagation accuracy when
compared to a true sampling technique

Since this integral may be difficult to solve, it can be approximated as

x̂k|k−1 =

∫
f(x)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1 ≈

m∑
i=1

ωif(ζi) (4.19)

where ωi are weights and ζi are sample points which are chosen in a specific manner. This
method of approximation is called a Gaussian quadrature rule for solving the conditional
expectation of a normally distributed random variable. A Gaussian quadrature rule allows
for a computationally less intensive approximation of the conditional expectation. The
difficult part of finding an accurate approximation, as given in Equation (4.19), is solving
for the weights ωi and sample points ζi. There may be many combinations weights and
sample points that give a an accurate approximation for the state prediction, such as the
UKF. The CKF provides a set of weights and sample points that provide the closest know
approximate based on a normally distributed noise [10]. In fact, the CKF provides a
solution for the state prediction that is more accurate (third order approximation of the

38

true solution) than the solution given by the EKF (first order approximation). The CKF
uses what are called cubature rules to solve for the weights and sample points. The weights
and sample points given by the cubature rules are found to be the same as the UKF, with
α = 1, κ = 0, and β = 0, therefore:

χ0
k−1|k−1 = x̂k−1|k−1

χik−1|k−1 = x̂k−1|k−1 + (
√
nPk−1|k−1)i, i = 1, . . . , n

χik−1|k−1 = x̂k−1|k−1 − (
√
nPk−1|k−1)i−n, i = n+ 1, . . . , 2n

W 0
s = W 0

c = 0

W i
s = W i

c =
1

2n

(4.20)

For the mass spring model derived in Chapter 3, the filtering techniques that can be
applied will be the EKF and the CKF, due to the model’s nonlinearity. Both of these
techniques will be implemented onto a real-time system and compared in Chapter 5

39

Chapter 5

Implementation of Estimation
Filtering Algorithm

In this chapter, two different filtering algorithms, the EKF and CKF discussed in Sections
4.3 and 4.5, will be implemented on a real, hanging cloth system, to create a prediction filter
for deformable surface motion. These algorithms will incorporate the dynamic system, and
its linearization, described in Sections 3.1 and 3.2, as well as the backward Euler integration
technique discussed in Section 3.3. Next, the filtering algorithms are used on a hanging
cloth system, where position measurements are provided by an infrared tracking system,
to both estimate true positions and velocities, as well as to predict future positions to
compensate for system delays. The model parameters for the real system are identified
using techniques specified in Section 3.5 and the noise parameters of the EKF and CKF
are tuned to minimize predicted and measured outputs. The results of the EKF and CKF
algorithms are compared and discussed.

5.1 Filtering Algorithm

The filtering algorithms presented in Chapter 4 are discrete time filters, and so require
a discrete time system model. Therefore, the model equation presented in Section 3 will
need to be discretized using the backwards Euler technique specified in Section 3.3. In
other words, the state transition function

ẋ = f(x)

40

will be evaluated using the backward Euler method to solve for x[k] := x(t+ k∆T), where
∆T is some sampling time. This gives

xk+1 =

[
pk+1

vk+1

]
= xk + ∆Tf(xk+1)

vk+1 = ∆v + vk

pk+1 = ∆Tvk + 1 + pk

s.t. (I−∆T 2∂a

∂p
−∆T

∂a

∂v
)∆v = ∆Ta(pk, vk) + ∆T 2∂a

∂p
vk.

(5.1)

This discretized system can now be used on both the discrete time EKF and CKF algo-
rithms, as the solution to the state prediction step, i.e.

x̂k|k−1 = x̂k−1|k−1 + ∆Tf(x̂k|k−1) (5.2)

Extended Kalman Filter Implementation

To combine the EKF and the deformable model, it needs to be linearized using a first order
approximation. This implies that the Jacobian of the new discrete time system, Equation
(5.2), must be used. The new Jacobian, F (x̂k|k) now becomes

F (x̂k−1|k−1) =
∂x̂k|k−1

∂x
|x̂k−1|k−1

= I + ∆T · J(x̂k|k−1) (5.3)

where J(x̂k|k−1) is the Jacobian derived in Section 3.2. The prediction step for the EKF is
now,

x̂k|k−1 = x̂k−1|k−1 + ∆Tf(x̂k|k−1)

Pk|k−1 = F (x̂k−1|k−1)Pk−1|k−1F (x̂k−1|k−1)T +Qk−1

(5.4)

with the initial conditions x̂0|0 = x[0] and P0|0 = 0, and Qk = αI ∀k ∈ Z+, where
α ∈ R+. A diagonal matrix is chosen for Qk as the process noise vectors are assumed to
be independent random vectors.

After the prediction of the next state x̂k|k−1 and covariance matrix Pk|k−1 are calculated,
and new measurement data is available, the update step of the EKF is applied to obtain
the current state estimate and covariance matrix

ỹk = y[k]−Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I−KkHk)Pk|k−1

(5.5)

41

The output function, hk(x), in Equation (4.12) is converted to a linear operation, Hkx, in
Equation (5.5). This linear operation selects only the position states of x at time step k.
Therefore,

Hk = H =
[
I3n×3n 03n×3n

]
∀k = 0, 1, . . . (5.6)

The measurement noise covariance matrix, Rk, is chosen to be a diagonal matrix, similar
to Qk. However, it must be positive definite. Therefore, Rk = βI ∀k = 0, 1, . . ., β ∈ R++

(strictly positive numbers). A diagonal matrix is chosen for Rk as the measurement noise
vectors are assumed to be independent random vectors.

Cubature Kalman Filter Implementation

Development of the cubature Kalman filter was done in conjunction with Cong Yue [37].
Implementation of the CKF is very similar to the extended Kalman filter, with the addition
of a few steps in the creation of sample points. The prediction step of the CKF has two
portions, one to generate a set of sample point, and one to generate the predicted state
and covariance matrix. The weight generation step is the same as in Section 4.5, i.e.

χik−1|k−1 = x̂k−1|k−1 + (
√
nPk−1|k−1)i, i = 1, . . . , n

χik−1|k−1 = x̂k−1|k−1 − (
√
nPk−1|k−1)i−n, i = n+ 1, . . . , 2n

W i
s = W i

c =
1

2n

(5.7)

with n being the number of mass nodes used in the model presented in Section 3.1. The
predicted state and covariance matrices can then be calculated using the discretized state
transition function shown in Equation (5.2), i.e.

