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Abstract 

 

Introduction 

Studies have shown considerable evidence of visual dysfunction in Autism Spectrum Disorders 

(ASD). Motion perception research in ASD reports a superior performance in processing motion 

information of fine details and neglects global information. However, there are many variabilities 

in these experimental results, particularly in adults with autism. Several theories have been put 

forward as the underlying cause(s) of motion deficits in autism. These include: enhanced local 

domain information processing at early visual area V1; abnormal processing at the higher visual 

cortical area MST including V5/MT; and/or abnormal functional and structural connectivity 

between and within cortical networks that are recruited during different motion processing tasks. 

In this study, we used multiple motion perception tasks in order to activate different visual neural 

networks that may contribute to perception of specific motion domains in order to understand 

visual perception abnormalities in autism. 

 

The specific aims of each experiment included in this thesis are as follow:  

 

• Chapter 3: To investigate the theory of enhanced local details and neglected global 

picture, using- for the first time- local/global motion coherence stimuli in autism.  

• Chapter 4: To investigate the neural response biased found in autism in response to radial 

optic flow. We used optic flow stimuli in self-heading direction discrimination tasks. 



 

v 

• Chapter 5: To investigate whether speed parameter is normal in autism-based on the 

previous outcome- using drifting grating stimuli in a speed discrimination task. 

Participants and Methods 

This study recruited two groups of subjects –one with ASD (n = 14), and another with Typical 

Development (TD) (n= 14), age range (16- 40 years).  

 

• Chapter 3 : We used Random Dot Kinatogram (RDK) as global coherence stimuli and 

employed it in two tasks : (1) Coherent Motion (CM) task, where coherence levels were 

varied and the subjects had to detect the global direction of the coherent dots, (2) CM 

with Form From Motion (FfM) stimulus where the FfM consisted of one of four different 

shapes embedded in the global RDK task. 

 

• Chapter 4: We used RDK with optic flow stimuli, which investigated self-direction 

discrimination in two tasks: angle of eccentricity, and contrast sensitivity. In both tasks 

we randomized the dot density (15, 80 dots) and speed (4, 10 deg/sec) of the moving 

stimulus dots. 

 

• Chapter 5: We used a pair of drifting gratings with a spatial frequency 2 cycle/ degree, 

oriented vertically and drifting perpendicular to the direction of orientation, and varied 

the speed (2, 6 deg/ sec) and the stimuli presentation (250 – 500ms) 

 

Results 

• Chapter 3: Although adults with autism showed comparable performance in reporting 

global direction similar to the control group, their ability to process global properties, 

when FfM shape was embedded, declined ( Mean threshold ASD: MC= 13.58, CM-FfM= 
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30.65) In addition, ASD required more time to respond to global coherence even when 

their performance was comparable to that of the control group. 

• Chapter 4: No significant group differences were found for low dot density (15 dots), 

while high dot (80 dots) density showed low sensitivity to OF motion in the ASD group 

compared to the TD. Contrast sensitivity task, however, showed lower sensitivity in the 

ASD group for detecting OF motion when dot density was low (15 dots) and no 

differences at higher dot density (80 dots) was found. Both tasks showed no group 

differences in the dot speed changing and no significant differences in response time 

were observed. 

• Chapter 5: No group differences (p = 0.226) in sensitivity to speed-discrimination task 

were found between the ASD and control group in all parameters used in this experiment. 

The response times were also comparable between both groups (p = 0.855). 

Conclusions  

• Chapter 3: Motion perception in ASD found enhanced to local details particularly when 

motion stimuli involve both local/global information segregation at the same time. We 

suggest increased internal neural noise and worse external noise filtering as cause of poor 

global performance in this type of task.   

• Chapter 4: There were selective impairments in OF processing that may related to altered 

neural connectivity between the activated visual areas in ASD. Another suggestion might 

be related to long neural trajectory within higher visual areas, ex. MST.  

• Chapter 5: Normal motion processing may be found in ASD, however, it this might 

triggered by task complexity and the visual neural areas that are involved in processing 

motion information.  
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The overall results suggest selective impairments in visual motion perception in ASD. These 

impairments would depend upon the task requirements and therefore on the activated visual 

networks that contribute to different aspects of motion information processing. The present 

studies provide novel findings in defining deficits in motion perception in autism, which thereby 

may  contribute in understanding disturbed visual function in ASD.  
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1.1 Overview 

Studies have shown considerable evidence of visual dysfunction in Autism Spectrum 

Disorders(ASD). Anomalies in visual information processing can have a major effect on the life 

quality of individuals with autism. We summarise the hypotheses and theories underlying neural 

aetiologies and genetic factors that cause these disorders, as well as possible influences of 

unusual sensory processing on the communications and behaviour characterised by the autistics. 

In particular, we review the impact of these dysfunctions on visual performance. 

1.1.1 Key words 

Autism spectrum disorders, colour vision, neural processing, vision tests, visual acuity, visual 

performance, visual search 

1.2 Introduction 

Autism spectrum disorder (ASD) is a developmental disability syndrome characterised by 

impairments in social communication and interaction defects. When ASD children start to 

interact socially, a number of features appear in daily activities, for example, learning 

difficulties, repetitive behaviour, social and communication parries and abnormal interests. 

These represent the first symptoms of autism spectrum disorder.1 According to the estimate made 

in March 2014 by the US Center for Diseases Control (CDC), one out of 68 children is born with 

an autism spectrum disorder; males are more likely to have autism than females. The number 

with ASD in the population increased by 2.8 per cent from 2002 to 2012.2 Research from the 

Autism and Developmental Disabilities Monitoring Network, US showed an increase from one 

per 165 in 2002 to one per 68 children in 2012 diagnosed with autism spectrum disorder.3 Both 

improved clinical diagnoses of developmental conditions and heightened awareness of the 



 

3 

symptoms among parents and public are posited as contributors to the reported increase in ASD 

prevalence.3 The new (DSM-5) diagnostic criteria include all subgroups defined by DSM-IV and 

intellectual disability (ID) disorders under one umbrella, which may serve to facilitate access to 

appropriate services and supports for individuals who have ASD in addition to intellectual 

disability.4 There is a great debate in the scientific community as to how much of the increase is 

real and how much is reclassification. Therefore, the numbers of the current prevalence of ASD 

might include individuals who previously would have been identified as having intellectual 

disability or being quirky or eccentric. Symptoms of ASD can be diagnosed as early as two to 

four years and may vary throughout a child’s life.5 In some cases, signs of ASD might start as 

early as six months old.6 Anomalous visual disorders are associated with this condition. Several 

studies of ASD reported impairments in visual perception, facial recognition and movement 

gestures that are reflected on their social, behavioural and communication skills.7–9 Vision 

research has linked abnormal performance in visual tasks by autistic individuals to specific 

dorsal dysfunction and disturbance in connectivity between brain regions in visual cortex; 

however, the main reasons are still unknown. In this review, we summarise the findings and 

discuss areas where visual impairments are linked. 

1.3 Diagnosis of ASD 

Various diagnostic protocols have been used to diagnose ASD. The purpose of this section is to 

clarify the subgroups of DSM-IV; however, this review will not distinguish between these 

groups but instead will refer to ASD or autism according to DSM-5 to avoid confusion or 

misunderstanding. 

In 1910, Eugen Bleuler,10 a Swiss psychiatrist was the first to introduce the word autism. 

It came from the Greek word autos (meaning self); however, his term defined syndromes of 
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schizophrenia. The contemporary terminology of ‘autistic’ was first used in 1939 by Hans 

Asperger,11 who was working at Vienna University Hospital at that time. He described what has 

been later defined as Asperger’s syndromes and he used the phrase ‘autistic psychopathy’ to 

describe the syndromes of four children that he explained as having ‘a lack of empathy, little 

ability to form friendships, one-sided conversation, intense absorption in a special interest and 

clumsy movements.’ Alternatively, he called it ‘little professors’ syndromes’.12 Meanwhile, Leo 

Kanner13 reported 11 cases, all of whom shared the same unusual behaviours. Kanner’s first 

paper ‘Autistic aloneness’ described the modern sense of autism. Silberman14 discusses the 

history of this disorder. Since Kanner13 and Asperger,11 the definition of autism has evolved. In 

1967, the International Classification of Diseases, Eighth Revision (ICD-8) listed what they 

called ‘infantile autism’ under schizophrenia, whereas the Diagnostic and Statistical Manual of 

Mental Disorders, Second Edition (DSM-II), published around the same year, specified 

‘schizophrenia, childhood type’ without any reference to autism. Later, the DSM-III15 published 

what is called the ‘pervasive developmental disorder’ that includes ‘childhood onset pervasive 

developmental disorders’ and ‘infantile autism’. In the DSM-IIIR the names of the subgroups 

were changed to ‘autistic disorder’ and ‘pervasive developmental disorder – not otherwise 

specified (PDD-NOS)’. By the release of DSM-IV,16 there were three subgroups ‘Asperger’s 

disorder,’ ‘childhood disintegrative disorder’ and ‘pervasive developmental disorder – not 

otherwise specified (PDD-NOS)’, which was also recognised by the International Classification 

of Diseases, Tenth Revision (ICD-10). In May 2013, the new version of DSM-5 eliminated the 

subgroups and replaced them by ‘Autism spectrum disorder’.4 No diagnostic subtypes (for 

example, Asperger’s disorder and PDD-NOS) are listed; the idea was to measure the core feature 

of autism spectrum disorder’ by a severity scales:  
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1- Social communication (SC)  

2- Fixed interest and repetitive behavior (FIRB). 

Each scale ranged from 1 to 3; the higher scores will indicate that an individual suffers from 

several core deficits and/or greater severity of impairment. The severity and range of symptoms 

for a child diagnosed with ASD may fall anywhere on the scale between ‘high functioning’ and 

‘severe developmental delay’. Both IQ and chronological age are usually associated scales, which 

categories ASD.17 Visual function of patients with autism spectrum disorder often reported from 

individuals who are able to complete the communication, attentional and sensory demands of the 

testing. Therefore, less is known about individuals with ASD, who have more limited 

communication or functional skills.7,18 Reszka et al19 showed that most of the individuals 

classified with the DSM-IV autism, Asperger syndrome, or PDD-NOS also meet the DSM-5 

diagnostic criteria of ASD; however, there has been much discussion of how the new criteria 

have affected diagnosis and treatment of ASD, practically in identifying high-functioning ASD.20 

These debates  suggest that DSM-5 is limited to identify all sub-groups of autism, which limits 

the diagnosis, detection of underlying casual factors, and treatment planning.21 For more details 

about the diagnostic criteria and subgroups of ASD, the reader is advised consult the reviews by 

Ousley and Cermak4 and Bryant.22 

1.4 The Biology And The Neuroscience Of ASD 

From a neurobiological perspective view, ASD is associated with abnormal connectivity between 

brain regions. This could include a weakening of already formed connections or a failure of 

certain connections to establish correct organisation de novo.23 Genetic and biological research 

of autism found that both the environmental and genetic factors increase the risk of ASD.24 
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These factors may however induce disruptions to cortical connection in utero or during the 

developmental stage.25–27 

1.4.1 Developmental and Genetic Factors  

The influences of genes and environmental factors on cortical development can vary between 

individuals and between functional areas, which suggests that specific disruptions may depend 

on the timing of the environmental insult. For example, zinc (Zn2+) deficiency severely affects 

brain function and neural maturation during developmental stages, leading to severe brain 

impairment in learning and memory in autism spectrum disorders.28 Based on family and twin 

studies, results have shown higher rates of ASD within the monozygotic twins (92 per cent) than 

dizygotic (10 per cent).29 Therefore, the risk to having a sibling born with autism to families with 

an ASD child is high. The disturbance of severity of ASD varies among individuals, however, 

autistic siblings within one family may share the same severity and associated features as 

evidence of heritability.30 On the other hand, Hallmayer et al31 suggested that the consideration 

of monozygotic twins causing autism is incomplete where environment is a contributing factor. 

The results point to a possible aetiological heterogeneity of autism, which explains the different 

aetiologies between individuals with autism. Therefore, current genetic research is working on 

differentiation between individuals in order to distinguish relevant genes. According to the 

Genome-Wide Association Studies (GWAS), genetic variants in ASD can be either inherited or 

caused (which is often the case) by de novo mutations.32 So far few genes are known to cause 

autism. Based on genetic studies, autism has inheritance based on interaction of many genes.33 

The disorder, however, does not follow the same predicted patterns of inheritance seen in 

monogenetic disorders, such as X-linked disorders.34 Genetic mutation may be combined with 

other environmental factors to cause the differentiation in the autism spectrum.24,31 Studies in 
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genetic variants have reported single nucleotide polymorphisms (SNPs) to have a major role in 

causing autism.34 Genomic studies have identified replication and de novo variations in several 

gene mutations that affect protein formation and functioning that have been linked to ASD.23,34,35 

The PAGES (Population-Based Autism Genetics and Environment Study) in Sweden, the largest 

study of this kind,30 examined the genetic variants spread across the genomes in more than 1.6 

million families with more than 14,000 cases of autism. The study found that an inherited 

common variant accounts for the bulk of the genetic risk for strictly defined autism. Furthermore, 

the study identified some mutations that are not part of the "common variant" but nevertheless 

increased the risk of autism in individuals with the common variant.30 However, other factors, 

such as the environmental and the epigenetics factors might also contribute  in the variations 

risks in this group. 

1.4.2 Epigenetic Factors 

Epigenetic factors refer to the heritable changes in gene activity that are not caused by changes in 

the DNA sequences but rather by one of the following factors: changing the chromosomal 

histone modifications, chromatin remodeling, transcriptional feedback loops36 and RNA 

silencing.37 Any of these factors may lead to endocrine-disrupting chemicals that believed to 

interact with the neurodevelopment of autism. In fact, Qiu et al38 has reported that epigenetic 

factors have more influence than alternation of the DNA sequences in autism, as the covalent 

modifications of DNA tend to create an interface between the changing environment and the 

fixed genome. Studies have linked gene-environmental factors that are likely to contain 

susceptibility loci for autism on human chromosomes to several environmental causes such as: 

parental ethanol exposure,39 paternal age,40 changes in the digestive tract or new diet,41 oxidative 

stress, brain inflammation42 and / or early brain injury.43 The reader can refer to Grabrucker 28 for 
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more details. This altered modification in DNA is linked to various neurodevelopmental 

alterations in the CNS formation in autism, such as disturbed cortical and subcortical 

cytoarchitectonics, abnormal cell differentiation with reduced neural size and altered 

synaptogenesis.44 Studies on vision have related these anomalies to the differences in local 

versus global visual motion perception45  and to the excitatory-inhibitory disturbance 46 that is 

likely to underline altered visual information processing as well as the social characteristics in 

ASD. 

1.5 Brain Development In ASD 

Early brain overgrowth with a subsequent reduction or plateau in the first few years of life, 

followed by an abnormal growth pattern during adolescence is the most common indicator in 

ASD.47 Enlargement coinciding with exaggerated cortical thinning seems to be more localised in 

the frontal region of the brain, which exhibited an abnormal volume of both grey and white 

matter compared to the frontal cortical region in non-ASD individuals of similar age.48 As a 

result, deficits in local connectivity with increased long-range connectivity have been proposed 

to develop after 24 months of age, suggesting abnormal neural growth trajectories in autism.47 

Although autism may not account for certain deficits and their severity might vary and overlap 

with other syndromes, they are not synonymous with global intellectual disability or mental 

retardation. Research, however, suggests that a key component of ASD is abnormal connectivity 

between the frontal and temporal lobes that disrupt higher-order processing. For example, 

reduced activity in the superior partial loci (e.g., cytoarchitectonic abnormalities) may affect on 

visuo-spatial attention in autism.49 Studies have shown that abnormalities in the cerebellum can 

also affect cognition, verbal abilities, and higher-order executive functions.50,51 The main defect 

of the cerebellum in autism was found in the postero-lateral hemispheric region including 
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Figure 1-1 Reduced connectivity between the posterior-lateral cerebellar  

decreased numbers of Purkinje cells (PC) in autistic conditions. For example, Whitney et al52 

study compared six autism cases with five matched controls and used stereological techniques to 

count the density of Purkinje cells in the posterolateral cerebellar hemisphere. In the autistic 

cases, two had mild Purkinje cell decrease and one showed severe Purkinje cell decrease and 

three were normal. The author suggested that decreased Purkinje cells in the ASD brain may be 

linked to high intrauterine testosterone in the mother’s womb, which results in neural 

developmental abnormalities;53 however, the reduced level of Purkinje cells in autistic brains 

remains unclear (Figure 1-1).54 

  

 

 

 

 

 

 

 

 

 

cortex with the dorsal dentate nucleus (red) and the ventral dentate nucleus (blue) in a boy with autism 

spectrum disorder, (bottom) compared with a typical developing boy (top). 

 

For a good review of cerebellar defects in autism, see Fatemi et al,55 MRI studies that explained 

the significant differences between ASD children and typical developing children (TD) in the 

trajectories connectivity between the posterior-lateral cerebellar cortex in both the ventral dentate 
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nucleus (VDN) and dorsal dentate nucleus (DDN) due to the decreased number and size of 

Purkinje cells. Related studies identified the posterior cerebellum to control the adaptation of 

saccadic eye movements by monitoring the difference between expected and observed 

movement outcomes.56 Mosconi et al57 showed reduced vermal activation during saccadic eye 

movements that reflects on the reduced rate of adaption during gaze shifts, which proves that 

cerebellar vermis is disrupted in this disorder. In addition, studies reported abnormalities in the 

neuronal migration of the anterior cingulated cortex (ACC).58 This area, in particular, 

participates in a variety of functions and emotional information processing including the frontal 

visual field. The anterior cingulated cortex induces early learning, emotional responses and 

social interaction. Results related anterior cingulated cortex to the theory of ‘mind’ through 

reducing connectivity between the adjacent frontal cortex and temporo-parietal junction.59 This 

theory, later, explains the defects found in children with autism in visual detection, and tasks 

motivation to thier  social and communication difficulties as well as difficulty in interpreting 

facial expressions.60 The analysis of functional neuroimaging data has revealed perturbations of 

task-related brain activity for both social and non-social tasks in ASD. Brain responses of 

individuals with autism to visual stimuli are highly variable in comparison with brain responses 

of matched controls. This suggests that ASDs are not only dysfunctional in the integration of 

information across distributed brain networks but also in the basic function of primary cortices. 

The increased neural variability in autism was specifically associated with alterations occurring 

in regions implicated in high and low visual perception and neural connectivity fluctuations, 

which create unstable visual processing. There are several hypotheses about the neural basis of 

autism that is way beyond the scope of this review; however, the reader is advised to consult 

Lichtenstein et al 33 and Baribeau and Anagnostou47 for more details. 
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1.6 Magnocellular And Parvocellular Pathways In ASD 

Electrophysiological research suggests that specific neurological differences contribute to the 

functional differences observed in individuals with ASD.61 Research on the magnocellular 

pathway showed significant defects in children with autism in image processing.62 A study by 

Greenaway et al63 on autistic children, showed reduced contrast sensitivity in response to three 

steady pedestal parameters that measured the magnocellular and parvocellular functions. The 

results showed typical impairments in visual attention in the autism group compared to the 

healthy control group. This can be attributed directly atypical lateral visual connectivity and high 

levels of endogenous noise that account for the defect in the magnocellular area.63 Research on 

adults with ASD, however, did not show the same magnocellular abnormalities.64 This raises the 

question, whether such abnormalities are overcome in teenagers and adults and/or if they might 

have lasting effects on the cortical area in autism. Grinter, Maybery and Badcock65 evaluated 

dorsal and ventral stream function in individuals with developmental disorders by measuring 

performance on visual tasks using visual stimuli such as Glass patterns, random dots 

kinematograms, and luminance-modulated noise patterns. They found that tasks which rely on 

dorsal stream processing exhibited larger ASD-related deficits;65 however, they also found 

evidence of impairment of higher-level integration and global processing in the ventral stream 

that might be consistent with the hypothesis ASD is associated with dysfunction in mirror-

neuron system in autism.66,67  

Visual defects in ASD might vary in onset, severity and   behaviour patterns. 

Bogdashina68 pointed out that some unusual behaviour ASD-related is linked to visual sensory 

impairment. She grouped them into hypersensitivity and hyposensitivity. Hypersensitivity, on the 

one hand, is characterised by focusing on small details, fear of dark and  bright lights, avoiding 



 

12 

eye contact and tending to look down most of the time. Hyposensitivity, on the other hand, is 

characterized by an affinity for bright light and moving objects, standing for a long time gazing 

at people, and using hands to define small details or edges. Here, we aim to evaluate visual 

functions in ASD, such as visual acuity and colour vision and other common measurement 

approaches. The reader is referred to other literature reviews 9,69,70  for  more details of vision in 

autism. 

1.7 Visual Impairments In ASD 

1.7.1 Refractive Errors 

Refractive errors have been found abnormal in ASD, however, these findings were based on few 

studies that have covered this area, which also had small samples of the autism population. In 

addition, subjects included in these studies were autistic according to the DSM-IIIR criteria. As 

these diagnostic criteria were narrower, these individuals had more severe levels of autism and 

may not be comparable to current subject cohorts. Another limitation is that they used a study 

design,71 therefor, the results might be vulnerable to selection bias and gaps in recall and data. 

Without a large scale and/or prospective study, there are too many variables to draw an accurate 

conclusion that might affect the degree to which these results can be generalised. In addition, 

running a full refractive examination on children with autism sometimes can be very difficult if 

not impossible to achieve. 

