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Abstract

The theme of this thesis is to develop theoretically sound as well as numerically efficient Least
Squares Monte Carlo (LSMC) methods for solving discrete-time stochastic control problems mo-
tivated by insurance and finance problems.

Despite its popularity in solving optimal stopping problems, the application of the LSMC
method to stochastic control problems is hampered by several challenges. Firstly, the simulation
of the state process is intricate in the absence of the optimal control policy in prior. Secondly,
numerical methods only warrant the approximation accuracy of the value function over a bounded
domain, which is incompatible with the unbounded set the state variable dwells in. Thirdly, given
a considerable number of simulated paths, regression methods are computationally challenging.
This thesis responds to the above problems.

Chapter 2 develops a novel LSMC algorithm to solve discrete-time stochastic optimal control
problems, referred to as the Backward Simulation and Backward Updating (BSBU) algorithm.
The BSBU algorithm has three pillars: a construction of auxiliary stochastic control model,
an artificial simulation of the post-action value of state process, and a shape-preserving sieve
estimation method which equip the algorithm with a number of merits including obviating forward
simulation and control randomization, evading extrapolating the value function, and alleviating
computational burden of the tuning parameter selection.

Chapter 3 proposes an alternative LSMC algorithm which directly approximates the optimal
value function at each time step instead of the continuation function. This brings the benefits
of faster convergence rate and closed-form expressions of the value function compared with the
previously developed BSBU algorithm. We also develop a general argument for constructing an
auxiliary stochastic control problem which inherits the continuity, monotonicity, and concavity
of the original problem. This argument renders the LSMC algorithm circumvent extrapolating
the value function in the backward recursion and can well adapt to other numerical methods.

Chapter 4 studies a complicated stochastic control problem: the no-arbitrage pricing of the
“Polaris Choice IV” variable annuities issued by the American International Group. The Polaris
allows the income base to lock in the high-water-mark of the investment account over a certain
monitoring period which is related to the timing of the policyholders first withdrawal. By pru-
dently introducing certain auxiliary state and control variables, we formulate the pricing problem
into a Markovian stochastic optimal control framework. With a slight modification on the fee
structure, we prove the existence of a bang-bang solution to the stochastic control problem: the
policyholder’s optimal withdrawal strategy is limited to a few choices. Accordingly, the price of
the modified contract can be solved by the BSBU algorithm. Finally, we prove that the price
of the modified contract is an upper bound for that of the Polaris with the real fee structure.
Numerical experiments show that this bound is fairly tight.
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t

(
X

(m)
t

)
. . . . . . . . . 26

2.10 Jump mechanism of the investment account across a withdrawal date. . . . . . . . 33

2.11 Sample paths of the investment account generated by control randomization meth-
ods (CR1) and (CR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xiii



2.12 Histograms of W
(m)
T−1 generated by control randomization methods (CR1) and

(CR2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 Histogram of I
(m)
11 generated by control randomization method (CR2). . . . . . . 39

2.14 Plot of k1 7−→ C̃E
t (k1, 0) with J = 20 and M = 2× 104. . . . . . . . . . . . . . . . . 43

2.15 Density plots and histograms of Ṽ E
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Chapter 1

Introduction

1.1 Background and Motivation

A variety of problems in insurance, finance, and operations research involve stochastic optimiza-
tion. Notable examples include pricing financial derivative products with early-exercise features
(see, e.g., [25], [58], and [81]), optimal inventory management (see, e.g., [80] and [68]), dynamic
order execution (see, e.g., [66], [3], and [82]), high-frequency market making (see, e.g., [2] and
[10]), and pricing variable annuities (see, e.g., [40] and [47]), among others. Such optimization
problems are often formulated within a discrete-time Markovian stochastic optimal control frame-
work where one decision-maker (DM) strives to optimize a certain objective by taking action over
a lattice of time points. For example, in the problem of pricing variable annuity, a policyholder
strives to optimize the monetary value of her cash inflows by taking withdrawals periodically from
the investment account; see Figure 1.1 for a graphical illustration. By exploiting the prevailing
Dynamic Programming Principle, solving a stochastic optimal control problem boils down to the
investigation of the solution of a backward recursion equation which is known as the Bellman
equation. The Bellman equations of many stochastic control models are not analytically tractable,
and thus numerical solutions are naturally advocated. Over the past two decades, Monte Carlo
simulation-based algorithms have been proposed in the literature to approach optimal solutions
of stochastic control problems.

Since the ground-breaking works of [25], [58], and [81], the Least-Squares Monte Carlo (LSMC)
algorithm, also known as the regression-based Monte Carlo method, has gained enduring popu-
larity in solving optimal stopping problems, a special type of stochastic control problems. The
associated convergence analysis has also been extensively studied in the literature, see, e.g., [30],
[78], [44], [35], [36], [86], [87], and [88]. The LSMC has two building blocks: 1) a forward sim-
ulation of the state process and 2) an application of nonparametric regression to approximating
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Figure 1.1: The evolution of the policyholder’s investment account. Withdrawals cause
instantaneous jumps of the account value across withdrawal dates.

the continuation value or the value function. In a statistical context, a nonparametric regression
method aims to estimate certain conditional mean function in the following form:

g(·) = E
[

Y︸︷︷︸
Response

∣∣∣ X︸︷︷︸
Covariate

= ·
]
. (1.1)

In view of this, there is no surprise that it makes a perfect fit for approximating the continuation
value and value function in an optimal stopping problem both of which can be expressed into the
above conditional expectation form; see Section 3.2 of the subsequent Chapter 3.

Despite its popularity in solving optimal stopping problems, the application of the LSMC to a
general stochastic control setting is much more arduous due to the challenges arising from several
aspects.

1.1.1 Simulation

As pointed out previously, the simulation of the state process is an integral part of the LSMC
algorithm. In stark contrast to optimal stopping problems, in a stochastic optimal control setting,
the state variable at the present time step depends on the DM’s action at the previous time step.
Accordingly, the forward simulation of the whole trajectory of the state process calls for the
specification of the DM’s action at each time step. For example, in the context of the variable
annuity, the policyholder’s investment account value depends on how much she withdraws from
the account at each withdrawal date; see Figure 1.1. This contravenes the fact that the DM’s
optimal action should be determined by solving the Bellman equation in a backward recursion
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manner.

One popular way to circumvent this problem is to generate the DM’s action either by a
heuristic guess or a simulation from a certain probability distribution. Given the generated
DM’s action, the state process can be simulated smoothly in a forward manner as in the optimal
stopping setting. Once the sample paths of the state process are simulated, a nonparametric
regression method is employed to approximate either the continuation value or the value function
and the optimal policy is updated by solving the local optimization associated with the Bellman
equation in a backward recursion way. This forward simulation and backward updating argument
is often referred to as the control randomization method ([51]) in the literature and has been
used in the LSMC algorithm to solve a few stochastic control problems, see, e.g., [31] and [89] for
dynamic portfolio optimization and [47] for pricing variable annuities. It is worth stressing that
a similar idea appears earlier in [16] than [51] which develops an LSMC algorithm to solve a wide
class of stochastic control problems by simulating the state process under a “reference measure”.
Although such expediency is intuitively appealing, as pointed out by [72], in some cases, a poor
guess of the DM’s action might lead the LSMC algorithm to miss the optimal solution because
the sample distribution of the simulated state process highly relies on such an initial guess. To
get a fleeting glimpse of this problem, let us revisit the instance of variable annuities: suppose the
initial guess of the policyholder’s withdrawal strategy is to deplete the investment account at a
certain withdrawal date, then the investment account will get exhausted forever. Accordingly, the
sample paths of this state variable do not evenly distribute over its feasible set but concentrate
on a single point, which, in turn, skews the regression estimate for the continuation value.

1.1.2 Localization

In addition to the annoying issue of simulating the state process, the application of the LSMC
algorithm to stochastic control problems is also bothered by the fact that the state variable dwells
in an unbounded set. To be specific, on one hand, the accuracy of a numerical estimate for the
value function is only ensured over a compact set say D because the regression estimate is merely
a legitimate approximation of the continuation value over a compact set; see, e.g., [65] and [30].
On the other hand, solving the local optimization problem in the Bellman equation at time step
t generally calls for the knowledge of the value function at time step t+ 1 over a set that is larger
than D.

It is notable that this dilemma also applies to other numerical methods, for example, the
finite difference method and the Fourier transform method, as one needs to construct numerical
grids on a compact set. Certain extrapolation techniques are often used as expediency for this
problem; see, e.g., [4] and [48] in the context of using the Fourier transform method to solve the
stochastic control problems accompanying variable annuities. Without a prudent and rigorous
treatment on this intricate issue, the accuracy of the numerical estimate for the value function at
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time zero is left in doubt as one has no idea about how the extrapolation error would propagate
in the backward recursion procedure.

1.1.3 Regression

Different from usual statistical problems, the approximation of the continuation value of a stochas-
tic control problem gives rise to new challenges. In the context of the LSMC, the sample size
of the regression problem corresponds to the number of simulated paths of the state process
which clearly is considerable. This observation renders most nonparametric regression methods
computationally expensive or even prohibitive.

To be specific, the computational cost of prevailing nonparametric regression methods arise
from three aspects: 1) computational complexity of model prediction1, 2) memory cost of the
regression estimate and 3) tuning parameter selection. For example, despite its faster convergence
rate, the local polynomial regression method (see, e.g., [38]) requires storing all sample points in
the memory and predicting the regression function at new point calls for rerunning a least-squares
regression, which clearly is computationally luxury. This issue disturbs all local regression meth-
ods such as the kernel methods (see, e.g., [64] and [85]) and the isotonic regression method (see,
e.g., [69]) which is a popular resolution to estimating monotone functions. The smoothing spline
method does not need to store the sample points but the evaluation of the regression estimate
is still time-consuming; see, e.g., [76]. The reproducing kernel Hilbert space (or reproducing
kernel in short) method requires storing the training sample and the evaluating the regression
estimate at a particular point involves M operations with M being the sample size; see e.g. [37,
Eq. (4.2)]. It is also worth noting that almost all nonparametric regression methods require a
tuning parameter selection procedure such as cross-validation which is required to avoid undesir-
able overfitting or underfitting. This ramps up the computational burden of fitting a regression
model. For instance, the regression spline method (see, e.g., [71]) costs less computational time
in the model prediction than the smoothing spline method but necessitate a prior selection of the
number and position of the knots. The linear sieve estimation method (see, e.g., [65]) demands
to optimize the number of basis functions in fitting the regression model. In Table 1.1, we sum-
marize the pros (X) and cons (×) of some popular nonparametric regression methods in terms of
the computational issues mentioned above.

In addition to the issue of computational cost, it is notable that the regression estimate, in
general, does not preserve some shape properties such as the concavity and monotonicity of the
continuation value function and the optimal value function in an LSMC algorithm; see, e.g., [48,
pp. 825–826] and [72]. Two undesirable issues arise accordingly. Firstly, the LSMC estimates for

1The model prediction here means computing the regression estimate at a particular point that is different from
the sample points. This is intensively involved in an LSMC algorithm as one may see from the later chapters of
this thesis.
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Table 1.1: Pros (X) and cons (×) of common nonparametric regression methods from
a computational perspective.

Regression Method Tuning Parameter
Computational Cost

Model prediction Memory cost

Local polynomial Bandwidth × ×
Kernel regression Kernel function, Bandwidth × ×
Isotonic regression No tuning parameter × ×
Smoothing spline Smoothing parameter × X

Regression spline Position of knots X X

Reproducing kernel Kernel × ×
Linear sieve Number of basis functions X X

Neural network Number of hidden layers, × ×
neurons in each layer

the continuation value and value function lose economic interpretation. Secondly, the concavity
of the local optimization problem in the Bellman equation might be impaired, which makes
the search for the optimizer fairly cumbersome; see Chapter 3 for a discussion. Shape-restricted
regression methods have also been widely studied in statistical literature but they are also annoyed
by the computational issues mentioned previously; see, e.g., [60].

1.2 Contributions and Road Map

In view of the aforementioned obstacles, the thrust of this thesis is to explore possible answers
to the following research questions.

(Q1) Is the forward simulation imperative in an LSMC algorithm?

(Q2) Does the control randomization method always ensure the convergence of an LSMC algo-
rithm to the optimal solution?

(Q3) How to develop a general truncation argument for discrete-time stochastic control prob-
lems?

(Q4) Is it possible to improve the efficiency of the regression methods by exploiting certain shape
information of the continuation value and the optimal value function?
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The subsequent chapters of this thesis respond to the above questions. Chapter 2 develops
a novel regression-based Monte Carlo algorithm referred to as the Backward Simulation and
Backward Updating (BSBU) algorithm. To be specific, this chapter shows that the answer to
(Q1) is negative: it is not necessary to simulate the state process in a forward manner. In
particular, Chapter 2 proposes to direct simulate the post-action value of the state process,
which, in turn, eliminates the need of control randomization. This further brings several benefits
in terms of memory cost and computational complexity. Furthermore, Chapter 2 gives one
resolution to the problem of (Q3). An auxiliary stochastic control model is constructed such
that the accompanying state process is restrained in a compact domain. The corresponding
optimal value function is shown to be a legitimate proxy for the original one, which enables
one to switch the attention to the auxiliary problem for a solution. This bypasses undesirable
extrapolation and the paves the way to applying the nonparametric regression technique of [65].
Moreover, in response to (Q4), Chapter 2 proposes to employ a shape-preserving sieve estimation
method to approximate the continuation value of the Bellman equation. The resulting regression
estimate is less volatile and preserves certain economic interpretations as confirmed by numerical
experiments, which provides an affirmative answer to (Q4). Finally, the convergence result of
the BSBU algorithm is established by resorting to the theory of nonparametric sieve estimation.

Chapter 3 develops an alternative regression-based Monte Carlo algorithm, referred to as the
Regression-later Least Squares Monte Carlo (RL-LSMC) algorithm, by exploiting the regression-
later technique of [43]. Specifically, the RL-LSMC algorithm aims to use a regression method
to directly approximate the optimal value function instead of the continuation value. To this
end, Chapter 3 gives a second resolution to (Q3) that is different with the one proposed in
Chapter 2. By an elaborate construction of an auxiliary stochastic control model, the optimal
value function of the auxiliary problem manages to inherit certain regularities of the original
one such as the continuity, convexity/concavity, and monotonicity, which is not achievable by
the counterpart in Chapter 2. This, in turn, brings several benefits to the implementation of
the RL-LSMC algorithm. Chapter 3 further establishes the convergence result of the RL-LSMC
algorithm which sheds lights on the choice of the sampling distribution and casts insights to the
questions (Q2). In particular, Chapter 3 shows that the continuity of the optimal value function
plays an indispensable role in guaranteeing the legitimacy of direct simulation of the state process
from an artificial probability distribution. Finally, Chapter 3 applies the RL-LSMC algorithm
to the problem of hedging equity-linked insurance products, which shows the advantages of the
RL-LSMC algorithm over the BSBU peer developed in Chapter 2 and pinpoints the primary
motivation for using the regression-later technique.

Chapter 4 studies a convoluted stochastic optimal control problem: the no-arbitrage pricing
of a new type of variable annuity contract, the Polaris variable annuities, issued by the American
International Group (AIG). Specifically, by a slight modification of the fee scheme, a bang-bang
solution to the stochastic control problem accompanying the pricing problem is proved to exist,
that is, the optimal action at each time step is limited to a few explicit choices. This dramatically
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reduces the complexity of the optimization problem involved in the Bellman equation. Conse-
quently, the no-arbitrage price of the modified contract can be numerically approached by the
BSBU algorithm developed in Chapter 2. We further show that the price function of the modified
contract dominates that of the real policy and therefore gives a guide on the super-hedging cost of
the policy writer. One crucial implication of this particular stochastic control problem is that the
control randomization does not necessarily lead an LSMC algorithm to find the optimal solution
and highlights the merits of the BSBU algorithm. This gives a negative answer to (Q2). Chapter
4 also provides a new idea of solving the pricing problems of those variable annuity products in
the absence of bang-bang solutions: one might first speculatively modify the contract provisions
to construct a modified contract whose pricing problem is less formidable; and then show the
subtle relation between the modified and original contracts.

Finally, Chapter 5 concludes the thesis and points out some future research directions.
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Chapter 2

A Backward Simulation Method for
Stochastic Optimal Control Problems

2.1 Introduction

The stochastic optimal control model is a prevalent paradigm for solving optimal decision prob-
lems with uncertainty in a variety of fields, particularly, financial engineering. In solving discrete-
time stochastic optimal control problems, the Dynamic Programming Principle (DPP) is a pre-
vailing tool which characterizes the optimal value function as the solution to a backward recursive
equation system, often known as the Bellman equation. This dismantles the stochastic optimiza-
tion problem into two separate problems: 1) solving a sequence of deterministic optimization
problems and 2) evaluating the conditional expectation terms in the Bellman equation. In spite
of the theoretical appealingness of the DPP, there generally does not exist a closed-form solution
to the Bellman equation, which hampers the application of stochastic optimal control models
to many intricate real-world problems. Recently, a number of numerical methods have been
proposed in the literature to approach the optimal or suboptimal solutions to various stochas-
tic optimal control problems by combining Monte Carlo simulation method with nonparametric
regression methods.

