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Abstract 

Cycle time reduction is one of the crucial tasks in manufacturing that needs to be achieved to 

maximize productivity and profits. Laser drilling processes, depending on the size and complexity 

of the parts, require few hundreds to few thousands of holes to be drilled. Therefore, cycle time is 

directly related to in what order and manner the holes are visited. In this thesis, a method of cycle 

time reduction for 5-axis percussion laser drilling process is presented via generation of time-

optimal trajectory and optimization of hole visiting sequence. 

In percussion laser drilling, a series of laser pulses are fired to each hole while the workpiece is 

stationary. Once a hole is completely opened up, then drilling of the next hole continues by 

repositioning the workpiece with respect to the beam. This stop-and-go nature of the drilling 

process enables one to describe the sequence optimization problem as a well-known Traveling 

Salesman Problem (TSP) in combinatorial optimization. The objective of TSP is to find a 

minimum cost sequence of points when the point-to-point cost information for every possible pair 

is known. In the case of the minimum cycle time problem, the point-to-point cost is the travel time, 

and the objective of TSP is to find a sequence with the minimum overall travel time.    

In planning of time-optimal trajectory for point-to-point motion under a specified path, industry 

uses CNC controller’s G00 (rapid traverse) + TRAORI (5-axis transformation and tool orientation 

retaining tactic) commands. To be practically beneficial, time-optimal trajectory generation 

strategies discussed in this thesis is focused on closely estimating these CNC controller’s 

behaviors. A total of four strategies are studied, and the most accurate strategy is chosen by 

comparing the results with the experimentally measured CNC trajectories. The most accurate one 

specifies the tool paths in Workpiece Coordinates followed by iterative velocity profiling of the 

tool path parameter to achieve minimum time trajectory under the machine’s velocity, 

acceleration, and jerk limits.  

With every hole-to-hole travel time calculated from the above strategy, sequence optimization can 

be conducted. In this thesis, two methods from the industry partner, the proposed method, and the 

optimal solver method are discussed. Due to licensing limitations, the proposed method is 

developed in-house instead of using existing non-commercial TSP algorithms. The proposed 

method uses local search heuristics approach inspired by famous Lin-Kernighan heuristics. The 



 

iv 

results are compared to the optimal solutions generated from the non-commercial state-of-the-art 

TSP solver called Concorde for benchmarking purposes.  

To understand the impact of the research in a real environment, one sample part and its original 

drilling process information have been made available by the industry partner. Although the full 

experimental results are not yet acquired at the moment of writing this thesis, the simulation results 

show that the proposed sequencing optimization in conjunction with the proposed hole-to-hole 

trajectory generation strategy for correct estimation of travel time improves the overall cycle time 

by 26.0 %.  
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Chapter 1 

Introduction 

Cycle time reduction is one of the crucial tasks in manufacturing that needs to be achieved to 

maximize productivity and profits. Laser drilling processes, depending on the size and complexity 

of the parts, require few hundreds to few thousands of holes to be drilled. Therefore, cycle time is 

directly related to in what order and manner the holes are visited. In this thesis, a method of cycle 

time reduction for 5-axis percussion laser drilling process is presented via generation of time-

optimal trajectory and optimization of hole visiting sequence. 

Laser drilling is a unique method for producing high depth-to-diameter ratio holes. Unlike the 

conventional drilling methods, it is a non-contact process, from which holes can be drilled in 

materials that are considered traditionally as hard-to-machine. In addition, it is capable of drilling 

holes with shallow angles to the surface, which makes it a highly productive method for producing 

arrays of holes with complex orientations on freeform shaped components such as film-cooling 

holes for gas turbine combustion chamber panels. Its industrial applications also include printed 

circuit boards (PCB), medical devices, fuel injection nozzles, micro holes for scientific 

instrumentation, and so on.  

One common laser drilling method is percussion drilling. In percussion drilling, a series of laser 

pulses are fired to each hole while the workpiece is stationary. Each laser pulse removes a certain 

volume of material via ablation. Once a hole is completely opened up, then drilling of the next 

hole continues by repositioning the workpiece with respect to the beam. For 𝑛 number of holes, 

there are 
(𝑛−1)!

2
 number of hole visiting sequences available, of which total travel times vary 

drastically. Therefore, obtaining optimal hole visiting sequence and hole-to-hole trajectory subject 

to machine capabilities enables the reduction of the overall beam positioning time, which 

contributes to an increase in manufacturing productivity. In Chapter 2, literatures that discuss 

trajectory generations for industrial machines and sequence optimizations are reviewed. 
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Figure 1.1 Hole locations and orientations for a sample part 

A sample part of percussion laser drilling application of a gas turbine combustion chamber panels 

from a Canadian aero-engine producer, Pratt & Whitney Canada, is shown in Figure 1.1. Such hole 

patterns are drilled with a 5-axis laser drilling machine as shown in Figure 1.2 to comply with 

complex hole locations and their orientations. The machine has three translational axes (𝑋, 𝑌, & 𝑍) 

and two rotational axes (𝐵 & 𝐶). 

 

Figure 1.2 5axis laser machine [1]  

An overview of the thesis work is illustrated in Figure 1.3. The original unoptimized drilling 

process is given in the form of NC code in which the positions and orientations of the drilling holes 
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are defined with respect to the workpiece (Workpiece Coordinates). In order to optimize the 

process under each servo drive’s kinematic constraints, such as velocity limits, acceleration limits, 

and jerk limits, it is essential to represent these values with respect to the machine body (Machine 

Coordinates). Such transformation is referred to as the kinematic transformation and are discussed 

in more detail in Chapter 3.  

Once the starting and the end coordinates are known, hole-to-hole trajectory planning is conducted 

to yield the minimum travel time. Although it is not time-optimal, in order to maximize the benefits 

of the industrial partner in terms of the optimality and practicality, the study is focused on 

delivering a trajectory generation method that closely estimates the current implementation of NC 

codes G00 (rapid traverse) with TRAORI (CNC controller’s 5-axis transformation with tool 

orientation tactic) motions exerted by the machine. With correct estimation, it is possible to obtain 

realistic hole-to-hole travel durations, and from this information, the optimal sequence problem 

can produce more precise and realistic results. The detail is discussed in Chapter 4.      

In the context of a multi-point drilling application, the optimal sequence problem can be described 

by a well-known Traveling Salesman Problem (TSP) in combinatorial optimization. Given a set 

of cities and the distances between each pair of cities, the objective of a standard TSP is to find the 

minimum distance tour to visit all the cities only once. In this thesis, the problem of finding an 

optimal sequence is formulated in the TSP format so that when a set of holes and the travel 

durations between each pair of holes are calculated, the resultant sequence would yield minimum 

travel time to visit all the holes only once. In Chapter 5, the formulation to TSP and the proposed 

solution algorithm is presented.  

Then the rest of the thesis is organized as follows: both simulation and experimental results 

showing the effectiveness of proposed method are presented in Chapter 6, followed by conclusions 

and future work in Chapter 7.  
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Figure 1.3 An overview of the thesis work 
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Chapter 2 

Literature Review 

2.1 Introduction 

Minimum time trajectory planning for laser drilling process can be broken down into two tasks: 

trajectory generation and sequence optimization. It is desired to generate a trajectory from one hole 

to another hole so that its travel time is minimized. Such trajectories should be bounded by the 

machine’s kinematic limits to ensure no saturation of the drives and no excessive vibration. Next 

is to optimize the hole visiting sequence to minimize the total travel time. With every hole-to-hole 

travel time known from the trajectory generation, the sequence optimization task can be formulated 

to a TSP to solve for an optimal or near-optimal sequence which results in the minimum total travel 

time.   

2.2 Trajectory Generation 

There has been a lot of research in generating minimum time trajectory for both manipulator type 

robots and machine tools. There are two main approaches in trajectory generation: a dynamic 

approach and a kinematic approach. In the dynamic approach, the system is often modeled with 

coupled dynamic equations, such as shown in the following equation, that combine the dynamics, 

joint forces/torques, or load characteristics for a given trajectory.  

 
𝝉 = 𝑴(𝒒)𝒒̈ + 𝒒̇T𝑪(𝒒)𝒒̇ + 𝑮(𝒒) (2.1) 

Here 𝝉 ∈ ℝ𝑛  is the vector of actuator torques, 𝒒 ∈ ℝ𝑛  is the vector of joint positions, 𝑴(𝒒) ∈

ℝ𝑛×𝑛 is the inertia matrix of the manipulator, 𝑪(𝒒) ∈ ℝ𝑛×𝑛×𝑛 contains centrifugal and Coriolis 

force terms, 𝑮(𝒒) ∈ ℝ𝑛 represents the vector of gravity terms.  

This approach can be found commonly in most of the robotics and manipulator type researches as 

the dynamic load at the end effector and the external forces such as gravity affect system 

performance noticeably in robotic arm structures [2], [3], [4], [5]. In generating trajectories, some 

of the early studies do not consider the continuity of acceleration profile, resulting in a bang-bang 

or bang-singular-bang type characteristics, which are hard to implement because such trajectories 



 

6 

may cause mechanical wear, saturation, and vibration. The need for smooth trajectories is 

understood and Constantinescu and Croft [6] presented a smooth time-optimal trajectory method 

by limiting the torque rate of each joint. Bianco and Piazzi [7] obtained minimum time cubic spline 

trajectory subjected to torque constraints using hybrid genetic/interval algorithm based global 

optimization approach.  

More recently, time-optimal trajectory planning is formulated into a form of convex optimization 

problem motivated by its advantages on its theoretical and practical strengths: optimal solution in 

convex optimization represents the global optimal solution and the convex optimization problems 

can be solved efficiently by mature methods such as interior-point methods or other. In their study, 

Zhang and Zhao [8] used a convex optimization technique to generate smooth minimum time 

trajectory while utilizing the maximum machine capabilities. Zhang et al. [9] used the cubic 

Hermite polynomial to generate a smooth tool path for a point-to-point motion and constructed 

two-level nested optimization problem that searches for minimum time trajectory for different 

given point-to-point tool paths. For the confined path tracking problem, Zhang et al. [10] obtained 

minimum time trajectory under confined jerk, rate of change of the torque, and the voltage by 

formulating a relaxed convex optimization problem.  

On the other hand, a common industrial practice in the machine tool and manufacturing industry 

is to use the kinematic approach which represents machine drive capabilities with kinematic limits 

such as velocity, acceleration, and jerk shown in equation (2.2). 

 

−𝒗𝒎𝒂𝒙 ≤ 𝒒̇ ≤ 𝒗𝒎𝒂𝒙 

−𝒂𝒎𝒂𝒙 ≤ 𝒒̈ ≤ 𝒂𝒎𝒂𝒙 

−𝒋𝒎𝒂𝒙 ≤ 𝒒⃛ ≤ 𝒋𝒎𝒂𝒙 

(2.2) 

This practice enables an easy transfer of machine specification provided by the toolmakers onto 

trajectory generation. In the kinematic approach, it is highly desired to have continuous 

acceleration and bounded jerk profiles to avoid undesirable high-frequency content in the reference 

trajectory that can induce excessive vibration, degrade axis tracking performance leading to poor 

contouring accuracy, and saturate the actuators. Therefore, different jerk bounded and jerk 

continuous feedrate planning strategies have been suggested in a lot of research.  
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Analytical functions can be used in generating such smooth motion profile. Makino and Ohde [11] 

generated a universal cam curve acceleration profile from combining sinusoidal curves and straight 

lines to ensure jerk continuous feedrate. Tomita et al. [12] used trigonometric functions to get jerk 

continuous trajectory. In their work, Erkorkmaz and Altintas [13] developed a quintic spline 

trajectory generation method with a jerk bounded smooth feedrate having trapezoidal acceleration 

profile. A dynamic filter such as Finite Impulse Response (FIR) filters can also be utilized to 

generate a smooth trajectory. By simply convolving a number of FIR filters, higher order 

polynomial smooth trajectories can be obtained [14], [15].  

Another kinematic approach is to transform the feedrate planning problem into an optimization 

problem, which can be solved using mathematical optimization methods [16], [17], [18], [19]. 

Quintic spline is used to approximate the position profile for the given starting and ending point 

and up to eight control points are optimized to yield minimum time jerk bounded smooth trajectory 

in real time [20]. Sencer et al. [21] approximated the feed profile with cubic B-spline, and its 

control points are optimized to obtain a time-optimal smooth trajectory. In their research, 

Kyriakopoulos and Saridis [22] adopted an optimal control problem to minimize the maximum of 

jerk values of the joints to generate a smooth trajectory. It is worth to mention that in [23], both 

the total execution time and the integral of squared jerk terms are minimized to yield optimal 

trajectory.  

2.3 Sequence Optimization 

As mentioned previously, the total travel time for 5-axis percussion laser drilling process comes 

from the laser nozzle end maneuvering over all the holes in a given visiting sequence. Therefore, 

great attention is required on optimizing the sequence to minimize the travel time. In fact, the stop-

and-go nature of the percussion drilling process resembles a well-known combinatorial 

optimization topic called Traveling Salesman Problem (TSP). Given a set of cities and the costs 

of traveling among all the cities, a TSP is to find the minimum cost tour that visits all the cities 

exactly once [24]. The problem was mathematically formulated in the 1800s and starting in 1950s, 

it became increasingly popular among mathematicians, computer scientists, and scientists from 

other fields (Figure 2.1) [25]. TSP falls into a category of NP-hard problem as there is no way of 

checking if there exists a better solution to a candidate solution in polynomial time. In solving such 
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NP-hard problems, two approaches are taken: exact algorithms and heuristic or metaheuristic 

algorithms.  

 

Figure 2.1 TSP example of an optimal tour of 42 cities in the USA solved in 1954 [26]  

In computer sciences and other optimization fields, exact algorithms are algorithms that are 

guaranteed to generate optimal solutions. For TSP, the most direct method would be trying out all 

the possible permutations of the given cities and check which one is the optimal solution. For 𝑛 

number of cities, there are 
(𝑛−1)!

2
 feasible solutions to check, which makes this brute force search 

almost impossible even for a small number of cities. In 1954, Dantzig et al. [27] developed a 

breakthrough cutting plane method of solving TSP with linear programming. First, relaxed linear 

programming that can be solved by the simplex method is formulated from the original linear 

programming. Then, the solution to the relaxed one is checked if it satisfies the original constraint. 

If not, the linear inequalities that violate, called a cutting plane, are added to the relaxed problem 

to make it tighter and it is solved again. This process is iterated so that eventually, the solution to 

the original linear programming is obtained. Although it was successful in solving the 49-city 

problem [28], it is still not very efficient to solve for larger instances. Applegate et al. [29] 

presented in 1998 a powerful computer code called Concorde that uses a hybrid method called 

branch-and-cut to dramatically increase the efficiency. While the problem is recursively split from 

branching and establishes bounds, the cutting planes are added, hence branch-and-cut, to relax the 

problem. In 2006, a very large 85,900-city problem is solved using the solver [30]. To date, 

Concorde TSP solver is considered as a state-of-the-art exact solver.   

Despite the guaranteed optimality, the exact solvers still take a relatively long time to solve. Hence, 

researchers and practitioners tend to use heuristic or metaheuristic algorithms to find optimal or 
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near-optimal solutions as fast as possible. These algorithms include Nearest Neighbor (NN), Lin-

Kernighan Helsgaun (LKH), Genetic Algorithm (GA), Ant Colony Optimization (ACO), and so 

on. Nearest Neighbour algorithm is one of the first algorithms to build a TSP tour. Starting from a 

random city, it constructs a tour by keeping adding the nearest city to the current city until all the 

cities have been visited. It is easy to implement and generates a solution quickly, but it is most 

likely to produce suboptimal solutions due to its greedy nature. Alwis et al. [31] used NN to 

generate a sequence for automated PCB drilling application. However, their solutions are not 

optimal, and in fact, it is very much noticeable to human eyes. Oftentimes, NN is used in 

conjunction with local search optimization methods such as powerful Lin-Kernighan Helsgaun 

(LKH).  

