
Performance Test Selection Using
Machine Learning and A Study of

Binning Effect in Memory Allocators

by

Anderson Oliveira Sousa

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Anderson Oliveira Sousa 2019

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This study contains reviews, suggestions and ideas from Professor Sebastian Fischmeister
in Electrical and Computer Engineering department at University of Waterloo.

Chapter 1 was extended from [63], and had contributions from Petkovich, J. who aided
in the machine learning approach, and Born, A. who assisted in feature engineering and
the problem definition.

Chapter 2 was extended from [28], and includes contributions from Reza, A., who
aided in detecting binning in Kernel Slab Allocator, and Petkovich, J. who assisted with
suggestions.

iii

Abstract

Performance testing is an essential part of the development life cycle that must be done in
a timely fashion. However, checking for performance regressions in software can be time-
consuming, especially for complex systems containing multiple lengthy tests cases. The
first part of this thesis presents a technique to performance test selection using machine
learning. In our approach, we build features using information extracted from the previous
software versions to train classifiers that assist developers in deciding whether or not to
execute a performance test on a new version. Our results show that the classifiers can be
used as a mechanism that aids test selection and consequently avoids unnecessary testing.

The second part of this work investigates the binning effect on user-space memory al-
locators. First, we examine how binning events can be a source of performance outliers
in Redis and CPython object allocators. Second, we implement a Pintool to detect the
occurrence of binning on Python programs. The tool performs dynamic binary instrumen-
tation on the interpreter and outputs information that helps developers in performing code
optimizations. Finally, we use our tool to investigate the presence of binning in various
widely used Python libraries.

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Sebastian Fis-
chmeister, for providing all the guidance, support and opportunities.

Thanks to Prof. Hiren Patel and Prof. Paul Ward for their time and effort to review
my thesis.

Thanks to my family and my friends for all the love and kindness.

A special thanks to Angela for all the support during my Master’s program.

Thanks to my friends in the Real-Time Embedded Software group, professors, staff
members for all the assistance throughout these years. I would also like to thank Jean-
Christophe for his suggestions and reviews.

v

Dedication

To my beloved parents, Virginia Almeida and Dionato Gomes.

To my precious sister, Sara Oliveira.

vi

Table of Contents

List of Tables x

List of Figures xi

Abbreviations xiii

1 Performance Test Selection Using Machine Learning 1

1.1 Introduction . 1

1.1.1 Problem Statement . 2

1.1.2 Background . 2

1.1.3 Related Work . 3

1.1.4 Definitions . 4

1.2 Our Approach to Performance Test Selection 5

1.2.1 The Binary Classifier . 6

1.2.2 Evalutation of the Classifier Performance 7

1.3 Case Studies . 7

1.4 Data Collection Phase . 11

1.4.1 Infrastructure Used for Data Collection 12

1.5 Feature Engineering . 14

1.6 Dataset Preprocessing . 15

1.7 Commit Selection for Training and Testing Sets 17

vii

1.7.1 Applicability of Methods 1 to 3 . 21

1.7.2 Method 4: Backtesting Cross Validation 21

1.8 Evaluation of the Performance Test Classifiers 23

1.8.1 Brotli . 25

1.8.2 Jq . 26

1.8.3 Git . 26

1.8.4 Redis . 27

1.9 Discussion . 30

1.9.1 Classification Scores Throughout the Development History 30

1.9.2 Effect of the Testing Set Size . 30

1.9.3 Comparison to a Conservative Test Selection Algorithm 31

1.9.4 Classifier Evaluation Using K-fold Cross Validation 32

1.9.5 Comparison to Perphecy . 32

1.9.6 Feature Design . 33

1.10 Lessons Learned and Future Work . 35

1.11 Conclusion . 37

2 A Study of Binning Effect in Memory Allocators 39

2.1 Introduction . 39

2.1.1 Definition . 40

2.1.2 Problem Statement . 40

2.1.3 Related Work and Chapter Organization 40

2.2 Methodology . 41

2.2.1 Analysis of Binning Effect . 42

2.2.2 Study Cases . 43

2.3 Linux Kernel Slab Allocator . 44

2.3.1 Experimental Setup . 45

2.3.2 Analysis . 45

viii

2.4 Redis’ Memory Allocator . 47

2.4.1 Experimental Setup . 49

2.4.2 Analysis . 49

2.5 CPython’s Memory Allocator . 50

2.5.1 Experimental Setup . 53

2.5.2 Analysis . 54

2.5.3 Object-Specific Allocators . 55

2.6 Detecting Binning Events on Python Programs 58

2.6.1 Pintool Implementation . 59

2.6.2 Binning Events in Python Performance Tests 62

2.7 Discussion and Future Work . 64

2.8 Conclusion . 65

References 67

ix

List of Tables

1.1 Number of commits available for each performance test. 9

1.2 Data obtained for dynamic analysis. 12

1.3 List of Features for a tuple 〈cn, co, bj〉 extended from [63]. 16

1.4 Results for Methods 1, 2 and 3 using Jq study case. 20

1.5 Results for each case study and performance test. 25

1.6 Classification scores for different numbers of test commits per epoch (vari-
able k in Algorithm 2). 32

2.1 Sources of binning events and corresponding signals. 60

2.2 Count of binning events occurred in the Python benchmark. 63

x

List of Figures

1.1 Performance test selection workflow. 5

1.2 Decision trees in a Random Forest Classifier (RFC). This example uses sim-
ple majority voting to define the final decision. 8

1.3 Statistics for features listed in Table 1.3. 17

1.4 Example of commit graph with five commits. 19

1.5 Receiving Operating Characteristic Curve (ROC) curves for Methods 1, 2
and 3 using Jq study case. 20

1.6 Example of commit graph that was segmented in m epochs. 22

1.7 Example of a commit graph. In real-real world scenarios, the repository
graph would have multiple branches and merges. 23

1.8 ROC curves for Brotli. 26

1.9 ROC curves for Jq. 27

1.10 ROC curves for Git tests. 28

1.11 ROC curves for Redis tests. 29

1.12 Classifier score over multiple epochs. 31

1.13 K-fold cross-validation using Git. 33

1.14 ROC for Jq including features for cache-misses. 36

2.1 Results for kernel Slab Allocator workload. 46

2.2 Jemalloc memory architecture. 48

2.3 Results for the Redis case study. 50

xi

2.4 Binning effect on the performance variability of call procedure. 51

2.5 Python Memory Layers [18]. 52

2.6 CPython memory management. 52

2.7 Diagram for Python’s object allocator. Dashed arrows represent occurrence
of binning. 53

2.8 Results for Python workload. 54

2.9 Binning effect on performance variability of Python object allocator. 55

2.10 Simplified control flow diagrams for inserting new items in Python’s dictio-
nary and set objects. Dashed line indicate a slow path. 56

2.11 Plot of the number of cycles spent to insert one dictionary items. The data
points are ordered by the insertion order index. Calls that did not trigger
binning are significantly faster and are similar to a line in the bottom of the
plot. 57

2.12 Tool design. 60

xii

Abbreviations

AUROC Area Under Receiving Operating Characteristic Curve 3, 7, 23, 26, 30, 32, 33,
35

DBI Dynamic Binary Instrumentation 59

FPR False Positive Rate 7, 25–27, 31

ICFG Interprocedural Control Flow Graph 4

IPC Inter-Process Communication 59

PRE Performance Risk Analysis 4

RFC Random Forest Classifier xi, 6–8, 25, 30, 36

ROC Receiving Operating Characteristic Curve xi, 3, 7, 20, 25, 26

RSD Relative Standard Deviation 43

RTP Regression Test Prioritization 4

SVM Support Vector Machine 6, 7, 25–27, 30, 31, 36

TNR True Negative Rate 32, 33

TPR True Positive Rate 7, 25–27, 31–33

VCS Version Control System 1, 3–5, 7, 9, 36

xiii

Chapter 1

Performance Test Selection Using
Machine Learning

1.1 Introduction

Today’s development methodologies aim to optimize the software release time and deliver
high quality applications at lower costs. Agile [27] practices, for instance, try to tighten
build test release cycle [75] and adopt an incremental and iterative development process to
diminish project risks. DevOps practices seek to integrate development and operations [32],
which reduces the gap between teams in a company and improve development efficiency.

Proper testing is fundamental for the adoption of these modern methodologies. How-
ever, there is a conflict between rapid development cycles and quality assurance processes
since performance testing can be inherently a time-consuming phase [4, 70]. For instance,
the non-functional tests of a complex system include load, stress, endurance and spike
tests, which makes the software benchmark suite extensive. Bezemer et al. [4], showed
that there is a problem in integrating performance testing and DevOps since most of the
study participants did not spend significant time on performance engineering.

Furthermore, development teams typically make many source code changes daily. Each
of these changes are recorded in a Version Control System (VCS) in the form of commits. It
is challenging for developers to ensure whether their code modifications affect performance
and, in many cases, running every single test in an associated benchmark suite is not a
viable option. For this reason, some companies opt to skip test execution [44] or execute
them only at the end of a project milestone [4].

1

D. Feitelson et. al [24] shows that release engineers at Facebook need to execute a bat-
tery of tens of thousands of regression tests for each new commit pushed to the repository.
This lengthy phase means companies need an efficient methodology to select the exact set
of performance tests to execute so practitioners would save several hours in the application
deployment process. Therefore, in this study, we propose an approach to predict potential
performance changes on new software versions and assist performance engineers in deciding
which tests execute first 1.

Performance test selection is addressed in this thesis with an extended version of Per-
phecy [63]: a test selection tool that uses a greedy heuristic to train predictors of perfor-
mance changes. The main threat to the validity of Perphecy is: how the predictors gener-
alize to other software projects? Also, the author suggests that using better performance
change indicators and machine learning algorithms could improve the tool effectiveness.
Therefore, in this study we adopt different projects to verify the generality of Perphecy and
machine learning to train classifiers and predict possible performance changes on commits
recently recorded in the repository 2.

1.1.1 Problem Statement

We investigate a history-based performance test selection technique, which leverages in-
formation from previous versions of the program to solve the following problem: Given a
new code commit and the software’s benchmark suite, select all tests in the suite that are
likely to be affected by the changes introduced in the commit.

1.1.2 Background

We extend the work of A. Oliveira et al. [63], who created the Perphecy tool and introduced
the concept of performance change indicators. In his work, each performance indicator is
a Boolean that is set to true whenever the difference between a new and an old commit
is greater or equal to a threshold value, and false otherwise. The threshold value for
each indicator is learned using a greedy heuristic that takes into account information from
previous versions of the software. Then, the disjunction of multiple indicators is used to
build a performance predictor.

1Benchmark and performance test are interchangeable throughout this thesis.
2A single commit is also considered a software version, even though it is not a tagged release version

in the repository.

2

Besides adopting different case studies and machine learning algorithms, this study ex-
tends Perphecy in four ways. First, it divides the development timeline into several epochs
such that a classifier is trained and tested in each epoch. Second, we designed additional
performance features (indicators) to find possible performance changes on software. Third,
a web framework was implemented to control experiment submission and speed up the data
collection phase. Fourth, we evaluate the classifier’s performance using well-known metrics
in machine learning.

1.1.3 Related Work

Previous studies have also proposed approaches to regression test selection. However, most
of them use static information only. Given the variety of techniques, Rothermel [71] defined
a framework to analyze each approach. This framework is based on four main categories:
inclusiveness, precision, efficiency and generality. We recognize the importance of these
categories for the test selection problem; throughout this work we address all of them. For
example, to evaluate the precision and efficiency of the predictors, we use the Area Under
Receiving Operating Characteristic Curve (AUROC) metric and the ROC curve. Further,
generality and inclusiveness are achieved by using multiple software projects and generic
performance factors.

J. Alcocer et al. [1] proposed Rizel. It is a code execution profiler that runs benchmarks
over software versions automatically and uses visualization tools to track performance,
compare versions and point out the differences. In our work, we also developed a framework
to run benchmarks on software automatically. However, unlike Rizel, running the profiler
on the new version is not necessary since only static information from the binary is needed
to predict the probable performance change. Also, we use information gathered from the
executed tests to predict performance failures.

Luo [48] proposed PerfImpact, a tool that uses a combination of search-based input
profiling and change-impact analysis methods. This tool finds input sets that cause re-
gressions and recommends code changes that affect performance. Previous research works
such as [62, 61] also focus on identifying performance regression root causes induced by
code changes. In contrast, our work does not explore the program’s input space to identify
code changes that affect performance. Since this study works on a commit level, that
is, the predictor analyses changes introduced by a single commit, determining the code
change which caused the regression should be straight forward as long as developers use
VCS correctly. The best practices for VCS suggests that code changes should be small and
commits should occur early and frequently. Additionally, this work does not assume prior

3

implementation of unit tests for the new version; the only requirement is performance tests
that were already implemented for the software.

G. Rothermel et al. [72] targets this problem using a static analysis approach for object-
oriented programs in C++. Rothermel constructs the Interprocedural Control Flow Graph
(ICFG) representations for the software, in combination with branch trace information
recorded from the performance test, to find the tests to execute. In opposition to this
approach, we do not use the program’s execution path to generate predictors but a combi-
nation of static and dynamic analysis (e.g. profile information) to infer about the relevant
functions for a performance test.

P. Huang et. al. [34] and R. Saha et. al. [73] addresses the problem of Regression Test
Prioritization (RTP) with PerfScope and REPiR, respectively. PerfScope tool conducts
a Performance Risk Analysis (PRE) on the source code change to estimate the level at
which it will affect performance. In combination with a risk matrix, the risk level obtained
from the tool helps test engineers prioritize execution of performance tests on certain code
patches. REPiR tries to reduce RTP to a standard Information Retrieval problem such
that the program modifications form the query and the performance tests constitute the
document collection. Our work contrasts with these approaches in two major aspects: we
detect performance change via predictive modelling using dynamic and static information
from past software versions, also we do not perform test prioritization. Therefore, no
further analysis is needed once the prediction is made, however the features designed in
this study could be used as a form of risk analysis. In Section 1.5 we describe the features
designed for our data samples and their values could also be used as an indication of
whether the child commit imposes performance risks with respect to the previous commit.
Finally, R. Mukherjeeet al. [58] discuss and catalogues of many approaches for RTP.

M. Gligoric et al. [29] also proposes a technique that accounts for the history of a
project on a distributed VCS. His approach takes into consideration the complex history
graphs from the repository, and the VCS commands performed to create the new software
version, to generate the test selection technique. In contrast to Gligoric, a non-linear
commit history is not necessary for training our predictors. Instead, parent and child
commits can be selected from different branches, and only the difference between them is
used as input.

1.1.4 Definitions

The next sections use the following definitions: B is the set of all performance tests for
a software, and bj is the j-th test in the suite. C is the set of commits in the software’s

4

(4) Choose
Operating

Point
(1) Collect Data (2) Generate

Dataset
(3) Train

Classifier
(5) Predict New

Commits

Figure 1.1: Performance test selection workflow.

VCS. Commit cn represents a new software version, co is the closest parent of cn and both
co, cn ∈ C. In our context, any commit in the repository is considered a new version.
Additionally, co is the first ancestor of cn whose profiling information is available. In other
words, the parent is the latest commit which developers executed the performance tests 3.
Software profiling is referred to as dynamic analysis, and static analysis is the process of
retrieving static information from cn’s binary.

1.2 Our Approach to Performance Test Selection

We investigate the performance test selection problem using a binary classifier. The clas-
sifier predict commit cn as positive for performance test bj, if the changes in cn will likely
affect the test’s result, or negative otherwise. In a real-world scenario, classifying the new
commit as positive means that cn should be tested against benchmark bj. A negative
sample means a dismiss; that is, there is no need to execute bj on cn.

