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Abstract

The algorithm used for determining sensor placement in this thesis will be based on
the Kalman filter. This filter is very famous and its application are numerous - some
examples include aircraft navigation, finance and weather forecasting. It is used to extract
an estimate of the true state of a system based on noisy measurements. For linear systems,
where the noise satisfies certain assumptions, the Kalman filter minimizes the expected
squared error between the filter’s estimate and the true state of the system. By varying
the sensor location, and therefore the observation matrix, one can further minimize the
expected squared error to determine an optimal sensor placement. For linear systems, a
regular as well as steady state Kalman filter are used for the sensor placement algorithm.
This thesis examines this concept further, for nonlinear systems by using the Extended
Kalman filter.
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Chapter 1

Introduction

When one is sick, thermometers are often used as part of medical treatment. The ther-
mometer is an example of a sensor and the associated measurement is the body temper-
ature. Measurements are used to obtain more information about the system and in the
example considered, they are used to diagnose the severity of fever. The accuracy pro-
vided by the temperature measurements are sufficient for most health applications but
as all measurements, they fall victim to noise and uncertainty. For older, mercury based
thermometers, an example of noisy or biased measurements are those that come after for-
getting to shake the thermometer beforehand. The problem of sensor placement is not as
abstract at it sounds and in fact is a very common and important one. For thermometers,
the sensor placement problem is resolved by a set of medically recommended locations.
Some locations are better at providing more useful information than others.

For studying sensor placement, a system of interest needs to be selected first. Intricate
biological systems such as the human body will not be chosen and instead a more simple
model will be that is represented by a well known, simple mathematical equation. The
purpose of simplification is to allow for a rigorous investigation to then provide groundwork
for future investigations for more specific, complex systems.

The algorithm used for determining sensor placement in this thesis will be based on
the Kalman filter. This filter is very famous and its application are numerous - some
examples include aircraft navigation, finance and weather forecasting. It is used to extract
an estimate of the true state of a system based on noisy measurements. For linear systems,
where the noise satisfies certain assumptions, the Kalman filter minimizes the expected
squared error between the filter’s estimate and the true state of the system. The error
based minimization property with the combination of varying sensor position allows for an



intuitive brute force type algorithm that by varying the sensor location further minimizes
the expected squared error to produce an optimal sensor placement. This thesis examines
this concept further, for nonlinear systems.

In chapter 2 the system of interest, namely Burgers equation, is introduced along with
ways to numerically approximate it. Next, in chapter 3, the Kalman filter is introduced in
detail along with its implementation. Chapter 4 introduces the basics of the sensor place-
ment algorithms and nonlinear results are discussed in 5. Finally in chapter 6 conclusions
are made and possible avenues of future work reflected upon.



Chapter 2

Model

The system considered for sensor placement will be Burgers equation. It is the simplest
equation combining both quadratic nonlinearity (i.e. nonlinear advection) and diffusion.
The equation form is similar to those that govern fluid flow and will be used as bridgehead
in investigating sensor placement for nonlinear fluid equations. A great introduction to the
equation and its properties can be found in [10] while numerics are covered in [2],[30] and
[31]. The basic physical intuition behind the equation will be introduced first followed by
a section on numerical methods for this equation.

2.1 DBurgers

Burgers equation is
Up + Uy = Vllgy. (2.1)

In models related to waves there is some distribution of material or some state of medium
of interest [10]. Consider p(z,t) as the density per unit length and ¢(z,t), the flux of
material per unit time. Assuming conservation of material, one can conclude that over
some boundary defined by x, and xy, the rate of change of material within the region
(x1 > = > x5) is balanced by the flow across x; and x:

x1

— p(x,t)dx = q(xs,t) — q(x1,1). (2.2)
dt /.,
When the limit 1 — x5 is taken then one obtains the conservation equation
dp 0Oq
— 4+ —==0. 2.3
ot T o (2:3)
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In many cases there can be a relationship between flux and density such that ¢ = Q(p).
An example of this is when more dense regions in traffic flow have lower flux. Substituting
the relation into the conservation equation (2.3) yields

pr +u(p)pz =0 (2.4)

where u(p) = Q' (p) is the propagation velocity of p. In the case of u(p) constant then (2.4)
reduces to the advection equation. In some cases, it would be better to assume further
that ¢ is not just a function of p but of its gradient p, and that @) is quadratic in p:

q=Q(p) — vps. (2.5)

In the case of traffic flow, drivers reduce their speed to account for an increasing density
of cars ahead of them. This in turn lowers the net flux in a region of increasing density.
Substituting (2.5) into the conservation equation (2.3) simplifies as follows

pe+ (Q(p) —vpa), =0
pr+ Q' (p) = Vpas
pr+ u(p)pa = Vpua-
Multiplying (2.8) by «/(p):

u'(p)(pe + ulp)pz) = v (p)(Vpaz) (2.9

(W (p)pe) + ulp) (W' (p)pz) = v (p)(Vpuc) (2.10
g + uty = vu'(p) P (2.11

Up + Uy = Vg, — v (p)p2. (2.12

xT

Since @ is quadratic in p, then (2.12) reduces to
Up + Uy = VUgy (2.13)

which is Burgers equation. In this equation wu, term leads to steepening and breaking,
while the rvu,, term represents diffusion.

2.2 Numerics

Two types of discretizations will be considered. The first will convert Burgers into a system
of ordinary differential equations (ODEs) by assuming u can be expressed as a truncated
series of sines (or modes). The ODEs will be solved using an Euler type scheme. The
second discretization will be an upwind scheme, the implementation of which will involve
finite differences.



2.2.1 Modal Methods

In the modal scheme, Burgers equation will be approximated by a system of ODEs. This
will be done by setting u to be a truncated sine series with N total modes:

Za] sm<( )x) (2.14)

where a;(t) is the time dependent coefficient of the j® mode. The approach is not novel and
for instance has been used to discretized the shallow water equation in [3]. The boundary
conditions are chosen to be Dirichlet

u(0,t) = u(L,t) =0 (2.15)
where L is domain length. The boundary conditions make the sine basis approximation

natural. Substituting (2.14) into Burgers equation, multiplying by some sin ((kL7T ) x) and
integrating over the domain yields

S /() () o
[on((5)2) ([ ((7) )] [ ()i (()-)] ) -
3 () o [ () o () )

"~ (2.16)

3

The orthogonal nature of sine

[ (CE) ) () )= 45 e
sin| (= )z |sin||— )z )dr= ]
0 L L 0, otherwise



implies that equation (2.16) is reduced to

Equation (2.17) is an ODE for the k*® coefficient of the k™ sine mode. By varying k = 1...N,
N total such ODEs are derived which convert Burgers’ PDE to a system of nonlinear ODEs.
The simplfication of the nonlinear sum term in the system of ODEs involves evaluating the

following integral

[ () ) sn ((5) o) e () )

The integral can be evaluated with the use of the identities

{sin(u) sin(v) = £ (cos(u — v) — cos(u + v))
cos(u) cos(v) = 3 (cos(u — v) + cos(u + v))

which simplify (2.18) to
() o ()
(Y Y (7)Y

The intergral bounds further simplify (2.20) to

(L ifk—j—m=0
Lifk—j+m=0
—%,ifk‘%—j—m:
L ifk+j+m=0

|0, otherwise

6
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(2.19)

(2.21)



Hence (2.17)’s nonlinear sum term can be written in terms of a matrix A; € R¥Y such
that

[a1(t),...,an(t)] Ax[ar(t),. .., an(®)]". (2.22)
Referring to (2.21), Ay is defined as

;

Lifk—j—m=0
Lifk—j+m=0
mm 4
Aw(j,m) = <T> “Lifktj-—m=0 . (2.23)
—%,ifk—i—j—i—m:O

| 0, otherwise

Therefore, the k™ mode’s coefficient ay(t) is governed by the nonlinear ODE

ah(t) = —[ar(t), ..., an(t)] Ak [as(t), ... an(t)]" — v (%) ai(t). (2.24)
One can combine (2.24) for all k = 1...N such that
al(t)
d . d .
4 -4 @ = s(a) (2.25)
aN(t)

One fairly general approach to solving (2.25) is to use an implicit-explicit method (IMEX)
[29]. This can be done by splitting f in (2.25) into two components

d

— (

dt
where ¢ is non-stiff and h is the stiff component. Stiffness refers to the problem of comput-

ing a numerical solution that is smooth and slowly varying but that requires a very small
timestep|29]. The stiff component is the diffusive term

_ (’%)2 ar(t) (2.27)

@) = ¢(@) + h(q) (2.26)

as the largest k = N will restrict the time step for all other k. Implicit Euler’s can be used
to deal with the stiff diffusive term while explicit Euler’s can be used for the nonlinear
term. The discretization is

aptt = (az — (At) [a}, ... a¥] Ag[a], ... ,aﬁ,(t)]T> — (At)v (%)2 apt! (2.28)
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where a}f = ai(t,) = a; (n(At)). For this thesis, process noise will be needed to be added,
changing (2.25) to
d
dt (
where 7i(t) € RY is continuous white noise. The equation (2.29) is a stochastic ordinary
differential equation (SDE) and will be solved using the Euler-Maruyama scheme:

i) = f(@) + ii(t) (2.29)

aytt = a + Atf(ay) + VALG (2.30)

where ¢ is sampled Gaussian noise with zero mean and covariance (). More details on the
noise and relation between 7i(¢) and ¢ will be introduced in chapter 3. The Euler-Maruyama
scheme is a basic time-stepping scheme with relatively poor accuracy, and is used in many
applications for solving SDEs. More sophisticated methods are described in |33].

IMEX Euler-Maruyama
14 - 14
—t=0
12+

10+

3 6
4 L
/'\
? \/ \
\
0 \/
P ‘ ‘ ‘ | |
0 20 40 60 80 100

X X

Figure 2.1: In left figure, the IMEX is used to solve Burgers equation. In the right panel, the
Euler-Maruyama scheme is used. For both figures: N = 60, v = 6, L = 100, At = 0.002,
al(O) = GQ(O) = (l3<0) =5 and CL4(0) = ...= CLG()(O) = 0.

2.2.2 Finite Difference

Consider the linearized Burgers equation where u is replaced with constant c:

Up + ClUy = Vigy. (2.31)



A potential discretization [2| is the Forward-Time Central Space (FTCS) method that
transforms (2.31) into

ntl _ . n no__,m n o _ n n
; u’ ul gy —uiy uiy — 2uf +ujy

j J - 2.32
At T 2As Y (Az)? ’ (2:32)

u

where u approximates u (xj,t,). This is a first-order, explicit scheme with truncation error
O[At, (Az)?]. The scheme has been used in sensor placement investigations in [21] with
the timestep replaced with RK4. Using Von Neumann analysis, the stability restrictions
leads to

=
[\
IN
DO
3

(2.33)

<
VAN
N | —

, (2.34)

where r = vAt/(Az)? and = cAt/Az. The mesh Reynolds number [2] is defined as

=c— 2.
Rea, = ¢ y (2.35)

which in combination with restrictions (2.33 - 2.34) gives
2
21 < Rea, < —. (2.36)
i

An important issue involving Burgers equation and finite-difference schemes like the cen-
tered scheme above is that they exhibit unphysical oscillations. The FTCS will lead to
oscillations |2] if

2

with Rea, greater than 2/u the scheme will lead the solution to blow up [2]. The oscillation
can be removed if the second-order central difference discretization for the advection term is
replaced with a first-order one that acknowledges the direction that information propagates:

u"t — o — u?, | —2u” + u?
J J J j—1 j+1 j j—1
— _ 2.38
A T 2Ar YT (aey (2.38)

This change is known as upwinding. Provided that ¢ > 0 and assuming that v = 0
then (2.31) represents information propagating in the positive or rightwards direction.
The points chosen to discretize the advection term are in the upstream or equivalently

