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This paper models capacity allocation decisions within profit maximizing hub location problems to satisfy

demand of commodities from different market segments. A strong deterministic formulation of the problem

is presented and two exact algorithms based on a Benders reformulation are described to solve large-size

instances of the problem. A new methodology is developed to strengthen the Benders optimality cuts by

decomposing the subproblem in a two-phase fashion. The algorithms are enhanced by the integration of

improved variable fixing techniques. The deterministic model is further extended by considering uncertainty

associated with the demand to develop a two-stage stochastic program. To solve the stochastic version, a

Monte-Carlo simulation-based algorithm is developed that integrates a sample average approximation scheme

with the proposed Benders decomposition algorithms. Novel acceleration techniques are presented to improve

the convergence of the algorithms proposed for the stochastic version. The efficiency and robustness of the

algorithms are evaluated through extensive computational experiments. Computational results show that

large-scale instances with up to 500 nodes and three demand segments can be solved to optimality, and that

the proposed algorithms generate cuts that provide significant speedups compared to using Pareto-optimal

cuts. The proposed two-phase methodology for solving the Benders subproblem as well as the variable fixing

and acceleration techniques can be used to solve other discrete location and network design problems.

Key words : Hub location, Benders decomposition, variable fixing, acceleration techniques, sample average

approximation.

1. Introduction

Hubs are special facilities that serve as switching, sorting, connecting, and consolidation points in

transportation and telecommunication networks, routing the traffic between origin and destination

pairs. Hubs help reduce the cost of establishing a network connecting many origins and destinations,

and also consolidate flows to exploit economies of scale. A hub location problem is a network design

problem consisting generally of two main decisions: to locate a set of hubs and to allocate the

demand nodes to these hubs (Campbell et al. 2002, Alumur and Kara 2008, Contreras 2015).
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One of the basic requirements in classical hub location problems is that the demand of each

commodity must be fully satisfied. From a revenue management point of view, it may be more

advantageous not to serve the demand of some commodities, especially if the cost of serving a

commodity is higher than the revenue associated with servicing its demand. In such a setting,

the right objective is to maximize profit rather than minimizing cost so that the decision on how

much demand of each commodity to satisfy depends on the trade-off between revenue and cost.

Profit maximization is more complex than cost minimization as it incurs additional decisions,

nevertheless, this is the actual problem setting in many real-life hub networks. Moreover, the

demand of commodities usually consists of different classes (e.g., for regular and priority service).

The decision maker thus needs to consider how to allocate the available capacity to these different

demand segments, while determining the proportion of the demand to serve for each class. Incurring

these revenue management decisions surely bring on extra challenges yet this is a much more

realistic problem setting.

This study is motivated from airline passenger and freight transportation, and express ship-

ment delivery networks in which the amount of demand of different commodities to serve is very

dependent on hub locations. To provide the big picture, in 2017 alone, worldwide airline industry

provided services to more than 4.081 billion passengers across the world (IATA 2018); the world’s

largest package delivery company served 5.1 billion parcels and documents in the global delivery

volume (UPS 2018), both by employing hub networks. Even though passengers choose their own

routes in airline networks, airlines still have to design their hub networks considering the forecasted

demand. Different classes of demand may include the demand for, for example, the first, business,

and economy class service. In express shipment delivery networks, on the other hand, there is a

demand for services such as priority, express, and standard mail.

In this study, we consider revenue management decisions within hub location problems and

determine how to allocate available capacities of hubs to demand of commodities from different

market segments. The profit maximizing capacitated hub location problems introduced in this study

seek to find an optimal hub network structure, maximizing total profit to provide services to a set

of commodities while considering the design cost of the network. The decisions to be made are the

optimal number and locations of hubs, allocation of demand nodes to these hubs, and the optimal

routes of flow of different classes of commodities that are selected to be served. We consider a

hub location problem with multiple assignments, and allow a path of an origin-destination pair

to pass through at most two hubs. Direct connections between non-hub nodes are not allowed;

all commodities must be routed via a set of hubs. Demand is segmented into different classes and

revenue is obtained from satisfying demands for the commodities of each class. The model is to
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decide how much demand to serve from each class considering the available capacity. Each demand

class from each commodity can be partially satisfied.

We first present a strong deterministic mixed-integer programming formulation of the profit

maximizing capacitated hub location problem. As precise information on demand may not be

known in advance, we then incorporate demand uncertainty into the problem, and develop a two-

stage stochastic program with recourse considering stochastic demand. The first stage decision is

the locations of hubs, while the assignment of demand nodes to hubs, optimal routes of flows, and

capacity allocation decisions are made in the second stage.

We present two exact algorithms based on a Benders decomposition of the deterministic for-

mulation. Since the subproblem is inseparable, solving it can be as challenging as solving the

original problem. Moreover, due to degeneracy in the subproblem, straightforward implementation

of Benders decomposition suffers from low convergence. Alleviating these deficiencies, in this paper,

we propose a general methodology for decomposing inseparable subproblems into smaller prob-

lems in a two-phase fashion, where optimality and strength of the cuts are guaranteed in phase I

and phase II, respectively. More specifically, for the profit maximizing capacitated hub location

problem, we prove that the second phase can be solved as a set of LP-relaxations of maximum

weighted matching problems, or as a series of LP-relaxations of knapsack problems. We enhance

these algorithms by incorporating improved variable fixing techniques.

We integrate the proposed Benders decomposition algorithms with a sample average approxi-

mation (SAA) scheme to solve the stochastic problem with a continuous demand distribution and

an infinite number of scenarios. Inspired by the repetitive nature of SAA, we additionally pro-

pose novel acceleration techniques to improve the convergence of the algorithms employed for the

stochastic problem. Moreover, we perform extensive computational experiments to evaluate the

efficiency and robustness of the proposed algorithms and solve large-scale instances of the problem.

The major contribution of this paper is the methodology. We develop a new two-phase method-

ology for solving the subproblem to strengthen the Benders optimality cuts, and propose two new

Benders-based algorithms to optimally solve large-scale instances of the profit maximizing capaci-

tated hub location problems. We show that both algorithms result in generating very strong cuts

that outperform the best known cuts from the literature (Pareto-optimal cuts; Magnanti and Wong

1981) in terms of both quality and computational efficiency. We also propose several variable fixing

techniques improving the convergence. For the stochastic problem, our contribution is to propose

a general technique for accelerating Benders decomposition coupled with SAA by using the cuts

generated from the previous replications. We show that implementation of this acceleration tech-

nique may result in up to five times improvement in CPU times. The decomposition methodology
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for solving the Benders subproblem as well as the improved variable fixing and the SAA accelera-

tion techniques proposed in this paper can be used to solve several classes of transportation and

network optimization problems, including, but not limited to, other facility location and network

design problems.

We were able to solve, to optimality, instances of the deterministic model, up to 500 nodes

and 750,000 commodities of different demand segments. For the stochastic model, we could solve

instances with up to 75 nodes and 16,875 commodities. To the best of our knowledge, these are

the largest set of instances that have been solved exactly for any type of capacitated or stochastic

hub location problems.

The rest of the paper is organized as follows. In Section 2, we review the related literature.

We introduce the notation and formulate the mixed-integer linear programming models in Section

3. Section 4 contains the basic Benders decomposition algorithm and our introduction of several

features that improve the convergence and efficiency for the deterministic version of the problem.

In Section 5, we present an SAA algorithm, coupled with Benders decomposition, for the problem

with stochastic demand. We perform extensive computational experiments in Section 6 to test our

mathematical models and evaluate our algorithms. Section 7 provides some concluding remarks

along with future research directions. Finally, technical extensions and supplementary numerical

results are provided in an Appendix.

2. Literature Review

In the last few decades, many variants of hub location problems have been studied in the literature.

The reader may refer to reviews on this area by Campbell et al. (2002), Alumur and Kara (2008),

Campbell and O’Kelly (2012), and Contreras (2015). In this section, we focus in particularly on the

capacitated hub location studies, hub location problems with profit-oriented objectives, hub loca-

tion research considering uncertainty, and also on publications employing Benders decomposition

for solving hub location problems.

Capacitated versions of hub location problems are first formulated by Campbell (1994) using

path-based mixed integer programs that impose capacity constraints on the total incoming flow

at hubs (i.e., flow arriving from both hub and non-hub nodes). A variant of this problem arises

when capacities are applied only to the traffic arriving directly from non-hub nodes. This variant

is motivated from the postal-delivery applications and has been studied by Ebery et al. (2000),

Boland et al. (2004), Maŕın (2005), and Contreras et al. (2012). In some postal-delivery and express

shipment networks (e.g. Canada Post, UPS), however, total incoming flow (regardless that is from a

hub or a non-hub node) is sorted at every hub-stop. Moreover, the limiting capacity of a hub may not

necessarily be on sorting or material handling, but, for example, on the available number of docks
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or gates. Hence, in this paper, we model the generic case and impose capacity constraints on the

total incoming flow at hubs, as introduced in Campbell (1994). As we elaborate in Section 4.3, this

generic definition of capacity usage brings on extra challenges for the implementation of Benders

decomposition.

There are only a few studies considering a profit-oriented objective in hub location problems.

Alibeyg et al. (2016) present a hub network design problem with profits including the decisions on

the origin-destination pairs that will be served. They propose different variants of this problem and

use the CPLEX solver to perform computational experiments. The companion paper Alibeyg et al.

(2018) presents an exact solution algorithm for the profit-oriented models introduced by Alibeyg

et al. (2016). They employ Lagrangean relaxation within a branch-and-bound algorithm, and also

adopt reduction tests and partial enumeration to reduce the size of the problems as well as the

computation times. They are able to solve instances with up to 100 nodes.

Lin and Lee (2018) consider a hub network design problem for time definite LTL freight trans-

portation in which the carrier aims to determine hub locations, under price elasticity of demand,

that maximize total profit. They show that profit optimization builds a denser hub network than

cost minimization. More recently, Taherkhani and Alumur (2018) provide new formulations for

profit maximizing hub location problems. They allow the demand of an origin-destination pair to

be shipped through any number of hubs and network connections as necessary. They consider all

possible allocation strategies: multiple allocation, single allocation, and r-allocation, and also allow

for the possibility of direct connections between non-hub nodes. In the present study, we addition-

ally consider demands of commodities from different market segments and incorporate capacity

allocation decisions.

To the best of the authors’ knowledge, this is the first paper incorporating demand uncertainty

into profit maximizing hub location problems. There are, however, several publications that incor-

porate uncertainty into other hub location problems. Marianov and Serra (2003) study the problem

in the context of airline transportation and derive formulae for the probable numbers of customers

in the system, which is later used to formulate a capacity constraint. Yang (2009) proposes a

two-stage stochastic programming model to address the issues of air freight hub location and flight-

route planning under stochastic demand. He solve the deterministic equivalent of this problem

considering three scenarios. In the same year, Sim et al. (2009) present the stochastic p-hub center

problem, in which service level considerations are incorporated by using chance constraints when

travel times are normally distributed.

Contreras et al. (2011b) study the uncapacitated multiple allocation hub location problem under

uncertain demands and transportation costs. When demand is analyzed as the source of uncertainty,

they show that the stochastic problem will be equivalent to its associated deterministic expected
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value problem where uncertain demand is replaced by its expectation. However, this equivalence

does not hold when transportation costs are stochastic. The authors develop an SAA method to

solve their stochastic problems and apply it to instances involving up to 50 demand nodes. Alumur

et al. (2012) consider two sources of uncertainty, set-up costs for the location of hubs and the

demands to be transported between the nodes, within both the single and multiple allocation hub

location problems. Mathematical models are proposed considering randomness in demand, while

the uncertainty in setup costs is handled by a minmax regret formulation.

More recently, Meraklı and Yaman (2016) model the robust uncapacitated multiple allocation

p-hub median problem under demand uncertainty. To represent that uncertainty, they use two

polyhedral uncertainty sets: hose and hybrid. They adopt a minmax robustness criterion to model

this problem. Meraklı and Yaman (2017) extend this study further by incorporating capacity

constraints for hubs into the problem. They present a new mathematical formulation and devise

two different Benders decomposition algorithms applied to instances with up to 50 nodes.

