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Abstract

We consider the application of stochastic gradient descent (SGD) to the nonnegative ma-
trix factorization (NMF) problem and the unconstrained low-rank matrix factorization
problem. While the literature on the SGD algorithm is rich, the application of this specific
algorithm to the field of matrix factorization problems is an unexplored area. We develop
a series of results for the unconstrained problem, beginning with an analysis of standard
gradient descent with a known zero-loss solution, and culminating with results for SGD in
the general case where no zero-loss solution is assumed. We show that, with initialization
close to a minimizer, there exist linear rate convergence guarantees.

We explore these results further with numerical experiments, and examine how the matrix
factorization solutions found by SGD can be used as machine learning classifiers in two spe-
cific applications. In the first application, handwritten digit recognition, we show that our
approach produces classification performance competitive with existing matrix factoriza-
tion algorithms. In the second application, document topic classification, we examine how
well SGD can recover an unknown words-to-topics matrix when the topics-to-document
matrix is generated using the Latent Dirichlet Allocation model. This approach allows us
to simulate two regimes for SGD: a fixed-sample regime where a large set of data is iterated
over to train the model, and a generated-sample regime where a new data point is gener-
ated at each training iteration. In both regimes, we show that SGD can be an effective
tool for recovering the hidden words-to-topic matrix. We conclude with some suggestions
for further expansion of this work.
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Chapter 1

Introduction

1.1 Owur Problem

In this thesis, we consider the following problem: given V € R™*™ and a positive integer
r, find factor matrices W € R™*" and H € R"™*" to minimize:

min ||V — WH||%

(1.1)
st.W >0, H>0,

where ||.||r denotes the Frobenius norm. This is the nonnegative matrix factorization
(NMF) problem [30], and in recent years it has gained significant popularity within both
the computer science and optimization communities due to its applicability to modern day
data science problems.

While there exists a wide literature on approaches for solving this problem, we consider a
novel approach: applying the popular Stochastic Gradient Descent (SGD) method to solve
(1.1). SGD has gained popularity in recent years due to its wide applicability to many
data science problems [10], particularly within the deep learning community as a model
training algorithm.

We aim to use the NMF problem as a means to study the properties of SGD by both
directly analyzing the algorithm itself and conducting numerical experiment to understand
its applications. Through this, we study the applications of both the NMF problem and
the SGD algorithm through the lenses of mathematical optimization, data science, and
machine learning.



1.2 Motivation

The use of SGD to solve matrix factorization problems has gained interest in recent years,
especially in applications where the size of the data set makes Gradient Descent less
tractable. A particular application of note, partially due to its popularity outside of the
optimization community, is the so-called “Netflix Prize” competition, where researchers
were challenged to drive a significant improvement in the performance of the recommender
systems used by Netflix to suggest content to viewers [13]. Recommender systems utilize
data on user preferences to recommend “items (e.g. products, services, etc.) that the user
is more likely to be interested in. The most popular technique for building a recommender
system is called “collaborative filtering”; here, a new user is compared to existing users
that the data suggests have similar tastes, and the new user is recommended items that
the similar existing users have rated highly [62].

In their prize-winning submission in the Netflix competition, Koren, Bell, and Volinsky
developed a collaborative filtering system that involved performing SGD to solve a matrix
factorization problem [13]. While their approach involved some problem-specific modifi-
cation (including regularization, introduced biases, etc.), the core approach was driven by
randomly selecting an entry of the data matrix, and performing an SGD step based on this
entry.

Although the problem addressed by Koren et al. did not involve a nonnegativity con-
straint, it provided justification that a stochastic approach to matrix factorization can
lead to success. Below, we discuss some specific examples similar to the approach we pro-
pose, and note the differences that makes our approach novel.

In our work, we note that our primary goal is not to identify a more efficient or bet-
ter performing NMF algorithm or general matrix factorization algorithm. This is a highly
active research area, and there are many existing algorithms that are highly efficient; in-
deed, in the general matrix factorization case, one would simply default to a singular value
decomposition to solve the problem efficiently (see 2.1.1). Instead, our goal is to specifically
understand how SGD behaves when applied to these problems, and use these findings to
better understand the SGD algorithm itself. This goal is specifically reflected in the Ex-
periments Chapter 5, where we do not seek to compare SGD to existing NMF algorithms
from a computer-time or efficiency standpoint.



1.3 Related Work

Gemulla et al. considered the problem of solving very large-scale matrix factorization us-
ing SGD that could be distributed and run in a decentralized manner [28]. In their paper,
motivated by the work of Koren et al. discussed above, they discussed finding low-rank
matrix approximations, with the addition of a “stratification” of SGD that allowed the
algorithm to proceed in parallel on multiple devices. The authors formulate SGD for ma-
trix factorization in the centralized case, but do not offer any further analysis on this case.
In addition, they briefly mention using a nonnegative orthant projection to extend their
approach to solving the NMF problem, but do not discuss this extension in detail.

In 2007, Lin addressed using Projected Gradient Descent to solve the NMF problem [19].
His approach consists of a full Gradient Descent step to update W and H, followed by a
projection onto the nonnegative orthant. In addition, Lin employs a line-search method
for updating the step-size for each iteration, based on the Armijo condition [19] [55]. This
approach demonstrates how full Gradient Descent can be used to solve the NMF problem,
but does not discuss the stochastic variant for Gradient Descent in any detail.

More recently, Davis and Drusvyatskiy analyzed the convergence rate of the projected
stochastic subgradient method [15]. The algorithm they study involves selecting a stochas-
tic subgradient for each iterate, and selecting the next iterate using a proximal mapping
after the subgradient update. While we do not discuss the theory of proximal mappings in
detail here (more detail on proximal mappings is available in [59]), we recognize that for
the NMF problem, the proximal mapping is simply the projection onto the nonnegative
orthant; thus, their algorithm can be seen as a generalization of our main algorithm.

Davis and Drusvyatskiy show that, under mild assumptions on the objective function and
stochastic gradients, the algorithm will converge to a point with small proximal gradient
at a sublinear rate. Drusvyatskiy and Paquette showed that a small proximal gradient is
equivalent to the current iterate being “near-stationary”, or “close” to a stationary point
in an appropriate distance measure [23].

While this result provides a guarantee on the size of the stochastic gradient, this is in-
sufficient for our problem, where a vanishing gradient does not immediately guarantee a
solution to (1.1). For this reason, in our analysis, we aim to prove results that speak
specifically to how well the product W H approximates the data matrix V.



1.4 Organization of this Thesis

In Chapter 2, we provide the background material necessary to approach this problem. We
introduce the NMF problem formally (2.1.2), as a subset of a family of matrix factorization
problems. We consider other matrix factorization problems, including the weighted low-
rank matrix factorization problem (2.1.3) and the L; norm low-rank matrix factorization
problem (2.1.4). We also introduce the family of first-order optimization methods, includ-
ing Gradient Descent (2.2.1), and its stochastic variant, SGD (2.2.2). We also introduce
some fundamental machine learning concepts (2.3.1), and explain how matrix factorization
has been used as a machine learning tool in the literature (2.3.3).

In Chapter 3, we formally define the problem we seek to solve (3.1), and develop the
algorithms required to approach it (3.2). In Chapter 4, we state and prove a number of
results related to the application of these algorithms to the matrix factorization problems
introduced.

In Chapter 5, we demonstrate our results numerically (5.1), and consider two specific
machine learning applications for our problem: handwritten digit classification (5.2), and
latent topic identification (5.3). Finally, in Chapter 6, we state some possible next steps
for this work.



Chapter 2

Background

2.1 Matrix Factorization Preliminaries

2.1.1 Dimensionality Reduction

Matrix factorization techniques are an example of a broader range of so-called dimension-
ality reduction techniques. Dimensionality reduction seeks to transform a dataset from
a high-dimensional space into a low-dimensional space, with the goal of using the lower-
dimensional representation to isolate important properties of the dataset [30]. In this sense,
dimensionality reduction can be seen as a fundamental process in the field of data science.

A wide variety of commonly-used data science tools have their roots in dimensionality
reduction. Principal component analysis (PCA) aims to represent a dataset as combina-
tions of uncorrelated principal components; here, dimensionally reduction is necessary to
ensure the number of components is small [3]. Other algorithms such as nearest-neighbour
classification [05] and various regression techniques use dimensionality reduction to sim-
plify models and reduce overfitting. Dimensionality reduction techniques are critical in the
so-called Big Data regime, where large amount of (potentially) high-dimensional data is
readily available. While large datasets are unwieldy and difficult to interpret, their low-
dimensional approximations are more easily stored and transported electronically, and are
often easier to represent visually in charts and diagrams.

Given a set of data vectors v;, a straightforward linear dimensionality reduction model



can be built as follows [30]:

v Y yeld), (2.1)
j=1

where y; represents a basis vector in the reduced dimension space, and ¢; represents the
coefficients for representing v; in that basis. By assembling all ¢ equations into a matrix,
we obtain:

VaYC. (2.2)

Note that we have adjusted the formulation to an approximation. This is to recognize that
most general data matrices V' will not have an exact low-rank factorization, so the best we
can hope for is a low-rank approximation.

This formulation is the low-rank matrix factorization problem: the goal is to determine
both the best lower-dimensional basis elements that represent the data, as well as the co-
efficients that represent each data point using these basis elements. Specifically, we define
the following low-rank matrix factorization problem:

min f(W, H)

2.3
s.t. rank(W) <, (2:3)

where f represents a loss function used to model how accurate the approximation is, and
r is a rank parameter selected in advance. In the literature for this problem, the most
common loss function used is the squared Frobenius norm loss:

JW,H) = [V =WHIE =3 > (V(i,j) = W(i, ) H(:, 5))%, (2.4)

i=1 j=1

where X (i,7) indicated the ith row, jth column entry of V. While other loss functions
are possible, the use of the Frobenius Norm is well-motivated by its compatibility with the
Singular Value Decomposition (see below); as an example, given the singular values of a
matrix X, it is straightforward to compute the value || X||. [31].

The low-rank matrix factorization problem (2.3) above can be efficiently solved using the
Singular Value Decomposition (SVD) of the matrix V. For all real-valued matrices, we
have the following result [34]:



Theorem 1. If V € R™*", then 3 orthogonal matrices A € R™*™ and B € R™", and a
diagonal matriz > € R™*™ such that

V = AXBT,

where we denote the diagonal entries of ¥ as 01 > 02 > ... 2 Omin(mn) = 0.

The SVD is an exact decomposition of the full-rank matrix. It can be thought of in a
similar vein to representing a given vector in an orthonormal basis [8]. The following
theorem from Eckart, Young, and Mirsky [21] makes it clear how the SVD is valuable for
dimensionality reduction:

Theorem 2. Let V. € R™ " with m > n, and let V. = AXBT be the singular value
decomposition of V.. Let r < n. Then a best rank-r approximation to V in terms of the
Frobenius norm, (which we denote V,.):

V, = argmin{||V — X||r : rank(X) <r},
X

15 given by

Vi=A(G1:7)S(1:r1:r)B(;,1:7)".

In the above theorem, we use MATLAB notation for indexing matrices; specifically,
A(:, 1 : r) indicates the sub-matrix of A consisting of all rows (indicated by the "), and
the columns 1 through r (indicated by the 1: r).

In short, we can find the best r-dimensional approximation to the matrix V' by finding
the SVD of V| truncating A, ¥, and B after the first r singular vectors, and multiplying
the truncated matrices back together to obtain V.. Furthermore, the SVD provides us with
an easy tool to determine the Frobenius norm (or the Frobenius norm squared) of a matrix
V. For Ve R™*" we have [31]:

Given that a straightforward best rank-r approximation exists through the truncated SVD,
one can ask why the matrix factorization problem is so extensively studied. One reason
is that, in general, the low-rank matrix factorization problem does not permit a unique
solution. Observe that a pair of matrices that are inverses of each other can be inserted in
between the W and H factors:

WH =W(RS)H = (WR)(SH) = WH (where RS = I). (2.6)



As a result of this non-uniqueness, it is difficult to expect the optimizer factor matrices
to have any specific or helpful structure. As an example, consider the PCA application
introduced above. We would expect a traditional solution to this problem to have many
non-zero components; however, for practical applications, we may desire a PCA solution
with only a few non-zero components. By enforcing a sparsity constraint (example of which
include so-called sparse PCA [76], or the LASSO approach [38]), each principal component
can be viewed as a combination of fewer original variables, thus making the results easier
to interpret. In the next few sections, we discuss some specific extensions of the low-rank
matrix factorization problem, beginning with nonnegative matrix factorization.

2.1.2 Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) was first introduced in 1974 by Thomas, in an-
swering a question posed by Plemmons and Berman [3] [69]. It gained popularity due to
the work of Paatero and Tapper [57] and Lee and Seung [10] as a method for representing
a dataset as a nonnegative combination of a set of basis vectors with reduced rank . This
was referred to by Lee and Seung as a “parts-based” representation. NMF imposes an
additional (and seemingly straightforward) constraint on the low-rank matrix factorization
problem that the two product matrices contain entirely nonnegative entries. The authors
argued that this parts-based representation permitted a variety of easily-interpretable real-
world applications, (one of which is discussed below). In particular, the NMF formulation
offers a different interpretation from PCA by not allowing negative coefficients for the basis
vectors [10].

A natural question to ask is which common data science problems (if any) permit so-
lutions with a parts-based representation that NMF requires. The answer is yes; while we
will discuss only one example in particular, there are numerous immediate applications of
the NMF problem to the fields of gene profiling [72], feature extraction in image process-
ing [30], and unmixing of spectral signals [0].

We highlight a particular example to demonstrate the benefits of the nonnegativity con-
straint: using NMF to identify topics in a document corpus. Let V represent a collection
of text documents, with one row for each word used in the documents and one column
for each document (note that the row dimension m will be very large, so this example is
appropriate in the Big Data regime). Each matrix entry denotes the frequency of a given
word appearing in a specific document; as a result, V' will be nonnegative. We now assume



that an approximate factorization of the following form can be found:

VAWT, (WeR™ TeR™)

2.7
st. W >0, T >0. (27)

By preserving the nonnegativity of the product matrices, we have two product matrices
that can be interpreted in a similar light to V. The W matrix can be seen to represent
the number of words that appear in r topics, while the T" matrix can be seen to repre-
sent how often each topic is discussed in each document [30]. Thus, the NMF solution to
this problem has both identified latent topics (i.e. the r basis vectors) in the document
corpus, and has also classified each document by how frequently it discusses each topic.
This interpretation would not have been possible without the nonnegativity constraints,
which assures that the documents can only be interpreted as a nonnegative combination
of topics [64].

We now define the NMF problem formally: given V' € R™*" we seek factor matrices
W e R™" and H € R™" to minimize:

min ||V — WH||%

(2.8)
st. W >0, H>0.