LKH is a more computationally efficient and effective version of Lin-Kernighan (LK) heuristics 

developed by computer scientists Keld Helsgaun. The original LK heuristics uses a local search 

technique called k-opt moves (or exchanges). When a feasible tour is given, a k-opt move modifies 

a tour by replacing k number of edges with different k number of edges in such a way that the 

result is a cheaper tour [32]. With effective implementation of the k-opt move and other revised 

criteria, LKH is one of the top heuristics that holds the record for finding the best reported tour for 

the 1,904,711-city large-scale World TSP [33]. Aciu and Ciocarlie successfully implemented LKH 

to generate minimum tool path lengths for PCB drilling application [34]. While these problem 

specific heuristic algorithms produce excellent solutions, a trend has been to utilize metaheuristic 

algorithms to address more general problem types and for a greater chance of reaching global 

optimum.  

Genetic Algorithm (GA) is based on the evolutionary algorithm, which closely reflects Charles 

Darwin’s natural selection of fittest individuals in reproduction for the next generation [35]. With 

special parameters such as fittest score assigned and undergoing selection and mating processes, 

GA can produce promising TSP results such as the best-known-to-date solution for 100,000-city 

Mona Lisa TSP instance [36]. Zhang and Zhao [37] have solved minimum time drilling problems 

for a 3-DOF robotic manipulator using GA.  

Another popular metaheuristic algorithm is Ant Colony Optimization (ACO). It mimics the route 

selection strategy of an ant colony. Movement of a single ant seems rather erratic and 
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uncoordinated, however communicating via pheromone trails, the entire group of ants can find an 

efficient route to food [38]. For TSP, pheromone values are assigned to each edge to indicate the 

probability of being selected. Ross et al. [39] presented a method of optimizing the drilling path 

for the CNC machine by using Parallel ACO, a high-performance implementation of ACO.  

2.4 Conclusion 

In this chapter, literature covering the topics of trajectory planning and sequence optimization has 

been reviewed. The main objective of the research presented in this thesis is the integration of 

these two topics to generate a time-optimal trajectory that considers the constraints of the drilling 

process, and the kinematic configuration and drive limits of the 5-axis laser drilling machine with 

hole visiting sequence optimized to minimize the travel time of the drilling process. However, the 

applicability of the findings from this research is not limited to the laser drilling process but can 

be expanded to any multi-point manufacturing process.   
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Chapter 3 

Kinematic Model of 5-axis Laser Drilling Machine 

3.1 Introduction 

In general, planning of machining processes for CNC machines are done in Workpiece 

Coordinates (WCS) since machining occurs on the workpiece. Tool paths are defined relative to 

the workpiece and depending on the process type, the speed the tool end, known as the feedrate, 

is defined relative to the workpiece as well. However, actual motions are executed by individual 

servo drives, of which motions are defined in Machine Coordinates (MCS). Hence, to fully 

understand the processes, it is desired to transform the job information in WCS to MCS. Such 

transformation is called kinematic transformation. Depending on the machine configuration of 

how the individual servo drives are attached to the machine base, the transformations differ from 

machine to machine. In this chapter, the kinematic transformation of the 5-axs laser drilling 

machine from the industry partner is presented.     

3.2 5-axis Laser Drilling Machine Diagram 

Based on the product manual of the 5-axis laser drilling machine, the following kinematic diagram 

is constructed. 
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Figure 3.1 Kinematic diagram of 5-axis laser drilling machine 

 

 

 

 

 



 

13 

The following table lists the coordinate systems (C.S’s) considered in the system: 

Table 3.1 List of the coordinate systems considered to construct the kinematic model 

Coordinates Description 

C.S.O (𝑶𝑶𝒙𝑶𝒚𝑶𝒛𝑶) This frame is fixed to the machine base bottom. Its axes are parallel to the 

translating joints of the machine 

C.S.Z (𝑶𝒁𝒙𝒁𝒚𝒁𝒛𝒁) This frame is attached to the moving Z stage of the machine. The tilt(B) stage is 

also attached to the Z stage.  𝒙𝒁 and 𝒚𝒁 axes are parallel to the 𝒙𝑶 and 𝒚𝑶 axes.    

C.S.B (𝑶𝑩𝒙𝑩𝒚𝑩𝒛𝑩) This is the tilt (B) stage coordinate system. 𝒚𝑩 is the axis of rotation for tilt stage. 

𝑶𝑩  is translated from 𝑶𝒛  by 𝒅𝒚  along 𝒚𝒁  axis. 𝒅𝒚  is a constant offset by the 

machine structure. 𝑶𝑩 is rotated by 𝜽𝑩 along 𝒚𝒛 axis. 𝜽𝑩 is a variable dependent 

on the tilt motion. 

C.S.C (𝑶𝑪𝒙𝑪𝒚𝑪𝒛𝑪) This is the workpiece base frame that sits on the rotary (C) stage. 𝒛𝑪 is the axis of 

rotation for the rotary stage. 𝑶𝑪 is translated from 𝑶𝑩 by 𝒅𝑪 along 𝒛𝑩 axis. 𝒅𝑪 is 

a constant offset by the machine structure. 𝑶𝑪 is rotated by 𝜽𝑪 along 𝒛𝑩 axis. 𝜽𝑪 

is a variable dependent on the rotary motion. 

C.S.Y (𝑶𝒀𝒙𝒀𝒚𝒀𝒛𝒀) This is the translating Y-stage coordinate system. 𝑶𝒀 is translated from 𝑶𝑶 by 𝒀 

along 𝒚𝑶 axis and by 𝒅𝒁 along 𝒛𝑶 axis. 𝒀 is a variable of Y moving motion and 

𝒅𝒁 is a constant offset by the machine structure.  

C.S.X (𝑶𝑿𝒙𝑿𝒚𝑿𝒛𝑿) This is the translating X-stage coordinate system. 𝑶𝑿 is translated from 𝑶𝒀 by 𝑿 

along 𝒙𝒀 axis. 𝑿 is a variable of X moving motion. 

C.S.F (𝑶𝑭𝒙𝑭𝒚𝑭𝒛𝑭) This frame is attached to the laser focal point where the laser is focused and the 

drilling occurs. 𝑶𝑭  is translated from 𝑶𝑿  by 𝒅𝒇  along 𝒛𝑿  axis. 𝒅𝒇  is a constant 

offset by the machine structure. 

3.3 Coordinate Transformation 

With TRAORI mode (explained in more detail in Chapter 4), the position of each hole is expressed 

with respect to WCS, which is defined as C.S.C from the above illustration, and the orientation of 

each hole is directly expressed as 𝐵  and 𝐶  angles. When the NC code is read in, the CNC 

transforms WCS values to MCS values automatically. The measurements from the machine are in 

MCS values, therefore it is necessary to study the kinematic transformation of the coordinates to 

transform trajectory and hole pattern information between them.   

In this thesis, coordinate transformation is expressed using homogeneous transformation matrices. 

Homogeneous transformation matrix is a 4 × 4  matrix containing the rotation matrix and the 
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translation vector. For example, consider an arbitrary point in two coordinate systems shown in 

the below figure.  

 

Figure 3.2 Visualization of coordinate transformation between two coordinate systems 

The point can be expressed by two vectors, 𝒑0 and 𝒑1, and the coordinate transformation between 

these vectors can be represented by using a homogeneous transformation matrix, 𝑯01 , in the 

following equation. 

 𝒑0 = 𝑯01𝒑
1 = [

𝑹01 𝑻01

0 0 0 1

]

(

 

𝑝𝑥
1

𝑝𝑦
1

𝑝𝑧
1

1 )

  (3.1) 

where 𝑹01  is a 3 × 3  rotation matrix of frame 1 with respect to frame 0 and 𝑻01  is a 3 × 1 

translation vector from the origin of frame 0 to frame 1. With the same transformation matrix, the 

reverse can be represented as well by taking an inverse of the matrix. 

 𝒑1 = (𝑯01)
−1𝒑0 = [

𝑹01 𝑻01

0 0 0 1

]

−1

(

 

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑧
0

1 )

 = [
𝑹10 𝑻10

0 0 0 1

]

(

 

𝑝𝑥
0

𝑝𝑦
0

𝑝𝑧
0

1 )

  (3.2) 

One of the benefits of using the homogeneous transformation matrices is that a sequence of 

coordinate transformation can be represented by the products of the individual homogeneous 

transformation matrix.  
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Since {𝐵 𝐶} values are directly given in TRAORI mode, {𝑋 𝑌 𝑍} are required to understand the 

motion in MCS. To find the corresponding coordinate transformation between MCS and WCS, 

the transformation from the workpiece base frame (C.S.C) to the tool end frame, in this case at the 

laser focal point (C.S.F), is defined first by the following equation.  

 𝑯𝐹𝐶 = (𝑯𝑂𝑍𝑯𝑍𝑌𝑯𝑌𝑋𝑯𝑋𝐹)
−1𝑯𝑍𝐵𝑯𝐵𝐶 (3.3) 

where each homogeneous transformation matrix is shown below with the following representation, 

𝑆𝐵 = 𝑠𝑖𝑛𝜃𝐵 , 𝐶𝐵 = 𝑐𝑜𝑠𝜃𝐵, 𝑆𝐶 = 𝑠𝑖𝑛𝜃𝐶 , 𝐶𝐶 = 𝑐𝑜𝑠𝜃𝐶 .  

𝑯𝑂𝑍 = [

1 0 0 0
0 1 0 0
0 0 1 𝑍
0 0 0 1

] 𝑯𝑍𝑌 = [

1 0 0 0
0 1 0 𝑌
0 0 1 𝑑𝑧 − 𝑍
0 0 0 1

] 

𝑯𝑌𝑋 = [

1 0 0 𝑋
0 1 0 0
0 0 1 0
0 0 0 1

] 𝑯𝑋𝐹 = [

1 0 0 0
0 1 0 0
0 0 1 −𝑑𝑓
0 0 0 1

] 

𝑯𝑍𝐵 = [

𝐶𝐵 0 −𝑆𝐵 𝑑𝑥
0 1 0 𝑑𝑦
𝑆𝐵 0 𝐶𝐵 0
0 0 0 1

] 𝑯𝐵𝐶 = [

𝐶𝐶 𝑆𝐶 0 0
−𝑆𝐶 𝐶𝐶 0 0
0 0 1 𝑑𝑐
0 0 0 1

] 

𝐻𝑓𝑐 can be calculated by multiplying the above matrices. 

𝑯𝑂𝑌 = 𝑯𝑂𝑍𝑯𝑍𝑌 = [

1 0 0 0
0 1 0 0
0 0 1 𝑍
0 0 0 1

] [

1 0 0 0
0 1 0 𝑌
0 0 1 𝑑𝑧 − 𝑍
0 0 0 1

] = [

1 0 0 0
0 1 0 𝑌
0 0 1 𝑑𝑧
0 0 0 1

] 

𝑯𝑂𝑋 = 𝑯𝑂𝑌𝑯𝑌𝑋 = [

1 0 0 0
0 1 0 𝑌
0 0 1 𝑑𝑧
0 0 0 1

] [

1 0 0 𝑋
0 1 0 0
0 0 1 0
0 0 0 1

] =  [

1 0 0 𝑋
0 1 0 𝑌
0 0 1 𝑑𝑧
0 0 0 1

] 

𝑯𝑂𝑓 = 𝑯𝑂𝑋𝑯𝑋𝐹 = [

1 0 0 𝑋
0 1 0 𝑌
0 0 1 𝑑𝑧
0 0 0 1

] [

1 0 0 0
0 1 0 0
0 0 1 −𝑑𝑓
0 0 0 1

] = [

1 0 0 𝑋
0 1 0 𝑌
0 0 1 𝑑𝑧 − 𝑑𝑓
0 0 0 1

] 
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𝑯𝑂𝐵 = 𝑯𝑂𝑍𝑯𝑍𝐵 = [

1 0 0 0
0 1 0 0
0 0 1 𝑍
0 0 0 1

] [

𝐶𝐵 0 −𝑆𝐵 𝑑𝑥
0 1 0 𝑑𝑦
𝑆𝐵 0 𝐶𝐵 0
0 0 0 1

] =  [

𝐶𝐵 0 −𝑆𝐵 𝑑𝑥
0 1 0 𝑑𝑦
𝑆𝐵 0 𝐶𝐵 𝑍
0 0 0 1

] 

𝑯𝑂𝐶 = 𝑯𝑂𝐵𝑯𝐵𝐶 = [

𝐶𝐵 0 −𝑆𝐵 𝑑𝑥
0 1 0 𝑑𝑦
𝑆𝐵 0 𝐶𝐵 𝑍
0 0 0 1

] [

𝐶𝐶 𝑆𝐶 0 0
−𝑆𝐶 𝐶𝐶 0 0
0 0 1 𝑑𝑐
0 0 0 1

]

=  [

𝐶𝐵𝐶𝐶 𝐶𝐵𝑆𝐶 −𝑆𝐵 −𝑆𝐵𝑑𝑐 + 𝑑𝑥
−𝑆𝐶 𝐶𝐶 0 𝑑𝑦
𝑆𝐵𝐶𝐶 𝑆𝐵𝑆𝐶 𝐶𝐵 𝐶𝐵𝑑𝑐 + 𝑍
0 0 0 1

] 

𝑯𝐹𝐶 = (𝑯𝑂𝐹)
−1𝑯𝑂𝐶 = [

𝐶𝐵𝐶𝐶 𝐶𝐵𝑆𝐶 −𝑆𝐵 −𝑆𝐵𝑑𝑐 + 𝑑𝑥 − 𝑋
−𝑆𝐶 𝐶𝐶 0 𝑑𝑦 − 𝑌

𝑆𝐵𝐶𝐶 𝑆𝐵𝑆𝐶 𝐶𝐵 𝐶𝐵𝑑𝑐 + 𝑍 + 𝑑𝑓 − 𝑑𝑧
0 0 0 1

] 

With this transformation matrix, it is possible to express the coordinate transformation of each hole 

pattern from the WCS (𝒑𝐶) to the laser focal coordinate system as follows 

 𝒑𝐹 = 𝑯𝐹𝐶𝒑
𝐶  (3.4) 

In laser drilling, the drilling occurs at the laser focal points. In other words, the hole location with 

respect to the laser focal coordinate system, 𝒑𝐹, is zero. Using this knowledge, the above equation 

can be rearranged and expanded further.  

