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Abstract

Customers are consuming enormous digital videos every day via various kinds of video

services through terrestrial, cable, and satellite communication systems or over-the-top

Internet connections. To offer the best possible services using the limited capacity of video

distribution systems, these video services desire precise understanding of the relationship

between the perceptual quality of a video and its media attributes, for which we term

it the generalized rate-distortion (GRD) function. In this thesis, we focus on accurately

estimating the GRD function with a minimal number of measurement queries.

We first explore the GRD behavior of compressed digital videos in a two-dimensional

space of bitrate and resolution. Our analysis on real-world GRD data reveals that all GRD

functions share similar regularities, but meanwhile exhibit considerable variations across

different combinations of content and encoder types. Based on the analysis, we define the

theoretical space of the GRD function, which not only constructs the groundwork of the

form a GRD model should take, but also determines the constraints these functions must

satisfy.

We propose two computational GRD models. In the first model, we assume that the

quality scores are precise, and develop a robust axial-monotonic Clough-Tocher (RAMCT)

interpolation method to approximate the GRD function from a moderate number of mea-

surements. In the second model, we show that the GRD function space is a convex set

residing in a Hilbert space, and that a GRD function can be estimated by solving a pro-

jection problem onto the convex set. By analyzing GRD functions that arise in practice,

we approximate the infinite-dimensional theoretical space by a low-dimensional one, based

on which an empirical GRD model of few parameters is proposed.

To further reduce the number of queries, we present a novel sampling scheme based

on a probabilistic model and an information measure. The proposed sampling method

generates a sequence of queries by minimizing the overall informativeness of the remaining

samples.

To evaluate the performance of the GRD estimation methods, we collect a large-scale

database consisting of more than 4, 000 real-world GRD functions, namely the Waterloo

iv



generalized rate-distortion (Waterloo GRD) database. Extensive comparison experiments

are carried out on the database. Superiority of the two proposed GRD models over state-

of-the-art approaches are attested both quantitatively and visually. Meanwhile, it is also

validated that the proposed sampling algorithm consistently reduces the number of queries

needed by various GRD estimation algorithms.

Finally, we show the broad application scope of the proposed GRD models by ex-

emplifying three applications: rate-distortion curve prediction, per-title encoding profile

generation, and video encoder comparison.
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Chapter 1

Introduction

1.1 Motivation

The rate-distortion (RD) theory lays a theoretical foundation for lossy data compression

and is widely employed in image and video compression schemes [6]. One of the most

profound outcomes from the theory is the so-called RD curve, which is defined as the

function of signal distortion (or loss of quality from the original source) against data rate.

The RD curve reveals the minimum bitrate required to encode a source when a fixed

amount of distortion is allowed, or equivalently the highest achievable quality given limited

bitrate resources [63]1. The RD theory also proves that the RD curve varies with both

the distribution of source signal and the distortion measure, making the curve a perfect

description of the complexity of video content and the mechanism of the human visual

system (HVS). However, the original rate-distortion theory somewhat simplistically and

ideally assumed an omniscient encoder, which not only has precise knowledge of the source

distribution, but also is able to fully exploit the knowledge for the coding design. If the

1Since a rate-distortion function can be trivially converted to a rate-quality function by subtracting the

former from the maximum quality value, we use the two terms, “rate-distortion function” and “rate-quality

function”, interchangeably, unless otherwise specified. Without loss of generality, we further assume that

the response of the rate-distortion function is the perceptual quality instead of the distortion, so the

rate-distortion function is generally increasing with regards to the bitrate.
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assumption ever held, any bitrate would correspond to a quality value, just as the beautiful

exponential relationship between bitrate and mean squared error (MSE) for a memoryless

Gaussian source [6]. Unfortunately, this assumption is utterly violated in the case of video

compression. Due to limited understanding of the video signal distribution and restricted

computational resources, it is currently impossible for a practical video encoder to seek out

an optimal encoding profile given a fixed bitrate. To combat this dilemma, state-of-the-

art video encoders often make themselves extremely customizable, leaving tens of tunable

arguments to the users. Each argument influences the resulting quality in a different

way and adds a new dimension to the rate-distortion relationship. This fact motivates us

to propose the notion of multivariate generalized rate-distortion (GRD) functions, which

becomes the main topic of the thesis. To better explain the idea of GRD functions, we

illustrate the process of compressing a video with a practical video encoder in Fig. 1.1.

Given a source video and a practical encoder, different encoding arguments, or media

attributes may lead to different perceptual qualities of compressed video representations.

The proposed GRD function describes the mapping from the input media attributes to the

output quality as shown in Fig. 1.1. Another direction to generalize the RD function is

considering various criteria of the distortion measure. The perceptual quality of a video

may change substantially when viewed on different devices. In order to thoroughly describe

the interaction between video content, video codec, and the HVS, we define the general

class of GRD functions as follows

f : RK → RJ , (1.1)

where the input of the function is K encoder arguments (such as the target bitrate, the

spatial resolution, the framerate, the bit depth etc.), and the output of the function is

a vector of perceptual distortion/quality at J viewing conditions (including variations of

viewing devices).

The study of the GRD function has drawn increasing attention from the industry.

Video services have become an integral part of the modern life, and the global consumer

demand of such services continues to grow at an accelerating speed. According to Cisco’s

forecast reports [17], video traffic proportion in total mobile data traffic is expected to

exceed 82% by the end of 2022, skyrocketing from modest 59% in 2017. The explosion of

video data volume will quickly drain the storage, bandwidth, and computational resources

2



Figure 1.1: A GRD function arises from practical video encoding processes.
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Figure 1.2: Flow diagram of video delivery chain

in the next decade. Concurrent with the surging demand of video services is the increasing

expectation of Quality of Experience (QoE) from consumers. It has become a major task

of video service providers to deliver high quality videos to enormous and diverse consumers

with limited capacity of the video delivery systems.

A typical video delivery chain is illustrated in Fig. 1.2. At the server side, video service

providers usually preprocess and encode a high quality source video into several represen-

tations with different settings of media attributes. At the client side, the representation of

possible QoE is selected among those provided from the server side according to the con-

sumer’s viewing environment. In order to address the growing heterogeneity of consumers’

viewing conditions, video service providers have to determine which representations to en-

code so that both optimal QoE performance and efficient bitrate usage can be achieved

simultaneously. This difficult task requires precise understanding of the relationship be-

tween the perceptual quality of a video and its media attributes, which can be fully depicted

by the proposed GRD function.

In summary, the GRD function can benefit a variety of existing and potential video

applications in three ways.
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1. The GRD function offers an approach to estimating the perceptual quality of a video

representation without actually encoding it, which saves all the time-consuming com-

putations involved in sophisticated video compression and quality assessment proce-

dures.

2. The GRD function provides an explicit functional form of the mapping from media

attributes to the perceptual quality, making it possible to directly optimize media

attributes towards desired objectives of many video applications.

3. The GRD function illustrates a comprehensive description of a video content with

regards to a specific video encoder, enabling thorough comparison of video codecs

and deeper understanding of video complexity.

Despite the central role of the GRD function in many video applications, estimating a

GRD function is difficult, expensive and time-consuming. The major difficulty arises from

the lack of theoretically-grounded GRD model and the scarcity of samples in the GRD space

restricted by computational resources. The function forms of existing GRD models are

often heuristically designed without theoretical justification or empirical validation. The

performance of these models is further impaired when only sparse attribute-quality pairs

are available. This scenario often occurs in practice because probing the quality of a single

sample in the GRD space involves sophisticated video encoding and quality assessment,

both of which may demand excessive computational resources. For example, the recently

announced highly competitive AV1 [3] video encoder and video quality assessment model

VMAF [44] could be over 1000 times and 10 times slower than real-time for full high-

definition (1920× 1080) video contents. Given the massive volume of multimedia data on

the Internet, the real challenge is to produce an accurate estimate of the GRD function

with a minimal number of quality queries.

1.2 Objectives

The objectives of this thesis are to determine the theoretical space of the GRD function, and

to develop novel GRD function estimation frameworks and methodologies. In particular,

4



we will focus on modeling the case where the video bitrate and spatial resolution are the

main quality influential factors. The desirable properties of our GRD model are as follows:

• Prediction accuracy: The model produces asymptotically unbiased estimation

of the GRD function, regardless of the source video complexity and the encoder

mechanism.

• Convergence speed: The model requires a minimal number of samples to recon-

struct the GRD surface with considerable accuracy.

• Mathematical soundness: The model has to be mathematically well-behaved,

making it readily applicable to a variety of computational multimedia applications.

1.3 Contributions

In order to address the increasing diversity of video contents and heterogeneity of viewing

devices, we proposed the notion of multivariate GRD functions as Eq. (1.1) for the first time

in the literature. In the rest of the thesis, we focus on theoretically analyzing the properties

of GRD functions, and developing effective algorithms to estimate a GRD function from

limited queries. Specifically, we explore the behavior of GRD functions in a two-dimensional

variable space of bitrate and resolution. Our analysis on real-world data shows that all GRD

functions share similar regularities, but meanwhile exhibit considerable variations across

different combinations of video content and encoder. Combining the practical observations

with domain knowledge, we are able to define the theoretical space which a valid GRD

function should live in. Determining the GRD function space not only constructs the

groundwork of the form such a model should take, but also determines the constraints

these functions must satisfy.

We propose two computational models for recovering the GRD surface. In the first

model, we assume that the quality measurements are precise, and thus approximate the

GRD function with a novel interpolation model. Specifically, an robust axial-monotonic

Clough-Tocher (RAMCT) interpolation method is developed by imposing the axial-monotonicity
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constraints on the classic Clough-Tocher (CT) model. With a novel re-parametrization

strategy and a new continuity condition, we find that the RAMCT model can be formu-

lated as a quadratic programming problem, whose solution provides an optimal interpo-

lation model lying in the theoretical GRD function space. Moreover, the resulting GRD

function is differentiable everywhere on the domain of interest, and possesses a certain

minimum pseudo-norm property among all valid CT interpolants.

In the second model, we argue that all valid GRD functions must lie within a convex set

that results from the intersection of a hyper-plane and a positive cone in a Hilbert space,

and model the GRD estimation problem as a projection onto convex sets (POCS). The

minimal number of required samples is thus determined by the dimensionality of the convex

set of the GRD function. We further reveal that GRD functions arising in practice lie in a

rather low-dimensional space according to an empirical study on a database consisting of

1, 000 real-world GRD functions. By combining the knowledge from both the theoretical

reasoning and the empirical data, we formulate a low-parameter function model, namely

the eigen generalized rate-distortion (EGRD) model, which is able to recover the GRD

function with the access to only a small fraction of samples. The proposed EGRD model

outperforms the existing methods both asymptotically and absolutely, and precludes the

need for the complicated computations in the first model.

To further reduce the computational cost, we present a novel sampling scheme based on

a probabilistic model and an information measure. The proposed sampling scheme picks

the most informative sample every time, and updates the informativeness of the remaining

candidates according to their correlations with the selected sample. Finally, a sequence

of queries is generated by the proposed method, with which the overall uncertainty of the

GRD function is minimized.

To evaluate the proposed algorithms, we establish the large-scale Waterloo generalized

rate-distortion (Waterloo GRD) database, which is comprised of 4, 750 real-world GRD

functions generated from more than 1, 000 natural videos spanning a variety of real-world

contents. Extensive experiments are conducted on the database to compare the proposed

algorithms with existing GRD models and sampling schemes in the literature. Experimen-

tal results show that the proposed GRD models consistently achieve higher reconstruction

accuracy with fewer quality queries. Moreover, by visualizing the approximate GRD sur-
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faces, we find that the two proposed models always generate well-behaved and valid GRD

functions even with insufficient training samples. The power of the proposed sampling

scheme is also evident in the experiments, as it always reduces the number of quality

queries needed for various GRD models to achieve similar prediction accuracy.

Furthermore, we show the broad application scope of the GRD functions by three use

cases that emerge in industrial practice using the proposed RAMCT model:

• Rate-Distortion Curve Prediction at Novel Resolutions: Given a set of RD

curves at multiple resolutions, it is desirable to predict the rate-distortion perfor-

mance at novel resolutions, especially when there exists a mismatch between the

supported resolution of downstream content delivery network and the recommended

encoding profiles. Compared to an intuitive linear interpolation method, the pro-

posed GRD models can effectively exploit the underlying dependency among video

signals at different resolutions, and accurately recover the shape of RD curve at a

completely new resolution. The estimated RD curve preserves important properties

of a GRD surface, thanks to the theoretical constraints imposed on the GRD model.

• Per-Title Encoding Profile Generation: To overcome the heterogeneity in users’

network conditions and display devices, video service providers often need to encode

a set of representations of various qualities. We introduce a quality-driven per-

title optimization framework to automatically select the best encoding configurations

where the proposed GRD model serves as the key component. The encoding profile

generated by the proposed framework claims significant Bjøntegaard-Delta bitrate

(BD-Rate) saving over the recommended profiles from Netflix [1], Apple [5], and

Microsoft [50].

• Codec Comparison: In the past decade, there has been a tremendous growth

in video compression algorithms, thanks to the fast development of computational

multimedia. With many video encoders at hand, it becomes pivotal to compare

their performance. We extend the widely used BD-Rate and Bjøntegaard-Delta peak

signal-to-noise ratio (BD-PSNR) with the proposed GRD model to provide more

comprehensive and more robust comparison between two video codecs.
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In summary, the main contributions of the thesis are six-fold. First, we systematically

summarize the properties of the GRD function, based on which the theoretical space of

GRD function is well defined. Second, we introduce the RAMCT model inherited from

the CT interpolation method for GRD approximation. Third, we formulate the GRD

estimation problem as POCS in a Hilbert space. By approximating the function space

with the most representative basis, we present a low-dimensional EGRD model for recon-

structing the GRD function with minimal quality measurements. Fourth, we propose an

information-theoretic sampling (ITS) scheme to further reduce the computational cost of

GRD approximation. Fifth, we establish a large-scale GRD function database, the Water-

loo GRD database, which is not only the first of its kind, but also the largest video quality

database in the video quality assessment (VQA) community. Finally, we use three novel

applications to show the potential of the proposed GRD models.

1.4 Thesis Outline

The layout of this thesis is as follows.

Chapter 2 first introduces three topics that are closely-related to the study of the GRD

function: the video encoder mechanism, the objective VQA methods, and the subject-rated

VQA databases. Then a review of existing models of GRD functions is presented. We find

that these models are either systematically biased or computationally prohibitive.

In Chapter 3, we first comprehensively analyze the properties of the GRD function,

based on which its theoretical space is determined. Then we develop a novel interpolation

method, i.e RAMCT, to reconstruct the GRD surface from a moderate number of training

samples. Finally, we show that the GRD function space can be approximated by the span

of only a few principal components, based on which we propose the EGRD model.

Chapter 4 introduces a novel sampling scheme based on a probabilistic model and an

information measure. The proposed sampling method generates a sequence of queries with

which the uncertainty of GRD function is minimized. Then we construct a large-scale

GRD function database, based on which extensive experiments are carried out to validate

the superiority of the proposed methods.
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Chapter 5 demonstrates the usefulness of the GRD models using three industry appli-

cations. We show that the GRD function serves as the key component in all the three

applications, and the proposed GRD models significantly improve the current practice.

Chapter 6 summarizes the thesis, reemphasizing the importance of the proposed GRD

function and discussing promising directions for future studies.
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Chapter 2

Background

The generalized rate-distortion (GRD) function arises from the interaction of a video en-

coder and a video quality measurement. Therefore, it is not possible to study the GRD

function without a deep understanding of video encoders, the recent advancement of objec-

tive video quality assessment, and the existing subjective experiments on real-world video

data. In this chapter, we review the general workflow of a video encoder, the development

of objective video quality assessment (VQA) models, and the existing subjective VQA

databases in the literature. We also show how the GRD/rate-distortion (RD) function was

estimated in previous researches, and conclude that existing studies on modeling the GRD

function are ad-hoc and achieve only limited success.

2.1 Video Encoder

Although several advanced video encoders, such as HEVC [29], VP9 [30], AV1 [3], and

AVS2 [53], have been proposed and deployed in the past decade, currently H.264 [80] is

by far the most widely used video encoding standard in practice. Therefore we use the

H.264 codec to introduce how a video encoder can efficiently compress a video. The other

well-known encoders work in a quite similar way, even though they may differ in many

technical details, such as the signal decomposition transforms and the shapes and sizes of

prediction and encoding units.
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Figure 2.1: Basic coding structure of H.264 encoder for a macroblock. The dashed box

illustrates a video decoder. Image by courtesy of Thomas Wiegand etc. [80].

The main idea of a video encoder is to remove the dependency between pixel values

within or across frames so that the video signal can be encoded with minimal bitrates.

This is done by predicting subsequent pixel values from already-encoded pixels, and only

encoding the residuals with transform coding. Specifically, the H.264 encoder divides a

picture into 16 × 16 disjoint macroblocks, and sequentially encodes one macroblock at a

time. Fig. 2.1 illustrates the coding diagram of the H.264 encoder for a macroblock. The

whole encoding process of a macroblock roughly consists of four steps. First, the pixel

values of the macroblock currently under encoding are predicted by previously encoded

macroblocks. Second, the prediction residual block is transformed into a frequency space,

where the interdependency between residuals is further reduced. Third, the transformed

values are quantized and encoded into bitstreams. Finally, the encoded macroblock is again

decoded and stored in a buffer for the purpose of predicting subsequent macroblocks. In

order to prevent encoding errors from spreading and to enable random access to the video

stream, such prediction coding process is restricted inside a slice, which is formed by a

sequence of macroblocks, or a group of pictures (GoP) in the case of inter-frame prediction.
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We then take a look at the details of the H.264 encoder. To initialize the prediction

coding process, the first macroblock has to be encoded without prediction. The H.264

encoder provides two major prediction strategies: intra- and inter-frame predictions, where

the latter can be performed with only one frame (P-mode) or two frames (B-mode). The

intra mode prediction only makes use of pixel values that are within the same frame,

and predicts 4 × 4 blocks with Intra 4 × 4 mode in the luminance channel, or 16 × 16

blocks with Intra 16 × 16 mode in both the luminance or chroma channels. Moreover,

a special mode called I PCM allows an intra-mode macroblock to be directly encoded

with its original pixel intensities. For the inter-mode macroblocks, their pixel values are

predicted from other reference frames, some of which may even appear after the frame

under encoding in the B-mode case as long as the reference frame is encoded earlier.

This feature means that H.264-encoded videos are not decoded in the original time order.

Since objects are moving across frames, motion vector (MV)s of an inter-mode macroblock

relative to its reference in other frames should be estimated to achieve the best possible

prediction and to minimize the residual. With the little cost of transmitting a MV, the

encoding efficiency of the macroblock can be largely enhanced. To further save the bit-

rate, a common technique for encoding an MV efficiently is to estimate it from the MVs

of neighboring macroblocks. Then the MV residual is encoded and transmitted instead of

the MV itself. It is worth noting that H.264 introduces two skip modes for the P- and

B-mode macroblocks, respectively. For the skipped macroblocks, neither the MVs nor pixel

residuals are encoded or transmitted. As a result, the optional skipped mode allows the

encoder to encode a large area with constant motions with very few bits, but still preserve

considerable perceptual qualities.

The pixel and motion vector residuals are then encoded by lossy transform coding. The

basic unit for transformation is a 4 × 4 block (for both luma and chroma channels). A

separable integer transformation, which behaves similarly to the traditional 4× 4 discrete

cosine transform (DCT), is used to achieve efficiency and effectiveness simultaneously. To

further reduce the computational complexity, the quantization step on the transformed

coefficients is integrated in the process of transformation. Additionally, a 4 × 4 or 2 × 2

Hadamard transform followed by a separate quantization process is applied to the DC

coefficients in a macroblock for luma or chroma channels, respectively. Afterwards, these
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quantized coefficients are encoded by a context-adaptive method (CAVLC or CABAC),

and transmitted to the receiver.