We note that, in this definition, 7 must be pre-selected as a parameter for the problem. As
in the case for the low-rank matrix factorization problem, the use of the squared Frobenius
norm as the loss-function is a natural choice.

When they first considered NMF, Lee and Seung also proposed a family of methods to

solve the problem. These are commonly referred to as multiplicative updates [17]:
(VH)(, )

(WeHeH)(i, )

(W), J)
(WIWLH) (i, 5)

Wk+1(i7j) = Wk(zuj) HkJrl(iaj) = Hk@a])

(2.9)

These methods update W and H individually (a procedure mirrored by almost all stan-
dard NMF algorithms), and in such a way that the Frobenius norm loss in NMF above
is guaranteed to shrink on each step. However, the fact that multiple matrix products
need to be computed on each step suggests that there are potential computation savings
available [30]. In addition, when an element of W or H is set to zero in this algorithm, it
will remain zero for all future iterates. This will bias the algorithm in the direction of the
first fixed point that the algorithm moves towards, regardless of whether this is a “good”
fixed point to pursue [1].



These limitations motivate an alternative set of methods, where each update step is de-
termined by solving the least-squares subproblem. A straightforward approach is to solve
the least-squares subproblem without the nonnegativity constraints, and then project each
entry back onto the nonnegative orthant [17] [1]. Specifically, we have:

W1 = max{argmin{||V — ZH,||%}, 0},
A

, , (2.10)
Hj11 = max{argmin{||V — W, Z||%},0}.
z

This update has the benefit of naturally introducing sparsity into the solution matrices [1],
which can be beneficial for many real-world applications. While this is computationally
inexpensive, performance can often be poor [30]; in addition, it can be difficult to analyze
the performance of this approach, since this approach essentially solves a constrained prob-
lem using unconstrained methods [12]. More commonly, algorithms will seek to solve the
least-squares subproblem exactly including the nonnegativity constraint for each product
matrix [19]:
Wit = argmin{|[V — ZHy|[3},
Z>0

‘ , (2.11)
Hipq = argn(l)m{HV — Wi Z||%}-
>

A helpful feature of this approach is that, since the desired constraints are built directly
into the subproblems, the limit points of any algorithm that solves the subproblems will
also be stationary points for the NMF problem [12]. The selection of methods for how
to solve this problem is broad (see [30] [17] [12]); one method, known as the Active Set
method, is very popular and is implemented as a standard function in MATLAB [12]. An
additional method, Hierarchical Alternating Least Squares (HALS), simplifies the nonneg-
ative subproblem by updating each column of W and row of H individually [17]. In this
thesis, our main focus is on gradient-based methods (see 2.2.1).

Despite the existing methods for solving NMF, there are some key challenges that make
the problem worth further study. For one, the uniqueness issue that exists in the low-rank

matrix factorization problem persists in the NMF problem [29]. In some specific cases of
non-uniqueness, such as permutations or scalings of the columns of W and H, this non-
uniqueness is less concerning and can be easily controlled [32]. In the general case, however,

this poses issues when trying to apply the NMF solution to a real-world application. There
are methods of ensuring that a data matrix will have a unique NMF up to permutations
and scaling based on the structure of the data matrix itself [21] [11], but these are not
considered further here.

10



In addition, NMF is NP-hard to solve in general [71]. Thus, we will either work with
instances where the NMF is initialized such that a known zero-loss solution exists in, or
be content with finding a low-rank approximation. Under specific assumptions about the
structure of the data matrix V' (specifically the separability assumption, see below), there
exist algorithms that are guaranteed to find an NMF solution in linear time [32].

NMEF: The Separable Case

Donoho and Stodden [21] introduced a special case of the NMF problem that is of signifi-
cant note for both its applications to real-world problems and performance under specific
algorithms. Separable NMF assumes that each column of W appears as a column of V', up
to a scaling factor. As a result, we would expect to recover an H matrix that contains r
identity columns, corresponding to these columns of V' that appear in W. This assumption
has a very elegant geometric interpretation, and many applications of NMF exhibit this
separable assumption naturally in the data [32].

The study of the separable case is useful, in part, because the separability assumption
appears naturally in many real-world applications [32]. As a specific example, consider the
text classification example introduced above. The separable assumption require that, for
each topic, there is a document that discusses only that topic [30]. This turns out to be a
very reasonable assumption; this is of note, because as mentioned above, there exist linear
time algorithms for solving NMF under the separable assumption.

While we do not analyze the separable case specifically, we do mention additional appli-

cations where the separable assumption is relevant (see 2.3.3), and it provides motivation
for how to formulate our main algorithm of interest (see 3.2.1).

2.1.3 Weighted Low-Rank Matrix Factorization

An alternative extension to the low-rank matrix factorization problem is to consider a
weighted variation, where each entry of the data matrix has a corresponding weight [13] [31].
In this variation, given a data matrix V', a matrix of nonnegative weights €2, and a desired
rank r, we seek matrices W € R™*" and H € R™*" that minimizes:

min Y LV -WH);, = ||Qe (V- WH)|, (2.12)
(2]

11



where ©® represents the Hadamard, or element-wise product. This generalization provides
the ability to model situations where some entries of V' are more accurately known than
others, and thus a more significant penalty should be incurred if these entries are not well
approximated. In addition, by restricting the entries of 2 to be 0 or 1, this formulation
can be used to model a data matrix that has missing entries.

This has immediate applications to the so-called matrix completion problem [11], where the
existing entries of the matrix are used to predict the unknown entries. One approach to the
matrix completion problem is to first develop a low-rank approximation for the available
entries, and use the found factor matrices to estimate the unknown entries. This is the
basis for recommender systems, which are used by companies such as Netflix to estimate
user ratings for films that they have not viewed, based on the ratings the user has selected
for other films [13]. As with the NMF problem, this matrix factorization aims to discover
latent features (i.e. basis vectors) in the data, and to fill the unknown matrix entries using
combinations of these features.

The addition of the weight matrix makes the low-rank factorization problem significantly
more difficult. In the non-weighted case, all of the local minima for the loss function are in
fact global optima, which directly leads to the easy ability to find a solution through the
SVD [67]. However, in the weighted case, this helpful structure for the critical points is
lost, greatly complicating the problem. In fact, even in the case where simply a rank-one
solution is desired, the weighted problem is NP-hard to solve (and thus, it is NP-hard to
solve for any desired rank) [31].

Srebro and Jaakkola discussed using gradient-descent techniques (as described in 2.2.1)
to solve (2.12) [67]. They found that, while the algorithm could theoretically converge
to unhelpful local minimum points, in practice Gradient Descent tended to converge to
the true global minimum. In the same paper, the authors also suggested an Expectation-
Maximization (EM) algorithm approach, which alternates between estimating the missing
values of V' from the current iterates of W and H, and then updating W and H based on
the newly completed V' [67]. Other approaches, including second-order Newton-type algo-
rithms [13] have been shown to have strong numerical performance. Furthermore, there
exist algorithms based on matrix sketching techniques that produce an e-approximate so-
lution with high probability [61].
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2.1.4 L; Norm Low-Rank Matrix Factorization

In many practical machine-learning and data science applications, the L, or Frobenius
norm is not the most appropriate loss function for modeling the problem in question [71]. A
specific example is compressed sensing, where we seek a solution to a linear system with an
additional sparsity constraint (i.e. the solution found must have a low number of non-zero
entries) [25]. For this reason, and due to the sensitivity of the Ly norm to noise [74], matrix
factorization using the L; norm as the loss function has gained significant popularity [11].
For a matrix A, we have:

Al = 3 3T 146 )] (213)

We seek matrices W and H to minimize the following:

min ||V —WH||;. (2.14)

This formulation can be extended to capture the weighted case (and the nonnegative case,
NMF) as well:

min |[|[Q06 (V —WH)|. (2.15)

In both the weighted and unweighted case, however, the L; problem is difficult to solve, as
the problem is non-convex in (W, H) and non-differentiable. Indeed, even the unweighted
case (2.14) is NP-hard to solve in general [33].

Similar to the alternating least squares approach to the NMF problem, Ke and Kanade
proposed an alternating convex minimization approach to solving (2.14), where each iterate
is updated as follows) [11] :

Hy = argmin ||V — Wy_1 X||1,
X

, (2.16)
Wy, = argmin ||V — X Hy||;.
X

The first sub-problem above can be decomposed into n smaller sub-problems, each of which
can be solved using standard convex optimization methods. In particular, each of the sub-
problems can be formulated as a linear program, which can be efficiently solved by a variety
of algorithms. It is worth noting that, in the specific instance of (2.15) where 2 is a 0-1
matrix, which models missing data from V, it is easy to simply “drop” the constraints for
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the missing entries of V', leading to a straightforward extension of this approach to the
weighted case.

Eriksson and van den Hengel proposed a similar approach to solve (2.15) using the so-called
Wiberg method [56], an algorithm for matrix factorization that has regained popularity
due to its applications to computer vision problems [27]. The Wiberg method recognizes
that, if W and H are respectively fixed, then the optimizers to (2.15), denoted W* and
H*, can be found as follows:

H;(W):ar%qminHQ@Vj—Q@(In®W)HjH1, (2.17)

J

J

WH(H) =argmin||[Q0V; — Q6 (H' @ L,)W;]|. (2.18)
W.

J

By substituting (2.17) into (2.18), we obtain the following equivalent statement for the
optimal value of (2.15), parametrized by W [27]:

12V} = QW H (W) |1 == ||QV; — o(W)]]1. (2.19)
Although ¢(W) is a non-linear, non-differentiable term, the gradient can be approximated
using a first-order Taylor expansion for each iterate Uy,. By repeating this update rule,
(2.15) can be solved.
Other approaches to solving (2.14) and (2.15) include statistical models such as a vari-

ational Bayesian approach proposed by Zhao et. al [71]; these types of algorithms are not
detailed further here.

2.2 First-Order Optimization Methods

2.2.1 Gradient Descent

Gradient Descent is a well-known optimization method, often attributed to Cauchy in
1847 [15]. Gradient Descent is the canonical example of a first-order optimization method,
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meaning it makes use of information concerning the gradient of the objective function in
order to determine an update direction. In its most basic form, Gradient Descent updates
an iterate by taking a small step in the opposite direction of the objective function gradient,
often referred to as the steepest descent direction [12]:

Tp+1 = T — Oéka(ZL'k> (220)

This update step can be shown to minimize the first-order Taylor approximation of the
objective function [12]. For many objective functions, this first-order approximation is
sufficient to ensure that progress is made towards an optimizer. Indeed, as we will note
below, there exists a large class of problems for which Gradient Descent is guaranteed to
find the optimal solution.

The parameter «y indicates the step-size (or learning rate) of the problem. Typically,
this parameter is chosen to be small, as the accuracy of the first-order Taylor approxi-
mation will decrease as the step-size increases. However, choosing a step-size that is very
small will force the algorithm to perform more iterations in order to reach a solution. As a
result, there exists a trade-off when selecting a step-size. A commonly-used method is to
choose a fixed step-size; this is a favored method due to its simplicity, but will often require
tuning in order to improve algorithm performance. An alternative approach involves using
a line-search to identify a step-size that is guaranteed to decrease the objective function
by some fixed amount [55]. This sufficient-decrease condition, also known as the Armijo
condition [19], adds an additional computation to the Gradient Descent procedure, but
aims to compensate by ensuring each iteration of the algorithm makes significant progress
towards the optimizer.

In order to discuss the performance of Gradient Descent for common problem classes,
we must first discuss the goals of optimization in general. When solving an optimization
problem (we will assume a minimization problem over the space R™ for simplicity), one
seeks points of the following forms:

e (Global Minimizer): x* such that f(z*) < f(z) Vo € R”
e (Local Minimizer): z* such that, for some positive radius r, f(z*) < f(z) Vo € B, (z%)

e (Stationary Point): z* such that V f(z*) =0

While the ultimate goal is to find a global optimizer, this is a goal that is often unrealistic
[39]; indeed, local solutions and saddle points will often prevent algorithms from finding
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true global optimizers, if they even exist. Gradient Descent will terminate when it reaches
a stationary point, even though there is no guarantee that such a point is even a local
optimizer. With the introduction of additional assumptions on the problem structure,
however, we can observe that finding stationary points is often sufficient, or even equivalent,
to finding local or global optimizers. To further this discussion, we introduce two concepts:
smoothness and convexity.

Definition 2.2.1. A function f : R"™ — R™ is called L-smooth if Vz,y € R" ||V f(z) —
VIl < Lilz =yl [12]

One can think of L-smooth functions as functions whose gradient changes no faster than
the current iterate changes, up to a proportionality constant. It is straightforward to show
that GD performed with a constant step-size inversely proportional to the smoothness pa-
rameter L is guaranteed to make progress towards a stationary point on each iteration,
and thus will eventually converge to a stationary point [12].

In order to strengthen this result, convexity must be incorporated:

Definition 2.2.2. A set S is called convex if, Vz,y € S and YA € [0, 1], we have \x +
(I=XNyesS. [53]

We introduce the similar notion of convex functions, which can be thought of as all functions
whose epigraph (i.e. the set of all points above the graph) is itself a convex set [11]:

Definition 2.2.3. A continuously differentiable function f is called convex if, Vz,y € R",
we have [53]:

fly) = fx) +(Vf(x),y — ). (2.21)

The inequality in (2.21) is referred to as the subgradient inequality. One further strength-
ening gives the definition of strong convexity:

Definition 2.2.4. A continuously differentiable function f is called strongly-convex
with modulus [, or [-strongly convex, if, Vz,y € R", we have [53]:

F) 2 F(x) + (V@) y — ) + Ll — ol (222)

We observe that this above definition is a strengthening of the subgradient inequality from
(2.21).
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Convex functions are ubiquitous within optimization, and are of significant use. A useful
property of convex functions is that all local optimizers of a convex function f(x) are also
global optimizers of f(x) [11]. From this, it is clear that when dealing with convex func-
tions as opposed to general functions, the goal of finding a global optimizer is significantly
more tenable.

Armed with the tools of smoothness and convexity, a fundamental result for Gradient
Descent can be stated [12]:

Theorem 3. Let f be a L-smooth convex function on R™. Then Gradient Descent (as

defined in 2.27) with o = 1 satisfies:

- 2L||zy — x*||?

where k represents the number of iterations.

While this result ensures the convergence of Gradient Descent at a guaranteed rate, the
rate is in fact quite slow. Indeed, in order to make an improvement of one significant figure
of accuracy, one must perform a number of calculations on the same order as all of the
computations already completed (each additional digit of accuracy requires an order of
magnitude more computations [53]). This is referred to as sublinear convergence, and is a
poor convergence rate for most optimization applications.