One of the early studies that managed to perform full vision test on 98 per cent of the participants 

(34 children with ASD) used the Teller Acuity test.72 They reported a 44 per cent incidence of 

refractive errors with astigmatism and hypermetropia (17.6 per cent for both). Denis et al73 

completed a full ophthalmic examination for six girls and four boys with autism. Seven of ten 
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cases were more than 1D hypermetropic and six had astigmatism. No cases of myopia were 

reported in this study, which might be attributed to the small sample. However, Ikeda et al74  

followed 154 children (79 per cent) with ASD from 1998 to 2006 and found refractive errors in 

29 per cent of the cases and hyperopia was also the most common. Ikeda et al did not report if 

the children had corrections to their refraction errors and if there were any improvements in 

vision. On the other hand, Black et al75 found that with correction, 32 per cent of the autistic 

sample (44 children, with 29 per cent of the cases having refractive errors) reached the visual 

acuity of 6/6. Mixed astigmatism and anisometropia were the most common refractive errors in 

the Black et al study. Ezegwui et al 76 also measured refraction errors in a group of 18 Nigerian 

children with ASD (13 male): they found that 22.2 per cent of the children had astigmatism, 11.1 

per cent had hypermetropia, and mixed astigmatism and anisometropia were also found in some 

children. The data of this and other studies are summarised in Table1-1. 

Study Year Number and 

gender with ASD 

Astigmatism (%) Hypermetropia (%) Myopia 

(%) 

Other findings (%) Study type 

Scharre and 

Creedon72 

1992 32 M 2 F 17.6 17.6 8.8 5.8% anisometropia Prospective 

Denis et al.73 1997 4 M 6 F 60 70 _ 60% strabismus Prospective 

Ikeda et al.74 2013 122 M 32 F 3.89 16.88 5.8 1.95% anisometropia Retrospective 

Black et al.75 2013 44 3:1 M/F 18.2 9.09 11.36 6.81% anisometropia Retrospective 

Ezegwui et al.76 2014 13 M 5 F 22.2 11.1 - - Retrospective 

Table 1-1 Refractive error incidence in individuals with autism spectrum disorder (ASD) 

 

Previous research suggests that the incidence of refractive errors among individuals with ASD is 

comparable to the incidence within the typically-developed population.7,71 However, these 

conclusions are tentative because measuring visual acuity and refractive errors in individuals 

with ASD is challenging due to several factors such as: 
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• Children with ASD often are not fully cooperative and therefore may not complete a full 

visual test. 

• Charts usually used to test visual acuity (Snellen chart, HOTV test, E chart, et cetera) are 

insufficient and may give misleading results due to a misunderstanding of the task and/ or 

visual disorder related to ASD-specific defect.77 

• Issues related to social and communication difficulties may easily mislead diagnosis and 

correction of refractive errors and other ophthalmic disorders at an early stage of life.78 

Considering these factors, Singman et al79 conducted vision examinations using the PlusoptiX  

photoscreener (a vision screener founded 2001 in Nuremberg, Germany)80 on 25 children who 

reported with autism. Vision screening using the PlusoptiX uses an examination distance of one 

meter, no flashlight is required and it measures both eyes simultaneously. The PlusoptiX was 88 

per cent more sensitive in reporting refractive errors and identifying risks of amblyopia 

according to the results compared to regular refraction; however, it is uncertain if patients were 

really gazing at the PlusoptiX or were attracted by the sound it released. Kancherla and Braun81 

suggested that the difficulties in diagnosing children with visual impairment associated with 

ASD can delay the diagnosis after the age of five. Therefore, it is important to examine vision in 

ASD using the most reliable methods. 

 

1.7.2 Eye Movement Defects  

Impairment of eye movements is one of the significant clinical features associated with ASD. 

Rosenhall, Johansson and Gillberg82 compared 11 autistic children with a control group of the 

same IQ, age, and sex. The study examined binocular vision using auditory brainstem response 
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audiometry and a non-predictive saccade task. They recorded three angles (20°, 40° and 60°) of 

voluntary horizontal saccades. Although six of the autistic children were found to have abnormal 

eye movements, four had hypometric saccadic movements and difficulties in performing smooth 

pursuit eye movements and low velocity movements. Rosenhall, Johansson and Gillberg82 

suggested that saccadic movement disorders might be due to brainstem dysfunction in autism. 

No further explanation has been given for the smooth pursuit movement disorder in this 

experiment because of the small sample; however, the results were consistent with the findings 

of Takarae et al,83 who studied smooth pursuit eye movement in 60 individuals with ASD (mean 

age of 20 years) and compared them to an age and gender matched control group. The test used 

neuropsychological tasks and an eye monitor. The results showed no differences in saccadic 

latencies between the two groups but a significant lower sensitivity in the autistic group in right 

saccadic movements, and in gaining smooth pursuit of moving objects. In all tasks, reduction 

was more pronounced in older individuals with autism than young subjects. Results suggested 

that a functional disturbance in the cerebellar vermis in autism can affect the final visual motor 

pathway that causes pursuit disturbances. On the other hand, early studies found no 

abnormalities in the saccadic and eye movements in autism.84,85 Controversially, outcomes in 

ASD-related deficits in pursuit eye movements can be explained in terms of impairment in 

spatial working related to changes in pre-frontal cortex and posterior cingulate connectivity. 

Recent research suggests that cerebellar dysfunction also contributes to deficits in gaze control 

and saccadic movements as well as learning disability and language abnormalities in ASD.84–86 

Mottron et al86 found that children with autism tend to look at objects using ‘lateral gazing’, 

which means that they moved their pupil to the edge of the temporal corner eye socket and 

turned the head is in the opposite direction. This behaviour attempted to stimulate peripheral 
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vision of moving objects to reduce the amount of information produced by central vision. One 

suggestion is that the delay of the cerebellum to transfer information from subcortical structures 

and visual and parietal cortices of moving objects is consistent with the increase in the variability 

in saccade metrics.87 Slowed saccades have been also demonstrated with inactivation of the 

caudal fastigial nucleus and the cerebellar vermal lobules VI and VII, where post-lesion resulted 

in increased duration of the saccade consistent with cerebellar impairment that altered the 

oculomotor system.88  

Mosconi et al57 measured the effect of ASD on adaptation rate and amplitude variability 

in an intrasaccadic target displacement task known to elicit saccadic adaptation reflected in an 

amplitude reduction. The results showed that 30 per cent of individuals with ASD have slower 

adaptation rate than typical developing children in electing saccadic movements across trials 

compared to only six per cent of the typical developing children group, who failed to adapt to the 

saccadic amplitude. Mosconi et al suggested reduction of the neural plasticity within the learning 

center area of the oculomotor vermis might be due to abnormality in cerebellar neurons, which is 

consistent with the previous reports. 

 Eye contact, gaze abnormalities and facial recognition are types of behaviour that 

characterise individuals with ASD and have been related to the disturbances in eye movements 

irrespective of the diagnostic category.89–91 Several results for assessing eye movements in 

autism suggested that ASD-social impairments might be related to limited vision proceeding to 

variant visual cues. The implications of these eye movements limitation might vary between 

facial and object recognition. So far, studies have highlighted the influence of impaired eye 

movements on ASD-related to their disorders of facial recognition, and therefore it is important 
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to find the link between disturbance in neural networks in ASD compared with typical 

developing children. 

1.7.3 Contrast Sensitivity  

Bertone et al64 measured contrast sensitivity using simple (first-order) and complex (second-

order) grating presented at horizontal and vertical direction and randomized to stimulate two 

different pathways in the ventral stream. The study also used luminance grating (0.5 cpd) 

flickered at 6 or 1 Hz to stimulate the magnocellular and parvocellular pathways respectively 

(Table 1-2). Thirteen autistic individuals were compared to a control group. Bertone et al found 

that contrast sensitivity for first-order stimuli was higher (i.e., detection threshold were lower) in 

ASD observers than control observers, whereas contrast sensitivity for second-order stimuli was 

lower in ASD observers. No significant group differences were seen in the flicker sensitivity 

task. The authors interpreted the results as showing that ASD is associated with a deficit in the 

magnocellular pathway specified by lateral inhibition in the visual system that affected different 

levels of visual processing. Jemel et al92 measured early visual-evoked potentials (VEP) to 

drifting sinewave gratings at three spatial frequencies (SF) ((Low)0.8, (Medium) 2.8, (High) 8 

c.deg-1) and presented at four contrasts. The results of 16 observers with ASD and 14 controls 

found no significant group differences for VEPs for LSF gratings. VEPs enclose an initial 

negative-going deflection (N80) peaking for MSF and HSF, showed lower amplitudes in ASD 

observers. These differences in N80 peaks in ASD suggested that ASD is associated with 

abnormal processing of medium-to-high  spatial frequencies. These early abnormalities on 

processing visual perception have the impact of abnormal development in the early visual 

system; however, Morton et al93 suggest that there is an enhanced activation seen in VI of 

autistic compared to typical developing children. On the other hand, Koh, Milne and Dobkins94 
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found no evidence of an ASD-related deficit in processing high spatial frequencies, although 

these results are problematic because the Koh et al study had a small sample size and didn’t 

include an age/gender/number-matched control group (Table 1-2). Kéïta et al,95 measured 

detection thresholds of 21 with ASD and a matched-control group of 15 participants using static 

and drifting luminance gratings presented with and without noise, and texture contrast (i.e., 

second-order) gratings. In the static version of the experiment, results showed that autistic 

subjects are more sensitive to luminance-defined, high spatial frequency stimuli and no group 

difference was reported for gratings containing noise, whether defined by luminance or texture. 

Based on these results, the authors suggested that ASD is associated with abnormal connectivity 

in early stages of visual processing that process luminance-defined patterns, but compensatory 

mechanisms minimize deficits at later stages that process texture-defined (i.e., second-order) 

patterns. Vandenbroucke et al 96 suggested that ASD-related deficits in visual processing reflect 

changes in horizontal inhibitory connections in early visual areas, as well as increased neural 

noise.9 That leads to atypical disturbs between feedforward, horizontal and feedback activity.97  

Taken together, it is evident that it remain unclear how ASD affects low level visual processing. 

The variability in methods used to examine visual processing within the visual cortex, in 

combination with small samples, makes it difficult to compare results across studies. In addition, 

impairments between age groups and syndrome severity often decline with age. This suggests 

further investigation to determine whether such improvements in performance among adults with 

ASD are the result of compensatory factors or the result of the changes in low-level factors 

related to neural plasticity. 
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Table 1-2 study results that covered contrast sensitivity in autism spectrum disorder. 

A. autism, C. control, cpd: cycles per degree, LSF: low spatial frequency, MSF: medium spatial 

frequency, HSF: high spatial frequency . 

1.7.4 Color Vision  

The few studies that directly address color performance in ASD suggest there is poor color 

perception in autism. Franklin, Pilling and Davies99 and Franklin et al100 carried out a series of 

color-detection experiments on high functioning children with autism using various tasks, such 

as recognition memory, a search task and a target detection task. They found a general reduction 

in sensitivity to color detection rather than having a specific colour defect such as tritanopia 

(blue-yellow) or deuteranopia (red-green). Franklin et al99 worked with 19 high-functioning 
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autistic (HFA) children (mean age of 14 years) attending special-school and 14 matched typical 

developing children as a control group. The first experiment assessed the visual search task by 

identifying the odd-one-out of a colored squares presented among 15 distractors. They also 

assessed color memory using delayed matching-to-sample task which required children to 

identify a colored target presented first alone and then after a delay the target appeared with 

paired color stimulus. The experiment was done with three colored stimulus pairs and the 

statistical results reported significantly higher errors in the ASD group than the TD children 

group in both tasks. A second experiment using a threshold discrimination task investigated color 

discrimination task of the subsystem of colour vision (red-green or blue-yellow). There were 14 

high-functioning autistic children compared to 14 typical developing children. The first part of 

the task was to define a boundary line between the two halves of different colored circles that 

varied in colors but had constant luminance for chromatic threshold. Results showed a higher 

threshold in chromatic discrimination in high-functioning autistics compared to matched age and  

non-verbal control group. Both experiments suggested that a true deficit was found in color 

perception in ASD and no task difficulty or/and experimental differences can account for the 

group differences. This pattern of findings agrees well with those from previous studies.100,101 

These results however suggested that those with ASD have reduced sensitivity to color 

differences that might arise from impairments in both the retina and visual cortex. Color 

processing starts at the retina, where cones with photopigments are sensitive to certain 

wavelengths. Then, information is processed to the lateral geniculate nucleus at the primary 

visual areas, where two different pathways will carry chromatic information and luminance to 

the visual cortex.102 Several studies have found that other visual areas, mainly in the ventral 

occipitotemporal cortex as well as the dorsal pathway are involved in color processing.103,104 As 
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ASDs are attributed in visual perception, this might disturb processing of color information 

between visual pathways. Another explanation is that it could be similar to the causes of decline 

in chromatic sensitivity found in the elderly,105 due to neural noise increases, or cone 

photoreceptors become less sensitive. Therefore, such deficits might account for the reduced 

chromatic discrimination shown by those with ASD. Alternatively, reduced chromatic 

discrimination could arise from atypical connectivity in the neural area of the visual cortex with 

cortical areas that later lead to a general reduction in chromatic perception.100 

Neurophysiological research, such as fMRI of chromatic discrimination in ASD, is essential to 

test the plausibility of a neural basis to chromatic sensitivity. 

 

1.7.4.1 Color Processing Differences In ASD 

The link between color discrimination efficiency in autism and visual functions has been 

presented in some studies.106–109 The findings suggested using colors combined with training 

methods to improve different levels of visual function in ASD. For example, colored filters 

showed improved performance in individuals with ASD on visual perception, social tasks and 

reading.109 The proposed mechanism is that colored filters reduce cortical hyperexcitation, which 

increased by the cortical noise in ASD, especially in primary sensory cortices. Ludlow, Wilkins 

and Heaton109 were the first to use color overlays, namely, ‘a colored transporting plastic sheet 

that can be placed over printed text without interfering with clarity’ and the results showed an 

improvement in reading speed in an ASD group of 13 per cent; however, Wilkins, Sihra and 

Myers110 explained that there is an overall improvement in reading speed as a result of 

enhancement of the function of rods and cones to chromatic energy that stimulates the response 

mechanism of reading. Autistic responses are not the same for all colors, as overlays work on 
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reducing the contrast and minimise the luminance scattered in the visual pathway due to 

neurological defects in the visual cortex,104 which can explain the slow reading speed using 

white more than darker colours.101 Wilkinson and McIlvane,111 however, showed that children 

with ASD performed better with the color-based clustering method in search and match 

experiments rather than specifying one color in a pattern. A case has also been reported linking 

color-processing differences to obsession and phobia.112 The explanation for the mechanism of 

these findings is still unknown; however, further research on color defects in autism compounded 

with gaze direction, visual attention and neuroimaging should be considered to define the exact 

areas of impairment and its relationship to other visual perception deficits in this group. 

 

1.7.5 Visual search 

Experiments using ‘embedded figures’ and ‘block design’ tasks to investigate visual attention 

and visual search have revealed that individual with ASD are better at detecting local details and 

neglecting global information compared to control subjects, no matter what the IQ or age.113 

Several studies114–116 suggest that the ability to detect specific details embedded in an overall 

picture is the result of overcoming the stimulus of the whole pattern to see specified targets. To 

this extent, Frith117 first introduced The Weak Central Coherence theory that was developed 

further by Frith and Happé.118 Happé 118 suggested that autistics have the ability to see local 

information but are relatively poor at extracting the gist or meaning of events. Happé’s theory 

was based on the fact that abnormalities in the superior temporal sulcus in the dorsal stream 

and/or neurological deficits in the anatomical development of the visual system and image 

processing areas affected the local and global perception119 and has been extended by other 

research.114–116 The fMRI study by Boucher et al120 found significant differences in the 
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neuroanatomical volume between certain limbic structures such as the amygdala and 

hippocampus and other areas in the medial temporal lobe in autism compared to the control 

group. Boucher et al120 suggested that these neuropsychological impairments are connected to 

the deficits in the socioemotional perception and impaired memories in ASD by reducing the 

spatial working memory abilities, which found to altered the search strategy in autism.121 This 

area and others in the brain, where abnormalities have been demonstrated in studies of autism, 

have focused on what is called ‘the social brain’,122 which is related to the social and behavioural 

characteristic abnormalities in ASD. Neuroimaging results showed atypical function in the social 

brain areas in ASD that was associated with their visual searching, such as  face recognition, 

especially for unfamiliar faces123  which is the most reliable early signs of the disorder among 

affected children;124 however, Joseph et al125 compared 21 children with ASD to a similar 

matched control group to examine memory enhancement and visual perception in target-

detecting tasks using dynamic and static search methods. In both tasks, groups were asked to 

detect the letter ‘T’ among ‘L’s in different random selected patterns. In the static method, one 

frame was used for random a position of the T, while different frames were used for the dynamic 

search method with interval time of 500 ms between frames. They also used eye tracking to 

examine spatial attention behaviour throughout the search process. The results showed no 

difference in the efficiency of searching with the dynamic method between the two groups. The 

authors argue that autistic children do not memorise the targets. In fact, they moved their eyes 

searching for the target in the same way as the control group, while in the static searching task, 

the autistic children’s performance was less accurate. The results showed a significant 

correlation between the severity of ASD (according to the Autism Diagnostic Observation 

Schedule)126 and static searching. Joseph et al125 explained the differences in “search” reflect 
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better target/distractor discrimination by ASD observers rather that differences in “search” per 

se. These features seem to be specific to ASD; however, research evidence from other groups on 

neuro-developmental disorders that have similar learning disabilities or neuropathology, such as 

Williams syndrome and fragile X syndrome, have shown distinct search deficits compared to 

control groups.127,128 The ‘enhanced perceptional functioning’ theories proposed by Mottron et 

al93 and others have found that both low-level (discrimination) and mid-level (pattern detection) 

perceptual processes are enhanced in ASD. Following to the hypothesis that linked behaviour 

and interests of autism to their superior performance on visual search, Blaser et al129 used task-

evoked pupil responses, which measure the involuntary reaction of pupil diameter that happens 

during visual attention tasks. The idea behind this method is that pupil diameter varies during 

target detection, and there is a positive correlation between increasing searching task difficulty 

and pupil diameter. Blaser et al129 found that autistic children have increased pupil response 

during the experiment and performed better than the control group. His suggestion was that 

children with autism might not use the same searching strategy as normal developing children 

but they are using extra focusing attention that makes them in constant hyperphasic states. 

Thereby, their performance decreased on tasks that require shifting of attention and increased on 

tasks that benefit from focused attention and reduced distractibility on fixed objects. In a related 

review Kaldy et al130 cover most of the experimental and task methods, which have been used to 

measure visual attention in ASD in the last 15 years. They concluded that many types of 

repetitive behaviour of those with ASD came from the unusual visual attention interests, which 

could be restricted to objects more than people or to the whole environment and later will be 

reflected by poor social engagement, skills and general attention. Kaldy et al130 also note that 
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training experiences could improve visual attention that might improve the communication 

development in autism. 

 

1.7.6 Depth and stereopsis 

Children with autism are mostly associated with ‘locally oriented’ perception and enhanced low-

level operation.131 Their abilities in processing three-dimensional images also grounded on 

superior local details  (e.g., 3-D drawing).93 As we explained previously, several hypotheses have 

been proposed that this hyper-local orientation might be due to undeveloped (or under-

developed) neural perceptual mechanisms in autism, resulting in abnormalities in the 

magnocellular pathway that enhanced processing defects.132 For example, Giovannini et al133 

reported that people with ASD underestimate distances in matching tasks compared to a matched 

control group. Mitchell et al134 suggested that top-down perception effects are actually developed 

in ASD, which may explain their reduced sensitivity to some visual illusions. For example, 

participants with autism shown great ability to draw the ‘devil’s fork’ and ‘penrose triangle’ 

relatively easily, and they were less distracted by the impossibility of the whole image.135 In a 

different study, Mitchell et al136 used the shaped illusion task in which observers need to ignore 

distortions induced by 3-D cues, and found that ASD performance was better than the normal 

group, and they were less affected by the illusion of the images. On the other hand, Sheppard, 

Ropar and Mitchell131 found that individuals with ASD could draw three-dimensional objects 

with the same accuracy as the control group by using global strategy starting from drawing the 

figure’s outlines first then forming the 3-D inner lines. Ropar and Mitchell suggested that the 

enhanced perception of the top-down or higher-order might take precedence. In an experiment 

that studied the effect of practice on searching strategies in autism, Gonzalez et al137 used the 
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luggage-screening task with 13 ASD adults and 13 of the normal population. The task uses 3-D 

screen images of luggage with low and high clutter and participants have to specify the included 

items. The results revealed similar errors attributed to time and speed reaction between the two 

groups at the first part of the screening; however, the ASD group showed greater improvement in 

performance after several trials, suggesting that the more the ASD group became accustomed to 

the task, the more they remained focused and the better they inhibited distractors. This could 

give us an indication that autistic people see objects differently or are not influenced by most of 

the details of the 3-D images when compared to the general population. 

 

1.7.7 Visual field  

Studies of ASD-related changes in vision have presented stimuli in the central visual field; 

however, Milne et al138 were the first to study the visual field in ASD. Eleven participants with 

ASD were matched and compared to 21 controls. They used perimetry to assess the vision field 

between 30° and 85°. The task was to determine a flashing light with different illumination 

levels in 12 positions along eight axes. The performance ASD individuals was impaired to 

controls, especially for stimuli presented in the nasal side visual field. Other aspects of the results 

suggest  that these impairments are likely to be related to a defect of rod-function more than 

underlying neurocognitive or perceptual problems; however, the test stimuli were presented in 

the peripheral field and the test was held in a dark room, which was most likely rod-mediated. 

