
Hub Location Problems with Profit

Considerations

by

Gita Taherkhani

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Management Sciences

Waterloo, Ontario, Canada, 2019

c© Gita Taherkhani 2019



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner Jean-François Cordeau

Professor,

Department of Logistics and Operations Management,

HEC Montréal
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Abstract

This thesis studies profit maximizing hub location problems. These problems seek to

find the optimal number and locations of hubs, allocations of demand nodes to these hubs,

and routes of flows through the network to serve a given set of demands between origin-

destination pairs while maximizing total profit. Taking revenue into consideration, it is

assumed that a portion of the demand can remain unserved when it is not profitable to

be served. Potential applications of these problems arise in the design of airline passenger

and freight transportation networks, truckload and less-than-truckload transportation, and

express shipment and postal delivery.

Firstly, mathematical formulations for different versions of profit maximizing hub lo-

cation problems are developed. Alternative allocation strategies are modeled including

multiple allocation, single allocation, and r-allocation, as well as allowing for the possibil-

ity of direct connections between non-hub nodes. Extensive computational analyses are

performed to compare the resulting hub networks under different models, and also to eval-

uate the solution potential of the proposed models on commercial solvers with emphasis

on the effect of the choice of parameters.

Secondly, revenue management decisions are incorporated into the profit maximizing

hub location problems by considering capacities of hubs. In this setting, the demand of

commodities are segmented into different classes and there is available capacity at hubs

which is to be allocated to these different demand segments. The decision maker needs to

determine the proportion of each class of demand to serve between origin-destination pairs

based on the profit to be obtained from satisfying this demand. A strong mixed-integer

programming formulation of the problem is presented and Benders-based algorithms are

proposed to optimally solve large-scale instances of the problem. A new methodology is

developed to strengthen the Benders optimality cuts by decomposing the subproblem in a

two-phase fashion. The algorithms are enhanced by the integration of improved variable

fixing techniques. Computational results show that large-scale instances with up to 500

nodes and 750,000 commodities of different demand segments can be solved to optimality,
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and that the proposed algorithms generate cuts that provide significant speedups compared

to using Pareto-optimal cuts.

As precise information on demand may not be known in advance, demand uncertainty

is then incorporated into the profit maximizing hub location problems with capacity al-

location, and a two-stage stochastic program is developed. The first stage decision is

the locations of hubs, while the assignment of demand nodes to hubs, optimal routes of

flows, and capacity allocation decisions are made in the second stage. A Monte-Carlo

simulation-based algorithm is developed that integrates a sample average approximation

scheme with the proposed Benders decomposition algorithm. Novel acceleration techniques

are presented to improve the convergence of the algorithm. The efficiency and robustness

of the algorithm are evaluated through extensive computational experiments. Instances

with up to 75 nodes and 16,875 commodities are optimally solved, which is the largest set

of instances that have been solved exactly to date for any type of stochastic hub location

problems.

Lastly, robust-stochastic models are developed in which two different types of uncer-

tainty including stochastic demand and uncertain revenue are simultaneously incorporated

into the capacitated problem. To embed uncertain revenues into the problem, robust

optimization techniques are employed and two particular cases are investigated: interval

uncertainty with a max-min criterion and discrete scenarios with a min-max regret objec-

tive. Mixed integer programming formulations for each of these cases are presented and

Benders-based algorithms coupled with sample average approximation scheme are devel-

oped. Inspired by the repetitive nature of sample average approximation scheme, general

techniques for accelerating the algorithms are proposed and instances involving up to 75

nodes and 16,875 commodities are solved to optimality. The effects of uncertainty on op-

timal hub network designs are investigated and the quality of the solutions obtained from

different modeling approaches are compared under various parameter settings. Computa-

tional results justify the need for embedding both sources of uncertainty in decision making

to provide robust solutions.
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Chapter 1

Introduction

Hubs are special facilities that serve as switching, sorting, connecting, and consolidation

points in many-to-many distribution networks. In hub networks, demands between origin-

destination (O-D) pairs are routed through hubs instead of using direct connections. Ex-

ploiting hub facilities results in establishing fewer links in the network, compared with

establishing fully interconnected networks to serve O-D pairs. The aim of using hubs is to

reduce the costs of establishing a network connecting many origins and destinations, and

also to consolidate flows at hubs to exploit economies of scale. Figure 1.1 demonstrates

the differences between a fully interconnected network and a hub network. Circles in this

figure represent demand nodes, whereas squares denote the hub facilities.

A hub location problem (HLP) is a network design problem consisting generally of two

main decisions: the locations of hubs and the allocations of demand nodes to these hubs.

The optimal routes of flow on the hub network to satisfy the demand between O-D pairs

is also to be determined. Routing traffic flows through hubs allows to take advantage of

economies of scale and thus decreases the transportation cost of the flows via hub links.

Economies of scale means that the costs decrease as the scale of the operations increase.

The reader may refer to the reviews on hub location by Campbell et al. [30], Alumur and

Kara [5], Campbell and O’Kelly [33], and Contreras [34].
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(a) Fully interconnected network (b) A hub network with 3 hubs

Figure 1.1: Serving the demand between 10 nodes.

Hub location problems have widespread applications in transportation as well as telecom-

munications. Application areas of HLPs in transportation include air passenger trans-

portation, freight transportation, express shipments, postal delivery, truckload and less-

than-truckload transportation, and rapid transit systems. In transportation applications,

demand is specified as flows of commodities such as passengers, mail, and goods to be

transported in vehicles between O-D pairs. Depending on the geographic scope, the type

of vehicles moved on physical networks can change; for example, trucks are commonly used

on roads, trains in railways, airplane through air, and vessels through water. Hub facilities

are transportation terminals or sorting centers where the volume of transportation is high,

hence economies of scale on transportation costs can be achieved.

Applications of HLPs in telecommunications include a wide variety of distributed data

networks in areas such as computer communication, telephone networks, video telecon-

ferences, and distributed computer processing. In this area, demand is for transmission

of information (such as data, voice, video, etc.) through a variety of physical links (such

as fiber optic links and co-axial cables) or through the air (such as satellite channel and

microwave links). Hub facilities are generally electronic devices such as switches, concen-

trators, and routers. (Campbell et al. [30] and Contreras [34])
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Hub location problems can be classified based on the design of the access network

which represents the allocations of demand nodes to hubs. There are two basic allocation

strategies in the literature: single allocation and multiple allocation. In single allocation,

each node must be allocated to exactly one hub (Figure 1.1b). In multiple allocation, on

the other hand, there is no limit on the maximum number of hubs that a node can be

allocated to. Additionally, Yaman [101] introduced the r-allocation strategy, where each

node can be allocated to at most r hubs.

Most of the classical hub location models consider common major assumptions. First,

the hub-level network is assumed to be complete and distances satisfy triangle inequality.

Second, there is economies of scale for the transportation cost of the flows via hub links,

incorporated by a discount factor. Third assumption ensures that all demand flows between

origin and destination nodes are served. Lastly, direct transportation between a pair of

demand nodes (without using any hubs) is not allowed.

From the objective function perspective, most of the studies within hub location prob-

lems focus on minimization objectives. The common feature of these problems is that all

demand between O-D pairs should be satisfied (as stated in the third assumption) with

the aim of minimizing total network cost. In such a case, no value is associated with the

served demand which implicitly implies that the total revenue covers total cost. However,

from a profit point of view, it may be more advantageous not to serve the demand of some

commodities, especially if the cost of serving a commodity is higher than the revenue asso-

ciated with servicing its demand. In such a setting, the right objective is to maximize profit

rather than minimizing cost so that the decision on how much demand of each commodity

to satisfy depends on the trade-off between revenue and cost. Profit maximization is more

complex than cost minimization as it incurs additional decisions, nevertheless, this is the

actual problem setting for many applications.

The goal of this thesis is to model and solve profit maximizing hub location problems.

In these problems, a portion of the demand can remain unserved when it is not profitable

to be served. We define new problems and develop mathematical models determining
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the locations of hubs, designing the hub networks, and routing the demand in order to

maximize profit. Potential applications of profit maximizing hub location problems arise

in the design of airline passenger and freight transportation networks, express shipment and

postal delivery, truckload and less-than-truckload transportation, and any other industry

that benefits from a hub network structure. To provide the big picture, in 2017 alone,

worldwide airline industry provided services to more than 4.081 billion passengers across

the world (IATA 2018); the world’s largest package delivery company served 5.1 billion

parcels and documents in the global delivery volume (UPS 2018), both by employing hub

networks. Our models are applicable to the design of new hub networks as well as for

improving existing ones. The developed models can be used as decision support tools to

evaluate prospective locations of hubs and decide on the optimal shipment strategies while

determining the proportion of demand to be served.

In this thesis, we first develop mathematical formulations for profit maximizing hub

location problems considering all possible allocation strategies. As an extension, for each

allocation strategy, we also model the cases in which direct connections between non-hub

nodes are allowed. We evaluate the performances of the proposed models using well-

known data sets from the literature and analyze the resulting hub networks under different

parameter settings.

We then model capacity allocation decisions within profit maximizing hub location

problems to satisfy demand of commodities from different market segments. Two exact

algorithms based on a Benders reformulation are proposed to solve large-size instances

of the problem. We develop a new methodology in this thesis to strengthen the Benders

optimality cuts by decomposing the subproblem in a two-phase fashion. We further enhance

these algorithms by the integration of improved variable fixing techniques.

Lastly, we address demand uncertainty and develop a two-stage stochastic program

for profit maximizing hub location problems with capacity allocation. We then extend the

model by investigating robust-stochastic formulations in which two different types of uncer-

tainty including stochastic demand and uncertain revenue are simultaneously incorporated
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into the problem. To embed uncertain revenues into the problem, robust optimization tech-

niques are used and two particular cases including interval uncertainty with a max-min

criterion and discrete scenarios considering a min-max regret objective are investigated.

Mixed integer programming formulations for each of theses cases are presented. Exact

algorithms based on Benders decomposition coupled with sample average approximation

scheme are developed and enhanced by novel acceleration techniques to solve large-scale

instances of the stochastic and robust-stochastic versions of the problem.

The rest of the thesis is organized as follows. Chapter 2 presents a review of the relevant

literature on hub location problems. In Chapter 3, we formulate and solve mathematical

models for different versions of the profit maximizing hub location problems. We include

revenue management decisions and study profit maximizing hub location problems with

capacity allocation in Chapter 4. In Chapter 5, we introduce and solve stochastic and

robust-stochastic models by addressing different sources and types of uncertainty. Chapter

6 provides conclusions and a brief discussion on future research avenues.
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Chapter 2

Literature Review

In this chapter, we classify and review the literature on relevant hub location problems. In

particular, in Section 2.1, we review HLPs with different allocation strategies and inter-hub

network topologies. In Section 2.2, we present an overview of the hub location problems

with maximization objectives. In Section 2.3, we consider HLPs that model any source of

uncertainty. Finally, we include publications employing Benders decomposition for solving

HLPs in Section 2.4.

2.1 Hub Location and Hub Network Design

The subnetwork that constitutes the allocation links between demand nodes and hubs

is referred to as the “access network”. As mentioned in Chapter 1, there are two basic

allocation strategies in hub network design; i.e., multiple allocation and single allocation.

Hub location formulations vary a lot with the selection of the allocation strategy. A

number of works on the multiple allocation problems that appeared in the literature are

by Campbell [28], Ernst and Krishnamoorthy [47], Boland et al. [19], and Contreras et al.

[35]. The single allocation version is studied by Ernst and Krishnamoorthy [46], O’Kelly

6



[75], Pirkul and Schilling [81], and Yaman [100]. Some studies considered both situations

such as Campbell [29], Skorin-Kapov et al. [92], and O’Kelly et al. [78].

Regarding the subnetwork that constitutes the connections in-between hubs, designing

complete inter-hub networks turned out to be a common assumption present in many hub

location studies (for example, the seminal papers O’Kelly [74, 75], Campbell [29], Ernst

and Krishnamoorthy [46], and Skorin-Kapov et al. [92]). For many studies, this is a direct

consequence of having triangle inequality for transportation costs and not having any

fixed costs for inter-hub links in the models. Another variant of the problem is to design

incomplete inter-hub networks. Examples of such studies are Nickel et al. [73], Campbell

et al. [31], Alumur et al. [6], Contreras et al. [38], and Alumur et al. [7].

Designing distinct topologies for inter-hub networks are also considered in the literature.

Contreras et al. [38], and Martins de Sá et al. [68] studied the problem in which hubs are

connected by means of a tree network. Potential applications arise when the set-up costs for

hub links are high. Yaman [100] designed a hierarchical three-level hub network, where the

top level consists of a complete network and the second and third levels are unions of star

networks. Alumur et al. [9] studied the design of a hierarchical star-mesh-star hub network

with multiple transportation modes. Yaman and Elloumi [102] modeled the design of two-

level star networks taking service quality considerations into account. Contreras et al. [39]

analyzed the case where the hubs are connected by means of a cycle, and Martins de Sá

et al. [69] by means of a line.

In most of the hub location studies, direct connections between non-hub nodes is not

possible. Some authors included this possibility in their models such as Aykin [11], Aykin

[12], Nickel et al. [73], Sung and Jin [93], Wagner [98], and Mahmutoğulları and Kara [62].

An important extension to hub location problems is to incorporate capacity for hubs

while designing hub networks. Capacitated versions of hub location problems are first

formulated by Campbell [29] using path-based mixed integer programs that impose capacity

constraints on the total incoming flow at hubs (i.e., flow arriving from both hub and non-

hub nodes). A variant of this problem arises when capacities are applied only to the traffic
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arriving directly from non-hub nodes. This variant is motivated from the postal-delivery

applications and has been studied by Ebery et al. [44], Boland et al. [19], Maŕın [66], and

Contreras et al. [37]. In some postal-delivery and express shipment networks (e.g. Canada

Post, UPS), however, total incoming flow (regardless that is from a hub or a non-hub node)

is sorted at every hub-stop. Moreover, the limiting capacity of a hub may not necessarily

be on sorting or material handling, but, for example, on the available number of docks or

gates.

2.2 Hub Location Problems with Maximization Ob-

jectives

There are not many studies in the literature focusing on maximization objectives within

hub location problems. Perhaps, one of the early works is Campbell [29] introducing the

hub maximal covering location models. Given a number of hub facilities to locate, the

problem aims to maximize the demand covered. Campbell [29] defined different notions

for coverage. Hwang and Lee [55] studied uncapacitated single allocation p-hub maximal

covering problem and proposed a heuristic algorithm for the problem. More recently,

Peker and Kara [80] extended the definition of coverage and introduced the notion of

partial coverage that changes with distance. They developed mixed-integer programming

formulations with partial coverage for single and multiple allocation versions.

Similar to hub maximal covering problems, we do not force all demand nodes to be

served in profit maximizing hub location problems. However, we do not have a given

budget for locating hubs and we optimize profit instead of maximizing the covered demand.

Moreover, we also consider total transportation cost which is not taken into account in

covering type hub location studies.

There are studies determining the locations of hubs within a competitive environment.

In these studies, instead of having a single firm, there are a number of firms competing
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to serve the demand. Hence, competitors’ decisions affect the profit of a firm. Different

objective functions are considered in competitive hub location problems, such as maximiz-

ing the demand captured, and maximizing total revenue or profit. Examples of studies

considering a competitive environment include Marianov et al. [65], Eiselt and Marianov

[45], Gelareh et al. [51], and Lüer-Villagra and Marianov [60]. There are also some studies

considering a game theoretic framework in addressing competitive hub location problems

such as Sasaki and Fukushima [87] and Sasaki et al. [86].

Even though objective functions of some competitive hub location studies also aim

at maximizing profit, we do not consider a competitive environment in this study. In our

study, there is only a single firm that wants to design its hub network in the most profitable

way. Moreover, we do not force all demand to be served.

Alibeyg et al. [3] introduced a hub network design problem with profits. The problem

aims to determine the locations of hubs, decide which edges to activate, select pairs of nodes

and a set of commodities to be served, and make routing decisions with the objective of

maximizing total profits. They considered a multiple allocation setting and assumed that

each origin and destination path consists of at least one and at most two hub nodes.

The demand between two pairs of nodes is served through at most three edges. They

model different variations of the problem and use CAB dataset to test the performance of

their models using CPLEX. In a subsequent study, Alibeyg et al. [4] proposed an exact

algorithm for the profit-oriented models introduced by Alibeyg et al. [3]. They embedded

Lagrangean relaxation within a branch-and-bound algorithm. They also used reduction

tests and partial enumeration to reduce the problem size as well as the computational

effort. Lin and Lee [59] consider a hub network design problem for time definite LTL

freight transportation in which the carrier aims to determine hub locations, under price

elasticity of demand, that maximize total profit. They show that profit optimization builds

a denser hub network than cost minimization.

Profit maximizing hub location problems are also related to service network design

problems, which determine the selection and scheduling of the services to operate as well
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as the routes of flow to be shipped. The interested reader may refer to reviews on this

area by Crainic [41] and Wieberneit [99]. In this study, unlike the service network design

problem, we incorporate decisions on the locations of hubs.

2.3 Hub Location Problems under Uncertainty

There are a few studies incorporating various uncertainty aspects into the hub location

problems. Marianov and Serra [64] study a problem within the context of airline trans-

portation. A formula for the probability of a number of customers in the system is devel-

oped which is later employed to propose a capacity constraint and restrict the number of

airplanes in the system. Yang [103] studies hub location problem within airline transporta-

tion under seasonal demand variations. He develops a two-stage stochastic programming

model with finite set of scenarios and uses data from the air freight market in Taiwan

and China to test the proposed model. Sim et al. [91] consider a stochastic p-hub center

problem with normally distributed travel time. They employ chance constraints to model

service level considerations.

Contreras et al. [36] study the stochastic uncapacitated multiple allocation hub location

problem with uncertain demands and transportation costs. They show that the stochastic

problem with uncertain demand is equivalent to its associated deterministic expected value

problem where random variables are replaced by their expected value. However, when

uncertainty is associated with transportation costs, this equivalence does not hold and

an SAA method is developed to solve the corresponding stochastic problems. Numerical

results on a set of instances with up to 50 nodes are reported.

Alumur et al. [8] address single and multiple allocation hub location problems in which

two sources of uncertainty, set-up costs for the location of hubs and the demands to be

transported between the nodes, are incorporated. They assume that no probabilistic in-

formation can be associated with uncertain setup costs and propose a min-max regret

formulation. For the problem with uncertain demand, they consider a stochastic program-
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ming model. They then merge these two models and propose a min-max regret stochastic

formulation to model both sources of uncertainty. They generate a finite set of scenarios

for the uncertain parameters (i.e., five scenarios for each parameter) and use CPLEX to

solve instances with up to 25 nodes.

Meraklı and Yaman [71] model the robust uncapacitated multiple allocation p-hub me-

dian problem under polyhedral demand uncertainty with two different uncertainty sets;

hose and hybrid. The hose model assumes that the only available information is the upper

limit on the total flow adjacent at each node, while the hybrid model imposes lower and

upper bounds on each pairwise demand. They adopt a min-max robustness criterion for a

cost-based objective function and develop two exact algorithms based on Benders decom-

position. Meraklı and Yaman [72] extend this study by incorporating capacity constraints

for hubs and devise two different Benders decomposition algorithms capable of solving

instances with up to 50 nodes.

Zetina et al. [104] present robust counterparts for uncapacitated hub location problems

considering uncertain demands and transportation costs. They employ a budget of uncer-

tainty to control the level of conservatism in their mathematical models. They implement

a branch-and-cut algorithm on CPLEX solver and are able to solve instances with up to

50 nodes. Martins de Sá et al. [70] focus on a robust multiple allocation incomplete hub

location problem in which a hub network can be partially interconnected by hub arcs, and

both demand and transportation costs are subject to uncertainty. They develop Benders

decomposition algorithm to solve their problem. More recently, Ghaffarinasab [52] consid-

ers robust multiple allocation p-hub median problem under polyhedral demand uncertainty.

Three variants of polyhedral uncertainty models are used in the problem and a tabu search

based matheuristic algorithm is developed to solve the presented models.
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2.4 Benders Decomposition for Hub Location Prob-

lems

Most of the hub location problems mentioned in the previous sections are NP-hard except

for some special cases. Hence, finding the exact solution for such problems is challeng-

ing, particularly when realistic problems are in large scale. Benders decomposition (BD)

has received increased attention for solving several classes of HLPs to optimality. It is a

partitioning method for solving mixed-integer linear programming and nonlinear program-

ming problems where the general problem is split into two simpler ones: an integer master

problem and a linear subproblem.

There are several successful BD implementations in the literature. Camargo et al. [25] is

the first work using a Benders reformulation to solve the uncapacitated multiple allocation

hub location problem. They present three variants of the algorithm: the classical BD

algorithm, where a single cut is generated at each iteration, a multicut version where

Benders cuts are generated for each origin-destination pair, and a variant that terminates

when an ε-optimal solution is obtained. The proposed algorithms were applied to solve

instances with up to 200 nodes. Rodriguez-Martin and Salazar-Gonzalez [84] consider a

capacitated multiple allocation hub location problem in which the arcs connecting the hubs

are not assumed to create a complete graph. They provide a formulation and design two

exact solution algorithms relying on BD. The first one employs the classical BD approach

and the second is a branch-and-cut algorithm based on a two-level nested decomposition

scheme. The second outperforms the first approach in terms of computational time.

Contreras et al. [35] employ a Benders reformulation for the uncapacitated multiple

allocation hub location problem which is enhanced through the use of a multicut reformu-

lation, the generation of Pareto-optimal cuts, the integration of reduction tests, and the

execution of a heuristic procedure. Contreras et al. [37] provide an extension of the BD

approach proposed by Contreras et al. [35] to solve capacitated multiple allocation hub

location problems. They apply Pareto-optimal Benders cuts as well as reduction tests to
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improve the convergence of the algorithm, and solve instances with up to 300 nodes.

BD is also used to solve other variants of hub location problems, including flow de-

pendent discounts for inter-hub links using a non-linear cost function (Camargo et al. 26),

hub location-routing problems which incorporate routing decisions between non-hub nodes

(Camargo et al. 24), hub location problems with single allocation under congestion (Ca-

margo et al. 23 and Camargo and de Miranda Jr 22), problems with incomplete inter-hub

networks (Camargo et al. 27 and Martins de Sá et al. 70), problems with distinct topologies

of inter-hub networks such as tree-star networks (Martins de Sá et al. 68) and hub-line net-

works (Martins de Sá et al. 69), and hub location problems in liner shipping applications

(Gelareh and Nickel 50).
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Chapter 3

Profit Maximizing Hub Location

Problems

In this chapter, we introduce profit maximizing hub location problems. Taking profit into

consideration, we allow for the possibility of serving a subset of the demand. In this regard,

we assume that a portion of the demand can be unserved when it is not profitable. This

assumption actually provides a more realistic framework for designing hub networks.

One of the most related study in the literature is Alibeyg et al. [3]. Similar to Alibeyg

et al. [3], we study hub network design problems with profits and introduce profit maximiz-

ing objective functions. However, in this thesis, we provide a new modeling framework for

the problem. Unlike Alibeyg et al. [3], we do not assume that the demand between a pair of

nodes can be served through at most two hubs or three edges. In our problem, the demand

of an origin-destination pair can be shipped through any number of hubs and network

connections as necessary. We include additional design variables to account for the design

of the inter-hub network. Incomplete hub networks are employed in many real-life appli-

cations including, but not limited, to freight transportation, rapid transit systems, express

shipment and postal delivery networks. Therefore, relaxing a commonly used assumption

on the structure of the origin-destination paths, which limits the number of hub nodes to
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two, leads to a more realistic model where non-trivial routing decisions are explicitly taken

into account. In our computational analysis, we present a direct comparison of our results

with one of the models presented in Alibeyg et al. [3]. Furthermore, we study multiple,

single, and r-allocation versions of the problem and also allow for the possibility of direct

connections between non-hub nodes.

The outline of this chapter is as follows: In the next section, we define the problem

and introduce the notation to be used in the following sections. We model the profit maxi-

mizing hub location problems in Section 3.2. In Section 3.3, comprehensive computational

results are presented on instances derived from the well-known data sets to determine the

performance of the proposed models. Finally, Section 3.4 provides concluding remarks for

this chapter.

3.1 Problem Definition and Notation

The profit maximizing hub location problems determine the locations of hubs and design

of the hub network in order to maximize profit. The location decision focuses on the

selection of a set of nodes to establish hubs, whereas the network design decisions deal

with the design of the links to connect nodes of the network. The optimal routes of flows

through the network are also to be determined.

There is a given set of nodes as well as the demand that can be served between them.

Demand is defined between pairs of nodes. The problem is to determine which set of

origin-destination (O-D) pairs to serve and how to serve them to maximize profit. Taking

profit into consideration, the problem measures the trade-off between the revenue and cost

in determining which O-D pairs to serve. In this regard, it is assumed that some O-D pairs

can remain unserved if it is not profitable to serve them.

A set of hub nodes is to be located to serve the demand. All nodes can be potential hub

facilities. A set of hub links to operate between hub nodes is also to be determined. We do

not impose a fully interconnected hub network. Demand of an O-D pair can be shipped
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on any number of network connections as necessary. Moreover, no particular network

structure (such as a star or a tree network) is assumed for the inter-hub network.

For the design of the access network, we model the multiple and single allocation

versions as well as the r-allocation strategy. For each allocation strategy, we also model

the versions in which direct connections between non-hub nodes are allowed. Considering

all the possibilities for shipments, the problem is to design the hub network in the most

profitable way.

The objective of our problem is the maximization of total profit. Total profit is calcu-

lated by subtracting total cost from the total revenue. Revenue is obtained from satisfying

the demand of each O-D pair. We assume that price is exogenously determined by the

market and that the revenue is independent of the route of flow of the demand.

Total cost includes the variable transportation cost, the fixed installation cost of hubs,

and the fixed cost of activating links. The transportation cost on the hub network between

each O-D pair is calculated by the cost of transportation from origin-to-hub (collection),

between hubs (transfer), and from hub-to-destination (distribution). In case of direct con-

nections, there are no collection, transfer, and distribution legs. In this case, transportation

cost is calculated by the cost of shipping all demand between an O-D pair using the direct

connection in-between. Unit transportation costs do not need to satisfy triangle inequality.

In addition to transportation cost, there is a fixed cost involved for operating an inter-hub

link as well as a direct link between non-hub nodes. No operational cost is considered for

the allocation connections.

There are economies of scale between hubs, for example, due to bulk transportation or

frequent service. It is assumed that economies of scale are reflected on the transportation

cost by a constant discount factor. We provide extensive analysis with varying values of

the economies of scale factor.

We introduce the following notation for the parameters required for modeling the prob-

lem:
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N Set of nodes.

wij Amount of demand to be shipped from node i ∈ N to node

j ∈ N .

(Oi =
∑
j∈N

wij denotes the flow originated at node i ∈ N .)

rij Revenue from satisfying a unit demand from node i ∈ N to

node j ∈ N .

cij Unit cost of transportation from node i ∈ N to node j ∈ N .

fk Fixed installation cost of a hub at node k ∈ N .

gkl Fixed cost of activating a hub link from hub k ∈ N to hub

l ∈ N .

qij Fixed cost of activating a direct link from node i ∈ N to node

j ∈ N .

α Transportation cost discount factor (0 ≤ α < 1 ).

In the sequel, we introduce the mathematical formulations of the problem.

3.2 Mathematical Formulations

In this section, we present mixed-integer linear programming (MILP) models for different

versions of the profit maximizing hub location problem. We first introduce our MILP

model for the multiple allocation problem. In Section 3.2.2, we present MILP models for

the single allocation and the r-allocation versions of the problem. In Section 3.2.3, we

introduce models allowing for direct connections with all allocation rules.

3.2.1 Multiple allocation model

We now introduce a mathematical model for the multiple allocation version of the problem.

In this problem, a non-hub node can be allocated to as many hubs as it is profitable. So,
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there is no limit on the number of hubs that a non-hub node can be allocated to. The

decision variables that need to be defined for the multiple allocation model are as follows:

hk =

 1, if a hub is located at node k ∈ N ,

0, otherwise.

yijkl =


1, if the demand between node i ∈ N and j ∈ N is satisfied through a path

with the first hub k ∈ N and the last hub l ∈ N ,

0, otherwise.

zkl =

 1, if an inter-hub link is operating from hub k ∈ N to hub l ∈ N ,

0, otherwise.

fikl = Amount of demand originated at node i ∈ N and routed on the inter-hub link from

hub k ∈ N to hub l ∈ N .

The profit maximizing multiple allocation hub location problem is modeled as:

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl − [
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + clj)wijyijkl +
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl

+
∑
k∈N

fkhk +
∑
k∈N

∑
l∈N

gklzkl] (3.1)

s.t.
∑
k∈N

∑
l∈N

yijkl ≤ 1 i, j ∈ N (3.2)∑
l∈N

yijkl +
∑

l∈N :l 6=k

yijlk ≤ hk i, j, k ∈ N (3.3)
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∑
l∈N, l 6=k

fikl −
∑

l∈N, l 6=k

filk =
∑
j∈N

∑
l∈N

wijyijkl −
∑
j∈N

∑
l∈N

wijyijlk i, k ∈ N (3.4)

fikl ≤ Oizkl i, k, l ∈ N, k 6= l (3.5)

zkl ≤ hk k, l ∈ N, k 6= l (3.6)

zkl ≤ hl k, l ∈ N, k 6= l (3.7)

fikl ≥ 0 i, k, l ∈ N (3.8)

hk ∈ {0, 1} k ∈ N (3.9)

yijkl ∈ {0, 1} i, j, k, l ∈ N (3.10)

zkl ∈ {0, 1} k, l ∈ N, k 6= l (3.11)

The objective function value (3.1) represents net profit. Total cost is subtracted from

the total revenue to calculate the net profit. The first term of the objective function

calculates the revenue obtained from satisfying the demand. The terms in parenthesis

represent the transportation cost, the installation cost of hubs, and the cost of operating

hub links, respectively. While calculating the total transportation cost, the hub-to-hub

transportation is discounted by the economies of scale discount factor, α.

Constraints (3.2) state that there must be a unique path recognized by the first and

the last hubs, if the demand between a given pair of nodes is to be satisfied. Constraints

(3.3) ensure that the demand between origin and destination nodes can be satisfied only

through located hubs. Constraints (3.4) are the flow balance equations. Constraints (3.5)

enforce that the flow is routed only on the operated hub links. Constraints (3.6) and (3.7)

indicate that an inter-hub link can only be operated if both of the end nodes of that link

are hubs. Constraints (3.8)-(3.11) represent the non-negative and binary variables.