 

𝒑𝐶 = (𝑯𝐹𝐶)
−1𝒑𝐹 

(

 

𝑝𝑥
𝐶

𝑝𝑦
𝐶

𝑝𝑧
𝐶

1 )

 = [

𝐶𝐵𝐶𝐶 𝐶𝐵𝑆𝐶 −𝑆𝐵 −𝑆𝐵𝑑𝑐 + 𝑑𝑥 − 𝑋
−𝑆𝐶 𝐶𝐶 0 𝑑𝑦 − 𝑌

𝑆𝐵𝐶𝐶 𝑆𝐵𝑆𝐶 𝐶𝐵 𝐶𝐵𝑑𝑐 + 𝑍 + 𝑑𝑓 − 𝑑𝑧
0 0 0 1

]

−1

(

0
0
0
1

) 

(

 

𝑝𝑥
𝐶

𝑝𝑦
𝐶

𝑝𝑧
𝐶

1 )

 =

(

 
 

𝐶𝐵𝐶𝐶(𝑋 − 𝑑𝑥) − 𝑆𝐶(𝑌 − 𝑑𝑌) + 𝑆𝐵𝐶𝐶(−𝑍 + 𝑑𝑧 − 𝑑𝑓)

𝐶𝐵𝑆𝐶(𝑋 − 𝑑𝑥) − 𝐶𝐶(𝑌 − 𝑑𝑦) + 𝑆𝐵𝑆𝐶(−𝑍 + 𝑑𝑧 − 𝑑𝑓)

−𝑆𝐵(𝑋 − 𝑑𝑥) + 𝐶𝐵(−𝑍 + 𝑑𝑧 − 𝑑𝑓) − 𝑑𝐶
1 )

 
 

 

(3.5) 

which is then simplified to 
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 (

𝑝𝑥
𝐶

𝑝𝑦
𝐶

𝑝𝑧
𝐶

) = [

𝐶𝐵𝐶𝐶 −𝑆𝐶 𝑆𝐵𝐶𝐶
𝐶𝐵𝑆𝐶 𝐶𝐶 𝑆𝐵𝑆𝐶
−𝑆𝐵 0 𝐶𝐵

] (

𝑋 − 𝑑𝑥
𝑌 − 𝑑𝑦

−𝑍 + 𝑑𝑧 − 𝑑𝑓

) − (
0
0
𝑑𝑐

) (3.6) 

Finally, a small adjustment is made to the equation since in TRAORI mode, the direction of Z 

motion is reversed, that lifting up the Z stage decreases the value of Z measured in CNC.  

 (

𝑝𝑥
𝐶

𝑝𝑦
𝐶

𝑝𝑧
𝐶

) = [

𝐶𝐵𝐶𝐶 −𝑆𝐶 𝑆𝐵𝐶𝐶
𝐶𝐵𝑆𝐶 𝐶𝐶 𝑆𝐵𝑆𝐶
−𝑆𝐵 0 𝐶𝐵

] (

𝑋 − 𝑑𝑥
𝑌 − 𝑑𝑦

𝑍 − (𝑑𝑧 − 𝑑𝑓)
) − (

0
0
𝑑𝑐

) (3.7) 

For WCS to MCS transformation, the above equation is simply reversed.  

 (
𝑋
𝑌
𝑍
) = [

𝐶𝐵𝐶𝐶 𝐶𝐵𝑆𝐶 −𝑆𝐵
−𝑆𝐶 𝐶𝐶 0
𝑆𝐵𝐶𝐶 𝑆𝐵𝑆𝐶 𝐶𝐵

] (

𝑝𝑥
𝐶

𝑝𝑦
𝐶

𝑝𝑧
𝐶 + 𝑑𝑐

) + (

𝑑𝑥
𝑑𝑦

𝑑𝑧 − 𝑑𝑓

) (3.8) 

Note that the matrix is in the form of a rotation matrix. In fact, it is the inverse of 𝑹𝐹𝐶, which is 

the rotation matrix of 𝑯𝐹𝐶. Using the above equation, each hole location with respect to the WCS 

is calculated from the MCS vector {𝑋 𝑌 𝑍}. The constants {𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑓 𝑑𝑐} are obtained from the 

machine configuration.  

To verify the above solution, the hole patterns constructed directly from the NC code and the hole 

patterns constructed from the measured MCS data using the same NC code are compared. Figure 

3.3 shows the drill hole locations in MCS from servo {𝑋 𝑌 𝑍} positions executed by the machine 

CNC and the desired hole locations in WCS programmed in the NC code. It is clear that the hole 

locations do not match prior to kinematic transformation.  

Once the above kinematic transformation is applied to the measured {𝑋 𝑌 𝑍} data, the expected 

hole pattern is produced as shown in Figure 3.4 proving that the transformation is correctly done.  
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Figure 3.3 (a) hole locations in MCS measured from the machine servo drives (b) desired hole locations in 

WCS programmed in NC code 

 

Figure 3.4 Reconstructed hole locations from the servo reading overlaid on top of the desired hole locations 

3.4 Conclusion 

In this chapter, a specific kinematic model of 5-axis laser drilling machine is presented to transform 

the given drilling process information defined in Workpiece Coordinates into Machine 

Coordinates. In this thesis, homogeneous transformation matrices are used to express the 

coordinate transformation and are validated by overlaying the experimentally measured hole 

locations on top of the defined hole locations from the NC code. It is necessary to acquire this 

transformation between WCS and MCS for trajectory planning, since the actual motion is realized 

by the individual axis servo drives under the given kinematic limits. The following chapter delivers 

the details of trajectory planning methods.       
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Chapter 4 

Hole-to-hole Trajectory Planning 

4.1 Introduction 

The essences of minimum time drilling process, in the perspective of trajectory, are execution and 

estimation. It is required to travel from one hole to another as fast as possible and its motion time 

needs to be correctly estimated so that a more realistic result can be obtained when used in the 

sequence optimization step. Percussion laser drilling is a type of machining process where the 

motion type is classified as point-to-point (PTP) or positioning. Unlike contouring, where the 

cutter tool path is an essential process objective, the main objective of PTP is to position the tool 

end at the desired location and orientation, which makes the path irrelevant. To accomplish fast 

PTP motion, most CNCs use the motion type command called rapid traverse (G00 in G-code) 

which maximizes the velocity under the defined machine limits along with other kinematic limits 

such as acceleration and jerk limits. The common resultant motion profiles, often referred by its 

shape, are trapezoidal velocity profile if jerk value is not bounded, and s-curve velocity profile if 

jerk value is bounded, with preferences given to the s-curve velocity profile for its smoothness. 

The industry partner, in their current NC code programming strategy, also uses G00 during the 

percussion drilling process to realize fast hole-to-hole motion. In conjunction with G00, they use 

the CNC controller’s 5-axis transformation with tool orientation tactic called TRAORI. Typical 

planning of the drilling process is done in Workpiece Coordinates (task spatial coordinates) and 

CAM software generates corresponding G-code in WCS. It is TRAORI that performs the correct 

conversion of the G-code to the equivalent Machine Coordinates (joint spatial coordinates) values 

to perform the desired tasks. 

To be practically beneficial to the industry partner and their job planning strategy, a custom 

trajectory is not developed in this research. Instead, CNC controller’s G00 + TRAORI trajectory 

is closely studied and four trajectory planning strategies are discussed in this chapter to 

approximate the controller’s strategy for the sake of correct estimation of motion time. The 

overview of the four strategies are illustrated in the figure below. 
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Figure 4.1 Overview of four trajectory planning strategies 
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4.2 Time-optimal Velocity Profile 

A time-optimal trajectory would fully utilize the maximum velocity during traverse resulting in a 

rectangular profile. However, this results in infinite spikes in acceleration, which is not feasible to 

implement (Figure 4.2). 

 

Figure 4.2 Evolution of time-optimal velocity profile 

As a remedy, acceleration is limited to a finite value that results in a trapezoidal velocity profile. 

This is not favorable either since the discontinuities in acceleration cause extreme jerk, which 

induces high-frequency content in the reference signal that can result in excessive vibration of the 

machine tool structure. It can also cause actuator saturation by demanding trajectories beyond their 

functional limits. As a result of saturation, a deviation from the desired trajectory could happen 

meaning that part manufacturing tolerances could be violated. Thus, allowing the jerk to be finite, 

the piecewise 2nd order polynomial velocity profile, widely referred to as s-curve profile, is 

obtained (Figure 4.3).  
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Figure 4.3 S-curve velocity profile 

The profile is composed of seven segments. Segments 1, 3, 5, and 7 have accelerations with linear 

profiles whose slopes are predetermined by the jerk limit 𝐽. During segment 2 and 6, the velocity 

changes with the constant acceleration, 𝐴. Then, the velocity is kept constant at its maximum, 𝑉, 

during segment 4. The duration for each segment is determined by the kinematic limits. 𝑇1 = 𝑇3 

(𝑇5 = 𝑇7) is the time it takes for the machine to reach its maximum acceleration, 𝑇2 = 𝑇6 is the 

time required to reach the maximum velocity if the desired velocity is not reached during segment 

1 and 3 (5 and 6). 𝑇4 is the extra time that is required if the desired displacement is not met during 

segment 1, 2, 3, 5, 6, and 7 combined. 

Two methods can be used to obtain the profile. By convolving the Finite Impulse Response (FIR) 

filter twice with a rectangular velocity profile, the s-curve velocity profile is obtained [2], [6]. 

Another way is to derive a set of analytical equations that represent the polynomial curve for each 

section of the profile. In this research, the analytic method described by Erkorkmaz and Altintas 

[12] and Alzaydi [40] is used to construct the s-curve velocity profile for the given machine 

kinematic limits. 

The s-curve profile can be broken down to three phases: accelerating phase, coasting with constant 

velocity phase, and decelerating phase. Depending on the kinematic limits and the desired travel 

length, the coasting phase may not exist, leaving only the accelerating and decelerating phases to 

achieve the desired travel distance. Regardless of this, the accelerating/decelerating phases can 

have two different shape profiles based on the 𝑉, 𝐴, and 𝐽 relationship. Combining these two, the 

s-curve motion can be classified into four different cases illustrated in the below figure.  
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Figure 4.4 Illustration of 4 cases of s-curve motion profiles  

CASE 1. If 𝑉 ≤
𝐴2

𝐽
, and the acceleration and deceleration distance to reach the maximum velocity 

is greater than the total distance, 𝑙𝑎𝑐𝑐 > 𝐿: 

In this case, the velocity never reaches its limit and the entire motion is employed for 

acceleration and deceleration phases only. Therefore, the velocity profile does not have a 

constant region putting 𝑇4 = 0. The maximum acceleration/deceleration is not reached 

either, creating a triangular profile. This sets 𝑇2 = 𝑇6 = 0.   

CASE 2. If 𝑉 >
𝐴2

𝐽
 and 𝑙𝑎𝑐𝑐 > 𝐿: 

Same as case 1, the maximum velocity is never reached putting 𝑇4 = 0 . While it is 

accelerating, it reaches the acceleration limit, creating the constant acceleration region. For 

this reason, a trapezoidal shape profile is achieved in acceleration.  
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CASE 3. If 𝑉 ≤
𝐴2

𝐽
 and 𝑙𝑎𝑐𝑐 ≤ 𝐿: 

In this case, the desired distance is greater than or equal to the distance it needs to fully 

accelerate, the extra distance is covered by coasting at the constant velocity, setting 𝑇4 ≠

0. The maximum acceleration is not reached or just reached to increase the velocity to its 

maximum creating the triangular acceleration profiles. Hence, 𝑇2 = 𝑇6 = 0 in this case. 

CASE 4. If 𝑉 >
𝐴2

𝐽
 and 𝑙𝑎𝑐𝑐 ≤ 𝐿: 

Same as case 3, it requires the coasting region to achieve the desired travel distance, setting 

𝑇4 ≠ 0. The acceleration is allowed to reach the maximum in this case and capped by it for 

a non-zero period for the velocity to reach its maximum. Hence, 𝑇2 = 𝑇6 ≠ 0.  

In this thesis, case 1 and case 2 s-curve motions are referred to as short trajectories, and case 3 and 

case 4 s-curve motions as long trajectories. 

4.3 Strategy #1: Trajectory Planning with S-curve Velocity Profiling in Joint 

Space 

As a preliminary and fundamental study for smooth hole-to-hole motion, trajectory planning is 

first taken in the machine joint space. Since the actual motion control occurs on the individual 

joint, direct planning of smooth trajectories in the joint space is beneficial. Also, for multi-axis 

application, singularities that could arise from inverse kinematics can be avoided. However, it is 

difficult to obtain the desired tool end path due to the non-linearities introduced from the 

transformation between the Cartesian space and the joint space. Nonetheless, for pure PTP motion, 

this method would generate the fastest motion compared to the other methods presented later in 

this chapter. In CNC, this is equivalent to using G00 without TRAORI. 

Given starting and ending points for each axis, the travel distances are calculated and with the 

known velocity, acceleration and jerk limits for each axis, the corresponding s-curve velocity 

profiles are generated. To verify if this s-curve profile is what the CNC controller uses in its rapid 

traverse motion, the estimated rapid single axis motion is overlaid on top of the single axis G00 

commanded reference trajectory measured from the machine in Figure 4.5.    
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Figure 4.5 Commanded and estimated G00 trajectories for single axis 

The commanded reference position trajectory is measured at every 4ms and numerically 

differentiated to generate corresponding velocity, acceleration and jerk profile. The estimated 

trajectory is generated at 4ms rate as well and numerically differentiated at the same rate to match 

the loss of shape from the numerical differentiation. It is shown that both trajectory profiles 

synchronize greatly indicating that the estimated trajectory planning strategy accurately reflects 

the controller’s strategy.  

Since the trajectory is planned individually, the travel time for each axis could be different 

depending on its travel distance and kinematic capacity. By taking the travel time from the slowest 

axis as an overall motion time, the kinematic limits of faster axes are reduced to yield more relaxed 

profiles. The result is a synchronous motion that all of the axes start and finish their traverses at 

the same time (Figure 4.6).  
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Figure 4.6 Non-synchronized velocity profile vs. synchronized velocity profile 

In this method, since the trajectory is modeled as PTP motion, the feedrate is planned first then the 

corresponding tool path information is acquired later by the direct kinematic transformation of the 

resultant position profile of each axis. Hence, although it is time optimal within the machine’s 

kinematic limits, it is not directly applied due to its path being not known until the end, which 

causes difficulties in planning ahead for collisions among the tool, the parts, and the fixture. 

Therefore, in practice, G00 alone is not used, but an orientation retaining function called TRAORI 

is used together to keep the tool path straight in WCS. 

4.4 Trajectory Planning in Task Space 

To fully address the controller’s G00 + TRAORI trajectory generation strategy, some task space 

planning methods are presented. According to the CNC controller manual, PTP motion associated 

with TRAORI in task space is generated by linear interpolation, meaning that path between the 

starting and end points is straight. This is also verified by mapping the measured data onto the 

virtual workspace via in-house 3D visualization software using the Visualization Toolkit (VTK). 
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Figure 4.7 5-axis laser drilling motion simulator developed in-house 

Hence the following task space planning strategies have the tool path predefined as a straight line 

in Workpiece Coordinates and different approaches of assigning the timing law onto it are 

presented. To distinguish the working coordinates, the lowercase letters (𝑥, 𝑦, 𝑧, 𝑏, 𝑐) are used for 

WCS and the uppercase letters (𝑋, 𝑌, 𝑍, 𝐵, 𝐶) for MCS. The development of task space trajectory 

generation strategies (Section 4.4.1.1) is the result of close collaboration with PhD student Chia-

Pei Wang from the same research group.    

4.4.1 S-curve Velocity Profiling 

It is assumed that the controller applies the same s-curve generating technique for the velocity 

planning in task space. The difference to the previous joint space s-curve planning is that the s-

curve motion profile is now applied in the task space, resulting in joint space motion that is not an 

s-curve. In task space planning, the tool path is defined in WCS and the timing law is designed to 

complete the traverse. Given the starting and ending points  𝒑0 & 𝒑1 in WCS as follows: 
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𝒑0 = (𝑥0, 𝑦0, 𝑧0, 𝜃𝑏0, 𝜃𝑐0) 

𝒑1 = (𝑥1, 𝑦1, 𝑧1, 𝜃𝑏1, 𝜃𝑐1) 
(4.1) 

then the tool path from 𝒑0 to 𝒑1 is defined as  

 𝒔(𝑢) = {

𝑥(𝑢)

𝑦(𝑢)

𝑧(𝑢)
} (4.2) 

and the orientation vector 𝒗(𝑢), based on the machine configuration, is defined as follows:  

 𝒗(𝑢) = {

𝑣𝑥(𝑢)
𝑣𝑦(𝑢)

𝑣𝑧(𝑢)

} = {

𝑠𝑖𝑛𝜃𝑏(𝑢)𝑐𝑜𝑠𝜃𝑐(𝑢)
𝑠𝑖𝑛𝜃𝑏(𝑢)𝑠𝑖𝑛𝜃𝑐(𝑢)

𝑐𝑜𝑠𝜃𝑏(𝑢)
} (4.3) 

where 𝑢 is the path parameter [0,1]. 