Profit maximizing hub location problems with capacity allocation are also related to service

network design problems, which determine the selection and scheduling of the services to operate

as well as the routes of flow to be shipped. An interested reader may refer to reviews on this area

by Crainic (2000) and Wieberneit (2008). In this study, unlike the service network design problem,

we additionally incorporate decisions on the locations of hubs.

From a methodological point of view, Benders decomposition (BD) has received increased atten-

tion, particularly for solving multiple allocation hub location problems. There are several successful

BD implementations in the literature. Camargo et al. (2008) is the first work using a Benders

reformulation to solve the uncapacitated multiple allocation hub location problem. They present

three variants of the algorithm: the classical BD algorithm, where a single cut is generated at each

iteration, a multicut version where Benders cuts are generated for each origin-destination pair, and

a variant that terminates when an ε-optimal solution is obtained. The proposed algorithms were

applied to solve instances with up to 200 nodes. Rodriguez-Martin and Salazar-Gonzalez (2008)

consider a capacitated multiple allocation hub location problem in which the arcs connecting the

hubs are not assumed to create a complete graph. They provide a formulation and design two

exact solution algorithms relying on BD. The first one employs the classical BD approach and

the second is a branch-and-cut algorithm based on a two-level nested decomposition scheme. The

second outperforms the first approach in terms of computational time.

Contreras et al. (2011a) employ a Benders reformulation for the uncapacitated multiple allocation

hub location problem which is enhanced through the use of a multicut reformulation, the generation

of Pareto-optimal cuts, the integration of reduction tests, and the execution of a heuristic procedure.

Contreras et al. (2012) provide an extension of the BD approach proposed by Contreras et al.
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(2011a) to solve capacitated multiple allocation hub location problems. They apply Pareto-optimal

Benders cuts as well as reduction tests to improve the convergence of the algorithm, and solve

instances with up to 300 nodes.

BD is also used to solve other variants of hub location problems, including flow dependent

discounts for inter-hub links using a non-linear cost function (Camargo et al. 2009), hub location-

routing problems which incorporate routing decisions between non-hub nodes (Camargo et al.

2013), hub location problems with single allocation under congestion (Camargo et al. 2011,

Camargo and Miranda 2012), problems with incomplete inter-hub networks (Camargo et al. 2017,

de Sá et al. 2018), problems with distinct topologies of inter-hub networks such as tree-star net-

works (Martins de Sá et al. 2013) and hub-line networks (Martins de Sá et al. 2015), and hub

location problems in liner shipping applications (Gelareh and Nickel 2011).

Motivated by successful implementations of BD to solve hub location problems, in this study,

we also develop Benders-based algorithms to solve our problems to optimality. To date, the largest

capacitated hub location instances that could be solved optimally contain 300 nodes (Contreras

et al. 2012). As we will show through our computational experiments, we are able to solve instances

of size 500 nodes, while considering an even more difficult problem setting with generic capacity

constraints, multiple demand segments, and a profit maximizing objective function. Moreover, we

show that the BD algorithms that we introduce in this paper result in generating stronger cuts

than those in the previous literature.

3. Mathematical Formulations

This section first introduces the notation and then presents mathematical formulations for the

deterministic and stochastic versions of the problem.

3.1. Notation

Let G = (N,A) be a complete digraph, where N is the set of nodes and A is the set of arcs.

Adapting the notation used by Contreras et al. (2012), we define a hub arc as an ordered set a∈A

and a loop a as {a1, a2} if |a|= 2, and as {a1} if |a|= 1. Let H ⊆N be the set of potential hub

locations, and K represent the set of commodities whose origin and destination points belong to N .

Demand of commodities are segmented into M classes. For each commodity k ∈K of class m∈M ,

wmk is defined as the amount of commodity k of class m to be routed from the origin o(k) ∈N to

the destination d(k) ∈N . Satisfying a unit commodity k ∈K of class m ∈M produces a per unit

revenue of rmk . Let fi and Γi denote the installation cost and the available capacity of a hub located

at node i ∈H, respectively. The transportation cost from node i ∈N to node j ∈N is defined as

cij = γdij, where dij denotes the distance from node i to node j, and γ is the resource cost per unit

distance. Distances are assumed to satisfy the triangle inequality,
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Each path of an origin-destination pair contains at least one and at most two hubs. Thus,

paths are of the form (o(k), i, j, d(k)), where (i, j) ∈ H ×H represents the ordered pair of hubs

to which o(k) and d(k) are allocated, respectively. The transportation cost of routing one unit of

commodity k along path (o(k), i, j, d(k)) can be calculated by Cijk = χco(k)i +αcij + δcjd(k), where

χ,α, δ represent the collection, transfer, and distribution costs, respectively. The economies of scale

between hubs is reflected by assuming α<χ and α< δ.

A few characteristics of the multiple allocation hub location problem can be employed in modeling

profit maximizing capacitated hub location problems as detailed below:

Property 1 In any optimal solution, a commodity can be routed via a path containing two distinct

hubs only if it is not cheaper to do so using one of the hubs (Boland et al. 2004).

Property 2 In any optimal solution, every commodity k ∈ K uses at most one of the paths

o(k), i, j, d(k) and o(k), j, i, d(k); the one with the lower transportation cost (Contreras et al. 2011a).

Consequently, each commodity defines its own set of potential hub arcs. Henceforth, we replace

Cijk with Ĉijk = min{Cijk,Cjik}, and reduce the set of candidate hub arcs for commodity k ∈K to

Ak as defined in (1), which can be used to reduce the size of the mathematical formulations.

Ak = {(i, j)∈A : i≤ j, Ĉijk ≤min{Ciik,Cjjk}} (1)

3.2. Deterministic Model

We first consider the deterministic setting assuming that perfect information on demands is avail-

able. Let yi equal to 1 if a hub is established at node i ∈H, and 0 otherwise. Moreover, let xmak

determine the fraction of commodity k ∈K of class m ∈M that is satisfied through a path with

hub arc a∈Ak. The profit maximizing capacitated hub location problem is then modeled as:

Maximize
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmk xmak−
∑
i∈H

fiyi (2)

s.t.
∑
a∈Ak

xmak ≤ 1 k ∈K,m∈M (3)∑
a∈Ak:i∈a

xmak ≤ yi i∈H,k ∈K,m∈M (4)∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk x
m
ak ≤ Γiyi i∈H (5)

xmak ≥ 0 k ∈K,m∈M,a∈Ak (6)

yi ∈ {0,1} i∈H. (7)

The objective function (2) represents net profit, which is calculated by subtracting total cost from

total revenue. If demand of a commodity from a given class is to be satisfied, then by constraints (3)
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flow must be routed via hubs. Each demand class from each commodity can be partially satisfied

through different paths. Constraints (4) ensure that demand of commodities can be satisfied only

through open hubs. Constraints (5) restrict capacity on the total incoming flow at a hub via

both hub and non-hub nodes. Finally, constraints (6) and (7) define the non-negative and binary

variables.

Remark 1. For integer values of y, constraints (3) and (5) imply constraints (4). Hence, con-

straints (4) act as valid inequalities for the mathematical model (2)-(7).

Since our solution method is based on Benders decomposition, and it is known that Benders

decomposition performs better with stronger formulations (Magnanti and Wong 1981), we choose

to keep these constraints in our mathematical model.

Note that when revenue from satisfying the commodity k ∈K of class m∈M is strictly smaller

than the unit transportation cost of routing commodity k along a path containing a hub arc a∈Ak,

no profit can be obtained from satisfying the demand for commodity k ∈K of class m∈M through

that path. Accordingly, the optimal value for the corresponding variable xmak can then be set to

zero as noted in Property 3 below:

Property 3 For every k ∈K, m∈M and a∈Ak, if rmk < Ĉak, then xmak = 0 in any optimal solution

to (2)-(7).

3.3. Stochastic Model

We now model the problem with uncertain demand assuming that the uncertainty associated with

demands is described by a known probability distribution. As noted before, demand is segmented

into different classes and we consider a stochastic demand for each class. To model this problem,

let wmk (ξ) denote the random variables representing the future demand for commodity k ∈K of

class m ∈M to be shipped from origin o(k) ∈N to destination d(k) ∈N , and assume that wmk (ξ)

are random variables associated with a known probability distribution. The demands of different

commodities are considered as independent random variables, whereas different demand classes of

each commodity are assumed to be dependent and thus correlated. If Eξ denotes the expectation

with respect to ξ, and Ξ the support of ξ, then the profit maximizing capacitated hub location

problem with stochastic demand can be modeled as:

Maximize Eξ[ ∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmk (ξ)xmak(ξ)]−
∑
i∈H

fiyi (8)

s.t.
∑
a∈Ak

xmak(ξ)≤ 1 k ∈K,m∈M,ξ ∈Ξ (9)∑
a∈Ak:i∈a

xmak(ξ)≤ yi i∈H,k ∈K,m∈M,ξ ∈Ξ (10)
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m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk (ξ)xmak(ξ)≤ Γiyi i∈H,ξ ∈Ξ (11)

xmak(ξ)≥ 0 k ∈K,m∈M,a∈Ak, ξ ∈Ξ (12)

yi ∈ {0,1} i∈H. (13)

The above model forms a two-stage stochastic program. The first stage problem corresponds

to strategic hub location decisions. These long-term decisions will not be influenced by demand

variations, accordingly, the variables yi become known in this stage. However, the allocation deci-

sions and the optimal routes of flows through the network, as well as the decision on how much

of total capacity should be allocated to demand from different classes, do vary in response to the

change of demand and, thus, are influenced by the stochastic demand. These tactical decisions are

determined in the second stage depending on the particular realization of the random vector ξ ∈Ξ.

Accordingly, the variables xmak become known in the second stage.

The objective function (8) contains a deterministic term which calculates the installation cost

of the hubs, and the expectation of the second stage objective which calculates the expected value

of revenue and transportation cost.

4. Benders Decomposition

We introduce a Benders decomposition methodology for the solution of our models. Benders decom-

position is well suited for hub location problems especially with multiple allocation structure as the

problem can be decomposed into linear subproblems by fixing the integer variables for the location

of hubs. In this section, we first present the Benders reformulation of the deterministic model and

the Benders decomposition algorithm; we then detail our solution strategies for the subproblems.

4.1. Benders Reformulation and Algorithm

Given the mixed integer formulation (2)-(7), in the Benders reformulation of the problem, the hub

location decisions are handled in the master problem and the rest is left to the subproblem. By

fixing the values of the integer variables yi = yei , we obtain the following linear primal subproblem

(PS):

(PS) Maximize
∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmk xmak (14)

s.t.
∑
a∈Ak

xmak ≤ 1 k ∈K,m∈M (15)∑
a∈Ak:i∈a

xmak ≤ yei i∈H,k ∈K,m∈M (16)∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk x
m
ak ≤ Γiy

e
i i∈H (17)

xmak ≥ 0 k ∈K,m∈M,a∈Ak. (18)
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We derive the dual of PS by associating the dual variables αmk , umik, and bi to the constraints

(15), (16), and (17), respectively. We then have the following dual subproblem (DS):

(DS) Minimize
∑
k∈K

∑
m∈M

αmk +
∑
i∈H

yei (Γibi +
∑
k∈K

∑
m∈M

umik) (19)

s.t. αmk +umik +umjk +wmk (bi + bj)≥ (rmk − Ĉijk)wmk k ∈K,m∈M, (i, j)∈Ak : i 6= j
(20)

αmk +umik +wmk bi ≥ (rmk − Ĉiik)wmk k ∈K,m∈M,i∈H (21)

αmk , u
m
ik, bi ≥ 0 k ∈K,m∈M,i∈H (22)

Let P denote the polyhedron defined by (20)-(22), and let P̂ be the set of extreme points of P .

The primal and dual subproblems are always feasible and bounded, hence an optimal solution of

DS is one of the extreme points of P . Note that P̂ does not depend on yei ; hence, for any arbitrary

y, DS can be restated as

min
(α,u,b)∈P̂

∑
k∈K

∑
m∈M

αmk +
∑
i∈H

yi(Γibi +
∑
k∈K

∑
m∈M

umik). (23)

Let η denote the overall revenue obtained by satisfying the demand; the Benders master problem

(MP) can then be formulated as:

(MP) Maximize η−
∑
i∈H

fiyi (24)

s.t. η≤
∑
k∈K

∑
m∈M

αmk +
∑
i∈H

yi(Γibi +
∑
k∈K

∑
m∈M

umik) (α,u, b)∈ P̂ (25)

yi ∈ {0,1} i∈H. (26)

Note that MP contains an exponential number of constraints. We can work around this difficulty

by employing a cutting-plane method. Starting with an empty set P̂ , we iteratively solve a relaxed

master problem with a small subset of P̂ and keep adding new extreme points to P̂ by solving dual

subproblems, until the optimal solution to MP is found.