χik|k−1 = χk−1|k−1 + ∆Tf(χk|k−1)

x̂k|k−1 =
2n∑
i=1

W i
sχ

i
k|k−1

Pk|k−1 =
2n∑
i=1

W i
c(χ

i
k|k−1 − x̂k|k−1)(χik|k−1 − x̂k|k−1)T +Qk

(5.8)

with the initial conditions and process noise covariance matrix being set to the same values
as the EKF, that is, x̂0|0 = x[0], P0|0 = 0, and Qk = αI ∀k ∈ Z+, α ∈ R+.

After this, the update step is performed. This step can also be split up into a sample
point generation phase and a separate update phase. The new sample points are generated

42

using the same base functions as before. However, the state and variance, x̂k−1|k−1 and
Pk−1|k−1, are replaced by the predicted state and variance, x̂k|k−1 and Pk|k−1, respectively.
In other words,

χik−1|k−1 = x̂k−1|k−1 + (
√
nPk−1|k−1)i, i = 1, . . . , n

χik−1|k−1 = x̂k−1|k−1 − (
√
nPk−1|k−1)i−n, i = n+ 1, . . . , 2n.

(5.9)

Theses samples points are then passed through the remainder of the update phase

γik = Hkχ
i
k|k−1

ŷ =
2n∑
i=0

W i
sγ

i
k

Pykyk =
2n∑
i=1

W i
c(γ

i
k − ŷk)(γik − ŷk)T +Rk

Pxkyk =
2n∑
i=1

W i
c(γ

i
k − x̂k|k−1)(γik − ŷk)T

Kk = PxkykP
−1
ykyk

x̂k|k = x̂k|k−1 +Kk(yk − ŷk)
Pk|k = Pk|k−1 −KkPykykK

T
k

(5.10)

where again the output function, hk(x), in Equation (4.17) is converted to a linear opera-
tion, Hkx, shown in Equation (5.6). The measurement noise covariance matrix Rk is set
to a diagonal matrix as in the EKF, Rk = βI ∀k = 0, 1, . . ., β ∈ R++.

Often times, when applying the EKF or CKF to a system, the sample rate of the
measurements being provided is far higher than the sample time required by an integration
method to provide an accurate solution to its dynamical model. Therefore, it is required
that the integration solver, i.e. the prediction step, be run at a rate higher than when a
measurement can be provided. This is completely possible by running the prediction step
multiple times, until the next available measurement is made [10, 52]. This allows for a
smoother estimate, with less error. Additionally, this can be used to improve computation
time, since the prediction step can be run while the system waits for a measurement, and
then updated when the measurement comes in, versus executing both steps at the same
time.

When using a projector for spatial augmented reality applications, there are inherent
limitations that need to be addressed. One such flaw is the intrinsic delay involved in

43

processing the image to be projected, as well as the time required for the projector to
display the image. It is well known that projectors suffer from delays when processing
images and these delays usually range from 20ms to 100ms depending on the type of
projector [59]. This delay, Td, is troublesome when using a prediction filter for surface
prediction in real-time. Since an image needs to be sent to the projector Td seconds in
advance, to be projected at the correct time, the filter needs to predict the geometry of
the surface Td seconds in the future at each predict step. Now, since measurements are
received every Tm seconds, the prediction filter can only update the state estimate every Tm
seconds. An issue arises when the delay time Td and measurement time Tm do not match
(i.e. are vastly different). The time of the current state prediction and the time at which
the measurement is made will never be the same. This means the traditional EKF/CKF
algorithm will not work, as the prediction and measurement times need to line up. To fix
this issue, a further prediction, using numerical integration, is made to align the time of
the current state prediction with the current measurement. At this stage, a new estimate
can be made using the regular estimation algorithm. Figure 5.1 shows how the timing of
the algorithm functions. Every Tm seconds a measurement is received and an update is
made. This update is then used to create a state prediction Td seconds in the future. The
predicted state is then advanced every ∆T seconds to ensure that a prediction is available
when needed. When a new measurement comes in the stored predicted state at the time
of the measurement is used, and the algorithm repeats. A simplistic flow chart displaying
the steps involved in the EKF and CKF implementation can be seen in Figure 5.2.

5.2 Experimental Setup

In order to validate the EKF and CKF algorithms it must be implemented on a real world
system. To mimic a fairly flexible and dynamic system, a cloth-like material is desired. This
would test the effectiveness of the algorithm, in estimating positions of a very unpredictable
surface. As a result, a towel is used for experimental data collection. The prediction filters
being implemented require the positions of points along the object surface to be measured
and used as a variable during their update stage. Therefore, a sensor system that can
capture positional data is required for data collection. A number of different systems
exist for capturing positional data, such as image processing techniques or time-of-flight
sensors. However, for greater data accuracy, an infrared motion capture system is used
in this experiment. The NaturalPoint OptiTrack system [4] is an infrared camera based
motion capture system. It incorporates a multi camera setup (Figure 5.3a) to provide
positional data within millimetre precision. The OptiTrack system measures the position

44

Tm

Prediction

Measurement

Estimate

Projector Delay
Prediction

Kalman Predict

Kalman Update
Updated
Prediction

t0

Td

∆T

Figure 5.1: Timing diagram of a projector compensated filtering algorithm. ∆T is the
integration time-step, Tm is the measurement time, and Td is the delay time.

of retro-reflective infrared markers by triangulating each marker with multiple cameras,
calibrated to have a known position. For this experiment, a four camera configuration,
made up of the Flex:V100, is used to measure the position of 12.7mm diameter infrared
markers (Figure 5.3c). The markers are placed on the surface of the towel and are matched
to the initial positions of the desired nodes in the model. The four OptiTrack cameras are
placed in a way that minimizes occlusion by making sure that at least two cameras are in
sight of all markers at all times, virtually shown in Figure 5.4. The towel used is 0.57m
wide by 0.81m long and is fitted with 20 infrared markers. These markers are placed in a
5 × 4 grid with locations determined using the nodal placement algorithm in Section 3.4,
as shown in Figure 5.5.

45

Plant
yu

xk-1|k-1

Kalman Predict

Kalman Update

Projector Delay
Prediction

xk|k-1

Pk-1|k-1 Pk|k-1

xproj

Figure 5.2: Flow chart of the EKF/CKF algorithm with the mass-spring model

The cloth is anchored along the top row of markers by an improvised fixture shown in
Figure 5.3b. As a source of disturbance, a small fan is placed behind the cloth to provide a
randomly acting external force to the cloth. The fan rotates sideways, producing oscillatory
forces on the cloth.