In summary, the H.264 codec provides a hybrid block-based transform coding scheme

for lossy video compression. In practice, a source video is often provided to the encoder

with a target bitrate and other necessary encoding configurations, such as the spatial res-

olutions, the prediction modes etc. Then the encoder will then produce a corresponding

video representation with visual distortions. In the case of the H.264 encoder, typical

distortions include nonuniform blurring and blocking artifacts, and impairments of tem-

poral smoothness during the video playback. These visual distortions lead to degraded

perceptual quality. Such a pair of media attributes and quality is one point on the GRD

surface. Therefore, the whole GRD surface can be obtained by changing the bitrates and

other encoding configurations, though this approach is prohibitively time-consuming and

expensive. It is worth noting that different video encoders often induce different visual dis-

tortions due to their specific designs. As a result, the GRD function may behave differently

with different video encoders.

2.2 Video Quality Assessment

In order to assess the perceptual quality of countless videos, a reliable objective VQA

model is thus highly desired. Existing VQA methods can be classified into full-reference

(FR) VQA, reduced-reference (RR) VQA and blind video quality assessment (BVQA)

based on the accessibility of the pristine reference when estimating a video’s quality [62].

The FR VQA models are currently more accurate than the other two classes in predicting

subjective quality scores. Since the reference video is often considered available in the

context of GRD function estimation, we put our emphasis on the FR VQA methods, while

a brief introduction of the RR VQA and BVQA models is also provided.
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2.2.1 FR-VQA

The study of VQA started with investigating the problem of image quality assessment

(IQA). mean squared error (MSE) and peak signal-to-noise Ratio (PSNR) were two ear-

liest IQA methods that were widely used due to their simple computation, clear physical

significance, and appealing mathematical properties such as differentiability, convexity, and

positive definiteness. They still serve as the default quality models for rate-distortion opti-

mization in modern video encoders [28, 29, 30, 3, 53]. While these methods could measure

signal fidelity between distorted images and the references, their estimated quality scores

often deviate far away from subjective ratings [73, 75, 74]. This is mainly because the

classical signal fidelity measures fail to take the mechanism of the human visual system

(HVS) into account.

In order to address the problem, many perceptually-meaningful FR IQA models were

proposed in the past several decades. For example, the well-known structural similarity

(SSIM) index [75] assesses image quality by measuring the changes in local luminance,

contrast, as well as structural information. Natural scenes consist of many structures. The

SSIM approach assumes that the HVS is evolved to be sensitive to the structures that

recurrently occur in our everyday life. The SSIM index then quickly prevailed over a wide

range of disciplines in image processing due to its high correlation with human opinions

and computational simplicity, and now also becomes an option in the HEVC codec [29].

Various versions of the SSIM, such as the MS-SSIM [78] and the CW-SSIM [57], proposed

later further improved the effectiveness and robustness of the SSIM index.

Another highly cited IQA model is the visual information fidelity (VIF) [64]. The VIF

regards a pristine picture as a realization from a virtual “natural random source” and

simulates any level of distortion annoyance by signal attenuation combined with additive

white noise. The ratio of information conveyed by the HVS from a pristine image to that

from a distorted image is then computed to measure visual quality of the distorted image.

More recently, a very efficient and effective FR IQA algorithm was proposed in [84]. By

calculating the gradient magnitude similarity deviation (GMSD) between the reference

image and its distorted version, the algorithm can predict subjective opinions on image

quality with state-of-the-art performance at a low computational complexity.
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Directly applying the IQA methods to videos usually yields inferior performances be-

cause temporal distortions are ignored by such methods. Objective VQA models were thus

designed to deal with the temporal issues. One of the earliest HVS-based VQA models was

proposed in [48], where the HVS spatial-temporal filtering properties and masking effect

were considered. In [79], Watson et al. exploited both visual filtering and masking models

to estimate local just-noticeable differences of videos in the DCT domain. Then the locally

adjusted errors were pooled to form a single quality score for the test video. Although fol-

lowing a similar philosophy, the perceptual video quality metric proposed in [36] estimated

perceivable spatial distortion in the pixel domain rather than the frequency domain, and

compensated it with temporal variability. In addition, color errors were also calculated

and combined with the previous two factors to predict the quality of video. More recently,

authors in [60] modeled the middle temporal visual area in the human brain by separable

Gabor filter banks, and proposed a FR VQA method named motion-based video integrity

evaluation (MOVIE). Besides the differences between Gabor filter responses, MOVIE also

used the Gaussian smoothed DC errors to capture low frequency information and the op-

tical flow fields to estimate temporal distortions. All these quality-related indices were

then pooled and combined to form the MOVIE index. The performance of MOVIE was

reported relatively high, but its computational burden is not bearable.

In order to exploit the success of FR IQA, some state-of-the-art VQA models base

themselves upon excellent IQA indexes. For example, VMAF [44] enriched the frame-level

VIF features, and trained the VQA model on a relatively large database. As another

high-performance IQA model, SSIM has also been extended to evaluate the quality of

videos in several works. Early trials along this direction include [47][77][76]. In [77], SSIM

index for each locality is first calculated for the Y, Cb, and Cr channels independently,

and then averaged with different weights assigned to each channel. Both the luminance

and the motion masking effects are considered to respectively adjust the local weights in

each frame and the frame weights to compute the final score. In [76], a new visual speed

model was employed for weighted pooling local quality map, and improved performance

was reported on SSIM and PSNR with the new pooling method. Most recently, based

on SSIM and modern vision models, a novel VQA software, SSIMplus [54], has emerged,

featuring not only state-of-the-art performance across different devices, resolutions and
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contents, but also real-time computational speed.

2.2.2 RR-VQA and BVQA

Due to the limited bandwidth in real-world applications, full access to the reference is not

always available. In such cases, RR methods may be used as a compromise. In order to

represent the quality with only a few bits, early research tried to extract the significant

features of perceivable video distortions [81], but only achieved limited success. In 2013, a

spatio-temporal reduced reference entropic differencing (STRRED) index was proposed to

evaluate the video quality by combining statistical models and perceptual principles [66].

The proposed model produced robust performance in various cases, although its relatively

high computational complexity impedes its potential application.

The RR model gradually gives way to the BVQA method as the latter does not require

an auxiliary channel to transmit quality features from the source video. Since a video

compression codec degrades a video in a particular way, some BVQA models predict video

quality by codec analysis. In [65], Søgaard et al. proposed to first identify whether a

test video is encoded by H.264 [80] or MPEG-2 [70], and then extract respective quality

features for each codec. Later, the authors proposed another set of quality features [37] for

the HEVC-encoded videos [68]. Though knowledge of a specific codec helps such methods

achieve decent performance, it is very hard to incorporate them into a single general-

purposed model or to extend them to new codecs.

By considering a video as a stack of pictures, V-CORNIA [83] takes advantage of the

successful BIQA features, CORNIA [85], to characterize frame-level perceptual qualities,

and adaptively pool them into a video quality score along the temporal dimension. How-

ever, such a framework fails to take into account the following influencing factors in video

perceptual quality: 1) motion-induced blindness [11, 55] to spatial distortions; 2) pos-

sible temporal artifacts or incoherence [86, 56]; 3) codec-specific distortion [86]; and 4)

interaction between spatial and temporal artifacts [38].

Natural video statistics (NVS) features are employed to jointly consider spatiotemporal

distortions as a whole. Normally, NVS features are first extracted [56, 82, 42, 43], and
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then a regression function is trained on MOS to map extracted features to quality scores.

However, due to the complex nature of the BVQA problem and our limited understanding

on natural video statistics, these models have only achieved limited level of success.

Despite the specific limitations the three kinds of existing VQA models may have,

they are faced with the same problem that the models are often tuned on a very limited

subject-rated database, which makes their generalizability questionable in the real world.

Most recently, a deep-learning-based BVQA model was trained to predict the scores from

a FR model, SSIMplus [54], on a large-scale database [46]. Experimental results show that

the model exhibits higher performance and better generalizability than other competing

models. However, only limited distortion types were covered by the premature model.

2.3 VQA Databases

The VQA community have also made a lot of efforts on building up various databases

with subjective ratings to facilitate the research. A good VQA database should contain as

diverse contents and distortion types as possible so that it can not only serve as a proper

validation for the proposed algorithm, but also provide representative training samples

for researchers investigating new models. However, collecting subjective ratings is rather

laborious, expensive and time-consuming, since at least 15 observers are required to obtain

a mean opinion score (MOS). A typical subjective-rated VQA database only consists of less

than a dozen of source videos and only a few hundreds of distorted videos. Moreover, it is

typically the case that each video content is only encoded at 3-4 bitrates and 2-3 spatial

resolutions. Such a sparse distribution of representation samples makes all the subject-

rated databases inappropriate for benchmarking the GRD function estimation methods,

motivating us to propose our own database of GRD functions. For the completeness of the

review, we briefly list some well-known public-domain databases as follows:

1. LIVE Video Quality Assessment Database [61]: 150 distorted videos were gen-

erated from 10 pristine ones by undergoing four kinds of distortion, namely MPEG-

2 compression, H.264 compression, simulated error-prone IP and wireless network

transmission. For the compression distortions, four levels were included in this
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database, while for the transmission distortions only three levels were used. The

quality of each distorted video is given as difference mean opinion score (DMOS)

which was computed from ratings by 29 subjectives.

2. CSIQ Video Database [72]: This database consists 216 distorted videos, which

were generated from 12 high-quality reference videos with 6 different types of distor-

tion. These distortions include 4 popular compression standards, i.e. H.264, HEVC,

MPEG, and a wavelet based codec, SNOW, 1 simulated transmission error in wireless

environment, and 1 spatial-domain additive white Gaussian noise. 35 subjects were

recruited to rate all the videos, and DMOS for each test video is provided within the

database.

3. MCL-V Database [45]: This VQA database contains 12 reference videos with the

high-definition resolution (1920 × 1080), each of which is compressed by the H.264

encoder at two different spatial resolutions at four different levels. As a result, 96

video representations are generated, whose MOS were collected and published along

with the database.

4. IVP Subjective Quality Video Database [88]: In this database, 10 reference

videos of high definition at 1920 × 1088 were subjected to 4 kinds of distortions to

generate a total of 128 distorted videos. 42 paid viewers, including 25 non-experts and

17 experts, were recruited to watch all the videos and rated their perceptual qualities.

Subjective scores are reported in the form of DMOS plus standard deviation.

5. MCML 4K UHD video quality database [15]: This database covers two of the

highest spatial resolutions in practical use, i.e. 3840× 2160 and 1920× 1080. Three

state-of-the-art encoders, H.264, HEVC and VP9, were employed to compress ten

source videos at four different quality levels. As a result, 240 distorted videos were

generated in total.
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2.4 GRD Function Estimation Methods

Although many recent works have noticed that various media attributes may influence the

perceptual quality of encoded representations [89, 69, 22, 12, 52], this is the first time to

explicitly define a multivariate GRD function as in Eq. (1.1) to describe the relationship

between these attributes and the resulting quality. Therefore, existing works are only

focused on modeling 1D RD functions. Although we may extend these 1D methods to

multi-dimensional cases by estimating multiple RD curves at different resolutions, failing

to exploit the correlations between these RD curves may lead to inferior performances in

terms of both the prediction accuracy and the convergence rate. Moreover, these methods

lack the capability to predict the RD behaviors at novel resolutions, since they are restricted

only to the bitrate dimension and several discrete resolutions.

We then briefly review existing methods for estimating RD functions. These meth-

ods roughly fall into two categories based on their assumptions about the shape of a RD

function. The first model class only makes weak assumptions about the properties of RD

functions. For example, [22] assumed the continuity of RD functions and apply linear in-

terpolation to estimate the response function after densely sampling the encoding bitrates.

However, the exhaustive search process is computationally expensive, not to mention the

number of samples required increases exponentially with respect to the dimension of input

space.

By contrast, the second class of models makes strong a priori assumptions about the

form of the RD function to alleviate the need of excessive training samples. For example,

Toni et al. [69, 41] derived a reciprocal function to model the RD curve as

q = c− a

|x+ d|b + 0.01
,

where x and q respectively denote the bitrate and the perceptual quality of the video

representation, while a, b, c and d are free parameters to fit. Similarly, [12] modeled the

rate-quality curve at each spatial resolution with a logarithmic function, i.e.

q = a log(x+ 1) + bx+ c.

A significant limitation of these models is that the employed assumptions are often heuris-

tic, leading to biased estimation results.
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In addition to the specific limitations the two kinds of models may respectively have,

they also suffer from the same problem that the training samples in the GRD space are

either manually picked or randomly selected, neglecting the difference in the informative-

ness of samples. While many recent works acknowledge the importance of GRD func-

tion [89, 69, 22, 12], a careful analysis and modeling of the response has yet to be done. To

address this void, it is highly desirable to seek for a good compromise between 1) global

and rigid models depending on minimal training samples and 2) local and indefinite models

requiring exhaustive search in the video representation space.
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Chapter 3

Modeling Generalized

Rate-Distortion Function

In this chapter, we first summarize the mathematical properties that all generalized rate-

distortion (GRD) functions share through both theoretical analysis and practical obser-

vations. Such mathematical properties actually define the theoretical space of the GRD

function, which not only lays the groundwork of the mathematical form a GRD model

should take, but also determines the constraints a valid GRD function should conform

to. Then, we develop two empirical GRD models by combining the theoretical function

space with interpolation or dimension reduction techniques, respectively. Both models can

accurately recover the per-title GRD function with a small number of queries, and possess

desired mathematical features that will benefit subsequent applications.

3.1 Theoretical Space of GRD Functions

We have defined the GRD function as the mapping from media attributes, such as bitrate

and spatial resolution, to perceptual qualities of encoded video representations with these

attributes. In this section, we show how the theoretical space of GRD functions can be

derived from domain knowledge and real-world data.
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3.1.1 Observations from Practical GRD Surfaces

We construct a large-scale database of GRD functions, where more than 4, 000 realistic

GRD functions are collected. Details about the database will be elaborated later in Section

4.2. From the practical data, we summarize several key observations of GRD function as

follows.

Observation 1: The family of GRD function embraces a significant amount of vari-

ability across different video contents and encoding schemes. We illustrate in Fig. 3.1 three

sample GRD surfaces of different contents encoded with the same video codec, from which

we can see how the surface varies with video complexity. Moreover, the capability of video

encoder may also significantly influence the shape of GRD function as shown in Fig. 3.2.

Such diversity turns out to be the major challenge for precisely approximating a per-title

GRD function.

Observation 2: The GRD surface plateaus when encoding bitrates are high. This

fact is made evident by projecting the 3D GRD surface to the bitrate-quality plane, as

displayed in Fig. 3.3. Each rate-distortion (RD) curve eventually saturates when the

encoding bitrate goes beyond a certain threshold. Another interesting finding from Fig.

3.3 is that the saturation threshold for a higher resolution is always greater than that for

a lower one. This phenomenon may be explained by the fact that downsampling a video

reduces the total information that needs to be encoded.

Observation 3: GRD functions are smooth in the bitrate-resolution space. In the-

ory, the Shannon lower bound, the infimum of the required bitrate to achieve a certain

quality, is guaranteed to be smooth with respect to the target distortion [6]. On the other

hand, successive change in the spatial resolution would gradually deviate the frequency

component and entropy of the source video, resulting in smooth transition in the perceived

quality. In practice, the smoothness of GRD functions have been empirically attested in

many subjective experiments [52, 87] as well as the sample GRD surfaces in Fig. 3.1 and

Fig. 3.2.

Observation 4: The GRD function is axially monotonic along the bitrate dimension

at any given resolution. With the resolution fixed, the GRD function degenerates to a

normal rate-distortion (rate-quality) curve, which is guaranteed to be monotonic with
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(a) Moto (b) GRD surface of “Moto”

(c) Soccer (d) GRD surface of “Soccer”

(e) Garden (f) GRD surface of “Garden”

Figure 3.1: GRD functions of different contents compressed by the H.264 codec [28].
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(a) H.264 [28] (b) HEVC [29] (c) VP9 [30]

Figure 3.2: GRD surfaces of “Garden” generated by different video encoders.

respect to the amount of consumed bitrate resources by the rate-distortion theory [6].

The axial monotonicity is also empirically validated by the increasing curves in Fig. 3.3

as well as multiple subjective tests carried out on other video quality assessment (VQA)

databases [45, 15].

Observation 5: The GRD function is generally NOT monotonic along the resolution

axis. We draw the resolution-quality curves in Fig. 3.4 by slicing the GRD surface at

various bitrates. As we can see, high resolutions do not necessarily mean high perceptual

quality when the video is encoded with short bitrate supply. To be specific, encoding at high

resolution with insufficient bitrates would produce artifacts such as blocking, ringing, and

contouring, whereas encoding at low resolution with upsampling and interpolation would

introduce blurring [22]. Besides, the actual behavior of resolution-quality curve heavily

depends on the characteristics of video content, adding extra complexity for modeling the

GRD function.

Observation 6: Given adequate bitrate resources, a representation with higher res-

olution size always exhibits greater perceptual quality as indicated by Fig. 3.4. When

a pristine video is encoded with the highest bitrate, we deem that no compression arti-

facts will be introduced by the encoding process. Therefore, the quality degradation only

comes from the loss of high frequency components due to the lowpass filtering and the

downsample-upsample process. Since the degree of frequency loss is a monotonic function

of the scaling factor, the perceptual quality of the resulting representation degrades as the

encoding resolution shrinks. Some advanced viewing devices, such as a smart 4K TV, may
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Figure 3.3: RD curves of “Soccer” at different resolutions.

Figure 3.4: Resolution-quality curves of “Soccer” at different bitrates.

mitigate the loss of high frequency components by performing advanced super-resolution

techniques, but this does not change the axial-monotonicity property. This observation

also implies that the highest quality representation is achieved by encoding the source

video with abundant bitrates at the original resolution.

3.1.2 Mathematical Properties of GRD Functions

The observations revealed from the real-world data provide us with a good foundation to

characterize the GRD function. We are now ready to abstract and formulate the common
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properties of GRD function.

Denote the domain of GRD function f by Ω. The first property is that Ω is a compact

set in R2. In the thesis, we are focused on only two media attributes, i.e. the bitrate and the

spatial resolution of a representation, so we define the two variables of the GRD function as

the bitrate x in the unit of kilo-bits per second (kb/s), and the diagonal length y of spatial

resolution in the unit of number of pixels. It is reasonable to represent a resolution by its

diagonal length, because size and diagonal length are 1-on-1 mapped and well correlated

among commonly used video resolutions [1, 5, 22]. Furthermore, we show that x and y

arguably belong to two bounded and closed intervals [xMIN , xMAX ], and [yMIN , yMAX ],

respectively, and the exact values of xMIN , xMAX , yMIN and yMAX are easily determined

under reasonable assumptions. First, bitrate can never be negative, so we may set xMIN

to 0, suggesting that all pixel intensities are severely degraded to a single fixed value such

that no bit is used to encode the video. Then, xMAX may be determined by taking the

maximum saturation bitrate of the highest resolution among a large number of pristine

videos of diverse complexity. According to Observation 2 in Section 3.1.1, encoding a

video at bitrate higher than the saturation point will not achieve any perceptible quality

improvement, so it is meaningless to model the GRD function beyond that point. For the

other dimension y, we consider yMIN = 1, when only one pixel per frame is encoded. At

last, the value of yMAX can be obtained from the original resolution, or commonly used

encoding configuration recommendations [1, 5, 50]. Thus, we conclude that the domain Ω

of GRD function should be a compact subset of a rectangular region defined by

ΩMAX := {(x, y)|x ∈ [xMIN , xMAX ], y ∈ [yMIN , yMAX ]}. (3.1)

It is worth noting that ΩMAX itself is also a valid domain for the GRD function, but in

practice we are often interested in the function’s behavior only on a true subset of ΩMAX .