Figure 1.1 shows five steps that comprise our approach to performance test selection.
First, we run all performance tests in B on all software versions in C to perform dynamic
and static analysis and collect data. Details of this step are presented in Section 1.4.
Second, we use this data to generate the features and class labels for the samples in the
training and testing sets. A data sample in these sets represents the features computed
from a tuple t ∈ T, T = {〈cn, co, bj〉|bj ∈ B, cn, co ∈ C}. In other words, a data sample is a
numeric vector of the features listed in Table 1.3 representing the comparison of co and cn
relative to test bj. Also, in this step we label the data sample in the training and testing
sets as positive if the performance change between cn and co for test bj is statistically
significant, or negative otherwise. Third, we train a classifier through a machine learning
algorithm for each b ∈ B. Fourth, to use the classifier the developer choose a probability
threshold (operating point) which defines the performance of the classifier in terms of the
number of true and false positives. Section 1.8 shows examples of how one can choose the
operating point and Figure 1.1 illustrates every step mentioned above.

3In Git terminology, the parent commit is the predecessor(s) of a commit object, however, in this study
the parent is an ancestor commit whose performance metrics was collected.

5

Finally, the performance test selection on new commits (fifth step) works as follows:
when the developer records the recent code changes cn in the repository, we perform a
static analysis on cn’s binary and compare with profile information from its parent co.
After, the classifier predict the data sample 〈cn, co, bj〉 as Positive or Negative for test bj.
cn is positive to the performance test bj if the probability outputted by the classifier is
higher than the chosen probability threshold, or Negative otherwise. The computationally
inexpensive static analysis on cn makes this approach a fast technique to performance test
selection.

1.2.1 The Binary Classifier

We evaluate two machine learning algorithms in our study: RFC [8] and Support Vector
Machine (SVM) [26]. We recognize that there are multiple supervised classification meth-
ods such as Naive Bayes, K-means, Nearest Neighbours, Logistic Regression, Artificial
Neural Networks, among others. However, we restricted the number of classifiers because
the main focus of this study is to show whether performance test selection works with
machine learning and if it generalizes for multiple software projects. Besides, training time
is another reason why we narrow the number of machine learning algorithms evaluated. In
total, we investigate twelve performance tests, and we train one classifier multiple times for
every test in the benchmark suite. Therefore, finding the best model and model parameters
would require longer training times.

RFC is an ensemble supervised machine learning algorithm which uses multiple weak
learners to produce a better learner with a higher classification accuracy. The weak learners
are decision trees, as shown in Figure 1.2. Each tree learns from a subset of the sample set
and features, and the combination of their classification result generates a better overall
classifier. Besides, RFC is robust to outliers in the dataset and does not require extensive
hyper-parameter tuning.

We also adopted SVM classifier to compare with the classification results obtained
with RFC and provide more confidence about our results. Support Vector Machine is a
supervised learning technique that finds the hyperplanes that separate each class in the
training dataset. Once the possible hyperplanes (also called boundary) are found, the
algorithm runs an optimization routine to find the one with the maximum margin between
classes.

6

1.2.2 Evalutation of the Classifier Performance

The prediction results are evaluated via the Receiver Operating Characteristic curve and
its area [7]. The ROC is a probabilistic curve plotted of the True Positive Rate (TPR)
versus the False Positive Rate (FPR) at different classification probability thresholds. The
True Positive Rate is defined as the fraction of the commits that were correctly predicted
as positive for a test b. False Positive Rate is the fraction of commits that were incorrectly
classified as positive. Additionally, They are defined as follows:

TPR = Tp/(Tp + Fn) (1.1)

FPR = Fp/(Fp + Tn) (1.2)

TNR = Tn/(Tn + Fp) (1.3)

Tp, Tn, Fn and Fp are the number of true positives, true negatives, false negatives and false
positives, respectively.

Practitioners adopt the ROC curve to visualize the classifier’s performance and select
the best operating point (decision threshold). For instance, some practitioners might accept
a high FPR as long as the classifier can predict the majority of the positive samples. Also,
the ROC facilitates the comparison of RFC and SVM with a single figure.

Additionally, we provide the AUROC to evaluate the classifiers. We aim to maximize
the area under the curve, which represent a ROC curve that is distant from the black
diagonal line shown in Figure 1.5. AUROC gives the probability that a classifier will
rank a randomly chosen positive observation higher than a randomly selected negative
observation. Higher probabilities indicate that the classifier performs well at separating
the two classes. Further, AUROC is one of the most used metrics when evaluating machine
learning algorithms. Previous studies [33, 7] have shown that reporting the area is better
than just the overall classification accuracy, especially when there is a significant class
imbalance in the dataset.

1.3 Case Studies

The selection of the case study has a few challenging requirements. First, we target projects
applied across a broad set of applications and whose routines exercise CPU, memory or
file I/O subsystems. Second, we select open-source projects that use a VCS and has
several commits recorded in the repository. We aim projects with one thousand commits

7

Class 1Class 1 Class 0

∑
Final Decision

Class 1

T1 T2 T3

Decision
Trees

Figure 1.2: Decision trees in a RFC. This example uses simple majority voting to define
the final decision.

or more because, among all versions, multiple builds are expected to fail. Third, we target
applications developed in C or C++. Finally, the fourth requirement is to select projects
that contain multiple statistically significant performance changes between parent and
child commits throughout its history. For instance, we attempted studying FFmpeg which
is a software that converts audio and video files among several formats. Unfortunately,
this application is unpractical for this study because there were no relevant variations in
performance in any of the commits we tested. The case studies adopted in this work are
described below. Also, for the projects which we collect execution time, we measure the
wall-clock time starting from the moment the process is spawned until its completion.

Redis

Redis [42] is a well-known in-memory data structure store applied in cache systems and,
among others, message brokers. The project includes a benchmark tool called redis-
benchmark which is used to generate real-world workloads and measure the server through-
put. In total, there are approximately 225 commands available for the Redis client to
manage the data structures and we choose four commands that are commonly adopted by
any in-memory database. Also, the chosen commands are compatible with most of the
previous software versions and are less likely to cause failures during the data collection
phase. The chosen commands are the following:

8

Table 1.1: Number of commits available for each performance test.

Study
Case

Performance
Test

Number of
Commits

Brotli Compress 234
Decompress 359

Git Add 288
Init 114
Diff 278

Clone 125

Jq Contains 766
Compare 759

Redis Set, Get, Lpop, Lpush 154

• SET: set a key in the database.

• GET: get the value of a key.

• LPOP: Pop the first item from a list data structure.

• LPUSH: Push an item to a list data structure.

For each command, we designed a performance test that submits 500 thousand pipelined
requests of 256 bytes to the server and measures the number of processed requests per
second. This workload follows the guidelines shown in [20] and allows us exercise a realistic
server behavior. For instance, for the SET test, each request sets a random key to a string
value of 256 bytes in size.

Git

Git [76] is a popular distributed VCS used in most software projects. Among the several Git
commands available, we choose the most popular ones for our performance tests and, for
each command, we measure its execution time. The tests and workloads are the following:

• Add: Add ten files of 10 MB to the staging area.

9

• Init: Initialize a new repository.

• Diff: Compute the difference between two 100 MB files.

• Clone: Clone a repository.

The sizes chosen for this case study are large enough to exercise the core functions of Git.

Brotli

Brotli [16] is a data compression software developed by Google which uses a variant of the
LZ77 algorithm. For this case study, we designed the following tests:

• Compress: Compress a large text file.

• Decompress: Decompress a file compressed with Brotli.

The file used in the Compression test is the enwik8, the first 108 bytes of the English
Wikipedia dump. The Decompression test uses the compressed enwik9 file, which is the
first 108 bytes of the English Wikipedia dump. These are the same files used in the Large
Text Compression Benchmark [49]. For the Compress benchmark we measure the execution
time and compression ratio, and for the decompression test we measure the execution time.

Jq

Jq [51] is a command-line JSON processor, capable of filtering, extracting and converting
JSON formatted text. The two tests designed for Jq collects the execution time of a query
with the following command-line arguments:

• Contains: Query entries whose field contains a string.

• Compare: Query entries whose field value is greater than an integer value.

We measure the execution time of both tests when processing a 54 MB JSON. The workload
for this case study is large contains multiple fields which allows Jq exercise its querying
routines which simulates a real-world workload. The Contains test first exercises querying,
string parsing and sub-string comparison routines. The Compare test exercises querying,
integer parsing and integer comparison routines.

10

1.4 Data Collection Phase

We collect data from each project listed in Section 1.3 and extract information that will
constitute the sample features explained in Section 1.5. In this phase, we run every per-
formance test on each software version to collect profiling information (dynamic analysis).
Also, we perform static analysis in the compiled binary of each software version. Section 1.5
presents how we design the sample features with the data collected. Static and dynamic
analysis are described below.

Dynamic analysis

The dynamic analysis aims to gather profiling data from the software. Profiling occurs at
run time, while the program exercises the performance test. We perform dynamic analysis
using Perf Linux Profiler [54] and Pin [47] and the information collected is shown in
Table 1.2.

Perf is a low-overhead profiler that allows users instrument programs, count kernel
events, trace memory usage, measure scheduler latencies, among others. Nowadays, it
is an essential tool for engineers since it offers several features that facilitate performance
evaluation. We collect two events using Perf: CPU cycles and instructions count (hardware
events).

Pin is a dynamic binary instrumentation tool that provides a useful API which makes
possible users create their instrumentation tools called Pintools. We use an adapted version
of proccount pintool to count the number of times a function is called while the program is
under test (more details about how Pin works is presented in Chapter 2 Section 2.6). To
speedup profiling with Pin, the proccount pintool was modified such that only the main
image is instrumented. Also, we measure the number of instructions each function executed
while running the performance test.

The information in Table 1.2 shows how relevant a function is for a performance test.
The profile information allows pinpointing the procedures which have the highest contribu-
tion to the overall performance. Therefore, the data gives practitioners hints of a possible
significant variations in performance in case the function is modified in the next program
version.

11

Table 1.2: Data obtained for dynamic analysis.

Information Collected Description Tool

Dynamic instruction count
Count the number of dynamic instructions
executed by each function reached by the
test.

Pin

CPU cycles count
Count the number of cycles spent on each
function reached by the test.

Perf

Number of function calls
Count the number of times each function is
called.

Pin

Static Analysis

We perform static analysis in the program’s binary to count the number of assembly
instructions in each function 4. The analysis is done three steps: (i) build the program’s
executable, (ii) parse the contents of the disassembled executable and (iii) count the number
of instructions in each function. The static instruction count is relevant because it allows a
quick comparison of function changes in different software versions. Furthermore, combined
with dynamic analysis, it provides more hints of how likely the performance of the new
software version will be affected.

1.4.1 Infrastructure Used for Data Collection

The software profiling phase described above involves three steps: compilation, perfor-
mance evaluation and profiling. In this study, we prioritize the best practices of per-
formance evaluation, which states that test runs must be stable. However, this imposes
another challenge for us: complete data collection of all commits in a reasonable time given
that the program needs to be tested multiple times. Profiling one thousand commits for
each case study could take several months to complete. For instance, considering that each
commit takes at least 10 minutes to compile and test, it would take us approximately 138
days to finish data collection of all case studies including repetitions.

To overcome the challenge above, we developed a client-server infrastructure to perform
a controlled and rigorous experimentation [64]. The infrastructure has of one master and

4Binaries where statically compiled and linked.

12

two worker nodes, the former orchestrate the distribution of tests and the latter execute
the tasks previously assigned to them. The workers pull their pending tasks via a web-
framework available in the master and execute them. In our context, a task represents a
compilation, profiling or benchmark routine.

Master Node Setup

The master node uses Django [50] and the PostgreSQL database. Django is a fast, secure
and scalable Python Web Framework that facilitates the development of web applications.
The main goal for this application is to provide a simple interface for users to create
experiments, schedule tasks and expose a web API to the workers. Once the experiment
is defined in the master, workers fetch their tasks via get task API endpoint on the server.
When the execution finishes, they respond the server via submit result endpoint. The
PostgreSQL database 5 was the central storage for experiments metadata. Since the volume
of data generated from experiments is enormous, reaching hundreds of gigabytes, we did
not use the database to store the compilation and profiling results.

In the context of our study, an experiment represents a project which we want to collect
data. Using the web interface, users define the experiment setup, such as its tasks (com-
piling and profiling), and the worker nodes that will execute them. In the Task creation
page, users set the script which the worker node will run, the task type and any dependen-
cies they may have. For instance, the dependency of a benchmark task is the successful
completion of a compilation task. Further, the application engine contains a scheduler to
facilitate task assignment. Since we can have multiple prioritized experiments, workers and
tasks (with dependencies), a scheduler application was essential for overall coordination of
the experiments. Additionally, the scheduler randomizes the task assignment to enhance
experimentation robustness.

Worker Node Setup

Workers were designed to be near plug-and-play and lightweight, requiring minimal setup
configurations to execute tasks. The nodes are an Intel(R) Xeon(R) E5-2620 with 26GB
RAM and 24 Cores (hyperthreading enabled). The system is comprised of a minimal
Debian distribution version 9.3 and Linux kernel version 4.9.

Rigorous software experimentation is not an easy task [59, 36]. The experimenter should
be aware of most controlled, uncontrolled and random variables to reduce the variance of

5PostgreSQL version 9.6.

13

performance measurements. T. Kalibera [38, 39] shows that benchmarks are inherently and
unavoidably a non-deterministic process because of the effects of random initial states and
mutating system states. Also, it is impossible to eliminate all sources of non-determinism
and the experimenter has the responsibility to modify the experimental procedure to mit-
igate it. For this reason, the worker’s system needs to configured correctly to obtain high
quality performance measurements [77, 60].

One of the advantages of benchmarking software in computers with multiple CPUs
is that the machine will rarely be overloaded by the system’s background processes and
threads. Also, in our context, it allows the rapid completion of a compilation task since
it can be done in parallel. However, even though 24 cores are available, only a subset
was used for profiling software. Profiling tasks were isolated on a different set of cores to
decrease the interference of system processes, reduce the number of CPU migrations and
diminish context switch overhead 6.

Furthermore, we disable the processor frequency scaling and Intel Turbo boost capa-
bilities. Additionally, to avoid thermal throttling [55], we fixed the CPU frequency to its
minimum value of 1.2 GHz because the frequency driver cannot decrease the clock speed
below this value when the temperature of the cores increase. Further, the tool vmtouch 7

was used for some tests that depend on data stored on disk such as Brotli. This tool reduces
the overhead of read syscall and decrease disk I/O by leveraging file system caching [30].
Therefore, we eliminate a critical source of variances which is unrelated to the application
under test 8. Finally, we clean the system caches and perform a test warm-up before pro-
filing begins. Each test is repeated at least five times to collect performance metrics, and
a performance change between two versions ca and cb is found when the Mann-Whitney
U test (α = 0.05) shows a statistically significant difference in the benchmark result (bj)
of each version. This is a non-parametric test that is as efficient as the t-test for normal
distributions.

1.5 Feature Engineering

We use the data obtained in the collection phase to design the performance features shown
in Table 1.3. The features form a vector of values that indicate how likely there will be a
difference in performance between the parent, cn, and the child, co, commits relative to a

6This is known as CPU pinning and shielding. NUMA awareness was preserved when deciding which
cores to isolate the profiling processes.

7vmtouch locks files stored on disk in the file system cache.
8During data collection, the operating system executes only the essential processes.

14

benchmark bj. For instance, Chen, J. et al. [11] have shown that the simple addition of
new functionalities to a function and changes in the algorithm is one of the main causes of
performance regressions. Therefore, we added features Changed functions and Instruction
difference to cover this root-cause of regression. The description of every feature is shown
in Table 1.3.