An overview of the basic BD algorithm is given in Algorithm 1. In this algorithm, UB, LB, e,

zeMP , and zeDS stand for the current upper and lower bounds, the iteration counter, and the optimal

solutions obtained from the master problem and dual subproblem at iteration e, respectively.

The computational efficiency of the Benders decomposition algorithm generally depends on the

number of iterations required to obtain an optimal solution and the computational effort needed

to solve MP as well as DS at each iteration. In the following sections, we first describe how the

size of the problem can be reduced via variable fixing and then explain how the subproblem can

be solved efficiently.
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Algorithm 1 Benders decomposition

1: UB←+∞,LB←−∞, e← 0, P̂ ←∅

2: while (LB <UB) do

3: SOLVE MP and obtain ye and zeMP

4: UB← zeMP

5: SOLVE DS and obtain (α,u, b)e and zeDS

6: LB←max{LB,zeDS −
∑
i∈H

fiy
e
i }

7: ADD (α,u, b)e to P̂

8: e← e+ 1

9: end while

4.2. Variable Fixing

Variable fixing can improve the efficiency of the Benders decomposition algorithm by reducing the

computational time of solving the master problems and subproblems due to solution space reduc-

tion. The dominance properties presented in Section 3 reduce the size of the model significantly

via preprocessing. We can further reduce the size by eliminating hubs that cannot be open in an

optimal solution. Contreras et al. (2011a) propose two reduction tests that eliminate such hubs by

using the information obtained during the inner iterations of the Benders algorithm. In this paper,

we adapt and improve on these tests for eliminating hubs from H and the associated variables from

the model.

The first reduction test is based on the primal information obtained by solving the LP-relaxation

of MP. Let MPe
LP denote the LP-relaxation of MP at iteration e, zeLP its optimal value, and rci

the reduced cost associated with variable yi for i ∈H. Let LB be a known lower bound on the

optimal value of MP. Since zeLP + rci provides a lower bound on the optimal value of MP, any hub

i∈H for which zeLP +rci <LB cannot be open in any optimal solution. Hence, such hubs and their

associated variables in the master and subproblem can be discarded in subsequent iterations.

The second reduction test relies on eliminating a set of hubs Q⊂H that are proved to be closed

in an optimal solution. Let MPe(Q) denote the MP at iteration e with the additional constraint∑
i∈Q yi ≥ 1, and zeMP (Q) its optimal value. Let LB be a lower bound on the optimal value of MP.

Note that MPe(Q) provides a lower bound on the optimal value of MPe. Hence, if zeMP (Q)<LB,

then none of these hubs can be open in any optimal solution. Therefore, the hubs contained in Q

and their associated variables can be discarded in subsequent iterations.

The performance of this reduction test highly depends on the choice of Q. The hubs contained

in Q should ideally have the least chance of being open in an optimal solution. Note that it is vital

to eliminate potentially non-optimal hubs in the earlier iterations of the Benders algorithm. To
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increase the chance of a successful test, we make the following two modifications on the settings of

the second reduction test of Contreras et al. (2011a).

The first modification addresses the choice of Q. Rather than setting Q=H at the beginning

of the Benders algorithm, we set Q to a certain proportion pQ (e.g., 75%) of the hubs that are

less likely to be open in an optimal solution. A simple greedy way of identifying such hubs is to

sort the hubs in a nondecreasing order of their ratio of fixed cost (f) to capacity (Γ). At iteration

e, we discard from Q the set of hubs opened in the optimal solution of MP as well as the nodes

that satisfy the first reduction test. We then perform the second reduction test and if it fails, we

further remove from Q the open hubs in the optimal solution of MPe(Q). As the Benders algorithm

proceeds, Q may become empty (either because of successful tests or discarding open hubs), and

we must thus reset Q. This time, rather than greedily sorting the hubs in nondecreasing order of

f/Γ, we sort them in nonincreasing order of the number of times the hubs have been opened in

previous iterations of the Benders algorithm, and select the first pQ of the sorted hubs.

The second modification addresses the weakness of the bound obtained by zeMP (Q). Rather than

running a single test at each iteration, we split Q into a certain number nQ of (not necessarily

mutually exclusive) smaller subsets. We then run a reduction test for each subset and remove all the

nodes in the subset that results in a successful reduction test. Although this modification requires

solving multiple integer programs at each iteration of the Benders algorithm, the time required for

solving these programs is negligible and compensated by the improved effectiveness of the resulting

tests when proper values of pQ and nQ are selected. Our computational experiments show that

both of these modifications considerably increase the performance of the second reduction test.

4.3. A Two-Phase Method for Solving the Subproblem

Solving the dual subproblem is the most challenging part of the BD algorithm. Due to different

definition of capacity usage of hubs in our problems, unlike Contreras et al. (2012), we can no

longer cast the subproblem (19)-(22) as a transportation problem1. Moreover, the algorithm may

suffer from slow convergence due to weakness of the generated cuts.

Pareto-optimal (PO) cuts (Magnanti and Wong 1981) have been extensively used in the literature

for generating strong optimality cuts. This method relies on solving two subproblems. In the first

problem, the optimal value of the subproblem is calculated. In the second problem (known as the

PO subproblem), using a core point, a PO cut is generated. By fixing b at specific values, Contreras

et al. (2012) generate good cuts by approximating the PO subproblem (Contreras et al. 2011a).

Because of the structural differences of our problem, as we will demonstrate via computational

experiments, the method proposed by Contreras et al. (2012) does not generate good enough cuts

for our problem, or it comes with a high computational burden. Hence, we seek a method for

generating good optimality cuts with less computational effort.
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In this paper, we propose a method for solving the subproblem in two sequential phases based

on the set of values of the binary variables at which the subproblem is evaluated, and reduce

each phase into simpler problems. Our approach for breaking the subproblem into two phases is

analogous to the idea of approximating the PO cuts: In Phase I, we obtain the optimal value of

the subproblem, whereas in Phase II, we strengthen the cut while preserving the optimality and

feasibility of the solution.

At iteration e of the BD algorithm, we obtain an optimal solution ye from MP. Let He
1 = {i :

yei = 1} be the set of open hubs and He
0 = {i : yei = 0} be the set of closed hubs. Moreover, let A1

ke

denote the set of distinct potential open hubs of commodity k at iteration e (i.e., A1
ke = {(i, j) ∈

Ak ∩He
1 ×He

1 : i 6= j}.) Note that any feasible value of bi and umik would be optimal when i ∈He
0 .

Hence, we can solve the subproblem in two phases. In Phase I, we remove the variables bi and umik

and their corresponding constraints from DS associated with i ∈He
0 , and compute the values of

the remaining variables by solving the following Phase I subproblem.

(DS-I) Minimize
∑
k∈K

∑
m∈M

αmk +
∑
i∈He

1

(Γibi +
∑
k∈K

∑
m∈M

umik) (27)

s.t. αmk +umik +umjk +wmk (bi + bj)≥ (rmk − Ĉijk)wmk k ∈K,m∈M, (i, j)∈A1
ke

(28)

αmk +umik +wmk bi ≥ (rmk − Ĉiik)wmk k ∈K,m∈M,i∈He
1 (29)

αmk , u
m
ik, bi ≥ 0 k ∈K,m∈M,i∈He

1 (30)

Note that αmk variables are independent from i, accordingly, solving DS-I results in obtaining

the optimal values of all αmk variables. Hence, in Phase II, we find feasible values of bi and umik for

i ∈He
0 , k ∈K,m ∈M with respect to constraints (20)-(22), aiming to generate optimality cuts as

strong as possible.

Let A0
ke = {(i, j) ∈ Ak ∩He

0 ×He
0 : i 6= j} denote the set of distinct potential closed hub arcs of

commodity k ∈K at iteration e, and let Hei
1 = {j ∈ He

1 : (i, j) ∈ Ak or (j, i) ∈ Ak} be the set of

open hubs that together with the closed hub i∈He
0 form a potential hub arc for commodity k ∈K.

Updating DS by fixing the value of the computed variables and removing the already satisfied

constraints, we get the following Phase II subproblem:

(DS-II) Minimize
∑
i∈He

0

(Γibi +
∑
k∈K

∑
m∈M

umik) (31)

s.t. umik +umjk +wmk (bi + bj)≥ ρkmij k ∈K,m∈M, (i, j)∈A0
ke (32)

umik +wmk bi ≥ ρkmii k ∈K,m∈M,i∈He
0 (33)

umik, bi ≥ 0 k ∈K,m∈M,i∈He
0 (34)
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where ρkmij = (rmk − Ĉijk)wmk −αmk and

ρkmii = max{max
j∈Hei

1

{(rmk − Ĉijk)wmk −umjk−wmk bj}, (rmk − Ĉiik)wmk }−αmk . (35)

We propose two algorithms tailored to the special structure of the Phase II subproblem. First, we

show that DS-II can be viewed as a set of LP-relaxations of maximum weighted matching problems

for a given value of bi for i ∈He
0 . In the second approach, we show that Phase II can be solved

as a sequence of LP-relaxations of knapsack problems. In the following sections, we present some

theoretical insights and discuss how to solve the two phases efficiently.

4.3.1. Solving the Phase I subproblem. We simplify DS-I (27)-(30) by showing that umik =

0, for k ∈K, m∈M and i∈He
1 , in an optimal solution of DS-I.

Proposition 1. There exists an optimal solution to DS-I, in which umik = 0 for k ∈K, m ∈M

and i∈He
1 .

Proof. For any arbitrary value of b (including the optimal solution) and for each k ∈K and

m∈M , DS-I (27)-(30) can be decomposed into smaller problems of the following form:

(DS-I(km)) Minimize αmk +
∑
i∈He

1

umik (36)

s.t. αmk +umik +umjk ≥ (rmk − Ĉijk− bi− bj)wmk (i, j)∈A1
ke (37)

αmk +umik ≥ (rmk − Ĉiik− bi)wmk i∈He
1 (38)

αmk , u
m
ik ≥ 0 i∈He

1 . (39)

Define βij = (rmk − Ĉijk − bi− bj)wmk for (i, j) ∈A1
ke, and βii = (rmk − Ĉiik − bi)wmk for i ∈He

1 . Let

µij and µii be the dual variables associated with (37) and (38), respectively, for (i, j) ∈ A1
ke and

i∈He
1 . Dual of DS-I(km) can be formulated as:

(Dual DS-I(km)) Maximize
∑
a∈Â1

ke

µaβa (40)

s.t.
∑
a∈Â1

ke

µa ≤ 1 (41)

∑
a∈Â1

ke
:i∈a

µa ≤ 1 i∈He
1 (42)

µa ≥ 0 a∈ Â1
ke (43)

where Â1
ke =A1

ke∪{(i, i) : i∈He
1}. Constraints (42) are clearly dominated by (41) for every i∈He

1 ,

thus can be removed entirely from the dual problem. Accordingly, it is optimal to set the dual

variables associated with (42) to zero, i.e. umik = 0 for i∈He
1 . �



16

The outcome of Proposition 1 is that we can compute the optimal solution of DS-I(km) and its

dual, by using the corollaries stated below:

Corollary 1. In the optimal solution of DS-I(km), αmk = max
a∈Â1

ke

{βa,0}.

Corollary 2. Let a∗ = arg max
a∈Â1

ke

{βa}, where ties are broken arbitrarily. In the optimal solution

of Dual DS-I(km), µa = 0 for a∈ Â1
ke \ {a∗}. If βa∗ > 0, then µa∗ = 1, otherwise µa∗ = 0.

Consequently, DS-I can be solved using a nested cutting-plane algorithm, where b is the master

problem variable and α is the subproblem variable, and the dual subproblems are solved using

Corollary 2.

