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Abstract 

 

In today’s industry, the capability to effectively reduce production time and cost gives a manufacturer 

a vital advantage against its competitors. Specifically, in the machining industry, the ability to simulate 

the dynamic performance of machine tools, and the physics of cutting processes, is critical to taking 

corrective actions, achieving process and productivity improvements, thereby enhancing 

competitiveness. In this context, being able to estimate mathematical models which describe the 

dynamic response of machine tools to commanded tool trajectories and external disturbance forces 

plays a key role in establishing virtual and intelligent manufacturing capability. These models can also 

be used in virtual simulations for process improvement, such as compensating for dynamic positioning 

errors by making small corrections to the commanded trajectory. This, in turn, can facilitate further 

productivity improvement and part quality in multi-axis manufacturing operations, such as machining. 

 
This thesis presents new methods for identifying the positioning response and friction characteristics 

of machine tool servo drives in a nonintrusive manner, and an approach for enhancing dynamic 

positioning accuracy through commanded trajectory correction via Iterative Learning Control (ILC). 

 
As the first contribution, the linear transfer functions correlating the positioning response to the 

commanded trajectory and friction disturbance inputs are identified using a new pole search method in 

conjunction with least squares (LS) projection. It is validated that this approach can work with in-

process collected data, and demonstrates superior convergence and numerical characteristics, and 

model prediction accuracy, compared to an earlier ‘rapid identification’ approach based on the 

application of classical Least Squares for the full model. Effectiveness of the new method is 

demonstrated in simulations, and in experimental case studies for planar motion on two different 

machine tools, a gear grinding machine and a 5-axis machining center. Compared to the earlier 

approach, which could predict servo errors with 10-68% closeness, the new method improves the 

prediction accuracy to 0.5-2%. 

 

In the simulation of feed drives used in multi-axis machines, high fidelity prediction of the nonlinear 

stick-slip friction plays an important role. Specifically, time-dependent (i.e., dynamic) friction models 

help to improve the accuracy of virtual predictions. While many elaborate models have been proposed 

for this purpose, such as the generalized Maxwell-slip (GMS) model, their parameters can be numerous 

and difficult to identify from limited field data. In this thesis, as the second contribution, a new and 

highly efficient method of parameterizing the pre-sliding (hysteretic) portion of the GMS friction model 
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is presented. This approach drastically reduces the number of unknown variables to identify, by 

estimating only the affective breakaway force, breakaway displacement, and ‘shape factor’ describing 

the shape of the pre-sliding virgin curve. Reduction in the number of unknowns enables this ‘reduced 

parameter’ GMS model to be identified much more easily from in-process data, compared to the fully 

parameterized GMS model, and the time-dependent friction dynamics can still be simulated accurately. 

 

Having improved the positioning response transfer function estimation and friction modeling, as the 

third contribution of this thesis, these two elements are combined together in a 3-step process. First, the 

servo response is estimated considering simplified Coulomb friction dynamics. Then, the friction model 

is replaced and identified as a reduced parameter GMS model. In the third step, the transfer function 

poles and zeros, and the reduced parameter GMS model, are concurrently optimized to replicate the 

observed experimental response with even greater fidelity. This improvement has been quantified as 

12-44% in RMS and 28-54% in MAX values. This approach is successful in servo systems with 

predominantly rigid body behavior. However, its extension to a servo system with vibratory dynamics 

did not produce an immediately observed improvement. This is attributed to the dominance of 

vibrations in response to the commanded trajectory, and further investigation is recommended for future 

research. 

 

Having an accurate model of a multi-axis machine’s feed drive response allows for the dynamic 

positioning errors, which can lead to workpiece inaccuracy or defects, to be predicted and corrected 

ahead of time. For this purpose, ILC has been investigated. It is shown that through ILC, 1-2 orders of 

magnitude reduction in the servo errors is possible. While ILC is already available in certain 

commercial CNC systems, its training cycle (which is performed during the operation of the machine 

tool) can lead to part defects and wasted productive machining time. The new idea proposed in this 

thesis is to perform ILC on a virtual model, which is continuously updated via real-time production 

data using the identification methods developed in this work. This would minimize the amount of trial 

and error correction needed on the actual machine.  

 

In the course of this thesis research, after validating the effectiveness of ILC in simulations, to reliably 

and safely migrate the virtual modeling and trajectory correction results into industry (such as on a gear 

grinding machine tool), the author initiated and led the design and fabrication of an industry-scale 

testing platform, comprising a Siemens 840D SolutionLine CNC with a multi-axis feed drive setup. 

Majority of this implementation has been completed, and in near future work, the dynamic accuracy 

and productivity improvements facilitated with ‘virtually’ tuned ILC are expected to be demonstrated 

experimentally and tested in industry. 
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Chapter 1  

Introduction 

 

1.1. Background 

The principal goal of virtual manufacturing technology is to side-step the labour, capital, and time-

intensive stages of machine and process physical prototyping, and to establish new production 

machinery and/or processes, in which the desired quality, accuracy, and functions are achieved from 

the very first manufactured part onwards. This concept is illustrated in Fig. 1.1. 

 

Establishing a comprehensive virtual manufacturing system is challenging and requires technical 

sophistication in terms of developing highly accurate digital (i.e., virtual) models of machinery, 

processes, and coupling these models (to capture their interactions) inside a digital computation 

environment. Building an accurate virtual machine tool (VMT) prototype alone requires competence 

in several technical disciplines, including multi-body dynamics, finite element analysis, modal analysis, 

sensors, instrumentation, control systems, and trajectory planning algorithms (as conceptually shown 

in Fig. 1.2). Efforts in this direction have been going on in several research centers across Europe, Asia, 

and North America over the last two decades, as summarized in [1]. Fully developed VMT prototypes 

have now just started to emerge. 

 

 

Fig. 1.1. Time savings enabled by Virtual Manufacturing [1]. 
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Fig. 1.2. Multi-disciplinary approach followed in Virtual Prototyping of machine tools (Sub-figures 

from [1]). 

 

Parallel to capturing the dynamics of production machinery, virtual modeling of manufacturing 

processes is also very important. There have been numerous mathematical models for the processes 

alone, such as turning [2], milling [3][4], drilling [5], broaching [6], and grinding [7]. Recently, the 

integration of such models into virtual machine tools has also started to take place, resulting in Virtual 

Machining Systems (VMS) [8][9]. In VMS, considering the tool positioning relative to the workpiece, 

a complex workpiece is updated by discretizing and calculating the cutter-workpiece engagement 

geometry. From this geometry, the material properties, and the tool and workpiece structural transfer 

functions, it is possible to determine the cutting forces, deformations (i.e. machined surface finish), as 

well as stable versus unstable (i.e., chatter) machining conditions. 

 

A critical component linking the virtual machine tool (VMT) to a virtual machining system (VMS, i.e. 

process model) is understanding the instantaneous multi-axis relative motions that are generated 

between the tool and workpiece at every time instant. These motions are determined by the kinematic 

structure of the machine tool / tooling / workpiece assembly, the dynamic response of the servo drives 

to generated trajectory commands and external disturbances (like friction and cutting process forces), 
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and also the nature of the trajectory inputs that are applied to the servo control system. In an effort to 

simulate the spatial dynamic response of machine tools considering all of these effects, a Virtual CNC 

(VCNC) system was proposed in [10]. Correct identification of the feed drive dynamics results in high 

prediction accuracy by VCNC, and can allow necessary corrective or optimization actions to be taken 

to further increase throughput and/or part quality. However, accurately identifying feed drive models 

for machine tools is typically time-consuming, and can also result in loss of productivity while a 

dedicated machine tool is taken off the production schedule to perform the necessary model building 

and identification experiments. There have been earlier studies to identify machine tool feed drive 

models in a nonintrusive manner, as such [11] (i.e., referred to as ‘rapid identification’). While 

successful to a limited extent, these methods deteriorate, especially when measurement signals are 

noisy. 

 

In this thesis, more robust and effective methods of identifying feed drive models from in-process data 

are proposed. Specifically, the position tracking and disturbance (i.e., friction) response are estimated, 

the servo errors that occur due to stick-slip friction at zero-velocity crossings (e.g., toolpath corners and 

arc quadrants) are predicted more accurately through the use of a new reduced parameter GMS 

(Generalized Maxwell Slip) friction model. This friction model approximation is first validated in 

Chapter 4 using a single axis ball-screw drive in open-loop tests, followed by data collected from a 

linear drive in closed-loop control experiments. Afterwards, in Chapter 5 the reduced parameter GMS 

friction model parameters are estimated jointly with the tracking and disturbance transfer functions 

based on in-process data collected from a 5-axis machine tool in closed-loop control. It is demonstrated 

that such virtual feed drive models can also be used for correcting commanded multi-axis trajectories 

in a virtual environment using Iterative Learning Control (ILC), thereby freeing up the machine 

production to continue without trial-and-error based corrective actions. 

 

1.2. Thesis Overview and Contributions 

Chapter 2 presents the literature review. In Chapter 3, the earlier work on non-intrusive ‘rapid 

identification’, and the proposed new methodology are presented. Afterwards, comparative results in 

simulation studies, and experimental data obtained from two industrial machine tools, are presented. It 

is shown that the proposed new method is highly successful (to 2% accuracy) in predicting servo errors 

due to trajectory commands. During friction transitions, however, the prediction accuracy degrades due 

to stick slip friction. While elaborate methods have been proposed to model stick-slip friction, such as 

the GMS model, the large number of parameters that requires identification hinders their practical use. 

Thus, in Chapter 4, a new method to characterize the most important (pre-sliding) portion of the GMS 
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model, using only three parameters, is proposed. Experimental validation of this method, and 

correlation to earlier data presented in literature, is provided. Chapter 5 combines the new transfer 

function estimation method with the proposed reduced parameter GMS friction model, and 

demonstrates that 12-54% further accuracy in servo response prediction is attainable in cases where 

rigid body dynamics are dominant. Chapter 6 explores the use of ILC for trajectory correction with the 

estimated virtual models. The conclusions for this thesis are presented in Chapter 7.  

The main contributions of this thesis can be listed as follows:  

   

C1. A new approach to formulate and estimate closed-loop models of servo systems by utilizing pole-

search in conjunction with least squares projection. The new approach provides better robustness 

against measurement noise, and also improved convergence of the model parameters. 

 

C2. A reduced parameter approach to capture the pre-sliding dynamics of the generalized Maxwell Slip 

(GMS) friction model. This approach reduces the number of unknown parameters from 2𝑁 (𝑁: number 

of GMS elements, typically 𝑁 ≥ 6) to 3. This enables more expedient estimation of friction. 

 

C3. Combination of reduced parameter GMS model with the pole search algorithm for joint estimation 

of linear dynamics and stick-slip friction, and its experimental validation. This approach yields 12-54% 

in the prediction accuracy improvement over applying C1 alone. 

 

C4. The use of iterative learning control (ILC) based on estimated virtual models to improve the 

dynamic positioning accuracy in multi-axis contouring applications. Using ILC with a virtual model 

rather than the machine’s own drive system frees up productivity of the machine. In simulation, ILC 

predicts 1-2 orders of magnitude improvement, as expected. Experimental implementation of this 

contribution is on-going. 

 

 

 

 

 

 

 



5 

 

Chapter 2  

Literature Review 

 

2.1. Introduction 

In applications like high-speed finish machining, the process forces are small. Yet, the servo errors, 

which are influenced largely by the commanded velocity, acceleration, jerk, and the friction, can 

become significant and cause deterioration of the part accuracy and quality. With the advent of more 

powerful computers, virtual prototyping and process planning have become viable solutions for the 

manufacturing community. Using a virtual CNC (VCNC), the process planner can evaluate 

modifications to a toolpath as well as feed, acceleration, and jerk levels at different points along the 

part program, in order to obtain the desired tool positioning accuracy while minimizing the motion 

cycle time. However, in order to obtain accurate predictions, it is critical to have correct models that 

describe the feed drive dynamics.  

 

In Section 2.2, literature on the modeling and identification for machine tool feed drives is presented. 

Once a system model is known, corrective and optimizing actions can be taken to enhance productivity 

and quality outcomes. In this line of thought, Section 2.3 covers Iterative Learning Control (ILC). ILC 

can be applied to progressively correct for servo errors, which occur in response repeating commanded 

trajectories. The ability to implement ILC on a virtual model frees up the actual machine’s time, 

enabling process improvements to be achieved without sacrificing productive manufacturing resources.   

  

2.2. Modeling and Identification of Machine Tool Feed Drives and Structural Assemblies 

In this section, the virtual CNC concept, bottom-up approaches for capturing the essential dynamics of 

the motion delivery (i.e. feed drive) systems through various time- and frequency-domain 

measurements, and the more efficient albeit relatively closed top-down identification approach are 

presented. 

 

2.2.1.  Virtual CNC Systems 

Accurate simulation of the moving axes of a machine tool is critical for establishing the dynamic 

interaction between a machine tool and the manufacturing process. In order to meet this objective, the 

Virtual CNC (VCNC) was developed by the Manufacturing Automation Laboratory at the University 

of British Columbia (UBC) [10] (Fig. 2.1). The VCNC is a simulation tool that allows users to prototype 

a real CNC, selecting standard modules out of libraries of trajectory generation algorithms, control 
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laws, feed drive models, and feedback devices. Using the VCNC, a machine tool’s  performance can 

be predicted and enhanced during design, development, and end use stages [10][11]. In addition, this 

tool is able to simulate different nonlinear effects such as Stribeck friction, amplifier saturation, and 

quantization errors. Following the design of the VCNC, contour error prediction can be performed and 

the performance of a machine tool can be optimized for different NC part programs [11][12].   

 

Fig. 2.1. Virtual Computer Numerical Control (VCNC) developed by Yeung et al. [10]. 

 

As shown in Fig. 2.1, the VCNC enables the reconfiguration of the feed drive dynamic model, a 

trajectory generation algorithm, and a tracking control algorithm. The reference tool path is constructed 

using a CAD/CAM software. This tool path is prepared in Cutter Location (CL) format, which contains 

prior information about NC block numbers, toolpath segments, feedrates, etc. According to the toolpath 

geometry, such as linear, circular, or spline types, the trajectory generation algorithm (i.e., interpolator) 

constructs discrete position commands as a function of jerk, acceleration and feed speed specifications. 

Generated axis commands are applied to the control law and the feed drive dynamic response is 

simulated. Here, each machine actuator has specific jerk, acceleration and velocity limits. It is important 

not to violate these limits. Violation may cause poor surface finish due to vibrations, and likely  

“deviations” in the achieved toolpath due to excessive tracking error [1].  

 



7 

 

In the following sections, two different feed drive modeling techniques will be discussed: bottom-up 

and top-down. Bottom-up approach refers to modeling and identifying the dynamic behaviour of each 

subcomponent, and afterwards determining the overall (i.e., collective) response of the system as a 

whole, by establishing the interconnections between the individual components. On the other hand, top-

down approach refers to directly estimating a model for the overall system behavior, without having to 

identify models for the individual components.  

 

2.2.2. Bottom-Up Approach in Modeling Feed Drive Dynamics 

Correct construction of the feed drives’ dynamic model allows accurate prediction of a real machine 

tool’s response by the VCNC. This enables correction of trajectories ahead of time. Hence, modeling 

and identification of feed drive dynamics have a crucial role in building high-fidelity predictive models 

for CNCs. The following sections present different approaches for modeling feed drive systems: 

specifically considering the rigid body dynamics, friction, and structural vibration modes. 

 

Rigid Body Dynamics 

One of the simplest methods for modeling feed drives is considering the rigid body dynamics, which 

dominates the low frequency range. Rigid body dynamic models have typically been used to design 

model-based controllers, such as pole placement [13][14], generalized predictive [15], and sliding mode 

[16] control schemes. One of the commonly adopted rigid body models has been given in [17], and re-

used in [18].  

 

 

Fig. 2.2. Rigid body dynamic model. 

 

A simplified rigid body dynamic model is shown in Fig. 2.2. In this model, the control input is injected 

into an amplifier (performing current regulation) which results in the armature current (𝑖). It is assumed 

that the current regulation takes place at a much higher bandwidth than the mechanical response. This 

holds for most drive systems, where the mechanical frequencies are typically below 150 Hz, and the 

current regulation bandwidth is around 500 Hz. Thus, by neglecting the effect of the motor’s back 
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e.m.f., and the current loop dynamics, the amplifier can be approximated (in many cases) as a pure gain 

(𝐾𝑎). The armature current is then converted into actuation torque (𝑇𝑚) through the motor torque 

constant (𝐾𝑡). 𝑇𝑑 represents disturbance torques in the system as felt by the motor, which may originate 

from the friction in the guideways, the cutting forces, as well as reaction forces due to vibration. The 

remainder (net) torque then actuates the drive system. The rigid body dynamics are modeled in terms 

of the equivalent inertia (𝐽) and viscous friction (𝐵) coefficients as felt by the motor. Theoretical 

prediction of viscous friction is very difficult and also sensitive to the operating conditions (such as 

lubricant temperature). While theoretical calculation of the inertia may be possible from machine 

drawings and data, accumulating uncertainty margins (from individual component inertias) may lead 

to errors in the estimation. Also, in many cases such machine drawings and data are not available or 

are difficult to obtain. Thus, it is more common to experimentally identify the values of 𝐽 and 𝐵. One 

identification strategy, devised by Erkorkmaz and Altintas [18], uses a least square approach in which 

the rigid body model parameters and a simple Coulomb friction model are estimated using time domain 

data.  

 

Another approach for estimating the rigid body parameters is frequency domain analysis, which 

provides insight into not only the low frequency behavior, but also gives an indication of the frequencies 

of vibration modes, uncertainty boundaries, and how the response varies with machine posture. The 

identification procedure is performed by matching the Frequency Response Function (FRF) gathered 

from the drive to the FRF obtained from an analytical model [13]. There is also a wealth of frequency 

domain curve fitting algorithms available for characterizing the rigid body behavior and structural 

modes of electro-mechanical systems [19][20].  

 

Rigid body modelling is appropriate when there are no disturbance signals that excite the system 

resonances. Although this approach successfully captures the low frequency system response, it fails 

to predict the structural vibrations which occur when the commanded trajectory or more frequently the 

disturbance (process) forces contain high frequency content, such as high acceleration rates or cutting 

force harmonics. More advanced models, which also consider the effect of structural flexibilities are 

discussed in the next section. 

 

Vibratory dynamics 

In order to identify structural vibrations, the lumped-mass (2 Degree of Freedom (DOF)) model has 

been extensively used in the literature [13][21][22]; due to its simplicity and ability to correlate well 

with experimental effects. One of the simplest lumped (2 DOF) mass models used for ball screw drives 
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is shown in Fig. 2.3. In this Figure, 𝑚1 and 𝑚2 are the inertia of the rotating and translating components, 

respectively. 𝑏1 and 𝑏2 are the viscous friction coefficients. 𝑘 represents the overall stiffness of the feed 

drive mechanism. Damping between motor shaft and the load is represented by 𝑐. 𝑢 is the equivalent 

control signal. 𝑑1 and 𝑑2 are the disturbances on the motor and the load side, respectively [21]. 

Experimental identification of lumped mass model parameters is essential in order to have reliable 

models for control or prediction purposes. Okwudire [23] and afterwards Gordon and Erkorkmaz [24] 

used least squares identification to determine the lumped-mass, stiffness, and damping parameters from 

the measured FRF data for both ball screw and linear motor drives.  

    

 

Fig. 2.3. Lumped (2-DOF) mass model. 

 

Another model, the distributed mass model, was analytically developed by Varanasi and Nayfeh [25] 

with the intention of capturing the first mode of vibration in ball-screw drives. They derived second 

order wave equations for the system in the frequency domain for longitudinal and torsional dynamics, 

by considering the corresponding boundary conditions. These equations considered the compliance of 

the bearings and the nut. Although their method achieved reasonable closeness in predicting the first 

vibration mode, the main disadvantage is that the mathematical derivations are complex and tedious 

[13]. In addition, the remainder modes are not adequately captured. Hence, this approach is not 

convenient when higher order dynamics need to be analyzed and simulated. 

 

Acknowledging that most feed drive systems contain more than one dominant vibration mode, Frey et 

al. [26] and Halroyd [27] used a higher-order lumped-mass (i.e., discrete/3 DOF) model, as shown in 

Fig. 2.4, which is an extension of the two-mass model in Fig. 2.3. While the two-mass model identifies 

only the first vibration mode, the multiple mass lumped model captures the first two dominant structural 

modes. Also, in this model, the vibratory dynamics, which are predominantly in the axial and torsional 

directions, have been clearly identified and can be constructed with reasonable closeness based on 

estimated inertia and catalog stiffness parameters. In this case, 𝑚𝑡 and 𝑚𝑠 are the table and ball-screw 

masses, respectively. 𝐽𝑠 is the rotary inertia of the shaft. 𝐽𝑚 is the inertia of the motor. 𝑘𝑟𝑜𝑡 and 𝑘𝑎𝑥 

represent the rotational and axial stiffness values, respectively, and 𝑟𝑔 is the transformation factor from 
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rotational to linear motion. The rotational and axial damping factors are 𝑐𝑟𝑜𝑡 and 𝑐𝑎𝑥, which need to be 

experimentally ‘tuned’ based on experience and/or measurement. Also, while some qualitative 

predictions can be achieved with this model based on nominal inertia and catalog stiffness values, it is 

well-known that during the operational lifetime of a machine tool the feed drive stiffness can vary 

significantly, hence the parameters would in overall require updating.  

 

 

Fig. 2.4. Lumped (3-DOF) mass model [25].  

 

The motion delivery mechanisms in ball-screw feed drives is more complex than the one analyzed by 

Varanasi et al. [25] or Frey et al. [26]. As the carriage changes position, the contact points along the 

screw with the preloaded nut also vary, and so does the transmission of reaction forces from one body 

to another. Also, the stiffness distribution changes. All of these effects impact the drive’s vibration 

modes. To be able to capture such detailed and complex effects, Finite Element Modeling (FEM) can 

be used [13][28][29]. Van Brussel et al. used FEM to construct stiffness and modal mass matrices for 

a three-axis milling machine [30]. To reduce the complexity of the equations, the authors integrated 

reduced order models together. The disadvantage of applying pure FE is that such models may possess 

thousands of degrees of freedom (DOF)s, which makes the analysis too computationally intensive. 

After construction of individual component models, it has been preferable to represent each component 

with only its dominant modal characteristics (by order reduction), and to combine these components 

with each other along with discrete mass, stiffness, and damping elements (when applicable, to 

approximate simplified boundary conditions); using receptance coupling (also known as sub-

structuring) techniques. These efforts have led to the development of hybrid FE models, which can also 

be updated on the fly for dynamic response analysis as a function of machine posture [31][32][33]. In 
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this approach, as demonstrated in Fig. 2.5, the rotor, table, nut, and frame can be modeled as rigid body 

elements. On the other hand, couplings, fasteners, bearings, and guideways can be represented as linear 

springs [20].   

 

 

Fig. 2.5. Hybrid finite element model [23]. 

 

Pislaru et al. [34] used this approach and modeled the ball-screw as a distributed-mass system. 

However, this model did not consider the variation of dynamics with the nut and table assembly being 

at different locations of ball screw. Similarly, Kamalzadeh [29] performed FE analysis and represented 

the nut and table as an equivalent rotational mass, which was connected to the ball-screw by a torsional 

spring.  Zaeh et al. [33] took FE analyses one step forward and derived the stiffness elements for the 

preloaded nut interface. Their model contained the cross-coupling effects in the axial and torsional 

direction while deriving the stiffness matrix. Later, Okwudire [20][23] expanded Zaeh’s work to also 

consider the effect of lateral stiffness. By doing so, this model was able to capture additional cross-

coupling terms between the deformations in the axial, lateral, and torsional directions.  

 

In this thesis, the developed identification methods target mainly the rigid body dynamics of feed drives. 

Nevertheless, understanding the vibratory behaviour is integral to extending the methodology to higher 

order models in the future, thus focusing also on the vibratory dynamics.  