In a statistical setting, the typical goal of nonparametric regression methods is to estimate the
functional form of the expectation of a response variable conditioning on some covariate variables.
This naturally motivates one to use certain nonparametric regression methods to evaluate the
conditional expectation (also known as the continuation value in the context of pricing Bermudan
option) involved in the Bellman equation where the optimal value function at the next time step
and the state variable at the current time step are taken as the response and covariate variables,
respectively. Such a ground-breaking idea was incubated in a series of papers including [25], [58],
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and [81], and the corresponding numerical algorithms are often referred to as the Least-Squares
Monte Carlo (LSMC) algorithms. Since then, the LSMC algorithm has witnessed remarkable
popularity in solving optimal stopping problems, a special class of stochastic control problems;
see, e.g., [30], [78], [44], [43], [35], [36], [86], [17], [15], [87], and the references therein.

Solving general stochastic control problems by resorting to the LSMC algorithm is consider-
ably more involved. To understand the crux, let us note that the LSMC method has two building
blocks: 1) a forward simulation of the state process and 2) a backward updating procedure which
employs the nonparametric regression to estimate the continuation value. In an optimal stopping
problem, the evolution of the state process is independent of decision maker’s (DM’s) action and
therefore, the forward simulation of the sample paths of the state process is relatively straightfor-
ward. In stark contrast to this, in a general stochastic optimal control setting, the state process is
influenced by the DM’s action and accordingly, its simulation is unattainable without specifying
the DM’s action. Ideally, one may expect to simulate the state process driven by the optimal
action of the DM. However, the optimal action should be determined by solving the Bellman
equation in a backward recursion manner, which is incongruous with the need of forward simu-
lation in an LSMC algorithm. To bypass this hurdle, [51] proposes to first draw the DM’s action
from a random distribution and then simulate the sample paths of the state process based on the
initialized action. This method has been referred to as the control randomization method in the
literature and applied in the LSMC algorithm to solve many specific stochastic control problems;
see, e.g., [31], [89], and [47], among others. Despite the wide usage of the control randomization
method, the accuracy of the numerical estimate is impaired over the region with sparse sample
points ([89, Section 3.3]) and the spread of the sample paths is sensitive to the specific way of
initializing the action. In an extreme case, the LSMC algorithm might even miss the optimal
solution under a dismal choice of random distribution from which the DM’s action are drawn; see
[72], for instance. It is also notable that most literature bind together the control randomization
and the forward simulation of the state process. However, this chapter will show that the for-
ward simulation is not imperative in an LSMC algorithm and the merits of abjuring the forward
simulation are extant in several aspects. The limitations of the control randomization and the
consequential forward simulation will be elaborated in the subsequent Section 2.2.2.

Besides the simulation of the state process, the approximation of the conditional expectation
term in a Bellman equation is also an arduous task for several reasons. Firstly, the prevalent
regression methods only warrant the accuracy of the regression estimate over a compact support,
see, e.g., [65], [78], and [87], whereas the state variable generally takes value in an unbounded
set. Some literature compromise to first truncate the domain of the continuation function and
then use extrapolation techniques when the knowledge of the function outside the truncated
region is required. It is worth noting that this problem is not acute in the context of optimal
stopping problem but is severe in a general stochastic control setting. This is because, in the
latter case, one has to traverse through all admissible actions, which calls for the values of the
continuation function over a domain that is wider than spreading range of sample paths; see
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Figure 2.2 for a graphical illustration. Secondly, in order to avoid overfitting or underfitting,
most nonparametric regression methods thirst for an appropriate choice of the tuning parameter,
e.g., the number of basis functions in a linear sieve estimation method (see the subsequent Section
2.4.3). This is often resolved by computationally expensive cross-validation methods, see, e.g.,
[56]. However, in view of the extraordinarily large number of simulated paths, such a tuning
parameter selection procedure is computationally intensive in implementing the LSMC algorithm.
The aforementioned challenges will be investigated in details in the subsequent section.

The contribution of this chapter is summarized as follows. Firstly, we propose to restrain the
value set of the state process into a compact set, which evades the undesirable extrapolating the
optimal value function estimate during the backward recursion of the LSMC algorithm. The value
function accompanying the truncated state process is shown to be a legitimate approximation
for the original value function under a suitable choice of the truncation parameter. Secondly, we
generalize the idea of [72] to simulate the post-action value of the state process from an artificial
probability distribution. This eliminates the need for the forward simulation and is consistent with
the backward induction nature of the Bellman equation. The memory as well as time costs of the
artificial simulation method are considerably less than those of the control-randomization-based
forward simulation method. Thirdly, a shape-preserving sieve estimation method is introduced
to approximate the conditional expectation term involved in the Bellman equation. By exploit-
ing certain shape information of the continuation function, the sieve estimate is insensitive to
the tuning parameter and accordingly reduces the computational cost of the tuning parameter
selection. We refer to the proposed LSMC algorithm as the Backward Simulation and Backward
Updating (BSBU) algorithm. Finally, we establish the convergence result of BSBU algorithm
which sheds light on how the numerical error propagates over the backward recursion procedure.

This chapter is organized as follows. Section 2.2 gives a tour through the LSMC algorithm
and puts forward the motivations of the chapter. Section 2.3 constructs the auxiliary stochastic
optimal control model. Section 2.4 develops the BSBU algorithm and establishes the associated
convergence result. Section 2.5 applies the BSBU algorithm to the pricing problem of an equity-
linked insurance product and Section 2.6 conducts the corresponding numerical experiments.
Finally, Section 2.7 concludes the chapter.

2.2 Basic Framework and Motivations

2.2.1 Stochastic Optimal Control Model

We restrict our attention to a collection of consecutive time points labeled by T := {0, 1, . . . , T} on
which a decision maker (DM) may take action. The uncertainty faced by the DM is formulated
by a probability space (Ω,F ,P) equipped with a filtration F =

{
Ft
}
t∈T . The DM’s action is

described by a discrete-time stochastic process a = {at}t∈T0 valued in A ⊆ Rp with T0 = T \{T}
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and p ∈ N. Let X = {Xt}t∈T be a certain state process valued in X ⊆ Rd with d ∈ N. Starting
from an initial state X0 = x0 ∈ X , it evolves recursively according to the following transition
equation:

Xt+1 = S (Xt, at, εt+1) , for t = 0, 1, . . . , T − 1, (2.1)

where ε := {εt+1}t∈T0 is a sequence of independent random variables valued in D ⊆ Rq with
q ∈ N. εt+1 reflects the uncertainty faced by the DM at time step t and is referred to as random
innovation in what follows. For brevity of notation, in what follows, the dependency of the state
process on the action is compressed and the readers should always bear in mind that Xt implicitly
depends on the DM’s action up to time t− 1.

Let us restrict our attention to the following admissible set of the DM’s action:

A =
{
a = {at}t∈T0

∣∣∣ at is Ft-measurable and at ∈ At (Xt) for t ∈ T0

}
,

where At(·) is a set valued map (referred to as the correspondence in this thesis), that is, At(x)
is a subset of A for each x ∈ X . At(Xt) corresponds to a state-dependent constraint imposed on
the DM’s action at time step t.

Now consider a discrete-time stochastic optimal control problem in the following form:

V0(x0) = sup
a∈A

E

[
T−1∑
t=0

ϕtft(Xt, at) + ϕT fT (XT )

]
, (2.2)

where ϕ ∈ (0, 1) is a certain constant discounting factor, ft(·, ·) and fT (·) are the intermediate and
terminal reward functions, respectively. In order to ensure the well-posedness of the stochastic
control problem (2.2), we impose the following assumption which is conventional in literature,
see [70] and [16] for instance.

Assumption 2.1.

sup
a∈A

E

[
T−1∑
t=0

|ft(Xt, at)|

]
<∞, and sup

a∈A
E [|fT (XT )|] <∞.

The Dynamic Programming Principle states that the value function V0(·) can be solved re-
cursively: VT (x) = fT (x),

Vt(x) = sup
a∈At(x)

[
ft(x, a) + ϕC̄t(x, a)

]
, for t = 0, 1, . . . , T − 1, (2.3)
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where

C̄t(x, a) = E
[
Vt+1 (Xt+1)

∣∣∣Xt = x, at = a
]
. (2.4)

We proceed by rewriting the transition equation (2.1) into the following form:

S(Xt, at, εt+1) = H
(
K(Xt, at), εt+1

)
, (2.5)

where H(·, ·) : Rr+q −→ Rd and K(·, ·) : Rd+p −→ Rr are some measurable functions with r ∈ N.
It is worth stressing that any transition function S(·, ·, ·) can be rewritten into the above form
since one may choose K(·, ·) as identity function (i.e., K(x, a) = (x, a)) and the above equation
holds trivially. Nevertheless, it is instructive to introduce the function K(·, ·) as it brings the
benefit of dimension reduction, which we will explain with more details in the sequel. Combing
Eqs. (2.1), (2.4) and (2.5) gives

C̄t (Xt, at) = E
[
Vt+1

(
H (Xt+ , εt+1)

)∣∣∣Xt+ = K (Xt, at)
]
.

Hereafter, Xt+ is referred to as the post-action value of the state process Xt at time t. It
constitutes an essential component in the LSMC algorithm proposed in Section 2.4. Define
function

Ct(k) := E
[
Vt+1 (Xt+1)

∣∣∣Xt+ = k
]

= E
[
Vt+1

(
H (k, εt+1)

)]
. (2.6)

We observe the following relationship between C̄t(·, ·) and Ct(·):

C̄t(x, a) = Ct
(
K(x, a)

)
. (2.7)

The crucial implication of the above relation is that it suffices to recover the functional form
of Ct(·) in order to evaluate C̄t(·, ·) since K(·, ·) is known at the first hand. The motivation of
rewriting the transition equation into Eq. (2.5) is now clear: K(·, ·) maps a (d+ p)-dimensional
vector into a r-dimensional vector which compresses the dimension if r < d + p, and it is more
efficient to recover the function Ct(·) than C̄t(·, ·) due to such a dimension reduction. It is also
worth noting that Ct(·) is solely determined by the probability distribution of εt+1 according
to Eq. (2.6), and it is not necessary to know the exact distribution of Xt+ in the evaluation of
the function Ct(·). In view of the relation (2.7), the Bellman equation (2.3) can be equivalently
written as VT (x) = fT (x),

Vt(x) = sup
a∈At(x)

[
ft(x, a) + ϕCt

(
K(x, a)

)]
, for t = 0, 1, . . . , T − 1. (2.8)
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· · · Vt+1(·) Ct(·)
Eq. (2.6)

C̄t(·, ·)
Eq. (2.7)

Vt(·)
Eq. (2.3)

. . .

Figure 2.1: A diagram for backward information propagation in solving the Bellman
equation.

The above equation system states that, given the value function at time step t + 1, one may
first evaluate continuation function according to Eqs. (2.6) and (2.7) and then obtain the value
function at time step t via solving an optimization problem in the second line of Eq. (2.8). The
information propagation behind the above recursive procedure is illustrated in Figure 2.1.

2.2.2 A Tour Through LSMC Algorithm

We proceed by briefly reviewing the Least-squares Monte Carlo (LSMC) algorithm. We will show
its limitations in several aspects which motivate the algorithm we will propose in the subsequent
sections.

“Forward simulation and backward updating” (FSBU) algorithm

There has been voluminous literature on the LSMC for optimal stopping problem, while the
literature on the LSMC for general stochastic optimal control problem is thin. Most literature
addresses the LSMC for the stochastic control problems arising in some specific applications, see,
e.g., [24], [11], [47], [72], [31], and [89], among others. An LSMC algorithm for a class of stochastic
control problem is developed in [16].

For most variants of the LSMC algorithm, they can be decomposed into two pillars: (i) a
forward simulation of the state process and (ii) a backward updating of control policies. We
review these algorithms in a unified paradigm as follows.

1. Initiation: Set V E
T (x) = fT (x). For t = T − 1, T − 2, . . . , 0, do the two steps below.

2. Forward Simulation:

2.1 Control randomization Generate a random sample of the DM’s action up to time
step t:

aM0:t :=
{(
a

(m)
0 , . . . , a

(m)
t

)
, m = 1, 2, . . . ,M

}
generated by a certain heuristic rule.
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2.2 Simulation of state process Simulate a random sample of the random innovations:{(
ε

(m)
1 , . . . , ε

(m)
t+1

)
, m = 1, 2, . . . ,M

}
.

The sample of the state process up to time step t+ 1 is given by

XM
1:t+1 :=

{
X

(m)
1:t+1 :=

(
X

(m)
1 , . . . , X

(m)
t+1

)
, m = 1, 2, . . . ,M

}
,

where X
(m)
n = S

(
X

(m)
n−1, a

(m)
n−1, ε

(m)
n

)
for n = 1, 2, . . . , t+ 1.

3. Backward Updating:

3.1 Regression Given a numerical estimate of value function at time step t+1, denoted
by V E

t+1(·), construct the random sample

YM
t+1 :=

{
V E
t+1

(
X

(m)
t+1

)
,m = 1, 2, . . . ,M

}
.

Further construct a random sample of post-action value of the state process as follows:

XM
t+ :=

{
X

(m)
t+

:= K
(
X

(m)
t , a

(m)
t

)
,m = 1, 2, . . . ,M

}
. (2.9)

Take YM
t+1 and XM

t+ as the samples of response variable and regressor, respectively,
and employ a certain non-parametric regression to obtain a regression estimate CE

t (·)
for Ct(·).

3.2 Optimization An estimate for the value function at time step t is given by

V E
t (x) = sup

a∈At(x)

[
ft(x, a) + ϕCE

t

(
K(x, a)

)]
. (2.10)

We henceforth call the above algorithm as the Forward Simulation and Backward Updating
(FSBU) algorithm since the simulation of XM

t+ involves a forward procedure.

Remark 2.1 (Randomness of V E
t (·) and CE

t (·)). The superscript E in V E
t (·) and CE

t (·) stresses
that they are numerical estimates of the true value function and continuation function, respec-
tively. Since a certain regression technique is employed to get such numerical estimates, they
essentially depend on the random samples YM

t+1 and XM
t+ and hence on all previously generated

random samples going from step T − 1 down to step t, i.e., YM
n+1 and XM

n+ for n = t, . . . , T − 1.
Such dependency is suppressed in notation for brevity, but the readers should keep in mind that
both V E

t (·) and CE
t (·) are random functions.

14



K(·, ·)

(x, a)

Range of post-action value

D

Figure 2.2: A diagram illustrating the map K(·, ·) relating pre-action value to the post-
action value.

Challenges

There are several challenges in implementing the FSBU algorithm to solve a stochastic control
problem. Some comments are made on the challenges from three aspects.

(I) Limitation of control randomization As the DM’s optimal action is not tractable priori
but should be solved in the backward updating stage of the algorithm, Step 2.1 randomly
generates a feasible action, which is referred to as control randomization method; see [51].
For some selected action aM0:n, the accuracy of the regression estimate CE

t (·) can be warranted
only over the support of the resulting sampling points XM

t+ , say D, which might be smaller
than those for other actions. This is more perceivable from Figure 2.3: since most sample
points distribute over the interval [0, 0.8], the regression estimates agree with each other
over this region but vary substantially over [0.8, 1.0]. In view of this, the accuracy of the
regression estimates over [0.8, 1.0] is left in doubt. In fact, the true regression function in
this experiment is a polynomial with the maximal degree of 3. On the other hand, in order
to solve the optimization problem in Step 3.2 (see Eq. (2.10)), one requires the knowledge
of CE

t (·) over the range of post-action value Xt+ = K(Xt, at) for all feasible actions at
because all possible values of the action should be invoked and taken as the input of the
function CE

t (K(x, a)) in evaluating V E
t (x); see Figure 2.2 for a graphical illustration. As a

compromise, one may use certain extrapolation methods to infer the value of CE
t (·) outside

the region D, which incurs extra error and is hard to justify its legitimacy.

(II) Cost of forward simulation It is notable that, at time step t of the above FSBU al-
gorithm, a new random sample of the state process that is independent of the sample at
time step t + 1 is simulated; see Figure 2.4 for a graphical illustration. This is required
in order to apply the nonparametric regression theory to establish the convergence result;
see, e.g., [87, p. 511] and [16]. On the contrary, using a single sample causes in-sample
bias because the numerical estimate of value function obtained at time step t + 1 V E

t+1(·)
is correlated with XM

t+ ; see e.g. [29, Section 3.1] and the earlier Remark 2.1. The total
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time cost in a forward simulation procedure of the above LSMC algorithm is of O(T 2)1.
Simulating the whole path of state process can be time-consuming especially when one uses
some approximation schemes to simulate general stochastic differential equations2. Besides
the issue of time cost, the memory cost in a single simulation is of O (dT ) with T and d
being the number of time steps and dimensionality of the state process, respectively, which
is sizable for a large T .