In TRAORI mode, the tooltip path is a straight line and the change of the orientation vector from 

the initial point to the end point is constant with respect to the tool path. This linear behavior of 

the tooltip position can be expressed in terms of the path parameter 𝑢 by the following equations: 

 𝒔(𝑢) = {

𝑥(𝑢)

𝑦(𝑢)

𝑧(𝑢)
} = {

∆𝑥𝑢
∆𝑦𝑢
∆𝑧𝑢

} (4.4) 

where ∆𝑥, ∆𝑦, ∆𝑧 are the Euclidean distances for each axis in WCS and calculated by 𝑥1 − 𝑥0,

𝑦1 − 𝑦0, 𝑧1 − 𝑧0 respectively.  

To express the rotation of the orientation vector, Rodrigues’ rotation formula is used. This formula 

represents the three-dimensional rotation for a rotating vector with the axis of rotation and the 

corresponding rotation angle (Figure 4.8).  
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Figure 4.8 Rodrigues' rotation formula visualization of a rotating vector 𝒗 by an angle 𝜽 around vector 𝒏̂ as 

the axis of rotation 

The orientation vectors for the starting and end points, 𝒗0 and 𝒗1, can be expressed as follows: 

 
𝒗0 = (𝑠𝑖𝑛𝜃𝑏0𝑐𝑜𝑠𝜃𝑐0  ,  𝑠𝑖𝑛𝜃𝑏0𝑠𝑖𝑛𝜃𝑐0 ,  𝑐𝑜𝑠𝜃𝑏0) 

𝒗1 = (𝑠𝑖𝑛𝜃𝑏1𝑐𝑜𝑠𝜃𝑐1  ,  𝑠𝑖𝑛𝜃𝑏1𝑠𝑖𝑛𝜃𝑐1 ,  𝑐𝑜𝑠𝜃𝑏1) 
(4.5) 

 The unit vector, 𝒏̂, that is an axis of rotation about which the intermediate vector 𝒗 rotates as the 

same normal vector to 𝒗0 and 𝒗1 is defined as follows 

 

𝒏̂ = 𝒏̂(𝜃𝑏0, 𝜃𝑐0, 𝜃𝑏1, 𝜃𝑐1) = {

𝑛𝑥
𝑛𝑦
𝑛𝑧
} =

𝒗0 × 𝒗1
|𝒗0 × 𝒗1|

 

𝒏̂ = {

𝑠𝑖𝑛𝜃𝑏0𝑠𝑖𝑛𝜃𝑐0𝑐𝑜𝑠𝜃𝑏1 − 𝑐𝑜𝑠𝜃𝑏0𝑠𝑖𝑛𝜃𝑏1𝑠𝑖𝑛𝜃𝑐1
𝑐𝑜𝑠𝜃𝑏0𝑠𝑖𝑛𝜃𝑏1𝑐𝑜𝑠𝜃𝑐1 − 𝑠𝑖𝑛𝜃𝑏0𝑐𝑜𝑠𝜃𝑐0𝑐𝑜𝑠𝜃𝑏1

𝑠𝑖𝑛𝜃𝑏0𝑐𝑜𝑠𝜃𝑐0𝑠𝑖𝑛𝜃𝑏1𝑠𝑖𝑛𝜃𝑐1 − 𝑠𝑖𝑛𝜃𝑏0𝑠𝑖𝑛𝜃𝑐0𝑠𝑖𝑛𝜃𝑏1𝑐𝑜𝑠𝜃𝑐1

} /|𝒗0 × 𝒗1| 

(4.6) 

With the overall rotation angle from 𝒗0 to 𝒗1 as 𝜃01, the angle of rotation for the vector 𝒗, 𝜃, is 

defined as follows 

 𝜃(𝑢) = 𝜃01𝑢 = 𝑐𝑜𝑠
−1(𝒗0 ∙ 𝒗1)𝑢 (4.7) 

Then the vector 𝒗 is expressed as the following equation according to Rodrigues’ formula.  
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𝒗(𝑢) = 𝒗∥ + 𝒗⊥ 

𝒗(𝑢) = 𝒗0𝑐𝑜𝑠𝜃(𝑢) + (𝒏̂ × 𝒗0)𝑠𝑖𝑛𝜃(𝑢) + 𝒏̂(𝒏̂ ∙ 𝒗0)(1 − 𝑐𝑜𝑠𝜃(𝑢)) 
(4.8) 

Since the 𝒏̂ is normal to 𝒗0, the third term disappears. In addition, by defining an arbitrary vector 

𝑻 for (𝒏̂ × 𝒗0), the equation is simplified into the following: 

 

𝒗 = 𝒗0𝑐𝑜𝑠𝜃(𝑢) + 𝑻𝑠𝑖𝑛𝜃(𝑢) 

𝒗 = {

𝑣𝑥
𝑣𝑦
𝑣𝑧
} = [

𝑣0𝑥𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑥𝑠𝑖𝑛𝜃(𝑢)

𝑣0𝑦𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑦𝑠𝑖𝑛𝜃(𝑢)

𝑣0𝑧𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑧𝑠𝑖𝑛𝜃(𝑢)

] 
(4.9) 

Applying trigonometric rules to equation (4.3), above expression can be rearranged for WCS 

variables 𝜃𝑏 and 𝜃𝑐.   

 {
𝜃𝑏(𝑢)
𝜃𝑐(𝑢)

} = {
𝑐𝑜𝑠−1(𝑣𝑧)

𝑡𝑎𝑛−1(𝑣𝑦/𝑣𝑥)
} = {

𝑐𝑜𝑠−1(𝑣0𝑧𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑧𝑠𝑖𝑛𝜃(𝑢))

𝑡𝑎𝑛−1 (
𝑣0𝑦𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑦𝑠𝑖𝑛𝜃(𝑢)

𝑣0𝑥𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑥𝑠𝑖𝑛𝜃(𝑢)
)
} (4.10) 

Using equations (4.4) and (4.10), the tool path and its orientation in WCS can be express as the 

following vector: 

 𝒓(𝑢) =

{
 
 

 
 
𝑥(𝑢)
𝑦(𝑢)
𝑧(𝑢)
𝑏(𝑢)
𝑐(𝑢)}

 
 

 
 

=

{
  
 

  
 

∆𝑥𝑢
∆𝑦𝑢
∆𝑧𝑢

𝑐𝑜𝑠−1(𝑣0𝑧𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑧𝑠𝑖𝑛𝜃(𝑢))

𝑡𝑎𝑛−1 (
𝑣0𝑦𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑦𝑠𝑖𝑛𝜃(𝑢)

𝑣0𝑥𝑐𝑜𝑠𝜃(𝑢) + 𝑇𝑥𝑠𝑖𝑛𝜃(𝑢)
)
}
  
 

  
 

 (4.11) 
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The progression of the tool path and its orientation in WCS is illustrated in the below figure. 

 

Figure 4.9 Visualization of tool path and orientation in WCS 

Since the machine kinematic limits are defined in the joint spaces, this WCS vector is transformed 

into MCS vector using the transformation matrix, (3.8),  defined in the previous chapter.  

 

𝒒(𝑢) =

{
 
 

 
 
𝑋(𝑢)
𝑌(𝑢)
𝑍(𝑢)
𝐵(𝑢)
𝐶(𝑢)}

 
 

 
 

= 𝑯 × 𝒓(𝑢) + 𝑑

=

[
 
 
 
 
𝑐𝑜𝑠(𝑏(𝑢)) 𝑐𝑜𝑠(𝑐(𝑢)) 𝑐𝑜𝑠(𝑏(𝑢)) 𝑠𝑖𝑛(𝑐(𝑢)) −𝑠𝑖𝑛(𝑏(𝑢)) 0 0

−𝑠𝑖𝑛(𝑐(𝑢)) 𝑐𝑜𝑠(𝑐(𝑢)) 0 0 0

𝑠𝑖𝑛(𝑏(𝑢)) 𝑐𝑜𝑠(𝑐(𝑢)) 𝑠𝑖𝑛(𝑏(𝑢)) 𝑠𝑖𝑛(𝑐(𝑢)) 𝑐𝑜𝑠(𝑏(𝑢)) 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

×

{
 
 

 
 
𝑥(𝑢)
𝑦(𝑢)
𝑧(𝑢)
𝑏(𝑢)

𝑐(𝑢)}
 
 

 
 

+ 𝑑 =

{
 
 

 
 
𝑋(𝑢)
𝑌(𝑢)
𝑍(𝑢)
𝐵(𝑢)

𝐶(𝑢)}
 
 

 
 

 

(4.12) 

Then the expression for the joint space velocity, acceleration, and jerk that the machine experiences 

during the traverse can be found by taking the time derivative of the above vector.  
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𝒗(𝑡) = 𝒒̇(𝑡) = 𝒒′(𝑢)𝑢̇(𝑡) 

𝒂(𝑡) = 𝒒̈(𝑡) = 𝒒′(𝑢)𝑢̈(𝑡) + 𝒒′′(𝑢)𝑢̇2(𝑡) 

𝒋(𝑡) = 𝒒⃛(𝑡) = 𝒒′(𝑢)𝑢⃛(𝑡) + 3𝒒′′(𝑢)𝑢̇(𝑡)𝑢̈(𝑡) + 𝒒′′′(𝑢)𝑢̇3(𝑡) 

(4.13) 

Here, primes denote a geometric derivative with respect to the path parameter u, and the overhead 

dots denote a time derivative with respect to time 𝑡. Then the objective of the task space planning 

for the s-curve velocity trajectory is to find the maximum parametric velocity, acceleration, and 

jerk values (𝑢̇𝑚𝑎𝑥, 𝑢̈𝑚𝑎𝑥, and 𝑢⃛𝑚𝑎𝑥 respectively) that are used to construct a corresponding s-curve 

profile so that at anytime 𝑡 = 𝑡𝑖 during this s-curve motion, the following constraints are satisfied 

for all five axes. 

 

−𝒗𝒎𝒂𝒙 ≤ 𝒗(𝑡𝑖) ≤ 𝒗𝒎𝒂𝒙 

−𝒂𝒎𝒂𝒙 ≤ 𝒂(𝑡𝑖) ≤ 𝒂𝒎𝒂𝒙 

−𝒋𝒎𝒂𝒙 ≤ 𝒋(𝑡𝑖) ≤ 𝒋𝒎𝒂𝒙 

(4.14) 

Where 𝒗𝒎𝒂𝒙, 𝒂𝒎𝒂𝒙, and 𝒋𝒎𝒂𝒙 are the vectors that represent the axis level kinematic limits for the 

machine. 

Since the velocity at any point along the path should meet the above constraints, the above bounded 

problem for velocity can be rewritten as follows:  

 |𝒒̇𝒎𝒂𝒙| = |𝒒
′(𝑢)|𝑢̇𝑚𝑎𝑥 = 𝒗𝒎𝒂𝒙 (4.15) 

𝒒′(𝑢) is the geometric derivative which can be pre-computed for the sampled path parameter 𝑢, 

and 𝒗𝒎𝒂𝒙 is the known machine parameter. Hence, the maximum allowable parametric velocity, 

𝑢̇𝑚𝑎𝑥, can be explicitly calculated by the following equation. 

 𝑢̇𝑚𝑎𝑥 = min(
𝑣𝑋max 

|𝑞𝑋
′ (𝑢)|

,
𝑣𝑌max 

|𝑞𝑌
′ (𝑢)|

,
𝑣𝑍max 

|𝑞𝑍
′ (𝑢)|

,
𝑣𝐵max 

|𝑞𝐵
′ (𝑢)|

,
𝑣𝐶max 

|𝑞𝐶
′ (𝑢)|

 ) (4.16) 

However, for the higher order derivatives of parametric kinematic limits, it is challenging to solve 

explicitly because 𝑡 is unknown. Thus, the time dependent elements 𝑢̇(𝑡), 𝑢̈(𝑡), and 𝑢⃛(𝑡) cannot 

be computed beforehand.  

The following sections present the different methods proposed to resolve this difficulty.  
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4.4.1.1 Strategy #2: Specified Path in WCS with Non-iterative Approximated S-curve 

Velocity Profiling in Task Space 

The method in this section simplifies the above equation (4.13) by only considering the highest 

order parametric derivative terms and neglecting the exponential and coupled terms.  

 
𝒂(𝑡) =  𝒒̈(𝑡) ≅ 𝒒′(𝑢)𝑢̈(𝑡) 

𝒋(𝑡) =  𝒒⃛(𝑡) ≅ 𝒒′(𝑢)𝑢⃛(𝑡) 
(4.17) 

This assumption is valid at low velocity regions near the beginning and the ending of the trajectory 

where it is at its acceleration and deceleration phases. In particular, this assumption holds better in 

short trajectories where the velocity profile is not mature, and the constant velocity region has not 

developed. Based on the typical workpiece sizes, their hole patterns, and experimentally measured 

data, these short trajectories make up about 90% of the entire trajectory.  

Using the same analogy for the equation (4.16), the bounded problem for the acceleration and the 

jerk are rewritten as follows:   

 
|𝒒̈𝒎𝒂𝒙| = |𝒒

′(𝑢)|𝑢̈𝑚𝑎𝑥 = 𝒂𝒎𝒂𝒙 

|𝒒⃛𝒎𝒂𝒙| = |𝒒
′(𝑢)|𝑢⃛𝑚𝑎𝑥 = 𝒋𝒎𝒂𝒙 

(4.18) 

Note that 𝒒′(𝑢) can be pre-computed as mentioned earlier, the maximum allowable parametric 

acceleration and jerk can be explicitly found by the following equations. 

 

𝑢̈𝑚𝑎𝑥 = min(
𝑎𝑋max 

|𝑞𝑋
′ (𝑢)|

,
𝑎𝑌max 

|𝑞𝑌
′ (𝑢)|

,
𝑎𝑍max 

|𝑞𝑍
′ (𝑢)|

,
𝑎𝐵max 

|𝑞𝐵
′ (𝑢)|

,
𝑎𝐶max 

|𝑞𝐶
′ (𝑢)|

) 

𝑢⃛𝑚𝑎𝑥 = min (
𝑗𝑋max 

|𝑞𝑋
′ (𝑢)|

,
𝑗𝑌max 

|𝑞𝑌
′ (𝑢)|

,
𝑗𝑍max 

|𝑞𝑍
′ (𝑢)|

,
𝑗𝐵max 

|𝑞𝐵
′ (𝑢)|

,
𝑗𝐶max 

|𝑞𝐶
′ (𝑢)|

) 

(4.19) 

With 𝑢̇𝑚𝑎𝑥, 𝑢̈𝑚𝑎𝑥, and 𝑢⃛𝑚𝑎𝑥 found, the corresponding s-curve is generated to populate parametric 

position, velocity, acceleration and jerk profiles (𝑢(𝑡), 𝑢̇(𝑡), 𝑢̈(𝑡), and 𝑢⃛(𝑡)). Then the kinematic 

profiles in WCS and MCS are found from these parametric profiles using the equations (4.11) and 

(4.12). 
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According to equation (4.11), where the translational axes are linearly related to the path parameter 

and the rotational axes are not, it is expected that the s-curve profiles are preserved for the 𝑥, 𝑦, 𝑧 

in WCS but not for the 𝑏, 𝑐 in WCS. From the formulation, it is also expected that the jerk values 

in MCS exceed the limits in some regions where the product of the path geometric derivatives and 

the parametric velocity, and/or the acceleration, sufficiently increases. Due to the complex non-

linearities, it is challenging to precisely predict under which condition that the limits are exceeded, 

but in general, it is during the long trajectories in which the violations are observed more 

frequently. 