A more desirable convergence rate is a linear convergence rate, defined as follows [53]:

Definition 2.2.5. An algorithm is said to converge at a linear rate if the distance between
the current iterate and the optimizer is proportional to an exponential function of the
iteration counter, that is:

||zp — 2¥|| < koc® where ¢ € (0,1). (2.23)

In order to achieve linear convergence for Gradient Descent, one must make use of the
concept of strong convexity introduced above. We have the following result [16]:

Theorem 4. Let f be a L-smooth, l-strongly convex function within a local ball B, (zy).
Then Gradient Descent (as defined in 2.12) with o = % satisfies:

l k
low =211 < (1= 7 ) llao =7l

where k represents the number of iterations.
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Despite the convergence guarantees outlined above, Gradient Descent faces many limita-
tions, particularly in the Big-Data regime outlined above. As the number of data points in-
creases, the effort required to calculate the gradient of the objective function increases [10].
With so many samples available, performing a full calculation of the objective function gra-
dient can be viewed as a highly-inefficient method for utilizing the available data [10]. For
these reasons, as well as numerous others, a modified approach is preferred in most modern
applications.

2.2.2 Stochastic Gradient Descent

Stochastic Gradient Descent (abbreviated as SGD herein) was first introduced as a Markov-
chain method by Robbins and Munro in the early 1950s [63] as a method to solve iterative
equations with introduced noise. Since its introduction, it has been adapted to be used as
a Gradient Descent variation where the introduced noise is instead an estimate of the true
gradient. SGD is designed to use partial information from the true gradient of the objec-
tive function to made a series of random iterations that, in expectation, should converge
towards the optimal solution.

To formally define SGD, we introduce the general model of expected and/or empirical
loss. In the expected loss case, we assume that the objective function we aim to minimize
is a loss function of the form:

f(z) =E[l(x,€)] (Expected Loss), (2.24)

where £ is a random variable, with a potentially unknown distribution, representing the
data. Here, the optimal point z* will be the point that minimizes the expected loss [12].
It is assumed that, at each iterate, the algorithm has access to the partial gradient with
respect to the current iterate, V. l(xy,&). Using the empirical loss, we can formulate the
general SGD step as follows:

T = T — i Vl(zg, §). (2.25)

In order to minimize the expected loss, one must have access to the probability distribution
that underlies the data; however, this is often an unrealistic assumption [10]. When this
is the case, optimizers will often instead focus on the expected loss [12]:

fla) = %fj fi(z) (Fmpirical Loss)
=1
where  fi(z) = f(z,&).
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In this formulation, each &; is a specific realization of the random variable &, i.e. a random
selection of distinct data points. f; represents the loss with respect to this random selection.

The expected loss formulation will be most appropriate for the SGD applications we will
discuss later. Using the expected loss, we can formulate the general SGD step as follows:

Tpt1 = T — Oékazk ($k>, (227)

where the index 45 corresponds to the randomly selected realization, §;, is the correspond-
ing data, and Vf; (x)) represents the gradient of the sample loss function corresponding
to the random selection.

The Expected and Empirical loss regimes introduced above are fundamentally different. If
we have a finite number of samples m and wish to minimize the expected loss (2.24), we
are limited to only m calculations before we should stop. This is because, if we use the
same sample twice, we lose any guarantee that we are taking an unbiased sample [12].
In the Empirical loss regime (2.26), we have no restrictions, and can iterate over the m
examples as many times as required.

We observe that, if the step-size remains constant on each iteration, we have no guar-
antees that the optimal point will be a stationary point for this algorithm; in fact, it is
highly unlikely in general that each of the gradient estimates will all be zero precisely when
the full objective function gradient is zero. Thus, for the purposes of developing conver-
gence results, SGD is often analyzed with a decreasing step-size to improve performance
as the algorithm approaches the optimizer [10] [63].

As outlined above, SGD is often preferred to full Gradient Descent as it avoids the need
to complete a large gradient calculation at each step. However, this trade-off comes at
the expense of weakening some of the performance guarantees of Gradient Descent. As a
specific example, we have the following [12]:

Theorem 5. Let f be a y-strongly convez function, and assume that the stochastic gradient
has a bounded second moment, i.e. E[||V fi, (zx)]|?] < B Then SGD (as defined in (2.27)

with oy, = ﬁ satisfies:

E

k .
29 2B?
f = || — f(@") £ -
;k(lwl) ! (=) y(k+1)
I There exists some more recent work on performance gains found by conducting multiple passes of the
data, see [50] as an example, but these are not discussed further here
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We observe that, in the strongly-convex and smooth case that produced linear-convergence
for Gradient Descent, we can only guarantee sublinear convergence for SGD. In the general
case, in order to obtain a linear convergence rate for a stochastic gradient-based algorithm,
we need to incorporate additional information. Approaches such as stochastic variance-
reduction descent (SVRG) [10] can achieve linear convergence, but require a calculation
of the full gradient at regular intervals [10]. An additional class of algorithms aims to
improve convergence rates by incorporating second-order derivative information, similar to
Newtons method, or by generating an approximate second-order update step using only
gradient information [10]. These classes of algorithm are not detailed further here.

2.3 Machine Learning Preliminaries

2.3.1 Learning Through Training and Testing

In statistical machine learning, we aim to develop a prediction model that can correctly
predict some property for an unobserved piece of data with a high degree of accuracy. A
standard approach is called supervised machine learning, where we are provided with a
dataset that is “labelled”, meaning we already know the value of the desired property [65].
This is opposed to the process of unsupervised machine learning, where our dataset does
not have labels; this is discussed further in 2.3.3.

In supervised machine learning, we use the labelled data to help develop our prediction
model through a process known as “training”. As a specific example, we will define a
training model called Empirical Risk Minimization (ERM). In ERM learning, we make the
assumption that a prediction function that performs best on the data we have been pro-
vided will also perform well when applied to unobserved data [70]. Assume we are given a
dataset of the form {(z1,v1), ..., (Zn, yn)}, where Vi, x; represents some important features
of the data, and y; is a label that indicates which class the data belongs in [10]. This can
be a binary label (e.g. 1 if the data point belongs in a class and 0 if it does not), or can be
generalized to a more complicated labelling scheme. Furthermore, we define a prediction
function h that takes data points and maps them to labels. In ERM, we seek a prediction
function that minimizes the so-called empirical risk:

Ralh) = = S ThGw:) # i), (2.29)
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where [ is an indicator function that outputs 1 if the expression is true, and 0 otherwise [10].
This empirical risk is similar to the empirical loss defined in 2.26

A problem with this regime should be immediately obvious: by minimizing R, (h) when our
goal is really to minimize the error made by A on the unobserved data, we can potentially
make a very poor choice for h using an ERM learning scheme. As an example, imagine a
function A that outputs y; for any input x; that is present in the provided data, and outputs
the label 0 otherwise [10]. This “memorization” predictor will have an empirical risk of
0, so is an ideal ERM learner [65]. However, it will perform very poorly on data that it
has not observed before; selecting this h as our prediction function completely defeats the
point of machine learning in the first place. This is the phenomena known as overfitting,
where a predictor performs very well on the data used to train the model, but generalizes
to new data very poorly.

To counteract this, we will often require that h be selected from a predetermined class
of functions H (as opposed to all possible function that map from the space of data points
to the space of real numbers) [65]. For example, we may require that h be drawn from
the set of linear halfspaces, i.e. functions that separate the data space into two distinct
sets. By making a judicious choice for this class of potential prediction functions, we can
improve the likelihood that an ERM learner will perform well on unobserved data. We
note, however, that there is a trade-off here: by choosing a smaller H, we will minimize
overfitting but will likely have a larger empirical error. If instead we choose a larger or
“richer” H, we will minimize the empirical risk but are more likely to overfit. This trade-off
can be formalized by defining the so-called “VC Dimension” for a prediction class H, but
we do not discuss this further here (see [10] for a further discussion).

In light of the above, when solving machine learning problems, we will often measure
performance on both the labelled data available to the algorithm (the “training set”), and
a new set of data that was not used to fit the model (the “test set”). In practice, this is
often done by holding back a portion of the labelled data to be used as a test set after the
training phase is complete. The performance on the training data helps us understand how
well the prediction model fits the data it was provided with, and the performance on the
testing data helps us understand how well the model can predict new data. Understanding
algorithm performance on both the training set and the testing set is of significant interest
to the optimization community.
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2.3.2 Machine Learning and SGD

The key process in machine learning is the selection of the prediction function; this is done
by solving an optimization problem. As outlined above, a common approach is to minimize
the loss over the training set using some optimization algorithm before applying to selected
prediction function to the test set. While many optimization algorithms are possible, Gra-
dient Descent, and specifically SGD, are among the most popular methods [37].

The fact that the machine learning process involves solving a specific problem (minimizing
loss over the training set) when the ultimate goal is to solve a different problem (minimize
losses over the test set) leads to a nearly unavoidable optimality gap between the optimal
classifier and the predictor chosen by the learning procedure. This is referred to in the
literature as the generalization error, and improving understanding of this error is of sig-
nificant interest to the optimization and machine learning communities. We can define the
generalization error £ as follows:

£ := E[R(h,) — R(h")], (2.29)
where:

e R is the expected risk (i.e. the loss over all possible data points, including the testing
set)

e h, is the prediction function chosen during the machine learning procedure

e h* is the true minimizer of R

Bottou and Bousquet [9] deconstruct this error into three distinct terms to help illustrate
where the error accumulates from:

€ = E[R(h}) — R(h*)] + E[R(h,) — R(hjy)] + E[R(hy) — R(hy,)]

= gapproac + gestim + goptimizationa

(2.30)
where:

e hj; is the best possible predictor from our class of possible predictors to choose from,
H

22



e h, is the predictor that minimizes the empirical loss R, (see 2.27)

The first error, Eqpproz, is due to the fact that the true optimal classifier may not belong
to our class H of possible predictors; this is the error incurred when we shrink the class
to avoid overfitting. The second error, &.4m, measures the error incurred because we are
optimizing the empirical loss R, instead of the true loss R. The final error, E,ptimization, 15
incurred if we do not find a zero-loss solution over the training set, and instead settle for
an approximate solution.

Of these errors, the first two represent the overfitting trade-off discussed in 2.3.1. The
last error, the optimization error, is puzzling at first; why would we settle for an approx-
imate solution to the empirical loss problem? The answer relates back to the estimation
error; that is, the fact that we have no guarantee that the optimizer over the training set
will perform particularly well on the testing set. In practice, it may be more desirable from
a computational perspective to only perform optimization on the training set to within a
set tolerance, say 5%, and then use that predictor to begin testing. This is particularly of
use if the optimization algorithm can converge to within the tolerance in a small number
of iterations, but finding the true optimizer requires significantly more iterations.

Bottou and Bousquet studied the performance of various descent algorithms as measured by
this error decomposition, and they found that, despite its somewhat inferior performance
over the training set, SGD outperforms normal Gradient Descent from a generalization
standpoint [9]. This phenomenon has been observed in practice [9] and studied in greater
detail (see [37]), but remains a highly active research area.

2.3.3 Using Nonnegative Matrix Factorization for Learning

Before discussing how the matrix factorization problems from 2.1.2 are viewed from a
machine learning standpoint, we introduce the concept of unsupervised machine learn-
ing. While supervised machine learning requires labelled data that indicates how the data
should ideally be classified, unsupervised learning does not require labels; instead, unsu-
pervised machine learning seeks to uncover hidden relationships and similarities within the
data.

A canonical example of unsupervised machine learning is clustering, where the goal is

to divide the data into distinct groupings with similar internal structure. A specific clus-
tering algorithm, known as k-means clustering, achieves this by identifying the centroids of
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k distinct clusters, and minimizing the overall distance between each point and the centre
of its assigned cluster [65]. k-means is most commonly implemented using an alternating
algorithm known as Lloyd’s Algorithm [51]: each data point is assigned to a cluster by
minimizing the overall Euclidean distance between each cluster point and the centroid,
and then the new centroid of each cluster is calculated. This process is repeated until the
cluster assignments remain constant for two consecutive iterations.

k-means clustering is an unsupervised method because the data points do not have a
“correct” cluster that they should be assigned to that is known before the algorithm be-
gins. As the algorithm progresses, the clustering process will determine what the clusters
should be, and which data points should belong to each cluster. As a result, there is no
training phase and testing phase in unsupervised machine learning; instead, there is one
learning phase over all of the available data. While k-means clustering is a very popular
method, there exist many other methods for clustering that identify similarities between
data points using different metrics. For example, minimum volume ellipsoid clustering
aims to minimize the overall size of the ellipsoids that cover each of the identified clus-
ters [66]. As this method can be formulated as a semidefinite programming problem, there
exist guarantees that the solution found is indeed an optimal solution.

The matrix factorization problems of 2.1.2 have many connections with unsupervised ma-
chine learning problems. As a specific example, it can be shown that a modified version of
the nonnegative matrix factorization problem, with an orthogonality constraint, is equiv-
alent to the k-means clustering problem introduced above [20]. Additional matrix factor-
ization problems, such as standard low-rank matrix factorization and weighted low-rank
matrix factorization, can all be related to k-means or other standard clustering algorithms,
see [18] for further examples.

Arora et al. [2] discussed the concept of using NMF for topic modelling; this is a for-
malization of the document classification example discussed in 2.1.2. In topic modelling,
algorithms seek to simultaneously identify latent variables (“topics”) within the data, and
classify each data point as a combination of those topics. Topic modelling had previously
been done using the SVD to solve the low-rank matrix factorization problem, but required
the strong assumptions that each document was only associated with one topic [58]. By
using NMF to solve this problem, this assumption could be relaxed to the “separability
assumption” (introduced in 2.1.2). Arora et al. introduce a polynomial time algorithm to
recover the topics matrix W.

The work of Arora et al. is an example of machine learning through a generative model,
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where we assume that the provided data is generated from an unknown distribution with
unknown parameters [51]. In such a model, we seek to learn the unknown parameters, thus
giving us a complete understanding of the data model. Once these parameters are known,
Bayes’s Rule can be used to predict the labels for unobserved data in an optimal way [65].
In addition, knowledge of the distribution parameters allows us to generate new data that
should maintain the structure of the existing data. Up until this point, we have described
machine learning through the perspective of a discriminative model, where we only care
about the classification of the data, not the underlying distribution. While the genera-
tive model sounds like an unnecessary complication, especially when performance on the
test set is the main goal, it can offer more insights into the structure of the problem at hand.

To the best of our knowledge, Arora et al. were the first to use NMF as a tool in the
generative framework to both perform topic classification and attempt to learn the param-
eters for the topic distribution. Anandkumar et al. [1] built upon this work by developing
a topic modelling procedure that does not require the separability assumption of Arora
et al. and simplifies the procedure for determining the distribution parameters. Their
approach assumes a model known as Latent Dirichlet Allocation, which proposes that the
unknown distribution is best described by a Dirichlet distribution (see below for more
detail). While the Anandkumar et al. approach is more general than just matrix factor-
ization, it demonstrates how matrix factorization, and specifically NMF, can be used to
learn model parameters with minimal assumptions about the data.