9



in the opposite direction of the wave propagation. This scheme eliminates oscillation but
introduces extra dissipation, especially if Rea, > 2. The scheme (2.38) is extended to the
nonlinear case as follows

n+l ) no_ n n
w; (- uig — 2uf +uiy

e B R - . 2.
A7 + uj N v (Ax)2 (2.39)

In the inviscid case (v = 0), the scheme is adequate for smooth solutions but "will not,
in general, converge to a discontinuous weak solution of Burgers’ equation as the grid is
refined" [31]. For the purpose of this thesis shocks are never an issue so the convergence
is not a major issue. In fact, for the inviscid case, the scheme (2.39) is very similar to the
finite volume conservative method [30)]

n n At (1 2 n \2
it = - Ax (5 (u7)” = 5 (u5-1) ) ; (2.40)

where u} now represents the average value of u over an interval [z, xj41]:

1 Tj+1
ul = N u(z,ty,)de. (2.41)
T Sy,

"

The descriptor “conservative " applies to the way the scheme is derived. Conservation of

u can be expressed as

1 Tjt1 1 Tjt1

1 nt1 tntl
A_.’L‘ ., U(ﬂf,tn+1)d$ = A_m ., U(I7tn)dl‘ — A_[L‘ |:/tn f(U(ZE'],t))dt — /tn f(u(x]+1’t))dt .
(2.42)

The equality (2.42) implies that the average value of u at ¢, is a function of the average
value at t,, and the cumulative flux f through the boundaries at x; and z;,, over the time
interval [t,,t,41] - the value of u is conserved. Conservative schemes mimic (2.42), and
take the form

At

= = 1 (P ) = Pg). (243

Despite numerical similarities for smooth solutions, the finite volume (2.40) and finite
difference (2.38) schemes are not algebraically equivalent. However, an algebraic equivalent
can be found for the inviscid case, (2.38) as

1
uitt = o [(Ae = wfAt) wf + (Atu) ] (2.44)

10



that is Burgers specific version of the Courant-Isaacson-Rees method [31] with u} > 0 for
all j. This method is non conservative, but treats u} as an average volume of u over the
interval [z;, ;1] in spirit of finite volume schemes. The propagation velocity of u} is ¢ in
the linear case and uf in the nonlinear. The average value u}_, on the interval [z;_;, z;] will
be assumed to be propagating at speed uj into the next interval. The result is that the value

n+1

of u;™ will be u}_; on the interval [xj, ;i + Atuﬂ. By similar logic, the value on interval

J
[xj + Atu?, xj+1} will be u}. Combining the propagating u in both intervals and averaging
one obtains the scheme (2.44). Through basic algebraic manipulation (2.44) can be shown
to be identical to the inviscid version, (2.38). By setting F(U, W) = (v/ (Axz?)) (=U + W)

in (2.43), diffusion can also be accounted in equivalence between (2.44) and (2.38).

The boundary conditions will be set to be periodic
u(x =0,t,) = uj =uy =u(r = L,t,), (2.45)

where L is domain length. With the combination of (2.38) and (2.45), the scheme can be
expressed as

=" = [X]a", (2.46)

where [X] is a square matrix and a function of @". The eigenvalues of the matrix can be
investigated to verify for stability as seen in Figure 2.2.

It is worth making a final comment regarding stability. It is well known [31] that
upwinding for an advection term (linear or nonlinear) is equivalent to adding a diffusion
term with a grid dependent diffusivity. This generally leads to an increase in stability of
the numerical scheme, and this is consistent with what we observed in this thesis.

11



Upwind Stability Analysis

— =0 [ Stability region
—t=10 * t=0

25} =20 ' t=10
—t=30 - t=20

t=30
t=40
© t=200

Imaginary

0 Zb 46 6‘0 8‘0 160 s 0.6 0.7 0.8 0.9 1 11
X Real

Figure 2.2: In the left panel, the periodic Burgers equation is solved for using scheme
(2.38) and plotted for various output times. In the right panel, the eigenvalues of [X]
from (2.46) are plotted for various timesteps. All eigenvalues are less than one in absolute
value and are therefore in the stability region. The numerical method is thus stable.
For both figures: N = 200, L = 100, Az = 0.5, At = 0.01, v = 2, u(z,t = 0) =
sin((w/L)x) + sin((27/L)x) + 0.5.
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Chapter 3

Kalman Filter

3.1 Introduction

The Kalman filter, originally introduced in the early 1960s [19] [20], is an algorithm that
extracts a signal from noisy measurements based on an assumed model. The filter has
a wide range of applications including economics and spacecraft navigation [31]. In this
thesis, the Kalman filter will be a vital component of the algorithms employed for sensor
placement.

3.2 Discrete-time Kalman filter

In this section, the discrete-time Kalman filter (dt-KF) will be derived based on [36]. The
derivation will start with the introduction of least squares estimation.

Assume 7 € R" is a constant vector and i € R¥ is a k element measurement vector.
Furthermore, assume that & is an unknown state that one is trying to estimate using the
measurements. Let each element of the measurement vector be a linear combination of the
entries in 7:

y1 =Cnri+ ...+ Czp+v =CiZd+ vy (3.1)

. (3.2)
yp = Crixy + ... + Crpp + v = CL¥ + vy,

13



where v; is added, mean zero, measurement noise. Measurements (3.1 - 3.3) can be abbre-
viated as

01 (%1

. Ca| V2 S

gy=1| . |7+ | .| =Ci+7. (3.4)
Ck Vg

The matrix C, known as the observation matrix, extracts entries from the state and con-
verts them into k measurements. The estimate of 7 is defined to be Z so that 7 is the

residual, written explicitly as, .
r=1vy—CZz. (3.5)

The residual can be interpreted as the error between the measurements and noiseless mea-
surements of Z and ideally would be zero. A choice for estimate Z is one that minimizes
the scalar cost J - the squared norm of the residual

J=rTr= (g]— C:E’)T (g— C:%) , (3.6)

where superscript 17" denotes the transpose. It can be shown that the estimate that min-
imizes J is obtained through the method of least squares where in the case of a linear
system the estimate is given by # = (CTC)~LCT§ [36]. The disadvantage of least squares
estimation is that it requires all £ + 1 measurements to recompute the estimate when a
new measurement is recorded. For large k, the new measurement presents a computational
issue. The issue can be addressed by using a recursive least squares estimator. Consider an
already computed estimate fk after £ measurements and that an additional measurement
is obtained

Ykt1 = Cp1T + V1. (3.7)

Via the recursive least squares estimator, the current estimate fk,“ is given by
Tpy1 = Tp + Kig <Z/k+1 - Ck+1£3k> : (3.8)

To compute (3.8) one only needs the previous estimate I and the current measurement
Yr+1. Before specifying how Ky ;1 in (3.8) is derived, first consider the expected mean of
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the estimation error and substitute in (3.7) and (3.8):

B (&= &e)| =B 7= (& + Kot (1 = Conndi) )| (3.9)
—E 92’ - (:Ek + Ko ((Ckﬂzﬂ Vest) — Ckﬂsi?km (3.10)
—E (f . :Zk> — Kp1Chin (f - :Ek) . Kkﬂvkﬂ} (3.11)
= (I — K1 Cran) E [(f - fk_lﬂ — KB [vps]. (3.12)

Assume that the noise is zero mean
Ev]=0,VieN,i>0

with variance Rj. In addition, due to the estimator’s recursive nature 50 must be defined
despite the absence of a measurement at k = 0. If one chooses zy such that

E [(:Eo—f)] =0 (3.13)
Zo = B [(D)] (3.14)
then by (3.12)

E [(Ek—fﬂ ~0 (3.15)
i, = B[(Z)] (3.16)

holds. In other words, the mean assumption of the noise and initial estimate and (3.12)
indicate that the expected value of 7y is equal to Z. This makes the estimator unbiased.

The current estimate is updated based on balancing between previous estimate and current
measurement using the matrix Kj,;. The matrix, commonly referred to as the gain, is
specified by choosing an optimality criterion that the estimate would need to satisfy. The
previous cost J (3.6) can no longer be used as it requires the use of all measurements.
Consider the new scalar cost J 1 - the sum of the variances of the error entries at the
(k + 1)™ measurement:

S =B | (=) (7= ) 3.17)
~Tvace (B | (2~ F1) (- 1) | (3.18)
— Trace (Pk+1) , (3.19)
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where Iskﬂ is the error covariance matrix and Trace is the operator summing the diagonal
entries of a square matrix. The estimate that minimizes (3.17) is computed as

N N —1
K, = B,_,CT (CkPk_lCZ + Rk> (3.20)
Ty = dp1 + Ki <ij — Ck£k4> (3.21)
Py = (I — KxCy) Poy (3.22)

. . N\T
with £o = E [Z] as in (3.13) and initial estimate covariance Py = E {(f - fco) (f — 550) } [36].

The unknown state 7 defined as a constant vector is a strong restriction which is
addressed by the Kalman filter. Consider that & now evolves based on the following
transition equation

Tp = AZj_1 + Wi, (3.23)

where k represents the order of the measurement. The k" measurement

. = Cx, + v} (3.24)

is taken at time t;, a constant At seconds after the previous (k — 1)" measurement. The

system matrix A is a constant n x n matrix, C' is still the observation matrix, v and
are sensor and process noise respectively. The system matrices A,Q,R,C' can be changed
to be time step dependent in the Kalman filter formulation, but this will be avoided here
for the purposes of clarity. The noise vectors have the following properties:

@ ~ N (0,Q) (3.25)

G ~ N (0, R) (3.26)
E [@d0] | = Qb (3.27)
E [6.07] = Réy, (3.28)
E [6a7] = 0. (3.29)
The notation & ~ N (7, Z) means that & is Gaussian with mean ¢ and covariance Z. Prop-
erties (3.25) and (3.26) define the process and sensor noise as zero mean and Gaussian with
covariance () and R respectively. The Kronecker delta 05 ; in (3.27) and (3.28) restricts

the noise to be time independent while (3.29) implies that process and sensor noise are
independent.
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In the recursive least squares estimator incoming measurements modified the covariance
matrix Py as seen in (3.20). The Kalman filter will also modify the covariance matrix based
on the transition equation (3.23). Consider the mean of the state at x:

E (7] = (3.30)
— AB(Z_1) + F () (3.31)
= AZ)_ ;. (3.32)

Combining (3.30) with (3.23) and (3.27) it can then be shown that
P, = AP, AT + Q. (3.33)

The effect of the transition equation in (3.33) combined with the measurement update of
the recursive least squares estimator in (3.20-3.22) to derive the dt-KF. Let z, be the a
priori estimate based on all measurements before time ¢:

Ty = BT P T (3.34)

where the right hand side term is a conditional probability - the expected value of 7} given
the measurements. Let f; be the a posterior: estimate based on all measurements up to
and including time t;: .

B = (7 o (3.35)

Both f,; and 5;5 are estimates of 7. Since f; includes additional information, the intuition
is that it will be a better estimate. With these two estimates there are associated covariance
matrices:

A= (- d) (@-3) (3.30)
P =FE {(fk &) (7 - 5;)1 . (3.37)

The material, terminology and motivation for the discrete-time Kalman filter has now been
covered and the filter will now be formally defined.
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Definition 3.1. Discrete-time Kalman filter
Assume

1. The linear system

T = AZi_1 + W (338)
gk = COZ, + U (339)
E (0] ) = Qb (3.40)
E (0:,0]) = Ry (3.41)
E (@,7) =0, (3.42)

where 7y € R™ and 7, € R™ are state and measurement at time t; respectively.
Observation matrix C' € R™" and state transition matrix A € R™™. Process
noise wy and sensor noise vy are zero mean and Gaussian with variances ) € R™"

and R € R"™™,
2. The estimate is initialized as
it =B 7) (3.43)
P =E {(fo - :f?{) (fo - EJ)T} . (3.44)

3. For each incoming measurement at time step k = 1,2, ... the following two phases
are computed:

predict phase (3.45)
BT = Adt (3.46)
Py =APFAT +Q (3.47)

update phase

~ ~ -1
Ky = b C" (Ch "+ R) (3.48)
i =i+ K (- CF) (3.49)
P = (I - K,C)P, (3.50)

where the estimate at ¢, is 9?; K € R™ is known as the Kalman gain.
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Then (3.43 - 3.44) and (3.46 - 3.50) describe the discrete-time Kalman filter which
computes an optimal unbiased linear estimate that minimizes the mean square error of
estimate:

MMSE = E [(;?:‘k - :i«’;)T (@ - ;E,j)} . (3.51)

This is equivalent to minimizing the trace of f’; |15, Chapter 3|,|!, Chapter 3|,|7,
Chapter 5],[6, Chapter 5|.