In an uncapacitated environment, there always exists an optimal solution of the problem

where the demand of each O-D pair is either satisfied fully or not satisfied at all. Therefore,

we defined yijkl variables as binary. However, integrality property holds for these variables.

Hence, even though if we let yijkl ≥ 0 for all i, j, k, l ∈ N , there exists an optimal solution

of this model where yijkl ∈ {0, 1} ∀ i, j, k, l ∈ N . In our computational experiments, we
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solved the model with yijkl variables being binary as we obtained better solution times

compared with real variables.

As mentioned in the problem definition, we assume that hubs have enough capacity to

handle all flow. If this is not the case, then one may add the following sets of constraints

into the model: ∑
i∈N

∑
l∈N

fikl ≤ Γkhk k ∈ N (3.12)

yijkl ≥ 0 i, j, k, l ∈ N (3.13)

where Γk is defined as the available capacity of a hub located at node k ∈ N . In the

presence of capacity constraints (3.12), yijkl variables should be defined as continuous

routing variables denoting the fraction of the demand from node i ∈ N to j ∈ N that is

satisfied through a path with the first hub k ∈ N and the last hub l ∈ N .

3.2.2 Single allocation and r-allocation models

In this section, we first introduce the mathematical model for the single allocation profit

maximizing hub location problem. In the single allocation problem, each non-hub node can

be allocated to at most one hub node. To model this problem, in addition to the decision

variables introduced in the previous section, we define an additional binary variable as

follows:

xik =

 1, if demand node i ∈ N is allocated to hub node k ∈ N ,

0, otherwise.

(xkk = 1 indicates that a hub is located at node k ∈ N .)

The rest of the variables are the same as introduced in the multiple allocation model.
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The profit maximizing single allocation hub location problem is modeled as:

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl − [
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + clj)wijyijkl +
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl

+
∑
k∈N

fkxkk +
∑
k∈N

∑
l∈N

gklzkl] (3.14)

s.t. (3.2), (3.4), (3.5), (3.8), (3.10), (3.11)∑
k∈N

xik ≤ 1 i ∈ N (3.15)

xik ≤ xkk i, k ∈ N (3.16)

yijkl ≤ xik i, j, k, l ∈ N (3.17)

yijkl ≤ xjl i, j, k, l ∈ N (3.18)

zkl ≤ xkk k, l ∈ N, k 6= l (3.19)

zkl ≤ xll k, l ∈ N, k 6= l (3.20)

xik ∈ {0, 1} i, k ∈ N (3.21)

The objective function value (3.14) accounts for the net profit obtained from summing

the total revenue minus total cost as in the multiple allocation version. Constraints (3.15)

ensure that every demand node can be allocated to at most one hub node. To guarantee

that the demand nodes can be allocated to only installed hubs, constraints (3.16) are

included in the model. Constraints (3.17) and (3.18) link path variables with allocation

decisions. Constraints (3.19) and (3.20) ensure that an inter-hub link is operated only in-

between hubs. Constraints (3.21) are the domain constraints. The rest of the constraints

are the same as introduced in the multiple allocation model.

As mentioned in Marin et al. [67], constraints (3.17) and (3.18) can be strengthened by
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replacing them with the following sets of constraints:∑
l∈N

yijkl ≤ xik i, j, k ∈ N (3.22)∑
k∈N

yijkl ≤ xjl i, j, l ∈ N (3.23)

Even though using the above strengthened constraints will result in a better LP relaxation

bound, in our preliminary experiments, we observed that the solution times of the model

using a commercial solver gets worse. Thus, we employed constraints (3.17) and (3.18) in

our computational experiments.

Yaman [101] introduced the r-allocation version of a hub location problem where each

node can be allocated to at most r hubs. This version is actually a generalization of

the single and multiple allocation versions. When r = 1, the problem reduces to single

allocation, whereas, when r = |N |, it reduces to multiple allocation. In order to model

the r-allocation version of the profit maximizing hub location problem, we introduce the

following set of constraints to replace constraints (3.15) in the single allocation model:∑
k∈N

xik ≤ r i ∈ N (3.24)

The MILP formulation of the profit maximizing r-allocation hub location problem con-

sists of the objective function (3.14) and constraints (3.2), (3.4), (3.5), (3.8), (3.10), (3.11),

(3.16)-(3.21), and (3.24).

3.2.3 Models allowing for direct connections

In the previous models, we assumed that direct transportation between demand nodes

(without using any hubs) is not allowed. In this section, we model the variation in which

direct connections between non-hub nodes are allowed. To allow for direct services, we

need to define an additional binary variable sij as follows:
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sij =


1, if there is a direct connection from non-hub node i ∈ N to non-hub

node j ∈ N ,

0, otherwise.

We first introduce the profit maximizing multiple allocation hub location problem with

direct connections :

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl +
∑
i∈N

∑
j∈N

rijwijsij − [∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + cjl)wijyijkl

+
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl +
∑
i∈N

∑
j∈N

wijcijsij +
∑
k∈N

fkhk +
∑
k∈N

∑
l∈N

gklzkl +
∑
i∈N

∑
j∈N

qijsij]
(3.25)

s.t. (3.3)− (3.11)

sij + hj ≤ 1 i, j ∈ N (3.26)

sij + hi ≤ 1 i, j ∈ N (3.27)

sij +
∑
k∈N

∑
l∈N

yijkl ≤ 1 i, j ∈ N (3.28)

sij ∈ {0, 1} i, j ∈ N (3.29)

The objective function (3.25) sums the revenues obtained from satisfying the demand

through the hub network and also through direct connections. In addition to the previously

defined costs, the total cost includes the cost of operating direct links between non-hub

nodes as well. To guarantee that the direct connections are operated only between non-hub

nodes, constraints (3.26) and (3.27) are included in the model. Constraints (3.28) result

from modifying constraints (3.2) to ensure that there is either a unique path through the

hub network or a direct link to satisfy the demand between a given pair of nodes. Finally,

constraints (3.29) provide the domain for the binary direct-connection variables.

We also model the profit maximizing single allocation hub location problem with direct
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connections :

Max
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

rijwijyijkl +
∑
i∈N

∑
j∈N

rijwijsij − [∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

(cik + cjl)wijyijkl

+
∑
i∈N

∑
k∈N

∑
l∈N

αcklfikl +
∑
i∈N

∑
j∈N

wijcijsij +
∑
k∈N

fkxkk +
∑
k∈N

∑
l∈N

gklzkl +
∑
i∈N

∑
j∈N

qijsij]
(3.30)

s.t. (3.4), (3.5), (3.8), (3.10), (3.11), (3.15)− (3.21), (3.28), (3.29)

sij + xjj ≤ 1 i, j ∈ N (3.31)

sij + xii ≤ 1 i, j ∈ N (3.32)

The objective function (3.30) calculates net profit considering the revenue obtained through

direct connections as well as the cost of operating those links. Constraints (3.31) and (3.32)

are included in the model to assure that direct connections are allowed only between non-

hub nodes. The rest of the constraints are the same as introduced in the previous models.

For the r-allocation model with direct connections, we simply need to replace constraint

(3.15) with constraint (3.24) in the single allocation version of the formulation.

3.2.4 Variable fixing

To decrease the computational burden with all the proposed models, the values of some

decision variables can be fixed with preprocessing. To this end, we exploit the following

properties of our mathematical models:

yijkl = 0 i, j, k, l ∈ N : rij < (cik + clj) (3.33)

As noted in the problem definition, only profitable demand will be served. Hence, when

the revenue from satisfying a unit demand between O-D pair i, j ∈ N is strictly smaller

than the sum of unit transportation costs from origin i to hub k (collection) and from hub l

to destination j (distribution), no profit can be obtained from satisfying the demand of the
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O-D pair i, j ∈ N through hubs k, l ∈ N . Accordingly, the optimal value for the variable

yijkl can be set to zero when the above mentioned condition is met.

In the next section, we present computational analysis with all of the introduced math-

ematical formulations.

3.3 Computational Results

We performed extensive computational experiments to analyze the resulting hub networks

and the performance of the proposed mathematical models. We used two well-known

benchmark data sets from the literature for hub location: the U.S. Civil Aeronautics Board

(CAB) and the Australia Post (AP) datasets. Both of these datasets are readily available

in OR Library [15].

Computational experiments were carried out on a workstation that contains: Intel Core

i7-3930K 2.61GHz CPU, and 39 GB of RAM. The mathematical models were solved using

IBM ILOG CPLEX 12.7. Variable fixing was employed as detailed in Section 3.2.4. All

the instances were solved to optimality (10−5 gap) using the default settings.

The organization of this section is as follows: In the next section, we present compu-

tational results with the CAB dataset. In this section, we also provide some managerial

insights obtained from solving the models on this data set. Section 3.3.2, presents analysis

on the economies of scale factor. In Section 3.3.3, we compare our results with results

from the relevant literature. To better understand the performance of the mathematical

models from a computational point of view, we present numerical results with larger-sized

instances derived from the AP dataset in Section 3.3.4.

3.3.1 Results with the CAB dataset

CAB dataset is based on airline passenger interactions between 25 cities in United States

in 1970 (O’Kelly 75). OR Library provides the transportation costs (cij) and the demand
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between each pair of cities (wij) for this dataset (Beasley 15). As customarily done in the

literature, we scaled the demand values so that the total demand adds up to one. Since

CAB dataset does not provide any information regarding the revenues, we used average

transportation costs to estimate values for the revenues. We test three different values such

that rij ∈ {1000, 1500, 2000} for each O-D pair i, j ∈ N , referred to as low, medium, and

high revenue levels, respectively. We also test three different values for hub installation

costs generated by O’Kelly [76] such that fk ∈ {50, 100, 150} for all k ∈ N . Similarly, we

refer these values as low, medium, and high cost levels, respectively. Cost of operating an

inter-hub link is set to be 10% of hub installation costs; i.e., gkl = 0.1fk for all k, l ∈ N . The

cost of operating a direct link, on the other hand, is set to be the 20% of the operational

cost of an inter-hub link; i.e., qij = 0.2gij for all i, j ∈ N . These values can be interpreted

by assuming that the frequency of service on the inter-hub links is five times more than

that of direct connections. Operational costs are dependent on the level of hub installations

costs (low, medium, or high) and taken to be the same for all potential links. The discount

factor α is taken as 0.2, 0.4, 0.6, and 0.8 as customarily done in the literature. Table 3.1

summarizes the parameter settings with the CAB dataset.

Table 3.1: Parameter settings with the CAB dataset.

Description Parameter Value

Set of nodes |N | 25

Demands wij OR Library [15]

Revenue per unit demand rij Low: 1000, Medium: 1500, High: 2000

Transportation cost per unit of flow cij OR Library [15]

Installation cost of a hub fk Low: 50, Medium: 100, High: 150

Operational cost of an inter-hub link gkl Low: 5, Medium: 10, High: 15

Operational cost of a direct link qij Low: 1, Medium: 2, High: 3

Discount factor for inter-hub connections α 0.2, 0.4, 0.6, 0.8

We initially took runs with the multiple and single allocation models (without any

direct connections) under different parameter values. The results obtained from solving

the models are summarized in Table 3.2. The first two columns report the values of the
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cost parameters and the discount factor, respectively. For each allocation rule, the next

three columns indicate the maximum net profit, total percentage of satisfied demand, and

the locations of the hub nodes, respectively, in the optimal solutions of the corresponding

instances. The “CPU time (s)” columns present the run time of instances (in seconds)

obtained from solving the problems to optimality. To demonstrate the results with different

revenue levels, Table 3.2 is split horizontally into three parts for high, medium, and low

revenue levels.

Observe from Table 3.2 that when the costs increase, net profit values decrease along

with the percentage of satisfied demand. Note that net profit is directly proportional to

the percent of satisfied demand. With increased cost levels, the models tend to result

in locating fewer hubs. As expected, when the number of opened hubs in the solutions

increase, CPU time required for solving the instances to optimality also increase. Hence,

low cost instances tend to require more CPU time compared with high cost instances.

We next observe the effect of the economies of scale factor on the solutions presented

in Table 3.2. When the α value increases; that is, when the effect of economies of scale on

transportation costs is lower, the net profit values and the percentage of satisfied demand

decrease. The number of located hubs, on the other hand, either decreases or remains the

same. Note that, in Table 3.2, there are some instances with high cost levels resulted in

locating only one hub. Economies of scale factor has no effect in such instances. For a

given revenue and cost level, the instances resulted in opening one hub yield the same net

profit value and the same percentage of satisfied demand independent from the value of α.

We tested all instances with three different revenue levels. When the revenue level

decreases from high to low, the net profit values as well as the percentages of satisfied

demand decrease. For a given cost level and α value, an increase in the revenue level

results in satisfying more demand and may require opening more hubs.

The multiple allocation problem provides an upper bound for the single allocation prob-

lem in terms of net profit and percentage of satisfied demand. From the computational

point of view, the single allocation model is more time consuming than the multiple alloca-
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Table 3.2: Multiple and single allocation solutions with the CAB dataset.

Multiple Allocation Single Allocation

Costs α
Net

profit

Satisfied

demand (%)

Hub

locations

CPU

time (s)

Net

profit

Satisfied

demand (%)

Hub

locations

CPU

time (s)

High revenue

Low 0.2 1,190 100.00 4,7,12,14,17 4,891 1,181 99.67 4,7,12,14,17 12,343

0.4 1,033 97.33 4,7,12,14,17 4,130 1,013 96.33 4,7,12,14,17 9,384

0.6 926 94.00 4,7,12,14,17 2,428 874 83.50 4,12,17 8,933

0.8 850 86.83 1,4,12,17 754 774 70.67 4,12,18 9,048

Medium 0.2 913 99.00 4,12,17,24 802 895 96.33 4,12,17 8,280

0.4 804 93.00 4,12,17 615 790 92.00 4,12,17 7,271

0.6 735 89.33 4,12,17 520 690 82.33 4,12,18 8,138

0.8 681 79.67 18,21 57 649 67.00 20 4,102

High 0.2 740 97.00 4,12,17 550 735 96.33 4,12,17 8,738

0.4 634 93.00 4,12,17 362 620 92.00 4,12,17 6,490

0.6 599 67.00 20 90 599 67.00 20 1,363

0.8 599 67.00 20 28 599 67.00 20 1,324

Medium revenue

Low 0.2 690 94.00 4,7,12,14,17 1,756 685 93.33 4,7,12,14,17 9,116

0.4 550 89.00 4,7,12,14,17 1,249 532 86.33 4,7,12,14,17 7,924

0.6 456 68.00 4,12,17 504 423 55.67 4,18 7,180

0.8 426 64.00 4,12,17 283 371 51.67 4,18 5,597

Medium 0.2 429 83.17 4,12,17 549 418 81.67 4,12,17 4,329

0.4 349 62.67 4,17 142 331 58.67 4,17 2854

0.6 328 61.00 4,17 33 310 52.67 20 1,546

0.8 325 61.00 4,18 23 310 52.67 20 1,388

High 0.2 267 62.67 4,17 214 262 62.00 4,17 3,414

0.4 260 52.67 20 64 260 52.67 20 1,100

0.6 260 52.67 20 19 260 52.67 20 1,073

0.8 260 52.67 20 17 260 52.67 20 1,060

Low revenue

Low 0.2 199 58.83 4,12,14,17 80 192 57.33 4,12,14,17 6,057

0.4 157 35.33 4,17 39 146 33.67 4,17 1,152

0.6 142 33.33 4,17 11 119 27.33 4,17 1,031

0.8 132 31.33 4,17 9 115 16.00 17 1,121

Medium 0.2 69 36.00 4,17 21 67 36.00 4,17 939

0.4 65 16.00 17 13 65 16.00 17 802

0.6 65 16.00 17 10 65 16.00 17 789

0.8 65 16.00 17 7 65 16.00 17 895

High 0.2 15 16.00 17 7 15 16.00 17 622

0.4 15 16.00 17 6 15 16.00 17 584

0.6 15 16.00 17 6 15 16.00 17 591

0.8 15 16.00 17 5 15 16.00 17 421
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tion counterpart. In addition to the variables introduced for the multiple allocation model,

recall that an additional binary variable was defined to model the single allocation prob-

lem. Hence, single allocation model is expected to be more challenging than the multiple

allocation version.

The most time-consuming instance with the single allocation problem lasted around

3.43 hours, whereas the longest instance took 1.36 hours with the multiple allocation

model. High revenue instances required more CPU time than medium and low revenue

ones. This is because more hubs were opened with higher revenue levels to satisfy more

demand. In general, the average CPU time requirements of the instances listed in Table 3.2

were 9.23 minutes and 1.13 hours for multiple and single allocation problems, respectively.

We also calculated the linear programming (LP) relaxation gaps of the multiple and

single allocation models with all the instances listed in Table 3.2. Most of the gaps are

strictly positive where the average LP gaps for the multiple and single allocation models

are 4.46% and 15.87%, respectively. The LP gaps strongly vary with different parameter

values. The maximum LP gap that we observed among the instances in Table 3.2 was

16.45% with the multiple allocation and 28.02% with the single allocation models, whereas

the minimum was 0.02% with the multiple allocation and 7.24% with the single allocation

model.

With both models, the locations of hubs and also the corresponding network designs

differ greatly depending on the revenue and cost levels, and the α value. However, there

are some common nodes that are selected as hubs in most of the instances, such as Chicago

(4), Los Angeles (12), and New York (17). This is because these nodes generate higher

amount of demand compared with other nodes in the CAB dataset.

We depict the optimal networks of a few instances from the multiple and single al-

location solutions in Figures 3.1 and 3.2. In both of these figures, squares represent the

established hubs, bold lines the inter-hub links, and the thin lines the allocation connec-

tions. Since the CAB dataset is symmetric, hub arcs are activated for both directions.

Hence, the depicted links are undirected. There are some demand nodes in these figures
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without any connections at all (see for example Figures 3.1d and 3.2d). In such cases, no

demand generated from those nodes is served in the optimal solution of the problem.

(a) High revenue, Low costs, α = 0.2, Sat-

isfied demand = 100%

(b) High revenue, Low costs, α = 0.8, Sat-

isfied demand = 86.83%

(c) High revenue, Medium costs, α = 0.2,

Satisfied demand = 99%

(d) Low revenue, Medium costs, α = 0.2,

Satisfied demand = 36%

Figure 3.1: Multiple allocation solutions.

Values of all the parameters except the α value are the same in Figures 3.1a and 3.1b.

Observe that the number of allocation links used in Figure 3.1b is much higher than that

of Figure 3.1a. This is because when α = 0.2, most of the non-hub nodes are allocated

to a single hub in order to take advantage from economies of scale, and, thus, decrease

transportation cost of the flows via the inter-hub links. Whereas, when α = 0.8, most of

the non-hub nodes are allocated to at least two hubs. In this case, more flow is shipped

using one hub on a route rather than using more hubs and inter-hub links. Moreover, when

the discount due to economies of scale is high (α = 0.2), the percentage of satisfied demand

30



goes up to 100%.

Figure 3.1a corresponds to an instance with low cost level, whereas Figure 3.1c corre-

sponds to medium costs. All the parameter values except the cost levels are the same in

these two figures. When the cost level is increased from low to medium, note that one less

hub is opened and the percentage of satisfied demand drops from 100% to 99%. The 1%

of unsatisfied demand in Figure 3.1c refers to the demand between O-D pairs Dallas (7)–

Seattle (23), Houston (10)–Seattle (23), and New Orleans (16)–Seattle (23). The demand

between those city pairs are not served as it is not profitable.

The only difference between the instances depicted in Figures 3.1c and 3.1d is the

revenue level. When the revenue level is high (Figure 3.1c), four hubs are opened with 99%

of total satisfied demand. On the other hand, when the revenue level is low (Figure 3.1d)

the number of opened hubs reduces to two, and only 36% of the total demand is served.

Note that some demand nodes in Figure 3.1d are not served at all. The demand generated

from the cities on the East Coast and South–West (Los Angeles (12), Miami (14), Phoenix

(19), San Francisco (22), Seattle (23), and Tampa (24)) remain entirely unserved in the

optimal solution.

Figure 3.2 depicts instances from the single allocation solutions. In Figure 3.2a, when

the revenue level is high, five hubs are located and 99.68% of the demand is satisfied. The

only unserved O-D pair is Denver(8)–Seattle (23) in this instance. On the other hand,

in Figure 3.2b, when the revenue level is low, one less hub is opened and the percentage

of satisfied demand drops down to 56.33%. Similarly, when Figures 3.2c and 3.2d are

compared, one less hub is opened and the percentage of satisfied demand decreases from

92.00% to 58.67% when the revenue level is reduced from high to medium.

All the parameters in Figures 3.1a and 3.2a are the same; the only difference is the

allocation strategies. Note that both of the models resulted in exactly the same hub

locations and inter-hub networks. The differences between the resulting networks of these

two instances are the consequence of the allocation strategies. In particular, Denver (8) is

allocated to hubs located in Dallas (7) and Los Angeles (12) with the multiple allocation
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model (Figure 3.1a), whereas it is allocated to a single hub located in Dallas (7) with the

single allocation model (Figure 3.2a). All demand is satisfied in the multiple allocation

solution, whereas the percentage of satisfied demand is 99.68% with single allocation.

Allocating Denver (8) to Los Angeles (12) in addition to Dallas (7), makes it possible to

serve the demand between the O-D pair Denver(8)–Seattle (23) in the optimal solution.

(a) High revenue, Low costs, α = 0.2, Sat-

isfied demand = 99.67%

(b) Low revenue, Low costs, α = 0.2, Sat-

isfied demand = 57.33%

(c) High revenue, Medium costs, α = 0.4,

Satisfied demand = 92.00%

(d) Medium revenue, Medium costs, α =

0.4, Satisfied demand = 58.67%

Figure 3.2: Single allocation solutions.

Observe from Figures 3.1 and 3.2 that Chicago (4), Los Angeles (12), and New York

(17) are commonly preferred cities for locating hub nodes. Moreover, except for the 2-hub

networks, note that the most profitable inter-hub networks are not fully interconnected,

they are incomplete.

Next, we solve our models with direct connections under the same parameter values.
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The results for the multiple and single allocation models with direct connections are re-

ported in Table 3.3. In addition to the columns in Table 3.2, columns labeled ‘Satisfied

demand–direct (%)” are included in Table 3.3 to highlight the percentage of the demand

satisfied only through direct connections.

Similar conclusions can be drawn from Table 3.3 as from Table 3.2. An increase in

the cost level results in a decrease in the percentage of satisfied demand and net profit.

Besides, an increase in the α value may also yield to a decrease in net profit. As expected,

a decrease in the revenue level results in a decrease in net profit as well.

Multiple allocation with direct connections problem provides again an upper bound for

the single allocation with direct connections problem. Thus, multiple allocation results

in better net profits. Observe from Table 3.3 that in the instances with the same set of

parameter values, percentage of satisfied demand with direct connections obtained with the

single allocation model is higher than that of the multiple allocation model. That is, more

demand is shipped through direct connections with the single allocation model compared

with multiple allocation.

There are some instances with a hyphen sign (-) written under the hub locations columns

in Table 3.3. No hubs are established in such instances, and, hence, the demand is satisfied

only through direct connections. In this case, both allocation strategies yield the same net

profit for the same set of parameter values.

Observe from Table 3.3 that percentage of satisfied demand through direct connections

increases when fewer hubs are opened in the solutions. Moreover, when Tables 3.2 and

3.3 are compared, the models with direct connections result in opening fewer hubs. Fewer

hubs are required with direct connections because a certain portion of the demand is served

through direct service. Also note that the models with direct connections result in higher

net profit values compared with the models not allowing for direct connections. If it was

not profitable to serve the demand through direct connections, then no direct links would

be established in the resulting networks. Hence, allowing for direct connections provide an

upper bound for no-direct-connection problems.
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Table 3.3: Solutions allowing for direct connections with the CAB dataset.

Multiple Allocation with Direct Connections Single Allocation with Direct Connections

Costs α
Net

profit

Satisfied

demand–

total (%)

Satisfied

demand–

direct (%)

Hub

locations

CPU

time (s)

Net

profit

Satisfied

demand–

total (%)

Satisfied

demand–

direct (%)

Hub

locations

CPU

time (s)

High revenue

Low 0.2 1,192 100.00 0.33 4,7,12,14,17 6,537 1,190 99.67 1.00 4,7,12,14,17 11,628

0.4 1,042 97.83 0.67 4,7,12,14,17 6,171 1,027 95.33 3.00 4,12,14,17 9,143

0.6 945 94.50 2.33 4,7,12,25 2,948 909 79.00 9.67 4,20 8,457

0.8 904 82.83 8.33 20,21 619 889 77.67 16.00 5 2,018

Medium 0.2 925 99.00 1.33 4,12,18,24 3,331 917 96.00 1.67 4,12,17 8,675

0.4 826 93.33 2.00 4,12,18 2,666 814 91.67 2.33 4,12,18 7,299

0.6 779 76.00 7.00 5 264 779 76.00 7.00 5 1,856

0.8 779 76.00 7.00 5 27 779 76.00 7.00 5 1,325

High 0.2 750 97.33 1.33 4,12,17 2,461 738 96.67 1.33 4,12 5,448

0.4 696 69.33 4.33 20 88 696 69.33 4.33 20 1,933

0.6 696 69.33 4.33 20 35 696 69.33 4.33 20 1,332

0.8 696 69.33 4.33 20 41 696 69.33 4.33 20 1,379

Medium revenue

Low 0.2 694 94.67 0.67 4,7,12,14,17 4,322 689 93.67 1.00 4,7,12,14,17 10,296

0.4 558 83.17 1.67 4,12,14,17 2,868 547 81.33 3.33 4,12,14,17 8,612

0.6 505 67.00 5.33 4,18 536 497 59.00 11.33 20 1,923

0.8 497 59.00 11.33 20 159 497 59.00 11.33 20 1,118

Medium 0.2 451 84.33 1.67 4,12,17 2,491 431 83.00 1.67 4,12,17 4,404

0.4 401 55.67 6.00 20 223 401 55.67 6.00 20 1,421

0.6 401 55.67 6.00 20 44 401 55.67 6.00 20 1,077

0.8 401 55.67 6.00 20 36 401 55.67 6.00 20 957

High 0.2 325 54.33 3.33 20 34 325 54.33 3.33 20 1,123

0.4 325 54.33 3.33 20 31 325 54.33 3.33 20 891

0.6 325 54.33 3.33 20 32 325 54.33 3.33 20 948

0.8 325 54.33 3.33 20 31 325 54.33 3.33 20 919

Low revenue

Low 0.2 213 49.33 2.00 4,14,17 2,101 210 48.00 1.67 4,14,17 2,527

0.4 181 31.67 5.67 20 56 181 31.67 5.67 20 890

0.6 181 31.67 5.67 20 42 181 31.67 5.67 20 783

0.8 181 31.67 5.67 20 39 181 31.67 5.67 20 795

Medium 0.2 119 5.67 5.67 - 32 119 5.67 5.67 - 665

0.4 119 5.67 5.67 - 29 119 5.67 5.67 - 618

0.6 119 5.67 5.67 - 35 119 5.67 5.67 - 664

0.8 119 5.67 5.67 - 36 119 5.67 5.67 - 635

High 0.2 89 4.33 4.33 - 32 89 4.33 4.33 - 699

0.4 89 4.33 4.33 - 29 89 4.33 4.33 - 651

0.6 89 4.33 4.33 - 31 89 4.33 4.33 - 654

0.8 89 4.33 4.33 - 30 89 4.33 4.33 - 637
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The single allocation with direct connections model is computationally more difficult

than the multiple allocation version. The increase in run times is a consequence of the

additional binary variable defined for the single allocation version of the problem. The

average CPU time requirements for the instances listed in Table 3.3 is 17.81 minutes for

the multiple allocation, and 48.33 minutes for the single allocation model.

(a) Multiple allocation: High revenue, Low

costs, Satisfied demand = 100% (0.33% with

direct connections)

(b) Multiple allocation: High revenue,

Medium costs, Satisfied demand = 99.00%

(1.33% with direct connections)

(c) Single allocation: High revenue, Low

costs, Satisfied demand = 99.67% (1.00%

with direct connections)

(d) Single allocation: High revenue, Medium

costs, Satisfied demand = 96.00% (1.67%

with direct connections)

Figure 3.3: Multiple and single allocation solutions with direct connections when α = 0.2.

Figure 3.3 provides optimal networks of some instances with direct connections when

α = 0.2. Figures 3.3a and 3.3b depict multiple allocation instances, while Figures 3.3c and
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3.3d depict their single allocation counterparts. The dash-lines in these figures indicate the

direct connections between non-hub nodes. Note that resulting optimal inter-hub networks

are all incomplete.

When the cost level is increased from low (Figures 3.3a and 3.3c) to medium (Fig-

ures 3.3b and 3.3d), fewer hubs are opened, and more demand is satisfied through direct

connections. Figures 3.3a and 3.3c that correspond to multiple and single allocation prob-

lems, respectively, resulted in locating exactly the same hubs and the same inter-hub

network design. However, the allocation links and the direct connections are different. In

Figures 3.3b and 3.3d, when the allocation strategy is changed from multiple to single,

one less hub is opened and the percentage of satisfied demand through direct connections

increased from 1.33% to 1.67%.

Next, we compare instances presented in Figures 3.1, 3.2, and 3.3. Note that the values

of all the parameters are the same in Figures 3.1a, 3.2a, 3.3a, and 3.3c. Each of these figures

corresponds to an optimal solution obtained under a different model. However, all optimal

solutions resulted in opening the same set of hubs and inter-hub links. The only differences

are the allocation links and direct connection decisions. Shipping the demand between San

Francisco (22) and Seattle (23) directly as seen in Figure 3.3a resulted in an increase in the

net profit value from 1190 to 1192 compared with Figure 3.1a. Total percentage of satisfied

demand in the instances depicted in Figures 3.2a and 3.3c are exactly the same (99.67%).

However, 1% of the demand is satisfied through direct connections in Figure 3.3c, and this

resulted in an increase in the net profit from 1181 to 1190.

We also want to analyze the performance of the r-allocation models. Looking at the

optimal multiple allocation solutions, we observed that a non-hub node is allocated to at

most three hubs with the CAB dataset. Therefore, when r = 3, r-allocation problems

reduce to multiple allocation on this dataset. We thus set r to 2 and 3 to take runs with

the two r-allocation models under different parameter values. Table 3.4 presents the results

obtained with the r-allocation models.