1.6 Dataset Preprocessing

The training and testing datasets must be transformed before fitting the classifiers to avoid
bias in the model towards features with bigger values. Figure 1.3a shows a histogram of the
feature New Functions gathered from all Jq data samples. In the figure, no functions were
added for the majority of the samples in the dataset. The sparse distribution skewed to the
right is explained by the fact that most child commits do not differ too much between their
parent in terms of the number of new functions and it is likely that only distant commits
would have more than ten new functions. The skew is unavoidable because of software
development nature, where developers tend to commit small changes to the source code,
especially when the project is mature.

Furthermore, the range of features values is very distinct. The bar plot in Figure 1.3b
shows the difference between the maximum and minimum values for each feature in Ta-
ble 1.3. For instance, the ranges for features Chgd count by instr and Instruction difference
contrast significantly. Therefore, the features are linearly scaled by its maximum absolute
value to overcome these issues in the sample dataset. As a result, the values lie in between
the (0, 1) interval and preserves the sparsity of the data.

We expect that the execution of tasks fail due to various reasons 9 and not all commits
selected for data collection will be compiled or profiled successfully. One of the conse-
quences of this problem is not only a reduced number of data samples to train our models,
but also the presence of data samples with longer commit distances. Also, the performance
test selection is preferable when predicting close commits relative to the time since dis-
tant commits are more likely to have differences in performance. Therefore, in addition
to scaling features to a specific range, we weight for each sample such that the penalty
of mispredicting commits chronologically close to each other is higher than mispredicting
distant ones.

9Automating compilation and profile of software projects with a significant amount of commits is
challenging since we must customize scripts for specific software versions.

15

Table 1.3: List of Features for a tuple 〈cn, co, bj〉 extended from [63].

Feature Description and Rationale

New functions
Deleted functions

Overall number of new and deleted functions. It indicates new
functionality or refactoring which can lead to overall perfor-
mance variation.

Instruction difference
Difference in number of static instructions of functions. The
execution of more instructions can affect performance.

Changed functions
Overall number of changed functions. Function change indi-
cates bug fixes or code improvements.

Relevance by cycles
Relevance by call
Relevance by instr

Profile the program and find the hottest functions (highest
overhead) relative to three categories: number of CPU cycles
(cycles), number function calls (call) and number of dynamic
instructions executed (instr). The rank of the function in
the profile tells its contribution to the overall performance
(its relevance). We summarize the relevance for all changed
functions for each category. Changing a function with high
impact on performance, e.g. the one which had the highest
count for dynamic instructions, is likely to cause performance
changes.

Chgd count by CPU cycles
Del count by CPU cycles
Chgd count by call
Del count by call
Chgd count by instr
Del count by instr

For the hottest functions, count how many were changed and
deleted. Changing hot functions, e.g. five most called, is likely
to affect performance.

16

012345 7 10 15 20 30 40
Number of new functions

100

101

102

Fr
eq

ue
nc

y

(a) Frequency of values for feature New
functions for Jq samples.

New
 fu

nct
ion

s

Dele
ted

 fu
nct

ion
s

Cha
ng

ed
 fu

nct
ion

s

Ins
tru

cti
on

 di
ffe

ren
ce

Chg
d c

ou
nt

by
 ca

lls

Rele
va

nce
 by

 ca
lls

Del
cou

nt
by

 ca
lls

Chg
d c

ou
nt

by
 cy

cle
s

Rele
va

nce
 by

 cy
cle

s

Del
cou

nt
by

 cy
cle

s

Chg
d c

ou
nt

by
 in

str

Rele
va

nce
 by

 in
str

Del
cou

nt
by

 in
str

101

102

103

104

105

Ra
ng

e
of

 V
al

ue
s

Jq
Git
Brotli

(b) Range of values for each feature computed
for Jq, Git and Brotli samples.

Figure 1.3: Statistics for features listed in Table 1.3.

1.7 Commit Selection for Training and Testing Sets

In Section 1.2 we describe that a sample in both the training and testing sets represents a
tuple 〈cn, co, bj〉, where co is a parent commit of cn whose profile information was collected
for performance test bj. The simplified algorithm to train and test a classifier is shown in
Algorithm 1 10. In the algorithm, functions get train tuples and get test tuples are the
routines that generates the data samples, and Ttr and Tte are the set of tuples in training
and testing sets, respectively. Str and Ste are the set of data samples in training and
testing sets, respectively, after computing the features. Procedure compute features(t, b)
generates the features for a tuple t according to Section 1.5. Finally, we train a classifier
m through the machine learning algorithm in procedure train, and output the predicted
class probabilities P after testing the samples in function test.

The method to select commits from Set C in the Algorithm 1 (lines 2 and 3) to form the
data samples in the training and testing sets deserves attention since it can influence the
classifier’s performance. Before presenting our approach to generate the data samples, first,
we evaluated three intuitive methods that practitioners might use to implement functions
get train tuples and get test tuples. Also, one could implement the first three methods
in case their dataset size is very small. However, in Section 1.7.1 we discuss that although

10We added the simplified version for clarity. The optimized algorithm of Algorithm 1 does not compute
features at run-time.

17

intuitive, the Methods 1, 2 and 3 below can generate negative results. Thus our evaluation
saves the petitioner’s time when choosing alternatives to generate samples in the training
and testing sets.

For Methods 1 to 3, we remove the condition that co is the closest ancestor of cn,
therefore, co can be any parent of cn. Also, we evaluate each method using Jq Compare test
and the results are shown in Figure 1.4 Table 1.4. Also, we use an example of development
history whose commit graph that does not contain branches, however, the methods below
are also extended to graphs which contain several branches and merge commit.

Algorithm 1 Simplified routine to train a classifier for benchmark b.

Input: C, the ordered set of commits; b, the target performance test.
Output: Classifier m; The predicted class probabilities P .

1: Str ← ∅, Ste ← ∅
2: Ttr ← get train tuples(C)
3: Tte ← get test tuples(C)
4: for all t in Ttr do
5: Str ← Str ∪ compute features(t, b)
6: end for
7: for all t in Tte do
8: Ste ← Ste ∪ compute features(t, b)
9: end for

10: m← train(Str)
11: P ← test(m,Ste)
12: return m,P

Method 1

A set Ttr is formed from all combinations of two commits in C, which results in
(
n
2

)
tuples.

For the methods that adopt this kind of combination, co can be any ancestor of cn. After,
tuples in this set are randomly selected to form the training and testing set (e.g. 70%
selected for training and 30% for testing). For instance, suppose a development history
with the commits in shown Figure 1.4. Three possible pairs of commits among all are
t1 = 〈c2, c1〉, t2 = 〈c3, c2〉 and t3 = 〈c3, c1〉. Then, the practitioner could choose t1 and t2
for training and t3 for testing.

We trained a classifier for Jq Compare test using this method. Table 1.4 shows that
it has the best score among the first three methods. The smooth curve in Figure 1.5 is

18

Figure 1.4: Example of commit graph with five commits.

a consequence of the increased amount of testing samples because of the combination of
commits (86,299 in total).

Method 2

We select the training and testing commits from C at random, without replacement. Then,
the commits in training set are combined,

(
n
2

)
, to form tuples in Ttr. The same approach

applies to generate Tte. This strategy is similar to Method 1, except that commits in each
set are selected from C before they are combined. In this method, no commit will ever be
present in both testing and training sets.

Using the commit graph shown in Figure 1.4 as example, one could select commits c1

and c5 to training, and c3 and c4 to testing. Then, the tuple in the training set is 〈c5, c1〉
and the tuple in the testing set is 〈c4, c3〉. As seen in Table 1.4, the training set for this
method has fewer testing samples compared to Method 1 and lower score.

Method 3

The first n earliest commits in C (e.g. 70% of total commits) are selected for training, and
the remaining are chosen for testing. Commits selected for training are combined similar
to Method 1,

(
n
2

)
, to generate tuples in the training set. For the testing tuples, the parent

co is the latest commit selected for training (newest commit in the training set). After, the
test commits are paired with their parent. Therefore, all tuples in this set will have the
same parent co.

Using the commit graph shown in Figure 1.4 as example, one could pick the earliest
commits c1 c2 and c3 for training, and c4, c5 for testing. Then, The tuple in the training
set are 〈c2, c1〉, 〈c3, c2〉, 〈c3, c1〉. Since c3 is the latest commit in the training set, it will be
the parent for both c4 and c5. Therefore the testing set has the tuples 〈c4, c3〉 and 〈c5, c3〉.

In Table 1.4 we notice that Method 3 has less commits and lower score than the previous
two methods.

19

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Method 1
Method 2
Method 3

Figure 1.5: ROC curves for Methods 1, 2 and 3 using Jq study case.

Table 1.4: Results for Methods 1, 2 and 3 using Jq study case.

Dataset Size

Method Training Testing AUROC

1 201,362 86,299 0.90
2 140,715 25,878 0.83
3 140,715 228 0.77

20

1.7.1 Applicability of Methods 1 to 3

Although methods 1 to 2 demonstrated to have better scores, they are not suitable for this
study. Their most significant advantage is that by generating synthetic commits they have
an increased amount of data samples which might also overcome the class imbalance in the
datasets. However, these methods are not applicable for us because of the following reasons:
first, pairing very distant commits relative to time is not meaningful for practitioners
because the bigger distance between commits more likely the execution of benchmark is
necessary. Second, augmenting the train set proved to be unsuitable because the software
performance along its history is not always monotonic (increasing or decreasing). For
example, the parent commit c1, representing an older version of the software, could have
the same performance of a child c100 that is several commits ahead of it even if their source
code differences are enormous. Training a model with this pair could generate a predictor
with low sensitivity to small code changes.

One of the consequences of selecting commits randomly (Methods 1 and 2) is informa-
tion being leaked from the training set to the test set. Especially for Method 2, it could
cause a misconception that estimators are tested with completely unseen data or no infor-
mation in the training set is passed to the testing set. For example, this method allows the
occurrence of the following scenario: tuple 〈c3, c1, bj〉 in train set and tuple 〈c4, c2, bj〉 in
the test set. If commits c1 to c4 did not have significant changes in their source code, they
would represent almost the same sample. As a consequence, predictors tested with them
would have higher scores but fail to perform well on unseen data. Finally, Method 3 does
not evaluate the classifier completely because only the latest commits of the development
history are tested.

These observations guided us to develop a method which enforces the non-existence of
data leaks from the training set to the testing set and allows practitioners to evaluate the
predictor’s performance thoughtfully. The approach we propose in this study divides the
development history into segments, called epochs, such that an predictor is trained and
tested for each epoch.

1.7.2 Method 4: Backtesting Cross Validation

Given the disadvantages presented above, now we evaluate the classifier for the performance
test using backtesting cross validation [13] and and propose an intuitive approach to select
the training and testing commits. In our approach, we segment the development history
in epochs such that each epoch contains all commits starting from the first commit until a

21

e1 e
m

e2

Figure 1.6: Example of commit graph that was segmented in m epochs.

chosen commit date. The chosen date defines the epoch, and it could represent, for instance,
a milestone in the project development where developers released a new major version and
ran all performance tests on the commit. Figure 1.6 illustrate a development graph that
is segmented in m epochs (black commit nodes). These nodes represent a commit which
dynamic analysis was made and profiling information is available. Also, the commit graph
could be segmented in different ways to train the classifier of a distinct performance test,
because the number of data samples available for a performance test might diverge. This
divergence is a consequence of scripts failing during the data collection phase.

Finally, we train and test a classifier for the performance test for each epoch. Then,
we use all the predicted class probabilities to obtain the overall classifier performance.
The approach to define the samples in training and testing sets of each epoch is explained
below, and Algorithm 2 has the pseudo-code for evaluating a classifier using this Method
4 where every loop iteration in line 2 represents an epoch.

Defining the Training and Testing Samples Per Classifier and Epoch

We select all the commits available for the epoch to train a classifier for performance test
bj. Then, we combine the training commits to form the tuples 〈cn, co, bj〉 such that co is the
closest ancestor of cn whose profiling information is available. The developer chooses the
commit which represents the epoch according to the availability of profiling information.

Further, we select k child commits ahead of the epoch to form the tuples in the testing
set. The test commits represent, for instance, new code changes that developers added after
the latest version was released and dynamic analysis was done. Then, the tuples 〈cn, co, bj〉
in the testing set are formed by pairing the testing commits with their parent co. Commit
co represents the epoch and whose profiling information is available. The number of testing
commits, k, ahead of the epoch is a design decision which the practitioner evaluates the
impact on the classifier’s performance. Large values for k is not ideal because, as code
changes are added to the software, more likely that there will be a performance variation
between parent and child commits.

22

(a) Example of commit graph with six
commits, divided in four epochs.

(b) Example of four epochs which k =
1. Black nodes are commit belonging
to the training set, and empty nodes
belong to the testing set.

Figure 1.7: Example of a commit graph. In real-real world scenarios, the repository graph
would have multiple branches and merges.

Example

We now provide an example of how a developer can segment the commit graph in multi-
ple epochs to train a classifier for one of its performance tests. Figure 1.7a illustrates a
development history with six commits. We segment the graph in four epochs and select
one commit ahead of the epoch (k = 1) to test the classifier. Figure 1.7b shows how the
commits for each epoch would look like, including the commit selected for testing (white
node). For instance, the training commits of e4 are all commits from the beginning of the
development until the date the epoch. Then, we train and test the classifier for each epoch
and evaluate the combination of all class prediction probabilities.

1.8 Evaluation of the Performance Test Classifiers

In this section, we present the scores of the classifiers trained for each performance test
using Method 4 and five testing commits for each epoch (k = 5). In our evaluation, we
choose five test commits because it is not too low so the training time would be considerable
high, and not too large so the commits predicted ahead of the parent would likely contain
a statistically significant performance change. In Section 1.9.2 we also evaluate the scores
for different k values.

The results are summarized in Table 1.5, and they show the classifier performance of
each study case and benchmark for all epochs combined. One way to assess the overall
score from Table 1.5 is averaging the sum of the best AUROC scores for each performance
test and study case. As a result, on average, the likelihood the classifiers will be able to

23

Algorithm 2 Training and testing a classifier on a segmented development history.

Input: Set C, the ordered set of commits; k the number of test commits per epoch; bj,
the target performance test; l, number of training commits for the first epoch.

Output: The predicted class probabilities P .
1: Str ← ∅, Ste ← ∅
2: while n < |C| do
3: Ttr ← {〈cn, co, b〉|cn, co ∈ C}
4: Tte ← C[l]× C[l : l + k]
5: for all t in Ttr do
6: Str ← Str ∪ compute features(t, b)
7: end for
8: for all t in Ttr do
9: Ste ← Ste ∪ compute features(t, b)

10: end for
11: m← train(Str)
12: P ← P ∪ test(m,Ste)
13: m← update(m)
14: end while
15: return m,P

24

Table 1.5: Results for each case study and performance test.

Study
Case

Performance
Test

RFC SVM

TPR TNR AUROC TPR TNR AUROC

Brotli Compress 0.39 0.79 0.74 0.32 0.82 0.71
Decompress 0.58 0.76 0.66 0.38 0.85 0.71

Jq Contains 0.31 0.81 0.66 0.07 0.96 0.72
Compare 0.07 0.96 0.67 0.04 0.99 0.66

Git Add 0.38 0.91 0.71 0.44 0.55 0.59
Init 0.87 0 0.35 0.81 0.2 0.50
Diff 0.27 0.94 0.62 0.86 0.35 0.66

Clone 0.95 0.52 0.89 0.65 1 0.93

Redis Set 0.58 0.75 0.75 0.41 0.95 0.83
Get 0.82 0.32 0.62 0.36 0.96 0.79

Lpop 0.67 0.43 0.63 0.66 0.58 0.67
Lpush 0.65 0.64 0.71 0.31 1 0.72

predict whether or not there will be a relevant performance variation between commits is
approximately 72%. Redis is the study case with best likelihood of predicting a signifi-
cant change in performance, with approximately 75% on average, and Brotli the lowest,
approximately 69%.