If one sets A to the identity matrix and @) to zero in Definition 3.1 then the Kalman
filter is equivalent to the recursive least squares estimator.

Example 3.1. Let x be the position of a car with initial position o = 0 and let z be
the fixed velocity equal to 2y = 1 m s™!. Let position measurements be taken every 0.5
seconds (At = 0.5), then the transition equation is

mk N Ll) (A1t>] [ﬁ::] + (3.52)

with measurements

ye = [1 0] E”j + v = T + g (3.53)
Define the noise covariance matrices as
01 0
@= { 0 0.1] (3.54)
R =0.3. (3.55)

A sample realization of the filter with the defined parameters is shown in Figure 3.1.
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Figure 3.1: The graph shows four curves useful in understanding and assessing the
performance of the dt-KF. Comparing the ideal position (without any process noise) to
actual position shows the effect of (). Comparing measured position to actual position
shows the effect of R. Finally, comparing estimated position to actual position demon-
strates the Kalman filter’s performance. For examples where initial estimate does not
match the state or other interesting examples please refer to [27].

3.3 Continuous-time Kalman Filter

The continuous-time Kalman filter (ct-KF) is different from the dt-KF as the state and
measurements now evolve continuously in time. The ct-KF, also known as the Kalman-
Bucy filter [8], can be derived from the dt-KF when one takes the limit as the time step
decreases to zero. The details of this can be found in [36] and [!2, Chapter 3]. The
definition of ct-KF is similar to the definition of dt-KF in Definition 3.1. We note that
the notation below, while standard for ODEs, is somewhat misleading when the stochastic
component is included. While some aspects of the numerical treatment of stochastic DEs
were discussed in the previous chapter, here we use the naive, ODE notation. The filter
will now be defined.
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Definition 3.2. Continuous-time Kalman filter
Assume

1. The linear system is given by

(Z(t)) = & = AZ(t) + w(¢), (3.56)
g(t) = CZ(t) + 0(t), (3.57)

SJES

where the observation matrix C' € R™" and A € R™™ are constant. The state
Z(t) € R™ and measurement 7(t) € R™ have additive process noise @(t) and
sensor noise ¥(t). The two noises are uncorrelated with each other in addition to
being zero mean white noise:

E [w(t)a(r)"] = Qo(t — 7) (3.58)
E [#(t)5(r)"] = Ro(t — 7). (3.59)

The continuous-time impulse response (¢t —7) has a value of co at t = 7 and zero
elsewhere with an area of 1. The impulse response in (3.58) and (3.59) signifies
that the noise is infinitely correlated with itself at ¢ = 7, but has zero correlation
with itself when ¢ # 7 [30, Page 231]. The matrices @ and R represent the
intensity of the process and sensor noise respectively.

2. The filter’s initial estimate #(0) and covariance P(0) are given by
#(0) = B (7). (3.60)
— = — T
P(0)=E [(x(()) —m(O)) (x(()) . (0)) } . (3.61)

>y

3. Using the initial conditions (3.60-3.61), the estimate #(t), Kalman gain K () and
covariance P(t) can be computed by solving

F(t) = AZ(t) + K (v - Cir)) (3.62)
K(t)=P@t)CTR™ (3.63)
P(t) = —P(t)CTR'CP(t) + AP(t) + P(H AT + Q. (3.64)

Equation (3.64) is referred to as the Differential Riccati Equation (DRE).
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Then (3.60-3.61) and (3.62-3.64) describe the Kalman-Bucy filter which computes an
optimal unbiased linear estimate that minimizes the mean square error of estimate|,

Chapter 4| [5] [12, Chapter 3],[6, Chapter 9]:

MMSE = E [(f(t) - f(t))T <f(t) - f(t))} — Trace(P(t)). (3.65)

In [36, Chapter 8] the ct-KF is defined as minimizing the cost function

J. = /0 "5 [(f(t) —50) (#0) - j?(t))] dt (3.66)

with the filter defined as it is in Definition 3.2.

Example 3.2. The transition equations (3.52) and (3.53) from example (3.1) are re-
formulated for the continuous case:

%(ED - {8 é} {ﬂ +w(t) (3.67)

y=1[1 0] {x +o(t) (3.68)

Recall in this thesis that At is the time span between incoming measurements for the
dt-KF (the dt-KF can be used for purely discrete systems with no mention of time). The
equivalence between the continuous and discrete versions as At — 0 is determined by the
way the sensor and process noise covariance and system matrices are scaled [37]. Let the
continuous version of sensor and process noise be R., Q). and let Ry, ()4 be the discrete
version. In addition, let A, be the continuous transition matrix and let A; be the discrete
transition matrix, then the system matrices can be related as follows:

1

Ry= R (3.69)
Qua = (At) Q. (3.70)
Ay = exp (AAL). (3.71)
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Example 3.3. The discrete approximation of the ct-KF from example (3.2) is given
by:
_ B 0 1 1 (AY)

Ay = exp (AAL) = exp ({0 0] At) = [0 1 } (3.72)
which matches equation (3.43) in the discrete example (3.1) as expected. The noise
matrices are now:

1101 0 0.2 0
Q= A { 0 0.1} = [0 0.2] (373)
R. = (At) (0.3) = 0.15. (3.74)

The details of comparing the two are outside of the scope of this thesis, but are impor-
tant for consideration when numerically approximating the ct-KF with the dt-KF. Another
computational consideration is that for linear systems both the ct-KF and dt-KF do not
require the measurement 3 to compute the Kalman covariance P. This decoupling means
that the Kalman gain K (¢) can be computed in advance. The independence of the covari-
ance P from the measurement will change for the nonlinear case.

Computing P(t) for the ct-KF involves solving a differential equation. For a system with
a sufficiently large number of states, large savings in computational effort can be achieved
by using constant gain K instead of solving the DRE [36]. The constant gain is obtained
through the steady state assumption where P =0.

Given that A,C,Q and R are constant, P(t¢) may eventually reach a steady state covari-
ance P,, when P = 0. The zero derivative assumption reduces the DRE to the Continuous
Algebraic Riccati Equation (CARE):

— P,,C"R'CP,, + AP,, + P,, AT +Q =0, (3.75)

where Kalman gain K is now constant. A result that guarantees a steady state Kalman
filter being stable [36] is provided by the following theorem:

Theorem 3.1. The CARFE has a unique positive semidefinite solution Py if and only
if both conditions hold:
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e (A, G) is stabilizable meaning there exists a matriz L such that the matriz A+GL
has eigenvalues with negative real parts where GGT = Q

e (A, C) is detectable or equivalently (AT, CT) stabilizable

The corresponding steady-state Kalman filter is stable; that is, all eigenvalues of (A —
KC) have negative real parts.

Similar steady results hold for the discrete case with more details found in chapter 4 of

[1]-

Example 3.4. Using A,C,Q,R from example (3.2) and G
T~ A |VO1 0
GG=Q= { 0 #O.J , (3.76)
(A, Q) is stabilizable:
B Ly Lo| |0.1Ly 0.1Ly+1
I R o
Choose L; = —10, Ly = —10, L3 = 0, Ly = —10 then
-1 0
A+GL = { 0 _J (3.78)
which has all eigenvalues with negative real parts. Therefore it is, stabilizable.
(A, C) detectable:
T T T T Ly Ly
AT+ CTL=AT+CV Ly L] =] [ (3.79)
Choose L; = —1, Ly = —1 to prove (4, C) detectable.
The steady state matrix (computed by Matlab’s CARE function) is
1.285 0.946
Pos = [0.946 1.440} (3.80)
which results in a stable steady state Kalman filter.
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The ct-KF requires the measurements to be continuous in time. This is not always the
case as in many cases the measurements are made at discrete points in time. To allow for
the state to evolve continuously and for discrete measurements, the dt-KF and ct-KF are
combined to form the continuous-discrete Kalman filter cd-KF'. It is now formally defined:

Definition 3.3. Continuous-Discrete Kalman filter
Assume

1. The linear system is given by

d 5 " ,
(@) = ¥ = AT() + () (3:81)

with measurements
g]k = ka + ﬁk (382)

taken at t;, with fixed intervals between each measurement. Observation matrix
C € R™" and A € R™ are constant. The state Z(¢) € R"™ and measurement
Ur € R™ have additive process noise w(t) and sensor noise v respectively. The
two noises are uncorrelated with each other in addition to being Gaussian with
the properties

E [d(t)d(r)"] = Qo(t — 1) (3.83)
E (0,0 ) = Rér;. (3.84)

2. The estimate is initialized as
#(0) = E[Z(0)] (3.85)

P(0) = E {(5(0) ~#0)) (#(0) - 5(0))1 | (3.86)

3. For each incoming measurement at time step k = 1,2, ... the following two phases
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are computed:

predict phase (3.87)
initial conditions:
Fthoy) = & (3.88)
P(ty1) = P, (3.89)
differential equations :
d -
pr (z(t)) = Az(t) (3.90)
d
5 (P() = AP(1) + Pt)AT +Q (3.91)
solution:
Ty = i(t) (3.92)
Po = P(ty) (3.93)
update phase
. . -1
Ky = by CT (Ch;C" +R) (3.94)
5 =i + K, (gk - 055,;) (3.95)
P = (- K.C)P;, (3.96)

where the estimate at ¢, is :ij;: K € R™™ is known as the Kalman gain.

The equations describe the continuous-discrete Kalman filter which computes an op-
timal unbiased linear estimate that minimizes the mean square error of estimate [12,
Page 194].

For sensor placement investigation it will be assumed that measurements are taken at
discrete points in time meaning that cd-KF and dt-KF will be used.
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3.4 Kalman Filter Implementation

The Kalman filter version used in this thesis will rely on incoming measurements for which
the time between successive measurements is fixed. This specification restricts the Kalman
filter to run a predict phase followed by an update phase for every measurement as seen in
the dt-KF Definition (3.1). The introduction to the intuition behind the phases as well as
basic coded examples can be found in [28]. In brief, the predict phase propagates both the
estimate and covariance all based on the system and assumed process noise. The update
phase adjusts the predict phase’s estimate based on the current measurement using the
Kalman gain |4, Chapter 3|. In this section the implementation details of the update and
predict phase will be explained and the extended Kalman filter is introduced.

3.4.1 Update Phase

Consider the update phase

K, =P CT (CP;CT+R)™ (3.97)
7=+ K (3 - CF) (3.98)
P = (I - K,C)Py, (3.99)
as seen in dt-KF Definition (3.1) and c¢d-KF Definition (3.3). Programming (3.97 - 3.99)

is straightforward. However, one has to be careful as “one consequence of round-off error
is that the computed [P;f] may be non-Hermitian" [18] which would violate the property
of the covariance matrix being symmetric. One potential solution for this is to add a step
after (3.99) that would average the covariance p,j and its transpose.