 

Friction 

In machine tools, friction is among the main sources of disturbance that causes positioning errors during 

motion. Especially, during velocity reversals, at sharp corners or circular arc quadrants in the toolpaths, 

the direction of friction force changes almost discontinuously. As a result, the control law (which may 

contain integral action or some kind of disturbance estimation and cancellation scheme) momentarily 



12 

 

applies compensation in the wrong direction, which further compounds the tracking error caused by the 

sudden change in friction disturbance, and results in oscillatory settling behavior afterwards. Hence, in 

order to be able to predict and reduce such errors, accurate modeling and identification of the friction 

is necessary.  

 

Fig. 2.6. Bristle model [41].   

 

Currently, researchers are using physically motivated models in order to identify and compensate 

friction effects [35]. Armstrong’s survey [36] gives detailed descriptions for different friction models. 

In this survey, friction is divided into two main categories: static (classical) and dynamic friction 

models. In classical friction models, the friction force is a function of the applied force and velocity. 

There is no memory (i.e., internal dynamics type of) effect, as opposed to dynamic friction models. A 

focus of this thesis is prediction of the effect of friction on the dynamic accuracy of machine tools. 

Dynamic friction models (which allow higher simulation fidelity over static ones) are reviewed in the 

proceeding paragraphs.  

 

Friction can be described considering two main regimes; pre-sliding (or sticking) and sliding regimes. 

During pre-sliding, the surface contact points (at which micro-welds are hypothesized) act like springs 

which are being broken one by one and there is displacement dependence until the sliding regime 

begins. As sliding regime becomes dominant, solid-to-solid contact between the adjoining surfaces 

starts to disappear. Dynamic friction models are formulated to characterize both pre-sliding and sliding 

regimes.  

 

An early attempt for describing the pre-sliding regime was proposed by Dahl in 1968 [37]. During his 

experiments, Dahl realized a connection between the stress-strain curve and friction force-displacement 

[37]. Then, he came up with the hysteresis representation of the friction force- versus displacement 

relationship for the pre-sliding regime. The Dahl model had a pivotal role in describing position 

dependent hysteresis loops. One of the main limitations of this model, however, was the lack of 

consideration for the Stribeck and breakaway force. Further modifications and discussions for this 

model have also been proposed in [38][39][40]. 
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De Wit et al. [41] incorporated the Stribeck effect, which was the main missing element in Dahl’s 

model, resulting in the ‘LuGre’ model (named after the collaboration between Lund and Grenoble 

Universities). In this model, friction bristles as illustrated in Fig. 2.6 are used to represent surface 

contact at the microscopic level. The friction force is defined as: 

𝐹𝑓 = 𝜎0𝑧 + 𝜎1
𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣 (2.1) 

where 𝜎0, 𝜎1 and 𝜎2 are the asperity stiffness, micro-viscous friction and viscous friction coefficients, 

respectively. 𝑧 is the average deflection of the asperities and 𝑣 is the velocity. The average deflection 

of the bristles is modeled by  

𝑑𝑧

𝑑𝑡
= 𝑣 − 𝜎0

|𝑣|

𝑠(𝑣)
𝑧 (2.2) 

Here, 𝑠(𝑣) is the Stribeck function and it is generally defined as   

𝑠(𝑣) = 𝑠𝑔𝑛(𝑣)(𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒
−|
𝑣
𝑣𝑠
|
𝛿

) (2.3) 

Above, 𝐹𝑠 and 𝐹𝑐 are the static and Coulomb friction forces. 𝑣𝑠 and 𝛿  represent the Stribeck and velocity 

shape factor, respectively. 

 

One major drawback of the LuGre model is that it does not represent the hysteresis effect with nonlocal 

memory for the pre-sliding regime. Swevers et al. proposed a new model called “Leuven model” to 

capture the hysteresis effect with nonlocal memory [42]. Further research noted that the Leuven model 

needed to be extended to also take into consideration the stack size, which is the number of successive 

hysteresis loops during motion. In order to consider the stack size in advance to prevent stack overflow, 

Al-Bender et al. proposed the Generalized Maxwell Slip (GMS) model [43], which is currently one of 

the state-of-the-art dynamic friction models. This friction model has been cited and applied by many 

researchers, including in [43][44][45]. 

 

The capability of demonstrating three main characteristics of friction, namely the Stribeck effect, 

hysteresis with non-local memory, and frictional lag, has enabled the GMS model to be amongst the 

most effective friction models. The GMS model is a combination of individual single state models, as 

illustrated in Fig. 2.7. Each single state sub-model designates whether that particular element is in a 

sticking or a slipping condition. In this figure, there are N elementary spring block units. The forces of 
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these N elementary units (i.e. elements) are added together to obtain the equivalent friction force [46] 

[47].  

 

Fig. 2.7. GMS model representation [47]. 

 

Although the GMS model has become very popular recently, the main disadvantages of this model are: 

1) discontinuous switching between pre-sliding and sliding regimes that make gradient-based state and 

parameter estimation challenging, and 2) the large number of parameters required to characterize all of 

the elements. These factors make the GMS model difficult to parameterize and simulate. In the 

literature, to overcome the first drawback, there have been attempts to simplify the GMS model without 

changing its main characteristics. In [48], to obtain continuous switching between sticking (pre-sliding) 

and sliding regimes, Boegli et al. presented the smoothed GMS (S-GMS) model. S-GMS approach 

makes the original GMS model more suitable for gradient based state and parameter estimation by 

using a sigmoid function. Piatkowski [49] has further analyzed the effectiveness of six different sigmoid 

(smooth) functions, resulting in the so-called modified GMS (M-GMS) model. In [48] and [49], in 

addition to the GMS model parameters, smooth functions introduce extra parameters to be identified, 

which further increases the estimation and computational complexity. Villegas et al. [50] have taken a 

different path, and instead of smoothing the switching dynamics with respect to the states, the authors 

have proposed to decrease the multi-state structure of the original model by means of algebraic 

manipulations, leading to the ‘two-state GMS model’. There has also been other work to reduce the 

number of unknown parameters of the GMS friction model, such as [51]. In this study, rather than 

constructing the hysteresis characteristics based on the breakaway forces, the hysteresis curve is 

constructed based on breakaway displacements, which can be observed from experimental tracking 

data. Also, each element’s friction force is constructed based on an activation matrix, which contains 

elemental velocities. This approach bypasses a burden to identify 2N parameters and only stiffness 

parameters need to be estimated, which reduces the number of unknowns to N. However, actual 

breakaway displacements should be carefully extracted from the pre-sliding portion and after that, the 
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activation matrix needs to be constructed. This approach simplifies the model, but requires high 

temporal and displacement resolution data collection, and a careful analysis to estimate breakaway 

displacements from the experimental data. Automation of this approach is possible, but requires a 

suitable heuristic algorithm. 

 

The parameter identification of the GMS model based on both time and frequency domain data has 

been studied in [52]. In this study, small amplitude sinusoidal signals have been applied to the 

experimental setup with a low bandwidth controller to avoid drift until the setup comes to the verge of 

sliding. Until the breakaway (i.e. the point where there is a transition from pre-sliding to sliding), the 

hysteresis curve is fully constructed and the most recent hysteresis curve is selected to extract GMS 

parameters. In time-domain identification, a combination of linear segments have been fitted to the 

experimental hysteresis curve to capture the variation in effective stiffness as individual elements 

disengage.  

 

 

Fig. 2.8. Dahl Resonances [44]. 

 

Frequency-domain identification, in some cases, can offer a simpler estimation process compared to 

time-domain approaches. Yoon and Trumper [44] also developed a frequency domain identification 

method (i.e., the Dahl resonance identification technique) to obtain GMS model parameters. Dahl 

resonances based on FRF data are shown in Fig. 2.8. In this technique, the system (i.e., servo-motor 

with high resolution encoder and motor driver) is excited with sinusoidal input and then FRF data is 

gathered. For small input amplitudes, since the data exhibits pre-sliding friction characteristics, the 

equivalent pre-sliding stiffness at each excitation amplitude can be derived from the apparent resonance 
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frequency, from which the GMS model parameters can be obtained. The performance assessment of 

the proposed model was experimentally validated with and without a model-based friction compensator 

in both the frequency and the time domains. The result showed that the model parameters, which were 

identified using Dahl resonances, contributed to significant improvement in the dynamic accuracy for 

the friction-compensated system.  

 

Apart from the GMS model identification and parametrization, identification of friction model 

parameters, in general, has a vital role in model-based control for compensation of friction in high 

precision positioning applications. Such identification for different friction models using 

experimentally gathered time domain data has been studied extensively in the literature [18][53][54]. 

These studies can be divided into two main groups; black-box and grey-box techniques (also referred 

to as physics based) [55][56][57]. Comparisons between the two strategies were made based on prior 

knowledge of the friction dynamics. If there is no prior information, black-box models were used and 

grey-box models in the other case.  

 

There have also been studies for the identification of other friction models based on FRF data 

[58][59][60][61]. Kim et. al. [58] and Chen et. al. [59] took basic Coulomb and viscous friction into 

account in order to identify servo drive dynamics with friction. The LuGre dynamic model was also 

considered in [60] based on frequency domain analyses.  

 

In this thesis, a new approach is proposed for parametrizing the pre-sliding portion of the GMS friction 

model with a reduced number of parameters. Rather than discretizing the pre-sliding virgin curve 

through a multitude of spring elements (typically requiring 8, 10, 12, …, parameters), a single shape 

factor is proposed, which together with the knowledge of the breakaway force and breakaway 

displacement, can adequately represent the experimentally observed pre-sliding behavior. This is 

explained in Chapter 4. 

 

2.2.3. Top-Down Approach in Modeling and Identification of Feed Drive Dynamics 

In today’s industry, there is a significant need to digitize manufacturing systems and processes as 

technology evolves rapidly. As computers become more powerful than before, the manufacturing sector 

is moving towards its forth revolution, also called ‘Industry 4.0’. In this era, computers are 

interconnected. Based on data transmitted, they make decisions to increase productivity and reliability 

in the manufacture of high quality products. There are four main components of Industry 4.0 [62]: a) 

Cyber-physical systems (CPS): This refers to the integration of computers and networks with the 
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physical process of manufacturing operations, where there is autonomous information exchange and 

triggering actions. b) Internet of Things (IoT): Enhancing objects’ and machines’ capabilities (for 

example, mobile phones and sensors) to communicate with people and each other. c) The Internet of 

Services (IoS): This feature enables systems and machines that are in service to be remotely 

reprogrammed with new functionalities during their life cycle. d) Smart factory: This is related to 

creating a system that can deal with the physical world and as well as the CPS over the IoT, which 

allows the execution of tasks even more effectively, efficiently, and with intelligence. 

 

Some of the design principles that relate to the main theme of this thesis can be summarized as follows: 

a) Virtualization: CPSs should be able to simulate and construct the virtual entity of an actual system. 

b) Real-time capability: A smart factory should collect real-time data and be able to make decisions 

and present new outcomes by post-processing the collected data sets. c) Modularity: The system should 

transition itself to new changing conditions and environment. There are also other design principle that 

can be seen in [62]. However, especially virtualization and real-time capability fall in-line with the idea 

of estimating feed drive dynamics in a virtual environment using the top-down approach.  

 

In the following, a brief literature of the top-down approach is given. The objective is to estimate one 

or several of the closed-loop transfer functions belonging to the feed drive control systems. Since this 

thesis proposes a new technique based on the top-down identification approach, and makes a direct 

comparison with an earlier proposed “rapid identification” strategy, more detailed explanation of the 

earlier method will be presented in Chapter 3, in context with the new methodology development.  

 

As mentioned in previous sections, for finding the dynamics of feed drives, there are various techniques 

already proposed. One open-loop identification strategy for finding rigid body dynamic parameters uses 

the least squares (LS) approach in which the rigid body model parameters and a simple Coulomb 

friction model are estimated jointly from time-domain data [17][18]. There are also frequency domain 

curve fitting algorithms available for characterizing the rigid body behaviour and structural modes of 

electro-mechanical systems [19]. However, accurate structural mode identification requires broadband 

excitation, which is difficult to achieve via smooth CNC trajectories. 

 

System identification techniques can be classified into three main groups: the prediction error, subspace 

[63], and the nonparametric correlation and spectral analysis techniques [64]. Some open-loop 

techniques, such as the subspace method, do not work well when closed-loop data is used due to the 

fundamental complication of correlating measurement noise and the applied input [65]. Closed-loop 
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identification techniques, in the prediction error framework, have attracted the attention of researchers 

due to common interests in industrial applications. 

 

 

Fig. 2.9. General scheme for top-down technique [73]. 

 

In general, closed-loop identification methods are divided into three main categories: direct, indirect, 

and joint input-output based techniques [66]. In the direct identification method, the feedback loop is 

ignored and the open-loop system parameters are identified using input and output measurements. In 

[67], a direct identification technique is proposed where a step is applied to the system as a command 

input, a frequency response measurement of the output is obtained, and the continuous-time transfer 

function is identified. In the indirect method, a few of the closed-loop transfer function parameters are 

identified, then the open-loop parameters are determined using a priori knowledge of the system’s linear 

controller. When noisy measurements are present, Silva et al. proposed the use of the Laguerre series 

expansions to analyze the closed-loop model through identification by applying a step response [68]. 

In the joint input-output approach, the plant input and the process output are considered as the outputs 

of the system and the reference and the noisy signals are treated as inputs of the system. Based on this 

joint correlation, the process model is estimated [64][65].    
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According to Forsell et al. [69], the first step of the system identification problem is the experiment 

design to maximize the information in the data to obtain the system’s best possible dynamic model. All 

of the aforementioned work typically require a command input that delivers sufficient excitation to be 

applied to the closed-loop system, such as a step input, or a pseudo random binary sequence (PRBS). 

However, in CNC machine tools, motion commands are typically smooth up to acceleration level, 

which renders the identification of multiple transfer function parameters even more challenging [70] 

due to lack of excitation. There are also other studies to reduce dependency on the system’s excitation 

during regular operation [71][72]. The authors achieve this goal by imposing different performance 

criteria prior to experimental validation. While generally successful, the method proposed in these 

papers requires extensive amount of data for training the model. In a practical manufacturing 

environment, it is preferable to identify reliable virtual models with the minimal amount of data.  

 

 

Fig. 2.10. P-PI position-velocity cascade control structure and generic closed-loop model in rapid 

identification [73]. 

 

Overall, the aforementioned feed drive dynamic modeling techniques explained previously, as well as 

the methods already proposed in literature, have crucial roles in predicting the final accuracy of feed 

drive systems. However, experimental identification of such models is generally time consuming and 

requires significant expertise on dynamics, identification theories, and the technical expertise to apply 
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this knowledge on production equipment. In addition, bottom-up modeling based identification tests 

typically need to be performed on the shop floor; which causes downtime to the machine away from 

production. Instead of going through these steps, a top-down approach has been proposed in literature 

[73][74]. In this top-down method, as shown in Fig. 2.9, a short duration NC code is executed 

(comprising typically random motion commands) and the commanded and actual position data is 

gathered for reverse-engineering a model that emulates the machine tool drive’s closed-loop command 

tracking and disturbance response behavior in a limited frequency range.  

 

This approach is also capable of capturing the effect of Coulomb friction, which enables the prediction 

of tracking errors and quadrant glitches that stem from abrupt motion reversals. One of the common 

feedback control structures (i.e., P-PI cascade control) is given in Fig. 2.10a. Here, the position loop is 

closed using proportional control and the velocity loop with proportional-integral (PI) control. 

Feedforward compensation is also used to widen the servo tracking bandwidth so that the positioning 

accuracy can be improved for rapidly varying motion commands. The generic closed-loop model in 

Fig. 2.10b can capture this closed-loop dynamics, as well as other control configurations in which third 

order dynamics are prevalent, such as direct PID position control, or pole placement control with a 

Kalman filter based state feedback and trajectory pre-filtering [73].   

 

 

Fig. 2.11. Solution search space for constrained identification of top-down models [73][74]. 

 

The merit of the top-down approach in [73], developed for feed drive systems with predominantly rigid 

body response, is to represent a wide class of feed drive systems with only 8 parameters (3 poles, 3 

zeros, and 2 friction parameters). After data collection, the closed loop tracking and disturbance transfer 

function parameters are first identified using a LS based formulation. The interpolator generated motion 

commands are generally smooth and may lack the persistence of excitation, which does not allow the 

eight parameters to be estimated with sufficient closeness to their actual values. This is a minor problem 

that can be ignored as long as the identified feed drive model is capable of representing the real 

dynamics in a satisfactory manner within the frequency range of the CNC motion commands. However, 
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this issue may result in problems when the estimated model has unstable or poorly damped pole 

locations.  In order to prevent this situation, bounds are imposed in [73] and [74] on the closed loop 

pole locations, as shown in Fig. 2.11. Then, the numerator and friction parameters for each selection of 

pole locations can be obtained by solving a LS sub-problem (i.e., via LS projection): 

Φ2𝜃2⏟  
𝑁𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟 (𝑧𝑒𝑟𝑜𝑠)
𝑎𝑛𝑑 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠
~(𝑏0, 𝑏1, 𝑏2, 𝑑0, 𝑑1)

= 𝑌⏟
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

− Φ1𝜃1⏟  
𝑇𝑒𝑟𝑚𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑
𝑡𝑜 𝑡𝑒𝑠𝑡𝑒𝑑 𝑝𝑜𝑙𝑒
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
~(𝑎1, 𝑎2, 𝑎3)

+ 𝐸⏟
𝑀𝑜𝑑𝑒𝑙

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑒𝑟𝑟𝑜𝑟

 

(2.4) 

In this thesis, a novel formulation has been developed for this top-down identification problem, which 

significantly improves the numerical conditioning and convergence properties of the model, and the 

robustness of the estimation against measurement noise. This is presented in Chapter 3.  

 

2.3. Literature on Iterative Learning Control 

In a wide range of industrial applications, such as robotic manipulators, machine tools, and chemical 

reactors, the nature of the reference and disturbance inputs are repetitive. Especially, in machine tools, 

which execute the same tool motion repeatedly in batch or mass production scenarios, when the 

operating conditions are well controlled (i.e., vibration isolated, temperature controlled, etc.), then the 

servo positioning accuracy is affected by the commanded trajectory and disturbances (such as friction 

and cutting forces) in a fairly repeatable pattern. These effects lead to cyclical error profiles, which are 

implicitly influenced by unmodeled dynamics, parametric uncertainties, and unmodeled or 

uncompensated disturbances.  

 

In order to reduce errors in the presence of such factors, different control techniques, ranging from 

classical control to the more complex methods, such as robust and adaptive control, and nonlinear 

control, have been proposed. Neural network, fuzzy logic based, and intelligent control have also been 

studied and implemented in various applications [75][76]. However, these control strategies may not 

always be suitable for production machines, such as machine tools and robots, because of the 

complexity of the methods and the requirement to modify the feedback/feedforward control structure, 

which is typically fixed in industrial servo controllers. On the other hand, Iterative Learning Control 

(ILC), which can be categorized as an intelligent control technique, can be implemented by simply 

modifying the trajectory command sequence in order to mitigate the repeating error patterns. This 

would require no change of the feedback or feedforward portions of the servo control system. Thus, it 

has generated strong appeal for industrial application.  
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The first concrete model and analysis of ILC emerged during the 1980s, which was motivated for 

robotic manipulators performing repetitive tasks [77][78]. Afterwards, considerable literature has 

grown around the topic of ILC [79]. Several surveys covered the theoretical background and referenced 

other published papers relating to ILC [79][80][81][82]. Per various definitions and goals which have 

been reported in literature, the main objective of ILC is to achieve an inverse effect for the plant (or 

closed-loop system) which counteracts the influence of repeating inputs [79]. In many situations, ILC 

can be implemented with minimal information about the system model. 

 

Various ILC techniques have been proposed in the literature. Markusson et al. [83] used ILC for 

nonlinear non-minimum phase systems. In the same study, the inverse of a linearized model with non-

causal filtering has been used. A more comprehensive discrete-time inverse model based ILC has been 

proposed in [84]. In addition, to enhance the contouring performance of multi-axis CNC machine tools, 

other ILC techniques such as cross-coupled ILC has been proposed [85]. For multi degree of freedom 

(DOF) structures, for example for industrial servo systems where positioning errors arise from both 

motor and load side, dual-stage ILC has been proposed in the literature [86]. Further analysis on 2-DOF 

structures has been considered in [87] and [88]. 

 

The general architecture of ILC technique is shown in the Fig. 2.12.  In this architecture, which is also 

referred to as the serial configuration, ILC is applied before the feedback controller. This type of 

configuration is convenient when there is a commercial controller that does not give direct permission 

to alter the control signal applied to the plant (as is in most machine tool drives). Conversely, in the 

parallel configuration, the ILC signal is combined with the feedback controller input. This approach 

directly modifies the control signal applied to the plant. If feedforward action is available on the control 

structure, then this approach can be adopted. The parallel configuration also enables the separation of 

the performance contribution of ILC from the feedback control action [81].  Owing to the semi-rigid 

control structure which has been established in the machine tool industry, in this thesis the serial 

configuration of ILC has been investigated. 

 

In Fig. 2.12, 𝑥𝑟 is the reference and 𝑥𝑗 is the output signal. 𝑗 is the iteration number (denoting the 

instance of running the repeating command trajectory). For every iteration, the sequence of recorded 

tracking error 𝑒𝑗 and ILC input 𝑢𝑗 are stored in a memory. The purpose of ILC is to decrease the tracking 

error 𝑒𝑗 = 𝑥𝑟 − 𝑥𝑗 by generating the feedforward signal 𝑓𝑗. 𝑓𝑗+1 is generated based on the history of 𝑒𝑗 

and 𝑢𝑗 from the previous iteration. The ILC update law given by [89], 
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𝑓𝑗+1[𝑘] = 𝑄(𝑧)[𝑓𝑗[𝑘] + 𝐿(𝑧)𝑒𝑗[𝑘]] (2.5) 

where for a continuous time signal 𝑒, the corresponding sampled time signal is denoted by 𝑒[𝑘] ≜

𝑒(𝑘𝑇𝑠), where 𝑇𝑠 is the sampling time. The tracking error is recorded in memory for every iteration ‘𝑗’ 

and discrete time instant ‘𝑘’. Above, 𝐿(𝑧) and 𝑄(𝑧) are z-transform of the learning property and 

robustness filter of ILC, respectively. Under the assumptions that: 𝑖) The initial state of the system is 

set to the same value at the beginning of each iteration, 𝑖𝑖) The closed loop system is stable, and also 

that 𝑖𝑖𝑖) The closed loop system is linear and time invariant (LTI). The stability of applying ILC and 

the monotonic convergence of the error to zero are met by the following condition, 

‖𝑄(𝑧)[1 − 𝐿(𝑧)𝐶(𝑧)]‖𝑖 < 1,          𝑖 = {1, 2…  ∞} (2.6) 

𝐶(𝑧) is the z transform of the closed loop transfer function. ‖. ‖𝑖 is the ‘norm’ operator.  

 

 

Fig. 2.12. Iterative Learning Control Dynamics [89]. 

 

In this thesis, ILC has been investigated to improve the repetitive errors that occur during multi-axis 

contouring motions. While ILC can be directly implemented with experimental (field) data during an 

ongoing manufacturing process, during the learning and adjustment period, servo positioning accuracy 

and therefore the manufactured part quality would be sacrificed. Also, valuable (productive) machine 

time would be wasted. Rather, the objective is to perform ILC directly using an estimated virtual model 

of the servo system, in order to minimize the amount of trial and error required on the actual machine-

tool. The investigation carried out on ILC is discussed in Chapter 6.  
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Chapter 3  

Estimation of Feed Drive Closed-Loop Models Considering Rigid Body 

Dynamics 

 

3.1. Introduction 

Understanding the accuracy and motion limitations of the servo system in a machine tool is critical to 

planning process trajectories that can make maximum use of that machine’s dynamic capabilities. 

While there are already established methods for developing dynamic models of servo drives, such as 

using first principles modeling, identifying each parameter/gain one at a time, or analyzing the response 

of one feedback loop at a time, such methods can be time consuming and detrimental to the daily 

operation of a production machine. The proposed methodology in this chapter aims to estimate 

equivalent closed-loop models of feed drives in a nonintrusive manner, directly from field data which 

is collected ideally without interrupting the machine’s operation. Thus, it holds promise for 

conveniently migrating into virtual production planning through the use of so-called ‘digital twins’, 

with minimal negative impact on the manufacturing performance.   