Note that, when r = 3, r-allocation models result in exactly the same optimal solutions
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Table 3.4: r-allocation solutions with the CAB dataset.

r-Allocation without Direct Connections r-Allocation with Direct Connections

r=2 r=3 r=2 r=3

Cost α
Net

profit

CPU

time (s)

Net

profit

CPU

time (s)

Net

profit

CPU

time (s)

Net

profit

CPU

time (s)

High revenue

Low 0.2 1,187 20,788 1,190 21,895 1,191 20,001 1,192 21,174

0.4 1,021 20,700 1,033 2,1134 1,034 19,108 1,042 20,602

0.6 897 18,534 926 20,409 921 16,800 945 17,418

0.8 835 15,671 850 17,381 904 4,149 904 4,287

Medium 0.2 905 18,890 913 19,924 925 18,144 925 19,147

0.4 804 16,423 804 16,562 826 16,722 826 17,015

0.6 735 14,544 735 15,276 779 1,312 779 1,245

0.8 681 10,500 681 10,662 779 1,216 779 1,422

High 0.2 740 14,719 740 15,283 750 14,603 750 15,067

0.4 634 11,466 634 12,084 696 1,301 696 1,385

0.6 599 2,140 599 2,266 696 1,434 696 1,283

0.8 599 2,130 599 2,160 696 1,430 696 1,323

Medium revenue

Low 0.2 687 17,332 690 18,037 692 19,527 694 21,001

0.4 542 16,749 550 17,712 552 16,899 558 19,084

0.6 456 14,959 456 15,134 505 4,897 505 5,242

0.8 426 14,279 426 14,623 497 1,295 497 1,448

Medium 0.2 429 7,578 429 7,982 451 13,212 451 14,154

0.4 349 7,053 349 7,379 401 1,898 401 2,138

0.6 328 4,741 328 5,044 401 2,012 401 1,980

0.8 325 3,191 325 3,335 401 1,827 401 2,001

High 0.2 267 5,763 267 6,182 325 1,416 325 1,461

0.4 260 1,786 260 1,644 325 1,323 325 1,526

0.6 260 1,500 260 1,587 325 1,284 325 1,315

0.8 260 1,401 260 1,509 325 1,217 325 1,542

Low revenue

Low 0.2 195 12,633 199 14,689 213 4,010 213 4,142

0.4 157 1,913 157 2,133 181 779 181 785

0.6 142 1,332 142 1,428 181 764 181 791

0.8 132 804 132 1,044 181 873 181 803

Medium 0.2 69 825 69 998 119 623 119 675

0.4 65 205 65 225 119 651 119 602

0.6 65 187 65 243 119 604 119 634

0.8 65 186 65 214 119 652 119 704

High 0.2 15 45 15 49 89 623 89 637

0.4 15 43 15 46 89 640 89 662

0.6 15 43 15 44 89 638 89 651

0.8 15 42 15 46 89 681 89 676
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obtained with the multiple allocation models. Moreover, when r = 2, most of the instances

again resulted in the same optimal solutions with r = 3. Hence, we only report net profit

values and CPU times in Table 3.4. Note that instances with r = 3 provides an upper

bound for r = 2. Thus, for the same set of parameters, when r value is increased from 2

to 3, the net profit value either increases or remains the same.

Regarding the CPU time requirements, r-allocation models turned out to be the most

challenging set of models compared with single and multiple allocation. They are computa-

tionally more difficult than multiple allocation models because an additional set of binary

variables needs to be defined. Compared with single allocation, allowing the models search

for r allocations instead of just one seems to increase the CPU times considerably as well.

The most time-consuming instance with the r-allocation models took a little less than 6

hours to solve to optimality. The averages of the CPU times listed in Table 3.4 is 1.89

hours.

Net profits change significantly with the cost levels and the economies of scale factor

under different allocation strategies. Figure 3.4 provides an insight for the change in net

profits under different parameter values.

Each graph presented in Figure 3.4 corresponds to a different level of revenue: high,

medium, and low. For each revenue level, we depict optimal net profit values obtained

with four different models under different cost levels and discount factor α.

Observe from Figure 3.4 that multiple allocation model with direct connections results

in the best net profit values. As already discussed, this model actually provides an up-

per bound for all the remaining models. The lowest profits are obtained with the single

allocation model when direct connections are not allowed.

Figure 3.4 also illustrates the impact of α on net profit. It is clear that profits decrease

with increasing α, for a given cost level. The effect of α on profits is higher with lower

cost levels. Note that there are some instances in which the profits are insensitive to α.

In such instances, either no hub or one hub is opened in the optimal solutions. In other

words, no economies of scale are achieved as there is no inter-hub transportation. In such
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cases, multiple and single allocation strategies result in exactly the same net profits.

Figure 3.4: Profit comparison under different parameter values with four different models.

In general, we can conclude from Figure 3.4 that when the effect of economies of scale

on transportation costs is higher (when α value is lower), the decision maker can obtain

significantly more profit. Hence, economies of scale are an important factor in designing

and operating hub networks. As noted in the problem definition, we assume that economies

of scale are exploited only on the inter-hub links and that it is independent from the amount

of flow. This is a simplification of real-life for the sake of modeling the problem efficiently.

We next want to analyze the consequences of this simplification.
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3.3.2 Economies of scale analysis

We analyzed optimal flows on all network connections in the resulting solutions. The

amount of flow routed on the inter-hub links and allocation connections are obviously less

when direct connections between non-hub nodes are allowed. Hence, we concentrated on

the optimal flows with the models allowing for direct connections to observe if the amount

of flow routed on the inter-hub links justify economies of scale. For this analysis, we sorted

flows on all links of the network to see if there are any allocation links or direct links

carrying larger flows than inter-hub links. We could identify only a few such instances

where the flow on one allocation link exceeded the flow on an inter-hub link. For example,

in the instance from Table 3.3 with high revenue and medium cost levels with α = 0.4, the

allocation link New York (17)–Philadelphia (18) carries more flow than the inter-hub link

Chicago (4)–Los Angeles (12). This is because all demand originating at New York and

destined to all other cities has to use the allocation link from New York to Philadelphia.

However, as mentioned above, only a few instances do not justify economies of scale in

our experimentation. This is because our models do not enforce the establishment of

fully interconnected inter-hub networks. Note that in all of our solutions with more than

two hubs, the resulting inter-hub networks are incomplete. By the inclusion of inter-hub

network design decisions in hub location models, more flow is consolidated on hub-to-hub

links.

We also wanted to analyze the impact of using a flow-independent economies of scale

factor on the inter-hub links. Incorporating a flow-dependent economies of scale factor

in our models would computationally be impractical due to its non-linear nature. In-

stead, we decided to recalculate the transportation costs of our optimal solutions by using

flow-dependent discounts. For this analysis, we adopted the non-linear concave function

introduced in O’Kelly and Bryan [77]. While recalculating the transportation costs, we

replaced α and for each inter-hub link k, l ∈ N , we calculated the discount through the
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function:

1− θ(
∑
i∈N

fikl)
β k, l ∈ N (3.34)

where 0 < θ ≤ 1, β > 0, and
∑
i∈N

fikl is the amount of flow routed on the inter-hub link

from hub k to hub l. Note that since total demand is scaled and it adds up to one, we do

not need to scale the flows in this calculation.

For each instance with the given revenue and cost levels, we compared net profits ob-

tained from using different combinations of constant and flow-dependent discount factors,

α, θ, and β. We observed through this analysis that for any given value of α, there is

a valid combination of θ and β values which results in comparable transportation costs.

For example, in the instances with high revenue and low cost levels, total transportation

cost recalculated by using θ = 0.9 and β = 0.1 in the above function results in a 2%

decrease in the net profit on average when compared with using α = 0.2, which is the

highest economies of scale discount that we used in our experimentation. Similarly, with

high revenue and medium cost levels, using the combination of θ = 0.75 and β = 0.2 results

in only a 0.23% decrease in the net profit on average compared with using α = 0.4. This

analysis shows that the α values used in our computational experiments actually provide

good estimates for flow-dependent discounts.

We would like to note that the analysis that we performed with this flow-dependent

discount function is post-processing. As noted by O’Kelly and Bryan [77], modeling the

problem assuming a fixed discount factor not only miscalculate the total network cost but

may also wrongly select optimal hub locations and allocations. Incorporating a more real-

istic calculation of economies of scale within the proposed models is definitely an important

avenue for future research.

3.3.3 Comparison with the literature

As discussed in our introduction, hub location problems with profits considering the mul-

tiple allocation strategy were already introduced in Alibeyg et al. [3]. In this chapter, in
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addition to studying all allocation possibilities, we included additional design variables to

account for the design of the inter-hub network which in turn makes the problem more

complicated. To justify the increased complexity of the proposed models, we present a

computational comparison of our multiple allocation model and the PO1 model presented

in Alibeyg et al. [3, 4]. For this comparison, we concentrated on the instances resulted in

opening more than two hubs in the optimal solutions obtained from our multiple allocation

model. Table 3.5 presents the results.

Table 3.5: Comparison of our multiple allocation model with PO1 from Alibeyg et al. [3, 4].

PO1 Multiple Allocation Model

Cost alpha
Net

profit

Satisfied

demand (%)

LP

gap (%)

CPU

time (s)

Net

profit

Satisfied

demand (%)

LP

gap (%)

CPU

time (s)

Profit

gap (%)

High revenue

Low 0.2 1,146 100.00 3.49 1,851 1,190 100.00 2.73 4,891 3.86

0.4 991 95.67 3.61 1,611 1,033 97.33 4.31 4,130 4.23

0.6 889 91.67 5.28 1,084 926 94.00 2.77 2,428 4.19

0.8 832 85.33 7.95 449 850 86.83 2.27 754 2.21

Medium 0.2 887 97.05 6.05 764 913 99.00 7.31 801 2.96

0.4 791 88.33 4.91 416 804 93.00 5.84 615 1.62

0.6 723 85.67 9.09 287 735 89.33 3.70 521 1.63

High 0.2 723 93.33 6.22 325 740 97.00 8.04 550 2.27

0.4 619 88.33 13.52 144 634 93.00 9.45 362 2.31

Medium revenue

Low 0.2 656 88.00 3.35 1,081 690 94.00 4.91 1,756 5.16

0.4 517 83.00 6.95 605 550 89.00 6.43 1,249 6.36

0.6 440 64.00 4.24 427 456 68.00 3.49 504 3.65

0.8 411 61.00 6.61 212 426 64.00 2.85 283 3.56

Medium 0.2 401 82.00 17.73 324 429 83.17 12.63 549 6.98

Low revenue

Low 0.2 183 55.33 8.99 111 199 58.83 4.79 80 8.74

For each instance, Table 3.5 provides the net profit, percentage of satisfied demand,

LP relaxation gap, and the run time of the instances obtained by solving the PO1 model

from Alibeyg et al. [3, 4] and our multiple allocation model introduced in Section 3.2.1.
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The last column of Table 3.5 presents the percentage of the gap between the net profits

obtained from these two models.

Firstly, a comparison of the CPU times and LP relaxation gaps reported in Alibeyg

et al. [3] with Table 3.5 reveals that our test instances are computationally more challenging

than the ones reported in Alibeyg et al. [3]. We would like to note that we used variable

fixing while solving both of the models under the default settings of CPLEX.

Our multiple allocation model provides an upper bound in terms of the net profit value

and the percentage of satisfied demand. Observe from Table 3.5 that all the profit gaps

are strictly positive. This is because in all of our solutions with more than two hubs, there

exist paths in which more than two hubs are used to satisfy the demand between O-D

pairs. PO1 model needs to activate additional hub links to satisfy the same or even less

amount of demand that is satisfied with our multiple allocation model. For example, with

high revenue and low cost levels when α = 0.2, 100% of the demand is satisfied under both

of the models. In this instance, our multiple allocation solution resulted in operating an

incomplete inter-hub network (Figure 3.1a) and 14% of the total flow is routed using more

than two hubs on a route. While, the PO1 solution, which restricts the number of hubs

on a route to at most two and activates hub arcs of a fully inter-connected hub network,

resulted in a 3.83% decrease in the net profit. The percent gap in profits goes up to 8.74%

in the instances listed in Table 3.5. Moreover, since the demand is scaled in our data, the

magnitude of the objective function value is relatively low in our experiments, otherwise

the difference in the net profits would have been higher. We believe these results provide a

clear indication of the added benefit of incorporating more complex paths into the models.

3.3.4 Results with the AP dataset

In this section, we test the performance of our models on a 40-node subset of the Australia

Post (AP) dataset (Ernst and Krishnamoorthy 46). The distances and the demand between

each pair of cities are provided in OR Library (Beasley 15). Collection and distributions

costs per unit are taken equal to one. For the revenue of each O-D pair, we again test three
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different values such that rij ∈ {20, 30, 50} for all i, j ∈ N . We refer to these values as low,

medium, and high revenues, respectively. There are two different sets for hub installation

costs available on the AP dataset referred to as loose and tight. Cost of operating an

inter-hub link is assumed to be 10% of the average installation costs from the AP data.

Similar to the CAB dataset, the cost of operating a direct link is taken to be the 20% of

the operational cost of an inter-hub link. Operational costs are assumed to be the same

for all potential links. For all instances, the discount factor α is taken as 0.75, as defined

in the AP dataset (Beasley 15).

The results obtained from solving the multiple and single allocation models without

and with direct connections are summarized in Tables 3.6 and 3.7, respectively. As noted

in the first two columns, we tested three different revenue and two different cost levels.

Table 3.6: Multiple and single allocation solutions with the AP dataset.

Multiple Allocation Single Allocation

Revenue Costs
Net

profit

Satisfied

demand (%)

Hub

locations

CPU

time (h)

Net

profit

Satisfied

demand (%)

Hub

locations

CPU

time (h)

H
ig

h

Loose 118,303 98.13 12,22,26,28 3.82 73,384 91.25 11,12,22,28 6.87

Tight 105,850 97.75 11,14,29 3.07 46,736 90.38 11,14,29 6.12

M
ed

iu
m Loose 42,868 77.69 12,22,26,28 2.91 36,904 64.06 11,22,28 5.04

Tight 32,716 69.13 14,29 0.09 29,569 51.56 29 1.20

L
ow

Loose 14,099 22.63 28 0.03 14,099 22.63 28 0.53

Tight 6,404 23.50 29 0.05 6,404 23.50 29 0.48

Similar conclusions can be drawn with the AP dataset as with the CAB dataset. Net

profits and the percentage of satisfied demand decrease with decreasing revenue levels.

Tight (high) fixed cost instances result in lower net profits. In the models with direct con-

nections (Table 3.7), a decrease in the revenue level results in an increase in the percentage

of satisfied demand through direct connections.
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Table 3.7: Solutions allowing for direct connections with the AP dataset.

Multiple Allocation with Direct Connections Single Allocation with Direct Connections

Revenue Costs
Net

profit

Satisfied

demand-

total (%)

Satisfied

demand-

direct (%)

Hub

locations

CPU

time (h)

Net

profit

Satisfied

demand-

total (%)

Satisfied

demand-

direct (%)

Hub

locations

CPU

time (h)

H
ig

h

Loose 119,998 98.50 1.00 12,18,22,28 4.61 76,026 87.00 4.75 11,12,22,28 7.01

Tight 106,614 95.25 1.13 14,29 3.66 48,101 86.13 5.38 11,14,29 6.59

M
ed

iu
m Loose 44,222 76.06 1.19 11,22,28 3.05 38,694 63.19 5.56 11,22,28 5.82

Tight 36,252 71.00 5.25 19,22 0.57 34,179 54.75 12.31 29 2.15

L
ow

Loose 15,077 23.44 1.31 28 0.04 15,077 23.44 1.31 28 0.39

Tight 6,677 23.63 0.25 29 0.09 6,677 23.63 0.25 29 0.34

The CPU times obtained from solving the models with the AP dataset indicate that

larger-sized instances are more challenging, and, consequently, more time consuming than

small-sized instances, as expected. Because of the higher run times, CPU times in Ta-

bles 3.6 and 3.7 are reported in hours. Note that, in addition to the size of the instances,

computation times also vary a lot with different parameter values as well as allocation

strategies. In particular, when the revenue level decreases from high to low, the CPU

times in Table 3.6 drops from about 7 hours to less than 1 hour. The most difficult in-

stances were with the single allocation model allowing for direct connections. Average

CPU time requirement of the instances presented in Tables 3.6 and 3.7 with the 40-node

AP dataset is 2.66 hours.

3.4 Conclusions

In this chapter, we studied hub location problems with the aim of maximizing profit.

We defined new problems and developed efficient mathematical models addressing the

questions of where to locate hubs and how to design hub networks in order to maximize

profit. We determined optimal routes of flow to transport the demand between origin-
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destination pairs while allowing a portion of the demand to be unserved. We introduced

mixed-integer linear programming models for multiple, single, and r-allocation versions

of the problem. We also modeled the possibility of direct connections for each allocation

strategy. The proposed models design hub networks in the most profitable way considering

all possibilities for shipments.

We performed computational experiments on the well-known CAB and AP datasets to

analyze the resulting hub networks and performance of the proposed mathematical models.

We tested all models under various different parameter settings. We varied revenues, costs,

and the economies of scale discount factor, and analyzed the optimal locations of hubs,

design of the hub network, and percentage of satisfied demand.

The results provided insights on where to locate hubs, how to design hub networks, what

portion of the demand to serve, and how to route flows. The most profitable inter-hub

network designs with more than two hubs turned out to be incomplete. Trade-off between

different allocation strategies as well as the impact of allowing for direct connections is

explored. The best net profit values were obtained with the multiple allocation model

allowing for direct connections, whereas, the lowest profits were obtained with the single

allocation model when direct connections are not allowed. The choice of the allocation

strategy did not result in a significant difference on the locations of hubs in the optimal

solutions. The effect of the economies of scale discount on total profit is also analyzed.

The results showed that the decision maker can obtain significantly more profit when the

discount on transportation costs due to economies of scale is higher.
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Chapter 4

Profit Maximizing Hub Location

Problems with Capacity Allocation

In many real-life hub networks, the demand of commodities usually consists of different

classes (e.g., for regular and priority service). The decision maker thus needs to consider

how to allocate the available capacity to these different demand segments, while determin-

ing the proportion of the demand to serve for each class. In airline passenger networks,

different classes of demand may include the demand for, for example, the first, business,

and economy class service. In express shipment delivery networks, on the other hand,

there is a demand for services such as priority, express, and standard mail. Incurring these

revenue management decisions surely bring on extra challenges yet this is a much more

realistic problem setting.

In this chapter, we incorporate revenue management decisions within hub location prob-

lems and determine how to allocate available capacities of hubs to demand of commodities

from different market segments. The profit maximizing hub location problems with capac-

ity allocation introduced in this chapter seek to find an optimal hub network structure,

maximizing total profit to provide services to a set of commodities while considering the

design cost of the network. The decisions to be made are the optimal number and loca-
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tions of hubs, allocation of demand nodes to these hubs, and the optimal routes of flow of

different classes of commodities that are selected to be served. We consider a hub location

problem with multiple assignments, and allow a path of an origin-destination pair to pass

through at most two hubs. Direct connections between non-hub nodes are not allowed; all

commodities must be routed via a set of hubs. Demand is segmented into different classes

and revenue is obtained from satisfying demands for the commodities of each class. The

model is to decide how much demand to serve from each class considering the available

capacity. Each demand class from each commodity can be partially satisfied.

We first present a strong mixed-integer programming formulation of the profit maximiz-

ing hub location problem with capacity allocation and then present two exact algorithms

based on a Benders decomposition of the formulation. Since the subproblem is inseparable,

solving it can be as challenging as solving the original problem. Moreover, due to degener-

acy in the subproblem, straightforward implementation of Benders decomposition suffers

from low convergence. Alleviating these deficiencies, we propose a general methodology for

decomposing inseparable subproblems into smaller problems in a two-phase fashion, where

optimality and strength of the cuts are guaranteed in phase I and phase II, respectively.

More specifically, for the profit maximizing hub location problem with capacity allocation,

we prove that the second phase can be solved as a set of LP-relaxations of maximum

weighted matching problems, or as a series of LP-relaxations of knapsack problems. We

enhance these algorithms by incorporating improved variable fixing techniques. Moreover,

we perform extensive computational experiments to evaluate the efficiency and robustness

of the proposed algorithms and solve large-scale instances of the problem.

The outline of this chapter is organized as follows. We introduce the notation and

formulate the mixed-integer linear programming model in Section 4.1. Section 4.2 con-

tains the basic Benders decomposition algorithm and our introduction of several features

that improve the convergence and efficiency of the problem. We perform extensive com-

putational experiments in Section 4.3 to test our mathematical model and evaluate our

algorithms. Section 4.4 provides some concluding remarks for this chapter.

48



4.1 Mathematical Formulations

This section first introduces the notation and then presents mathematical formulation of

the problem.

4.1.1 Notation

Let G = (N,A) be a complete digraph, where N is the set of nodes and A is the set of

arcs. Adapting the notation used by Contreras et al. [37], we define a hub arc as an ordered

set a ∈ A and a loop a as {a1, a2} if |a| = 2, and as {a1} if |a| = 1. Let H ⊆ N be the

set of potential hub locations, and K represent the set of commodities whose origin and

destination points belong to N . Demand of commodities are segmented into M classes.

For each commodity k ∈ K of class m ∈M , wmk is defined as the amount of commodity k

of class m to be routed from the origin o(k) ∈ N to the destination d(k) ∈ N . Satisfying

a unit commodity k ∈ K of class m ∈ M produces a per unit revenue of rmk . Let fi

and Γi denote the installation cost and the available capacity of a hub located at node

i ∈ H, respectively. The transportation cost from node i ∈ N to node j ∈ N is defined as

cij = γdij, where dij denotes the distance from node i to node j, and γ is the resource cost

per unit distance. Distances are assumed to satisfy the triangle inequality,

Each path of an origin-destination pair contains at least one and at most two hubs.

Thus, paths are of the form (o(k), i, j, d(k)), where (i, j) ∈ H ×H represents the ordered

pair of hubs to which o(k) and d(k) are allocated, respectively. The transportation cost of

routing one unit of commodity k along path (o(k), i, j, d(k)) can be calculated by Cijk =

χco(k)i+αcij+δcjd(k), where χ, α, δ represent the collection, transfer, and distribution costs,

respectively. The economies of scale between hubs are reflected by assuming α < χ and

α < δ.

A few characteristics of the multiple allocation hub location problem can be employed

in modeling profit maximizing hub location problems with capacity allocation as detailed

below:
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Property 1. In any optimal solution, a commodity can be routed via a path containing

two distinct hubs only if it is not cheaper to do so using one of the hubs (Boland et al.

[19]).

Property 2. In any optimal solution, every commodity k ∈ K uses at most one of the

paths o(k), i, j, d(k) and o(k), j, i, d(k); the one with the lower transportation cost (Contreras

et al. [35]).

Consequently, each commodity defines its own set of potential hub arcs. Henceforth,

we replace Cijk with Ĉijk = min{Cijk, Cjik}, and reduce the set of candidate hub arcs for

commodity k ∈ K to Ak as defined in (4.1), which can be used to reduce the size of the

mathematical formulations.

Ak = {(i, j) ∈ A : i ≤ j, Ĉijk ≤ min{Ciik, Cjjk}} (4.1)

4.1.2 Model

Let yi equal to 1 if a hub is established at node i ∈ H, and 0 otherwise. Moreover, let xmak

determine the fraction of commodity k ∈ K of class m ∈ M that is satisfied through a

path with hub arc a ∈ Ak. The The profit maximizing hub location problems with capacity

allocation is then modeled as:

Maximize
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmk xmak −
∑
i∈H

fiyi (4.2)

s.t.
∑
a∈Ak

xmak ≤ 1 k ∈ K,m ∈M (4.3)

∑
a∈Ak:i∈a

xmak ≤ yi i ∈ H, k ∈ K,m ∈M (4.4)

∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk x
m
ak ≤ Γiyi i ∈ H (4.5)

xmak ≥ 0 k ∈ K,m ∈M,a ∈ Ak (4.6)

yi ∈ {0, 1} i ∈ H. (4.7)
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The objective function (4.2) represents net profit, which is calculated by subtracting

total cost from total revenue. If demand of a commodity from a given class is to be

satisfied, then by constraints (4.3) flow must be routed via hubs. Each demand class from

each commodity can be partially satisfied through different paths. Constraints (4.4) ensure

that demand of commodities can be satisfied only through open hubs. Constraints (4.5)

restrict capacity on the total incoming flow at a hub via both hub and non-hub nodes.

Finally, constraints (4.6) and (4.7) define the non-negative and binary variables.

Remark 1. For integer values of y, constraints (4.3) and (4.5) imply constraints (4.4).

Hence, constraints (4.4) act as valid inequalities for the mathematical model (4.2)-(4.7).

Since our solution method is based on Benders decomposition, and it is known that

Benders decomposition performs better with stronger formulations (Magnanti and Wong

[61]), we choose to keep these constraints in our mathematical model.

Note that when revenue from satisfying the commodity k ∈ K of class m ∈ M is

strictly smaller than the unit transportation cost of routing commodity k along a path

containing a hub arc a ∈ Ak, no profit can be obtained from satisfying the demand for

commodity k ∈ K of class m ∈ M through that path. Accordingly, the optimal value for

the corresponding variable xmak can then be set to zero as noted in Property 3 below:

Property 3. For every k ∈ K, m ∈ M and a ∈ Ak, if rmk < Ĉak, then xmak = 0 in any

optimal solution to (4.2)-(4.7).

4.2 Benders Decomposition

We introduce a Benders decomposition methodology for the solution of our models. Ben-

ders decomposition is well suited for hub location problems especially with multiple al-

location structure as the problem can be decomposed into linear subproblems by fixing

the integer variables for the location of hubs. In this section, we first present the Benders
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reformulation of the model and the Benders decomposition algorithm; we then detail our

solution strategies for the subproblems.

4.2.1 Benders reformulation and algorithm

Given the mixed integer formulation (4.2)-(4.7), in the Benders reformulation of the prob-

lem, the hub location decisions are handled in the master problem and the rest is left to the

subproblem. By fixing the values of the integer variables yi = yei , we obtain the following

linear primal subproblem (PS):

(PS) Maximize
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmk xmak (4.8)

s.t.
∑
a∈Ak

xmak ≤ 1 k ∈ K,m ∈M (4.9)

∑
a∈Ak:i∈a

xmak ≤ yei i ∈ H, k ∈ K,m ∈M (4.10)

∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk x
m
ak ≤ Γiy

e
i i ∈ H (4.11)

xmak ≥ 0 k ∈ K,m ∈M,a ∈ Ak. (4.12)

We derive the dual of PS by associating the dual variables αmk , umik, and bi to the con-

straints (4.9), (4.10), and (4.11), respectively. We then have the following dual subproblem

(DS):

(DS) Minimize
∑
k∈K

∑
m∈M

αmk +
∑
i∈H

yei (Γibi +
∑
k∈K

∑
m∈M

umik) (4.13)

s.t. αmk + umik + umjk + wmk (bi + bj) ≥ (rmk − Ĉijk)wmk k ∈ K,m ∈M, (i, j) ∈ Ak : i 6= j

(4.14)

αmk + umik + wmk bi ≥ (rmk − Ĉiik)wmk k ∈ K,m ∈M, i ∈ H
(4.15)

αmk , u
m
ik, bi ≥ 0 k ∈ K,m ∈M, i ∈ H

(4.16)
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Let P denote the polyhedron defined by (4.14)-(4.16), and let P̂ be the set of extreme

points of P . The primal and dual subproblems are always feasible and bounded, hence an

optimal solution of DS is one of the extreme points of P . Note that P̂ does not depend on

yei ; hence, for any arbitrary y, DS can be restated as

min
(α,u,b)∈P̂

∑
k∈K

∑
m∈M

αmk +
∑
i∈H

yi(Γibi +
∑
k∈K

∑
m∈M

umik). (4.17)

Let η denote the overall revenue obtained by satisfying the demand; the Benders master

problem (MP) can then be formulated as:

(MP) Maximize η −
∑
i∈H

fiyi (4.18)

s.t. η ≤
∑
k∈K

∑
m∈M

αmk +
∑
i∈H

yi(Γibi +
∑
k∈K

∑
m∈M

umik) (α, u, b) ∈ P̂ (4.19)

yi ∈ {0, 1} i ∈ H. (4.20)

Note that MP contains an exponential number of constraints. We can work around

this difficulty by employing a cutting-plane method. Starting with an empty set P̂ , we

iteratively solve a relaxed master problem with a small subset of P̂ and keep adding new

extreme points to P̂ by solving dual subproblems, until the optimal solution to MP is

found.

An overview of the basic BD algorithm is given in Algorithm 1. In this algorithm, UB,

LB, e, zeMP , and zeDS stand for the current upper and lower bounds, the iteration counter,

and the optimal solutions obtained from the master problem and dual subproblem at

iteration e, respectively.

The computational efficiency of the Benders decomposition algorithm generally depends

on the number of iterations required to obtain an optimal solution and the computational

effort needed to solve MP as well as DS at each iteration. In the following sections, we first

describe how the size of the problem can be reduced via variable fixing and then explain

how the subproblem can be solved efficiently.
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Algorithm 1 Benders decomposition

1: UB ← +∞, LB ← −∞, e← 0, P̂ ← ∅
2: while (LB < UB) do

3: SOLVE MP and obtain ye and zeMP

4: UB ← zeMP

5: SOLVE DS and obtain (α, u, b)e and zeDS

6: LB ← max{LB, zeDS −
∑
i∈H

fiy
e
i }

7: ADD (α, u, b)e to P̂

8: e← e+ 1

9: end while

4.2.2 Variable fixing

Variable fixing can improve the efficiency of the Benders decomposition algorithm by re-

ducing the computational time of solving the master problems and subproblems due to

solution space reduction. The dominance properties presented in Section 4.1 reduce the

size of the model significantly via preprocessing. We can further reduce the size by elim-

inating hubs that cannot be open in an optimal solution. Contreras et al. [35] propose

two reduction tests that eliminate such hubs by using the information obtained during the

inner iterations of the Benders algorithm. In this thesis, we adapt and improve on these

tests for eliminating hubs from H and the associated variables from the model.

The first reduction test is based on the primal information obtained by solving the

LP-relaxation of MP. Let MPe
LP denote the LP-relaxation of MP at iteration e, zeLP its

optimal value, and rci the reduced cost associated with variable yi for i ∈ H. Let LB be

a known lower bound on the optimal value of MP. Since zeLP + rci provides a lower bound

on the optimal value of MP, any hub i ∈ H for which zeLP + rci < LB cannot be open in

any optimal solution. Hence, such hubs and their associated variables in the master and

subproblem can be discarded in subsequent iterations.