1.8.1 Brotli

Models trained for Brotli have the area under the curve above 0.7 for both benchmarks.
Also, RFC is more efficient on Compress test while SVM performs better on Decompress
test. Figure 1.8 shows the ROC curves for this case study. Using the RFC for Compress
benchmark as example (Figure 1.8a), the developer could choose the probability threshold
that gives 0.8 and 0.4 for TPR and FPR, respectivelly. This operating point indicates
that the test is dismissed on 60% of the true negative commits (66 commits in total) while
detecting 80% of the performance affecting changes.

25

(a) Compress test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.74
SVM: AUROC = 0.71

(b) Decompress test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.66
SVM: AUROC = 0.71

Figure 1.8: ROC curves for Brotli.

1.8.2 Jq

The AUROC for all classifiers trained for Jq is 0.67 on average. Figure 1.9 shows the ROC
curves for each performance test. If we use as example the SVM classifier trained for the
Contains test, the developer could choose from Figure 1.9a the probability threshold which
results in 0.8 TPR and 0.4 FPR. With this operating point, the classifier correctly dismisses
60% of the true negative samples, which represents approximately 74 of all commits, while
detecting 80% of the performance affecting commits.

1.8.3 Git

Figure 1.10 shows the ROC for Git study case. The classifier for Clone test has the best
AUROC overall, reaching up to 0.93 for SVM classifier. From Figure 1.10d, one could
choose, for example, the probability threshold which results in 0.4 and 0.9 FPR and TPR,
respectively. Then, the classifier would correctly dismiss tests on 60% of the commits that
do not impose risk to performance (11 commits) and detect 90% of the commits that affect
performance.

The predictor performance for Init test, in Figure 1.10b, was no better than random
guessing since its ROC curve follows the black diagonal. Investigating the results for this
test in Table 1.5, we observe that the classifier was very conservative, detecting 87% of
the true positives but none of the true negative samples. The bias towards one class is an
indication that the features generated from the data collected for this performance test did

26

(a) Contains test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.66
SVM: AUROC = 0.72

(b) Compare test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.67
SVM: AUROC = 0.66

Figure 1.9: ROC curves for Jq.

not capture the changes that does not impose risks to performance; therefore the algorithm
was incapable of distinguishing the two classes effectively.

1.8.4 Redis

From Table 1.5, Redis is the only case study which the Support Vector Machine was better
than Random Forest for all test cases. Also, the discrepancy between AUROC scores for
each classifier type is significant for both Get and Set tests. This difference is also shown
in Figures 1.11a and 1.11b.

To assess the performance of the SVM classifier for Set test, for instance, the developer
could choose the probability threshold (operating point) from Figure 1.11a which gives 0.4
and 0.9 for FPR and TPR, respectively. For this threshold, the classifier would correctly
dismiss test execution on 60% of commits that do not affect the performance of Set bench-
mark (40 commits) and detect approximately 90% of the commits that induce a change in
performance.

27

(a) Add test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.71
SVM: AUROC = 0.59

(b) Init test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.35
SVM: AUROC = 0.50

(c) Diff test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.62
SVM: AUROC = 0.66

(d) Clone test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.89
SVM: AUROC = 0.93

Figure 1.10: ROC curves for Git tests.

28

(a) Set test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.77
SVM: AUROC = 0.84

(b) Get test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.63
SVM: AUROC = 0.79

(c) Lpop test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.63
SVM: AUROC = 0.67

(d) Lpush test.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RFC: AUROC = 0.71
SVM: AUROC = 0.72

Figure 1.11: ROC curves for Redis tests.

29

1.9 Discussion

This section presents a further investigation on the performance of the classifiers.

1.9.1 Classification Scores Throughout the Development History

The AUROC scores provided in Section 1.8 refer to the class prediction probabilities over all
epochs combined. Now we use Method 4 to visualize how classifiers evolve over the project
development. We chose Git and Redis study cases and plotted the smoothed curves for
the AUROC for each epoch, as illustrated in Figures 1.12.

Figure 1.12a shows the scores for Git Add and Clone tests, where the RFC was trained
and tested repeated times using 100, 500 and 1000 decision trees. Add test have the most
noticeable variability and the AUROC reaches 0.71 by the end of the development history.
The plot also indicates that starting from epoch 30, the AUROC improves once more
samples are included in the training set. In contrast, scores for the Git Clone benchmark
are relatively more stable, reaching 0.91 over the 17 epochs. Clone test has fewer epochs
because there are fewer data samples available for this case study compared to the Add
benchmark; that is, fewer commits were successfully profiled when we collected data for
this study case. As a consequence, there will be fewer epochs to train the performance
classifier.

Figure 1.12b shows the scores for Redis Get and Set tests, where a SVM classifier was
trained and tested repeatedly using three kernels types [26]: sigmoidal, polynomial and
radial basis. We observe in the figure that the classifiers initially overfit when less data
is available for training and then reach 0.8 for Get and 0.85 for Set test in the last epoch
when the training set has almost all the samples available for the test.

1.9.2 Effect of the Testing Set Size

In Section 1.8, we test the classifier against the first five child commits ahead of the parent
commit (k = 5). Now, we investigate the effect of the test set size on the overall classifier
performance using Method 4. Table 1.6 presents the results for Jq and Brotli for a range
of values for k in Algorithm 2. We observe that the AUROC tends to increase for bigger
test sets. This increase is evidence that the larger the distance between parent and child
commits higher is the likelihood of a variation in performance performance. Also, this
is an indication that choosing large values for k is not ideal for evaluating a classifier

30

●

●
●

●

●

●●

●
●

●

●
●

●●●●●
●●●

●

●

●
●

●●
●

●●
●

●
●●

●
●

●●
●●●●

●

●

●

●

●

●●

● ●●
●

●
●

●
●

●●●●●●●
●

●
●●

●●●
●

●

●●
●

●
●●●●●●

●

●

●

●

●

●●
● ●●

● ●
●

●
●

●●●●●●●
●

●
●●

●●●
●

●

●●
●

●
●●●●●●

0.6

0.8

1.0

0 10 20 30 40 50
Epoch

A
U

R
O

C

Performance Test:
●

●

Add
Clone

(a) Git.

● ● ●

●

●

●

●

● ● ●

● ●
●

●
●

●

●

●

●

●
● ●

●

● ● ●

●

●

●

●

● ●
●

●
●

●
●

●
●

●

●

●

●
● ●

●

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20 25
Epoch

A
U

R
O

C

Performance Test:
●

●

Get
Set

(b) Redis.

Figure 1.12: Classifier score over multiple epochs.

because, intuitively, the larger the distance between the child and parent commits, the
higher the likelihood of a performance change. Further, a One-way ANOVA statistical test
was performed for Jq, under the null hypothesis that there is no difference in the AUROC
score for different k values. The results show a F-statistic value of 3352 and p-value of
10−33, and Tukey’s HSD post hoc analysis indicates that the null hypothesis should be
rejected for all values of k except 1 and 50.

1.9.3 Comparison to a Conservative Test Selection Algorithm

We compare the classifier generated for Redis Set test to a dummy algorithm that always
indicates that new commits will affect performance. In other words, the conservative algo-
rithm classifies all samples as positive, which means it never dismisses tests and TPR = 1.
Using our approach, the developer could choose the class probability threshold (operating
point) from Figure 1.11a which gives a TPR of 1 and a FPR of 0.72 for SVM. Therefore,
using this threshold we would correctly dismiss 28% of the commits (skip tests on 17 of
them) that did not affect the performance while also detecting all performance-affecting
commits. In contrast, the dummy approach does not skip the tests on any of the commits
that did not affect performance which means unnecessary testing.

Further, a naive algorithm that always indicates that new commits will not affect per-
formance (TNR = 0 or FPR = 1) would not capture any of the performance changes.
Although this dummy approach may save time by skipping performance tests, it is not
a recommended software development practice, and it may incur many risks to the de-
tection of root causes of performance regressions. Therefore, with the chosen threshold,

31

Table 1.6: Classification scores for different numbers of test commits per epoch (variable
k in Algorithm 2).

Performance
Test

Test Set
Size (k)

AUROC

RFC SVM

Jq
Compare

1 0.63 0.67
10 0.58 0.59
20 0.50 0.6
50 0.62 0.63
100 0.7 0.75

Brotli
Decompress

1 0.62 0.68
10 0.6 0.72
20 0.64 0.64
50 0.65 0.52

our classifier would not only correctly dismiss tests but also perform early detection of all
performance changes between child and parent commits.

1.9.4 Classifier Evaluation Using K-fold Cross Validation

We also assess the classifier performance for two Git tests via k-fold cross validation [56].
In this scenario, instead of dividing the development history into multiple epochs (Method
4), we use all samples, 〈cn, co, bj〉, available for the performance test. For every sample,
co is the closest ancestor of cn with profiling information available. Then, we measure the
AUROC scores for multiple k values (2, 5, 10 and 20) with at least three repetitions.

Figure 1.13 illustrates the classifier performance for Clone and Add tests for each fold
(the smooth curve represents the confidence interval). The scores for both tests level off
at 0.85 and 0.725 for Clone and Add tests.

1.9.5 Comparison to Perphecy

This work differs from Perphecy [63] in many ways. The first important difference is the
adoption of AUROC which is a more comprehensive scoring metric than TPR and True

32

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●
●

●

●

0.65

0.70

0.75

0.80

0.85

5 10 15 20
K−folds

A
U

R
O

C

Performance Test:
●

●

Add
Clone

Figure 1.13: K-fold cross-validation using Git.

Negative Rate (TNR). Second, we evaluate the classifiers over the project’s development
lifetime. However, the contrast in approaches imposes challenges when comparing the two
studies.

The overall score obtained for the Git project in the previous study was 0.77 for true
positives and 0.84 for true negative rates. Roughly comparing with our study, and assuming
that we use the same set of commits, we notice that the classifier for Clone test was the
only one that performs as well as the previous study (in the previous work, the score for
Git was 0.8 TPR and 0.84 TNR. However, this observation is not a decisive manner of
comparing the two studies since, as we have discussed in Section 1.7, the approach for
selecting commits can affect the classifier performance. Also, Table 1.6 shows an example
in which choosing different test commits (k) changes the AUROC score by almost 10% for
certain projects.

1.9.6 Feature Design

We designed the features described in Section 1.5 to capture most of the information
that could indicate a change in performance. The features are meant to be generic and
applicable to any software application that generates an ELF binary. Also, they could be
customized for each project. Developers can use their experience with the source code to
extend these features and capture better possible performance-affecting changes.

Jq has the most significant training size which is almost two times the amount of Redis
and Brotli. However, the AUROC scores seen in Table 1.5 indicate the classifiers for this

33

project did not perform exceptionally well, even though the dataset is relatively bigger.
To further investigate this problem, we analyzed a false negative sample from the Jq study
case. Listing 1.1 shows the code snippet with the difference between a parent commit and
its direct child11. This snippet is from a procedure that reads the contents of a stream
and outputs to a buffer, and it shows that line 8 is substituted by line 10 on the new
version. The commit author pointed an I/O bug in the parent commit which caused the
procedure to pull only 8 bytes of the stream at a time, instead of the amount available for
a previously declared buffer of 4096 bytes in size. After fixing the bug, the code makes
fewer application I/O requests, which reduced the total execution time by 34%.

The sample representing the bug fix was studied to verify whether the features extracted
from it captured the performance-affecting change. For instance, the feature Instruction
difference, which is the difference in the total number of static instructions between parent
and child, has its value equal to 2 (90 in the child and 88 in the parent). Therefore, the
addition of only two instructions caused a significant improvement in performance which
shows that the set of features did not adequately capture this performance change.

A developer working on this project, who is aware of the risks that this function imposes,
could profile past versions of Jq to gather, for example, the amount of cache-misses, system
calls or disk I/O requests that each function makes. This information can then be used in
combination with the difference of static instructions to form a new feature. For this reason,
in the section below we study the addition of a memory-related feature, such as cache-
misses, to the data collection phase and verify how it changes the classifier performance.

1 d i f f −−g i t a/main . c b/main . c
2 stat ic int read more (char∗ buf , s i z e t s i z e)
3 {
4 ...
5 −− i f (! f g e t s (buf , sizeof(buf) , c u r r en t i npu t))
6 buf [0] = 0 ;
7 ++ i f (! f g e t s (buf , size , c u r r en t i npu t))
8 buf [0] = 0 ;
9 return 1 ;

10 }

Listing 1.1: Code difference between a parent commit and its direct child with
respect to procedure read more. The performance of the new version was signifi-
cantly better because of the bug fix in line 7.

11Parent and child commit references are d32777 and 52db80, respectively.

34

Effect of Additional Features

Linux offers hundreds of performance counters available for the users (e.g. Perf list reports
1711 in total). In this section, we investigate whether adding a memory-related counter
would improve the results seen in Section 1.8. We chose the two commits analyzed in
Listing 1.1 and obtained the difference of cache-misses using Perf record to count the
number of times a data was not present in the CPU cache. When a read system call is
made to fetch data from the file system, it might trigger a cache-miss event in case the
data is not present in the cache. Also, we compute the difference of misses between parent
and child with Perf diff tool. Column Delta in Listing 1.2 shows the top five functions in
the child commit that caused the most significant changes in the cache-misses.

We designed three more features to verify whether cache-misses affect our results: Rele-
vance by cache-misses, Changed count by cache-misses and Deleted by cache-misses. Then,
we collected profiling information for Jq and evaluated the classifiers with the new features
added. The AUROC score, illustrated in Figure 1.14, shows no significant improvement on
the classifier performance when the new features are added. This finding indicates that fur-
ther investigation on Jq is needed to obtain features that capture its performance-affecting
changes.

Event ’ cache−misses ’
Base l i n e Delta Symbol
.

38.60% −0.07% [.] j v p a r r a y w r i t e
29.33% +0.35% [.] j v p a r r a y f r e e

9.21% −0.18% [.] j v p r e f c n t i n c
8.14% −0.33% [.] j v p r e f c n t d e c
3.18% +0.08% [.] j v g e t k i n d

Listing 1.2: Performance difference between Jq commits d32777 and 52db80 with
respect to cache misses.

1.10 Lessons Learned and Future Work

We present the lessons learned throughout the implementation of this performance test
selection and discuss how our approach could be improved in future works below.

35

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Contains AUROC = 0.69
Compare AUROC = 0.66

Figure 1.14: ROC for Jq including features for cache-misses.

Evaluation of Multiple Classifiers and Parameter Tuning

In total, we analyzed more than 3,000 commits and studied 24 performance classifiers for
multiple epochs in a development history. The costs imposed by the data collection phase
and the high number of classifiers we evaluate restricted how in depth we explored different
machine learning techniques. From our results, we have evidence that RFC or SVM can
be used to aid performance test selection. However, we believe that an in-depth evaluation
of multiple models is needed to find the best machine learning algorithm. Additionally,
one could use the newest techniques on deep learning techniques to improve our results.
Finally, we believe that the results in Method 4 could be improved if we tune the model
parameters.

Dataset Sizes

The first lesson learned from this study refers to the challenges of obtaining a very large
amount of data samples to train and test classifiers. Automating compilation and exe-
cution of performance tests on all commits in the repository is not a simple task because
compilation commands could change from time to time, causing scripts to break and exper-
iments to fail. Therefore, this issue bounds the size of the data set and limits the number
of samples available in the evaluation the classifier.