For example, we may restrict the minimum values of x and y to be much greater than

xMIN and yMIN , respectively, since practically no encoder operates at 0 bitrate or 1 × 1

resolution. For another example, the number of resolutions used in real-world applications

is actually finite, so the value of y is selected from a finite set rather than a closed interval.

Inspired by Observation 3, we consider smoothness as the second property of GRD

function. Mathematically, “smoothness” of a function is measured by its order of continu-
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ity. First, we assume that ideal GRD functions are continuous, i.e. f ∈ C0, when the two

independent variables x and y are continuous real variables. Furthermore, it is beneficial to

impose first-order continuity on GRD functions in practice. For instance, the GRD surface

is desired to be differentiable in many multimedia applications [69, 13]. Higher orders of

continuity are also desirable, but may be difficult to justify in practice.

Arising from the first two properties, the third property says that the GRD function has

a bounded range. Given a pair of bitrate and spatial resolution values (x, y), the encoder

will compress the source video to the specified representation, whose quality is the GRD

function value of (x, y). First, the quality of a compressed video is usually capped by that

of its source video, if we consider the source video of perfect quality. This implies that the

upper bound of the GRD function is the quality of the source video, denoted by zMAX .

Moreover, the upper bound is only achieved by encoding the source video at the highest

profile, i.e. f(xMAX , yMAX) = zMAX . On the contrary, the worst quality zMIN is delivered

by the lowest coding profile, either when x = xMIN or y = yMIN . In both cases, the video

content is utterly destroyed by excessive compression, and almost no information can be

transmitted into the human visual system (HVS). Since the unit of perceptual quality is

arbitrary, we normalize the range of GRD function such that zMIN = 0 and zMAX = 100

to keep consistent with the employed quality measurement tool SSIMplus [54]. Finally, we

formulate this property as

f(x, y) ∈ [0, 100],∀(x, y) ∈ Ω ⊆ ΩMAX . (3.2)

We may also assume that the following three equations

f(xMIN , y) = 0, ∀y ∈ [yMIN , yMAX ]

f(x, yMIN) = 0, ∀x ∈ [xMIN , xMAX ]

f(xMAX , yMAX) = 100

(3.3)

hold for all GRD functions.

The fourth property of the GRD function is its axial monotonicity as described in

Observation 4 and 6. Formally, we summarize the two types of axial monotonicity by

f(x1, y) ≤ f(x2, y),∀ x1, x2, y, s.t. xMIN ≤ x1 ≤ x2 ≤ xMAX , yMIN ≤ y ≤ yMAX (3.4)

f(xMAX , y1) ≤ f(xMAX , y2), ∀ y1, y2, s.t. yMIN ≤ y1 ≤ y2 ≤ yMAX . (3.5)
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3.1.3 Construction of the GRD Function Space

Existing GRD models [52, 69, 41, 12] typically presume a parametric form of the GRD

function that violates at least one of the aforementioned properties, and are thus deemed

systematically biased. Instead of constructing a parametric function form conforming to all

the mathematical properties, we define the theoretical GRD function space to account for

both the regularities and the significant variability of the GRD function as demonstrated

in the previous two subsections.

Denote by WGRD the theoretical space of GRD function. The actual definition of

WGRD may depend on specific problem settings. Here we only give two sample defi-

nitions of WGRD, based on which we develop two empirical GRD models, i.e. robust

axial-monotonic Clough-Tocher (RAMCT) and eigen generalized rate-distortion (EGRD),

in next two sections, respectively.

In the first case, we are only interested in a smaller domain

Ω1 = {(x, y)|x ∈ [xmin, xmax], y ∈ [ymin, ymax],

0 < xmin < xmax < xMAX , 1 < ymin < ymax < yMAX}.

Note that in this case, properties indicated by Eq. (3.3) and (3.5) are not applicable. To

achieve better mathematical properties, we impose C1 continuity on f as suggested, and

thus replace Eq. (3.4) with a derivative condition. The function space is defined by

W1 :=

{
f : R2 → R|f ∈ C1(Ω1), f(x, y) ∈ [0, 100],

∂f

∂x
(x, y) ≥ 0,∀(x, y) ∈ Ω1

}
. (3.6)

In the second case, we consider a larger domain

Ω2 = {(x, y)|x ∈ [0, xMAX ], y ∈ [ymin, yMAX ], 1 < ymin < yMAX}, (3.7)

where we are able to determine xMAX , ymin and yMAX with a large-scale database. As a

result, we can define a function space with more constraints as

W2 :=
{
f : R2 → R|f ∈ C0(Ω2), f(0, y) = 0, f(xMAX , yMAX) = 100,

f(xa, y) ≤ f(xb, y), f(xMAX , ya) ≤ f(xMAX , yb), ∀xMIN ≤ xa < xb ≤ xMAX ,

yMIN ≤ y ≤ yMAX , yMIN ≤ ya < yb ≤ yMAX} (3.8)
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3.2 Modeling GRD Function by Robust Axial-

Monotonic Clough-Tocher Interpolation

In this section, we develop a Robust Axial-Monotonic Clough-Tocher (RAMCT) interpola-

tion method to accurately estimate the GRD function with a moderate number of queries.

The proposed model imposes the mathematical constraints on a localized interpolation

model, and thus strikes the balance between flexibility and regularity. By re-parametrizing

the piece-wise cubic Bézier function, we derive the desired affine-invariant C1 continuity

and the axial monotonicity constraints as well as the objective function in the Clough-

Tocher (CT) framework, and model the interpolation problem as a quadratic programming

problem.

3.2.1 Problem Formulation

We further assume that the quality measurement is precise for the following reasons. Be-

cause the HVS is the ultimate receiver in most applications, subjective evaluation is a

straightforward and reliable approach to evaluate the quality of digital videos. Traditional

subjective experiment protocol models a subject’s perceived quality as a random variable,

assuming the quality labeling process to be stochastic. Because subjective experiment

is expensive and time consuming, it is hardly used in the GRD function approximation

process. In practice, objective VQA methods that produce precise quality predictions are

often employed to generate ground truth samples in the GRD function. Therefore, a GRD

function should pass through the quality scores of objective VQA evaluated on the encoded

video representations.

With this additional assumption, we formulate the GRD function approximation prob-

lem as

arg min
f
L[f ]

s.t. f ∈ W1

f(xn, yn) = zn, n = 1, · · · , N

(3.9)
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where W1 is defined in Eq. (3.6), and where L, N , xn, yn, and zn represent a functional of

f , the total number of training samples, bitrate, spatial resolution, and quality of the n-th

training sample, respectively. Usually, the functional L measures desired mathematical

properties, such as curvature, of f .

We deal with Eq. (3.9) as a multivariate interpolation problem, and develop a novel

RAMCT interpolation algorithm to solve it in the subsequent subsections. Section 3.2.2

reviews the traditional CT method, from which the proposed model is inherited. The

proposed C1 continuity condition, axial monotonicity condition, objective function, and

robust axial-monotonic CT algorithm are novel contributions that are detailed in Sec-

tion 3.2.3, 3.2.4, 3.2.5, and 3.2.6, respectively.

3.2.2 Review of Clough-Tocher Method

Basic Settings and Notations of CT method

Since first introduced in 1960’s [18], the CT method has been the most widely used multi-

dimensional scattered data interpolation method, thanks to its C1 continuity and low

computational complexity [2, 4, 10]. Consider the scattered points (xn, yn) located in the

x, y plane and their values zn over the plane. The CT method basically looks for a piece-wise

bivariate cubic function f that passes through all the points (xn, yn, zn). The CT method

first performs the Delaunay triangulation [23] in the x, y plane, dividing the whole plane

into multiple non-overlapped triangles with the scatter points being the triangle vertices.

Fig. 3.5 shows an example of triangulating a 2-dimensional input space with given scatter

points. Then a piece-wise cubic function is employed as the interpolant for each triangle.

Specifically, each triangle is further divided from its center point into three equivalent

subtriangles, where a cubic function in the form of Bézier surface is estimated. Hereafter,

we refer to the overall triangle as the macrotriangle and its subtriangles as microtriangles.

For clarity and brevity, we also denote the macrotriangle edge that is opposite to the vertex

Vi, i = 0, 1, 2 by Ei, and the internal microtriangle edge that connects Vi and S by Êi. Let

{i, j, k} be a cyclic permutation of {0, 1, 2} for the rest of this section.

30



Figure 3.5: Result of Delaunay triangulation in a 2-dimensional input space. The red

points are the given scatter samples for interpolation.

Introduction to Bézier Function

A cubic function in the Bézier form is completely determined by a so-called control net as

demonstrated in Fig. 3.6 and 3.7. Take a microtriangle ∆V0V1S in Fig. 3.6 as an example.

The control net over ∆V0V1S contains 10 control points, including 3 vertices V0, V1, S, 6

trisection points on 3 edges T01, T10, I01, I02, I11, I12, and the center C2 of the microtriangle.

The 10 control points form 6 control net patches, namely ∆V0T01I01 , ∆T01T10C2 , ∆T10V1I11 ,

∆I01C2I02 , ∆C2I11I12 and ∆I02I12S, whose positions and orientations are closely related to the

properties of the resulting interpolant as will be seen soon. Associated with each control

point V is a real number cV , which is often termed as the ordinate of the control point in

this context. The 10 ordinates also serve as the coefficients of the cubic Bézier function.
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Figure 3.6: Top view of the CT split in one triangle of the triangulation, showing three

divided microtriangles and its 19 Bézier control points.

Mathematically, we formulate the cubic Bézier surface in the microtriangle ∆ViVjS as

f(α, β, γ) =cViα
3 + 3cTijα

2β + 3cIi1α
2γ + cVjβ

3+

3cTjiαβ
2 + 3cIj1β

2γ + cSγ
3 + 3cIi2αγ

2+

3cIj2βγ
2 + 6cCk

αβγ, (3.10)

where (α, β, γ) is the barycentric coordinates with regard to the three vertices of the mi-

crotriangle. A 3-dimensional visualization of the control net and its corresponding Bézier

surface can be found in Fig. 3.7. The barycentric coordinates of a point P = (x, y) with

regard to ∆ViVjS can be defined as

α =
APVjS

AViVjS
, β =

APSVi
AVjSVi

, γ =
APViVj
ASViVj

, (3.11)
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Figure 3.7: A bivariate cubic Bézier function over a triangle P ′
1P

′
2P

′
3. The curved surface

lies beneath its triangulated control net defined by the ordinates bu,v,w, and is tangent with

the control net at three vertices. Image by courtesy of Isaac Amidror [4].

where AUVW means the directional area of the triangle formed by points U, V,W and

is positive when U, V,W is counter-clockwise. Immediately, we have α + β + γ = 1.

Besides, the conversion from Cartesian coordinate to barycentric coordinate is obtained by

representing the numerators in Eq. (3.11) with (x, y) [2], i.e.

α =
(xVj

− x)(yS − y)− (xS − x)(yVj
− y)

AViVjS

, (3.12a)

β =
(xS − x)(yVi

− y)− (xVi
− x)(yS − y)

AVjSVi

, (3.12b)

γ =
(xVi

− x)(yVj
− y)− (xVj

− x)(yVi
− y)

ASViVj

. (3.12c)

The Bézier surface features a series of mathematical properties. Some of them are

essential to both the CT interpolation framework, and the proposed RAMCT algorithm.

We list these useful properties of the bicubic Bézier function, but omit their lengthy proofs

here. Their usefulness will be elaborated later. Interested readers may refer to [26, 27, 35,

51].
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Theorem 3.1. Restricting a bivariate cubic Bézier function f , as defined in Eq. (3.11),

to one of its triangle edge results in a univariate cubic Bézier polynomial, whose Bézier

ordinates are the same as those of f associated with that edge.

Corollary 3.1.1. Assuming that two triangles have a shared edge, the Bézier functions

defined on the two triangles are C0 continuous across the edge if and only if they share

their Bézier ordinates associated with this edge.

Theorem 3.2. The Bézier surface in Eq. (3.10) defined on a triangle is tangent with its

control net at three triangle vertices Vi, Vj and S.

Corollary 3.2.1. Assuming that two triangles have the same vertex at V , the Bézier

functions defined on the two triangles are C1 continuous at V if and only if their respective

control net patches associated with V are coplanar.

Theorem 3.3. Consider the Bézier function defined on ∆V0V1S. Let l = (l0, l1, l2)T de-

note any direction not parallel to the edge E2. Here, l0, l1, and l2 denote the barycentric

representation of the direction. Then the directional derivative of the Bézier function is a

univariate quadratic Bézier polynomial with Bézier ordinates

3(l0cV0 + l1cT01 + l2cI01), 3(l0cT01 + l1cT10 + l2cC2), 3(l0cT10 + l1cV1 + l2cI11).

Corollary 3.3.1. Consider the two Bézier functions defined on ∆V0V1S and ∆V0V1S̄ sharing

an edge V0V1 as shown in Fig. 3.6. They are C1 continuous across V0V1 if and only if they

are C1 continuous at V0 and V1, and the two control net patches, ∆C2T01T10 and ∆C̄2T01T10,

are coplanar.

Theorem 3.4. A Bézier function is axial-monotonic when its corresponding control net is

axial-monotonic.

Classic CT Method

We note that 10 Bézier ordinates are required to define a Bézier surface on each micro-

triangle. At the first glance, we need to determine 30 parameters for the interpolant in

one macrotriangle with only 3 equality constraints given by cV0 = zV0 , cV1 = zV1 , and
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cV2 = zV2 . Fortunately, the degree of freedom can be dramatically reduced with certain

smoothness constraints. Under the C0 assumption within macrotriangles, each two Bézier

surfaces share the same Bézier ordinates at the their common boundaries V0S, V1S, and

V2S (Corollary 3.1.1), leaving 19 free parameters in the macrotriangle ∆V0V1V2 as shown

in Fig. (3.6). The inner-triangle C1 continuity removes 7 additional degree of freedoms

by enforcing the shaded neighboring control net patches in Fig. 3.6 to be coplanar (Corol-

lary 3.2.1 and 3.3.1) [26]. To ensure inter-triangle C1 continuity, a standard approach is

to pick a directional derivative deEi
not parallel to the shared triangle edge, and assume

the derivative to be linear on the edge, which further reduces the degree of freedom to 9

(Theorem 3.3). Taking into account the three known values at V0, V1, and V2, we eventu-

ally need 6 variables to parametrize each macrotriangle. The classic CT method typically

considers the 6 partial derivatives of f at the 3 triangle vertices as the variables. Although

the gradients are not always available in practice, in most cases they can be estimated by

considering the known values not only in the vertices of the triangle in question, but also in

its neighbors. The most commonly used method is to estimate the gradients by minimizing

the second-order derivatives along all Bézier curves [51]. Readers who are interested in the

details of the CT method may refer to [51, 27, 2, 4].

The original CT method suffers from at least three limitations in approximating GRD

functions. First, it picks the normal of the edges as the direction of cross-boundary deriva-

tive deEi
. However, this choice gives an interpolant that is not invariant under affine trans-

forms. This has some undesirable consequences: for a very narrow triangle, the spline can

develop huge oscillations [27]. Second, the interpolant composite of piece-wise Bézier poly-

nomials is not axial-monotonic, even when the given points are axial monotonic. Third,

the CT algorithm achieves the external smoothness by estimating the gradients at three

vertices Vi, i = 0, 1, 2, and by assuming the normal derivative at the triangle boundary Ei

to be linear. The linear assumption is somewhat arbitrary and may violate monotonicity

we want to achieve. We will address the three limitations in the proposed RAMCT model

as described in the rest of this section.
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3.2.3 Parametrization and Affine-Invariant C1 Continuity

In this subsection, we propose a novel parametrization for the piece-wise bicubic Bézier

function and an associated affine-invariant C1 constraint. In the traditional CT method [51],

the C1 continuity across macrotriangle boundaries is guaranteed by a linear assumption

on the normal derivatives. We improve this arbitrary assumption from two aspects. First,

instead of the normal derivative of the interpolant f at the triangle boundary Ei, we con-

sider the directional derivative deEi
of the control net patch ∆CiTjkTkj along the direction

of the vector
−−→
C̄iCi. Since this derivative transforms similarly as the gradient under affine

transforms, the resulting interpolant is affine-invariant [27]. Second, we lift the unwanted

linear constraints on the cross-boundary derivatives, elevating the number of parameters in

a macrotriangle back to 9. The increased freedom allows the interpolant to be monotonic

if monotone data are given.

Now we can re-parametrize the interpolant f on ∆V0V1V2 with the 3 additional variables

deEi
, i = 1, 2, 3 and 6 partial derivatives of f at 3 macrotriangle vertices. Denote the x- and

y-partial derivatives at Vi by dxVi and dyVi , respectively. According to Corollary 3.2.1, the

Bézier ordinates adjacent to the three macrotriangle vertices V0, V1, and V2 are immediately

available by

cTij = (xTij − xVi)dxVi + (yTij − yVi)d
y
Vi

+ zVi (3.13a)

cTik = (xTik − xVi)dxVi + (yTik − yVi)d
y
Vi

+ zVi (3.13b)

cIi1 = (xIi1 − xVi)dxVi + (yIi1 − yVi)d
y
Vi

+ zVi (3.13c)

where i = 0, 1, 2. Then we can represent cCi
in terms of cTjk , cTkj and deEi

as

cCi
=θkjcTjk + θjkcTkj + ηid

e
Ei
,

=(xTkj − x∗i )dxVj + (yTkj − y∗i )d
y
Vj

+ (xTjk − x∗i )dxVk
+ (yTjk − y∗i )d

y
Vk

+ ηid
e
Ei

+ θkjzVj + θjkzVk , (3.14)
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where

x∗i =
(xC̄i
− xCi

)(xVjyVk − xVkyVj)− (xVk − xVj)(xCi
yC̄i
− xC̄i

yCi
)

(xC̄i
− xCi

)(yVk − yVj)− (yC̄i
− yCi

)(xVk − xVj)
,

y∗i =
(yC̄i
− yCi

)(xVjyVk − xVkyVj)− (yVk − yVj)(xCi
yC̄i
− xC̄i

yCi
)

(xC̄i
− xCi

)(yVk − yVj)− (yC̄i
− yCi

)(xVk − xVj)
,

θkj =
xTkj − x∗i
xTkj − xTjk

=
yTkj − y∗i
yTkj − yTjk

,

θjk =
xTjk − x∗i
xTjk − xTkj

=
yTjk − y∗i
yTjk − yTkj

,

ηi =
√

(xCi
− x∗i )2 + (yCi

− y∗i )2.

Note that (x∗i , y
∗
i ) is actually the intersection of the boundary Ei and the segment CiC̄i.

Finally, the last 4 Bézier ordinates, cS and cIi2 , i = 0, 1, 2 are expressed by

cIi2 =
1

3
(cIi1 + cCj

+ cCk
)

=
1

3
[(xIi1 − xVi) + (xTki − x∗j) + (xTji − x∗k)]dxVi

+
1

3
[(yIi1 − yVi) + (yTki − y∗j ) + (yTji − y∗k)]d

y
Vi

+
1

3
(xTij − x∗k)dxVj +

1

3
(yTij − y∗k)d

y
Vj

+
1

3
ηkd

e
Ek

+
1

3
(xTik − x∗j)dxVk +

1

3
(yTik − y∗j )d

y
Vk

+
1

3
ηjd

e
Ej

+
1

3
[zVi + (θkizVi + θikzVk) + (θijzVj + θjizVi)] (3.15)

cS =
1

3

2∑
i=0

cIi2

=
1

9

2∑
i=0

[(xIi1 − xVi) + 2(xTki − x∗j) + 2(xTji − x∗k)]dxVi

+
1

9

2∑
i=0

[(yIi1 − yVi) + 2(yTki − y∗j ) + 2(yTji − y∗k)]d
y
Vi

+
2

9

2∑
i=0

ηid
e
Ei

+
1

9

2∑
i=0

[(1 + 2θji + 2θki)zVi ], (3.16)
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thanks to the C1 continuity of f and Corollary 3.3.1.