Therefore, data presented from this study cannot provide a direct test for visual field deficits in 

autism. Rutherford et al,116 however, tested visual attention in those with ASD using the ‘useful 

field of view’. Their aim was to study if the superiority of autism in advanced visual search tasks 

is extended to peripheral field tasks. Each participant was tested in three conditions: a central 
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letter identification task, a peripheral target localization task, and a divided attention task in 

which central letter identification and peripheral target localization were performed 

simultaneously. The examined area covered 4° to 20° and the findings indicated that ASD 

performance was the same for all fields of the test points which may agree with previous findings 

that  suggest that ASD might have visual field impairments beyond 30°.138 Accordingly, the 

small number of participants in Milne et al138 cannot really reflect all visual field defects in 

autism. The evidence of visual attention in ASD proved a possible top-down role for the 

frontoparietal attentional mechanisms in the integration of spatiotemporal information and 

specific zoom-out attentional difficulties139 that might also contribute to the findings of Milne et 

al.138 Attempts have been made to explain spatial attention between central and peripheral field 

in autism using different task properties. A study by Ronconi et al140 used ‘coherent dot motion’ 

(CDM) stimuli for a directional discrimination task. The dots were presented in the central view 

(fovea and para-foveal) then in the peripheral view (16° to 21°). In the peripheral task, the 

central dots completely disappeared, so that the participants are forced to enlarge their attentional 

visual field to relevant task information. The study also measured the deficiency in the 

perception of the visual field in the ASD group and the adaptation time needed to shift focus 

from central to peripheral field by using an attentional zooming task. The results showed a high 

threshold in the CDM response in both central and peripheral fields of view and a deficiency in 

zoom-out attention, which suggested that impairment might be selective to the central view in 

those with ASD. A positive relationship, however, was seen between the severity of ASD and 

higher impairment in the CDM and attentional tasks. The authors propose that the 

magnocellular-dorsal (M-D) stream defect found in ASD can be responsible for the rapid change 

in the stimuli, such as flicker and motion in the visual system.141 These results supported other 
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findings that those with ASD are intact in low-level M-D stream information processing and 

impaired in the high-level perception.142,143 The superiority in processing low-level information 

in the central field has been attributed to the performance of high-level attention in the peripheral 

field stimuli, which induced high threshold in detection of the direction of the motion dots. This 

abnormality in processing motion perception could be improved by influencing the attention in 

the peripheral visual field in children with ASD using practicing tasks for this demand. In 

conclusion, given that visual field attention appears to be abnormal in ASD, the reduced 

sensitivity to peripheral information cannot be generalised for several reasons, for example, the 

small number of participants in those studies limited the results; only a few researchers have 

investigated the non-central vision, and different paradigms in the previous studies had the 

impact on disturbed attention and misunderstanding of task requirements. 

 

1.8 Motion perception and driving performance in autism 

Motion perception is relatively impaired in ASD.144 In this part our aim is to link between 

motion perception defects in ASD and driving for the purpose of further research in this area. 

Since driving is the means of independence and self-identity, it is important to study the ability 

of those with ASD to react to the ‘big picture’ for any given driving situation. Our future aim is 

to understand whither the visual defects found in autism would stop them from responding to 

actions in roads, such as time to collision or time to cross a busy intersection? Driving studies in 

elderly have linked motion perception with other visual impairments as the main visual defects 

that affect elders’145 ability to control the vehicle, to interact with other vehicles on the road, and 

to avoid traffic accidents; however, to apply for a driving license, the major visual area that is 

covered is visual acuity. It has been reported that there is no link between acuity and safety on 
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roads.146 In fact, results proved that motion perception is linked to the poor performance in 

driving among the elderly.147 There are no studies which have related such impairment to the 

driving performance and safety in autism. Furthermore, DeLucia and Tharanathan148 have shown 

that brief delays in adequate response to relevant moving targets in a driving environment are 

likely to have potentially dangerous consequences and reduced ability to adequately discriminate 

speed or time-to-contact, which could lead to unsafe and problematic driving behaviour. Cox et 

al149 conducted a survey of parents of autistic children who learned or are already driving. The 

results showed that their children do not have the skills for driving. These include the ability to 

make quick decisions in the context of sudden environmental demands and skills of notes of 

environmental warnings on roads, which are all primary to proficiency for a driver. Our 

hypothesis proposes that individuals with ASD will be distracted by their superiority in 

processing local details at the expense of the global picture. Thus, their driving performance is 

reduced. 

 

1.9 Summary  

In this review, we summarised the research on various aspects of visual perception and 

performance of individuals with ASD. Studies presented visual impairments as the ultimate 

cause of some social and communication impairments in ASD.150 Other research preferred to 

relate the social problems in autism as the main cause of misinterpretation of receiving or 

processing visual information. In other words, individuals with ASD receive visual information 

correctly but they fail to interpret it because of their inadequate social and communicative 

analysis of the visual scene.64 Overall, visuo-perceptual processing in this group is characterised 

by superior performance on static spatial tasks and inferior performance on dynamic tasks.65,151 
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However, the general idea suggests there are deficits in the dorsal stream processing and atypical 

neural connectivity network of visual cortex. This altered low-level perceptual information 

reduces lateral inhibition that impaired several visual areas, such as a decrease in contrast 

sensitivity and visual attention. Performance differences between several visual tasks for those 

with autism spectrum disorders, proposed by a number of studies are attributed to task demands, 

stimulus paradigms and/or scale changes in the development of the syndrome, which 

differentiates performance between children and adults for the same tasks.152 From our point of 

view, there is one main question that emerges from this review. The concerns about the impact of 

DSM changes should be considered in the context of sweeping changes occurring in vision 

research. The new criteria DSM-5 tended to have more severe impairments than individuals 

meeting DSM-IV. Also, it eliminated Asperger’s and PPD-NOS from the criteria for autism and 

encompasses them under related disorders. A lack of consistency in the definition complicated 

the interpretation of new findings in visual impairments in ASD in relation to previous 

approaches. Some areas of potential autistic visual disorders were consistent, for example, 

atypical dorsal stream processing in autism. Researchers found that DSM-5 offers greater 

specificity but may result in reduced sensitivity, especially for specific subgroups and from 

higher-functioning autism. Therefore, we can argue that the controversial performance in 

processing visual tasks may arise as a result of changes in the inclusion criteria for subjects with 

ASD for recent vision research rather than those before 2013 (when DSM-5 was first 

established). It is also worth mentioning that insight into the aetiology of ASD is still limited; 

however, disorders that are caused by a single gene might share the same social impairments as 

autism but may vary in onset and severity and were excluded from the criteria at a later stage. 

For example Rett’s disorder was included in DSM-IV, even though it was not thought to be a 
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form of autism. Subsequent to Rett’s inclusion, a specific geneticaetiology was found. The 

removal of the condition from DSM-5 reflects intent to avoid distinctions between medical and 

psychiatric disorder.153 Therefore, further investigation for visual impairments in ASD diagnosed 

under the new criteria should be considered to observe to what extent visual impairments are 

accurately related. 
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2.1 Overview 

There is a rapid increase in the number of individuals with Autism Spectrum Disorders (ASD). 

Research on motion perception in ASD has shown deficits in processing motion information at 

the higher visual cortical areas (MT/V5). Several hypotheses have been put forth to explain these 

deficits as being due to enhanced processing of small details at the expense of the global picture 

or as a global integration abnormality. However, there is a lot of variability in the results 

obtained from experiments designed to study motion in adults with autism. These could be due to 

the inherent diagnostic differences within even the same range of the autism spectrum and/or due 

to comparison of different experimental paradigms whose processing by the same visual neural 

areas could be different. In this review, we discuss the various results on motion processing in 

ASD, as well as the theories of motion perception in autism.  

2.1.1 Key words 

Autism spectrum disorder, high functioning autism, motion perception, biological motion, form 

perception, random dot kinematogram, local motion, global motion. 

 

2.2  Introduction 

Autism spectrum disorder (ASD) is a developmental disability syndrome characterized by 

impairments in social communication and interaction defects. The prevalence of autism from the 

Centers for Disease Control and Prevention154 show one of 68 children is born with ASD, of 

which 43.9% are classified with High Functioning Autism (HFA). The term HFA refers to 
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average or above-average intellectual ability in the range of IQ >85, among other higher-

functioning cognitive abilities, such as emotion recognition, expressions, social interaction, and 

executive function (EF), with a special emphasis on individual and group problem-solving.11,117 

Individuals with HFA and Asperger’s syndrome (AS), which is within the autism spectrum, may 

have the ability for general societal interactions and have close-to-normal life activities, eg, 

studying, working, and driving. Most studies collect data from people with ASD who generally 

have average to high IQ and do not have severe abnormalities or other related development 

issues that may make data collection difficult. In this review, we will still denote individuals with 

HFA as within the general term ASD, which is the general convention in the literature, unless 

otherwise specified term been used in a study, then we will use that term for comparison reasons.  

Some aspects of visual function, such as refractive error, strabismus, and color vision, are 

found to be normal in ASD; however, contrast sensitivity, motion perception, visual movement, 

and visual search may be more affected among the autism group when compared to a typical-

development (TD) group.155 Studies of visual motion perception have shown that individuals 

with ASD have exceptional perceptual abilities for detecting local details in the environment, but 

are incapable of capturing the whole without giving full attention to the constituent parts.8,46,156 

Indeed, Castelli et al157 showed that the ability of individuals with ASD to perform well on the 

standard Wechsler block-design task was due specifically to their advanced segmentation ability 

when compared to a normal-development group. Related research using static images with 

embedded-figure test114 suggested that children with autism have superior performance in 

detecting embedded figures than normal children and non-autistic children with intellectual 

disability. Other studies, however, have shown enhanced detection of local targets, with a typical 

global bias.158,159 Mottron et al160 used various local/global tasks, including traditional tasks of 
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hierarchical processing, configural processing, and a disembedding task that contained letters 

presented either individually or in the pattern of the same letter. Target discrimination of the 

global scene in both tasks (hierarchical or configural) showed no group differences; however, 

individuals with autism were faster than the TD group in processing local details within 

embedded pictures than isolated ones on the disembedding task. Research findings vary in 

indicating a local processing bias or a global processing deficit, and often contradict one another. 

Several reviews have discussed these findings of differences in motion perception in ASD, and 

whether these differences are sensory symptom-related and/or due to social and perceptual 

knowledge latency in early childhood.9,161,162 Bias in local/global visual processing relevant to 

stimuli and task dependence has also been investigated.152 This suggests a reconsideration of the 

idea of impaired global (or rather, biased) processing between local/global information, with 

dominant intact or enhanced performance on tasks necessitating static spatial information 

processing and poor performance with dynamic information analysis.46,86,160,163 Our review here 

is selective, focusing on cases of adults with ASD and their sensitivity to various paradigms in 

processing coherent motion. The published results are often contradictory, for example, in 

experiments on “Form-from Motion” (FfM), which includes detection of biological motion 

(BM), performance is found to be intact in form motion, with reduced sensitivity to BM,156,164 

and cases where researchers divided the autism group into HFA and AS and found that atypical 

perception was HFA-related, not AS. Comparing the consequences of task relevance and autism 

group subdivision allows conclusions about the abnormalities found in motion perception in 

autism. We conclude this article by addressing recent studies directly comparing different types 

of motion integration, and suggest a possible synthesis of the otherwise-contradictory and 

confusing results found in the literature. 
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2.3 Theories 

Various investigators across multiple cognitive domains in autism have proposed different 

hypotheses falling between single domain-specific or domain-general mechanisms. 

 

2.3.1  Weak central coherence 

Proponents of the theory of Weak Central Coherence (WCC)165 explain that people with ASD 

have enhanced segmentation of local details and weak ability to discover the global meaning. For 

example, ASD shows superior performance on embedded-figure and block-design tasks (Figure 

2-1); (i.e., static target design within a complex large picture, including local details, where 

participants are required either to respond to what they only see or if they can see the global 

pictures).113  

 

Figure 2-1 Sample of embedded-figure task: (A) simple; (B) complex. 

 

However, related research where local/global were included in the task showed normal 

perception in the autism group.119 Hence, WCC fails to explain the diversity of results on 

global/local performance of individuals with ASD that included in different tasks. Therefore, 
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Happé et al118 proposed that global perception could be typical in autism, but autistic people have 

a biased “cognitive style” towered local details compared with the remaining population. 

However, other groups using specific tasks that require global integration of local details (eg, 

Random Dot kinematograms [RDK]) have reported impairments in global processing.166,167  

 

2.3.2 Enhanced perceptual function 

Mottron et al93 proposed the enhanced perceptual function (EPF) theory which suggested that 

superior function and increased independence of auditory and visual perceptual processes are 

responsible for the distinct pattern of cognitive, behavioral, and neural performance observed in 

autism. They also suggested that the use of “high” vs “low” level information processing to 

qualify autistic performance may be misleading. They explained the superior involvement of 

perceptual regions in so-called high-level tasks by the significant superiority of “perceptual” 

processing that impacts social and behavioral abilities in ASD. This theory, however, argues that 

people with autism are able to process global information despite any qualitative or quantitative 

deficiency in local-level processing. Therefore, the perception of global picture is a relatively 

optional characteristic in ASD, while it is mandatory in the general population.168  

 

2.3.3 Theory of mind 

Both theories (WCC and EPF) have been criticized as being either too narrow or too general to 

explain the full range of autistic symptoms, thereby giving rise to the theory of mind (ToM), 

which is currently the most dominant theory in ASD cognition. Corcoran169 explained the 

profound difficulties in social communication and stereotyped and even repetitive interests and 
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activities on “false belief ” tasks, where ASD participants showed less ability to “read” others’ 

minds or explain and solve or deal with social situations. The ToM does not explain the 

relationship between social integration processing and atypical visual processing, with the 

exception being difficulties in processing facial expressions.9 However, combining the ToM, or 

“mentalizing”, as Hill and Frith170 prefers to call it, and systemizing WCC and EPF should give 

rise to the core aspects of neurocognitive atypicalities in ASD.171 In other words, emphasizing 

the relationship between the ability of recognition and interpretation of all the details of a 

complex scene would reveal the core of cognitive functions in autism. Pellicano172 examined 

whether autism differences in cognitive skills at early developmental stages can change along 

with other emerging skills in various cognitive domains or whether these skills are developed 

independently. This study measured performance on several cognitive domains, including ToM, 

EPF, and WCC, in children 3-7 years old with autism, and then these were evaluated 3 years 

later in the same children performing the same experiments. The results showed that early EPF 

and WCC skills were longitudinally predictive of change in children’s ToM skills. On the other 

hand, cognitive performance between EPF and WCC was not linked over the 3-year period, even 

when variance due to age was taken into account. Verbal ability and nonverbal ability 

differences in cognitive performance remained stable as well. These results, however, agreed 

with earlier longitudinal studies on children with autism. Booth et al and Happè et al171,173  found 

temporal stability in individual differences within ToM, EF, and CC over a longer period. Again, 

there are few precise predictions about visual performance that come from these theories. 

Therefore, it is unclear if these visual abnormalities of local/global processing in autism are 

experienced due to abnormal neural connectivity and integration in the visual cortex or 

difficulties with visual attention and eye movements (especially for scene-exploration tasks). 
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2.4 Visual attention in ASD 

Visual perception is determined not only by the visual inputs, which refers to bottom-up 

processing, but also by top-down processing based on prior knowledge. Such knowledge 

develops through experience-dependent plasticity or during development, and includes 

contextual modulation of perception.174 Although our review selectively discusses findings from 

the viewpoint of local vs global processing in ASD, it is essential to understand top-down 

attention in autism. For example, Maekawa et al175 studied top-down and bottom-up visual 

information processing in adults with HFA using event-related potentials while presenting non-

social spatial attentional stimuli composed of black–white windmill patterns. They found that 

HFA subjects were faster, but not more accurate, in detecting the target. Event-related potential 

data, however, showed abnormal lower visual level processing in HFA individuals, specifically a 

reduced P1 amplitude and P300 latency (300–500 ms) which suggested that while findings 

suggested that  autism group has enhanced reliance on bottom-up attention,176 the abnormal P300 

finding indicated that top-down attentional processing was impaired in HFA. Typical behavioral 

and attentional perception to objects and non-social stimuli has also been found in related 

studies. For example, Loth et al177 suggested that the effect of prior knowledge on the conscious 

perception of degraded visual stimuli is intact for object stimuli, but not for face recognition. 

This pattern of results was even more pronounced in the results of eye tracking, which showed 

that the top-down effect on perception of faces was not only reduced but also virtually absent. 

However, research on attention the effects of ASD on allocation to social and non-social stimuli 

has yielded mixed results. Using eye tracking as an index of attention of main areas of gaze 

produced interesting results in this group.178 Findings showed that ASD individuals had overall 
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reduced social attention compared to TD individuals  and that diminished social attention may 

start as early as 6 months of age and remain constant across ages.178 However, it is possible that 

unchanged social attention might be generated from accumulated deficits of long term atypical 

experiences in adults, whereas data from children represent a time in which symptomatology 

profiles are still emerging.179 Tegmark added that social attention differences in ASD appear to 

be modulated by the complexity of the social context.178 Visual attention gaze patterns for 

different dynamic and static social/non-social stimuli in children and adolescents with ASD have 

shown that ASD groups exhibit atypical gaze patterns associated with social stimuli, e.g., they 

will gaze more at the body and give decreased attention to the eyes.180 All of this is correlated 

with the severity of social attention and hence social communication capabilities. Few studies 

have examined the factors of attention and gaze stability in adults with ASD, and results are 

controversial.181–183 That leaves the question open as to whether social attention abnormalities in 

ASD are due to specific difficulties with processing social information, are more related to visual 

processing abnormalities found in autism, or a combination of both. However, there have not 

been studies link this reduction in attentional engagement to enhanced perception of local details 

and/or to decreased global perception or both, which is found in autism. Therefore, further 

investigation is required to define the ASD-specific attention profile across social and non-social 

dimensions, and its relationship to motion-perception processing. 

 

2.5 Motion processing in adults and adolescents with ASD 

Interpretation of global motion scenes often requires integration of both spatial and temporal 

information conveyed by low order neurons with small directional receptive fields at V1 and 
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high order extended receptive fields, primarily in the Middle Temporal (MT), and Medial 

Superior Temporal (MST) area.184  

 

 

Figure 2-2 Motion perception stimuli. 

(A)RDK stimuli with differing coherence levels.(B) Point-light display generated by small lights attached 

to main points on the human body (actor), which create biological motion stimuli. 

 

Researchers usually use a single moving point or contour to study local motion processing, eg, 

discriminating direction of a moving sine wave grating with spatiotemporal variations in 

luminance over time, which refer to simple, first-order motion (luminance-defined), which can 
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be processed based on one point source, and this type of motion perception is enhanced for 

persons with autism.64 However, the ability to process second-order (texture-defined or non- 

Fourier) stimuli, which measures response to more than one point in space, has been found to be 

intact in autism.64 Global motion, on the other hand, can be studied using RDKs, where several 

dots or contours move relatively to one another, requiring the perceptual system to integrate 

individual local motions into a globally coherent motion (Figure 2-2 (A)).185 Usually, RDK 

stimuli are used to measure the motion-coherence threshold, where a certain percentage of dots 

move together (coherent signal) in the same direction while the remaining moving dots move in 

random directions (noise). The threshold for coherent motion is then defined by the percentage 

of coherent dots required to accurately detect the direction of coherent motion at some 

predefined probability level.186 Another form of the RDK task is the measurement of perception 

of FfM. This is generated from a number of dots that move in a specific spatial relationship to 

generate a structure or shape that can be defined only by the motion of the constituent dots. RDK 

is also used to study BM, which is the perception of human figures. These stimuli are generated 

by a few points of light that are attached to the joints of a moving human (Figure 2-2 (B)).187 

FfM and BM perception – which is another FfM task – involve both the dorsal and ventral 

stream pathways.188 Functional magnetic resonance imaging (fMRI) studies suggest that deficits 

in BM perception could support a theory of dorsal stream dysfunction if MT/V5 reductions are 

associated with activity decrease in the right-hemisphere posterior superior temporal sulcus 

(STS), an area particularly sensitive to BM.189,190 Studies of visual motion perception in autism 

across different ages and using different tasks have proposed normal first-order motion 

perception46,64 and abnormal second-order motion perception.8,191 Results of coherent-motion 

tasks, however, show mixed sensitivity in local/global motion in autism. While several studies 



 

43 

have reported decrease in performance in coherent global perception in autism,166 others have 

shown normal results when compared with a control group.160,192 A meta-analysis by Van Der 

Hallen et al152 suggested that it is not enhanced local visual processing nor a deficit in global 

visual processing, but a slow global processing that required longer time to respond. They also 

suggested that there were no direct effects of age, IQ, or sex on performance in autism. Long-

duration stimuli presentation or/and long response time seems to impact enhanced performance 

of participants with autism.8,193–195 In addition, Koldewyn et al45 suggested an effect of task 

paradigms on perceptual performance in ASD.162 Of all of the divergent results of research on 

motion perception in autism, the issue of individual differences in visual motion sensitivity 

among individuals with ASD using RDK stimuli remains unresolved, and is a very important 

paradigm for research on motion perception. 

 

2.6 RDK stimuli and autism  

Our review here is selective, focusing on studies that use RDK stimuli to investigate global 

forms of motion perception in adults and adolescents with HFA, because of the following 

observations: 

• Evidence of fully mature motion processing occurs after the age of 11 years196 

• Aspects of early visual processing, such as crowding and visual attention, are relatively 

mature after age 10 years and are positively correlated with severity level in autism9,197 

• Hadad et al162 addressed the parameters affecting global motion perception in individuals 

with abnormal early visual input, such as in ASD, from infant stage to adult 
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• RDK stimuli are particularly suited to assessing global motion processing; however, 

different paradigms of RDK (eg, signal/noise, FfM) can integrate different cues and thus 

subserve the perception of different types of movement.198 

Moreover, we also discuss findings from studies on children with autism for comparative 

purposes, since studies that examine those specific paradigms in adults with autism are not 

available in the literature. 