Before any data collection or disturbances are added to the cloth, its rest position is
recorded to calculate the rest lengths of the springs in the model. Additionally, this rest
position is used to initialize the filtering algorithms by setting x̂0|0 to this measured value,
allowing us to set P0|0 is set to the zero matrix, 06n×6n, since the cloth model begins at
the same position as the actual towel. Once this is complete, data from the OptiTrack
cameras can be broadcast, using the NatNet SDK provided by NaturalPoint. The marker
positions are measured 100 times per second, in other words, a measurement is made every
0.01 seconds. If the measurement is needed to be reduced, for robustness testing, the
unnecessary data points recorded are ignored by the algorithm. Data for the markers is

46

(a) OptiTrack Flex:V100 camera (b) Cloth hanging fixture

(c) 12.7mm infra-red marker

Figure 5.3: Experimental setup equipment

47

Figure 5.4: Camera location relative to towel

(a) Towel with 20 IR markers (b) Optimal node location

Figure 5.5: Optimal nodal locations vs. placed node locations

48

recorded as a set of (x, y, z) coordinates. However, the organization of the marker data
can be random, leading to what is known as marker swapping [72]. Marker swapping is
the phenomena in marker tracking where a markers label gets swapped with the label of a
nearby marker and so swaps the identification of each marker is lost. In order to combat
this a least squares approach is used. The set of marker associations that minimize the sum
of the squared errors between the estimated output ŷ and measured position ỹ is chosen
as the true measurement y, i.e.

y = arg min
ỹ

n
2∑
i=1

‖ŷi − ỹi‖2 (5.11)

Another important facet of the experimental setup is the projector. The projector is
used to display the rendered and mapped image, produced by the estimation algorithm,
on the surface of the measured object. The projector used for the experiment is the
Epson VS240. It is necessary to identify some projector parameters that will be used to
calculate the projection matrix, discussed in Section 2.2.2, as well as the projector delay
time, described in Section 5.1. The projector matrix is required to ensure that the image
rendered by the system matches what is displayed. This is especially problematic with
the projector used, as the VS40 is a short throw projector. What this means is that
the lensing characteristics of the projector cause the top of the projection to undergo
significantly more stretching compared to the bottom. From Section 2.2.2, we know that
the intrinsic projection matrix F is dependant on the distance n from the projector to the
display surface, and the distance from the centre of the projector to the left, right, top,
and bottom edges of the display surface, l, r, t, andb. These parameters can be visualised
in Figure 5.6, and are provided by [5]. Therefore, with n = 4, l = −1.365, r = 1.365,
t = 1.624, and b = −0.0862 the projection matrix becomes,

F =

−2n
r−l 0 r+l

r−l
0 −2n

t−b
t+b
t−b

0 0 −1

 =

 −8
2.73

0 0
0 −8

1.71
1.538
1.71

0 0 −1

 (5.12)

In addition to the projection matrix of the projector, the projectors delay time Td can be
measured for incorporation with the filtering algorithms of Section 5.1. To measure this
delay a rudimentary system is built using an Arduino micro controller, an LED, and a
camera recording at 240 frames per second. The Arduino controller is used to enable an
LED by actuating an on board push button (Figure 5.7), simultaneously a command is
sent to cause the projector display to flash on. This sequence of events is recorded using

49

Figure 5.6: Perspective parameters in relation to a projector at the origin

a slow motion camera, and the time between the LED enabling and the projector flashing
on is measured as the delay time Td. This is repeated multiple times and the average value
of 0.075 seconds is used.

The overall experimental layout can be seen in Figure 5.8. All experimental data and
algorithms were collected and executed on a single computer. The specifications of the
computer include a 3.8GHz i5-7600K CPU with 4 threads, a GTX 1080 Ti graphics card,
and 16GB of RAM.

5.3 Evaluation and Tuning

The effectiveness of the prediction algorithms presented in Section 5.1 are evaluated on
the experimental setup, described in Section 5.2, using both qualitative and quantitative
methods. A qualitative comparison is used to ensure that the results of the experiment
are visually pleasing, and not jarring to experience, where as a quantitative measure is
used to ensure that the prediction algorithm is truly behaving as expected, and closely

50

Figure 5.7: Arduino setup with LED used for delay time identification

matching the true position of the surface. Qualitatively, the results of the both the EKF
and CKF prediction algorithms are visually compared to each other. When the image is
projected onto a flat, static surface (the towel at rest), both projection methods produce
the exact same results. However, once the towel is disturbed by the fan, there is a noticed
difference. Both algorithms perform better than no algorithm running. However, the CKF
method produces slightly more true-to-life results when compared to the EKF algorithm.
When projecting onto a surface that has been deformed to a static state, both the CKF
and EKF algorithms perform identically and far outperform the standard, sans algorithm,
projection method, as shown in Figure 5.9. In the three orientations shown in Figure 5.9
the CKF and EKF algorithms both compensate identically since the towel being stationary
means their solutions converge. However, the uncompensated projection produces clipped
and undesirable results. Specifically, the uncompensated projection method displays parts
of the image past the towel, onto the wall, while the prediction algorithms “paints” the
image on the towel.

Quantitatively, the success of the prediction algorithms are evaluated using their mean
squared error (MSE) between the measured position of the markers and the predicted posi-
tion of the mass nodes. At every measurement time-step, the difference between measured
position of a node and its predicted position are squared and then averaged. The mean

51

Figure 5.8: Photo of experimental setup with motion capture cameras, a projector and a
towel being projected onto.

squared error is defined as

e[k] =
1

N

N∑
k=1

‖y[k]−Hx̂k|k‖2 (5.13)

where N is the total number of nodes (20 in this case), y[k] is the measured position, and
xk|k is the state estimated vector. This is used as an overall view of the total error in
the system. Additionally, the maximum Euclidean error (MEE), between a predicted and
measured node, at each time step is used to identify the, worst case scenario, error of the
system. This is given by,

e[k] = max
i
‖pi[k]− p̂i[k]‖2 (5.14)

where pi is the position of the ith node, and p̂i is its predicted value. The MEE provides
the error of the node, at time k, that was least effectively estimated, therefore giving the
largest nodal error at each time step.

The first test scenario evaluates the effectiveness of model parameter identification. The
test is done on a 5×4, evenly distributed node configuration (i.e. without using the optimal
node locations), with x̂0|0 set to the initial measured value, allowing us to set P0|0 = 06n×6n.

52

(a) No prediction: at rest (b) CKF prediction: at rest

(c) No prediction: pulled
backwards

(d) CKF prediction: pulled
backwards

(e) No prediction: pushed
forward

(f) CKF prediction:
pushed forward

Figure 5.9: Visual comparison of standard projection and prediction algorithms on static
deformations using the CKF algorithm without optimal node locations

53

Additionally, Rk and Qk are set to I and 10000I respectively. Measurement data is provided
to the filtering algorithm at a rate of 100 samples a second, i.e. 1 sample every 0.01 seconds,
and an integration time of 0.005 seconds is used. Although the EKF algorithm is capable
at integrating with a much finer time compared to the CKF, it is kept at 0.005 seconds
in order to maintain consistency between the two algorithms. Additionally, the CKF
algorithm could always be made to execute faster with the use of higher end hardware.