In summary, we re-parametrize the interpolant f over ∆V0V1V2 by Eq. (3.13), (3.14),

(3.15), and (3.16). For simplicity, these equations can be factorized into the matrix form

c = Rd + f , (3.17)

where c ∈ R16×1, R ∈ R16×9, d ∈ R9×1, f ∈ R16×1, c and d represent the ordinates of

control net and unknown derivatives, respectively. Therefore, finding the interpolant of

the macrotriangle corresponds to determining the 9 unknown parameters in d. Details of

these matrices can be found in Appendix A.1.

Besides the inner macrotriangle constraints, we also want to keep deEi
consistent across

the triangle boundary to ensure external C1 smoothness. As a result, the following equality

constraints need to be added for each edge with adjacent triangles

deEi
+ deĒi

= 0, (3.18)

where de
Ēi

denotes the directional derivative of the control net patch ∆C̄iTjkTkj, which

belongs to the neighboring macrotriangle, and is along the opposite direction of deEi
.

Combining (3.17) and (3.18), we guarantee that the resulting interpolant is C1 contin-

uous and affine-invariant.

3.2.4 Axial Monotonicity

This subsection aims to derive the sufficient constraints on d for the Bézier surface in

the macrotriangle ∆V0V1V2 to be axial-monotonic. In general, the interpolant composite

of piece-wise Bézier polynomials is not monotonic even though the sampled points are

monotonic. Several works have been done to derive sufficient conditions for a univariate

or bivariate Bézier function [31, 35]. We adopt the sufficient condition proposed in [35],

which is also summarized in Theorem 3.4. By combining the sufficient conditions in all

three microtriangles and the inner triangle continuity condition as indicated in Corollary

3.3.1, we claim the following corollary regarding the sufficient condition for f to be axial

monotonic.
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Corollary 3.4.1. f is a piece-wise cubic Bézier function defined on ∆V0V1V2, which is split

to three microtriangles by its center S as shown in Fig. 3.6. The definition of f on each

microtriangle is given in Eq. (3.10). One sufficient condition for f to be axial-monotonic

is that all the coplanar patches of the control net of f , i.e. ∆ViTijTik,∆Ii1CkCj,∆TijTjiCk,

∆I02I12I22, i = 0, 1, 2, are axial-monotonic.

Mathematically, Corollary 3.4.1 can be formulated by the following inequalities:

(yVi − yVk)cTij + (yVj − yVi)cTik ≤ (yVj − yVk)zVi (3.19a)

(yVk − yVj)cIi1 + (yVi − yVk)cCk
+ (yVj − yVi)cCj

≤ 0 (3.19b)

(yV2 − yV1)cI02 + (yV0 − yV2)cI12 + (yV1 − yV0)cI22 ≤ 0 (3.19c)

(yS − yVj)cTij + (yVi − yS)cTji + (yVj − yVi)cCk
≤ 0. (3.19d)

We can summarize the monotonicity constraint in matrix form

Gc ≤ h, (3.20)

where G ∈ R10×16 and f ∈ R10×1. Further substituting (3.17) into (3.20), we obtain the

monotonicity constraint in terms of d

GRd ≤ h−Gf . (3.21)

More details on how we construct G and h are given in Appendix A.2.

3.2.5 Objective Function

To determine the unknown derivatives, we propose to minimize the total curvature of the

interpolated surface under the smoothness assumption. Directly computing the total cur-

vature is computationally intractable. Alternatively, we minimize the curvature of Bézier

curves at the edges of each microtriangle as an approximation. Specifically, in ∆V0V1V2 , the

objective function is written as

L[f ]V0V1V2 =
1

2

2∑
i=0

∫
Ei

[
∂2f

∂E2
i

]2

dsEi
+

2∑
i=0

∫
Êi

[
∂2f

∂Ê2
i

]2

dsÊi
, (3.22)
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where the weight 1
2

is introduced to cancel the double counting of the external edges, and

dsEi
and dsÊi

represent the element of arc length on the restrictions of f to Ei and Êi,

respectively.

Consider an external boundary Ei, whose Bézier control net coefficients are zVj , cTjk ,

cTkj , and zVk . The integral of the second order derivative of the Bézier curve on Ei can be

represented in terms of the four coefficients as

∫
Ei

[
∂2f

∂E2
i

]2

dsEi
=

1

‖Ei‖3

∫ 1

0

[
f
′′

Ei
(t)
]2

dt

=
18

‖Ei‖3
(2c2

Tjk
+ 2c2

Tkj
− 2cTjkcTkj)+

−36

‖Ei‖3
(zVjcTjk + zVkcTkj) +

12

‖Ei‖3
(z2
Vj

+ z2
Vk

+ zVjzVk)

=
[
cTjk cTkj

] [ 36
‖Ei‖3

−18
‖Ei‖3

−18
‖Ei‖3

36
‖Ei‖3

][
cTjk
cTkj

]
+

[ −36zVj

‖Ei‖3
−36zVk
‖Ei‖3

] [ cTjk
cTkj

]
+

12

‖Ei‖3 (z2
Vj

+ z2
Vk

+ zVjzVk), (3.23)

where

‖Ei‖ =
√

(xVj − xVk)2 + (yVj − yVk)2

is the length of Ei.

Similarly, we get the other part of the objective function from an internal boundary Êi,

whose coefficients are zVi , cIi1 , cIi2 , and cS.
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∫
Êi

[
∂2f

∂Ê2
i

]2

dsÊi
=

1

‖Êi‖3

∫ 1

0

[
f
′′

Êi
(t)
]2

dt

=
6

‖Êi‖3
(6c2

Ii1
+ 6c2

Ii2
+ 2c2

S − 6cIi1cIi2 − 6cIi2cS)+

12zVi

‖Êi‖3
(−3cIi1 + cS) +

12

‖Êi‖3
z2
Vi

=
[
cIi1 cIi2 cS

]


36

‖Êi‖3
−18

‖Êi‖3
0

−18

‖Êi‖3
36

‖Êi‖3
−18

‖Êi‖3

0 −18

‖Êi‖3
12

‖Êi‖3


 cIi1
cIi2
cS



+
[ −36zVi

‖Êi‖3
0

12zVi

‖Êi‖3
] cIi1

cIi2
cS

+
12z2

Vi∥∥∥Êi∥∥∥3 , (3.24)

where

‖Êi‖ =
√

(xS − xVi)2 + (yS − yVi)2

is the length of Êi.

Substituting (3.23) and (3.24) into (3.22), we obtain the loss function for ∆V0V1V2 in

matrix form

L[f ]V0V1V2 = cTUV0V1V2c + wT
V0V1V2

c + const, (3.25)

where UV0V1V2 ∈ R16×16 and wV0V1V2 ∈ R16×1. How to compute each entry of UV0V1V2 and

wV0V1V2 is detailed in Appendix A.3.

Further substituting c = Rd + f into (3.25), we represent the local loss in terms of d

L[f ]V0V1V2 =(Rd + f)TUV0V1V2(Rd + f) + wT
V0V1V2

(Rd + f) + const

=dT (RTUV0V1V2R)d + (fTUV0V1V2 + wT
V0V1V2

)Rd + const. (3.26)
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3.2.6 Robust Axial-Monotonic Clough-Tocher Method

Here we propose our Robust Axial-Monotonic Clough-Tocher (RAMCT) method. The

inequality constraints in (3.20) are sufficient conditions for x-axial monotonicity. However,

the sufficient conditions cannot be satisfied in some extreme cases, making the primary

optimization problem infeasible. To relax these constraints, we introduce hinge loss to some

of these inequalities, motivated by the success of the support vector machine employing

hinge loss to deal with the inseparable case [19]. Specifically, the modified inequality

constraints are formulated as

(yVi − yVk)cTij + (yVj − yVi)cTik ≤ (yVj − yVk)zVi (3.27a)

(yVk − yVj)cIi1 + (yVi − yVk)cCk
+ (yVj − yVi)cCj

+ ξi1 ≤ 0 (3.27b)

(yV2 − yV1)cI02 + (yV0 − yV2)cI12 + (yV1 − yV0)cI22 ≤ 0 (3.27c)

(yS − yVj)cTij + (yVi − yS)cTji + (yVj − yVi)cCk
+ ξCk

≤ 0, (3.27d)

where ξ ∈ R6×1 and ξ ≤ 0. Note that (3.27a),(3.27c) are identical to (3.19a),(3.19c)

because they are also necessary conditions of axial monotonicity (See Appendix A.4 for

proof). By rewriting these constraints in the matrix form, we obtain[
G J1

O J2

][
c

ξ

]
≤

[
h

0

]
,

where G and h are the same as in (3.20),(3.21). J2 is a 6 × 6 identity matrix, while

J1 ∈ R10×6 is obtained by padding J2 with 3 rows of zeros to its top and inserting a row

of zeros between the 3rd and 4th rows of J2.

By substituting (3.17) into the inequality above, we finally obtain the inequality con-

straints in terms of the unknowns d and the auxiliary variables ξ as[
GR J1

O J2

]
d̃ ≤

[
h−Gf

0

]
, (3.28)

where

d̃ :=

[
d

ξ

]
.
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The objective function is then modified accordingly,

L[f ]V0V1V2 = cTUV0V1V2c + wT
V0V1V2

c− λTξ + const, (3.29)

where λ = [λ, λ, · · · , λ]T is the weighting parameter. Substituting c = Rd + f into (3.29),

we get

L[f ]V0V1V2 =dT (RTUV0V1V2R)d + (fTUV0V1V2 + wT
V0V1V2

)Rd

− λTξ + const

=
[

dT ξT
] [ RTUV0V1V2R O

O O

][
d

ξ

]
+

[
(fTUV0V1V2 + wT

V0V1V2
)R −λT

] [ d

ξ

]
+ const

=d̃

[
RTUV0V1V2R O

O O

]
d̃+[

(fTUV0V1V2 + wT
V0V1V2

)R −λT
]

d̃ + const,

which becomes a positive semidefinite quadratic function of the augmented variable vector

d̃.

To achieve a globally optimal solution, we need to bring together the local constraints

and the objective function defined by Eq. (3.18), (3.28) and (3.26). Denote by ∆ and

E the set of all macrotriangles and the set of shared macrotriangle boundaries obtained

after performing triangulation [23] on the given N scattered samples, respectively. In

one macrotriangle, we have in total 15 variables, including 9 derivatives and 6 auxiliary

variables. Among the 9 derivatives, 6 partial derivatives are associated with 3 macrotriangle

vertices, i.e. the given samples, while the other 3 directional derivatives are associated with

the 3 triangle edges. In total, there are 2N+3|∆| derivatives plus 6|∆| auxiliary variables,

amounting to 2N + 9|∆| unknowns to solve. Denote the vector of all unknowns by d̂.

Finding the axial-monotonic interpolant corresponds to solving the following optimization
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problem

arg min
d̂

∑
∆∈∆

L[f ]∆

subject to

[
G∆R J1

O J2

]
d̂∆ ≤

[
h∆ −G∆f

0

]
, ∀∆ ∈∆[

1 1
]

d̂E = 0, ∀E ∈ E ,

(3.30)

where d̂∆ and d̂E indicate the unknowns (including two types of derivative and the aux-

iliary variables) associated with a given macrotriangle ∆ and the two opposite directional

derivatives of a given edge E, respectively. The exact entry values of G∆ and h∆ depend

on the shape and orientation of ∆. Note that the constraints are linear with respect to d̂,

and the summation of L[f ] is still a positive semidefinite quadratic function. Thus, finding

d̂ turns into a standard quadratic programming problem, which can be solved by existing

convex programming softwares. In this work, we adopt the operator splitting quadratic

program (OSQP) package [67] as the solver due to its accuracy and efficiency. Specifically,

the OSQP software can solve a quadratic programming method of 1, 000 variables, which

corresponds to the RAMCT problem Eq. (3.30) with more than 50 samples, in less than

0.1 second. With all the derivatives solved, we insert them back to Eq. (3.17) to get the

coefficients of Bézier function, and thus achieve the optimal interpolant f satisfying Eq.

(3.9).

3.3 Modeling GRD Function by Dimension Reduc-

tion

In this section, we are focused on the theoretical space W2 of GRD function, and reveal

that the GRD function estimation problem can be modeled as a projection onto convex

sets (POCS). Further analysis on the real-world data from a large-scale GRD function

database allows us to approximate the theoretical space by a low-dimensional one. By

reducing the dimension of the GRD function space, we propose an empirical GRD model

which can reconstruct the GRD surface with few attribute-quality pairs.
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3.3.1 Problem Formulation

In this subsection, we propose novel formulations for the GRD function estimation problem,

following which an empirical GRD model arises naturally. We find that the parameter

number of the proposed model depends on the dimension of the GRD function space, and

thus a corresponding dimension reduction problem is proposed.

GRD Function in a Hyperplane and a Cone

We begin by analyzing the structure of the theoretical space of GRD function. The the-

oretical function space W2 as defined in Eq. (3.8) actually arises from the intersection of

two common function spaces.

The equality constraints in W2 jointly form a hyperplane

H1 :=
{
f : R2 → R|f ∈ C0(Ω2), f(0, y) = 0, f(xMAX , yMAX) = 100

}
,

which can be described as the Minkowski sum of a linear function subspace

H0 :=
{
f : R2 → R|f ∈ C0(Ω2), f(0, y) = 0, f(xMAX , yMAX) = 0

}
and any function f0 ∈ H1. Formally,

H1 = f0 +H0, ∀f0 ∈ H1. (3.31)

The inequality constraints form a closed convex cone

V :=
{
f : R2 → R|f(xa, y) ≤ f(xb, y), f(xMAX , ya) ≤ f(xMAX , yb),

∀0 ≤ xa < xb ≤ xMAX , ymin ≤ y ≤ yMAX , ymin ≤ ya < yb ≤ yMAX} (3.32)

as it is readily shown that ∀α, β > 0 and v0, v1 ∈ V , αv0 + βv1 ∈ V .

Finally, we conclude that the theoretical space W2 can be described as the intersection

of the hyperplane H1 and the convex cone V as shown in Fig. 3.8:

W2 = H1 ∩ V. (3.33)

Thus W2 is convex thanks to the convexity of H1 and V .
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Figure 3.8: Visualization of theoretical GRD space. Monotonic functions form the darkly

shaded polygonal cone V , while the theoretical GRD space W2 = H1∩V is represented by

the lightly shaded triangle in the hyperplane H1.

GRD Function in a Hilbert Space

Compared to the original GRD function space W2, it is easier to study another set

W0 := W2 − f0, (3.34)

where f0 can be any fixed function residing in W2. According to Eq. (3.31), (3.33)

and (3.34), W0 is a convex subset of H0 as illustrated in Fig. 3.8.

As we have defined in Eq. (3.7), Ω2 is a compact subset in R2, so ∀h ∈ H0, the

image h(Ω2) is a compact subset in R. Without loss of generality, assuming that h(Ω2) is

absolutely bounded by M , or formally, |h(x, y)| ≤ M(h) ∈ R, ∀(x, y) ∈ Ω2, we show that

h ∈ H0 is square-integrable:∫∫
Ω2

|h(x, y)|2 dxdy ≤M(h)2|Ω2| <∞,

where |Ω2| means the area of Ω2. Therefore, it is possible to equip the space H0 with an
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inner product

〈h, g〉 :=

∫∫
Ω2

h(x, y)g(x, y)dxdy.

and denote by d2 the induced metric. As a result, H0 is a subset of a Hilbert space

L2(Ω2) :=

{
h

∣∣∣∣ ∫∫
Ω2

|h(x, y)|2 dxdy <∞
}
.

According to the theorems of generalized Fourier series, there exists a maximal or-

thonormal basis {hn ∈ L2(Ω2), n = 1, 2, 3, · · · } that spans the Hilbert space L2(Ω2). Here,

maximal means that 〈h, hn〉 = 0, ∀n implies h = 0 in the L2 sense. Formally,

h ∼
∞∑
n=1

cnhn, ∀h ∈ L2(Ω2), (3.35)

where ∼ denotes the equality in the L2 sense, and cn = 〈h, hn〉 ∈ R. Without loss of

generality, we may restrict all the basis {hn} belonging to H0, i.e.

hn(0, y) = hn(xMAX , yMAX) = 0,∀n, ymin ≤ y ≤ yMAX ,

since functions that differ only at finite points are considered equivalent in the L2 space.

Note that the selection of basis {hn} is, of course, not unique. We thus express W0 in the

context of the Hilbert space L2(Ω2) and its basis {hn}

W0 =

{
h

∣∣∣∣h =
∑∞

n=1 cnhn, h(0, y) = h(xMAX , yMAX) = 0,∀ymin ≤ y ≤ yMAX , f0 + h ∈ V
}
. (3.36)

GRD Function Estimation as a Projection Problem

Eq. (3.34) also defines a bijection between the elements in W0 and the valid GRD functions

in W2. Estimating a GRD function thus corresponds to searching the optimal element

in W0. However, W0 is of infinite dimensionality, implying that an infinite number of

observations are required to determine a point in W0. To resolve the dilemma, we assume

that practical GRD functions only arise around a low-dimensional space H̃N
0 ⊂ L2(Ω2),

which is spanned by N function basis {hn ∈ H0, n = 1, 2, 3, · · · , N}. We will validate the

assumption in next section.

47



Let W̃N
0 = W0 ∩ H̃N

0 , so we have

W̃N
0 =

{
h

∣∣∣∣h =
N∑
n=1

cnhn, f0 + h ∈ V

}
. (3.37)

Given a set of observations {f(xi, yi) = zi, i ∈ I}, we formally express the GRD function

estimation problem as

arg min
{cn,n=1,2,··· ,N}

∑
i∈I

|zi − f0(xi, yi)−
N∑
n=1

cnhn(xi, yi)|2

s.t. f0 +
N∑
n=1

cnhn ∈ V.

(3.38)

Eq. (3.38) formulates a projection problem onto a closed convex set W̃N
0 in the Hilbert

space L2(Ω2). If the projection problem is well defined, it will be nicely concluded that

there exists a unique solution in W̃N
0 that best fits the observed data. Therefore, the

number of samples must be at least equal to the dimension N of W̃N
0 for Eq. (3.38) to be

a valid projection problem.

Optimal Approximation of GRD Function Space

Recall that we aim for accurately estimating the GRD function with minimal number of

samples. Lower dimension of the approximated space W̃N
0 means fewer samples to probe,

while introducing more estimation errors. Given a fixed number N of basis, we want

to determine a set of orthonormal basis {hn} that spans the optimal approximation of

real-world GRD function space. Consider a real-world GRD function f ∈ W2. Its best

approximation in f0 + W̃N
0 is given by

f̃ := f0 +
N∑
n=1

〈f − f0, hn〉hn (3.39)

with an approximation error

R[f ] := |f − f̃ |22.
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The optimal basis is thus obtained by minimizing the expected approximation error, i.e.

arg min
{hn}

Ep(f)R[f ],

s.t. |hn|22 = 1, n = 1, · · · , N
(3.40)

where Ep(f) means expectation over the distribution of real-world GRD function.

3.3.2 Real-World GRD Function Space

Although f is a continuous function in theory, in practice we often work with discrete

samples of the GRD function on a dense and uniform rectangular sampling grid. Therefore,

we collect all the samples into a vector and treat a GRD function f interchangeably as a

vector and a continuous function. A real-world GRD function may be thought of as such a

vector of perceptual qualities of representations encoded with a finite set of encoding profiles

obtained on a fixed grid in the domain. This approximation can be done due to the following

two facts. First, a limited number of processes is involved in video encoding, suggesting

that only a finite number of samples on the GRD surface are practically achievable. Second,

we have assumed the GRD function is smooth enough so that we can recover it from its

dense samples by interpolation. In particular, when the GRD function is band-limited,

it can be fully recovered when the sampling density is larger than the Nyquist rate. In

this work, we densely sample 540 points on each GRD surface, and consider the resulting

540-dimensional vector as the ground-truth of a GRD function.