2.7 Local/global perception in ASD: study findings 

The perception of global motion is of interest. Table 2-1 summarizes some of the data that have 

been accumulated over the recent years in studies of motion perception in adults with ASD. 

However, measurements of the sensitivity to spatial and temporal factors of global motion are 

not always controlled across studies. 
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Table 2-1 Psychophysical studies on global motion perception in adults and adolescents with 

HFA. 

  Abbreviations: AS, Asperger’s Syndrome; ASD, autism-spectrum disorder; AQ, autism 
quotient; BM, biological motion; FLD, full-light body; FM, form from motion; GMT, global 

motion task; HFA, high-functioning autism; MC, motion- coherent; OF, optic flow; PLD, 

point-light display; RDK, random-dot kinematogram; TD, typical development.
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Therefore, contradictory results among comparable studies of motion perception in autism have 

been found, hence, make it very difficult to draw firm conclusions. For example, Tsermentseli et 

al199 compared motion sensitivity between adults with autism and adults with dyslexia and a 

control group. They used Spencer and O’Brien’s206 motion paradigm, which revealed higher 

coherence thresholds in children with ASD . Tsermentseli et al199 found that adults with autism 

had a high motion-coherence threshold, but only for individuals with HFA and not AS. On the 

other hand, Atkinson201 found higher thresholds for coherent motion in individuals with autism 

using an RDK stimulus. However, in this study the autism group was composed mostly of adults 

with AS (n=12; HFA, n=1). In both studies (Tsermentseli & Atkinson) 199,201 the AS group had 

similar full-scale IQ and mean age (FIQ: 107.8, age: 23.3 years, and FIQ: 106.2, age: 30.9 years, 

respectively). Tsermentseli et al used Glass pattern task with a target area that formed circular 

patches defined by correlated dot triplets. The dots of the circular batch moved either to the right 

or to the left of the screen among randomly oriented dots (Figure 2-3). 

 

 

Figure 2-3 Image of Schematic of stimuli used by Tsermentseli et al,  for form coherence (left) 

and motion coherence (right).  
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On the other hand, Atkinson used white RDK dots that moved on a black background to the left 

or right of the screen. Parameter differences that affect global motion perception in adults with 

autism have been discussed elsewhere.162 For example, dot lifetime (limited or unlimited, which 

affects the ability to track individual dots) and speed have been found to elevate the threshold of 

coherent motion in autism (Table 2-1). However, in the study by Atkinson and Tsermentseli, dot 

lifetime might not have created a difference, since the stimuli duration in both studies was very 

short (~250 ms).207 Also, the effects of speed may in fact increase the threshold for motion 

coherence if the dot spatial displacement is large, which was the case in Tsermentseli et al,199 

even though no differences in AS were found. Van der Hallen et al152 suggested that slow global 

processing in individuals with ASD was the cause of the different findings, and that ASD 

participants need more time to respond. However, in both studies in our example, the time given 

to participants to respond was long (Table 2-1). One possible explanation for differences in 

findings between the studies of Atkinson and Tsermentalisi, therefore, might be the modified 

psychophysical task used. Glass patterns are primarily random stimuli that generate perception of 

global motion. Glass patterns with concentric structure are considered to be easier to perceive 

than other types of correlated dot images (e.g., radial and translational patterns).208 Evidence 

from fMRI204 shows that Glass patterns are processed in two stages: primary visual area V1 and 

higher-order areas of the MT area, yet the sensitivity to curvature and global form present in 

Glass patterns exist as early as the primary visual cortex. This early sensitivity could actually 

explain the high performance of AS patients in motion coherence formed by the Glass pattern, 

since the primary visual area is found to be intact in autism.193,209 Interestingly, Tsermentseli et al 

were the first to report impaired form processing in adults with AS. The authors suggested that 

more tightly integrated network among the dorsal and ventral streams in the visual system may 
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cause abnormal response. Therefore, the evidence from this study does not support the “dorsal 

stream vulnerability” hypothesis, since most experiments have shown that ASD subjects had 

high motion-coherence thresholds, but intact performance on form coherence tasks.192,194,206 

Impaired motion perception in autism may result from diffuse, a specific neural dysfunction of 

early neuro-integrative mechanisms, which lead to deficits in the perception of complex 

stimuli.210 Robertson et al8 employed fMRI to verify this theory, and found slow responses to 

elemental visual information at V1, which presumably alters the rate at which those local details 

are integrated into a global percept. The results were significantly different with shorter stimulus 

duration in the ASD group when compared with the control group, indicating that integration of 

local signals into global percept is delayed in ASD.8 This results agrees with previous results of 

Robertson et al,185 which showed short-duration stimuli (200 ms) decreased the performance of 

coherent motion in autism, but intact global processing was evidenced in ASD with longer 

stimuli presentation (e.g., 400 and 1,500 ms).185 Typical functional brain areas have been 

reported in other fMRI studies of motion perception in autism and control groups.192,193Also, 

impairment in function or performance in one or more tasks is prevalent in autism studies. For 

example, limited dot lifetime increased threshold, as opposed to “infinite”-lifetime dots,202 and 

slow dot speed (1.5°/second) reduced coherent perception, as opposed to fast speed (6°/second; 

Table 2-1). One could argue that the contrasting results can be attributed simply to spatial stimuli 

parameters. However, in all these studies (Table 2-1), a direct comparison to match age, gender, 

and IQ control groups revealed a decrease in coherent motion threshold in autism. A different 

factor, e.g., diagnostic variance among ASD populations, can also be considered. Spencer and 

O’Brien206 divided their participants into those with HFA and those with AS, and found that 

motion-coherence thresholds differed significantly from controls for the HFA group, but not the 
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AS group. Milne et al211 also found that only a subgroup of their ASD population (about 20%) 

had motion-coherence thresholds outside the typical range. This type of meta-data analysis 

would help in comparing among autism-syndrome subgroups and classifying the severity of 

coherent motion deficits among these groups. However, with the new criteria of DSM-V it will 

hard to observe such differences, and it might reflect in the high variances among the autism 

group.  

 

2.8 Integration of FfM and BM in ASD 

As noted previously, FfM and BM, which is a form of FfM, require spatiotemporal integration of 

local motion signals. Adding to its complexity, BM entails dynamic, hierarchically arranged 

pendular motions, which when viewed under optimal conditions group together to produce the 

global perception of biological activity. The processing mechanisms of BM and FfM are still 

being investigated, but evidence points to multiple visual brain areas being involved. It has been 

shown, for example, that the perception of BM activates occipital regions of the STS besides 

MT+, while coherent motion mainly activates the MT–MST complex.212 This suggests that BM 

relies on input from both dorsal and ventral areas of the extrastriate visual cortex.213 However, 

FfM using arranged patterns, such as concentric Glass patterns, activates a number of brain 

areas, such as fusiform/lingual gyri, middle occipital gyrus, and intraparietal sulcus.213 

Interestingly, the fact that all three motion-processing mechanisms are beyond V1 suggests that 

V1 response is determined by local spatial elements.214 Comparison across these three types of 

display may thus be informative. Studies providing a direct comparison of performance across 

the different tasks in adults with autism, however, are minimal. Jones et al203 tested visual 

processing of CM, FfM, and BM on a group of adolescents with autism compared to a control 
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group. All three motion stimuli were displayed with a random-dot (noise) background, which 

varied across the tasks. A psychophysical staircase method was used to determine the threshold. 

In this methodology, three noise dots were added after every two consecutive correct trials, and 

an incorrect response resulted in three noise dots being removed. In all three tasks, the dots ran at 

the same speed (Table 2-1) and had a limited lifetime (40 ms). The results showed no differences 

between the ASD group and the TD group in any of the three tasks. However, within-group 

differences were found among the ASD group. Autistic individuals with low IQ performed worse 

on all three visual processing tasks, but they were significantly worse in the BM task. This study 

suggests that these differences happened due to difficulties between the tasks and the stimuli, and 

also the diversity of symptoms defining the ASD disorder. On the other hand, Saygin et al194 

found no group differences between ASD and TD groups or within the ASD group processing 

BM and FfM stimuli. Compared to the Jones et al study, the Saygin et al study was conducted on 

ASD adults (mean age 33.75 years) while the Jones et al age group was younger (mean age 15.6 

years). Although evidence of the developmental course for sensitivity to coherent motion is 

found by the age of 11 years, we could consider that ASD adolescents with low IQ may “catch 

up” with their peers without ASD at the adult stage. In addition, in Jones et al, the number of 

participants was larger, which allowed more diversity in the ASD syndrome among the group. 

This explanation may better predict the variable findings across both studies but cannot 

necessarily indicate typical neural processing in ASD. Motion-perception deficits have been 

found in individuals with developmental disorders, e.g., Williams syndrome215 and dyslexia.216 

However, studies comparing perceptual difficulties between people with abnormal development 

and autism have shown distinct differences in processing CM and FfM in autism, even in those 

with high functioning level.199 While several studies have found intact FfM in ASD, BM was 
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more distinctly affected.160,191,192,201 Using fMRI, Koldewyn et al,192 for example, demonstrated 

that an autism group showed lower brain function during the BM task compared to a TD group. 

Brain activity in BM in the TD group was notable in a large area in the bilateral parietal cortex, 

primarily along the intraparietal sulcus, right dorsolateral prefrontal cortex, centered in the 

inferior frontal gyrus, a cluster in the anterior cingulate cortex, and a region in the right posterior 

STS. The autism group showed activity at an area in the bilateral inferior temporal cortex, 

including cortex in both the lateral occipital and fusiform gyrus (Figure 2-4). 

 

 

Figure 2-4 Activated areas for biological and coherent motion in ASD compared to TD.  

 

Interestingly, this activation increased when noise level was reduced in the BM stimulus and vice 

versa. The results agreed with a previous study of Koldewyn et al,191 where they used a 

psychophysical task to investigate CM and BM in adolescent autistic subjects. Their results 

showed increased threshold in BM and intact FfM performance, as well as decreased sensitivity 

to CM. Impairments in processing both BM and CM have been shown in autism.201 Suggesting 
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abnormal neural mechanisms behind processing the BM, which include processing of 

local/global details and integration between multiple visual neural areas, particularly at the 

STS.217 The STS has an important role in processing body and facial movement,218 and may be 

involved in the interpretation of any social signal with a temporal component. As such, those 

with ASD may be fairly unaffected in their perceptual processing of BM per se, but exhibit 

specific impairments in emotion-related judgments and emotion processing of the point-light 

displays (PLDs) that are used as BM stimuli (Figure 2-2(B)).201,217,219,220 Hubert et al221 found 

that those with ASD were able to detect BM given sufficient time, but they were not as good at 

emotional PLDs. Parron et al222 also found differences in PLD with respect to emotional 

displays. Parron et al’s study, however, suggests that adolescents with ASD are able to group 

points of light related to inanimate objects as well as TD individuals suggesting that global 

processing is intact. On the other hand, when these points have an emotional content, the 

performance of ASD group is decreased. Recent studies have related genetic influences on BM 

perception in autism.223,224 It was found that sensitivity to local BM cues was negatively 

correlated with autistic traits through the dimension of social communication, with the 

covariation largely mediated by shared genetic effects. Therefore, to date the literature has 

provided a rather contradictory picture, due to the different paradigms, different variables 

assessed, and heterogeneity of participants, and thus more studies are needed to clarify these 

differences. 
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2.9 Specific Trajectories Of Motion Integration 

2.9.1 Role Of Neural Noise 

In processing complex spatiotemporal visual stimuli, neural “noise” often refers to the variation 

in neural responses that typically reduce the detection or discrimination of the signal and is 

parameterized by the signal: noise ratio. Sometimes, neural noise can enhance perceptual 

detection and discrimination via “stochastic resonance”, a property of nonlinear systems in 

which addition of noise can facilitate detection and discrimination of subthreshold signals.225 

However, in autism, an emerging hypothesis postulates that excessive internal noise is a key 

factor influencing perceptual abilities.226 Reduced perceptual efficiency in ASD that is due to 

both increased internal noise and bad external noise filtering while highlighting internal noise 

has implications for perceptual, behavioral, and cognitive abnormalities. Perceptual learning 

often refers to the exclusion of environmental noise (external noise) and reduction of additive 

internal noise, thus effectively enhancing the stimulus and/or multiplicative internal noise 

reduction.227 In individuals with ASD, there is growing evidence that increased internal noise 

might play an important role in the reduction of their global visual perception.9,228 Recent results 

from a group of children and adolescents with ASD showed both elevated internal additive noise 

and reduced ability to filter out external noise from stimuli, accompanied by no evidence for 

abnormalities in internal multiplicative noise.226 Furthermore, there was an association between 

the level internal additive noise and the severity of core behavioral symptoms of ASD. The 

experimenters considered the factors that can reduce the ability to extract task-relevant structures 

from visual inputs, such as signal: noise ratio and stimulus complexity, which can influence 

those with ASD. Zaidel et al228 suggested that heightened sensitivity to stimulus noise, rather 
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than integration deficits, may characterize ASD. They explain that ASD individuals have better 

performance when vestibular motion was paired with complete visual noise than processing 

visual stimuli information per se, which may overload their visual integration. Related studies 

reveal elevated internal noise in autism measured by blood-oxygen-level-dependent229 and 

electroencephalograpy230 responses to sensory stimuli. Contrary to these studies, others have 

suggested the opposite possibility of reduced internal noise in ASD, which would enhance 

detection and discrimination of local details at the cost of global ones.225 Notably, a number of 

studies have challenged the “noisy-brain” hypothesis in ASD by demonstrating typical levels of 

variability in evoked electroencephalography231 responses to sensory stimulation, as well as in 

psychophysically estimated internal noise.232 At the core of this controversy lies the issue of 

whether this explanation applies to data reported in this review regarding the role of internal 

noise in directly affecting motion processing in ASD. A related question is does internal neural 

noise reduced as a function of age in autism, thus improving visual processing? 

Research on age-related internal noise has shown increased neural noise as a function of 

age,233 which may result in reduced visual processing performance in the elderly. However, to 

date there have been no studies comparing adult internal neural noise in autism to younger age 

for autism or TD groups. The mechanism(s) underlying elevated internal noise in ASD is also 

under debate. A number of neural models suggest that there is a proliferation of neural 

connections in the sensory cortex of individuals with ASD,234–236 and thus misfiring synapses 

could easily result in noisy signals in the visual system. While it is possible to argue that adding 

a theoretical hypothesis to the conflicting theories of visual processing in ASD could be “noisy”, 

we suggest that elevated internal noise and neural variability may explain some of the complex 

phenotypes in individuals with ASD.237 This is further complicated by the fact that estimates of 
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neural variability are based on responses to noisy task stimuli, making it difficult to estimate the 

degree to which internal noise limits perceptual performance in ASD from external noise and/or 

both. 

 

2.9.2 Role of Excitatory/Inhibitory Neural Responses 

In typical populations, a “spatial suppression” is a counterintuitive behavior resulted in decrease 

the sensitivity to a motion stimulus when size and contrast motion increased. This is also affected 

by the contrast “gain control”, which is an inhibitory mechanism to prevent overresponse to 

high-contrast stimuli.238–240 These two visual responses are referred to as the excitatory/inhibitory 

(E/I) neurochemical balance in the context of visual motion perception. Abnormally weak spatial 

suppression, which is reflected in reducing the effect of increasing stimuli size, has been found in 

individuals with schizophrenia, as well as elderly people.241,242 Foss-Feig et al46 studied whether 

there were abnormalities in response-gain control in a group of children and adolescents with 

ASD compared to TD. They varied in size and contrast of drifting grating stimuli, using a two-

alternative forced-choice method in a direction-discrimination task. The results showed that both 

groups exhibited increased threshold with increased stimulus size, and there was no overall 

group-performance difference for high-contrast levels. Interestingly, the autism group showed a 

twofold-enhanced performance for all stimuli sizes with high contrast than the TD group. For 

low-contrast stimuli, however, there were no group differences, and there was no correlation 

between contrast and size sensitivity with severity of autism syndrome for both contrast levels 

used in the experiment. This contrast-dependent enhancement of motion perception in ASD is 

qualitatively consistent with impairments in response-gain control, whereby inhibitory neural 

responses are atypically increased at high contrast. Notably, both response-gain control and 
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receptive-field size are affected by the E/I balance in the brain.243 Schauder et al195 replicated the 

Foss-Feig et al study, but examined stimulus-size changes affecting gain control in autism. Their 

results revealed low sensitivity in participants with autism to small stimuli, which suggests large 

receptive fields in ASD and elevated excitation levels. However, these findings agree with the 

results of a previous fMRI study in adults with autism.244 Other studies ruled out E/I imbalance 

in the visual system of those with autism, but suggested that such an imbalance, if it exists, is 

likely to be small and thus does not explain the enhanced visual processing found in autism.245 In 

particular, contrast sensitivity and first-order visual processes have been found intact in 

ASD.94,98,209 Moreover, findings in E/I studies on autism do not really agree with the idea of E/I 

imbalance, which suggests that reduced center-surround inhibition affects weak spatial 

suppression that results in decreased effective stimulus contrast.246 A hypothetical model has 

linked the E/I balance to γ-band activation, which is found in many visual cortical areas that are 

induced by different stimuli or tasks. This model proposes a temporal synchronization of neural 

activity for integration of object features across different modalities.247 Based on this model, 

Peiker et al248 suggested that altered γ-band modulation may result in high excitatory and weak 

inhibitory interactions during brain processing of visual inputs is also supported by the evidence 

of epilepsy in ASD. Therefore, disturbance of neural modulation at center-surround antagonism 

in the high-order visual cortical (eg, MT/V5) might explain the enhanced response gained in 

ASD. However, the conclusion that this theory can fully explain the behavioral, cognitive, and 

perceptual differences observed in those with ASD is still weak.246 
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2.10 Conclusion 

We have detailed experimental evidence of deficits in visual processing in high-functioning 

adults and adolescents with ASD. Although different studies suggest different deficits, some 

important conclusions about the critical role of several factors in determining abnormal visual 

processing in autism can be synthesized. One possible reconciliation of the mixed and often 

contradictory data is the diversity in neural brain mechanisms in processing motion perception 

for different paradigms of motion stimuli. As explained earlier, RDK stimuli are widely used to 

evaluate motion perception in different forms, eg, global or FfM. Each of these stimuli methods 

may be processed differently in the brain. In particular, those methods that are processed through 

the integration of the MT+ complex and other visual areas, such as the STS, will result in 

different performance. Adding to this, differences in stimuli parameters make it difficult to 

compare results of one study to another. For instance, two parameters defining speed–spatial 

offset of signal dots in an RDK and the temporal interval between sequential animation frames, 

as well as their interaction with density, have an impact on the threshold for coherent motion in 

HFA.162 These often-uncontrolled factors may also account for the inconsistent findings in adults 

with autism. Encouraging for future studies of motion perception in adults with ASD that 

consider the issues, for example, stimulus parameters that should be used for specific neural 

integration purposes, which activate particular visual neural areas in normal individuals and 

those with ASD.  

In the second part of this review, we addressed studies that tested specific trajectories that 

may impact integration of motion perception in individuals with autism. Recent research allows 

the definition of neural noise sensitivity in ASD and offers some insight into the mechanism of 

integration of motion perception. Studies demonstrate a worse outcome after increasing internal 
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neural noise that regulate hyper/hyposensitivity within the same visual modality. We also 

discussed these differences in the context of gain control modulation, which might also account 

for enhanced or decreased activation to different impairments presented in ASD. In summary, 

studying motion perception using psychophysical methods opens a new vista in autism studies. 

Also, it is important to take into account all the factors mentioned herein, such as matching 

stimuli methods that account for similar specialized neural pathways, in order to understand 

better the mechanisms by which different areas of visual input are recruited to mediate motion 

skills. 
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3.1 Overview 

3.1.1 Background  

The controversial results of  local /global visual processing in individuals with Autism Spectrum 

Disorders (ASD) are major areas of interest. We investigated -for the first time- responses to 

combined local/global visual motion stimuli by embedding local motion details a surrounding 

global motion stimulus to better simulate the experience of an autistic individual under natural 

seeing conditions. 

3.1.2 Methods:  

We used the method of constant stimuli and Random Dot Kinematograms (RDK) to measure 

global coherence thresholds in one task. A second task included global coherent perception as 

well as the percept of an embedded defined shape of Form-from Motion (FfM). Twenty-eight 

individuals with Autism Spectrum disorder (ASD) and a Typical Developmental (TD) group 

participated in the study. 

3.1.3 Results:  

Although adults with autism showed comparable performance in reporting global direction 

similar to the control group, their ability to process global properties declined dramatically when 

FfM shape was introduced. In addition, ASD required more time to respond to global coherence 

even when their performance was comparable to that of the control group. 
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3.1.4 Conclusion  

We describe several hypotheses to explain the results and discuss whether motion perception in 

individuals with autism is locally oriented or is a complex characteristic of motion information 

processing in this population. 

3.1.5 Keywords:  

Autism; visual motion; perception; Form-from Motion; global motion, random dot 

kinematograms. 