The second reduction test relies on eliminating a set of hubs Q ⊂ H that are proved
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to be closed in an optimal solution. Let MPe(Q) denote the MP at iteration e with the

additional constraint
∑

i∈Q yi ≥ 1, and zeMP (Q) its optimal value. Let LB be a lower

bound on the optimal value of MP. Note that MPe(Q) provides a lower bound on the

optimal value of MPe. Hence, if zeMP (Q) < LB, then none of these hubs can be open in

any optimal solution. Therefore, the hubs contained in Q and their associated variables

can be discarded in subsequent iterations.

The performance of this reduction test highly depends on the choice of Q. The hubs

contained in Q should ideally have the least chance of being open in an optimal solution.

Note that it is vital to eliminate potentially non-optimal hubs in the earlier iterations of

the Benders algorithm. To increase the chance of a successful test, we make the following

two modifications on the settings of the second reduction test of Contreras et al. [35].

The first modification addresses the choice of Q. Rather than setting Q = H at the

beginning of the Benders algorithm, we set Q to a certain proportion pQ (e.g., 75%) of

the hubs that are less likely to be open in an optimal solution. A simple greedy way of

identifying such hubs is to sort the hubs in a nondecreasing order of their ratio of fixed

cost (f) to capacity (Γ). At iteration e, we discard from Q the set of hubs opened in the

optimal solution of MP as well as the nodes that satisfy the first reduction test. We then

perform the second reduction test and if it fails, we further remove from Q the open hubs

in the optimal solution of MPe(Q). As the Benders algorithm proceeds, Q may become

empty (either because of successful tests or discarding open hubs), and we must thus reset

Q. This time, rather than greedily sorting the hubs in nondecreasing order of f/Γ, we sort

them in nonincreasing order of the number of times the hubs have been opened in previous

iterations of the Benders algorithm, and select the first pQ of the sorted hubs.

The second modification addresses the weakness of the bound obtained by zeMP (Q).

Rather than running a single test at each iteration, we split Q into a certain number nQ of

(not necessarily mutually exclusive) smaller subsets. We then run a reduction test for each

subset and remove all the nodes in the subset that results in a successful reduction test.

Although this modification requires solving multiple integer programs at each iteration
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of the Benders algorithm, the time required for solving these programs is negligible and

compensated by the improved effectiveness of the resulting tests when proper values of pQ

and nQ are selected. Our computational experiments show that both of these modifications

considerably increase the performance of the second reduction test.

4.2.3 A two-phase method for solving the subproblem

Solving the dual subproblem is the most challenging part of the BD algorithm. Due to

different definition of capacity usage of hubs in our problems, unlike Contreras et al. [37],

we can no longer cast the subproblem (4.13)-(4.16) as a transportation problem. Moreover,

the algorithm may suffer from slow convergence due to weakness of the generated cuts.

Pareto-optimal (PO) cuts (Magnanti and Wong [61]) have been extensively used in

the literature for generating strong optimality cuts. This method relies on solving two

subproblems. In the first problem, the optimal value of the subproblem is calculated. In the

second problem (known as the PO subproblem), using a core point, a PO cut is generated.

By fixing b at specific values, Contreras et al. [37] generate good cuts by approximating

the PO subproblem (Contreras et al. [35]). Because of the structural differences of our

problem, as we will demonstrate via computational experiments, the method proposed by

Contreras et al. [37] does not generate good enough cuts for our problem, or it comes with

a high computational burden. Hence, we seek a method for generating good optimality

cuts with less computational effort.

In this thesis, we propose a method for solving the subproblem in two sequential phases

based on the set of values of the binary variables at which the subproblem is evaluated,

and reduce each phase into simpler problems. Our approach for breaking the subproblem

into two phases is analogous to the idea of approximating the PO cuts. In Phase I, we

obtain the optimal value of the subproblem, whereas in Phase II, we strengthen the cut

while preserving the optimality and feasibility of the solution.

At iteration e of the BD algorithm, we obtain an optimal solution ye from MP. Let
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He
1 = {i : yei = 1} be the set of open hubs and He

0 = {i : yei = 0} be the set of closed

hubs. Moreover, let A1
ke denote the set of distinct potential open hubs of commodity k at

iteration e (i.e., A1
ke = {(i, j) ∈ Ak ∩He

1 ×He
1 : i 6= j}.) Note that any feasible value of bi

and umik would be optimal when i ∈ He
0 . Hence, we can solve the subproblem in two phases.

In Phase I, we remove the variables bi and umik and their corresponding constraints from

DS associated with i ∈ He
0 , and compute the values of the remaining variables by solving

the following Phase I subproblem.

(DS-I) Minimize
∑
k∈K

∑
m∈M

αmk +
∑
i∈He

1

(Γibi +
∑
k∈K

∑
m∈M

umik) (4.21)

s.t. αmk + umik + umjk + wmk (bi + bj) ≥ (rmk − Ĉijk)wmk k ∈ K,m ∈M, (i, j) ∈ A1
ke

(4.22)

αmk + umik + wmk bi ≥ (rmk − Ĉiik)wmk k ∈ K,m ∈M, i ∈ He
1 (4.23)

αmk , u
m
ik, bi ≥ 0 k ∈ K,m ∈M, i ∈ He

1 (4.24)

Note that αmk variables are independent from i, accordingly, solving DS-I results in

obtaining the optimal values of all αmk variables. Hence, in Phase II, we find feasible values

of bi and umik for i ∈ He
0 , k ∈ K,m ∈M with respect to constraints (4.14)-(4.16), aiming to

generate optimality cuts as strong as possible.

Let A0
ke = {(i, j) ∈ Ak∩He

0×He
0 : i 6= j} denote the set of distinct potential closed hub

arcs of commodity k ∈ K at iteration e, and let Hei
1 = {j ∈ He

1 : (i, j) ∈ Ak or (j, i) ∈ Ak}
be the set of open hubs that together with the closed hub i ∈ He

0 form a potential hub arc

for commodity k ∈ K. Updating DS by fixing the value of the computed variables and
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removing the already satisfied constraints, we get the following Phase II subproblem:

(DS-II) Minimize
∑
i∈He

0

(Γibi +
∑
k∈K

∑
m∈M

umik) (4.25)

s.t. umik + umjk + wmk (bi + bj) ≥ ρkmij k ∈ K,m ∈M, (i, j) ∈ A0
ke (4.26)

umik + wmk bi ≥ ρkmii k ∈ K,m ∈M, i ∈ He
0 (4.27)

umik, bi ≥ 0 k ∈ K,m ∈M, i ∈ He
0 (4.28)

where ρkmij = (rmk − Ĉijk)wmk − αmk and

ρkmii = max{max
j∈Hei

1

{(rmk − Ĉijk)wmk − umjk − wmk bj}, (rmk − Ĉiik)wmk } − αmk . (4.29)

We propose two algorithms tailored to the special structure of the Phase II subproblem.

First, we show that DS-II can be viewed as a set of LP-relaxations of maximum weighted

matching problems for a given value of bi for i ∈ He
0 . In the second approach, we show

that Phase II can be solved as a sequence of LP-relaxations of knapsack problems. In the

following sections, we present some theoretical insights and discuss how to solve the two

phases efficiently.

4.2.3.1 Solving the Phase I subproblem

We simplify DS-I (4.21)-(4.24) by showing that umik = 0, for k ∈ K, m ∈M and i ∈ He
1 , in

an optimal solution of DS-I.

Proposition 1. There exists an optimal solution to DS-I, in which umik = 0 for k ∈ K,

m ∈M and i ∈ He
1 .

Proof. For any arbitrary value of b (including the optimal solution) and for each k ∈ K
and m ∈M , DS-I (4.21)-(4.24) can be decomposed into smaller problems of the following

form:
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(DS-I(km)) Minimize αmk +
∑
i∈He

1

umik (4.30)

s.t. αmk + umik + umjk ≥ (rmk − Ĉijk − bi − bj)wmk (i, j) ∈ A1
ke (4.31)

αmk + umik ≥ (rmk − Ĉiik − bi)wmk i ∈ He
1 (4.32)

αmk , u
m
ik ≥ 0 i ∈ He

1 . (4.33)

Define βij = (rmk − Ĉijk − bi − bj)wmk for (i, j) ∈ A1
ke, and βii = (rmk − Ĉiik − bi)wmk for

i ∈ He
1 . Let µij and µii be the dual variables associated with (4.31) and (4.32), respectively,

for (i, j) ∈ A1
ke and i ∈ He

1 . Dual of DS-I(km) can be formulated as:

(Dual DS-I(km)) Maximize
∑
a∈Â1

ke

µaβa (4.34)

s.t.
∑
a∈Â1

ke

µa ≤ 1 (4.35)

∑
a∈Â1

ke
:i∈a

µa ≤ 1 i ∈ He
1 (4.36)

µa ≥ 0 a ∈ Â1
ke (4.37)

where Â1
ke = A1

ke ∪ {(i, i) : i ∈ He
1}. Constraints (4.36) are clearly dominated by (4.35)

for every i ∈ He
1 , thus can be removed entirely from the dual problem. Accordingly, it is

optimal to set the dual variables associated with (4.36) to zero, i.e. umik = 0 for i ∈ He
1 .

The outcome of Proposition 1 is that we can compute the optimal solution of DS-I(km)

and its dual, by using the corollaries stated below:

Corollary 1. In the optimal solution of DS-I(km), αmk = max
a∈Â1

ke

{βa, 0}.

Corollary 2. Let a∗ = arg max
a∈Â1

ke

{βa}, where ties are broken arbitrarily. In the optimal

solution of Dual DS-I(km), µa = 0 for a ∈ Â1
ke \ {a∗}. If βa∗ > 0, then µa∗ = 1, otherwise

µa∗ = 0.
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Consequently, DS-I can be solved using a nested cutting-plane algorithm, where b is

the master problem variable and α is the subproblem variable, and the dual subproblems

are solved using Corollary 2.

4.2.3.2 Solving the Phase II subproblem as maximum weighted matching

problems

For a given vector (bi)i∈He
0
, DS-II can be restated for each k ∈ K and m ∈M as:

(DS-II)(km) Minimize
∑
i∈He

0

umik (4.38)

s.t. umik + umjk ≥ ρkmij − wmk (bi + bj) (i, j) ∈ A0
ke (4.39)

umik ≥ ρkmii − wmk bi i ∈ He
0 (4.40)

umik ≥ 0 i ∈ He
0 . (4.41)

Observe that (4.40) together with (4.41) serve as lower bounds on umik. Define tmik = umik−lb
m
ik,

where lbmik = max{ρkmii − wmk bi, 0}. DS-II(km) can be restated as:

(MWC)(km) Minimize
∑
i∈He

0

tmik (4.42)

s.t. tmik + tmjk ≥ βkmij (i, j) ∈ A0
ke (4.43)

tmik ≥ 0 i ∈ He
0 , (4.44)

where βkmij = ρkmij − wmk (bi + bj) − lbmik − lbmjk for (i, j) ∈ A0
ke. Assume without loss of

generality that βkmij values are nonnegative, otherwise their corresponding constraints can

be dropped. Problem (4.42)-(4.44) is commonly known as the Minimum Weight Cover

(MWC) problem (see e.g. Galil 49), which is the dual of the LP-relaxation of the Maximum

Weighted Matching (MWM) problem in the edge-weighted graph Gkm = (He
0 , A

0
ke), where

edges are weighted according to βkmij .
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LP-relaxation of MWM can be formulated as

(LP-MWM(km)) Maximize
∑
a∈A0

ke

µkma βkma (4.45)

s.t.
∑

a∈A0
ke

:i∈a

µkma ≤ 1 i ∈ He
0 (4.46)

µkma ≥ 0 a ∈ A0
ke, (4.47)

where µkma is the dual variable associated with (4.43) and represents the extent to which

edge a ∈ A0
ke is picked in the MWM. Unlike the LP-relaxation of the MWM problem in gen-

eral graphs, LP-relaxation of the MWM problem in bipartite graphs (MWMB) guarantees

integrality of the solutions. Hence, methods proposed for solving the MWMB can also be

used for solving its LP-relaxation. Below, we show that the MWM problem (4.45)-(4.47)

can be transformed into the MWMB problem in an equivalent sparse bipartite graph.

Define bipartite graph GB
km = (V1, V2, B), where V1 = {v1

i }i∈He
0
, V2 = {v2

i }i∈He
0
, and

B = {(v1
i , v

2
j ) ∈ V1 × V2 : (i, j) ∈ A0

ke}. Let µB be a maximum weighted matching in GB
km,

and let

µkmij =
1

2
(µB(v1i ,v2j ) + µB(v1j ,v2i )) ∀(i, j) ∈ A0

ke. (4.48)

Proposition 2. µkm = (µkmij )(i,j)∈A0
ke

defined in (4.48) is optimal to LP-MWM(km) (4.45)-

(4.47).

Proof. µB being a matching in GB
km requires∑

j∈He
0 :(i,j)∈A0

ke

µB(v1i ,v2j ) ≤ 1 ∀v1
i ∈ V1 (or equivalently i ∈ He

0) (4.49)

∑
j∈He

0 :(i,j)∈A0
ke

µB(v1j ,v2i ) ≤ 1 ∀v2
i ∈ V2 (or equivalently i ∈ He

0). (4.50)

Summing (4.49) and (4.50) and dividing the resulting inequality by 2 yields∑
j∈He

0 :(i,j)∈A0
ke

1

2
(µB(v1i ,v2j ) + µB(v1j ,v2i )) =

∑
j∈He

0 :(i,j)∈A0
ke

µkmij ≤ 1 ∀i ∈ He
0 , (4.51)
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which implies (4.46), hence µkm defined in (4.48) is feasible for LP-MWM(km). Now we

show that µkm is also optimal for LP-MWM(km). By contradiction assume that µkm is

not optimal for LP-MWM(km), hence there exists a solution µ̂km with a strictly higher

total weight. We show that this contradicts with optimality of µB. Define µ̂B as

µ̂B(v1i ,v2j ) = µ̂B(v1j ,v2i ) = µ̂kmij ∀(i, j) ∈ A0
ke. (4.52)

µ̂B clearly satisfies (4.49) and (4.50), hence is a feasible matching for the bipartite graph

GB
km. Moreover, note that∑

(i,j)∈A0
ke

(µ̂B(v1i ,v2j ) + µ̂B(v1j ,v2i )) = 2
∑

(i,j)∈A0
ke

µ̂kmij > 2
∑

(i,j)∈A0
ke

µkmij =
∑

(i,j)∈A0
ke

(µB(v1i ,v2j ) + µB(v1j ,v2i )),

(4.53)

which implies that µ̂B is a better matching than µB, contradicting the optimality of µB.

The optimal solution to MWC(km) (4.42)-(4.44) can be obtained in a similar manner.

Let tB be a minimum weight cover in GB
km, and let

tmik =
1

2
(tBv1i

+ tBv2i
) ∀i ∈ He

0 . (4.54)

Proposition 3. tmk = (tmik)i∈He
0

defined in (4.54) is optimal to MWC(km) (4.42)-(4.44).

Proof. tB being a cover in GB
km implies that

tBv1i
+ tBv2j

≥ βkmij ∀(i, j) ∈ A0
ke (4.55)

tBv1j
+ tBv2i

≥ βkmji ∀(j, i) ∈ A0
ke. (4.56)

Since βkm is symmetric, summing (4.55) and (4.56) and dividing the resulting inequality

by 2 implies (4.43); hence, tmk defined in (4.54) is feasible for MWC(km). Now, by con-

tradiction assume that tmk is not optimal, hence there exists a solution t̂mk with a strictly

lower cover weight. Define t̂B as

t̂Bv1i
= t̂Bv2i

= t̂mik ∀i ∈ He
0 . (4.57)
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t̂B clearly satisfies (4.55) and (4.56), and has a lower cover weight than tB, contradicting

the optimality of tB.

Propositions 2 and 3 indicate that it is enough to find a MWM in bipartite graph GB
km

to solve MWC(km) and LP-MWM(km).

Several algorithms have been proposed for solving the MWMB. (For a review on recent

methods, see, e.g., Burkard et al. 21.) As a byproduct of solving the MWM problem (4.45)-

(4.47), we eventually need to find the optimal value of (4.38)-(4.41). Hence, we adapt a

primal-dual algorithm due to Galil [49], which can be solved in O(an logda/n+1e n), where

n = |He
0 | and a = |A0

km| are the number of nodes and edges, respectively.

The strength of the cut generated using this method depends highly on the value at

which vector (bi)i∈He
0

is fixed. One could simply set bi to zero for i ∈ He
0 , or to the average

of bi in previous iterations of the BD algorithm; however, this will likely result in weak cuts.

Moreover, note that larger values of b result in fewer positive βkma values, thus reducing

the number of edges (i.e. |A0
km|), and consequently the computational time for solving

the MWM problems. In A.1, we explain how proper values of (bi)i∈He
0

can be calculated

efficiently using a relaxation of DS-II.

4.2.3.3 Solving the Phase II subproblem as knapsack problems

At each iteration of the BD algorithm, we obtain a solution y with a set of open/closed

hubs. The open hubs are potentially the ones with desirable properties; e.g., with high

capacity, low installation cost, and/or profitable flows through these hubs. Hence, the most

frequently opened hubs in the preceding iterations of BD are more likely to be opened

again in the subsequent iterations. To strengthen the cut, we must prioritize minimizing

the coefficients of these hubs over the hubs that are less likely to be open. In light of this

observation, solving DS-II at iteration e, we sequentially minimize the coefficient of yi for

one closed hub i ∈ He
0 at a time, in a particular order of He

0 , rather than minimizing the

summation of coefficients of all closed hubs simultaneously.
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Let Oe
i =

∑
h:h≤e

yhi denote the number of times that hub i has been opened prior to or

at iteration e of BD. A higher value of Oe
i implies a higher chance for hub i to be open at

iteration e+ 1. We first solve DS-II (4.25)-(4.28) as if i = arg max
j∈He

0

{Oe
j} is the only hub in

He
0 :

(DS-II(i)) Minimize Γibi +
∑
k∈K

∑
m∈M

umik (4.58)

s.t. umik + wmk bi ≥ ρkmii k ∈ K,m ∈M (4.59)

umik, bi ≥ 0 k ∈ K,m ∈M. (4.60)

Note that since i is assumed to be the only hub in He
0 , constraints (4.26) do not appear

in this model, but will be satisfied by the next closed hubs in the sequence by means of

updating the respective ρkmii values using (4.29).

Upon solving DS-II(i), we obtain the values of all dual variables associated with hub i

(i.e., umik and bi). Consequently, we fix these values, add i to He
1 and remove i from He

0 . We

continue this procedure with the next closed hub i = arg max
j∈He

0

{Oe
j} with ρkmii values updated

according to the new sets He
1 and Hei

1 . We replicate this procedure until values of all dual

variables are computed; i.e., until He
0 becomes empty. An overview of this procedure is

presented in Algorithm 2.

Algorithm 2 Solving DS-II via sequential knapsack problems

1: while (He
0 6= ∅) do

2: i← arg max
j∈He

0

{Oe
j}

3: Compute ρkmii values using (4.29) for the selected i and each k ∈ K and m ∈ M
with respect to the updated He

1 and Hei
1 .

4: SOLVE DS-II(i) and obtain bi and umik for k ∈ K and m ∈M .

5: He
0 ← He

0 \ {i}
6: He

1 ← He
1 ∪ {i}

7: end while
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Observe that DS-II(i) is the dual of the LP-relaxation of a knapsack problem (KP)

with knapsack capacity Γi, and items (k,m) ∈ K ×M with weight wmk and profit ρkmii , as

formulated in (4.61)-(4.63):

(LP-KP(i)) Maximize
∑

(k,m)∈K×M

ρkmii µ
m
k (4.61)

s.t.
∑

(k,m)∈K×M

wmk µ
m
k ≤ Γi (4.62)

0 ≤ µmk ≤ 1 (k,m) ∈ K ×M, (4.63)

where µmk is the dual variable associated with (4.59), and represents the extent to which

item (k,m) ∈ K×M is picked. Note that the items with a non-positive profit (i.e., ρkmii ≤ 0)

can be discarded from the problem. Dantzig [42] showed that the optimal solution to this

problem can be found by filling the knapsack in a non-increasing order of profit-to-weight

ratio ρkmii /w
m
k of the items, until we reach the first item that does not fit into the knapsack.

This item is called the break item (k̄, m̄), which is partially picked according to the residual

capacity. Using the complementary-slackness conditions, it can be verified that the optimal

value of bi is the profit-to-weight ratio of the break item; i.e.,

bi = ρk̄m̄ii /w
m̄
k̄ . (4.64)

Moreover, using (4.59) and (4.60), the optimal value of umik can be calculated by setting

umik = max{ρkmii −wmk bi, 0}. Balas and Zemel [14] showed that the LP-relaxation of knapsack

problem can be solved in O(n), where n = |K||M |, by finding the break item as a weighted

median, rather than by explicitly sorting the items. This implies that the optimal values

of b and u can be found in the same time bound.

4.3 Computational Experiments

We use the well-known Australia Post (AP) dataset to test our models and algorithms.

AP dataset contains postal service data of 200 nodes in Australia and it is the most
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commonly used dataset in hub location literature (Ernst and Krishnamoorthy 46). The

distances (dij) and the postal flow between pairs of nodes (wk) are provided in OR Library,

and a computer code is presented to generate smaller subsets of the data by grouping

cities (Beasley 15). We assume that the demand of commodities are segmented into 3

classes; i.e., |M | = 3, where w1
k = 0.2wk, w

2
k = 0.3wk, and w3

k = 0.5wk. Motivated from

the postal delivery applications, where the price of sending a parcel depends on its size

and the distance between the origin-destination, and also considering revenue elasticity of

demand, the revenue per unit demand is taken to be dependent on the distance, class,

and the amount of commodity to be shipped. Hence, for the revenue from commodity

k ∈ K of class m ∈ M , we generate random values as rmk = γm ck
wmk

, where γ1 ∼ U [50, 60],

γ2 ∼ U [40, 50], and γ3 ∼ U [30, 40]. Collection, transfer, and distribution costs per unit are

taken as χ = 2, α = 0.75, and δ = 3 as defined in the AP dataset (Beasley 15). We test

instances with |N | ∈ {10, 20, 25, 40, 50, 75, 100, 200}.

There are two different sets for installation costs and capacities of hubs available on

the AP dataset referred to as loose and tight. The opening cost of hubs in the instances

with tight (T) installation costs is larger than those with loose (L) installation costs. In

contrast, instances with tight (T) capacities have smaller available capacities compared to

the instances with loose (L) capacities. Hence, there are four instances for a given node

size corresponding to different combinations of installation costs and capacities. We denote

each instance as nfΓ where n is the instance size, f is the installation costs, and Γ is the

capacity.

Computational experiments were carried out on a workstation that contains: Intel

Core i7-3930K 2.61GHz CPU, and 39 GB of RAM. The algorithms were coded in C# and

the time limit was set to 15 hours. The master problems of all versions of the Benders

decomposition algorithms as well as the Phase I subproblems were solved using the callable

library of CPLEX 12.7. We used pQ = 75% and nQ = 6 in all our tests, which are the best

values for the corresponding parameters based on the results provided in Appendix A.2.

We first evaluate the performance and effectiveness of the algorithms proposed in Sec-
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tion 4.2 for the MILP model. We implemented two different versions of Algorithm 1 referred

to as BD1 and BD2, corresponding to different solution strategies of Phase II. In BD1,

Phase II is solved as LP-relaxations of maximum weighted matching problem, whereas in

BD2, Phase II is solved as LP-relaxations of knapsack problem. For comparison, we also

implemented Pareto-optimal cuts (PO), the best known cuts from the literature, to solve

our subproblems. We use the two reduction tests as described in Section 4.2.2 to eliminate

candidate hubs within all of the three algorithms: PO, BD1, and BD2.

The detailed results of the comparison between these Benders algorithms using the AP

instances are provided in Table 4.1. The first column represents the name and size of the

instance. The next four columns labeled “Total time (sec)” present the computational time

of instances (in seconds) obtained from solving the problems to optimality by using CPLEX,

PO, BD1, and BD2, respectively. The next three columns labeled “Iterations” provide the

required number of iterations for the convergence of the algorithms PO, BD1, and BD2,

respectively. The columns labeled “% hubs elim.” present the percentage of the total

candidate hubs eliminated by algorithms PO, BD1, and BD2, respectively. The last two

columns labeled “Optimal solution” indicate the maximum net profit and the locations of

hub nodes, respectively, for the optimal solution found for each of the considered instances.

Whenever an algorithm is not able to solve an instance within the time limit (15 hours of

CPU time) to optimality, we write “Time” in the corresponding entry of the table. If an

algorithm runs out of memory, we write “Mem”.

Our goal of presenting the results of PO in Table 4.1 is to compare the strength of the

cuts generated by BD1 and BD2 with this method. We use the decomposition scheme pro-

posed by Contreras et al. [37] for solving the Pareto-optimal subproblem. In this method,

at iteration e of Algorithm 1, by fixing the value of (bi)i∈He
1

at the optimal values obtained

from the original subproblem, and by setting (bi)i∈He
0

to zero, they decompose the PO

subproblem into |K| (here |K||M |) independent problems. These problems can be solved

using an LP solver, however, as Contreras et al. [35] argue, for computational tractability,

they sacrifice the strength of the cuts by solving the resulting problems via an approxi-

mation technique. Since our goal of implementing PO method is to compare the strength
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Table 4.1: Comparison of Benders reformulations and CPLEX with the AP dataset.

Total time (sec) Iterations % hubs elim. Optimal solution

|N | CPLEX PO BD1 BD2 PO BD1 BD2 PO BD1 BD2 Profit Open hubs

10LL 1.02 1.37 0.13 0.01 7 4 4 50.0 60.0 60.0 20,417 5,6,9,10

10LT 0.89 0.94 0.03 0.01 5 4 4 60.0 80.0 80.0 3,336 5

10TL 1.00 0.81 0.03 0.07 9 6 6 50.0 60.0 60.0 13,488 5,9

10TT 1.16 0.26 0.03 0.03 4 3 3 80.0 90.0 90.0 2,682 5

20LL 9.64 35.64 1.70 2.11 51 11 11 70.0 65.0 80.0 100,443 7,9,10,19

20LT 11.38 45.26 0.97 1.34 60 7 7 65.0 65.0 65.0 57,139 5,10,12,14,19

20TL 10.34 21.52 0.84 0.99 37 9 9 75.0 80.0 85.0 49,559 5,7,10

20TT 6.17 4.51 0.22 0.29 11 3 3 70.0 95.0 95.0 10,135 10

25LL 15.42 68.03 7.91 6.31 48 18 18 76.0 72.0 72.0 125,390 7,14,17,23

25LT 12.82 157.51 3.27 2.35 93 7 7 68.0 72.0 72.0 88,022 6,9,10,12,14,25

25TL 14.21 53.80 2.12 2.09 40 9 9 76.0 72.0 72.0 76,933 6,9,14,23

25TT 12.30 100.76 2.02 1.92 71 10 10 80.0 76.0 76.0 35,121 6,10,14,25

40LL 79.23 261.31 52.57 42.47 48 64 58 70.0 82.5 85.0 76,995 12,22,26,29

40LT 83.18 623.02 39.58 28.93 66 42 38 82.5 82.5 82.5 66,860 12,14,26,29,30,38

40TL 41.25 71.96 9.53 5.26 13 14 11 85.0 82.5 82.5 62,960 14,19,29

40TT 39.21 209.68 6.80 5.49 24 11 11 87.5 82.5 90.0 49,938 14,19,25,38

50LL 142.18 466.78 64.34 39.92 49 42 38 76.0 88.0 86.0 73,054 15,28,33,35

50LT 138.98 666.23 33.69 26.67 24 19 17 76.0 86.0 82.0 68,904 6,26,32,46

50TL 115.73 188.11 11.01 8.06 14 11 13 88.0 88.0 88.0 54,009 3,26,45

50TT 105.01 303.43 7.42 5.23 20 7 7 88.0 88.0 92.0 45,506 17,26,48

75LL Mem 8,979.00 525.81 387.66 111 105 88 85.3 89.3 86.7 142,551 14,23,35,37,56

75LT Mem 8,327.27 137.00 87.58 73 23 15 90.7 92.0 90.7 110,194 14,25,32,35,38,59

75TL Mem 3,918.76 69.85 71.12 26 13 13 92.0 92.0 96.0 89,562 14,35,37

75TT Mem 4,986.99 42.92 33.84 36 12 11 93.3 90.7 90.7 81,697 25,32,38,59

100LL Mem 32,872.67 904.00 665.94 58 53 54 94.0 94.0 94.0 1,777,224 29,55,64,73

100LT Mem Time 1,078.75 684.20 - 63 56 - 92.0 92.0 1,775,001 29,44,54,68,96

100TL Mem 4,236.89 87.64 76.50 13 12 13 94.0 93.0 95.0 1,724,826 5,52,95

100TT Mem 6,743.21 156.57 159.85 13 13 13 95.0 93.0 93.0 1,712,163 5,34,44,52,95

200LL Mem Time 11,435.00 6,430.31 - 40 39 - 96.0 96.0 1,102,073 43,95,159

200LT Mem Time 12,404.83 7,120.03 - 53 46 - 95.0 95.5 1,087,014 41,96,168,171

200TL Mem Time 953.94 879.52 - 12 12 - 97.5 97.5 1,068,431 54,95,186

200TT Mem Time 783.13 673.33 - 6 6 - 97.5 97.5 1,055,760 52,54,115,168,186
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of the resulting cuts with our proposed methods, after decomposing the PO subproblem

into |K||M | independent problems, rather than employing the approximation technique,

we solve the dual of the resulting problems using the CPLEX LP solver. Note that the

number of iterations cannot be reduced by the approximation algorithm, hence the num-

ber of iterations of PO as presented in Table 4.1 provides a lower bound on the number of

iterations that we would obtain using the approximation technique proposed by Contreras

et al. [35].

Table 4.1 shows that both algorithms BD1 and BD2 outperform CPLEX in terms of

computational time and the number of instances solved to optimality. Additionally, the

results of Table 1 clearly indicate that our algorithms (BD1 and BD2) outperform PO,

with the only exception of instance 40LL.

Each of the Benders algorithms proposed in this thesis is able to solve all considered

instances to optimality within an hour of CPU time, with the exception of instances 200LL

and 200LT, which take approximately 3.3 hours for BD1 and 1.9 hours for BD2, respec-

tively. The columns % hubs elim. show that a large percentage of candidate hubs can

be eliminated by variable fixing. The columns Total time (sec) and Iterations indicate

that the convergence of the Benders algorithm is improved by solving Phase II as LP-

relaxations of knapsack problem, especially for the larger size instances. This implies that

BD2 outperforms BD1; hence, we use BD2 for the rest of the computational experiments.