In order for the dynamic model, described in Section 5.1, to be able to calculate the
predicted states,it needs to be an accurate representation of the real life system. Therefore,
the parameters of the mass spring model need to be identified for it to closely match
the towel’s behaviour. To accomplish this the real life hanging towel is dropped from a
predictable initial condition and its dynamics are measured. This set of measurements can
then be passed into the model compression algorithm devised in Section 3.5. The simulated
annealing parameter identification technique is used to find a model that best matches the
real world measurements, i.e. the following minimization problem is solved

C(θ) =
N∑
i=0

eαi∆T‖Hz[i]−Hx[i]‖2
2

s.t. z[i] = f(z[i− 1], θ)

(5.15)

where x is the measured state, z is the simulated state, H is the observation model, θ is the
parameter vector and α = 0.001. The final parameter vector is applied to the filter model.
The results are implemented on the experimental setup specified in Section 5.2, with an
oscillatory fan used as random input to the system. The effect of the optimized values
can be seen in Figures 5.10 and 5.11, where it is compared to an model with arbitrary
parameters, set as follows: ksi = 420, kdi = 0.05, and mi = 0.13 for all parameters. It is
clear that the MSE of the optimal system has far lower errors than the arbitrary system,
for both the CKF and EKF algorithms. The mean squared error is more than halved for
the EKF and is nearly a tenth of the original error in the CKF system. The MEE graph in
Figure 5.11 also presents promising results, with the maximum nodal error dropping from
12cm to a more useful 4-7cm on both algorithms showing that the parameter identification
algorithm is effective. In both, the mean squared error and the maximum Euclidean error
graphs, there is a spike in error at the 5 second mark. This corresponds to the oscillatory
motion of the disturbance fan. As the fan turns towards the towel, it exerts a larger
amount of force directly onto it. As neither the EKF or the CKF algorithms are aware
of the external input, the error is larger when the force is being applied, however, these
algorithms still succeed in keeping the error to a minimum.

Next, to further increase the realism of the system, the optimal nodal placement algo-
rithm from Section 3.4 is implemented. A standard 5 × 4 arrangement of evenly spaced

54

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-4

Original

Optimal

(a) CKF MSE

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-4

Original

Optimal

(b) EKF MSE

Figure 5.10: CKF and EKF MSE comparison between original and optimal parameter

markers may seem like a good arrangement to capture the dynamics of the hanging cloth
system, however, as explained in Section 3.4, there is a possible distribution, Figure 5.5b,
that could lead to a better visual experience. Nevertheless, this system also needs to pro-
vide adequate dynamic modeling, in order to keep the prediction error to a minimum. The
errors of the standard even arrangement is compared to that of the optimal location model
in Figures 5.12 and 5.13. These error graphs show that the optimized distribution has
a very similar, but still lower error when compared to its evenly distributed counterpart.
The slight improvement can be explained by the system being able to better capture the
points of maximum curvature in the towel, therefore leading to less cumulative error in the
system. The use of the optimal node distribution allows the projection to be both accurate
and visually pleasing.

Both the EKF and CKF require the a priori knowledge of the process and measurement
noise statistics [10, 76] to produce accurate results. However, this statistic is often times
difficult to obtain and must be tuned to improve the performance of the estimation filter. To
achieve this a trial and error approach is taken. The noise affecting the system is assumed
to be independent, zero-mean and normally distributed with equal variance. Therefore,
the noise covariances are made up of scaled diagonal matrices, i.e. Rk = βI, Qk = αI.
The measurement noise parameter is known to be small, because of the sensitivity of the
sensors used, and is calculated based on the specification of the OptiTrack camera system,
to be Rk = 0.001I. Therefore, the value of Qk can be determined by varying the value of α
until a satisfactory result is achieved. Figures 5.14 and 5.15 show the effect different values
of α have on the MSE of the system. Figure 5.14 shows that for values of Qk that are too

55

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

Original

Optimal

(a) CKF MEE

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

Original

Optimal

(b) EKF MEE

Figure 5.11: CKF and EKF MEE comparison between original and optimal parameter

low, the CKF algorithm has significantly greater errors, However as its value increases, the
error in the system drops appreciably. At a value of 10I Qk is shown to have markedly low
MSE while increasing it any higher having negligible benefit. Though, it is important to
note that the large error of the CKF at low Qk values is still relatively small, at 0.0002m2.
Therefore, for the CKF algorithm Qk = 10I. The EKF algorithm however, is much more
robust and is able to handle lower, and wider, range of Qk values without significant error.
Therefore, for consistency, its Qk value is set to 10I to match the CKF algorithm.

A visual comparison of the CKF prediction algorithm, using all of the optimised pa-
rameters, and no prediction algorithm can be seen in Figure 5.16. This shows that the
prediction algorithm significantly compensates for the deviations caused by the moving fan
behind the towel. Most notably, the image projected onto the bottom corners of the towel
can be seen to more accurately match the surface of the towel when the algorithm is used.
In contrast, a lack of prediction causes the image to bleed outside of the towel boundaries.

Lastly, the overall effectiveness of both the EKF and CKF algorithms is tested by
combining all of the optimization and tuning algorithms previously discussed in this section.
The optimized model parameters are combined with both the optimal mass node locations,
and the tuned noise parameters to enable the filtering algorithms to perform as best as
they can. To further push the limits of the EKF and CKF algorithms, they are applied to
a system with a measurement sample rate of 50 samples a second, half that of what has
been used so far. This is done to ensure that the system is effective in scenarios where high
speed equipment is not available and as a robustness test for the algorithms being used.
Figure 5.17 shows the results of the CKF and EKF algorithms being run at a 50 sample

56

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

100fps

50fps

(a) CKF MSE

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

100fps

50fps

(b) EKF MSE

Figure 5.12: CKF and EKF MSE comparison between even and optimal nodal locations

per second measurement rate, compared to a 100 sample per second measurement. The
results show that, although the algorithms running at a rate of 100 samples per second are
more accurate, they are still very accurate when run at a slower rate. The overall error
of the slower system is very close to the faster one. However, the slower system has an
artifact, in that there is a lot of jitter, or noise in the estimated output. This, although
small, can have the effect of making the projected image look jarring and unrealistic. The
CKF algorithm can be seen to have a much smaller amount jitter in this case, and so
is perceived to be more realistic. The CKF algorithm as a whole, performs significantly
better than the EKF. In all the test cases presented in this section, the CKF algorithm has
had errors at least half that of the EKF algorithm. This implies that the multi sampling
method of the CKF algorithm is far more effective than the EKF, especially in systems
with low sample rates.