Software Development Practices

Correct usage of the VCS is essential history-based performance test selection techniques.
The best practices for Git mention, for instance, are that code commits should be small

36

and occur often. This practice facilitates finding the root cause of performance regressions.
As well, it is beneficial for performance predictors since they become sensitive to functions
that impose high risks to performance.

Further, Git offers the option to squash commits together via git rebase command, which
imposes a threat to any history-based performance test selection approach. Sometimes
commits are squashed to clean the repository or decrease its total size. However, combining
commits could make the delta between parent and child even larger because the removal
of intermediary code changes increases the number of differences between them.

Design of Features

In Section 1.9.6, we presented a data sample that was not predicted correctly by the
classifier. Capturing performance-affecting changes can be challenging, and code changes
as small as the addition of two instructions can have a significant effect on performance.
The features designed in this study (in Table 1.3) are intended to be generic and applicable
for most applications. However, it is possible that some projects have their own set of
relevant performance counters which the developer is aware of. Therefore, we believe that
better results would be achieved if developers include their own application-specific features
when using our approach.

Thorough Evaluation of Classifiers

In Section 1.7, we explore different ways to generate data samples for the testing set, and
we conclude that random selection of commits do not seem to be a realistic approach to
form training sets. Although the classifiers have higher scores for Methods 1 to 3, most of
them did not demonstrate how well they perform with true unseen data. This important
threat to validity motivated us evaluate a method that tests the classifier simulating a
real-world software development scenario. In future work, one could evaluate additional
cross validation approaches, such as walk-forward backtest, to observe how changes in the
dataset affect the predictions.

1.11 Conclusion

Performance testing can increase the costs of software development significantly since de-
velopers might spend hours executing benchmarks. To diminish the costs, developers need

37

to make a wise decision on which tests execute for a given commit. Our approach to per-
formance test selection uses the information from previous versions of the software to train
a binary classifier that provides the likelihood of a performance change when developers
record a new commit in the repository. Our approach does not substitute the performance
test execution. However, it is a fast technique that one can use to assist the decision of
whether or not to test the new software version after a commit push.

In Section 1.7, we studied multiple ways of using the Version Control System to generate
data samples for machine learning algorithms. Since the majority of the methods presented
are not realistically enough for solving the test selection problem, we use an approach that
allows developers to evaluate the classifier effectiveness over the development history. From
our results, we have evidence that that one can use machine learning to predict performance
changes and assist developers in selecting test. We further evaluate our approach using
Support Vector Machine and, for some case studies, it has superior scores than Random
Forest Classifier. Finally, the classification scores were assessed with a variable number
for the test set size and the results demonstrate that different sizes have a statistically
significant effect on the prediction score.

38

Chapter 2

A Study of Binning Effect in
Memory Allocators

2.1 Introduction

Performance measurements of computer systems do not always follow a symmetric normal
distribution and it is common to observe log-normal distributions from measurement sam-
ples. Several factors inherent to the system and hardware may interfere with the execution
of programs. For instance, network contention can be one of the various factors that cause
high response times [78] when a server process the client’s request. Therefore, the peaks in
execution time and the lack of knowledge of the entire system turns performance evaluation
a laborious [25, 74] task because the practitioner might not fully understand the hidden
causes of such outliers.

In this chapter, we study the binning effect, which is a type of measurement variation
that occurs in memory managers, and we investigate how it is present in two user-space
programs. Nowadays, almost all memory allocators [23, 46] use an array of free lists [57] to
manage memory regions. The arrays are used to segment memory areas into chunks and
these chunks are further segmented into smaller areas to form pools of memory blocks. This
approach improves cache locality and performance, and diminishes internal and external
fragmentation. However, binning is a side effect of this method and causes longer response
times in certain allocation requests. Each memory manager has its own peculiarities specific
to the application that uses it, and we show that this effect occurs at different layers
concerning the proximity to the user, for instance, we review its presence in the Linux
Kernel Slab Allocator [53] and investigate it in CPython and Redis memory allocators.

39

2.1.1 Definition

A bucket or bin is a container which memory blocks are added or removed. At some
moment in the execution of memory-intensive programs, the memory allocator will reach
the limit (threshold) of free blocks in a bin or pool of memory regions. This event, referred
in this work as binning event, causes the allocator control flow to take a slow path to serve
the next memory request which results in a higher allocation response time. As example,
the threshold for a bin could represent the size of the private heap available for a program
and, once the threshold is reached, the memory manager executes a routine to request
more memory from the operating system and initialize its internal structures to store the
in new blocks. In the next sections we explain in detail how binning occurs on each case
study.

2.1.2 Problem Statement

In this chapter we address the following problem: Given a particular program and memory
allocator measurements, explain the performance outliers.

2.1.3 Related Work and Chapter Organization

Amir et al. [28] investigated binning events on Kernel Slab Allocator [53] and studied its
effect on the performance of many system calls. The experiment for mmap system call was
was reproduced in Section 2.3 of this work and we perform further analysis on our results.
Further, in this study we develop a Pintool to detect binning events on Python Programs.
Unlike Peiris et al. [67] who created EMAD, a dynamic instrumentation tool that identifies
excessive memory allocations, we do not focus on studying the process memory usage
or memory leaks. Also, the module tracemalloc.py available for Python can be used as a
debug tool to understand the program’s memory usage. This module works in combination
with trace points in the interpreter to collect statistics and tracebacks on memory usage.
Although the Pintool is not intended to track memory usage, it also suggests the developers
the code locations where memory is being mostly used.

This chapter is organized as follows: Section 2.3 presents binning effect in Kernel
Slab Allocator ant it serves as a basis for our additional case studies. Sections 2.4 and 2.5
investigates binning in Redis and CPython memory allocators. In Section 2.6, we introduce
a tool to detect the presence of binning in Python programs and evaluate it on multiple
performance benchmarks.

40

2.2 Methodology

Robust, rigorous and scientific experimentation in software engineering is not always a
simple task to perform since the number of variables that interferes the experiment can
be enormous. For this reason, this work tries to control the data collection phase to
minimize the risks of taking the wrong conclusions about the performance measurements.
The performance test1 used to identify binning events are either a standard benchmark
provided by the developers (for Redis) or synthetic workloads implemented for this study.
The computer hardware and system setup utilized in our experiments is the following:

Hardware

The machine is an IntelR CoreTM i5-4460S 64 bits 2.90 GHz, quad-core (hyperthreading
enabled) and 16 GB RAM. The System was configured with a minimal Gentoo installation,
Linux Kernel 4.14.65 and GCC 7.3.

System Configuration

We set up the system in which our experiments were conducted to diminish disturbances
from external controlled variables [36]. First, the system load was kept low during the
experimentation phases, and only the essential system processes were running. Also, we
execute the performance tests on a single CPU that is isolated from the system processes.
This action not only avoids external disturbances but also eliminates latencies due to
CPU migrations and context switches. Second, the machine clock frequency is fixed to
its minimum value possible, which removes variations in clock frequency due to thermal
throttling. Third, the Intel Turbo Boost support was disabled to cease sudden processor
acceleration during peak loads [3]. Fourth, we disable Address Space Layout Randomiza-
tion (ASLR) due to its possible effect on performance [66]. According to O. Augusto et
al. [15] the impact of ASLR is not insignificant, however, since our performance tests are
heavily dependent on memory mappings, we opt to factor out this possible source of vari-
ability. Lastly, caches are dropped and slab objects are reclaimed before every experiment
execution.

1Performance test is also referred as workload or benchmark.

41

2.2.1 Analysis of Binning Effect

Besides plotting the performance measurements of memory allocation requests, this study
adopts the following approaches to visualize and quantify the binning effect on performance
of Redis and CPython memory allocators:

Effect Magnitude

The study of the binning effect on performance is done via the Mann-Whitney U test and
Games-Howell post hoc analysis. The U-test null hypothesis (H0) is: the distributions
of the execution time of memory allocations with and without binning are equal. The
alternative hypothesis (Ha) is: the distributions of the execution times of the two groups
are different (or the mean ranks of the two groups are different). Rejecting the null shows
that binning has a statistically significant effect on the performance. Once a difference
between the two groups is found, post hoc analysis quantifies this difference providing the
effect magnitude.

Since we cannot assume a specific distribution of the dependent variable (execution
time) and homoscedasticity, classic mean regression methods such as ordinary linear re-
gression can lead us to wrong conclusions about the effects of binning. Long-tailed and
log-normal distributions is commonly present in timing measurements of software [12, 78,
45](Figure 2.3b). Therefore, as an attempt to make the distribution close to normal, some
practitioners apply transformations (such as Box-Cox or simply taking the square root of
the response variable) to achieve normality or near normality. In this work, we avoid the
adoption of these techniques since it would be difficult to generalize this study. For this
reason, we choose the non-parametric statistical test instead.

Distribution Skewness

The relationship between the distribution skewness and binning events is also studied. The
study is done via Fisher-Pearson coefficient of skewness 2, G1, adjusted for the sample size
which tells how the distribution asymmetry increases (and consequently its variability) in
the presence of binning. The coefficient is defined by:

G1 = g1

√
n(n− 1)

n− 2
where g1 =

1
n

∑n
i=1

(
xi−x̄
s

)3

(
1
n

∑n
i=1(xi−x̄

s
)2
) 3

2

(2.1)

2Available in R via package e1071.

42

n, x̄ and s are the number of samples, mean and standard deviation, respectively. Joanes
et. al. [37] has shown that Fisher-Pearson coefficient has less bias and small mean-squared
error for an asymmetric distribution with small amount of samples, which is suitable for
this study since we expect to obtain skewed distributions from our data. Our reference to
compare is the normal distribution, whose G1 is zero (symmetric). Positive and negative
values of G1 indicates right and left skew, respectively, in our data.

To observe the binning effect on the distribution we plot G1 versus the number of
binning events to visualize how it affects the shape of distribution under variable number
events. The plot is constructed by taking n consecutive samples and computing G1. Then,
the coefficient is plotted against the number of events that occurred among those requests.

Variability Around the Mean

The execution time variability caused by binning events are shown via a plot of the Prod-
uct Moment Coefficient of Variation (CV = 100 ∗ (s/x̄)) (or Relative Standard Deviation
(RSD)) versus the number of binning events. There are multiple statistical methods for
computing variability [31], for instance, one can use statistics such as the L-moment Coef-
ficient of Variation, estimated by the second L-moment divided by the first L-moment (l1

l2
).

However, in this is study we use CV since it is more intuitive for practitioners. The plot
of the coefficient of variation versus the number of binning events allows us to visualize
the performance dispersion when the memory allocation is under binning effect. Similar
to the skewness plot mentioned above, the plot is generated by computing the CV for n
consecutive data samples and counting the amount of binning events that occurred.

2.2.2 Study Cases

This study presents the binning effect in three essential applications: Linux Kernel, Python
Core, and Redis. Amir et. al.[28] have studied the performance outliers in the Slab
Allocator in the Kernel; therefore we will not explore in depth in this work. However, since
the Slab Allocator is situated in Kernel space, we will introduce it to serve as a baseline
for our the next case studies.

Similar memory allocation techniques are also widely used in user-level space libraries,
and we show in Sections 2.4 and 2.5 that Redis and CPython memory allocators are also
prone to binning.

43

2.3 Linux Kernel Slab Allocator

The SLAB Allocator is a memory manager that handles allocation of kernel objects of
fixed size. These objects store metadata information for kernel structures such as memory
mapped areas, network information, file inodes, etc. SLAB was first introduced to Solaris
by Bownwick [5], later extended to SMP computers [6] and today is widely used in Linux
Kernel. This allocator improves overall performance and reduces memory fragmentation.

The gain in performance occurs because of the caching of commonly used objects.
The motivation behind this technique is the high overhead of object initialization, which
sometimes can be higher than allocating memory for it. Objects of the slab cache are
initialized only once, and its memory is not entirely freed after it is deallocated. The free
object goes to an array of objects so it can later be re-utilized without the overhead of
another initialization. Therefore, reallocating these objects can be very quick; for instance,
our experiments have shown latencies of less than 5 µs.

In addition to caching, another motivation to slab allocation is the reduced memory
fragmentation. A cache of a certain type (e.g., to store file descriptors) can have several
slabs, each one with a typical size of one page (4KB). The division of a slab into small
segments of equal size, one for each one kernel object, prevents memory fragmentation.
For instance, object vm area struct of 208 bytes in size 3 stores information about the
processes memory mapped areas. Since the page frame size is by default 4KB, 19 objects
fit in each slab of this cache type 4.

Objects allocated and freed are placed in a per-CPU cache. In case the CPU does
not have free objects in its cache to serve an allocation requested, the used objects are
transferred to a pool in RAM, and the kernel routine cache alloc refill refills the CPU
cache with free objects [53]. This routine to move objects to and from memory causes
a relatively significant delay in execution time. Additionally, the slab allocator could
potentially interact with the page allocator to get a new memory page and subdivide it
into smaller segments to store more cache objects. Therefore, this extra delay represents
a source of binning. More details regarding the binning effect on Kernel Slab Allocator is
found in [28].

3Size is specific the kernel compiled for the machine described in Section 2.2. Information about kernel
objects can be found inspecting /proc/slabinfo in case the kernel was compiled with SLAB as its default
allocator.

4Coloring techniques are utilized to improve hardware cache utilization.

44

2.3.1 Experimental Setup

A different method from [28] was used to study binning on Kernel Slab Allocator. In our
approach, we leverage dynamic instrumentation to measure the latency caused by binning.
This method works on top of Perf, a profiling tool available for Linux, in conjunction with
Kprobes. It also is possible to use Debugfs 5 directly to trace binning events, however,
Perf [54] contains all features needed for this experiment. Perf Kprobes are inserted at
mmap system call handler entry and exit addresses to measure the time taken to complete
the request. Then, binning events are detected by tracing calls to cache alloc refill

Kernel function.

Kprobes [40, 52] allows us dynamically insert traps in almost any kernel function (entry
and exit) to collect tracing and debug information. Also, they have low overhead (0.07
to 0.1 microseconds to process [52]) and the advantage that there is no need to modify
the process’s source code. The only requirement is that the kernel must have debugging
capabilities and symbols enabled during compilation.

The experiment workload, shown in Listing 2.1 6, is a C program that performs 1000
consecutive memory map calls of 20 bytes in size. Every mmap call issues a system call that
creates a private copy-on-write mapping and, besides obtaining a memory area, it internally
allocates one vm area struct Kernel object from the CPU’s free list. The sequential request
of memory areas consumes several Kernel objects which induce the initialization of new
slabs and multiple CPU-caches refills.

1 int fd = open (’ /dev/ zero ’ , ORDWR) ;
2 for (int i = 0 ; i < 1000 ; i ++){
3 ptr = mmap(0 , 20 , PROT READ | PROT WRITE, \
4 MAP PRIVATE, fd , 0) ;
5 }

Listing 2.1: Workload for Kernel Slab Allocator study case.

2.3.2 Analysis

Figure 2.1a shows the execution time for all consecutive mmap calls versus the call index.
The peaks in latency and the rate at which binning occurs is noticeable. As explained

5Debugfs filesystem exposes kernel information and it is typically mounted on /sys/kernel/debug.
6Irrelevant code snippets are not included.

45

10

20

30

40

250 500 750
Call Index

E
xe

cu
tio

n
T

im
e

(µ
s)

● No Binning
Binning

(a) Plot of the execution time of each
mmap request ordered by call index.

0.2 0.4 0.6 0.8

4.
0

4.
5

5.
0

5.
5

(Intercept)

● ● ●
●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
03

20
0.