(III) Choice of regression technique Despite the voluminous literature on nonparametric
regression, the choice of the nonparametric regression method in Step 4.1 should be metic-
ulous. In the above FSBU algorithm, the sample size in the regression problem corresponds
to the number of simulated paths and is generally recommended in the literature be chosen
larger than one hundred thousand, which makes most regression methods computationally
prohibitive. Specifically, the local methods such as local-polynomial regression are clearly
not wise choices as they require running a regression at each sample point. It is worthy
to point out that even computing a single point in YM

t is fairly time-consuming as it in-
volves a local optimization problem (see Eq. (2.10)). Furthermore, the nuisance of high
memory cost also burdens most nonparametric regression methods. For example, the ker-
nel regression and isotonic regression methods require storing all sample points in order to
recover the functional form of the regression function over some support, and the memory
cost is extraordinarily large accordingly. The above two thorny issues escalate by noting
that almost all nonparametric regression techniques involve a computationally-intensive
cross-validation procedure to determine the tuning parameter (e.g., the bandwidth in local
regression methods and the number of basis functions in global regression methods) in order
to avoid overfitting or underfitting.

Motivations

In view of the previous items (I)–(III), the thrust behind this chapter is to explore possible
answers to the following questions:

(Q1) How to avoid the theoretically shaky extrapolation step?

(Q2) Is it possible to bypass the forward simulation in an LSMC algorithm?

(Q3) Is there a regression method that is insensitive to tuning parameter?

1Suppose the time cost of simulating a path over each time interval [t, t + 1] is C. Then the time cost of
simulating a whole path up to time step n is about n×C, and the forward simulation in the whole LSMC algorithm
has approximate time cost of C(1 + 2 + · · ·+ T ) = T (T + 1)C/2, accordingly.

2It is the authors’ experience that a single simulation of 105 paths of the Heston model over a 10-year period
takes 365 seconds by using the R package “msde” on a MacBook Pro (2.8 GHz Intel Core i7).
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Figure 2.3: Regression estimates of polynomial regression method with different maxi-
mal degrees.

0 1 t+ 1t Time step

XM
1:t+1

XM
1:t

Figure 2.4: A diagram for illustrating the forward simulation of the state process. The
solid line corresponds to a simulated sample of state process at time step t of the LSMC
algorithm. The dashed line corresponds to a new independent simulated sample of the
state process at time step t− 1.
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Now we present the road map of the remainder of the chapter. In terms of (Q1), in the subsequent
section, we will construct an auxiliary stochastic control problem where the accompanying state
process only takes values in a bounded set. This enables us to sidestep extrapolating the regression
function outside the region where the sample distributes. In response to (Q2), We will propose
to directly simulate the post-action value of state process in Section 2.4. For (Q3), we will
introduce a shape-preserving sieve estimation method to infer the continuation function. The
resulting sieve estimate, on one hand, is insensitive to the tuning parameter, and on the other
hand, preserves certain shape properties of the continuation function.

2.3 An Auxiliary Stochastic Control Problem

As commented in the item (I) “Limitation of control randomization” in the previous section, it is
necessary to know the value of the continuation function over the whole range of the post-action
value of the state process which is wider than the set where the regression sample suffuse. It
is notable that the range of post-action value is unbounded if the state process takes value in
an unbounded set, which is particularly the case in many finance applications. Therefore, it is
generally inevitable to infer the continuation function outside the support of the sample and the
error incurred by extrapolating the regression estimate is hard to quantify. Furthermore, as one
will see in Section 2.4.3, the convergence of the regression method that is used to approximate
the continuation function is only ensured over a compact domain.

In view of the above discussion, the thrust of this section is in dual-fold: first, we target to
find a certain way to circumvent the unsound extrapolation in the implementation of an LSMC
algorithm; second, we aim at confining the domain of the continuation function into a compact
set. To realize this goal, we first construct an auxiliary stochastic optimal control problem where
the accompanying state process only takes values in a bounded set and then show the discrepancy
between the auxiliary problem and the original one is quantifiable and is marginal under certain
conditions. It is worth stressing that the aforementioned challenges also burden other numerical
algorithms for solving discrete-time stochastic control problems besides the LSMC such as the
finite difference method. Therefore, the construction of the auxiliary problem can adapt to such
numerical methods and is of independent interest.

2.3.1 Construction

Let XR be a bounded subset of the set X where the subscript R denotes a certain truncation
parameter. We may choose XR such that its closure, cl (XR), is strictly convex. Further denote
X̊R (resp. ∂XR) as the interior (resp. boundary) of XR. Given the initial state x0 ∈ X̊R, define

18



the following stopping time:

τR := inf
{
t ∈ T

∣∣∣ Xt /∈ X̊R
}
, (2.11)

with the convention: τR =∞ if Xt ∈ X̊R for all t ∈ T .

We recursively define an auxiliary state process X̃ :=
{
X̃t

}
t∈T

as follows:

{
X̃0 = x0,

X̃t = Xt1{τR>t} +Q (XτR∧t)1{τR≤t}, for t = 1, 2, . . . , T,
(2.12)

where Q(x) = arg infy∈cl(XR) |y − x| with | · | denoting the Euclidean `2-norm.3 Since cl (XR) is a

compact and strictly convex set, Q(x) is unique and lies on the boundary set ∂XR for x /∈ X̊R.

Below we give some interpretations regarding the auxiliary state process defined in the above
Eq. (2.12). The original state process X coincides with the auxiliary state process X̃ until the
stopping time τR. Once the original state process passes through the interior of the truncated
domain, the auxiliary state process freezes at a certain point in the boundary set ∂XR thereafter.
The evolution mechanisms of the original and auxiliary state processes are illustrated in Figure
2.5. The following proposition gives the transition equation of X̃.

Proposition 2.1. The auxiliary state process X̃ defined by Eq. (2.12) admits the following
transition equation across each time point: X̃0 = X0 and

X̃t+1 = X̃t1{X̃t∈∂XR} + H̃
(
K
(
X̃t, at

)
, εt+1

)
1{X̃t∈X̊R}, (2.13)

for t = 0, 1, . . . , T − 1, where

H̃(k, e) = Q(H(k, e)), (2.14)

and K(·, ·) is the transition equation relating the pre-action and post-action values of the original
state process defined in Eq. (2.5).

The proof of the above proposition is relegated to Appendix A.3.1. The preceding Eq. (2.13)
essentially states that X̃ is a Markov chain by itself, and accordingly, it is the sole state process
of the auxiliary stochastic control model defined in the sequel.

Let Ã be the set of all admissible actions for the auxiliary state process which is defined as:

Ã :=
{
a = {at}t∈T0

∣∣ at is Ft −measurable, at ∈ At
(
X̃t

)
, for t ∈ T0

}
.

3For the brevity of notation, this chapter does not distinguish the notations for the Euclidean `2-norm of a
scalar and a vector.
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Time

XR

. . .
τR − 1 τR τR + 1

. . .

XQ(Xt)

Figure 2.5: Graphical illustration of the evolution mechanisms of X and X̃. It is notable
that X might evolve continuously between two discrete time points t and t + 1. The
stopping time τR corresponds to the first time point upon which Xt stays outside of X̊R
among all discrete time points {0, 1, . . . , T}. The circles correspond to a path of X̃.

In parallel to the original stochastic optimal control problem (2.2), we consider the following
auxiliary problem:

Ṽ0(x0) = sup
a∈Ã

E

[
T−1∑
t=0

ϕtft

(
X̃t, at

)
+ ϕT fT

(
X̃T

)]
, (2.15)

where X̃ =
{
X̃t

}
t∈T

is defined recursively by Eq. (2.13) for any given action a.

Remark 2.2. It is worth stressing that in the above auxiliary problem (2.15) the DM’s action
is taken from the admissible set Ã that is different with the preceding set A accompanying the
original stochastic control problem (2.2). This is resulted from the discrepancy between the state
processes X and X̃. Subtle as the difference is, it will bring a technical difficulty in characterizing
the gap between V0(x0) and Ṽ0(x0); see the proof of the subsequent Theorem 2.1 in Appendix
A.3.2.

Since the state process X̃ freezes once it reaches the boundary set ∂XR, the value function in
Eq. (2.15) is given by

Ṽt(x) =

T−1∑
n=t

ϕn−tfn
(
x; a∗n(x)

)
+ ϕT−tfT (x), for x ∈ ∂XR, t ∈ T , (2.16)

with a∗n(x) ∈ arg supa∈An(x) fn(x; a). Over the interior of the truncated domain, the above value
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function Ṽ0(·) can be solved in a similar backward recursion way as V0(·) does, that is,ṼT (x) = fT (x),

Ṽt(x) = sup
a∈At(x)

[
ft(x, a) + ϕC̃t

(
K(x, a)

)]
, for x ∈ X̊R, t = 0, 1, . . . , T − 1, (2.17)

where C̃t(·) is defined in line with Eq. (2.6) with H(·, ·) replaced by H̃(·, ·). It is worth noting
that, in evaluating C̃t

(
K(x, a)

)
, the knowledge of Ṽt+1(·) over ∂XR might be in need, and in such

a situation, Eq. (2.16) is invoked.

We make some comparisons between the above Eq. (2.17) and the original Bellman equation
(2.8). Firstly, in both equations, the state constraint At(·), the transition equation between pre-
action and post-action values K(·, ·), and the reward functions are exactly the same. Secondly,
the value function Ṽt(·) is solely defined on a bounded set cl (XR), whilst Vt(·) is defined on the
set X which might be unbounded in many financial applications as the original state process X
may correspond to a certain risky asset valued on the whole positive real line.

2.3.2 Error Analysis

In the following, we will characterize the discrepancy between Ṽ0(x0) and V0(x0). To this end, it
is necessary to impose some assumptions on the state process and the reward functions.

Assumption 2.2. Let X̃0 = X0 ∈ X̊R. There exists a measurable function ET (·, ·) : X̊R×R>0 −→
[0, 1] satisfying

inf
a∈A

P
[
Xt = X̃t for all t ∈ T

]
≥ 1− ET (x0, R). (2.18)

ET (x0, R) in Eq. (2.18) gives an upper bound for the probability that the auxiliary state
process disagrees with the original one at some time before maturity regardless of the DM’s
action. Since the primary difference between the auxiliary and original value functions stems
from the disparity between the associated state processes, it is not surprising that the above
inequality (2.18) plays an important role in characterizing the approximation error of Ṽt(·) as one
will see later in the proof of Theorem 2.1. The expression of ET (x0, R) should be specified for
each specific application; see Appendix A.2.1 for such an expression under the example of Section
2.5.

Assumption 2.3. (i) There exists a measurable function B(·) : Rd −→ R>0 and a constant ζ
such that∣∣fT (x)

∣∣2 ≤ B(x), sup
a∈At(x)

∣∣ft(x, a)
∣∣2 ≤ B(x), and sup

a∈A
E [B(Xt+1)] ≤ ζ (2.19)
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for all t ∈ T0.

(ii) There exists a measurable function ξ(·) : R>0 −→ R>0 such that

sup
x∈cl(XR)

∣∣fT (x)
∣∣2 ≤ ξ(R) and sup

x∈cl(XR)

(
sup

a∈At(x)

∣∣ft(x, a)
∣∣2) ≤ ξ(R), for all t ∈ T0.

The existence of functions B(·) and ξ(·) is not hard to expect if (i) for each x ∈ X , At(x) is a
compact set, and (ii) the reward function ft(x, a) in continuous in a. Their expressions are easy to
specify in concrete applications; see Appendix A.2.1 for the verification of the above assumption
in the context of Section 2.5.

The following theorem derives the legitimacy of using the auxiliary problem (2.15) as a proxy
for the original problem (2.2). Its proof is relegated to Appendix A.3.2.

Theorem 2.1 (Truncation Error Bound). Suppose Assumptions 2.1, 2.2, and 2.3 hold. Then∣∣∣V0(x0)− Ṽ0(x0)
∣∣∣ ≤ (T + 1)

√
2
(
ξ(R) + ζ

)
ET (x0, R). (2.20)

Remark 2.3. The primary difficulty of proving the above theorem stems from the nuance between
the admissible sets associated with V0(x0) and Ṽ0(x0); see Eqs. (2.2) and (2.15) and the earlier
Remark 2.2. This thorny issue is bypassed by showing that there is no loss in replacing the
admissible set Ã of the auxiliary stochastic control problem (2.15) by A; see Corollary A.1 of
Appendix A.3.2. This is achieved by the elaborate construction of the auxiliary state process X̃.
In particular, X̃ freezes at the truncation boundary once X exists the truncation region. It is
worth stressing that the conclusion of Corollary A.1 does not hold in general.

The error bound in the above inequality (2.20) can be understood as follows. The term(
ξ(R) + ζ

)
ET (x0, R) corresponds to an upper bound for the discrepancy between the reward

functions of the two stochastic control models (2.2) and (2.15) at each time step. Since such a
difference primarily stems from replacing the original state process X by X̃, it is not surprising
that the term ET (x0, R) appears in the error estimate. Furthermore, the two terms ξ(R) and

ζ correspond to certain upper bounds of the magnitudes of the reward terms f2
t

(
X̃t, at

)
and

f2
t (Xt, at), respectively, and therefore a square root arises in the inequality (2.20). Finally, the

discrepancy between the two value functions is amplified as the time progresses. This is reflected
by the existence of a factor T in the above error estimate. The above interpretation is more
perceivable from the proof of Theorem 2.2; see Appendix A.3.3. We further give a remark on
how to determine an appropriate value of the truncation parameter R.

Remark 2.4 (Choice of R). The preceding Theorem 2.1 gives guide on how to choose the trun-
cation parameter R. Note that ET (x0, R) is decreasing in R and whereas ξ(R) is monotone with
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Figure 2.6: Plots of ET (x0, R), ξ(R), and the error bound in (2.20) as functions of
truncation parameter R. The left and right panels depict these functions over the
intervals [1, 4] and [3.5, 4], respectively.

respect to R. This means that in order to ensure the R.H.S. of the inequality (2.20) is marginal
ET (x0, R) should decay much faster than the growth speed of ξ(R). Appendix A.2 derives an ex-
plicit expression for the error estimate in (2.20) in the concrete example of Section 2.5. Figure
2.6 depicts ET (x0, R) and ξ(R) as functions of R under the parameter setting of Section 2.6 (see
Table 2.1). From the left panel of Figure 2.6, one may clearly see that ET (x0, R) (solid line)
dominates ξ(R) (dotted line). The dashed line in Figure 2.6 shows that choosing R = 4 incurs a
truncation error less than 10−7.

In light of the result delivered in the preceding theorem, one may henceforth turn our attention
to the optimal value function of the auxiliary problem (2.15), that is, Ṽ0(x0). In the subsequent
section, we will develop an LSMC algorithm to approach Ṽ0(x0).

2.4 A Backward Simulation Monte Carlo Algorithm

2.4.1 Simulation of post-action value

This subsection proposes an LSMC algorithm which simulates the state process without referring
to the optimal action. Recall from Step 3.1 of the FSBU algorithm in Section 2.2.2 that the ulti-
mate goal of simulating the state process is generating a random sample of the post-action value
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K̃t,R = Kt,R ∪ K̂t,R

Kt,R

K̂t,R

H̃(·, εt+1)

H̃(·, εt+1)

XR

∂XR

Figure 2.7: A graphical illustration for the relationships between Kt,R, K̂t,R, and XR.

of the state process which acts as a crucial input for the regression step. This naturally inspires
us to directly simulate the post-action value Xt+ from an artificial probability distribution. The
term “artificial” stresses the fact that such a distribution might not coincide with the distribution
of Xt+ under the optimal action process.

Since the value function Ṽt(·) is explicitly given by Eq. (2.16) over ∂XR, the primary goal of
our proposed LSMC algorithm is to get a numerical estimate for the value function over the open
set X̊R. In view of this, one may circumscribe the support of the artificial probability distribution
that the post-action values are simulated from. First note that the range of post-action value of
the auxiliary state process denoted by K̃t,R is given by

K̃t,R :=
⋃
x∈X̊R

 ⋃
a∈At(x)

{
K(x, a)

} , for t ∈ T0.

Consider the following subset:

K̂t,R :=
{
k ∈ K̃t,R

∣∣∣ H̃(k, e1) = H̃(k, e2) ∈ ∂XR, ∀e1 and e2 ∈ D
}
, (2.21)

for t ∈ T0, where one should recall that D is the set of all values the random innovation εt+1

might take and H̃(·, ·) is the transition equation relating the post-action value at time step t to
the state variable at time step t+ 1 which is given in Eq. (2.14).