4.4.1.2 Strategy #3: Specified Path in WCS with Iterative Exact S-curve Velocity Profiling in 

Task Space 

The method in this section utilizes complete kinematic equations (4.13) derived in section 4.4.1 

and adds an iterative process to the previous method. Initial kinematic profiles in MCS are 

generated by 𝑢̇𝑚𝑎𝑥, 𝑢̈𝑚𝑎𝑥, and 𝑢⃛𝑚𝑎𝑥 found from the method in section 4.4.1.1. Then the profiles 

are checked if they exceed the MCS kinematic limits. If exceeded, 𝑢̈𝑚𝑎𝑥, and 𝑢⃛𝑚𝑎𝑥 are adjusted 

iteratively by using a bisection search method as illustrated in the below figure. The kinematic 

profiles are then updated using the full equations and checked with the limits again. This process 

is iterated until the limits are not exceeded and both 𝑢̈𝑚𝑎𝑥, and 𝑢⃛𝑚𝑎𝑥 have converged. 
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Figure 4.10 Flow chart of the iterative process of strategy #3 

Y 

Start 

Read current 𝑢̇𝑚𝑎𝑥, 𝑢̈𝑚𝑎𝑥, and 𝑢⃛𝑚𝑎𝑥 

𝑐 = 𝑏 

𝑎 = 𝑢⃛𝑚𝑎𝑥,𝑢𝑝𝑝𝑒𝑟 

𝑐 =  𝑢⃛𝑚𝑎𝑥,𝑙𝑜𝑤𝑒𝑟  

𝑏 =
𝑎 + 𝑐

2
 

𝒒(𝑡), 𝒒̇(𝑡), 𝒒̈(𝑡), 𝒒⃛(𝑡)

= 𝑓(𝑢̇𝑚𝑎𝑥, 𝑢̈𝑚𝑎𝑥, 𝑏) 

|𝐪⃛(𝑡)| ≤ 𝐣𝐦𝐚𝐱 

𝑎 = 𝑏 

|𝒂 − 𝒄| ≤ 𝒕𝒐𝒍 

  

𝑢⃛𝑚𝑎𝑥 = 𝑏 

𝑎 = 𝑢̈𝑚𝑎𝑥,𝑢𝑝𝑝𝑒𝑟 

𝑐 =  𝑢̈𝑚𝑎𝑥, 𝑙𝑜𝑤𝑒𝑟  

𝒒(𝑡), 𝒒̇(𝑡), 𝒒̈(𝑡), 𝒒⃛(𝑡) = 𝑓(𝑢̇𝑚𝑎𝑥, 𝑢̈𝑚𝑎𝑥, 𝑢⃛𝑚𝑎𝑥) 
𝒒𝟐(𝑡), 𝒒̇𝟐(𝑡), 𝒒̈𝟐(𝑡), 𝒒⃛𝟐(𝑡) = 𝑓(𝑢̇𝑚𝑎𝑥 , 𝑎, 𝑢⃛𝑚𝑎𝑥) 

|𝒒̈(𝑡)| ≤ 𝒂𝒎𝒂𝒙 𝑜𝑟 𝑡2 < 𝑡 

𝑏 =
𝑎 + 𝑐

2
 

𝑐 = 𝑏 

𝒒(𝑡), 𝒒̇(𝑡), 𝒒̈(𝑡), 𝒒⃛(𝑡)

= 𝑓(𝑢̇𝑚𝑎𝑥, 𝑏, 𝑢⃛𝑚𝑎𝑥) 

|𝒒̈(𝑡)| ≤ 𝒂𝒎𝒂𝒙 

𝑎 = 𝑏 

|𝒂 − 𝒄| ≤ 𝒕𝒐𝒍 

𝑢̈𝑚𝑎𝑥 = 𝑏 

|𝒖̈𝒐𝒍𝒅 − 𝒖̈𝒎𝒂𝒙| < 𝑡𝑜𝑙  
𝑎𝑛𝑑 

|𝒖⃛𝒐𝒍𝒅 − 𝒖⃛𝒎𝒂𝒙| < 𝑡𝑜𝑙 

𝑢̈𝑜𝑙𝑑 = 𝑢̈𝑚𝑎𝑥 
𝑢⃛𝑜𝑙𝑑 = 𝑢⃛𝑚𝑎𝑥 

Output 

𝑢̈𝑚𝑎𝑥, 𝑢⃛𝑚𝑎𝑥 
End 

Y 

N 

Y 

N 

N 

N 

N 

N 

Y 

Y 
Y 
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Two separate bisection searches are done for each 𝑢̈𝑚𝑎𝑥, and 𝑢⃛𝑚𝑎𝑥 since they are independent 

variables to control. However, they are dependent variables in the perspective of s-curve 

generation and therefore, the two searches are enclosed by one outer loop. To relax the jerk profiles 

in MCS, adjustment to 𝑢⃛𝑚𝑎𝑥 is made since it is the most prominent term in the jerk equation. For 

the acceleration profiles, an additional evaluation is made by adjusting 𝑢̈𝑚𝑎𝑥 . It checks if the 

motion time resulted from the higher 𝑢̈𝑚𝑎𝑥 value is less than the motion time resulted from the 

current 𝑢̈𝑚𝑎𝑥 value. This check is necessary for a more thorough search as the adjustment in 𝑢⃛𝑚𝑎𝑥 

value could create scenarios in which higher accelerations can be achieved without violating the 

limits. With newly obtained 𝑢̈𝑚𝑎𝑥 and 𝑢⃛𝑚𝑎𝑥, the corresponding parametric s-curve velocity profile 

is obtained and then the kinematic profiles in WCS and MCS are acquired. Since the MCS 

kinematic values are directly checked via the iterative process in this method, it is expected that 

none of the limits are violated. 

4.4.2 Strategy #4: Specified Path in WCS with Relaxed Convex Optimization Method via 

Linear Programming Formulation 

The aforementioned task space S-curve generation strategy is a simple and robust method to 

generate trajectories under servo kinematic constraints. However, complying with the s-curve 

profile in task space results in trajectories in joint space that are not time-optimal. With CNC’s 

exact trajectory generation method not known, an optimization method is suggested as another 

approach to estimate the machine’s trajectory and to address the time-optimality at the same time. 

The objective function of the problem is to minimize the hole-to-hole trajectory travel time, and 

the constraints are the axis actuator kinematic limits expressed in task space (4.14) to satisfy the 

desired tool path.   

 

min
𝑡
𝑇 =  ∫ 1

𝑡𝑓

0

𝑑𝑡 

subject to : 

|𝒗(𝑡) = 𝒒′(𝑢)𝑢̇(𝑡)| ≤ 𝒗𝒎𝒂𝒙 

|𝒂(𝑡) = 𝒒′(𝑢)𝑢̈(𝑡) + 𝒒′′(𝑢)𝑢̇2(𝑡)| ≤ 𝒂𝒎𝒂𝒙 

|𝒋(𝑡) = 𝒒′(𝑢)𝑢⃛(𝑡) + 3𝒒′′(𝑢)𝑢̇(𝑡)𝑢̈(𝑡) + 𝒒′′′(𝑢)𝑢̇3(𝑡)| ≤ 𝒋𝒎𝒂𝒙 

(4.20) 
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The above optimization problem is challenging to be solved directly as it is time dependent. 

Therefore, it is converted to an equivalent time independent problem. Using the fact that the tool 

path parameter 𝑢(𝑡) is strictly increasing and one-to-one function to be time-optimal, the objective 

function can be rewritten as follows: 

 min
𝑡
𝑇 = ∫ 1

𝑡𝑓

0

𝑑𝑡 = ∫ (
𝑑𝑢

𝑑𝑡
)
−1

𝑑𝑢
1

0

= ∫
1

𝑢̇(𝑡)

1

0

𝑑𝑢  (4.21) 

Furthermore, the optimization variable 𝑡 is replaced by path parameter 𝑢  creating the pseudo-

kinematic terms: pseudo-velocity, 𝑢̇(𝑢), pseudo-acceleration, 𝑢̈(𝑢), and pseudo-jerk, 𝑢⃛(𝑢). 

 

min
𝑢
𝑇 =  ∫

1

𝑢̇(𝑢)

1

0

𝑑𝑢 

subject to: 

|𝒒′(𝑢)𝑢̇(𝑢)| ≤ 𝒗𝒎𝒂𝒙 

|𝒒′(𝑢)𝑢̈(𝑢) + 𝒒′′(𝑢)𝑢̇2(𝑢)| ≤ 𝒂𝒎𝒂𝒙 

|𝒒′(𝑢)𝑢⃛(𝑢) + 3𝒒′′(𝑢)𝑢̇(𝑢)𝑢̈(𝑢) + 𝒒′′′(𝑢)𝑢̇3(𝑢)| ≤ 𝒋𝒎𝒂𝒙 

(4.22) 

The above nonlinear programming problem (NLP) is equivalent to the original optimization 

problem in (4.20). NLPs are difficult to solve and there are no effective methods or solvers for 

solving them [41]. Also, there is no guarantee that the solutions found from such solvers are 

globally optimal. In this thesis, the above NLP is approximated as a linear programming problem 

using the methods explained in the following section. 

4.4.2.1 Linear Programming Formulation 

The optimization problem is linearized to yield a convex linear programming problem. The benefit 

of this convex relaxation is that the optimal solution to the convex problem is the global minimum. 

In addition, solving linear programming is less computationally expensive compared to solving 

nonlinear programming.   

A linear program (LP) is a type of convex optimization problem where the objective and the 

constraint functions are all affine and have the following general form.  
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minimize 𝒄𝑇𝒙
subject to 𝑮𝒙 ≤ 𝒉

𝑨𝒙 = 𝒃

 (4.23) 

where 𝒙 ∈ ℝ𝑛  is the vector of variables to be optimized, 𝒄 ∈ ℝ𝑛 , 𝒉 ∈ ℝ𝑚  and 𝒃 ∈ ℝ𝑝  are the 

vectors of known coefficients, and 𝑮 ∈ ℝ𝑚×𝑛  and 𝑨 ∈ ℝ𝑝×𝑛  are the matrices of known 

coefficients.  

To linearize the problem and convert the equation into the above LP form, first a new parameter, 

 𝑤 , is defined as the square of pseudo-velocity, 𝑢̇2(𝑢) . Using the chain rule, the following 

derivatives of 𝑤 with respect to 𝑢 are found. 

 

𝑤(𝑢) = 𝑢̇2(𝑢) 

𝑤′(𝑢) =
𝑑𝑢̇2(𝑢)

𝑑𝑢
= 2𝑢̇(𝑢)

𝑑𝑢̇(𝑢)

𝑑𝑢
= 2𝑢̇(𝑢)

𝑑𝑢̇(𝑢)

𝑑𝑡

𝑑𝑡

𝑑𝑢(𝑢)
=
2𝑢̇(𝑢)𝑢̈(𝑢)

𝑢̇(𝑢)
= 2𝑢̈(𝑢)  

𝑤′′(𝑢) = 2
𝑑𝑢̈(𝑢)

𝑑𝑢
= 2

𝑑𝑢̈(𝑢)

𝑑𝑡

𝑑𝑡

𝑑𝑢(𝑢)
= 2

𝑢⃛(𝑢)

𝑢̇(𝑢)
 

(4.24) 

These can then be used to relate the pseudo-terms from the constraint functions in (4.22). 

 

𝑢̇(𝑢) = √𝑤(𝑢) 

𝑢̇2(𝑢) = 𝑤(𝑢) 

𝑢̇3(𝑢) = 𝑤(𝑢)√𝑤(𝑢) 

𝑢̈(𝑢) =
1

2
𝑤′(𝑢) 

𝑢⃛(𝑢) =
1

2
𝑤′′(𝑢)𝑢̇(𝑢) =

1

2
𝑤′′(𝑢)√𝑤(𝑢) 

(4.25) 

Substituting back with the above terms, the optimization problem in (4.22) can be rewritten 

without any time derivative term: 
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min
𝑢
 ∫

1

√𝑤(𝑢)

1

0

𝑑𝑢 

subject to : 

|𝒒′(𝑢)|√𝑤(𝑢) ≤ 𝒗𝒎𝒂𝒙 

|
1

2
𝒒′(𝑢)𝑤′(𝑢) + 𝒒′′(𝑢)𝑤(𝑢)| ≤ 𝒂𝒎𝒂𝒙 

|
1

2
𝒒′(𝑢)𝑤′′(𝑢) +

3

2
𝒒′′(𝑢)𝑤′(𝑢) + 𝒒′′′(𝑢)𝑤(𝑢)|√𝑤(𝑢) ≤ 𝒋𝒎𝒂𝒙 

(4.26) 

Although the objective function is a convex function, it is not in a linear form. Therefore, it is 

transformed to the equivalent linear programming problem using the convex operations.  

For a convex minimization problem whose objective is to minimize a convex function, 𝑓 , 

maximizing a concave function, −𝑓, is the equivalent problem. Therefore, the objective function 

can be rewritten as follows: 

 max
𝑢
−∫

1

√𝑤(𝑢)

1

0

𝑑𝑢 (4.27) 

Then, consider the following convex optimization problem  

 minimize 𝑓(𝑥) (4.28) 

For a monotone increasing function 𝜓:ℝ → ℝ, the transformation of the objective function via 

composition can be made, 𝑓(𝑥) = 𝜓(𝑓(𝑥)) , and the following corresponding optimization 

problem is equivalent to the above original problem. 

 minimize 𝑓(𝑥) (4.29) 

Therefore, the objective function in (4.27) can be written as a transformed function via the 

following composition, 

 
−1

√𝑤(𝑢)
= 𝑓(𝑤) = 𝜓1 (𝜓2(𝑓(𝑤)))  (4.30) 
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where 𝜓1(𝑥) = −
1

𝑥
 and 𝜓2(𝑥) = √𝑥 are both monotone increasing ℝ → ℝ functions for 𝑥 > 0. 

Rewriting (4.27) using the above rule, it is true to state that the following LP problem is equivalent 

to the original optimization problem. 

 max
𝑢
∫ 𝑤(𝑢)
1

0

𝑑𝑢 = min
𝑢
−∫ 𝑤(𝑢)

1

0

𝑑𝑢 (4.31) 

Next, linearization of the constraint functions is made as there still present nonlinear terms. Using 

the same concept of composition rule, the velocity equation is linearized by squaring both sides as 

this operation preserves the convexity.  

 𝒒′
2(𝑢)𝑤(𝑢) ≤ 𝒗𝒎𝒂𝒙

2  (4.32) 

For the acceleration and the jerk equations, B-spline approximation is used to linearize  𝑤′(𝑢) and 

𝑤′′(𝑢) terms, as suggested in [42]. Since the jerk values are bounded by a finite number, the third 

order derivatives should exist for the path parameter, 𝑢(𝑡). Hence, for 𝑤(𝑢) = 𝑢̇2(𝑢), its profile 

is approximated by a 5th order B-spline. A B-spline of order 𝑝 is a spline function that creates a 

smooth curve by joining several pieces of polynomials of degree 𝑘 = 𝑝 − 1 end to end, which 

follows the control points. The below figure illustrates the 3rd order B-spline curve that follows 

12 control points. 