Given M empirical GRD functions in the vector version, Eq. (3.40) may be rewritten

as

arg min
{hn}

1

M

M∑
m=1

∣∣∣∣∣fm − f0 −
N∑
n=1

[(fm − f0)Thn]hn

∣∣∣∣∣
2

2

,

s.t. |hn|22 = 1, n = 1, · · · , N

(3.41)

where the inner product of functions is replaced with the normal vector inner product, and

| • |2 indicates the l2 norm in a vector space. f0 can be any valid GRD function in W2.
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(a) Mean GRD surface (b) First principal component

(c) Second principal component (d) Third principal component

(e) Fourth principal component (f) Fifth principal component

(g) Sixth principal component (h) Seventh principal component

Figure 3.9: (a) The mean and (b)-(h) the first seven principal components of 800 real-world

GRD functions.
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Figure 3.10: A plot showing the percentages of the energies captured by H̃N
0 , the span

of the first N principal components. The subspace corresponding to the seven largest

eigenvalues encapsulates 99.5 percent of total energy.

Noticing that W2 is convex, we set

f0 = f̄ :=
1

M

M∑
m=1

fm

as it is readily shown that f̄ ∈ W2. As a result, Eq. (3.41) can be solved by the classic

principal component analysis (PCA) algorithm. It is worth noting that we need to perform

the PCA algorithm only once, as the solved principal components can be used to model any

GRD function. {hn, n = 1, 2, · · · , N} are thus the eigenvectors associated with the largest

N eigenvalues of the empirical covariance matrix of f −f0, and the optimal N -dimensional

approximation H̃N
0 to H0 is the span of the corresponding eigenspaces.

In this work, we train the eigenvectors {hn} on 800 real-world GRD functions, each

represented by a 540-dimensional vector. The training GRD functions are actually part of
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Table 3.1: Performance of EGRD on the training set. The second and fourth columns

correspond to the average performance over all training GRD functions, while the third

and last columns show performance on the worst fit curve.

# of basis Average RMSE Worst RMSE Average l∞ Worst l∞

0 4.22 19.32 29.96 67.19

1 2.02 14.18 18.72 56.32

2 1.21 8.93 11.53 41.85

3 0.90 4.43 7.88 33.11

4 0.79 4.37 7.05 32.92

5 0.65 4.01 5.73 33.47

6 0.47 2.80 4.01 26.14

7 0.42 2.78 3.43 15.86

the newly-collected Waterloo generalized rate-distortion (Waterloo GRD) database, whose

construction processes will be elaborated in Section 4.2. We draw the the mean GRD

surface f0 and the first seven empirical eigen GRD surfaces in Fig. 3.9. The cumula-

tive energies explained by the first few principal components increase rapidly, as seen in

Fig. 3.10. In fact, seven eigenvalues explain more than 99.5 percent of the energy. This

verifies our assumption that practical GRD function space can be well approximated by

a low-dimensional one, and also suggests that even a seven-parameter model should work

reasonably well for most GRD functions found in practice.

We also empirically show how well the training data are represented by the learned

basis {hn}. Specifically, the EGRD model, which will be expounded in next section, is

used to reconstruct the GRD functions with the first N principal components. Table 3.1

shows the reconstruction accuracy in terms of the root mean squared error (RMSE) and l∞

distance between the reconstructed and original surfaces for N = 0, 1, · · · , 7, where N = 0

means that all the GRD functions are approximated by their mean f̄ . As seen in the table,

practical GRD functions can be described by only 7 principal components at a surprising

precision. Specifically, the average RMSE and l∞ distance between the fit and the refer-

ence GRD function are reduced to 0.42 and 3.370 with 7 basis, respectively. According
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to previous studies [49, 32], such small differences of quality are often regarded as imper-

ceptible to human eyes in a common subjective test [40]. Despite the overall performance,

robustness of an algorithm is revealed by the worst performed scenario. As we can see,

the worst RMSE is only 2.78, meaning that 7 principal components can explain more than

97% of the shape variation of the most eccentric GRD function in the database. The last

column lists the greatest quality score estimation error ever arising over all video samples

in the training set. Considering the full score range [0, 100], the greatest relative error on

a single video sample only amounts to 16%. As a comparison, the largest error between

an individual’s score and the mean opinion score (MOS) can easily reach 50 percent of the

full score range [15]. Another interesting finding is that even 3 principal components can

achieve an average RMSE less than 1, further validating the low-dimensional assumption.

The results from PCA not only imply the possibility of a GRD model with very few

parameters, but also give us more insights into the nature of the regularity of GRD function.

For example, the shape of principal components as shown in Fig. 3.9 suggests that the

variance of GRD function is primarily localized in the low bitrate region, and is slightly

larger at high resolution compared to low resolution. This implies that a probe on the

GRD function may convey different amount of information in different regions. We will

present an information-theoretic sampling method in Chapter 4.

3.3.3 Eigen Generalized Rate-Distortion Model

In the previous subsection, we have obtained f0 as the average and the principal compo-

nents {hn} from a training set of real-world GRD functions. The optimal N -dimensional

approximation of W̄0 is thus determined by W̃N
0 = W0∩H̃N

0 , the eigen-space spanned by the

first N principal components {hn, 1, · · · , N}. Based on the eigen-space, an N -parametric

model for GRD function, namely EGRD, is proposed as

f̃ = f0 +
N∑
n=1

cnhn, (3.42)

where the coefficients {cn} are determined by solving the projection problem in Eq. (3.38).
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The remaining difficulty is how to formulate the convex cone V . Thanks to the convexity

of V , we may approximate the cone by a set of linear inequalities. For brevity, we summarize

Eq. (3.42) in the matrix form

f̃ = f0 +HNc, (3.43)

where HN := [h1, h2, · · · , hN ] and c = [c1, c2, · · · , cN ]T . Denote by Dx the first order differ-

ence matrix along the x-axis, and by Dy the matrix that derives the first order difference

along the y-axis only when x = xMAX . The discrete form of V can be expressed by[
Dx

Dy

]
f̃ ≥ 0. (3.44)

By substituting Eq. (3.43) into Eq. (3.44), we have

−

[
Dx

Dy

]
HNc ≤

[
Dx

Dy

]
f0, (3.45)

which imposes constraints on the parameters c, and thus regularizes shape of the resultant

GRD function.

Now we are able to rewrite Eq. (3.38) in the matrix form with c being the optimization

arguments:

arg min
c

cTHN [I]THN [I]c + 2 (f0[I]− z)T HN [I]c

s.t. −

[
Dx

Dy

]
HNc ≤

[
Dx

Dy

]
f0,

(3.46)

where z = [zi]
T , f0[I] = [f0(xi, yi)]

T , i ∈ I, and HN [I] = [h1[I], · · · , hN [I]]. It is not

difficult to show that HN [I]THN [I] is positive definite, and all the inequalities are linear

constraints, so Eq. (3.46) becomes a standard quadratic programming problem. By solving

it with the convex optimization tool [67], we can get the optimal projection c∗ in W̃N
0 , and

reconstruct the GRD function by Eq. (3.43).
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3.4 Summary

In this chapter, we defined the theoretical space of the GRD function, based on which two

computational GRD function models were developed. Both models were able to reconstruct

a GRD surface by probing several samples on the function. The proposed models funda-

mentally distinguish themselves from the other GRD estimation methods. The traditional

methodology used by the existing methods can be typically summarized by two steps: 1)

presuming a fixed function form with several parameters, and 2) fitting the model to a few

queries of the target GRD function. However, it has been shown that these presumed mod-

els are systematically biased as they in their own analytical forms violate at least one of

the mathematical properties that a valid GRD function must conform to. On the contrary,

two proposed methods operate in the theoretical space of GRD functions and thus ensure

that the obtained estimate is always a valid GRD function. Furthermore, the two methods

may also be extended to accommodate with the case where three or more media attributes

come into play. For example, the RAMCT method may estimate a GRD function with 3

independent variables by adopting a tri-variate CT scheme, and the EGRD model can han-

dle the case with even more than 3 dimensions since a multi-dimensional GRD function is

reorganized as a long vector in this method. However, the GRD function estimation task

is not fully resolved without a proper sampling strategy, as both GRD function models

would require a number of queries to fit. In the next chapter, an information-theoretic

sampling algorithm will be developed, after which the performances of the proposed GRD

models will be evaluated and compared to the state-of-the-art given a sequence of queries

selected by the sampling strategy.
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Chapter 4

Reconstruction from Sampling of

Generalized Rate-Distortion Function

In this chapter, we present an information-theoretic sampling (information-theoretic sam-

pling (ITS)) strategy that generates an optimal order of queries on the generalized rate-

distortion (GRD) function. In order to do this, we propose an informativeness measure of

each query on the GRD function via a probabilistic model. Equipped with the effective

sampling method, we experimentally compare the performances of the two proposed GRD

estimation models with state-of-the-art algorithms on a large scale database consisting of

thousands of practical GRD functions. The effectiveness of the proposed sampling method

is also validated by comparing to a näıve random sampling strategy.

4.1 Information-Theoretic Sampling

In this section, we expound the information-theoretic sampling algorithm in detail. We

begin by defining and measuring the informativeness of each query, based on which the

sampling algorithm is designed to minimize the uncertainty of the remaining part of the

function. Finally, we take a closer look at the resulting query sequence, and show that the

proposed sampling algorithm pays more attention to the regions with greater variability
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and sparser queries.

4.1.1 Informativeness of Samples

Existing GRD estimation algorithms [8, 9, 52, 69, 22, 12, 41] as well as the robust axial-

monotonic Clough-Tocher (RAMCT) and the eigen generalized rate-distortion (EGRD)

models proposed in Section 3.2 and 3.3 would require at least a few queries of the target

GRD function at different locations in the representation space. Each query, which involves

the sophisticated video encoding and quality assessment processes, takes up a significant

part of the total computational time to approximate a GRD surface. It is thus desirable to

develop an optimal sampling scheme to minimize the number of required quality queries.

Intuitively, different representations do not provide the same information for estimating

the shape of GRD surface. For example, encoding a video at very high bitrate always yields

saturated quality at any given resolution (Fig. 3.3), providing very limited information for

determining the GRD function. In order to measure the informativeness of each sample,

we discretize the GRD function by uniformly sampling the bitrate-resolution space as in

Section 3.3.2. Let x = (x1, ..., xN) denote the vector of discrete samples on a GRD function,

where N is the total number of sample points on the sampling grid. Given that the GRD

function is smooth, and that the sampling grid is dense, these discrete samples provide an

approximate description of the continuous GRD function. Assuming x is created from GRD

functions of real-world video content, we model x as an N -dimensional random variable.

Since it has been proven that practical GRD functions can be efficiently approximated

by linear representations of few principal components (Section 3.3.2), it is reasonable to

assume x follows a multivariate Normal distribution, i.e. its probability density function

px(x) ∼ N (µ, Σ). The total uncertainty of x is characterized by its joint entropy given

by

Hx(x) =
1

2
log |Σ|+ const, (4.1)

where | · | is the determinant operator. If the full vector x is further divided into two parts

such that x =

[
x1

x2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, and the x2 portion has been resolved by
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x2 = a, then the remaining uncertainty is given by the conditional entropy

Hx1|x2(x1|x2 = a) =
1

2
log |Σ̄|+ const, (4.2)

where

Σ̄ = Σ11 −Σ12Σ
−1
22 Σ21 (4.3)

is the covariance matrix of the conditional distribution px1|x2(x1|x2 = a). Note that the

exact value of x2 does not affect the remaining uncertainty of x1. Thus, the informativeness

of sampling x2 can be measured by the mutual information between x and x2, or formally

I(x; x2) =Hx(x)−Hx1|x2(x1|x2)

=
1

2
log |Σ| − 1

2
log |Σ̄|+ const. (4.4)

4.1.2 Information-Theoretic Sampling Algorithm

Since finding a subset x2 that maximizes Eq. (4.4) is an NP-hard problem [39], we adopt

a greedy strategy to find one sample at a time that most efficiently reduces the uncer-

tainty of GRD estimation. It is known that the greedy approximation is within a constant

multiplicative factor from optimal [14, 90]. Similar to Eq. (4.4), given x2 = a, the infor-

mativeness of the i-th sample in x1 is calculated by

I(x1;xi|x2 = a) =
1

2
log |Σ̄| − log |Σ̄ii −

σ̄T
i σ̄i

σ̄ii
|+ const, (4.5)

where σ̄ii, σ̄i, and Σ̄ii denote the i-th diagonal entry, the i-th column without σ̄ii, and the

remaining submatrix by excluding the i-th row and column from Σ̄. Thus, with x2 being

already sampled, to find the next most informative sample is equivalent to minimize the

log determinant of the conditional covariance matrix of remaining sample points [7]

arg max
i

I(x1;xi|x2 = a) = arg min
i

log |Σ̄ii −
σ̄T
i σ̄i

σ̄ii
|. (4.6)
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Algorithm 1: Information Theoretic Sampling

Result: A list of samples S

Initialize S as an empty list; Σ̄
(1)

= Σ ;

for k := 1 to N do

i(k) = arg min
i

tr(Σ̄
(k)
ii −

σ̄
(k)
i

T
σ̄

(k)
i

σ̄
(k)
ii

) ;

x(k) = VQA(Encode(r
(k)
i ));

Set S = S ∪ x(k) ;

Σ̄
(k+1)

= Σ̄
(k)
ii −

σ̄
(k)
i

T
σ̄

(k)
i

σ̄
(k)
ii

;

if Stopping criterion is met then

Break ;

end

end

Minimizing (4.6) directly is computationally expensive, especially when the dimension-

ality is high. Alternatively, we minimize the upper bound of the conditional entropy

arg min
i

tr(Σ̄ii −
σ̄T
i σ̄i

σ̄ii
), (4.7)

where

log |Σ̄ii −
σ̄T
i σ̄i

σ̄ii
| ≤ tr(Σ̄ii −

σ̄T
i σ̄i

σ̄ii
− I)

and I denotes identity matrix. The sample with the minimum average loss in (4.7) over

all viewing devices is most informative. Once the optimal sample index is obtained, we

encode the video at the i-th representation, evaluate its quality with objective video qual-

ity assessment (VQA) algorithms, and update the conditional covariance matrix in (4.3).

The process is applied iteratively until a stopping criterion is satisfied. A possible stopping

criterion is that the overall uncertainty of the GRD function is reduced below a certain

threshold, e.g. 540 (the total number of representation samples in the discretized GRD

function space) × 10 (the standard deviation of mean opinion score (MOS) in the LIVE

VQA database [61]), since when tr(Σ) is below the threshold, we may ascribe the uncer-

tainty in the system to the disagreement between subjects. With this stopping criterion,

we find that 38 samples are required to achieve this level of uncertainty on average. We
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Figure 4.1: Empirical covariance matrix of the GRD functions. Warmer color represents

higher values, meaning higher variance of the quality of a sample on the diagonal, or higher

correlation between those of two samples off the diagonal. Samples in the same 90-sample

segment have the same spatial resolution, which elevates every 90 samples. Within each

90-sample segment, bitrates are presented in an ascending order.

summarize the proposed uncertainty sampling method in Algorithm 1, where ri represents

the bitrate and spatial resolution of the i-th representation.

4.1.3 Discussion

To get a sense of what type of samples will be chosen by the proposed algorithm, we analyze

several influencing factors in the objective function (4.7):

• By the basic properties of trace, the objective function in the ITS algorithm can be
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factorized as

tr(Σ̄ii −
σ̄T
i σ̄i

σ̄ii
)

=tr(Σ̄ii)−
tr(σ̄T

i σ̄i)

σ̄ii

=tr(Σ̄)− (σ̄ii +
1

σ̄ii

∑
j 6=i

σ̄2
ij),

where σ̄ij denotes the entry of Σ̄ at i-th row and j-th column. Thus, tr(Σ̄ii − σ̄T
i σ̄i

σ̄ii
)

is a decreasing function with respect to σ̄ii when σ̄ii >
√∑

j 6=i
σ̄2
ij. This indicates that

samples with large uncertainty are more likely to be selected than those with small

uncertainty.

• According to (4.3), ∀j 6= i,

σ̄
(k+1)
jj = σ̄

(k)
jj −

σ̄
(k)2

ij

σ̄
(k)
ii

,

suggesting the rate of reduction in the uncertainty of sample j is proportional to

its squared correlation with the selected sample i in the k-th iteration. Fig. 4.1

shows an empirical covariance matrix Σ estimated from our video database that

will be detailed in the next chapter, from which we observe that the GRD functions

typically exhibit high correlation in a local region. Combining the first observation

above, we conclude that the next optimal choice of sample should be selected from

the region where labeled samples are sparse.

• Video contents with different complexities are encoded to various quality levels at

a low to medium bitrate, while to a similar high quality given sufficient encoding

resources. As a result, more uncertainty of the GRD function is observed in the low

bitrate region than the high bitrate region at the same spatial resolution. On the

other hand, the uncertainty of GRD function also shifts with respect to the encoding

spatial resolution. Specifically, video downsampling significantly narrows the video

content space, indirectly reducing the variability of the GRD function. Moreover, the
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visual quality is often dominated by the blurring artifacts due to downsampling and

upsampling operations when a video is encoded at low spatial resolutions, leading to

small quality variance. Both trends are reflected in Fig. 4.1, as warmer colors are

found in regions of lower bitrates and higher spatial resolutions. We may conclude

from the trends that most samples will be drawn from the low bitrate and high

resolution region.

• Note that knowing that x2 = a alters the variance, though the new variance does not

depend on the specific value of a. The independence has two important consequences.

First, the proposed sampling scheme is general enough to accommodate all kinds

of GRD estimator. More importantly, the algorithm results in a unique sampling

sequence for all GRD functions. In other words, we can generate a lookup table of

optimal querying order, making the sampling process fully parallelizable.

4.2 Waterloo Generalized Rate-Distortion Database

4.2.1 Obtaining Ground-truth GRD Functions

In order to evaluate the performance of a GRD model, one needs to know the ground

truth of a GRD function. Given a high quality source video and an encoder, we obtain

the corresponding GRD ground-truth by densely sampling the bitrate-resolution domain.

Specifically, the video is processed by the following steps sequentially:

• Spatial downsample: In the Waterloo generalized rate-distortion (Waterloo GRD)

database, all source videos are in 1080P, so maximum encoding resolution cannot

exceed the original video 1920 × 1080, i.e. yMAX = 2203. We downsample the

source video using bi-cubic filter to six spatial resolutions (1920 × 1080, 1280 ×
720, 720 × 480, 512 × 384, 384 × 288, 320 × 240) according to the list of Netflix

certified devices [22]. Consequently, the actual lower bound of spatial resolution in

the database is ymin = 400.

62



• Compression: We encode the downsampled sequences using specified video encoders

(which may include H.264 [28], HEVC [29] and/or VP9 [30]) with target bitrate

ranging from 100 kbps to 9 Mbps with a step size of 100 kbps.

In total, we get 6 × 90 = 540 representations for each combination of video content and

encoder. Then the perceptual quality of a representation is assessed as the response of

GRD function. Ideally, the GRD function response, or the representation quality, should

be measured by subjective evaluation, because the human visual system (HVS) is the ulti-

mate receiver in most applications. However, subjective experiment is expensive and time

consuming. Therefore, we employ objective VQA measurements to generate ground-truth

samples of the GRD function in practice. We evaluate the quality of each representation

at a given spatial resolution and bitrate using SSIMplus [54] for the following reasons.