4.3.2. Solving the Phase II subproblem as maximum weighted matching problems.

For a given vector (bi)i∈He
0
, DS-II can be restated for each k ∈K and m∈M as:

(DS-II)(km) Minimize
∑
i∈He

0

umik (44)

s.t. umik +umjk ≥ ρkmij −wmk (bi + bj) (i, j)∈A0
ke (45)

umik ≥ ρkmii −wmk bi i∈He
0 (46)

umik ≥ 0 i∈He
0 . (47)

Observe that (46) together with (47) serve as lower bounds on umik. Define tmik = umik − lb
m
ik, where

lbmik = max{ρkmii −wmk bi,0}. DS-II(km) can be restated as:

(MWC)(km) Minimize
∑
i∈He

0

tmik (48)

s.t. tmik + tmjk ≥ βkmij (i, j)∈A0
ke (49)

tmik ≥ 0 i∈He
0 . (50)

where βkmij = ρkmij −wmk (bi + bj)− lbmik − lb
m
jk for (i, j) ∈A0

ke. Assume without loss of generality that

βkmij values are nonnegative, otherwise their corresponding constraints can be dropped. Problem

(48)-(50) is commonly known as the Minimum Weight Cover (MWC) problem (see e.g. Galil 1986),

which is the dual of the LP-relaxation of the Maximum Weighted Matching (MWM) problem in

the edge-weighted graph Gkm = (He
0 ,A

0
ke), where edges are weighted according to βkmij .

LP-relaxation of MWM can be formulated as

(LP-MWM(km)) Maximize
∑
a∈A0

ke

µkma βkma (51)

s.t.
∑

a∈A0
ke

:i∈a

µkma ≤ 1 i∈He
0 (52)

µkma ≥ 0 a∈A0
ke (53)
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where µkma is the dual variable associated with (49) and represents the extent to which edge a ∈

A0
ke is picked in the MWM. Unlike the LP-relaxation of the MWM problem in general graphs,

LP-relaxation of the MWM problem in bipartite graphs (MWMB) guarantees integrality of the

solutions. Hence, methods proposed for solving the MWMB can also be used for solving its LP-

relaxation. In EC.1, we show that the MWM problem (51)-(53) can be transformed into the MWMB

problem in an equivalent sparse bipartite graph.

Several algorithms have been proposed for solving the MWMB. (For a review on recent methods,

see, e.g., Burkard et al. 2009.) As a byproduct of solving the MWM problem (51)-(53), we eventually

need to find the optimal value of (44)-(47). Hence, we adapt a primal-dual algorithm due to Galil

(1986), which can be solved in O(an logda/n+1e n), where n= |He
0 | and a= |A0

km| are the number of

nodes and edges, respectively. The details of the proposed algorithm are given in EC.1.

The strength of the cut generated using this method depends highly on the value at which vector

(bi)i∈He
0

is fixed. One could simply set bi to zero for i ∈ He
0 , or to the average of bi in previous

iterations of the BD algorithm; however, this will likely result in weak cuts. Moreover, note that

larger values of b result in fewer positive βkma values, thus reducing the number of edges (i.e. |A0
km|),

and consequently the computational time for solving the MWM problems. In EC.2, we explain how

proper values of (bi)i∈He
0

can be calculated efficiently using a relaxation of DS-II.

4.3.3. Solving the Phase II subproblem as knapsack problems. At each iteration of the

BD algorithm, we obtain a solution y with a set of open/closed hubs. The open hubs are potentially

the ones with desirable properties; e.g., with high capacity, low installation cost, and/or profitable

flows through these hubs. Hence, the most frequently opened hubs in the preceding iterations of

BD are more likely to be opened again in the subsequent iterations. To strengthen the cut, we must

prioritize minimizing the coefficients of these hubs over the hubs that are less likely to be open.

In light of this observation, solving DS-II at iteration e, we sequentially minimize the coefficient

of yi for one closed hub i ∈He
0 at a time, in a particular order of He

0 , rather than minimizing the

summation of coefficients of all closed hubs simultaneously.

Let Oe
i =

∑
h:h≤e

yhi denote the number of times that hub i has been opened prior to or at iteration

e of BD. A higher value of Oe
i implies a higher chance for hub i to be open at iteration e+ 1. We

first solve DS-II (31)-(34) as if i= arg max
j∈He

0

{Oe
j} is the only hub in He

0 :

(DS-II(i)) Minimize Γibi +
∑
k∈K

∑
m∈M

umik (54)

s.t. umik +wmk bi ≥ ρkmii k ∈K,m∈M (55)

umik, bi ≥ 0 k ∈K,m∈M. (56)
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Note that since i is assumed to be the only hub in He
0 , constraints (32) do not appear in this

model, but will be satisfied by the next closed hubs in the sequence by means of updating the

respective ρkmii values using (35).

Upon solving DS-II(i), we obtain the values of all dual variables associated with hub i (i.e., umik

and bi). Consequently, we fix these values, add i to He
1 and remove i from He

0 . We continue this

procedure with the next closed hub i= arg max
j∈He

0

{Oe
j} with ρkmii values updated according to the new

sets He
1 and Hei

1 . We replicate this procedure until values of all dual variables are computed; i.e.,

until He
0 becomes empty. An overview of this procedure is presented in Algorithm 2.

Algorithm 2 Solving DS-II via sequential knapsack problems

1: while (He
0 6= ∅) do

2: i← arg max
j∈He

0

{Oe
j}

3: Compute ρkmii values using (35) for the selected i and each k ∈K and m∈M with respect

to the updated He
1 and Hei

1 .

4: SOLVE DS-II(i) and obtain bi and umik for k ∈K and m∈M .

5: He
0 ←He

0 \ {i}

6: He
1 ←He

1 ∪{i}

7: end while

Observe that DS-II(i) is the dual of the LP-relaxation of a knapsack problem (KP) with knapsack

capacity Γi, and items (k,m)∈K×M with weight wmk and profit ρkmii , as formulated in (57)-(59):

(LP-KP(i)) Maximize
∑

(k,m)∈K×M

ρkmii µ
m
k (57)

s.t.
∑

(k,m)∈K×M

wmk µ
m
k ≤ Γi (58)

0≤ µmk ≤ 1 (k,m)∈K ×M (59)

where µmk is the dual variable associated with (55), and represents the extent to which item (k,m)∈

K ×M is picked. Note that the items with a non-positive profit (i.e., ρkmii ≤ 0) can be discarded

from the problem. Dantzig (1957) showed that the optimal solution to this problem can be found

by filling the knapsack in a non-increasing order of profit-to-weight ratio ρkmii /w
m
k of the items, until

we reach the first item that does not fit into the knapsack. This item is called the break item (k̄, m̄),

which is partially picked according to the residual capacity. Using the complementary-slackness

conditions, it can be verified that the optimal value of bi is the profit-to-weight ratio of the break

item; i.e.,

bi = ρk̄m̄ii /w
m̄
k̄ . (60)
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Moreover, using (55) and (56), the optimal value of umik can be calculated by setting umik =

max{ρkmii −wmk bi,0}. Balas and Zemel (1980) showed that the LP-relaxation of knapsack problem

can be solved in O(n), where n= |K||M |, by finding the break item as a weighted median, rather

than by explicitly sorting the items. This implies that the optimal values of b and u can be found

in the same time bound.

5. Solution Scheme for the Stochastic Model

In this section, we present an algorithm to solve the profit maximizing capacitated hub location

problem with stochastic demand. The methodology integrates a sampling technique, named as

sample average approximation (SAA) algorithm (the reader may refer to Shapiro and Homem-de

Mello 1998, Mak et al. 1999, Kleywegt et al. 2002) with the BD algorithm detailed in the following

sections.

5.1. Sample Average Approximation

SAA is a Monte Carlo simulation based approach to stochastic discrete optimization problems.

The main idea of this method is to reduce the size of the problem by generating a random sample

and approximating the expected value of the corresponding sample average function. The sample

average optimization problem is then solved (using the BD algorithm in our case), and the proce-

dure is repeated. The SAA scheme has previously been applied to stochastic supply chain design

as well as hub location problems with a large number of scenarios (see, e.g., Santoso et al. 2005,

Schütz et al. 2009, and Contreras et al. 2011b).

The main challenge in solving the stochastic problem (8)-(13) is the evaluation of the expected

value of the objective function (Kleywegt et al. 2002). To deal with this problem, we use SAA

scheme in which a random sample of realizations of the random vector n∈N is generated, and the

second-stage expectation

Eξ[∑m∈M
∑

k∈K
∑

a∈Ak
(rmk − Ĉak)wmk (ξ)xmak(ξ)]

is approximated by the sample average function

1
|N |

∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmnk xmnak

where wmnk and xmnak denote the amount of commodity k ∈K of class m ∈M to be shipped from

origin o(k)∈N to destination d(k)∈N under sample n∈N , and the fraction of commodity k ∈K

of class m ∈M that is satisfied through a hub link a ∈ Ak under scenario n ∈ N , respectively.

Accordingly, the approximated form of the stochastic problem by the SAA algorithm is modeled

as:

Maximize
1

|N |
∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmnk xmnak −
∑
i∈H

fiyi (61)
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s.t.
∑
a∈Ak

xmnak ≤ 1 k ∈K,m∈M,n∈N (62)∑
a∈Ak:i∈a

xmnak ≤ yi i∈H,k ∈K,m∈M,n∈N (63)∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmk x
mn
ak ≤ Γiyi i∈H,n∈N (64)

xmnak ≥ 0 k ∈K,m∈M,a∈Ak, n∈N
(65)

yi ∈ {0,1} i∈H. (66)

Hereafter, we use the above approximated model (61)-(66) as the mathematical model for the

profit maximizing capacitated hub location problem with stochastic demand.

The optimal solution and the optimal value of the SAA problem (61)-(66) converge with prob-

ability one to their true counterpart (8)-(13) as the sample size increases (Kleywegt et al. 2002).

Assuming that the SAA problem is solved within an optimality gap of δ > 0, and by letting ε > δ

and α∈ (0,1), then a sample size of

|N | ≥ 3σ2
max

(ε− δ)2
log(
|Y |
α

) (67)

guarantees that the SAA solution is an ε-optimal solution to the true problem with a probability

of at least 1−α, where σ2
max is the maximal variance of certain function differences (the readers

may refer to Kleywegt et al. 2002 for details).

To choose N in practice, one should take into account the trade-off between the quality of the

solution obtained from the SAA problem and the computational time required to solve it. Hence,

it can be more efficient to solve the SAA problem (61)-(66) with independent samples repeatedly

rather than increasing the sample size N . We now describe our procedure:

1. Generate M independent samples each of size N ; i.e., ξ1
j , . . . , ξ

|N |
j , for j ∈M and solve the

corresponding SAA problem (61)-(66) for each sample Nj to optimality employing the BD algo-

rithm detailed in Section 4. Let VNj and ŷNj , j ∈M, be the corresponding optimal objective value

and an optimal solution, respectively.

2. Calculate the average of all optimal solution values from the SAA problems and their variance:

V̄NM = 1
|M|

∑
j∈M
VNj

σ2
V̄NM

= 1
(|M|−1)|M|

∑
j∈M

(VNj − V̄NM)2

The expected value of V̄NM provides an upper statistical bound for the optimal value of the

original problem, and σ2
V̄NM

is an estimate of the variance of this estimator.

3. Pick a feasible solution ŷ ∈ Y for problem (8)-(13), for example, use one of the previously

computed solutions ŷNj . Estimate the objective function value of the original problem by using

this solution as follows:
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VN ′(ŷ) = 1
|N ′|[ ∑

k∈K

∑
a∈Ak

∑
m∈M

(rmk − Ĉak)wmnk xmnak ]− ∑
i∈H

fiŷi

where ξ1
j , . . . , ξ

|N ′| is a sample of size N ′ generated independently of the samples used in the SAA

problems. Note that since the first-stage variables are fixed, one can take much larger number of

scenarios for |N ′| than the sample size |N | used to solve the SAA problems. The estimator VN ′(ŷ)

serves as a lower bound on the optimal objective function value. We can estimate the variance of

VN ′(ŷ) as follows:

σ2
N ′(ŷ) = 1

(|N ′|−1)|N ′|

∑
n∈N ′

([
∑
k∈K

∑
a∈Ak

∑
m∈M

(rmk − Ĉak)wmnk xmnak ]−
∑
i∈H

fiŷi−VN ′(ŷ))
2

4. Calculate the estimators for the optimality gap and its variance. Employing the estimators

computed in steps 2 and 3, we get:

gapN ,M,N ′(ŷ) = V̄NM−VN ′(ŷ)

σ2
gap = σ2

V̄NM
+σ2

N ′(ŷ)

We can then use these estimators to construct a confidence interval for the optimality gap.