The preceding equation states that Xt+1 will stop at a certain point in the boundary set ∂XR
if X̃t+ := K

(
X̃t, at

)
lies in the set K̂t,R; see Figure 2.7 for a graphical illustration. To make

the matter more concrete, let us consider the example of pricing variable annuities (see, e.g. [47]
and [72]) where X̃t+ corresponds the post-withdrawal value of the investment account. If the
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investment account is depleted after the policyholder’s withdrawal (i.e., X̃t+ = 0), it remains
exhausted forever (i.e., XR

n = 0 for n = t+ 1, . . . , T ). In such an example, K̂t,R is a singleton {0}.
In view of the above discussion and Eq. (2.16), for any k ∈ K̂t,R,

C̃t(k) = E
[
Ṽt+1

(
H̃(k, εt+1)

)]
= Ṽt+1

(
H̃(k, e)

)
(2.22)

which has a value independent of e and is given by Eq. (2.16). Therefore, at time step t, it suffices
to get a regression estimate for the continuation function C̃t(·) on the set Kt,R := K̃t,R\K̂t,R.

2.4.2 The algorithm

Now the Backward Simulation and Backward Updating (BSBU) algorithm is presented as follows.

1. Initiation: Set Ṽ E
T (x) = fT (x) for x ∈ cl (XR). For t = T − 1, T − 2, . . . , 0, do the two

steps below.

2. Backward Simulation:

2.1 Simulation of post-action value Generate a sample of the post-action values
denoted by

XM
t+ :=

{
X

(m)
t+

, m = 1, 2, . . . ,M
}

from a probability distribution Qt,R with support Kt,R.

2.2 Simulation of the state process Construct the sample of the state process at
time step n+ 1 according to

XM
t+1 :=

{
X

(m)
t+1 = H̃

(
X

(m)
t+

, ε
(m)
t+1

)
, m = 1, 2, . . . ,M

}
. (2.23)

with
{
ε

(m)
t+1,m = 1, 2, . . . ,M

}
being a sample of the random innovations.

3. Backward Updating:

3.1 Data preparation Given a numerical estimate of value function at time step t+ 1,
denoted by Ṽ E

t+1(·), construct the sample

YM
t+1 :=

{
Ṽ E
t+1

(
X

(m)
t+1

)
,m = 1, 2, . . . ,M

}
. (2.24)

3.2 Regression Take YM
t+1 and XM

t+ as the samples of response variable and regressor,
respectively, and employ a certain non-parametric regression to obtain a regression
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Figure 2.8: A diagram for backward information propagation in the BSBU algorithm.
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X
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X
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Figure 2.9: A diagram for the information propagation in evaluating Ṽ E
t

(
X

(m)
t

)
.

estimate C̃E
t (·) over the set Kt,R. For k ∈ K̂t,R, set C̃E

t (k) = C̃t(k) with C̃t(·) given by
Eq. (2.22).

3.3 Optimization An estimate for the value function at time step t is given by:

Ṽ E
t (x) = sup

a∈At(x)

[
ft(x, a) + ϕC̃E

t

(
K(x, a)

)]
, for x ∈ X̊R. (2.25)

For x ∈ ∂XR, set Ṽ E
t (x) = Ṽt(x) with Ṽt(·) given by Eq. (2.16).

Step 3.2 prescribes C̃t(k) for the value of C̃E
t (k) when k ∈ K̂t,R because K

(
X

(m)
t , a

)
might fall

in the set K̂t,R. Similarly, in Step 3.3, Eq. (2.16) is invoked to evaluate Ṽ E
t (x) for x ∈ ∂XR as

X
(m)
t generated by Eq. (2.23) may lie on ∂XR, the boundary set of the truncated domain. The

backward information propagation in the above BSBU algorithm is illustrated in Figure 2.8.

Comparing the above BSBU algorithm and the FSBU counterpart in Section 2.2.2, we have
the following observations.

1. Firstly, the primary difference of the two algorithms lies in how to generate the post-action
values of state process, i.e., XM

t+ . The FSBU algorithm is a forward simulation scheme while
the BSBU algorithm directly generates post-action value from a certain prior distribution.
Indeed, the FSBU algorithm can be viewed as a special BSBU algorithm if Qt,R is chosen as
the probability distribution of the post-action value from a control randomization procedure.
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In general, both methods do not yield the distribution of Xt+ driven by the optimal action,
and thus, there is no loss to directly generate XM

t+ from a prior distribution Qt,R.

2. Secondly, the BSBU method has the advantage of reducing memory and time costs. On
one hand, one does not need to store the sample of whole trajectories at each time step in
the BSBU algorithm. On the other hand, the total time cost of simulating the state process
is of O(T ) in the BSBU algorithm, while it is of O

(
T 2
)

in the FSBU counterpart; see the
item (II) “Cost of forward simulation” in Section 2.2.2.

3. Thirdly, the BSBU algorithm circumvents extrapolating the numerical estimates of the
continuation function and the value function. It is notable that C̃E

t (·) and Ṽ E
t (·) are obtained

over the sets K̃t,R and cl (XR), respectively, at time step t; see Steps 2.2-2.3 of the above
BSBU algorithm. At the time step t−1, the BSBU algorithm does not require the knowledge
of the value function (resp. the continuation function) outside cl (XR) (resp. K̃t,R) in
obtaining YM

t ; see Figure 2.9 for a graphical illustration. This nice property inherits from
the construction of the auxiliary state process X̃ whose values are confined to a bounded

set. In the FSBU algorithm, however, the state process is not restrained and K
(
X

(m)
t , a

)
might lie outside the regression domain for C̃E

t (·). In such a situation, extrapolating the
numerical solution causes extra error which is hard to quantify.

2.4.3 Sieve Estimation Method

In this subsection, we propose a linear sieve estimation method to estimate the continuation
function in our BSBU algorithm.

Selection criteria for regression method

In Section 2.2.2 we have discussed potential issues associated with a regression method in esti-
mating the continuation function of a stochastic control problem; see the item (III) “Choice of
regression method”. Based on the discussion, the following criteria for the choice of regression
method in estimating continuation function are proposed.

(C1) Small memory cost The regression problem embedded in an LSMC algorithm usually
exhibits extraordinarily large sample size. Thus, an appropriate regression method should
have small memory requirement. This criterion excludes the kernel method ([64] and [85]),
local-polynomial regression method ([38]), and isotonic regression method ([69]) which re-
quire storing all sample points in the memory in order to compute the regression function
at any point in the domain.
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(C2) Computationally cheap In almost all nonparametric regression methods, a certain pa-
rameter (referred to as tuning parameter in statistics literature) is used to avoid undesirable
overfitting or underfitting of the regression model. Determining the optimal value of such
a tuning parameter is usually computationally intensive. Therefore, an ideal regression
method should be insensitive to the tuning parameter.

In view of the above two criteria, there are a limited number of suitable choices despite the
voluminous nonparametric regression methods in the literature. In the following, we discuss
a class of regression methods which is often referred to as the sieve estimation method in the
literature.

Shape-preserving sieve estimation

Below, we give a brief introduction to the sieve estimation method; refer to [27] for a comprehen-
sive review. Suppose one has a sample of independent and identically distributed (i.i.d.) random

pairs
{(
U (m), Z(m)

)}M
m=1

where Z(m) is a multivariate random vector with compact support Z
and U (m) is a univariate random variable. Define the function g(·) : Z −→ R as

g (z) = E
[
U (m)

∣∣∣Z(m) = z
]

(2.26)

which is independent of m. In the context of our BSBU algorithm, U (m) and Z(m) correspond to

Ṽt+1

(
X

(m)
t+1

)
and X

(m)
t+

, respectively, and the parallel function g(·) is the continuation function

C̃t(·).

The sieve estimation method strives to estimate the functional form of g(·) by solving the
following optimization problem:

ĝ(·) := arg min
h(·)∈HJ

1

M

M∑
m=1

[
U (m) − h

(
Z(m)

)]2
, (2.27)

where HJ is a finite-dimensional functional space depending on a certain parameter J and is
called as sieve space. Intuitively, the ampler the sieve space is, the smaller the “gap” between the
HJ and the function g(·) would be. The price to pay is that larger estimation error is incurred for
a richer sieve space due to limited sample size M . Therefore, one has to balance such a trade-off
by controlling the complexity of the sieve space and this is achieved by tuning the parameter J .
To make the matter more concrete, we consider two examples of the sieve space in the sequel.

Example 2.1 (Linear Sieve Space). Let {φj(·) : Z −→ R}j∈N be a sequence of basis functions.
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Consider the sieve space

HJ =

h(·) : h(z) =
J∑
j=0

βjφj(z), βj ∈ R

 . (2.28)

The above set HJ is essentially a linear span of finitely many basis functions and is referred
to as linear sieve space in the statistics literature.

In the present context, the regression function g(·) corresponds to the continuation function
and it exhibits some shape properties such as monotonicity in many applications; see [34] for
pricing American option and [6] for valuing equity-linked insurance product, among others. In
view of this, it is natural to expect the element in the sieve space satisfies such shape constraints,
which makes the numerical result more economically sensible. This can be achieved by considering
a special linear sieve space in the following example.

Example 2.2 (Shape-Preserving Sieve Space). Let {φj(·) : Z −→ R}j∈N be a sequence of basis

functions. Denote βJ = (β0, . . . , βJ)ᵀ with βj ∈ R, j = 0, 1, . . . , J . Consider the sieve space

HJ =

h(·) : h(z) =
J∑
j=0

βjφj(z), AJβJ ≥ 0c(J)

 , (2.29)

where c(·) : N −→ N is some integer-valued function, AJ is a c(J)-by-(J + 1) matrix, and 0c(J)

is a c(J)-by-1 null vector.

[83, 84] show that each element in the sieve space in Eq. (2.29) is a convex, concave, or
monotone function (with respect to each coordinate) with a special choice of the matrix AJ given
that φj(·), j = 0, 1, . . . , J, are Bernstein polynomials. See Appendix A.1.1 for the expressions of
the Bernstein polynomials and matrix AJ .

For a linear sieve space HJ defined either in Eq. (2.28) or Eq. (2.29), the solution of the
preceding optimization problem (2.27) is given by the following form:

ĝ(z) = β̂ᵀφ(z), for z ∈ Z, (2.30)

where φ(z) := (φ1(z), . . . , φJ(z))ᵀ and β̂ is the optimizer of the following optimization problem:

min
β

1

M

M∑
m=1

[
U (m) − βᵀφ

(
Z(m)

)]2
, subject to βᵀφ(·) ∈ HJ . (2.31)

The dependency of β̂ and φ(·) on J is suppressed for brevity. In general, one has to solve a
constrained quadratic programming problem to obtain β̂.
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Discussions

One clear merit of the above linear sieve estimation method is that one only needs to store the
vector β̂ for future evaluation of the regression function ĝ(·) at any point in the domain because
basis functions φ(·) are explicitly known at the first hand. This makes the linear sieve estimation
method tailored to our present problem in terms of the criterion (C1).

For the criterion (C2), it is documented in statistics literature that when the true regression
function g(·) satisfies certain shape constraints, the shape-preserving estimate ĝ(·) obtained by
(2.31) with HJ given by Eq. (2.29) is insensitive to the tuning parameter J ; see, e.g., [61] and
[83, 84]. When there is no prior shape information of g(·), one has to use the sieve space (2.28)
and the regression estimate might be sensitive to the choice of J . Under such a situation, J
can be determined in a data-driven manner. Appendix A.1.2 presents some common methods of
selecting J discussed in the literature.

Finally, the convergence of the sieve estimate ĝ(·) to the conditional mean function g(·) is
ensured under some technical conditions. These conditions are summarized in Assumption A.1
which is relegated to Appendix A.1.3 for the clarity of presentation.

2.4.4 Convergence Analysis

Now it is ready to conduct convergence analysis of the BSBU algorithm proposed in Section 2.4.
For the regression method employed in the algorithm, we restrict our attention to the linear sieve
estimator given by Eqs. (2.30) and (2.31) in the previous subsection.

A complete convergence analysis of the BSBU algorithm should take account of three types
of errors:

(E0) Truncation Error The truncation error is caused by taking Ṽ0(x0) as a proxy for V0(x0).

(E1) Sieve Estimation Error At each step of the BSBU algorithm, the sieve estimation
method is employed to get an estimate for the continuation function. The associated sieve
estimation error stems from two resources: (a) the bias caused by using a finite-dimensional
sieve space HJ to approximate continuation function; and (b) the statistical error in esti-
mating coefficients of basis functions under a limited sample size of M .

(E2) Accumulation Error Recall that the nonparametric regression is used to approximate

the function C̃t(·) = E
[
Ṽt+1(Xt+1)

∣∣Xt+ = ·
]
. Thus, in principle, one should generate a

random sample {(
Ṽt+1

(
X

(m)
t+1

)
, X

(m)
t+

)}M
m=1
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based on which the sieve estimation method can be employed to get a regression estimate.
However, Ṽt+1(·) is unknown and is replaced by its numerical estimate Ṽ E

t+1(·) in Step 2.2 of
the BSBU algorithm. Such a compromise triggers a new type of error in addition to (E0)
and (E1).

(E0) has been investigated in Theorem 2.1. The discrepancy between Ṽ0(x0) and Ṽ E
0 (X0) is

contributed by (E1) and (E2). Distinguishing these two types of error plays a crucial role in our
convergence analysis and this is inspired by [16]. Our main convergence result is summarized in
the following theorem.

Theorem 2.2 (BSBU Algorithm Error). Suppose that

(i) Assumptions 2.1–2.3 and Assumption A.2 in Appendix A.3.3 hold;

(ii) Assumption A.1 in Appendix A.1 holds for U (m) = Vt+1

(
X

(m)
t+1

)
and Z(m) = X

(m)
t+

uniformly

in t ∈ T0, where X
(m)
t+

and X
(m)
t+1 are given in Steps 2.1 and 2.2 of the BSBU algorithm.

Then, there exists a constant ψ such that∣∣∣Ṽ0(x0)− Ṽ E
0 (x0)

∣∣∣ = OP

(√
ψT−1

(
J/M + ρ2

J

))
, as M −→∞, (2.32)

where ρJ is some sequence such that ρJ → 0 as M → ∞ (see Assumption A.1) and the “Big O
p” notation OP(·) is defined in Definition A.1 of Appendix A.3.3.

The above theorem basically states that the numerical solution Ṽ E
0 (x0) converges to Ṽ0(x0) in

probability as both the number of basis functions J and number of simulated paths M approach
infinity at the rate specified by Condition (v) in Assumption A.1. Since Theorem 2.1 shows that
the discrepancy between Ṽ0(x0) and V0(x0) is marginal for a sizable R, the numerical estimate
Ṽ E

0 (x0) is a legitimate approximation for V0(x0) when R, J , and M are considerable. The
R.H.S. of Eq. (2.32) reveals that the overall BSBU algorithm error arises from the two resources
discussed in the previous item (E1), which are indicated by the terms ρJ and J/M , respectively.
Furthermore, Eq. (2.32) also shows that such a regression error is magnified by a factor ψ at each
time step, which reflects the error accumulation from time step T − 1 down to time step 0. This
is in line with the earlier discussion in the item (E2).

2.5 Application: Pricing Equity-linked Insurance Products

This section applies the BSBU algorithm to the pricing of equity-linked insurance products.
This pricing problem is an appropriate example to show the limitations of the FSBU algorithm
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commented in Section 2.2.2. For the convenience of illustration, the contract studied here is a
simplified version of variable annuities (VAs); for more complex products, see [6], [47], [48], and
[72], among others.

2.5.1 Contract Description

VAs are prevailing equity-linked insurance products in North America. At inception of the con-
tract, the policyholder (PH) pays a lump sum w0 to the insurer which is invested into the equity
market. The PH is entitled to withdraw any portion of the investment before maturity. She
also enjoys certain guaranteed payments provided by the insurer regardless of the performance
of the investment account. This exposes the insurer to downside risk of the equity market that is
not diversifiable. As compensation, the insurer deducts insurance fees from the PH’s investment
account and trades available securities to hedge his risk exposure. Thus, no-arbitrage pricing has
been the dominating paradigm for pricing VAs in the literature. The primary challenge of this
pricing problem stems from the uncertainty of the PH’s withdrawal behavior. This is conven-
tionally resolved by studying the optimal withdrawal strategy of the PH in analogy to pricing
American-style options, which naturally leads to a stochastic control problem; see [33], [28], [47],
and many others.

2.5.2 Model Setup

We exemplify the model setup of Section 2.2 in the present pricing problem. The lattice T now
labels the collection of all possible withdrawal dates. The first decision variable τt represents
the PH’s decision to initialize the withdrawal or not by taking values 1 and 0, respectively. As
one may see later, the payoff functions depend on the timing of the first withdrawal of the PH.
Therefore, a state variable {It}t∈T is introduced to record the first-withdrawal-time, and its
evolution mechanism is prescribed as follows: I0 = 0, and

It+1 = SIt (It, τt) :=

{
t, if It = 0 and τt = 1,

It, otherwise,
(2.33)

for t ∈ T0. The feasible set of τt is a singleton {1} if the withdrawal has been initialized, i.e.,
It > 0; otherwise, it is {0, 1}.