First, SSIMplus is shown to outperform other state-of-the-art quality measures in terms

of accuracy and speed [54, 25]. Second, it is currently the only objective VQA model that

offers meaningful cross-resolution and cross-device scoring, an essential property of GRD.

Third, its precedent models structural similarity (SSIM) [75] index and MS-SSIM [78] in-

dex have been demonstrated to perform well in estimating the GRD functions [12] and

been widely used in industry practice. The resulting dense samples of SSIMplus are re-

garded as the ground truth of GRD functions (The range of SSIMplus is from 0 to 100 with

100 indicating perfect quality). It is worth noting that our GRD modeling approaches do

not constrain themselves on any specific VQA methods. When other ways of generating

dense ground-truth samples are available, the same GRD modeling approach may also be

applied.

We post-process the raw data to obtain GRD functions on a regular grid. First, the

lossless encoding bitrate may be lower than 9,000 kbps when the complexity of source

video is low. In such case, we pad the highest achievable quality at each resolution to

the end of GRD function along the bitrate dimension. Second, the rate-control of video

encoder is inaccurate, suggesting that the actual encoding rate may be different from the

target bitrate. Therefore, We resampled the rate-distortion curves at each resolution uni-

formly with a step-size of 100 kbps using piece-wise cubic hermite interpolating polynomial

(PCHIP) to preserve monotonicity.
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Figure 4.2: Sample frames of source videos in the WGRD set. All images are cropped for

better visibility.

4.2.2 Constructing the WGRD Database

The Waterloo GRD database consists of two parts. In the Waterloo GRD Phase I database,

we construct a new video database which contains 250 pristine natural videos that span a

great diversity of video content. An important consideration in selecting the videos is that

they need to be representative of the videos we see in the daily life. Therefore, we resort

to the Internet and elaborately select 200 keywords to search for creative common licensed

videos. The keywords are broadly classified into 8 categories: human, animal, plant, land-

scape, cityscape, still-life, transportation, and computer-synthesized videos. We initially

obtain more than 700 4K videos. Many of these videos contain significant distortions,

including heavy compression artifacts, noise, blur, and other distortions due to improper

operations during video acquisition and sharing. To make sure that the videos are of pris-

tine quality, we carefully inspect each of the videos multiple times by zooming in and remove

those videos with visible distortions. We further reduce artifacts and other unwanted con-
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tamination by downsampling the videos to a size of 1920 × 1080 pixels, from which we

extract 10 second semantically coherent video clips. Eventually we end up with 250 high

quality source videos. Then we compress each source videos into the aforementioned 540

representations with three commonly used encoders, namely H.264, HEVC and VP9, with

two-pass encoding settings [34, 22, 41]. The perceptual qualities of each representation at

five commonly used display devices including cellphone, tablet, laptop, desktop, and TV

are computed by SSIMplus [54]. Finally, we obtain 250× 3× 5 = 3750 GRD functions for

the Waterloo GRD Phase I database.

For the Waterloo GRD Phase II database, we further collect more than 3, 000 video

contents from the Internet using the same keywords. Similar quality screening and post-

processing procedures are applied to the videos, resulting in 1, 000 high quality 10-second

video clips. This time we compress the 1, 000 videos only using the H.264 encoder, and

evaluate the encoded representations with only one device, i.e. desktop. Consequently,

the Waterloo GRD Phase II database contains 1, 000 GRD functions of greater video

complexity diversity compared to the Phase I database.

In summary, the Waterloo GRD database consists of 4, 750 real-world GRD functions,

which are formed by 4, 750 × 540 = 2, 565, 000 objective scores from 945, 000 different

video representations featuring 1, 250 different contents. The Waterloo GRD database is

not only the first of its kind, but also the largest and most diverse video database in

the VQA community. Some representative video contents and GRD functions from the

database can be found in Fig. 4.2 and Fig. 3.1, respectively.

4.3 Performance Evaluation of RAMCT and ITS

In this section, we evaluate the performance of RAMCT and ITS proposed in Section 3.2

and Section 4.1, respectively, on the Waterloo GRD Phase I database.
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4.3.1 Experimental Setups

Implementation Details: We initialize the scattered network with Delaunay triangula-

tion [23], inherited from Clough-Tocher (CT) method [18]. The balance weight λ in (3.29)

is set to 10−4. In our current experiments, the performance of the proposed RAMCT

is fairly insensitive to variations of the value. We employed operator splitting quadratic

program (OSQP) [67] to solve the quadratic programming problem, where the maximum

number of iterations is set to 106. In this experiment, we perform the ITS until the op-

timal selection order of all 540 samples is generated, and increase the number of samples

following this order when testing the performance of a GRD model. Specifically, we report

the estimation performances when 20, 30, 50, 75, 100, and 540 samples are available to

represent the capability of competing and proposed GRD models. Since a triangulation

only covers the convex hull of the scattered point set, extrapolation beyond the convex

hull is not possible. In order to make a fair comparison, we initialize the training set S

as the representations with the maximum and minimum bitrates at all spatial resolutions.

To construct the covariance matrix described in Section 4.1 as well as test the proposed

algorithm, we randomly segregated the database into a training set which contains the

GRD functions from 80 percent of video contents, and a testing set with remaining GRD

functions. The random split is repeated 50 times and the median performance is reported.

Evaluation Criteria: We test the performance of the GRD estimators in terms of

both accuracy and rate of convergence. Specifically, we used two metrics to evaluate

the accuracy. The root mean squared error (RMSE) and l∞ norm of the error values

are computed between the estimated function and the actual function for each source

content. The median results are then computed over all testing functions. All GRD

estimation models achieve greater accuracy as the sample number increases, and especially

the increasingly complex GRD functions can be well-fitted at the cost of using many

parameters. What distinguishes these models from each other is the rate and manner with

which the quality of the approximation varies with the number of training samples.

66



Table 4.1: RMSE performance of the competing GRD function models with different

number of labeled samples selected by random sampling (RS) and the proposed information

theoretic sampling (ITS).

sample #
Reciprocal [41] Logarithmic [12] PCHIP [31] CT [51] RAMCT

RS ITS RS ITS RS ITS RS ITS RS ITS

20 N.A. N.A. 4.80 3.65 8.29 5.15 9.41 7.49 11.63 4.01

30 7.89 9.13 3.71 3.25 5.56 1.44 6.16 4.77 3.31 1.81

50 6.17 8.60 3.07 2.60 2.94 0.26 3.43 3.49 2.17 0.24

75 5.50 6.99 2.27 2.22 1.75 0 2.20 1.81 1.00 0

100 5.24 6.20 2.14 2.04 1.33 0 1.66 1.12 0.36 0

540 4.95 4.95 1.66 1.66 0 0 0 0 0 0

Table 4.2: l∞ performance of the competing GRD function models with different number of

labeled samples selected by random sampling (RS) and the proposed information theoretic

sampling (ITS).

sample #
Reciprocal [41] Logarithmic [12] PCHIP [31] CT [51] RAMCT

RS ITS RS ITS RS ITS RS ITS RS ITS

20 N.A. N.A. 19.40 16.56 38.87 28.11 36.50 29.51 45.15 21.88

30 48.32 45.36 17.85 12.28 33.04 11.07 29.84 18.70 27.07 6.13

50 52.48 45.48 15.75 12.37 24.33 2.10 21.82 14.30 23.99 2.13

75 54.49 49.08 14.59 13.53 18.22 0.47 17.89 7.76 16.51 0.11

100 55.54 51.26 14.22 14.44 16.00 0.26 15.59 5.84 14.23 0

540 58.04 58.04 18.33 18.14 0 0 0 0 0 0
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4.3.2 Experimental Results

We test five GRD function models including reciprocal regression [69], logarithmic regres-

sion [12], PCHIP interpolation [31], CT interpolation [51], and the proposed RAMCT on

the Waterloo GRD Phase I database. To evaluate the performance of the information the-

oretic sampling (ITS) algorithm, we apply it on the five GRD models above and compare

its performance with random sampling (RS) scheme as the baseline. For RS, the initial

set of the training sample S is set as the representations with the maximum and minimum

bitrates at all spatial resolutions for fair comparison. The random sampling process was

repeated 50 times and the median performance is reported.

Tables 4.1 and 4.2 show the prediction accuracy on the database, from which the key

observations are summarized as follows. First, the models that assume a certain analytic

functional form are consistently biased, failing to accurately fit GRD functions even with

all samples probed. On the other hand, the existing interpolation models usually take

more than 100 random samples to converge, although they are asymptotically unbiased. By

contrast, the proposed RAMCT model converges with only a moderate number of samples.

Second, we analyze the core contributors of RAMCT with deliberate selection of competing

models. Specifically, the 1D monotonic interpolant PCHIP significantly outperforms the

2-dimensional generic interpolant CT, suggesting the importance of axial monotonicity.

Furthermore, RAMCT achieves even better performance by exploiting the 2D structure

and jointly modeling the GRD functions. Third, we observe strong generalizability of the

proposed information theoretic sampling strategy evident by the significant improvement

over random sampling on all models. The performance improvement is most salient on

the proposed model. In general, RAMCT is able to accurately model GRD functions

with only 30 labeled samples, based on which the reciprocal model merely have sufficient

known variables to initialize fitting. To gain a concrete impression, we also recorded the

execution time of the entire GRD estimation pipeline including video encoding, objective

VQA, and GRD function approximation with the competing algorithms on a computer

with 3.6GHz CPU and 16G RAM. RAMCT with uncertainty sampling takes around 10

minutes to reduce l∞ below 5, which is more than 100 times faster than the tradition

regression models with random sampling.
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4.3.3 Visual Illustration

We select a sample GRD function from the Waterloo GRD Phase I database, and visualize

the corresponding GRD surfaces reconstructed by the classic CT and the proposed RAMCT

interpolation methods in Fig. 4.3. Red and blue points represent the training and testing

ground-truth quality scores of the actual GRD function, respectively. By taking a close look

at these examples, we emphasize several important advantages of the proposed RAMCT

and ITS methods.

• The RAMCT method is good at reconstructing the complex shape of the GRD func-

tion. Comparing Fig. 4.3e and 4.3f, the RAMCT-reconstructed surface preserves the

subtle structure and the flat region of the ground truth in the low and high bitrate

regions, respectively, while the CT method fails in both regions. It is worth noting

that, even though only one point other than the minimum and maximum bitrates

was sampled at the lowest two resolutions, the RAMCT method still managed to pre-

cisely reconstruct the curving of GRD function by taking into account information

from samples at other resolutions.

• The RAMCT method always reproduces valid GRD surfaces even when the training

samples are scarce, while the reconstructed function by the classic CT method may

severely violate the constraints. The validity, such as the axial monotonicity with

regards to the bitrate, of GRD function is the key factor for many subsequent video

applications to be feasible and solvable. For example, reasonable Bjøntegaard-Delta

bitrate (BD-Rate) can only be computed between two monotonic rate-distortion (RD)

curves [9].

• The sampling order of the ITS method is visually shown in Fig. 4.3b, 4.3d, and 4.3f.

As we can see, the selected samples are localized in the low bitrate range, and lean

towards high resolutions, where real-world GRD functions exhibit great diversity.

Therefore, such a sampling strategy can efficiently eliminate the uncertainty of a

GRD function.

In summary, we conclude that, besides the prediction accuracy and the convergence rate,

the proposed methods also provide better shaped and more reasonable GRD approxima-
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(a) CT with 20 training samples
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(b) RAMCT with 20 training samples
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(c) CT with 30 training samples
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(d) RAMCT with 30 training samples
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(e) CT with 40 training samples
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(f) RAMCT with 40 training samples

Figure 4.3: CT and RAMCT performance given 20, 30, 40 training samples selected by the

proposed ITS method. Red and blue points represent the training and testing ground-truth

quality scores, respectively.
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tions compared to the classic CT method, validating our theoretical analysis on the GRD

function.

4.4 Performance Evaluation of EGRD

In this section, we compare the performance of principal components to alternative basis in

terms of approximating the practical GRD function space, and EGRD to other regression

models on the Waterloo GRD Phase II database.

4.4.1 Experimental Setups

We compare the learned principal components with two general orthonormal basis, i.e. 2D

polynomial and 2D trigonometric basis, based on which we may get two competing GRD

models, namely the polynomial generalized rate-distortion (PGRD) and the trigonometric

generalized rate-distortion (TGRD) models, following the steps below. First, the basis

vectors are sorted in the descending order according to the variance of the training set

explained by each dimension. This sorting is similar to sorting the principal components

from the greatest to the smallest eigen values, and thus guarantees that the optimal N -

dimensional approximated space is spanned by the first N basis vectors. Second, we

replace the principal component analysis (PCA) basis with one of the alternative options

in Eq. (3.43) and (3.46), resulting a similar quadratic programming problem. Finally, the

PGRD and the TGRD models are obtained by solving their respective problems.

In the first experiment, we compare the capability of the three basis to represent the

practical GRD function space. All the three basis can approximate the space better at the

cost of involving more basis vectors. Therefore, we fix the number of employed compo-

nents from 0 to 20 in each basis and evaluate the estimation error of using these basis to

approximate the actual GRD functions with different dimensions, where the 0-dimension

case means that all the test GRD functions are approximated by the mean function of the

training set. The approximation capability of basis is thus judged by the rate and manner
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with which the estimation error varies with the number of basis vectors. It is worth noting

that in this experiment all samples of a test GRD function are available to the models.

Then we conduct another experiment to test the reconstruction performance of GRD

models when only sparse samples are available. In this experiment, we fix the number

of basis vectors to 7 in the EGRD model since the first seven principal components are

sufficient to explain 99.5% variance of the training set. As for a fair comparison, we

also choose the first seven components of the polynomial and trigonometric basis for the

PGRD and the TGRD models, respectively. The other two competing GRD models are

1D reciprocal regression [69], and 1D logarithmic regression [12] models. Since it has been

shown in the previous experiments that the ITS is far better than random sampling, we

employ the ITS algorithm to select the training samples for the GRD models. For the two

1D models, we particularly modify the ITS algorithm so that the sampling process can be

performed in turn at each resolution. The sample number ranges from 7 to 50 to show the

reconstruction performance and the convergence rate of GRD models with limited samples.

Similar to the previous experiments in Section 4.3, the approximation error is also

evaluated by the RMSE and l∞ distance between the reconstructed and the reference

GRD surfaces. Besides the average performance, we also report the worst result in the test

set to show the robustness of each model.

Since the proposed EGRD model needs training, we randomly segregate the Waterloo

GRD Phase II database into a training set of 800 GRD functions and a test set with

remaining 200 GRD functions. All the GRD models are evaluated on the test set, and the

average and the worst-case performances are recorded. We repeat the process for 50 times,

and report the median results in subsequent sections.

4.4.2 Approximation Capability of Basis

Tables 4.3 and 4.4 summarize the approximation capability of the three basis with 0 to 20

components being employed. Although all the basis can provide more accurate approxima-

tions by using more elements, the proposed PCA basis significantly outperform the other

two general basis. In fact, the performance of 20 polynomial or trigonometric basis vectors
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Table 4.3: RMSE performance of the competing GRD function basis with different number

of basis vectors. Best average and worst-case performances are highlighted by italics and

boldface, respectively

Vector #
Polynomial Trigonometric PCA

Average Worst Average Worst Average Worst

0 4.22 14.86 4.22 14.86 4.22 14.86

1 4.22 14.86 4.20 14.80 2.00 9.02

2 4.05 12.77 4.08 13.76 1.20 3.69

3 4.01 12.30 4.00 13.12 0.88 3.05

4 3.97 12.28 3.98 12.45 0.79 2.68

5 3.63 8.57 3.86 12.11 0.65 2.45

6 3.41 7.22 3.86 11.97 0.47 2.04

7 3.22 6.69 3.85 11.64 0.42 2.00

8 3.00 6.48 3.70 11.11 0.40 1.90

9 2.81 6.31 3.65 10.67 0.37 1.86

10 2.65 6.12 3.63 10.41 0.34 1.45

11 2.49 5.85 3.57 10.16 0.31 1.27

12 2.36 5.75 3.53 10.05 0.31 1.20

13 2.27 5.57 3.45 9.58 0.31 1.11

14 2.18 5.52 3.41 9.35 0.29 0.97

15 2.18 5.47 3.37 9.10 0.28 0.89

16 2.16 5.41 3.34 9.02 0.26 0.89

17 2.13 5.31 3.27 8.48 0.25 0.80

18 2.10 5.24 3.26 8.46 0.24 0.70

19 2.04 5.15 3.23 8.43 0.23 0.69

20 1.98 5.02 3.19 8.05 0.22 0.69
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Table 4.4: l∞ performance of the competing GRD function basis with different number

of basis vectors. Best average and worst-case performances are highlighted by italics and

boldface, respectively

Vector #
Polynomial Trigonometric PCA

Average Worst Average Worst Average Worst

0 29.93 65.04 29.93 65.04 29.93 65.04

1 29.93 65.04 29.91 65.04 18.49 54.42

2 29.58 65.04 29.80 65.04 11.41 37.74

3 29.38 65.04 29.58 65.04 7.84 29.41

4 29.16 64.61 29.51 65.04 6.99 28.08

5 27.83 64.76 29.13 65.01 5.72 27.52

6 27.02 64.21 29.12 64.99 4.04 20.77

7 26.28 63.32 29.09 64.99 3.43 14.10

8 25.38 62.66 28.48 64.85 3.04 12.10

9 24.54 61.63 28.37 64.82 2.71 11.10

10 23.52 60.15 28.16 64.82 2.38 10.20

11 22.42 57.91 27.85 64.71 2.21 9.52

12 21.42 56.75 27.78 64.64 2.16 8.99

13 20.65 54.88 27.48 64.53 2.08 8.58

14 19.46 51.68 27.39 64.53 1.95 8.83

15 19.41 51.61 27.14 64.43 1.82 8.17

16 19.31 51.49 27.11 64.38 1.68 8.12

17 18.96 50.84 26.84 64.29 1.60 7.61

18 18.56 50.29 26.82 64.27 1.49 6.99

19 18.01 49.10 26.78 64.23 1.39 6.64

20 17.57 47.51 26.54 64.05 1.32 6.42
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(a) The worst case when 7 principal components are used.

(b) The worst case when 10 principal components are used.

Figure 4.4: Ground truth and approximate RD curves at 1920× 1080 with 1, 4, 7, 10 and

20 PCA basis vectors.

75



is easily beaten by that of only 2 principal components. The advantage of the PCA basis

is made more clear when considering the l∞ performance in Table 4.4. The average l∞

error of PCA basis diminishes as the dimensionality increases, and drops below 10 with

only 3 basis vectors. By contrast, the other two basis fail to achieve a l∞ error less than

17 even with 20 parameters. The PCA basis also approximate the most difficult curve

well in the test set as shown by the worst-case performances in Table 4.3 and 4.4. With

the default dimensionality of 7, the worst-case performance of PCA basis is much better

than the average performance of the two competing basis with 20 vectors. Moreover, the

worst-case performance of PCA basis improves significantly as the number of basis vectors

increases, while the other two basis improve at a much lower rate, if there is any.

In order to qualitatively illustrate how the representation power of PCA basis improves

with dimensionality, we show in Fig. 4.4 two of the most difficult GRD functions (associated

with the worst l∞ error) in the test set from one of the 50 random splits. For better

visualization, we draw the approximation curves with 1, 4, 7, 10, and 20 dimensions at

1920 × 1080 only. From the two cases, we observe that the approximation with 7 basis

grossly captures the main trend of RD curves. With the dimensionality of 20, there is little

difference between the approximate and actual curves. The worst-case curves also show

qualitatively how fitting improves with the number of basis vectors involved.

4.4.3 Performance of GRD models

In practice, probing the quality of a single sample in the GRD space is expensive and

time-consuming due to sophisticated video encoding and quality assessment processes.