 

 

 

 

3.2 Introduction  

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in 

social communication and the presence of restricted and repetitive behaviors.1 The ASD 

population shows a high prevalence of cognitive and sensorimotor impairments in comparison to 

the typically developed population (TD), as well as visual functions disorders.155 Psychophysical 

studies have distinguished between local motion processing- i.e., sensitivity to the direction of 

motion of a moving element- and global motion processing- i.e., sensitivity to the overall motion 

of several local elements.249,250 Measurement of global motion perception using Random Dots 

Kinatograms (RDK) involves integration of local details into global ones.251 Results of 

measuring global motion perception using coherent motion in ASD have been controversial (see 

reviews by Bakroon & Lakshminarayanan,144 and Simmons et al9). Nevertheless, ASD has been 
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associated with impaired face perception,252 atypical biological motion perception,220,221 and 

enhanced perception of local details.64,205,232,253 However, findings of enhanced local details in 

autism are largely specific to processing of static stimuli.113 Psychophysical studies show 

superior performance in ASD relative to controls when local information is most salient to a task 

and poorer performance when extracting global information is required (for more details see 

Happé & Frith, 1993,254 and Happé et al).255 Mottron et al160 found that adults with autism are 

more profound in search for embedded figures rather than isolated stimuli compared to control. 

Similarly, in the study by Koldewyn et al,45 found that children with autism showed the same 

enhanced ability in a hierarchical stimuli search task, but were able when instructed to grasp the 

global picture. On the other hand, results from Form-from Motion (FfM), which is generated 

from a number of dots that move in a spatial relationship to form a structure or shape, has been 

found to be intact in autism most of the time.194,256  

Most experiments that have examined ASD-related changes in motion perception have studied 

global motion perception separately from FfM. However, most of what we experience every day 

is a combination of both local and global motion information. For example, an observer gets a 

sense of the direction of a moving car turning right with a background of number of cars heading 

in one or different directions, in addition to the random motion created by the local motor actions 

of pedestrians and/or bikes. Perceiving complex scenes such as this requires integration of form 

motion information as well as global motion at the same time. So what exactly is the difference, 

if any, how people with ASD process local details compared to global ones? To answer this 

question, Bertone et al64 argued that studies where motion and form are assessed in autism, have 

used different paradigms that are not equivalent. For example, static visual forms i.e., images and 

pictures, is less complex in nature comparing to the complex dynamic of motion stimulus and 



 

64 

therefore dorsal and ventral functioning are not assessed at the same level of neural complexity. 

Indeed, Koldewyn et al191 compared form and motion processing in autism, but the methods they 

used were not the same. The form stimulus was a non-noisy Glass pattern and the motion stimuli 

was an RDK composed of dots that moved horizontally against a noisy field. It’s not surprising, 

therefore, the results came out contradictory, because participants could use different strategies 

to respond to form than motion. Imaging studies imply that while coherent motion may mainly 

activate areas of V3A and V5/MT,257 static form information activates a number of brain areas 

including fusiform/lingual gyri (FG/LG), middle occipital gyrus (MOG), intraparietal sulcus 

(IPS). Braddick et al249 suggested that form and motion coherence are both processed by 

independent networks, but these are not necessarily dorsal/ ventral segregated. Murray et al,258 

however, added that Superior Lateral Occipital (SLO) region may be important for integrating 

shape and motion cues, and there may be sub-regions in SLO specialized for processing the two 

types of cues at the same time. These divisions in visual areas activation would make it difficult 

to spiculate the reason(s) behind any bias towards local processing in those with autism, 

particularly, when global perception can be invoked when it is required, and when participants 

with autism are given longer time to respond.160 Despite the fact there have been several separate 

experiments investigating form and motion processing in ASD, there has been no study that 

involves both types of information in one single motion task. In the present study, we employ a 

new stimulus paradigm that allows a better matching of the task processing requirements. This 

also enables us to examine whether performance of form and motion tasks are correlated in 

individuals with autism. 
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3.3 Methods  

3.3.1 Participants 

We tested 16 adolescents and adults (age range 16-40 years) with ASD, and 15 Typical 

Developmental (TD) control participated in the study. The autism participants were recruited 

through the Autism Ontario website, /Waterloo/region 

http://www.autismontario.com/client/aso/ao.nsf/Waterloo/waterloohome. Control participants 

were recruited from the University of Waterloo and the local area. Groups were matched for age, 

gender (5 female and 9 males in each group) and ~ academic level. ASD participants above the 

age of 16 years either had finished their college education, or were enrolled in graduate studies. 

Autism participants provided their medical reports assessed by an experienced clinician. Most of 

these participants were diagnosed at childhood based on standardized assessment procedures, 

such as Autism Diagnostic Observation Schedule (ADOS-G), The Childhood Autism Rating 

Scale (CARS), and The Autism Diagnostic Interview – Revised (ADI-R), and there were no 

updated reports subsequently. However, all autism participants completed the Autism Quotient 

Test of Baron-Cohen et al,259 a 50-item self-administered questionnaire targeting sub-clinical 

autism-like traits. The AQ test was completed online, and mean score was 30, +/- 2.7.  One 

participant from the autism group who scored 35+ was excluded from the study, who also has 

been found to have a sibling with severe autism. Two participants, one from the autism group 

and one from the control group were removed from the data analysis because of incomplete task 

completion. Exclusion criteria for the autism group included family history of ASD98 or related 

developmental disorder, any known comorbid medical conditions, and/or under any psychiatric 

medications in the previous six months before the start of the study. Controls were excluded 

http://www.autismontario.com/client/aso/ao.nsf/Waterloo/waterloohome
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from participation if they had ever received mental health treatment, taken psychiatric 

medications, been diagnosed with a genetic or neurological disorder, or had brain trauma/ injury, 

or had a sibling with autism. All participants had normal or corrected-to-normal visual acuity, 

contrast sensitivity, and depth perception (Table 3-1).  

 Control (SD)* ASD (SD)* Group comparison 

Age range (16-40 years) 25.92 (6.45) 26.75 (6.74) p = .79 

Visual Acuity (log Mar) -0.13 (0.11) -0.16 (0.09) p = .44 

Contrast test (log Mar) 1.93 (0.18) 1.82 (0.12) p = .06 

Stereo-acuity  (second of 

arc) 

20.71 (1.81) 21.35 (7.53) p = .11 

Table 3-1 Data on selected visual functions of experiment participants. 

* indicates standard deviation. Note: visual acuity and contrast sensitivity were evaluated using the 

Freiburg test,260 and Stereo-fly test were used for depth perception. 

 

Written consent was obtained from all participants and/or their parent/guardian, in accordance 

with the protocol approved by the University of Waterloo Research Ethics Committee and the 

Research Ethics Board at Wilfrid Laurier University. 

3.3.2 Apparatus and Stimuli 

We used the RDK global coherence stimulus in two tasks: (1) a Coherent Motion (CM) task, 

where coherence level was varied and the subject had to detect the global direction of the 

coherent dots; and (2)a Coherent Motion/Form-from-Motion (CM-FfM) task, where the FfM 

stimulus consisted of one of four different shapes embedded in the global RDK task. Both 
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stimuli were computer generated using Python software and displayed on a MacBook Pro-laptop 

(15.4-inch, 2880 x 1800 pixels, 60 Hz refresh rate), which was gamma-corrected. The stimuli 

were presented within a borderless square window at the center of the display (4.8º × 4.8º), at a 

viewing distance of 100 cm. The stimulus consisted of 180 white dots (dot diameter: 0.4º, speed: 

2.8º/s) displayed on a gray background (Figure 3-1) with 100% contrast.  

 

  

Figure 3-1 Stimulus display used in the experiment 

Left: CM task included standard RDK stimulus, Right: CM-FfM task included global RDK and the 

embedded shape (rectangle in this case). The lines show the direction of the coherent motion and the 

level, the remaining dots represents the noisy dots that run in different directions. All line are for 

illustration purposes and were not presented during the stimuli. 

  

The average dot density was roughly consistent across each task as well as between both tasks. 

Stimulus duration was 500 ms to prevent the use of serial search strategies in autism group.159,253 

A red fixation point appeared in the center of the screen during stimulus presentation to prevent 

participants from following one dot and thus perceive the global direction of the dots. However 

this fixation point disappeared in in-between trials to prevent an afterimage. Also, all dots had a 

limited life time, which means that each dot was presented for 40 ms and then disappeared with 
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subsequent reappearance in a different place. If the dot reached the edge of the square display 

window before the end of lifetime, it was ‘‘wrapped-around’’ so that it immediately reappeared 

at the opposite edge of the window. We chose these parameters of dot size, dot density and dots 

speed based on the results of a pilot study to ensure that (1) all dots were clearly and individually 

visible to the observer; (2) no dots overlapped and each dot was presented with the same 

displacement from other dots for both signal and noise dots; and (3) that there was a low 

probability of ‘‘false-matches’’ occurring between coherently displaced dots and shape dots in 

the CM-FfM task. All psychophysical testing was completed in a single session, with breaks 

taken as needed. Each participant completed the CM task first then the  CM-FfM task. The task 

order was consistent between individuals and was counterbalanced within and between 

participant groups. Both tasks were conducted under photopic conditions and the participants 

used arrows on a key pad to respond to global direction with their dominant hand. The average 

time for completion of each task was 25 min with no breaks.  

3.3.2.1 CM Task  

Participants completed 2 blocks of 16 trials at each of 9 different coherence levels for a total of 

288 trials in each task. On each trial, a fixed percentage of dots (0%, 5%, 10%, 20%, 40%, 50%, 

60%, 80%, 100%) moved in a coherent direction (left, right, up, down) for the duration of the 

trial (Figure 3-1). Coherence in the display was defined as the percentage of dots moving in the 

same direction, rather than the ratio of noise percentage assigned by the Brownian movement of 

the random dots. We set the high coherence levels (for ex. 60% up to 100%) for performance 

comparison with the CM-FfM task at low signal/noise ratio. The 0% condition, however, was set 

for direct measurement of lapse rates “the rate of random errors made by participants measured 

at the tail-end of the psychometric function”, also to compare between high noise level (0%) and 
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zero noise level (100%) particularly at defining the shape in the CM-FfM task.191 Coherence 

level and dot direction were randomized across trials. Participants performed the standard four 

alternative forced-choice motion discrimination task,261 indicating the global direction of the 

coherent dots. All participants were instructed to keep their heads still on a head/chin rest and 

fixate on the fixation point for the entire duration of the time the stimulus was present. The main 

experimenter was monitoring participants performance throughout the test, but no feedback was 

given. All subjects had 10 trials practice run before the beginning of the task and all questions 

regarding the test were clarified. 

3.3.2.2 CM- FfM Task  

Here, the same protocol as described in the CM task was used; however, in this experiment, an 

FfM defined shape was embedded in the stimulus. The FfM shapes consisted of dots arranged in 

four shapes (triangle, square, circle, rectangle) and moved across the four diagonals of the 

stimulus aperture. Each shape subtended 3.45º at the test distance (Figure 3-1) and was 

composed of the same number of dots (30 dots) while the remaining 150 dots were either CM 

direction signal dot or noise dots, (including the dots that were present inside the central area of 

the shape configuration). Overall stimulus density was equivalent to the CM task, thus ensuring 

task comparability. As in the CM task, the global direction of each trial was varied randomly 

(right–left–up–down). We ensured that the shapes moved at a 45º angle from the coherent dots 

direction in each presentation, and was randomized throughout the task among the four 

diagonals. Participants were asked to respond to the direction of the coherent dots first by using 

the keypads, and then verbally name the shape they saw if they managed to see any, or otherwise 

guess. There was no feedback during the experiment. However, all participants were given 10 

practice trials session and were informed about the shapes that were used in the task before they 
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started. It is important to mention that the shapes were actually perceived only when the apparent 

motion of the shape was processed.  

3.3.3 Threshold Estimation  

In both tasks, psychophysical thresholds were measured using the method of constant stimuli, in 

which 288 trials were randomized for 9 coherence levels. We fit a logistic function using custom 

Python scripts to define the threshold of each individual averages of correct responses, weighted 

by the number of responses at each coherence level. To obtain best fit, a SciPy tool for Python 

was used to best fit a sigmoid curve, constrained to values between 0 and 0.90,262 assigned level 

was set at 25% guessing rate and threshold was estimated at 37.5%. we see that the cutoff at this 

level is consistence with previous finding using RDK stimuli for motion at being around 

37.5%.263,264  

Response time was also collected and was defined as the time between stimulus offset and the 

participant’s response. An average of the RT of the correct trials was taken for each coherence 

level and for each participant, then we estimated overall performance based on grand average of 

RT. Outliers in the RT were all points more than 100 ms above the  mean RT were removed and 

considered as rest time. As long as this “rest time” didn’t occur more than 3 times per task, test 

will be retaken in other session. However, no participants required a retake of the test in both 

groups. In CM-FfM task, coherence threshold was estimated using same protocol as above. 

However, responses to the FfM shapes were collected verbally and in writing (and also audio 

recorded). Correct percentage was calculated for each coherence level of each participant, and 

then an overall percentage was calculated. 
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3.4 Results  

The minimum number of coherent dots that participants could detect was estimated at 37.5% 

percent correct, which is above the guessing rate. Coherence Threshold (CT), was measured in 

288 trials for each condition as described above. The average for CM and CM-FfM thresholds 

were used as dependent measures in a mixed model repeated measures ANOVA within-subjects 

factor (CM, CM-FfM), and between-subjects factor condition (ASD, TD). Multiple pairwise T-

tests were also used to measure main differences between groups. Compared to controls, 

participants with ASD made significantly less accurate judgments about the direction of global 

motion when the FfM shape was embedded in the stimuli. On the other hand, both groups 

showed comparable performance to direction of heading when shape was not included (Table 3-

2). 

 CM CM- FfM FfM correct response 

TD  11.86, (2.16)*     18.59, (5.62)* 79% 

ASD 13.58 (2.54)* 30.65, (9.46)* 94% 

Table 3-2 Mean threshold scores, (standard deviation in the brackets)* 

FfM information showing mean percentage of correct responses. 

 

 Individuals with ASD correct responses to the shape fluctuated between 90% and 100% at all 

coherence levels, while the control group average correct response rate increased in parallel to 

the increase of coherence level of the global motion, hence decrease noise level. Response time 

to global direction, however, increased for both groups in the CM-FfM task compared to CM 

task. While individuals with ASD took longer time to response to global direction in the CM-

FfM task compared to controls. 
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3.4.1 A Typical Bias Toward FfM Information and Neglect The Global Motion In ASD 

  

Figure 3-2  Psychometric curve of CM and CM-FfM tasks in both groups 

indicating the average correct responses at different coherence levels. Error bars: SEM 

 

From the ANOVA results, statistically significant interaction was found between motion task 

type and groups (F(1,26) = 16.232, p = 0.0001), indicating that the effect of embedding the shape 

in the global coherence task differed between the ASD and control groups (Figure 3-2). The two-

way interaction is illustrated in Figure 3-3: the effect of embedding the shape was greater in the 

ASD group than the control group, and the group difference was larger in the CM-FfM task than 

the CM task. A detailed pairwise statistical analysis results showed no significant difference 

between thresholds ASD (mean = 11.86 SD= 2.16) and TD group (mean= 13.58, SD= 2.54) in 

the CM task (t (25.336) = -1.930, p = 0.065), but a significant difference between thresholds in 

the ASD (mean = 30.65 SD= 9.46) compared to TD group (mean= 18.59, SD= 5.62)  in the CM-

FfM task (t (26) = - 4.1, p < 0.001) . 
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Figure 3-3 Compression of overall coherence threshold in CM and CM-FfM tasks between both 

groups. Error bars: SEM  

 

The Proportion of correct responses to the shape also was significantly different between groups: 

individuals with ASD showed higher percentage of hit responses (mean=94%) compared to 

control group (mean=79%) (Fig. 3.4). A chi-square test found a significant difference between 

the two groups and the frequency of correct response to the shape, X2 (1, N = 200) = 9.634, p 

=.002). 
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Figure 3-4 Average group accuracy respond to shapes at different coherence levels preformed in 

the CM-FfM task. Error bars: SD 

 

We also characterized performance of correct responses to shape in each group at different 

coherence levels (Figure 3-4). This analysis allowed us to explore each individual’s average 

performance of integration of the FfM information, which implicitly contributes to determining 

individual global motion processing. This analysis will define: an individual’s performance at 

each level of coherence, maximum and minimum accuracy percentage in global and local 

information detection, and remove any constraints imposed by the overall average of correct 

response for the group. Towards this end, an ANOVA was computed on the raw data (across 

coherence levels and between groups). This analysis indicated that the group difference found in 

the overall frequencies of percentage of correct responses was due to differences in the 

integration of FfM information in parallel to the global information. Specifically, shape 

identification accuracy in the ASD group was between 90 and 100% correct at all nine levels of 

coherence (including the 0%: see Figure 3-4) accuracy in the control group increased 
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approximately linearly with coherence. The ANOVA results revealed statistically significant 

main effect of coherence (F(8,208) = 11.929, p = 0.0005).  

Finally, in each group, high performance was presented when coherence level reached 100%. At 

that level of coherence, a t-test failed to find a significant difference between accuracy in the two 

groups ( t(26) = 0.823, p = 0.419). This failure to find a significant group difference at high 

levels 

of coherence indicates that both groups were able to perform better at a high level information 

and zero level noise in the back ground (100% coherence level) and there were no differences 

between both groups ( t(26) = 0.823, p = 0.419) in the ability to maintain attentional engagement 

with the task (Figure 3-5). 

 

Figure 3-5 Mean threshold levels at each coherence levels. Error bars SEM 

 

3.4.2 ASD Observers Require More Time to Respond:  

To investigate the effect of tasks type on behavioral performance in ASD, we measured the 

response time of each participant at each coherence level and then compared average response 
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time between both groups. ANOVA showed no main effect of groups was observed [F(1,26) = 

2.352, p = 0.137], indicating that the two groups showed comparable overall performance. 

However, a significant interaction of task type [F(1,26) = 20.440, p < 0.05] was observed, 

reflecting an overall increase in response time in both ASD and controls when FfM shape was 

embedded in the global motion task (Figure 3-5).  

 

Figure 3-6 Average response time to global direction at each coherence level for both tasks CM 

and CM- FfM and for both groups ASD,TD. Error bars: SEM 

 

Critically, this effect was exaggerated for individuals with ASD [F(1,26) = 15.048, p < 0.001]. A 

pairwise test indicated significant high response time for ASD group at the CM-FfM task 

(mean= 1.1, STD= 0.37) and no main difference in the CM task (mean= 0.76, STD= 0.33) 

compared to control group for the same tests respectively (mean= 0.79, STD= 0.26) , (mean = 

0.63, STD = 0.13).  T-test results for both tasks was: CM:[ t (16.913) = -1.349, p = 0.195], CM-

FfM:[ t (26) = -2.411, p = 0.023]. 
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3.5 Discussion 

Our findings suggest that individuals with ASD tend to process coherent global motion similarly 

to control group. However, when FfM information was embedded in the task, compared to the 

control group the ASD group higher shape in dentification accuracy but lower sensitivity to 

coherent global motion. These results demonstrate for the first time that global/local motion 

perception is not generally atypical in autism,185 however, it is more biased toward local 

information. Thus, the mechanism of processing form from motion presumably differ from the 

mechanisms that process more elementary CM data. Interestingly, the integration in the ASD of 

both the coherent global motion task and the identification of a familiar shape in the CM-FfM 

task reached as same as control group specially when noise level was zero. However, and before 

we discuss what could be behind the biased local/ global motion perception found in ASD, it is 

worth mentioning that this extraordinary performance of the group of ASD was highly notable. 

For a naïve participant in our tasks, it was very difficult to determine the shape initially, but 

defining the global direction of the coherent was easier. In the control group, for instance, the 

difficulty to perceive the shape was obvious – and expected - so they required several training 

trials with the aid of a pointer to spot the shape. However, participants with autism were able to 

spot the shape correctly even at the initial presentation during the training trial (note: both groups 

had the same number of training sessions to prevent perceptual learning effect). In light of these 

observations and the statistical findings we can address the following explanation of atypical 

global/local motion perception found in autism. Our results for the CM-FfM condition are 

consistent with previous results from the study of Jones et al.203 showing no evidence of 

fundamental difficulties with the perception of CM and FfM in their high IQ autism group. 

However, in Jones’s study the CM and the FfM tasks were measured separately, though using 
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noise elements adjusted by the same staircase method in the background for both tasks. 

Moreover, our findings of normal processing to global coherent direction concur with other 

studies in adults with autism,160,194 contrary to related studies where global motion deficit has 

been found in autism using psychophysical tasks95,158,166,185,191,195,202 and neuroimaging 

techniques.192,193 Certainly we can argue that these studies used different stimuli methods and 

various parameters which make it difficult to compare. Therefore, in our task, our findings imply 

same task methods of processing local FfM and global CM when both types of information are 

processed simultaneously. Based on fMRI studies that have investigated neural activation of 

processing CM and FfM information at the same time,265 results suggested that the FfM 

information has a distinct processing mechanism than CM information. For example, FfM 

information might only be processed at the ventral occipito-temporal cortex (VOT), whereas 

combined information of FfM and CM perception might be processed in the area of MT+/V5 or 

an area including lateral occipital cortex (LOC) based on lesion evidence. This suggests the 

existence of at least three functionally and anatomically distinct regions in human visual cortex 

that process FfM signals and may be independent from static form perception.266 Related studies 

using VEPs,194 however, have found that the LOC and the VOT areas, which are mostly 

activated in processing FfM information, could be typical in individuals with ASD, while, dorsal 

stream deficiency has been detected in autism group despite comparable behavioral performance 

with control group.191,267 Such findings suggested that visual cognitive areas that process visual 

inputs of FfM and coherent global information concurrently could be highly activated for object 

motion direction recognition and less activated to global motion in autism. Related asymmetries 

of local/ global visual processing have been found in autism using fMRI and static hierarchical 
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shape recognition task.268 However, to understand the neural abnormalities behind this biased 

function, more imaging studies should be employed. 