. 1/ . AT
B =5 (P,j +(A) ) . (3.100)
Unfortunately, (3.100) does not address rounding errors potentially leading to the matrix

being non positive semidefinite |18] thus violating the definition of a covariance matrix.
This can be resolved by computing the square root factor matrix or the Cholesky factor

(P,j)% : (3.101)

o= () (7)) 5.102)
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where superscript * represents the conjugate transpose. Given that the factor can be
computed, then P can be reconstructed as in (3.102) while still maintaining positive
semidefinite property since

#APri =T (( ,j)i <(15,j>§>*1) f (3.103)
-~ <5T<k+>) ( (,j)) f) (3.104)

=77 (3.105)
0 (3.106)

Other potential sources of errors as well as detailed dicussion on various implementations
and their motivations can be found in |14, Chapter 7|. If one assumes that the initial
covariance POJF is positive definite then by the Cholesky factorization the factor exists
and is lower triangular such that (3.102) holds [13, Chapter 4.2.3]. Provided that the
square root factor is propagated consistently with respect to the update and predict phase
of the filter then the initial positive definite covariance and a basic recursion argument
guarantees that each ]5,: will be positive semidefinite for all k. The QR decomposition
(i.e. the decomposition of a matrix A into product QR where @) unitary and R upper
triangular) will be the basis behind the update phase for propagating the square root
factor consistently. Consider the square root factor

ree(n) .07
0 (ﬁ,;) ’
of the matrix
R+CPCT C (P,;) 5108

~ \T A
(P,;) cr P
When (3.107) is multiplied by some unitary matrix it will equal a lower triangular square

root factor matrix
o— {X 0} . (3.109)

RE O(Pp)?
2 Y 7

1
0 (p)?
The unitary matrix, in order to compute the lower triangular square factor, is specified by
the QR decomposition. The square root factor implies that (3.108) must equal

XX XY~
YX* YY"+ 27

(3.110)
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Through algebraic manipulation it can be shown the following holds (for details see ap-
pendix (A)):

VI

Z = (P}) (3.111)
YX ! =K. (3.112)

Provided that ]5,; is in square root form, as in (3.109), then after the update phase one will
compute }5; in square root form. It is left to demonstrate that the predict phase can also
propagate the covariance matrix in square root form to conclude that the implementation
of the Kalman filter guarantees the positive semidefitness of the covariance.

3.4.2 Predict Phase

The predict phase is responsible for propagating the estimate and covariance matrix based
on the model and assumed process noise. The update phase was introduced first as it is
the same for both continuous (# = Ax) and discrete (21 = Axy) models. The predict
phase is where the implementations of the two differ.

A significant portion of the propagation within the predict phase involves adding ma-
trices together. In theorem (3.2) it is demonstrated that adding two matrices with square
root factors produces a matrix with a square root factor.

Theorem 3.2. If adding matrices Z € R™™ and Y € R™™ which both have square
root factors

Y =v3 (Y%>* c R (3.113)
Z

7 (Z%>* e R™*m. (3.114)

then the sum equals a matrix that also has a square root factor.
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Proof:

where © € R™™ s a unitary matriz (00* = I). The last line (3.119) signifies that
the sum of two matrices with square root factors can be represented as a matrixz with
square root factors. Omne can specify © by taking the QQR decomposition that factors
some m-by-n matriz A into product QR where () is m-by-m and orthogonal while R is
m-by-n and upper triangular [15, Chapter 5.2]. Consider the factor from (3.119)

Yz Z:]©=[X 0 (3.120)
[v: zz]=[X 0]© (3.121)
[v: z:]"=6 ﬁ)ﬂ , (3.122)
then the QR factorization where Q = © and R = [X 0]* of the matrix [Y% Z%]* €
R™*2™ can be used to determine the sum of Z and Y .
Discrete Case
From dt-KF Definition (3.1) the predict phase is
By = Adf (3.123)
Py = AP AT 1 Q. (3.124)

By following example (3.2) the line (3.124) can be expressed as
[A (p]ilf (Q)é} 0 = {(p;)z 0} (3.125)
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by using the QR decomposition. Thus the predict phase (3.124) can be described as (3.125)
which transform a square root covariance to another square root covariance matrix.

Continuous Case

The state will evolve continuously while the measurements will be taken at discrete intervals
in time and therefore the cd-KF will be used. The ct-KF implementation will not be
discussed as continuous measurements will not be considered in the thesis. The predict
phase for ¢cd-KF from Definition (3.3) is

input:
Ftey) = 31 (3.126)
P(ty-1) = P, (3.127)
differential equations :
% (:?(t)) — AZ(1) (3.128)
% (P(t)) = AP(t) + P(H) AT +Q (3.129)
output:
Ty = 2(ty) (3.130)
P, = P(t) (3.131)

For solving (3.128) Runge-Kutta (RK4) method will be used to evolve Z(t) from measure-
ment at time ¢;_; to the next at ¢, (At =ty — tx_1). Fixed size time steps are taken of
size h where h = {;_jj,11 — tg—1)» is the n'" RK4 step in the current predict step with m
total steps (mh = At). The scheme is computed as follows

/% = hf (Fr1ms th1jn) (3.132)
k h
= hf ( Brctm + 5o toctpn + 5 (3.133)
2 2
k h
=hf (xkz 1|n + 227tk—1|n + 5) (3.134)
15’4 = hf (Frerpn + ks, i + 1) (3.135)
; ﬁ kv ko ks k
Brtjnr1 = Tr-jn + gl + 52 + 33 + 64 (3.136)
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where f(Z,t) = AZ. For every timestep in the RK4 method, the covariance matrix will
also be evolved by solving (3.129) where J(t) for the linear model is equal to A. Equation
(3.129) over the At interval can be written in the form

tg
Pltr) = st PL o) + [ 6(OGOQGH! o(0) (3.137)
lk—1
do(t
% = J(t)é(t) and G(ty_1y) = By = I. (3.138)
One can solve (3.138) using RK4 with the same timesteps as for (3.128) to obtain a set
of ®, = ¢(ty—1n) [! 1]. The integral (3.137) can be approximated by quadrature using the

Trapezoidal rule [35]
1 1
P(ty) = P, ~ ®,,PF L +h <§cI>1Q<I>1T + PQP) + ...+ 5%@@5) : (3.139)

In example (3.2) with the use of QR decomposition it was shown that the sum of two
matrices with square root factors equals a matrix that can also be expressed in square root
form. Hence, given that P,j_l and () can be expressed in square root form it can be shown
that the predict phase maintains positive semidefitness.

3.4.3 Implementation

Previously, the math behind each iteration of the predict-update phases of the Kalman
filter was described. In this section the specific implementation will be discussed. The
math described is closest to what is known as the Square Root Covariance Filter (SRCF)
[39] [14]. In that implementation, similar to the update phase, a unitary matrix © exists
such that

1
f2 C<P’:—1> Olg_[X 00 (3.140)
s\ 1| Y Z o '
0 A <Pk_1) Q*
where
Fr=Af - YX™ (C:;?k_l - yk> (3.141)
Pr=2z7" (3.142)

The matrix © can be obtained through the QR decomposition that itself can be obtained
through the use of the Householder transformation [35]. However, the implementation

32



used in this thesis splits (3.140) into QR decomposition for both update and predict phase
separately. The reason for this is to allow the RK4 algorithm to take multiple steps
(3.139) (m > 1) and the reuse of update phase code between cd-KF and dt-KF. Despite
the change from SRCF, the discrete predict and update phases are not original work and
in [18] are introduced separately as lead up to (3.140). The predict phase of the cd-KF
takes inspiration mainly from [17] where the update phase was implemented identically
while the quadrature rule was used to sum up ®’s as in (3.139) which was computed using
a different Runge Kutta scheme. In addition, [11] also refers to using (3.139) with RK4 in
predict phase while [25] solves the predict phase’s DE’s directly (3.129) while still using
the triangularization technique to advance after each timestep.

The runtime of single iteration of the Kalman filter is O(n?) [39], [18] where n is the
state count. For m total measurements this leads to runtime O(mn?). Sample Matlab code
can be found in appendix (B) and additional C++ code and other filter implementations
can be found on Github with link in appendix (B).

3.5 Extended Kalman Filter

The Extended Kalman filter (EKF) is an extension of the existing definitions. The EKF
handles the nonlinear case where the state evolves as

Z(t) = g(Z) + @(t) (3.143)
in the continuous case and
Tryp1 = [(Tr) + Wy, (3.144)

for the discrete case where f and g are nonlinear functions of the state z and w is the
process noise. The EKF algorithm linearizes f and g through the Jacobian J about the
current estimate and modifies the predict phase for the discrete case as

Fo = 1) (3.145)
P =JB " +Q, (3.146)

where J is the Jacobian of f evaluated at fz_l. The EKFE for the discrete case will be
referred to as the discrete-discrete Extended Kalman filter (dd-EKF). In the linear case,
when 1 = A%y + Wy then J = A, the dd-EKF reduces to the previously defined dt-KF.

33



For the continuous case, the predict phase is

d (= >

= (8(0) = g(@(1)) (3.147)
d
S (RD) = TP + P07 +Q, (3.148)
where J(t) is the Jacobian of g evaluated at Z(t). The EKF for the continuous case will be
known as the cd-EKF and when ¢ is a linear function of & then c¢d-EKF reduces to the
cd-KF. More detailed introductions of the EKF for continuous and discrete cases can be

found in [6] [36].

For the EKF the Jacobian is computed around the current estimate, which in the
update phase is a function of the current measurement. This means that unlike the regular
Kalman filter, the covariance computations are not decoupled from the state estimate [6],
and hence cannot be computed offline. In addition EKF is "numerically scarcely affordable
in high-dimensional systems" [1]. The EKF needs to compute and store the a priori and
a posteriori covariance matrices which is computational taxing for large n whereas other
filters such as the Ensemble Kalman filter (EnKF') do not require to compute the covariance
matrices.

The EKF linearizes about the current estimate and propagates the covariance with
the use of the Jacobian. This first order approximation has the potential of introducing
unmodeled errors that violate some basic assumptions about the predictions errors - unbi-
ased estimate and having covariances match the computed by filter [6]. The approximation
factor prevents the EKFE of having the MMSE guarantee as it does for the linear case in
Definitions 3.1, 3.2 and 3.3. In fact, there "are almost no useful analytical results on the
performance of the EKF. A considerable amount of experimation and ‘tuning’ is needed
to get a reasonable filter. However, this has been done in numerous different applications"
[18] such as aerospace navigation [34]. Tuning can be described as adhoc and in [10] can
possibly involve inflating the assumed process noise.

The EKF is not the only filter designed for nonlinear estimation. In fact, other filters
such as the Unscented Kalman filter (UKF) and EnKF exist and are related to the Kalman
filter. For example, the UKF can capture mean and covariance to a higher order (second)
for any nonlinearity when compared to the EKF [16]. In "the less frequent case, EKF loses
track of truth, while the EnKF still follows it" [1].

The previous two paragraphs are meant to remind the reader that the Kalman filter
is an algorithm and its performance needs to be checked. The "limits of successful use of
the linearization techniques implicit in the EKF can be obtained only via extensive Monte
Carlo simulations for consistency verification" [6].
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Chapter 4

Sensor placement introduction

When choosing to place a sensor in location A over location B one expects, and at the
very least hopes, that the measurements obtained in A will be better or more useful. The
criterion ‘better’ and ‘useful’ are vague and this is addressed by choosing a cost function to
provide a quantitative comparison between various locations. The cost is then minimized
over the set of all candidate sensor locations with the help of some algorithm. Finally, the
performance of the chosen sensor is verified to confirm its optimality.

This chapter is divided into two sections. In the first, the chosen cost function will
be motivated and discussed. In the second, methods of verifying the cost function will be
discussed along with other issues. The presentation of the concepts will be supplemented
with detailed but simple examples of linear systems. Results for nonlinear systems will be
presented in the next chapter.

4.1 Cost Function

Many sensor placement techniques use observability based as outlined in the review of

sensor placement [38]. Borrowing notation from chapter 3, the famous result states that

the Kalman Observability Matrix ) )
C
CA

CcA? (4.1)

_CAn_l_
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has rank n if and only if the system is observable. A system is said to be observable if it
is possible to determine the state Z(t) from the measurements (). The observability is a
binary measure - either it is observable or not. Quantitative observability based measures
exist, such as maximizing the eigenvalues of the solution to a Lyapunov equation in order
to "maximize the output energy generated by a given state" [38], [14].