5.2. Benders Decomposition for the SAA Problem

In this section, we present a BD algorithm coupled with SAA to solve the profit maximizing

capacitated hub location problem with stochastic demand. By approximating the second-stage

expectation via the sample average function as described in the previous section, the stochastic

problem can be formulated as (61)-(66).

This problem can be solved using an L-shaped method (Van Slyke and Wets 1969). We apply the

same procedure described in Section 4.1 and assume that the hub location decisions are handled

in the master problem, while the rest is left to the subproblem. For a given sample N and fixed

value of the integer variables yi = yei , the primal subproblem (PS(N )) reads as

(PS(N )) Maximize
1

|N |
∑
n∈N

∑
m∈M

∑
k∈K

∑
a∈Ak

(rmk − Ĉak)wmnk xmnak (68)

s.t.
∑
a∈Ak

xmnak ≤ 1 k ∈K,m∈M,n∈N (69)∑
a∈Ak:i∈a

xmnak ≤ yei i∈H,k ∈K,m∈M,n∈N (70)∑
m∈M

∑
k∈K

∑
a∈Ak:i∈a

wmnk xmnak ≤ Γiy
e
i i∈H,n∈N (71)

xmnak ≥ 0 k ∈K,m∈M,a∈Ak, n∈N .
(72)

Observe that PS(N ) can be decomposed into |N | independent subproblems of the form PS (14)-

(18) for each n∈N . Consequently, the dual subproblem associated with each n can be formulated

as DS (19)-(22) and solved using the techniques proposed in Section 4.3. In the following, we denote
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the DS under scenario n∈N by DS(N , n), in which wmk is replaced with wmnk , for each k ∈K and

m∈M .

Let P̂ n
N for n∈N denote the set of extreme points of the polyhedron defined by feasible region

of DS(N , n). The master problem can then be stated as

(MP(N )) Maximize
1

|N |
∑
n∈N

ηn−
∑
i∈H

fiyi (73)

s.t. ηn ≤
∑
k∈K

∑
m∈M

αmnk +
∑
i∈H

yi(Γib
n
i +

∑
k∈K

∑
m∈M

umnik ) n∈N , (αn, un, bn)∈ P̂ n
N (74)

yi ∈ {0,1} i∈H (75)

As described in Section 4.1, this problem also contains an exponential number of constraints, which

can be tackled by employing a cutting plane method, where a sequence of relaxed master problems

and dual subproblems are solved, until the optimal solution is found.

5.3. Acceleration Techniques for the SAA Problem

The variable fixing techniques presented in Section 4.2 can be applied to each sample of the

stochastic model. We further enhance the convergence of our SAA algorithm as detailed below.

Because of the repetitive structure of the SAA algorithm, we must solve |M| replications of

problem (61)-(66). Consequently, upon solving MP(N̂ ) for a specific sample N̂ , we obtain dual

solutions (α̂n̂, ûn̂, b̂n̂) ∈ P̂ n̂
N̂ for each n̂ ∈ N̂ . Now, assume that we want to solve MP(N ) for a

different sample N . Solving MP(N ) with initially empty P̂ n
N sets would disregard the fact that

the optimal solution of MP(N̂ ) is potentially a near-optimal solution to MP(N ). We can exploit

this property and retrieve feasible solutions (αn, un, bn)∈ P̂ n
N for scenario n of sample N from the

solutions contained in P̂ n̂
N̂ for n̂∈ N̂ .

Given a feasible solution for DS(N̂ , n̂), the following proposition provides a feasible solution for

DS(N , n).

Proposition 2. Let (α̂n̂, ûn̂, b̂n̂) ∈ P̂ n̂
N̂ be a feasible solution for DS(N̂ , n̂), and ŵmn̂k be the

demand for commodity k ∈K of class m ∈M under scenario n̂ ∈ N̂ . (αn, un, bn) defined by (76)-

(78) is feasible for DS(N , n):

bni = b̂n̂i i∈H (76)

αmnk =
wmnk
ŵmn̂k

α̂mn̂k k ∈K,m∈M (77)

umnik =
wmnk
ŵmn̂k

ûmn̂ik k ∈K,m∈M,i∈H (78)

Proof. From (77) and (78), we obtain α̂mn̂k =
ŵmn̂
k

wmn
k
αmnk and ûmn̂ik =

ŵmn̂
k

wmn
k
umnik , respectively. Feasi-

bility of (αn, un, bn) for DS(N , n) can easily be verified by replacing b̂n̂i , α̂mn̂k , and ûmn̂ik respectively

with bni ,
ŵmn̂
k

wmn
k
αmnk , and

ŵmn̂
k

wmn
k
umnik , in constraints (20)-(22). �
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Corollary 3. The solution obtained by (76)-(78) provides a valid cut for MP(N ).

Note that for a given scenario n∈N , each scenario n̂∈ N̂ can provide a valid cut for MP(N ). To

avoid adding too many cuts, we select and add the best potential cut, which belongs to scenario

n̂∗ ∈ N̂ with the least demand deviation from the demand under scenario n∈N , i.e.

n̂∗ = arg min
n̂∈N̂

 ∑
(k,m)∈K×M

|ŵmn̂k −wmnk |

 . (79)

It should, however, be noted that when generating valid cuts from sample N̂ for sample N , both

instances should have the same set of hubs. In other words, if in the process of solving MP(N̂ ), we

eliminate a number of hubs via variable fixing, we will not calculate the dual variables associated

with the eliminated hubs, hence the incomplete solution obtained by (76)-(78) may not provide a

valid cut for MP(N ). To tackle this problem, we sacrifice the first sample of the SAA algorithm

without using any variable fixing to ensure that the resulting cuts can be used for the subsequent

samples of SAA. Once these solutions are obtained, we add the respective cuts to the master

problem of the subsequent samples and continue with performing variable fixing as introduced in

Section 4.2.

6. Computational Experiments

We use the well-known Australia Post (AP) dataset to test our models and algorithms. AP dataset

contains postal service data of 200 cities in Australia and it is the most commonly used dataset

in hub location literature (Ernst and Krishnamoorthy 1996). The distances (dij) and the postal

flow between pairs of cities (wk) are provided in OR Library, and a computer code is presented to

generate smaller subsets of the data by grouping cities (Beasley 1990). We assume that the demand

of commodities are segmented into 3 classes; i.e., |M |= 3, where w1
k = 0.2wk, w

2
k = 0.3wk, and w3

k =

0.5wk. Motivated from the postal delivery applications, where the price of sending a parcel depends

on its size and the distance between the origin-destination, and also considering revenue elasticity

of demand, the revenue per unit demand is taken to be dependent on the distance, class, and the

amount of commodity to be shipped. Hence, for the revenue from commodity k ∈K of class m∈M ,

we generate random values as rmk = γm ck
wm
k

, where γ1 ∼U [50,60], γ2 ∼U [40,50], and γ3 ∼U [30,40].

Collection, transfer, and distribution costs per unit are taken as χ= 2, α= 0.75, and δ= 3 as defined

in the AP dataset (Beasley 1990). We test instances with |H| ∈ {10,20,25,40,50,75,100,200}.

There are two different sets for installation costs and capacities of hubs available on the AP

dataset referred to as loose and tight. The opening cost of hubs in the instances with tight (T)

installation costs is larger than those with loose (L) installation costs. In contrast, instances with

tight (T) capacities have smaller available capacities compared to the instances with loose (L)
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capacities. Hence, there are four instances for a given node size corresponding to different combi-

nations of installation costs and capacities. We denote each instance as nfΓ where n is the instance

size, f is the installation costs, and Γ is the capacity.

Computational experiments were carried out on a workstation that contains: Intel Core i7-3930K

2.61GHz CPU, and 39 GB of RAM. The algorithms were coded in C# and the time limit was set

to 15 hours. The master problems of all versions of the Benders decomposition algorithms as well

as the master problems of the inner cutting-plane algorithm of Phase I subproblems were solved

using the callable library of CPLEX 12.7. We used pQ = 75% and nQ = 6 in all our tests, which are

the best values for the corresponding parameters based on the results provided in Online Appendix

EC.3.

The organization of this section is as follows: In the first part of the computational experiments,

we compare our results obtained from different versions of the Benders algorithm for the determin-

istic problem to evaluate the effectiveness of the proposed algorithmic features. The second part

of the experiments is devoted to the algorithms and the solution methodology proposed for the

stochastic model.

6.1. Analysis of Algorithmic Performance

In this section, we first evaluate the performance and effectiveness of the algorithms proposed

in Section 4 for the deterministic model. We implemented two different versions of Algorithm 1

referred to as BD1 and BD2, corresponding to different solution strategies of Phase II. In BD1,

Phase II is solved as LP-relaxations of maximum weighted matching problem, whereas in BD2,

Phase II is solved as LP-relaxations of knapsack problem. For comparison, we also implemented

Pareto-optimal cuts (PO), the best known cuts from the literature, to solve our subproblems. We

use the two reduction tests as described in Section 4.2 to eliminate candidate hubs within all of

the three algorithms: PO, BD1, and BD2.

The detailed results of the comparison between these Benders algorithms using the AP instances

are provided in Table 1. The first column represents the name and size of the instance. The

next four columns labeled “Total time (sec)” present the computational time of instances (in

seconds) obtained from solving the problems to optimality by using CPLEX, PO, BD1, and BD2,

respectively. The next three columns labeled “Iterations” provide the required number of iterations

for the convergence of the algorithms PO, BD1, and BD2, respectively. The columns labeled “%

hubs elim.” present the percentage of the total candidate hubs eliminated by algorithms PO, BD1,

and BD2, respectively. The last two columns labeled “Optimal solution” indicate the maximum

net profit and the locations of hub nodes, respectively, for the optimal solution found for each of

the considered instances. Whenever an algorithm is not able to solve an instance within the time
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Table 1 Comparison of Benders reformulations and CPLEX with the AP dataset for the deterministic model.