Table 4.1 also shows the locations of installed hubs in optimal solutions, where the

optimal number of hubs to locate varies between one and six. It seems that, in these

particular instances, the number of installed hubs does not depend on the size of the

instance; it is rather more dependent on hub installation costs and capacities. For example,

in the instances with tight installation costs and loose capacities, the problem tends to

result in locating fewer hubs.

In Table 4.2, we observe the percentages of satisfied demand from different market seg-

ments. The averages for each demand class are calculated over instances from Table 4.1

with the same type of installation costs and capacities. The last column provides the aver-
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Table 4.2: Percentage of total demand satisfied for each demand class.

Instance

type

Demand class
Average

1 2 3

LL 98.32% 94.58% 71.74% 88.21%

LT 98.32% 87.95% 55.83% 80.70%

TL 98.32% 93.45% 59.99% 83.92%

TT 93.00% 75.45% 39.64% 69.37%

age percentages of total satisfied demand. Among the three demand classes, the first class

is the one with the highest percentages of satisfied demand, as serving this class of demand

yields the highest revenue. On the other hand, for the instances with the same configu-

ration of hub installation costs and capacities, the third demand class, having the least

revenues, has the least percentages of satisfied demand as expected. Moreover, instances

with loose capacities (LL and TL) result in higher percentages on average compared to the

instances with tight capacities (LT and TT).

To better understand the performance of the proposed algorithms from a computational

point of view, we also present computational results with larger-size instances introduced

by Contreras et al. [35], and later extended by Contreras et al. [37]. There are three

different sets of instances, referred as Set I, Set II, and Set III, which are constructed

by considering three different levels of magnitude for the amount of flow originating at a

given node: low-level (LL) nodes, medium-level (ML) nodes, and high-level (HL) nodes.

The total outgoing flow of LL, ML and HL nodes are obtained from the interval [1,10],

[10,100], and [100,1000], respectively. Capacities of hubs are generated by using the formula

provided in Ebery et al. [44] in which parameter ρ is taken to be 0.5 and 1.5 for the loose

(L) and tight (T) types of capacities, respectively. The other sets of parameters are as

described in the beginning of Section 4.3. For Sets I, II, and III, we test instances with

|N | ∈ {50, 100, 150, 200, 250, 300}. The detailed results are provided in Table 4.3 where

the column titles have the same meanings as in the previous table.
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Table 4.3: Computational results using BD2 with Sets I, II, and III instances.

Instance Total time (sec) Iterations % hubs elim. Profit #open hubs

Set I

50L 22.30 31 88.0 21,765 6

50T 15.49 19 90.0 16,943 4

100L 45.43 36 94.0 30,273 4

100T 50.18 23 95.0 30,215 4

150L 648.31 65 93.3 77,667 7

150T 523.05 25 94.7 74,952 6

200L 1,734.22 30 96.0 155,097 8

200T 3,160.84 33 95.5 144,874 7

250L 19,441.16 69 96.0 325,657 9

250T 4,861.76 37 97.2 181,027 5

300L 20,132.06 75 96.0 388,322 11

300T 14,885.61 52 97.7 188,944 6

Set II

50L 64.29 35 88.0 85,327 6

50T 50.78 27 86.0 60,174 5

100L 224.41 48 92.0 201,451 7

100T 448.40 58 90.0 199,819 8

150L 3,785.39 121 91.3 458,915 12

150T 2,904.36 38 92.7 438,771 9

200L 1,442.94 25 95.0 236,247 8

200T 3,556.37 21 94.5 216,241 9

250L 10,414.33 62 95.2 437,819 11

250T 5,589.51 47 96.0 354,688 10

300L 17,367.18 68 96.0 1,532,224 10

300T 16,399.61 49 97.0 986,373 7

Set III

50L 32.50 37 88.0 19,037 5

50T 19.93 32 90.0 16,353 5

100L 736.18 21 88.0 511,879 9

100T 530.51 16 91.0 39,672 7

150L 5,945.02 28 91.3 129,155 12

150T 5,327.03 27 92.7 964,137 9

200L 7,920.45 49 90.0 144,503 15

200T 6,738.52 45 93.5 103,987 11

250L 12,166.41 41 92.8 992,585 16

250T 11,057.31 32 95.2 710,562 11

300L 22,565.61 39 93.3 1,004,591 17

300T 18,349.47 34 95.0 903,773 14
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All of the instances presented in Table 4.3 from Sets I, II, and III are solved to optimal-

ity. The most time-consuming instance in Sets I, II, and III took around 6, 5, and 6 hours,

respectively, to solve to optimality. The averages of the computational times reported in

Table 4.3 for the Sets I, II, and III are 1.5, 1.4, and 2.1 hours, respectively.

Table 4.4: Computational results of Sets I and II instances with |N | ∈ {350, 400, 500}.

Instance Total time (sec) Iterations % hubs elim. Profit #open hubs

Set I

350L 28,118.49 19 96.9 188,759 11

350T 21,881.74 15 97.7 147,501 7

400L 43,942.63 16 97.0 248,458 12

400T 35,763.21 14 97.5 186,239 9

500L 83,149.54 15 95.4 1,137,769 23

500T 54,731.43 11 97.0 821,439 14

Set II

350L 31,025.56 31 95.7 682,514 15

350T 23,149.81 26 96.6 530,697 11

400L 40,209.23 29 95.3 852,627 19

400T 33,195.23 22 95.3 671,734 13

500L Time 17 71.8 965,113 25

500T 82,296.42 14 96.6 583,129 17

Lastly, we present additional runs from Sets I and II with |N | ∈ {350, 400, 500} to

analyze the limit of our algorithm. We have extended the CPU time limit to 24 hours for

these instances. The results are presented in Table 4.4. Our algorithm is able to solve

all of the instances to optimality within the time limit, except for the instance 500L in

Set II. That particular instance resulted in an optimality gap of 2.52%. These results

further confirm the efficiency and robustness of the BD2 algorithm when considering more

challenging and larger-size instances.
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4.4 Conclusion

In this chapter, we defined the profit maximizing hub location problem with capacity allo-

cation by incorporating revenue management decisions, and embedding more realistic and

challenging capacity constraints for hubs. We presented a strong path-based mixed integer

programming formulation of the problem. We described two Benders-based algorithms to

solve large-scale instances of the problem by developing a new decomposition methodology

for solving the Benders subproblems. We proved that the subproblems can be viewed as

a set of LP-relaxations of maximum weighted matching problems (BD1), or as a series

of LP-relaxations of knapsack problems (BD2). We further enhanced the algorithms by

incorporating improved variable fixing techniques.

We performed extensive computational experiments on the well-known AP dataset, and

also on larger-size instances from the literature, to analyze the performance of the proposed

algorithms. In view of our computational results, both algorithms outperform the best

known cuts (Pareto-optimal cuts), in terms of computational efficiency and also quality.

The results further show that BD2 outperforms BD1 particularly on larger instances. BD2

succeeded to optimally solve instances with up to 500 nodes and 750,000 commodities of

different demand classes. These results clearly confirm the efficiency and robustness of our

algorithms.
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Chapter 5

Profit Maximizing Hub Location

Problems Under Uncertainty

Profit maximizing hub location problems are network design problems involving strategic

decisions. In strategic planning, decisions need to be held for a considerable time frame.

During this time, in real world, many unpredictable causes may lead to changes in operating

conditions. For example, the amount of demand may be greater or smaller than its expected

value. Changes may also occur in the amount of revenue obtained from the satisfied demand

due to some unpredictable variations in a competitive environment. In these conditions,

solving a deterministic model may result in wrong and costly decisions. Hence, taking

uncertainty into account in the decision process is a necessity. To provide more reliable

models, we consider two typical sources of uncertainty in profit maximizing HLPs with

capacity allocation. We assume that demand of commodities and revenues are not precisely

known and the optimal decisions have to be anticipated under uncertainty.

Optimization under uncertainty generally consists of two streams of research: stochastic

and robust optimization. In stochastic optimization, there are some known probability

distributions describing the behavior of uncertain parameters and these distributions can

be used to optimize the expected value of the objective function. In robust optimization, on
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the other hand, no probabilistic information is available for the uncertain parameters. In

this case, uncertainty can be described by using a finite set of scenarios or can be modeled

assuming that the values of the uncertain parameters can change within predefined intervals

(for more information on robust optimization see, e.g., Bertsimas and Sim [18], Ben-Tal

et al. [16], Bertsimas et al. [17], Gabrel et al. [48], and Correia and Saldanha-da Gama

[40]).

In this chapter, we consider two sources of uncertainty: demand and revenue. Because

of the availability of historical data, we assume that demand is described by a known

probability distribution. On the other hand, since revenue might be affected by unpre-

dictable external sources (e.g., economical conditions or competition) and historical data

cannot effectively describe such variations, it may not make sense to assume a probability

distribution for the revenue describing its behavior. Hence, we use robust optimization

techniques to incorporate uncertain revenues into the problem by considering both interval

representation and discrete scenarios. Modeling profit maximizing hub location problems

using both robust and stochastic optimization techniques surely brings on extra computa-

tional challenges, yet we believe this is a much more realistic problem setting with respect

to information availability.

We first incorporate demand uncertainty into the problem and develop a two-stage

stochastic program considering stochastic demand. The first stage decision is the location

of hubs, while the assignment of demand nodes to hubs, optimal routes of flows, and

capacity allocation decisions are made in the second stage. We then model the robust-

stochastic problem when there is uncertainty associated with revenues under stochastic

demand.

To incorporate uncertain revenues into the problem, we first propose a robust-stochastic

model by taking interval uncertainty into account for revenues using the max-min criterion

with a budget of uncertainty. The max-min criterion maximizes profit under the worst

case scenario. Then, we propose a min-max regret stochastic model by considering a

finite set of scenarios that describe uncertainty associated with the revenues. With the
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min-max regret criterion, the decision maker decides based on the regret (or opportunity

loss) from not selecting the best strategy. Both max-min and min-max regret criteria fit

a conservative decision maker approach (Aissi et al. [2]). We model both approaches to

empirically show the level of robustness and conservatism of each metric in addressing the

uncertainty associated with revenues.

We develop exact algorithms based on Benders decomposition coupled with a sample

average approximation (SAA) scheme to solve the problems with a continuous demand

distribution and an infinite number of scenarios. Inspired by the repetitive nature of

SAA, we additionally propose novel acceleration techniques to enhance the convergence

of the algorithms. We assess the efficiency of the proposed algorithms through extensive

computational experiments. Furthermore, we investigate the effects of uncertainty under

different settings on optimal hub networks and empirically evaluate the quality of the

solutions obtained from different modeling approaches under various parameter settings.

The outline of this chapter is organized as follows. In Section 5.1, we define the problem

and introduce the notation. In Section 5.2, we present a two-stage stochastic program of

the problem, propose an SAA algorithm coupled with Benders decomposition, and pro-

vide computational experiments. Section 5.3 presents mathematical formulations for the

robust-stochastic versions of the problem, solution schemes for these models, and computa-

tional experiments to evaluate the quality of the solutions obtained from different modeling

approaches. Finally, Section 5.4 provides concluding remarks.

5.1 Problem Definition

We consider a directed complete graph G = (N,A), where N is the set of nodes and A is

the set of arcs representing possible direct links between the nodes. We allow the arc set

A to have both an ordered set and a self-loop by defining {a1, a2} if |a| = 2, and {a1} if

|a| = 1, respectively. We denote the set of potential hub locations by H ⊆ N and assume

that there is an installation cost as well as an available capacity for a hub located at node
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i ∈ H denoted by fi and Γi, respectively.

There is demand for a set of commodities denoted by K ⊆ N × N . Each k ∈ K

indicates an O-D pair whose origin and destination points belong to N . The demand for

commodities are stochastic and segmented into M classes. Let wmk (ξ) be the random vari-

ables representing the future demand for commodity k ∈ K of class m ∈ M to be routed

from origin o(k) ∈ N to destination d(k) ∈ N . We assume that demands of different

commodities are independent random variables associated with a known probability dis-

tribution, while different demand classes of each commodity are dependent and correlated.

A per unit revenue, denoted by rmk , is obtained from satisfying a unit commodity k ∈ K
of class m ∈M .

Each arc has a transportation cost defined as cij = γdij, where dij represents the

distance between nodes i ∈ N and j ∈ N and γ is the resource cost per unit distance. We

assume that distances satisfy the triangle inequality, and thus every path between an origin

o(k) and a destination d(k) will contain at least one and at most two hubs represented by

(o(k), i, j, d(k)), where (i, j) ∈ H × H is the ordered pair of hubs. Accordingly, the unit

transportation cost of routing commodity k along path (o(k), i, j, d(k)) is expressed as

Cijk = χco(k)i + αcij + δcjd(k), where χ, α, δ are the collection, transfer, and distribution

costs along the path. To reflect economies of scale between hubs, we assume that α < χ

and α < δ.

Note that in any optimal solution, every commodity k ∈ K uses at most one of the

paths o(k), i, j, d(k) and o(k), j, i, d(k); the one with the lower transportation cost. This

property can be used to reduce the size of the mathematical formulations. Accordingly,

we replace Cijk with Ĉijk = min{Cijk, Cjik}, and reduce the set of candidate hub arcs for

commodity k ∈ K to Ak by defining Ak = {(i, j) ∈ A : i ≤ j, Ĉijk ≤ min{Ciik, Cjjk}}.
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5.2 Stochastic Model

We now model the problem with uncertain demand assuming that the uncertainty asso-

ciated with demands is described by a known probability distribution. If Eξ denotes the

expectation with respect to ξ, and Ξ the support of ξ, then the profit maximizing hub

location problem with capacity allocation and stochastic demand can be modeled as:

Maximize Eξ[ ∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmk (ξ)xmak(ξ)]−
∑
i∈H

fiyi (5.1)

s.t.
∑
a∈Ak

xmak(ξ) ≤ 1 k ∈ K,m ∈M, ξ ∈ Ξ (5.2)

∑
a∈Ak:i∈a

xmak(ξ) ≤ yi i ∈ H, k ∈ K,m ∈M, ξ ∈ Ξ

(5.3)∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk (ξ)xmak(ξ) ≤ Γiyi i ∈ H, ξ ∈ Ξ (5.4)

xmak(ξ) ≥ 0 k ∈ K,m ∈M,a ∈ Ak, ξ ∈ Ξ

(5.5)

yi ∈ {0, 1} i ∈ H. (5.6)

The above model forms a two-stage stochastic program. The first stage problem corre-

sponds to strategic hub location decisions. These long-term decisions will not be influenced

by demand variations, accordingly, the variables yi become known in this stage. However,

the allocation decisions and the optimal routes of flows through the network, as well as

the decision on how much of total capacity should be allocated to demand from different

classes, do vary in response to the change of demand and, thus, are influenced by the

stochastic demand. These tactical decisions are determined in the second stage depending

on the particular realization of the random vector ξ ∈ Ξ. Accordingly, the variables xmak

become known in the second stage.
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The objective function (5.1) contains a deterministic term which calculates the instal-

lation cost of the hubs, and the expectation of the second stage objective which calculates

the expected value of revenue and transportation cost. Constraints (5.2) ensure that if the

demand of commodity is to be satisfied, the flow should be routed via hubs. Constraints

(5.3) prevent the demand of commodities to be satisfied through non-hubs nodes. Con-

straints (5.4) model capacity restriction on the total incoming flow at a hub. Note that

constraints (5.2) and (5.4) imply constraints (5.3); however, we keep these in the model

to have a stronger formulation. Finally, constraints (5.5)-(5.6) represent the non-negative

and binary variables.

5.2.1 Solution scheme for the stochastic model

In this section, we present an algorithm to solve the profit maximizing hub location problem

with capacity allocation and stochastic demand. The methodology integrates a sampling

technique, named as sample average approximation (SAA) algorithm (the reader may refer

to Shapiro and Homem-de Mello [90], Mak et al. [63], Kleywegt et al. [57]) with the Benders

decomposition algorithm detailed in Sections 5.2.1.1 and 5.2.1.2.

5.2.1.1 Sample Average Approximation

SAA is a Monte Carlo simulation based approach to stochastic discrete optimization prob-

lems. The main idea of this method is to reduce the size of the problem by generating

a random sample and approximating the expected value of the corresponding sample av-

erage function. The sample average optimization problem is then solved (using the BD

algorithm in our case), and the procedure is repeated. The SAA scheme has previously

been applied to stochastic supply chain design as well as hub location problems with a

large number of scenarios (see, e.g., Santoso et al. [85], Schütz et al. [88], Contreras et al.

[36], and Adulyasak et al. [1]).

The main challenge in solving the stochastic problem (5.1)-(5.6) is the evaluation of the
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expected value of the objective function (Kleywegt et al. [57]). To deal with this problem,

we use a SAA scheme in which a random sample of realizations of the random vector n ∈ N
is generated, and the second-stage expectation

Eξ[∑m∈M
∑

k∈K
∑

a∈Ak(r
m
k − Ĉak)wmk (ξ)xmak(ξ)]

is approximated by the sample average function

1
|N |

∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak(r

m
k − Ĉak)wmnk xmnak ,

where wmnk and xmnak denote the amount of commodity k ∈ K of class m ∈M to be shipped

from origin o(k) ∈ N to destination d(k) ∈ N under sample n ∈ N , and the fraction of

commodity k ∈ K of class m ∈M that is satisfied through a hub link a ∈ Ak under scenario

n ∈ N , respectively. Accordingly, the approximated form of the stochastic problem by the

SAA algorithm is modeled as:

Maximize
1

|N |
∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmnk xmnak −
∑
i∈H

fiyi (5.7)

s.t.
∑
a∈Ak

xmnak ≤ 1 k ∈ K,m ∈M,n ∈ N (5.8)

∑
a∈Ak:i∈a

xmnak ≤ yi i ∈ H, k ∈ K,m ∈M,n ∈ N

(5.9)∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk x
mn
ak ≤ Γiyi i ∈ H,n ∈ N (5.10)

xmnak ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N
(5.11)

yi ∈ {0, 1} i ∈ H. (5.12)

Hereafter, we use the above approximated model (5.7)-(5.12) as the mathematical model

for the profit maximizing hub location problem with capacity allocation and stochastic

demand.
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The optimal solution and the optimal value of the SAA problem (5.7)-(5.12) converge

with probability one to their true counterpart (5.1)-(5.6) as the sample size increases (Kley-

wegt et al. [57]). Assuming that the SAA problem is solved within an optimality gap of

δ > 0, and by letting ε > δ and α ∈ (0, 1), then a sample size of

|N | ≥ 3σ2
max

(ε− δ)2
log(
|Y |
α

) (5.13)

guarantees that the SAA solution is an ε-optimal solution to the true problem with a

probability of at least 1 − α, where σ2
max is the maximal variance of certain function

differences (the readers may refer to Kleywegt et al. [57] for details).

To choose N in practice, one should take into account the trade-off between the quality

of the solution obtained from the SAA problem and the computational time required

to solve it. Hence, it can be more efficient to solve the SAA problem (5.7)-(5.12) with

independent samples repeatedly rather than increasing the sample sizeN . We now describe

our procedure:

1. Generate M independent samples each of size N ; i.e., ξ1
j , . . . , ξ

|N |
j , for j ∈ M and

solve the corresponding SAA problem (5.7)-(5.12) for each sample Nj to optimality

employing the BD algorithm detailed in Section 5.2.1.2. Let VNj and ŷNj , j ∈ M,

be the corresponding optimal objective value and an optimal solution, respectively.

2. Calculate the average of all optimal solution values from the SAA problems and their

variance:

V̄NM = 1
|M|

∑
j∈M
VNj

σ2
V̄NM

= 1
(|M|−1)|M|

∑
j∈M

(VNj − V̄NM)2

The expected value of V̄NM provides an upper statistical bound for the optimal value

of the original problem, and σ2
V̄NM

is an estimate of the variance of this estimator.
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3. Pick a feasible solution ŷ ∈ Y for problem (5.1)-(5.6), for example, use one of the

previously computed solutions ŷNj . Estimate the objective function value of the

original problem by using this solution as follows:

VN ′(ŷ) = 1
|N ′|[

∑
k∈K

∑
a∈Ak

∑
m∈M

(rmk − Ĉak)wmnk xmnak ]− ∑
i∈H

fiŷi

where ξ1
j , . . . , ξ

|N ′| is a sample of size N ′ generated independently of the samples

used in the SAA problems. Note that since the first-stage variables are fixed, one

can take much larger number of scenarios for |N ′| than the sample size |N | used

to solve the SAA problems. The estimator VN ′(ŷ) serves as a lower bound on the

optimal objective function value. We can estimate the variance of VN ′(ŷ) as follows:

σ2
N ′(ŷ) = 1

(|N ′|−1)|N ′|
∑
n∈N ′
([

∑
k∈K

∑
a∈Ak

∑
m∈M

(rmk − Ĉak)wmnk xmnak ]−
∑
i∈H

fiŷi − VN ′(ŷ))
2

4. Calculate the estimators for the optimality gap and its variance. Employing the

estimators computed in steps 2 and 3, we get:

gapN ,M,N ′(ŷ) = V̄NM − VN ′(ŷ)

σ2
gap = σ2

V̄NM
+ σ2

N ′(ŷ)

We can then use these estimators to construct a confidence interval for the optimality

gap.

5.2.1.2 Benders Decomposition for the SAA Problem

In this section, we present a Benders decomposition algorithm coupled with SAA to solve

the profit maximizing hub location problem with capacity allocation and stochastic de-

mand. By approximating the second-stage expectation via the sample average function as

described in the previous section, the stochastic problem can be formulated as (5.7)-(5.12).
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At each replication of the sample average optimization problem, we solve the SAA

counterpart of the problem (5.1)-(5.6) using a Benders decomposition algorithm. As ex-

plained in previous chapters, BD is based on the premise that for fixed values of integer

variables, the resulting problem, known as the primal subproblem, is relatively easier to

solve compared to the original problem. In BD, the problem is reformulated based on the

information inferred from the dual space of the continuous variables. The equivalent refor-

mulation, known as the master problem, contains the integer variables and exponentially

many constraints corresponding to the dual variables. Therefore, MP is usually solved

using a cutting-plane method, where relaxations of MP are iteratively solved until the

optimal solution is obtained.

We assume that the hub location decisions are handled in the master problem, while

the rest is left to the subproblem. For a given sample N and fixed value of the integer

variables yi = yei , the primal subproblem PS(N ) reads as

PS(N ) Maximize
1

|N |
∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmnk xmnak (5.14)

s.t.
∑
a∈Ak

xmnak ≤ 1 k ∈ K,m ∈M,n ∈ N (5.15)

∑
a∈Ak:i∈a

xmnak ≤ yei i ∈ H, k ∈ K,m ∈M,n ∈ N

(5.16)∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmnk xmnak ≤ Γiy
e
i i ∈ H,n ∈ N (5.17)

xmnak ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N .
(5.18)

Observe that PS(N ) can be decomposed into |N | independent subproblems of the form

PS (4.8)-(4.12) for each n ∈ N . Consequently, the dual subproblem associated with each n

can be formulated as DS (4.13)-(4.16) and solved using the techniques proposed in Section

4.2.3. In the following, we denote the DS under scenario n ∈ N by DS(N , n), in which wmk

is replaced with wmnk , for each k ∈ K and m ∈M .

Let P̂ n
N for n ∈ N denote the set of extreme points of the polyhedron defined by feasible
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region of DS(N , n). The master problem can then be stated as

MP(N ) Maximize
1

|N |
∑
n∈N

ηn −
∑
i∈H

fiyi (5.19)

s.t. ηn ≤
∑
k∈K

∑
m∈M

αmnk +
∑
i∈H

yi(Γib
n
i +

∑
k∈K

∑
m∈M

umnik ) n ∈ N , (αn, un, bn) ∈ P̂nN

(5.20)

yi ∈ {0, 1} i ∈ H (5.21)

This problem contains an exponential number of constraints, which can be tackled by

employing a cutting plane method, where a sequence of relaxed master problems and dual

subproblems are solved, until the optimal solution is found.

5.2.1.3 Acceleration Techniques for the SAA Problem

The variable fixing techniques presented in Section 4.2.2 can be applied to each sample

of the stochastic model. We further enhance the convergence of our SAA algorithm as

detailed below.

Because of the repetitive structure of the SAA algorithm, we must solve |M| replications

of problem (5.7)-(5.12). Consequently, upon solving MP(N̂ ) for a specific sample N̂ , we

obtain dual solutions (α̂n̂, ûn̂, b̂n̂) ∈ P̂ n̂
N̂ for each n̂ ∈ N̂ . Now, assume that we want to

solve MP(N ) for a different sample N . Solving MP(N ) with initially empty P̂ n
N sets would

disregard the fact that the optimal solution of MP(N̂ ) is potentially a near-optimal solution

to MP(N ). We can exploit this property and retrieve feasible solutions (αn, un, bn) ∈ P̂ n
N

for scenario n of sample N from the solutions contained in P̂ n̂
N̂ for n̂ ∈ N̂ .

Given a feasible solution for DS(N̂ , n̂), the following proposition provides a feasible

solution for DS(N , n).

Proposition 4. Let (α̂n̂, ûn̂, b̂n̂) ∈ P̂ n̂
N̂ be a feasible solution for DS(N̂ , n̂), and ŵmn̂k be the

demand for commodity k ∈ K of class m ∈ M under scenario n̂ ∈ N̂ . (αn, un, bn) defined
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by (5.22)-(5.24) is feasible for DS(N , n):

bni = b̂n̂i i ∈ H (5.22)

αmnk =
wmnk
ŵmn̂k

α̂mn̂k k ∈ K,m ∈M (5.23)

umnik =
wmnk
ŵmn̂k

ûmn̂ik k ∈ K,m ∈M, i ∈ H (5.24)

Corollary 3. The solution obtained by (5.22)-(5.24) provides a valid cut for MP(N ).

Note that for a given scenario n ∈ N , each scenario n̂ ∈ N̂ can provide a valid cut

for MP(N ). To avoid adding too many cuts, we select and add the best potential cut,

which belongs to scenario n̂∗ ∈ N̂ with the least demand deviation from the demand under

scenario n ∈ N , i.e.

n̂∗ = arg min
n̂∈N̂

 ∑
(k,m)∈K×M

|wmn̂k − wmnk |

 . (5.25)

It should, however, be noted that when generating valid cuts from sample N̂ for sample

N , both instances should have the same set of hubs. In other words, if in the process of

solving MP(N̂ ), we eliminate a number of hubs via variable fixing, we will not calculate the

dual variables associated with the eliminated hubs, hence the incomplete solution obtained

by (5.22)-(5.24) may not provide a valid cut for MP(N ). To tackle this problem, we solve

the first sample of the SAA algorithm without using any variable fixing to ensure that the

resulting cuts can be used for the subsequent samples of SAA. Once these solutions are

obtained, we add the respective cuts obtained from the first sample to the master problem

of the subsequent samples and continue with performing variable fixing as introduced in

Section 4.2.2.

5.2.2 Computational results for the stochastic model

To perform computational experiments with the stochastic model, we use the same pa-

rameter setting and the same workstation as detailed in Section 4.3. We use instances
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with |N | ∈ {10, 20, 25, 40, 50, 75} and set the time limit to 24 hours. We first focus on

the practical convergence of the SAA scheme using the stochastic model, we then test the

performance of our methods on the instances involving up to 75 nodes.

5.2.2.1 Sample generation

We generate independent samples for demands of commodities using a normal distribution

parameterized as follows: Let w̄mk be the demand of commodity k of class m in the deter-

ministic case. Moreover, let w̄k =
∑

m∈M w̄mk be the total demand of commodity k, and

ρkm =
w̄mk
w̄k

be the proportion of demand of segment m of commodity k. We assume that the

total demand of k (i.e. wk) is drawn from a normal distribution in which the mean demand

is set to w̄k and the standard deviation is equal to σk = νw̄k, where ν is the coefficient of

variation. Consequently, once the total demand of commodity k is realized, the correlated

demand of class m is computed as wmk = ρkmwk.

5.2.2.2 Practical convergence of the SAA algorithm

The aim of this section is to analyze the practical convergence of the SAA scheme in

order to choose a sample size |N | and the number of replications |M| that provide the

best trade-off between solution quality and computational time. To this end, we perform

computational tests with sample sizes |N | ∈ {50, 100, 500, 1000} and a number of replica-

tions |M| ∈ {10, 20, 40, 60, 80}. We select two 10-node instances of the AP dataset and

generate independent samples as explained above, with ν set to 0.5. The sample size of

|N ′| = 10, 000 is used to evaluate the SAA gap.

Figures 5.1 and 5.2 plot the optimality gap, standard deviation for the optimality gap,

and the computational time required for the SAA algorithm for different sample sizes |N |
and |M|, with AP10LL and AP10TL, respectively. Figures 1(a) and 2(a) clearly indicate

that larger sample size result in smaller optimality gap on average. It is also observed

that as the sample sizes |N | and |M| increase, the corresponding standard deviation for
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the optimality gap decreases (Figures 1b and 2b), whereas the corresponding computation

time increases significantly (Figures 1c and 2c), for both AP10LL and AP10TL instances.

In general, the largest sample size |N | = 1000 provides the best average SAA gap with the

least variation, and the sample size |N | = 50 is the best in terms of the trade-off between

solution quality and computational time. For this reason, we use sample sizes |N | = 50

and |M| = 60 during the rest of our computational experiments.

Figure 5.1: Optimality gap, standard deviation for the optimality gap, and the total CPU

time required for the SAA algorithm for different sample sizes |N | and |M| with AP10LL.
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Figure 5.2: Optimality gap, standard deviation for the optimality gap, and the total CPU

time required for the SAA algorithm for different sample sizes |N | and |M| with AP10TL.
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5.2.2.3 Solving larger-size instances

We first evaluate the performance of the acceleration techniques proposed for SAA. To

this end, we took runs with and without the implementation of the acceleration techniques

on the 10-25 node instances from the AP dataset. For each instance, we consider two

values 0.5 and 1 as the coefficient of variation to represent the amount of uncertainty in

the stochastic demand. We compare the computational times in Table 5.1. The first two

columns report the instance size and the coefficient of variation. The third and fourth

columns labeled “Time (sec)” report the computation times in seconds without and with

the implementation of the acceleration techniques, respectively. The last two rows report

the averages.

The results provided in Table 5.1 indicate that the algorithm performs more than two

times faster on average with the implementation of the proposed acceleration techniques.

In particular, for the larger-size instances, the algorithm runs up to five times faster with

the implementation of the acceleration techniques. Hence, all computational experiments

with the stochastic model are carried out using the acceleration techniques.