03
35

0.
03

50

id

●

●

●
● ● ●

● ●
●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
8

1.
0

1.
2

1.
4

1.
6

binning

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Plot of the binning effect on multi-
ple quantiles.

Figure 2.1: Results for kernel Slab Allocator workload.

above, the CPU holding the kernel objects has to refill its cache with free object regularly,
which increases the time to process the call. The events occur periodically; however,
differently from [28], they are triggered in multiples of 19 calls. This is equivalent to the
tunable Kernel parameter called objperslab that defines the number of vm area struct

objects a slab holds. Furthermore, this value is ideal because, including metadata overhead,
19 objects fit in a 4 KB slab.

Figure 2.1b shows the quantile regression from the 5th to the 95th quantile. This type
of regression offers a robust method to verify how binning affects different quantiles of the
distribution [41, 10, 43, 14]. The following conditional quantile model was estimated:

QY (τ |X) = β0(τ) + β1(τ)x1 + β2(τ)x2 (2.2)

where X represents the binning and call index factors. Binning factor has two categorical
levels: no binning (0) and binning (1). QY (τ |X) is the model we estimate at the τ th quan-
tile, β0 is the intercept parameter (not relevant for this study) and β1(τ) is the estimated
parameter effect for binning. β2(τ) is the estimated parameter for the call index.

The effect of binning and call index at different quantiles in Figure 2.1b is shown via
dashed black lines. Red lines indicate the effect estimated via linear regression. At the
95th quantile, the contribution of binning is about 1.56 µs and the magnitude reduces with
lower quantiles. The effect of the call id decreases for higher quantiles, which conforms

46

with the curved scatter plot. Quantile regression does a better job in estimating the effect
since it varies for different quantiles of the data.

2.4 Redis’ Memory Allocator

Redis [42] is a data structure store that uses main memory to reach high performances on
data manipulation. Redis uses Jemalloc [23] as underlying memory allocator, which is a
fast general purpose implementation of the glibc malloc, known to reduce fragmentation
and be highly scalable. Jemalloc has been used in Facebook, Mozilla Firefox, FreeBSD,
among other relevant projects.

Redis works on top of a client-server model. Clients connected to the server submit
Load (e.g. GET, LPOP) or Store (e.g. SET, LPUSH) requests to the server, and the
server responds to the client accordingly. When a client submits a Store command such
as LPUSH, Redis uses Jemalloc to obtain a free memory area of approximate or equal the
request size to store the client’s data.

The memory allocator architecture is shown in Figure 2.2a. In Jemalloc terminology,
an Arena is an independent memory area managed by a thread. This is one of the most
significant advantages of Jemalloc since associating memory areas to individual threads
reduces synchronization of allocation requests via lock contention. An Arena is divided
into multiple chunks (Figure 2.2a show only two chunks) and each one has the same size
(1 to 4MB depending on the version). Chunks are divided into page Runs and a Run
contains memory areas of same size class called Regions. Runs are responsible for storing
all metadata necessary to manage their Regions, including which ones are allocated (in
use) and free (or deallocated). When the user requests a memory area, Jemalloc returns
the reference pointing to the Region according to the request size.

Memory allocations requests in Jemalloc are classified in two categories 7: small and
large. Small requests are less than four times a page size (less than 16 KB) and large
requests are bigger than four times a page size and up to a maximum threshold. Also,
small and large requests are further divided in size classes. To keep track of the free regions
of a specific size class, the memory allocator uses a tree structure called Bin. Finally, each
arena has its own set of bins, one for each size class. Figure 2.2b shows two bins storing
references to free Regions.

When a user requests memory, the algorithm first looks into the request size and obtain
a region from the specific Run class. Bins provide a quick way of finding free regions for

7Category types might change depending on the version.

47

Chunk 1

Run 2

Region 1
Region 2

...
Region m

Run 1

Region 1
Region 2

...
Region m

Run j

Region 1
Region 2

...
Region m

Run 2

Region 1
Region 2

...
Region m

Run 1

Region 1
Region 2

...
Region m

Run k

Region 1
Region 2

...
Region m

Chunk 2

(a) A single arena with two chunks and multiple runs.

Region 1
Region 2
Region 3
Region n

Run
1 KB

Run
4 KB

Run
1 KB

Bin #1

Bin #2 Run
4 KB

(b) Bins containing array of free Regions. Bin
1 stores references to free Regions (unfilled) in
Runs of class size 1 KB. Bin 2 points to regions
of size 4 KB.

Figure 2.2: Jemalloc memory architecture.

48

the user. Binning effect is present on Redis when the user submits a command of type
Store and there are no free Regions to serve the memory allocation request or no memory
is available to initialize new chunks. In this case, the control flow takes a slow path to
request memory from the OS, initialize a new Chunk, update Bins and initialize a Run.
This additional overhead causes a peak in latency to process the client’s memory allocation
request.

2.4.1 Experimental Setup

The Binning effect in Redis was studied by measuring the time the server takes to process
the client’s command. The target procedure in the server’s source code responsible for
executing any received command is call 8. If binning occurs, it increases the average
time taken to process the command. Similar to Section 2.3.1, the measurement is done via
Perf dynamic probes, which are inserted at call function entry and exit addresses and the
difference of timestamps between entry and exit give us the execution time. Binning events
are detected by capturing mmap system calls while the client’s command is processed.

Redis 5.0.1 compiled with Jemalloc 5.1 was used for this study case. We use redis-
benchmark tool to generate the workload which consists of 10 thousand consecutive and
pipelined requests issued to the server from one client 9. Every request is an LPUSH
command to insert an object of 256 KB in size in a list structure. Eventually, the server’s
preallocated memory will run out of free regions of 256KB in size. Then, memory is
obtained from the system and routines to initialize new Chunks and Runs are executed.

2.4.2 Analysis

The scatter plot in Figure 2.3a shows the execution time for each request. The outliers
in the plot correspond to a peak in latency caused by binning. Figure 2.3b presents
the distribution of the execution times. Preliminary exploratory data analysis on the
results shows that the density approaches a log-normal distribution. The Mann-Whitney
U test shows that the binning effect is statistically significant (P-value close to zero and
W = 7482). Also, post hoc analysis shows an effect of magnitude was 23.79 µs, and the
maximum latency observed when binning occurred was 147.96 µs.

The frequency pattern which binning occurs deserves some attention: it is not strictly
periodic as the one observed in Figure 2.1a. This pattern indicates that Jemalloc performs

8Located in src/server.c
9One client is sufficient since this study does not covers overhead from network layers.

49

100

110

120

130

0 2500 5000 7500 10000
Call Index

E
xe

cu
tio

n
T

im
e

(µ
s) ● No Binning

Binning

(a) Plot of the execution time for every call

command ordered by index. Triangles represent
commands affected by binning.

0.0

0.1

0.2

100 110 120 130
Exection Time (µs)

D
en

si
ty

(b) Distribution of execution times.

Figure 2.3: Results for the Redis case study.

an increasing over allocation every time more memory is needed. This behaviour is seen
by the burst of binning events in the initial LPUSH requests, and it reduces once more
commands are processed. In other words, the binning effect should be prevalent when not
many memory chunks have been consumed.

Figure 2.4a shows the plot of the Relative Standard Deviation of 500 consecutive com-
mands (n = 500) versus the number of binning events that occurred among them. Accord-
ing to the figure, when 13 out of 500 calls triggers binning the dispersion around the mean
is almost 5%. To understand how the distribution changes, Figure 2.4b shows skewness
versus the number of binning events. We observe the distribution skew increase signifi-
cantly with the number of binning events. G1 reaches 4.03 when 13 events occur and 2.6
when there is no binning (better symmetry).

2.5 CPython’s Memory Allocator

Python has a dedicated object allocator which uses heap memory to store all objects and
data structures that a Python program needs. The allocator, shown as abstraction level
+2 in Figure 2.5, serves all small memory allocation requests for any Python object, except
when the object has its dedicated allocator. Python memory manager uses the concept of

50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Binning Events

C
oe

fic
ie

nt
 o

f V
ar

ia
tio

n
(%

)

(a) Plot of the Performance variation
in the presence of binning events.

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Binning Events

S
ke

w
ne

ss
 (

G
1)

(b) Plot of the distribution skewness in
the presence of binning events.

Figure 2.4: Binning effect on the performance variability of call procedure.

an array of free lists to create (i) arenas, (ii) pools, and (iii) blocks. An arena comprises of
a virtual memory area of 256 KiB which is divided into memory segments of 4 Kb in size
called pools (therefore an arena has 64 pools in total). Figure 2.6a shows an arena with
multiple pools.

Each pool is further segmented into smaller blocks of a fixed size class. When memory
is requested, a block is taken from the pool according to the request size. Figure 2.6b shows
a list of pools that store blocks of 8, 16 and 512 bytes, respectively. Figure 2.6c shows a
pool with n memory blocks and blocks whose first two blocks are in use (grey). During
the execution of a Python script, free blocks from these pools are allocated to store data.
For example, every distinct Integer object in Python allocates one block from pools that
stores objects of 25-32 bytes in size.

In this context, binning occurs in two moments: first, it happens when there are no
pools with free blocks available for the requested size class. Then, a new pool has to be
initialized and the additional overhead slows down the memory allocation request. Second,
binning also occurs when there are no pools with free blocks and no free arenas to initialize
a new pool. In this condition, more memory is requested from the operating system via a
mmap system call and, consequently, a new pool is initialized. Function PyObject Alloc
is called for every object allocation, except when an object has its specific allocator 10.
Dashed arrows in Figure 2.7 shows the occurrence of the binning events.

Any container object in Python is susceptible to binning and some examples are lists,

10The object-specific allocator can invoke PyObject Alloc when it needs to allocate more memory.

51

Object-specific allocators (int, dict, list, ...)

Python's Object allocator

+3

Abstraction
Level

Python's raw memory allocator (PyMem_ API)
Python memory (under PyMem mamager's control)

Underlying general-purpose allocator (ex: C library malloc)

OS-specific Virtual Memory Manager (VMM)

Physical Memory (ROM/RAM/Swap)

User
Kernel

Python Core (Non-
object memory)

+2

+1

0

-1

-2

Figure 2.5: Python Memory Layers [18].

Pool (4KB)

Pool (4KB)

...

Pool (4KB)

Pool (4KB)

Pool (4KB)

...

Pool (4KB)

...

Pool (4KB)

Pool (4KB)

...

Pool (4KB)

Arena (256 KiB)

(a) Arenas and pools.

Pool Pool Pool Pool
...Blocks of

8 bytes

Pool Pool Pool Pool
...Blocks of

16 bytes

Pool Pool Pool Pool
...Blocks of

24 bytes

...

Pool Pool Pool Pool
...Blocks of

512 bytes

(b) Classes of Pools. Each class store
blocks of same size.

Pool
Header Block 1 Block 2 ...Block 3 Block n

(c) Blocks in a pool. Blocks in gray are in use.

Figure 2.6: CPython memory management.

52

Yes

Has free
pool?

Yes

No
Has free
Arena?

start = cycles()

Get free
block

Initialise
Pool

cycles() - start - overhead

Initialise
Arena

No

Enter _PyObject_Alloc

Exit _PyObject_Alloc

Figure 2.7: Diagram for Python’s object allocator. Dashed arrows represent occurrence of
binning.

sets and dictionaries. Binning occurs when the amount of objects they store increase and
the allocator executes a routine to expand the object. This expansion routine represents
an object-specific binning event which requests memory from the object’s allocator. This
type of binning will be investigated in Section 2.5.3.

2.5.1 Experimental Setup

To investigate the presence of binning we instrument CPython to measure the time taken
for Python’s object allocator complete a request. The time spent in PyObject Alloc func-
tion is obtained by counting the number of CPU clock cycles from function entry until
it returns. With the Time Stamp Counter Register (TSC) we can count accurately the
processor cycles and this register is accessed via RDTSC (read time stamp counter) assem-
bly instruction. Then, we obtain the time spent in the function (in cycles) by computing
the difference of cycles between function exit and entry minus the read overhead. The
instrumentation overhead to read the register is calculated once, in the interpreter’s ini-
tialization phase. Figure 2.7 shows the locations where the cycle count is collected during
object allocation.

The workload is a synthetic program, shown in Listing 2.2. It uses Python 3.6 to
perform two thousand consecutive append calls to a list object, and each one adds a
bytearray object of 256 bytes to the list. We use a bytearray object to guarantee that a
new block is allocated on every iteration. At some point in execution, the number of free

53

0

2500

5000

7500

10000

0 500 1000 1500 2000
Call Index

C
yc

le
s

●

Binning
No Binning

(a) Plot of the execution time for ev-
ery PyObject Alloc call ordered by
index. Triangles represent allocations
affected by binning.

0.000

0.025

0.050

0.075

0 2500 5000 7500 10000
Cycles

D
en

si
ty

(b) Distribution of execution times.

Figure 2.8: Results for Python workload.

blocks, pools and arenas will be consumed, causing the memory allocator to request a new
memory area from the operating system.

1 myl i s t = []
2 for i in range (2 0 0 0) :
3 myl i s t . append (bytearray (256))

Listing 2.2: Workload for CPython case study.

2.5.2 Analysis

Figure 2.8a illustrates the latency of each object allocation call versus the call index. Calls
which caused binning are significantly slower than the ones which did not trigger (seen
as a black line in the plot). The P-value for Mann-Whitney U hypothesis test is zero,
its test statistic, W , is 2.2e+8 and the effect magnitude was 3253.58 cycles according to
Games-Howell post hoc analysis.

The density plot on Figure 2.8b reveals that the distribution has a high peak for execu-
tion times below 100 cycles and a significant amount of outliers as observed in Figure 2.8a.
Calls which take 10k cycles or more represents initialization of new arenas.

54

●●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●●
●●

●
●●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

100

200

300

400

500

0.0 0.5 1.0 1.5 2.0
Number of Binning Events

C
oe

fic
ie

nt
 o

f V
ar

ia
tio

n
(%

)

(a) Plot of the Performance variation
in the presence of binning events.

●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●●●

●

●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0
Number of Binning Events

S
ke

w
ne

ss
 (

G
1)

(b) Plot of the distribution skewness in
the presence of binning events.

Figure 2.9: Binning effect on performance variability of Python object allocator.

Figure 2.9 shows the plot of the Relative Standard Deviation versus the number of
binning events for every 40 (n = 40) object allocation calls. According to the figure, when
two out of 40 calls triggers binning the performance variability is above 300%. Figure 2.9b
shows that the distribution skewness increases significantly with only two binning events.

2.5.3 Object-Specific Allocators

On top of Python’s Object Allocator (level +2 in Figure 2.5) there are the object-specific
allocators (level +3), which are specialized to the memory requirements of each object type
such as dictionaries, sets and lists. Containers such as sets hold references to other Python
objects, and they are initialized with a fixed size. Binning occurs when a container needs
to expand to hold more references which cause the memory manager take a slower path.
In this section, we investigate how binning is also present in these allocators, specially, we
study the effect on the three most popular containers: dictionaries, sets and lists.

Dictionaries

A dictionary object in CPython is implemented as a hash table and elements are inserted in
the table according to their hashed key. As described above, this container has to expand
whenever there is not enough room to add a new item into the table (the binning event).
The routine that performs the expansion allocates a new table and reinserts all elements

55

Table needs
to

resize?

Insert new
Item

No

Allocate new table
and reinsert items

Yes

Enter insertdict

Exit insertdict

(a) Control flow of
insertdict func-
tion.

New list size
>

Threshold?

Update
list size

No
Resize list

Yes

Enter list_resize

Exit list_resize

(b) Control flow of
list resize func-
tion.