The computation costs of running a CKF in real time are slightly higher than that of
an EKF, though, its efficiency can be improved by implementing parallel computations.
The largest use of time in the algorithm is the evaluation of the state prediction for each
of the 2n sample points. However, due to the nature of the algorithm, each of these points
can be predicted independently, and so can be easily parallelized. Each sample can be
assigned to a separate computer thread and computed individually, thus greatly improving
the execution time. The average run time per iteration for a 5 × 4 hanging cloth system,
with ∆T = 0.005 seconds, of the CKF without parallelization is 0.035 seconds. However,
after parallelization, the run time drops significantly to 0.011 seconds. Although the EKF
algorithm runs significantly faster at 0.002 seconds, the CKF is still usable for real time

57

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

(a) CKF MEE

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

(b) EKF MEE

Figure 5.13: CKF and EKF MEE comparison between even and optimal nodal locations

usage all the way up to 100fps. Further still, this time can be significantly improved by
using CPUs with higher thread counts, as this problem is very scalable. Therefore, it is
highly advisable that the CKF be utilised on systems of this nature over the EKF.

58

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

(a) CKF with Qk = 10I and Rk = 0.001I

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

(b) CKF with Qk = 1I and Rk = 0.001I

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

(c) CKF with Qk = 0.1I and Rk = 0.001I

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

0.5

1

1.5

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-4

(d) CKF with Qk = 0.01I and Rk = 0.001I

Figure 5.14: CKF MSE for varying noise parameter Qk

59

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

(a) EKF with Qk = 10I and Rk = 0.001I

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

(b) EKF with Qk = 1I and Rk = 0.001I

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

(c) EKF with Qk = 0.1I and Rk = 0.001I

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

(d) EKF with Qk = 0.01I and Rk = 0.001I

Figure 5.15: EKF MSE for varying noise parameter Qk

60

(a) No prediction: t = 0s (b) CKF prediction: t = 0s

(c) No prediction: t = 4s (d) CKF prediction: t = 4s

(e) No prediction: t = 6s (f) CKF prediction: t = 6s

Figure 5.16: Visual comparison of standard projection and CKF algorithms with oscillating
fan disturbance

61

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

7

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

100fps

50fps

(a) CKF MSE

0 1 2 3 4 5 6 7 8 9 10

time (seconds)

0

1

2

3

4

5

6

7

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

(m
e
te

rs
)

10-5

100fps

50fps

(b) EKF MSE

Figure 5.17: CKF and EKF MSE comparison between 100fps and 50 fps measurement rate

62

Chapter 6

Conclusion and Future Work

The purpose of this thesis was to implement a filtering algorithm to be used for prediction
of positions on time varying surfaces, more specifically, to be used along with a projection
system to allow for immersive augmented reality experiences. Two prediction schemes are
proposed, an extended Kalman filter approach, and a cubature Kalman filter approach.
Both algorithms made use of a mass spring model, to simulate the dynamics of a real
system, and a series of optimization techniques to improve their accuracy.

In Section 2.1, a number of deformable models were explored. Two main types of mod-
els were identified, non-physical and physical. Non-physical models use purely geometric
techniques to manipulate an object. They rely on designer skill, rather than accounting
for material properties, and so are unsuitable for application on complex systems. Physical
methods use physics to compute realistic simulations of the dynamics of a system. Two
main physical methods are explored, mass spring models and finite element models. Mass
spring models were found to provide a simple representation of a system by using a set of
discrete mass nodes interconnected by springs and dampers. They are easy to construct
and computationally efficient. However, they are only approximations of the real system,
due to their discrete nature. Finite element models, on the other hand, are a continuum
model and treat objects as a continuous objects, making them more accurate. This ac-
curacy, however, comes at the cost of computational expense. Therefore, the mass spring
model is the model of choice, as computational efficiency is a requirement for real time
applications.

Section 3.1 goes into details of the mass spring model as well as its derivation. The dy-
namics of this model can be represented using a nonlinear state space model. The internal
dynamics of the system are created by forces from springs and dampers and are addition-

63

ally affected by external forces. Linearization of the model is derived in Section 3.2 for the
purposes of implementation on the EKF and CKF algorithms. Section 3.3 discusses two
numerical integration schemes, explicit and implicit, used to solve the dynamic equation
provided by the model. The Runge-Kutta method is discussed as a viable explicit integra-
tion scheme, while the backward Euler method is used for the second implicit integration
scheme. The Runge-Kutta method relies on solving a set of equation that use only previous
data points to calculate the next output. As a result, it can become unstable when dealing
with numerically stiff systems. Thus, small integration step times are required to obtain
stable results. The backwards Euler method, on the other hand, makes use of a system
of equations made up of both the previous and the next data point to compute the next
output, making it inherently stable. To solve this system of equations for real time use, a
Taylor series approximation is made. Although the computation time required to use this
method is larger than for the Runge-Kutta method, its inherent stability allows for larger
integration step times. The use of larger step times allows the backward Euler method to
have comparable, in execution time, to the Runge-Kutta method. Additionally, the added
benefit in stability allows the system to be more robust.

Nodal placement and model compression algorithms can be used to enhance the effi-
ciency of the EKF and CKF filters. Section 3.4 discuses the use of optimal nodal placement
to more closely capture the dynamics of a hanging cloth system. It is observed that a cloth,
that is fixed on one end and allowed to fall, has dynamics comparable to a cantilever beam
in free vibration. The longitudinal axis of the cloth behaves like the second mode of vi-
bration in a fixed-free beam, while the lateral axis of the cloth is similar to the first mode
of a free-free beam. Using this information, along with displacement equations for Euler-
Bernoulli beams, an optimal nodal placement algorithm is derived that closely estimates
the continuous surface of the cloth with discrete linearly connected points. Additionally,
a model compression algorithm is discussed in Section 3.5. Model compression is used to
verify that a continuous surface, best described by a large number of mass nodes, can also
be emulated by a sparser mass spring system, with optimized parameters. Smaller node
numbers allow for faster computation time, which is highly desirable for real-time applica-
tions. To achieve this goal, a simulated annealing minimization algorithm is used to find a
set of parameters that minimize the error between a higher order system and an equivalent
low order one. This algorithm was used to compress a 21 × 21 model to a 5 × 5 model.
The results showed that mean squared error of the reduced order system, compared to the
original system, is low, and so can be used by the EKF and CKF algorithms to model the
real life system. Additionally, this simulated annealing algorithm can be used to identify
the parameters of a real system. This is done by simply minimizing the error between the
compressed model and the real life measured data, instead of a high order model.