Denote (a)+ := max{a, 0} and a ∨ b := max{a, b}. The second state variable corresponds to
the investment account and evolves according to

W0 = w0,

Wt+1 =
(
Wt − γt

)+︸ ︷︷ ︸
post-withdrawal value

·εt+1, γt ∈
[
0,Wt ∨ gt(It)w0

]
, t ∈ T0, (2.34)
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Wt

Wt+1

γt

t− 1 t t+ 1

(
Wt − γt

)+

Figure 2.10: Jump mechanism of the investment account across a withdrawal date.

where γt is the withdrawal amount of the PH at time t, log εt+1 corresponds to the log-return of
the underlying asset over each time interval, and gt(It) is a certain percentage number depending
on It. The above equation implies that the PH can withdraw up to the amount of gt(It)w0 even if
the investment account is depleted, i.e., Wt = 0. The jump mechanism of the investment account
across each withdrawal date is illustrated in Figure 2.10.

We assume that εt+1 follows from a log-normal distribution with E[log εt+1] =
(
r − q −

σ2/2
)
δ := µδ and Var[log εt+1] = σδ. In other words, the underlying asset evolves according to

a geometric Brownian motion with drift and volatility rates r − q and σ, respectively. r and q
correspond to the risk-free rate and the insurance fee rate, respectively. Throughout this section,
the expectation E[·] is taken under a certain martingale pricing measure.

Now, the state process and the DM’s action areX = {Xt = (Wt, It)}t∈T and a = {at = (γt, τt)}t∈T ,
respectively. In accordance with Eqs. (2.33) and (2.34), the accompanying transition equation is
Xt+1 = H

(
K(Xt, at), εt+1

)
, where

K(Xt, at) =
((
Wt − γt

)+
, SIt (It, τt)

)
, H

(
k, εt+1

)
=
(
k1εt+1, k2

)
(2.35)

with k = (k1, k2) ∈ [0,∞) × T0. The dependency of K(·, ·) on t is suppressed for notational
brevity.

Next, we discuss the feasible set of the PH’s action. In principle, the withdrawal amount γt
takes values in a continum

[
0,Wt ∨ gt(It)w0

]
; see Eq. (2.34). However, it can be shown that the

optimal withdrawal amount is limited to three choices: 1) γt = 0, 2) γt = gt(It)w0, and 3) γt = Wt

under certain contract specifications; see [6], [47], [48], and [72]. Via a similar argument adopted
by the above references, one may show that this conclusion still holds for the contract considered
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here. Therefore, one may restrict the feasible set of action at into the following discrete set:

At(Xt) =

{{
(0, 0), (gt(It)w0, 1) , (Wt, 1)

}
, if It = 0, (withdrawal has not been initialized){

(0, 1), (gt(It)w0, 1) , (Wt, 1)
}
, if It > 0, (withdrawal has been initialized)

(2.36)

for t = 1, 2, . . . , T −1. As a convention, the PH is not allowed to withdraw at inception, and thus
A0(X0) = {(0, 0)}.

We proceed by specifying the reward functions which correspond to the policy payoffs in the
present context. Before maturity, the cash inflow of the PH is her withdrawal amount subject to
some penalty:

ft(Xt, at) = γt − κ
(
γt − gt(It)w0

)+
, γt ∈

[
0,Wt ∨ gt(It)w0

]
, for t ∈ T0,

with κ ∈ [0, 1] being the penalty rate. In other words, the withdrawal amount in excess of the
guaranteed amount is subject to a proportional penalty. At maturity, the policy payoff is the
remaining value of the investment account, i.e., fT (XT ) = WT .

Finally, we give the interpretation of value function in the present context. Vt(x) = Vt (W, I)
with I > 0 (resp., I = 0) corresponds to the no-arbitrage price of the contract at withdrawal
date t given that the investment account has a value of W and the first withdrawal is triggered
at I-th withdrawal date (resp., no withdrawal has been taken).

2.5.3 A BSBU Algorithm for the Pricing Problem

The state process X generally takes value in the unbounded set X = [0,∞)× T0. We consider a
truncated domain: XR = [0, R)×T0 with R > 0. Consequently, one may define the auxiliary state
process X̃ as in Eq. (2.13). The range of the post-action value is given by K̃t,R = K̂t,R ∪ Kt,R,

where K̂t,R = {0, R} × {0, 1, . . . , t} and Kt,R = (0, R) × {0, 1, . . . , t}, respectively. This is in
line with Eq. (2.21). Appendix A.2.1 verifies the preceding Assumptions 2.2 and 2.3 in the
present context and derive an explicit expression for the truncation error estimate delivered in
the preceding Theorem 2.1.

It is worth noting that a discrete state variable It appears in the present context and the
continuation function, in general, is not continuous with respect to the post-action value accom-
panying this state variable, i.e., k2; see Eq. (2.35). Consequently, Condition (iii) of Assumption
A.1 might not hold here; see Appendix A.1.3. However, for each given value of k2, the contin-
uation function is still continuous with respect to k1, the post-action value associated with the
investment account value. Therefore, one may repeat Step 3.2 of the BSBU algorithm for every
distinct value of k2. It is easy to see the convergence of the resulting BSBU algorithm is not
influenced by this modification.
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Finally, it remains to specify the sampling distribution of the post-action value in order to
pave the way to implementing the BSBU algorithm. In the subsequent section, we will address
this issue in details and, in particular, we will compare the control randomization method with
our artificial simulation method.

2.6 Numerical Experiments

This section devotes to conducting numerical experiments to show the merits of the BSBU algo-
rithm in the context of pricing the variable annuity product addressed in the previous section.

2.6.1 Parameter Setting

We first present the parameter setting for our numerical experiments. We consider T = 12 time
steps and the time interval between two consecutive withdrawal date is assumed to be δ = 1/12.
This corresponds to a contract with one-year maturity and monthly withdrawal frequency. The
discounting rate is given by ϕ = e−rδ with risk-free rate r = 0.03. The PH’s initial investment is
assumed to be one unit, i.e., w0 = 1. The guaranteed payment percentage gt(It) is prescribed as
gt(It) = G(t)1{It=0} + G(It)1{It>0} with G(I) = 0.031{1≤I≤5} + 0.071{6≤I≤11}. In other words,
the PH enjoys a larger amount of guaranteed payment if she postpones the initiation of the
withdrawal. In all subsequent numerical experiments, the truncation parameter R is fixed as 4,
which causes a truncation error less than 10−7; see the earlier Remark 2.4 and Figure 2.6. All
the parameters used in our numerical experiments are summarized in Table 2.1.

2.6.2 Forward Simulation v.s. Artificial Simulation

Next, we would like to show the limitations of the forward simulation based on control random-

ization. Recall that A0(x) is a singleton {(0, 0)}, so we may initialize a
(m)
0 = (0, 0). Below, we

consider some control randomization methods for generating a
(m)
t for t > 0.

(CR0) The PH’s action a
(m)
t is simulated from a degenerated distribution with one single point

mass at (G(1)w0, 1).

(CR1) Given X
(m)
t =

(
W

(m)
t , I

(m)
t

)
, the DM’s action a

(m)
t is simulated from a discrete uniform

distribution with support set At

(
X

(m)
t

)
; see Eq. (2.36).

(CR2) Given X
(m)
t =

(
W

(m)
t , I

(m)
t

)
, the DM’s action a

(m)
t is simulated from a discrete uniform

distribution with support set At

(
X

(m)
t

)
\
{(
W

(m)
t , 1

)}
.
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Table 2.1: Parameters used for numerical experiments.

Parameter Value

Volatility rate σ 0.15

Risk-free rate r 0.03

Insurance fee rate q 0.01

Number of time steps T 12

Length of time interval δ 1/12

Discounting factor ϕ = e−rδ 0.9975

Initial purchase payment w0 1

Withdrawal penalty κ 0.8

Guaranteed withdrawal percentage G(I) 1 ≤ I ≤ 5 : 3%, 6 ≤ I ≤ 11 : 7%

Truncation parameter R 4

Given the above rules of generating the PH’s action, one may simulate the state process in a
forward manner in accordance with Steps 2.1 and 2.2 of the FSBU algorithm; see Section 2.2.2.

(CR0) is first proposed by [47] in the context of pricing Guaranteed Lifelong Withdrawal
Benefit, a particular type of variable annuity policy. It initializes the withdrawal at t = 1 and the

resulting simulated state variable I
(m)
t (resp., its accompanying post-action value SIt

(
I

(m)
t , a

(m)
t

)
)

equals a fixed value for all t = 1, 2, . . . , T − 1 although It (resp., SIt (It, at)), in principle, can take
any value in {0, 1, . . . , t− 1} (resp., {0, 1, . . . , t}). A consequential annoying issue is that the ob-
tained estimate for the value function/continuation function is invariant to the first-withdrawal-
time It. This is problematic because the later the PH initializes the withdrawal the larger guar-
anteed amount gt(It) she could enjoy in the remaining contract life.

(CR1) uniformly simulates the PH’s action from its feasible set. By virtue of this, there

always exist some paths with I
(m)
t = 0 which correspond to the scenario that the withdrawal

has not been initialized. This in turn guarantees that, in principle, I
(m)
t (resp., SIt

(
I

(m)
t , a

(m)
t

)
)

can take any value in {0, 1, . . . , t − 1} (resp., {0, 1, . . . , t}). However, this strategy is also not
satisfactory: an overwhelming portion of paths are absorbed by the state Wt = 0, i.e., the
depletion of investment account, and very sparse sample points of the investment account are
positive. This is graphically illustrated in the top panel of Figure 2.11 where 1000 sample paths
are plotted for the clarity of presentation. So it is not hard to expect that the accuracy of the
regression estimate is severely impaired over Kt,R.
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To alleviate the serious problem mentioned above, (CR2) discards the strategy of depleting
the investment account, i.e., (Wt, 1), in simulating the PH’s action. Therefore, the simulated

investment account value W
(m)
t can spread over a wider range than that accompanying (CR1);

see the bottom panel of Figure 2.11. This phenomenon is more palpable from the histograms

of W
(m)
T−1 collected by Figure 2.12. Nevertheless, (CR2)’s performance in simulating the I

(m)
t is

undesirable: Figure 2.13 shows that a substantial portion of sample points of the first-withdrawal-

time I
(m)
t are concentrated in first few values that It can take. To understand the crux, we note

that at the first possible withdrawal date, one-half of sample paths exhibit the initiation of
the withdrawal; among the remaining paths, one-half of them witness the withdrawal in the

consecutive withdrawal date. Therefore, the portion of positive I
(m)
t declines at an exponential

rate as t increases, which is in line with Figure 2.13. In view of this, it can be expected that
the consequential numerical estimate for the value function sustains significant error at state
x = (W, I) with a large I.

Overall, none of the above rules (CR0)–(CR2) gives satisfactory performance. It is hard
to figure out an ideal way to randomize the PH’s action which can circumvent the thorny issues
mentioned above. This shows one drawback of binding together control randomization and for-
ward simulation in addition to the issue of computational cost; see also the item (I) “Limitation
of control randomization” of Section 2.2.2.

To circumvent the annoying problems mentioned above, in the subsequent numerical ex-
periments, the post-action value of the state process at each time step is simulated as follows:

X
(m)
t+

:=
(
W

(m)
t+

, I
(m)
t+

)
where W

(m)
t+

and I
(m)
t+

are simulated from two independent uniform distri-

butions with support sets (0, R) and {0, 1, . . . , t}, respectively. This ensures the post-action value
evenly distributed over K̃t,R\K̂t,R.

2.6.3 Raw Sieve Estimation v.s. Shape-Preserving Sieve Estimation

In the sequel, we conduct several numerical experiments to compare the regression estimates for
the continuation function produced by the following two sieve estimation methods.

• (RSE) The first sieve estimation method considered here is the raw sieve estimation
(RSE) method which approximates a conditional mean function by Eq. (2.31) with the
sieve space HJ given by (2.28). The basis function φj(z) is chosen as a univariate Bernstein
polynomial with degree j; see Appendix A.1 for its expression. The RSE method is essen-
tially the same as the least-squares regression method commonly adopted in the literature;
see, for instance, [58].

• (SPSE) The second method is the shape-preserving sieve estimation method developed
by [83, 84]. Analogous to the RSE method, it approximates a conditional mean function
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Figure 2.11: Sample paths of the investment account generated by control randomiza-
tion methods (CR1) and (CR2).

by Eq. (2.31) except that the sieve space HJ is chosen as the shape-preserving sieve space
given in Eq. (2.29). In the context of Section 2.5, it is easy to show that k1 7→ C̃E

t (k1, k2) is
a monotone function. So, we choose the shape constraint matrix AJ in Eq. (2.29) such that
the resulting sieve estimate is a monotone function; see Appendix A.1 for the expression of
such a matrix AJ .

The first numerical experiment compares the regressione estimates of the SPSE and RSE
for the continuation function at each time step. For fairness of comparison, for both methods,
φ(·) is taken as a vector of univariate Bernstein polynomials up to order J = 20. Figure 2.14
collects the plots of regression estimates as a function of k1 at odd time steps with k2 = 0.
To better show the subtle difference between the estimates produced by SPSE and RSE, the
plots are restricted on the interval [0, 1]. From Figure 2.14, one may see that the discrepancy
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Figure 2.13: Histogram of I
(m)
11 generated by control randomization method (CR2).

between the regression estimates accompanying SPSE and RSE is not conspicuous at large time
step but becomes more significant as the time step goes down. Despite the continuation function
C̃t(k1, k2), in principle, is monotone in k1, the solid lines in Figure 2.14 show that its regression
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estimate produced by the RSE does not inherit this monotonicity and loses certain economic
interpretations, accordingly. This issue is more serious at smaller time steps as one may see from
the bottom panel of Figure 2.14. This is not surprising because once the monotonicity is lost at a
certain time step, the regression estimate obtained in the consecutive time step will be influenced,
which in turn exaggerates the violation. In contrast, as delineated by the dashed lines in Figure
2.14, the SPSE method always preserves the monotonicity of the continuation function and thus
the corresponding regression estimates are economically sensible. This shows the first advantage
of the SPSE method in terms of preserving the monotonicity of the continuation function.

Next, we investigate the value function estimate at the initial state, that is, Ṽ E
0 (x0) with

x0 = (1, 0). This quantity approximates the no-arbitrage price of the VA policy at inception
and thus is of most interest in the present context; see the last paragraph of Section 2.5.2. It is
worth noting that Ṽ E

0 (x0) is essentially a random variable due to the randomness of the simulated
sample; see also Remark 2.1. In view of this, the BSBU algorithm is repeated 40 times in order
to study the stability of Ṽ E

0 (x0) under a finite sample size. Table 2.2 summarizes the mean
and standard deviation of Ṽ E

0 (x0) under different pairs of M and J . The “S.d.” column of the
table discloses that the standard deviation accompanying the SPSE is nearly one half of that
associated with the RSE under all numerical settings. This is more perceivable from Figure 2.15
which depicts the density plots of Ṽ E

0 (x0) under the numerical settings 1, 3, and 4 of Table 2.2:
the numerical estimates accompanying SPSE are less volatile as reflected by the more spiked
shape of the associated density plots. Overall, the SPSE surpasses the RSE in terms of faster
convergence speed.

Table 2.2: Sample mean and standard deviation of Ṽ E
0 (x0). The results are obtained

by repeating the BSBU algorithm 40 times.

Setting (M,J)
SPSE RSE

Mean S.d. Mean S.d.

0 (1× 105, 15) 1.0014 0.0037 1.0051 0.0078

1 (1× 105, 20) 0.9975 0.0036 1.0045 0.0069

2 (1× 105, 25) 0.9984 0.0035 1.0053 0.0061

3 (2× 105, 20) 0.9971 0.0023 0.9996 0.0057

4 (8× 105, 20) 0.9970 0.0015 0.9960 0.0022

From the settings 0-2 of Table 2.2, one may observe that for both methods the sample mean
of the accompanying numerical estimate change little as the number of basis functions J hikes
from 15 to 25. In the settings 1, 3 and 4 of Table 2.2, we fix J = 20 and increase the number
of simulated paths M from 105 to 8 × 105. We witness that standard deviation decreases as M
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climbs. This descending trend is also confirmed by the box plots depicted in Figure 2.16: the
height of the box declines as the number of simulated paths hikes. Figure 2.16 also shows that
the wedge between the price estimates produced by RSE and SPSE methods tends to shrink as
one increases M . All of these show the convergence of the BSBU algorithm which is in line with
the convergence result established in Theorem 2.2.

In view of the above observations, we summarize the advantages of the SPSE over the RSE
counterpart in two-fold. Firstly, the SPSE produces economically sensible regression estimates by
inheriting certain shape properties of the true continuation function. Secondly, the consequential
estimate for the optimal value function accompanying the SPSE method is less volatile than that
produced by the RSE method under a finite number of simulated sample paths.

2.6.4 Initiation Strategy of the Policyholder

This subsection is devoted to studying the PH’s optimal initiation strategy. In the subsequent
experiment, we choose J = 20 and M = 2 × 105 and employ the SPSE method in the BSBU
algorithm. This corresponds to the numerical setting 3 of Table 2.2. Suppose that the withdrawal
has not been initiated up to time t, which implies Xt = (w, 0) for some w corresponding to
the investment account value. Now the PH faces three choices: (i) delaying the withdrawal
(at = (0, 0)), (ii) withdrawing at guaranteed withdrawal amount (at = (gt(0)w0, 1)), and (iii)
depleting the investment account (at = (w, 1)) according to Eq. (2.36). For a realized value of
the state process x = (w, 0) and a feasible decision a, one may define the PH’s contract value at
t-th possible withdrawal date as

Jt(w, a) = ft
(
x, a
)

+ C̃E
t

(
K
(
x, a
))
.