We now analyze and evaluate the performance of the SAA algorithm on larger-size in-

stances with up to 75 nodes from the AP dataset. The computational results are summa-

rized in Table 5.2. The first two columns provide the number of nodes and the coefficient

of variation. The next three columns labeled “Optimal solution” present the net profit

(V̄NM), the best hub locations, and the run time of instances (in seconds) obtained from

solving the SAA algorithm, respectively. The next column labeled “% Gap” provides the

percent optimality gap relative to the best solution obtained by the SAA algorithm. The

last two columns labeled “CI for SAA % gap at” give the 95% and 99% confidence interval

for the optimality gap of the best solution obtained by the SAA algorithm, respectively.

The results provided in Table 5.2 indicate that the estimated optimality gaps obtained

by the SAA algorithm are always below 0.2%, and that the corresponding confidence

intervals for the optimality gaps are quite narrow for both 95% and 99%. These confirm

the efficiency of the SAA algorithm proposed for the problem with stochastic demand, and
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Table 5.1: Computational times for the stochastic model with and without the implemen-

tation of the acceleration techniques for SAA.

|H| ν
Time (sec)

Without

acceleration

With

acceleration

10LL 0.5 55.29 50.82

1 47.38 41.76

10LT 0.5 18.42 15.39

1 21.80 18.33

10TL 0.5 38.63 33.89

1 53.46 53.48

10TT 0.5 17.34 14.97

1 15.10 13.11

20LL 0.5 8,723.45 1,553.42

1 6,601.72 2,713.17

20LT 0.5 2,892.03 1,442.36

1 3,303.61 1,907.56

20TL 0.5 3,528.43 1,089.42

1 4,202.39 1,173.79

20TT 0.5 249.41 101.11

1 197.85 76.78

25LL 0.5 5,494.94 1,418.24

1 6,653.34 2,014.32

25LT 0.5 15,617.96 3,218.51

1 8,327.14 3,832.22

25TL 0.5 3,577.96 1,127.83

1 4,382.44 1,613.32

25TT 0.5 5,053.09 1,420.91

1 3,152.68 1,711.33

Average 0.5 3,772.25 957.24

1 3,079.91 1,264.10
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Table 5.2: Computational results for the stochastic model with 48 instances of the AP

dataset.

Instance Optimal solution % Gap CI for SAA % gap at

|H| ν Profit Open hubs Time (sec) SAA 95% 99%

10LL 0.5 21,380 5,6,9,10 50.82 0.08 (-6.16, 11.73) (-8.74, 14.31)

1 22,529 5,6,9,10 41.76 -0.04 (-4.91, 13.47) (-7.47, 16.03)

10LT 0.5 3,344 5 15.39 0.06 (-9.96, 13.67) (-13.45, 17.16)

1 3,358 5,6 18.33 0.18 (-7.24, 15.50) (-9.29, 17.55)

10TL 0.5 13,890 4,5,9 33.89 0.14 (-14.02, 7.87) (-18.39, 12.24)

1 14,586 4,5,9 53.48 -0.04 (-11.05, 8.37) (-12.19, 9.51)

10TT 0.5 2,690 5 14.97 0.03 (-9.96, 13.67) (-13.56, 17.27)

1 2,683 5 13.11 0.14 (-6.42, 16.57) (-10.60, 20.75)

20LL 0.5 105,282 7,9,10,19 1,553.42 0.04 (-15.15, 14.31) (-16.73, 15.89)

1 113,599 7,9,10,14,19 2,713.17 0.03 (-9.92, 15.72) (-14.67, 20.47)

20LT 0.5 59,727 5,9,10,12,14,19 1,442.36 0.05 (-4.45, 8.72) (-9.21, 13.48)

1 63,731 5,9,10,12,14,19 1,907.56 0.04 (-3.72, 10.74) (-7.05, 14.07)

20TL 0.5 53,035 5,7,10 1,089.42 0.08 (-11.67, 10.97) (-16.07, 15.37)

1 57,511 5,7,10 1,173.79 0.06 (-8.60, 15.09) (-11.86, 18.35)

20TT 0.5 13,672 10 101.11 0.02 (-10.62, 10.07) (-11.90, 11.35)

1 13,984 10 76.78 -0.03 (-8.08, 12.76) (-10.94, 15.62)

25LL 0.5 133,240 7,14,17,23 1,418.24 -0.03 (-10.32, 13.46) (-13.03, 16.17)

1 140,164 7,14,17,23 2,014.32 -0.02 (-6.47, 14.83) (-11.33, 19.69)

25LT 0.5 92,042 6,10,12,14,25 3,218.51 -0.01 (-6.23, 10.47) (-11.13, 15.37)

1 98,570 9,10,12,14,19,25 3,832.22 0.01 (-9.87, 11.51) (-14.58, 16.22)

25TL 0.5 81,755 6,9,14,23 1,127.83 -0.02 (-8.48, 10.26) (-9.95, 11.73)

1 87,625 6,9,14,23 1,613.32 -0.02 (-5.98, 12.38) (-10.64, 17.04)

25TT 0.5 36,956 6,10,14,25 1,420.91 0.00 (-9.16, 8.70) (-11.60, 11.14)

1 39,992 6,9,10,14,25 1,711.33 -0.01 (-7.18, 10.91) (-8.92, 12.65)

40LL 0.5 80,696 12,22,26,29 15,219.35 -0.03 (-18.92, 17.71) (-22.80, 21.59)

1 86,456 9,22,26,29,38 17,612.49 0.02 (-15.39, 19.48) (-16.88, 20.97)

40LT 0.5 71,192 12,14,26,29,30,38 20,369.86 -0.04 (-19.32, 22.57) (-21.37, 24.62)

1 76,989 5,14,19,26,29,30,38 22,928.64 0.04 (-16.86, 23.36) (-18.55, 25.05)

40TL 0.5 65,621 14,19,29 7,549.28 -0.03 (-14.74, 19.37) (-18.99, 23.62)

1 71,406 14,19,29 8,084.24 0.05 (-12.37, 21.22) (-14.30, 23.15)

40TT 0.5 52,843 14,19,25,38 9,672.36 -0.04 (-17.53, 19.75) (-19.06, 21.28)

1 57,349 5,19,25,30 10,836.71 0.05 (-15.95, 23.42) (-20.59, 28.06)

50LL 0.5 77,216 15,28,33,35 13,565.38 0.03 (-19.46, 25.37) (-27.00, 32.91)

1 83,180 5,15,28,33,35 15,738.46 -0.03 (-17.11, 26.23) (-25.07, 34.19)

50LT 0.5 73,467 6,26,32,46 11,874.35 0.05 (-15.83, 21.64) (-22.38, 28.19)

1 79,923 6,19,26,30,46 14,969.23 -0.06 (-13.26, 23.83) (-16.90, 27.47)

50TL 0.5 58,384 3,26,45 5,595.46 0.05 (-16.30, 16.99) (-20.26, 20.95)

1 60,756 3,14,29,45 7,304.05 -0.09 (-12.61, 18.28) (-17.92, 23.59)

50TT 0.5 48,376 6,26,48 6,393.29 0.12 (-14.67, 16.36) (-20.39, 22.08)

1 53,261 6,26,48 7,141.92 -0.07 (-12.71, 18.49) (-17.16, 22.94)

75LL 0.5 145,792 14,23,35,37,56 43,955.24 0.10 (-17.54, 12.63) (-23.37, 18.46)

1 198,962 5,14,19,26,29,30,38 46,085.51 0.04 (-12.46, 18.49) (-16.55, 22.58)

75LT 0.5 113,510 14,25,32,35,38,59 36,666.45 -0.08 (-14.29, 18.81) (-18.50, 23.02)

1 122,007 14,26,32,35,46,59 39,157.63 0.04 (-11.39, 19.41) (-16.60, 24.62)

75TL 0.5 92,609 14,35,37 24,531.79 0.16 (-21.74, 19.83) (-29.04, 27.13)

1 96,829 14,35,37 25,742.90 0.07 (-18.25, 22.49) (-24.14, 28.38)

75TT 0.5 81,697 25,32,38,59 32,559.79 0.14 (-23.67, 16.74) (-31.43, 24.50)

1 84,157 25,26,32,38,59 34,637.15 -0.10 (-17.34, 18.51) (-22.33, 23.50)
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also imply that the solutions produced by our algorithm are good enough to be used in

practical applications.

We next observe the effects of variability in uncertain demands on the solutions reported

in Table 5.2. When the ν value increases, that is, when the variability in the uncertain

demand increases, the net profit values and the computation time required for the SAA

algorithm also increase. Note that the best found hub locations do not change significantly

under these variations. We can identify a few instances in which hub locations change by

demand variation, and in most of the instances, the locations of the hubs obtained with

the deterministic and stochastic models are identical (Tables 4.1 and 5.2). It seems that,

in these particular instances, the long-term location decisions are dependent more on the

configuration of hub installation costs and capacities than the demand.

5.3 Robust-Stochastic Models

We now model the robust-stochastic problem when there is uncertainty associated with

revenues under stochastic demand. We present two mathematical formulations for the

robust-stochastic version of the problem. We first model a max-min criterion and then a

min-max regret.

5.3.1 Case I: max-min criterion

We use interval uncertainty for revenues in which each parameter rmk for k ∈ K,m ∈ M
takes values in [r̄mk − r̂mk , r̄

m
k ], where r̄mk is the nominal value of revenue and r̂mk ≥ 0

represents the deviation from the nominal value. Let γr ∈ [0, |K| × |M |] be an integer

value controlling the level of conservatism in the objective and denote the uncertainty

budget on the maximum number of revenue parameters rmk whose value is allowed to differ

from its nominal value. We are interested in finding an optimal solution that optimizes

against all realizations under which a number γr of the revenue coefficients can vary in
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such a way as to maximally influence the objective (Bertsimas and Sim [18]). The robust-

stochastic model with max-min criterion for the profit maximizing hub location problem

with capacity allocation is then modeled as:

RS-I max
(x,y)∈f

Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)wmk (ξ)xmak(ξ)− νξ(x)]−∑
i∈H

fiyi (5.26)

where f = {(x, y) : (5.2)− (5.6) are satisfied}, and νξ(x) is defined as follows:

νξ(x) = max
Ur⊆K×M :|Ur|≤γr

∑
(k,m)∈Sr

∑
a∈Ak

r̂mk w
m
k (ξ)xmak(ξ). (5.27)

In the above equation, Ur represents the subset of commodities whose revenue values

are subject to variation. The goal of νξ(x) is to determine the worst case deviation from

the total revenue over all possible revenue realizations for a given solution x. Note that in

extreme cases when γr = 0 or γr = |K| × |M | (alternatively, when Ur = ∅ or Ur = K ×M ,

respectively), the problem can be reduced to the stochastic model and it has trivial solutions

such that for all commodities (k,m), in the former case, rmk = r̄mk , whereas in the latter

case, rmk = r̄mk −r̂mk , where these cases represent the least and highest levels of conservatism,

respectively. In general, a higher value of γr leads to a more conservative solution in the

expense of a possibly lower profit.

We can reformulate νξ(x) by introducing a binary variable zmk which determines whether

or not class m ∈ M of commodity k ∈ K is subject to uncertainty; i.e., zmk = 1 if

(k,m) ∈ Ur, and 0 otherwise.

νξ(x) = max
∑
k∈K

∑
m∈M

r̂mk wmk (ξ)
∑
a∈Ak

xmak(ξ)

 zmk (5.28)

s.t.
∑
k∈K

∑
m∈M

zmk ≤ γr (5.29)

zmk ∈ {0, 1} k ∈ K,m ∈M. (5.30)

Note that since γr is integer, νξ(x) simply sorts the commodities (k,m) in the non-increasing

order of r̂mk w
m
k (ξ)

∑
a∈Ak x

m
ak(ξ) and selects the first γr of them. Hence, constraint (5.30)

can be replaced with its linear relaxation counterpart without losing integrality.
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Let µ(ξ) and λmk (ξ) be the dual variables associated with constraints (5.29) and the

linear relaxation of (5.30), respectively. The dual of problem (5.28)-(5.30) can be obtained

as:

νξ(x) = min γrµ(ξ) +
∑
k∈K

∑
m∈M

λmk (ξ) (5.31)

s.t. µ(ξ) + λmk (ξ) ≥ r̂mk w
m
k (ξ)

∑
a∈Ak

xmak(ξ) k ∈ K,m ∈M (5.32)

λmk (ξ), µ(ξ) ≥ 0 k ∈ K,m ∈M. (5.33)

With this formulation of νξ(x), mathematical program (5.26) can be reformulated as

the following MILP:

max
(x,y)∈f

Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)wmk (ξ)xmak(ξ)− γrµ(ξ)−
∑
k∈K

∑
m∈M

λmk (ξ)]−∑
i∈H

fiyi

(5.34)

s.t. (5.32), (5.33).

5.3.2 Case II: min-max regret criterion

If there exists a set of scenarios describing uncertainty associated with the revenues, one

may also use a min-max regret type objective function to model the problem (Alumur et al.

[8], Correia and Saldanha-da Gama [40]). Let Sr define the set of scenarios for uncertain

revenues and rmsk denote the amount of revenue obtained from satisfying a unit commodity

k ∈ K of class m ∈M under scenario s ∈ Sr.

For a given demand realization ξ ∈ Ξ, the maximum profit that can be achieved under

revenue scenario s ∈ Sr, denoted by Zs(ξ), can be calculated by
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Zs(ξ) = max
∑
k∈K

∑
m∈M

∑
a∈Ak

(rmsk − Ĉak)wmk (ξ)xmak(ξ)−
∑
i∈H

fiyi (5.35)

s.t.
∑
a∈Ak

xmak(ξ) ≤ 1 k ∈ K,m ∈M (5.36)

∑
a∈Ak:i∈a

xmak(ξ) ≤ yi i ∈ H, k ∈ K,m ∈M

(5.37)∑
k∈K

∑
m∈M

∑
a∈Ak:i∈a

wmk (ξ)xmak(ξ) ≤ Γiyi i ∈ H (5.38)

xmak(ξ) ≥ 0 k ∈ K,m ∈M,a ∈ Ak
(5.39)

yi ∈ {0, 1} i ∈ H. (5.40)

For a given demand realization ξ ∈ Ξ, the regret of a solution (x(ξ), y) under revenue

scenario s ∈ Sr is defined as the difference between the optimal profit that can be achieved

under that scenario (i.e. Zs(ξ)) and the total profit associated with (x(ξ), y). With this

definition, the min-max regret stochastic model can be formulated as follows:

RS-II min
(x,y)∈f

Eξ[max
s∈Sr
{Zs(ξ)− (

∑
k∈K

∑
m∈M

∑
a∈Ak

(rmsk − Ĉak)wmk (ξ)xmak(ξ)−
∑
i∈H

fiyi)}].
(5.41)

The inner maximization calculates the maximum regret among all revenue scenarios.

Replacing the inner maximization with a continuous variable V (ξ), the above formulation

can be linearized as follows:

min
(x,y)∈f

Eξ[V (ξ)] (5.42)

s.t. V (ξ) ≥ Zs(ξ)− (
∑
k∈K

∑
m∈M

∑
a∈Ak

(rmsk − Ĉak)wmk (ξ)xmak(ξ)−
∑
i∈H

fiyi), ξ ∈ Ξ, s ∈ Sr.

(5.43)
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Another approach to formulate the min-max regret model would be to maximize the

expected regret (Alumur et al. [8]). Here, we model the expectation of the maximum regret.

We believe the latter is more realistic, however, results in a larger formulation which is

more challenging to solve.

We now define V̄ (ξ) := −(V (ξ) −
∑
i∈H

fiyi) and for reasons that will become apparent

later, we replace V (ξ) with −(V̄ (ξ)−
∑
i∈H

fiyi) and reformulate (5.42)-(5.43) in a maximiza-

tion form as:

max
(x,y)∈f

Eξ[V̄ (ξ)]−
∑
i∈H

fiyi (5.44)

s.t. V̄ (ξ)−
∑
k∈K

∑
m∈M

∑
a∈Ak

(rmsk − Ĉak)wmk (ξ)xmak(ξ) ≤ −Zs(ξ) ξ ∈ Ξ, s ∈ Sr. (5.45)

We now like to compare the min-max regret stochastic model (RS-II) with the robust-

stochastic model with max-min criterion (RS-I). Let’s first assume that the set of revenue

scenarios considered in the min-max regret model (i.e. Sr) complies with the requirements

of the uncertainty sets considered in the robust-stochastic model with max-min criterion

(i.e. Ur). In other words, let Sr consists of all revenue scenarios involving at most γr

commodities with an uncertain revenue. For a given solution (x, y), the robust-stochastic

model with max-min criterion selects from Sr the scenario that minimizes the total revenue,

and maximizes the expectation of this minimal revenue over all possible solutions (x, y).

The min-max regret stochastic model, on the other hand, selects from Sr the scenario

that maximizes the regret, and minimizes the expectation of this maximal regret over all

possible solutions (x, y). Interestingly, as shown in Theorem 1 below, the robust-stochastic

version with max-min criterion is actually a special case of the min-max regret stochastic

model in which Zs(ξ) = Ẑ for some arbitrary value Ẑ (e.g. 0) for each revenue scenario

s ∈ Sr and demand realization ξ ∈ Ξ.

Theorem 1. Let Sr be the set of revenue scenarios where at most γr commodities are

subject to revenue uncertainty. Then, the min-max regret stochastic model (5.41), in which
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regrets are calculated with respect to a fixed reference point Ẑ, is equivalent to the robust-

stochastic model with max-min criterion (5.26).

Proof. Let Zs(ξ) = Ẑ for each revenue scenario s ∈ Sr and demand realization ξ ∈ Ξ.

Then, the min-max regret stochastic model (5.41) reads as:

min
(x,y)∈f

Eξ[max
s∈Sr
{Ẑ − (

∑
k∈K

∑
m∈M

∑
a∈Ak

(rmsk − Ĉak)wmk (ξ)xmak(ξ)−
∑
i∈H

fiyi)}]. (5.46)

We now prove that (5.41) is equivalent to (5.46). Since Ẑ is constant, it can be taken out

from the inner maximization, the expectation, and the minimization, respectively. Hence,

(5.46) can be reformulated as:

Ẑ − max
(x,y)∈f

Eξ[min
s∈Sr
{∑

k∈K

∑
m∈M

∑
a∈Ak

(rmsk − Ĉak)wmk (ξ)xmak(ξ)−
∑
i∈H

fiyi}]. (5.47)

For a given (x, y) ∈ f and for each ξ ∈ Ξ, the inner minimization in (5.47) calculates

the worst possible profit associated with (x, y) over all revenue scenarios. Given that each

revenue scenario s ∈ Sr involves at most γr commodities with uncertain revenue, we can

map each revenue scenario s to a subset of commodities Ur(s) including the commodities

with uncertain revenue. That is, rmsk = r̄mk − r̂mk if (k,m) ∈ Ur(s), and rmsk = r̄mk , otherwise.

Therefore, the inner minimization in (5.47) can be rewritten as:

min
s∈Sr
{∑

k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)wmk (ξ)xmak(ξ)−
∑
i∈H

fiyi −
∑

(k,m)∈Ur(s)

∑
a∈Ak

(r̂mk − Ĉak)wmk (ξ)xmak(ξ)},
(5.48)

Now, since the first two terms of (5.48) are constant with respect to s, we can reformulate

(5.48) as:

∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)wmk (ξ)xmak(ξ)−
∑
i∈H

fiyi −max
s∈Sr
{ ∑

(k,m)∈Ur(s)

∑
a∈Ak

(r̂mk − Ĉak)wmk (ξ)xmak(ξ)},
(5.49)
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Note that the maximization in (5.49) is equivalent to νξ(x) as defined in (5.27), therefore

(5.46) is equivalent to

Ẑ − max
(x,y)∈f

Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)wmk (ξ)xmak(ξ)− νξ(x)]−∑
i∈H

fiyi, (5.50)

which is equivalent to the robust-stochastic model with max-min criterion (5.26).

As a consequence of Theorem 1, the robust-stochastic model with max-min criterion is

computationally less challenging as there is no need to compute Zs(ξ) for each scenario.

We empirically analyze the outcome and the level of robustness with both of the models

through our computational experiments. In the sequel, we present a solution scheme to

solve each of these large mixed-integer stochastic programs.

5.3.3 Solution scheme for the robust-stochastic models

In this section, we present exact algorithms based on BD coupled with SAA to solve the

robust-stochastic models with max-min and min-max regret criteria, respectively.

5.3.3.1 Benders decomposition for the robust-stochastic model with max-min

criterion

For y set to a specific vector y := ȳ and for a given sample N , the primal subproblem

RSI-PS(N ) of the SAA counterpart of robust-stochastic model with max-min criterion

(5.32)-(5.34) can be formulated as:

RS-I-PS(N ) max
1

|N |
[
∑
n∈N

∑
k∈K

∑
m∈M

∑
a∈Ak

(r̄mk − Ĉak)wmnk xmnak −(γrµ
n +

∑
n∈N

∑
k∈K

∑
m∈M

λmnk )]

(5.51)
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s.t. r̂mk w
mn
k

∑
a∈Ak

xmnak − µn − λmnk ≤ 0 k ∈ K,m ∈M,n ∈ N (5.52)

∑
a∈Ak

xmnak ≤ 1 k ∈ K,m ∈M,n ∈ N (5.53)

∑
a∈Ak:i∈a

xmnak ≤ ȳi i ∈ H, k ∈ K,m ∈M,n ∈ N (5.54)

∑
k∈K

∑
m∈M

∑
a∈Ak:i∈a

wmnk xmnak ≤ Γiȳi i ∈ H,n ∈ N (5.55)

xmnak , λ
mn
k , µn ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N . (5.56)

Observe that RS-I-PS(N ) can be decomposed into |N | independent subproblems, one

for each n ∈ N . Let βmnk , αmnk , umnik , and bni be the dual variables associated with constraints

(5.52)-(5.55), respectively. The dual subproblem associated with scenario n ∈ N can then

be formulated as:

RS-I-DS(N , n) min
∑
k∈K

∑
m∈M

αmnk +
∑
i∈H

ȳi(
∑
k∈K

∑
m∈M

umnik + Γib
n
i )

(5.57)

s.t. r̂mk w
mn
k βmnk + αmnk + umnik + umnjk + wmnk (bni + bnj )

≥ (r̄mk − Ĉijk)wmnk k ∈ K,m ∈M, (i, j) ∈ Ak : i 6= j

(5.58)

r̂mk w
mn
k βmnk + αmnk + umnik + wmnk bni ≥ (r̄mk − Ĉiik)wmnk k ∈ K,m ∈M, i ∈ H (5.59)∑

k∈K

∑
m∈M

βmnk ≤ γr (5.60)

βmnk ≤ 1 k ∈ K,m ∈M (5.61)

βmnk , αmnk , umnik , b
n
i ≥ 0 k ∈ K,m ∈M, i ∈ H. (5.62)

Let P n
N be the set of extreme points of the polyhedron defined by (5.58)-(5.62) for

n ∈ N . Since the subproblem can be decomposed by each scenario n ∈ N , the Benders

cuts can be separated by each n ∈ N . Hence, the Benders master problem RS-I-MP(N )

99



can be reformulated as:

RS-I-MP(N ) max
1

|N |
∑
n∈N

ηn −
∑
i∈H

fiyi (5.63)

s.t. ηn ≤
∑
k∈K

∑
m∈M

αmnk +
∑
i∈H

yi(Γib
n
i +

∑
k∈K

∑
m∈M

umnik ) n ∈ N , (βn, αn, un, bn) ∈ PnN

(5.64)

yi ∈ {0, 1} i ∈ H. (5.65)

Since RS-I-MP(N ) contains an exponential number of constraints of the form (5.64),

we solve it by employing a cutting-plane method in which RS-I-MP(N ) is relaxed by

considering a limited number of constraints of the form (5.64). The relaxed RS-I-MP(N )

is iteratively strengthened by generating new cuts of the form (5.64) obtained from solving

the dual subproblems on the fly, until the optimal solution to RS-I-MP(N ) is found. A

pseudo-code of the basic BD algorithm is described in Algorithm 3. In this algorithm, UB

and LB denote the upper and lower bounds on the optimal value, while Ze
MP and Zen

DS

stand for the optimal values obtained from the master problem and dual subproblem at

iteration e, respectively.

The computational efficiency of the BD algorithm is generally dependent on the number

of iterations needed to find an optimal solution and the computational effort required to

solve RS-I-MP(N ) as well as RS-I-DS(N , n) at each iteration. To improve the efficiency

of the algorithm, we apply variable fixing techniques presented in Chapter 4. In the

following section, we describe how the subproblem can be solved efficiently. We also present

additional enhancement techniques in this section.

Solving the Benders subproblem. Solving the subproblem is the most challenging

part at each step of the BD algorithm. Moreover, the naive implementation of BD is noto-

rious for its slow convergence due to the weakness of the cuts generated at each iteration

(see e.g., Rahmaniani et al. [83]). To generate strong cuts, we solve RS-I-DS(N , n) for a
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Algorithm 3 Benders decomposition for the robust-stochastic model with max-min cri-

terion
1: UB ← +∞, LB ← −∞, e← 1

2: P n
N ← ∅ ∀n ∈ N

3: while LB < UB do

4: SOLVE RS-I-MP(N ) and obtain ye and Ze
MP

5: UB ← Ze
MP

6: for n in N do

7: SOLVE RS-I-DS(N , n) with ȳ = ye and obtain (βn, αn, un, bn)e and Zen
DS

8: P n
N ← P n

N ∪ {(βn, αn, un, bn)e}
9: end for

10: LB ← max{LB, 1
|N |

∑
n∈N Z

en
DS −

∑
i∈H

fiy
e
i }

11: e← e+ 1

12: end while

particular n ∈ N in two sequential phases based on the set of open/closed hubs as proposed

in Section 4.2.3.

Observe that any feasible value of umnik and bni associated with the closed hubs are

optimal, since their coefficients in the objective function of RS-I-DS(N , n) are equal to

zero as ȳi = 0. Therefore, these variables and their associated constraints can initially be

removed from RS-I-DS(N , n) to solve the Phase I subproblem, and appropriate feasible

values for these variables can be calculated subsequently in Phase II. In this manner, the

optimality of the subproblem is guaranteed in Phase I, while in Phase II, the feasible values

of the remaining variables are calculated so as to strengthen the cut.

Let He
1 and He

0 denote the set of open and closed hubs at iteration e, respectively. In

Phase I, we remove the variables umnik and bni associated with i ∈ He
0 and calculate the

values of the remaining variables. Note that when i ∈ He
1 , constraints (5.53) and (5.55)

imply constraints (5.54). Consequently, there exists an optimal solution where the dual

values associated with constraints (5.54) (i.e. umnik ) are equal to 0 for i ∈ He
1 . Thus, the
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Phase I subproblem can be formulated as:

RS-I-DS-I(N , n) min
∑
k∈K

∑
m∈M

αmnk +
∑
i∈He

1

Γib
n
i (5.66)

s.t. r̂mk w
mn
k βmnk + αmnk + wmnk (bni + bnj ) ≥ (r̄mk − Ĉijk)wmnk k ∈ K,m ∈M, (i, j) ∈ A1

ke

(5.67)

r̂mk w
mn
k βmnk + αmnk + wmnk bni ≥ (r̄mk − Ĉiik)wmnk k ∈ K,m ∈M, i ∈ He

1

(5.68)∑
k∈K

∑
m∈M

βmnk ≤ γr (5.69)

βmnk ≤ 1 k ∈ K,m ∈M
(5.70)

βmnk , αmnk , bni ≥ 0 k ∈ K,m ∈M, i ∈ He
1

(5.71)

where A1
ke = {(i, j) ∈ Ak ∩ He

1 × He
1 : i 6= j}. Given that cardinality of He

1 is almost

certainly small, the Phase I subproblem can be solved using linear programming solvers.

Once the optimal values of all the variables in the Phase I subproblem are obtained, the

optimal value of the rest of variables will be computed in Phase II.

Observe that if the value of the βmnk is given for commodity (k,m), then constraints

(5.58) and (5.59) associated with this commodity can respectively be rewritten as:

αmnk + umnik + umnjk + wmnk (bni + bnj ) ≥ (r̄mk − r̂mk βmnk − Ĉijk)wmnk (i, j) ∈ Ak : i 6= j (5.72)

αmnk + umnik + wmnk bni ≥ (r̄mk − r̂mk βmnk − Ĉiik)wmnk i ∈ H. (5.73)

Note that βmnk expresses the extent to which revenue of commodity (k,m) is subject to

uncertainty. Consequently, obtaining the optimal value of the β-variables in Phase I implies

resolving the data uncertainty in Phase I. Hence, in Phase II, we work with the realized

revenue rmk (i.e. rmk = r̄mk − r̂mk β
mn
k ) for each commodity (k,m). Thus, the Phase II
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subproblem is formulated as

RS-I-DS-II(N , n) min
∑
i∈He

0

(
∑
k∈K

∑
m∈M

umnik + Γib
n
i ) (5.74)

s.t. umnik + umnjk + wmnk (bni + bnj ) ≥ ρmnijk k ∈ K,m ∈M, (i, j) ∈ A0
ke (5.75)

umnik + wmnk bni ≥ ρmniik k ∈ K,m ∈M, i ∈ He
0 (5.76)

umnik , b
n
i ≥ 0 k ∈ K,m ∈M, i ∈ He

0 (5.77)

where A0
ke = {(i, j) ∈ Ak ∩He

0 ×He
0 : i 6= j}, ρmnijk = (rmk − Ĉijk)wmnk − αmnk for (i, j) ∈ A0

ke

and ρmniik = max{max
j∈Hei

1

{(rmk − Ĉijk)wmnk − umnjk −wmnk bnj }, (rmk − Ĉiik)wmnk }−αmnk for i ∈ He
0 ,

in which Hei
1 = {j ∈ He

1 : (i, j) ∈ Ak or (j, i) ∈ Ak}.

To generate strong cuts, we solve RS-I-DS-II(N , n) as a series of LP-relaxations of

knapsack problems as detailed in Section 4.2.3.3.

Acceleration techniques for SAA. We now propose acceleration techniques to reduce

the computational time of our SAA algorithm. The acceleration technique for SAA is based

on the observation that the cuts generated in solving sample N̂ can be transformed into

valid cuts for sample N . More specifically, in solving sample N , we can retrieve feasible

solutions for RS-I-DS(N , n) for scenario n of sample N from the solutions contained in P n̂
N̂

for n̂ ∈ N̂ .