The approach considered in this thesis is not based on observability, but on another
contribution of Kalman - the Kalman filter. Kalman filter based sensor placement is a
well known approach that "aims at minimizing state-estimation errors" [38]. In an earlier
review [24] sensor placement is discussed for distributed parameter systems - systems with
an infinite-dimensional state space. A significant portion of optimal sensor techniques for
optimal state estimation discussed in [24]| involve reducing the infinite-dimensional to a
finite-dimensional system by truncation. This will also be done in this thesis.

The Kalman filter based approach involves minimizing the trace of the error covariance
operator. In particular, Kumar and Seinfeld [26] focused on minimizing the Kalman trace
in linear systems, but for effective computations used a suboptimal criterion by setting
an upperbound on the covariance. In addition, Seinfeld and Yu in [13]| considered optimal
sensor placement of the finite-dimensional approximation using the steady sensor placement
to be reviewed in (4.4) and extended it to a suboptimal approach for multiple sensors. The
Kalman based approaches discussed in [26] and [13] and others reviewed in [21] differ little
from the concepts introduced here. This thesis investigates the Kalman trace with a brute
force approach by evaluating the trace over many candidate sensor locations. In addition,
the approach is extended to a nonlinear system.

4.1.1 Steady State Kalman Filter

The first cost function is based on the steady state Kalman filter introduced in chapter 3
in (3.75). Previous work using this approach goes back to early 1970s [13] [9], with more
recent work covered in the past few years [11],]22] and [23]. Given that the assumptions of
Theorem 3.1 are satisfied then the covariance matrix P(t) given by the Differential Riccati
Equation will converge to the matrix provided by solving the Algebraic Riccati equation:

— P,,C"R'CP,, + AP, + P, AT +Q =0, (4.2)

where P is the steady state covariance which is dependent on the observation matrix C,
along with the system matrix A and noise covariances () and R. For a linear system with
noise conditions as outlined in continuous and discrete Definitions ((3.1),(3.2),(3.3)), the
Kalman filter minimizes the mean square error, or equivalently the trace of covariance, at
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time t, or step k, respectively. The Kalman filter covariance will tend to the steady state
covariance Py, as t — oo whose trace will therefore also be minimized. The matrix Pj, is
dependent on the observation matrix C. In return, C' is directly dependent on the sensor
location zg (later on, = and xy will be used interchangeably indicate sensor location - x).
By varying xq the matrix Py, is directly modified and therefore the trace. The cost function
to be minimized for the steady state approach is

Jss = Trace (Pss) . (4.3)

The optimal sensor placement location z, is considered the one that minimizes the trace
over all candidate locations considered:

min J (4.4)
subject to
— P C"R™'CPy + APy + P, AT +Q =0
C =f(xo)
rg €X,
where f(z) signifies that the observation matrix C'is a function of the sensor placement z.

The sensor placement xq is chosen from a global set of candidate positions. The matrices
A, @ and R are fixed for a given problem.

Example 4.1. Consider the two term truncation of the heat equation

1
uwlx =0,t) =u(zx=m,t) =0 (4.6)

u(z,t) ~ Z a,(t) sin (nx) . (4.7)

n=1

The PDE (4.5) is approximated through (4.7) and with added process noise is expressed
in control theoretic notation:

d (fax(®)]) _[-02 0 |[a(®)] .
pm ({ag(t) 10 —08] |aur)] T (4.8)
where w(t) is the zero mean process noise term with covariance

s [2 0]
Q=10"% [o 2| (4.9)
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The entries of the state & are a; and ay. The sensor will measure the average value of
u in a small region around z = xq:

y(t) = 2—15 / _:5 w(z, t)dz + v(t) (4.10)
= 2—15 szoj; sin (z) dz f;oj; sin (22) dx} {Zj +v(t) (4.11)
e Bj +u(t), (4.12)

where v(t) is the sensor noise with variance 107% and 6 = 0.01. Selecting z, at discrete

points in the domain
zo € {0.1,0.15,0.2,...,3.1} (4.13)

and computing Jis for each candidate location one can plot (4.1). The location that
minimizes (4.3) over all candidate locations is xg = 1.55 with J,, = 1.0785 x 1077.

<107 Steady State Sensor Placement

1.2+

W1.15}
-

1.1r

1‘05 1 1 1 1 1 1
0.5 1 15 2 2.5 3

Figure 4.1: Trace of the steady state Kalman covariance is computed for all xy. The
location that is the optimal sensor placement is x = 1.55 as it minimizes the cost
function Jg, in (4.4)

When placing a sensor at location zo = m/2 then Jg, is 1.0784 x 10~7 which is less
than the cost computed at © = 1.55. The location 7/2 is the node for the second mode.
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It may seem counter intuitive to place a sensor based on the minimal cost at the node
as it would not be able to pick up the second mode’s amplitude. These concerns are
addressed in later examples of this chapter suggesting a potential problem in the steady
state based sensor placement approach.

The specific choice of process noise in example (4.1) may seem peculiar and in this case
has no particular physical motivation. In [13] it is shown that given that if a PDE has a
dynamical noise term & (z,t) that is space and time dependent, then the noise covariance
can be expressed using the modes and in the limit of mode count the covariance of £ "can
be approximated arbitrarily closely in the mean square sense" by the mode covariance. A
general method to construct the modal covariance is shown in [13] and a specific example
is provided in example 10.20 of |33] for the heat equation. Convergence of the finite-
dimensional approximation to the infinite-dimensional Kalman filter is important but out
of the scope of this thesis - further specialized discussion can be found in [12]. A recent
example discussing convergence for finite time is in [11] where the importance of the initial
covariance P(0) being nuclear (i.e. the singular values are summable) is highlighted in Fig
1 and 2 of |[11]. For nonnuclear initial covariances, such as the identity matrix, the filter
does not converge as mode count NN is increased. For infinite time refer to [14].

4.1.2 Transient Kalman Filter

The cost function considered in this thesis is an extension of (4.3) and the associated
optimization problem (4.4). The focus is now on what happens before steady state is
reached, or during the transient. Another, common phrase for the ‘transient’ is ‘finite-time
horizon’. This change requires the definition of an initial covariance P(0) at time zero and
the computation of the covariance over some time range of interest. In order to minimize a
scalar as in (4.4) it is chosen to minimize the average trace over a specific time span [t,, t/]:

1 t
Not) = 5 /t Trace (P(t)) dt. (4.14)

The timespan will be chosen in an ad-hoc manner. The cost (4.14) has been used before as
mentioned in sensor placement review [38]. The steady state covariance sensor approach
depends on solving for P, when the derivative of P in the differential Riccati equation
(DRE) is set to zero. In the transient approach considered in this thesis, the DRE will not
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be solved as the measurements are assumed to be no longer continuous in time. The state

still evolves continuously so the covariance will be computed using the continuous-discrete
Kalman filter introduced in Definition (3.3).

minJ[t&tf} (4.15)
subject to
P(0) = B](#(0) ~ £(0)) (#(0) - £(0))
P(ty1) = PF,
L a0 = ARt
 (a() = AF()

(P(t)) = AP(t) + P()AT + Q
Py = P(ty)
Ky = by CT (Ch; "+ R) B
P = (I - K,C)P;

C = f(xo)
l'oEX

The transient problem (4.15) is expressed for the continuous-discrete Kalman filter (cd-
KF). The difference in optimal location between the continuous Kalman filter based steady
state approach and the cd-KF transient approach will be explored in the next example.

Example 4.2. The same system as in example 4.1 is used. For the linear case the

covariance P(t) is dependent only on the initial covariance P(0) which is specified to
be

0.2 0 ] . (4.16)

P(0>:{0 0.2

In Figure 4.2 the trace values for z = 0.85 and = = 1.6 over the interval ¢ € [0, 20] are
plotted.
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Figure 4.2: The trace of the Kalman filter covariance is plotted for two different sensor
locations. Around ¢ = 6 the trace at x = 1.6, which is initially larger then that at
x = 0.8, stops being larger than that at x = 0.85.

In Figure 4.2 it is shown that for a fixed sensor location, the value of the trace is
changing. This alone is not interesting but when contrasted against the other location
suggests that the optimal location given by (4.15) can change depending on the time
interval. One can plot multiple curves together for all candidate xy locations and use
a log colour scale as seen in Figure 4.3.
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Figure 4.3: The log of the trace of the Kalman covariance for various sensor locations
for the same candidate set considered in example (4.1). As time increases, the trace
decreases.
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Applying minimization problem (4.15) on the results in Figure 4.3 one will find
that that the optimal location for the sensor is # = 1.0 for ¢, = 0 and ¢y in the range
(0,10000]. At ¢t = 100, the computed covariance P(t) varies very little with an effective
‘steady state’ reached where the max relative error between Py, from previous example
trace and P(t) trace for all sensor locations is on the order of 107°. This low relative
error is despite Py, depending on c¢t-KF and P(t) depending on c¢d-KF. The discussion
of approximating ct-KF with cd-KF will not be discussed further. The assumption
for all remaining results is that measurements are discrete in time. An interesting
observation is that the optimal steady state based sensor placement is highly unoptimal
sensor location in the transient case for low t; as seen by the protrusion in the middle
of Figure 4.3. This observation suggests care should be taken in using steady state
based approaches.

The transient approach considered in this thesis is of a brute force nature meaning that
a candidate-by-candidate location test is conducted. In example (4.2), 61 candidates were
evaluated for 10000 timesteps each using a continuous-discrete Kalman filter defined in
Definition (3.3). For low state size N = 2 this is a computational cost of 2s x 61 = 122s in
serial execution. Despite the highly parallelizable nature of the approach, the computation
time is very sensitive to candidate count and especially sensor count. The "brute-force
approach is indirect and not solvable in time polynomial" in M where M is sensor count
[38]. This is an undesirable property for a sensor placement strategy - which is the reason
why only single sensor placement will be investigated.

4.2 Verification

Verifying the performance of a sensor location is important in gauging how effective the
cost function is at determining optimality. The cost function in this thesis is based on the
trace of the covariance computed by the Kalman filter as outlined previously. The filter
computes a covariance P(t) used for the cost and the estimate & to be used for assessment.

42



The covariance, in the continuous case, can be expressed in a few ways

—

Trace (P(t)) = Trace (E {(f(t) - :E(t)) (93(25) - :E(t))TD (4.17)
. [(5@) _ :)E‘(t))T (i) - f(t))] (4.18)

:E[

Similar expressions to (4.17) - (4.19) exist for the discrete case. The last expression (4.19)
in words is the expected value of squared norm of the error between the estimate and true
state. The finite sample approximation of (4.19) is

1K
KL

where i stands for the i*! run of K total Monte-Carlo simulations (not to be confused for
the k™ time step in the discrete case. In the linear case, the computation of the covariance
is independent of sampled process and sensor noise as seen in Definitions (3.1) and (3.2)
and therefore a single run of the Kalman filter is sufficient to compute (4.19) for fixed initial
conditions. The independence does not hold for the computation of the estimate since on a
computer the noise is sampled and therefore many trials are necessary in order to compute
(4.20). The square root of (4.20) is known as the root mean-square error (RMSE):

E(t) - #(1)

2} | (4.19)

g (4.20)

E(t) - #()|

1 K
RMSE = }Z

=1

BIOREAO] (4.21)

The scalar (4.21) is commonly used to asses the performance of estimators. There is
a strong connection between (4.21) and (4.19), however they are not be confused with
each other. "The former is a ruler used to measure the performance of estimators in
the evaluation process," while the latter is the "mean-square error (MSE) a theoretical
optimality criterion" that the Kalman filter minimizes. "Mathematical tractability is a
crucial consideration for an optimality criterion, but not for a measure for performance
evaluation. As a ruler, it is much more important for a measure for performance evaluation
to be impartial, free of distortion, and with a clear interpretation, among other things"[32].
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Example 4.3. Using the same parameters as in previous examples (4.2) and (4.1) and
setting K = 100 the finite sample equivalent of Figure 4.3 is displayed in Figure 4.4.
The added process and sensor noise is sampled with aforementioned covariances as is
the initial condition Z(0) for true state with mean

#(0) = m (4.22)

and covariance P(0) from (4.16).
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Figure 4.4: The log of the square of RMSE (4.21) is plotted for various sensor locations.
The expression (4.20) approximates (4.19) well.