Latent Dirichlet Allocation was introduced by Blei et al. [7] as an example of a larger
class of generative models known as probabilistic topic models. In a probabilistic topic
model, a given document is assumed to be a mixture of given topics, with specific sta-
tistical assumptions that indicate how a document can be constructed by sampling these

topics [08]. Specifically, for a given word w;, we assume that:
T
P(w;) = P(wi|v; = j)P(v; = j), (2.31)

i=1

where P(w);) indicates the distribution of words in a document, P(w;|v; = v) indicates the
probability of a word given the chosen topic, and P(v; = j) indicates the probability that
the topic was chosen. In LDA, a Dirichlet prior is assumed for the distribution P(w|z = j),
with a preselected set of input parameters i, ..., 8.. In general, lower values of 3; cause the
topics to be more distinct from each other, while higher values of 3; lead to more mixing
of topics.
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While both the Arora et al. and Anandkumar et al. works detail the usefulness of NMF in
the generative model framework, neither makes specific mention of algorithm performance
over an unobserved test set. In particular, given how machine learning algorithms are
ultimately evaluated on their performance over unobserved data, it is of interest how a
model such as NMF would perform if the latent topics found using an approach such as
the two above were then applied to unobserved data. This is the subject of the numerical
experiments conducted in Chapter 5

In the existing literature, research is generally focused on the performance of NMF on
training data, and very little work has been done to quantify the performance of NMF on
unobserved test data. To the best of our knowledge, there exist no theoretical guarantees
for the performance of NMF as a machine learning algorithm when generalizing to unob-
served test data.

Erichson et al. [20] studied the performance of a specific randomized NMF algorithm by
using the uncovered latent variables to classify unobserved test data. Their numerical
results suggest that the variables uncovered by NMF perform similarly for classification
as the variables uncovered by factoring the data matrix using the SVD. For classification,
Erichson et al. use the k-nearest-neighbours algorithm [65], although it is unclear exactly
how this is implemented. One approach could be to compare all test points to all training
points to find nearest neighbours, which is an expensive process for large data sets. A
potential simplification would be to use only a random sample of training points for clas-
sification; this could lead to decreased performance.

A final example we discuss briefly is online NMF [35], where a new sample is received
at each iteration, and the solution matrices are updated after projecting the new sample
onto the current basis. This approach is particularly applicable for very large datasets,
where new samples are readily available and can be provided to the algorithm on an on-
going basis. This approach can be thought of in a similar vein to supervised machine
learning, although there is no specific training and testing phase. This approach is not
explored any further in this thesis.
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Chapter 3

Problem Formulation

3.1 Defining the Problem

In this thesis, we explore the problem of solving the nonnegative matrix factorization
problem using a stochastic gradient descent approach. We define our main problem below:

1
min ~||V — WH]||%
W,H 2 (3.1)
st W >0 H>0,

where V € R™" W € R™*" H € R"™". More specifically, we have:

e U/ is a data matrix with n data points, represented with m features
o IV represents the m features over r latent variables
e H represents the n data points as combinations of the r latent variables

e 1 is a design parameter selected in advance.

We note that by adding a factor of % to the objective function and squaring the norm, we
will not change the optimal solutions for (3.1). This adjustment is made to make finding
gradients of this function easier.

While analysis of the nonnegative version (3.1) is the ultimate goal, the results that we
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prove fall short of incorporating the non-negative projections required to solve the NMF
problem. Instead, our results focus on the relaxed version of (3.1) without the nonnega-
tivity constraints, which we state below:

1 9
min ||V — WH][E, (3.2)
where V., W, and H are defined as above.

To develop a formulation for solving (3.1) using SGD, we must answer the following ques-
tions:

e How do we determine a stochastic estimate of the gradient?
e How do we select a step-size?

e How do we ensure each iterate remains nonnegative?

We address each of these issues individually.

3.2 Developing an SGD Algorithm

3.2.1 Selecting a Stochastic Gradient Estimate

In order to select a stochastic gradient estimate at each step, we must make a random
selection of the data on which to base our estimate. There are many ways to make such a
selection. As a specific example, a seemingly naive choice would be to, at each iteration,
randomly select an entry of the data matrix V', and update both W and H based on this
selection. This would mean updating the row of W and column of H that correspond to
this entry. This is the approach taken by Koren et al. in their Netflix Prize submission [13],
see 1.2 for more detail.

We propose iterating over the data in a slightly different method, motivated in part by
the separability assumption of 2.1.2; specifically, the separability assumption motivates a
re-examining of how the data should be partitioned for random selection. Indeed, if the
W matrix is updated in a row-wise fashion as suggested above, we should not expect the
algorithm to recover full columns of V' in the W matrix. Instead, we should consider a
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random selection scheme that would aim to preserve the separable nature of the data,
should it exist. In addition, iterating over columns of the data fits well with most machine
learning applications, where we would consider each column of the data matrix as a single
item (document, image, signal, etc.). It is a natural choice to perform gradient updates
based on all features for each of these items, not just a single one.

This motivates an asymmetric update rule as follows: instead of selecting entries of V
at random, we select a column of V' at random. The H matrix is updated in a column-wise
fashion, according to the column of V selected. For the W matrix, however, we update
the entire matrix on each step based on the selected data point.

We observe that we can reformulate the objective function as follows:

Yy —wh = %;;w,ﬁ WG ()P
:%gngw@ﬁ—W@M%JW)
=SV - WHE I (3.3)
:ZX;MWH) (34)

Using (3.2), we can determine the gradient of the objective function with respect to columns
of H. We have:

%%Z—W@ﬁ—WH@ﬁm@ﬁi (3.5)
gﬁj}z = -WT(V(,7) — WH(:,§)),Vi = j; ggﬁ =0,Vi # j. (3.6)

We observe that (3.5) is the same size as W and (3.6) is the same size as a column of H,
as desired.
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3.2.2 Step-Size Selection

As outlined in 2.2.1, there are many different approaches in the literature for how to select
a step-size for a Gradient Descent algorithm. The most straightforward, and the method
chosen for our formulation, is to use a fixed step-size. This approach has the benefit of
being very straightforward to implement, and adds no additional computations to each
step. In addition, since the step-size is effectively a tuning parameter for the algorithm
performance, we minimize the amount of tuning required by simply selecting a fixed value.

The potential drawback of choosing a fixed step-size is that, as the algorithm approaches
a stationary point, it will continue to oscillate in a neighbourhood around the stationary
point instead of terminating. This is because while the gradient will vanish at the station-
ary point, each possible stochastic gradient estimate is not likely to vanish at the same
point, so we expect the algorithm to eventually iterate away from the point.

As discussed in 2.2.1, this behaviour can be tempered by using a step-size that reduces
gradually over time; we refer to a further discussion on this topic by Bottou et al. [10]. For
our analysis, we avoid these complications by using a fixed step-size, and accepting that
the algorithm will be affected by noise around the optimizers.

3.2.3 Maintaining Nonnegativity of Iterates

It is clear that, in general, we should not expect a gradient update to maintain nonnegativ-
ity over each iterate. A natural choice, motivated by the alternating least squares method
discussed in 2.1.2; is to perform the gradient update step, and then project any negative
entries of the resulting iterate onto the nonnegative orthant. This is the method employed
in our formulation.

We note that, provided the step-size is small, iterate entries that do become negative
will only slightly become negative, so they are well-approximated by being set to zero.
If the step-size is too large, we would expect a very large number of the iterate entries
to be set to zero. This can potentially be an asset, as sparse solutions to (3.1) are often
desirable in real-world applications, but the sparsity can also slow down the algorithm and
potentially cause it to stall at a large distance from the optimizer. This illustrates why
selection and tuning of the step-size is vital to observing good algorithm performance.

We introduce one additional projection scheme that was considered, which was also moti-
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vated by the separable NMF' case introduced above. In this case, we expect to recover r
identity columns in the final H matrix (i.e. 7 columns that have all 0 entries except for
a single non-zero entry of value 1). This motivates a projection scheme where instead of
projecting the columns of H onto the nonnegative orthant, we project the columns of H
onto the r-dimensional simplex:

Definition 3.2.1. The r-dimensional simplex is defined as [11]:
{reR™izg+-+a,=1, 2, >0Vi€[0:7]}.

We observe that this projection scheme is particularly conducive to helping recover the

identity columns of H. This projection operator can be computed efficiently using a “soft

thresholding” algorithm [59]. While this approach is likely useful for data that are known
to be separable, it is not considered further here.

3.2.4 An SGD Algorithm for Nonnegative Matrix Factorization

With these gradients, step-size, and projection schemes identified above, we can adapt the
general SGD update rule (2.27) to solve (3.1). Specifically, we have:

Algorithm 1: Stochastic Gradient Descent for NMF

for k=1,2,... do
Choose j from [1 : n| uniformly at random;
Wk+1 = max{Wk + Oé(V(,]) — Wka(,j))Hk(,])T, 0},
Hiye1 (2, ) = max{Hi(:, j) + oW (V (2, ) — Wi Hi(:, 7)), 0}
end

where the maximum operator above indicates an element-wise maximum, and 0 € R™.
Note that we do not explicitly state a termination condition here; instead, we run the
algorithm for a sufficiently long number of iterations, and observe where the algorithm has
settled (understanding that there will be noise).

We observe that this is “projected subgradient descent” algorithm discussed in [12]. We
also observe that this is distinct from the “gradient-projection” method discussed in Chap-
ter 16 of [55]. In this method, a line-search is conducted along the direction of steepest
descent, but when a bound is reached (i.e. we leave the nonnegative orthant), the search
direction is projected onto this boundary; as a result, the nonnegativity constraint is main-
tained.
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As outlined in 3.1, our results use the same algorithm as above without the projection
steps for W and H to solve the relaxed problem 3.2; in effect, this is SGD performed on
the low-rank matrix factorization problem. With this relaxation, we have the following
modified algorithm:

Algorithm 2: Stochastic Gradient Descent for Low-Rank Matrix Factorization

for k=1,2,... do
Choose j from [1 : n] uniformly at random;
Wiy1 = Wi + CX(V(,]) — Wka(:,j))Hk(:,j)T;
Hi1(5,7) = Hi(5,5) + oW (V (2, 5) = Wi Hy (5, 9));
end

3.2.5 A Preliminary Approach: Gradient Descent

In order to study the performance of Algorithm 1 and Algorithm 2 on the matrix factoriza-
tion problems, we first analyze the case of full Gradient Descent (i.e. instead of choosing
a stochastic gradient estimate at each step, we use the full gradient information from the
objective function). At first glance, this seems like a strange case to analyze, given that we
can efficiently find exact solutions to the matrix factorization problem using the Singular
Value Decomposition (see 2.1.1). By analysing this simplified case, we aim to observe
how the algorithm performs, and use these insights to aid our analysis of how the more
complicated problems (i.e. the NMF case) can be solved. Given that our main problem is
non-convex, we have no guarantee that Gradient Descent will avoid local minimizers and
converge. Despite these challenges, we will show that some meaningful results can still be
observed.

It is straightforward to observe that, in the full gradient case, we have:

VwFE(W,H) = —(V - WH)H",
VuF(W,H) = -W"(V - WH).
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We can now state a straightforward algorithm for solving the low-rank matrix factorization
problem with Gradient Descent (note: for simplicity, we continue to use a fixed step-size
a):

Algorithm 3: Gradient Descent for Low-Rank Matrix Factorization

for k=1,2,... do
Choose j from [1 : n] uniformly at random;
Wiy = Wi + a(V - Wka)Hg,
Hk—i—l = Hk + on,;[(V — Wka),

end

We will develop our first results based on this algorithm.
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Chapter 4

Analytic Results

4.1 Gradient Descent for Low-Rank Matrix Factor-
ization

As outlined in Chapter 3, we begin our analysis with Algorithm 3: the non-projected,
non-stochastic algorithm. Here, we have two cases: the case where a zero-loss low-rank
factorization is known to exist, and the general case where no exact low-rank factorization
exists. We develop our first result below.

4.1.1 Gradient Descent with a Known Zero-Loss Solution

For the first case, we assume that our problem instance has a zero-loss solution V' = W* H*.
Our goal is to show that the update rule from Algorithm 3 causes Wy Hj, to converge to V/,
or equivalently, drives the residual term V — Wy H;. to 0.

Despite the broad literature relating to the performance of Gradient Descent, we are
unaware of any existing theorems that satisfy the unique restrictions of this problem.
Specifically, the matrix factorization problem is a non-convex problem without a unique
minimizer; furthermore, we require a global minimizer, not just a local minimizer. These
properties prevent the application of a standard Gradient Descent result here.

To aid the analysis, we express W) and Hy in the following form:
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Wy, = W*Ry + Ly, (4.1)
Hy, = S H* + M.

In the above decomposition, Ry is the least-squares solution to Wy, = W*Ry, (i.e. ||Lg|| is
minimized) and similar for Si. From this decomposition, we have that each column of Ly
is orthogonal to each column of W* and each row of M is orthogonal to each row of Hj
(i.e. W*TL, =0 and M, H*T =0).

We observe that, provided L, and M; are initially small, we have that the residual
V — Wi Hy is well-approximated by W*(I — RySy)H*. Indeed, in our analysis, we will
use W*(I — R;Sk)H* as a proxy for our target residual. By initializing the algorithm
with [|Lol|, ||Mo||, and ||I — RySp|| sufficiently small, we can control how small the initial
residual V' — W, Hj, is.

We have the following result:

Theorem 6. Let V € R™ " and let W* € R™7" H* € R™" be rank-r matrices that
satisfy V.= W*H*. Let Ry, Sk, Li., M} be defined as above, and let:

ro = ||[W*Roll,
so = [|So "],
b = || Lol|,
my = |[Moll,

Qo = |[(RgW*TW*Ro) "' RE W],
to = ||[H™" S5 (SoH*H*'S5 )71, ||

where we assume for simplicity that my > I,'. Let my, Iy, and ||I — RoSo|| be sufficiently
small such that py can be selected to satisfy the following statements simultaneously:

If I; > m1, we can conduct an identical analysis, with the roles of ¢g and tq exchanged.
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p1 > (mi+5)(ro + 1)(so + 1)(qo + 1), (a)
p1 > [[W*(I — RoSo) H"||, (b)

1 1
@12~ (@tn: "M (@0 +1)

< , c

b (go +1)%(s0 + 1) )
Lo - 1 —my(to+1

L < (to+1)2  (to+1)%(q0+1)? 1(to ) (d)

(to -+ 1)2(7’0 —+ 1) ’
1
(so+1)(q0 +1)*’

p1 <

and « 18 chosen such that:

a(so+1)>+mi) <1,
al(ro+1)° +17) < 1,

1
a< —,
2

Then Algorithm 3 starting from the specified initial point will produce a sequence of iterates
(Wy, Hy) where the residual V- — Wy Hy, tends 0 at a linear rate as k — oo.