Total time (sec) Iterations % hubs elim. Optimal solution
|H| CPLEX PO BD1 BD2 PO BD1 BD2 PO BD1 BD2 Profit Open hubs
10LL 1.02 1.37 0.13 0.01 7 4 4 50.0 60.0 60.0 20,417 5,6,9,10
10LT 0.89 0.94 0.03 0.01 5 4 4 60.0 80.0 80.0 3,336 5
10TL 1.00 0.81 0.03 0.07 9 6 6 50.0 60.0 60.0 13,488 5,9
10TT 1.16 0.26 0.03 0.03 4 3 3 80.0 90.0 90.0 2,682 5
20LL 9.64 35.64 1.70 2.11 51 11 11 70.0 65.0 80.0 100,443 7,9,10,19
20LT 11.38 45.26 0.97 1.34 60 7 7 65.0 65.0 65.0 57,139 5,10,12,14,19
20TL 10.34 21.52 0.84 0.99 37 9 9 75.0 80.0 85.0 49,559 5,7,10
20TT 6.17 4.51 0.22 0.29 11 3 3 70.0 95.0 95.0 10,135 10
25LL 15.42 68.03 7.91 6.31 48 18 18 76.0 72.0 72.0 125,390 7,14,17,23
25LT 12.82 157.51 3.27 2.35 93 7 7 68.0 72.0 72.0 88,022 6,9,10,12,14,25
25TL 14.21 53.80 2.12 2.09 40 9 9 76.0 72.0 72.0 76,933 6,9,14,23
25TT 12.30 100.76 2.02 1.92 71 10 10 80.0 76.0 76.0 35,121 6,10,14,25
40LL 79.23 261.31 52.57 42.47 48 64 58 70.0 82.5 85.0 76,995 12,22,26,29
40LT 83.18 623.02 39.58 28.93 66 42 38 82.5 82.5 82.5 66,860 12,14,26,29,30,38
40TL 41.25 71.96 9.53 5.26 13 14 11 85.0 82.5 82.5 62,960 14,19,29
40TT 39.21 209.68 6.80 5.49 24 11 11 87.5 82.5 90.0 49,938 14,19,25,38
50LL 142.18 466.78 64.34 39.92 49 42 38 76.0 88.0 86.0 73,054 15,28,33,35
50LT 138.98 666.23 33.69 26.67 24 19 17 76.0 86.0 82.0 68,904 6,26,32,46
50TL 115.73 188.11 11.01 8.06 14 11 13 88.0 88.0 88.0 54,009 3,26,45
50TT 105.01 303.43 7.42 5.23 20 7 7 88.0 88.0 92.0 45,506 17,26,48
75LL Mem 8,979.00 525.81 387.66 111 105 88 85.3 89.3 86.7 142,551 14,23,35,37,56
75LT Mem 8,327.27 137.00 87.58 73 23 15 90.7 92.0 90.7 110,194 14,25,32,35,38,59
75TL Mem 3,918.76 69.85 71.12 26 13 13 92.0 92.0 96.0 89,562 14,35,37
75TT Mem 4,986.99 42.92 33.84 36 12 11 93.3 90.7 90.7 81,697 25,32,38,59
100LL Mem 32,872.67 904.00 665.94 58 53 54 94.0 94.0 94.0 1,777,224 29,55,64,73
100LT Mem Time 1,078.75 684.20 - 63 56 - 92.0 92.0 1,775,001 29,44,54,68,96
100TL Mem 4,236.89 87.64 76.50 13 12 13 94.0 93.0 95.0 1,724,826 5,52,95
100TT Mem 6,743.21 156.57 159.85 13 13 13 95.0 93.0 93.0 1,712,163 5,34,44,52,95
200LL Mem Time 11,435.00 6,430.31 - 40 39 - 96.0 96.0 1,102,073 43,95,159
200LT Mem Time 12,404.83 7,120.03 - 53 46 - 95.0 95.5 1,087,014 41,96,168,171
200TL Mem Time 953.94 879.52 - 12 12 - 97.5 97.5 1,068,431 54,95,186
200TT Mem Time 783.13 673.33 - 6 6 - 97.5 97.5 1,055,760 52,54,115,168,186

limit (15 hours of CPU time) to optimality, we write “Time” in the corresponding entry of the

table. If an algorithm runs out of memory, we write “Mem”.

Our goal of presenting the results of PO in Table 1 is to compare the strength of the cuts

generated by BD1 and BD2 with this method. We use the decomposition scheme proposed by

Contreras et al. (2012) for solving the Pareto-optimal subproblem. In this method, at iteration e

of Algorithm 1, by fixing the value of (bi)i∈He
1

at the optimal values obtained from the original

subproblem, and by setting (bi)i∈He
0

to zero, they decompose the PO subproblem into |K| (here

|K||M |) independent problems. These problems can be solved using an LP solver, however, as

Contreras et al. (2011a) argue, for computational tractability, they sacrifice the strength of the cuts

by solving the resulting problems via an approximation technique. Since our goal of implementing

PO method is to compare the strength of the resulting cuts with our proposed methods, after

decomposing the PO subproblem into |K||M | independent problems, rather than employing the

approximation technique, we solve the dual of the resulting problems using the CPLEX LP solver.

Note that the number of iterations cannot be reduced by the approximation algorithm, hence the
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number of iterations of PO as presented in Table 1 provides a lower bound on the number of

iterations that we would obtain using the approximation technique proposed by Contreras et al.

(2011a).

Table 1 shows that both algorithms BD1 and BD2 outperform CPLEX in terms of computational

time and the number of instances solved to optimality. Additionally, the results of Table 1 clearly

indicate that our algorithms (BD1 and BD2) outperform PO, with the only exception of instance

40LL.

Each of the Benders algorithms proposed in this paper is able to solve all considered instances to

optimality within an hour of CPU time, with the exception of instances 200LL and 200LT, which

take approximately 3.3 hours for BD1 and 1.9 hours for BD2, respectively. The columns % hubs

elim. show that a large percentage of candidate hubs can be eliminated by variable fixing. The

columns Total time (sec) and Iterations indicate that the convergence of the Benders algorithm

is improved by solving Phase II as LP-relaxations of knapsack problem, especially for the larger

size instances. This implies that BD2 outperforms BD1; hence, we use BD2 for the rest of the

computational experiments.

Table 1 also shows the locations of installed hubs in optimal solutions, where the optimal number

of hubs to locate varies between one and six. It seems that, in these particular instances, the

number of installed hubs does not depend on the size of the instance; it is rather more dependent

on hub installation costs and capacities. For example, in the instances with tight installation costs

and loose capacities, the problem tends to result in locating fewer hubs.

Table 2 Percentage of total demand satisfied for each demand class.

Instance
type

Demand class
Average

1 2 3
LL 98.32% 94.58% 71.74% 88.21%
LT 98.32% 87.95% 55.83% 80.70%
TL 98.32% 93.45% 59.99% 83.92%
TT 93.00% 75.45% 39.64% 69.37%

In Table 2, we observe the percentages of satisfied demand from different market segments. The

averages for each demand class are calculated over instances from Table 1 with the same type of

installation costs and capacities. The last column provides the average percentages of total satisfied

demand. Among the three demand classes, the first class is the one with the highest percentages

of satisfied demand, as serving this class of demand yields the highest revenue. On the other hand,

for the instances with the same configuration of hub installation costs and capacities, the third

demand class, having the least revenues, has the least percentages of satisfied demand as expected.
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Table 3 Computational results for the deterministic model using BD2 with Sets I, II, and III instances.

Instance Total time (sec) Iterations % hubs elim. Profit #open hubs
Set I
50L 22.30 31 88.0 21,765 6
50T 15.49 19 90.0 16,943 4
100L 45.43 36 94.0 30,273 4
100T 50.18 23 95.0 30,215 4
150L 648.31 65 93.3 77,667 7
150T 523.05 25 94.7 74,952 6
200L 1,734.22 30 96.0 155,097 8
200T 3,160.84 33 95.5 144,874 7
250L 19,441.16 69 96.0 325,657 9
250T 4,861.76 37 97.2 181,027 5
300L 20,132.06 75 96.0 388,322 11
300T 14,885.61 52 97.7 188,944 6
Set II
50L 64.29 35 88.0 85,327 6
50T 50.78 27 86.0 60,174 5
100L 224.41 48 92.0 201,451 7
100T 448.40 58 90.0 199,819 8
150L 3,785.39 121 91.3 458,915 12
150T 2,904.36 38 92.7 438,771 9
200L 1,442.94 25 95.0 236,247 8
200T 3,556.37 21 94.5 216,241 9
250L 10,414.33 62 95.2 437,819 11
250T 5,589.51 47 96.0 354,688 10
300L 17,367.18 68 96.0 1,532,224 10
300T 16,399.61 49 97.0 986,373 7
Set III
50L 32.50 37 88.0 19,037 5
50T 19.93 32 90.0 16,353 5
100L 736.18 21 88.0 511,879 9
100T 530.51 16 91.0 39,672 7
150L 5,945.02 28 91.3 129,155 12
150T 5,327.03 27 92.7 964,137 9
200L 7,920.45 49 90.0 144,503 15
200T 6,738.52 45 93.5 103,987 11
250L 12,166.41 41 92.8 992,585 16
250T 11,057.31 32 95.2 710,562 11
300L 22,565.61 39 93.3 1,004,591 17
300T 18,349.47 34 95.0 903,773 14

Moreover, instances with loose capacities (LL and TL) result in higher percentages on average

compared to the instances with tight capacities (LT and TT).

To better understand the performance of the proposed algorithms from a computational point

of view, we also present computational results with larger-size instances introduced by Contreras

et al. (2011a), and later extended by Contreras et al. (2012). There are three different sets of

instances, referred as Set I, Set II, and Set III, which are constructed by considering three different

levels of magnitude for the amount of flow originating at a given node: low-level (LL) nodes,

medium-level (ML) nodes, and high-level (HL) nodes. The total outgoing flow of LL, ML and HL

nodes are obtained from the interval [1,10], [10,100], and [100,1000], respectively. Capacities of
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hubs are generated by using the formula provided in Ebery et al. (2000) in which parameter ρ is

taken to be 0.5 and 1.5 for the loose (L) and tight (T) types of capacities, respectively. The other

sets of parameters are as described in the beginning of Section 6. For Sets I, II, and III, we test

instances with |H| ∈ {50,100,150,200,250,300}. The detailed results are provided in Table 3 where

the column titles have the same meanings as in the previous table.

All of the instances presented in Table 3 from Sets I, II, and III are solved to optimality. The

most time-consuming instance in Sets I, II, and III took around 6, 5, and 6 hours, respectively, to

solve to optimality. The averages of the computational times reported in Table 3 for the Sets I, II,

and III are 1.5, 1.4, and 2.1 hours, respectively.

Lastly, we present additional runs from Sets I and II with |H| ∈ {350,400,500} to analyze the

limit of our algorithm. We have extended the CPU time limit to 24 hours for these instances. The

results are presented in Table 4. Our algorithm is able to solve all of the instances to optimality

within the time limit, except for the instance 500L in Set II. That particular instance resulted in

an optimality gap of 2.52%. These results further confirm the efficiency and robustness of the BD2

algorithm when considering more challenging and larger-size instances.

Table 4 Computational results of Sets I and II instances with |H| =∈ {350,400,500}.

Instance Total time (sec) Iterations % hubs elim. Profit #open hubs
Set I
350L 28,118.49 19 96.9 188,759 11
350T 21,881.74 15 97.7 147,501 7
400L 43,942.63 16 97.0 248,458 12
400T 35,763.21 14 97.5 186,239 9
500L 83,149.54 15 95.4 1,137,769 23
500T 54,731.43 11 97.0 821,439 14
Set II
350L 31,025.56 31 95.7 682,514 15
350T 23,149.81 26 96.6 530,697 11
400L 40,209.23 29 95.3 852,627 19
400T 33,195.23 22 95.3 671,734 13
500L Time 17 71.8 965,113 25
500T 82,296.42 14 96.6 583,129 17

6.2. Computational Results for the Stochastic Model

In this section, we first focus on the practical convergence of the SAA scheme using the stochastic

model, we then test the performance of our methods on the instances involving up to 75 nodes.

All computational experiments with the stochastic model are performed using BD2 coupled with

SAA.
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6.2.1. Sample generation. We generate independent samples for demands of commodities

using a normal distribution parameterized as follows: Let w̄mk be the demand of commodity k of

class m in the deterministic case. Moreover, let w̄k =
∑

m∈M w̄mk be the total demand of commodity

k, and ρkm =
w̄m
k
w̄k

be the proportion of demand of segment m of commodity k. We assume that the

total demand of k (i.e. wk) is drawn from a normal distribution in which the mean demand is

set to w̄k and the standard deviation is equal to σk = νw̄k, where ν is the coefficient of variation.

Consequently, once the total demand of commodity k is realized, the correlated demand of class

m is computed as wmk = ρkmwk.

6.2.2. Practical convergence of the SAA algorithm. The aim of this section is to analyze

the practical convergence of the SAA scheme in order to choose a sample size |N | and the number

of replications |M| that provide the best trade-off between solution quality and computational

time. To this end, we perform computational tests with sample sizes |N | ∈ {50,100,500,1000}

and a number of replications |M| ∈ {10,20,40,60,80}. We select two 10-node instances of the AP

dataset and generate independent samples as explained above, with ν set to 0.5. The sample size

of |N ′|= 10,000 is used to evaluate the SAA gap.

Figure 1 Optimality gap, standard deviation for the optimality gap, and the total CPU time required for the

SAA algorithm for different sample sizes |N | and |M| with AP10LL.
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Figure 2 Optimality gap, standard deviation for the optimality gap, and the total CPU time required for the

SAA algorithm for different sample sizes |N | and |M| with AP10TL.