A strong assumption for the minimization problem (4.15) is the restriction that both
the initial covariance and estimate are correct:

P(0) = B |(2(0) - (0)) (x(0) — #(0))" | (4.23)
#(0) = E[2(0)]. (4.24)

Wrong initial conditions, where (4.23 - 4.24) are not satisfied will not be considered except
in the following example because it adds an additional degree of freedom to the investiga-
tion.
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Example 4.4. Using the same parameters as in example (4.3) except the initial esti-
mate is set incorrectly - representing a wrong initial condition guess. The true state
will still evolve with

o [ar(0)] [0

Z(0) = _aQ(O)_ = _31 (4.25)
while the Kalman filter’s estimate is initialized as

> fa(0)] [0

z(0) = _&2(0)_ = _01 (4.26)

with the same initial covariance. The sensor will be placed in the middle of the domain
To = 5, the node of the mode 2 wave. As expected, when compared to a correct initial
condition guess the incorrect guess will perform poorly as seen in Figure 4.5.

4 -
—Wrong guess estimate
— Correct guess estimate
Real state
3
=
~ 2
©
1 L
0 —
0 1 2 3 4 5
Time

Figure 4.5: The incorrect case initializes estimate of as as zero. Since the sensor is
located at the node of second mode, it cannot pick up its amplitude. Therefore, the
incorrect estimate remains unchanged and only converges to the real state once the
real state has diffused to zero. The wrong guess estimate’s as value is on on top of the
Time axis.

Figure 4.5 shows the importance of a correct initial guess. In Figure 4.6 the square
RMSE and Trace(P(t)) are plotted to show how the Kalman trace based cost function is
no longer reflected in actual simulation once the initial condition is guessed incorrectly.
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Figure 4.6: The finite sample approximation of Kalman trace is no longer close to the
real trace when the initial guess is incorrect.

The previous example (4.4), although contrived, demonstrates the importance of the
restriction on the initial estimate - having to match the mean of the real state at time
zero. The results are not a surprise as the incorrect initial condition was a deviation from
Kalman definitions in Definition (3.2) and (3.1). However, the RMSE used in example (4.4)
is a useful tool and will be used for nonlinear systems where the guarantee of minimizing
the mean square error is no longer present.
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Chapter 5

Nonlinear sensor placement

The previous chapter served as an introduction to Kalman based sensor placement tech-
niques for linear systems. In this chapter, the transient approach is extended to nonlinear
systems. By definition, for such systems, the regular Kalman filter can no longer be used
and a common solution is to instead use the Extended Kalman filter introduced in chapter
3. For the EKF, the covariance now depends on the computed estimate, as for example in
the discrete case introduced in Definition 3.1 the predict phase is

Fo= f(E) (5.1)
Py =JP T+ Q, (5.2)

where J is the Jacobian of f evaluated at the estimate f;:_l. In return, in the update
phase, the estimate

is a function of the measurement and thus depends on sensor and process noise. The previ-
ous equations referred to the discrete Kalman filter, but the same holds for the continuous-
discrete Extended Kalman filter. The cost functions will be expressed with respect to the
continuous-discrete formulation. Since the noise is sampled, then like the RMSE in (4.21)
the Kalman covariances will be averaged to account for the variance as part of the sensor
placement algorithm. The original transient cost function for the continuous-discrete case
is

J[t&tf] = y i » /tsf Trace (P(t)) dt (5.4)
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and is now modified to

J[st,tf —y (Z/ Trace (P, )dt> (5.5)

where n stands for the n'" run of N total Monte-Carlo simulations (and not the discrete
Kalman filter covariance P} at n'® step). An analogous cost function can be formulated
for the discrete Extended Kalman filter. For the n'" simulation, the initial condition of
the true state is sampled from the specified initial covariance P(0) and mean #(0) and
solved for with the specified process noise. The measurements are then generated using
the observation matrix C' with added sensor noise. The N measurements are then used as
input for the EKF that is initialized with P(0) and #(0). The output of the EKF is N
sets of estimates and covariances. The covariances are averaged using (5.5). By varying
the sensor locations xy from a finite candidate set X and therefore varying the observation
matrix C' the cost (5.5) can be minimized to find the optimal sensor location. The above
is summarized as

. TN
man[tmtf]

subject to

(5.6)

p P(t)) = AP(t) + P(H) A" +Q
&y, = (ty)
Po = P(ty)
C = f(l’o)
o € X

The observation matrix C' is a function of the sensor location. The first section in this
chapter will approach the problem with a modal truncation, and the second with a spatial
discretization.
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5.1 Modal Discretization

The modal truncation introduced in (2.29) of chapter 2 can be expressed as

d

5 (@) = f@) +a(t), (5.7)

where @ € RY represents the mode coefficients and 7i(t) € RY is the process noise term.
For modal discretization, the state & will be referred to as a. For illustration, N will be set
to 10. It will be shown that the sensor placement problem is initial condition dependent.
Two initial conditions will be considered:

wi(w,t = 0) = sin ((%) x) + %sin ((%T) x) n %sin ((3%)) (5.8)
us(z,t = 0) = sin ((%) x) (5.9)

for Burgers defined on the domain [0, 7]. The initial conditions are plotted in Figure 5.1.

S505¢

Figure 5.1: From left to right: initial condition u; and states at later times and us and
states at later times as defined in (5.8-5.9).

The process noise covariance is set to

_19.4: 11 1
Q = 10 %diag <1,§,§,...,@,0,0,0>, (5.10)
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where diag is a diagonal matrix with the argument as the diagonal. The sensor noise is
R=10"% (5.11)

with measurements sampled every 107% time units. The initial variance is set to

44 11
P(0) = 10~ *diag (1, 3 @07 . ,0> . (5.12)
In the nonlinear case, the true state’s initial condition will be sampled using (5.12) with
mean (5.8) or (5.9) to justify setting the EKF with initial covariance (5.12). A total of 30
samples will be taken for each initial condition. For each sample, noisy measurements will
be taken for each candidate sensor location. The candidate sensors locations are

0.1,0.105,...,3.1 (5.13)

for a total of 61 locations. The sample count and sensor count will lead to running the
filter for a total of 30 x 61 = 1830 runs of the EKF with a total of 10° measurements for
each run.

In Figure 5.2 the trace is shown for initial condition (5.8) and in Figure 5.3 for initial
condition (5.9).

Figure 5.2: The trace of the Kalman trace is computed over time 0 to 1 for various sensor
locations on the x axis. The log of the trace is plotted for initial condition u;.
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Figure 5.3: The trace of the Kalman trace is computed over time 0 to 1 for various sensor
locations on the x axis. The log of the trace is plotted for initial condition us.

The cost is minimized at different locations as shown in Figure 5.4.

ol



— 1
U2

Figure 5.4: The log of Jé‘;tf} is plotted for both initial conditions. The cost function is
minimized at different locations: for w; it is at x = 2.5 with a cost of 3.3309 x 1076 while
for us it is at = 2.9 with a cost of 5.6026 x 107S.
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5.2 Spatial Discretization

For the next investigation, the discretization is changed to the finite difference scheme
(2.38) introduced in chapter 2. A common approach for sensor placement studies involves
first approximating a PDE and then running a sensor placement algorithm on the finite
dimensional system. This will not be done here and instead a spatial discretization is used
where the state is a vector representing u at the grid points at time step n with transition
between timesteps given by

g = f (ﬁ") , (5.14)

where f in the case of Burgers is nonlinear. Gaussian, zero mean noise is added to (5.14):
prtt = f ((7”) + 10, (5.15)

Convergence to the solution to the PDE and of the Kalman filter will not be an issue of
concern and system (5.15) with its noise will be treated as the true representation of some
system. This means that in the case that f is linear, the transient and steady state approach
will lead to the optimal sensor placement with respect to the problem of minimizing the
mean square error for that system. In the nonlinear case where the Kalman covariance P is
propagated through the Jacobian (an approximation), the trace, or equivalently the mean
square error, will have to be validated through multiple simulations. For this investigation,
a single initial condition is selected

wolw,t = 0) = sin ((%) x) +sin ((2%) g:> 405 (5.16)

and is plotted along with space time plot of its evolution (i.e. the trajectory of the system)
in Figure 5.5. The grid count or equivalently the state count is set to M = 100. The
process noise is selected such that

Q = 0.001%I;, 10, ~ N (0,Q) (5.17)

and initial variance of U is
P(0) = 0.01%1,,, (5.18)

where I, is the M x M identity matrix. N - simulation count - is set to 150.
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Figure 5.5: Left panel: The initial condition wuy from (5.16) of the periodic domain and
average trajectory is plotted. Right panel: A space time plot of the evolution of the initial
condition (i.e. the trajectory of the system). The colour and associated colour bar show the
magnitude of the state at a given time - the brighter the colour the higher the magnitude.
By the end of simulation time (T = 200) the waveform has mostly diffused out.

One possible physical intuition for sensor placement is that placing a sensor where the
waveform has the highest values would be more effective than a location with lower values.
This is because the relative error between the noisy sensor measurement and wave height
would be smaller in the former location and therefore the sensor would be able to pick up
variations much more easily. Using a different color map than for the state trajectory in
Figure 5.5, the relative error is plotted between the sensor measured value at a given grid
point and the actual value at the grid point for all simulation times in Figure 5.6.
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Figure 5.6: The average relative error between noisy measurement and true state value at
each location is plotted and normalized with respect to the largest relative error at a given
time. The noise is zero mean with constant variance 0.12. The higher the ratio, the smaller
the u} at that location. The initial condition is (5.16).

Combining the relative error Figure 5.6 and state trajectory Figure 5.5 together into
Figure 5.7 for comparison, it is confirmed that locations where the state has a high value
correspond to locations where the relative error is low. Same shaded regions appear in
both figures to facilitate a comparison.
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Figure 5.7: On the left is the average state trajectory with shaded region showing area
where the state is relatively high compared to other locations at the same time. On the
right, the normalized relative error between noisy sensor measurement and true state from
Figure 5.6. The locations where the state has a high value is where the relative error is
the lowest - this is not a surprise and is expected. The initial condition is (5.16).
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Every second grid point will be considered as a candidate sensor location where the
domain is z € (0, 100):
zo € {1,3,...,99}. (5.19)

The average computed Kalman trace is plotted in Figure 5.8 with the same shading used
as in previous figures.
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Figure 5.8: Kalman trace is computed over time 0 to 200 for various sensor locations on
the x axis. The color represents the magnitude of the trace at a specific time and location.

The shaded region overlay in the state trajectory from Figure 5.7 matches where the
state is the highest in value at a given time and from Figure 5.6 where the sensor measured
state relative error is the lowest is also the region where the the Kalman trace is lowest in
value. This matches the hypothesis made earlier, although is not a definite claim.

From Figure 5.8, the highest trace occurs during t = 71.67 at o = 57 with Trace (P(t)) =
0.0206 while at the same time, the minimum trace of 0.0116 is achieved at xy = 31. It is
challenging to have a physical interpretation of the trace so sample estimates based on the
two sensor locations are plotted alongside the true state in Figure 5.9. The estimate at
xo = 57 does not approximate the true state as well as at xy = 31 on domain [20, 50]. By
plotting the individual trace components corresponding to the grid points in Figure 5.10
the xy = 57 location has a higher expected error rate in the [20, 50] subdomain.
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Figure 5.9: The true state is plotted along with estimate with sensor at xyp = 31 and
estimate with sensor at xo = 57, all at t = 71.67. Note: small gap for x in range [20, 50]
between estimate with sensor at x = 57 and true state signifying that estimator with sensor
location at xo = 31 is performing better. The initial condition is (5.16).
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i
Figure 5.10: The diagonal entries of the Kalman covariance are plotted for two different
sensor locations at ¢t = 71.67. The i*® entry corresponds to the x = i grid point. The true

state is expected to be much better approximated by the sensor at xqg = 31 in the domain
[20,50]. The initial condition is (5.16).