Let (βn̂, αn̂, un̂, bn̂) ∈ P n̂
N̂ be a feasible solution for RS-I-DS(N̂ , n̂), and wmn̂k be the

demand for commodity k ∈ K of class m ∈ M under scenario n̂ ∈ N̂ . It can easily be

shown that (βn, αn, un, bn) defined by (5.78)-(5.81) is feasible for RS-I-DS(N , n):

βmnk = βmn̂k k ∈ K,m ∈M (5.78)

αmnk =
wmnk
wmn̂k

αmn̂k k ∈ K,m ∈M (5.79)

umnik =
wmnk
wmn̂k

umn̂ik k ∈ K,m ∈M, i ∈ H (5.80)

bni = bn̂i i ∈ H (5.81)
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Consequently, the solution obtained by (5.78)-(5.81) yields a valid cut for RS-I-MP(N ).

To avoid overloading the master problem with too many cuts, we restrict the algorithm to

selecting the best potential cut that is associated with scenario n̂∗ ∈ N̂ obtained via 5.25).

5.3.3.2 Benders decomposition for min-max regret stochastic model

In accordance with the robust-stochastic model with max-min criterion, we again assume

that the hub location decisions are handled in the master problem and the rest is left to

the subproblem. However as we demonstrate in this section, solving the SAA counterpart

of the min-max regret stochastic model (5.44)-(5.45) is more difficult than solving the

robust-stochastic model with max-min criterion (5.32)-(5.34).

For a given demand scenario n of sample N and revenue scenario s ∈ Sr, let Z̄ns be an

estimation of the optimal value of (5.35)-(5.40). With y set to a specific vector y := ȳ, the

primal subproblem RS-II-PS(N ) reads as:

RS-II-PS(N ) max
1

|N |
∑
n∈N

V̄ n (5.82)

s.t. (5.53)− (5.55)

V̄ n −
∑
n∈N

∑
k∈K

∑
m∈M

∑
a∈Ak

(rmsk − Ĉak)wmnk xmnak ≤ −Z̄ns n ∈ N , s ∈ Sr (5.83)

xmnak ≥ 0 k ∈ K,m ∈M,a ∈ Ak, n ∈ N .
(5.84)

Observe that RS-II-PS(N ) can be decomposed into |N | independent subproblems, one for

each n ∈ N . Let αmnk , umnik , bni , and ωns be the dual variables associated with constraints

(5.53)-(5.55) and (5.83), respectively. For a given demand scenario n ∈ N , the dual

subproblem RS-II-DS(N , n) can then be stated as:

RS-II-DS(N , n) min
∑
k∈K

∑
m∈M

αmnk +
∑
i∈H

ȳi(Γib
n
i +

∑
k∈K

∑
m∈M

umnik )−
∑
s∈Sr

Z̄nsωns

(5.85)
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s.t.
∑
s∈Sr

ωns = 1 (5.86)

αmnk + umnik + umnjk + wmnk (bni + bnj ) ≥
∑
s∈Sr

ωns(rmsk − Ĉijk)wmnk k ∈ K,m ∈M, (i, j) ∈ Ak : i 6= j

(5.87)

αmnk + umnik + wmnk bni ≥
∑
s∈Sr

ωns(rmsk − Ĉiik)wmnk k ∈ K,m ∈M, i ∈ H (5.88)

αmnk , umnik , b
n
i , ω

ns ≥ 0 k ∈ K,m ∈M, i ∈ H, s ∈ Sr.
(5.89)

Define P̄ n
N as the set of extreme points of the feasible region of RS-II-DS(N , n) for

n ∈ N . Each demand scenario n ∈ N can provide a Benders cut; hence, the Benders

master problem RS-II-MP(N ) can be reformulated as below:

RS-II-MP(N ) max
1

|N |
∑
n∈N

ηn −
∑
i∈H

fiyi (5.90)

s.t. ηn ≤
∑
k∈K

∑
m∈M

αmnk +
∑
i∈H

yi(Γib
n
i +

∑
k∈K

∑
m∈M

umnik )−
∑
s∈Sr

Z̄nsωns n ∈ N , (αn, un, bn, ωn) ∈ P̄nN

(5.91)

yi ∈ {0, 1} i ∈ H. (5.92)

An overview of the BD algorithm for the min-max regret stochastic model is presented

in Algorithm 4. As per the robust-stochastic model with max-min criterion, we can enhance

the performance of the BD algorithm by employing variable fixing techniques. However, the

main difficulty incurred by the min-max regret stochastic model is the need for calculating

the optimal values of the deterministic counterparts formulated as (5.35)-(5.40) for each

pair of demand and revenue scenario (n, s). More specifically, each replication of the SAA

requires computing the Z̄ns values |N | × |Sr| times. Hence, cardinality of the sets N and

Sr drastically affect the computational efficiency of solving the min-max regret stochastic

problem. In this section, we show how to mitigate this difficulty. We first address how to

solve the Benders subproblem RS-II-DS(N , n) to obtain a lower bound as follows.
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Algorithm 4 Benders decomposition for the min-max regret stochastic model

1: UB ← +∞, LB ← −∞, e← 1

2: P̄ n
N ← ∅ ∀n ∈ N

3: while LB < UB do

4: SOLVE RS-II-MP(N ) and obtain ye and Ze
MP

5: UB ← Ze
MP

6: for n in N do

7: SOLVE RS-II-DS(N , n) with ȳ = ye and obtain (αn, un, bn, ωn)e and Zen
DS

8: P̄ n
N ← P̄ n

N ∪ {(αn, un, bn, ωn)e}
9: end for

10: LB ← max{LB, 1
|N |

∑
n∈N Z

en
DS −

∑
i∈H

fiy
e
i }

11: e← e+ 1

12: end while

Solving the Benders subproblem. For a given demand scenario n ∈ N , we solve

RS-II-DS(N , n) in two sequential phases based on the set of open/closed hubs. In Phase

I, the optimal value of the α- and ω-variables, along with the value of umnik and bni for

i ∈ He
1 are calculated. Similar to the robust-stochastic model with max-min criterion, it

can be shown that the optimal value of umnik for i ∈ He
1 is equal to 0. Hence, the Phase I

subproblem can be formulated as

RS-II-DS-I(N , n) min
∑
k∈K

∑
m∈M

αmnk +
∑
i∈He

1

Γib
n
i −

∑
s∈Sr

Z̄ns ω
ns (5.93)

s.t.
∑
s∈Sr

ωns = 1 (5.94)

αmnk + wmnk (bni + bnj ) ≥
∑
s∈Sr

ωns(rmsk − Ĉijk)wmnk k ∈ K,m ∈M, (i, j) ∈ A1
ke (5.95)

αmnk + wmnk bni ≥
∑
s∈Sr

ωns(rmsk − Ĉiik)wmnk k ∈ K,m ∈M, i ∈ He
1 (5.96)

αmnk , bni , ω
ns ≥ 0 k ∈ K,m ∈M, i ∈ He

1 , s ∈ Sr. (5.97)
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Upon computing the optimal value of the Phase I variables, we obtain the optimal

value of the rest of variables (i.e. umnik and bni for i ∈ He
0) in Phase II. As per the robust-

stochastic version with max-min criterion, in Phase II, we work with the adjusted revenue

(i.e. rmk =
∑

s∈Sr ω
srmsk ) for each commodity (k,m). Therefore, for a given n ∈ N , the

Phase II subproblem can be formulated as the linear program (5.74)-(5.77) given for the

Phase II subproblem of the robust-stochastic version with max-min criterion, which can

be solved as a series of LP-relaxations of knapsack problems using the same sequential

procedure.

Acceleration techniques. The SAA counterpart of the min-max regret stochastic model

exhibits a more repetitive structure than the SAA counterpart of the (max-min) stochastic

model, in that solving the min-max regret stochastic problem for each sample N requires

obtaining the Z̄ns values for each demand scenario n ∈ N and each revenue scenario s ∈ Sr.
Although this additional step requires extra computational effort, if treated carefully, its

repetitive structure can be efficiently exploited for speeding up the SAA algorithm.

For each demand scenario n ∈ N and each revenue scenario s ∈ Sr, Z̄ns can be obtained

by solving the deterministic formulation (5.35)-(5.40) using a BD algorithm as detailed in

Section 4.2.3, where for y set to a specific vector y := ȳ, the dual subproblem DS(N , n, s)
is formulated as:

DS(N , n, s) min
∑
k∈K

∑
m∈M

αmk +
∑
i∈H

ȳi(Γibi +
∑
k∈K

∑
m∈M

umik)

(5.98)

s.t. αmk + umik + umjk + wmnk (bi + bj) ≥ (rmsk − Ĉijk)wmnk k ∈ K,m ∈M, (i, j) ∈ Ak : i 6= j

(5.99)

αmk + umik + wmnk bi ≥ (rmsk − Ĉiik)wmnk k ∈ K,m ∈M, i ∈ H (5.100)

αmk , u
m
ik, bi ≥ 0 k ∈ K,m ∈M, i ∈ H. (5.101)

Our proposed acceleration technique for the min-max regret stochastic model is four-

fold: (i) generating valid cuts for solving scenario pair (n, s) from the cuts generated for
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solving scenario pair (n̂, s), (ii) generating valid cuts for solving scenario pair (n, s) from

the cuts generated for solving scenario pair (n, ŝ), (iii) approximating the Z̄ns values, and

(iv) generating valid cuts for solving the min-max regret stochastic problem from the cuts

generated for obtaining the Z̄ns values. We introduce the following proposition for step

(i):

Proposition 5. Let (αn̂s, un̂s, bn̂s) be a feasible solution for DS(N̂ , n̂, s), and wmn̂k be the

demand for commodity k ∈ K of class m ∈ M under scenario n̂ ∈ N̂ . (αns, uns, bns)

defined by (5.102)-(5.104) is feasible for DS(N , n, s):

bnsi = bn̂si i ∈ H (5.102)

αmnsk =
wmnk
wmn̂k

αmn̂sk k ∈ K,m ∈M (5.103)

umnsik =
wmnk
wmn̂k

umn̂sik k ∈ K,m ∈M, i ∈ H (5.104)

Proof. From (5.103) and (5.104), we obtain αmn̂sk =
wmn̂k
wmnk

αmnsk and umn̂sik =
wmn̂k
wmnk

umnsik , respec-

tively. Feasibility of (αns, uns, bns) for DS(N , n, s) can easily be verified by replacing bn̂si ,

αmn̂sk , and umn̂sik respectively with bi,
wmn̂k
wmnk

αmnsk , and
wmn̂k
wmnk

umnsik , in constraints (5.99)-(5.101)

associated with DS(N̂ , n̂, s).

Consequently, the feasible solution obtained for DS(N , n, s) defined by (5.102)-(5.104)

provides a valid cut for solving the demand scenario n ∈ N and revenue scenario s ∈ Sr.
Note that the same proposition holds when N̂ = N . Similarly, Proposition 6 shows how

step (ii) can be achieved by generating feasible solutions for DS(N , n, s) from the feasible

solutions of DS(N , n, ŝ).

Proposition 6. Let (αnŝ, unŝ, bnŝ) be a feasible solution for DS(N , n, ŝ), then (αns, uns, bns)

defined by (5.105)-(5.107) is feasible for DS(N , n, s):

bnsi = bnŝi i ∈ H (5.105)

αmnsk = max{0, αmnŝk + wmnk (rmsk − rmŝk )} k ∈ K,m ∈M (5.106)

umnsik = umnŝik k ∈ K,m ∈M, i ∈ H (5.107)
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Proof. Replacing bnŝi and umnŝik respectively with bnsi and umnsik in constraints (5.99) and

(5.100) of DS(N , n, ŝ), and adding wmnk (rmsk − rmŝk ) to both sides of these constraints yields

αmnŝk + wmnk (rmsk − rmŝk ) + umnsik + umnsjk + wmnk (bnsi + bnsj ) ≥ (rmsk − Ĉijk)wmnk
αmnŝk + wmnk (rmsk − rmŝk ) + umnsik + wmnk bnsi ≥ (rmsk − Ĉiik)wmnk .

Hence, any αmnsk ≥ 0 satisfying αmnsk ≥ αmnŝk +wmnk (rmsk − rmŝk ) provides a feasible solution

to DS(N , n, s).

The valid cuts obtained by these propositions accelerate the BD algorithm for calcu-

lating the Z̄ns values; however, computing the optimal values for all scenario pairs in all

replications is computationally burdensome and also unnecessary. Note that sufficiently

close demand scenarios are likely to result in the same optimal hub locations. Therefore,

we only calculate the optimal Z̄ns values for the first replication of the SAA algorithm,

and approximate the Z̄ns values (step (iii)) for the subsequent replications as follows.

Let Nt denote the realized demand sample N at replication t of the SAA algorithm,

for t = 1, . . . ,M. At replication t > 1, for a given demand scenario n ∈ Nt, let n̂ be

the closest demand scenario to n among the demand scenarios in the first replication as

selected via (5.25). We estimate Z̄ns by fixing y at ŷn̂s, where ŷn̂s is the optimal location

of the hubs under the scenario pair (n̂, s) for n̂ ∈ N1 and s ∈ Sr. Once the Z̄ns values

are obtained, we generate valid cuts for the min-max regret stochastic problem using the

following proposition (step (iv)):

Proposition 7. Let (αnŝ, unŝ, bnŝ) be a feasible solution for DS(N , n, ŝ) for some par-

ticular ŝ ∈ Sr, then (αn, un, bn, ωn) is feasible for RS-II-DS(N , n), where (αn, un, bn) =

(αnŝ, unŝ, bnŝ) and

ωns = 1 if s = ŝ and ωns = 0 if s 6= ŝ s ∈ Sr.

Proof. The proof can be easily verified by noting that the feasible region of DS(N , n, ŝ) is

equivalent to the feasible region of RS-II-DS(N , n) when ωnŝ is set to 1.
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Algorithm 5 Accelerated SAA for the min-max regret stochastic model
1: for t in 1, . . . ,M do

2: if t = 1 then

3: for s ∈ Sr do

4: P s1 ← ∅
5: for n ∈ N1 do

6: P̄ns1 ← ∅
7: if n = 1 then

8: if s > 1 then

9: Convert the solutions contained in P ŝ1 for each ŝ < s to feasible solutions for DS(N1, n, s) using

Proposition 6 and add them to P s1 .

10: end if

11: Calculate Z̄ns using the initial cuts associated with P s1 .

12: Store the obtained dual solutions in P s1 .

13: P̄ns1 ← P s1
14: else

15: Convert the solutions contained in P s1 to feasible solutions for DS(N1, n, s) using Proposition 5 and

store the obtained solutions in P̄ns1 .

16: Generate initial cuts for (n, s) using the solutions contained in P̄ns1 .

17: Calculate Z̄ns using the generated initial cuts.

18: end if

19: end for

20: end for

21: else

22: for n ∈ Nt do
23: Let n̂ be the closest demand scenario in N1 to n obtained via 5.25.

24: for s ∈ Sr do

25: Approximate Z̄ns using ŷn̂s.

26: Convert the solutions contained in P s1 to feasible solutions for DS(Nt, n, s) using Proposition 5 and store

the obtained solutions in P̄nst .

27: end for

28: end for

29: end if

30: Obtain initial cuts for the min-max regret stochastic model associated with Nt using the solutions contained in P̄nst

using Proposition 7.

31: SOLVE the min-max regret stochastic model using Algorithm 4.

32: end for
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Note that, if we eliminate a set of hubs through variable fixing techniques, the dual

variables associated with those hubs will not be computed in the subproblem. Hence,

for the dual solutions obtained by a scenario pair (n, s) to be usable for another scenario

pair (or for the min-max regret stochastic problem), we cannot employ the variable fixing

techniques. Therefore, we sacrifice the first demand scenario of the first replication and

obtain the complete dual solutions for each revenue scenario without fixing any variables.

These solutions are then used for the other scenario pairs (within current replication or

subsequent replications) using Propositions 5 and 6 as well as for the min-max regret

problems using Proposition 7.

The proposed accelerated SAA algorithm is detailed in Algorithm 5. We refer each

demand scenario by an integer n and each revenue scenario by an integer s. Moreover, P s
1

denotes the set of dual solutions obtained in solving the first demand scenario of the first

replication under the revenue scenario s ∈ Sr. At replication t, P̄ ns
t consists of feasible

solutions for scenario pair (n, s) ∈ Nt × Sr obtained by converting the solutions contained

in P s
1 .

5.3.4 Computational experiments and comparisons

We use the same setting as detailed in Sections 4.3 and 5.2.2 to perform computational

experiments for the robust-stochastic models. In the first part of the computational exper-

iments, we analyze our results obtained with the robust-stochastic model with max-min

criterion. The second part of the experiments is devoted to the results obtained with the

min-max regret stochastic model. In the last section, we compare the quality of the solu-

tions as well as the optimal hub networks obtained from stochastic and robust-stochastic

models.
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5.3.4.1 Computational results with the robust-stochastic model with max-min

criterion

For the analysis with max-min model, we take r̂mk ∼ U [0, ϕr̄mk ] to generate intervals of

uncertainty, where ϕ is the maximum possible deviation from the nominal value of revenue.

We first evaluate the effect of the uncertainty budget (γr) on total profit. We select

two instances of the AP dataset on 20 and 25 nodes with ϕ = 0.5, and test the model

using γr ∈ {0, 5%, 10%, . . . , 100%}. For simplicity, we use percentage to represent the

budget of uncertainty which corresponds to the percentage of the revenue parameters

under uncertainty.

Figures 5.3a and 5.3b plot the percentage of decrease from the nominal profit for dif-

ferent values of γr for the AP20TL and AP25LT instances, respectively. Let Zγr denote

the optimal profit obtained from the robust-stochastic model with max-min criterion when

budget of uncertainty is γr and Z0 denote the objective function value with the nominal

profit that can be obtained from the stochastic model. The percentage of decrease from

the nominal profit can then be calculated as Z0−Zγr
Z0

for any γr.

(a) AP20TL (b) AP25LT

Figure 5.3: Effect of the uncertainty budget.

It is clear that a higher value of γr leads to a more conservative solution with a lower

Zγr . Moreover, as shown in Bertsimas and Sim [18], Zγr is a concave function of γr.

Consequently, as noted from the Figures 5.3a and 5.3b, for smaller values of γr, percentage
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of decrease from the nominal profit drops faster compared to higher values of the budget of

uncertainty. In particular, when we select our budget of uncertainty with γr ≥ 55%, then

observe from both of the figures that there is not much deviation in the optimal profits.

This observation indicates that small and moderate values of γr provide better insights for

evaluating the effects of the uncertainty budget on the solutions. For this reason, we use

γr ∈ {15%, 25%, 50%} during the rest of our computational analysis.

We now analyze the results obtained from the max-min model for larger size instances

with up to 75 nodes from the AP dataset. For each instance, we consider two values to

represent the amount of deviation from the nominal value of revenues; ϕ ∈ {0.5, 1}. The

computational results are summarized in Table 5.3. The first two columns provide the size

and name of the instances and the amount of deviation, respectively. The columns labeled

“Profit”, “Avg. iter.”, and “Time (sec)” indicate the optimal expected profit, the average

number of iterations required for the convergence of the BD algorithm at each replication

of SAA, and the computation time of the instances (in seconds) obtained from solving

the model, respectively. The columns labeled “Open hubs” show the locations of the hub

nodes. Table 5.3 is split into three parts to represent the results for γr = 15%, γr = 25%,

and γr = 50%, respectively.

All of the instances presented in Table 5.3 are solved to optimality. We observe that the

computation times and average number of iterations do not vary significantly by varying

γr values. This can be attributed to the fact that the number of dual variables associated

with the intervals of uncertainty is independent from the value of γr. This character-

istic enables the algorithm to solve instances with up to 16,875 commodities containing

stochastic demand and uncertain revenue. The averages of the computational times re-

ported in Table 5.3 for the γr = 15%, 25%, and 50% instances are 3.8, 3.4, and 2.8 hours,

respectively. These results clearly confirm the efficiency of the proposed algorithm for the

robust-stochastic model with max-min criterion.

The profits obtained from the max-min model represent the lowest profit that can

be expected, as long as the revenues comply with the model of uncertainty. This profit
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Table 5.3: Computational results for the robust-stochastic model with the max-min crite-

rion with 48 instances of the AP dataset.

Instance γr = 15% γr = 25% γr = 50%

|N | ϕ Profit
Avg.

iter.

Time

(sec)

Open

hubs
Profit

Avg.

iter.

Time

(sec)

Open

hubs
Profit

Avg.

iter.

Time

(sec)

Open

hubs

10LL 0.5 11,051 2.01 16 5,9 10,629 2.01 16 5,9 10,129 2.01 19 5,9

1 10,057 2.01 21 5,9 9,536 2.01 19 5,9 9,336 2.01 78 5,9

10LT 0.5 2,799 2.01 14 5 2,522 2.01 13 5 2,222 2.01 13 5

1 2,370 2.01 18 5 1,973 2.01 14 5 1,773 2.01 12 5

10TL 0.5 10,805 2.01 15 5,9 10,384 2.01 15 5,9 9,784 2.01 19 5,9

1 9,720 2.01 21 5,9 9,098 2.01 17 5,9 9,088 2.01 77 5,9

10TT 0.5 2,409 2.01 13 5 2,349 2.01 13 5 2,049 2.01 13 5

1 2,378 2.01 17 5 2,185 2.01 14 5 1,685 2.01 13 5

20LL 0.5 71,687 13.26 2,342 7,9,10,19 67,929 13.05 1,948 7,9,10,19 55,471 13.36 2,402 7,9,10,19

1 49,394 9.71 1,526 7,10,19 43,784 9.5 2,257 7,10,19 26,496 7.83 2,130 10,19

20LT 0.5 33,992 8.03 2,265 5,10,12,14 31,514 7.82 1,099 5,10,12,14 24,129 6.10 1,383 5,10,12,14

1 20,639 6.09 1,802 5,10,12,14 16,736 5.81 2,022 10,12,14 12,166 4.06 285 10,14

20TL 0.5 28,963 3.02 347 7,10 26,602 2.74 154 7,10 19,612 3.07 143 7,10

1 16,662 3.01 311 7,10 12,667 3.17 194 7,10 9,168 3.08 105 10

20TT 0.5 5,416 2.01 78 10 4,911 2.01 71 10 4,565 2.01 57 10

1 1,558 2.01 139 10 527 2.01 79 10 436 2.01 60 10

25LL 0.5 95,864 18.53 6,567 7,14,17,23 91,273 18.32 1,783 7,14,17,23 76,665 18.73 5,300 7,14,17,23

1 67,639 12.63 2,028 7,14,17 60,669 12.42 3,848 7,14,17 38,708 17.63 2,035 9,17

25LT 0.5 59,640 8.02 2,413 6,9,10,12,14,25 55,493 7.91 1,555 6,9,10,12,25 44,722 9.64 2,607 6,9,10,12,25

1 41,798 6.60 1,886 6,9,12,14,25 36,685 6.39 2,186 9,12,14,25 23,167 6.60 1,762 12,14,25

25TL 0.5 49,639 8.07 1,966 6,9,14 46,153 7.86 1,586 6,9,14 35,093 7.20 1,638 6,9,14

1 33,417 7.20 1,118 6,9,14 27,273 6.99 2,078 6,9,14 16,152 6.06 860 14

25TT 0.5 17,306 8.03 1,933 6,10,14 15,481 7.82 1,067 10,14 12,515 8.03 1,219 10,14

1 10,282 7.02 1,329 10,14 8,632 6.81 1,632 14 8,205 2.01 321 14

40LL 0.5 61,336 26.03 21,631 12,22,26,29 58,575 25.82 16,324 12,22,26,29 53,575 24.01 19,324 12,22,26,29

1 42,520 25.54 20,749 17,26,35 38,203 25.33 19,017 17,26,35 31,203 23.18 18,017 17,26,35

40LT 0.5 48,425 22.13 21,852 10,14,26,30,38 46,080 21.92 18,448 10,14,26,30,38 42,080 17.42 18,448 10,14,26,38

1 29,070 19.09 20,318 10,17,26, 38 27,736 18.88 21,547 10,26, 38 22,736 15.75 16,547 10,26, 38

40TL 0.5 42,569 16.83 8,116 14,19,29 40,477 16.12 6,903 14,19,29 35,185 10.09 71,032 14,29

1 25,900 10.96 6,401 14,29 22,730 10.75 9,165 14,29 14,752 8.16 3,367 14,29

40TT 0.5 32,427 10.03 10,331 14,19,25,38 30,583 9.82 7,523 14,19,25,38 26,691 7.55 3,027 14,19,38

1 20,168 8.43 8,252 14,19,38 17,523 8.22 10,048 14,19,38 11,809 4.24 948 14,38

50LL 0.5 59,282 22.71 14,393 15,28,33,35 57,541 22.5 12,143 15,28,33,35 54,541 16.94 12,143 15,28,33,35

1 39,066 20.08 16,141 15,28,33,35 36,174 17.27 16,732 15,28,35 31,174 14.18 10,732 15,28,35

50LT 0.5 55,565 19.23 15,057 26,32,46 54,186 16.02 10,436 26,32,46 52,186 13.07 13,436 26,32,46

1 39,119 17.08 13,326 26,32,46 35,992 9.87 14,681 26,46 30,992 8.74 8,681 26,46

50TL 0.5 34,324 9.13 9,645 26,45 32,431 8.92 5,912 26,45 27,449 8.23 6,113 26,45

1 17,729 7.73 7,912 24 15,340 4.52 9,448 24 9,882 3.23 2,436 24

50TT 0.5 29,183 4.06 7,299 26,48 27,727 3.85 4,479 26,48 24,434 3.01 4,125 26,48

1 16,113 3.81 6,729 26,48 13,639 3.6 8,759 26 9,800 3.02 2,403 26

75LL 0.5 93,115 47.37 68,749 14,26,35,38,56 81,343 47.16 65,231 14,26,35,38,56 55,318 41.82 63,194 14,26,38,56

1 64,054 45.29 64,184 14,26,35,38,56 53,172 41.23 57,418 14,26,38,56 32,719 23.08 56,319 14,38,56

75LT 0.5 74,926 43.16 59,317 25,32,35,38,59 57,343 42.95 53,568 25,35,38,59 41,663 24.76 43,717 25,38,59

1 40,963 45.83 61,732 25,32,35,38,59 31,568 40.26 55,619 25,35,38,59 24,428 19.80 21,368 25,38

75TL 0.5 52,219 11.76 47,273 14,35,37 39,618 11.21 45,236 14,35,37 25,763 9.96 20,813 14,37

1 27,165 10.74 45,613 14,35,37 21,308 5.91 34,192 14,37 19,233 2.21 12,341 37

75TT 0.5 42,708 11.63 45,763 26,32,38,59 30,784 11.42 30,118 26,38 20,619 9.59 21,679 26,38

1 28,816 8.89 31,573 26,38,59 17,193 8.28 29,918 26,38 14,672 2.20 11,972 38
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provides a valuable information, in particular to a conservative decision maker, since the

profit associated with this solution will never fall below the obtained value.

Next, we analyze the effects of variability in uncertain revenues on the optimal solutions

presented in Table 5.3. When the level of uncertainty (i.e., ϕ and γr) increases, the net

profit value and the number of open hubs in the optimal solutions decrease. It can also

be observed that the set of open hubs with a high level of uncertainty (e.g., γr = 50% and

ϕ = 1) is a subset of the open hubs, when the level of uncertainty is low (e.g., γr = 15%

and ϕ = 0.5). For example, in the optimal solution of 20LL with γr = 50% and ϕ = 1,

hubs are located at nodes 10 and 19. While, by decreasing γr to 15% and ϕ to 0.5, hubs

are located at nodes 7, 9, 10, and 19.

Table 5.4: Percentage of demand satisfied for each demand class with the max-min model.

Instance

type
ϕ

γr = 15% γr = 25% γr = 50%

Demand Class (%)
Avg.

Demand Class (%)
Avg.

Demand Class (%)
Avg.

m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3

LL 0.5 97.56 84.19 69.38 83.71 87.50 74.75 58.42 73.56 74.89 62.81 44.81 60.84

1 87.80 75.94 50.83 71.52 78.42 67.10 41.85 62.45 66.58 55.96 31.07 51.20

LT 0.5 91.13 78.44 57.69 75.75 84.29 69.84 48.88 67.67 72.92 57.68 37.97 56.19

1 83.40 68.46 39.14 63.67 73.65 59.34 30.87 54.62 62.90 49.21 19.89 44.00

TL 0.5 93.69 82.34 61.56 79.20 86.66 71.72 51.08 69.82 75.66 58.29 38.05 57.33

1 85.69 71.10 40.62 65.80 77.27 66.41 32.07 58.58 65.54 56.78 20.81 47.71

TT 0.5 83.62 72.19 42.38 66.06 76.43 65.68 32.75 58.29 65.53 54.48 21.89 47.30

1 73.73 63.00 26.98 54.57 64.45 53.98 18.14 45.52 53.02 41.70 8.62 34.45

Table 5.4 presents the percentages of satisfied demand from different market segments.

For a given (ϕ, γr) pair, the averages for each demand class are calculated over instances

from Table 5.3 with the same type of installation costs and capacities. The average per-

centages of total satisfied demand are provided in the last columns corresponding to each

γr value. When ϕ or γr value increases, the percentage of satisfied demand for all three

market segments decreases as expected. For a given (ϕ, γr) pair, in the instances with
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the same configuration of hub installation costs and capacities, the first class is the one

with the highest percentages of satisfied demand, while the third demand class has the

least. This is because serving the first and third classes result the highest and lowest rev-

enues, respectively. On average, instances with loose capacities (LL and TL) yield higher

percentages compared to the instances with tight capacities (LT and TT).

5.3.4.2 Computational results with the min-max regret stochastic model

We now analyze the results obtained with the min-max regret stochastic model. We use

instances with up to 75 nodes from the AP dataset. For each instance, we perform two sets

of experiments each involving five different scenarios with uncertain revenues (i.e., |Sr| = 5).

In the first set, revenue scenarios are randomly generated from the interval [0.75r̄mk , r̄
m
k ],

while in the second set, revenue scenarios are drawn from the interval [0.5r̄mk , r̄
m
k ], where

r̄mk is the nominal revenue of commodity k of class m.

The computational results are summarized in Table 5.5, which is split into two parts

to represent the results for rmsk ∈ [0.75r̄mk , r̄
m
k ] and rmsk ∈ [0.5r̄mk , r̄

m
k ], respectively. In this

table, the column “Regret” indicates the optimal regret of the problem and “Avg. profit”

represents the average anticipated profits, which are computed by taking the average profits

over 50 demand and 5 revenue scenarios in 60 replications. The rest of the columns report

the same as in Table 5.3.