Figure 2.10: Simplified control flow diagrams for inserting new items in Python’s dictionary
and set objects. Dashed line indicate a slow path.

in it. Since memory needs to be allocated to grow the table and references are moved to
the new table, this event can be several times slower than a normal insertion. Figure 2.10a
shows a summary of the control flow described above and the dashed arrows indicate the
slow path executed during table expansion.

We measured the time spent to insert items into the dictionary by instrumenting the
interpreter to count the number of cycles spent in the CPython insertdict function 11.
This function handles the insertion of items in a dictionary and calls dict resize when
an expansion is needed. Also, the Python workload is similar to Algorithm 2.2, with the
exception that items are inserted into a dictionary instead of a list 12. The workload inserts
items consecutively and eventually causes the hash table to expand.

Figure 2.11 shows the execution time for each insertion index and the peaks in execution
time represent insertions that triggered table expansion. The P-value for Mann-Whitney
test is zero with a test statistic of 1.6+6, and the effect magnitude was 30290 cycles ac-
cording to Games-Howell post hoc analysis. The maximum latency observed when binning
occurred was 753652 cycles. The frequency which binning occurs in dictionaries is similar to
the one seen in Redis, where the memory manager over-allocates memory to approximately
twice of the previous size.

11Located in Objects/dictobject.c file.
12We omitted the Python code for simplicity since it is similar to 2.2.

56

Figure 2.11: Plot of the number of cycles spent to insert one dictionary items. The data
points are ordered by the insertion order index. Calls that did not trigger binning are
significantly faster and are similar to a line in the bottom of the plot.

Sets

Set objects are similar to dictionaries since they are also implemented as a hash table.
When elements are continuously inserted in the set, the table has to grow to fit more
items which characterize the binning event. Equivalently, in the expansion routine, a new
table is allocated and all items are reinserted. The control flow for inserting an item into
a set object, handled by function set add entry, was omitted since it is similar to the
one shown diagram in Figure 2.10a. The CPython routine that expands the hash table is
set table resize 13.

We measured the time taken to insert elements in a set by counting the number of
cycles spent in CPython set add entry function. The Python workload is similar to
Algorithm 2.2, with the exception that we add unique elements to a set object instead of
a list. The consecutive addition of elements causes the set to expand a few times. The
Mann-Whitney hypothesis test shows that the binning effect is statistically significant (P
value is 1.57e-21 and test statistic W = 514923). Also, the effect magnitude was 31824
cycles according to Games-Howell post hoc analysis, and the maximum execution time
observed when binning occurred was 589480 cycles.

13Located in Objects/setobject.c file.

57

Lists

A list object is another container susceptible to binning. Before appending an item to
the list, the algorithm first checks whether there is enough room for the new item. If
the new list size is less than a threshold 14, the program executes a routine to resize it
(binning event). The additional time to process the expansion is a consequence of binning.
Figure 2.10b shows a simplified diagram for the program control flow.

We measure the time spent (in cycles) to compute the binning effect in the function
list resize 15, responsible for resizing the list when it needs to expand. The binning
effect is statistically significant according to Mann-Whitney hypothesis test (P value is
zero and test statistic, W equals to 38.86). The effect magnitude was 370 cycles according
to Games-Howell post hoc analysis, and the maximum latency observed when binning
occurred was 40828 cycles.

2.6 Detecting Binning Events on Python Programs

This section introduces a run-time analysis tool that instruments Python’s interpreter and
detects binning events on a Python program. It comprises of Pin [47] that attaches to
the interpreter process and a and a Pintool that counts the occurrences of binning events
during its execution. Besides, this tool is composed of a Python module that saves the
program’s stack trace whenever an event is detected.

The data collected shows how the code is affected by binning, and the stack trace help
locating the most occurrences of binning in the source code (file and line number). Also,
library developers, in particular, can use this information to perform code optimizations to
avoid the program spend too much time on low-level memory management routines. Since
the memory management is not thread-safe, object access must be done quickly because
of the bottleneck imposed by the Global Interpreter Lock [17] in CPython.

Python provides the tracemalloc module [19] to describe memory usage statistics and
trace allocations. In this study, a metric such as the number of blocks allocated by the
program is not as relevant as the number of long-running allocation requests. Therefore,
the analysis tool we create is concerned with the number of binning events occurred in the
interpreter and not memory usage. The description of the tool is presented in the following
sections, and Section 2.6.2 shows usage examples on the standard Python’s benchmark
suite.

14Half of its current size.
15Located in Objects/listobject.c file.

58

2.6.1 Pintool Implementation

Pin is a widely used Dynamic Binary Instrumentation (DBI) framework developed by Intel
which allows creation of program analysis tools (Pintools) [69, 65]. It provides a C++ API
to inject code in the program at any of the three levels: instruction, routine and image. We
use Pin 16 to insert, at run-time, analysis routines that handles any of the binning events
described in Section 2.5. Specifically, we count the number of (1) pool initialization, (2)
new arenas created, (3) dictionary expansions, (4) list expansions, (5) set expansions and
(6) memory maps system calls. To understand how the tool’s design, two types of routines
deserve attention: Instrumentation Routines and Analysis Routines.

Instrumentation Routine

The Pintool instrumentation routines define where and when in the interpreter process a
jump to the analysis routine is inserted. Once Pin attaches to the interpreter, the instru-
mentation routine check whether the function about to be called is one of the functions in
column CPython Function in Table 2.1 (these are functions source of binning discussed in
Section 2.5). If the function is new arena, dictresize or set table resize, the analy-
sis routine is executed before them, that is, a jump is made before calling new arena for
instance.

In contrast, to count binning events caused by pool initialization and list resize in
functions PyObject Alloc and list resize, respectively, the instrumentation routine
adds a jump before a specific instruction address 17. Figure 2.12a shows a code snipped
that initializes a new pool. In the figure, a call to the analysis routine is inserted at
instruction address 57c35 which causes the program control flow to jump before executing
the corresponding instruction.

Analysis Routines

Analysis routine is a user-defined procedure dynamically added to the interpreter process
which is called when a binning event occurs. In this work, there is one analysis routine for
every source of binning. When the analysis routine is invoked, it increments the counter
for the specific event and emits a signal to the python program. Signals are a type of Inter-
Process Communication (IPC) that allows Pin notify the user application when binning
occurred. Table 2.1 contains the signals for every binning event discussed in this study.

16Pin version 3.7.
17The addresses values are hard-coded in the tool.

59

send_signal(SIGFPE, PID);
pool_init_counter++;
return;

579ff: <_PyObject_Alloc function>

... ...

 Initialize the Pool Header:

57c35: pool>szidx = size;

57c39: size = INDEX2SIZE(size);

57c45: bp = (block *)pool + POOL_OVERHEAD;

57c55: pool>maxnextoffset = POOL_SIZE size;

57c5f: pool>freeblock = bp + size;

57c7b: return (void *)bp;

JumpPintool Analysis Routine

Python Interpreter

(a) A snippet of the Pintool analysis function (on the left) that is injected
before the execution of the first instruction of the routine that initializes a
new pool (code snipped on the right) in CPython.

l = []
def foo():

for i in range(3000):
l.append(bytearray(256))

def main():

foo()

enable_handlers()
main()
disable_handlers()

write_traceback(output_file)

SIGFPE_signal_handler()

main.py

(b) Example of a Python program with
a handler to the SIGFPE signal.

Figure 2.12: Tool design.

Table 2.1: Sources of binning events and corresponding signals.

Source Description Function Signal

Pool Initialization No free pools PyObject Alloc 8 SIGFPE
New Arena No arenas available new arena 10 SIGUSR1

Resize Dictionary Dictionary needs to expand dictresize 6 SIGABRT
Resize Set Set needs to expand set table resize 5 SIGTRAP
Resize List List needs to expand list resize 7 SIGBUS

60

Figure 2.12a shows an example of a call to an analysis routine that occurs before
a pool initialization. The routine emits a SIGFPE signal to the Python program and
increments the pool init counter variable that holds the number of pool initializations.
The remaining binning types have similar routine. Figure 2.12b illustrates the Python
program under analysis. When the application receives a signal from the operating system,
it calls a handler function that writes the traceback to a file.

The tool comes with a Python module called dumptrace.py that registers the handlers
for signals listed in Table 2.1. To use it, the developer needs to import the module and
call functions enable handlers() and disable handlers() before and after executing
the main Python routine, respectively, as shown in Listing 2.3. When a signal is caught,
the stack trace is recorded and the program resumes execution.

import dumptrace

dumptrace . enab l e hand l e r s ()
main ()
dumptrace . d i s a b l e h a n d l e r s ()

Listing 2.3: Registering signal handlers in a Python program.

Tool Execution and Output

The pintool attaches to the Python interpreter and executes the analysis routines until the
target program finishes. Listing 2.4 shows how the tool is invoked.

1 $ python main . py & PID=$!
2 $ pin −f o l l o w e x e c v −pid $PID −t p i n t o o l . so & wait

Listing 2.4: Command to execute the pintool.

The first command starts the Python program we want to analyze. The dumprace.py

module makes the program sleep for 5 seconds to avoid counting binning events in the
interpreter’s initialization phase and to give enough time to the user attach the pintool.
Command 2 attaches the tool to the interpreter and wait until it finishes. Parameters -t
and -pid expects the path to the pintool image and the interpreter’s process id 18. Once
the program finishes, the tool writes the counter values and the python program writes the
tracebacks to local files.

18Parameter -follow execv enables instrumentation of child process.

61

2.6.2 Binning Events in Python Performance Tests

We analyse the Tests in the Python Performance Benchmark Suite [22] using the pintool
described above. Also, we adapted the benchmarks to avoid detection of binning events
in the test initialization phase 19. Table 2.2 shows the amount of events for each test
and binning type. Sympy, a library for symbolic mathematics, is the module that is
most affected by binning, specifically expand benchmark contains more than 100 thousand
dictionaries resizes and more than 240 thousand lists resizes.

For benchmark Go, the top five occurrences of list resize events are shown in Listing 2.5
(post processed output file). The listing informs the developer the file path, line number,
function, quantity and percentage of occurrences. Algorithm 2.6 shows the the move func-
tion in bm go.py that triggered the majority of list resizes (2136 events in line 192), which
corresponds to the following append call: self.history.append(pos).

F i l e ”benchmarks/bm go . py” , l i n e 192 in move : 2136 , 27.6720%
F i l e ”benchmarks/bm go . py” , l i n e 326 in <l i s tcomp >: 1809 , 23.4357%
F i l e ”benchmarks/bm go . py” , l i n e 241 in <l i s tcomp >: 1809 , 23.4357%
F i l e ”benchmarks/bm go . py” , l i n e 130 in remove : 846 , 10.9600%
F i l e ”benchmarks/bm go . py” , l i n e 38 in <l i s tcomp >: 162 , 2.0987%

Listing 2.5: List Resize events for Go benchmark.

180 def move(s e l f , pos) :
181 square = s e l f . squares [pos]
182 i f pos != PASS :
183 square . move(s e l f . c o l o r)
184 s e l f . emptyset . remove (square . pos)
185 e l i f s e l f . lastmove == PASS :
186 s e l f . f i n i s h e d = True
187 i f s e l f . c o l o r == BLACK:
188 s e l f . c o l o r = WHITE
189 else :
190 s e l f . c o l o r = BLACK
191 s e l f . lastmove = pos
192 s e l f . h i s t o r y . append (pos)

Listing 2.6: Code snippet in bm go.py benchmark that caused most List Resize events.
27.67% of binning events occured in line 192.

19We do not want to capture events in the interpreter’s initialization or benchmark setup phases.

62

Table 2.2: Count of binning events occurred in the Python benchmark.

Binning Type

Benchmark New
Arena

Init Pool
Header

List
Resize

Dict
Resize

Set
Resize

Sympy sum 208 5047 83175 7175 1921
Sympy str 235 2077 89721 36344 1184

Sympy expand 38 1402 240528 112457 75
Sympy integrate 33 2837 5664 1348 326

Genshi xml 26 1145 50299 2038 2
Chameleon 6 284 581 174 0
Deltablue 2 75 1745 5 0

Pyaes 0 7 2 3 0
Django 0 27 21848 108 0
Dulwich 2 138 7853 24 241

Fannkuch 0 2 13 3 0
Genshi text 8 421 2336 2035 2

Go 0 187 7728 248 598
Json dumps 16 1396 75 1002 0
Json loads 0 82 171 402 0

Pickle 0 1 11 3 0
Unpickle 0 8 71 243 0

Pickle List 0 2 11 3 0
Unpickle List 0 2 321 3 0
Pickle Dict 0 2 11 3 0
Raytrace 1 7 45789 5 0

Regex Compile 0 1211 56893 2801 0
Regex Effbot 0 2 10 3 0

Regex V8 2 248 11755 4 0

63

2.7 Discussion and Future Work

In this section we discuss the known issues of the tool described above and present an
example of how developers could optimize their code when one of the binning types is
detected. Besides, we discuss potential sources of binning in CPython and how our study
can be extended to other applications.

Pintool Known Issues

Obtaining the application’s stack trace from the instrumented CPython is challenging.
One of the consequences of using system signals is the possibility that some of the stack
traces show the wrong line number (e.g., the next line where the event occurs) or few of
them are not recorded in the file in case there is a burst of binning events. The reason is
that the interpreter’s main thread might handle the received signal only at a later point.

Further, the overhead in the program caused by the tool is proportional to the number
of binning events detected. For instance, the Float Python benchmark is two times slower
when we only count the binning events (trace dump disabled) and 40 times slower when
the stack trace is also written to the output files. However, as seen in Section 2.6.2 the
stack traces provided by the current implementation are still very useful for detecting and
locating binning events. Also, we believe that the design can be improved using the Pin
API to access the interpreter’s context and retrieve, from the frame in the top of the
stack, the file and line number of the current bytecode without the need for system signals.
Our initial work shows that manipulating CPython objects in the Pintool image is not
straightforward and more work is needed to verify whether or not this is a viable solution.

Optimization Example

The code snippet 2.6 shows an example of list manipulation that caused multiple binning
events. If the final list size is known, the developer could initialize the list with an initial
size to reduce binning. Also, even if the developer does not know the exact size, he could
estimate an average final size for the list and pre-allocate the elements.

To exemplify the optimization above, we provide a simple example in Listings 2.7
and 2.8 which shows two code snippets that inserts 10k elements to a list. To add each
element, Listing 2.7 uses append calls, and 2.8 first initializes the list and inserts them at
a specific index. We verify the performance difference of the two approaches by counting
the number of cycles spent on each one and the number of binning events using the Pintool

64

implemented in this study 20. The List Resize count for the unoptimized and optimized
versions are 52 and 6, respectively. The cycle count difference is statistically significant
(P-value < 0.01) and post hoc analysis shows that Listing 2.8 spend approximately 1M
fewer cycles than the unoptimized version.

1 s i z e = 10000
2 l = []
3 for i in range (s i z e) :
4 l . append (i)

Listing 2.7: Unoptimized code.

1 s i z e = 10000
2 l = [None]∗ s i z e
3 for i in range (s i z e) :
4 l [i] = i

Listing 2.8: Optimized code.

Additional Sources of Binning

In this work, we investigated five sources of binning in CPython in which three are from
the most popular containers available in the language. We believe that other objects,
such as tuples, can also be affected by binning, and finding additional sources increase the
opportunities for code optimizations. However, further investigation is needed to verify
whether or not they exist.

Tool Generalization

The design of the Pintool implemented in this study can be adapted to any application in
user-level, including programs that use Jemalloc as memory manager. Also, Perf Probes
can be used if analysis of binning events in the Linux Kernel is necessary instead. For
instance, one of its possible applications is tracing and filtering block IO requests that
might trigger binning. Since these requests can be queued, merged, split bounced, among
others [2], we believe that it is a potential source of performance variability of write or
read system calls.