Figures 1 and 2 plot the optimality gap, standard deviation for the optimality gap, and the

computational time required for the SAA algorithm for different sample sizes |N | and |M|, with

AP10LL and AP10TL, respectively. Figures 1(a) and 2(a) clearly indicate that larger sample size

result in smaller optimality gap on average. It is also observed that as the sample sizes |N | and

|M| increase, the corresponding standard deviation for the optimality gap decreases (Figures 1b

and 2b), whereas the corresponding computation time increases significantly (Figures 1c and 2c),

for both AP10LL and AP10TL instances. In general, the largest sample size |N |= 1000 provides

the best average SAA gap with the least variation, and the sample size |N | = 50 is the best in

terms of the trade-off between solution quality and computational time. For this reason, we use

sample sizes |N |= 50 and |M|= 60 during the rest of our computational experiments.

6.2.3. Solving larger-size instances. We first evaluate the performance of the acceleration

techniques proposed for SAA. The results are provided in Table EC.2 in Online Appendix EC.3.

In our computational experiments, the algorithm runs up to five times faster, and more than

two times faster on the average, with the implementation of the acceleration techniques. Hence,

all computational experiments with the stochastic model are carried out using the acceleration

techniques.

We now analyze and evaluate the performance of the SAA algorithm on larger-size instances

with up to 75 nodes from the AP dataset. For each instance, we consider two values 0.5 and 1 as
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Table 5 Computational results for the stochastic model with 48 instances of the AP dataset.

Instance Optimal solution % Gap CI for SAA % gap at
|H| ν Profit Open hubs Time (sec) SAA 95% 99%
10LL 0.5 21,380 5,6,9,10 50.82 0.08 (-6.16, 11.73) (-8.74, 14.31)

1 22,529 5,6,9,10 41.76 -0.04 (-4.91, 13.47) (-7.47, 16.03)
10LT 0.5 3,344 5 15.39 0.06 (-9.96, 13.67) (-13.45, 17.16)

1 3,358 5,6 18.33 0.18 (-7.24, 15.50) (-9.29, 17.55)
10TL 0.5 13,890 4,5,9 33.89 0.14 (-14.02, 7.87) (-18.39, 12.24)

1 14,586 4,5,9 53.48 -0.04 (-11.05, 8.37) (-12.19, 9.51)
10TT 0.5 2,690 5 14.97 0.03 (-9.96, 13.67) (-13.56, 17.27)

1 2,683 5 13.11 0.14 (-6.42, 16.57) (-10.60, 20.75)
20LL 0.5 105,282 7,9,10,19 1,553.42 0.04 (-15.15, 14.31) (-16.73, 15.89)

1 113,599 7,9,10,14,19 2,713.17 0.03 (-9.92, 15.72) (-14.67, 20.47)
20LT 0.5 59,727 5,9,10,12,14,19 1,442.36 0.05 (-4.45, 8.72) (-9.21, 13.48)

1 63,731 5,9,10,12,14,19 1,907.56 0.04 (-3.72, 10.74) (-7.05, 14.07)
20TL 0.5 53,035 5,7,10 1,089.42 0.08 (-11.67, 10.97) (-16.07, 15.37)

1 57,511 5,7,10 1,173.79 0.06 (-8.60, 15.09) (-11.86, 18.35)
20TT 0.5 13,672 10 101.11 0.02 (-10.62, 10.07) (-11.90, 11.35)

1 13,984 10 76.78 -0.03 (-8.08, 12.76) (-10.94, 15.62)
25LL 0.5 133,240 7,14,17,23 1,418.24 -0.03 (-10.32, 13.46) (-13.03, 16.17)

1 140,164 7,14,17,23 2,014.32 -0.02 (-6.47, 14.83) (-11.33, 19.69)
25LT 0.5 92,042 6,10,12,14,25 3,218.51 -0.01 (-6.23, 10.47) (-11.13, 15.37)

1 98,570 9,10,12,14,19,25 3,832.22 0.01 (-9.87, 11.51) (-14.58, 16.22)
25TL 0.5 81,755 6,9,14,23 1,127.83 -0.02 (-8.48, 10.26) (-9.95, 11.73)

1 87,625 6,9,14,23 1,613.32 -0.02 (-5.98, 12.38) (-10.64, 17.04)
25TT 0.5 36,956 6,10,14,25 1,420.91 0.00 (-9.16, 8.70) (-11.60, 11.14)

1 39,992 6,9,10,14,25 1,711.33 -0.01 (-7.18, 10.91) (-8.92, 12.65)
40LL 0.5 80,696 12,22,26,29 15,219.35 -0.03 (-18.92, 17.71) (-22.80, 21.59)

1 86,456 9,22,26,29,38 17,612.49 0.02 (-15.39, 19.48) (-16.88, 20.97)
40LT 0.5 71,192 12,14,26,29,30,38 20,369.86 -0.04 (-19.32, 22.57) (-21.37, 24.62)

1 76,989 5,14,19,26,29,30,38 22,928.64 0.04 (-16.86, 23.36) (-18.55, 25.05)
40TL 0.5 65,621 14,19,29 7,549.28 -0.03 (-14.74, 19.37) (-18.99, 23.62)

1 71,406 14,19,29 8,084.24 0.05 (-12.37, 21.22) (-14.30, 23.15)
40TT 0.5 52,843 14,19,25,38 9,672.36 -0.04 (-17.53, 19.75) (-19.06, 21.28)

1 57,349 5,19,25,30 10,836.71 0.05 (-15.95, 23.42) (-20.59, 28.06)
50LL 0.5 77,216 15,28,33,35 13,565.38 0.03 (-19.46, 25.37) (-27.00, 32.91)

1 83,180 5,15,28,33,35 15,738.46 -0.03 (-17.11, 26.23) (-25.07, 34.19)
50LT 0.5 73,467 6,26,32,46 11,874.35 0.05 (-15.83, 21.64) (-22.38, 28.19)

1 79,923 6,19,26,30,46 14,969.23 -0.06 (-13.26, 23.83) (-16.90, 27.47)
50TL 0.5 58,384 3,26,45 5,595.46 0.05 (-16.30, 16.99) (-20.26, 20.95)

1 60,756 3,14,29,45 7,304.05 -0.09 (-12.61, 18.28) (-17.92, 23.59)
50TT 0.5 48,376 6,26,48 6,393.29 0.12 (-14.67, 16.36) (-20.39, 22.08)

1 53,261 6,26,48 7,141.92 -0.07 (-12.71, 18.49) (-17.16, 22.94)
75LL 0.5 145,792 14,23,35,37,56 43,955.24 0.10 (-17.54, 12.63) (-23.37, 18.46)

1 198,962 5,14,19,26,29,30,38 46,085.51 0.04 (-12.46, 18.49) (-16.55, 22.58)
75LT 0.5 113,510 14,25,32,35,38,59 36,666.45 -0.08 (-14.29, 18.81) (-18.50, 23.02)

1 122,007 14,26,32,35,46,59 39,157.63 0.04 (-11.39, 19.41) (-16.60, 24.62)
75TL 0.5 92,609 14,35,37 24,531.79 0.16 (-21.74, 19.83) (-29.04, 27.13)

1 96,829 14,35,37 25,742.90 0.07 (-18.25, 22.49) (-24.14, 28.38)
75TT 0.5 81,697 25,32,38,59 32,559.79 0.14 (-23.67, 16.74) (-31.43, 24.50)

1 84,157 25,26,32,38,59 34,637.15 -0.10 (-17.34, 18.51) (-22.33, 23.50)

the coefficient of variation to represent the amount of uncertainty in the stochastic demand. The

computational results are summarized in Table 5. The first two columns provide the number of

nodes and the coefficient of variation. The next three columns labeled “Optimal solution” present
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the net profit (V̄NM), the best hub locations, and the run time of instances (in seconds) obtained

from solving the SAA algorithm, respectively. The next column labeled “% Gap” provides the

percent optimality gap relative to the best solution obtained by the SAA algorithm. The last two

columns labeled “CI for SAA % gap at” give the 95% and 99% confidence interval for the optimality

gap of the best solution obtained by the SAA algorithm, respectively.

The results provided in Table 5 indicate that the estimated optimality gaps obtained by the

SAA algorithm are always below 0.2%, and that the corresponding confidence intervals for the

optimality gaps are quite narrow for both 95% and 99%. These confirm the efficiency of the SAA

algorithm proposed for the problem with stochastic demand, and also imply that the solutions

produced by our algorithm are good enough to be used in practical applications.

We next observe the effects of variability in uncertain demands on the solutions reported in Table

5. When the ν value increases, that is, when the variability in the uncertain demand increases, the

net profit values and the computation time required for the SAA algorithm also increase. Note that

the best found hub locations do not change significantly under these variations. We can identify a

few instances in which hub locations change by demand variation, and in most of the instances, the

locations of the hubs obtained with the deterministic and stochastic models are identical (Tables 1

and 5). It seems that, in these particular instances, the long-term location decisions are dependent

more on the configuration of hub installation costs and capacities than the demand.

7. Conclusion

In this paper, we defined the profit maximizing hub location problem with capacity allocation

by incorporating revenue management decisions, and embedding more realistic and challenging

capacity constraints for hubs. We presented a strong path-based deterministic mixed integer pro-

gramming formulation of the problem. We further addressed demand uncertainty and developed

a two-stage stochastic program. We described two Benders-based algorithms to solve large-scale

instances of the problem by developing a new decomposition methodology for solving the Benders

subproblems. We proved that the subproblems can be viewed as a set of LP-relaxations of max-

imum weighted matching problems (BD1), or as a series of LP-relaxations of knapsack problems

(BD2). We further enhanced the algorithms by incorporating improved variable fixing techniques.

For the stochastic problem, we presented a solution method that integrates the proposed Benders

decomposition algorithms with the SAA scheme to obtain solutions to problems with a large number

of scenarios. We also developed novel acceleration techniques to improve the convergence of the

algorithms employed for the stochastic problem, which resulted in up to five times improvement

in CPU times.

We performed extensive computational experiments on the well-known AP dataset, and also on

larger-size instances from the literature, to analyze the performance of the proposed algorithms. In
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view of our computational results, both algorithms outperform the best known cuts (Pareto-optimal

cuts), in terms of computational efficiency and also quality.

The results further show that BD2 outperforms BD1 particularly on larger instances. BD2 suc-

ceeded to optimally solve instances with up to 500 nodes and 750,000 commodities of different

demand classes. Integrating BD2 with the SAA scheme, instances involving up to 75 nodes and

16,875 commodities were solved within an estimated optimality gap of lower than 0.2%. These

results clearly confirm the efficiency and robustness of our algorithms.

The results obtained from the stochastic model provided several observations, which can be used

as a guideline in the design of optimal hub networks to maximize profit. For example, the amount

of net profit is very sensitive to the variance of the stochastic demand. However, it was observed

that the long-term location decisions do not change significantly under these variations.

We leave several extensions of our problem open for future research. An interesting avenue of

research is addressing uncertainty in costs and revenues. Another future research direction would

be to consider network congestion, for example, with capacitated arcs.

Endnotes

1. There exists a Lagrangian relaxation of the subproblem which converts it into a transportation

problem. However, this transportation problem would be different than that of Contreras et al.

(2012). Moreover, due to difficulties with convergence, solving this problem using a sub-gradient

method would computationally be challenging.
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de Sá EM, Morabito R, de Camargo RS (2018) Benders decomposition applied to a robust multiple allocation

incomplete hub location problem. Computers & Operations Research 89:31–50.

Ebery J, Krishnamoorthy M, Ernst A, Boland N (2000) The capacitated multiple allocation hub location

problem: Formulations and algorithms. European Journal of Operational Research 120(3):614–631.

Ernst AT, Krishnamoorthy M (1996) Efficient algorithms for the uncapacitated single allocation p-hub

median problem. Location Science 4(3):139–154.

Galil Z (1986) Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys

(CSUR) 18(1):23–38.

Gelareh S, Nickel S (2011) Hub location problems in transportation networks. Transportation Research Part

E: Logistics and Transportation Review 47(6):1092–1111.

Kleywegt AJ, Shapiro A, Homem-de Mello T (2002) The sample average approximation method for stochastic

discrete optimization. SIAM Journal on Optimization 12(2):479–502.

Lin CC, Lee SC (2018) Hub network design problem with profit optimization for time-definite LTL freight

transportation. Transportation Research Part E: Logistics and Transportation Review 114:104–120.

Magnanti TL, Wong RT (1981) Accelerating Benders decomposition: Algorithmic enhancement and model

selection criteria. Operations Research 29(3):464–484.