 

In this chapter, feed drive closed-loop dynamics estimation considering rigid body modeling is 

described and the effectiveness of the proposed estimation is demonstrated around two case studies. 

The first is gear form grinding. The second is related to identifying the x-y axes of a 5-axis machine 

tool which was conducted in collaboration with another graduate student, Ms. Ginette Tseng, MASc at 

University of Waterloo. The two application setups used for validation purposes are first explained in 

Section 3.2. Classical (bottom-up) approach, which identifies the dynamics of the servo drives through 

one-by-one modeling and time- and frequency-domain techniques are presented in Section 3.3. In 

Section 3.4, an earlier method for identifying virtual dynamics in a top-down manner, which can be 

usually implemented with classical LS, is described. Afterwards, the new algorithm proposed in this 

thesis, based on pole search in conjunction with LS projection, is presented in Section 3.5. To compare 

the effectiveness of the new method over the earlier approach, identification results under simulated 

measurement noise and a convergence analysis are presented in Section 3.6. Experimental estimation 

results based on the aforementioned two applications are given in Section 3.7, demonstrating the 

improvements obtained with the proposed algorithm. The chapter ends with conclusions in Section 3.8.   
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3.2.  Two Sample Applications: Gear Form Grinding and 5-axis Milling Machine Tools 

 

3.2.1. Gear Form Grinding Application 

The proposed identification methodology was validated on a gear grinding machine tool, as seen in Fig. 

3.1. This machine is located at Ontario Drive & Gear Ltd. (ODG, New Hamburg, Ontario, Canada) and 

used for the production of high precision gears. ODG manufactures different kinds of gears, including 

marine gears, mining gears, automotive gears, etc. The company also manufactures conveyor systems 

and power transmission couplings for various vehicles. Gear quality is essential for smooth power 

transmission and machine life. In order to manufacture high quality gears and gear assemblies, ODG 

uses different CNC machines such as turning, milling, grinding, hobbing, and gear shaping. Among 

these processes, grinding constitutes 35-40% of the annual production.  

 

There are various types of grinding configurations (form grinding and generating (i.e., worm) grinding). 

In form grinding, which is particularly suited for small batch sizes and customized gears, the abrasive 

wheel assumes the negative shape that is to be imparted onto the gear tooth-gap profile, which is ground 

as one gap at a time. Fig. 3.1a shows a schematic diagram of a Kapp KX 300P CNC gear grinder used 

at ODG [90]. While the illustration may appear a bit complicated, the crucial portion (the dressing tool 

and the grinding wheel) that has been used in testing the modeling in this thesis has been highlighted 

(for clarification) in color. Trimming the grinding wheel to the correct shape is achieved through a 

process called ‘dressing’, during which the x-y axis carriage (highlighted in yellow in Fig. 3.1a) 

supporting the grinding wheel performs relative motion with respect to the dressing tool located at a 

fixed station. Fig. 3.1b shows a photograph of the dressing tool, workpiece, and grinding wheel 

together. Also, Fig. 3.1c shows a typical dressing operation for form grinding and Fig. 3.1d illustrates 

motion of the x-y carriage. Fig. 3.1e demonstrates how a shaped grinding wheel is used to produce 

gears with the correct tooth and gap contours.  

 

In form grinding, the dressing takes up about 15-30% of a part’s cycle time. Increasing the dressing 

speed results in shape distortion, thus tooth form errors, due to increased tracking and contouring errors 

which occur at high velocity and acceleration magnitudes. Hence, having an accurate model of the feed 

drive system obtained through pole search method can enable such errors to be predicted and corrected 

ahead of time, allowing productivity gains to be achieved by increasing the dressing speed. 
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Fig. 3.1. a) Form grinding setup [90] b) Dressing tool, workpiece and grinding wheel. c) Dressing 

tool-grinding wheel operation [92]. d) Dressing path. e) Workpiece-grinding wheel contact. 
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3.2.2. 5-axis Milling Machine Tool Application  

The Deckel Maho 80P hi-dyn five-axis machining center in Fig. 3.2 was also used as a test bed to 

validate the proposed identification method. The machining center has a Heidenhain TNC 430N 

controller with a built in scope function which allows 4096 data samples to be logged at a sampling 

period of 0.6 ms. The scope function was used to capture position commands, as well as measured 

position data from the linear encoder with 0.1 μm resolution. The simulation and experimental results 

presented in this chapter related to this setup were obtained together with Ms. Ginette Tseng.  

 

 

Fig. 3.2. 5-axis machine tool for validating pole search method. 

 

3.3. Classical (Bottom-Up) Approach  

The most common servo control structure, and the one encountered in the two experimental setups, is 

‘P-PI position-velocity cascade control’. The P-PI controller is easy to tune and implement, and 

therefore widely used in industry. The control of the feed axes of the grinder is achieved with P-PI 

control, implemented together with additional filter and logic. Compact representation of this control 

structure is also captured with Fig. 3.3. Further details on some of the individual blocks, not illustrated 

in this figure, can be found in [91], which was obtained from the Siemens 840D CNC documentation.  

 

Frequency response function (FRF) measurements were taken from the gear grinding machine dressing 

process and used to identify the inertia parameter, 𝐽. Viscous friction (𝐵) identification was challenging, 

as the frequency of the corresponding pole (𝐵/𝐽) was below the measured frequency range on the 

Siemens CNC. Hence, 𝐵 was taken as zero. The filter, feedback controller, and feedforward 

compensation parameters were also identified from their respective CNC parameter entries.   
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Fig. 3.3. P-PI position-velocity cascade control scheme with velocity feedforward term. 

 

The P-PI cascade control system model was validated by capturing the command and actual 

(translational encoder) x-y position data from the grinder during the dressing operation, and comparing 

the actual motions of the machine with those predicted with the model. These results are shown in Fig. 

3.4. At the initial glance, it can be seen that the model predictions are in reasonable agreement with the 

actual movements of the machine tool. While the instantaneous servo errors are replicated well to a 

certain extent, there is still some discrepancy in the predictions. One disadvantage of the classical 

(bottom-up) approach is that it takes a long time to build, which results in loss of productivity due to 

the machine tool not being used to make parts. The construction of this model would, in normal 

circumstances, have caused several hours of downtime to the machine tool, even if the control engineer 

performing the identification is well familiar with the operation of the CNC and its internal structure. 

When such familiarity is missing (for example in identifying servo models for machine tools of 

different builds, perhaps controlled with different CNC’s), this process can take much longer.  

 

As a main objective in this thesis is to build virtual models of servo drive systems from in-process data, 

this bottom-up effort constitutes a baseline in terms of evaluating the effectiveness and efficiency of 

other approaches, such as the one proposed in Section 3.5.  
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Fig. 3.4. Validation of bottom-up model with in-process captured dressing trajectory. 
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3.4. Earlier Method of Rapid Identification – Utilizing Least Squares for Estimating the 

Equivalent Closed-Loop Tracking and Disturbance Response 

As explained in [73], a third order model is capable of describing the closed-loop behavior of a large 

class of feed drive control systems, such as a ball screw or direct drive system. This model can be 

controlled by various feedback techniques (P, PI, PD, PID, and/or P-PI cascade control), which can 

contain feedforward dynamics or friction compensation, as long as the closed loop transfer function is 

dominated by 3rd order dynamics. Also, the double pole term has been allowed to assume damping 

values larger than 1. This provides the accommodation to represent third order systems with three real 

poles. There are three main assumptions that this approach makes. Firstly, the structural resonances of 

the machine are avoided, hence the machine is modelled as a rigid body. Secondly, the motor and 

amplifier are run below the saturation limit, ensuring that they operate in their linear range. Finally, the 

nonlinearities in the system have very little influence on the motion of the feed drive. For example, the 

backlash in precision ball screws is typically an order of magnitude smaller than the encountered servo 

errors. Under these assumptions, the equivalent closed-loop dynamics can thus be modelled as: 

𝑥(𝑠) =
𝑏0𝑠

2 + 𝑏1𝑠 + 𝑏2 + 𝑎3
1
𝑠

𝑠2 + 𝑎1𝑠 + 𝑎2 + 𝑎3
1
𝑠⏟              

𝐺𝑡𝑟𝑎𝑐𝑘(𝑠)

𝑥𝑟(𝑠) −
𝐾/𝐽

𝑠2 + 𝑎1𝑠 + 𝑎2 + 𝑎3
1
𝑠⏟              

𝐺𝑑𝑖𝑠𝑡(𝑠)

𝑑(𝑠) 
(3.1) 

Here, 𝑥𝑟(𝑠), and 𝑥(𝑠) are the commanded and actual axis positions, and 𝑑(𝑠) represents the disturbance 

(such as friction) acting on the motion system, all represented in the Laplace domain. Their time-

domain representations are 𝑥𝑟(𝑡), 𝑥(𝑡), and 𝑑(𝑡). 𝑎𝑖 and 𝑏𝑖 are polynomial coefficients of the transfer 

functions. 𝐺𝑡𝑟𝑎𝑐𝑘(𝑠) is the equivalent command tracking transfer function and 𝐺𝑑𝑖𝑠𝑡(𝑠) is the equivalent 

disturbance response. 𝐽 represents open-loop inertia of the feed drive, and 𝐾 the product of the motor 

torque gain, current amplifier gain, and ball screw and gear transmission gain (if there is any) [73]. 

 

Following the rapid identification formulation in [73], the parameter estimation steps in Eqs. (3.4)-(3.7) 

utilize the time-integral of the tracking error. Hence, the denominator polynomial is expressed with the 

lowest order term (𝑎3) coinciding with  𝑠−1 = 1/𝑠. Multiplying the numerator and denominator with 

(𝑠) naturally yields a form similar to Eq. (3.10). 

 

Errors caused by friction become prevalent during velocity reversals because the feedback controller 

cannot compensate sudden changes in the disturbance force. As the velocity of the feed drive transitions 

through zero, the friction force (which is very close to being in the pre-sliding regime) quickly changes 
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its direction. Here, to simplify the model, only Coulomb type friction is considered to approximate the 

overall detrimental effect of friction dynamics. This type of friction model can be formulated as: 

𝑑 = 𝑑+𝑃𝑉(𝑥̇) + 𝑑−𝑁𝑉(𝑥̇), (3.2) 

where 𝑃𝑉( ) is a binary function which has a value of “1” when the axis velocity is positive and “0”, 

otherwise, while 𝑁𝑉( ) is a binary function which has a value of “1” when the axis velocity is negative 

and “0” otherwise. The control signal equivalent values for the Coulomb friction are modelled as 𝑑+ 

and 𝑑− for the positive and negative directions of motion, respectively. From here onwards, adopting 

the operator ‘𝑠’ as differentiation with respect to time and ‘1/𝑠’ as integration with respect to time, the 

closed-loop dynamics can be expressed by combining Eqs. (3.1) and (3.2): 

[𝑠2 + 𝑎1𝑠 + 𝑎2 + 𝑎3
1

𝑠
] 𝑥 = [𝑏0𝑠

2 + 𝑏1𝑠 + 𝑏2 + 𝑎3
1

𝑠
] 𝑥𝑟 − [𝑃𝑉(𝑥̇)𝑑𝑛

+ +𝑁𝑉(𝑥̇)𝑑𝑛
+] (3.3) 

Above, 𝑑𝑛
+ and 𝑑𝑛

− are normalized friction values for positive and negative velocities, respectively, and 

can be obtained as 𝑑𝑛
+/−

= (𝐾/𝐽)𝑑+/−. From Eq. (3.3), in discrete-time form, the position of the drive 

at sample 𝑘 can be predicted as: 

𝑥𝑘 = 𝛼𝑖𝑒𝑖,𝑘 − 𝛼1𝑥̇𝑘 − 𝛼2𝑥̈𝑘 + 𝛽0𝑥𝑟,𝑘 + 𝛽1𝑥̇𝑟,𝑘 + 𝛽2𝑥̈𝑟,𝑘 − 𝑃𝑉(𝑥̇𝑘)𝛿
+ −𝑁𝑉(𝑥̇𝑘)𝛿

− (3.4) 

𝛼2 = 1/𝑎2,    𝛼1 = 𝑎1/𝑎2, 𝛼𝑖 = 𝑎3/𝑎2,

 𝛽2 = 𝑏0/𝑎2,    𝛽1 = 𝑏1/𝑎2, 𝛽0 = 𝑏2/𝑎2,

 𝛿+ = 𝑑𝑛
+/𝑎2,    𝛿− = 𝑑𝑛

−/𝑎2,

} (3.5) 

where 𝛼𝑖, 𝛼1, 𝛼2, 𝛽0, 𝛽1, 𝛽2, 𝛿
+, 𝛿− are the normalized model parameters with respect to 𝑎2. 

Commanded and actual axis position (𝑥𝑟, 𝑥), velocity (𝑥̇𝑟. 𝑥̇) and acceleration (𝑥̈𝑟, 𝑥̈) profiles can be 

captured on the fly in most machine tool systems. In Eq. (3.4), 𝑒𝑖 is the integrated tracking error, which 

can be approximated as: 

𝑒𝑖,𝑘 = 𝑇𝑠 ∑(𝑥𝑟,𝑚 − 𝑥𝑚)

𝑘

𝑚=1

 (3.6) 

Note that 𝑥𝑘 = 𝑥(𝑘𝑇𝑠), where 𝑇𝑠 is the discrete time sampling period. Using classical LS, the 8 

unknown parameters can be found by minimizing [93], 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 =
1

2
(𝑌 − Φ𝜃)𝑇(𝑌 − Φ𝜃)

𝑌 = [𝑥1 𝑥2…𝑥𝑁]
𝑇

𝜃 = [𝛼𝑖 𝛼1 𝛼2 𝛽0 𝛽1 𝛽2 𝛿
+ 𝛿−]𝑇

Φ =

[
 
 
 
𝑒𝑖,1 −𝑥̇1 −𝑥̈1 𝑥𝑟,1 𝑥̇𝑟,1 𝑥̈𝑟,1 −𝑃𝑉(𝑥̇1) −𝑁𝑉(𝑥̇1)

𝑒𝑖,2 −𝑥̇2 −𝑥̈2 𝑥𝑟,2 𝑥̇𝑟,2 𝑥̈𝑟,2 −𝑃𝑉(𝑥̇2) −𝑁𝑉(𝑥̇2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑒𝑖,𝑁 −𝑥̇𝑁 −𝑥̈𝑁 𝑥𝑟,𝑁 𝑥̇𝑟,𝑁 𝑥̈𝑟,𝑁 −𝑃𝑉(𝑥̇𝑁) −𝑁𝑉(𝑥̇𝑁)]

 
 
 

}
 
 
 
 

 
 
 
 

 
(3.7) 

as  

𝜃 = (Φ𝑇Φ)−1Φ𝑇𝑌 (3.8) 

Here, 𝜃 is the parameter vector with all unknown parameters, 𝑌 contains axis position measurements, 

and Φ is the regressor matrix, made up of signals available for measurement. In earlier work, to observe 

the performance of the drive over various feedrates, a short NC code with pseudo-random movements 

would be executed. By executing several back and forth movements on the machine and inducing 

trajectories with different acceleration and velocity, motor torque/force amplitude dependency of the 

system’s response caused by Coulomb friction could be reasonably captured. While generally 

successful, there are some drawbacks to this earlier approach: 

1- The commanded signals in CNC systems are typically acceleration-continuous and lack the 

persistence of excitation (PE) for full parameter convergence. This deteriorates the prediction 

accuracy of identified models and can, in some cases, also lead to unstable models. 

2- The formulation in Eq. (3.7) requires numerical derivatives of measured encoder signals in the 

regressor matrix Φ, which typically leads to noise sensitivity issues. This is true especially if low 

resolution encoders are used, or the captured CNC data is limited in the number of significant 

digits available in the controller’s trace function. 

To avoid the issue of identifying unstable models due to lack of PE, earlier research [70][73][74] had 

imposed bounds which define acceptable pole locations as being sufficiently away from the imaginary 

axis of the s-plane. Considering that the characteristic polynomial can be written as 𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 +

𝑎3 = (𝑠 + 𝑝)(𝑠
2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2), the following constraints were integrated into the estimation 

process: 

Constraints: 
𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥 𝜔𝑛,𝑚𝑖𝑛 ≤ 𝜔𝑛 ≤ 𝜔𝑛,𝑚𝑎𝑥

𝜁 ≥ 𝜁𝑚𝑖𝑛 𝜁 ≤ 𝜁𝑚𝑎𝑥
 (3.9) 
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In earlier experimental and simulation studies [73], it was observed that for majority of the cases, 

solution of the unconstrained estimation problem in Eq. (3.7) resulted in pole locations which already 

satisfied the constraints in Eq. (3.9). In other words, solving the unconstrained problem alone yielded 

the equivalent result to merging Eqs. (3.7) and (3.9) and solving the constrained problem via a method 

like Lagrange Multipliers. Thus, in the benchmark simulation and experimental studies presented in 

this thesis, the earlier method in [73] was implemented by first solving the unconstrained 8-parameter 

estimation problem in Eq. (3.7), and then checking the compliance of the solution with the constraint 

set in Eq. (3.9) afterwards. If this check passes, then Kuhn-Tucker conditions required for analyzing 

the constraint activation scenarios are by-passed, thereby greatly simplifying the implementation. In 

this thesis, such implementation of the earlier method has been referred to as the ‘Full LS Solution’. 

 

3.5. Proposed New Solution: Pole Search in Conjunction with Least Squares Projection 

The goal of the proposed identification method is to enhance the convergence and robustness in 

estimating a CNC drive system’s dynamic model. In the new method, the instantaneous tracking error 

(𝑒 = 𝑥𝑟 − 𝑥) in each axis is directly predicted, rather than the axis position itself:  

𝑒(𝑠) =
(𝑐0𝑠

2 + 𝑐1𝑠 + 𝑐2)𝑠

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3⏟              
𝐺𝑒,𝑥𝑟(𝑠)

𝑥𝑟(𝑠) −
(𝐾/𝐽)𝑠

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3⏟              
𝐺𝑒,𝑑(𝑠)

𝑑(𝑠) 
(3.10) 

 

 

Fig. 3.5.  Closed-loop model for predicting tracking error and feed drive position. 

 

𝑐0 = 1 − 𝑏0,
 𝑐1 = 𝑎1 − 𝑏1,
𝑐2 = 𝑎2 − 𝑏2

} (3.11) 
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Prediction of the servo error (𝑒) and axis position (𝑥) is illustrated in Fig. 3.5. For numerical estimation 

and simulation convenience in the new method, the friction at small velocities is approximated as being 

viscous, while beyond a certain velocity threshold (𝑣̃) it is modeled as Coulomb friction. 

𝑑(𝑡) = 𝑑0
′ 𝑠𝑎𝑡(𝑥̇/𝑣̃) (3.12) 

Above, 𝑑0
′  is the control input normalized Coulomb friction value for both positive and negative motion 

directions and 𝑣̃ is the velocity band for transitioning to Coulomb friction. Lumping the friction 

magnitude 𝑑0
′  together with the gain of the disturbance response 𝐾/𝐽, a single gain can be defined as 

𝑑0 = 𝑑0
′𝐾/𝐽 pertaining to the disturbance response for a scaled friction input between -1 … +1. In the 

estimation step, since numerically differentiated position readings from the machine encoder can be 

noisy, even after filtering, a pure sign( ) function may lead to false detection of sudden friction force 

transitions. On the other hand, when a block diagram like the one in Fig. 3.5 is used for simulating the 

axis motion and servo errors, pure Coulomb friction, which transitions discontinuously around zero 

velocity, can lead to limit cycle type oscillations when coupled with the feedback loop [94]. Thus, it 

was found that using a saturation function, which emulates viscous type friction behavior around very 

small velocities, provides a practical workaround to both problems, while still facilitating close enough 

parameter estimation and tracking error prediction due to the friction force. Substituting Eq. (3.12) into 

Eq. (3.10), the following expression is obtained in which the characteristic polynomial 𝑃(𝑠) has also 

been designated: 

(𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3)⏟              
𝑃(𝑠)

𝑒 = (𝑐0𝑠
2 + 𝑐1𝑠 + 𝑐2)𝑠𝑥𝑟 + 𝑠[𝑑0𝑠𝑎𝑡(𝑥̇/𝑣̃)] (3.13) 

For a candidate model, if the pole locations are already chosen in the structure: 𝑃(𝑠) = 𝑠3 + 𝑎1𝑠
2 +

𝑎2𝑠 + 𝑎3 = (𝑠 + 𝑝)(𝑠
2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2), then the numerator terms and lumped friction magnitude can 

be estimated following a LS sub-problem constructed by re-arranging Eq. (3.13) into the form below: 

𝑒 =
𝑐0𝑠

3

𝑃(𝑠)
𝑥𝑟 +

𝑐1𝑠
2

𝑃(𝑠)
𝑥𝑟 +

𝑐2𝑠

𝑃(𝑠)
𝑥𝑟 +

𝑠

𝑃(𝑠)
[𝑑0𝑠𝑎𝑡 (

𝑥̇

𝑣̃
)] 

=
𝑠3𝑥𝑟
𝑃(𝑠)⏟
𝑥𝑟𝑓

𝑐0 +
𝑠2𝑥𝑟
𝑃(𝑠)⏟
𝑥̈𝑟𝑓

𝑐1 +
𝑠𝑥𝑟
𝑃(𝑠)⏟
𝑥̇𝑟𝑓

𝑐2 +
𝑠

𝑃(𝑠)
𝑠𝑎𝑡 (

𝑥̇

𝑣̃
)

⏟        
𝑑𝑛𝑓

𝑑0 
(3.14) 
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In practical implementation, the actual axis velocity (𝑥̇) is replaced by the measured and filtered 

velocity estimate (𝑥̇𝑓) determined through differentiation and moving average filtering of the encoder 

readings with zero phase shift with respect to time (e.g., by using the ‘filtfilt’ command in Matlab). This 

substitution helps mitigate noise issues in resolving the direction of the instantaneous friction force, 

especially at small velocities. 

 

Due to the consideration of predominantly rigid body dynamics and integral action in the control law, 

the characteristic polynomial 𝑃(𝑠) is third order. Thus, the filtered velocity, acceleration, and jerk 

command profiles, 𝑥̇𝑟𝑓 , 𝑥̈𝑟𝑓 , 𝑥𝑟𝑓 will all be continuous as long as 𝑥𝑟 is continuous. 

 

Output of the saturation function will be 0th degree continuous. However, its filtering through 𝑠/𝑃(𝑠) 

will add two more degrees of continuity. This signal, 𝑑𝑛𝑓, can be considered as a normalized friction 

force (between -1 and +1), which has been ‘filtered’ through the closed loop system’s characteristic 

response and differentiated once. 

 

In contrast to the earlier estimation method described in Section 3.3, which requires up to second order 

differentiation of both command signals and encoder (position) readings, in the new approach all 

signals considered in the regressor matrix are continuous and they do not suffer from noise or numerical 

round-off error amplification problems induced by the differentiation process. Grouping the observed 

tracking errors into an output vector (𝑌 = [𝑒1  𝑒2   ⋯  𝑒𝑁]
𝑇) and defining the regressor matrix in the 

form: 

Φ2 =

[
 
 
 
 
 
𝑥𝑟𝑓,1 𝑥̈𝑟𝑓,1 𝑥̇𝑟𝑓,1 𝑑𝑛𝑓,1

𝑥𝑟𝑓,2 𝑥̈𝑟𝑓,2 𝑥̇𝑟𝑓,2 𝑑𝑛𝑓,2

⋮ ⋮ ⋮ ⋮

𝑥𝑟𝑓,𝑁 𝑥̈𝑟𝑓,𝑁 𝑥̇𝑟𝑓,𝑁 𝑑𝑛𝑓,𝑁]
 
 
 
 
 

 (3.15) 

The estimation of the numerator terms and lumped friction magnitude can be achieved as: 

𝜃2 = [𝑐0  𝑐1  𝑐2  𝑑0]
𝑇 = (Φ2

𝑇Φ2)
−1Φ2

𝑇𝑌 (3.16) 
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Fig. 3.6. Proposed new procedure for identifying virtual feed drive dynamics. 
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Hence, the following step-by-step procedure has been developed for implementing the proposed 

identification scheme, as also illustrated in Fig. 3.6: 

1- Candidate models are generated with pre-assigned stable pole locations within a search-space. 