According to the Bellman equation (2.25), the PH aims to maximize the above contract value by
choosing a decision among the above three strategies (i)–(iii).

Figure 2.17 depicts the PH’s contract value as a function of the investment account w under
the three withdrawal strategies, respectively. Two major observations are made from Figure 2.17.
Firstly, depleting the investment account is generally suboptimal for the PH as highlighted by
the dotted lines in Figure 2.17. Recall from Table 2.1 that a large penalty κ = 0.8 is imposed
on any withdrawal that exceeds the guaranteed amount. Accordingly, depleting the investment
account might lead the PH to lose a substantial portion of the contract value and is clearly not a
wise choice. This observation implies that the control randomization method (CR1) is far from
the PH’s optimal withdrawal strategy despite that it is intuitively appealing.

The second observation from Figure 2.17 is that delaying the withdrawal is more favorable
to the PH in the early phase of the contract life while is not appealing in the later phase. This
is clearly reflected by Figure 2.17: the solid lines dominates the dashed lines when t < 6 and
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this relationship is reversed for t > 6. This observation is not a big surprise. Indeed, we recall
from Section 2.6.1 that the PH enjoys a guaranteed withdrawal percentage of 7% if she postpones
the initiation of the withdrawal until sixth withdrawal date; otherwise, a smaller guaranteed
withdrawal percentage of 3% applies. In view of this, the control randomization methods (CR0)
and (CR2) largely deviate from the optimal strategy as they place substantial weights on small
values of the first-withdrawal-time It in simulating the state process; see the earlier discussions
in Section 2.6.2 and Figure 2.13.

2.7 Conclusion

This chapter developed a novel LSMC algorithm, referred to as Backward Simulation and Back-
ward Updating (BSBU) algorithm, to approach numerical solutions to discrete-time stochastic
optimal control problems. We first introduced an auxiliary stochastic control problem where the
state process only takes value in a compact set. This enables the BSBU algorithm to successfully
bypass extrapolating value function estimate. We further showed the optimal value function of the
auxiliary problem is a legitimate approximation for that of the original problem with an appropri-
ate choice of the truncation parameter. To circumvent the drawbacks of forward simulation, we
proposed to directly simulate the post-action value of the state process from an artificial probabil-
ity distribution. The pivotal idea behind this artificial simulation method is that the continuation
function is solely determined by the distribution of random innovation term. Moreover, motivated
by the shape information of the continuation function, We introduced a shape-preserving sieve es-
timation technique to alleviate the computational burden of tuning parameter selection involved
in the regression step of an LSMC algorithm. Furthermore, convergence result of the BSBU
algorithm was established by resorting to the theory of nonparametric sieve estimation. Finally,
the merits of the BSBU algorithm are confirmed through an application to pricing equity-linked
insurance products and the corresponding numerical experiments.
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Figure 2.14: Plot of k1 7−→ C̃E
t (k1, 0) with J = 20 and M = 2× 104.
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Figure 2.17: Policyholder’s contract value under different withdrawal strategies.
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Chapter 3

Regression-later Monte Carlo
Method for Stochastic Optimal
Control Problems

3.1 Introduction

Chapter 2 develops a Least Squares Monte Carlo (LSMC) algorithm, referred to as the Backward
Simulation and Backward Updating (BSBU) algorithm, to solve general discrete-time stochastic
optimal control problems. As we have seen from Section 2.5, one important motivation of the
BSBU algorithm is the problem of pricing equity-linked insurance products which can be for-
mulated as a discrete-time stochastic control problem. It is worth noting that determining the
no-arbitrage pricing is only the starting point for managing the financial risk of these products.
In reality, insurance companies are more concerned with how to trade available securities to hedge
their risk exposures. This entails calculating the sensitivities of the price function with respect to
the prices of hedging instruments. However, we recall from Chapter 2 that the numerical estimate
for the optimal value function is obtained by solving an optimization problem (see Eq. (2.25))
and therefore has no closed-form expression in general. This observation renders the calculation
of hedging ratio fairly cumbersome. The aim of this chapter is to circumvent this difficulty by
developing a new LSMC algorithm for general discrete-time stochastic control problems.

The variants of the LSMC algorithm can be roughly categorized into two groups: regression-
now and regression-later algorithms. The methods in the first category use regression methods
to approximate the continuation function (see the subsequent Eq. (3.5)) involved in the Bellman
equation, see, e.g., [25], [81], [44], [53], [24], [16], [87], [47], and the references therein. The BSBU
algorithm developed in Chapter 2 is also in a similar spirit and fits into this category. The reason
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behind the popularity of the regression-now algorithms stems from two aspects. On one hand, the
convergence rate of a nonparametric regression estimate usually depends on the smoothness of the
conditional mean function to be approximated; see, e.g., [65]. On the other hand, the smoothness
of the continuation function is not hard to expect in many finance applications; see, e.g., [87,
Remark 3.9]. In view of these, it is not surprising that the regression-now LSMCs have been
widely used to solve various stochastic control problems. Despite the convenience commented
above, the regression-now methods have one clear limitation: the optimal value function should
be determined by an optimization problem and thus loses its analytical tractability as commented
earlier.

The second category of LSMCs directly approximates the optimal value function by a certain
regression method. For example, by using the linear sieve estimation method (see Section 2.4.3),
the numerical estimate for the value function is solely a linear combination of basis functions
which have explicit expression in prior. This idea was first proposed by [43] and the accompanying
LSMC algorithm was often referred as the regression-later LSMC (RL-LSMC) algorithm. [43]
also discloses the connection between the RL-LSMC and the stochastic mesh method of [22].
The analytical tractability of the value function from the RL-LSMC algorithms comes at a cost.
Firstly, the value function of a stochastic control problem is not necessarily a smooth function or
even continuous function; see, e.g., [79, pp. 50]. The smoothness assumption on the value function
is more restrictive than that on the continuation function which is required by the regression-now
algorithms. Secondly, the success of the RL-LSMC algorithm relies on the fast evaluation of
the continuation function as it is no longer approximated by a regression method. This imposes
more restrictions on the dynamics of the state variables and the type of basis functions. In
view of these, one should balance the trade-off between the analytical tractability of the value
function and the compromise in the flexibility. Notably that [19] argues that the RL-LSMC
algorithm enjoys a faster convergence rate than the regression-now counterpart. This chapter
will show that this conclusion holds only when the value function exhibits certain smoothness
comparable to what required on the continuation function for the regression-now algorithms; see
the subsequent Remark 3.6 for a discussion.

To generalize the idea of regression-later algorithms to solve stochastic control problems, one
has to respond to several challenges as below.

(C1) In order to prepare for the ground of the nonparametric regression, one needs to render
the value function into a compact domain. A direct application of the auxiliary stochastic
control problem constructed by Chapter 2 is impeded by the fact that such a construction
might impair the continuity of the value function while the continuity is crucial to applying
the RL-LSMC algorithm; see subsequent Section 3.2.2 for a discussion. Thus, one has to
propose a new way to construct an auxiliary stochastic control problem in order to inherit
the continuity of the original value function.

(C2) As commented in the subsequent Remark 3.1, the continuity of the value function plays
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an important role in the convergence of an RL-LSMC algorithm. Thus, it is necessary to
investigate the conditions that warrant the continuity of the optimal value function.

(C3) Last but not least, as commented in Chapter 2, the implementation of an LSMC algorithm
demands the simulation of the state process. In the context of the BSBU algorithm, we
proposed to simulate the post-action value which paves the way for approximating the
continuation function. In order to directly estimate the value function by a regression
method, the state variable should be directly simulated in a certain way. In particular, one
has to examine how to choose the sampling distribution such that the convergence of the
RL-LSMC algorithm is ensured.

A recent work [9] develops several RL-LSMC algorithms to solve a class of stochastic opti-
mal control problems. Specifically, in the spirit of the regression-later technique, they directly
approximate the optimal value function by a linear combination of basis functions. In terms of
the aforementioned challenge (C3), they propose to simulate the state variable at each time step
from a “training” measure, which circumvents the annoying problem of simulating the state pro-
cess in the absence of the optimal control policy. The work of this chapter differs from preceding
literature from several dimensions. Firstly, [9] restrict their attention to the stochastic control
problems where the transition densities of the state process are bounded or defined on a compact
set; see their Assumption 1. This assumption rules out many interesting finance applications as
the state process usually has unbounded feasible set. As commented by [9, Remark 1], certain
truncation argument is necessary to drop this restriction and this is one thrust of this chapter.
Secondly, the convergence result established by [9] is in an L2 sense that relates to the training
measure. However, it might be the case that the point/region where the training measure places
small odds exhibits large probability under the real measure induced by the optimal policy. The
convergence result of this chapter is stated in a point-wise sense and it will be independent of the
training measure if the value function is continuous and the sampling distribution satisfies some
extra conditions; see the subsequent Remark 3.1 and Assumption 3.9.

The contribution of this chapter is summarized as follows.

1. This chapter gives a construction of an auxiliary stochastic optimal control problem which
is different from that of Chapter 2. This auxiliary problem allows us to confine the domain
of the state process into a compact set, which in turn paves the way for applying the theory
of nonparametric sieve estimation method to prove the convergence of the subsequently
developed Monte Carlo algorithm. The value function of this auxiliary problem is shown
to be a legitimate proxy for the original value function by giving explicit truncation error
bound in the subsequent Theorem 3.1. Mild conditions are established to ensure that
the auxiliary value function inherits the continuity, monotonicity, and concavity of the
original one; see the subsequent Propositions 3.1, 3.2, and 3.3. This inheritance property
brings benefit in solving the local optimization problem in an LSMC algorithm; see the
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subsequent Proposition 3.4 for a discussion. It is worth noting that besides the LSMC
method, other numerical algorithms for solving stochastic control problems also call for a
certain truncation argument to confine the domain of the value function, see, e.g., [40] and
[8] for the finite difference method. In view of this, the auxiliary problem also lays the
foundation for applying such numerical methods and therefore is of independent interest.

2. This chapter develops an RL-LSMC algorithm which directly approximates the optimal
value function by a linear sieve estimation method. Convergence rate of the RL-LSMC
algorithm is shown to be faster than the regression-now counterparts under some conditions.
This is summarized in the subsequent Theorem 3.2. This generalizes the result of [19] from
one-step regression problem to a multi-period stochastic optimal control setting. Such
an improvement on the convergence speed of LSMC algorithms comes at the price of more
restrictive structure of the stochastic control problem at hand; see Section 3.4 for a dedicated
discussion.

3. The developed RL-LSMC algorithm is applied to solve the problem of hedging variable
annuity, a prevailing type of equity-linked insurance products, which calls for an efficient
calculation of the sensitivity of the value function with respect to the state variable. By
the nature of the regression-later algorithm, the value function estimate has an explicit
expression. As a result, computing the sensitivities is relatively straightforward and an
explicit expression of the delta of the hedging portfolio can be derived; see Appendix B.1
of the chapter. This enriches the relatively thin literature on hedging dynamic withdrawal
benefits in variable annuities.

This chapter proceeds as follows. Section 3.2 presents a basic Markovian stochastic optimal
control framework and a brief introduction to the linear sieve estimation method. Section 3.3
constructs the auxiliary stochastic control problem and studies the properties of its optimal value
function. Section 3.4 presents the RL-LSMC algorithm and Section 3.5 applies it to the problem
of delta-hedging of variable annuities. Finally, Section 3.6 concludes the chapter.

3.2 Basic Framework and Preliminaries

As we mentioned in the introduction section, while the RL-LSMC algorithm we will propose brings
some additional benefits compared with the regression-now counterparts, it is more restrictive
for applications. In other words, we need to impose relatively stronger assumptions for the
convergence of the RL-LSMC algorithm. To clarify the motivations of these conditions, it is
helpful to go through the stochastic optimal control framework and the nonparametric sieve
estimation method once again while the readers may find this section largely overlaps with some
sections in Chapter 2.
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3.2.1 Stochastic Control Framework

We start by considering a discrete-time stochastic control problem over a collection of consecutive
time points labeled by T := {0, 1, . . . , T}. Let X = {Xt}t∈T be a state process valued in X ⊆ Rd
with d ∈ N. Starting from a state X0 = x0 ∈ Rd, it evolves recursively according to the following
transition equation:

Xt+1 = S (Xt, at, εt+1) , t ∈ T0 := T \{T}, (3.1)

where a := {at}t∈T0 is the action taken by the DM and ε := {εt+1}t∈T0 is a sequence of independent
random variables valued in D ⊆ Rq with q ∈ N. For notational brevity, the dependency of X on
the action a is suppressed. Throughout the chapter, all the random elements are defined on some
probability space (Ω,F ,P) equipped with the filtration F = {Ft}t∈T generated by ε where F0 is
the trivial σ-algebra.

Further define the set of all admissible actions as follows:

A =
{
a = {at}t∈T0

∣∣∣ at is Ft-measurable and at ∈ At (Xt) for t ∈ T0

}
, (3.2)

where At : X ⇒ A is a correspondence (see also Section 2.2), that is, At(x) gives a subset of A
for each x ∈ X . At(Xt) corresponds to a certain state constraint subjected by the DM’s action
at time step t given the state process Xt.

Next we revisit the discrete-time stochastic optimal control problem that we have come across
in Chapter 2 as follows:

V0(x0) = sup
a∈A

E

[
T−1∑
t=0

ϕtft(Xt, at) + ϕT fT (XT )

]
, (3.3)

where ϕ ∈ (0, 1) is a certain constant discounting factor, ft : Rd × A → R and fT : Rd → R
are two measurable functions which correspond to the DM’s intermediate and terminal rewards,
respectively. The following assumption is same as Assumption 2.1 and to make this chapter
self-contained we restate it here:

Assumption 3.1.

sup
a∈A

E

[
T∑
t=0

|ft(Xt, at)|

]
<∞, and sup

a∈A
E [|fT (XT )|] <∞.

By exploiting the Dynamic Programming Principle, the optimal value function can be ob-
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tained by the following backward recursion equation:VT (x) = fT (x),

Vt(x) = sup
a∈At(x)

[
ft(x, a) + ϕC̄t(x, a)

]
, x ∈ X , for t = 0, 1, . . . , T − 1, (3.4)

where

C̄t(x, a) := E
[
Vt+1(Xt+1)

∣∣∣Xt = x, at = a
]
. (3.5)

3.2.2 Preliminaries on Nonparametric Regression

To prepare for the ground of the LSMC, we give a tour through the nonparametric regression
and investigate a particular type of regression method, the linear sieve estimation method, in
this subsection.

Linear Sieve Estimation Method

Suppose we have a sequence of i.i.d. random observations
{(
U (m), Z(m)

)}M
m=1

, where U (m) and

Z(m) are the response and covariate variables, respectively, in a statistical context, with the
former taking values in R and the latter in Rr. The nonparametric regression aims to estimate
the conditional mean (regression) function g(·) := E

[
U (m)

∣∣Z(m) = ·
]

from the random sample.
Here g(·) is assumed to be a continuous function over a compact set Z. In the linear sieve
estimation method, this goal is achieved by studying the following optimization problem:

ĝ(·) := arg inf
h(·)∈HJ

1

M

M∑
m=1

[
U (m) − h

(
Z(m)

)]2
, (3.6)

where HJ is a finite-dimensional functional space depending on a tuning parameter J and is
called as sieve space.

A typical choice of HJ is the linear span generated by a sequence of basis functions, for
instance, polynomials with different degrees. Consider the following sieve space:

HJ =

h(·) : h(z) =

J∑
j=0

βjφj(z), AJβJ ≥ 0b(J)

 , (3.7)

where βJ := (β0, . . . , βJ)ᵀ, b(·) : N −→ N is some integer-valued function, AJ is a b(J)-by-
(J + 1) matrix, and 0b(J) is a b(J)-by-1 null vector. When the matrix AJ is a null matrix,
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the sieve estimation considered here degenerates to the least-squares linear regression which is
widely used in the literature of LSMC; see, e.g., [58]. Generally, the linear constraints AJβJ ≥
0b(J) are imposed to ensure the regression estimate ĝ(·) inherits certain shape properties such as
nonnegativity, monotonicity, and convexity from the true regression function g(·); see [83] and
[84]. Some specific forms of AJ are relegated to Appendix A.1.1.

The core idea of the sieve estimation can be summarized as a two-stage approximation. In
the first stage, the true regression function g(·) is approximated by go

J(·) (referred to as the oracle
in the literature, see e.g. [57, pp. 25]) as given by

go
J(·) = arg inf

h∈HJ
‖h− g‖ , (3.8)

with ‖·‖ denoting the supremum norm. In the second stage, for a given J , the oracle go
J(·) is

approximated by the sieve estimate ĝ(·) given by the preceding Eq. (3.6) and the approximation
error (in the sense of the supremum norm) decays as one increases the sample size M .