Despite Figure 5.9 and 5.10 providing more information as to why at a particular
time one location performs better than the other, it is difficult to do this for all time
and locations and summarize results effectively which is why Figure 5.8 is used instead.
This prevents one from knowing exactly why a trace is lower at one compared to another
location. For physical interpretations this can be a limiting factor. By strictly looking at
the trace covariance, in this context, it is implied that only the cumulative error matters,
and not some physical property. The less the expected error, the better. In the following
Figure 5.11, the sampled equivalent of Figure 5.8 is plotted. The sampled plot is similar
to that of the Kalman trace in shape but differs in magnitude suggesting slight divergence.
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Figure 5.11: The squared RMSE for all 150 simulation runs. The plot is very similar in
shape to the trace plot in Figure 5.8. However, the scale is not the same.

The similarity of the plots leads to the conclusion that the Kalman trace data ap-
proximates the sensor placement results reasonably well. With this assurance, the sensor
placement problem (5.6) for nonlinear systems is conducted. For the time averaged Kalman
cost function, ¢, will be set to zero and ¢y to final simulation time of 200. The results are
plotted in Figure 5.12. The location that minimizes the problem is at zo = 5 with an
average trace of 0.013538.
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Figure 5.12: All possible J[%7200]50 scores given the sensor candidates. The location that
satisfies (5.6) is at xy = 5 with a score of 0.013538.

The chosen ¢y and ¢, are ad hoc in nature, but can be specified in a certain physical
context. Since Figures 5.11 and 5.8 are similar, a natural question to ask is to why not
simply use the RMSE as a cost function instead. For each run of the EKF one produces
both the sample estimate # and P(t) which are used respectively for the average based
costs RSME and ‘][]t\i,tf]' If one runs N simulations then one has the choice of using the

RMSE or trace of the covariance as costs. The reason to use J[]t\i,tf] is because of its rate
of convergence, requiring a smaller NV and therefore less computation. In Figure 5.13 the
log of relative error is plotted between the average Kalman trace with NV = 150 and N set
to N = 30,60, 90, 120. The relative error at N = 30 is low suggesting that lower N can be
used for solving the sensor placement problem. For RMSE, the convergence is much slower
and noisier. In addition, as a preliminary test, the unscented Kalman Filter was run in
place of the EKF and the computed trace was found to have a relative error of maximum
10~* and general filter performance was the same.
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Figure 5.13: Relative error log plot between average Kalman trace using N = 150 as
reference solution and varying N. The relative error stays low throughout.
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Another question concerns scalability of the specific algorithm presented in this thesis.
What if systems with larger state space are to be investigated? The Matlab’s version of
the EKF implementation averaged computation time for varying M is included below in
Figure 5.14. The brute force algorithm is not scalable to larger state count and multiple
sensor count.
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Figure 5.14: For state space size M and 20000 measurements the average computation
time in seconds is shown for Matlab implementation for the EKF. For the investigation
the sample size is N = 150 with 50 candidate locations meaning that for M = 50 the
computation time on a single core is approximately 1.5 days while for M = 250 is 9.5 days.
If sensor count is set to 2 (choosing an optimal pair of sensors) then (520) total candidate
pairs need to be investigated instead of 50 - a significant computational cost.

To investigate this sensor placement approach presented in this thesis further, non brute
force type solutions to the optimization problem should be considered or more efficient
Riccati solvers.
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Chapter 6

Conclusion

In chapter 4 it was found that for linear systems, steady state based optimal sensor place-
ment results may differ from those based on the transient. Examples in the introduction
to sensor placement provided a clear explanation of the approach as well as some potential
issues as outlined in example 4.4 where the initial estimate was set to an incorrect value.
The results chapter explored the extension of the transient approach to a nonlinear system,
namely Burgers equation. Different initial conditions are found to lead to different sensor
placements.

There are various concerns that cast a shadow on the transient approach. Discussing
them is appropriate for the consideration of future potential investigations on this topic.
Parameters such as process, sensor noise covariances and the diffusivity coefficient of Burg-
ers equation were set in an ad hoc manner. This created an additional degree of freedom
when considering how to approximate the model. The Euler-Maruyama method was used
for the modal discretization, but required a very small time step and low process noise
covariance. When considering a modal discretization for shallow water, this scheme had
extremely poor performance, preventing both an effective sensor placement strategy and
the study of convergence for Burgers equation. Implicit methods exist such as the 6-
Euler-Maruyama method [33], but were not investigated in depth. Perhaps an approach
of generating the true state ¥(¢) via a spatial discretization and then running the Kalman
filter with a modal based state is a good middle ground similar to what is done in [21] for
ease of numerics and to facilitate a convergence study.

One may reasonably assume that these parameter/discretization based issues will be
resolved when a specific system is selected and a good numerical scheme chosen for in-
vestigation. However, for the transient sensor placement approach, the value of a few
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parameters remain unresolved: initial covariance and estimate. In the linear case, the
trace of the covariance is minimized if the initial estimate is the expected value of the true
state and the initial covariance is the error covariance between the estimate and true state,
all at time zero. Although mathematically these concepts are clear and well defined with
lots of theory behind them, it is hard to extend them to a clear physical context (which
ideally is the end goal of a sensor placement investigation). How would one know what
the expected value of the initial state is? Example 4.3 showed that incorrectly setting the
initial estimate can have significant consequences.

Setting the initial estimate of the filter is related to what initial condition of the true
state is being studied in general. For nonlinear systems the computed trace is initial
condition dependent as shown in modal example of chapter 5. This means that coming
up with a global sensor placement is difficult without being more specific in what initial
conditions are studied. Perhaps initial conditions are too specific and another cost function
that is independent of it should be studied.

Possible divergence of the Kalman covariance must also be reviewed. Divergence oc-
curs when the error between the computed estimate and true state is outside the range
predicted by the covariance matrix P. Computational issues, incorrect parameters or the
propagation of the covariance through a first-order linearization within the EKF can lead
to the divergence of the filter. Since the cost function for sensor placement is based on
P, divergence must be investigated more thoroughly to ensure more confidence in results.
Other filters such as the unscented Kalman filter or the ensemble Kalman filter are known
to not diverge when the EKF does and the ensemble can scale to a larger state count. This
suggests that other algorithms could be investigated for sensor placement. The divergence
as well as potential of using other, better filters makes one reconsider the word ‘optimal’
that is often associated with the phrase ‘sensor placement’. In the case of this thesis,
although the sensor is ‘optimal” with respect to the function to be minimized, the use of
the word becomes questionable when considering the global context.

The highlighted issues in past few paragraphs need to be considered and accounted for
to have a more thorough and conclusive sensor placement investigation.
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Appendix A

QR for Kalman Update phase

1
Consider R € R™™ (C € R"™", (Pk_) 2 € R™"™ that together make up the matrix

1

RE (R
0 (F)*
The matrices are originally part of the Kalman filter’s update phase

Ky =P CT (CP;CT +R)™

if =&, + Ki (y — Ciy)

P = (I - K,C)Py.

c R(m+n)x(m+n).

(A.2)
(A.3)
(A.4)

as defined in definition (3.2). In (3.109) it was stated that (A.1) can be triangulized as

follows

w e oo [X )

1

RE C (P}
0 (P)?

R} C(P)*| .\ [R+CBCT C(F)
@) ( % @> ()t R
X 0 X o]\ " [xx* Xy~
Y Z Y Z|) T |YX* YY*+ 227
R+CP CT C(F)) [ X X~ Xy~
(P) CT P YX* YV 22|

(
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From (A.8) the following is true

XX*=R+CP; C" (A.9)
YY*+ 22" =Py (A.10)
XY* = CP; (A.11)
yx*=(py)" " (A.12)

Take (A.10) and expand to obtain
YY*+ 22" = P, (A.13)
27" =P, =YY" (A.14)
ZZ*=P; —Y (X* (X)) (X 'X) v~ (A.15)
27" =P —YX*((X*) ' X)Xy (A.16)
77 =P —YX*(XX*) ' XY*, (A.17)
Sub in (A.9),(A.11) and (A.12) into (A.17):

727 =Py —YX* (R+CP;CT) " XY* (A.18)
727" =P; — (P;) CT(R+CP;CT) ' CP; (A.19)
727 = Py — Py CT (R+CP;CT) " CPy (A.20)
727* = Pt = (I — KxC)P; where Ky, = P, CT(CP;CT + R)™.. (A.21)
The product ZZ* matches (A.4) meaning that
Z=(P)?. (A.22)

Computing Z only produces the covariance matrix. To compute the gain (A.2) in order to
compute (A.3), Y is solved for:

YY* + 22" =P (A.23)
YY* = P, CT (R+CP;CT) " CP; (A.24)
YY* = PCT (((R + CP,;CT)‘1>2> (((R +op e ) CP;  (A25)

1

YY* = <PkCT (((R+ CPkCT)_1>2>*> (PkCT <((R+ CPkCT)*f)*)*.

(A.26)
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Using (A.1) and (A.26) solve for Y X!

YX! = (P,;OT ((( R+CP;C")7) )) ((r+ OP,;(JT);)_I . (A.27)
However, since
P () = () () e
then
YX =P CT (R+CP;CT) " = K. (A.29)

gives us the Kalman gain (A.2).
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Appendix B

Kalman implementation

B.1 Discrete-Discrete Extended Kalman Filter

The following three files summarize the discrete-discrete Fxtended Kalman Filter. The
code can also be found at with other filter implementation in both Matlab and C+-+ at

https://github.com/mannyray/KalmanFilter.

Listing B.1: ddekf.m

function [estimates, covariances ] = ddekf(f_func,jacobian_func,
dt_between_measurements,start_time,state_count,sensor_count,
measurement_count,C,Q_root,R_root,P_0O_root,x_0, measurements)
%Runs discrete—discrete Extended Kalman filter on data. The initial
%sestimate and covariances are at the time step before all the
%measurements — be wary of the off-by—one error. If f_func is a
%linear function the code is equivalent to discrete—discrete Kalman
%sfilter.
%[estimates, covariances] = ddekf(f_func,jacobian_func,state_count,
sensor_count,measurement_count,C,Q_root,R_root,P_0_root,x_0,

measurements)

%SINPUT:

% f_func: x_{k+1} = f_func(x_k,t) where x_k is the state. The

% function's second argument is time t for cases when the function
% changes with time. The argument can be also used an internal

% counter variable for f_func when start_time is set to zero and
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13 |% dt_between_measurements is set to 1.

14 |%

15 |= jacobian_func(x,t): jacobian of f_func with state x at time t
16 |%

17 1% dt_between_measurements: time distance between incoming

18 |% measurements. Used for incrementing time counter for each

19 |% successive measurement with the time counter initialized with
20 |% start_time. The time counter is fed into f_func(x,t) as t.

21 |%

22 % start_time: the time of first measurement

23 %

24 % state_count: dimension of the state

25 %

20 | % sensor_count: dimension of observation vector

27 |%

28 1% C: observation matrix of size 'sensor_count by state_count'
29 1%

30 | % R_root: The root of sensor error covariance matrix R where

31 % R = R_root*(R_root'). R_root is of size 'sensor_count by

32 % sensor_count'. R_root = chol(R)' is one way to derive it.

33 | %

34 % Q_root: The root of process error covariance matrix Q where
39 |% Q = Q_root*(Q_root'). Q_root is of size 'state_count by

30 |% state_count'. Q_root = chol(Q)' is one way to derive it.