2- After constructing the corresponding regressor, the best-fitting numerator and friction parameters 

are solved using LS projection [93]. 

3- Each candidate model is evaluated for how well it is able to replicate the observed tracking error 

profile for an individual axis, by assessing the objective function which penalizes the root mean 

square of the prediction error. 

𝑓 = √
1

𝑁
∑(𝑒𝑘 − 𝑒̂𝑘)

2

𝑁

𝑘=1

 (3.17) 

4- The pole set (and matching numerator and friction parameters) which yield the best result are 

selected to establish the ‘identified model’. 

In Eq. (3.17), 𝑒𝑘  and 𝑒̂𝑘 are the actual (experimental) and predicted tracking errors respectively, and 𝑁 

is the total number of samples considered in the model fitting and evaluation process. 

 

3.6. Simulation Results 

 

3.6.1. Performance Analysis of Identification Approaches under Measurement Noise 

 

In this section, the proposed identification technique’s advantages (robustness, consistency etc.) has 

been compared to the earlier approach [73]. This analysis has been implemented in the context of 

reconstructing the dynamics of a P-PI position-velocity cascade controlled drive system when the 

output (e.g., position, 𝑥) measurement is contaminated with sensor noise (e.g., quantization). The 

controller structure, shown in Fig. 3.7, is frequently used in industrial machine tools.  
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Fig. 3.7.  P-PI position-velocity cascade control structure. 

 

In this case, the third order closed loop model parameters correlate to the individual open loop and 

control law parameters through the following relationships: 

     𝑎1 =
𝐵 + 𝐾𝐾𝑝𝑣

𝐽
                   𝑎2 =

𝐾(𝐾𝑝𝑣𝐾𝑝𝑥 + 𝐾𝑖)

𝐽

𝑎3 =
𝐾𝐾𝑝𝑥𝐾𝑖

𝐽
𝑏0 =

𝐾𝐾𝑎
𝐽

 𝑏1 =
𝐾𝐾𝑝𝑣𝐾𝑣

𝐽
                       𝑏2 =

𝐾(𝐾𝑝𝑥𝐾𝑝𝑣 + 𝐾𝑣𝐾𝑖)

𝐽 }
  
 

  
 

 (3.18) 

The above formulation for denominator and numerator parameters belongs to the tracking transfer 

function (𝑥𝑟 → 𝑥) form considered in Eq. (3.1). In evaluating the tracking error response to the 

commanded trajectory (𝑥𝑟 → 𝑒) as in Eq. (3.10), 𝑐0, 𝑐1, and 𝑐2 terms can be calculated using Eq. (3.11). 

 

The model was developed based on the x-axis drive of the DMG machine tool explained earlier in this 

chapter. By inspecting the CNC parameters, it was found out that the acceleration and velocity 

feedforward gains had been set to zero. Thus, in the simulation, they were also set to be disabled (𝐾𝑎 =

0, 𝐾𝑣 = 0). The effect of true friction is emulated by applying the GMS friction model [43][95]. 

Prediction results were based off data generated during the tracking type trajectory with increasing 

amplitude. The maximum displacement was 11 mm, with peak velocity acceleration, and jerk values 

reaching 96 mm/s, 4514 mm/s2, and 3.82106 mm/s3, respectively. In Fig. 3.8, the true system’s 

response has been illustrated. In this figure, measured position profile, tracking error with max 1.3 mm 

amplitude and command velocity profile are shown.  

 

Three levels of measurement noise have been considered, in the form of encoder quantization: 1, 5 and 

10 μm. In these scenarios, the velocity and acceleration estimates obtained by differentiation, after 
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quantization of the position response, take the forms shown in Fig. 3.9. As can be seen in Eq. (3.7), 

since the full LS approach requires the “measured” velocity (𝑥̇) and acceleration profiles (𝑥̈), in 

identifying the necessary 8 parameters, the measurement noise can have a significant detrimental 

influence on the parameter convergence. Whereas in the proposed approach, the regressor matrix (Φ2) 

contains profiles which are smoothened by the filter 𝑃(𝑠) based on the choice of candidate pole 

locations. Thus, measurement noise has much less impact, influencing only the 4th column of Φ2, 

attributed to the estimated normalized Coulomb friction. Even this profile gains two levels of continuity 

due to the preceding 𝑠/𝑃(𝑠) term in Eq. (3.14). Considering Fig. 3.9, the magnitude of the velocity 

profiles does not vary too much from one case to another, as only resolution deteriorates significantly 

as quantization level increases. However, maximum detected acceleration changes drastically, from 

2.1103 to 1.4104 mm/sec2 due to the detrimental influence of quantizing the position measurements 

prior to double differentiation. As will be seen in the following convergence results, the full LS 

identification approach suffers significantly from the noise contamination in the measurement signal. 

 

Examining the true and estimated frequency response functions (FRFs) in Fig. 3.10, as the measurement 

noise increases, the dynamics estimation via the Full LS deteriorates significantly, especially after 25 

Hz, whereas the proposed approach achieves much more consistent estimation of the disturbance and 

tracking dynamics.  

 

 

Fig. 3.8. The true system’s response (simulation). 
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Fig. 3.9. Velocity and acceleration profiles for different quantization levels. 

 

 

 

Fig. 3.10. The true and estimated command tracking and disturbance response FRF’s. 
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Comparing the 2-norm condition number for the regressor matrices in the two approaches reveals that 

compared to the full LS approach, the proposed pole search method solves a least squares sub-problem 

that is much better numerically conditioned (Table 3.1). This is because the measured velocity and 

acceleration profiles, constituting the 2nd and 3rd columns of Φ, are obtained by numerical 

differentiation of the quantized position measurements. They are noisy due to the simulated encoder 

resolution, and get worse as this resolution (dx) becomes coarser.  

 

Table 3.1. Condition numbers for full LS and proposed method. 

Condition number dx = 1 𝛍m dx = 5 𝛍m dx = 10 𝛍m 

Full LS (Φ) 8.8  106 7.8  106 10.5  106 

Proposed method (Φ2) 508.3 577.2 734.3 

 

It is worth mentioning that in the dx = 10 μm case, the full LS approach even converges to an unstable 

model (Fig. 3.11), when the pole bounds in Eq. (3.9) are not directly enforced. A pair of unstable 

complex conjugate poles are estimated with 𝜔𝑛 = 233.41 Hz and 𝜁 = −0.028.  

 

 

Fig. 3.11. Actual and predicted servo performance for sine wave type trajectory with increasing 

amplitude (simulation result). 
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In Fig. 3.11, position, tracking error and error of prediction results are given for three different 

quantization cases. For dx = 1 and dx = 5 μm, the proposed approach shows much less error of 

prediction compared to the full LS approach. When dx = 10 μm, the full LS converges to an unstable 

model. As a result, the proposed algorithm indeed provides much more robust, consistent, and well-

conditioned model estimation, compared to the full LS approach, especially in the presence of 

measurement noise. Unconstrained LS alone cannot guarantee the estimation of a stable model, 

especially when there is noise in the measurement, and therefore the enforcement of stable pole 

locations is essential.    

 

3.6.2. Estimation and Simulation Improvement via the Saturation Function 

In developing the identification strategy in Section 3.5, the Coulomb friction was approximated with a 

saturation function. In this subsection, the impact of the saturation function on the identification and 

simulation results is investigated. For the same actual system model, and motion trajectory, with 

Section 3.6.1, and considering a measurement resolution of dx = 5 μm, model identification was 

performed considering both the saturation function and a sign (signum) function. The model 

identification results are shown in Fig. 3.12 and Table 3.2. In terms of matching the real system’s 

frequency response characteristics, using the saturation function seems to yield similar results, with 

albeit slightly improved characteristics, over using the signum function. Noticeably, the real system’s 

complex conjugate pole pair at 31.31 Hz is better captured at 31.47 Hz, compared to 26.48 Hz using 

the signum function. The estimated normalized friction magnitude (293) also better matches its true 

value (286), compared to its counterpart (202) in the model estimated with the signum function. 

 

In simulating the model’s dynamic response, use of saturation versus signum function is also compared 

for the same dynamic model and trajectory. In this case, the measurement quantization has been 

removed. The corresponding results are shown in Fig. 3.13 and Table 3.3. In the simulations, the use 

of the saturation function provides improvement of the tracking error prediction, especially at velocity 

reversals. On the whole, 6.7% improvement is obtained in the RMS value for the error of prediction. 

However, at the very beginning and very end of the motion (i.e., connecting to exact zero velocity 

boundary conditions), the prediction accuracy degrades by 21%. Naturally, the real nature of stick slip 

friction (which is simulated accurately in the true model using the GMS dynamics), cannot be fully 

captured with the saturation-based friction model. Nevertheless, in majority of the data in which motion 

is persistent, improvement is observed over using the signum function to emulate Coulomb friction. 
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Fig. 3.12. Actual and predicted servo performance using saturation and signum functions for 

approximation of friction (5 μm quantization).  

 

 

Table 3.2. Identified parameters for the models that contain saturation and signum functions. 

 Actual Saturation Signum 

X axis Freq. 

[Hz] 

Damping 

[ ] 

Freq. 

[Hz] 

Damping 

[ ] 

Freq. 

[Hz] 

Damping 

[ ] 

Poles       

𝑝1 31.31 0.44 31.47 0.71 26.48 0.66 

𝑝2 31.31 0.44 31.47 0.71 26.48 0.66 

𝑝3 9.87 1.00 9.41 1.00 9.41 1.00 

Zeros       

𝑧1 21.88 1.00 57.66 -1.00 64.73 -1.00 

𝑧2    50.02 1.00 33.78 1.00 

𝑧3     15.88 1.00 17.72 1.00 

Normalized  

friction (𝑑0) 
286 293 202 
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Fig. 3.13. Actual and predicted servo performance using saturation and signum functions for 

approximation of friction (without quantization).  

 

Table 3.3. Tracking prediction performance for two different cases. 

Discrepancy in Servo Error Prediction Saturation Signum 

X axis tracking error: RMS (MAX) [μm] 
0.28   (2.40) 0.30   (1.89) 

 

 

3.7. Experimental Results 

In this section, experimental validation of the proposed identification method is presented for the 

aforementioned two different applications. Comparison is also made with the full LS method.  

 

3.7.1. Gear Form Grinding Application   

Servo data was collected from the Siemens 840D controller of the grinding machine (Fig. 3.1) during 

the production of helical gears with 1.67 mm normal module. The portion of data corresponding to the 

roughing pass performed at nominal feed was used in identifying the virtual drive parameters. Model 

validation was carried out with both roughing and finishing pass data. Each roughing and finishing 

operation has 3-4 passes, which are nearly periodic. The sampling period, allowed by the 840D for data 

collection, was 4 ms. Position measurement resolution from the encoders was 0.01 μm. In inspecting 
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the CNC parameters for this machine, it was determined that while acceleration feedforward gain (𝐾𝑎) 

was set to zero, the velocity feedforward gain was present and non-zero (𝐾𝑣 ≠ 0). 

 

 

Fig. 3.14. Actual and predicted servo performance for form grinding wheel rough dressing. 
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Table 3.4. Kinematic values (in tangential direction) for rough and finish dressing operations. 

 Rough Dressing Finish Dressing 

Maximum Values in 

the Tangential 

Direction 

Complete 

Trajectory 

Involute 

Portion 

Complete 

Trajectory 

Involute 

Portion 

Feedrate [mm/s] 93.5 4.4 108.1 1.6 

Tangential acc. [mm/s2] 1,550 105 1,550 1 

Tangential jerk [mm/s3] 40,073 8,977 40,084 242 

 

The training data, shown in Fig. 3.14, was ~12 s in duration for each roughing pass (3000 samples). 

Maximum feedrate, tangential acceleration, and jerk magnitudes reached during the dressing operation, 

for the positioning trajectory and critical involute (i.e., gear tooth gap) portion, are summarized in Table 

3.4. This table considers rough and finish dressing passes. As seen, there is 1-2 orders of magnitude 

reduction in feed and acceleration during the involute portion, particularly in finish dressing. 

 

The pole search bounds and obtained closed loop parameters for the x- and y-axes are shown in Table 

3.5 and Table 3.6. Predictions obtained for rough and finish dressing passes, with the proposed method 

and via the full LS approach, are presented in Fig. 3.14 and Fig. 3.15. Numerical comparison of the 

tracking and contouring error predictions for both methods are presented in Table 3.7. 

 

Table 3.5. Pole search bounds for x-y axes of Kapp KX300P machine tool. 

      

 

 

 

 

Table 3.6. Identified parameters for x-y axes of Kapp KX300P machine tool. 

 

Parameters Min Max 

𝑝   [Hz] 1 125 

𝜔𝑛 [Hz] 1 125 

𝜁    [] 0.2 2 

Parameter X Axis Y Axis 

𝑝   [Hz] 8.20 6.41 

𝜔𝑛 [Hz] 28.30 32.02 

𝜁    [] 0.29 0.8 

𝑐0 1.51 2.33 

𝑐1 147.26 212.72 

𝑐2 6.32e+03 6.32e+03 

𝑑0 75.47 108.26 
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Fig. 3.15. Actual and predicted servo performance for form grinding wheel finish dressing. 

 

Comparing the x- and y-axis parameters in Table 3.6, it is seen that the two axes appear to have 

somewhat similar dynamics, as would be expected in a well-tuned machine tool. There is, however, 

discrepancy in the damping ratios. This may be possible if predominantly time-domain tuning of the 

control system was realized with a smooth trajectory, which prevents the excitation of oscillatory 

behavior.  
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Fig. 3.16. Actual and predicted contour errors for rough and finish dressing. 

 

Considering Fig. 3.14 and Fig. 3.15, some results similar to those observed in the simulations section 

can be spotted. For example, both methods are able to generate a model which captures the general 

trend in the tracking errors. However, looking closer at zoomed portions of the tracking error, it is seen 

that the model identified with proposed method yields significantly closer prediction. Also, the transient 

response, determined by the pole frequency and damping ratio, is predicted more consistently, as seen 

on left hand side of Fig. 3.15 (i.e., zoomed x-axis tracking error profile). The full LS based model, on 

the other hand, seems to incorrectly predict a more oscillatory response. Overall, the model obtained 

with the proposed method yields significantly better prediction of transients in the toolpath and of 

contouring errors, for rough and finish dressing operations, as seen in the top right panels of Fig. 3.14, 

Fig. 3.15, and in Fig. 3.16. 

 

As observed in Table 3.7, by migrating from full LS to the proposed approach, the discrepancy in 

tracking error prediction has been mitigated from a range of 32-280 to 1.8–3.4 μm, considering 

maximum magnitudes. This corresponds to 1-2 orders of improvement. Accuracy of contouring error 

prediction has been improved, from 5.4-5.7 to 2.0-2.1 μm, again considering maximum magnitudes 

(2.7 improvement). In the case of RMS values, this is a reduction from 1.2-2.4 μm to 0.2-0.25 μm 

(7.8x improvement). Noting that the x- and y-axes encounter maximum tracking errors of around 195 

μm (x) and 352-408 μm (y) (considering rapid tool positioning movements), the proposed method is 

able to achieve tracking error prediction with 0.5-1.8% consistency, based on worst-case (i.e., 
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maximum discrepancy). Full LS approach, on the other hand, achieves a consistency of 10-68%. It is 

noteworthy to mention that although the tracking errors in the individual axes are quite high, due to 

axis dynamics matching [73], the resulting contour errors are limited to only 10 μm. 

 

Table 3.7. Tracking and contouring error prediction performance for two identification methods. 

 Roughing Operation Finishing Operation 

Discrepancy in Servo 

Error Prediction 

Proposed 

Method 

Full LS 

 

Proposed 

Method 

Full LS 

 

X axis tracking error: 

RMS (MAX) [μm] 
0.36   (2.63) 4.92   (32.05) 0.25   (3.43) 2.87   (31.98) 

Y axis tracking error: 

RMS (MAX) [μm] 
0.20   (1.81) 34.54 (241.87) 0.15   (1.88) 22.47 (280.32) 

Contouring error: 

RMS (MAX) [μm] 
0.25   (2.11) 2.36     (5.40) 0.20   (2.00) 1.17     (5.69) 

 

3.7.2. 5-axis Milling Machine Tool Application   

The Deckel Maho 80P hi-dyn five-axis machining center in Fig. 3.2 was also used as a test bed to 

validate the proposed identification method. The machining center has a Heidenhain TNC 430N 

controller with a built in scope function, which allows 4096 data samples to be logged at a sampling 

period of 0.6 ms. The scope function was used to capture the position commands, as well as measured 

position data from the linear encoder with 0.1 μm resolution. The bounds for the pole search are given 

in Table 3.8. 

 

Table 3.8. Pole search bounds for x-y axes of Deckel Maho 80P. 

Parameters Min Max 

𝑝   [Hz] 1 833 

𝜔𝑛 [Hz] 1 210 

𝜁    [] 0.2 2 

 

In Table 3.8, 833 Hz is the Nyquist frequency. 210 Hz is one quarter of the Nyquist frequency. 

Generally, complex conjugate poles are obtained within this bound. In order to obtain three real poles, 

upper bound of 𝜁1 is set to be as 2. For damping ratios greater 1, the real pole is at −𝜔𝑛(𝜁 + √𝜁
2 − 1) =

−3.73𝜔𝑛 and by selecting quarter of the natural frequency, the real pole remains below the Nyquist 

frequency. 
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Estimation of the parameters was based off data collected during the execution of a diamond shaped 

toolpath with 20 mm edge length, interpolated with 96 mm/s feedrate (i.e., tangential velocity) and 

3623 mm/s2 and 3.33106 mm/s3 tangential acceleration and jerk. Validation in terms of tracking and 

contour error prediction was carried out considering this trajectory, and also a circular trajectory with 

10 mm diameter, 100 mm/s feedrate, 5000 mm/s2 tangential acceleration, and 4.4106 mm/s3 tangential 

jerk. The range of the trajectory response where the machine is in motion, and a few seconds after 

motion stops to capture the settling response (for estimating pole locations), was used as the training 

data. The estimated parameters are shown in Table 3.9. It can be seen that the x- and y-axes have 

somewhat close natural frequency (16 and 11 Hz) and damping ratio (1.12, 1.22). The higher frequency 

real poles at 89 Hz (x) and 210 Hz (y) have very little influence on the overall response. Also, the 

absence of pole-zero cancellation indicates that feedforward control is not used. Inspecting the TNC 

430N parameters, it was verified that the built-in feedforward option had been disabled. During LS 

projection based estimation of the model parameters, some pole location candidates led to a negative 

value for 𝑑0. Naturally, such models were excluded from candidacy. 

 

Table 3.9. Identified parameters for x- and y- axes of Deckel Maho 80P via the proposed method. 

Parameters  X Axis Y Axis 

𝑝    [Hz] 88.55 209.74 

𝜔𝑛  [Hz] 15.79 11.18 

𝜁     [] 1.12 1.22 

𝑐0    0.01 1.04 

𝑐1 1.21E+03 2.34E+03 

𝑐2 6.89E+04 8.19E+04 

𝑑0 699.04 714.99 

Tracking TF 

Zeros  

Freq. 

[Hz] 

Damp. 

[ ] 

Freq. 

[Hz] 

Damp. 

[ ] 

𝑧1 48.8 -0.8 3326.3 1.0 

𝑧2 48.8 -0.8 33.3 -1.0 

𝑧3 9.3 1.0 5.8 1.0 

 

The predictions obtained by the proposed approach have been benchmarked with those obtained 

through full LS. The actual and predicted motion data and tracking errors for the diamond and circular 

trajectories are presented in Fig. 3.17 and Fig. 3.18. Contour error prediction results are shown in Fig. 

3.19. Prediction summaries for the proposed and full LS methods are presented in Table 3.10. 

 

Considering Fig. 3.17 and Table 3.10, the discrepancy in tracking error prediction has been reduced in 

x- and y-axes from 10.3 and 12.7 μm to 6.5 and 9.1 μm, respectively, based on maximum values. While 
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30% improvement may appear modest, examining the tracking error prediction discrepancy graphs in 

the bottom left and right panels of Fig. 3.17 reveals that the major components of prediction inaccuracy 

originates during the friction transitions. Improvement of prediction during the friction transients has 

been addressed later in Chapter 4 and Chapter 5. 

 

Fig. 3.17. Actual and predicted servo performance for diamond toolpath on machining center. 
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Considering the RMS values of prediction error, there is reduction from 4.1 and 4.4 μm to 1.2 and 1.6 

μm (i.e., 60-70% improvement) in x- and y-axes, respectively. This is also seen in the bottom panels of 

Fig. 3.17 by the fact that the proposed method is able to achieve much more uniform improvement in 

the prediction of tracking error, facilitated by more accurate approximation of the system’s linear 

dynamics.  

 

Similar trends are seen in the prediction results for the circular toolpath in Fig. 3.18 and Table 3.10. 

Considering maximum values, the prediction discrepancy is reduced in x- and y-axes from 17.0 and 

14.6 μm to 8.5 and 10.7 μm, in the mentioned order. In the case of the circular trajectory, the dynamic 

response due to sinusoidal command inputs in x- and y-axes has as much, and perhaps a bit more, 

influence on the largest discrepancy in tracking error prediction compared to friction.  

 

Thus, improvement of the model parameter estimation achieves recognizable refinement in predicting 

the true tracking error. RMS values for tracking error prediction discrepancy are reduced from 6.5 μm 

to 1.6 and 1.7 μm in x- and y- axes, which is again 70% improvement. This result corroborates the 

reduction in tracking error prediction discrepancy graphs, seen at the bottom left and right panels of 

Fig. 3.18. 

 

Prediction of contouring errors for diamond and circular toolpaths, and their discrepancy profiles, are 

shown in Fig. 3.19. Considering Fig. 3.19 and Table 3.10, for the diamond toolpath the maximum 

contouring error prediction discrepancy is slightly worse with the proposed method, increasing from 

6.6 to 6.9 μm of discrepancy. This is in spite of the improvements in predicting the servo errors. As 

mentioned earlier for the diamond toolpath, the maximum discrepancy is very much dominated by the 

friction model. The RMS value, on the other hand, is improved from 1.1 to only 0.9 μm, which is 

virtually indistinguishable. This is because starting out, due to matched x-y dynamics, the contour error 

is very small to begin with in tracking straight line (linear) toolpaths. In the case of the circular toolpath, 

the improvement is clearer, around 30%. The maximum discrepancy in contouring error prediction is 

reduced from 11.2 to 7.9 μm, and its RMS value reduced from 2.1 to 1.4 μm. 
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Fig. 3.18. Actual and predicted servo performance for circular toolpath on machining center. 

 

As indicated earlier, improvement in contouring error prediction is significantly more challenging than 

improving the tracking error prediction, especially in orthogonal feed drive systems with well-matched 

dynamics. The instantaneous tool position has a natural tendency to fall on top of the desired toolpath 

during linear and low curvature paths. Hence, improvement in contour error prediction may not be as 

noticeable as the improvement in the tracking error predictions. However, in trajectories involving high 

curvature toolpaths, as well as large jerk, acceleration, and velocity magnitudes, enhancing the accuracy 
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of tracking error prediction is still key to achieving good process prediction and quality control 

capability.  

 

 

Fig. 3.19. Contour errors for diamond and circle toolpaths on Deckel Maho 80P. 

 

Table 3.10. Tracking and contouring error prediction performance for two identification methods. 

 Diamond Toolpath Circular Toolpath 

Discrepancy in Servo 

Error Prediction 

Proposed 

Method 

Full LS 

 

Proposed 

Method 

Full LS 

 

X axis tracking error: 

RMS (MAX) [μm] 
1.16   (6.45) 4.07   (10.29) 1.56   (8.45) 6.30   (16.97) 

Y axis tracking error: 

RMS (MAX) [μm] 
1.59   (9.09) 4.36   (12.65) 1.73  (10.68) 6.47   (14.62) 

Contouring error: 

RMS (MAX) [μm] 
0.90   (6.93) 1.16   (6.61) 1.39   (7.94) 2.14   (11.19) 

 

Considering the magnitudes of tracking errors observed in Fig. 3.17 and Fig. 3.18, the actual servo 

errors can be predicted within 0.7% closeness via the proposed method. This method also enables the 

contouring error to be predicted with 10-11% closeness in RMS. However, there is still room for 

improvement, as the maximum discrepancy in contour error prediction at motion reversals appears to 

reach as high as 60-86%. This is addressed further in the proceeding chapters by refining the friction 

model.  