64

In Chapter 4, the EKF and CKF are formulated. The EKF algorithm uses a linearized
version of the mass spring damper model, as a state transition matrix, to predict the value
of its state. This predicted value is then updated to a more accurate estimate once a
measurement is received. The CKF performs similar set of operations, however, it uses
the original, nonlinear dynamic equation of the mass spring damper system to predict
the next value of the system state. Additionally, to better capture the variance of the
state, multiple sample points are used and propagated through the system. Again, once a
measurement is received, this predicted state can be updated to produce a more accurate
estimate. The EKF and CKF algorithms are both evaluated on a hanging cloth in Chapter
5. Both algorithms were tuned using the simulated annealing parameter identification and
nodal placement algorithms. Additionally, the noise covariance matrices, Rk and Qk for
each algorithm, were determined by using the known error of the OptiTrack camera system
and by varying the Qk parameter such that the mean squared error of the estimate was
minimized. Lastly, the EKF and CKF algorithms were both evaluated on a limited system
where measurements were made 50 times a second, versus the usual 100. The optimizing
and tuning algorithms were all shown to be useful in reducing the error of the system,
and the EKF and CKF were both able to estimate the position of the hanging cloth
accurately in even the low measurement rate scenario. Through all of the cases tested the
CKF estimate was shown to perform significantly better than its EKF counterpart, with
position errors close to half that of the EKF.

In Chapter 5, a marker based tracking system is used for measuring highly accurate
position values. However, they are prone to marker swap and require the placement of
physical markers on the target surface. To remedy marker swap a unique placement system,
like the dot cluster marker in [67] can be used. The dot cluster algorithm uses a uniquely
identifiable set of node markers that can be easily identified without worry of marker swap.
In place of marker tracking, a computer vision based solution, such as feature selection can
be used to eliminate the use of physical markers.

Improvements to the algorithm could be made by further investigating the model pa-
rameter identification procedure. The simulated annealing based algorithm, specified in
Section 3.5, requires a large amount of time to generate parameters, and so the parameter
identification needs to be pre-computed. Alternatively, adaptive control techniques could
be used to identify the unknown parameters of a system in real time. This would be a
much more useful appliction. The node placement algorithm in Section 3.4 could also be
improved. An algorithm that takes into account the true dynamics of a cloth, and its
curvature, could provide better node locations than an approximation made by analyzing
beam deformations. Furthermore, the filtering algorithm itself could be improved. The
current findings show that the multi sample approach taken by the CKF is effective at

65

producing excellent results. This could further be improved by using a Monte-Carlo sam-
pling approach, such as a particle filter [32]. The main issue with the particle filter is the
added computation time, however, as is with the case of the CKF, modern CPUs with high
thread counts can easily solve this by parallelizing the workload.

Future work on this project would be to take advantage of being able to physically
change the materials of the surface being used. Certain materials, could be more aptly
defined by the mass spring model used, thus leading to less modelling errors. To extend
this further, a synthetic surface could be created by physically using spheres of known mass
as nodes; and connecting these masses by springs to create a real life mass spring damper
mesh. This system would be perfectly captured by a mass spring model and result in low
errors.

66

References

[1] Derivative touchdesigner. http://www.madmapper.com/. Accessed: 2016-08-05.

[2] Guitar gently weeps love. https://ultimateclassicrock.com/

beatles-while-my-guitar-gently-weeps-video/. Accessed: 2019-03-16.

[3] Madmapper. http://www.madmapper.com/. Accessed: 2016-08-05.

[4] Optitrack motion capture systems. http://www.http://optitrack.com/. Accessed:
2016-08-05.

[5] Throw distance calculator. https://files.support.epson.com/pdc/eai/flash/

Index.html. Accessed: 2019-03-22.

[6] Tutorial 5 : A textured cube. http://www.opengl-tutorial.org/

beginners-tutorials/tutorial-5-a-textured-cube/. Accessed: 2016-08-05.

[7] Bernt M Åkesson, John Bagterp Jørgensen, Niels Kjølstad Poulsen, and Sten Bay
Jørgensen. A generalized autocovariance least-squares method for kalman filter tuning.
Journal of Process control, 18(7-8):769–779, 2008.

[8] A Alipour and F Zareian. Study rayleigh damping in structures; unceratinties and
treatments. In Proceedings of 14th World Conference on Earthquake Engineering,
Beijing, China, 2008.

[9] Brian DO Anderson and John B Moore. Optimal filtering. Courier Corporation, 2012.

[10] Ienkaran Arasaratnam. Cubature Kalman filtering theory & applications. PhD thesis,
McMaster University, 2009.

[11] Uri M Ascher, Steven J Ruuth, and Brian Wetton. Implicit-explicit methods for time-
dependent PDE’s. University of British Columbia, Department of Computer Science,
1993.

67

http://www.madmapper.com/
https://ultimateclassicrock.com/beatles-while-my-guitar-gently-weeps-video/
https://ultimateclassicrock.com/beatles-while-my-guitar-gently-weeps-video/
http://www.madmapper.com/
http://www.http://optitrack.com/
https://files.support.epson.com/pdc/eai/flash/Index.html
https://files.support.epson.com/pdc/eai/flash/Index.html
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/

[12] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings of
the 25th annual conference on Computer graphics and interactive techniques, pages
43–54. ACM, 1998.

[13] KJ Bathe and H Saunders. Finite element procedures in engineering analysis, 1984.

[14] Ted Belytschko, Yury Krongauz, Daniel Organ, Mark Fleming, and Petr Krysl. Mesh-
less methods: an overview and recent developments. Computer methods in applied
mechanics and engineering, 139(1):3–47, 1996.

[15] Jan Bender, Matthias Müller, Miguel A Otaduy, and Matthias Teschner. Position-
based methods for the simulation of solid objects in computer graphics. Eurographics,
2013.

[16] Kiran S Bhat, Christopher D Twigg, Jessica K Hodgins, Pradeep K Khosla, Zoran
Popović, and Steven M Seitz. Estimating cloth simulation parameters from video.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 37–51. Eurographics Association, 2003.

[17] Gérald Bianchi, Barbara Solenthaler, Gábor Székely, and Matthias Harders. Simul-
taneous topology and stiffness identification for mass-spring models based on fem
reference deformations. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 293–301. Springer, 2004.

[18] Oliver Bimber and Bemd Frohlich. Occlusion shadows: using projected light to gen-
erate realistic occlusion effects for view-dependent optical see-through displays. In
Mixed and Augmented Reality, 2002. ISMAR 2002. Proceedings. International Sym-
posium on, pages 186–319. IEEE, 2002.