All of the instances in Table 5.5 are solved to optimality. The CPU times and average

number of iterations required for solving the instances to optimality indicate the efficiency

and robustness of the algorithm and also the acceleration techniques proposed for the

min-max regret stochastic model. As can be observed from Table 5.5, different revenue

intervals have no significant impact on the performance of the algorithm. In particular,

the averages of the computational time for rmsk ∈ [0.75r̄mk , r̄
m
k ] and rmsk ∈ [0.5r̄mk , r̄

m
k ] are

3.8 and 3.7 hours, respectively.

The regret values reported in Table 5.5 indicate the maximum amount of profit that

can be lost under this data uncertainty; implying that if the decision maker employs the
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Table 5.5: Computational results for the min-max regret stochastic model with 24 instances

of the AP dataset.

Instance rmsk ∈ [0.75r̄mk , r̄
m
k ] rmsk ∈ [0.5r̄mk , r̄

m
k ]

|H| Regret
Avg.

profit

Avg.

iter.

Time

(sec)
Open hubs Regret

Avg.

profit

Avg.

iter.

Time

(sec)
Open hubs

10LL 139 13,642 2.00 39 5,9 678 8,379 2.00 40 5,9

10LT 565 4,700 2.00 31 5 1,296 1,692 2.00 39 5

10TL 137 11,023 2.00 32 5,9 975 7,942 2.00 31 5,9

10TT 561 3,560 2.00 26 5 1,368 1,799 2.00 31 5

20LL 550 73,309 5.70 2,237 7,9,10,19 2,323 40,839 7.20 1,820 7,10,19

20LT 902 35,684 3.04 1,946 5,10,12,14 1,994 23,234 6.00 1,241 5,10,14

20TL 1,027 29,181 2.03 104 7,10 2,137 21,532 3.00 144 7,10

20TT 1,074 7,231 2.00 91 10 1,799 5,712 2.00 102 10

25LL 145 94,318 2.10 4,563 7,14,17,23 781 70,435 3.84 4,548 7,14,17,23

25LT 383 59,317 2.00 5,394 6,9,10,12,14,25 1,203 41,059 5.03 5,637 6,9,12,14,25

25TL 760 48,941 2.90 2,572 6,9,14 1,094 31,520 4.00 2,776 6,9,14

25TT 979 17,593 4.00 1,774 10,14 1,872 11,451 3.00 457 14

40LL 219 65,561 6.07 22,437 12,22,26,29 935 49,338 6.79 18,717 12,26,29

40LT 189 56,402 4.70 20,214 12,14,26,29,30,38 869 37,804 4.03 15,749 14,26,29,38

40TL 127 48,637 2.00 4,426 14,19,29 929 34,389 2.21 2,616 14,29

40TT 397 37,614 4.01 9,180 14,19,25,38 1,170 25,789 2.16 4,736 14,19,38

50LL 126 64,073 4.09 14,718 15,28,33,35 489 35,848 5.12 15,134 15,28,33,35

50LT 148 60,578 2.00 7,625 6,26,32,46 577 35,812 4.07 7,526 6,26,32,46

50TL 233 37,516 3.00 4,712 26,45 780 15,456 4.40 4,495 26,45

50TT 363 31,974 2.00 5,021 26,48 1,083 13,384 2.00 5,549 26,48

75LL 368 100,106 5.86 72,163 14,23,35,38,56 954 59,933 6.14 74,318 14,23,35,38,56

75LT 464 80,243 4.91 67,335 14,25,32,38,59 1,063 37,002 5.08 67,660 14,25,32,38,59

75TL 534 55,236 4.79 43,307 14,35,37 1,187 24,537 4.36 47,208 14,35,37

75TT 599 46,406 4.15 37,639 26,32,38 1,608 25,810 4.09 41,314 26,32,38
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obtained solution, the anticipated loss in profit is guaranteed to be less than this value.

Moreover, the average profits provide an insight on the expected profit.

We now analyze the effect of the lower bound of the interval from which revenue sce-

narios are generated on the optimal solutions. For a given instance, when the lower bound

decreases from 0.75 to 0.5, that is, when the range of fluctuations in revenue values in-

creases, the regret of the solution increases, while the average profit and the optimal number

of open hubs decrease. This is because with a wider range of fluctuations in the data, we

would expect lower revenues. Accordingly, the installation cost of fewer hubs can be justi-

fied by the expected revenue. It is worthwhile to also note that the set of open hubs, when

rmsk ∈ [0.5r̄mk , r̄
m
k ], turned out to be a subset of the open hubs, when rmsk ∈ [0.75r̄mk , r̄

m
k ] in

all the instances in Table 5.5.

Table 5.6: Percentage of demand satisfied for each demand class with min-max regret

model.

Instance

type

rmsk ∈ [0.75r̄mk , r̄
m
k ] rmsk ∈ [0.5r̄mk , r̄

m
k ]

Demand Class (%)
Avg.

Demand Class (%)
Avg.

m=1 m=2 m=3 m=1 m=2 m=3

LL 97.19 83.34 48.67 76.40 93.21 74.66 37.56 68.48

LT 89.90 70.80 36.68 65.79 84.02 58.25 26.97 56.41

TL 92.21 71.38 38.35 67.31 88.07 62.51 28.05 59.55

TT 76.90 47.51 17.96 47.46 66.09 32.70 12.56 37.12

Table 5.6 presents the percentages of satisfied demand from different market segments

for rmsk ∈ [0.75r̄mk , r̄
m
k ] and [0.5r̄mk , r̄

m
k ]. When the lower bound of the interval decreases,

the percentage of satisfied demand for all three market segments also decreases. Similar to

our observations with Table 5.4, in the instances with the same configuration, the first and

third classes result in the highest and lowest percentages of satisfied demand, respectively.

For a given revenue interval, the percentage of satisfied demand in the instances with loose

capacities, on average, is higher than that of the instances with tight capacities.

118



5.3.4.3 Comparison of stochastic and robust-stochastic solutions

In this section, we compare the solutions obtained from the stochastic and the two robust-

stochastic models to analyze the effect of uncertain revenues. For the stochastic model, we

use the nominal revenues (i.e., r̄mk ). For the robust-stochastic models, the set of revenue

scenarios considered in the min-max regret model (i.e., Sr) should comply with the require-

ments of the uncertainty sets considered in the max-min model (i.e., ϕ and γr). Recall that

in the max-min version, we use ϕ to determine the variability in uncertain revenue, such

that r̂mk ∼ U [0, ϕr̄mk ] and the interval of uncertainty for revenue is [r̄mk − r̂mk , r̄mk ]. These

intervals are used to satisfy the budget of uncertainty constraint (5.29). For the min-max

regret stochastic model, we generate ten revenue scenarios (i.e., |Sr| = 10) using the same

intervals as in the max-min version (i.e., rmsk ∈ [r̄mk − r̂mk , r̄mk ] for each s ∈ Sr) and implicitly

satisfy the budget of uncertainty constraint (5.29) by ensuring that
∑
k

∑
m

r̄mk −r
ms
k

r̂mk
≤ γr, for

each scenario s ∈ Sr.

Note that each model optimizes a different metric, hence, we cannot compare the quality

of the solutions based on the individual objective function values. However, we can compare

the hub networks obtained from each of the models. We suggest evaluating the quality of

the solutions under two metrics: the profit that can be expected from each solution, and

the frequency at which each solution attains the highest profit among other solutions.

For the first metric, let (x̃, ỹ) denote the optimal solution obtained from any of the

stochastic or robust-stochastic models. For revenue rmk ∈ [r̄mk − r̂mk , r̄
m
k ], the total profit

associated with a solution (x̃, ỹ) is calculated as:

Z(x̃, ỹ) = Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

(rmk − Ĉak)wmk (ξ)x̃mak(ξ)]−
∑
i∈H

ỹifi

=
∑
k∈K

∑
m∈M

rmk X̃
m
k − C̃ (5.108)

where

X̃m
k = Eξ[

∑
a∈Ak

wmk (ξ)x̃mak(ξ)] and C̃ = Eξ[
∑
k∈K

∑
m∈M

∑
a∈Ak

Ĉakw
m
k (ξ)x̃mak(ξ)] +

∑
i∈H

ỹifi.
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Recall that rmk is a random variable (with unknown distribution); therefore, Z(x̃, ỹ) is

also a random variable with the expected value

Er[Z(x̃, ỹ)] =
∑
k∈K

∑
m∈M

E[rkm]X̃m
k − C̃. (5.109)

In our experiments, we adapt the SAA scheme and use |N | = 50 demand scenarios.

Moreover, we assume that rmk ∼ U [r̄mk − r̂mk , r̄mk ]; therefore, Er[Z(x̃, ỹ)] can easily be com-

puted by setting E[rkm] = r̄mk − 0.5r̂mk .

The second metric estimates the percentage that a solution outperforms the other two

solutions in terms of the profit that can be obtained under different revenue realizations.

To compute these percentages, we generate a large sample of revenue scenarios (e.g. of size

1,000) and estimate the percentages by counting the realizations under which each model

outperforms the others.

We performed the above analysis using four instances from the AP dataset: 20LL, 25LT,

40TL, and 50LL. For each instance, we consider five levels of variability for the revenue

intervals, ϕ ∈ {0.2, 0.4, 0.6, 0.8, 1}, and two values for the budget of uncertainty with

γr ∈ {25%, 50%}. Computational results are reported in Table 5.7. Columns under the

heading of “Expected profit” represent the expected profit obtained from the stochastic,

robust-stochastic model with max-min criterion, and min-max regret stochastic model,

respectively. Columns under the heading “Frequency of attaining the highest expected

profit (%)”, on the other hand, provide the percentage that each model yields the highest

profit among the three models under 1000 scenarios. The bold entries in Table 5.7 highlight

the highest expected profit for each instance.

The solutions obtained from both of the robust-stochastic models outperform the solu-

tions obtained from the stochastic model based on the nominal revenues, in general. On

average, the robust-stochastic models yield significantly higher expected profits compared

to the stochastic model. More specifically, in our experiments, there is a 97% chance that

at least one of the robust-stochastic models dominates the nominal case. The robustness

of the solutions obtained from the robust-stochastic models increases as the uncertainty in

120



the revenues (i.e. ϕ) increases. These observations underline the robustness of the solu-

tions obtained from the robust-stochastic models over the stochastic model and justify the

need for incorporating both sources of uncertainty in decision making.

Table 5.7: Profit comparison with stochastic and robust-stochastic models.

Instance
γr = 25% γr = 50%

Expected profit
Frequency of attaining the

highest expected profit (%)
Expected profit

Frequency of attaining the

highest expected profit (%)

|N | ϕ
Nominal

revenue

Max-min

criterion

Min-max

regret

Nominal

revenue

Max-min

criterion

Min-max

regret

Nominal

revenue

Max-min

criterion

Min-max

regret

Nominal

revenue

Max-min

criterion

Min-max

regret

20LL 0.2 42,746 42,791 42,748 22.7 54.5 22.8 42,746 42,899 43,063 0.1 8.0 91.9

0.4 32,896 34,671 36,210 0.0 0.0 100.0 32,896 35,232 36,396 0.0 0.0 100.0

0.6 23,047 26,225 29,678 0.0 0.0 100.0 23,047 27,950 29,879 0.0 0.0 100.0

0.8 13,197 18,720 23,180 0.0 0.0 100.0 13,197 18,985 23,602 0.0 0.0 100.0

1 3,348 14,087 16,769 0.0 2.4 97.6 3,348 16,298 17,595 0.0 12.9 87.1

25LT 0.2 80,587 80,373 80,609 23.3 0.0 76.7 80,587 80,425 80,655 4.8 0.0 95.2

0.4 69,063 67,812 69,225 9.1 0.0 90.9 69,063 65,583 69,324 2.4 0.0 97.6

0.6 57,539 53,817 57,988 1.9 0.0 98.1 57,539 52,355 58,038 17.9 0.0 82.1

0.8 46,015 42,143 46,948 0.4 0.0 99.6 46,015 40,420 49,117 0.0 0.0 100.0

1 34,491 34,108 36,131 0.2 3.5 96.3 34,491 34,634 41,383 0.0 0.0 100.0

40TL 0.2 52,727 52,659 52,830 0.0 0.0 100.0 52,727 52,666 52,839 0.0 0.0 100.0

0.4 45,753 45,488 45,935 0.0 0.0 100.0 45,753 45,363 45,950 0.0 0.0 100.0

0.6 38,779 40,131 39,142 0.0 100.0 0.0 38,779 39,864 39,541 0.0 95.6 4.4

0.8 31,805 31,531 32,664 0.0 0.0 100.0 31,805 31,905 36,304 0.0 0.0 100.0

1 24,831 23,562 26,216 0.0 0.0 100.0 24,831 24,353 30,462 0.0 0.0 100.0

50LL 0.2 54,568 54,692 54,681 0.0 83.6 16.4 54,568 54,684 54,705 0.0 0.6 99.4

0.4 47,232 47,354 47,449 0.0 3.3 96.7 47,232 47,485 47,519 0.0 27.1 72.9

0.6 39,897 40,279 40,181 0.0 77.4 22.6 39,897 42,151 40,762 0.0 100.0 0.0

0.8 32,562 37,606 33,286 0.0 100.0 0.0 32,562 38,646 36,247 0.0 100.0 0.0

1 25,226 28,177 26,323 0.0 100.0 0.0 25,226 31,280 29,937 0.0 99.9 0.1

Avg. 39815 40811 41910 2.9 26.2 70.9 39815 41159 43166 1.3 22.2 76.5

When the two robust-stochastic models are compared with each other, the min-max

regret model turned out to be likely to yield the highest profit. In particular, the min-max

regret model attained the highest profit in 71% of the instances whereas the max-min model

attained the highest profit only in 22%. It can also be observed from the results reported

in Table 5.7 that increasing the budget of uncertainty from γr = 25% to 50% results in a

higher expected profit for the robust-stochastic models, on average. This suggests a positive

effect of increasing the level of conservatism on the quality of the solutions obtained from
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(a) Stochastic solution with nominal revenue

(b) Robust-stochastic solution with max-min criterion

(c) Min-max regret stochastic solution

Figure 5.4: Hub networks of stochastic and robust-stochastic models for 20LL from AP

dataset with ϕ = 0.6 and γr = 0.5.
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the robust-stochastic models. Increasing the level of conservatism plays a role in favour,

in particular, of the min-max regret model, as it not only increases the expected profit,

but also increases the percentage that this model yields the highest profit among the three

models.

We now depict the differences between the optimal hub networks obtained with stochas-

tic and robust-stochastic models on the 20LL instance from the AP dataset with ϕ = 0.6

and γr = 0.5. Figures 5.4a, 5.4b, and 5.4c show the optimal hub networks from stochastic,

max-min, and min-max regret models, respectively. In these figures, squares represent the

established hubs and the thin lines the allocation connections. To provide a better repre-

sentation, we omitted the inter-hub links in these figures. Note that each model selects a

different set of hub locations. The least number of hubs are opened in Figure 5.4b, which

corresponds to the conservative attitude of the max-min criterion.

Apart from the locations of the hubs, another difference can be observed on the number

of allocation links. When there is uncertainty in revenues (Figures 5.4b and 5.4c), more

access network connections are built compared with the nominal revenue setting in the

stochastic model (Figure 5.4a). Note that the commodities with higher nominal revenues

are more prone to revenue loss, in general. This is because deviation from the nominal

revenue is a fraction of the nominal value. Accordingly, due to limited capacities for

hubs, when revenues are uncertain, the commodities with lower revenues may also become

desirable to be satisfied. This results in building denser hub networks with more allocation

connections.

5.4 Conclusion

In this chapter, we first addressed demand uncertainty and proposed a two-stage stochas-

tic program for the profit maximizing hub location problems with capacity allocation. We

then developed robust-stochastic models for the problem in which two different types of

uncertainty including stochastic demand and uncertain revenue were simultaneously in-
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corporated into the problem. To incorporate uncertain revenues into the problem, we

employed robust optimization techniques and considered two particular cases including

interval representation with a max-min criterion and discrete scenarios using a min-max

regret objective. We proposed mixed integer programming formulations for each of these

cases and showed that the robust-stochastic version with max-min criterion is a special

case of the min-max regret stochastic model.

We developed exact algorithms based on Benders decomposition coupled with sample

average approximation scheme to solve the proposed models. We additionally developed

novel acceleration techniques to enhance the performance of the algorithms enabling them

to solve large-scale intractable instances of the stochastic and robust-stochastic problems.

The implementation of these acceleration techniques resulted in up to five times improve-

ment in CPU times with the stochastic model. We performed extensive computational

experiments on the well-known AP dataset to evaluate the efficiency of the algorithms and

also to analyze the effects of uncertainty under different settings. The results show that

our algorithms were able to optimally solve instances involving up to 75 nodes and 16,875

commodities of different demand classes, confirming the efficiency of the algorithms.

The results obtained from the stochastic and robust-stochastic models provided several

observations, which can be used as a guideline in the design of optimal hub networks to

maximize profit. For example, in the stochastic model, the amount of net profit is very

sensitive to the variance of the stochastic demand. However, it was observed that the

long-term location decisions do not change significantly under these variations. In the

robust-stochastic models, on the other hand, the net profit and the number of open hubs

in the optimal solutions decrease significantly by increasing level of uncertainty associated

with the revenues.

We also compared the quality of the solutions obtained from the stochastic and robust-

stochastic models. The expected profit obtained from both of the robust-stochastic models

is significantly higher than that of the stochastic model. We additionally observe that the

uncertainty associated with revenues results in building denser hub networks with a higher
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number of allocation connections.
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Chapter 6

Conclusions and Future Work

This chapter provides a summary and states the contributions of the thesis as well as future

research directions.

6.1 Summary and Contributions

In this thesis, we incorporated revenue and profit within hub location problems and relaxed

the assumption of forcing all demand to be served while determining the optimal hub

locations, allocations, and network flows.

In Chapter 3, we introduced new problems and developed mathematical models de-

termining the locations of hubs, designing the hub networks, and routing the demand in

order to maximize profit. We proposed novel mathematical formulations considering the

single and multiple as well as the r-allocation patterns. For each allocation pattern, we

also modeled the versions in which direct connections between non-hub nodes are allowed.

The proposed models design hub networks in the most profitable way considering all pos-

sibilities for shipments. To test and evaluate the performances of the models, we used two

well-known data sets from the literature. We analyzed the resulting hub networks under
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various parameter settings. Furthermore, the effect of the economies of scale discount on

total profit was also analyzed and the trade-off between different allocation strategies as

well as the impact of allowing for direct connections were explored.

The results provided insights on where to locate hubs, how to design hub networks,

what portion of the demand to serve, and how to route flows. The best net profit values

were obtained with the multiple allocation model allowing for direct connections, whereas

the lowest profits were obtained with the single allocation model when direct connections

are not allowed. The results also showed that the decision maker can obtain significantly

more profit when the discount on transportation costs due to economies of scale is higher.

In Chapter 4, we considered revenue management decisions within hub location prob-

lems and determined how to allocate available capacities of hubs to demand of commodities

from different market segments. We proposed a strong MILP formulation of the problem

and developed two exact algorithms based on a Benders reformulation to solve large-size

instances of the problem. We introduced a new methodology to strengthen the Benders op-

timality cuts by decomposing the subproblem in a two-phase fashion and proposed two algo-

rithms. The first algorithm is based on solving the subproblem as a set of LP-relaxations of

maximum weighted matching problems, while the second solves the subproblem as a series

of LP-relaxations of knapsack problems. The algorithms were enhanced by the integration

of improved variable fixing techniques.

The major contribution of this chapter was the methodology. We developed a new two-

phase methodology for solving the subproblem to strengthen the Benders optimality cuts,

and proposed two new Benders-based algorithms to optimally solve large-scale instances

of the profit maximizing hub location problems with capacity allocation. We showed that

both algorithms result in generating very strong cuts that outperform the best known cuts

from the literature (Pareto-optimal cuts; Magnanti and Wong 61) in terms of both quality

and computational efficiency. We also proposed several variable fixing techniques improving

the convergence. The decomposition methodology for solving the Benders subproblem as

well as the improved variable fixing proposed in this thesis can be used to solve several
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classes of transportation and network optimization problems, including, but not limited

to, other facility location and network design problems.

The efficiency and robustness of the algorithms were evaluated through extensive com-

putational experiments. To date, the largest capacitated hub location instances that could

be solved optimally contained 300 nodes (Contreras et al. 37). Our computational results

showed that large-scale instances with up to 500 nodes can be solved to optimality with our

methodology, while considering an even more difficult problem setting with generic capacity

constraints, multiple demand segments, and a profit maximizing objective function.

In Chapter 5, we first proposed a two-stage stochastic program for profit maximizing

hub location problems with capacity allocation by considering uncertainty associated with

the demand. We then extended the model by investigating robust-stochastic formulations

for the problem in which two different types of uncertainty including stochastic demand

and uncertain revenue were simultaneously incorporated into the problem. To incorpo-

rate uncertain revenues into the problem, we employed robust optimization techniques

and considered two particular cases including interval representation with a max-min ro-

bustness criterion and discrete scenarios using a min-max regret objective. We proposed

mixed integer programming formulations for each of theses cases and developed Benders-

based algorithms coupled with sample average approximation scheme to obtain solutions

to problems with large number of scenarios. We additionally proposed novel acceleration

techniques to improve the convergence of the algorithms.

The main contribution of this chapter from a modeling perspective was that we de-

veloped novel robust-stochastic programming approaches to simultaneously model two

different types of uncertainty, in particular, stochastic demand and uncertain revenues.

Moreover, we proved that the robust-stochastic version with max-min criterion can be

viewed as a special case of the min-max regret stochastic model. To the best of our knowl-

edge, this is the first study that compares two robust approaches under a stochastic setting.

The proposed modeling techniques can be used to formulate uncertainty in other types of

optimization problems.
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From a methodological point of view, our contribution was to extend the two-phase

methodology introduced in Chapter 4 for strengthening the Benders optimality cuts in

order to optimally solve stochastic and robust-stochastic versions of the profit maximiz-

ing hub location problems with capacity allocation. Furthermore, we developed a general

technique for accelerating Benders decomposition coupled with SAA capable of reusing the

cuts generated during the SAA process. We showed that implementation of this acceler-

ation technique can result in up to five times improvement in CPU times. Moreover, the

effectiveness of this technique was highlighted especially for the min-max regret stochastic

model, enabling our algorithm to solve large-scale intractable instances of this problem. We

performed considerable computational analysis and were able to solve instances with up

to 75 nodes and 16,875 commodities of multiple demand classes, which are the largest set

of instances that have been solved in the literature for any type of stochastic hub location

problems.

We compared the quality of the solutions obtained from the stochastic and robust-

stochastic models. The results provided several important insights in the design of optimal

hub networks to maximize profit. For example, the expected profit obtained from both of

the robust-stochastic models are significantly higher than that of the stochastic model. In

the design of hub networks, the uncertainty associated with the revenues results in building

denser hub networks with a higher number of allocation connections. These observations

justify the need for embedding both sources of uncertainty to design robust hub networks.

6.2 Future Research Directions

Revenue can be considered in hub location models either in the objective function or as

a constraint. Profit maximizing hub location problems that were studied throughout this

thesis consider revenue only in the objective function where the total profit is calculated

by subtracting total cost from the total revenue. Another way of modeling revenue in

HLPs is by maximizing total revenue (not profit), subject to a given budget. These type
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of formulations are referred as orienteering problems in vehicle routing literature (see,

e.g.,Vansteenwegen et al. [97] and Gunawan et al. [53]). Unlike maximizing profit, in

orienteering problems, costs are excluded from the objective function, but, constrained by

a predetermined amount of budget. In orienteering HLPs, the aim can be to decide which

set of or what proportion of origin-destination pairs to serve to maximize total revenue

without exceeding the given budget.

Another future direction would be to incorporate pricing decisions within hub location

problems. In this setting, revenues are considered as decision variables rather than input

parameters. To model these problems, in addition to the main decisions considered in hub

location problems (e.g., the locations of hubs, the allocations of demand nodes to the hubs,

and the routes of flows through the network), the price setting decisions also need to be

determined to maximize profit.

From the cost point of view, the problems introduced in this thesis obey the classical

assumption in hub location studies, where the economies of scale is exploited between

hubs. Different approaches can be considered to incorporate economies of scale into the

proposed models, including flow dependent discounts for inter-hub links using non-linear

cost functions (Bryan [20], Klincewicz [58], and de Camargo et al. [43]), hub arc location

models (Campbell et al. [31] and Campbell et al. [32]), incomplete inter-hub network

designs (Alumur et al. [6] and Contreras et al. [38]), models with fixed and variable cost

components such as modeling fixed and variable costs of vehicles (Kimms [56] and Serper

and Alumur [89]), and considering economies of scale with flow thresholds (Podnar et al.

[82]).
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Appendix A

A.1 Hybrid MWM-Knapsack Method

We show how proper values of (bi)i∈He
0

can be found via a relaxation of DS-II (4.25)-(4.28).

Observe that by relaxing constraints (4.26), relaxed DS-II can be decomposed into |He
0 |

independent smaller subproblems for each i ∈ He
0 :

(Relaxed DS-II(i)) Minimize Γibi +
∑
k∈K

∑
m∈M

umik (A.1)

umik + wmk bi ≥ ρkmii (k,m) ∈ K ×M (A.2)

umik, bi ≥ 0 (k,m) ∈ K ×M (A.3)

Similar to problem (4.58)-(4.60), this problem is the dual of the LP-relaxation of a knapsack

problem with knapsack capacity Γi, and items (k,m) ∈ K ×M with weight wmk and profit

ρkmii , and can be solved in the same fashion. As explained in Section 4.2.3.3, bi is the

profit-to-weight ratio of the break item (k̄, m̄)

bi = ρk̄m̄ii /w
m̄
k̄ . (A.4)

Note that even though problem (4.58)-(4.60) has a formulation similar to problem (A.1)-

(A.3), they are inherently different: problem (4.58)-(4.60) is a restriction of DS-II, whereas

problem (A.1)-(A.3) is a relaxation of DS-II, hence the solution obtained by (A.1)-(A.3)
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may not be feasible to DS-II. Therefore, once the value of (bi)i∈He
0

is calculated, to obtain

a complete feasible solution we calculate the value of u using the MWM algorithm.

It is worth mentioning that the major computational effort required for solving this

problem is due to calculating ρkmii values, while the time required for solving the knapsack

problem itself is almost negligible even for the largest instances. On the other hand, note

that we need to calculate ρkmii as part of preparing DS-II (4.25)-(4.28), no matter what

the value of b is. This means using this hybrid MWM-Knapsack method, we can find

promising values of b for the MWM problems (hence stronger cuts) without incurring

additional computational cost.

A.2 Supplementary Numerical Results

To determine the best values to use for the parameters pQ (proportion of hubs that are

less likely to be open in the optimal solution) and nQ (number of subsets into which Q is

partitioned) in our variable fixing tests in Chapter 4, we selected medium- and large-size

instances with 40-100 nodes from the AP dataset and took runs under different pQ and nQ

values. For each instance, we performed computational tests with pQ ∈ {50%, 75%, 100%}
and nQ ∈ {1, 2, . . . , 10}, respectively. (The pQ = 100% and nQ = 1 combination cor-

responds to the tests introduced in Contreras et al. 35.) The computational results are

summarized in Table A.1.

The first two columns of Table A.1 report the instance size and the number of hub

elimination subsets (nQ) used, respectively. The columns labeled “Average time” and

“Average % hubs elim.” report the average computational times in seconds and the average

percentage of the total candidate hubs that were eliminated under the three different pQ

values. The averages are calculated over four same-size instances with different installation

costs and capacities.

When the values presented in Table A.1 are averaged, the combination pQ = 75% and

nQ = 6 provides the best results in terms of average computational time and average
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Table A.1: Computational results for different pQ and nQ values with 16 instances of the

AP dataset.

Instance pQ = 100% pQ = 75% pQ = 50%

|H| nQ
Average

time

Average %

hubs elim.

Average

time

Average %

hubs elim.

Average

time

Average %

hubs elim.

40 1 19.60 70.63 19.66 79.38 19.45 81.88

2 19.77 82.50 19.47 84.38 19.45 83.13

3 20.05 81.88 19.90 84.38 19.53 83.13

4 20.19 85.00 19.99 85.00 19.93 80.63

5 20.35 85.63 20.48 83.75 20.20 80.00

6 21.05 85.63 20.55 83.13 20.65 76.25

7 20.83 85.63 21.22 79.38 20.36 74.38

8 21.35 85.00 21.38 79.38 20.72 68.13

9 21.41 81.25 21.22 76.25 20.91 66.25

10 21.58 80.63 21.46 74.38 20.74 63.75

50 1 21.39 83.50 20.36 85.50 20.98 86.50

2 20.77 86.00 20.02 85.00 20.15 86.50

3 20.26 89.50 19.83 88.50 20.58 86.50

4 20.28 90.00 20.03 88.00 20.25 83.50

5 19.78 90.00 20.03 87.00 20.08 83.00

6 19.86 90.00 20.28 86.00 21.04 83.50

7 19.88 89.00 20.04 85.00 20.58 78.00

8 20.46 89.00 20.11 84.50 20.83 77.00

9 20.86 88.00 20.56 82.00 21.04 75.00

10 20.25 84.00 20.97 78.00 20.54 70.50

75 1 148.00 86.00 152.76 89.33 148.11 89.00

2 149.38 89.33 148.21 92.00 150.00 90.00

3 146.08 92.33 146.32 91.33 144.23 90.33

4 144.27 92.00 145.04 91.33 144.91 87.00

5 149.96 92.00 145.80 91.00 142.15 88.67

6 151.31 92.67 144.93 90.67 146.04 88.00

7 159.46 92.00 146.52 88.67 149.52 85.00

8 156.55 90.67 146.69 89.67 150.75 84.67

9 149.52 91.00 146.40 88.00 145.76 83.33

10 157.78 90.67 145.13 86.00 146.11 81.67

100 1 489.43 85.50 483.90 88.50 481.12 89.75

2 441.71 92.25 430.57 92.00 441.58 92.25

3 422.44 93.75 427.37 93.75 424.23 92.25

4 421.21 94.25 407.14 93.25 412.89 91.75

5 405.94 94.25 407.84 93.50 407.36 91.00

6 419.81 94.50 394.60 93.50 413.73 89.75

7 414.71 94.00 397.70 91.00 424.58 88.50

8 415.16 93.00 401.41 90.75 424.00 86.00

9 411.12 92.50 397.78 90.75 417.26 85.25

10 407.30 91.25 405.67 89.50 420.62 84.25
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percentage of hubs eliminated in the optimal solution. Hence, we used the aforementioned

values for the corresponding parameters in our computational experiments.
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