 

3.8. Conclusion 

A new method for identifying virtual feed drive models with in-process collected CNC data has been 

presented. As verified in simulations and experiments, the convergence and prediction accuracy have 
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been significantly improved over an earlier proposed solution. This proposed method shows a great 

potential to identify feed drive dynamics without interrupting machine’s production. The new method’s 

convergence results did not deviate significantly under measurement noise while classical LS greatly 

suffered in terms of convergence. In addition, the performance analysis of both methods have been 

carried out based on experimental data collected from two different machine tools. As this approach 

offers great advantage in terms of collecting in-process data and constructing feed drive dynamics, this 

technique still has a few drawbacks: once the friction becomes dominant, especially during pre-sliding 

regime, the prediction results may degrade due to Coulomb friction model’s lack of ability to reflect 

friction dynamics. Hence, as done in next chapters, more advanced friction models can be used jointly 

with this method to improve the feed drive dynamics. Furthermore, while better convergence (to correct 

parameters) and robustness (in the presence of measurement noise) is achieved, the persistence of 

excitation for the input trajectory is still very important and critical to obtain even better estimation 

results. Lastly, virtual feed drive dynamics has been constructed considering rigid body dynamics and 

this new approach still lacks for modeling vibratory dynamics.  
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Chapter 4  

Reduced Parameter GMS Friction Model 

 

4.1. Introduction 

In the emulation of the dynamics of feed drives for multi-axis machines, high fidelity realization of the 

nonlinear stick-slip friction dynamics plays an important role. While elaborate friction models have 

been proposed, such as the GMS model, their unknown parameters can be numerous and difficult to 

identify from limited field data. This thesis proposes a new and highly efficient method for 

parametrizing the pre-sliding portion of the GMS model, via the characterization of the so-called ‘virgin 

curve’ with only three parameters: the overall breakaway displacement, the breakaway force, and a 

shape factor. It is shown that such an approximation can successfully replicate earlier GMS pre-sliding 

data reported in literature. Having a reduced parameter formulation for the GMS friction model can 

also benefit applications such as a virtual CNC [10]. The concept of virtual CNC enable the prediction 

and optimization of the multi-axis response of machine tools to various command trajectories. For a 

virtual CNC implementation, where a feed drive dynamics typically needs to be identified from limited 

field data [70][73], as done in Chapter 3, high number of elements increase the number of unknowns 

to search through. 

 

In this chapter, a new method to approximate the virgin curve is presented, as shown in Fig. 4.1. The 

virgin curve is defined as the initial portion of the hysteresis curve in the pre-sliding regime for the 

GMS friction model. Approximation of the virgin curve automatically leads to determining the pre-

sliding hysteresis curve that is the doubled version of the virgin curve [46]. With the proposed method, 

instead of using 2N parameters to constitute the virgin curve via elemental stiffness (𝑘𝑖) and force 

contribution factors (𝛼𝑖) as done in the typical model formulation [43], a similar effect is captured by 

the use of only three parameters. Following the approximation of the virgin curve with an analytical 

function, a multi-spring GMS pre-sliding model can be extracted as shown in Fig. 4.1, which can be 

used in proceeding time-domain simulations. The proposed approximation technique significantly 

simplifies the parameterization of a GMS model while still preserving the main strengths of the GMS 

approach.  
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Kc1 = 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 +⋯+ 𝑘𝑖 

Kc2 = 𝑘2 + 𝑘3 + 𝑘4 +⋯+ 𝑘𝑖 

Kc3 = 𝑘3 + 𝑘4 +⋯+ 𝑘𝑖 

Kc4 = 𝑘4 +⋯+ 𝑘𝑖 

Kci = 𝑘𝑖 

 

 

 

 

 

 

𝑠(𝑣) = 𝑊1 +𝑊2 +𝑊3 +𝑊4 +⋯+ 𝑊𝑖 

          

∑𝛼𝑖 = 1 

 

Fig. 4.1. Approximation of 2N parameters. 

 

The identification of a full GMS model requires 2𝑁 parameters. While estimating these parameters 

(stiffness values 𝑘𝑖, and force contribution factors 𝛼𝑖) can be done manually in a systematic manner, 

there are some disadvantages to this procedure. 

i) The data capture frequency has to be very high to be able to accurately characterize the pre-

sliding motion. 

ii) Special heuristics are required to isolate only the virgin curve portion of the force versus 

displacement graph, from in-process data. 

iii) Putting 8 or 10 unknown variables (𝑁 = 4, 5) into a global search routine was implemented by 

the author two years ago and was seen to demonstrate very poor convergence, unless an 

accurate initial guess can be used, which again requires elaborate and robust heuristics (reason 

ii). 

On the other hand, the proposed three parameter approximation has the following advantages: 

i) It is relatively easier to spot break away displacement and breakaway force in operational data. 

Even if these numbers are not exactly determined, these can be extracted with simpler heuristics 

and used as good initial guesses. 
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ii) High-resolution pre-sliding data is not required, as the shape of the pre-sliding regime is 

determined just by one factor. By modulating the shape factor and the breakaway force and 

breakaway displacement, and observing the replication of the predicted axis output, the reduced 

parameter GMS provides a formulation which is much easier and more robust to implement 

using existing global optimization algorithms. 

 

The remainder of this chapter is organized as follows. GMS friction model is briefly explained in 

Section 4.2. In Section 4.3, the proposed parameterization method is explained. Section 4.4 and Section 

4.5 provide estimation results based on experimental data and comparison with other friction models 

(LuGre and fully parameterized GMS friction models). Section 4.6 presents the conclusion. 

 

4.2. GMS Friction Model Brief Introduction 

As mentioned in Chapter 2, there are N elementary spring block units and the forces of these elements 

are added together to obtain the equivalent friction force. For each element in the GMS model, two 

phases of friction are considered, pre-sliding and sliding regimes, as seen in Fig. 4.2. When a certain 

unit is sticking (in the pre-sliding regime), the state equation of this unit is 

𝑑𝐹𝑖
𝑑𝑡

= 𝑘𝑖𝑣 (4.1) 

where 𝐹𝑖 is the elementary friction force, 𝑣 is the velocity and, 𝑘𝑖 is the elementary stiffness. Pre-sliding 

or sticking continues until the friction force (𝐹𝑖) reaches the maximum value 𝑊𝑖 = 𝛼𝑖𝑠(𝑣), where 𝑠(𝑣) 

is the Stribeck friction and 𝛼𝑖 is the normalized sustainable maximum friction force (or sometimes 

referred as ‘saturation limit’). In this thesis, 𝛼𝑖 will be referred as ‘contribution factor’ for each 

elementary block 𝑖 since this parameter designates the contribution of  𝐹𝑖 to the total friction force 𝐹𝑓. 

When the system starts sliding, the sum of contribution factors equal to 1 (i.e. the total friction force 

equals the Stribeck curve). For the sliding regime, the state equation is given by 

 

𝑑𝐹𝑖
𝑑𝑡

= 𝑠𝑔𝑛(𝑣)𝐶 (𝛼𝑖 −
𝐹𝑖
𝑠(𝑣)

), (4.2) 

where 𝐶 is the attraction parameter which represents the rate at which the friction force follows the 

Stribeck effect in sliding. The total friction force is obtained by adding the force outputs of all 

elementary state model and including an overall viscous friction term (𝜎):  
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𝐹𝑓(𝑣) =∑𝐹𝑖(𝑣) + 𝜎𝑣(𝑡)

𝑁

𝑖=1

 (4.3) 

 

 

Fig. 4.2. Representation of pre-sliding (left) and sliding (right) regimes. 

 

4.3. Spline Approximation of the GMS Pre-Sliding Characteristic 

In the proposed approach, the GMS pre-sliding regime is defined via only three parameters, namely the 

breakaway (static) friction force (Fbr) and breakaway displacement (xbr) values as shown in Fig. 4.1 and 

a shape factor (n), as illustrated in Fig. 4.3b. To enable virgin curve shape definition, irrespective of the 

breakaway force and displacement magnitudes, normalization is performed as shown in Fig. 4.3a and 

Fig. 4.3b. The normalized friction force and displacement are defined as: 𝐹𝑓̅ = 𝐹𝑓 𝐹𝑏𝑟⁄  and 𝑥̅ =  𝑥 𝑥𝑏𝑟⁄ .  

The parametric approximation for these quantities is represented with the functions 𝑓̅(𝑢) and 𝑥̅(𝑢), 

where 𝑢, as explained in the proceeding, is the function parameter. Consequently, 𝑥̅𝑢 and 𝑓𝑢̅ are the 

first derivatives of 𝑥̅ and 𝑓 ̅with respect to 𝑢.  

 

Aiming to find a simple yet effective approximation for the GMS virgin curve data presented in 

literature, such as in [44] and [96], several analytical function were iteratively tried, including 

parabolas, circle/arc equations, ellipse equations, and polynomials of various order. From these studies, 

it was determined that a 4th order spline structure, as shown in Eq. (4.4), can be appropriate. Other 

curves such as B-splines can provide higher flexibility, but require more unknowns to solve, bringing 

the situation close to the original multi-segment GMS formulation. The principal advantage of the 4th 

order polynomial, together with the parameterization proposed in Eq. (4.8), is that it allows for the 

complete curve to be solved by the specification of a single variable, the shape factor (𝑛).  
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Fig. 4.3. Virgin curve spline construction. 

 

𝑥̅(𝑢) = 𝐴𝑥𝑢
4 + 𝐵𝑥𝑢

3 + 𝐶𝑥𝑢
2 + 𝐷𝑥𝑢 + 𝐸𝑥  

𝑓̅(𝑢) = 𝐴𝑓𝑢
4 + 𝐵𝑓𝑢

3 + 𝐶𝑓𝑢
2 + 𝐷𝑓𝑢 + 𝐸𝑓 

0 ≤ 𝑢 ≤ 𝑈 (4.4) 

Above, 𝐴𝑥/𝑓, 𝐵𝑥/𝑓, 𝐶𝑥/𝑓, 𝐷𝑥/𝑓, and 𝐸𝑥/𝑓 are the polynomial coefficients, which are fixed for given 

shape factor (𝑛) (i.e. these coefficients are uniquely determined by 𝑛). 𝑢 is the spline parameter and 𝑈 

is the spline parameter upper bound. It is important to mention that to get ‘suitable’ virgin curve shapes, 

as will be demonstrated in the proceeding, 𝑈 needs to be selected based on the chosen shape factor 𝑛. 

The midpoint of the spline is obtained via the following equations: 

𝑥̅𝑚 = 𝑥̅(𝑢𝑚) = 𝐴𝑥𝑢𝑚
4 + 𝐵𝑥𝑢𝑚

3 + 𝐶𝑥𝑢𝑚
2 + 𝐷𝑥𝑢𝑚 + 𝐸𝑥  

𝑓𝑚̅ = 𝑓̅(𝑢𝑚) = 𝐴𝑓𝑢𝑚
4 + 𝐵𝑓𝑢𝑚

3 + 𝐶𝑓𝑢𝑚
2 + 𝐷𝑓𝑢𝑚 + 𝐸𝑓        

          , where      𝑢𝑚 = 0.5𝑈 (4.5) 

The proposed idea is to alter the geometry of the virgin curve approximation by shifting the coordinates 

of its midpoint (𝑥̅𝑚, 𝑓𝑚̅) as a function of the chosen shape factor 𝑛, as shown in Fig. 4.3b. When 𝑛 →

0, (𝑥̅𝑚, 𝑓𝑚̅) → (0.5,0.5). When 𝑛 → 1, (𝑥̅𝑚, 𝑓𝑚̅) → (0,1). The following linear relationships are used 

for this purpose, which generate the (𝑥̅𝑚, 𝑓𝑚̅) point along the red diagonal line shown in the figure: 

𝑥̅𝑚 = 0.5 − 0.5𝑛 = 0.5(1 − 𝑛),     𝑓𝑚̅ = 0.5 + 0.5𝑛 = 0.5(1 + 𝑛)      (4.6) 

  

a- Virgin curve spline with initial and final 

boundary conditions. 

b- Virgin curve splines for different shape 

factor (n) values. 
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Combining this with the initial and final boundary conditions illustrated in Fig. 4.3b, which shape the 

start and end values and slopes, and applying Eqs. (4.4) and (4.5) leads to: 

 

  

a- Shape factor (n) vs. the optimal spline 

parameter (Un) to yield ‘realistic’ virgin 

curve shapes. 

b- Proposed virgin splines (black-dashed) vs. 

virgin curves taken from different sources 

(Yoon et. al. [44] (magenta), Jamaluddin et. 

al. [96] (blue) and a ball-screw drive at 

UW/PCL (green)) 

Fig. 4.4. Virgin curve approximation. 
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A key parameter which defines the spline shape is the parameter range 𝑈. Inadequate choice of this 

value can result in the spline shape to display fluctuations, an inflection (i.e. loop), or a bulge outside 

the acceptable envelope of normalized displacement and force values. Therefore, it was found that for 

different values of the shape factor 𝑛, a suitable value of 𝑈 needs to be pre-assigned.  

 

This assignment is made by searching for the ‘optimal’ spline parameter range value 𝑈𝑛 via the 

following algorithm: 

i) Scan possible values of the shape factor 𝑛 (0.01 … 0.99, for example, in 200 steps). 

ii) For each 𝑛, try different parameter range values 𝑈 (10-3 … 101, typically in 5000 steps of 

logarithmic distribution). 

iii) Evaluate the resulting ‘virgin curve’ approximation for each case using Eq. (4.7). This step 

essentially evaluates 𝐴𝑥 , … , 𝐸𝑥 , and 𝐴𝑓 , … , 𝐸𝑓. 

iv) Compute the virgin curve approximation (𝑥̅(𝑢), 𝑓̅(𝑢)) via Eq. (4.4) for 0 ≤ 𝑢 ≤ 1. 

v) Choose the smallest value of 𝑈 for the tested shape factor 𝑛, such that the proposed curve 

(𝑥̅(𝑢), 𝑓̅(𝑢)) always satisfies the conditions: 0 ≤ 𝑥̅ ≤ 1 and 0 ≤ 𝑓̅ ≤ 1. 

 

It was seen that choosing the minimum parameter range 𝑈 helps avoid fluctuations or inflection 

(looping). However, keeping 𝑈 too small, especially for 𝑛 ≥ 0.38, was observed to cause the curve the 

bulge out of the bounds of 0 ≤ 𝑥̅ ≤ 1 and 0 ≤ 𝑓̅ ≤ 1. Using the above algorithm, the ‘optimum’ spline 

parameter range (𝑈𝑛) determined for each possible shape factor (𝑛) is shown in Fig. 4.4a, with black 

dots. In this data, two break points are observed: 𝑛1 = 0.3757 and 𝑛2 = 0.8994. 𝑈𝑛 stays constant for 

𝑛 < 𝑛1 (below the first breakpoint), then increases linearly with increasing shape factor. For 𝑛 > 𝑛2 

(beyond the second breakpoint), 𝑈𝑛 displays quadratic growth. The general variation of 𝑈𝑛 has been 

captured with the following fitted expressions: 

𝑈𝑛(𝑛) = {

0.001 , 𝑓𝑜𝑟 0 ≤ 𝑛 < 𝑛1

−3.016728 + 8.031550𝑛 , 𝑛1 ≤ 𝑛 ≤ 𝑛2  

53.059150 − 115.486220𝑛 + 68.048632𝑛2 , 𝑛2 < 𝑛 ≤ 1

        (4.8) 

Evaluation of the expressions in Eq. (4.8) has been overlaid in color (red / green / cyan) in Fig. 4.4a on 

top of the individually computed optimal 𝑈𝑛 values (black dots), thus verifying a close and successful 

approximation. The calculation of 𝑈𝑛 via Eq. (4.8) can be regarded as an essential ingredient which 

enables the proposed spline expression in Eq. (4.4) to yield the desirable virgin curve shapes shown in 

Fig. 4.3b. 
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While researching the most suitable way to parametrize 𝑈 with respect to 𝑛, the minimization of various 

objective functions was also considered and evaluated, such as the integral square of the second or third 

derivatives of the profiles 𝑥̅ and 𝑓 ̅with respect to 𝑢, as well as the integral square of 𝑑𝑠/𝑑𝑢. In the 

latter, 𝑑𝑠 = √(𝑑𝑥̅)2 + (𝑑𝑓̅)
2
∙ 𝑑𝑢 corresponds to increment in the arc length of the normalized virgin 

curve, as a function of the increment in the spline parameter 𝑑𝑢. Compared to these other approaches, 

the methodology which led to Eq. (4.8) yielded the most successful result.  

 

Hence, in computing a normalized virgin curve for a shape factor 𝑛, the following procedure is 

followed: 

i) The corresponding spline parameter range 𝑈 = 𝑈𝑛(𝑛) is determined via Eq. (4.8). 

ii) 𝐴𝑥 , … , 𝐸𝑥 , and 𝐴𝑓 , … , 𝐸𝑓 coefficients are solved via Eq. (4.7). 

iii) Points on the virgin curve are evaluated as (𝑥̅(𝑢), 𝑓̅(𝑢)) via Eq. (4.4) for 0 ≤ 𝑢 ≤ 1. 

 

In Fig. 4.4b, virgin curves from different experimental sources are compared with the proposed 

parameterization approach. In all data sets, 𝐹𝑏𝑟  and 𝑥𝑏𝑟 could be easily observed visually. Thus, the 

virgin curves have been normalized with respect to these factors. Two of the normalized virgin curves 

in Fig. 4.4b are based on parameters taken from [44] and [96]. The last (green colored virgin curve) is 

based on an in-house built ball-screw drive experimental setup, shown in Fig. 4.5. As can be seen, in 

all cases, the geometry of the normalized virgin curve can be closely captured with the proposed spline 

approximation, by determining a suitable shape factor 𝑛. After finding the shape factor and de-

normalizing the virgin curve (i.e., multiplying the vertical and horizontal data with 𝐹𝑏𝑟 and 𝑥𝑏𝑟, 

respectively), the numerical data generated from the analytical curve can be used to construct a multi-

spring GMS pre-sliding model as illustrated in Fig. 4.1. Hence, the reduced parameter format 

(𝐹𝑏𝑟, 𝑥𝑏𝑟, 𝑛) helps quickly and efficiently parameterize and identify the pre-sliding model. The multi-

state simulation of friction then utilizes the resulting computed slip element stiffness values (𝑘𝑖) and 

force contribution coefficients (𝛼𝑖), per [43][44]. Naturally, this approximation also does have some 

limitations, and may not always succeed in exactly capturing all possible virgin curve shapes. 

Nevertheless, it provides a highly efficient and intuitive definition of the pre-sliding response, and 

promisingly so far it has been successful for the reported and tested data sets.  

 

4.4. Friction Parameter Identification Based on Experimental Data from Ball-Screw Drive 

In this section, after introducing the experimental setup used for data collection, parameter 

identification results using the setup are presented.  
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4.4.1. Experimental Setup   

To validate the proposed approximation, a single-axis ball-screw drive setup was used (Fig. 4.5). The 

ball-screw is THK-BNK-2020 driven with a 3 kW Omron servo motor, which has 3000 r/min rated 

speed and 20-bit incremental encoder. The ball-screw drive has 0.02 m diameter and 0.02 m lead. The 

ball-screw has oversized ball and preload torque is rated between 2x10-2–9.8x10-2 Nm. In the setup, the 

table position is directly measured with a linear encoder at a resolution of 10 nm (by interpolating 4 μm 

period sinusoidal signals). The guideway system consists of four 3” diameter porous carbon air 

bushings. Hence, the main contributors to the observed friction originate from the ball-screw/preloaded 

nut interface, the rotational bearings located inside the motor, and those supporting the ball-screw.  

 

 

Fig. 4.5. Ball-screw drive. 

 

Position measurements of the axis were gathered in open-loop using the scheme shown in Fig. 4.6.  

Inertia and viscous friction coefficients were identified using Least Squares (LS) technique, following 

the methodology in [18]. Total equivalent inertia (𝐽) and viscous damping (𝐵) values are identified as 

7x10-3 and 1.1x10-3 kgm2, respectively. The amplifier and motor torque constants are 2.3293 A/V and 

0.41 Nm/A, respectively. Also, transmission gain (𝑟𝑔) is 3.18 mm/rad.  

 

 

Fig. 4.6. Ball-screw drive open-loop scheme. 
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4.4.2. Identification Results   

The hysteresis virgin curves obtained using the proposed GMS parameter identification methodology 

have been compared to those measured experimentally. To obtain pre-sliding data, the ball-screw was 

excited with small and slow-speed sinusoidal torque inputs (with amplitudes around 0.143 Nm and 

frequency 0.35 Hz). This torque amplitude is the threshold before significant sliding is observed. 

Various amplitudes of torque inputs are applied until the ball-screw drive reaches the gross limit of the 

pre-sliding regime. This enables the identification of three unknowns: the breakaway (static friction) 

force (𝐹𝑏𝑟), the breakaway displacement (𝑥𝑏𝑟), and shape factor (𝑛).  

 

 

Fig. 4.7. Measured pre-sliding virgin curve construction. 

 

A sample hysteresis curve is plotted as shown in Fig. 4.7. Following [46] and [52], the virgin curve can 

be determined by halving the left-hand branch of the full hysteresis curve (shown in the figure with the 

orange dashed line). In this work, this approach is used to visualize the virgin curve from experimental 

data, typically against the response prediction from the identified model.  

 

In the experiments, displacement and torque command signals were collected via a dSpace system at a 

sampling frequency of 20 kHz. Displacement was measured using the linear encoder scale. A high 

sampling frequency was used to ensure clear and high-resolution data collection. Five seconds of data 

was gathered from the experimental setup for different excitation amplitudes. While applying the 

automated identification algorithm, 75% of the data was used. In numerically evaluating and visualizing 

the effectiveness of the estimated friction model, 100% of the data was used.  

 



66 

 

 

Fig. 4.8. Stribeck friction model fit. 

 

Before focusing on the pre-sliding behaviour, the viscous friction and Stribeck friction properties were 

identified. Stribeck friction was modelled with the following equation: 

𝑠(𝑣) = 𝑠𝑔𝑛(𝑣) (𝐹𝑠𝑒
−
𝑣

𝑣𝑠1 + 𝐹𝑐 (1 − 𝑒
−
𝑣

𝑣𝑠2)), (4.9) 

where 𝐹𝑠 and 𝐹𝑐 are the static and Coulomb friction forces. 𝑣𝑠1 and 𝑣𝑠2 are the velocity constants that 

shape the spacing between the pre-sliding and sliding regions. Identification of these was accomplished 

by operating the feed drive in closed-loop position control, and taking the average of the motor torque 

readings during different steady state velocities, similar to [18]. The fitted sliding friction model, 

superposed on top of experimental readings, is shown in Fig. 4.8. The model parameters, estimated via 

Matlab’s nonlinear least square solver are: the static friction (𝐹𝑠) is 0.21 Nm and the Coulomb friction 

is 0.18 Nm. Velocity constants are 𝑣𝑠1 = 1.26 mm/s and 𝑣𝑠2 = 4.39 mm/s.  

 

As shown in Fig. 4.4b (ball-screw drive virgin curve approximation), the pre-sliding portion of the 

GMS model can be fitted by observing the breakaway force and breakaway displacement from 

experimental data, and adjusting the shape factor manually. A key advantage of the reduced parameter 

GMS model is its ease of identifying the pre-sliding response with a lower number of unknown 

variables, which leads to a more efficient identification problem. To estimate the reduced parameter 

GMS model in an automated manner, which can later be extended to also concurrently identify other 

dynamics (such as various electro-mechanical transfer functions which interact with the friction), 

implementation has been realized using Matlab’s global optimization toolbox [97]. Different 
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algorithms, such as global search, multi-start search, particle swarm, and genetic algorithms, can be 

used. Here, the presented results are based on the global search method [97].  