2.8 Conclusion

This chapter investigates the effect of binning on memory allocators in the Kernel, Redis
and CPython. Binning is an event that occurs when a particular condition of a Bin

20This experiment was repeated ten times.

65

is not met and it causes the memory manager executes a slower routine to serve the
allocation request. We have shown that the additional execution time to complete the
request increase variability of memory allocation by 4.7% and 500% in Redis and CPython,
respectively. Further, we show that manipulation of Python container objects is slower
when the binning occurs. This finding motivated the creation of a Pintool that detects
binning events in a Python application and saves the program’s stack trace. These traces
aid library developers finding the location where the events occur and expose opportunities
for code optimizations.

66

References

[1] Juan Pablo Sandoval Alcocer and Alexandre Bergel. Tracking performance failures
with rizel. In Proceedings of the 2013 International Workshop on Principles of Software
Evolution, pages 38–42. ACM, 2013.

[2] Michael Beck, Robert Magnus, and Ulrich Kunitz. Linux Kernel Internals with Cdrom.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[3] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: Requirements
and solutions. International Journal on Software Tools for Technology Transfer, pages
1–29, 2017.

[4] Cor-Paul Bezemer, Simon Eismann, Vincenzo Ferme, Johannes Grohmann, Robert
Heinrich, Pooyan Jamshidi, Weiyi Shang, André van Hoorn, Monica Villaviencio,
Jürgen Walter, et al. How is performance addressed in devops? a survey on industrial
practices. arXiv preprint arXiv:1808.06915, 2018.

[5] Jeff Bonwick et al. The slab allocator: An object-caching kernel memory allocator.
In USENIX summer, volume 16. Boston, MA, USA, 1994.

[6] Jonathan Bonwick. Magazines and vmem: Extending the slab allocator to many cpus
and arbitrary resources. In USENIX-01, 2001.

[7] Andrew P Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[8] Leo Breiman. Random forests. Machine Learning, 45(1):532, Oct 2001.

[9] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic
execution for automated real-world software testing. In Proceedings of the Sixth Con-
ference on Computer Systems, EuroSys ’11, pages 183–198, New York, NY, USA,
2011. ACM.

67

[10] Brian S Cade and Barry R Noon. A gentle introduction to quantile regression for
ecologists. Frontiers in Ecology and the Environment, 1(8):412–420, 2003.

[11] J. Chen and W. Shang. An exploratory study of performance regression introducing
code changes. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 341–352, Sept 2017.

[12] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environments. arXiv
preprint arXiv:1608.04295, 2016.

[13] Kevin J Davey. Building Winning Algorithmic Trading Systems: A Trader’s Journey
from Data Mining to Monte Carlo Simulation to Live Trading. John Wiley & Sons,
2014.

[14] Augusto Born De Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias Hauswirth,
and Peter F Sweeney. Why you should care about quantile regression. In ACM
SIGPLAN Notices, volume 48, pages 207–218. ACM, 2013.

[15] Augusto Born de Oliveira, Jean-Christophe Petkovich, and Sebastian Fischmeister.
How much does memory layout impact performance? a wide study. In Intl. Workshop
Reproducible Research Methodologies, pages 23–28, 2014.

[16] Brotli Developers. Brotli github page. https://github.com/google/brotli. Ac-
cessed: Jan 10, 2019.

[17] CPython Developers. Global interpreter lock. https://wiki.python.org/moin/

GlobalInterpreterLock. Accessed: 2019-03-17.

[18] CPython Developers. Python’s object allocator source code. https://github.com/

python/cpython/blob/3.6/Objects/obmalloc.c. Accessed: 2019-03-01.

[19] Python Developers. Python tracemalloc module. https://docs.python.org/3.6/

library/tracemalloc.html. Accessed: Jan 10, 2019.

[20] Redis Developers. How fast is redis? https://redis.io/topics/benchmarks. Ac-
cessed: 2019-03-20.

[21] Elfriede Dustin, Jeff Rashka, and John Paul. Automated software testing: introduction,
management, and performance. Addison-Wesley Professional, 1999.

[22] Alex Gaynor et al. The python performance benchmark suite. https://

pyperformance.readthedocs.io. Accessed: 2019-03-17.

68

 https://github.com/google/brotli
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://github.com/python/cpython/blob/3.6/Objects/obmalloc.c
https://github.com/python/cpython/blob/3.6/Objects/obmalloc.c
https://docs.python.org/3.6/library/tracemalloc.html
https://docs.python.org/3.6/library/tracemalloc.html
https://redis.io/topics/benchmarks
https://pyperformance.readthedocs.io
https://pyperformance.readthedocs.io

[23] Jason Evans. A scalable concurrent malloc (3) implementation for freebsd. In Proc.
of the bsdcan conference, ottawa, canada, 2006.

[24] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Development and deployment at
facebook. IEEE Internet Computing, 17(4):8–17, July 2013.

[25] Philip J Fleming and John J Wallace. How not to lie with statistics: the correct way
to summarize benchmark results. Communications of the ACM, 29(3):218–221, 1986.

[26] Tristan Fletcher. Support vector machines explained. Tutorial paper, 2009.

[27] Martin Fowler and Jim Highsmith. The agile manifesto. Software Development,
9(8):28–35, 2001.

[28] Amir Reza Ghods. A study of linux perf and slab allocation sub-systems. Master’s
thesis, University of Waterloo, http://hdl.handle.net/10012/10184, 2015.

[29] Milos Gligoric, Rupak Majumdar, Rohan Sharma, Lamyaa Eloussi, and Darko Mari-
nov. Regression test selection for distributed software histories. In International
Conference on Computer Aided Verification, pages 293–309. Springer, 2014.

[30] B. Gregg. Systems Performance: Enterprise and the Cloud. Always learning. Prentice
Hall, 2014.

[31] Torsten Hoefler and Roberto Belli. Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance results. In Pro-
ceedings of the international conference for high performance computing, networking,
storage and analysis, page 73. ACM, 2015.

[32] Michael Httermann. DevOps for developers. Apress, 2012.

[33] Jin Huang and C. X. Ling. Using auc and accuracy in evaluating learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 17(3):299–310, March 2005.

[34] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. Performance regression
testing target prioritization via performance risk analysis. In Proceedings of the 36th
International Conference on Software Engineering, pages 60–71. ACM, 2014.

[35] Peter Isley. The title of the work. How it was published, 7 1993. An optional note.

[36] Raj Jain. The art of computer systems performance analysis: techniques for experi-
mental design, measurement, simulation, and modeling. John Wiley & Sons, 1990.

69

[37] DN Joanes and CA Gill. Comparing measures of sample skewness and kurtosis. Jour-
nal of the Royal Statistical Society: Series D (The Statistician), 47(1):183–189, 1998.

[38] Tomas Kalibera, Lubomir Bulej, and Petr Tuma. Benchmark precision and random
initial state. In in Proceedings of the 2005 International Symposium on Performance
Evaluation of Computer and Telecommunications Systems (SPECTS 2005, pages 853–
862. SCS, 2005.

[39] Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable time. In
Proceedings of the 2013 International Symposium on Memory Management, ISMM
’13, pages 63–74, New York, NY, USA, 2013. ACM.

[40] Jim Keniston, Ananth Mavinakayanahalli, Prasanna Panchamukhi, and Vara Prasad.
Ptrace, utrace, uprobes: Lightweight, dynamic tracing of user apps. In Proceedings of
the 2007 Linux symposium, pages 215–224, 2007.

[41] Roger Koenker and Kevin Hallock. Quantile regression: An introduction. Journal of
Economic Perspectives, 15(4):43–56, 2001.

[42] Redis Labs. Introduction to redis, 2018.

[43] Benjamin Le Cook and Willard G Manning. Thinking beyond the mean: a practical
guide for using quantile regression methods for health services research. Shanghai
archives of psychiatry, 25(1):55, 2013.

[44] Philipp Leitner and Cor-Paul Bezemer. An exploratory study of the state of practice
of performance testing in java-based open source projects. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering, ICPE ’17,
pages 373–384, New York, NY, USA, 2017. ACM.

[45] Eckhard Limpert, Werner A. Stahel, and Markus Abbt. Log-normal distributions
across the sciences: Keys and clueson the charms of statistics, and how mechanical
models resembling gambling machines offer a link to a handy way to characterize
log-normal distributions, which can provide deeper insight into variability and prob-
abilitynormal or log-normal: That is the question. BioScience, 51(5):341–352, 2001.

[46] Ran Liu and Haibo Chen. Ssmalloc: a low-latency, locality-conscious memory allocator
with stable performance scalability. APSys, 12:15–15, 2012.

[47] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

70

customized program analysis tools with dynamic instrumentation. In Acm sigplan
notices, volume 40, pages 190–200. ACM, 2005.

[48] Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Mining performance regression
inducing code changes in evolving software. In Mining Software Repositories (MSR),
2016 IEEE/ACM 13th Working Conference on, pages 25–36. IEEE, 2016.

[49] Matt Mahoney. Large text compression benchmark. http://mattmahoney.net/dc/

text.html. Accessed: Mar 07 2019.

[50] Django Maintainers. Django web page. https://www.djangoproject.com/. Ac-
cessed: 2019-10-10.

[51] Jq Maintainers. Jq web page. https://stedolan.github.io/jq/. Accessed: 2019-
01-10.

[52] Linux Kernel Maintainers. Kernel probes (kprobes. https://www.kernel.org/doc/

Documentation/kprobes.txt. Accessed: 2019-01-20.

[53] Linux Kernel Maintainers. Slab allocator. https://www.kernel.org/doc/gorman/

html/understand/understand011.html. Accessed: 2019-01-05.

[54] Linux Perf Maintainers. Perf: Linux profiling with performance counters. https:

//perf.wiki.kernel.org/index.php/Main_Page. Accessed: 2019-01-05.

[55] Francisco Javier Mesa-Martinez, Ehsan K Ardestani, and Jose Renau. Characteriz-
ing processor thermal behavior. In ACM SIGARCH Computer Architecture News,
volume 38, pages 193–204. ACM, 2010.

[56] Douglas C Montgomery. Design and analysis of experiments. John wiley & sons, 2017.

[57] Peter L Morse. Computer method and system for allocating and freeing memory
utilizing segmenting and free block lists, October 1 1996. US Patent 5,561,786.

[58] Rajendrani Mukherjee and K Sridhar Patnaik. A survey on different approaches
for software test case prioritization. Journal of King Saud University-Computer and
Information Sciences, 2018.

[59] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
wrong data without doing anything obviously wrong! SIGPLAN Not., 44(3):265–276,
March 2009.

71

 http://mattmahoney.net/dc/text.html
 http://mattmahoney.net/dc/text.html
https://www.djangoproject.com/
 https://stedolan.github.io/jq/
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

[60] Todd Mytkowicz, Peter F Sweeney, Matthias Hauswirth, and Amer Diwan. Observer
effect and measurement bias in performance analysis. Computer Science Technical
Reports CU-CS-1042-08, University of Colorado, Boulder, 2008.

[61] Thanh HD Nguyen, Meiyappan Nagappan, Ahmed E Hassan, Mohamed Nasser, and
Parminder Flora. An industrial case study of automatically identifying performance
regression-causes. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 232–241. ACM, 2014.

[62] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel: Detecting and
fixing performance problems that have non-intrusive fixes. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, volume 1, pages
902–912. IEEE, 2015.

[63] Augusto Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias Hauswirth, and
Peter Sweeney. Perphecy: Performance regression test selection made simple but
effective. In Proc. of the 10th IEEE International Conference on Software Testing,
Verification and Validation (ICST), Tokyo, Japan, 2017.

[64] John Ousterhout. Always measure one level deeper. Commun. ACM, 61(7):74–83,
June 2018.

[65] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: a framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 2–11. ACM, 2010.

[66] Mathias Payer. Too much pie is bad for performance. Technical report, 766, 2012.

[67] Manjula Peiris and James H Hill. Automatically detecting excessive dynamic memory
allocations software performance anti-pattern. In Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering, pages 237–248. ACM, 2016.

[68] Jean-Christophe Petkovich, A Oliveira, Y Zhang, Thomas Reidemeister, and Sebastian
Fischmeister. Datamill: a distributed heterogeneous infrastructure forrobust experi-
mentation. Software: Practice and Experience, 46(10):1411–1440, 2016.

[69] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Benjamin Zorn, Rahul
Nagpal, and Karthik Pattabiraman. Detecting and tolerating asymmetric races. ACM
sigplan notices, 44(4):173–184, 2009.

72

[70] James Roche. Adopting devops practices in quality assurance. Communications of
the ACM, 56(11):38–43, 2013.

[71] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection tech-
niques. IEEE Transactions on software engineering, 22(8):529–551, 1996.

[72] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. Regression test selection
for c++ software. Software Testing, Verification and Reliability, 10(2):77–109, 2000.

[73] Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E Perry. An infor-
mation retrieval approach for regression test prioritization based on program changes.
In Proceedings of the 37th International Conference on Software Engineering-Volume
1, pages 268–279. IEEE Press, 2015.

[74] David Skinner and William Kramer. Understanding the causes of performance vari-
ability in hpc workloads. In Workload Characterization Symposium, 2005. Proceedings
of the IEEE International, pages 137–149. IEEE, 2005.

[75] Victor Szalvay. An introduction to agile software development. Danube technologies,
3, 2004.

[76] Linus Torvalds. Git source code mirror. https://github.com/git/git. Accessed:
Jan 10, 2019.

[77] J. Vitek and T. Kalibera. Repeatability, reproducibility and rigor in systems research.
In 2011 Proceedings of the Ninth ACM International Conference on Embedded Soft-
ware (EMSOFT), pages 33–38, Oct 2011.

[78] Nicholas J. Wright, Shava Smallen, Catherine Mills Olschanowsky, Jim Hayes, and
Allan Snavely. Measuring and understanding variation in benchmark performance. In
DoD High Performance Computing Modernization Program Users Group Conference
(HPCMP-UGC), 2009, pages 438–443. IEEE, 2009.

73

https://github.com/git/git

	List of Tables
	List of Figures
	Abbreviations
	Performance Test Selection Using Machine Learning
	Introduction
	Problem Statement
	Background
	Related Work
	Definitions

	Our Approach to Performance Test Selection
	The Binary Classifier
	Evalutation of the Classifier Performance

	Case Studies
	Data Collection Phase
	Infrastructure Used for Data Collection

	Feature Engineering
	Dataset Preprocessing
	Commit Selection for Training and Testing Sets
	Applicability of Methods 1 to 3
	Method 4: Backtesting Cross Validation

	Evaluation of the Performance Test Classifiers
	Brotli
	Jq
	Git
	Redis

	Discussion
	Classification Scores Throughout the Development History
	Effect of the Testing Set Size
	Comparison to a Conservative Test Selection Algorithm
	Classifier Evaluation Using K-fold Cross Validation
	Comparison to Perphecy
	Feature Design

	Lessons Learned and Future Work
	Conclusion

	A Study of Binning Effect in Memory Allocators
	Introduction
	Definition
	Problem Statement
	Related Work and Chapter Organization

	Methodology
	Analysis of Binning Effect
	Study Cases

	Linux Kernel Slab Allocator
	Experimental Setup
	Analysis

	Redis' Memory Allocator
	Experimental Setup
	Analysis

	CPython's Memory Allocator
	Experimental Setup
	Analysis
	Object-Specific Allocators

	Detecting Binning Events on Python Programs
	Pintool Implementation
	Binning Events in Python Performance Tests

	Discussion and Future Work
	Conclusion

	References