[19] Oliver Bimber and Ramesh Raskar. Spatial augmented reality: merging real and virtual
worlds. CRC press, 2005.

[20] Oliver Bimber and Ramesh Raskar. Modern approaches to augmented reality. In
ACM SIGGRAPH 2006 Courses, page 1. ACM, 2006.

[21] Eddy Boxerman and Uri Ascher. Decomposing cloth. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 153–161.
Eurographics Association, 2004.

[22] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

68

[23] Derek Bradley, Tiberiu Popa, Alla Sheffer, Wolfgang Heidrich, and Tamy Boubekeur.
Markerless garment capture. In ACM Transactions on Graphics (TOG), volume 27,
page 99. ACM, 2008.

[24] Robert Bridson, Sebastian Marino, and Ronald Fedkiw. Simulation of clothing with
folds and wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pages 28–36. Eurographics Association, 2003.

[25] Morten Bro-Nielsen. Finite element modeling in surgery simulation. Proceedings of
the IEEE, 86(3):490–503, 1998.

[26] Mauro Caresta. Vibrations of a free-free beam, 2014.

[27] Mark Carlson, Peter J Mucha, and Greg Turk. Rigid fluid: animating the interplay
between rigid bodies and fluid. ACM Transactions on Graphics (TOG), 23(3):377–384,
2004.

[28] Mark Carlson, Peter J Mucha, R Brooks Van Horn III, and Greg Turk. Melting and
flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 167–174. ACM, 2002.

[29] Paul Michael Chapman and Derek PM Wills. An overview of physically-based mod-
elling techniques for virtual environments. Virtual Reality, 5(3):117–131, 2000.

[30] Yunqiang Chen, Yong Rui, Thomas S Huang, et al. Multicue hmm-ukf for real-time
contour tracking. IEEE transactions on pattern analysis and machine intelligence,
28(9):1525, 2006.

[31] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive cloth. In ACM SIG-
GRAPH 2005 Courses, page 1. ACM, 2005.

[32] Fred Daum. Nonlinear filters: beyond the kalman filter. IEEE Aerospace and Elec-
tronic Systems Magazine, 20(8):57–69, 2005.

[33] Oliver Deussen, Leif Kobbelt, and Peter Tücke. Using simulated annealing to ob-
tain good nodal approximations of deformable bodies. In Computer Animation and
Simulation95, pages 30–43. Springer, 1995.

[34] Bernhard Eberhardt, Andreas Weber, and Wolfgang Strasser. A fast, flexible, particle-
system model for cloth draping. IEEE Computer Graphics and Applications, 16(5):52–
59, 1996.

69

[35] Naser El-Sheimy, Eun-Hwan Shin, and Xiaoji Niu. Kalman filter face-off: Extended
vs. unscented kalman filters for integrated gps and mems inertial. Inside GNSS,
1(2):48–54, 2006.

[36] T Ertl. Computer graphicsprinciples and practice. In Data Acquisition and Analysis
for Multimedia GIS, pages 411–421. Springer, 1996.

[37] Keegan Fernandes, Adam Gomes, Cong Yue, Yousef Sawires, and David Wang. Sur-
face prediction for spatial augmented reality. In International Conference on Virtual,
Augmented and Mixed Reality. Springer, 2019.

[38] David Gaylor and E Glenn Lightsey. Gps/ins kalman filter design for spacecraft oper-
ating in the proximity of international space station. In AIAA Guidance, Navigation,
and Control Conference and Exhibit, page 5445, 2003.

[39] Sarah FF Gibson and Brian Mirtich. A survey of deformable modeling in computer
graphics. Technical report, Citeseer, 1997.

[40] Adam Gomes, Keegan Fernandes, and David Wang. Surface prediction for spatial
augmented reality. In International Conference on Virtual, Augmented and Mixed
Reality, pages 43–55. Springer, 2018.

[41] Adam Daniel Gomes. Prediction for projection on time-varying surfaces. Master’s
thesis, University of Waterloo, 2016.

[42] Vincent Granville, Mirko Krivánek, and J-P Rasson. Simulated annealing: A proof
of convergence. IEEE transactions on pattern analysis and machine intelligence,
16(6):652–656, 1994.

[43] Mohinder S Grewal and Angus P Andrews. Applications of kalman filtering in
aerospace 1960 to the present [historical perspectives]. IEEE Control Systems Maga-
zine, 30(3):69–78, 2010.

[44] Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. Discrete shells.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 62–67. Eurographics Association, 2003.

[45] Michael Hauth, Olaf Etzmuß, and Wolfgang Straßer. Analysis of numerical methods
for the simulation of deformable models. The Visual Computer, 19(7-8):581–600, 2003.

[46] Anna Hilsmann, David C Schneider, and Peter Eisert. Realistic cloth augmentation
in single view video under occlusions. Computers & Graphics, 34(5):567–574, 2010.

70

[47] Masaru Hisada, Keiko Yamamoto, Ichiroh Kanaya, and Kosuke Sato. Free-form shape
design system using stereoscopic projector-hyperreal 2.0. In 2006 SICE-ICASE Inter-
national Joint Conference, pages 4832–4835. IEEE, 2006.

[48] Daisuke Iwai and Kosuke Sato. Document search support by making physical docu-
ments transparent in projection-based mixed reality. Virtual Reality, 15(2-3):147–160,
2011.

[49] Thomas Jakobsen. Advanced character physics. In Game Developers Conference,
volume 3, 2001.

[50] Rolf Johansson. System modeling and identification. Prentice-hall, 1993.

[51] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960.

[52] Alonzo Kelly. A 3d state space formulation of a navigation kalman filter for au-
tonomous vehicles. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH
PA ROBOTICS INST, 1994.

[53] Marc D Killpack. Automated tracking and estimation for control of non-rigid cloth.
arXiv preprint arXiv:1403.1653, 2014.

[54] Bojan Kocev, Felix Ritter, and Lars Linsen. Projector-based surgeon–computer in-
teraction on deformable surfaces. International journal of computer assisted radiology
and surgery, 9(2):301–312, 2014.

[55] Robert Kooima. Generalized perspective projection. J. Sch. Electron. Eng. Comput.
Sci, 2009.

[56] TJ Lahey and GR Heppler. Mechanical modeling of fabrics in bending. Journal of
applied mechanics, 71(1):32–40, 2004.

[57] John Denholm Lambert. Numerical methods for ordinary differential systems: the
initial value problem. John Wiley & Sons, Inc., 1991.