Proof. We begin by deriving recursive forms of the updates for all of these terms, starting
with Li. We have L, = (I — W*(W*TW*)=1W*T)W,, and thus:

Ly = (I = W*WTW*) "WYY (W, + a(V — Wi Hy)HY)
= Ly + ol — W*WTW "WV — W, H,)H}f
= Ly + ol —W*WTWH "W OW*H*H] — oI — W*(WTW*)""WDW, H.H}
= L — aL H.H}
= Ly(I — aHH),

where the fourth line follows from recognizing that the middle term is exactly equal to zero
after cancellation, and a factor of L, appears in the final term. Thus, we have:

Ly = Ly(I — aH HY). (4.3)
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We observe that, due to the symmetry between the forms of W and H, the calculations
that we do for W can be adapted to show the same result for H; this will be used to
simplify the proof. An analogous calculation to the one for L, ; can be used to show:

M1 = (I — aWIW,) M. (4.4)

From the above equations, we can also derive recursive forms for Ry, and Si.1, or more
specifically W* Ry, 1 and Sy 1 H*. We have

W*Rpi1 = Wip1 — Ly
=W, +a(V — Wi Hy)H] — Ly(I — aH H])
= Wi(I — aHHF) + aVH] — Li(I — aHH})
= W*Ry(I — aHH) 4+ oV H]
= W*Rp(I — (S H* + My)(H* ST + MD)) + aW*H*(H*T ST + M)
= W*R,(I — aS  H*H*'SF — aMy M) + aW*H*H*T'S] (since H*M}' = 0)
= W*Ri(I — aMyM}) + aW*(I — RpSy)H*H*' S}

A similar calculation for the Sy H* term gives the equations:

W*Rpy1 = W*RL(I — aM M) + aW*(I — Ry Sy)H*H*T SF, (4.5)
Sep  H* = (I — oLl L) Sy H* + aREW* T W*(I — Ry S,)H*. (4.6)

As outlined above, we can use W*(I — Ry Sy)H* as a proxy for the residual V' — W} Hy,. We
can use (4.5) and (4.6) to develop the following recursion for W*(I — RySy)H*. Dropping
all O(a?) terms?, we obtain:

W*([ - Rk+1Sk+]_)H* = W*H* - W*Rk+15k+]_H*
= (I — aW*R . REW*TY(W*(I — RpSp)H*)(I — a H*T ST S, H*)

+ aW*R(M, M} + L] L) S, H*.
(4.7)

2In this analysis, we ignore all terms that are O(a?) or of higher degree; the analysis could be repeated
to include these terms with a slight strengthening of the constraints presented.
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We aim to prove bounds which show that (4.3), (4.4), and (4.7) converge to zero geo-
metrically, while proving upper and lower bounds on the singular values for W* R, and
SpH* using (4.5) and (4.6). That is, we aim to find constants that satisfy the following
inequalities simultaneously, which we will show through induction on &

||Li|| < 1115 where I < 1,

|M|| < mims where my < 1,

k
|W*R|| <ro+m1 Zr§ where ry < 1, (4.10)
i=1
k
||SeH™|| < 50+ $1 Zs’z where sy < 1, (4.11)
i=1
IW*(I — RiSe)H*|| < p1p§ where py < 1, (4.12)
1
Qo+ QD i G
1

Tin(Sfl) = to+t Yoy 1
The base of the induction for (4.8) through (4.14) follows directly from the constants in
the hypothesis of the theorem. To show the induction step for each, we select the following
constant values (the choice of which will be motivated later):

(4.14)

r9 = So = @2 = lg = poa,
r = a(so+ 1)p1,

s1 = a(ro + 1)p1,
_ a
= (qo + 1)’
t . 8]
1 — (t() + 1)27 (415)
a
h=1-—%
2 (to + 1)2
mo = 1— %7
(qo +1)
2a (ro+1)(so+ 1)
pte w1 @ P (3 +0).
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We define the maximum values of the RHS of (4.10) and (4.11) as 7, and s, respectively.
In addition, we make the following inductive assumptions on the growth of these bounds:

k

leré < 1,

=1
k
51 Zs’z <1,
z:kl |
Y a<1,
z:kl
Y th<1,
=1

We begin by using Statement (a) from the theorem to show that ps < 1. From (a), we
have:

(4.16)

a(m? +13)(ro+ 1)(so + 1) _ o

p1 (g0 + 1)
< 2a
(g0 +1)*
Thus, we clearly have:
0 < 20 a(m? +12)(rg+1)(so + 1)
(g0 + 1) 2 7
or
1= 2 : +a(m%+l%)(ro+l)(so+1) 1
(90 +1) D1

The LHS of the expression above is exactly the py formulated in (4.15). Thus, we have
shown that p, < 1.
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Now we examine (4.10) and (4.11). We will show now that the choices of constants in
(4.15), along with 7o and so defined in the Theorem, establish (4.10) and (4.11). Consider
Statement (e) from the theorem. By rearranging and multiplying both sides by «, we have:

(6) = 04(80 + 1)]71 < m

2x Q

(+1)?% (q+1)*

We now use Statement (a) to conclude that:

2, 72

mi + I3 1
ro+ 1)(sp+1) < ———.

D1 (ro )(s0 ) (qo +1)?

We can substitute this in above to obtain:

2« m2 + [2
——— —a(rg + 1)(so + 1) ——-2
(qo +1)? (ro - 1){s0 1) p

=1—py (from (4.15)),

a(sg+ 1)p; <

and thus:
a(so+1)p 1
1—po
00 (4.17)
= a(so+ Dp1 »_ph < 1,
i=1

where the last line follows from p, < 1 (and using the form for an infinite geometric sum).
We observe that (4.17) validates our assumption 7, S°¢, 75 < 1 from (4.16).

We can also use the above to validate the assumption ¢; 325 ¢i < 1 from (4.16). We
begin with the reformulation of Statement (a):

2 2
mi + I3 1
ro+1)(sop+1) < ———.
P (ro - 1){50 1) (g0 + 1)
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By multiplying by a factor of «, this can be rewritten as:

a(m? +13)(rg+1)(so + 1) - 20 a

1 (@0+1)* (@+1)*

Rearranging, we can show:

«

(g0 + 1)
(0%

- (90 +1)*(1 — p2)

<1—p2

< 1.

The last statement above gives ¢ > .o, ¢b < 1, as required.

Now we observe that, taking norms of (4.5) and applying the induction hypotheses (4.11)
and (4.12), we have that:

W R || < [[W Byl + ap1ps s,

provided that am? < 1, which is certainly implied by the stated conditions on «. More
generally, we can expand this recursion to say that:

k+1

[W*Rir || < [[W*Ro|| + aprsse Y b
=1
k+1

< |[W*Rol| + api(so+1) > _ph (by (4.16)).

i=1

We observe that, with the choices of ry, r1, and 7y specified above, (4.17) certainly implies
that (4.10) holds for & + 1.

An analogous argument can be used to show that (4.11) will hold for &+ 1 with sg, s1, and
sy as defined above, while also validating the two remaining assumptions from (4.16).
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We continue by analyzing (4.13) and (4.14). We observe that we can express the min-
imum singular value of W* Ry, as:

1
[(REWSTW= Ry,) = REWT||

Thus, we need to compute an expression for (RL, \W* ' W*Ry1) 'R, ,W*T. We use the
identity (X + F)™' = X' — X"'EX ™! for small E3. For simplicity, we denote W}, =
RIW*TW*Ry,. We have:

RY WTW* Ry = Wy — aM M REW*TW* Ry, + oS, H*H*" (I — SFROW W™ Ry,
— aRfWTW* R MM, + aREW*TW*(I — Ry, Sy)H*H* ST
= Wk’ + Ek7

where

By = —aM M} RIW*TW* Ry, + oSy H*H*" (I — SE Ry YW*TW* Ry,
— aRIWTW* R, MM + aRFW*TW*(I — R, Sy)H*H*T S

Thus, we can use the inverse identity above to conclude:

(REa W W Re) T R W = (W = W B W) (T — aMp M REW™T
+ S  H*H T (I — SFRY)W™T)
= (I +aM M — oW 'S, H*H*"(I — SFRIW*TW* Ry,
— oW 'RIWTW*(I — RS,)H*H* T SIYW * REWT
+ aW LS H H* T (I — STREYW™T.

If Ry is non-singular, which is implied by (4.13), we observe that W*TW*RkVVk_lRf =1,
which allows the above to simplify to:

3This identity holds provided that E is O(«a), and the O(a?) terms have been neglected.
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(RE W W*Ra) ' REL, W™ = (I + aMi M)
— aW'RIW*TW*(I — RS )H* H* T SEYWLRI'WT.

To simplify once more, we denote X = WRIW*T = (RIW*TW*R,) "' RIW* to con-
clude that:

Xpp1 = X + aMM! Xy, — a X W* (I — RpSp) H* H' ST X, (4.18)

Taking norms, we obtain:

1 Xkt || < Xkl + el [My] P Xkl + o [W (I = Ry Si) H|| - ([ S |- ]|

By using the induction hypotheses 4.9, 4.11, 4.12, and 4.16, we obtain:

k k 2 k
[ Xral] < 11Xkl + amim3* (QO +q qu) + (% +a ZQ%) pips (So + 51 Z%) :

i=1 i=1 i=1
(4.19)

An analogous argument gives the following expressions for Y1 and ||Yii1]|:
Yie1 = Yi + oLl LYy — oY REW*TW*(I — RpSp) H*Yx, (4.20)

k k 2 k
HYk+1H < HYkH + Oél%lgk (to + 1 Zté) +« (to + 1 Zt%) plpg (7’0 +7r ZT%) .
i=1 i=1 i=1
(4.21)
We address (4.19). Consider Statement (c) from the Theorem. Since a < 1, we can express

(c) as:

1 2c
(@+1)%  (qo+D)* ma(go +1)

(g0 +1)*(s0 +1)

p1 <
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By rearranging and multiplying both sides by «, we obtain:

(qo + g+ 1
—a (1- ) v as)
2a a(rg 4+ 1)(so + 1)(m3 + 13)
SCI1(1_(QO+1)2+ I’} )
= q1P2-

Since m3 < po, the above implies:

m2k
Ozm1p_’z(% +1) + algo + 1)°pi(so + 1) < qups,
2

and multiplying by p§, we obtain:

amim3®(go + 1) + algo + 1)*pips (so + 1) < grp5™!

=qagtt

Thus, by applying our induction statements from (4.16) and substituting into (4.19), we
have shown that:

1 Xkl < Xkl + @™

By induction, we obtain:

k+1
Xl <go+ar 3 i,

=1

and therefore
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1 1

o+ q1 Zfill @ || X ]

= Umin(W*Rk+1)-

This verifies (4.13). An analogous argument can be used to use Theorem Statement (d)
and (4.21) to show:

k41
to+t1 Y th > Vi,
i=1
and therefore
1 1
o <
to + 11 Zi:l tZQ ||Yk+1||

- Umin(Sk+1H*)7

which verifies (4.14).

Now we consider (4.8) and (4.9). By taking norms of (4.3), we have:

Ll | < L] - [T — o Hy H ||
= |Lall - [I(1 — aSeH* H™ S — aMyp M) ||
<Ll = @Amin (S HH™ 5))

< (1= )
<l (1= i) by (420)

a : :
< 1Y (1 - m) (by induction)

= [y 15+,
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This completes the induction proof for (4.8). An analogous argument shows that we also
have:

k
(0%
M, < ||M, l——
|| M || < ] kll( (qOH)Q)
k—i-l.

This completes the induction proof for (4.9).

We conclude our analysis by establishing (4.12). Taking norms of (4.7), we obtain:

« «
W*(I — Rey SecVH* || < (1 — — 1— ) |IW*(I = RySy)H*
11 P11 (1= oo ) (1 G ) W0 - s

+ ozroosoo(m% + lf)mgk.

Since we assume msy > [y, we can simplify to:

[|W*(I — Rgy1Ska1)HY|| < m§||W*(I — RiSp)H™|| + arg + 1)(s0 + 1)(mf + l%)mgk.
(4.22)

Recall our definition of py from (13). Neglecting O(a?) terms, we can complete the square
for the definition of p,, and obtain:

a o a(mi+12)(ro+1)(so+1)
7))+
(@0 +1) P1
a(m? +13)(ro+1)(so + 1)
D1
a(m? + 17)(ro + 1)(s0 + 1) m3*
k )
D1 D3

p2=(1-

2
my +

v

ms +

where the last line follows given p, > m32, which is certainly implied by the second line
above. Multiplying each term through by pip4, we obtain:
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pipsTt = mapips + a(mi + 13)(ro + 1) (so + 1)m3"
> |[W*(I = Rpy1Sks1)H[| (from (17)).

This final statement shows that, by induction, we will always have that (4.7) holds. As a
final condition, in order for the base case for the induction to be true, we must enforce that
p1 > ||W*(I — RpSk)H*||, which is given in Statement b) of the Theorem. This completes
the proof for (4.7), thus completing the proof of the theorem. n

Discussion of Theorem 6

As outlined in the proof, since we have that Ly, My, and W*(I — RySx)H™* all converge
to zero, we can guarantee the algorithm produces a sequence with limit points that satisfy
WiyH, = W*H* = V. Thus, we have that V' — W, H;, will converge to zero; furthermore,
as this residual is a multiplicative factor in both terms of the objective function gradient,
we observe that we obtain a zero-gradient limit point.

The proof for Theorem 6 demonstrates that this convergence will occur at a linear rate;
however, since the parameters [y, ms, and py are often quite close to 1, this convergence can
still be “slow”. In addition, in order to satisfy the conditions of the theorem, Algorithm
3 must be initialized quite close to the the true solution (W*, H*). While this constraint
is quite restrictive, in practice the algorithm will converge at this linear rate from any
randomly initialized point (see 5.1.1 for a numerical example of this).

A final observation we make is that, since L, and M) tend towards zero, the iterates
(Wy, Hy) tend towards the span of the zero-loss solution (W*, H*). This is a nice property
for the iterates to have, and we will show that, even in the case where no zero-loss solution
exists, this property will in fact continue to hold.

4.1.2 Gradient Descent: Extending to Non Zero-Loss Solution
Case
To extend the above result, we weaken the assumption that a zero-loss solution exists (i.e.

we remove the assumption V' = W*H*). Instead, we assume that our problem instance
is “close” to a zero-loss solution, i.e. V = W*H* 4+ A, where A represents a small error

47



term. We note that, by changing the matrix V' and the target low-rank r, we have some
measure of control over the magnitude 0 := ||A||. We assume that W* and H* represent
the best-possible rank-r approximation of V', found through the SVD (see 2.1.1). This
implies that we must have W*T'A = 0 and AH*T = 0.