 

3.5.1 Neural Related Findings:  

To our knowledge, there are no studies that have used functional imaging methods to investigate 

simultaneous local/ global motion information processing in autism. However, increased activity 

in visual areas in autism in response to random motion compared to coherent motion have been 

reported in several imaging studies.193,269 Brieber et al193 suggested that there are differences in 

neural activation between controls and participants with ASD at different processing stages of 

the dorsal pathway, including increased neural activity in the primary visual cortex, and 

unmodulated activation in the motion-sensitive area V5, combined with no differences in the 

response performance between the ASD and TD group. This finding might explain our results 

for the normal performance between groups on CM task without shape. However, an explanation 

to the deficit in global motion perception specific to integration of the FfM information at the 

same time could theoretically arise from one of two scenarios: a diffuse, non-specific neural 

dysfunction in the early visual area, or a cortical underconnectivity to complex stimuli. A 

diffuse, non-specific neural dysfunction related to debilitate of neural activity in V1 leading to 

impairment in the dorsal stream has been proposed based on fMRI findings in autism.193,210 

Indeed, these studies used coherent motion as the main task. However, the complexity in our task 

would suggest that the task requirement would involve more integration of neural areas. Thus, 

there would be involvement of more cortical areas that are mainly beyond the V1. Besides, if this 

hypothesis is valid, a deficit in perception to FfM information should also be implied, since FfM 

information may require inputs from both early and higher visual cortex.214,219 Therefore, a 
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cortical underconnectivity theory, which posits that interregional (systems-level) connectivity 

circuit in the brain are disrupted in autism, might better explain our results.270,271 Indeed, in the 

autism group, elevated CM thresholds  when FfM was included resulted in a shallower 

psychometric functions. As evidence, the aggregation signals from FfM task may increase 

significantly compared to CM task alone, affecting their relative performance particularly when 

the level of coherence decreases in the display while the integration of FfM information remain 

comparably high. Alternatively, we find a general offset in the psychometric function across all 

coherence levels in the CM-FfM condition, but no difference in the slope of this function in the 

CM task alone, suggesting that evidence of accumulation in the autistic perceptual system 

approaches a similar decision-threshold as in controls, but in the embedded task more variability 

was found in autism. An increase in signal variability would predict both higher thresholds and 

lower accuracy across coherence levels due to more contribution from neurons tuned to FfM 

detection during the formation of the global motion decision-variable in the ASD group. The 

post hoc t-tests on our parameter estimates revealed that the difference between response 

performance to FfM shape was more significant for the ASD group, whereas in the control group 

it increased in parallel with the increase in the global coherence level. Our assumption of 

disturbed dorsal stream activity in area V5 might be more profound when integrated with other 

cortical areas, hence this disturbed activation might be reserved if the stimuli complexity is 

reduced. Earlier, Koldewyn et al191 found no support of a general dorsal stream deficit in ASD. 

Instead, they speculated that differences in dynamic or ‘spatiotemporal’ attention lead to the 

visual motion impairments in ASD. Relatively, our autism group was able to perform the 

coherent task as well as typical participants, which may  demonstrate that deficits seen on the 

CM-FfM task cannot be the result of differences between groups in general attentiveness, and 
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task understanding or motivation, which couldn’t support this hypothesis. Moreover, related 

results showed that attentional processes could potentially confound performance on tasks 

assessing global motion in autism. For example, using prolonged RDK stimuli may result in 

feature tracking method to define motion direction.191 We only presented our stimuli for a short 

duration (i.e. 500 ms) to measure motion perception, in order to prevent the use of serial search 

strategies and therefore, attention could not account for the results in the present study. 

 

3.5.2 Neural Noise Theory  

Interestingly, ASD performance to global information was reserved at full coherence (100%) in 

combination with FfM information. Results of symptoms where individuals with autism often 

report both hyper- and hypo sensitivities within the same sense modality have been found in 

related studies.68,272 These findings are supported by studies of increased internal noise being 

associated with decreased visual perception or decreased coherence in natural neural oscillation 

mechanisms involved in autism.237 Park et al226 found that increased internal noise and worse 

external noise filtering influence perception in children and adolescences with ASD. They found 

that estimated internal noise was correlated with ASD symptom severity, suggesting that 

individual variability in internal noise may be related to ASD symptomatology, a result that is 

correlated with previous findings.237 Related finding of increased neural variability in first-

degree relatives of ASD individuals suggests a genetic influence of an ASD genotype on the 

level of internal noise in the brain.273 This theory of defects in internal noise in autism could 

explain to a great extent the increased performance at 100% coherence level (zero noise) in the 

autism group in this study. However, it is very difficult to speculate on our findings as being 

solely due to decrease internal noise in ASD. 
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3.5.3 Longer Time to Response  

Our response time results, which were consistent with previous findings, 128,185 suggested that the 

autism group needs more time to respond to both tasks despite the comparable performance in 

CM task. Van der Hallen et al152 explained that declined performance in individuals with autism 

was due to short time of task exposure, as well as task complexity, which makes autism 

performance worse. Hadad et al,196 also suggested that people with developmental disorders may 

require longer time to process motion information due to long range deprivation at early 

childhood that may extend the period of processing visual inputs at adult stage.162  

3.6 Conclusion 

The data presented here contributes to the characterization of global/ local motion perception 

within the greater autism spectrum. However, limitations in our study, such as, small sample size 

in the ASD group may affect the possibility of normal disruption in threshold level. The results 

showed that all our participants with autism have the same impairment on the coherence task 

with embedded FfM shape points to a new model of biased motion perception in autism. 

Moreover, we have to mention that we measured other stimulus paradigms using drifting grating 

stimuli, speed factor, and optic flow, all in the same sample of subjects and our initial results 

indicate that related factors might explain local/ global motion abnormalities in adults with ASD. 

Taken together, the data suggests that the impairment of motion processing in individuals with 

ASD may not necessarily arise solely from one abnormal mechanism, or a broad impairment in 

ASD in spatiotemporal integration, but rather a complex factors may contribute to decreased 

sensitivity to motion perception at different areas of the cortical visual areas and may be 

influenced by internal/external noise. 
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4.1 Overview 

4.1.1 Background 

Previous studies of optic flow (OF) in individuals with Autism Spectrum Disorder (ASD) 

showed a selective impairment compared to normal control group in detecting direction of radial 

motion. Altered function of medial superior temporal area (MST) related to processing of OF 

motion was suggested. This study investigated whether this deficit in OF perception in autism is 

related to biased local/ global motion perception, or to disturbed connectivity of functional brain 

networks at the same area. 

4.1.2 Methods 

We measured psychophysical detection thresholds for radial OF stimuli in 13 ASD and 14 

typical developmental (TD) adults. We measured threshold in two tasks : eccentricity of heading 

direction task, and contrast sensitivity task to OF motion. In both tasks we randomized the 

density (15, 80 dots) and speed (4, 10 deg/sec) of the moving stimulus dots. 

4.1.3 Results 

The eccentricity of heading direction task results showed no significant group differences were 

found for low dot density (15 dots), while high dot (80 dots) density showed low sensitivity to 

OF motion in the ASD group compared to the TD. In the contrast sensitivity task, however, we 

found high thresholds in the ASD group for detecting OF motion when dot density was low (15 

dots), but not when dot density was higher (80 dots). In both tasks, there were no group 

differences in the effect of dot speed nor in response time. 
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4.1.4 Conclusion 

Our results suggest that selective ASD-related impairments in OF processing might be related to 

altered connectivity among visual cortical areas.  

4.1.5 Keywords    

Optic flow, motion perception, ASD, dots density, speed parameter, contrast sensitivity.   

 

4.2  Introduction 

Previous research on visual perception in autism spectrum disorders (ASD) suggests that ASD is 

associated with enhanced processing of small details and impaired perception of global 

motion.191,193,205 Recent investigations hypothesize that visual deficits in ASD may arise from 

abnormal functional and structural connectivity of complex cortical neural networks that are 

activated during motion processing.163,230,274,275  

Optic flow (OF) motion is an important source of information for navigating through the 

environment,276 but few studies have investigated OF processing in observers with ASD. 

Imaging studies show that OF stimuli are processed in the dorsal portion of the medial superior 

temporal cortex (MSTd) of macaque monkeys.277 In humans, however, fMRI evidence has 

shown that OF patterns activate a network of areas including visual area V5/MT, and area MST, 

with strong direction-selective response to radial and circular motion in human hMT+,278 and the 

lateral occipital channels,279 while translational and radial motion are activated mainly in the 

MT/V5 area.280,281 Neuroimaging studies that studies activation at the MT/V5 and the MST area 

related to motion perception in ASD suggest that functional connectivity comprising of long-
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range connections in the brain may be diminished; this is accompanied by greater localized 

connectivity.282 However, the mechanism(s) underlying such defects in ASD is still unknown.  

According to the dual pathway model,188 two streams are generated from the dorsal 

pathway and its recipient parietal areas, the dorso-dorsal (d-d) and ventro-dorsal (v-d) stream.283 

Optic flow information is processed through the v-d pathway.284  Several studies suggest that the 

ventral stream alone found intact in ASD observers most of the time,156,211 while dorsal stream 

vulnerability was reported as the main theory of declined global motion perception in 

autism.151,250 Few studies, however, studied the v- d integration in autism in relation to OF 

motion perception. Recently, Bakroon et al275 suggested that the decline of motion perception 

found in autism might be related to the complexity of the stimulus, and/or that ASD individuals 

have increased internal noise that affect the processing of both local/global information 

simultaneously. Hence, we proposed that integration of global motion was processed through the 

“d-stream”, while form-from-motion was processed separately through the “v- stream”. Based on 

event-related potentials (ERPs) data282 detection of direction of heading of OF integrated through 

v-d stream. Hence measuring direction detection in ASD using OF motion may add more 

evidence to the theory of complexity- specific impairments. For example, Yamasaki et al204 

compared the perception of global coherent motion and optic flow motion in adults with autism 

and a control group. The results showed no group differences in detecting direction of heading in 

both, though Event-Related Potentials (ERPs) data showed a prolonged P200 latency for OF 

responses in ASD group compared with control group, and no performance differences in the 

coherent motion task. Their results, however, suggest that impaired OF perception in autism 

might be related to dysfunction of the v-d (inferior parietal lobule) stream. Yamasaki used low 

speed random dots in their stimuli, which might prolong the integration of OF motion in 
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autism.162 Earlier studies, showed that observers can make more accurate judgment of direction 

of heading in a straight pathway when the speed of elements (moving dots) increased.285 In 

autism, the relationship between motion sensitivity and speed discrimination is controversial. For 

example, Manning et al286 suggested a deficit in children with ASD for discriminating slow 

speed, yet at higher speed levels they showed same sensitivity as the control group. On the other 

hand, Chen et al205 found that autism participants have enhanced speed discrimination in a 

coherent motion task when visual comparisons were made over a prolonged temporal distribution 

period. Unfortunately, we cannot compare between the two findings because Manning et al used 

slow motion (1.5, 6 deg/s) whereas Chen et al used faster motion (5.25 – 9.45 deg/s). 

Furthermore, developmental studies suggest that infants developed sensitivity to fast speed, 

while adults largely respond to slow speed OF pattern.279 A late delay in the developmental 

trajectory in autism162 could explain the differences in speed sensitivity, but one cannot 

generalize these findings to cover all types of motion (e.g. OF motion).  

 Optic flow and motion contrast have often been studied separately in autism, and yet 

they share important commonalities. Findings of contrast sensitivity in motion perception in 

autism are controversial. Some studies found that there is intact luminance contrast sensitivity in 

the ASD group, 94,95,98,287,288 while others found deficits.46,62,92 Indeed the different methods and 

the wide range of parameters used in these studies make it difficult to determine a firm finding of 

motion contrast perception in autism. Results show that OF motion and motion contrast both 

depend upon the aggregation of local motion signals in the brain, either for global integration or 

regional segmentation.289,290 Related studies have also found that motion contrast activation 

varies with speed.291 Therefore, comparing OF related contrast and speed modulation responses 

in adults with autism may shed light on the extent to which cortical mechanisms for the 
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processing to these two types of complex motion are distinct in this group. The data may also 

provide benchmarks for future studies of the motion processing in autism in the visual domain 

network.     

Here we report self-heading of direction discrimination using an optic flow task that varied dot 

density, speed, and contrast parameters to answer the following questions:  

(1) Does sensitivity of self- heading of direction detection impaired in autism?  

(2) Does speed or density affect their performance in detecting direction of heading?  

(3) Does luminance variation of local elements (dots) decrease contrast sensitivity to OF motion 

in autism and/ or would decrease discrimination of heading direction? 

4.3 Methods 

4.3.1 Participants 

We recruited 15 adolescents and adults (age range 16-40 years) with ASD, and 14 Typical 

Developmental (TD) control participants that were matched in age, gender, and approximate 

academic level. All ASD participants were adults who had previously been diagnosed with ASD 

based on childhood medical reports assessed by an experienced clinicians, and there were no 

updated reports subsequently. In addition to these childhood medical reports, ASD participants 

completed the Autism Quotient Test of Baron-Cohen et al,259 a 50-item self-administered 

questionnaire targeting sub-clinical autism-like traits. The AQ test was completed online, and 

mean score was 27, +/- 2.7.  One participant from the autism group who scored 35+, and who 

also was found to have a sibling with severe autism was excluded from the study. Another ASD 

participant failed to complete the tasks and therefor was removed from the data analysis. Hence 
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only 13 ASD participants were included in the final sample. All participants had their vision 

checked and no significant differences were found between both groups (Table 4-1).275 

 

 Control (SD)* ASD (SD)* Group comparison 

Age range (16-40 years) 25.92 (6.45) 26.75 (6.74) p = .79 

Visual Acuity (log Mar) -0.13 (0.11) -0.16 (0.09) p = .44 

Contrast test (log Mar) 1.93 (0.18) 1.82 (0.12) p = .06 

Stereo-acuity  (second of arc) 20.71 (1.81) 21.35 (7.53) p = .11 

Table 4-1 Data on selected visual functions of experiment participants. 

* indicates standard deviation. Note: visual acuity and contrast sensitivity were evaluated using the 

Freiburg test, and Stereo-fly test were used for depth perception. 

 

Written consent was obtained from all participants and/or their parent/guardian, in accordance 

with the protocol approved by the University of Waterloo Research Ethics Committee and the 

Research Ethics Board at Wilfrid Laurier University. 

4.3.2 Stimulus 

Stimuli were computer generated using the psykinematix software 

(http://www.psykinematix.com/index.html), and displayed on a gamma corrected MacBook Pro-

laptop (15.4-inch, 2880 x 1800 pixels, 60 Hz refresh rate). Optic flow was presented with a 

random dot kinematogram (RDK) stimulus. Perceived motion was measured in two experiments: 

http://www.psykinematix.com/index.html
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(1) Eccentricity discrimination task: dot contrast was held constant at 100% and eccentricity 

angle was varied. OF direction randomized in two directions (right, left) of a fixation line, to 

measure the minimum eccentricity angle.  

(2) Contrast sensitivity task: The Michelson contrast of the dots were varied to home in on 

threshold. and OF angle was fixed above threshold.  

In both tasks, sensitivity (i.e, the inverse of threshold) for direction detection was measured as a 

function of stimulus speed (4, 10 deg/s) and the number of dots (15, 80 dots). The four 

combinations of stimulus speed and dot number were all randomized throughout the task. (Figure 

4-1). 

 

Figure 4-1 Optic flow motion used in both tasks. 

Eccentricity & contrast. The stimuli were presented within a borderless gray square window (19º × 19º) 

at the center of the display. The dots were white and subtended (0.118°) with limited lifetime (200 ms) 

and updated after 18 frames. The OF motion moved inward to the right or to the left of a center line. The 

fixation line appeared before the presentation of the stimuli and disappeared during the optic flow motion 

allowing the perception of heading of direction of the dots only by processing the global motion. The 

stimulus was presented for (500 ms) followed by an interstimulus interval time of 500 ms. 
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Participants sat on a chair and were aligned with a monitor using a head and chin rest from a 

viewing distance of 56.5 cm. A visual tunnel was attached to the screen and the head rest. 

Participants had to look binocularly through this tunnel (Figure 4-2). We used the visual tunnel 

to create the illusion of environment motion as participant moved toward a central point of the 

horizon, and also to eliminate any visual field distraction.  

 

Figure 4-2 Visual tunnel was used during the experiment, allowing a 56.5 cm viewing distance. 

 The luminance in this case was only received from the laptop screen during the experiment. In both conditions, 

participants indicated whether the direction of optic flow motion was heading towered the right or the left of the 

center line, using right & left arrow keypad, and using their dominant hand. Participants were instructed to respond 

as soon as the stimuli disappear, and they could take a break when needed by pressing keyboard space bar at any 

time. The main experimenter was present throughout the experiment. Audio feedback using different beep sounds 

after each hit or miss response was used to encourage participants to maintain high performance. “The actor has 

given written informed consent based on the UW consent form, to publish of his photograph” 
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4.4 Psychophysical Testing 

4.4.1 Eccentricity Discrimination Task 

In this task, threshold was defined as the minimum eccentricity angle that a participant could 

reliably discriminate. The eccentricity of the direction of heading was positioned randomly to the 

left or right of the center line, and the magnitude of the angle of eccentricity was varied across 

trials using a staircase method. The observer's task was to determine whether the target was 

heading to the left or to the right of the center line. All participants had to complete two blocks 

with two speeds and two dot densities, each of the parameter was randomized at 50% of the 

trials. Thus, each subject viewed a total of four conditions repeated in 2 blocks. The adaptive 

staircase varied the degree of eccentricity present in each trial based on the observer’s recent 

response history, in order to converge on (track) the 79% correct performance level. At the 

beginning of each trial, the staircase began at a supra-threshold eccentricity (0.75°), then 

decreased 50% after three consecutive hit responses. However, eccentricity was varied with a 2-

down/ 1-up staircase that used 10% step size after two consecutive correct responses, and a 15% 

step size after one incorrect response. The staircase terminated after six reversals and threshold 

was taken as the mean of the last four reversals. All participants had to complete 10 practice 

trials as before the beginning the test trials, and all questions were answered clearly. Participants 

were instructed to respond immediately after the stimulus disappeared. 

4.4.2 Contrast sensitivity task 

The stimulus in this task had the same parameters, dots number and speed, as the RDK used in 

the eccentricity experiment. The contrast modulation (visibility) of the contrast task could be 

varied in an analogous manner according to the equation: 
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Dot contrast modulation 

= (DC mean – BC mean)/(DC mean + BC mean) 

where DC is the mean luminance of the dots and BC is the mean luminance of the background 

However, in this task the angle of eccentricity from the fixation line was fixed at a supra-

threshold level (0.75°)147,292 and motion discrimination thresholds were estimated by varying dot 

contrast using an adaptive staircase method. Each staircase started with a dot contrast of 75%, 

and contrast was decreased by 50% after three consecutive correct responses. After this, the 

contrast was decreased by 2.5% after 3 consecutive correct responses, and increased by 5% after 

1 incorrect response. A staircase was terminated after four reversals. These step-sizes 

measurements were calculated based on a prior pilot study in order to: (1) decrease number of 

trials; (2) minimize noise at the end of the trial that might be caused by long task duration; (3) 

prevent boredom and/ or fatigue.275 The assigned threshold here was to define the minimum 

contrast, at which each participant could reliably judge the direction of heading of the OF 

motion. 

 

4.5 Data analysis 

Although stimulus presentation was controlled by an adaptive staircase, examination of the data 

suggested that a better estimate of threshold would be obtained by fitting a psychometric 

function to all of the responses (rather than using the average of the last several reversals). This 

was done (a) to eliminate the possibility of biased threshold estimation in these types of adaptive 

techniques from erroneous responses in ASD and (b) to allow statistical analyses that require 

independent estimates of data points. Psychometric functions (response accuracy vs. stimulus 

level) were estimated by fitting a Weibull function to each participant’s data. The chance level 
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was assigned at 50% and threshold collected at above chance level, 79% correct. The Weibull 

function (with a slope and threshold as free parameters) was used to measure the threshold (t) 

and slope (s) at 79% probability level at each dot and speed level tested within each of the two 

conditions with the function given by: 

F( ) = 1 – exp(- [  

Where  is the stimulus parameter, and  are the sensitivity parameters that control the 

shape of the function. However, in the Weibull function,  are analogous (but not similar!) 

to the threshold and slope respectively. The threshold (t) and slope (s) for a specified probability 

level (p) (threshold criterion) at a constant assumed value (c) of the psychometric functions is 

defined as: 

    and      

Response time (RT) was collected throughout the experiment as the time taken by the 

subject to respond to stimulus. Subjects were instructed to respond as soon as the stimulus 

disappeared. RT less than 0.1s and greater than  0.75s were classified as anticipatory and late 

responses, respectively, and were not included in the analysis. RT outliers were all points more 

than 100 ms above average RT to each parameter were removed and considered as rest time as 

long as it did not occur more than four times per task; otherwise, the test was repeated in a 

subsequent visit to the lab. Collecting RT was considered for the following reasons: (1) 

comparing subject performance between parameters levels/tasks: (2) showing that participants 

were responding during the time interval most of the time: and (3) comparing results with related 

findings, which show that the ASD group has prolonged RT when compared with TD 

group.144,275 Following these criteria, only a few trials were discarded from the RT-analyses: 
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eccentricity task (4.31%), and contrast task (3.49% ) from both groups, and no participant 

required for a full repetition of a task.  

All data were analyzed using SPSS software. Differences in performance (threshold, RT) 

for (eccentricity, contrast) were analyzed between groups (TD and ASD) for each task 

separately.  