Conditions for the Convergence

Below, we present a technical assumption associated with the validity of the preceding two-stage
approximation procedure which is proposed by [65]. This assumption is also commonly referred to
for the convergence of an LSMC algorithm in the literature when the sieve estimation method is
involved in the regression step of the algorithm; see, e.g., [78] and [13]. We will frequently refer to
the conditions of the subsequent Assumption 3.2 when we approach some critical questions arising
from the RL-LSMC algorithm in the subsequent subsection in order to clarify the motivations of
our approach.

Assumption 3.2. (i)
{(
U (m), Z(m)

)}M
m=1

are i.i.d. and Z(m) has compact support Z. Further-

more, Var
[
U (m)

∣∣Z(m) = ·
]

is bounded over Z.

(ii) There exists a sequence Υ(J) such that ‖φ‖ ≤ Υ(J) with ‖·‖ denoting the supremum norm
of a continuous function over Z.

(iii) For the sieve space HJ defined in Eq. (3.7), there exists a (J + 1)-by-1 vector β? and a
sequence ρ̂J such that ρ̂J −→ 0 as J −→∞, and

‖go
J − g‖ = ‖φᵀβ? − g‖ = O (ρ̂J) ,

with go
J(·) defined in Eq. (3.8).

(iv) Let Φ := E
[
φ
(
Z(m)

)
φᵀ
(
Z(m)

)]
. There exists a positive constant cΦ independent of J such

that 0 < cΦ ≤ λmin (Φ) ≤ λmax (Φ) ≤ c̄Φ < ∞, with λmin (Φ) and λmax (Φ) denoting the
smallest and largest eigenvalues of Φ, respectively.
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(v) As M −→∞, J −→∞, and Υ2(J)J/M −→ 0.

In the above assumption, Part (i) requires the compactness of the support Z, which makes the
direct application of the sieve estimation method to the stochastic control problem theoretically
shaky; see item “(Q1)” in the subsequent subsection for more discussions. The expression of
Υ(J) in Part (ii) depends on the choice of the basis function φ; see [65] for a detailed discussion.
Part (iii) requires the continuity of the conditional mean function g so that go

J is well-defined and
thus restricts the application of RL-LSMC algorithms to some stochastic control problems; see
item “(Q2)” in the sequel for more discussions. Part (v) specifies the growth rate of J and M .

Part (iv) might seem opaque but is mild. Indeed, [65, pp. 156] shows that for power series,
this condition can be replaced by a more transparent condition as stated in Assumption 3.3 below.
See also [5, pp. 320–327] for discussions under other possible basis functions.

Assumption 3.3. Z is a Cartesian product of compact connected intervals. Furthermore, the
sampling distribution of Z(m) has an absolutely continuous density that is bounded away from
zero.

Assumption 3.3 guides the choice of the sampling distribution in the subsequently developed
RL-LSMC algorithm; see the subsequent Section 3.4.3.

Before ending this subsection, we make a remark on an important implication of the continuity
of the conditional mean function g(·).

Remark 3.1. The above discussions focus on the case where the function g(·) is continuous. If
g(·) is not continuous, one may sill get a sieve estimate ĝ(·) from Eq. (3.6) but ĝ(·) converges to
go
µ,J(·) (in an L2 sense) as defined by

go
µ,J(·) = arg inf

h∈HJ

∫
Z
|g(z)− h(z)|2µ(dz), (3.9)

with µ denoting the sampling measure of Z(m); see e.g. [27]. go
µ,J(·) defined in the above certainly

depends on µ. That is, in such a situation, the sieve estimate generally depends on the sampling
measure and different choices of µ might yield different limit functions.

The implication of this observation in the context of the LSMC algorithm is that if the sampling
measure does not agree with the measure driven by the optimal action (which is indeed the general
case), the LSMC algorithm might fail to converge to the optimal solution to the stochastic control
problem. The above discussion pinpoints the subtle role played by the continuity of the regression
function in an LSMC algorithm; see also the item “(Q2)” in the sequel.
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3.2.3 LSMC for Stochastic Control Problems

Recall from Eq. (3.5) that the continuation function C̄t(·, ·) is defined as the conditional mean
function:

C̄t(·, ·) := E
[
Vt+1(Xt+1)︸ ︷︷ ︸

response variable

∣∣∣ (Xt, at)︸ ︷︷ ︸
covariate variable

= (·, ·)
]
.

This observation naturally motivates one to take Vt+1(Xt+1) and (Xt, at) as response and covariate
variables, respectively, and employ a certain nonparametric regression method to get a numerical
estimate for the continuation function, say C̄E

t (·, ·). The numerical estimate for the optimal value
function is accordingly given by Eq. (3.4) with C̄t(·, ·) replaced by C̄E

t (·, ·). This is one of the key
ideas behind the LSMC algorithm and was incubated in a series of seminal papers including [25],
[58], and [81].

On the other hand, we can think of the optimal value function Vt(Xt) as an expectation
of itself conditioning on the state variable Xt although the associated conditional distribution
is degenerated. In view of this, one may alternatively take Vt(Xt) and Xt as response and
covariate variables, respectively, and exploit the nonparametric regression to directly recover the
value function. The above methods of approximating the continuation function C̄t(·, ·) and value
function Vt(·) by nonparametric regression are referred to as the regression-now and regression-
later methods, respectively, in the literature; see, e.g., [44].

To sum up, the key idea of the LSMC is to either approximate the continuation func-
tion (regression-now) or the value function (regression-later) by some nonparametric regression
method. To apply the LSMC algorithm to solve stochastic control problems, we need to approach
the following questions.

(Q1) How to confine the domain of continuation/value function into a compact set?
Recall that Part (i) of the preceding Assumption 3.2 requires the regression function is
solely defined on a compact domain. This is crucial to the convergence result of the linear
sieve estimation method (or general nonparametric regression methods) and conventionally
assumed in the statistics literature. However, in the current context, this requirement is
incongruous with the fact that the value function or continuation function of a stochastic
control model is commonly defined on an unbounded set X (see Eq. (3.4)) which is the range
where the accompanying state process might take value. Therefore, a direct application of
nonparametric regression to stochastic control problems might be problematic. This thorny
issue is circumvented by studying an auxiliary stochastic control problem as we will see in
the subsequent Section 3.3.

(Q2) How to ensure the continuity of continuation/value function?
As one may see from preceding Assumption 3.2 and Remark 3.1, the continuity of the
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regression function plays a pivotal role in establishing the convergence result. Back to
the stochastic control framework, the regression function corresponds to the continuation
function or the optimal value function. The continuity of the continuation function is not
hard to warrant since it is by definition a certain conditional expectation that can be taken
as a smoothing operator. Even if Vt+1(·) is not continuous, C̄t(·) defined through Eq.
(3.5) can be a smooth function in many finance applications; see [87, Remark 3.9] for a
discussion. However, it is more restrictive to require the value function to be continuous
and more dedicated investigation should be conducted.

(Q3) How to generate the random sample of response and covariate variables?
In typical statistical contexts, the sample of response and covariate variables are observed at
the first hand. In contrast, in the context of stochastic control problems, the random sample
of this pair is generated by Monte Carlo simulation which requires the simulation of the state
process X. This brings a new challenge since the evolution of the state process is driven
by the DM’s optimal action which is not tractable in prior. This problem is often resolved
by the control randomization technique; see, e.g., [51]. Chapter 2 proposes to simulate the
post-action value of the state process, which eliminates the needs of control randomization
and forward simulation. In a similar spirit of [9] and the artificial simulation method of
Chapter 2, this chapter proposes to directly simulate Xt instead of its accompanying post-
action value. This will bring several benefits which will be addressed in details in the
remainder of the chapter.

Before ending this section, we present the road map of this chapter. In response to (Q1), The
subsequent section will construct an auxiliary stochastic control problem whose optimal value
function is defined on a compact set. This value function will be shown to be a legitimate proxy
for that of the original problem (3.3) in Theorem 3.1 in the sequel. The continuity of the value
function is further established under some regular conditions see the subsequent Proposition 3.1,
which responds to (Q2). These pave the way for applying the nonparametric sieve estimation
method to approximating the value function. In terms of (Q3), Section 3.4 proposes to directly
simulate the state variable at each time step from a certain probability distribution. The accom-
panying advantages over the simulation of post-action value proposed in Chapter 2 will be also
be addressed.

3.3 A Truncation Argument

The aim of this section is to construct an auxiliary stochastic control problem where the accom-
panying optimal value function satisfies that (i) it is solely defined on a bounded domain, and
that (ii) it is a continuous function. The thrust behind this is in two-fold. Firstly, the convergence
of the LSMC algorithm developed in the subsequent Section 3.4 hinges on these two properties
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as a result of the application of the sieve estimation theory introduced in the previous section.
Secondly, this construction of auxiliary problem bypasses any theoretically unsound extrapolation
in the backward recursion process of an LSMC algorithm; see Chapter 2 and Remark 3.4 in the
sequel for more comments.

3.3.1 Construction

Below we construct an auxiliary state process. The difference between this construction and the
one used in Section 2.3 of Chapter 2 is subtle and will be discussed in the subsequent Section
3.3.3.

We construct a new state process X̂ :=
{
X̂t

}
t∈T

as follows:

{
X̂0 = x0 ∈ XR ⊆ Rd,
X̂t = Q

(
S
(
X̂t, ât, εt+1

))
=: Ŝ

(
X̂t, ât, εt+1

)
, for t = 1, 2, . . . , T,

(3.10)

where the function Q : X → cl (XR) is defined in Eq. (2.12), â := {ât}t∈T0 ∈ Â and

Â =
{
â = {ât}t∈T0

∣∣∣ ât is Ft-measurable and ât ∈ At
(
X̂t

)
for t ∈ T0

}
. (3.11)

In relative to the original stochastic control problem (3.3), we consider the following auxiliary
problem:

V̂0(x0) = sup
â∈Â

E

[
T−1∑
t=0

ϕtft

(
X̂t, ât

)
+ ϕT fT

(
X̂T

)]
. (3.12)

By comparing the above equation with Eq. (3.3), we observe that the reward functions of these
two stochastic control problems are the same. The essential difference stems from the discrepancy
between the state processes X and X̂. Due to the presence of state constraint At(·), the admissible
sets of the PH’s actions in these two problems also differ with each other and are given by A and
Â, respectively. This subtle difference makes the investigation of the gap between V0(x0) and
V̂0(x0) nontrivial; see the subsequent subsection for a discussion.

For the auxiliary stochastic control problem (3.12), the corresponding Bellman equation is
given byV̂T (x) = fT (x),

V̂t(x) = sup
a∈At(x)

[
ft(x, a) + ϕĈt(x, a)

]
, x ∈ cl (XR) , for t = 0, 1, . . . , T − 1, (3.13)
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where

Ĉt(x, a) := E
[
V̂t+1(Xt+1)

∣∣∣Xt = x, at = a
]
. (3.14)

By comparing V̂t(·) with Vt(·), we have one important observation. On one hand, Vt(·) is
defined on the set X which might be unbounded in many finance applications because financial
assets prices usually take values in the positive real line. On the other hand, V̂t(·) is solely defined
on the compact set cl (XR). This observation lays the foundation for applying the linear sieve
estimation method introduced in Section 3.2.2 to recover the optimal value function V̂t(·) over
cl (XR) as Part (i) of Assumption 3.2 is automatically satisfied. It remains to show that V̂0(x0)
is a valid approximation for V0(x0) and this will be addressed in the sequel.

3.3.2 Properties of Value Function

This subsection establishes the connection between the optimal value functions of the stochastic
control problems (3.3) and (3.12).

Approximation error of V̂0(x0)

Recall that these two stochastic control problems exhibit different admissible sets for the DM’s
action as given by Eqs. (3.2) and (3.11), respectively. This brings technical challenges in inves-
tigating the gap between V0(x0) and V̂0(x0). To circumvent this, we put these two optimization
problems into a common admissible set:

Ā :=
{
ā = {āt}t∈T0

∣∣∣ āt is Ft-measurable and āt ∈ A for t ∈ T0

}
. (3.15)

It is easy to see that the above set Ā is richer than the previous sets A and Â because the state
constraint At(·) is dropped in Ā.

We further impose the following technical assumptions.

Assumption 3.4. Let X0 = x0 ∈ XR. There exists a measurable function Ex0,T (·) : R>0 −→ [0, 1]
such that

inf
a∈Ā

P
[
Xt ∈ XR, for all 0 ≤ t ≤ T

]
≥ 1− Ex0,T (R). (3.16)

Ex0,T (R) in the above assumption is an upper bound for the probability that the auxiliary state

process X̂ disagrees with X at some time point before maturity T . Since the discrepancy between
problems (3.3) and (3.12) essentially stems from different constructions of the accompanying state
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processes, there is no surprise that Ex0,T (R) plays a crucial role in controlling such a disagreement.
To get a conservative estimate for this probability bound, one may construct a new stochastic
process that is independent of the DM’s action and always dominates X. Accordingly, it boils
down to estimating the probability that this new process exits the region XR; see Appendix B.1
for a detailed discussion.

Assumption 3.5. (i) For each t ∈ T0, there exists a measurable function ht(·) : X −→ R such
that ft(x, a) ≥ ht(x) for all a ∈ A.

(ii) There exists a measurable function B̄(·) : X −→ R>0 such that∣∣fT (x)
∣∣2 ≤ B̄(x) and sup

a∈A

∣∣f̄t(x, a)
∣∣2 ≤ B̄(x), for all t ∈ T0,

where f̄t(x, a) := ft(x, a)1{a∈At(x)} + ht(x)1{a/∈At(x)}.

(iii) There exists a measurable function ξ̄(·) : R>0 −→ R>0 and a constant ζX such that

sup
x∈XR

B̄(x) ≤ ξ̄(R) and sup
a∈Ā

E
[
B̄(Xt)

]
≤ ζX , for all t ∈ T0.

Remark 3.2. Cautious readers might tell the nuanced difference between the above assumption
and Assumption 2.3 of Chapter 2. In particular, the above Part (i) is new and one sufficient
condition to ensure this is that the intermediate reward functions are positive. In this case, we
can choose ht(x) ≡ 0 in Assumption 3.5. The introduction of Part (i) is for the sake of relaxing
the state constraint and paving the way for proving the subsequent Theorem 3.1; see also the
subsequent Remark 3.31. Although this condition is mild for many real applications, it is not
required in Chapter 2. This is the price one has to pay for the advantages got from the new
truncation argument developed in this chapter over that in Chapter 2; see the subsequent Section
3.3.3 for a discussion.

Given Part (i), Part (ii) is fulfilled if Assumption 2.3 holds because one may choose B̄(x) =
B(x) ∨ maxt∈T0 ht(x) with B(x) given in Assumption 2.3. B̄(·) usually has a polynomial ex-
pression. Accordingly, the constant ζX controls the moment of the state process X of a certain
degree, say d ∈ N. To get such a constant, we can construct another stochastic process, say Yt,
which is independent of the DM’s action a and always dominates Xt. Then, we can choose ζX as
maxt∈T E

[
Y d
t

]
. The above discussion will be more perceivable in the specific example presented

in the subsequent Section 3.5. Overall, it is generally not hard to determine B̄(·), ξ̄(·), and ζX ;
see Appendix B.1 for the verification of the above assumptions for the example of Section 3.5.

The legitimacy of using V̂0(x0) as a proxy for V0(x0) is derived from the following theorem.

1We are grateful to Professor Alexander Schied for inspiring discussions on this technical issue.
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Theorem 3.1. Suppose Assumptions 3.1, 3.4, and 3.5 hold. In addition, assume that for each
(x, ā) ∈ X ×A, there exists a ∈ At(x) such that S(x, ā, e) = S(x, a, e) for t ∈ T0 and e ∈ D. Then,

∣∣∣V0(x0)− V̂0(x0)
∣∣∣ ≤

√
2(T + 1)

1− ϕ2(T+1)

1− ϕ2
Ex0,T (R)

(
ξ̄(R) + ζX

)
. (3.17)

The proof of the above theorem is relegated to Appendix B.2. Below we make some comments
on the additional assumption other than Assumptions 3.1, 3.4, and 3.5 in Theorem 3.1.

Remark 3.3. The additional assumption naturally holds in the degenerated case where At(x) ≡ A
for all x ∈ X , that is, the feasible set of the DM’s is state-independent. In the example considered
in Section 3.5, one may encounter the general case where the feasible set is state-dependent.

This additional requirement is used to place the stochastic control problems (3.3) and (3.12) in
the same admissible set Ā (see Corollary B.2 of Appendix B.2), which brings much convenience
in investigating the gap between V0(x0) and V̂0(x0), as one may see from the proof of the Theorem
3.1. It is also interesting to compare Corollary B.2 with Corollary A.1 accompanying Chapter 2,
which shows the subtle difference between the ideas of proving the above theorem and Theorem 2.1
of Chapter 2; also see Remark 2.3.