We state and prove the following result:

Theorem 7. Let all of the assumptions of Theorem 6 hold, with the exception that V =
W*H* + A, where W* and H* represent the best rank-r approzimation of V. In addition
to the Theorem 6 assumptions, let 0 be sufficiently small such that:

1

§ < I (f)

Then Algorithm 3 starting from the specified initial point will generate a sequence of iterates

(Wi, Hy,) where Wi Hy, tends to W*H* as k — oc.

Proof. We claim that the same induction strategy that was used to establish Theorem 6
can be used to prove Theorem 7, with minor modifications. In Theorem 6, there were 7
different quantities that needed to be controlled. We list them below, and the corresponding
recursive form that outlined how each quantity is updated:

L1 (4.3)

My (4.4)

W*Rk+1 (45)

Spp H* (4.6)

W*(I — R Ses)H* (4.7)

(RE W TW* Ryiy) ' RE, W (418)

HTSE  (Sy H HT S )™ (4.20)

We claim that, of the above recursions, only the rules for Ly, and My, change with
the introduction of a A.
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We begin with the Ly, and (4.3). We have:

Ly = (I =W WTW* WY Wy + oV — Wy Hy)HF)
= Ly +a(l —W*WTWH WYV - W, H,)HE
= L+ oI —WWTWH ' W*DYW*H* + A — W, H,)HF
= L+ ol —WWTWH ' WOW*H*H] + oI — W*(WTWH "W AR
—a(l = W*WTW*) "W W, H,H}
= L+ aAH] — ol — W WTWH W W, H, H
= Liy(I — aHyHD) + aA(HTST + M)
= Lip(I —aHH) + aAM].

Thus, we have:

Liw1 = Li(I — aH H) + aAM] . (4.23)
By an analogous argument for Mj.,;, we obtain:

M1 = (I — aWIW,) My, + aLLA. (4.24)

In the original proof, (4.3) and (4.4) were used to derive the recursive update forms for
W*Ryy1 (4.5) and Sy 1H* (4.6) respectively. We will show that, even when (4.23) is used
in place of (4.3), (4.5) does not change. We have:

W*Riy1 = Wipr — Ly
= Wi(I — aHHE) + aVHF — Li(I — aH HE) — aAM!
= W*R,(I — aHyHP) + a(W*H* + A)HI — aAM]
= W*R,(I — (S H* + My)(H*"S} + M) + aW*H*(H*" S + M)
+aA(HTSE + M) — aAM]
= W*Rp(I — aS H*H*'S} — aMy M) + aW*H*H*T ST
= W*Ri(I — aMM}) + aW*(I — RpSy)H*H*' S},

which is exactly the same as (4.5). Thus, the new assumptions do not change the recur-
sive update (4.5). A similar argument can be used to show that (4.6) does not change.
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Furthermore, since the recursive updates (4.7), (4.18), and (4.20) are derived entirely from
(4.5) and (4.6), we can conclude that none of the other recursive updates change under the
new assumptions..

Due to the changes in (4.23) and (4.24), the induction assumptions (4.8) and (4.9) from
Theorem 6 need to be slightly adjusted and re-verified. We state the new assumptions
required:
|Lg|| < mym% where my < 1, (4.25)
||M|| < mymb where my < 1. (4.26)
Note that we have utilized the assumption that mg > Iy (from the Theorem 6 statement)
to weaken the assumptions of (4.8) somewhat. We define:

lgzmgzl—L‘i‘aé.
(to + 1)2

We note that our new assumption (f) guarantees that [l and ms will be < 1. By taking
norms of (4.23), we have:

| Zesall < NLill - 11T — el Hy || + [laAM]]

= | Lell - [I(1 — aSe H* H™ Sy — aMp M| + ad][ M ||
< NZell(1 = admin (S HH ) + ad| | M|

(8}

< ||L 1— — + ad||MT
<l (1- & HZH%)Q) A
<l (1= g ) + adl

< 1— 5 K

mlmz( t0+ )—1—04 MMy
= mimsy (1 +Oé(5)
—mlm’;“.

Thus, we verify that the induction hypothesis holds, and (4.25) is verified. A similar
argument can be used to show that (4.26) will hold. Since none of the other induction
arguments rely on (4.3) or (4.4), or the definition of Iy or may, we can apply the same proof
as was used in Theorem 6 immediately to show that Ly, My, and W*(I — Ry Sx)H* all go
to zero. Thus, we have that Wy Hj, goes to W*H*, proving Theorem 7. O
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Discussion of Theorem 7

From the above proof, we know that Ly, My, and W*(I — RySy)H* all go to zero; however,
we can no longer guarantee that V' — W Hy, goes to zero. In fact, from the problem assump-
tions regarding W* and H*, the minimum value that the objective function ||V — W, Hy||%
can attain is 3||A[|%; this is due to the fact that (W*, H*) was assumed to be a minimum
loss solution, and the value of the objective function at (W*, H*) is 3[|Al[?).

From the result above, we have shown that the value W H; tends to W*H* as k — oc.
From this, we have that:

SV = Wi = S| B+ & — W = Z]IAl.
Thus, the solutions found from Algorithm 3 attain the minimum possible objective func-
tion value.

As above, this theorem requires an initialization very close to these matrices W* and
H* (as we require § to be small), but in practice Algorithm 3 was observed to converge
from a randomly initialized starting point.

4.2 SGD for Low-Rank Matrix Factorization

4.2.1 SGD with a Known Zero-Loss Solution

We now move on from the simplified Gradient Descent case to analyzing Algorithm 2:
SGD for low-rank matrix factorization. For this result, we again first assume that we have
known rank-r zero-loss solution matrices, W* and H*, such that V = W*H*. We have the
following result:

Theorem 8. Let all of the assumptions of Theorem 6 hold. In all instances where o ap-
pears, replace it with the decreased step-size &. Then stochastic gradient descent (Algorithm
2) starting from the specified initial point will generate a sequence of iterates (Wy, Hy) that
satisfy the following equations simultaneously:

o 2
E(|LuallF2a) = Lo (1= SHAT)| (4.27)
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o 2
B Mul[300) = || (1= Swiwi) a| (4.28)
n F

a (8}
Bl = 1 (1 =W RRLWT) K (1= CHTSES )
+ SWR(MM] + LEL) S H I

where Ky := W*(I — RySx)H*.

Proof. We begin by noting that the recursive updates for both Wj and Hj in Algorithm
2 can be written compactly using unit vector notation, where e; represents the vector of
size n x 1 (where V' € R™*") with all entries zero except for the entry j, which is 1:

Wit = Wi, + oV — Wi Hy)ejel HY, (4.30)

Hypr = Hy + oW (V (2, j) — Wi Hi(:, §))el (4.31)

We begin with the recursive update for L;,;. Recall that in the deterministic case, this
recursive update is given by (4.3). We consider a single stochastic update of Ly, :

Lot = (I — W*WTWH W\ Wyt
= =W WTWHT W)Wy, + oV — Wi Hy)ejel HY
= Ly, + a(I = W*WTW*) W) (W*H)ejel Hy
— ol = W (WTW*) "' WYW, Hyejel HY
= Ly — aLyHyeje] HY
= Li(I — aHy(:, ) Hi(:,)").
This recursive update form looks similar to the recursive update for Ly, found in Theorem

6, with the exception that only a single column j of the matrix Hy is used. If we take
expectations of this, we obtain:

E[Lgs1|Li] = %(Lk(l —aHL(, DH(;, D)D) 4+ .+ %(Lk(l — aHy(:,n)Hy(;,n)")

— L (I - ngHkT> .
n
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We observe that this is the recursive update (4.3) found for the full Gradient Descent case,
with the step-size reduced by a factor of 711

For M1, where the deterministic recursive update is given by (4.4), we have:

My = Hyp(I — H (H H™) ™) HY)
= (Hy + aW(V = WiHy)ejel (I — H*T(H*H*T)"') H*)

J

= My + oW/ (W*H* — Wy Hy)ejel — oW/ (W*H* — Wi Hy)ejel (H (H*H*)~ H*).

Note that due to the placement of the e; vectors, we cannot express this recursive update
in a more simplified form. By taking expectations, we observe that, as with the L, case,
this update reduces to a nice form:

a * * * * * — *
E[Ms1| M) = M, + EWE(W H* — W,H,)(I — H*"(H*H*T) " H*)
— M, — SWIWiM,
n
- (I - ngTWk> M,
n

Again, we observe that this is exactly the recursive update (4.4) found for the full Gradient
Descent case, with the step-size reduced by a factor of %

To show (4.27), we will make use of the identity ||A||% = trace(AT A). We have:

Lk |7 = 1 Li(I = acHy (5, §)Hi(:, 5) )|
= trace((Ly — oLy Hy,(:, 5) Hy (5, ) (L — a Ly Hy(:, §) Hi (5, )T))
= trace(L} Ly) — trace(aLi Ly Hy(:, j) Hi(:, 5)7)
— trace(aHy(:, j)Hy(:, )T LE L) + O(a?),

and thus, by taking expectations, we obtain:
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E[l|Ly1|[#|Le] = Eltrace(Ly Ly,) — trace(aLi LyHy(:, j)Hi(:, j)")
— trace(aHy(:, 7) Hi(:, 5)T Ly Li) + O(a®)| Ly]
= trace(L} L) — trace (%LkaHkaT) — trace (%HkH,?Lng) + O(a?)

T
= trace ((Lk — L HHT ) (Lk ~ L HHT ) 0(@2))
n n

2

- HLk (1 - %HkH[T{> +O(a?)

o
Neglecting the O(a?) term, this is the desired result.

To show (4.28), the calculation is completed using the same method. Omitting some
details, and denoting H := (H*H*T)"'H*), we have:

E[| My |[5]My] = E[| My, + oW (W H* — WiHy)ejej (1 — H)| 5| M;]
= E[trace((M,} My) + trace(aMI W[ (W*H* — W Hy)ejel (I — H))
+ trace((I — H)eje] (HW*T — HIWWi M) + O(a?)| M)

— trace ((Mk ~ %WngMk)T (Mk — %W,ZWkMk) + O(Qz))

= [|(7 = Swiwic) w + 0(&)”1 ,

again, as desired (neglecting the O(a?) term).

To show (4.29), we first require an expression for a stochastic update of W*(I— Ry 1Sk+1)H*.
We first find the intermediate quantities W* Ry, and Sg, 1 H*:

W*Rpy1 = Wig1r — Ly
= Wi +a(V — WiHy)ejel HE — Ly(I — aHyeje! HY)

J J
= W*Ry(I — aHyejel HY) + aW*H*epef HE

J

=W*R(I — onkejejTMk — aSkH*ejejTMg — onkeje]TH*Sg)

+aW*(I — RiSe)H*esel HSI + aW* H*ejel M
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Sk1H* = Hyy1 — My
= Hy + oW (W*H* — Wy H)ejel — My, — aW,[ (W*H* — Wi Hy)eje (I — H)
= SpH* + oW, (W*H* — W, Hy)ejel H
= SpH* + a(REW*TW*(I — RiSp)H* — REW*TW* Ry, M,
— L LySLH* — L Ly My)eje} H.

With these quantities, we can calculate Ky, :

Kis1 = W*(I = Riy1Siyn) H
= W*H* - (W*Rk+1)(8k+lH*)
=W*H" —W*R, S H"
— aW*Rk(MkejeJTMk + SkH*eje;erg + Mkeje]TH*Sg’)SkH*
— aW*(I — RySy)H*ejes H*TSLS H* — aW* H*eje) M, Sy H*
+ aW* Ry (REW*TW*(I — RpSp)H* — REW* W™ Ry M,
— LI LSy H* — L Li,My)ejei H + O(a?).
To calculate trace(Kj K1), the same process as above can be applied. Since each
expanded term of trace(K[, Kyy1) will have at most one eje] term in it, the expected

value calculation will be the same as above, and each O(a) term will gain a factor of &
(due to the size of the expanded O(«) terms, the details have been omitted). We have:

E[|| Ky |[7: 1 Kx] = Eftrace(Ki Kit)| Ky
(6% (8%
] ([ - EW*&RZW”) K (1 - EH*TSkTSkH*)
(8%
+ W RW(MM + L Ly)SeH" + O(o®) |7

which, neglecting the O(a?) term, completes the proof .

O
4(4.27), (4.28), and (4.29) together establish the foundation for proving the convergence of Algorithm
2 using a supermartingale argument (see [22] for the required martingale theory, and [5] for an example

of how such an argument would work). This argument is not considered further here, but is a natural
direction for future work.
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Discussion of Theorem 8

We observe that (4.27), (4.28), and (4.29) closely resemble the recursive updates (4.3),
(4.4), and (4.7) from Theorem 6, with the main difference being that the step-size is re-
duced by a factor of % This suggests that an induction proof similar to the method used
in Theorem 6 could be used to show that (4.27), (4.28), and (4.29) will all tend to zero at
a linear rate. As with Theorem 6, this convergence would still be very slow, due to both
the reduced step-size and the high values of [y, ms, and p, required.

In the following section, we will discuss generalizing the above result to include the case
where no zero-loss solution exists. While the hope is that we can generalize the result in
the same way Theorem 7 generalized Theorem 6, the theoretical guarantees we can obtain
in this case are more limited.

4.2.2 SGD: Extending to Non Zero-Loss Solution Case

We weaken the assumption that a zero-loss solution exists, and instead we assume that
V =W*H* + A. We assume that W* and H* represent the best-possible rank-r approxi-
mation of V, implying that W*TA = 0 and AH*T = 0.

As with Theorems 7 and 8, we will attempt to show how the recursive updates for the
key quantities in the proof change based on the new assumptions, and try to apply the
same proof structure where possible.

We begin with the recursive update for Ly 1, (4.3). We consider a single stochastic update
of Ly,:
Lot = (I — W*WTWH W\ Wy
= ([ —W*WTWHT W)Wy, + oV — Wi Hy)ejel HY
= Ly + ol =W WTWHT WY (WH* + A)ejel H]
— ol = W WTW*) "W YW, Hyezel HY

=L+ oerje;FHkT — aLkaejejTH,?

= Li(I — aHy(:, 5)Hp (5, 5)7) + @A, ) Hi(c, )T
This recursive update form looks similar to the recursive update for Ly, found in Theorem

7, with the expected % added for the learning rate. As with Theorem 8, we can take norms
(neglecting O(a?) terms) to show that:
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E[|| Lyt |[F|La] = E[| Le (1 — aHy(:, 7)) Hi(:, )7) + @A G, 5) Hi(:, 5) || F] L)
= Eltrace(L] Ly,) — trace(aLi (LyHy(:,7) — A(:, 7)) He(:, )7)
— trace(aHy (s, 7) (Hy(:, ) L, — A(, 7)) Le) + O(a®)| L]
= trace(Li Ly) — trace (%Lf(Lka — A)H,?)