37 %

38 |% P_0_root: The root of initial covariance matrix P_0 where

39 |% P_O = P_O_root*(P_root'); P_O_root is of size 'state_count by
40 |% state_count'. % P_0_root = chol(P_0)' is one way to derive it.
41 | %

42 % X_0:Initial state estimate of size 'state_count by 1'

43 %

44 | % measurements: ith column is ith measurement. Matrix of size
45 |% 'sensor_count by measurement_count'

46 |%

47 |%0UTPUT:

18 1% estimates: 'state_count by measurement_count+1'

19 |% ith column is ith estimate. first column is x_0

o0 |%
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o®

covariances: cell of size 'measurement_count+1l' by 1
where each entry is the P covariance matrix at that time

%make sure input is valid
assert(size(P_0O_root,1l)==state_count &&...
size(P_0O_root,2)==state_count);
assert(size(C,1)==sensor_count && size(C,2)==state_count);
assert(size(Q_root,1l)==state_count &&...
size(Q_root,2)==state_count);
assert(size(x_0,1)==state_count && size(x_0,2)==1);
assert(size(R_root,1l)==sensor_count &&...
size(R_root,2)==sensor_count);
test = f_func(x_0,start_time);
assert(size(test,1l)==state_count && size(test,2)==1);
test = jacobian_func(x_0,start_time);
assert(size(test,l)==state_count && size(test,2)==state_count);
assert(size(measurements,l)==sensor_count &&...
size(measurements,2)==measurement_count);

Xx_kml_p = x_0;
P_root_kml_p = P_O_root;

estimates = zeros(state_count,measurement_count + 1);
covariances = cell(measurement_count + 1, 1);

estimates(1l:state_count,1) = x_0;
covariances{l,1} = P_O_root*P_0O_root';

current_time = start_time;

for k=1l:measurement_count

%sLloop through all measurements and follow through predict

%sand update phase
[x_k_m,P_root_km] = ddekf_predict_phase(f_func,...

jacobian_func,current_time,P_root_kml_p,x_kml_p, ...

Q_root);
[x_k_p,P_root_kp] = ddekf_update_phase(R_root,...
P_root_km,C,x_k_m,measurements(:,k));
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x_kml_p = x_k_p;
P_root_kml_p = P_root_kp;

%store results
estimates(:,k+1l) = x_k_p;
covariances{k+1,1} = P_root_kpx(P_root_kp');

current_time = current_time + dt_between_measurements;
end
end

Listing B.2: ddekf predict phase.m

function [estimate, covariance_sqrt] = ddekf_predict_phase(f_func,
jacobian_func,t,P_0_sqrt,x_0,Q_root)

%sruns predict portion of update of the dd—ekf

%[estimate, covariance_sqrt] ddekf_predict_phase(f_func,jacobian_func,t,
P_0_sqrt,x_0,Q_root)

SINPUT:

% f_func: x_{k+1} = f_func(x_k,t) where x_k is the state. The
% function's second argument is time t for cases when the function
% changes with time.

% jacobian_func: the jacobian of f_func at state x and time t
% jacobian_func(x,t)

% t: current time

% X_0: estimate of x at start_time

% P_0_sqrt: square root factor of covariance P at

% start_time. P_O0 = P_O_sqrtx(P_0O_sqrt"')

% Q_root: square root of process noise covariance matrix

% Q where Q = Q_root*(Q_root');

%0UTPUT :
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o® o° o°

o°

end

estimate: estimate of x after predict phase

covariance_sqrt: square root of covariance P after predict phase
P = covariance_sqrtx*(covariance_sqrt"')

X = X_0;
state_count = length(x);

estimate = f_func(x,t);

jac = jacobian_func(x,t);

[~, covariance_sqrt] = qr([jacxP_0_sqrt,Q_root]');
covariance_sqrt = covariance_sqrt';

covariance_sqrt = covariance_sqrt(l:state_count,l:state_count);

Listing B.3: ddekf update phase.m

function [estimate_next, covariance_sqrt] = ddekf_update_phase(R_root,
P_root,C,estimate,measurement)

%runs update portion of the dd—ekf.

%[estimate_next,covariance_sqrt] = ddekf_update_phase(R_root,P_root,C,
estimate, measurement)

INPUT:

%

o® o° o° o° o

o®

%OUTPUT :

%

R_root:sensor error covariance matrix where
R=R_root*(R_root"')

P_root:covariance matrix from the predict phase
P_predict = P_root*x(root")

C: observation matrix
estimate: estimate from predict phase

measurement: measurement picked up by sensor

estimate_next: estimate incorporating measurement
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o®

covariance_sqrt: square root of covariance at the
end of update phase. Actual covariance is
covariance_sqrt=«(covariance_sqrt')

o®

o°

measurement_count = size(C,1);
state_count = size((C,2);

tmp = zeros(state_count+measurement_count, state_count+
measurement_count);

tmp(1l:measurement_count, l:measurement_count) = R_root;

tmp(1l:measurement_count, (measurement_count+1l):end) = CxP_root;

tmp ( (1+measurement_count):end, (1+measurement_count):end) = P_root;

[Q,R] = gqr(tmp");

R=R"';

X = R(1l:measurement_count, l:measurement_count);

Y = R((1+measurement_count):end, (1:measurement_count));

Z = R((1l+measurement_count):end, (1+measurement_count):end);

%sKalman_gain = Yxinv(X);
estimate_next = estimate + Yx(X\(measurement — Cxestimate));
covariance_sqrt = Z;

end

B.2 Continuous-Discrete Extended Kalman Filter

The continuous-discrete Extended Kalman filter shares the same update phase with the
discrete-discrete Extended Kalman filter. The header is modified as follows

Listing B.4: cdekf.m

function [estimates, covariances ] = cdekf(f_func,jacobian_func,
dt_between_measurements, rk4_steps, start_time, state_count, sensor_count
, measurement_count,C,Q_root,R_root,P_0_root,x_0, measurements)

%Runs continuous—discrete Extended Kalman filter on data. The initial

%estimate and covariances are at the time step before all the
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%measurements — be wary of the off-by—one error. If f_func is a

%linear function the code is equivalent to continuous—discrete Kalman

sfilter.

%[estimates, covariances] = cdekf(f_func,jacobian_func,
dt_between_measurements, rk4_steps, start_time, state_count, sensor_count
, measurement_count,C,Q_root,R_root,P_0_root,x_0, measurements)

%INPUT:

% f_func: \dot{x} = f_func(x,t) where x is the state

% and lhs is the derivative of x at time t. The derivative is a

% function of both the time and state.

% jacobian_func(x,t): jacobian of f_func with state x at time t

% rkd_steps: amount of steps taken in predict phase in rk4 scheme
% dt_between_measurements: time distance between incoming

% measurements

o°

o°

start_time: the time of first measurement

o°

o°

state_count: dimension of the state

o°

sensor_count: dimension of observation matrix

o of

o°

C: observation matrix of size 'sensor_count by state_count'

o°

o°

R_root: The root of sensor error covariance matrix R where
R = R_root*(R_root'). R_root is of size 'sensor_count by
sensor_count'. R_root = chol(R)' is one way to derive it.

o® o° o°

o°

Q_root: The root of process error covariance matrix Q where
Q = Q_root*x(Q_root'). Q_root is of size 'state_count by
state_count'. Q_root = chol(Q)' is one way to derive it.

o°

o®

o®

P_0_root: The root of initial covariance matrix P_0 where
P_O = P_O_rootx(P_root'); P_O_root is of size 'state_count by
state_count'. % P_0_root = chol(P_0)' is one way to derive it.

o® o° o°

o®
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% x_0:Initial state estimate of size 'state _count by 1'

%

% measurements: ith column is ith measurement. Matrix of size
% 'sensor_count by measurement_count'

%

%0UTPUT :

% estimates: 'state_count'X'measurement_count+1'

ith column is ith estimate. first column is x_0O

o°

o°

covariances: cell of size 'measurement_count+l' by 1
where each entry is the P covariance matrix at that time.
Time is computed based on dt_between_measurements

o® o°

o®

The code follows ddekf.m except it is now the predict phase is different

Listing B.5: cdekf predict phase.m basicstyle

[x_k_m,P_root_km] = cdekf_predict_phase(f_func,...
jacobian_func ,h,
dt_between_measurements,
current_time,...
P_root_kml_p,x_kmil_p,Q_root);

with the predict phase given by ‘cdekf predict phase.m’.

Listing B.6: cdekf predict phase.m

function [estimate, covariance_sqrt] = cdekf_predict_phase(f_func,
jacobian_func,h,dt_between_measurements,start_time,P_0_sqrt,x_0,Q_root)

%sruns predict portion of update of the extended kalman filter

%[estimate, covariance_sqrt] cdekf_predict_phase(f_func,jacobian_func,h,
dt_between_measurements,start_time,P_0_sqrt,x_0,Q_root)

%INPUT:

% f_func: encodes relationship \dot{x} = f_func(x,t) for state x

% and time t.

o®

o°

jacobian_func: the jacobian of f_func at state x and time t

o°

o®

h: fixed timestep used by RK4 to cover dt_between_measurements
to evolve estimate as well covariance matrix. h must be less

o®

80




o % ° ° ° ° o° o° o° o°

o®

S
o
S
S

o

%OUTPUT :

%

than delT
dt_between_measurements: distance between incoming measurements

start_time: start time over which solving RK4
(finish time is start_time + dt_between_measurements)

x_0: estimate of x at start_time

P_0_sqrt: square root factor of covariance P at
start_time. PO = P_0O_sqrtx(P_0_sqrt")

Q_root: square root of process noise covariance matrix
Q where Q = Q_root*(Q_root');

estimate: estimate of x at dt_between_measurements + start_time

covariance_sqrt: square root of covariance P after the
update phase. P = covariance_sqrt=*(covariance_sqrt')

current_time = start_time;

finish_time = start_time + dt_between_measurements;
X = X_0;

state_count = length(x);

Phi = eye(state_count);
Phi_sum_root = zeros(state_count,state_count);

while(current_time < finish_time)
if(current_time + h > finish_time)
h = finish_time — current_time;
end

%RK4 for estimate

kl = h.xf_func(x,current_time);
k2 = h.xf_func(x + kl./2,current_time+h/2);
k3 = h.xf_func(x + k2./2,current_time+h/2);
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end

k4 = h.xf_func(x + k3, current_time + h);
X =x+ k1./6 + k2./3 + k3./3 + k4./6;

%RK4 for phi
jac_a = jacobian_func(x,current_time);
%sk_phi_1l = h.*xjac_Ax(Phi);

%sk_phi_2 = k_phi_1l + (0.5x%h).*xjac_Ax(k_phi_1);
%k_phi_3 = k_phi_1l + (0.5xh).xjac_Ax(k_phi_2);
%k_phi_4 = k_phi_1l + h.xjac_Ax(k_phi_3);

%Phi_next = Phi + k_phi_1./6 + k_phi_2./3 + k_phi_3./3 +
%k_phi_4./6;
%since jac_A is constant at current time the commented

lines
%can be replaced with the stuff below
%swith th
%sfollowing few lines
jac_a_2 = jac_axjac_a;
jac_a_3 = jac_a_2xjac_a;
jac_a_4 = jac_a_3xjac_a;

Phi_next = (eye(state_count) + (h).xjac_a + (1/2xh"2).x*
jac_a_2 +...
(1/6xh"3) .xjac_a_3 + (1/24xh"4).xjac_a_4)*Phi;

%Trapezoid rule. add phi and phi_next together
[~, Retmpl] = gr([PhixQ_root,Phi_next*Q_root]"');
R_tmpl = sqrt(h*x0.5).«R_tmpl"';

R_tmpl = R_tmpl(l:state_count, 1l:state_count);

%Add previous sum to overall phi sum

[~, Retmpl] = gr([R_tmpl,Phi_sum_root]');
R_tmpl = R_tmpl';

R_tmpl = R_tmpl(l:state_count, 1l:state_count);
Phi_sum_root = R_tmpl;

Phi = Phi_next;
current_time = current_time + h;
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end

[~, R_tmpl] = qr
covariance_sqrt
covariance_sqrt

estimate = x;

([PhixP_O_sqrt,Phi_sum_root]"');
= R_tmpl';
= covariance_sqrt(1l:state_count,l:state_count);
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