4.6 Results  

4.6.1  Complex Processing of Optic-Flow Eccentricity in Autism 

Eccentricity threshold is the minimum eccentricity angle from the central heading line that the 

participant was able to identify accurately. A higher threshold means low sensitivity (Table 4-2). 

The threshold was measured as a dependent value for each participant at each parametric value. 

A 2(group) x 2 (dot number) x 2 (speed dot) ANOVA found no significant interaction of speed , 

dot and groups (F(1, 25) = 1.396, P = 0.249. However, increasing number of dots and speed 

level improved the performance of both groups and decreased the threshold level. Dots and 

group interaction was significant (F(1, 25) = 6.105, P = 0.021) compared with no significant 

effect between speed and group (F(1, 25) = 1.061, P = 0.313) (figure 3). 
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Figure 4-3 Threshold levels of eccentricity tasks at all parameters and between groups. Error 

bars SDM 

 

Post-hoc pairwise comparisons found that threshold was higher in ASD compared to TD when 

number of dots was high (80 dots) at speeds of 4, 10 deg/s [ t (12.248) = -3.228, p = 0.007)] and 

10 deg/s [t (12.387)= -2.388, p= 0.034)]. 

Task Eccentricity Contrast 

Parameters  80 d./ 

10deg.sc  

80 d./ 

4deg.sc 

15 d./ 

10deg.sc 

15 d./ 

4deg.sc 

80 d./ 

10deg.sc  

80 d./ 

4deg.sc 

15 d./ 

10deg.sc 

15 d./ 

4deg.sc 

ASD 0.1666 ± 

0.064 

0.2055 ± 

0.085 

0.1723 ± 

0.047 

0.2065 ± 

0.082 

2.3654 ± 

0.49 

2.3592 ± 

0.57 

3.7046 ± 

0.79 

3.8015 ± 

1.1 

TD group 0.1236 ± 

0.084 

0.1289 ± 

0.009 

0.1623 ± 

0.045 

0.1932 ± 

0.059 

2.2829 ± 

0.25 

2.1243 ± 

0.18 

3.0471 ± 

0.79 

2.8071 ± 

0.69 

Table 4-2 Threshold levels for OF motion tasks in ASD and control. Data presents mean and SD 

 

However, when small number of dots (15 dots) ran at different speeds, thresholds did not differ 

significant differences between both groups (p > 0.05). The trends below (Figure 4-4) showed 
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that at high dots density (80 dots), TD group maintained high performance at both speed levels. 

However, ASD group showed higher threshold (lower sensitivity) at both speeds. 15 dots 

perimeter, showed no significant differences at both speed and between groups.   

 

 

Figure 4-4 Eccentricity task results show mean average trends of threshold levels at high dot 

density for two speed levels (fast, slow) in both groups. 

 

4.6.2 Contrast Sensitivity of Optic-Flow in Autism  

The minimum contrast needed to discriminate optic-flow was measured as a function of dot 

speed and number in both groups. Contrast thresholds were analyzed with a 2 (Group) x 2 

(Speed) x 2 (Number) mixed ANOVA which found a significant main effect of dot number (F(1, 
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25) = 75.68, P = 0.005). This main effect of dot speed was not significant (F(1, 25) = 1.03, P = 

0.320).  

The two-way interaction between group and dot number was significant (F(1, 25) = 8.408, P = 

0.008), while interaction between group and dot speed was not significant (F(1, 25) = 1.416, P = 

0.245). Finally the three-way interaction between dot number, speed, and groups was not 

significant (F(1, 25) = 1.41, P = 0.245) (Figure 5). 

 

Figure 4-5 Threshold levels of contrast tasks at all parameters and between groups. Error bars: 

SDM 

 

Post-hoc analyses found that thresholds in the ASD group was significantly lower than 

thresholds in the TD group when the number of dots was low (15 dots) at both the slow [t (25)= -

2.896, p= 0.008)] and fast speeds [t (25)= -2.144, p= 0.042)]. Also, the standard deviation in the 

ASD group was larger than in the TD group, even when their performance enhanced when the 

number of dots and speed level increased. This finding, however, might be explained by two 

reasons: (1) the sample size of our ASD group is small293 and/ or: (2) an abnormal neural 

mechanism of altered perception of OF motion may occur at all conditions even if the 

performance (based on the mean threshold) is comparable between the groups.204 The trend of 
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individuals’ contrast threshold fixed at density and compared between both speed levels show 

that at high density levels both groups maintain high performance (low threshold) and no 

significant differences between both groups were observed (Figure 4-6). 

 

 

Figure 4-6 Contrast task shows trends of mean average threshold of each participant in both 

groups at high dot densities ran at two speed levels (fast, slow) 

 

However, at low density, TD group showed increased performance when speed of the dots was 

faster, while in autism group their performance was poor at both speeds, which result in 

significantly higher threshold than TD group (Figure 4-7) 
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Figure 4-7 Contrast task shows trends of mean average threshold level of each participant at 

high dot densities ran at two speed levels (fast , slow) 

 

4.6.3 Response time: 

Results from our experiment revealed no group differences in response time when compared to 

control group in eccentricity task (F (1,25)= 0.375, p=0.546). However, the general decrease in 

response time was found with increasing dot number (F (1,25)= 4.948, p=0.035), with no group 

difference (F (1,25)= 0.665, p=0.423). Speed levels also showed no effect in RT (F (1,25)= 

0.318, p=0.578), or a main group difference (F (1,25)= 1.871, p=0.184) (Figure 4-8). 
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Figure 4-8 Average response time for both groups for both tasks and for all parameters 

 

In the contrast task, the results also showed a significant effect of increasing number of dots on 

decreasing the time taken to response (F (1,25)= 5.067, p = 0.033). However, no interaction 

between the groups was found (F (1,25)= 0.211, p=0.650)  (Figure 4-8). 
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Figure 4-9 Comparing average response time for each parameter and for each task separately 

for both TD and ASD groups. 

We compared the RT for each group and between both tasks (eccentricity, contrast) separately. 

From Figure (4-9), we can see that control group showed shorter response times in the contrast 

task compared to the eccentricity task in all conditions (Mean RT eccentricity= 927 ms, Mean 
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RT contrast=824 ms ). The ASD group also had shorter RTs in the contrast task compared to 

eccentricity task in all conditions (MRT eccentricity= 886 ms , MRT contrast=846 ms). What is 

more interesting is that RT of ASD group was shorter than TD group in the eccentricity task, but 

not the contrast task, which might suggest that ASD- related variability seen in the eccentricity 

performance may due to speed/accuracy trade-off.   

4.7 Discussion 

4.7.1 Sensitivity to Optic Flow Motion Discrimination in Autism 

In this study we investigated self-heading direction discrimination using OF stimuli in ASD and 

TD adults. Direction discrimination thresholds were measured with OF stimuli that varied in dot 

speed and density. We found that thresholds in both groups were affected significantly by dot 

density but not dot speed, which agrees with previous findings.147,205,291 However, we found  

specific patterns of abnormality related to individuals with autism which are summarized as 

follows:  

1- In the eccentricity task, the autism group showed similar performance to the control 

group. However, their sensitivity was lower when the number of dots was high, while the 

speed parameter had no significant effect.  

2- In the contrast sensitivity task autism participants showed decreased contrast sensitivity 

only when the number of dots was low; thresholds in both groups were similar in the high 

dot density condition. Finally in both groups the effect of dot speed on threshold was not 

significant. 

3- In both tasks, response times on correct trials did not differ significantly between groups. 
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These results provide new evidence of selective impairments to OF motion perception in autism 

that might be related to ASD-related changes in area visual MST, which has been suggested to 

be a selective response to the complex patterns of OF.280,294 Receptive fields in of V5/MT cells 

may relatively be small to cover the gamut of OF motion parameters (patterns, speeds, and 

directions, which can extend up to 360°). However, MST neurons were found to be directionally 

selective with receptive fields that cover large parts of the visual field.295,296 Consequently, our 

results here show that performance impairments to radial motion may require strong pattern 

activation in the MST area in the autism group.291 This ASD-related impairments depends, 

however, on dot density, more than dot speed, which agrees with previous findings related to OF 

motion.297,298 Our results are the first to show that dot density affects OF motion in autism, 

particularly for high dot density. High dot density should evoke strong activation at the MST 

area.296 This strong activation would correspond to the integration between V5/MT area that is 

directionally selective to local motion information, and MST area that processes global heading 

direction.280  

We hypothesize that reduced functional and structural connectivity between and within 

distributed cortical networks of MT and MST might be the underlying cause of reduce sensitivity 

to OF responses in adults with ASD. 

Indeed, studies utilizing visual evoked potentials (VEPs), event-related potentials (ERPs), and 

diffusion tensor imaging (DTI) in autism show that neuro-integrative processing at higher 

cortical levels in both the ventral and dorsal pathways might be impaired in ASD,282 while lower-

level processing is spared when both levels are activated at the same time. Interestingly, our 

findings show that performance at low dot density was intact in autism, which may be related to 

intact MT in autism, particularly when the dots move in a coherent direction (zero noise 



 

105 

level).232,237,275 Altered connectivity within V1 in autism, as posited by the underconnectivity 

theory,298 also appears to the perception of self-direction of heading.204 Yamasaki et al282 

suggested that deficits in the P-pathway (with intact M-pathway) in V1 might underlie perceptual 

impairment found in ASD. However, our results show that sensitivity of individuals with ASD 

declined only when number of dots was high. Neurons in V1 responds better to high spatial 

frequency, slow speed, and contrast variation which suggest that our stimuli would evoke 

stronger activation in areas beyond V1. Moreover, comparing perceptual thresholds in our data 

across dot density conditions for individuals with ASD and TD show reciprocal changes of speed 

trends with large dot density, and low sensitivity at both speeds for ASD when compared to TD 

which might result due to reduction in processing complex information related to deficit in the 

connectivity in the hMT+ area.301 Recently, Zeng et al302 proposed that the whole brain 

functional connectivity in children with autism is characterized by significantly reduced network 

activation that may affect multiple cognitive domains and brain systems in ASD.  

Our findings lead to a new insight into the neural circuit mechanism underlying the 

deficits to local /global perception in ASD. These deficits might be result from rather complex 

functional alterations in visual networks rather than enhanced processing of local details and 

reduced processing of global structure.  

The speed parameter provides a different criteria in defining OF motion.296 Our results 

show that heading direction was strongly affected by dot density varied but not dot speed. Hence, 

it is possible that the connectivity between MST and occipital channels would be closely coupled 

to neural dysfunctional activity in ASD. This is based on the assumption that OF motion 

processing of high spatio-temporal frequencies requires integration of neurons in the v-d (IPL) 

stream beyond V5/MT. Therefore, impaired OF perception found in our study in ASD adults 
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may result from the dysfunctional integration of the higher level(s) of MST area rather than V5/ 

MT area. Of course, these ideas are speculative? because very little is known about how self-

motion perception in autism is affected by dot speed and density. Hence, we consider this a novel 

finding and further neuroimaging, electrophysiological, and psychophysical studies are required 

to verify this hypothesis. 

4.7.2 Optic Flow Contrast Sensitivity is Biased in Autism 

We found that contrast thresholds in our OF discrimination task were affected by dot density but 

not dot speed. At high dot density (80 dots) the autism group showed comparable contrast 

sensitivity to the TD group when dots were moving at fast and slow speeds. However, at low 

density (15 dots), contrast sensitivity was lower in the ASD group compared to the TD group at 

in both fast and slow dot speeds. These results suggest for the first time that adults with autism 

might have defects in contrast-dependent responses related to OF motion. Studies in contrast 

modulation related to motion perception suggest two cortical response sources: early visual 

medial occipital cortex at V1 that show high sensitivity to motion contrast magnitude, and lateral 

segregation at a higher level of V5/MT.303–305 However, it is important to note that most of these 

results were generated from transitional motion perception. Earlier, we indicated that OF may 

activate cortical area in MST to the most dominant flow pattern of forward self-motion in depth. 

Fesi et al,291,304 for example, used steady-state visual evoked potential (SSVEP) to study contrast 

modulation responses to motion across different direction and coherence levels. Their results 

showed that, across all patterns, the responses were activated among dorsomedial occipital 

channel and peeked at 4 deg/s (slow speed), and then plateaued at 16deg/s (fast speed). However, 

tuning for different types of motion-defined forms suggests specific interaction among local 

motion/luminance dynamic and those associated with global edge/shape/form processing. This 
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corresponds to both onset and offset of the motion-defined figure. Taking these findings into 

account, our results of defective contrast sensitivity for low density motion patterns could be 

either due to: disturbed connectivity between specific direction contrast cells at V1 and higher 

area of V5/MT; or motion contrast defects specific to OF in an early V1 area. Hence, based on 

the proposition of feed-forward and feed-backward connectivity between primary extrastriate 

area V1 and V5/MT+ as important for initial contour segregation, the first scenario suggests that 

our results would reflect increased threshold for both conditions of dot densities. However, this 

was not the case.304 In fact, related studies show that areas in the hMT+ complex have 

demonstrated different activation properties across varied values for stimulus parameters, such as 

dot density.305 Moreover, responses at hMT+ may be more categorical to object recognition that 

is specified by changes in the state of segmentation.306,307 Our second scenario is that the autism 

group may have distributed response at V1 corresponding to sensitivity to motion contrast 

magnitude, and subsequently affecting the early processing necessary for figural segmentation 

specific to OF motion. This finding, however, is relatively consistent with recent results that 

indicate increased receptive field size in the extrastrite visual area including the MT, which 

might be the underlying mechanism of reduced motion perception in autism group.195,244 

Schauder et al195 results show that reduce neural responses to stimuli significantly smaller than 

the receptive field size at V1 would decrease contrast sensitivity for this stimuli. Earlier Foss-

Feig et al46 found enhanced sensitivity to high contrast stimuli but not to low contrast, suggesting 

impairment in response gain in autism. Thus, if this is the case, then we assume the deficit seen 

in our autism group at low density would reflect low sensitivity in processing of egomotion 

information at early visual receptive field per se, as a factor in the depth structure of an OF 

scene. However, an argument can be raised that this might affect the OF motion at fast speed, 
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rather than both speeds at the same time (4, 10 deg/s). Fesi et al291 and Hou et al308 discovered 

that tuning across speeds would reflect activation of population of neurons in MT -which it is 

different for speed contrast- and will reflect stronger activation of early inputs neurons at V1 

particularly when the number of spatial inputs is low.309 It is possible that high spatial inputs may 

recruit a different population of cells of higher order areas of MT. Intact MT area response, 

particularly when the motion pattern ran at 100% coherence level was reported in autism,228,275 

and this may explain our result under high dot density condition.  

Our results indicate that cortical processing of OF motion engage a more widespread network 

with more complex space and pattern tuning properties than had previously been assumed. 

This further underscores the choice of experimental parameters used in OF motion perception 

studies. Further studies involving neuroimaging and OF stimuli are necessary to determine the 

differences in cortical processing and sensitivity in ASD at different cortical areas.  

 

4.7.3 Response Time  

In order to explain the results of response time related to OF tasks in autism, it is important to 

emphasize the mechanism of “bottom-up” sensory processing and “top-down” modulation. 

Bottom-up is the mechanism through which the brain uses external inputs on the retina at a given 

time. This process is fast and involves involuntary attention that rely only on parallel, 

feedforward processing. On the other hand, top-down is the constructing process of sensory 

information and previous knowledge, guided by attentional selection that is based on exogenous 

inputs.310 Although we describe both mechanisms as being separate, in fact, they occur almost at 

the same time and activate same brain areas using similar neural mechanisms.311 Recent 

experimental finding and modeling studies suggest that bottom-up attention relies on feedback 
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from top-down signals (for more information see Khorsand et al).311 Related studies of top-down 

and bottom-up processing in autism suggest a delay in visual signals that subsequently affect 

visual perception. For example, Maekawa et al175 recorded Event-Related Potentials (ERPs) to 

study selective attention to top-down and bottom-up sensory information in ASD. These 

investigators used black–white windmill patterns combined with a vestibular attention task. The 

results showed that behavioral performance of ASD group was comparable with the TD group. 

However, ERP data showed both groups elicited the same P1 (lower level information) and P300 

(top-down attention) waveforms. The ASD group had a significant P300 latency when compared 

to TD. Similar results were also found by Yamasaki et al204 using OF motion stimuli. Here, the 

ASD group showed latency in P200, which is elicited by the central parietal regions. Prolonged 

RT was also reported in the autism group in response to different types of motion.312,313 Our 

autism group have also conducted a series of coherent motion direction discrimination task using 

RDK. Prolonged RT was found in ASD particularly when motion discrimination involved high 

level of noise.275 By comparing the two studies together (coherent motion and OF), we suggest 

that there may be different levels of motion perception processing. This would involves two 

types of top-down feedback projections (due to horizontal connections within a cortical neural 

level as well as links between different levels of different areas).314 For instance, motion 

processing that involves interactions between V1 and cortical area V5/MT (Figure 4-10), would 

predict prolonged RT as a result of conveying signals between and from higher processing 

stage(s). These signals will also be involved in shaping sensory processing in V1 and hence, 

might explain the findings in the coherent motion task. 
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Figure 4-10 The main neural visual areas that activated mainly by the two types of OF tasks in 

our study, which involved both the v-d pathways in the visual system. 

 

However, studies of Perception processing involving modulation between V5/MT and MST area 

within hMT+, e.g  OF motion, would show that performance may not involve prolonged RT in 

autism. In fact it might show shorter RT in ASD group than control group. Recent findings302 

show that MST containing a set of shortest paths between and within related areas involved in 

processing motion information beyond the primary areas could reflect faster attentional feedback 

integration in autism. It can be argued that in the context of a broader view where there are 

dichotomies, such as feedforward/feedback and local/global tasks, designing experiments to 

understand vision might not be useful.315 Therefore, we can’t generalize our finding, but we 

consider that these findings and others would raise an important conceptual issue by measuring 

RT performance in autism in relation to task requirements as well as task activation in related 

neural areas.  
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4.8 Conclusion  

The current study shows that OF motion processing is selectively impaired in ASD. Previous 

studies used only one pattern to assess OF sensitivity in autism, yet these results indicate that 

separate mechanisms are differently recruited depending on experimental parameters, namely, 

pattern and speed. At high density, increased threshold level in ASD group may reflect abnormal 

neural connectivity in processing information at higher order cortical area, particularly hMT+. 

Contrast modulation findings, however, suggest main defects that might occur at local cortical 

area V1, which correspond to the spatial integration of the dots rather than temporal modulation. 

The current findings of RT to OF motion in autism could also support the idea of significant 

reduced functional networks in adults with autism. These experiments also show that, the 

mechanism of changing visual processing to OF per se is likely elicited by neural events that are 

specific to different visual events that may alter neural connectivity in different areas of the brain 

in ASD 
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5.1 Overview 

5.1.1 Background  

Speed discrimination relies on direction-selective neurons that are tuned to local spatial and 

temporal frequencies. Previous studies on speed processing in adults with Autism Spectrum 

disorders (ASD) have focused upon temporal discrimination and the results are controversial.  In 

this  psychophysical study we varied both spatial and temporal information to study speed 

discrimination in adults with autism.  

5.1.2 Methods  

We compared two groups of ASD adults and adolescents (ages 16-40 years: n=14) of ASD 

individuals (n=14) and healthy controls (n=14). We used a forced-choice psychophysical 

procedure to measure speed discrimination thresholds with drifting sine wave gratings that varied 

in duration (250 & 500 ms) and speed (2 & 6 deg/sec.). 

5.1.3 Results  

We found no significant group differences in speed discrimination thresholds. Response times 

also were comparable between groups, suggesting normal neural decision-making capability in 

determining speed modulation in autism. 
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5.1.4 Conclusion  

Our findings suggested a normal speed processing in ASD. However, this might depends upon 

the task requirements used in this study. Increasing the task complexity might revealed more 

about the motion perception in ASD.            

5.1.5 Key words  

Speed-discrimination, autism spectrum disorders (ASD), visual psychophysics, drifting gratings, 

response time, task duration.   

 

5.2 Introduction 

Autism Spectrum Disorder (ASD) often is associated with enhanced perceptual processing of 

local visual features and degraded processing of global features.144 However, in perceiving 

motion, there seem to be deficits in integration of local and global information, which could be 

due to selective brain areas activated by certain stimulus methods, more than general deficits in 

the global perception.282 Impaired long range brain connectivity has been reported in ASD.302 On 

the other hand, the short range brain connectivity has been reported to be preserved and 

sometimes even enhanced in autism.316 The variability in experimental methods and stimuli used 

in the different perceptual studies makes it difficult to draw firm conclusions regarding the 

mechanisms underlying such visual abnormalities in ASD. Some studies have found that 

sensitivity to global motion in adults depends on stimulus speed.317 Impaired sensitivity to 

coherent motion in ASD could be attributable to variation of speed parameter.205,286 For example, 

Chen et al205 reported enhanced performance in ASD group in speed discrimination task when 

the temporal range increased compared to control. This finding, however, can be explained as 
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being due to working memory121 rather than impaired visual motion processing. Other studies 

have measured motion perception in children with ASD.162,286 It is worth mentioning that 

developmental studies report a delay in speed processing particularly for slow speeds in 

children.318 This delay might be prolonged in children with autism due to atypical the 

development of the ability to detect changes in the spatial parameters of moving objects, which 

therefore might cause them to require longer presentation times to perceive slow motion. In this 

study, we report results from an experiment that examined speed discrimination of drifting sine 

wave gratings in adults with ASD that employed two different temporal conditions two different 

spatial frequencies and two stimulus duration times (short, long). This stimulus has previously 

been used to show that investigate speed discrimination differs in younger and older adults 

particularly at short stimulus durations.317 Our previous results on autism suggest that speed 

integration might be preserved in ASD319, yet they might need longer time to respond to stimuli.    