— trace (%Hk(HkTLf — AL, + O(a2))

~ hrace ((Lk L - A)HkT)T (e~ (L — ML) + 0(a2)>
o2 2o w»

Similarly, on the My, side, we have:

M1 = Hya(I — HT(H H™) ™) H")
= (Hp + oW, (V = Wy Hy)ezel (I — H*T(H*H*) ™" ) H*)
= My + oW, (W*H* + A — W, Hy)ejel —aW, (W*H*
+ A = Wi Hy)ejel (H*T(H*H*T) "' H"),

and we can take expectations and norms to show that:

2

« «
B[ Myl [FIMe] = || (1= SWEWic) M+ SWEA + O(e?)

(4.33)
F
Since the recursive updates for Ly and My are similar to (4.23) and (4.24) in expecta-
tion, we would perhaps expect that we could apply the same proof as for Theorem 7 here,
and conclude that both Ly, and Mj.; will converge to zero. However, as we will explain
below, we do not have this guarantee.

For the recursive updates (4.32) and (4.33), even though the expectations of the stochastic
updates appear that they could converge to zero, this does not provide any guarantee that
the stochastic updates themselves will converge. Instead, we would expect the additive A
terms to introduce a residual error. In addition, in the stochastic gradient realm, the choice
to neglect the O(a?) terms is more problematic than in the deterministic realm. During
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Gradient Descent, we would expect the higher order terms of the Taylor expansion to go
to zero at a quicker rate than the first order terms. For SGD, however, we do not have this
guarantee, due to the fact that the stationary points for each stochastic gradient estimate
are not guaranteed to be stationary points of the true objective function gradient. These
observations help to explain why SGD with no zero-loss solution does not enjoy the same
performance guarantees as shown in Theorems 7 and 8.

A Heuristic for the Limiting Value of V — W, H,,

Consider the true residual V' — Wy Hj. As discussed in 4.1.2, under Algorithm 3 we obtain
the minimum possible loss value $||A[|%. We would expect Algorithm 2 to behave almost
as well as Algorithm 3, with some potential noise around the solution point due to the
noise inherent in the stochastic algorithm.

We now present a heuristic for how close Algorithm 2 gets to the known minimal loss
solution. Pflug [60] studied the oscillations of stochastic minimization with a fixed step-
size around a stationary distribution (in our case, a stationary point in Algorithm 2).
Pflug restated a result from Kushner and Hai Huang that the distribution of%(xk —x¥)
will converge to a normal distribution with zero mean and covariance proportional to the
covariance of the stochastic gradient estimate (in our case, A?). This suggests that we
would expect the distance between iterates, ||z, — 2*||p, to be roughly ||a2Al|r, or the
distance between the function values f(z) — f(z*) to be roughly af|A||%.

This quantity, a||Al[%, is the consistently observed difference between the loss value ob-
tained by Gradient Descent (Algorithm 2) and the loss value obtained by SGD (Algorithm
3) (see 5.1.1). This is not a new observation: Dieuleveut et al. [19] cited Pflug to explain
why iterates of SGD with a fixed step-size will oscillate with an average magnitude of
O(a%), and why SGD will stop converging with a loss proportional to c. The results from
Pflug and Dieuleveut are only proved in the strongly convex regime (see 2.2.1) and thus are
not directly applicable here; as discussed by Zhu et al., the non-uniqueness of the optimal
solutions to the matrix factorization problem ensure that matrix factorization problem is
not strongly convex [75]. Despite this, the Pflug result provide a helpful heuristic to explain
the expected performance gap between Gradient Descent and SGD.

We note that the Pflug heuristic does not contradict the conclusions of Theorem 8, where

a known zero-loss solution exists. In this situation, the stationary points for each stochas-
tic gradient estimate are also stationary points for the objective function. This suggests
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that the covariance of the stochastic gradient estimate is itself zero, and thus the co-
variance of the limiting normal distribution will also be zero. As a result, the value
(f(zr) — f(z*)) = al|Al|%, should tend to zero as k — oo, as expected.
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Chapter 5

Experiments

5.1 Observing Convergence Using Synthetic Data

5.1.1 Verifying Convergence Results from Chapter 4

As a first experiment, we verify that the results from Chapter 4 can be applied more
broadly in experiments; specifically, we observe that the results from Chapter 4, which
only applied when Algorithms 2 and 3 were initialized close to a minimizer, will hold when
the algorithm is initialized at a random point.

In the following figures, we show the results of two such experiments. Figures 5.1 and
5.3 show two test runs, with varying o parameter. Each figure shows the trend in objec-
tive value when Algorithm 2 and Algorithm 3 are run from the same randomly initialized
data point!, and each figure displays two cases: a large A case® where ||A||p ~ 1073, and
a small A case where ||A||r &~ 107°. All experiments in this Chapter are performed in
MATLAB R2018a on a laptop with a 3.1 GHz Intel Core i5 and 8 GB RAM.

We observe that, as k — oo, the difference in the objective value attained via SGD (Al-
gorithm 2) and the objective value attained via Gradient Descent (Algorithm 3) is well-

!The columns of the initial points Wy and Hj are initialized on the appropriately-sized simplex using
a Dirichlet distribution

2To generate a case with a specific A, we first generate a random rank-r W and H, and a random
matrix D of the desired magnitude. We let V.= W H x D, and use the SVD of find the best rank-r factors
of V', which we call W* and H*. We then let A =V — W*H*.
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approximated on average by sa||A[|%, which is the value suggested by the Pflug heuristic
discussed in 4.2.2.

Residuals for SGD and Gradient Descent for Large and Small Delta
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Figure 5.1: Convergence of SGD and Gradient Descent for av = 0.01
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Residuals for SGD and Gradient Descent for Large and Small Delta
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Figure 5.2: Convergence of SGD and Gradient Descent for o = 0.005
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5.1.2 Experiments with Projection
Here, we show that, even with the projection, the results from Chapter 4 appear to hold,

suggesting that the results from Chapter 4 can be extended to the NMF case and Algorithm
1. We show a A > 0 result.

Residuals for SGD and Gradient Descent for Large and Small Delta
T T T
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Figure 5.3: Convergence of SGD and Gradient Descent with Projection for o« = 0.01

We observe again that the Pflug heuristic does a good job of estimating the difference
between the optimal value achieved by Gradient Descent and the optimal value achieved
by SGD, even in the projected case. While we only show a single example here, this
consistency with the non-projected results holds for both higher dimensional test cases
and a variety of @ and ||A|| values. This suggests that, with a more complicated analysis,
the results from 4.1.2 and 4.2.2 could be extended to include the projected case.
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5.2 Using Matrix Factorization for Classification: MNIST
Dataset

5.2.1 MNIST Dataset Description

The MNIST dataset is a large dataset of labelled handwritten digits that can be used
for supervised machine learning experiments [15]. The example digits have been centred
and resized to be displayed as 28 x 28 pixel images. The training set, which we will
denote as V', consists of 60,000 examples, and the test set, denoted 7', has an additional
10,000 examples. We utilize a series of helper functions [52] to reformat each image as a
784 x 1 vector; thus, the matrix factorization problem using 60,000 images is equivalent
to factoring a 784 x 60000 matrix. Figure 5.4 below shows the first 100 examples from the
dataset:

First 100 Images from MNIST Dataset
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3|3 e|) 738 6]5
HA|l7/7 4124|327
BIPC710|560F 6
1181717131918 ]|571%|3
31012417207 4]/
Q#6046 100
1iz11e3|8|2/]7]|7
§10|3|6|718>70|¢
Gl7|46|90(7.813]|/

Figure 5.4: First 100 MNIST Digits
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5.2.2 Supervised Machine Learning Through Matrix Factoriza-
tion for MINIST

Motivated by the work of Erichson et al. [20] (see 2.3.3), we evaluate the ability of SGD
and matrix factorization to be used as a tool for classification. We consider two different
ways that SGD can be applied to solve this problem.

First Approach: Direct Application of Algorithms 2 and 3

For our first approach, we use Algorithms 1 and 2 to perform matrix factorization on the
training set matrix V', with a fixed target rank of r = 16, and use the found W}, to project
the training and test sets onto the low-dimensional space. Specifically, for each test point
t; :=T(:,1), we determine its low-dimensional representation t; in the non-projected case
(Algorithm 2) by solving:

t; = argmin{Wz — t;}. (5.1)

We repeat this for each ¢; to form the low-dimensional representation of the test set T. In
the projected case (Algorithm 1), we find the low-dimensional representation of each test
point by solving the nonnegative version of (5.1):

t; = argmin{Wz — t;}. (5.2)
x>0

In both the unconstrained and nonnegative case, we apply the same process to find the
low-dimensional representation of V', defined as V. To perform classification, we select
a random sample of points from V to use for 3-nearest neighbour (3NN) classification;
we denote this set V, where |Va| = a. The 3NN classification algorithm determine the 3
points of V, that are closest to each projected training point #;, and classifies the training
point based on the most common label among these 3 points (in the case of ties, the closest
projected training point determines the label). We define the error as the percentage of
total test points that are labelled incorrectly.
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The following figures show the results of a test run of Algorithm 2 with a = 40000: Figure
5.5 shows the first 100 digits of the low-rank approximation Wy H; of V', and Figure 5.6
shows the first 100 digits of the test set before and after projection onto W.

First 100 | of Low-Di i | Representation of MNIST Dataset

Figure 5.6: First 100 Digits of MNIST Test Set Before/After Low-Dimensional Projection
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Second Approach: Limiting the Dimension of H

We observe that, by directly applying Algorithms 1 and 2 to the training set V', we will
maintain a matrix H at each step with one column per data point. We propose an al-
ternative algorithm that limits the column dimension of H: instead of having one column
per data point, we let H € R™!9 and designate one column of H for each possible label
0,1,...,9. On the k — th iteration, when a column of V (:, j) with label [ is selected by the
algorithm, we update the full matrix W}, as before, but instead of updating the column of
Hy(:,7), we update the column Hy(:,1 + 1)3. In this way, each column Hy(:,1 + 1) should
represent an average of all of the examples labelled [ as more and more iterations occur.
Specifically, we define the following modified versions of Algorithms 1 and 2, which we will
call Algorithms 4 and 5:

Algorithm 4: Modified Version of Algorithm 1: SGD for NMF

for k=1,2,... do
Choose j from [1,n| uniformly at random;
Denote [ as the label of j, I € [0,9];
Wii1 = max{Wy, — a(V(:,7) + WiHy(:, 1+ 1)) He (:, 1 + 1)T,0};
Hy1(5,7) = max{Hy(:,l + 1) — aW]I(V(:,5) + Wi Hy(:,1 + 1)),0};
end

Algorithm 5: Modified Version of Algorithm 2: Matrix Factorization for NMF
for k=1,2,... do

Choose j from [1,n] uniformly at random;

Denote [ as the label of j, [ € [0,9];

Wk+1 = Wk — Oé(V(7j) + Wka(i, [+ 1))Hk(i, [+ 1)T;
Hi1(:7) = Hi(, 1+ 1) —aWE(V (e, §) + Wi Hy (5, 1+ 1));

The following figures provide some insight into this approach. With » = 16, we apply
Algorithm 4. Figure 5.7 shows two images: the first is the columns of W} found by the
algorithm (i.e. the basis vectors of the low-dimensional space that was found), and the
second is the product WipHy (i.e. an “average” representation of each digit in the low-
dimensional space).

3SMATLAB does not use the zero-indexing convention for counting columns, so in order to represent
the first column as the label 0 column, we must use the index 1, and so on, hence the index [ + 1.

67



r=16 Basis Vectors from Algorithm 4
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Figure 5.7: r Basis Vectors Found by the Modified Algorithm 1, and the Representation
of Each “Average” Digit in this Basis

Erichson et al. [26] measure the performance of the Hierarchical Alternating Least Squares
(HALS) NMF algorithm (see 2.1.2 or [17] for further detail) against a randomized version
of HALS, and compares their classification error. We compare both the training and test
error from our test runs to their results in Table 5.1%5:

’ Training and Test Error for Various Matrix Factorization Methods ‘

Erichson et al. Results
Method Training Error Test Error
Deterministic HALS 0.03 0.05
Randomized HALS 0.03 0.05
SGD: First Approach
Algorithm 1 0.06 0.08
Algorithm 2 0.03 0.05
SGD: Second Approach
Algorithm 4 | 0.10 [ 0.12

Table 5.1: Comparison of Classification Error for Various Matrix Factorization Algorithms

“In [26], the error is broken down as two specific quantities, precision and recall, which are quantities
that indicate the occurrence of false positives and negatives in binary classification. For the MNIST
dataset, precision, recall, and training/test error are in fact all equivalent.

5For Algorithms 1, 2, and 4, we initialize the columns of W and H with vectors selected from the
appropriately-sized unit simplex; this selection tended to produce favourable results.
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We observe that, in the first approach where H is formulated with n = 60000 columns,
Algorithm 2 is competitive with the results from Erichson et al. in terms of both training
error and test error, and Algorithm 1 produces similar, but slightly weaker, results. We
note that, as Algorithms 1 and 2 will only update W}, in a limited, rank-1 manner each
time, we require significantly more iterations of Algorithm 2 than either the deterministic
or randomized HALS algorithm to obtain the results.

We also observe that Algorithm 4, where H is formulated with n = 10 columns, per-
forms reasonably well, with higher training and test error. We note that, since the pa-
rameter n is fixed at a low value no matter how large our dataset is, this approach will
scale much better with very large datasets; for example, in the Big Data regime where n is
massive, the trade-offs in decreased accuracy may be desirable in order to improve runtime.

We omit the results for Algorithm 5 as it performs very poorly as a classifier. Upon
studying this test case further, we observed that, when projected onto the low-dimensional
space spanned by Wy, the corresponding test set T contained vectors with very large neg-
ative components. These test vectors were very difficult to classify correctly using the
3NN algorithm. This is in contrast with Algorithm 2, where the projected test set vec-
tors had entries that were either nonnegative, or very slightly negative (and this were
well-approximated by zero).

5.2.3 Effects of Varying a on Test Error for MNIST Classification

In the following experiments, we aim to understand the impact that varying the step-size
a can have on test error performance. As discussed in 2.3.1, improving the training error

will not always correspond to an improvement in the test error; we can evaluate this using
the MNIST dataset.

Erichson et al. observed that, after a certain number of optimization steps, further op-
timization over the training set does not improve the test set classification error [26]. We
observe this same behaviour for the SGD algorithm; after initial improvement, the test
stabilizes around a consistent value for further iterations. We demonstrate this behaviour
in Figure 5.8 below, over a smaller test case with n = 10000 and a = 8000, by showing
how the test error decreases roughly proportionally to the norm of the objective function
gradient.

We evaluate this behaviour further by considering the effects of varying the step-size. As
suggested by the Pflug heuristic, decreasing the step-size should allow Algorithm 2 to reach
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Figure 5.8: Test Set Error and Objective Gradient for Algorithm 2 with o = 0.02

a smaller objective value (and thus, likely, a smaller training error). This improvement,
however, will come at the cost of a slower convergence due to the decrease in the step-size.
We wish to understand whether the decrease in objective value from using a smaller «
corresponds to a decrease in the test error, or if the test error plateaus.