 

Suitable lower and upper bounds are considered for the free variables (𝐹𝑏𝑟, 𝑥𝑏𝑟, 𝑛). Bounds for 

breakaway force and breakaway displacement can be determined by inspecting the data, and also from 

experience. Bounds for shape factor are set as 0.01 – 0.99. For each candidate parameter set, the 

response of the feed drive model shown in Fig. 4.6, combined with the GMS friction model (containing 

both pre-sliding and sliding (i.e., Stribeck) behaviors) is simulated for the same torque input applied to 

the actual experimental setup. In the simulations, the number of Maxwell slip elements has been chosen 

as 10. Since this has no impact on the number of search parameters, higher quality simulation can easily 

be accomplished by interpolating a larger number of spring elements as needed from the analytical 

approximation of the virgin curve developed in the previous section. For each element to be able to 

transition seamlessly between pre-sliding and sliding regimes, based on the tested breakaway force 

value, the Stribeck model was also scaled so that the static friction value (𝐹𝑠) coincided with the 

breakaway force (𝐹𝑏𝑟), and the Coulomb friction value (𝐹𝑐) was also modulated proportionally.  

 

The objective function to be minimized penalizes the root mean square of the prediction error between 

the simulated displacement profile (𝑥𝑘) and the experimentally measured displacement (𝑥𝑘) as defined 

below: 

𝑞 = √
1

𝑁
∑(𝑥𝑘 − 𝑥𝑘)

2

𝑁

𝑘=1

 ,         𝑁: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (4.10) 

Automatic identification of the pre-sliding friction parameters was carried out with two different sets 

of data. In the first set, the input torque was set just below the typically observed breakaway threshold 

(0.143 Nm). Thus, the response was predominantly pre-sliding. In the second set, realized with 0.153 

Nm excitation amplitude, the breakaway threshold is exceeded further, enabling a more evident mixture 

of pre-sliding and sliding regimes to be observed.  

 

Test 1: Predominantly pre-sliding response 

Table 4.1 shows the visually observed and automatically estimated friction pre-sliding parameters. The 

corresponding input torque and displacement data are presented in Fig. 4.9, both related to the 

experimental data and the identified model. As seen in Table 4.1, the automatically estimated 

breakaway torque (0.142 Nm) matches quite closely the visually measured value (0.143 Nm). The 
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breakaway displacement (85.5 μm) is estimated with around 8 μm (13%) difference as 74.8 μm. As 

seen in Fig. 4.9a, the shape of the experimentally measured virgin curve, constructed with the halving 

procedure in [52], is very close to the response generated by the automatically fit model.  

 

Table 4.1. Three parameter search results. 

 
Estimated manually  

(by inspection of the data) 

Estimated Automatically  

(via global optimization) 

Breakaway force (𝐹𝑏) [Nm] 0.143 0.142 

Breakaway displacement (𝑥𝑏) [μm] 85.50 74.80 

Shape factor (𝑛) - 0.56 

 

 

a- Virgin curve approximation. b- Hysteresis curve approximation. 

Fig. 4.9. Experimental pre-sliding identification results. 

 

There is also good agreement when the hysteresis curve is constructed. Fig. 4.9b shows the doubled 

version of the virgin curve approximation. As can be seen, the overall shape of the hysteresis curve is 

matched reasonably well by the model. One difference is that while the experimental setup is mostly at 

pre-sliding regime and only a very small amount of sliding occurs (~10 μm), a larger amount of sliding 

is predicted by the model (60-70 μm, shown with the dashed black line in Fig. 4.9b). Since even very 

small difference in predicting the sliding behavior can lead to noticeable discrepancy due to double-

integration from the acceleration to the position profiles, the presence of this mismatch at the moment 

is not a major concern. The main point demonstrated is that the proposed reduced parameter formulation 

for GMS can indeed be used in automatic model building. Naturally, due to mechanical imperfections, 
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the complex kinematics and contact mechanics in the ball-screw and preloaded nut interface, it is 

difficult to expect the experimental response to fully agree with the analytical model. Nevertheless, the 

registered results in the pre-sliding regime are promising.  

 

In Fig. 4.10 and Table 4.2, the feed drive’s experimental response, and its prediction considering the 

reduced parameter GMS friction model, are shown. In addition to displaying the excitation torque and 

position profiles, Fig. 4.10 shows the error of prediction, defined as 𝑒 = 𝑥 − 𝑥. As seen, the feed drive 

model considering the GMS friction dynamics displays close agreement with the actual response. In 

the literature, the GMS model has been shown to provide much higher prediction accuracy compared 

to other friction models, such as LuGre, Dahl, Stribeck, and Coulomb etc. The added benefit of the 

proposed contribution is that by using the reduced parameter approach, the pre-sliding portion of the 

GMS model can now be identified more expediently, by solving a lower number of parameters in order 

to accurately simulate the friction.  

 

 

Fig. 4.10. Reduced parameter GMS friction model performance while the setup is in pre-sliding 

regime. 

 

Test 2: Mixed pre-sliding and sliding response 

Fig. 4.11 shows the prediction result when the experimental setup undergoes consecutive pre-sliding 

and sliding regimes. As seen in Table 4.2, due to the presence of more significant sliding, the prediction 

accuracy achieved by the GMS based model is less than that of the earlier test. However, as seen in Fig. 

4.11, the GMS friction model identified through the proposed reduced parameter approach still yields 

a certain level of agreement in the open loop position response, even during sliding.  
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Table 4.2. Prediction Error RMS. 

  GMS 

Pre-sliding Position Prediction RMS Error (MAX) [μm] 54 (132) 

Sliding Position Prediction RMS Error (MAX) [μm] 820 (1244) 

 

 

 

Fig. 4.11. Reduced parameter GMS friction model performance while the setup is alternating between 

pre-sliding and sliding regimes. 

 

In Fig. 4.12, torque versus velocity is shown for this case. There is good agreement between the actual 

response and the estimated model around the pre-sliding regime. However, after 1.8 mm/s (when 

sliding behaviour is more dominant), there is an under estimation of friction, which leads to over 

prediction of the velocity by the reduced parameter GMS model. In follow-up research, this problem 

can be tackled by running a second iteration of optimization which also includes the Stribeck and 

viscous friction parameters into the search space in conjunction with the pre-sliding parameters. 

 

Nevertheless, the experimental results demonstrate that improved prediction of friction behaviour, 

containing pre-sliding and sliding regimes, can be achieved in a simplified and efficient manner, with 

the proposed reduced parameter formulation for the GMS friction model.  
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Fig. 4.12. Torque against the velocity for actual and model responses. 

 

4.5. Experimental Comparison with Different Friction Models (LuGre and full GMS)  

So far, in this chapter, the identification and feasibility of the new approximation technique has been 

explained with the experimental data collected from a ball-screw setup for both pre-sliding and sliding 

phases. To further analyze the identified reduced order GMS model, specifically in closed-loop, a 

comparison study, with respect to other friction models, is presented in this section. First, the 

experimental setup is presented. Then, comparison results are discussed.  

 

 

Fig. 4.13. Linear drive setup. 
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4.5.1. Experimental Setup 

As shown in Fig. 4.13, the experimental setup uses an ironless ETEL (ILM06-06-3RB-A20C) linear 

motor for actuation. Additional components include a Heidenhain (LIP 518C) encoder, linear 

guideways (THK SHS-15LV), and the linear motor’s magnetic track (ETEL IWM060). Data was 

collected from the Heidenhain encoder, at a sampling frequency of 6 kHz. Portion of data used in this 

section are collected together with a visiting graduate student Mr. Rens Slenders from Eindoven 

University of Technology.   

 

4.5.2. Comparison Study using Closed-Loop Control 

Three different friction models were considered for the comparison study: i) Coulomb ii) LuGre and 

iii) GMS friction models. For the last friction model, GMS parameters were first identified considering 

the time domain approach commonly used in literature, in which the virgin curve was constructed using 

piece-wise linear segments [52]. The results from this identification approach will be called ‘GMS – 

multiple linear segment’, and the model response obtained using the parameter identification technique 

proposed in this thesis, will be called ‘GMS – reduced parameter’. Parameter identification procedure 

of the other two friction models is briefly explained in the proceeding.  

 

Coulomb friction parameters were identified with the method explained in [18] along with the rigid 

body dynamic parameters. The Coulomb friction values for positive and negative directions were 

identified as 𝑑𝑐 = ±27 N. The rigid body dynamic parameters were obtained as 𝑚 = 25 kg and 𝑏 =

122 kg/s.  

 

The parameter identification for the LuGre friction model, which was explained in Chapter 2, was 

conducted according to the procedure explained in [60]. A pseudo random binary sequence (PRBS) 

signal up to 3000 Hz and an amplitude level of static friction is used to obtain an FRF measurement. 

The amplitude level was set to be the breakaway force, which actuated the linear drive until the setup 

reached the gross-limit of the pre-sliding regime. In order to model Stribeck friction (𝑠(𝑣)), the linear 

drive was moved back and forth for constant velocity trajectories and the disturbance state was 

estimated using a Kalman filter [18]. Disturbance signals were averaged for each velocity and Matlab’s 

fmincon function was used to fit the Stribeck model given in Eq. (2.3). The Stribeck friction model fit, 

as well as the FRF for the fitted feed drive with LuGre model based on identified parameters are shown 

in Fig. 4.14.  
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Fig. 4.14. Stribeck friction model fit (left) and LuGre friction model fit (right). 

 

 

Fig. 4.15. Pre-sliding hysteresis curve fit against experimentally constructed pre-sliding curve. 

 

To accomplish the closed-loop response tests, a P-PI position-velocity cascade controller with 30 Hz 

cross-over frequency and 67o phase margin was designed. Control parameters were tuned according to 

the procedure mentioned in [98]. The general schematic of P-PI controller is given in Fig. 2.10. The 

controller does not contain any feedforward action. After obtaining time-domain data from the linear 

drive, different friction structures were embedded within the P-PI cascade controlled system’s 

simulation model to compare prediction errors. In Fig. 4.15, both of the fitting methods are shown. On 

the left, pre-sliding hysteresis curves identified with ‘GMS – multiple linear segment’ and on the right 



74 

 

‘GMS – reduced parameter’ results can be seen. Comparison prediction results obtained with different 

friction models in time-domain are shown in Fig. 4.16. In Table 4.3, friction model parameter values 

are given. Prediction error RMS values for each model are given in Table 4.4.  

 

As can be seen from Table 4.3, the Coulomb friction is identified as 𝐹𝑐 = 27 N while Static friction 

value (𝐹𝑠) obtained is 56 N. Both the LuGre and GMS models obtained using a combination of linear 

segments have the same static friction force. However, this value differs for the reduced parameter 

GMS friction model, which was estimated automatically via global optimization. In this case, this value 

is around 62 N. As mentioned in the previous sections, to avoid discontinuous transition from pre-

sliding to sliding, the breakaway (static) and Coulomb friction forces are scaled. Also, there is around 

9 μm (17%) difference for breakaway displacement between ‘GMS – multiple linear segment’ and 

‘GMS – reduced parameter’.   

 

Table 4.3. Friction parameter values for different friction models. 

Stribeck friction model LuGre friction model 
GMS – Multiple 

linear segment 

GMS – Reduced 

parameter 

Coulomb 

friction (𝐹𝑐) 

27 [N] Asperity 

stiffness 

(𝜎0) 

2.2e+03 

[N/mm] 

Breakaway 

force 

(𝐹𝑏𝑟 , 𝐹𝑠) 

56 

[N] 

Breakaway 

force (𝐹𝑏𝑟 , 𝐹𝑠) 

62 

[N] 

Static friction 

(𝐹𝑠) 

56 [N] Micro-

viscous 

friction (𝜎1) 

2e+04 

[Ns/mm] 

Breakaway 

displacement 

(𝑥𝑏𝑟) 

44  

[μm] 

Breakaway 

displacement 

(𝑥𝑏𝑟) 

53 

[μm] 

Stribeck 

velocity factor 

(𝑣𝑠) 

5.75 

[mm/s] 

Viscous 

friction 

(𝜎2, 𝐵) 

122  

[kg/s] 

  Shape factor 

(𝑛) 

0.38 

 

As shown in Fig. 4.16, the actual (i.e. experimental) position response is compared against the feed 

drive dynamic model responses that contain the various friction models. RMS and MAX values of the 

prediction errors (difference between actual position response and model prediction) are given in Table 

4.4. As can be seen, the LuGre, ‘GMS – multiple linear segment’, and ‘GMS – reduced parameter’ 

have about 14%, 18%, and 34% less RMS error than the Coulomb friction model, respectively. The 

difference between the ‘GMS – reduced parameter’ and ‘GMS – multiple linear segment’ model 

prediction is attributed to the two different identification schemes used in estimating the parameters. 

Manual fitting was implemented in the ‘GMS – multiple linear segment’ approach [52] by manually 

selected points in the open-loop pre-sliding data and connecting these points using linear segments. On 
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the other hand, three parameters global optimization was performed as discussed earlier in this chapter 

for the identification of the reduced parameter model.  

 

 

Fig. 4.16. Comparison of different friction models. 

 

Table 4.4. Error of prediction RMS values for different friction models. 

Discrepancy in Servo 

Error Prediction 
Coulomb LuGre 

GMS – Multiple 

linear segment 

GMS – Reduced 

Parameter 

RMS error  

(MAX) [μm] 

10.92 

(99.67) 

9.39 

(95.46) 

8.97  

(78.82) 

7.14  

(71.58) 

 

As shown in Fig. 4.16, in general, both in terms of RMS and MAX values, the GMS friction models 

result in better prediction accuracies. In the zoomed-in section (on the bottom-right) of Fig. 4.16, 

compared to the LuGre friction model, the max value of ‘GMS – multiple linear segment’ shows higher 

prediction error. However, ‘GMS – multiple linear segment’ shows higher prediction capability in 

terms of MAX value at around 0.8 s (on the top-right), also registered in Table 4.4. Overall, the GMS 

friction models, obtained using both parametrization approaches, compared to LuGre and Coulomb 

friction models, show better prediction accuracies.  
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4.6. Conclusion.  

A new method for approximating the GMS friction model during the pre-sliding regime has been 

developed. Using this approximation, side stepping the complexity of parameterizing a complete GMS 

friction model (with multiple slip element stiffness and force contribution factors), one can capture the 

essential pre-sliding characteristics with only three parameters. In the context of system identification, 

this greatly simplifies the parameter search problem. Once the three parameters: breakaway force, 

breakaway displacement, and shape factor are identified, a classical GMS pre-sliding model consisting 

of individual stiffness elements with their own force contributions can be constructed. 

 

It is shown that the three parameter model can successfully approximate the experimental pre-sliding 

data reported in two earlier GMS studies in literature, and also the pre-sliding characteristic of a ball-

screw drive system located in our lab.  

 

The feasibility of using the reduced parameter GMS friction model is further analyzed with closed-loop 

control data based on a linear motor feed drive available in the lab. In the results, it is shown that the 

‘GMS – reduced parameter’ and ‘GMS – multiple linear segment’ models show high prediction 

capability, especially around velocity reversals. ‘GMS – reduced parameter’ model showed better 

prediction results compared to full GMS model constructed by manually identifying multiple spring 

elements. This is mostly due to the simplification realized in the identification process due to the 

reduction of the number of unknown parameters. However, to draw a final conclusion regarding the 

performance analysis between two methods, more studies are needed.   
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Chapter 5  

Joint Estimation of Closed-Loop Dynamics with Reduced Parameter GMS 

Friction Model  

 

5.1. Introduction 

The idea of VCNC is to have virtual models of the feed drives such that necessary corrective actions 

can be taken ahead of time without making any physical changes to the actual system. In obtaining the 

feed drive dynamic model using a classical way (i.e. bottom-up approach), several time- and frequency-

domain testing procedures are used. The pole-search method, presented in Chapter 3, overcomes this 

issue by identifying the virtual dynamic model using a minimum amount of data, typically without 

interfering with the production or causing downtime to the machine tool. This search approach, as 

proven by experimental and simulation results, was shown to be a robust and successful estimation 

technique, while also achieving smaller prediction error compared to using a conventional approach 

with full LS solution. As mentioned before, however, this method has some limitations. One limitation 

is the degradation of prediction accuracy in the presence of significant stick-slip friction in the actual 

system, especially at velocity reversals, corners, and quadrants. As a result, the identified model may 

show discrepancies from its physical counterpart in replicating the tracking and contouring 

performance. To circumvent this issue, after the pole-search algorithm, the friction dynamics can be 

refined further with a model which displays better fidelity than the Coulomb friction approach.  

 

In this chapter, the reduced parameter GMS friction model, introduced in Chapter 4, is integrated with 

the identification of the tracking and disturbance transfer functions, as proposed by the method in 

Chapter 3. This integration is explained in Section 5.2. The corresponding experimental results are 

demonstrated in Section 5.3. In Section 5.4, a generalized form of the identification procedure of 

Chapter 3 is presented for the multi-input multi-output case, with the capability to also capture vibratory 

dynamics through the consideration of high order transfer function entries in the overall system model. 

This extension was realized in the graduate thesis of Ms. Ginette Tseng (MASc) and stems from the 

core methodology introduced in Chapter 3. Section 5.5 evaluates the integration of the reduced 

parameter GMS model with the multivariable identification approach, studying two different cases: a 

positioning system with rigid body dynamics, and a positioning system with built-in flexibility. The 

conclusions for this chapter are presented in Section 5.6.   
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5.2. Reduced Parameter GMS Friction Model Identification with Linear Transfer Function 

Estimation  

As mentioned in Chapter 3, an approximation of the Coulomb friction model is used in the virtual 

estimation process. This friction model may not adequately predict the positioning errors, especially at 

velocity reversals, corners and quadrants. The main reason is the dominance of pre-sliding dynamics in 

the low-velocity portions. To increase the fidelity of the estimated feed drive model, a dynamic friction 

model such as the Dahl, LuGre or GMS model can be incorporated. Here, as one of the most up-to-date 

friction models, the GMS model is used. Furthermore, the reduced parameter form of GMS developed 

in Chapter 4 is utilized to improve the efficiency and convergence of the identification problem.  

 

The proposed identification procedure is shown in Fig. 5.1. Step 1 consists of the pole search method 

outlined in Chapter 3. This identification is conducted using high-velocity motion, so that the friction 

effects on the positioning errors are minimal, and therefore the linear transfer functions, particularly 

describing the tracking response, can be estimated more accurately. During this initial step, an 

approximate value for the Coulomb friction is also determined.  

 

In Step 2, the identified tracking (𝐺𝑡𝑟𝑎𝑐𝑘) and disturbance (𝐺𝑑𝑖𝑠𝑡) transfer functions are fixed. Now, the 

three GMS friction model parameters: the breakaway force (𝐹𝑏𝑟), breakaway displacement (𝑥𝑏𝑟) and 

shape factor (𝑛), are identified. For the sliding portion of the GMS model, in order to avoid a high 

number of unknowns, the Stribeck characteristic is ignored and as a constant value it is set to the 

breakaway force. The influence of viscous friction, on the other hand, is already represented within the 

poles of the estimated transfer function as damping. The data set used in this case contains slow speed 

motion and as many velocity reversals as possible.  

 

During Step 3, in order to account for any sub-optimality caused by the sequential fitting procedure, 

and also in an effort to obtain a better fit in spite of omitting the Stribeck effect, a last round of 

optimization concurrently modulates all identified pole, zero, and GMS model pre-sliding parameters. 

This step has been carried out with the slow speed data, to ensure most accurate replication of the 

system’s response. Depending on the expected operated conditions, a mixture of slow and high-speed 

data can also be used.  

 

In the implementation of this overall procedure, Matlab’s multi-start and global search algorithms were 

used. As pointed out in [97], finding the global minimum is not guaranteed. In Steps 1 and 2, in order 

to increase the likelihood of obtaining a global minimum, the approach followed is to start with the 
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multi-start search, and then use the solution identified as the starting point for a global search algorithm. 

Step 3 directly uses the result of Step 2 to initiate a global search.  

 

 

Fig. 5.1. Proposed integrated identification procedure.  

 

5.3. Identification Results 

The data was collected from the x- and y-axes of the 5-axis machining center shown in Fig. 3.2. The 

motions were generated by commanding these axes in recursively increasing jerk-limited linear 

displacements in alternating direction, thus generating a motion profile resembling amplitude-varying 

sine waves in x- and y-axes. The individual axes were tested independently.  
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Fig. 5.2. Pole search results for x- and y-axes (after Step 1). 

 

Table 5.1. Identified values using the pole-search method.  

 𝒑 [Hz] 𝝎𝒏 [Hz] 𝜻 

X -axis 11.66 32.29 0.49 

Y-axis 16.55 37.52 0.27 

 

The pole-search algorithm in Chapter 3 was used to construct the virtual feed drive model, per Step 1. 

The resulting response and estimated pole locations are shown in Fig. 5.2 and Table 5.1. As seen from 

Table 5.1, the x- and y-axes have similar dynamics, as discussed in Chapter 3. Considering Fig. 5.2, 

the tracking error is well predicted with around 1% error.  

 

In Step 2, the estimated tracking and disturbance transfer functions are fixed and the global search 

estimates the reduced parameter GMS friction model. Fig. 5.3 shows the model prediction, and the 

comparison with the earlier result of Step 1. The experimental data determined using the measured 

(encoder) signal and the CNC’s commanded trajectory is in blue color. The feed drive dynamic 

response using the Coulomb type friction model estimated from Step 1 is shown in green, and the model 

prediction obtained with the reduced parameter GMS model, after Step 2, is shown with red. It can be 

seen that the error of prediction is reduced, particularly during velocity crossings.  
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Fig. 5.3. Estimated feed drive dynamic model responses with Coulomb and GMS friction models (Step 2). 

 

The identified reduced parameter GMS model parameters are given in Table 5.2. The RMS and MAX 

values for the error of prediction, as well as the relative improvements achieved, are shown in Table 

5.3. The Coulomb friction coefficients of x- and y-axes obtained in Step 1 are the normalized friction 

values for positive and negative directions. Similarly, the breakaway forces obtained in this Step 2 have 

also been normalized as the breakaway friction force, as formulated below,  

𝐹𝑏𝑟 = (𝐾/𝐽)𝐹𝑛𝑏  (5.1) 

 

Table 5.2. Three parameter GMS friction identification results for x- and y- axes (Step 2).  

 𝑭𝒏𝒃  𝒙𝒃𝒓 [𝛍m] 𝒏 

X axis 357.94 23.8 0.91 

Y axis 452.07 16.5 0.76 

 

As seen in Table 5.2 for the y-axis, the estimated normalized breakaway force (𝐹𝑛𝑏) is 94 units (21%) 

higher compared to the x-axis. This is an indication of higher friction force on y-axis. In addition, while 

analyzing the data collected from the 5-axis machine tool, it was observed that the movements of the 

x-axis occurred earlier than the y-axis (i.e. more time was needed for the y-axis to break away all pre-
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sliding springs and reach the sliding phase). The breakaway displacement is 23.8 μm and 16.5 μm for 

x- and y-axes, respectively. As seen in Table 5.3, compared to the dynamic response represented with 

only Coulomb friction (Step 1), noticeable improvement is achieved in the RMS and MAX values of 

the error of prediction, by migrating to the model with the reduced parameter GMS friction dynamics 

(Step 2). In the x-axis, RMS and MAX values are reduced by 9.7% and 19.6%, respectively. In the y-

axis, RMS and MAX values are reduced by 23% and 13.3%.  

 

Table 5.3. Prediction error RMS and MAX values for x- and y-axes (Step 2).   