 

Figure 4.11 Illustration of 3rd order B-spline curve following 10 control points 

The benefit of this B-spline approximation is that the equation for B-spline curve is expressed by 

a linear combination of the control points and the basis function as follows: 
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 𝑤(𝑢) ≅ 𝑤̃(𝑢) =∑𝑁𝑖,𝑘(𝑢)𝛼𝑖

𝑛

𝑖=0

 (4.33) 

Here, 𝜶 is the control point vector of size 𝑛 + 1 and 𝑁𝑖,𝑘(𝑢) is the basis function defined on a knot 

vector 𝑼, which spans the path parameter 𝑢 ∈ [0,1]. The size of knot vector 𝑚 + 1 is determined 

by the number of control points and the degree of the polynomials 𝑚 = 𝑛 + 𝑘 + 1. The value of 

the B-spline curve at any point 𝑢𝑗  is obtained by the summation of the product of the adjacent 𝑘 +

1 control points and their basis function affected by the knot values. Therefore, for the 5th order 

B-spline curve to strictly pass the initial and the final control points, the initial and final velocity 

conditions, 𝛼0 and 𝛼𝑛 are set to zero and the knot vector is defined as follows: 

 𝑼 = [0,0,0,0,0⏟    
𝑘+1

, 𝑢1, 𝑢2, … , 𝑢𝑛−5, 1,1,1,1,1⏟    
𝑘+1

] (4.34) 

Using the properties of B-spline, the derivative terms can also be represented by the linear 

combination of the control points and the basis function as follows: 

 

𝑤′(𝑢) ≅ 𝑤̃′(𝑢) =∑𝑁′𝑖,𝑘(𝑢)𝛼𝑖

𝑛

𝑖=0

 

𝑤′′(𝑢) ≅ 𝑤̃′′(𝑢) =∑𝑁′′𝑖,𝑘(𝑢)𝛼𝑖

𝑛

𝑖=0

 

(4.35) 

The values of the basis functions and its derivatives are calculated using the following Cox-de 

Boor recursion formula: 

 

𝑁𝑖,0(𝑢) = {
1 𝑖𝑓 𝑼(𝑖) ≤ 𝑢 < 𝑼(𝑖 + 1)

0 otherwise
,    𝑖 = 0,…𝑛 + 5 

𝑁𝑖,𝑘(𝑢) =
𝑢 − 𝑼(𝑖)

𝑼(𝑖 + 𝑘) − 𝑼(𝑖)
𝑁𝑖,𝑘−1(𝑢) +

𝑼(𝑖 + 𝑘 + 1) − 𝑢

𝑼(𝑖 + 𝑘 + 1) − 𝑼(𝑖 + 1)
𝑁𝑖+1,𝑘−1(𝑢) 

𝑁′𝑖,𝑘(𝑢) =
𝑘

𝑼(𝑖 + 𝑘) − 𝑼(𝑖)
𝑁𝑖,𝑘−1(𝑢) +

𝑘

𝑼(𝑖 + 𝑘 + 1) − 𝑼(𝑖 + 1)
𝑁𝑖+1,𝑘−1(𝑢) 

𝑁′′𝑖,𝑘(𝑢) =
𝑘

𝑼(𝑖 + 𝑘) − 𝑼(𝑖)
𝑁′𝑖,𝑘−1(𝑢) +

𝑘

𝑼(𝑖 + 𝑘 + 1) − 𝑼(𝑖 + 1)
𝑁′𝑖+1,𝑘−1(𝑢) 

(4.36) 
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Since these functions depend on the knot vector 𝑼, and the current path parameter value 𝑢𝑗  for all 

𝑢, they can be precomputed leaving the control points 𝛼 as an optimization variable. Hence, the 

expressions for w(𝑢), 𝑤′(𝑢), and 𝑤′′(𝑢) in the equation becomes the linear form in terms of 𝛼. 

The only nonlinear term left in the equation is √𝑤(𝑢) within the jerk expression. To overcome 

this, the optimization is divided into two steps. First, the problem is solved without the jerk 

constraint to yield the optimal solution, 𝑤∗, then it is solved again with the jerk constraint that is 

now linearized using the following property. 

 √
𝑤∗

𝑤
≥
3

2
−
𝑤

2𝑤∗
≥ 1 (4.37) 

Applying the above property to the jerk equation, the following relaxed jerk equation is obtained: 

 |
1

2
𝒒′(𝑢)𝑤′′(𝑢) +

3

2
𝒒′′(𝑢)𝑤′(𝑢) + 𝒒′′′(𝑢)𝑤(𝑢)|√𝑤∗(𝑢) +

𝒋𝒎𝒂𝒙
2𝑤∗(𝑢)

𝑤(𝑢) ≤
3

2
𝒋𝒎𝒂𝒙 (4.38) 

Although the relaxation yields suboptimal results, the performance is not deteriorated significantly. 

The below shows this two-step optimization problem. 

Initial optimization problem: 

 

min
𝛼
−∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

 

subject to: 

|𝒒′
2(𝑢)∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

| ≤ 𝒗𝒎𝒂𝒙
2  

|
1

2
𝒒′(𝑢)∑𝑁′𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

+ 𝒒′′(𝑢)∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

| ≤ 𝒂𝒎𝒂𝒙 

(4.39) 
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Final optimization problem: 

 

min
𝛼
−∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

 

subject to: 

|𝒒′
2(𝑢)∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

| ≤ 𝒗𝒎𝒂𝒙
2  

|
1

2
𝒒′(𝑢)∑𝑁′𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

+ 𝒒′′(𝑢)∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

| ≤ 𝒂𝒎𝒂𝒙 

|
1

2
𝒒′(𝑢)∑𝑁′′𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

+
3

2
𝒒′′(𝑢)∑𝑁′𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

+ 𝒒′′′(𝑢)∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

| √𝑤∗(𝑢)

+
𝒋𝒎𝒂𝒙
2𝑤∗(𝑢)

∑𝑁𝑖,4(𝑢)𝛼𝑖

𝑛

𝑖=0

≤
3

2
𝒋𝒎𝒂𝒙 

(4.40) 

The problem is solved using CVX, a MATLAB based modeling system for convex optimization. 

The solution to the optimization problem is strictly in the path parameter domain (𝑢). To retrieve 

the time domain (𝑡) trajectory, the following integration is evaluated.  

 total time 𝑇 = ∫
1

√𝑤(𝑢)
𝑑𝑢

1

0

= ∑ ∫
1

√𝑤(𝑢)
𝑑𝑢

𝑢𝑘+1

𝑢𝑘

𝑁−1

𝑘=1

 (4.41) 

Since 𝑤(𝑢) profile is designed to have zero initial and final condition, the beginning and ending 

of the above integration at 
1

√𝑤(𝑢1=0)
 and 

1

√𝑤(𝑢𝑁=1)
 approach near infinity. In remedy, the following 

approximation is made: 

 ∑ ∫
1

√𝑤(𝑢)
𝑑𝑢

𝑢𝑘+1

𝑢𝑘

𝑁−1

𝑘=1

= 𝑇(𝑢1 = 0) +∑ ∫
1

√𝑤(𝑢)
𝑑𝑢

𝑢𝑘+1

𝑢𝑘

𝑁−1

𝑘=2

 (4.42) 

where, 
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𝑇(0) = 0 

𝑇(𝑢2) = (𝑢2 − 𝑢1) (
1

√𝑤(𝑢2)
) 

𝑇(𝑢𝑘+1) = 𝑇(𝑢𝑘) +
1

2
(𝑢𝑘+1 − 𝑢𝑘) (

1

√𝑤(𝑢𝑘+1)
+

1

√𝑤(𝑢𝑘)
) 

𝑇(1) = 𝑇(𝑢𝑁−1) + (𝑢𝑁 − 𝑢𝑁−1)(
1

√𝑤(𝑢𝑁−1)
) 

(4.43) 

Therefore, parameter domain time 𝑇(𝑢) is retrieved from the above formulation and the time 

domain path parameter 𝑢(𝑡) is generated by simply reversing 𝑇(𝑢). Using equation (4.11), tool 

paths are generated from the path parameter. No specific shapes or profiles are expected to appear 

in this strategy. However, it is expected from the optimality criterion that one or more of the 

resultant profiles in MCS should have regions where the motions are at their limits.  

4.5 Estimation Performance Comparisons of Four Strategies 

The purpose of minimum time trajectory generation in this research is to closely estimate the 

CNC’s G00 + TRAORI trajectory. During the actual drilling process, a total of 2000 reference 

trajectories are collected from the machine. Although the CNC generates trajectories with 2ms 

sampling time, due to difficulties in computational power in the logging setup, data was recorded 

at every 4ms. For each starting and end point pair, trajectories proposed in this chapter are 

generated with the same 2ms sampling time and compared against the measured hole-to-hole 

trajectory.  

While comparing the strategies, it was found that the optimization approach is much more 

computationally expensive than the other approaches. The average CPU time measured from 

MATLAB for 10 randomly selected sampled trajectories is shown in the below table.     

Table 4.1 Average CPU time used in MATLAB for each strategy 

Strategy #1 #2 #3 #4 

Time [s] 0.0014 0.0122 0.1438 84.6842 

It would take approximately 50 hours to estimate 2000 trajectories using the optimization approach 

and considering the actual planning processes, where the number of hole-to-hole permutations is 
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more than 1,000,000, it is decided to first conduct a preliminary abridged analysis that compares 

the strategies for only the selected number of trajectories.  

4.5.1 Preliminary Abridged Analysis 

The selection includes the 50 fastest, 50 slowest, and 50 median trajectories from the 2000 samples. 

For each hole-to-hole trajectory, the errors are calculated by subtracting the estimated time from 

the experimentally measured time. Figure 4.12 illustrates the timing error probability density 

function of the 150 trajectory samples. 

 

Figure 4.12 Timing error probability density function of four strategies for 150 trajectory samples  

Strategy #4 result has the closest mean value to zero, which indicates that it has the most accurate 

estimations. However, strategy #3 has the smallest standard deviation, indicating that it has the 

most robust estimations. Nonetheless, further analysis is conducted on each comparison case to 

fully understand the performance of each individual strategy. For each strategy, the mean and 

standard deviation values for different comparison cases are listed in Table 4.2. The actual values 

for the kinematic limits or hole-to-hole trajectory travel times are not presented in this thesis, so 

as to not disclose any process related information.  
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Table 4.2 Average timing error and standard deviation for each strategy in different comparison cases 

Strategy Slow [s] Median [s] Fast [s] 

#1 0.1371 ± 0.0425 0.0034 ± 0.0031 0.0008 ± 0.0018 

#2 0.0728 ± 0.0223 0.0026 ± 0.0031 0.0006 ± 0.0016 

#3 0.0394 ± 0.0299 0.0023 ± 0.0060 0.0013 ± 0.0019 

#4 0.0529 ± 0.0284 -0.0568 ± 0.0179 -0.0291 ± 0.0081 

4.5.1.1 Slow trajectories 

All of the strategies have positive errors meaning that they overestimate trajectories resulting in 

faster travel time than the experimentally measured trajectories. Among all, strategy #1 

overestimates the most, this is expected since strategy #1 directly plans the trajectories in the joint 

space without any coordinate transformation involved. In fact, the gaps increase more as it gets 

more nonlinear between WCS and MCS from larger 𝐵 and 𝐶 axis actions. To illustrate this, one 

of the slowest trajectories is selected and plotted in Figure 4.13.   

 

Figure 4.13 Z-axis motion in MCS and WCS for one of the slow trajectories 
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For visualization purposes, only one axis is presented instead of all five axes. Strategy #1 exhibits 

the s-curve profile in MCS, fully utilizing the kinematic limits. However, as mentioned previously, 

its WCS motion is very much different from the other strategies and the measured trajectory. It is 

noteworthy that in this trajectory, strategy #4 is faster than strategy #2 as opposed to shown in 

table 2 (greater timing error for strategy #2 than for strategy #4). In fact, this makes sense since 

the optimization method in strategy #4 is not bounded to s-curve profiles in task space, hence is 

granted with more possibilities to reach the optimal trajectory. The reason that strategy #2 is shown 

to be faster in table 2 is that it sometimes generates trajectories that exceed kinematic limits causing 

the motion time to be faster than if it were kept under the limits. Figure 4.14 shows the case in 

which the jerk limits for X-axis is violated from strategy #1.  

 

Figure 4.14 X-axis motion in MCS and WCS for one of the slow trajectories 

As mentioned, the trajectory from strategy #2 exceeds the kinematic limit causing the motion to 

be faster than strategy #4. However, compared to strategy #3, which is the other s-curve profile 

planning in task space, strategy #4 is shown to be faster as expected.  
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4.5.1.2 Median trajectories 

Strategy #1, #2, and #3 perform similarly in most of the trajectories in the group of median 

trajectories. Strategy #4, contradicting to the slow cases, underestimates the motion time 

generating much slower trajectories than the others (Figure 4.15).  

 

Figure 4.15 Z-axis motion in MCS and WCS for one of the median trajectories 

It is shown that all the strategies utilize full limits for the Z-axis. It is noted that this motion 

preserves linearity between MCS and WCS well that the motion from strategy #1 is not much 

different from the motions from strategy #2 and #3. The strategy #4 motion is the only one that is 

longer than the measured one. Although utilizing the limit, it has more moderate slopes at the 

beginning and the end of the trajectories compared to the others causing more time while 

accelerating and decelerating. This can be explained by two things. Firstly, it can be explained by 

the assumption that is made to linearize the optimization problem. B-spline and its derivatives are 

used to linearize the original optimization problem, in which the initial and final conditions are 

strictly set to zero. When numerical integration is done to obtain the time domain trajectories from 
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the path parameter domain, the approximation is made at the initial stage to avoid an unbounded 

answer. These two factors contribute to slower development of trajectories. Compared to the slow 

cases, this effect is more crucial since the majority of motion is used up in acceleration and 

deceleration. Hence, the strategy yields slower trajectories as the trajectory gets shorter and 

shorter.  

4.5.1.3 Fast trajectories 

It is found that the less 𝐵 and 𝐶 axes motions are involved, the faster the trajectories become. 

Therefore, strategy #1, #2, and #3 perform very much alike in this group (Figure 4.16). The mean 

timing errors for these strategies are all less than the sampling rate. Meanwhile, strategy #4, for 

the same reason mentioned previously, estimates much slower trajectories of which the mean 

errors are about 10 times larger than the sampling rate.    

 

Figure 4.16 Z-axis motion in MCS and WCS for one of the fast trajectories 
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4.5.2 Preliminary Abridged Analysis Conclusion 

Based on the analysis of the selected trajectories from different groups, it is decided to disregard 

strategy #1 and strategy #4 for further analysis. Strategy #1 yields similar estimation to strategy 

#2 and #3 for median and fast trajectories, in which the linearity between MCS and WCS is well 

preserved due to little to no rotary axis (𝐵 and 𝐶) movement. However, the more it gets nonlinear, 

strategy #4 tends to overestimate the trajectories and yields much faster trajectories than the 

experimentally measured ones. For strategy #4, it also overestimates the trajectories when there is 

enough period to fully utilize kinematic limits. However, it underestimates significantly in median 

and fast trajectory cases due to its limitations from the assumptions and approximations used in 

the method. Strategy #3 estimates the trajectories more consistently than strategy #2, since 

trajectories from strategy #2 occasionally violate the kinematic limits, which produces faster 

motion time. Nonetheless, a full analysis is conducted for strategy #2 and #3 for a more thorough 

comparison.  

4.5.3 Full Analysis 

Among more than 2000 sampled trajectories, about 85% of the trajectories behave as assumed: 

they have straight paths with s-curve kinematic profiles in WCS and one of the axes hit the 

kinematic limits for time optimality. The other 15% of the trajectories behave slightly differently, 

that the trajectories are matured before hitting the limits. Figure 4.17 demonstrates this case in 

which the measured trajectories do not develop further to fully utilize the axis limits.  