[58] D Lee, Martin Morf, and Benjamin Friedlander. Recursive least squares ladder esti-
mation algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing,
29(3):627–641, 1981.

[59] Bill Livolsi. What it is and why you should care, May 2015.

71

[60] Bryn Lloyd, Gábor Székely, and Matthias Harders. Identification of spring parameters
for deformable object simulation. IEEE Transactions on Visualization and Computer
Graphics, 13(5):1081–1094, 2007.

[61] Jean Louchet, Xavier Provot, and David Crochemore. Evolutionary identification of
cloth animation models. In Computer Animation and Simulation95, pages 44–54.
Springer, 1995.

[62] Augustus Edward Hough Love. Xvi. the small free vibrations and deformation of
a thin elastic shell. Philosophical Transactions of the Royal Society of London.(A.),
(179):491–546, 1888.

[63] Kok-Lim Low and Adrian Ilie. Computing a view frustum to maximize an object’s
image area. Journal of Graphics Tools, 8(1):3–15, 2003.

[64] Kok-Lim Low, Greg Welch, Anselmo Lastra, and Henry Fuchs. Life-sized projector-
based dioramas. In Proceedings of the ACM symposium on Virtual reality software
and technology, pages 93–101. ACM, 2001.

[65] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092, 1953.

[66] Maryam Moafimadani, Adam Gomes, Karl Zabjek, Reinhard Zeller, and David Wang.
Haptic Training Simulator for Pedicle Screw Insertion in Scoliosis Surgery, pages 301–
311. Springer International Publishing, Cham, 2016.

[67] Gaku Narita, Yoshihiro Watanabe, and Masatoshi Ishikawa. Dynamic projection map-
ping onto deforming non-rigid surface using deformable dot cluster marker. IEEE
transactions on visualization and computer graphics, 23(3):1235–1248, 2017.

[68] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson.
Physically based deformable models in computer graphics. In Computer graphics
forum, volume 25, pages 809–836. Wiley Online Library, 2006.

[69] Robert E Nickell. Nonlinear dynamics by mode superposition. Computer Methods in
Applied Mechanics and Engineering, 7(1):107–129, 1976.

[70] Brian J Odelson, Murali R Rajamani, and James B Rawlings. A new autocovariance
least-squares method for estimating noise covariances. Automatica, 42(2):303–308,
2006.

72

[71] Ben Piper, Carlo Ratti, and Hiroshi Ishii. Illuminating clay: a 3-d tangible interface
for landscape analysis. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 355–362. ACM, 2002.

[72] Lorenzo Pollini, Mario Innocenti, and Roberto Mati. Vision algorithms for forma-
tion flight and aerial refueling with optimal marker labeling. In AIAA Modeling and
Simulation Technologies Conference and Exhibit, page 6010, 2005.

[73] Xavier Provot. Deformation constraints in a mass-spring model to describe rigid cloth
behaviour. In Graphics interface, pages 147–147. Canadian Information Processing
Society, 1995.

[74] Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. Projection-based visualiza-
tion of tangential deformation of nonrigid surface by deformation estimation using
infrared texture. Virtual Reality, 19(1):45–56, 2015.

[75] Witawat Rungjiratananon, Yoshihiro Kanamori, and Tomoyuki Nishita. Chain shape
matching for simulating complex hairstyles. In Computer graphics forum, volume 29,
pages 2438–2446. Wiley Online Library, 2010.

[76] Manika Saha, Bhaswati Goswami, and Ratna Ghosh. Two novel costs for determining
the tuning parameters of the kalman filter. arXiv preprint arXiv:1110.3895, 2011.

[77] Mark Segal, Carl Korobkin, Rolf Van Widenfelt, Jim Foran, and Paul Haeberli. Fast
shadows and lighting effects using texture mapping. In ACM Siggraph Computer
Graphics, volume 26, pages 249–252. ACM, 1992.

[78] Jürgen Steimle, Andreas Jordt, and Pattie Maes. Flexpad: highly flexible bending
interactions for projected handheld displays. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 237–246. ACM, 2013.

[79] Rahul Sukthankar, Tat-Jen Cham, and Gita Sukthankar. Dynamic shadow elimi-
nation for multi-projector displays. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,
volume 2, pages II–151. IEEE, 2001.

[80] Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge
university press, 2003.

[81] Gabriel A Terejanu. Unscented kalman filter tutorial. University at Buffalo, Buffalo,
2011.

73

[82] Matthias Teschner, Bruno Heidelberger, Matthias Muller, and Markus Gross. A ver-
satile and robust model for geometrically complex deformable solids. In Computer
Graphics International, 2004. Proceedings, pages 312–319. IEEE, 2004.

[83] Sebastian Thrun. Particle filters in robotics. In Proceedings of the Eighteenth con-
ference on Uncertainty in artificial intelligence, pages 511–518. Morgan Kaufmann
Publishers Inc., 2002.

[84] Aydin Varol, Mathieu Salzmann, Engin Tola, and Pascal Fua. Template-free monocu-
lar reconstruction of deformable surfaces. In 2009 IEEE 12th International Conference
on Computer Vision, pages 1811–1818. IEEE, 2009.

[85] Julien Villard and Houman Borouchaki. Adaptive meshing for cloth animation. En-
gineering with Computers, 20(4):333–341, 2005.

[86] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear
estimation. In Adaptive Systems for Signal Processing, Communications, and Control
Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158. Ieee, 2000.

[87] Yanzhen Wang, Yueshan Xiong, Kai Xu, Ke Tan, and Guangyou Guo. A mass-
spring model for surface mesh deformation based on shape matching. In GRAPHITE,
volume 6, pages 375–380, 2006.

[88] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

[89] Scott Whitney. Vibrations of cantilever beams: Deflection, frequency, and research
uses. Website: Apr, 23(10), 1999.

[90] Yongning Zhu and Robert Bridson. Animating sand as a fluid. In ACM Transactions
on Graphics (TOG), volume 24, pages 965–972. ACM, 2005.

74

	List of Tables
	List of Figures
	Introduction
	Background
	Deformable Models
	Non-Physical Model
	Physical Models

	Spatial Augmented Reality
	Non-Rigid Projection Based SAR
	Projection Mapping

	Derivation of Mass-Spring-Damper Model
	State Space Formulation
	Linearization
	Integration Methods
	Node Placement
	Model Compression

	Review of Filtering Approaches
	Least Squares Estimation
	Kalman Filter
	Extended Kalman Filter
	Unscented Kalman Filter
	Cubature Kalman Filter

	Implementation of Estimation Filtering Algorithm
	Filtering Algorithm
	Experimental Setup
	Evaluation and Tuning

	Conclusion and Future Work
	References