Mak WK, Morton DP, Wood RK (1999) Monte Carlo bounding techniques for determining solution quality

in stochastic programs. Operations Research Letters 24(1-2):47–56.

Marianov V, Serra D (2003) Location models for airline hubs behaving as M/D/c queues. Computers &

Operations Research 30(7):983–1003.
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Technical Extensions and Numerical Study Supplements

EC.1. Bipartite Transformation of the MWM Problem

Here, we show how LP-MWM(km) (51)-(53) can be transformed into an equivalent MWM problem

in a bipartite graph. Define bipartite graph GB
km = (V1, V2,B), where V1 = {v1

i }i∈He
0
, V2 = {v2

i }i∈He
0
,

and B = {(v1
i , v

2
j ) ∈ V1 × V2 : (i, j) ∈A0

ke}. Let µB be a maximum weighted matching in GB
km, and

let

µkmij =
1

2
(µB

(v1i ,v
2
j )

+µB
(v1j ,v

2
i )

) ∀(i, j)∈A0
ke. (EC.1)

Proposition EC.1. µkm = (µkmij )(i,j)∈A0
ke

defined in (EC.1) is optimal to LP-MWM(km) (51)-

(53).

Proof. µB being a matching in GB
km requires∑

j∈He
0 :(i,j)∈A0

ke

µB
(v1i ,v

2
j )
≤ 1 ∀v1

i ∈ V1 (or equivalently i∈He
0) (EC.2)

∑
j∈He

0 :(i,j)∈A0
ke

µB
(v1j ,v

2
i )
≤ 1 ∀v2

i ∈ V2 (or equivalently i∈He
0). (EC.3)

Summing (EC.2) and (EC.3) and dividing the resulting inequality by 2 yields∑
j∈He

0 :(i,j)∈A0
ke

1

2
(µB

(v1i ,v
2
j )

+µB
(v1j ,v

2
i )

) =
∑

j∈He
0 :(i,j)∈A0

ke

µkmij ≤ 1 ∀i∈He
0 , (EC.4)

which implies (52), hence µkm defined in (EC.1) is feasible for LP-MWM(km). Now we show

that µkm is also optimal for LP-MWM(km). By contradiction assume that µkm is not optimal for

LP-MWM(km), hence there exists a solution µ̂km with a strictly higher total weight. We show that

this contradicts with optimality of µB. Define µ̂B as

µ̂B
(v1i ,v

2
j )

= µ̂B
(v1j ,v

2
i )

= µ̂kmij ∀(i, j)∈A0
ke. (EC.5)

µ̂B clearly satisfies (EC.2) and (EC.3), hence is a feasible matching for the bipartite graph GB
km.

Moreover, note that∑
(i,j)∈A0

ke

(µ̂B
(v1i ,v

2
j )

+ µ̂B
(v1j ,v

2
i )

) = 2
∑

(i,j)∈A0
ke

µ̂kmij > 2
∑

(i,j)∈A0
ke

µkmij =
∑

(i,j)∈A0
ke

(µB
(v1i ,v

2
j )

+µB
(v1j ,v

2
i )

), (EC.6)

which implies that µ̂B is a better matching than µB, contradicting the optimality of µB. �

The optimal solution to MWC(km) (48)-(50) can be obtained in a similar manner. Let tB be a

minimum weight cover in GB
km, and let

tmik =
1

2
(tB
v1i

+ tB
v2i

) ∀i∈He
0 . (EC.7)
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Proposition EC.2. tmk = (tmik)i∈He
0

defined in (EC.7) is optimal to MWC(km) (48)-(50).

Proof. tB being a cover in GB
km implies that

tB
v1i

+ tB
v2j
≥ βkmij ∀(i, j)∈A0

ke (EC.8)

tB
v1j

+ tB
v2i
≥ βkmji ∀(j, i)∈A0

ke. (EC.9)

Since βkm is symmetric, summing (EC.8) and (EC.9) and dividing the resulting inequality by 2

implies (49); hence, tmk defined in (EC.7) is feasible for MWC(km). Now, by contradiction assume

that tmk is not optimal, hence there exists a solution t̂mk with a strictly lower cover weight. Define

t̂B as

t̂B
v1i

= t̂B
v2i

= t̂mik ∀i∈He
0 . (EC.10)

t̂B clearly satisfies (EC.8) and (EC.9), and has a lower cover weight than tB, contradicting the

optimality of tB. �

Propositions EC.1 and EC.2 indicate that it is enough to find a MWM in bipartite graph GB
km

to solve MWC(km) and LP-MWM(km).

EC.2. Hybrid MWM-Knapsack Method

We show how proper values of (bi)i∈He
0

can be found via a relaxation of DS-II (31)-(34). Observe

that by relaxing constraints (32), relaxed DS-II can be decomposed into |He
0 | independent smaller

subproblems for each i∈He
0 :

(Relaxed DS-II(i)) Minimize Γibi +
∑
k∈K

∑
m∈M

umik (EC.11)

umik +wmk bi ≥ ρkmii (k,m)∈K ×M (EC.12)

umik, bi ≥ 0 (k,m)∈K ×M (EC.13)

Similar to problem (54)-(56), this problem is the dual of the LP-relaxation of a knapsack problem

with knapsack capacity Γi, and items (k,m) ∈K ×M with weight wmk and profit ρkmii , and can

be solved in the same fashion. As explained in Section 4.3.3, bi is the profit-to-weight ratio of the

break item (k̄, m̄)

bi = ρk̄m̄ii /w
m̄
k̄ . (EC.14)

Note that even though problem (54)-(56) has a formulation similar to problem (EC.11)-(EC.13),

they are inherently different: problem (54)-(56) is a restriction of DS-II, whereas problem (EC.11)-

(EC.13) is a relaxation of DS-II, hence the solution obtained by (EC.11)-(EC.13) may not be
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feasible to DS-II. Therefore, once the value of (bi)i∈He
0

is calculated, to obtain a complete feasible

solution we calculate the value of u using the MWM algorithm.

It is worth mentioning that the major computational effort required for solving this problem is

due to calculating ρkmii values, while the time required for solving the knapsack problem itself is

almost negligible even for the largest instances. On the other hand, note that we need to calculate

ρkmii as part of preparing DS-II (31)-(34), no matter what the value of b is. This means using this

hybrid MWM-Knapsack method, we can find promising values of b for the MWM problems (hence

stronger cuts) without incurring additional computational cost.

EC.3. Supplementary Numerical Results

To determine the best values to use for the parameters pQ (proportion of hubs that are less likely

to be open in the optimal solution) and nQ (number of subsets into which Q is partitioned) in

our variable fixing tests, we selected medium- and large-size instances with 40-100 nodes from

the AP dataset and took runs under different pQ and nQ values. For each instance, we performed

computational tests with pQ ∈ {50%,75%,100%} and nQ ∈ {1,2, . . . ,10}, respectively. (The pQ =

100% and nQ = 1 combination corresponds to the tests introduced in Contreras et al. 2011a.) The

computational results are summarized in Table EC.1.

The first two columns of Table EC.1 report the instance size and the number of hub elimination

subsets (nQ) used, respectively. The columns labeled “Average time” and “Average % hubs elim.”

report the average computational times in seconds and the average percentage of the total candidate

hubs that were eliminated under the three different pQ values. The averages are calculated over

four same-size instances with different installation costs and capacities.

When the values presented in Table EC.1 are averaged, the combination pQ = 75% and nQ = 6

provides the best results in terms of average computational time and average percentage of hubs

eliminated in the optimal solution. Hence, we used the aforementioned values for the corresponding

parameters in our computational experiments.

To evaluate the performance of the acceleration techniques proposed for SAA, we took runs with

and without the implementation of the acceleration techniques on the 10–25 node instances from

the AP dataset. We compare the computational times in Table EC.2. The first two columns report

the instance size and the coefficient of variation. The third and fourth columns labeled “Time (sec)”

report the computation times in seconds without and with the implementation of the acceleration

techniques, respectively. The last two rows report the averages.

The results provided in Table EC.2 indicate that the algorithm performs more than two times

faster on average with the implementation of the proposed acceleration techniques. In particular,

for the larger-size instances, the improvement in CPU times goes up to five times.



ec4

Table EC.1 Computational results for different pQ and nQ values with 16 instances of the AP dataset.

Instance pQ = 100% pQ = 75% pQ = 50%

|H| nQ
Average

time
Average %
hubs elim.

Average
time

Average %
hubs elim.

Average
time

Average %
hubs elim.

40 1 19.60 70.63 19.66 79.38 19.45 81.88
2 19.77 82.50 19.47 84.38 19.45 83.13
3 20.05 81.88 19.90 84.38 19.53 83.13
4 20.19 85.00 19.99 85.00 19.93 80.63
5 20.35 85.63 20.48 83.75 20.20 80.00
6 21.05 85.63 20.55 83.13 20.65 76.25
7 20.83 85.63 21.22 79.38 20.36 74.38
8 21.35 85.00 21.38 79.38 20.72 68.13
9 21.41 81.25 21.22 76.25 20.91 66.25
10 21.58 80.63 21.46 74.38 20.74 63.75

50 1 21.39 83.50 20.36 85.50 20.98 86.50
2 20.77 86.00 20.02 85.00 20.15 86.50
3 20.26 89.50 19.83 88.50 20.58 86.50
4 20.28 90.00 20.03 88.00 20.25 83.50
5 19.78 90.00 20.03 87.00 20.08 83.00
6 19.86 90.00 20.28 86.00 21.04 83.50
7 19.88 89.00 20.04 85.00 20.58 78.00
8 20.46 89.00 20.11 84.50 20.83 77.00
9 20.86 88.00 20.56 82.00 21.04 75.00
10 20.25 84.00 20.97 78.00 20.54 70.50

75 1 148.00 86.00 152.76 89.33 148.11 89.00
2 149.38 89.33 148.21 92.00 150.00 90.00
3 146.08 92.33 146.32 91.33 144.23 90.33
4 144.27 92.00 145.04 91.33 144.91 87.00
5 149.96 92.00 145.80 91.00 142.15 88.67
6 151.31 92.67 144.93 90.67 146.04 88.00
7 159.46 92.00 146.52 88.67 149.52 85.00
8 156.55 90.67 146.69 89.67 150.75 84.67
9 149.52 91.00 146.40 88.00 145.76 83.33
10 157.78 90.67 145.13 86.00 146.11 81.67

100 1 489.43 85.50 483.90 88.50 481.12 89.75
2 441.71 92.25 430.57 92.00 441.58 92.25
3 422.44 93.75 427.37 93.75 424.23 92.25
4 421.21 94.25 407.14 93.25 412.89 91.75
5 405.94 94.25 407.84 93.50 407.36 91.00
6 419.81 94.50 394.60 93.50 413.73 89.75
7 414.71 94.00 397.70 91.00 424.58 88.50
8 415.16 93.00 401.41 90.75 424.00 86.00
9 411.12 92.50 397.78 90.75 417.26 85.25
10 407.30 91.25 405.67 89.50 420.62 84.25
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Table EC.2 Computational times for the stochastic model with and without the implementation of the

acceleration techniques for SAA.

|H| ν
Time (sec)

Without
acceleration

With
acceleration

10LL 0.5 55.29 50.82
1 47.38 41.76

10LT 0.5 18.42 15.39
1 21.80 18.33

10TL 0.5 38.63 33.89
1 53.46 53.48

10TT 0.5 17.34 14.97
1 15.10 13.11

20LL 0.5 8,723.45 1,553.42
1 6,601.72 2,713.17

20LT 0.5 2,892.03 1,442.36
1 3,303.61 1,907.56

20TL 0.5 3,528.43 1,089.42
1 4,202.39 1,173.79

20TT 0.5 249.41 101.11
1 197.85 76.78

25LL 0.5 5,494.94 1,418.24
1 6,653.34 2,014.32

25LT 0.5 15,617.96 3,218.51
1 8,327.14 3,832.22

25TL 0.5 3,577.96 1,127.83
1 4,382.44 1,613.32

25TT 0.5 5,053.09 1,420.91
1 3,152.68 1,711.33

Average 0.5 3,772.25 957.24
1 3,079.91 1,264.10