It is desirable to accurately reconstruct the rate-distortion surface with minimal number

of samples. In this experiment, we compare the performance of the EGRD model to four

competing GRD models, reciprocal regression [69], logarithmic regression [12], PGRD, and

TGRD on the Waterloo GRD Phase II database. Tables 4.5 and 4.6 list the reconstruction

performance on the database, from which we have several key observations as follows.

First, the three basis-projection-based methods in general outperform the other models,

which assume a heuristic analytic functional form in advance. Second, among the three

basis-projection-based methods, the EGRD model delivers by far the best performance
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Table 4.5: RMSE performance of the competing GRD models with different available

samples. Best average and worst-case performances are highlighted by italics and boldface,

respectively

Sample #
Reciprocal [69] Logarithmic [12] PGRD TGRD EGRD

Average Worst Average Worst Average Worst Average Worst Average Worst

7 N.A. N.A. N.A. N.A. 3.83 8.93 4.90 11.69 0.67 2.52

10 N.A. N.A. N.A. N.A. 3.59 7.83 4.58 11.74 0.58 2.33

15 N.A. N.A. N.A. N.A. 3.54 7.37 4.27 11.77 0.58 2.32

20 N.A. N.A. 25.14 32.99 3.42 6.95 4.14 11.79 0.54 2.25

25 N.A. N.A. 21.30 29.91 3.44 6.92 4.12 11.80 0.52 2.20

30 16.44 35.82 18.53 27.04 3.38 6.78 4.05 11.81 0.51 2.18

35 16.31 35.14 16.64 24.76 3.36 6.76 4.04 11.76 0.51 2.20

40 15.34 36.90 14.74 23.08 3.35 6.72 4.01 11.76 0.51 2.17

45 13.98 33.47 12.91 20.09 3.34 6.71 3.97 11.75 0.50 2.17

50 12.18 33.02 12.05 18.95 3.32 6.70 3.94 11.77 0.49 2.17

Table 4.6: l∞ performance of the competing GRD models with different available sam-

ples. Best average and worst-case performances are highlighted by italics and boldface,

respectively

Sample #
Reciprocal [69] Logarithmic [12] PGRD TGRD EGRD

Average Worst Average Worst Average Worst Average Worst Average Worst

7 N.A. N.A. N.A. N.A. 25.23 63.21 28.57 64.99 4.80 15.88

10 N.A. N.A. N.A. N.A. 25.24 63.21 28.58 64.99 3.42 13.04

15 N.A. N.A. N.A. N.A. 25.19 63.21 28.68 64.99 3.02 12.14

20 N.A. N.A. 49.53 65.73 25.34 63.25 28.72 64.99 2.99 11.86

25 N.A. N.A. 43.74 57.90 25.34 63.28 28.71 64.99 2.96 11.60

30 39.48 59.37 39.00 54.03 25.50 63.28 28.74 64.99 2.92 11.78

35 39.37 59.37 38.92 54.03 25.47 63.28 28.75 64.99 2.93 11.68

40 41.29 63.36 34.10 51.59 25.54 63.28 28.77 64.99 2.94 11.58

45 43.87 66.37 30.74 45.19 25.55 63.28 28.79 64.99 2.96 11.51

50 36.73 62.63 30.74 47.47 25.60 63.28 28.82 64.99 2.98 11.84
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(a) The RD curve at 320× 240.

(b) The RD curve at 1280× 720.

(c) The RD curve at 1920× 1080.

Figure 4.5: Ground truth and approximate GRD functions with the same number N of

basis vectors and samples.
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Table 4.7: Performance of EGRD with different number N of basis and samples on the

testing set. The second and fourth columns correspond to the average performance over all

training GRD functions, while the third and last columns show performance on the worst

fit curve.

N Average RMSE Worst RMSE Average l∞ Worst l∞

1 2.16 9.03 19.41 55.86

2 1.36 3.62 14.70 40.02

3 1.11 3.36 9.25 31.31

4 1.14 3.46 8.22 30.98

5 0.97 3.39 6.99 27.99

6 0.65 2.38 6.12 26.81

7 0.67 2.52 4.80 15.88

in all circumstances, while the PGRD model performs slightly better than TGRD. This

is consistent with the approximation capability of their employed basis as validated in

Section 4.4.2. Third, the performances of the three basis-projection-based methods do

not improve much with regards to the increase of sample numbers, which implies that the

performance of this kind of GRD model is primarily determined by how well the employed

basis vectors can represent the actual GRD function space. Fourth, the EGRD model can

precisely recover the whole GRD surface with the minimal number of samples, based on

which the reciprocal and the logarithmic regression model cannot even initialize the fitting

process. In general, the default EGRD model is able to reconstruct the GRD function with

much higher accuracy using only 7 quality probes than other models using 50 samples.

To see how the EGRD model performs with even less samples, we gradually reduce the

number N of employed basis vectors and samples at the same time until N = 1. As we

can see from Table 4.7, the EGRD model generally improves its accuracy with more basis

vectors and samples used, and starts outperforming the reciprocal and the logarithmic

models from N = 2. In fact, the EGRD model can reduce the average RMSE to less

than 1 with only 5 samples. Fig. 4.5 illustrates a sample GRD function approximated

by the EGRD model with N = 1, 3, 5, 7. For brevity, we only show the ground-truth
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and approximate curves at three resolutions of 320 × 240, 1280 × 720, and 1920 × 1080,

from which we can see that N = 7 provides the best estimation of the actual curves at

all resolutions, even though other options of N already fit the reference very well except

at the highest resolution. Besides, it is worth taking a closer look at the N = 5 curve

at 1920 × 1080. The two abrupt turning points on the approximate curve are not only

the evidence of occasional regression failures of the EGRD model, but also validating the

effectiveness of the employed monotonicity constraints.
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Chapter 5

Applications of GRD Functions

The application scope of generalized rate-distortion (GRD) model is much broader than

video quality assessment (VQA). In this chapter, we demonstrate three practical use cases

of GRD model. Although we adopt the robust axial-monotonic Clough-Tocher (RAMCT)

model for demonstration, the eigen generalized rate-distortion (EGRD) model can be ap-

plied similarly with minimal modifications.

5.1 Rate-Distortion Curve at Novel Resolutions

Given a set of rate-distortion curves at multiple resolutions, it is desirable to predict

the rate-distortion performance at novel resolutions, especially when there exists a mis-

match between the supported viewing device of downstream content delivery network and

the recommended encoding profiles. Traditional methods linearly interpolate the rate-

distortion curve at novel resolutions [22], neglecting the characteristics of GRD functions.

Fig. 5.1 compares the linearly interpolated and RAMCT-interpolated rate-distortion curves

at 960×540 with the ground truth SSIMplus curve, from which we have several observa-

tions. First, the linearly interpolated curve shares the same intersection with the neigh-

boring curves at 740×480 and 1280×720, inducing consistent bias to the prediction. The

proposed RAMCT model is able to accurately predict the quality at the intersection of the
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(a) (b)

Figure 5.1: Prediction of RD curve of novel resolution from known RD curves of other

resolutions. (a) Prediction of 960×540 RD curve from 720×480 and 1280×720 curves using

linear interpolation; (b) Prediction of 960×540 RD curve using the proposed method.

neighboring curves by taking all known rate-distortion curves into consideration. Second,

the linearly interpolated rate-distortion curve always lies between its neighboring curves,

suggesting that the predicted quality at any bitrate is lower than the quality on one of its

neighboring curves. This behavior contradicts the fact that each resolution may have a

bitrate region in which it outperforms other resolutions [22]. By contrast, RAMCT better

preserves the general trend of the resolution-quality curve at different bitrate, thanks to

the regularization imposed by the C1 condition at given nodes. Third, RAMCT outper-

forms the linear interpolation model in predicting the ground truth rate-distortion curve

across all bitrates. The experimental results also justify the effectiveness of the C1 and

smoothness prior used in RAMCT.

To further validate the performance of the proposed GRD model at novel spatial resolu-

tions, we predict the rate-distortion curves of 20 randomly selected source videos from the

Waterloo generalized rate-distortion (Waterloo GRD) database at three novel resolutions

(640×360, 960×540, and 1600×900). The evaluated bitrate ranges from 100 kbps to 9

Mbps with a step size of 100 kbps. The results are listed in Table 5.1. We can observe

that RAMCT outperforms the linear model [22] with a clear margin at novel resolutions.
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Table 5.1: Performance of linear interpolation and RAMCT on predicting RD curve at

novel resolution.

Resolution
l∞ MSE

Linear RAMCT Linear RAMCT

640×360 7.68 3.12 7.89 1.56

960×540 7.66 4.83 6.61 3.14

1600×900 8.77 7.87 5.18 4.98

Average 8.04 5.27 6.56 3.23

(a) Title with low complexity (b) Title with moderate com-

plexity

(c) Title with high complexity

Figure 5.2: Bitrate ladders generated by the recommendations and the proposed algorithm

for three contents.

5.2 Per-Title Encoding Profile Generation

To overcome the heterogeneity in users’ network conditions and display devices, video

service providers often encode videos at multiple bitrates and spatial resolutions. However,

the selection of the encoding profiles are either hard-coded, resulting in sub-optimal Quality

of Experience (QoE) due to the negligence of the difference in source video complexities,

or selected based on interactive objective measurement and subjective judgment that are

inconsistent and time-consuming. To deliver the best quality video to consumers, each title

should receive a unique bitrate ladder, tailored to its specific complexity characteristics.
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We introduce a quality-driven per-title optimization framework to automatically select the

best encoding configurations, where the proposed GRD model serves as the key component.

Content delivery networks often aim to deliver videos at certain quality levels to satisfy

different viewers. It is beneficial to minimize the bitrate usage in the encoding profile

when achieving the objective. Mathematically, the quality-driven bitrate ladder selection

problem can be formulated as a constrained optimization problem. Specifically, for the

i-th representation,

arg min
{x,y}

x

subject to f(x, y) ≥ Ci, i = 1, . . . ,m,

(5.1)

where x, y, f(·, ·), Ci and m represent the bitrate, the spatial resolution, the GRD function,

the target quality level of video representation i, and the total number of video represen-

tations, respectively. Solving the optimization problem requires precise knowledge of the

GRD function. Thanks to the effectiveness and differentiability of RAMCT, the proposed

model can be incorporated with gradient-based optimization tools [33] to solve the per-title

optimization problem. Specifically, the optimality condition of the constrained optimiza-

tion problem in Eq. (5.1) is achieved when the following conditions hold. First, if the

quality at the lowest bitrate is higher than the target quality Ci, the i-th optimal repre-

sentation is (xL, y
∗), where xL is the lowest bitrate and y∗ = arg maxy f(xL, y). Second,

when the target quality cannot be obtained by the lowest bitrate, the optimality condi-

tion is fulfilled when the inequality constraints are active (i.e., the equation condition is

achieved). Consequently, the optimization problem can be transformed into finding the

bitrate xi at each resolution such that Ci = f(xi, y), ∀y. We apply the Dichotomous-

based search method [89] to compute the optimal bitrate at 320×240, 384×288, 512×384,

640×360, 720×480, 960×540, 1280×720, 1600×900, 1920×1080 [59]. The final bitrate is

then obtained by taking the minimum value across all resolutions.

To validate the proposed per-title encoding profile selection algorithm, we apply the

algorithm to generate bitrate ladders using H.264 [80] for 50 randomly selected videos

in the Waterloo GRD database. We set the target quality levels {Ci}10
i=1 as {30, 40,

50, 60, 70, 75, 80, 85, 90, 95} to cover diverse quality range and to match the total

number of representations in standard recommendations [69]. For simplicity, we optimize
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Table 5.2: Average bitrate saving of encoding profiles. Negative values indicate actual

bitrate reduction.

Microsoft [50] Apple [5] Netflix [1] Proposed

Microsoft 0 - - -

Apple -25.3% 0 - -

Netflix -29.3% -5.6% 0 -

Proposed -62.0% -48.9% -46.8% 0

the representation sets for only one viewing device (cellphone), while the procedure can

be readily extended to multiple devices to generate a more comprehensive representation

set. In Fig. 5.2, we compare the rate-quality curve of representation sets generated by the

proposed algorithm, recommendations by Netflix [1], Apple [5], and Microsoft [50] for three

videos with different complexities, from which the key observations are as follows. First,

contrasting the hand-crafted bitrate ladders, the encoding profile generated by the proposed

algorithm is content adaptive. Specifically, the encoding bitrate increases with respect to

the complexity of the source video as illustrated in Fig. 5.2. Second, the proposed method

achieves the highest quality at all bitrate levels. The performance improvement is mainly

introduced by the encoding strategy at the convex hull encompassing the individual per-

resolution rate-distortion curves [22]. Table 5.2 provides a full summary of the Bjøntegaard-

Delta bitrate (BD-Rate) [8], indicating the required overhead in bitrate to achieve the same

SSIMplus values. We observe that the proposed framework outperforms the existing hard-

coded representation sets by at least 47%.

5.3 Codec Comparison

In the past decade, there has been a tremendous growth in video compression algorithms,

thanks to the fast development of computational multimedia. With many video encoders

at hand, it becomes pivotal to compare their performance, so as to find the best algorithm

as well as directions for further advancement. Bjøntegaard-Delta model [8, 9] has become

the most commonly used objective coding efficiency measurement. Bjøntegaard-Delta peak
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Figure 5.3: Generalized rate-distortion surfaces of H.264 and HEVC encoders for a sample

source video.
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signal-to-noise ratio (BD-PSNR) and Bjøntegaard-Delta bitrate (BD-Rate) are typically

computed as the difference in bitrate and quality (measured in peak signal-to-noise Ratio

(PSNR)) based on the interpolated rate-distortion curves

QBD =

∫ xH
xL

[zB(x)− zA(x)]dx∫ xH
xL

dx
, (5.2a)

RBD ≈10

∫ zH
zL

[xB(z)−xA(z)]dz∫ zH
zL

dz − 1, (5.2b)

where zA and zB are the interpolated rate-quality, xA and xB are the quality-rate functions

of encoder A and B, respectively. [xL, xH ] and [zL, zH ] are the effective domain and range

of the rate-distortion functions.

However, there are at least two major drawbacks of the widely used measures, which

severely undermine their efficiency and reliability as codec comparison criteria. First,

BD-PSNR and BD-Rate do not take spatial resolution and viewing condition into consid-

eration. Fig. 5.3 shows two GRD surfaces generated by H.264 [80] and HEVC encoders

for a source video. Although H.264 performs on par with HEVC at low resolutions, it

requires higher bitrate to achieve the same target quality at high resolutions. Therefore,

applying BD-PSNR and BD-Rate on a single resolution is not sufficient to fairly compare

the overall performance between encoders. Second, the rate-distortion function z(x) and

the distortion-rate function x(z) are independently interpolated and thus may not be the

inverse to each other as the theory suggests. Such mismatch sometimes even leads to

opposite conclusions when two codecs are compared with the two measures.

To resolve the two limitations, we propose the generalized quality gain (Qgain) and rate

gain (Rgain) models as

Qgain =

∫
U

∫ yH
yL

∫ xH
xL

p(u)[zB(x, y, u)− zA(x, y, u)]dxdydu∫ yH
yL

∫ xH
xL

dxdy
, (5.3a)

Rgain ≈10

∫
U

∫ yH
yL

∫ zH
zL

p(u)[xB(z,y,u)−xA(z,y,u)]dzdydu∫
U

∫ yH
yL

∫ zH
zL

p(u)dzdydu − 1, (5.3b)

where p(u), U , and [yL, yH ] represent the probability density of viewing devices, the set of all

device of interests, and the domain of video spatial resolution, respectively. The generalized
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Qgain and Rgain models represent the expected quality gain and the expected bitrate gain

(saving when Rgain negative) across all spatial resolutions and viewing devices, leading

to a more comprehensive evaluation of codecs. Moreover, the effect of any individual

influencing factor can be obtained by taking the marginal expectation in the corresponding

dimension, which is more robust than BD-PSNR and BD-Rate at a single resolution. It

should be noted that zA(x, y, u) is essentially the GRD function of codec A, which can

be efficiently approximated by the RAMCT model. The “inverse” function xA(z, y, u)

can also be estimated numerically from the interpolated surface thanks to its smoothness,

axial monotonicity and differentiability. The implementation details of Qgain and Rgain are

discussed below.

Computing Qgain: We apply the trapz function in Numpy [24] to compute the nu-

merical integration in Eq. (5.3a) at each resolution from 500 kbps to 4000 kbps with 100

steps. The reason to select the bitrate range is that theoretically Bjøntegaard-Delta models

should be computed based on the actual bitrate instead of the target bitrate. However,

some encoders are not able to precisely control the encoding bitrate at very low or high

bitrate ranges. We find the actual bitrate variability of encoders do not exceed 10% of

target bitrate within the this range, suggesting the error introduced by bitrate control

is insignificant [5]. The bitrate integration is computed at 320×240, 384×288, 512×384,

640×360, 720×480, 960×540, 1280×720, 1600×900, 1920×1080 [59], and integrated over

spatial resolution to obtain the final score.

Computing Rgain: The computation procedure of generalized Rgain at one resolution

is illustrated in Fig. 5.4. Specifically, the shaded area Starget represents the overall bitrate

saving at one resolution, and can be computed as

Starget = AUCCDE + SEHLK − AUCFGH − SCFJI ,

where S and AUC stand for the area of rectangle and area under curve, respectively. The

integration requires precise knowledge regarding to the bitrates xLA
, xLB

, xHA
, xHA

, and

the effective quality interval [zL, zH ] at each resolution. At any resolution y, the integration

interval is defined as
zL = max(zA(xL, y), zB(xL, y)),

zH = min(zA(xH , y), zB(xH , y)),
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Figure 5.4: Computation procedure of generalized Bjøntegaard-Delta Rate on a 1D RD

Curve. The shaded area represents the overall bitrate saving.
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Table 5.3: Performance of VP9, and HEVC in terms of the generalized Qgain and Rgain

models with H.264 as the baseline codec

Codec Qgain Rgain

VP9 1.9 -27.5%

HEVC 0.2 -15.9%

in the original BD-Rate model. The bitrates (xLA
, xLB

, xHA
, xHA

) where the two rate-

distortion functions achieve zL and zH are obtained with the Dichotomous-based search

method [89]. We apply the trapz function in Numpy [24] to compute the numerical area

under curves with step number of 100. In the end, we integrate the overall bitrate saving

over all spatial resolutions and devices to obtain the generalized Rgain.

Using the proposed measures on the Waterloo GRD Phase I database, we evaluate the

performance of three video encoders, namely H.264, VP9, and HEVC. In order to simplify

the expression, we set p(u) to be uniform distribution for five display devices including

cellphone, tablet, laptop, desktop, and TV here. Table 5.3 shows the performance of VP9

and HEVC in terms of the proposed measures with H.264 as the reference codec, from

which we can observe that VP9 outperforms HEVC by an average of 1.7 and 11% in

Qgain and Rgain, respectively. The results of our objective codec evaluation are in general

consistent with the recent video quality assessment results [71, 16].
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Chapter 6

Conclusion

The rate-distortion theory has uncovered a secret trade between the bitrate resource and

the resultant Quality of Experience (QoE), based on which many video-related businesses

are made possible. In a free market, consumers pay the video service provider for their de-

sired QoE, while the latter invests money on bitrate resources, which are in turn traded for

perceptual quality of digital videos. Therefore, it is of vital importance and great interest

for the video industry to understand their supply curve of QoE, which is comprehensively

described by the proposed generalized rate-distortion (GRD) function.