By looking at the MCS acceleration profile, it can be seen that the measured trajectory does not 

hit the limit, whereas strategy #2 and #3 motions do. It is also noteworthy that the WCS motion 

profiles are not the theoretical s-curve shape. It is not symmetric, and it has an unexpected dip at 

the beginning of the decelerating phase. The reason for this behavior is uncertain yet, since to the 

best of author’s knowledge, the settings for the CNC do not promote such behaviors. It is possible 

that there are some settings inaccessible to end users that produce these behaviors. Further 

investigation is recommended to fully understand this phenomenon. Excluding these outliers, 

Figure 4.18 illustrates the findings for the 1837 trajectories. 
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Figure 4.17 Z-axis motion in MCS and WCS for one of the unexpected trajectories 

It is shown that strategy #3 has a mean error closer to zero and has smaller deviation than strategy 

#2. This suggests that strategy #3 performs better than strategy #2 for being able to more correctly 

estimate the CNC’s trajectories with higher robustness. Furthermore, considering that strategy #2 

sometimes produces trajectories that violate kinematic limits, it is decided to use strategy #3 as the 

main trajectory generation method for this research.  
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Figure 4.18 Timing error probability density function of strategy #2 and #3 for 1837 trajectory samples 

4.6 Conclusion 

The need for a trajectory generation method that closely estimates the trajectory generation 

strategy of the CNC machine is clear to obtain correct hole-to-hole motion time. Having realistic 

motion time makes it possible to get more realistic sequencing optimization results. In this chapter, 

four trajectory generation strategies are presented. Strategy #1 plans trajectory strictly in joint 

space to directly consider the machine’s kinematic limits. Strategy #2, #3, and #4 plan trajectories 

in task space to address the confined path problems in the workpiece coordinate system. Both 

strategy #2 and #3 use the s-curve velocity profile to design the feedrate, and strategy #4 uses 

convex optimization to generate time optimal feedrate. More than 2000 trajectories are collected 

from the actual drilling processes and the performances of the four strategies are compared to the 

measured trajectories. As a result, strategy #3 is decided to be the main trajectory generation 

method for this research as it was shown to have the best estimation consistency and accuracy.  
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Chapter 5 

Sequencing Optimization of Holes 

5.1 Introduction 

Given the hole-to-hole trajectory information, sequencing of the entire hole pattern can be 

formulated as a Traveling Salesman Problem (TSP). A TSP is to find the minimum distance tour 

to visit all the cities only once when a set of cities and the distances between each pair of cities are 

known. Referring to the set of points (cities) to 𝑽, and the number of points in the set to 𝑛𝑝, a 

standard TSP can be expressed as an integer linear programming problem (IP) as follows: 

 

min∑ ∑ 𝐶𝑖𝑗𝑊𝑖𝑗
𝑛𝑝

𝑗=1

𝑛𝑝

𝑖=1
 

subject to: 

∑ 𝑊𝑖𝑗 = 1, 𝑗 = 1,2, … , 𝑛𝑝
𝑛𝑝

𝑖=1,𝑖≠𝑗
 

∑ 𝑊𝑖𝑗 = 1, 𝑗 = 1,2, … , 𝑛𝑝
𝑛𝑝

𝑗=1,𝑗≠𝑖
 

∑ 𝑊𝑖𝑗 ≤ |𝑺| − 1, ∀𝑺 ⊂ 𝑽, 𝑺 ≠ ∅
𝑖,𝑗∈𝑆,𝑖≠𝑗

 

𝑊𝑖𝑗 ∈ {0,1} 

(5.1) 

Here 𝑪 refers to the cost matrix for the problem and 𝐶𝑖𝑗 represents the cost of traveling from point 

𝑖 to 𝑗. 𝑾 denotes the selection matrix of a certain tour, where 𝑊𝑖𝑗 = 0 means that the connection 

from point 𝑖 to 𝑗 is not selected, and 𝑊𝑖𝑗 = 1 means that the connection is selected. The first two 

equality constraints enforce a condition of departing and arriving each point exactly once. The 

inequality constraint requires that the number of connections between the points in the proper 

subset 𝑺 of the set 𝑽 should not exceed the number of points in the subset 𝑺 − 1. This constraint 

ensures that the solution will have only a single tour than multiple small tours which satisfy the 

other equality constraints.  

The solution to the above IP is a single tour, represented by the selection matrix 𝑾, of which its 

cost is the minimum among all other possible tour configurations. In order to address the minimum 

time sequencing problem for the drilling application, hole-to-hole travel time estimated from the 
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methods described in the previous chapter is chosen as the cost. Since the trajectory is generated 

using only the kinematic limits, the motion durations for both directions are identical for the same 

hole pair, meaning that 𝑇𝑖𝑗 = 𝑇𝑗𝑖 which creates the temporal cost matrix symmetric. In addition, 

the travel times between the same hole (i.e. 𝑇𝑖𝑖, the diagonal elements in the matrix) are set to zero 

to be excluded from the sequencing calculation. 

5.2 Solving TSP 

Mathematicians and scientists have worked extensively to develop methods to solve TSP. TSP 

falls into a category of NP-hard problem and there are two main approaches in solving such 

problems: heuristic methods and exact methods. Exact methods guarantee the optimal solution; 

however, it often suffers from its high computation time. On the other hand, heuristics methods 

can solve the problems in much faster time with the optimality compromised. In this section, 

methods currently adopted by the industry partner, the proposed heuristic method developed by 

the author, and the state-of-the-art exact method used for benchmarking purpose are described.    

5.2.1 Industry Approach #1: Zig-zag 

One simple method that the industry partner uses is to construct the hole visiting sequence in a 

zig-zag manner. The term zig-zag is used because the shape of visiting order resembles a zig-zag 

pattern, which visits the holes in a row in the same direction and once at the end of the row it visits 

holes in the next row in the opposite direction and repeats the pattern. While its dominant pattern 

remains as a zig-zag, a planner, based on his/her experience, adjusts some sections to adapt for 

certain part geometry or to avoid contacts between the tool and the fixture. An exemplary 

sequencing pattern is shown in Figure 5.1.  

This approach has its advantage in simplicity. For the method relies on the geometrical patterns 

only, the planners do not need to conduct any in-depth analysis related to the machine dynamics, 

the travel time calculation, or minimum time optimization problem. Therefore, they can easily 

produce feasible solutions. However, the downside of this method is that these solutions are far 

from time optimal.  
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Figure 5.1 Exemplary zig-zag sequencing pattern for the sample part 

5.2.2 Industry Approach #2: Modified Nearest Neighbor 

A more advanced and yet still simpler method than the methods to be discussed later in this thesis 

has been developed by the industry partner. Due to the complex 5-axis kinematic transformation 

between the machine coordinates and the workpiece coordinates, the displacement in the 

workpiece coordinates does not have a linear relationship with the displacement in the machine 

coordinates. This means that what appeared to be the shorter displacement compared to others in 

the workpiece coordinates may not be shorter displacement in the machine coordinates after 

undergoing the kinematic transformation. Therefore, the previous method which relies on the 

geometrical patterns in the workpiece coordinates could not avoid choosing a slower path. In order 

to solve this issue, the displacements in the individual joints in the machine coordinates are 

considered in this more advanced method.  

It uses a heuristic algorithm called ‘Nearest Neighbor’ (NN) to construct the hole visiting 

sequences (Figure 5.2). In TSP, NN is one of the simplest methods to build a tour by selecting the 

next unvisited point that is the closest to the current point. When there is no point to visit anymore, 

it simply returns to the original starting point to complete a tour. Because of this forced returning 

to the starting point regardless of the traveling cost, the algorithm often produces tours with poor 

performances. However, in the percussion drilling application, the returning to the starting point 

is not necessary since all the holes would be drilled completely by then. Therefore, this NN based 

method can produce sequences with less total travel time than the previous zig-zag method. Table 

5.1 describes how the algorithm works.  
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Figure 5.2 Sequence construction illustration of Nearest Neighbor algorithm 

Table 5.1 MCS minimum distance Nearest Neighbor approach algorithm  

Nearest neighbor approach on MCS distance 

Input: Hole location and orientation information in WCS 

Output: Nearest Neighbor optimized minimum machine coordinates distance tour 

Procedure: 

Initialization: 

Hole location and orientation information in MCS are obtained via kinematic transformation; 

Distances as weighted Euclidean norm for each hole pairs are calculated, and cost matrix is 

constructed from this; 

Nearest Neighbor: 

Initial departure point is selected randomly and currentSequence is initiated; 

while (there exists unvisited point) 

next shortest distance to the current departure point is added to currentSequence; 

end 

return currentSequence as the nearest neighbor optimized tour 

End Procedure. 
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To combine translational and rotational distances into a single measurement, weighted Euclidean 

norm approach is taken by the following equation. 

 𝑅 = √(𝛼(∆𝑋)2 + 𝛼(∆𝑌)2 + 𝛼(∆𝑍)2 + 𝛽(∆𝐵)2 + 𝛽(∆𝐶)2 (5.2) 

Although it is more thorough than the zig-zag method and yields shorter cycle time, the NN based 

minimum distance method has some limitations. Firstly, weighed Euclidean norm based single 

distance approach to combine translational and rotational distances needs fine tuning of weighting 

variables, 𝛼 and 𝛽. Secondly, NN is not powerful enough to deliver the optimal or a near optimal 

solution. Lastly, the travel time is still not the essence of consideration in this method.  

5.2.3 Proposed Method: Chained 2-opt local search heuristics   

A heuristic based method is proposed in this thesis in order to truly address the time optimality. 

Addressing the time optimality requires two parts to be solved separately: the time part and the 

optimality part. Unlike the previous methods, in which the non-temporal information was the main 

variable to solve with, the proposed method directly considers the travel time among the points as 

the objective variable. As presented in the previous chapter, strategy #3 for estimation of point-to-

point motion time of the machine tool will be used to generate the travel duration cost matrix to 

be used in the optimization. Given this temporal cost matrix, optimization is conducted using the 

algorithm developed in this thesis. The proposed algorithm borrows the concepts from one of the 

most powerful TSP solving algorithms called Chained Lin-Kernighan [43], which will be 

described later in more detail. The need for an in-house algorithm arises from a commercial 

licensing issue. Since ultimately, it is desired for the work in this thesis to be used by the industry 

partner, a commercially available algorithm is needed. However, the top TSP solving algorithms 

are non-commercial and therefore, the proposed algorithm is developed to mitigate this issue. 

Figure 5.3 illustrates the overview of the proposed chained 2-opt local search heuristics of which 

the details are explained throughout this section.  
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Figure 5.3 Overview of the proposed chained 2-opt local search heuristics 

Before the Chained Lin-Kernighan algorithm is described, the Lin-Kernighan is first described. 

Lin-Kernighan is a tour improvement method which takes an existing tour and attempts to modify 

it to yield a tour with better cost. It does this by conducting a series of local searches called k-opt. 

A local search is a heuristic method that finds the best solution when several candidate solutions 

are given that are generated by applying local changes to the given tour. In TSP, these local 

changes refer to different connections among some points. Depending on the number of 

connections to be considered at a time, it can be referred to as 2-opt, 3-opt, or k-opt. An example 

of 2-opt local search is illustrated in the below figure. 

 
(a) 

 
(b) 

Figure 5.4 Illustration of 2-opt local search: (a) initial tour (b) 2-opt modified tour 
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Blue numbers represent the cost of each connection and the alphabetical letters express the point 

indices in the above illustration. The initial sequence of the tour is a-b-c-d-e-f-g-h with a total cost 

of 57. The local configuration of two connections of interest, expressed with red lines, has a local 

cost of 27. This cost is compared with its alternative configuration. For 2-opt, there is only one 

alternative local solution that still satisfies a tour. The alternative configuration, shown as b-f and 

c-g connections, has a local cost of 7. Since the alternative configuration yields better results, 2-

opt adapts this alternative configuration and the sequence becomes a-b-f-e-d-c-g-h with a total cost 

of 37. 2-opt is repeatedly conducted for all connection pairs until there is no segment in the tour 

that can be improved. Then the tour is called the 2-opt optimal tour.  

By exchanging more connections at a time, there are more opportunities for the modified tour to 

be improved: a 3-opt optimal tour could have less cost than a 2-opt optimal tour, a 4-opt optimal 

less than a 3-opt optimal, and so on. However, directly searching all the possible alternative 

configurations for a k-opt move with k greater than 2 or 3 is computationally expensive. For this 

reason, the proposed method uses 2-opt local search and hence, it is called chained 2-opt.  

The term chained is suggested by Apple et al [43] to refer to an additional technique beyond the 

Lin-Kernighan’s k-opt method. Instead of stopping the search when the k-opt optimal tour is 

found, the chained k-opt continues this search by perturbing the k-opt optimal tour slightly, 

referred to as kick, and applying the k-opt algorithm again. If the newly obtained k-opt optimal 

tour is better than the previously generated one, the old one is discarded and the new one is 

selected. These procedures are repeated as long as computation time is available, or the desired 

convergence criterion is reached. Compared to the original k-opt method, the chained k-opt method 

is more likely to yield better tours from this repetitive perturbation(kick)-to-search cycle [44].  

Essentially, chained k-opt can be broken down to the three elements: initial tour building, 

perturbation strategy, and k-opt. Apple et al. [43] have extensively studied impacts of these 

elements on the final optimality of the modified tours. Based on their study results, Nearest 

Neighbor method is chosen as the initial tour building strategy and the random double bridge 

method is chosen as the tour perturbation strategy.  

Nearest Neighbor method has been explained in the previous section. To recall, it is the method of 

building a tour by adding a next point that is the most cost effective to the last point in the current 
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tour. The only difference between the previously described NN and the NN strategy in the 

proposed method is that the proposed method NN takes the temporal information as the cost to 

consider.  

Random double bridge is one of the mechanisms of perturbing a tour. It exchanges four edges for 

four other edges. Selection of these edges is done in a random manner, hence called the random 

double bridge. The below figure illustrates the four-edge (in red dotted lines) exchange concept. 

 

Figure 5.5 Illustration of double bridge exchange concept: (a) initial configuration (b) after double bridge 

move 

The initial configuration of four edges, expressed with dotted lines, is changed with a four-edge 

exchange called double bridge move. The random double bridge can transform the global 

configuration of the tour that 2-opt cannot easily revert back to the original tour. This serves a 

useful purpose of perturbation which grants an opportunity for 2-opt to find another tour that is 

possibly more cost effective than the original one. The overall illustration of how the algorithm 

works is shown below.  
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Table 5.2 Proposed chained 2-opt local search sequence optimization algorithm 

Chained 2-opt local search algorithm procedure 

Input: The number of points 𝑛𝑝, the travel time duration matrix T 

Output: Optimized tour and the minimum total travel time 

Procedure: 

Initialization:  

set maximum computation time compTmax; 

Initial tour using Nearest Neighbor: 

pick an initial departure point and start updating initialSequence by repeatedly adding the least time 

consuming arrival point; 

once initialSequence contains all the points, evaluate the total travel time initialTime; 

Loop while current computation time is less than the maximum allowable: 

twoOptSequence, bestSequence = initialSequence; 

bestTime = initialTime; 

while (compT < compTmax) 

perturb twoOptSequence using random double bridge perturbation method [6]; 

while (not 2-opt optimal) 

select 2 edges (connection of 2 consecutive points) and change their configuration;  

if new configuration results shorter travel time 

change to new configuration and proceed to next 2 edges; 

else  

keep the old configuration and proceed to next 2 edges; 

end “while (not 2-opt optimal)” when all the edges are considered (2-opt optimal reached); 

twoOptTime = total travel time for the modified sequence; 

if twoOptTime < bestTime 

bestSequence = twoOptSequence; 

bestTime = twoOptTime; 

update current computation time compT; 

end “while (compT < compTmax)” when maximum allowable computation time is passed; 

return the optimal tour bestSequence and the optimal time bestTime;  

End Procedure.  