Discrepancy in Servo 

Error Prediction 

Coulomb GMS Improvement 

X axis tracking error: RMS 

(MAX) [μm] 

1.52      

(6.57) 

1.37      

(5.38) 

9.71% 

19.63% 

Y axis tracking error: RMS 

(MAX) [μm] 

1.91      

(8.05) 

1.47      

(6.94) 

23.04% 

13.34% 

 

In Step 3, the pole and zero parameters of the feed drive dynamics obtained in Step 1 and the reduced 

parameter GMS friction model parameters obtained in Step 2 are further refined, by simultaneously 

including all parameters into the search space. In this step, based on the three candidate parameters for 

the reduced parameter GMS friction model, multi-element stiffness and contribution factors are 

extracted. Following the construction of the full GMS friction model, similar to Step 1, disturbance and 

tracking regressors are computed to construct a LS sub-problem. Here, the only difference from Step 1 

is the generation of the disturbance regressor based on the candidate GMS friction model, rather than 

Coulomb friction. From the candidate pole locations, LS solution for the numerator coefficients is 

achieved. Afterwards, RMS error of the difference between actual and model predicted tracking error 

is evaluated, for use by the global search algorithm.  

 

Since during Step 1 the disturbance input was modeled as Coulomb type friction, this is expected to 

generate slight variations in the tracking and disturbance transfer function parameters. In Fig. 5.4, the 

position response, servo error, and the discrepancy in servo error predictions for the two axes are 

presented. The identified parameter values are given in Table 5.4. RMS and MAX values for the 

discrepancy in servo error predictions for both friction models, and the final relevant improvements 

obtained going from Step 1 to Step 3, are given in Table 5.5.   
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Fig. 5.4. Estimated feed drive dynamic model responses with the Coulomb and GMS friction models 

(Step 3).  

 

Table 5.4. Refined pole-search and the GMS friction parameters for x and y-axes (Step 3). 

 𝒑 [Hz] 𝝎𝒏 [Hz] 𝜻 𝑭𝒏𝒃  𝒙𝒃𝒓 [𝛍m] 𝒏 

X -axis 14.94 29.58 0.38 329.16 57.8 0.88 

Y-axis 27.06 40.07 0.24 454.73 5.9 0.43 

 

As seen in Fig. 5.4, especially in the zoomed in portion of error of prediction, once the GMS friction 

model is embedded into the virtual model, the prediction accuracy significantly improves. This 

improvement is much more visible for the y-axis, especially for short motions (up to 1 sec). Within this 
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region, since the y-axis operates under conditions in which pre-sliding is prevalent, the improved 

dynamic model displays better accuracy.  

 

In Table 5.4, as can be seen, the pole parameters (pole, natural frequency and damping ratio) have 

changed from Step 1. The breakaway force and shape factor are also slightly different from the 

parameters identified in Step 2. A major change is observed in the breakaway displacement, from 23 

μm to 57 μm for the x-axis. For the y-axis, the real pole, the breakaway displacement, and shape factor 

have also considerably changed, from 16 to 27 Hz, 16 to 6 μm, and 0.76 to 0.43, respectively. 

Refinements required for the y-axis, by switching over to the GMS model, may have facilitated these 

changes.  

 

As seen in Table 5.5, as a result of the updated parameters in Step 3, the RMS and MAX values of the 

prediction error in the x-axis are reduced by 12% and 28%, respectively. In the case of the y-axis, where 

stick-slip friction dominance seems to be greater, the improvements for the RMS and MAX values of 

the prediction error are around 44% and 54%, respectively, compared to the prediction accuracies that 

were obtained in Step 1. Thus, the value of integrating the reduced parameter GMS model with the 

newly developed top-down identification strategy is clearly demonstrated.  

 

Table 5.5. Prediction error RMS and MAX values for x- and y-axes (Step 3).   

Discrepancy in Servo 

Error Prediction 

Coulomb GMS Improvement 

X axis tracking error: RMS 

(MAX) [μm] 

1.52     

(6.57) 

1.33         

(4.7) 

12.32% 

28.48% 

Y axis tracking error: RMS 

(MAX) [μm] 

1.91      

(8.00) 

1.06      

(3.71) 

44.20% 

53.70% 

 

 

5.4. High-Order Multivariable Model Jointly Estimated with Reduced Parameter GMS 

Friction Model 

In the earlier section, the reduced parameter GMS friction model was successfully integrated with rigid 

body based tracking and disturbance transfer function identifications. However, this approach considers 

only rigid body dynamics, whereas in machine tool, workpiece, and tooling assemblies, vibratory 

response due to mechanical flexibility may also be prevalent. In the remainder of this chapter, the 

integration of the reduced parameter GMS model with higher order dynamics is investigated.  
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This section introduces an extension of the methodology in Chapter 3 to the high-order multivariable 

case, which allows multi-input multi-output (MIMO) linear time-invariat (LTI) models of generalized 

feed drive control system and mechanical assemblies to be identified. This extension was accomplished 

in the master’s thesis of Ms. Tseng [99] and published in [100]. Here, the main formulation and 

implementation steps are summarized. Afterwards, Section 5.5 integrates the reduced parameter GMS 

friction model with the MIMO estimation technique. The first step is validation of the correctness of 

the implementation, by considering only the rigid body dynamics. In the second step, sequential 

identification of the vibratory dynamics and a GMS-type friction model is investigated.  

 

 

Fig. 5.5. MIMO feed drive dynamic model coupled with friction dynamics.   

 

The MIMO model structure is shown in Fig. 5.5. Here, the generalized and scaled linear dynamics, 𝑷, 

is interconnected with the friction model. While a simplified Coulomb friction assumption is first made, 

similar to the approach taken in Chapter 3, after solving the identification of the parameters of 𝑷 which 

implicitly contain the Coulomb friction magnitude, friction dynamics is replaced with the reduced 

parameter GMS model, following the same procedure as shown in Step 1 and Step 2 in Fig. 5.1. 

 

Considering Fig. 5.5, 𝒘𝑟(𝑡) represents the scaled reference signal (e.g. position, velocity, or 

acceleration commands). 𝒘𝑑(𝑡) represents the disturbance input(s) (such as friction and process 

forces). 𝒛(𝒕) are the scaled outputs (which can represent signals such as position, velocity, acceleration, 

control signal, motor current, servo regulation error or any other outputs that relate dynamically to the 

inputs). The MIMO system response can be expressed in scaled and unscaled forms as: 

𝑧(𝑠) = 𝑃(𝑠)𝑤(𝑠)    Scaled dynamics 

𝑧̃(𝑠) = 𝑃̃(𝑠)𝑤̃(𝑠) = (𝑊𝑧𝑃(𝑠)𝑊𝑤)𝑤̃(𝑠)  Unscaled dynamics 
(5.2) 

Above, 𝑊𝑧 and 𝑊𝑤 are the scaling matrices. Scaling enables the transfer function fits across multiple 

input and output channels to be weighted in a ‘balanced’ manner.  
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Generally, closed-loop dynamics of typical feed drives consist of three dominant poles, where the 

second order comes from the rigid body dynamics and the third from the integral action of the 

controller. Extra complex conjugate poles are contributed by each vibratory mode [25].  𝐴(𝑠), which is 

the characteristic polynomial of the closed-loop system, comprises 𝑛𝑟 number of real poles and 𝑛𝑐 

number of complex conjugate pairs, and can be written as:  

𝐴(𝑠) = 𝐴𝑟(𝑠)𝐴𝑐(𝑠) = 𝑠
𝑛 + 𝑎1𝑠

𝑛−1 + 𝑎2𝑠
𝑛−2 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛 

𝐴𝑟(𝑠) = ∏ (𝑠 − 𝑝𝑘)
𝑛𝑟
𝑘=1 ,  𝐴𝑐(𝑠) = ∏ (𝑠2 + 2𝜁𝑘𝜔𝑘𝑠 + 𝜔𝑘

2)
𝑛𝑐
𝑘=1 , 

(5.3) 

Above, 𝑝𝑘 represents real poles. 𝜔𝑘 and 𝜁𝑘 correspond to the natural frequency and damping ratios of 

the complex conjugate poles, respectively. The generalized plant 𝑷(𝑠) has 𝑁𝑖 input and 𝑁𝑜 output 

channels. Inputs (𝑘𝑖 = 1, 2,… , 𝑁𝑖) result in the response of each output (𝑘𝑜), shown as 𝑧𝑘𝑜 in Eq. (5.4). 

Each corresponding transfer function entry can have distinct numerator terms (𝑏0, 𝑏1, … , 𝑏𝑛). However, 

all transfer function entries are set to contain the same common poles, i.e., denominator polynomial. 

Response of a single output  𝑧𝑘𝑜 to multiple inputs 𝑤1, 𝑤2, …, 𝑤𝑁𝑖 is obtained as: 

𝑧𝑘𝑜 = ∑ [
𝑏0
𝑘𝑜,𝑘𝑖𝑠𝑛 + 𝑏1

𝑘𝑜,𝑘𝑖𝑠𝑛−1 +⋯+ 𝑏𝑛
𝑘𝑜,𝑘𝑖𝑠0

𝑠𝑛 + 𝑎1𝑠
𝑛−1 +⋯+ 𝑎𝑛

𝑤𝑘𝑖(𝑠)]

𝑁𝑖

𝑘𝑖=1

 (5.4) 

By rearranging the above equation, the regressors (𝜑𝑛
𝑘𝑖) can be constructed as: 

𝑧𝑘𝑜(𝑠) =  𝑏0
𝑘𝑜1 ∙

𝑠𝑛

𝐴(𝑠)
𝑤1(𝑠)

⏟      
𝜑0
1

+ 𝑏1
𝑘𝑜1 ∙  

𝑠𝑛−1

𝐴(𝑠)
𝑤1(𝑠)

⏟      
𝜑1
1

+⋯+ 𝑏𝑛
𝑘𝑜1 ∙

𝑠0

𝐴(𝑠)
𝑤1(𝑠)

⏟      
𝜑𝑛
1

 

             + 𝑏0
𝑘𝑜2 ∙

𝑠𝑛

𝐴(𝑠)
𝑤2(𝑠)

⏟      
𝜑0
2

+ 𝑏1
𝑘𝑜2 ∙

𝑠𝑛−1

𝐴(𝑠)
𝑤2(𝑠)

⏟      
𝜑1
2

+⋯+ 𝑏𝑛
𝑘𝑜2 ∙

𝑠0

𝐴(𝑠)
𝑤2(𝑠)

⏟      
𝜑𝑛
2

 

           +⋯ 

             + 𝑏0
𝑘𝑜𝑁𝑖 ∙

𝑠𝑛

𝐴(𝑠)
𝑤𝑁𝑖(𝑠)⏟        

𝜑0
𝑁𝑖

+ 𝑏1
𝑘𝑜𝑁𝑖 ∙

𝑠𝑛−1

𝐴(𝑠)
𝑤𝑁𝑖(𝑠)⏟        

𝜑1
𝑁𝑖

+⋯+ 𝑏𝑛
𝑘𝑜𝑁𝑖 ∙

𝑠0

𝐴(𝑠)
𝑤𝑁𝑖(𝑠)⏟        

𝜑𝑛
𝑁𝑖

 

(5.5) 

The scaled regressors in response to the inputs are constructed based on pre-defined 𝐴(𝑠), using single-

input multi-output (SIMO) transfer functions. The participation coefficients, i.e., scaled numerator 

terms 𝒃̅𝑘𝑜, in each output channel 𝑘𝑜, are computed by solving the following least-squares problem:  
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[

𝑧𝑘𝑜(1)

⋮
𝑧𝑘𝑜(𝑁𝑡)

]

⏟      
𝑧𝑘𝑜: measured

scaled output

=

[
 
 
 
 
 
 

𝜑̅0
1(1) ⋯ 𝜑̅𝑛

1(1)
⋮ ⋱ ⋮

𝜑̅0
1(𝑁𝑡) ⋯ 𝜑̅𝑛

1(𝑁𝑡)

⏞              

scaled regressors in
response to input: #1

⋮ ⋯ ⋮
⋮ ⋯ ⋮
⋮ ⋯ ⋮

𝜑̅0
𝑁𝑖(1) ⋯ 𝜑̅𝑛

𝑁𝑖(1)

⋮ ⋱ ⋮

𝜑̅0
𝑁𝑖(𝑁𝑡) ⋯ 𝜑̅𝑛

𝑁𝑖(𝑁𝑡)

⏞              

scaled regressors in
response to input: #𝑁𝑖

]
 
 
 
 
 
 

⏟                                  
𝜱: regressor matrix

[
 
 
 
 
 
 
 𝑏̅0
𝑘𝑜1 

⋮

𝑏̅𝑛
𝑘𝑜1

⋮

𝑏̅0
𝑘𝑜𝑁𝑖

⋮

𝑏̅𝑛
𝑘𝑜𝑁𝑖]

 
 
 
 
 
 
 

⏟    
𝑏̅𝑘𝑜: scaled
numerator

+ [

𝑒𝑘𝑜(1)

⋮
𝑒𝑘𝑜(𝑁𝑡)

]

⏟      
𝑒𝑘𝑜: model 

prediction error

 

(5.6) 

Further details on the mathematical formulation and numerical implementation can be found in 

[99][100]. One important feature to point out is that several special steps were taken in the development 

of [100] (such as consistently utilizing balanced discrete-time realizations in both estimation and model 

validation steps), to mitigate the influence of round-off errors.  

The general identification procedure is shown in Fig. 5.6. First, pole candidates are selected. Then, 

SIMO discrete-time state-space regressors are constructed in response to one input at a time and MIMO 

regressors are obtained. Afterwards, the influence of multiple inputs is determined using the 

superposition principle. For each candidate pole set, the best fitting numerator terms are found through 

solving a LS subproblem (Eq. (5.6)). In determining the most successful model, an objective function 

which is the RMS of output prediction error is minimized by testing different candidate pole locations. 

After identifying the scaled model, the numerator parameters are de-normalized to produce the unscaled 

model, which correlates the observed physical system output to the inputs.  

 

 

Fig. 5.6. Pole search algorithm steps for obtaining pole candidates and numerator terms.  
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5.5. Experimental Identification Results for the MIMO Estimation Algorithm with the 

Reduced Parameter GMS Model 

 

5.5.1. Model Estimation using the Generalized MIMO Algorithm for Rigid Body Dynamics and 

the Reduced Parameter GMS Friction Model 

Considering the structure shown in Fig. 5.5, the input signals were chosen as the position command 

and disturbance input. The output is the tracking error. Axis velocity, which is needed by the 

disturbance (friction) model, is obtained through numerical construction of the axis position from the 

commanded position and servo error (𝑥 = 𝑥𝑟 − 𝑒), and by differentiating this signal to obtain velocity.  

 

 

Fig. 5.7. MISO pole-search estimation results (Step 1).  

Table 5.6. Pole search bounds for x-axis 

of Deckel Maho 80P. 

Parameters Min Max 

𝑝   [Hz] 1 833 

𝜔𝑛 [Hz] 1 210 

𝜁    [] 0.2 2 

 

 

 

Table 5.7. Pole-search parameter 

identification results for x-axis (Step 1). 

 

 

 

 

𝒑𝒙 [Hz] 𝝎𝒏𝒙 [Hz] 𝜻𝒙 

12.65 32.11 0.48 

𝒅𝒄 = 323.2 (Normalized Coulomb 

friction) 

     

The position, tracking error and error of prediction results of the first identification step are shown in 

Fig. 5.7. The pole search bounds are shown in Table 5.6. The identified pole, natural frequency and 

damping ratio can be seen in Table 5.7. As expected, the Step 1 pole search results are similar to the 

values obtained with the procedure obtained in Section 5.3.  
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Fig. 5.8. MISO feed drive dynamic model coupled with the GMS friction dynamics (Step 2 

schematic).   

 

The schematic of the second step is shown in Fig. 5.8. Here, the Coulomb friction model is replaced 

with the reduced parameter GMS model. During Step 2, the linear transfer function parameters of 𝑃 are 

fixed and only reduced three parameter GMS model coefficients (𝐹𝑏𝑟 , 𝑥𝑏𝑟, 𝑛) are adjusted. The model 

predictions obtained after Step 1 (with the Coulomb friction) and after Step 2 (with GMS) are compared 

in Fig. 5.9. As seen, especially in the zoomed portion around velocity reversals, the GMS friction model 

helps decrease the prediction error. It is worth mentioning that due to increased complexity of the high 

order MIMO model identification, Step 3 involving simultaneous adjustment of all parameters 

(described in Section 5.2) has been omitted. Nevertheless, significant improvement is still obtained 

with the step up to the reduced parameter GMS model.  

 

The identified reduced parameter GMS friction model parameters are summarized in Table 5.8. RMS 

and MAX values for the prediction error are given in Table 5.9. Compared to the values given in Table 

5.4, the breakaway force shows a 22% difference. There is a 16 μm (28%) difference for the breakaway 

displacement. The shape factor values are similar. Compared to the previous section’s x-axis RMS and 

MAX improvements obtained in Step 3, the MIMO structure’s identification results appear to achieve 

slightly better improvements over the Coulomb friction case, (17% vs. 12% in RMS and 30% vs. 28% 

in MAX), but this discrepancy could also just be originating from the different formulation and 

numerical methods used in the implementation of both approaches. The main result is that correct 

configuration and use of the MIMO method is established, which in Section 5.5.2 sets the transfer 

function estimation, to include vibratory dynamics.  
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Fig. 5.9. Estimated MISO system response with Coulomb friction and reduced parameter GMS 

friction models (Step 2).   

 

Table 5.8. Identified reduced parameter GMS friction model for the x-axis of DMU machine tool 

(Step 2).  

 𝑭𝒏𝒃  𝒙𝒃𝒓 [𝛍m] 𝒏 

X axis 419.58 41.8 0.90 

 

Table 5.9. Prediction error RMS and MAX values for the x-axis of DMU machine tool (Step 2).  

Discrepancy in Servo 

Error Prediction 

Coulomb GMS Improvement 

X axis tracking error: RMS 

(MAX) [μm] 

1.63      

(6.29) 

1.36 

(4.41) 

16.71% 

29.93% 
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5.5.2. Model Estimation using the Generalized MIMO Algorithm for High Order Dynamics 

and the Reduced Parameter GMS Friction Model  

In order to generate experimental positioning data including a vibratory response, a flexure was used 

as shown in Fig. 5.10. The flexure design and data collection was realized by Ms. Ginette Tseng as part 

of her MASc research [99]. Here, this data is applied for identifying higher order dynamics together 

with a reduced parameter GMS model. To provide context, the following summarizes the experimental 

procedure.  

 

As shown in Fig. 5.10, the positioning response was collected from two sources. The first one is the 

feed drive’s controller (providing linear encoder measurement information from the moving carriage). 

This response is also suitable in determining the state of friction, as it can be considered to be collocated 

with respect to the net friction force acting on the carriage (originating from the guideways, ball-screw 

mechanism, and bearings). The second measurement is from a Heidenhain KGM grid (2D) encoder 

mounted on the top of the flexure. This instrument is capable of registering planar movements (in two 

axes) and is used for inspecting machine-tool dynamic accuracy. Its’ measurement resolution is in tens 

of nanometers, and the instrument has a certified accuracy within ±2 μm.  

 

The disadvantage of using a KGM is the inconvenience of installing this type of grid encoder inside a 

real manufacturing machine tool, which is time-consuming and highly intrusive. When a KGM is 

installed, the actual machine-tool cannot perform production, since tool attachment is impossible. 

Furthermore, cutting chips conveyed by coolant or lubricant can easily scratch and damage the 

ultraprecise optical grating. Nevertheless, this is one of the most accurate methods of registering 

dynamic relative displacement in machine tools, particularly for diagnosis and maintenance purposes. 

The grid encoders’ grid plate is mounted on top of the flexure. The flexure creates a vibration mode in 

the y-axis direction at 28 Hz. The data was collected from the feed drive’s controller (Heidenhain TNC 

430N) with a sampling rate of 0.6 ms for 4096 samples. Heidenhain – ACCOM software was used to 

capture data from the KGM with 0.1 ms intervals for 60 seconds.  

 

As shown in Fig. 5.12, the generalized multivariable model was configured to consider the position 

command and the ‘normalized’ friction disturbance as inputs. The output signals were the relative 

position response collected from the KGM, and the carriage’s velocity response obtained by 

differentiating the linear encoder position. As before in Coulomb friction estimation a saturation 

function with a 𝑑𝑣 = 0.1 mm/s velocity band was used.  
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Fig. 5.10. Experimental setup [99]. 

 

Forward-backward motion with increasing displacement steps was used, as done in Section 5.5.1. 

Hence, the analysis focuses on the y-axis, which is the direction with artificially induced flexibility. 

The KGM grid encoder data was down-sampled and adequately time-offset to match the data collected 

from the CNC [100]. The pole search bounds are shown in Table 5.10. 833 Hz is the Nyquist frequency 

and 210 Hz is one quarter of the Nyquist frequency. Generally, poles originating from the servo 

dynamics or mechanical vibratory response stay within this limit. To enable the estimation of three real 

poles in a bounded manner, if needed, the upper bound of 𝜁1 has been set to 2. When 𝜁 ≤ 2.0 is used, 

upper bound selection of the natural frequency as quarter of the Nyquist frequency helps keep the fastest 

possible real pole below the Nyquist frequency (since (𝑝1 = −𝜔𝑛(𝜁 + √𝜁
2 − 1) ≅ −3.73𝜔𝑛). 

Considering the estimated pole locations in Table 5.10, 𝜔𝑛1 is identified to be around 30 Hz, which is 

similar to the rigid body case in Section 5.5.1. 𝜔𝑛2 and 𝜁2, which relate to the vibratory mechanical 

response of the flexure are adequately identified as 27.7 Hz and 0.01. As can be seen, the damping ratio 

is extremely small, indicating the presence of prolonged mechanical vibrations that will dominate the 

observed response.  

 

Table 5.10. Pole search bounds and identified parameters for y-axis with added flexibility. 

Parameters Min Max Identified 

𝑝   [Hz] 0.02 833 19.54 

𝜔𝑛,1 [Hz] 0.02 210 30.33 

𝜁1   0.01 2 0.29 

𝜔𝑛,2 [Hz] 20 40 27.7 

𝜁2    [] 0.001 0.5 0.01 
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In Fig. 5.11, output predictions of the multivariable model with Coulomb friction characteristics are 

overlaid with the true experimental response. Considering that the tracking error reaches 500 μm, error 

of prediction of around 10 μm roughly indicates 2% accuracy.  

 

 

Fig. 5.11. MIMO pole-search (with Coulomb friction) prediction results (Step 1).   

 

 

Fig. 5.12. MIMO feed drive dynamic model coupled with friction dynamics (Step 2 schematic).   
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Fig. 5.13. Prediction results for estimated MIMO model with Coulomb and GMS friction dynamics 

(Step 2).   

 

The results for before and after incorporating the reduced parameter GMS model are shown in Fig. 

5.13. As can be seen in the tracking error profile, as the majority of the response is dominated by the 

mechanical vibrations, which are mainly induced by the commanded trajectory, improving the 

modeling of the friction input seems to provide no distinguishable improvement. In fact, the model 

identified in Step 1 (considering only Coulomb friction) was estimated to yield 12% better prediction 

accuracy up to 1.55 sec. From 1.55-2.4 sec, the GMS model showed around 7% better prediction 

accuracy. While, in this thesis, this was the first attempt to combine high order model estimation to 

include vibratory dynamics with GMS-based friction, the identification procedure only carried out Step 

1 and Step 2. The simultaneous optimization of GMS friction and multivariable transfer function 

parameters (i.e., Step 3) was omitted, due to the substantial complexity of implementing this step. 

Perhaps in future research, its successful realization can help achieve even further model improvement 

in servo positioning systems with significant flexibility and stick-slip friction.  
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Table 5.11. Prediction error RMS values for y-axis with added flexibility. 

Discrepancy in Servo Error 

Prediction 

Coulomb GMS Improvement 

(0 – 1.55 sec): RMS [μm] 4.34       4.98 

 

-12.85% 

 
(1.55 – 2.4 sec): RMS [μm] 3.75 

 

3.49 

 

6.93% 

 
 

 

5.6. Conclusions 

In this chapter, closed-loop dynamics have been jointly estimated with the reduced parameter GMS 

friction model. After identifying and fixing the estimated tracking and disturbance response transfer 

functions, the reduced parameter GMS friction dynamics is embedded into the model, replacing 

Coulomb friction. A three-step identification procedure is proposed, in which the final step concurrently 

adjusts the transfer function poles and zeros, and the GMS model parameters. In experimental results 

collected from an industrial machine tool, it is demonstrated that this approach can lead to significant 

improvement in the prediction accuracy, which has been quantified as 12-44% in RMS and 28-54% in 

MAX values. 