In the thesis, we mainly focus on how to precisely estimate a GRD function with a min-

imal number of quality queries. This may be regarded as either an interpolation or a pro-

jection onto convex sets (POCS) problem. We actually fulfilled both ideas by proposing the

robust axial-monotonic Clough-Tocher (RAMCT) and the eigen generalized rate-distortion

(EGRD) models, respectively. To further reduce the number of required quality queries, we

proposed the information-theoretic sampling (ITS) scheme, which preferentially select the

most informative samples to minimize the uncertainty of GRD function. Extensive exper-

iments on the Waterloo generalized rate-distortion (Waterloo GRD) database show that

the proposed GRD estimation models outperform competing algorithms by a large mar-

gin. Despite the joint modeling of the multi-dimensional GRD function and the delicately

designed sampling strategy, we think that the effectiveness of the proposed models stems

from the appropriate use of domain knowledge of the GRD function. Such prior knowledge
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imposes a strong regularity on the learned model, making it more predictable and inter-

pretable, and less possible to be overfitting. The same methodology may be extended to a

broad range of applications, such as machine learning [7] and data visualization [58].

We also demonstrate the power of an accurate GRD model by three practical video

applications at the end of the thesis. Precise understanding of the GRD function provides

the possibility of optimizing many video processing procedures content by content, resulting

in efficient bitrate usage and thus cost savings. Moreover, the concept of GRD functions

may be extended to many other signal types, such as digital images, remote sensing signals

etc.

While not discussed deeply in the thesis, the GRD function also plays a key role in

understanding video, the most common visual signal in our daily life. Just as the 1D

rate-distortion (RD) curve, the GRD function provides more thorough description of video

complexity. Our research reveals an interesting fact that a GRD function can be fully char-

acterized by only a few parameters, though its shape varies a lot with content complexity,

video encoder, and viewing device. This fact implies the possibility of describing the video

complexity with even less than ten features. Once they really existed, the perceptual qual-

ity of an encoded video representation can be precisely predicted only by analyzing the

source content, saving a lot of computational time wasted in repeatedly encoding the video.

Our results show that, the study of GRD functions in the thesis is a promising start

for scientifically investigating many longstanding and emerging problems in various video

applications. There is still a lot of room for further improvement and optimization for

current video services after several decades of fast development. With the challenge of

meeting the growing consumer demand using limited resources, I hope the study in the

thesis can shed light on the long-neglected problem, and provide a new view point to the

research community and the industry.
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[62] M. Shahid, A. Rossholm, B. Lövström, and H.-J. Zepernick. No-reference image and

video quality assessment: a classification and review of recent approaches. EURASIP

Journal on Image and Video Processing, 40(1):1–32, Aug. 2014.

[63] C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. IRE

Nat. Conv. Rec, 7:142–163, 1959.

[64] H. R. Sheikh and A. C. Bovik. Image information and visual quality. IEEE Trans.

Image Processing, 15(2):430–444, Feb. 2006.

[65] J. Søgaard, S. Forchhammer, and J. Korhonen. No-reference video quality assessment

using codec analysis. IEEE Trans. Circuits and Systems for Video Tech., 25(10):1637–

1650, Feb. 2015.

[66] R. Soundararajan and A. C. Bovik. Video quality assessment by reduced reference

spatio-temporal entropic differencing. IEEE Trans. Circuits and Systems for Video

Tech., 23(4):684–694, Apr. 2013.

[67] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An operator

splitting solver for quadratic programs. ArXiv preprint arXiv:1711.08013, Nov. 2017.

[68] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. Overview of the high efficiency

video coding (HEVC) standard. IEEE Trans. Circuits and Systems for Video Tech.,

22(12):1649–1668, Dec. 2012.

[69] L. Toni, R. Aparicio-Pardo, K. Pires, G. Simon, A. Blanc, and P. Frossard. Optimal

selection of adaptive streaming representations. ACM Trans. Multimedia Computing,

Communications, and Applications, 11(2):1–43, Feb. 2015.

99



[70] P.N. Tudor. Mpeg-2 video compression. Electronics & Communication Engineering

Journal, 7(6):257–264, Dec. 1995.

[71] D. Vatolin, D. Kulikov, E. Mikhail, D. Stanislav, and Z. Sergey. MSU codec compari-

son 2017 part V: High quality encoders. http://www.compression.ru/video/codec_

comparison/hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf. Ac-

cessed on Jul. 20, 2018.

[72] P. V. Vu and D. M. Chandler. ViS3: an algorithm for video quality assessment via

analysis of spatial and spatiotemporal slices. Journal of Electronic Imaging, 23(1):1–

24, Feb. 2014.

[73] Z. Wang and A. C. Bovik. A universal image quality index. IEEE Signal Processing

Letters, 9(3):81–84, Mar. 2002.

[74] Z. Wang and A.C. Bovik. Mean squared error: Love it or leave it? a new look at

signal fidelity measures. IEEE Signal Processing Magazine, 26(1):98–117, Jan. 2009.

[75] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assess-

ment: From error visibility to structural similarity. IEEE Trans. Image Processing,

13(4):600–612, Apr. 2004.

[76] Z. Wang and Q. Li. Video quality assessment using a statistical model of human visual

speed perception. Journal of Optical Society of America A, 24(12):61–69, Dec. 2007.

[77] Z. Wang, L. Lu, and A. C. Bovik. Video quality assessment based on structural

distortion measurement. Signal Processing: Image Communication, 19(2):121–132,

Feb. 2004.

[78] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for

image quality assessment. In Proc. IEEE Asilomar Conf. on Signals, Systems, and

Computers, volume 2, pages 1398–1402, Nov. 2003.

[79] A. B. Watson, J. Hu, and J. F. McGowan III. Digital video quality metric based on

human vision. Journal of Electronic Imaging, 10(1):20–29, Jan. 2001.

100

http://www.compression.ru/video/codec_comparison/hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf
http://www.compression.ru/video/codec_comparison/hevc_2017/MSU_HEVC_comparison_2017_P5_HQ_encoders.pdf


[80] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.

264/AVC video coding standard. IEEE Trans. Circuits and Systems for Video Tech.,

13(7):560–576, Jul. 2003.

[81] S. Wolf and M. H. Pinson. Spatial-temporal distortion metrics for in-service quality

monitoring of any digital video system. In Proc. SPIE, volume 3845, pages 266–277,

Sep. 1999.

[82] X. Xia, Z. Lu, L. Wang, M. Wan, and X. Wen. Blind video quality assessment using

natural video spatio-temporal statistics. In Proc. IEEE Int. Conf. Multimedia and

Expo, pages 1–6, 2014.

[83] J. Xu, P. Ye, Y. Liu, and D. Doermann. No-reference video quality assessment via

feature learning. In Proc. IEEE Int. Conf. Image Proc., pages 491–495, 2014.

[84] W. Xue, L. Zhang, X. Mou, and A. C. Bovik. Gradient Magnitude Similarity Devia-

tion: A highly efficient perceptual image quality index. IEEE Trans. Image Processing,

23(2):684–695, Feb. 2014.

[85] P. Ye, J. Kumar, L. Kang, and D. Doermann. Unsupervised feature learning frame-

work for no-reference image quality assessment. In Proc. IEEE Int. Conf. Computer

Vision and Pattern Recognition, pages 1098–1105, 2012.

[86] K. Zeng, T. Zhao, A. Rehman, and Z. Wang. Characterizing perceptual artifacts in

compressed video streams. In Proc. SPIE 9014, Human Vision and Electronic Imaging

XIX, page 90140Q, 2014.

[87] G. Zhai, J. Cai, W. Lin, X. Yang, W. Zhang, and M. Etoh. Cross-dimensional percep-

tual quality assessment for low bit-rate videos. IEEE Trans. Multimedia, 10(7):1316–

1324, Nov. 2008.

[88] F. Zhang, S. Li, L. Ma, Y. C. Wong, and K. N. Ngan. IVP subjective quality video

database. http://ivp.ee.cuhk.edu.hk/research/database/subjective/, 2011.

Accessed on Apr. 03, 2019.

101

http://ivp.ee.cuhk.edu.hk/research/database/subjective/


[89] W. Zhang, Y. Wen, Z. Chen, and A. Khisti. QoE-driven cache management for

HTTP adaptive bit rate streaming over wireless networks. IEEE Trans. Multimedia,

15(6):1431–1445, Oct. 2013.

[90] A. X. Zheng, I. Rish, and A. Beygelzimer. Efficient test selection in active diagnosis

via entropy approximation. In Proc. Conf. Uncertainty in Artificial Intelligence, pages

675–682, 2005.

102



APPENDICES

103



Appendix A

Implementation and Mathematical

Details about RAMCT

A.1 Details of Re-parametrization for Bézier Ordi-

nates

We show details of the matrices in Eq. (3.17) as follows.

c =



cT01
cT02
cI01
cT12
cT10
cI11
cT20
cT21
cI21
cC0

cC1

cC2

cI02
cI12
cI22
cS


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R =

xV1−xV0
3

yV1−yV0
3

0 0 0 0 0 0 0
xV2−xV0

3

yV2−yV0
3

0 0 0 0 0 0 0
xV1+xV2−2xV0

9

yV1+yV2−2yV0
9

0 0 0 0 0 0 0

0 0
xV2−xV1

3

yV2−yV1
3

0 0 0 0 0

0 0
xV0−xV1

3

yV0−yV1
3

0 0 0 0 0

0 0
xV0+xV2−2xV1

9

yV0+yV2−2yV1
9

0 0 0 0 0

0 0 0 0
xV0−xV2

3

yV0−yV2
3

0 0 0

0 0 0 0
xV1−xV2

3

yV1−yV2
3

0 0 0

0 0 0 0
xV0+xV1−2xV2

9

yV0+yV1−2yV2
9

0 0 0

0 0
θ21(xV2−xV1 )

3

θ21(yV2−yV1 )

3

θ12(xV1−xV2 )

3

θ12(yV1−yV2 )

3
η0 0 0

θ20(xV2−xV0 )

3

θ20(yV2−yV0 )

3
0 0

θ02(xV0−xV2 )

3

θ02(yV0−yV2 )

3
0 η1 0

θ01(xV1−xV0 )

3

θ01(yV1−yV0 )

3

θ10(xV0−xV1 )

3

θ10(yV0−yV1 )

3
0 0 0 0 η2

(3θ01+1)xV1+(3θ20+1)xV2−(3θ20+3θ01+2)xV0
27

(3θ01+1)yV1+(3θ20+1)yV2−(3θ20+3θ01+2)yV0
27

θ10(xV0−xV1 )

9

θ10(yV0−yV1 )

9

θ02(xV0−xV2 )

9

θ02(yV0−yV2 )

9
0 η1

3
η2
3

θ01(xV1−xV0 )

9

θ01(yV1−yV0 )

9

(3θ10+1)xV0+(3θ21+1)xV2−(3θ10+3θ21+2)xV1
27

(3θ10+1)yV0+(3θ21+1)yV2−(3θ10+3θ21+2)yV1
27

θ12(xV1−xV2 )

9

θ12(yV1−yV2 )

9
η0
3

0 η2
3

θ20(xV2−xV0 )

9

θ20(yV2−yV0 )

9

θ21(xV2−xV1 )

9

θ21(yV2−yV1 )

9

(3θ02+1)xV0+(3θ12+1)xV1−(3θ02+3θ12+2)xV2
27

(3θ02+1)yV0+(3θ12+1)yV1−(3θ02+3θ12+2)yV2
27

η0
3

η1
3

0
(6θ02+1)xV0+(6θ12+1)xV1−(6θ02+6θ12+2)xV2

27

(6θ02+1)yV0+(6θ12+1)yV1−(6θ02+6θ12+2)yV2
27

(6θ10+1)xV0+(6θ21+1)xV2−(6θ10+6θ21+2)xV1
27

(6θ10+1)yV0+(6θ21+1)yV2−(6θ10+6θ21+2)yV1
27

(6θ02+1)xV0+(6θ12+1)xV1−(6θ02+6θ12+2)xV2
27

(6θ02+1)yV0+(6θ12+1)yV1−(6θ02+6θ12+2)yV2
27

2η0
3

2η1
3

2η2
3


(A.1)

d =



dxV0
dyV0
dxV1
dyV1
dxV2
dyV2
deE0

deE1

deE2


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f =



zV0
zV0
zV0
zV1
zV1
zV1
zV2
zV2
zV2

θ21zV1 + θ12zV2
θ02zV2 + θ20zV0
θ10zV0 + θ01zV1

(θ20+θ10+1)zV0+θ21zV1+θ02zV2
3

θ10zV0+(θ21+θ01+1)zV1+θ12zV2
3

θ20zV0+θ01zV1+(θ12+θ02+1)zV2
3

(2θ20+2θ10+1)zV0+(2θ21+2θ01+1)zV1+(2θ12+2θ02+1)zV2
3



A.2 Details of Inequality Constraint

Summarizing Eq. (3.20) as matrix form, we obtain

Gc ≤ h,

where

G =

yV0 − yV2 yV1 − yV0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 yV1 − yV0 yV2 − yV1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 yV2 − yV1 yV0 − yV2 0 0 0 0 0 0 0 0

0 0 yV2 − yV1 0 0 0 0 0 0 0 yV1 − yV0 yV0 − yV2 0 0 0 0

0 0 0 0 0 yV0 − yV2 0 0 0 yV1 − yV0 0 yV2 − yV1 0 0 0 0

0 0 0 0 0 0 0 0 yV1 − yV0 yV0 − yV2 yV2 − yV1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 yV2 − yV1 yV0 − yV2 yV1 − yV0 0

yS − yV1 0 0 0 yV0 − yS 0 0 0 0 0 0 yV1 − yV0 0 0 0 0

0 0 0 yS − yV2 0 0 0 yV1 − yS 0 yV2 − yV1 0 0 0 0 0 0

0 yV2 − yS 0 0 0 0 yS − yV0 0 0 0 yV0 − yV2 0 0 0 0 0

 ,
(A.2)
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and

h =



(yV1 − yV2)zV0
(yV2 − yV0)zV1
(yV0 − yV1)zV2

0

0

0

0

0

0

0



.

A.3 Details of Loss Function

Expanding Eq. (3.29), we obtain

UV0V1V2 =

18
||E2||3 0 0 0 −9

||E2||3 0 0 0 0 0 0 0 0 0 0 0

0 18
||E1||3 0 0 0 0 −9

||E1||3 0 0 0 0 0 0 0 0 0

0 0 36

||Ê0||3
0 0 0 0 0 0 0 0 0 −18

||Ê0||3
0 0 0

0 0 0 18
||E0||3 0 0 0 −9

||E0||3 0 0 0 0 0 0 0 0
−9
||E2||3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 36

||Ê1||3
0 0 0 0 0 0 0 −18

||Ê1||3
0 0

0 −9
||E1||3 0 0 0 0 18

||E1||3 0 0 0 0 0 0 0 0 0

0 0 0 −9
||E0||3 0 0 0 18

||E0||3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 36

||Ê2||3
0 0 0 0 0 −18

||Ê2||3
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −18

||Ê0||3
0 0 0 0 0 0 0 0 0 36

||Ê0||3
0 0 −18

||Ê0||3

0 0 0 0 0 −18

||Ê1||3
0 0 0 0 0 0 0 36

||Ê1||3
0 −18

||Ê1||3

0 0 0 0 0 0 0 0 −18

||Ê2||3
0 0 0 0 0 36

||Ê2||3
−18

||Ê2||3

0 0 0 0 0 0 0 0 0 0 0 0 −18

||Ê0||3
−18

||Ê1||3
−18

||Ê2||3
12

||Ê0||3
+ 12

||Ê1||3
+ 12

||Ê2||3



,
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and

wV0V1V2 =



−18zV0
||E2||3
−18zV0
||E1||3
−36zV0
||Ê0||3
−18zV1
||E0||3
−18zV1
||E2||3
−36zV1
||Ê1||3
−18zV2
||E1||3
−18zV2
||E0||3
−36zV2
||Ê2||3

0

0

0

0

0

0
12zV0
||Ê0||3

+
12zV1
||Ê1||3

+
12zV2
||Ê2||3



.

A.4 Proof of Necessary Conditions of Axial Mono-

tonicity

Since the interpolated surface is a continuous piece-wise cubic function, it being mono-

tonic everywhere is equivalent to every cubic function in its own triangle being monotonic.

Denote (i, j, k) a cyclic permutation of (0, 1, 2). Consider a microtriangle ∆ViVjS. The

Bézier surface z(α, β, γ) over the microtriangle can be formulated as Eq. (3.10), where the

barycentric coordinates (α, β, γ) are definded as in Eq. (3.11). The chain rule of derivatives

shows that

∂f

∂x
=
∂f

∂α

∂α

∂x
+
∂f

∂β

∂β

∂x
+
∂f

∂γ

∂γ

∂x
. (A.1)
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From Eq. (3.10), we have

∂f

∂α
=3cViα

2 + 6cTijαβ + 6cIi1αγ + 3cTjiβ
2 + 3cIi2γ

2 + 6cCk
βγ (A.2a)

∂f

∂β
=3cTijα

2 + 6cTjiαβ + 6cCk
αγ + 3cVjβ

2 + 3cIj2γ
2 + 6cIj1βγ (A.2b)

∂f

∂γ
=3cIi1α

2 + 6cCk
αβ + 6cIi2αγ + 3cIj1β

2 + 3cSγ
2 + 6cIj2βγ, (A.2c)

and from Eq. (3.11),

∂α

∂x
=
yVj − yS

2A
,
∂β

∂x
=
yS − yVi

2A
,
∂γ

∂x
=
yVi − yVj

2A
(A.3)

where A denotes the area of ∆ViVjS. Substitute (A.2) and (A.3) into (A.1). After some

rearrangements, we reach

∂f

∂x
=

3

2A
[cV0(yVj − yS) + cTij(yS − yVi) + cIi1(yVi − yVj)]α2

+
3

2A
[cTji(yVj − yS) + cVj(yS − yVi) + cIj1(yVi − yVj)]β2

+
3

2A
[cIi2(yVj − yS) + cIj2(yS − yVi) + cS(yVi − yVj)]γ2

+
6

2A
[cTij(yVj − yS) + cTji(yS − yVi) + cCk

(yVi − yVj)]αβ

+
6

2A
[cIi1(yVj − yS) + cCk

(yS − yVi) + cIi2(yVi − yVj)]αγ

+
6

2A
[cCk

(yVj − yS) + cIj1(yS − yVi) + cIj2(yVi − yVj)]βγ. (A.4)

f is x-axial monotonic if and only if (A.4) is nonnegative within ∆ViVjS. Note that

α, β, γ are all nonnegative inside or on the edge of ∆ViVjS. One sufficient condition for

(A.4) to be nonnegative is its all coefficients are nonnegative [35], as indicated in Eq. (3.19).

To show that Eq. (3.19a) and (3.19c) are necessary conditions for ∂z
∂x

to be nonnegative,

we simply check the value of ∂z
∂x

at three vertices of ∆ViVjS, where (α, β, γ) equals (1, 0, 0),

(0, 1, 0), and (0, 0, 1), respectively. Substituting the three barycentric coordinates back into
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(A.4), we obtain three inequalities as the necessary condition in ∆ViVjS

cVi(yVj − yS) + cTij(yS − yVi) + cIi1(yVi − yVj) ≥0 (A.5a)

cTji(yVj − yS) + cVj(yS − yVi) + cIj1(yVi − yVj) ≥0 (A.5b)

cIi2(yVj − yS) + cIj2(yS − yVi) + cS(yVi − yVj) ≥0. (A.5c)

The inner-triangle C1 continuity implies that points Vi, Tij, Ii1, Tik are coplanar, i.e.

cIi1 = (cVi + cTij + cTik)/3. Substitute this equation and yS = (yVi + yVj + yVk)/3 into

(A.5a). Some rearrangements will yield

cVi(yVk − yVj) + cTij(yVi − yVk) + cTik(yVj − yVi) ≤ 0, (A.6)

which is exactly Eq. (3.19a). Further, the summation of (A.5c) over all possible (i, j, k)

gives Eq. (3.27c). Now we have proved Eq. (3.19a) and Eq. (3.19c) in Section 3.2.6 are

necessary for the interpolant to be axial monotonic in ∆V0V1V2.
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