5.2.4 Optimal Method: Concorde Cutting Plane  

For strict benchmarking purposes, a non-commercial state-of-the-art TSP solver called Concorde 

is used in this thesis. Concorde is an exact TSP solver that produces optimal solutions by utilizing 

the cutting plane method [29]. The main idea of solving an exact solution using the cutting plane 

method is based on the duality of linear programming. At each stage, TSP inequalities those are 

violated by the fractional tour are identified. A new linear programming is constructed by adding 

these inequalities, hence called cutting plane, and solved with the simplex algorithm. The solution 
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to this new linear programming is verified as proper and optimal by duality. For further information 

about Concorde solver and the cutting plane method, reader is recommended to refer to [28].  

In this research, Concorde solver is used to demonstrate the effectiveness of the proposed method 

as compared to the optimal solution. The solver takes the same temporal cost matrix as an input 

and outputs the optimal solution that results in minimum total travel time.   

5.3 Comparisons 

The proposed strategy was tested on three modified TSPLIB problems. TSPLIB is an open library 

of sample instances from various sources and types. Since the instances are 2-dimensional, 

additional 𝑍, 𝐵, and 𝐶  values are randomly generated to reflect the 5-axis laser drilling 

environment. The sample parts consist of 136 holes, 237 holes, and 436 holes. The results are 

compared with the industrial approach and the optimal approach obtained from Concorde TSP 

solver. For each individual sample part, hole-to-hole motion times are calculated by the proposed 

method described in the previous chapter. The same 5-axis laser drilling machine configuration is 

used in the simulations except for its kinematic values, which are chosen arbitrarily to not disclose 

specific machine capabilities of the industry partner and for generalization purpose. Table 5.3 lists 

the kinematic values used in the simulations.  

Table 5.3 Kinematic limits for 5-axis laser drilling machine used in the sequencing optimization comparisons 

 X-axis Y-axis Z-axis B-axis C-axis 

Velocity [mm/s, deg/s] 50 60 30 500 1000 

Acceleration [mm/s2, deg/s2] 500 600 200 10000 30000 

Jerk [mm/s3, deg/s3] 5000 7000 10000 50000 500000 

All four sequence optimization approaches discussed in this chapter are tested and their resultant 

tool paths are shown in Figure 5.6 ~ Figure 5.8.  
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Figure 5.6 Sample #1 tool paths for different sequencing strategies 
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Figure 5.7 Sample #2 tool paths for different sequencing strategies 
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Figure 5.8 Sample #3 tool paths for different sequencing strategies 
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The quantitative results summarized in Table 5.4 show the total travel time for each sequencing 

strategy and the percent difference of the proposed sequencing method from the other methods. 

The percent difference is calculated by the following equation:  

 
𝑡𝑖𝑚𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑 − 𝑡𝑖𝑚𝑒𝑜𝑡ℎ𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑𝑠

𝑡𝑖𝑚𝑒𝑜𝑡ℎ𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑𝑠
× 100% (5.3) 

Table 5.4 total travel time for different sequencing strategies and their percent differences 

Part 

Number 
Travel Times for Different Sequences [s]  % Difference from [%] 

Zig-zag 

Nearest 

Neighbor Proposed Optimal 

 

Zig-zag 

Nearest 

Neighbor Optimal 

1 472.122 133.55 114.338 114.278  -75.8 -14.4 0.5 

2 1267.182 310.488 242.262 240.678  -80.9 -22.0 0.7 

3 2188.868 504.124 392.852 386.038  -82.1 -22.1 1.7 

Depending on the part geometries and the hole patterns, the proposed method can reduce the total 

travel time by 70~80 % compared to the zig-zag method, and 14~25 % compared to the nearest 

neighbor method. It is also shown that the proposed method can produce near-optimal solutions 

that are within 2 % of the optimal solutions.  

5.4 Conclusion 

In this chapter, it is demonstrated how hole visiting sequence optimization can be expressed as the 

well-known Traveling Salesman Problem of combinatorial mathematics. In solving TSP, two 

industrial approaches are described. Zig-zag approach is what the industry partner currently uses 

for its simplicity and Nearest Neighbor based minimum distance approach is what has been 

developed by the industry partner. Both approaches do not directly consider time optimality, and 

therefore in this research, chained 2-opt based minimum time approach is proposed. The 

effectiveness of the proposed approach is compared to the above industrial approaches and to the 

state-of-the-art exact TSP solver called Concorde. The results show that the proposed method can 

generate near-optimal sequences that successfully reduce the travel time compared to the two 

industrial approaches.  
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Chapter 6 

Experimental Implementation on a Sample Part 

In this chapter, overall cycle time reduction results achieved from the proposed sequence 

optimization method combined with the estimated hole-to-hole trajectory generation method are 

presented in both simulations and experiments. The superiority of the proposed sequencing 

strategy and hole-to-hole trajectory estimation strategy has already been demonstrated throughout 

the previous chapter. Therefore, the purpose of this chapter is to verify the effectiveness of the 

proposed work in a real environment and the reliability of the work by showing how well the 

simulated results match the experimental results. The chapter is divided into two sections. The first 

section discusses the results from the preliminary study that was conducted at the early stage of 

the research prior to the development of the proposed trajectory generation strategy. The second 

section discusses the results from the final study using the proposed trajectory generation strategy. 

Due to difficulties in acquiring experimental machine time for the second section, only simulation 

results are presented here.    

For both sections, the kinematic limits used in the experimental setups are used in the simulations 

as well to bring more reflective analysis. However, to avoid disclosing the full capabilities of 

the machine tools used at P&WC, the actual velocity, acceleration, and jerk limits are not 

presented in this thesis. Furthermore, figures do not show the dimensions and the travel 

times are normalized to the experimentally measured total motion time, 𝑻𝒕𝒐𝒕𝒂𝒍 , which is 

explained later in this chapter.  

One sample gas turbine chamber panel part is used for both simulations and experiments.  The part 

geometry and drilling orientations for 1498 hole locations are shown in the below figure.  
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Figure 6.1 Sample part geometry and its hole locations and drilling orientations 

6.1 Preliminary Study Results 

As a preliminary study before in-depth analysis on the CNC controller’s G00 + TRAORI 

trajectories was conducted, hole-to-hole travel time is estimated using the joint space s-curve 

planning method (strategy #1 mentioned in Chapter 4.3). Then the proposed sequence optimization 

method is implemented in both simulations and experiments. Experiments done in this section 

consisted of four separate drilling cycles in which only a subset of the entire holes is drilled at each 

cycle. In order to reflect this, the simulation is also divided into the same four cycles. 

From the experiments, the total motion time, 𝑇𝑡𝑜𝑡𝑎𝑙, is calculated by adding the motion times from 

each cycle. Although, this does not include travel times from the previous cycle end hole to the 

next cycle starting hole, it still realistically represents the total motion time considering the total 

number of hole-to-hole trajectories.     

6.1.1 Simulation Results 

The four cycles included 561, 396, 503, and 38 holes respectively and their resultant sequence 

paths are shown in Figure 6.2. The actual drilling sequences used on the sample part have been 

made available and the paths from these sequences are shown in blue lines, whereas the paths from 

the proposed method sequences are shown in purple lines. The travel times for individual cycle 

are normalized to the total motion, 𝑇𝑡𝑜𝑡𝑎𝑙. 
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Figure 6.2 Simulated sequence paths generated from the industry method sequence and the proposed method sequence: cycle #1 with 561 holes, cycle #2 

with 396 holes, cycle #3 with 503 holes, and cycle #4 with 38 holes  
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It can be shown from Figure 6.2 that the sequence paths generated from the industry strategy 

certainly resemble the zig-zag pattern. The percent reductions of the travel time achieved from the 

proposed work are calculated by the following equation and the values are listed in Table 6.1.  

 
𝑡𝑖𝑚𝑒𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 𝑡𝑖𝑚𝑒𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑡𝑖𝑚𝑒𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦
× 100% (6.1) 

Table 6.1 Simulated total travel time resulted from the industry sequences and the proposed sequences 

 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Overall 

% reduction in travel time [%] 28.0 19.0 21.4 6.6 23.0 

As expected, the proposed method successfully reduces the total travel time. Moreover, depending 

on the hole locations and their drilling patterns, the proposed method can improve the results by 

6~28 % for each cycle and 23.0 % in overall.   

6.1.2 Experimental Results 

From the industry sequence and the proposed sequence, relevant NC code is programmed and the 

commanded trajectories are recorded at 4ms sampling rate. Figure 6.3 illustrates the measured 

trajectories and the simulated trajectories. The travel times for individual cycles are normalized to 

the total motion, 𝑇𝑡𝑜𝑡𝑎𝑙. 

It can be seen that the measured tool paths and the expected tool paths from the simulations match 

well, except for the small drifts observed due to the corrections that the CNC controller makes 

onto the commanded trajectories. One major misalignment observed in the cycle #4 is by a detour, 

which is programmed directly in the NC code, and hence can be ignored. The percent reductions 

of the travel time are calculated in the same manner using equation (6.1) and the values are shown 

in Table 6.2.  
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Figure 6.3 Experimentally measured paths generated from the industry method sequence and the proposed method sequence: cycle #1 with 561 holes, 

cycle #2 with 396 holes, and cycle #3 with 503 holes  
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Table 6.2 Measured total travel time resulted from the industry sequences and the proposed sequences 

 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Overall 

% reduction in travel time [%] 41.9 44.0 18.6 31.2 32.6 

For each cycle, the total travel time using the proposed work is reduced by 18~44 %. Therefore, it 

is successfully verified that the proposed work effectively reduces the total travel time in a real 

environment. However, it is worth to mention that the percent reductions expected from the 

simulations and measured from the experiments are quite different in terms of the magnitudes and 

the trend, which can be explained with two reasons.  

In this preliminary result section, the motion duration for hole-to-hole trajectory is estimated using 

the joint space s-curve planning strategy (strategy #1), which is proven to not be the best estimation 

strategy due to its tendency of overestimation (shorter travel time than the actual). The effect of 

this is well shown in the cycle #3 result, in which both the normalized travel time for the industry 

(35.0 %) and the proposed (27.4 %) sequences are smaller than the normalized experimentally 

measured travel times (40.1 %).  

Another crucial reason for the inconsistency comes from the errors in the experiment set up. The 

NC codes constructed for the experiments have the laser firing commands commented out resulting 

in G00 commands for the hole locations and orientations stacked one after another. When this NC 

code is read, the CNC controller automatically blends G00 commands so that there are no stopping 

motions in between the G00 commands. This phenomenon violates the very stop-and-go nature of 

multi-point drilling causing the hole-to-hole motion duration to be much lower than expected since 

there is no need to decelerate for stopping. The effect of this blended G00 commands is well shown 

in cycle #2. It is expected to have less travel time in the simulation for the reason explained above, 

however for cycle #2, the travel times are less in the experiments. The industry path from 19.8 % 

to 19.3 % and the proposed path from 16.1 % to 10.8 %.   

Therefore, the reliability of the proposed work is not fully demonstrated by the results from the 

preliminary section. This leads to a new set of simulations and experiments designed to resolve 

the issues.  
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6.2 Final Study Results 

In this section, the motion durations for hole-to-hole trajectories are estimated by the main 

estimation strategy, task space s-curve velocity planning via iterative process (strategy #3), to yield 

more accurate predictions. In addition, the stop-and-go action is enforced by adding the dwelling 

command, G4, in between G00 commands. Furthermore, the test is designed without dividing up 

the cycles, by visiting the entire 1498 holes in one run.   

Unfortunately, due to the heavy demand of production, acquiring machine time for the experiments 

has not been successful for this final study at the moment of writing this thesis. Therefore, this 

section only illustrates the results from the simulations and the experiments are left for future work.  

6.2.1 Simulation Results 

Similar to the preliminary result section, the zig-zag patterned sequence is used to represent the 

industry approach and the minimum time chained 2-opt optimized sequence is used to represent 

the proposed approach on sequencing of 1498 holes. The resultant tool paths are shown in Figure 

6.4. Again, the travel times are normalized to the total motion, 𝑇𝑡𝑜𝑡𝑎𝑙  and only the relative 

percentage values are presented.  

Note that results from Figure 6.4 are different from Figure 6.3 in that all the holes are visited in 

one cycle. Also, it is interesting to observe that the proposed sequence path from Figure 6.4 is 

different from Figure 6.3 since now there are more candidate routes to be considered in the 

optimization step. Using the same equation (6.1), the percent reduction achieved from the proposed 

method work is 26.0 %, successfully demonstrating the improvement in cycle time.  



 

74 

 

Figure 6.4 Simulated sequence paths generated from the industry and the proposed method sequences for 

1498 hole sample part 

While it is impossible to fully measure the predictability of the proposed work without the real 

environment experiments, it can be stated that the proposed work in this final study would produce 

more reflective results than the results from the preliminary study. The normalized total travel time 

of the industry sequence path estimated using the preliminary study method for this simulation is 

94.0 %. Considering that this is an overestimated result and having 99.2 % for the estimated total 

travel time for the same sequence path, it is likely that the gap between the simulated and 

experimental results are tighter in this final study.   
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis has presented a method of cycle time reduction for 5-axis percussion laser drilling 

processes. The reduction of cycle time is achieved by two aspects: time-optimal hole-to-hole 

trajectory generation and minimum time sequencing of drilling operations. The proposed method 

combines these two by first calculating the travel times for each hole pair from hole-to-hole 

trajectory planning and utilizing this temporal information in optimizing the hole visiting sequence 

to yield overall minimum travel time.  

In order to be practically beneficial, time-optimal hole-to-hole trajectory generation in this thesis 

models the CNC controller’s G00 + TRAORI command, which is the minimum time trajectory 

strategy used by industries. Four strategies have been presented and their performances for 

estimation accuracy are compared with over 2000 CNC’s trajectory samples. As a result, the task 

space trajectory generation strategy that utilizes the complete jerk bounded s-curve velocity profile 

for the path parameter is selected as the proposed trajectory generation method to calculate hole-

to-hole travel times for each hole pair. 

Given the temporal cost information, sequencing optimization problem is formulated into the well-

known Traveling Salesman Problem (TSP). In solving the TSP, an algorithm has been developed 

inspired by the powerful heuristics method called chained Lin-Kernighan. The proposed algorithm 

is compared to the two existing industrial approaches and is proven to be superior in generating 

the near-optimal solutions that are within 1 % from the optimal solutions obtained by the state-of-

the-art non-commercial TSP solver called Concorde.  

Combining the hole-to-hole trajectory generation and the sequence optimization, the proposed 

method results in about 26 % reduction in cycle time for the sample part in the simulations 

demonstrating the effectiveness of the proposed work. In addition, the reliability of the proposed 

method has been partially addressed by having less than 2 % difference in the simulated and 

experimentally measured total motion time.  
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7.2 Future Work 

Future work of this research includes developing a custom time-optimal trajectory generator that 

performs better than the CNC controller’s G00 + TRAORI trajectories. The current strategy is to 

impose the jerk limited s-curve velocity profiles to the tool path parameter in the task spatial 

domain, of which the s-curve limits are transformed from the joint spatial domain kinematic limits. 

The limitation to this is that the resultant motion, when transformed back to the joint space, might 

not be time-optimal. This is demonstrated in Chapter 4 where the optimization approach trajectory 

under the same kinematic limits and the same constrained tool path results in shorter time. This 

shows the possibilities of developing custom hole-to-hole trajectory planning methods that result 

in shorter travel time than the CNC’s G00 + TRAORI motions.  

The sequencing algorithm can also be improved further by integrating collision avoidance 

function. The current algorithm assumes that the maneuver between every hole pair is feasible, 

however, this is not the case in the real environment due to collisions. These collisions could arise 

between the tool tip and the tool fixture including the clamps. Therefore, resultant optimized 

sequence may not be feasible if any hole-to-hole path induces a collision. For future improvement, 

a collision detection step can be implemented before optimizing sequences to detect the hole pairs 

causing collisions and the improved algorithm would force these pairs from being selected during 

the optimization phase.   
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