    

5.3  Methods  

5.3.1 Participants  

We tested 14 adults with ASD and 14 typical developmental (TD) participants with matched age 

and gender. The ages ranged from 16-40 years (mean = 25.7), and there were 5 females and 9 

males in each group. There were no significant differences in basic visual functions such as 

visual acuity (Table 1). Exclusion criteria for the autism group included family history of ASD or 

related developmental disorder, any known comorbid medical conditions, and/or under any 

psychiatric medications in the previous six months before the start of the study.  
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 Control (SD)* ASD (SD)* Group comparison 

Age range (16-40 

years) 

25.92 (6.45) 26.75 (6.74) p = .79 

Visual Acuity (log 

Mar) 

-0.13 (0.11) -0.16 (0.09) p = .44 

Contrast test (log Mar) 1.93 (0.18) 1.82 (0.12) p = .06 

Stereo-acuity  (second 

of arc) 

20.71 (1.81) 21.35 (7.53) p = .11 

Table 5-1 Data on selected visual functions of experiment participants. 

*indicates standard deviation. Note: visual acuity and contrast sensitivity were evaluated using the 

Freiburg test,16 and Stereo-fly test were used for depth perception 

 

Controls were excluded from participation if they had ever received mental health treatment, 

taken psychiatric medications, been diagnosed with a genetic or neurological disorder, had brain 

trauma/ injury, or had a sibling with autism. Participants with ASD completed the Autism 

Quotient test (AQ) of Baron-Cohen et al,259 a 50-item self-administered questionnaire targeting 

sub-clinical autism-like traits. The AQ test was completed online, and the mean score was 27, +/- 

2.7.  Accordingly, one participant from the autism group who scored 35+ was excluded from the 

study, who also had a sibling with severe autism.   

5.3.2  Stimuli  

The stimuli were computer generated using the Psykinematix software 

(http://www.psykinematix.com/index.html), and displayed on a gamma corrected MacBook Pro-

laptop (15.4-inch, 2880 x 1800 pixels, 60 Hz refresh rate). The stimuli consisted of a pair of 

gratings with a spatial frequency 2 cycle/degree, oriented vertically and drifting perpendicular to 

http://www.psykinematix.com/index.html
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the direction of orientation (Figure 1). Stimulus contrast was 100%. The gratings were presented 

within two circular windows. We used the same technique as Foss-Feig et al46 to generate the 

drifting grating. The temporal envelop was a hybrid- Gaussian which Foss-Feig described as an 

envelope where the edges “ are half-Gaussians and the central portion is set to maximum 

contrast. Fine temporal precision was obtained by adjusting the SD of half-Gaussian edges, and 

transferring “excess” contrast to the flat central portion. This hybrid envelope allowed fine 

temporal precision of brief stimuli and avoided protracted fade-in/fade-out periods associated 

with prolonged temporal Gaussians. Gaussian flanks allow for subframe sampling (a temporal 

equivalent of subpixel sampling), permitting accurate presentation particularly for brief stimuli 

by using only a few monitor frames”. Each circle circular window had a radius of 0.5° radius at 

the viewing distance of 1 meter and were centered on points that were centered on points 1.25Åã 

to the left and right of a small central fixation cross. 

 

Figure 5-1 Speed-discrimination stimulus. 

The stimulus occupied 4.08 deg of visual angle at a viewing distance of 1m. Participants keep fixating at 

the cross mark during the stimulus presentation, then it disappeared to prevent image after-effect. 
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The subject had to fixate binocularly on the fixation cross. Two reference speeds were used: 2 

and 6 deg/sec, which corresponded to temporal frequencies (i.e., spatial frequency times speed) 

of 4 Hz and 12Hz, respectively. Two drifting grating were presented simultaneously for either 

500 ms or 250 ms. The inter-stimulus interval between trials was set to 500 ms, during which 

time participants had to respond. The task was conducted in a dark room, with only a side light 

(room luminance ~ 0.56 cd/m2). 

5.3.3 Task 

The observer’s task was to indicate which of the two moving gratings drifted faster. Participants 

were instructed to fixate on the central cross at all times. Based on a prior pilot study, the size of 

the two circles and the working distances were both chosen carefully so that: (1) both circles fell 

within the 5º of visual fixation center; (2) observers did not alternate fixation between the two 

grating, and (3) the speed differences would be discriminable only obtained if the observer 

processed motion information of the two targets at the same time. Participants used the left and 

right arrow keys on the key pad to respond using their dominant hand. Participants were 

instructed to respond as soon as the stimuli disappeared. They could take a break when needed 

by pressing the keyboard space bar at any time. The experimenter was present throughout the 

trials. Audio feedback using different beep sounds after each response was used to encourage 

participants to maintain high accuracy to inform them that their answers were recorded, and to 

indicate the next trial onset. All participants had 10 practice trials, and all questions were 

answered before the start of the task.  
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5.3.4 Psychophysical Method 

One of the drifting gratings circle was defined as the “standard” and moved at the reference 

speed of 2 deg/sec or 6 deg/sec. The other grating was defined as the “test” and drifted at speeds 

that were varied across trials by an adaptive staircase method. The left/right positions of the 

standard and the test gratings were randomized throughout the task. A 3-down /1-up staircase 

controlled the speed increment that was added to the test grating. At the beginning of each 

staircase the test grating speed was 75% faster than the standard grating. The test speed was then 

decreased by 25% after three consecutive correct responses. However, around threshold the 

staircase decreased the speed increment by 10% after 3 consecutive correct responses and 

increased the speed increment by 5% after 1 incorrect response. Eight reversals were collected 

before the staircase terminated and threshold was defined as the mean of the last six reversals. 

During each staircase the stimulus duration and the reference speed was fixed. Conditions were 

not interleaved, which may increase the uncertainty of the response. Therefore, each reference 

speed (2 and 6 deg/sec) was tested for two stimulus durations (500 and 250 ms.) with an inter-

stimulus interval of 500ms. Each condition ran for 4 trials in 3 blocks giving a total of 12 trials 

for each condition, and all 4 conditions were randomized throughout the task. All speed 

discrimination thresholds were converted to a Weber fraction (∆V/V) for comparison across the 

different reference speeds where ∆V is the difference between the mean estimated speed 

threshold and the standard speed V.   

Response time (RT) was collected throughout the experiment as the time taken by the subject to 

respond to the stimulus. Response times below (0.1 s) (anticipatory responses) and above (0.75s) 

(late responses) were filtered out. RT outliers were all points more than 100 ms above average 

RT to each parameter were removed and considered as rest time as long as it did not occur more 
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than four times per task; otherwise, the test was repeated in a subsequent visit to the lab. 

Following these criteria, only a few trials were discarded from the RT-analyses for all 

parameters, (ASD group 5.23%, and TD group 3.30%), and no participant required for a full 

repetition of a task. Repeated measures ANOVA analyses were conducted with group (ASD, 

TD) as in between-subjects variable and ‘test’ and “RT” as the repeated-measures variables, each 

was conducted separately.  

5.4 Results  

5.4.1 Normal Speed Processing in Autism  

A 2 (group) x 2 (duration ) x 2 (speed ) ANOVA results found significant group and stimulus 

duration interaction (F(1,26) = 5.06, p = 0.033), while speed and group interaction was not 

significant (F(1,26) = 1.587, p = 0.219). Also, three interaction between group , speed , and 

duration was not significant (F(1,26) = .179, p = 0.676). Overall mean threshold presented in 

Figure 5-2 showed that ASD had similar performance to control in speed discrimination task and 

there was no statistical differences at all parameters. Interestingly, speed discrimination 

thresholds in ASD  observers were lower than thresholds in TD observers in the slow speed, long 

stimulus duration condition, (ASD mean = 0.38, TD mean = 0.509), yet these results were not 

statistically significant(Figure 5-3).  
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Figure 5-2 compared mean thresholds of speed discrimination between both groups and across 

all parameters. Error bars present SEM 

  

Figure 5-3 Speed-discrimination threshold based on stimulus duration varying at two speeds. 

(left) shows comparison of threshold of discrimination fast and slow speeds at short stimuli duration 

(right) shows threshold of discrimination fast and slow speeds at long stimuli duration. Results revealed 

comparable performance of both groups with no statistical significant difference. Error bars presents 

SEM 

M
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5.4.2 Response time  

 

Figure 5-4 Mean response time between both groups at all tasks parameter, showing no 

significant differences in performance between groups. error bars present SEM 

 

Average response time did not vary between the ASD and the TD group based on speed 

parameter (F(1,26) = 0.81, p = 0.778) (Figure 5-4). However, groups performance did vary based 

on stimulus durations (F(1, 26) = 27.166,  p <0.05). At short stimuli presentation, both groups 

took longer time to respond to slow speed (2 deg/sec) (Mean RT: ASD = 0.679 ms, TD = 

0.673ms), compared to fast speed (6deg/sec) presented for the same duration (Mean RT: ASD = 

0.635 ms, TD = 0.636ms) (Figure 5-5 (A)). At longer stimulus duration, the mean RT increases 

for both groups and at both speed parameters compared to short stimuli presentation, yet no 

statistical significant was observed between groups (F(1, 26) = 0.034, p =0.855), (Figure 5-5).    
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Figure 5-5 Average response time collected immediately after stimulus end.  

(A) showing mean RT of both groups to fast and slow speeds at short stimulus duration. (B) showing 

mean RT of both groups to fast and slow speed at long stimulus duration. . Error bars present SEM 

 

Change in speed, however, did not show within- subjects performance differences (F(1, 26) = 

1.417, p = 0.245), neither speed/ group interaction (F(1, 26) = 0.081, p = 0.778).  

B 

A Estimated marginal means of response time at short stimulus duration (250ms)  
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Figure 5-6 Mean RT based on fast speed parameter varied at both stimuli duration (250, 500 

ms) in both groups. Error bars presents SEM 

 

Both groups showed comparable performance when stimuli ran at both slow, and fast speed and 

for both short and long stimuli duration (Mean RT: ASD = 0.6796 ms, TD = 0.6736 ms) (Figures 

5- 6 & 5-7).    

 

Figure 5-7 Mean RT based on fast speed parameter varied at both stimuli duration (250, 500 

ms) in both groups. Error bars represents SEM. 
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5.5 Discussion and Conclusion  

In this study we found that individuals with ASD had normal speed discrimination performance 

similar to healthy controls. Both groups showed similar effect to change in duration of stimuli 

more than the speed variation. When drifting grating stimuli moved at fast speed for short 

duration, ASD group showed an elevation in speed-discrimination threshold similar to the TD 

group. On the response time comparison, both groups responded similarly to the increase/ 

decrease of stimuli duration, particularly at long duration, more than the speed parameter. An 

overall average RT shows no statistical differences in the group performance for any of the 

stimulus parameter.   

 

5.5.1 Speed discrimination in ASD 

Speed processing requires integration of spatial and temporal information processing between 

early visual cortex area V1 up to higher order visual areas, such as MT/V5. However, this could 

vary based upon the method and selective stimuli parameters used in a speed experiment. Speed 

discrimination have been reported normal in autism group at slow and fast parameters.144 The 

main differences however was found when stimuli methods vary by other factors, for example, 

noise level,237 temporal modulation152 and/ or visual search.316 For example, Chen et al205 used 

coherent RDK stimuli to assess speed discrimination. Their results showed findings similar to 

our study of normal speed processing in ASD. However, in Chen’s study, ASD individuals 

exhibited enhanced performance at longer stimulus durations compared to the TD group. 

However, failed to find significant group differences in speed discrimination even at long 

stimulus durations. These differences between the results obtained in the two studies might be 
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explained by the different stimuli used in the two experiments. The RDK stimuli used by Chen et 

al may require enhanced processing of coherent motion preformed in higher order cortical areas, 

whereas the drifting gratings used in our experiment  may be processed in lower visual areas. A 

study by Manning et al.286 that used RDK to study fast and slow motion perception in children 

with ASD, obtained results that were comparable to our findings, although they found higher 

thresholds in the ASD observers for slow stimulus speeds. Based on the findings from age 

differences in response to speed tasks, children tend to show less sensitivity to slow speed 

compared to adults.318 Hence, children with autism might be more affected by disrupted brain 

networks at early development stages.302 These findings suggest that motion perception might be 

disturbed in autism particularly for complex stimuli that require more integration between visual 

cortical areas.95 

 A question could be raised as to whether the methods used in the above mentioned studies 

actually reflect the normal speed processing advantage in ASD? If so, is this advantage limited to 

early cortical processing (e.g., within V1) and does it decrease at higher order areas such as MT? 

Or can we attribute the speed processing advantage in autism to other factors?.205  

We provided the example above that show ASD participants decreased performance in 

detecting speed parameter using RDK stimuli, yet drifting grating stimuli show normal response 

to speed same as control. Bertone et al,64 for example, used two static orientation-discrimination 

tasks with first-order drifting grating, and second-order texture-defined stimuli in adults with 

ASD compared to TD group. Their results suggest that ASD-related visual impairments depends 

on stimulus complexity irrespective of static or dynamic stimulus characteristics. However, we 

cannot completely agree that the stimuli used by Bertone et al were ideal for assessing the 

function of higher order visual areas, which been found to be activated more by dynamic stimuli 
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than static stimuli. The drifting gratings in the Bertone et al. study involved perceptual 

processing at early levels of V1,320 and hence their results might agree with our results. Drifting 

grating stimuli may only reflect the enhanced local processing advantage found in ASD, but not 

the altered function at higher-order areas.135 However, we agree with the idea that stimuli 

complexity may disturb motion processing in ASD particularly the global motion more than 

local motion.275  

Previously275  we measured coherent motion discrimination thresholds using RDKs in the 

same experimental cohort reported here. We found that direction discrimination thresholds were 

similar in ASD and TD observers. However, we also found that combining the coherent motion 

discrimination task with a second simultaneous, form-from motion shape identification task 

resulted in significantly greater dual-task costs on the coherent motion task in ASD participants. 

This result suggests that ASD deficits in global motion processing may increase with increased 

stimuli complexity. Studying speed discrimination using different stimuli type and methods can 

revealed so much about motion perception-related to speed. Cliffored et al.321, for example, 

studied speed discrimination using RDK stimuli presented in optic flow patterns and rotational 

stimuli. They found that participants reported radial motion appeared to move faster than 

rotational motion. However, when speed parameter was compared using same type of stimulus 

participants showed no differences between the two targets running at the same speed. Cliffored 

et al. argued that their results were consistent with the idea that perceived speed is based upon 

the pooled responses of elementary motion detectors, but that speed processing may manifest 

upon constrains on motion-in-depth and object rigidity.321 In ASD, there are no research that 

studied such differences in speed discrimination using deferent methods. In general, ASD show 
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intact primary visual area,9 hence this may explain the normal speed discrimination found in this 

study.        

Finally, the findings in this study suggest normal speed processing in autism. It may not be the 

whole story, and it would not explain the distinct mechanisms mediating different domains of 

visual information processing. Further elucidation requires additional experiments and imaging 

studies in this group. 
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Chapter 6  

Conclusion and future outlook 

Many theories have been proposed to understand the underlying mechanisms of motion 

information processing in ASD. No firm conclusion can be drawn as to where exactly deficits 

exist in the neural visual areas in autism. For a long time, the theory of enhanced local perception 

and diminished global perception was the dominant theory to explain the biased performance in 

extracting small details that were found in tasks that used so-called Navon stimuli.322 Introducing 

new methods to assess motion perception in autism have implicated other factors, such as altered 

connectivity across visual networks, that may start at birth.49 Disturbed cortical connectivity may 

also affect the basic function of primary cortices and/or increase neural variability in autism. 

However, these suggestions attempt to reconsider the idea of impaired global (or rather, biased) 

processing between local/global information to be either intact or even enhanced on tasks 

necessitating static spatial information processing and poor performance with dynamic 

information.46,86,160,163 Therefore, the impairments of motion processing in individuals with ASD 

does not necessarily arise solely from one abnormal mechanism or even a broad impairment of 

spatiotemporal integration, but rather from complex factors that contribute to decreased 

sensitivity to motion perception based on activated different areas of visual cortex. These areas 

may also be influenced by related mechanisms, for example, the internal/external deficits in 

visual noise filtering in autism.237,275 Herein, we suggest some general neural factors that 
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contribute to ASD-related changes in motion processing that are based on the findings from our 

experiments and related research in this field:  

• Visual task involves activation of the primary area at V1, based on the feedforward/ 

feedback connection,320 ASD will be associated with enhanced local perception.236 This 

finding may be demonstrated by using tasks such as drifting grating and 100% coherent 

RDK stimuli. However, when the task involved changes in contrast, for example, ASD 

participants exhibited an enhancement in detecting high contrast with large target sizes, 

which may suggest abnormal weakening of response gain control.46 In contrast, autism 

group presented deficits in detecting low contrast modulation, which could be due to 

signal/noise ratio weak response,62 or to large receptive fields that may decrease 

response gain control in zero noise level task.195,319 

• When the tasks require processing on high-order cortical areas (e.g., MT/V5 and MST), 

ASD-related deficits will be observed when stimulus complexity is high, signal/ noise 

ratio is low,226 and the task required abnormal integration of information within and 

between higher-orders visual areas323 Otherwise, normal performance might be obtained 

in ASD observers if these “stimuli triggers”  mentioned above are controlled.98,158,193  

• Response time in the ASD observers to dynamic visual stimulus316 suggests that 

enhanced local processing found in autism may not be caused by long stimulus 

presentations or by advanced search ability. In fact, RT may be affected by stimuli task 

requirements more than actual enhancement/deficit located at the visual processing area. 

For example, increased RT in autism was observed when stimulus complexity increased. 
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However, increasing the time of presentation can overcome this deficit, and ASD 

participants may tend to respond in a similar way to control group.185,275  

 

Other factors that influence visual processing found in autism include:  

• The diagnostic criteria: In the past few years, the diagnostic criteria have varied in 

terms of inclusion and exclusion measurements. Although, the recent DSM-V widened 

the inclusion criteria to include all previous categories under one umbrella153 the 

assessment procedure is still based on either the direct or indirect observations of 

individual behaviors. These “tests” consider two categories of symptoms: 1) Persistent 

deficits in social communication/interaction and 2) Restricted, repetitive behavior 

patterns.  Severity level assessment (1 less sever – 3 extremely severe) is based on level 

of support needed for daily functions. However, information can still be obtained 

through observation by a third party (parents, school teacher) or by self-report 

questionnaires such as the Autism Spectrum Quotient.259 Yet, these type of assessments 

still lack the cognitive measures that can truly differentiate autism groups. Furthermore, 

these assessments do not include any sensory evaluation, such as visual processing. The 

lack of sensory evaluation may contribute to the variability that is typically seen in data 

collected within and between putatively homogeneous groups of ASD individuals. In 

our review, we showed an example taken from same “high-level IQ” autism group, 

which include high-functioning” autism (HFA), and Asperger Syndrome (AS).144 In 

these two groups researchers still find statistically different observations in motion 
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perception.151,199 Curunt diagnostic criteria make it difficult to create ASD groups that 

are truly matched and, consequently, to observe ASD-related changes in behaviour that 

are consistent across experiments 

• The autism group sample: The majority of studies that have investigated motion 

perception in autism were either examined children with autism or adolescent and 

adults, with autism. As far as we are aware, no study has examined both age groups. 

Hadad et al162 reviewed the significant differences in motion perception, particularly 

global motion perception, that exist between children and adults. Results in this field 

show that sensitivity to different types of motion information develop at rates.209 Other 

studies suggest that sensitivity to differences speed and the minimum displacement of 

motion that defined form, may not fully mature up to 11 years old.318,324  It is possible 

that these immaturities are prolonged in individuals with autism, perhaps reflecting 

abnormal development of brain network connectivity. Most Studies have reported that 

children with autism exhibit enhanced local motion processing with a diminished global 

motion perception [e.g., Ronconi et al]140. On the other hand, studies on adults with 

autism have yielded contradictory findings[e.g., bakroon et al.] 275. Hence, studies that 

tested children and adult with ASD using the same stimuli and methods could provide 

important data about the development of motion perception in autism. Also, it could 

draw “clear” understanding of the underlying abnormalities in visual processing and 

whether perceptual learning would overcome such abnormalities over time.   
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• Methods used in studying motion perception in autism: previously we reported144 that 

using different methods makes it difficult to compare findings from different studies. 

Therefore, we suggested that tasks of same methods should be used and should vary one 

or two parameters. This method will insure activation of the same levels of neural 

processing and connectivity. Also, it will mediate other factors such as, bottom-up and 

top-down feedback projections.314  

The results presented in this thesis have provided new information on how motion perception is 

processed in autism. It is worth emphasizing that the results from our experiments have been 

reported from the same experimental cohort of the autism and the control group with the 

following general conclusions:  

• Normal global perception was found in individuals with autism when responding to 

global direction task. 

• In a global/local task, locally-oriented information, such as form-motion perception in 

autism, was intact, while global motion declined. However, this biased processing may 

decrease with the increasing task complexity.  

• Higher-order processing may be altered by internal/external visual noise filtering in 

autism. 

• Long stimulus durations may enhance perceptual performance in ASD. 

• Speed perception is normal in autism. 
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To support these hypotheses, further research is needed to clarify the actual neural functional and 

anatomical activation in autism in response to specific visual stimuli, such as neuroimaging 

techniques.  

A farther challenge will be determining if  these findings support the social orientation and/or the 

bottom-up theories of ASD.93 In other words, does the information obtained from these studies 

support the idea of existing developmental neural abnormalities which later affect information 

input and manifest themselves as ASD? Or is the social brain characterized by the autism 

syndrome corrupted, thus, receiving and processing input information at different visual areas 

result in abnormal visual function? 
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