 

Thus, the two contributions made in earlier chapters, Chapter 3 and Chapter 4, are combined to achieve 

further impact in automatic estimation and updating of digital models for machine tool servo systems. 

 

While these results are very promising and successful in predicting the response when rigid body 

dynamics are dominant along with stick-slip friction, application of this approach to a servo system 

with significant vibratory dynamics was also investigated. In this case, the linear transfer functions and 

GMS friction parameters were optimized sequentially. The global adjustment step could unfortunately 

not be implemented in the timeframe of this thesis. It was observed that the vibratory dynamics excited 

by the trajectory commands overpowered those caused by friction. Therefore, inclusion of the reduced 

parameter GMS model did not make any observable improvement in the system model’s prediction 

fidelity. This is a topic that is worth investigating in future research, perhaps by also budgeting the 

magnitude of vibratory response and tracking errors that will be independently caused by the trajectory 

inputs and the friction. 

 

The novel contribution in this chapter is the combination of reduced parameter GMS model 

identification with servo response transfer function estimation. Significant improvement was obtained 

in the resulting output predictions for systems with rigid body response dominance. 
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Chapter 6  

Trajectory Correction using Iterative Learning Control  

 

6.1. Introduction 

Following the design and analysis in the previous chapters, this chapter investigates the correction of 

servo errors in multi-axis positioning and contouring systems. Iterative Learning Control (ILC) is found 

to be adequate for such algorithm design, since many industrial applications possess repetitive 

movements. On a real machine, the transient response of the system may not be adequately regulated 

by the controller, due to factors such as limited tracking and disturbance rejection bandwidth, modeling 

uncertainty, and parameter variations. ILC aims to enhance the transient response in the presence of 

such shortcomings, taking advantage of the possibility to perform recursive corrections on the same 

repetitive trajectory.  

 

 

Fig. 6.1. The use of ILC together with a virtual machine. 
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Implementation and tuning of the learning algorithm can be done during an ongoing manufacturing 

process. However, this can also result in downtime to a machine’s production. Instead, ILC can be used 

with a virtual feed drive dynamic model to improve positioning accuracy, provided that a sufficiently 

accurate virtual model is estimated. Also, even if the tool trajectory is not repetitive, the virtual 

manufacturing environment enables the possibility of performing iterative corrections through 

recursive simulation. The vital requirement is that the virtual model upon which ILC is based, has to 

be up-to-date, ideally through continuous monitoring of the real machine during its production. The use 

of ILC together with a virtual model, as conceptually shown in Fig. 6.1, is the fourth contribution in 

this thesis. 

 

In the remainder of this chapter, ILC formulation with the virtual feed drive dynamic model is presented 

in Section 6.2. In Section 6.3, ILC design details are elaborated. In Section 6.4, simulation results are 

presented which demonstrate the improvement potential on the practical case study of gear grinding 

wheel dressing. To facilitate safe and reliable industrial scale testing and implementation of the 

developed ILC approach, the design and fabrication of an experimental platform (based on a state-of-

the-art industrial CNC, the Siemens 840D SolutionLine) was initiated by the author during this thesis 

research. As documented in the Appendix, this implementation (which is just about complete) is 

expected to enable experimental validation of the developed ILC algorithm, as well as reliable transfer 

of the research results to industry. The conclusions for this chapter are presented in Section 6.5. 

 

6.2. Iterative Learning Control with the Tracking and Disturbance Dynamics 

In ILC, the tracking error is stored from the past iterations and the system’s transient performance is 

improved in consequent iterations, by modifying the command to the plant. Identification of feed drive 

dynamics using the pole-search method was established in Chapter 3. The friction model was further 

refined in Chapter 4 and Chapter 5. The focus of this section is the application of ILC jointly with 

virtual feed drive models estimated through such methods, in order to reduce the positioning errors. 

 

Considering the system diagram shown in Fig. 6.2, the closed-loop system has one input (𝑥𝑟, periodic 

command signal), one output (𝑥, actual position output), and the internal control signal (𝑢) due to the 

control law. Additionally, this structure considers the disturbance signals (𝑑). In Fig. 6.2a, the ILC 

algorithm is depicted with the P-PI control structure, which is widely used in industry. The ILC control 

signal (i.e. learning control signal, 𝑓) modifies the command that enters the closed-loop system based 

on the recorded tracking errors from the previous iterations. As the only alteration involves the 

command signal, a similar configuration of ILC can be used in the same way with the proposed virtual 
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model, as seen in Fig. 6.2b. In addition, for ease of formulation and simulation purposes, the identified 

virtual feed drive dynamics is modified to obtain the position response instead of the tracking error as 

shown in Fig. 3.5.   

 

 

Fig. 6.2. Iterative learning control scheme: a) ILC with a typical P-PI position velocity cascade 

control system b) ILC with the identified virtual feed drive model. 

 

Between the serial and parallel ILC architectures explained in Chapter 2, the serial architecture is 

chosen. This is mainly due to the parallel ILC altering the control signal in the feedforward/feedback 

control law, which is much more difficult to implement in industry. User access is generally very 
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restricted in industrial machine tools, especially for adjustments to the control structure, due to warranty 

and safety reasons.  

 

The discrete-time system in Fig. 6.2b can be written as,  

𝑥[𝑘] = 𝐺𝑡(𝑧)𝑓[𝑘] + 𝐺𝑡(𝑧)𝑥𝑟[𝑘] − 𝐺𝑑(𝑧)𝑑[𝑘], (6.1) 

𝐺𝑡(𝑧) and 𝐺𝑑(z) represent the discrete-time equivalents of the closed-loop tracking and disturbance 

transfer functions, respectively. For a continuous time signal 𝑦(𝑡) (e.g. 𝑦(𝑡) = 𝑥(𝑡) or 𝑦(𝑡) = 𝑥𝑟(𝑡)), 

the corresponding sampled time signal is denoted by 𝑦[𝑘] ≜ 𝑦(𝑘𝑇𝑠), where 𝑇𝑠 is the sampling time. 

The tracking error (𝑒[𝑘]) for all discrete time instants 𝑘 of every iteration 𝑗 is recorded as 𝑒𝑗[𝑘] in 

memory. After each iteration 𝑗, using the recorded tracking error sequence 𝑒𝑗[𝑘], a learning control 

signal 𝑓𝑗+1 is generated iteratively to be used to feed into the system in the next iteration. In the 

generation of the learning control signal, the ILC structure in Fig. 6.2 is used. Accordingly, after each 

iteration 𝑗, the signal 𝑓𝑗[𝑘] is updated by 

𝑓𝑗+1[𝑘] = 𝑄(𝑧)(𝑓𝑗[𝑘] + 𝐿(𝑧)𝑒𝑗[𝑘]) (6.2) 

Above, 𝑒𝑗[𝑘] = 𝑥𝑟[𝑘] − 𝑥𝑗[𝑘] and 𝑥𝑗[𝑘] denote, respectively, the tracking error 𝑒[𝑘] and the position 

signal 𝑥[𝑘] in iteration 𝑗. Hence the dynamics given in Eq. (6.1), in each iteration 𝑗, takes the form 

𝑥𝑗[𝑘] = 𝐺𝑡(𝑧)𝑓𝑗[𝑘] + 𝐺𝑡(𝑧)𝑥𝑟[𝑘] − 𝐺𝑑(𝑧)𝑑[𝑘], (6.3) 

Here, 𝐿(𝑧) is the learning property, and 𝑄(𝑧) is the 𝑄-filter [81] and is chosen as “1” in some references 

[101], while it is used as a robustness filter (low-pass filter) in some other studies [102]. The simplest 

way to define the learning property (𝐿(𝑧)) of ILC is to use integral-based learning control, which 

generates a discrete form of integral action as given in Eq. (6.4). The learning property implements one 

step of integration-based corrective action upon the command input at each time step. This enables the 

system’s error to be diminished through successive iterations [78]. The corrective action in each 

iteration can be expressed as:  

𝑓𝑗+1[𝑘] = 𝑓𝑗[𝑘] + 𝜆𝑒𝑗[𝑘 + 1] = 𝑓0[𝑘] + 𝜆∑𝑒𝑖

𝑗

𝑖=0

[𝑘 + 1]  (6.4) 

The learning function 𝐿 is defined to be a diagonal matrix (i.e. 𝐿 = 𝑑𝑖𝑎𝑔(𝜆, 𝜆…)) [103]. However, 

different learning forms are also described in the literature, including those using causal compensators 
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[104], linear phase lead with triangular windowing [105], and linear phase lead with causal Butterworth 

low pass filtering [106], etc. Assuming that the closed-loop control structure is stable and linear time-

invariant, the stability condition that guarantees monotonic convergence of the tracking error is given 

by [102] 

‖𝑄(𝑧)[1 − 𝐿(𝑧)𝐺𝑡(𝑧)]‖2 < 1 (6.5) 

Performance of the ILC system is assessed via the difference between the converged error 𝑒∞[𝑘] and 

the initial error 𝑒0[𝑘], and the relation between the two errors is given by [81]   

𝑒∞[𝑘] =
1 − 𝑄(𝑧)

1 − 𝑄(𝑧)(1 − 𝐿(𝑧)𝐺𝑡(𝑧))
𝑒0[𝑘] (6.6) 

Another important feature of the ILC algorithms over traditional feedback and feedforward control is 

the possibility for ILC to predict and correct possible repeating disturbances [81]. This crucial action 

of ILC depends on the design of the learning algorithm. Eq. (6.2) is for the causal learning approach. 

However, the same equation can be reconstructed in a non-causal form as 

𝑓𝑗+1[𝑘] = 𝑄(𝑧)(𝑓𝑗[𝑘] + 𝐿(𝑧)𝑒𝑗[𝑘 + 1]) (6.7) 

The disturbance (𝑑[𝑘]) enters the error as, 

𝑒𝑗[𝑘] = 𝑥𝑟[𝑘] − (𝐺𝑡(𝑧)𝑓𝑗[𝑘] + 𝐺𝑡(𝑧)𝑥𝑟[𝑘] − 𝐺𝑑(𝑧)𝑑[𝑘]⏟                        
𝑥𝑗[𝑘]

) 
(6.8) 

If the learning algorithm is non-causal as in Eq. (6.7), the disturbance (𝑑[𝑘 + 1]) is anticipated and 

compensated preemptively.  

 

6.3. Plant-Inversion Iterative Learning Control Design  

Based on Eq. (6.6), the magnitude of (1 − 𝐿𝐺𝑡) determines the rate of convergence and successive 

iterations. For the design of the learning property (𝐿), the plant inversion method is used. Since learning 

property is the inverse (𝐺𝑡
−1) of the closed-loop transfer function, if  𝐺𝑡

−1 is non-minimum phase, a 

stable inverse can be constructed using the zero-phase error tracking controller (ZPETC) [107]. This 

kind of learning algorithm converges quickly. However, the main shortcoming of plant-inversion 

learning algorithm is the effect of possible closed-loop dynamic model errors that may degrade the 

performance of the learning [81]. Due to the closed-loop model uncertainties, a filter (𝑄) is designed to 

increase the robustness of the learning algorithm. In addition, a constant learning gain ‘𝜆’ is also used 
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to multiply 𝐿𝐺𝑡 to tune the learning. A suitable value for the learning gain is found through trial and 

error, which in the case of this thesis is realized by virtual simulations.  

 

The choice of the robustness filter (𝑄) as unity results in zero tracking error based on Eq. (6.6). 

However, as seen in Fig. 6.3, this choice makes the magnitude of (1 − 𝜆𝐿𝐺𝑡) exceed ‘1’ after 50 Hz, 

and hence violates the monotonic convergence criterion given in Eq. (6.6). The robustness filter is 

designed as a second order Butterworth filter with 50 Hz cutoff frequency. The Bode plot of ‘𝑄(1 −

𝜆𝐿𝐺𝑡)’ is shown in Fig. 6.3. As can be seen, once the robustness filter is added to the learning algorithm, 

calculation of the 2-norm of 𝑄(1 − 𝜆𝐿𝐺𝑡) results in ‘0.63’, and hence meets the monotonic convergence 

criterion. In addition, as the filtering is implemented in an off-line manner, filtfilt function in Matlab is 

used to carry out the filtering, which results in zero phase error in the filtered signal.  

 

 

Fig. 6.3. Assessment of the monotonic stability criterion with (red line) and without (blue line) the 

robustness filter. 

 

6.4. Simulation Results for Plant Inversion Based Iterative Learning Control  

The simulation of ILC has been performed using the virtual dynamic model identified in Chapter 3 for 

the Kapp gear grinding machine tool. In the following, x- and y- axis trajectories for the grinding 

wheel/dressing operation are used as a case study for improving the servo positioning and contouring 

accuracy via ILC.   
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Fig. 6.4. RMS and maximum error values for different learning gains for x- axis. 

 

First, the learning algorithm was implemented and tested for the x-axis, considering various learning 

gains. As can be seen in Fig. 6.4, a higher learning gain results in more aggressive learning. For 

example, when 𝜆 = 0.05, the RMS error is 9.53 μm for the first iteration. RMS error is decreased to 

5.14 μm when the algorithm reaches its 5th iteration, which corresponds to about 46% reduction. In the 

case of 𝜆 = 1, this improvement is around 99.4% when the iteration number is 5. In addition, after 5 

iterations, the RMS error settles to a constant value and does not change significantly during the 

consecutive steps. However, there is a drawback for higher learning gains: a higher learning gain results 

in higher sensitivity to random effects and measurement noise, as pointed out in [108]. In [108], the 

learning gain is selected between 0 and 2 ( 𝜆 ∈ (0, 2)). In this thesis, the learning gain is kept below 

‘2’. On the other hand, keeping the learning gain too small reduces the learning speed, requiring a much 

larger number of iterations.  

 

ILC results for the dressing command trajectory profile are shown in Fig. 6.6. The toolpath, with the 

critical corner section being zoomed in, is presented at the top of the figure. The evolution of axis level 

tracking error profiles is shown at the bottom. RMS and MAX values for the x-axis tracking error up 

to 50 iterations are shown in Fig. 6.4. A learning gain of ‘𝜆 = 0.2’ was used for both axes. As can be 

seen in Fig. 6.5, similar convergent improvement behavior was also observed for the y-axis.   
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Fig. 6.5. RMS and maximum error values for different learning gains for y- axis. 

 

Considering the top right-hand panel in Fig. 6.6, it is seen that the servo response in this contouring 

operation can successively be brought much closer to the desired toolpath. Tracking error in the x-axis 

has been decreased from an RMS value of 9.5 μm to nearly 0.07 μm, indicating two orders of magnitude 

improvement. The MAX value of the servo error is reduced from 109 μm to 3.3 μm after 20 iterations. 

These results are highly promising, and motivate experimental implementation which is on-going.  

Furthermore, in Fig. 6.7, contour error results for different ILC iterations are depicted. As can be seen, 

the contour error is reduced from 3 μm to about 1 μm. Hence, almost 67% improvement is observed, 

which again shows the effectiveness of the ILC technique in simulations.  

 

6.5. Conclusion 

In this chapter, plant inversion based ILC algorithm is designed and jointly used with the estimated 

virtual feed drive model to reduce positioning errors. Error reduction can be achieved while avoiding 

possible interruptions to the machine tool’s production, which would typically occur during 

conventional modeling, parameter identification, or iterative trajectory correction trials. To avoid non-

minimum phase or unstable closed-loop dynamics while inverting the closed-loop transfer function, the 

ZPETC algorithm has been used.  
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Fig. 6.6. ILC simulation results for dressing command trajectory profile. 

 

Considering the gear grinding wheel dressing application, implementation of ILC based correction to 

the dressing trajectories, using in-process estimated virtual models of the grinding machine tool’s x- 

and y-axes, has resulted in two orders of magnitude reduction in the servo errors, as predicted by 

simulations.  

 

Of course, on an experimental or industrial platform, expecting such a dramatic improvement may be 

overly optimistic. Nevertheless, even if several-fold reduction in the servo and contouring errors are 

achieved, this would be a major gain towards enhancing the productivity and part quality in multi-axis 

manufacturing operations. Therefore, the commissioning of the experimental platform, documented in 
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the Appendix, for reliably testing and implementing the ILC on industry scale machine tools, is rapidly 

progressing.  

 

 

Fig. 6.7. Contour errors for different iterations for dressing toolpath profile. 
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Chapter 7  

Conclusions and Future Work 

 

7.1. Thesis Conclusions 

This thesis has studied new and nonintrusive model identification techniques for characterizing the 

dynamic response of machine tool servo drives, and a method of command trajectory correction to 

reduce servo errors using Iterative Learning Control (ILC).  

 

As the first contribution, a new method for identifying the command tracking and disturbance transfer 

functions, from in-process data, has been proposed. The new method, based on the utilization of pole 

search in conjunction with least squares (LS) projection (for identifying the participation factors and 

the Coulomb friction magnitude), does not require the differentiation of measurement signals inside the 

regressor matrix. Compared to an earlier proposed rapid identification approach, based on the 

utilization of Least Squares in simultaneously estimating all transfer function and friction model 

parameters, the number of unknown variables in the LS step has been reduced from 8 to 4. This has 

dramatically improved the numerical conditioning, convergence, and prediction accuracy of the 

resulting models. With the new approach, servo errors can be predicted to within 2% accuracy. The 

improved estimation capability also reduces the amount of data required for training, thus allowing 

model identification with only real-time manufacturing data collected from a machine tool, in-line with 

the principles of Industry 4.0. Two experimental case studies from industry, involving a gear grinding 

machine tool and the multi-axis machining center, are utilized to demonstrate the new approach. 

 

Friction remains to be one of the dominant sources of inaccuracy in machine tools. While elaborate 

friction models, such as the Generalized Maxwell Slip (GMS) model, can better represent and 

compensate friction, the number of parameters to identify to capture its most crucial (pre-sliding) 

portion is quite high, typically 8, 10, 12, etc. This complexity hinders the use of such sophisticated 

models in practical application. As the second contribution in this thesis, a new way to formulate the 

pre-sliding behavior of the GMS friction model is proposed. The new approach considers only 3 

parameters: the breakaway force, breakaway displacement, and a shape factor which determines the 

overall geometry of the pre-sliding virgin curve. The parameterization of a suitable spline function, that 

can adequately synthesize GMS virgin curve patterns which agree with the data reported earlier in 

literature, and which are observed experimentally on additional ball-screw drive and linear motor 

setups, is the main novelty. The ‘reduced parameter’ GMS model therefore significantly accelerates 
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and simplifies the identification of complex friction dynamics, using only limited amounts of data. The 

approximation is validated through a series of experimental results, and comparison with data published 

earlier in the literature. 

 

The combination of the new transfer function estimation method with the reduced parameter GMS 

friction model is the third contribution in this thesis. A three-step procedure is proposed, in which the 

transfer function estimation and reduced parameter GMS friction model identification is first conducted 

sequentially, and then all parameters (i.e., transfer function poles and zeros, as well as the three 

parameters that describe the pre-sliding behavior) are concurrently optimized. It is shown that through 

this process, additional 12-54% model prediction improvement is obtained, compared to only using the 

transfer function estimation which assumes a simplified Coulomb friction model. Attempt is also made 

to jointly identify high-order vibratory dynamics with GMS -type stick-slip friction. In this case, due 

to the dominance of the vibratory response to the commanded trajectory, significant improvement is 

not obtained by replacing the Coulomb friction model with reduced parameter GMS. The lack of 

success in this last step could also be attributed to the omission of the third step of jointly optimizing 

transfer function and GMS friction parameters, in order to keep the implementation manageable and 

straightforward.  

 

The identified models can be used to virtually correct the commanded trajectories using Iterative 

Learning Control (ILC). Development of ILC to achieve positioning accuracy improvement on an 

industrial case study of gear grinding wheel dressing is the fourth contribution, and its experimental 

implementation is still in-progress. Simulation results based on the earlier identified virtual models 

have indicated up to two orders of magnitude improvement in the MAX and RMS values of the servo 

error, and several fold improvement in the resulting contouring accuracy. An industrial testing and 

validation platform, based on the Siemens 840D CNC system, has been designed and fabricated by the 

author and his colleagues at the University of Waterloo Precision Controls Laboratory. This setup, 

which is just about to be commissioned, will facilitate the experimental validation of ILC, and more 

importantly, safe and robust testing on an actual gear grinding machine tool in industry, such as the one 

at the industry partner, Ontario Drive & Gear Ltd. 
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7.2. Future Research 

Based on the results and experience gained through this thesis, the following short-term and long-term 

research tasks are proposed: 

 

Short-term research tasks: 

 

1 - The proposed model estimation was very successful in cases involving rigid body dynamics. Similar 

success could not be obtained for vibratory dynamics. Additional research into improving the 

estimation for feed drive systems with significant vibrations and stick-slip effects is certainly 

worthwhile. Analyzing the expected magnitudes of vibrations induced by different input sources would 

be a good step towards gaining a better understanding of the factors that are limiting the identifiability. 

 

2 - Developing a fully automated system that continuously estimates and updates servo system transfer 

function and frictional dynamics from on-line manufacturing data would be highly beneficial, in terms 

of exploring the potential industrial applications of the methods developed in this thesis. Some possible 

uses could be model-based trajectory optimization, or achieving more precise prediction of the dynamic 

positioning accuracy in a Computer-Aided Manufacturing (CAM) environment. 

 

3 - Experimental completion of the Iterative Learning Control implementation on the Siemens 840 

CNC, and detailed testing of this approach, along with real-time virtual model estimation, in industry. 

 

Long-term research directions: 

 

1 - The identification methods in this thesis have considered linear and decoupled dynamics. However, 

in machine tools with direct drive rotary axes, and also in robotic applications, there is strong inertial 

coupling between the different moving axes. Extension of the identification formulation presented in 

Chapter 3 to such nonlinear models, and making comparisons with established methods from robotic 

system parameter identification literature, would be highly interesting. 

 

2 – Full integration of high-order multi-input multi-output (MIMO) transfer function estimation 

capability with multiple independent reduced parameter GMS friction models, which are identified 

simultaneously. Automatic estimation of such models could pave the way to identify and update 

dynamic representations for multi-axis machines, in which there can also be cross-coupling effects 
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between the different axes, due to vibratory mode shapes of the machine tool structure, as well as minor 

but inevitable alignment errors. 

 

3 – The ILC implementation covered in this thesis is only one of many possibilities. Researching the 

use of more advanced ILC approaches, such as Hankel norm ILC or H norm ILC, is also 

recommended in the context of seeking further robustness and faster determination of corrective 

actions, compared to the currently implemented approach. 
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Appendix A 

Siemens 840D SL Controller 

 

Sinumerik 840D SL is a universal and flexible CNC system that has SINAMICS S120 drive 

components. This system has been built to be used as a universal validation and development testbench 

to support modeling, controls, and trajectory optimization research and facilitate easy industrial 

migration. Mr. Chia-Pei Wang and Mr. Jay Woo were also involved in Siemens controller assembly. 

Also, the servo enclosure was designed and built by the visiting graduate student Mr. Rens Slenders 

(TU Eindhoven). Electrical connections were completed by Mr. James Merli (Department technician). 

The assembled picture of this controller and the connection schematic can be seen in Fig. A.1 and Fig. 

A.2, respectively. 

 

 

Fig. A.1. Assembled Siemens 840D SL controller.  
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Fig. A.2. Connection topology.  

 

There are four main modules, produced by Siemens, to actuate the servo motors (Figure 1).  

1- Siemens 840D SL or the Numerical Control Unit (NCU): Combines HMI, PLC, closed-loop 

position control, and communication tasks. Up to 8 axes can be implemented and the number 

of controllable axes can be expanded by using other Siemens modules, such as NX or Control 

Unit (CU) modules.  

2- Active Interface Module (AIM): Contains line reactors, low-frequency/switching frequency 

filters, line filters etc.  

3- Active Line Module (ALM): This module generates DC voltage in the DC link from the 3 phase 

line supply voltage.  

4- Double Motor Module (DMM): This module provides power to connected motors with the 

connection of DC link to the active line module. 
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Fig. A.3. Assembled controller modules.  

 

 

 

Fig. A.4. Servo motor and its enclosure. 
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