In Table 5.2, we show the results of a number of test runs of Algorithm 2 with vary-
ing a. To ensure each test run can be compared with one another, the product o7 is kept
fixed (i.e. as the step-size decreases, the number of iterations is increased proportionally).
Table 5.2 shows that, as « is decreased, we do observe a corresponding decrease in the
objective value, although the decrease is small relative to the objective value magnitude.
We observe that, despite the decreases in «, the test error remains within an ~ 0.3%
range; thus, the additional iterations required to improve the objective value have little to
no impact on the test error.
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’ Objective Value and Test Error for Varying o and T with Constant a1’ ‘

a T Test Error Obj. Value (x10°)
2 x 1072 5 x 10° 6.78% 1.0633
1x1072 1 x 10° 6.65% 1.0574
8 x 1073 1.25 x 10° 6.91% 1.5610
6 x 1073 1.67 x 10° 6.55% 1.0555
5x 1073 2 x 10° 6.71% 1.0552
4 %1073 2.5 x 10° 6.79% 1.0548
2.5 x 1073 4 % 10° 6.66% 1.0546
2x 1073 5 x 10° 6.84% 1.0545
1x1073 1 x 107 6.88% 1.0543
9x10* 1.1 x 107 6.78% 1.0543
7x107" 1.43 x 107 6.74% 1.0542
5x 1074 2 x 107 7.04% 1.0542
1x10~* 1x 10% 6.62% 1.05641

Table 5.2: Objective Value and Test Error for Algorithm 2 with Varying a and T, and
Constant oT

Figure 5.8 and Table 5.2 suggest a specific strategy for minimizing test error for a given
test case. Matrix factorization should be run at a large a value (perhaps as large as
possible without causing the algorithm to fail) to minimize the runtime and test error
jointly. Any additional optimization, while potentially improving the training error (if this
is of interest), does not appear to have a substantial effect on the test set error.

5.2.4 Unsupervised Machine Learning Through NMF for MNIST

As discussed in 2.3.3, using NMF as a tool for unsupervised machine learning has been
explored extensively in the literature [18]. In the following, we discuss a specific example
of how NMF can be used as a dimensionality reduction tool, using the MNIST digits.

Given the 60000 training examples in the MNIST dataset, we can use an algorithm such
as k-means clustering to try to group the training examples into clusters. For the digits
example, it is natural to attempt to group the digits into one cluster per digit, or 10 clusters
total. Since each example has many features (specifically, each digit v is in R™*), this can
be an expensive procedure.

71



In the following experiment, we use NMF to find a lower-dimensional basis W, and project
each digit onto this lower-dimensional set. We then compare the performance of the k-
means algorithm on both the original training examples and the lower-dimensional pro-
jected examples. To do this, we use the following experimental procedure:

1. Select 10 random digits, one of each label, to initialize as the k-means algorithm
centroids

2. Run the k-means algorithm to termination on the full, high-dimension training data

3. Label each of the 10 clusters based on the most common label of all of the digits in
that cluster (in event of a tie, select the larger label)

Number of points with a label that does not match its cluster label
Total number of data points

4. Calculate the classification error:

5. Check to see if each of the clusters is labelled with a unique digit from 0 to 9. If so,
we call this a “good” clustering, and if not we call it a “bad” clustering.

6. Run Algorithm 4 for a predetermined number of iterations t;
7. Project the training digits onto the low-dimensional set spanned by W,

8. Initialize the k-means algorithm using the projected version of the 10 digits from
Step 1

9. Run the k-means algorithm to termination on the projected data data

10. Repeat the labelling procedure from Steps 3 and 4 to determine the low-dimensional
error rate

11. Repeat Steps 6 to 10 for various numbers of iterations to, ..., t;.

We run this experiment on three different test cases (A, B, C), representing a different
random initialization of centroids in Step 1. We summarize the results in Figure 5.9. In
the figure, each circle in the plot represents the classification error rate for the indicated
case after the indicated number of iterations, with the filled circles representing “good”
clusterings and the empty circles representing “bad” clusterings. Note that the high-
dimensional initial case is shown on the vertical axis at Iteration 0, and is marked by
crosses.

We observe that, in all three test cases, the k-means clustering algorithm fails to identify
10 clusters with distinct labels when conducted on the full, high-dimensional data. After
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k-means Clustering Performance After Various Iterations of Algorithm 4
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Figure 5.9: k-means Clustering for 3 Cases After Varying Number of Algorithm 4 Iterations

running Algorithm 4 for some iterations, all three cases show an improvement in overall
classification error, and successfully find a clustering solution where each cluster is uniquely
labelled by majority vote. These results support the idea that NMF can be used not only
as a dimensionality reduction tool to simplify data science and machine learning problems,
but also can be used to improve the performance of classification problems.
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5.3 Topic Classification with NMF for the Latent Dirich-
let Allocation Model

5.3.1 Latent Dirichlet Allocation and the NMF Problem

As a final set of experiments, we apply Algorithm 1 to the Latent Dirichlet Allocation
topic model example, as introduced in 2.3.3. Specifically, we assume that there exists an
unknown word-to-topics matrix W*, and the topics-to-documents matrix is generated by
a Dirichlet prior with unknown parameters. The goal is to use Algorithm 3 to recover the
unknown matrix W* as accurately as possible. For the following experiments, we generate
the W* matrix with random values concentrated near the main diagonal of the matrix;
this is somewhat similar to the separability assumption introduced in 2.1.2°.

In order to apply Algorithm 1, we require a data matrix V*. In our experiments, there are
4 parameters that need to be selected in advance: the step-size «, the r-vector of Dirichlet
parameters 3, the number of documents n, and the number of words in each document V.
We set up the problem as follows:

1. Sample the Dirichlet distribution to obtain an r-vector probability vector (i.e. all
entries are nonnegative and sum to 1)

2. Sample the probability vector with a categorical distribution N times; this can be
though of as generating a column H*(:,7), where H* is a “true” topics-to-documents
matrix.

3. Multiply W* by H*(:,4) to obtain V*(:,7), which can be thought of as a new docu-
ment.

4. Repeat the above steps n times to obtain a set of n documents (n should be chosen
large enough to ensure each of the r topics are sampled at least once)

This process gives us a set of “true” documents that represent the underlying Dirichlet
distribution. We can certainly perform matrix factorization on the matrix V* and try to
recover W*; a more interesting problem is to use V* to generate new documents, and use

6Specifically, given W* € R™*", a row index i, and a column index j, if L J —-2<j5< L%J + 2, then

ar
m
W is assigned a random value sampled uniformly between 0 and 1, otherwise W} is set to 0; in this

manner, we construct a data matrix that has values concentrated along the main diagonal.
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these documents to try and recover W*. Note that, in both of these cases, we are not
specifically interested in the H matrix that the matrix factorization procedure will output.

As discussed in 2.2.2, there are two different regimes in which SGD can operate: one
where new samples can be generated from an underlying distribution, and one where the
same data sample is iterated through over multiple passes. The LDA model developed
above allows us to simulate both of these regimes and compare the results. In the second
case, which we will refer to as fixed-sample SGD, we sample p new documents, generating
each one using a categorical distribution over the corresponding column of V* (again, p
should be chosen large enough to ensure each of the “true” documents is sampled at least
once). This gives us a sample matrix V which we can use as the input to Algorithm 1.

To simulate the first regime, where new data points can be generated on demand, we
use a procedure we will refer to as generated-sample SGD. Here, at each iteration of Al-

gorithm 1, we generate a brand new document Vi by selecting one of the columns of V*
at random, and sampling using a categorical distribution over that column of V* to form
a new document. We then use this new sample to update W} and the corresponding col-
umn Hy(:,7) using Algorithm 1. This allows us to simulate how SGD will perform if it is
provided with a new, unobserved document at each iteration.

5.3.2 Comparison of Two SGD Regimes for LDA

As outlined above, our goal is to understand how well SGD can recover the true words-
to-topics matrix W*. To this end, we consider a new objective function of the following
form:

FWV) = [|[Wi — W |p, (5.3)

where W, is a (possibly) scaled and permuted version of the matrix W} to best match up
with the target matrix W*. Due to the non-uniqueness of the NMF problem, it is likely
that the matrix W}, found by the algorithm will only resemble the true matrix W* after
permuting the columns and scaling appropriately. Given a Wy, we calculate W as follows:

1. Denote Wkl, - Wkr, as the r! matrices formed by all possible column permutations
of Wk

W= Gl

2. For a given permuted matrix W}, , scale each column j of W, by the factor ARSI
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3. Select 3 )
Wy = argmin{||Wy, — W*||, a € [1,r]]}.

In the following experiments’, we vary three input parameters (Dirichlet parameters 3,
number of “true” documents n, and number of sampled documents p), with a fixed step-
size v and a fixed total number of iterations T, to evaluate the effects that these parameters
have on f(Wy) for both SGD regimes. The results are summarized in Table 5.3.%

’ f(Wr) for Varying Input Parameters for 2 SGD Models
p: Uniform (5; = 0.5, Vi € [1,7])
p = 500 p=1000 || p=2000 || p=>5000 | Generated-Sample

n = 20 1.12 1.07 1.00 1.00 1.02
n = 50 0.65 0.60 0.61 0.59 0.59
n = 100 0.59 1.03 1.00 0.54 0.98
n = 200 0.44 0.39 0.36 0.34 0.32
n = 500 0.75 0.75 0.74 0.68 0.72

f: Mixed (8; =[0.1,0.2,0.3,0.2,0.05,0.05,0.6,0.4])
p = 500 p =1000 || p=2000 || p=>5000 | Generated-Sample

n = 20 1.55 2.02 1.49 2.50 1.79
n = 50 1.23 0.98 1.09 0.75 1.11
n = 100 0.45 0.46 0.54 0.48 0.47
n = 200 0.48 0.35 0.37 0.33 0.32
n = 500 0.52 0.49 0.43 0.45 0.42

p: Small (8; = 0.05, Vi € [1,7])
p = 500 p=1000 | p=2000 || p=>5000 || Generated Sample

n = 20 0.34 0.33 0.32 0.31 0.30
n = 50 0.34 0.32 0.32 0.32 0.31
n = 100 0.30 0.30 0.29 0.29 0.29
n = 200 0.55 0.55 0.54 0.53 0.53
n = 500 0.27 0.25 0.25 0.24 0.24

Table 5.3: f(Wy) with varying 3, n, p, and fixed a =1 x 107*, T = 105, m = 100, r = 8

"We utilize code from [65] to generate Dirichlet random samples.
8Note that, since the number of samples p does not affect the generated-sample SGD model, we only
list the generated-sample results once for each n and 3. The results in each p column are for fixed-sample

SGD.
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We observe that, in general, the objective function f(Wr) shrinks as n grows. This is not
surprising, as an increase in n corresponds to an increase in available “true” data for the
algorithm, which should lead to an increase in accuracy. We note that, as p increases,
there are usually marginal improvements in f(WWr). Again, this is not too surprising, as
we would expect the algorithm to perform better with more available data; however, since
the data is generated from the same n “true” data points, we would expect there to be a
threshold where increasing p no longer leads to an improvement in the objective value. We
also observe that the algorithm achieves slightly better accuracy results in the case where
the § parameters are smaller. In the LDA model, smaller 8 parameters are associated
with data that is drawn more from the extreme points of the underlying topic distribution
simplex as opposed to the center; thus, it seems reasonable that lower § values lead to
topics that are easier to discriminate between, and higher accuracy.

We also observe that the performance between the fixed-sample and generated-sample SGD
models is very similar. This suggests that, over the same number of iterations, fixed-sample
and generated-sample SGD both reach a similar level of accuracy. This is reasonable, as
both fixed-sample and generated-sample SGD perform the same underlying update step at
each iteration. This suggests that the decision of whether to use fixed-sample or generated-
sample SGD can be made based on which application makes the most sense for the problem
at hand, without having to worry about limiting the potential performance based on which
approach is chosen.
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Chapter 6

Conclusion

In this thesis, we studied the use of stochastic gradient descent to solve matrix factoriza-
tion problems, with a specific interest in the nonnegative matrix factorization problem.
We proved three results for the low-rank matrix factorization problem: two results on the
convergence of standard Gradient descent, and an additional result for the stochastic case
(where a zero-loss solution was known to exist). In all three cases, the algorithm required
careful initialization near the minimum-loss solution in order to guarantee these results.

In addition to the above proved results, we developed a heuristic for how the SGD al-
gorithm should behave where no zero-loss solution exists. This heuristic was drawn from
known results for SGD for strongly-convex objective functions (which the matrix factor-
ization problem is not); however, numerical experiments demonstrated that this heuristic
predicted the performance of SGD quite well.

While all of these results were for the unconstrained low-rank matrix factorization prob-
lem, further numerical experiments suggested that the same algorithm with an additional
projection step can be applied to solve the NMF problem, with very similar results. This
suggests that, by extending the results from this thesis to the projected case, there may be
provable performance guarantees for applying SGD to the NMF problem that can be found.

Additional numerical experiments were conducted to study the application of SGD and
matrix factorization application to machine learning problems, with a specific interest in
how matrix factorization can be used to classify unobserved data. These experiments
show that SGD without projection can attain a classification accuracy that is competitive
with that of existing matrix factorization algorithms in both the unconstrained and the
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nonnegative case. Additional experiments suggested that this approach can be used as a
dimensionality reduction tool that can improve the performance of unsupervised clustering
algorithms over large data sets.

A final set of experiments conducted matrix factorization of the NMF problem assum-
ing the Latent Dirichlet Allocation model for topic classification, where a Dirichlet prior
distribution was assumed for generating new documents. This set-up allowed SGD to be
applied in two separate regimes: one with a large fixed sample of training documents, and
one where new documents were generated at each training iteration. The results suggest
that SGD is an effective tool for recovering the hidden words-to-topics matrix in both of
these regimes.

The results from this thesis could be extended through future work in a number of ways.
The three proved results can all be extended to weaken the condition on initializing close
to the minimizer, and the heuristic provided for the performance of SGD in the non-zero-
loss solution case should be developed further to provide some provable guarantees. This,
combined with the addition of the projection step into the analysis, will help complete the
picture for understanding the performance of SGD on the NMF problem.

An additional avenue of future work is to expand on the numerical results evaluating how
the NMF solutions found by SGD can be used as machine learning classifiers. Specifically,
further work should seek to understand where using SGD for this problem can provide
advantages that other algorithms may not. This could include opportunities for paral-

lelization, or utilizing SGD specifically to handle newly generated training data (as in the
LDA model).

Overall, this work suggests that the unique properties of SGD make it an intriguing ap-
proach for solving large scale matrix factorization problems. Given the effectiveness of
SGD as a training algorithm in many other data science or deep learning problems, the
application of this algorithm to other challenging optimization problems continues to merit
further study.
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