The result of Theorem 3.1 can be understood as follows. The inequality (3.17) gives an explicit
upper bound for the discrepancy between V̂0(x0) and V0(x0). Firstly, recall that the discrepancy
of problems (3.3) and (3.12) primarily stems from the difference between the accompanying
state processes. Therefore, Ex0,T (R) appears in the above error bound which characterizes the

probability of disagreement between X and X̂; see the subsequent paragraph below Assumption
3.4. Furthermore, it can be expected that the gap between V̂0(x0) and V0(x0) widens as the time
horizon is prolonged because the probability of the original state process X leaving the truncated
region XR increases as time progresses. This intuition is confirmed by the dependency of function
Ex0,T (·) on T . It is also perceivable from Assumption 3.5 that the term

√
ξ̄(R) + ζX corresponds

to an upper bound for the difference between the reward functions of the two stochastic control
problems (3.3) and (3.12) at each time step. Since there are T + 1 reward functions in total, it
is not surprising that the factor T + 1 appears in the preceding inequality (3.17). Finally, the

factor 1−ϕ2(T+1)

1−ϕ2 appears due to the presence of a discounting multiplier in front of each reward
function.

The crucial implication of the inequality (3.17) is that V̂0(x0) is a legitimate approximation for
V0(x0) as long as the error bound in inequality (3.17) is marginal. This is often achieved when (i)
the truncation parameter R is sizable and (ii) the initial state x0 is deep inside the region XR. This
will be more perceivable in the concrete example in Section 3.5 and the associated Appendix B.1.
Figure 3.1 depicts Ex0,T (R) and the error bound in (3.17) as functions of truncation parameter R
under the parameter setting in the subsequent Section 3.5.4. We can clearly see from Figure 3.1
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that the error bound (dashed line) shrinks fairly fast as one increases R, which is not surprising
as Ex0,T (R) (solid line) decays faster than the growth rate of ξ̄(R).

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Truncation parameter R

0

10

20

30
Error bound
x0, T(R)

3.5 3.6 3.7 3.8 3.9 4.0
Truncation parameter R

0

2

4

6

1e−7
Error bound
x0, T(R)

Figure 3.1: Plots of Ex0,T (R) and the error bound in (3.17) as functions of truncation
parameter R. The left and right panels depict the plots over the intervals [1, 4] and
[3.5, 4], respectively.

Continuity of V̂t(·)

In the following, we will show the continuity of V̂t(·) under some conditions.

Assumption 3.6. (i) For each t ∈ T0, At : X ⇒ A is a compact valued and continuous corre-
spondence (see Appendix B.2.2 for a definition).

(ii) For each t ∈ T0, ft : X ×A→ R is continuous. In addition, fT : X → R and S : X ×A×D→
X are continuous functions.

If A ⊆ R, a sufficient condition for Part (i) of the above assumption to hold is At(x) =
[θ0,t(x), θ1,t(x)] where θj,t : X → R are two continuous functions with θ0,t(x) ≤ θ1,t(x) for all
x ∈ X . The continuity of reward functions and transition equation required by Part (ii) in the
above is used to ensure the application of the Berge’s Maximum Theorem (see Lemma B.3 of
Appendix B.2.2) to proving Proposition 3.1 in the sequel.

Proposition 3.1. Suppose Assumptions 3.1 and 3.6 hold. Then Vt : X −→ R is a continuous
function. Under the additional assumption that Q : X −→ cl (XR) is continuous, V̂t : cl (XR) −→
R is also a continuous function.

The proof of the above proposition is relegated to Appendix B.2.2.
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Monotonicity and concavity of V̂t(·)

Next, we establish some shape properties of the optimal value functions Vt(·) and V̂t(·).

Assumption 3.7. (i) fT : X → R is monotone (see Definition B.6 of Appendix B.2.3).

(ii) For each x, x′ ∈ X with x ≤X x′, t ∈ T0, and a ∈ At(x), there exists a′ ∈ At (x′) such that

ft(x, a) ≤ ft
(
x′, a′

)
and S(x, a, e) ≤X S

(
x′, a′, e

)
, for e ∈ D,

with ≤X denoting a certain partial order equipped by X ; see Definition B.5 of Appendix
B.2.3.

The definition of the monotonicity stated in the above assumption depends on how one defines
the partial order equipped by the state space X ; see Appendix B.2.3 for a discussion. The following
theorem establishes the monotonicity of the value functions Vt and V̂t. The proof is relegated to
Appendix B.2.

Proposition 3.2. Suppose Assumptions 3.1 and 3.7 hold. Then Vt : X −→ R is a monotone
function. Under the additional assumption that Q : X −→ cl (XR) is monotone, V̂t : cl (XR) −→ R
is also a monotone function.

The preceding Propositions 3.1 and 3.2 disclose that the optimal value function of the auxiliary
stochastic control problem (3.12) inherits the continuity (resp., monotonicity) of its counterpart
of the original problem (3.3) under a mild condition on Q : X → cl (XR). Specifically, when
d = 1, X = [0,∞), and XR = [0, R] which is the common case in many finance applications,
we get Q(x) = min

[
x,R

]
which satisfies the condition of the preceding two propositions. The

continuity (resp., monotonicity) of V̂ : cl (XR) → R lays the foundation for employing the raw
(resp., shape-preserving) sieve estimation method to approximate this value function.

By imposing more conditions, the concavity of the value functions can be established.

Assumption 3.8. (i) For each e ∈ D, S(x, a, e) is a concave function of (x, a).

(ii) fT : X → R and ft : X × A → R are concave functions for t ∈ T0. In addition, there exists
a constant ζf such that

sup
x∈X

(
sup

a∈At(x)
|ft(x, a)|

)
≤ ζf , and sup

x∈X
|fT (x)| ≤ ζf , for t ∈ T0.

(iii) For each λ ∈ (0, 1) and any two pairs (x′, a′) and (x′′, a′′) such that a′ ∈ At (x′) and a′′ ∈
At (x′′), λa′ + (1− λ)a′′ ∈ At (λx′ + (1− λ)x′′) for t ∈ T0.
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The concavity of a multivariate function is defined in Definition B.8 of Appendix B.2.3.

Proposition 3.3. Suppose Assumptions 3.1, 3.7, and 3.8 hold. Then Vt : X −→ R is a concave
and monotone function. In addition, if Q : X −→ cl (XR) is a concave and monotone function,
then so is V̂t : cl (XR) −→ R.

The proof of the above proposition is relegated to Appendix B.2. As we will see later, the
regularities of V̂t established by the preceding Propositions 3.1, 3.2, and 3.3 not only warrant the
legitimacy of applying the shape-preserving sieve estimation method but also bring benefits to
the consequential RL-LSMC algorithm as disclosed by the Proposition 3.4 in the sequel.

3.3.3 Discussions

Before ending this section, we make some comparisons between the truncation method developed
in the present chapter with some alternatives in the literature and the one given in Chapter 2.

Comparison with the results of [49]

It is worth noting that a similar truncation argument has been proposed by [49] to confine the
domain of the optimal value function into a compact set. Below, we point out the difference
between the results established in this section and those of [49], in particular, their Proposition
A.1.

(i) Firstly, [49] establishes the relationship between the optimal value functions of the truncated
problem and the original one in certain L1(µt) sense:∫ ∣∣∣Vt(x)− V̂t(x)

∣∣∣µt(dx) −→ 0, as R −→∞, (3.18)

where µt(·) is the sampling distribution of the state process at time step t ([49, pp. 15]).
The limitation of such an L1 loss criterion is that the discrepancy between the two value
functions at a certain point/region might be considerable but with a small probability
measured by the distribution function µt(·). However, it is worth stressing that µt(·) is
not the true distribution of the state process driven by the DM’s optimal action say µ?t (·)
but some distribution of the sample path commonly generated by forward simulation and
control randomization; see, e.g., [51]. It might be the case that the point/region where
µt(·) places marginal probability exhibits substantial odds under the distribution µ?t (·). In
view of this, L1(µt) is not a good measure to quantify the gap between the optimal value
functions of the original and the truncated problems (3.3) and (3.12).
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In contrast, the preceding Theorem 3.1 characterizes the difference between two value func-
tions in a point-wise sense (see inequality (3.17)) which is of more interest in reality; for
instance, in the context of pricing variable annuity, V0(x0) corresponds to the no-arbitrage
price of the policy with initial purchase payment x0 from the policyholder; see, e.g., [40],
[6], [47], and [48].

(ii) Secondly, the convergence rate of the integral term in the preceding statement (3.18) is not
explicitly given by [49] as their Assumption (HLoc) is less transparent. This brings incon-
venience in choosing the truncation parameter R. However, the error bound established in
Theorem 3.1 is more transparent as the terms B̄(·), ξ̄(R), Ex0,T (R), and ζX are not hard to
specify in a specific application. Theorem 3.1 also sheds light on the question that under
which conditions the approximation error of V̂t(x0) would vanish: Ex0,T (R) should decay
faster than the increasing speed of ξ̄(R) as the parameter R climbs as shown by Figure 3.1.
This gives a guideline of choosing an appropriate size of R.

Comparison with the results of Chapter 2

It is notable that Chapter 2 uses a different way to construct an auxiliary state process X̃. Below
we elaborate the difference between X̂ and X̃ and the merit of the truncation argument developed
in this chapter.

Before the original state process X leaves the truncated region XR for the first time, X̂, X̃,
and X agree with each other. Once the original state process X exits XR, X̃ gets absorbed by
the boundary of XR forever according to the construction in Section 2.3; see Figure 2.5 for a
graphical illustration. However, one should recall from Eq. (3.10) that X̂ does not necessarily
sojourn at the boundary of XR.

One benefit we can get from the way of constructing X̂ in this Chapter is that the accompa-
nying value function V̂t inherits the continuity, monotonicity and concavity of the original value
function Vt; see Propositions 3.1, 3.2, and 3.3. This is crucial to the application of sieve estimation
method to approximating V̂t as we will see in the subsequent section. On the other hand, the
value function accompanying X̃ does not necessarily have such nice regularities as the construc-
tion of X̃ might impair the continuity of the transition equation. This is not a big problem in
the context of Chapter 2 because it focuses on approximating the continuation function instead
and accordingly it does not require the continuity of the value function.

It is worth stressing that the price we pay for such a benefit is that more conditions need to
be imposed in Theorem 3.1 and Assumption 3.5. These conditions, however, are not required in
Chapter 2; see Remarks 3.2 and 3.3.
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3.4 The Regression-later Monte Carlo Algorithm

In what follows, let us turn our attention to the optimal value function V̂t : cl (XR)→ R which is
a valid proxy for the optimal value function of the original problem (3.3) according to Theorem
3.1. This section aims to develop an LSMC algorithm to estimate V̂t for t ∈ T .

3.4.1 The Algorithm

The regression-later Least Squares Monte Carlo (RL-LSMC) algorithm is presented as follows.

1. Initiation:

1.1 Simulate a sample of independent and identically distributed (i.i.d.) random variables{
X̂

(m)
T ,m = 1, 2, . . . ,M

}
from a probability distribution Q(·) with support cl (XR).

1.2 Let (
U (m), Z(m)

)
=
(
fT

(
X̂

(m)
T

)
, X̂

(m)
T

)
, with m = 1, 2, . . . ,M.

Conduct the linear sieve estimation given in (3.6) and the resulting regression estimate
is denoted by V̂ E

T (x) := φᵀ(x)β̌T for x ∈ cl (XR).

For t = T − 1, . . . , 0, do the step below.

2. Backward Simulation and Backward Updating:

3.1 Data preparation Simulate a sample of i.i.d. random variables

XM
t :=

{
X̂

(m)
t , m = 1, 2, . . . ,M

}
,

from Q(·). Further construct the random sample
{
V̂ ∗t

(
X̂

(m)
t

)
,m = 1, 2, . . . ,M

}
,

where

V̂ ∗t (x) = sup
a∈At(x)

{
ft(x, a) + ϕEε

[
V̂ E
t+1

(
Ŝ
(
x, a, εt+1

))]}
, for x ∈ XM

t , (3.19)

Eε[·] denotes the expectation taken over the distribution of εt+1
2, and recall that

2The reader should be cautious that V̂ E
t+1 is essentially a random function as it implicitly depends on the random

samples simulated from time step T down to time step t+ 1; see Remark 2.1 of Chapter 2 for a detailed discussion.
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Ŝ : XR × A× D→ XR is the transition equation of the auxiliary state process X̂; see
Section 3.3.1.

3.2 Regression Let(
U (m), Z(m)

)
=
(
V̂ ∗t

(
X̂

(m)
t

)
, X̂

(m)
t

)
, m = 1, 2, . . . ,M.

Employ the linear sieve estimation method to obtain a regression estimate

V̂ E
t (x) = φᵀ(x)β̌t, for x ∈ cl (XR) . (3.20)

Remark 3.4. By virtue of the construction of the auxiliary state process X̂ and the accompanying
transition equation Ŝ, the evaluation of Eq. (3.19) only requires the information of value function
estimate V̂ E

t+1 over cl (XR). This convenience however cannot be achieved if one directly applies
an LSMC algorithm to the original state process X; see Section 2.4 of Chapter 2 for a discussion.

Remark 3.5. It is worth stressing the subtle difference between V̂ E
t and V̂ ∗t On one hand, V̂ ∗t (x)

is the optimal value of the optimization problem (3.19) and accordingly, its expression is not
explicitly given. On the other hand, V̂ E

t (x) is a sort of approximation for V̂ ∗t (x) by a linear
combination of basis functions which is explicitly given by φᵀ(x)β̌t. This analytical tractability

reduces the difficulty of evaluating the expectation term Eε
[
V̂ E
t+1

(
Ŝ
(
x, a, εt+1

))]
in Eq. (3.19);

more discussions will follow later.

The success of implementing the above RL-LSMC algorithm rests on (i) the efficient evaluation
of the expectation term in Eq. (3.19), and (ii) finding the global extremum of the optimization
problem (3.19). These two issues are discussed respectively in the sequel.

Evaluation of continuation value

In view of Eqs. (3.19) and (3.20), we get

Eε
[
V̂ E
t+1

(
Ŝ
(
x, a, εt+1

))]
= β̌ᵀt+1E

ε
[
φ
(
Ŝ
(
x, a, εt+1

)) ]
. (3.21)

The R.H.S. of the above equation is easy to calculate in the presence of explicit expressions of
φ, Ŝ, and the distribution function of εt+1. To make the matter more concrete, let us consider
a specific case where Ŝ(x, a, e) = min

[
(x − a)+e,R

]
, φ(x) =

(
1, x, . . . , xJ

)ᵀ
, and εt+1 follows a

log-normal distribution. This case will be studied in the subsequent Section 3.5. Evaluating the
above expectation term boils down to the calculation of the partial expectation of a log-normal
distribution which is straightforward; see Appendix B.1 for details. Such a convenience is resulted
by the simple expression of V̂ E

t+1 and this highlights our motivation to use V̂ E
t+1 as a proxy for

V̂t+1 instead of V̂ ∗t+1.
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· · · V̂ E
t+1 is monotone/concave V̂ ∗t is monotone/concave V̂ E

t is monotone/concave . . .

Figure 3.2: A diagram for the propagation of monotonicity in the RL-LSMC algorithm.

Concavity preservation and local optimization

Solving the local optimization problem involved in (3.19) is formidable in general. Common
numerical optimization algorithms cannot always guarantee the convergence to a global optimizer.
As a compromise, in the absence of sufficient prior knowledge of the objective function of the
optimization problem, one may first discretize the feasible set of the decision variable, i.e., At(x),
and then resort to a linear search method ([6]).

For a tame dynamic programming problem, we usually require the local optimization prob-
lem in the Bellman equation (3.13) is tractable in the sense that it can be solved with a light
computational cost. This is attainable if the objective function of the local optimization problem
i.e., Vt(x, a) := ft(x, a) + Ĉt(x, a), is concave in the decision variable a. However, one cannot
ignore the fact that such concavity might be impaired after replacing the continuation/value
function by its numerical estimate in an LSMC algorithm. Specifically, the objective function of
the optimization problem one encounters in Eq. (3.19) is

VE
t (x, a) := ft(x, a) + ϕEε

[
V̂ E
t+1

(
Ŝ
(
x, a, εt+1

))]
(3.22)

instead. In the sequel, we will show that this dilemma can be circumvented by the shape-
preserving sieve estimation method.

Proposition 3.4. (i) Suppose the conditions of Proposition 3.2 are satisfied. For each t ∈ T0,
if V̂ E

t+1 : cl(XR) −→ R is monotone, then so is V̂ ∗t : cl(XR) −→ R.

(ii) If the conditions of Proposition 3.3 all hold, then for each t ∈ T0, V̂ ∗t : cl(XR) −→ R is a
monotone and concave function as long as V̂ E

t+1 : cl(XR) −→ R is monotone and concave.

(iii) Under the conditions of Proposition 3.3, VE
t (x, a) defined in Eq. (3.22) is concave in a if

V̂ E
t+1 : cl(XR) −→ R is monotone and concave.

The above proposition can be proved in the same manner as we did for Propositions 3.2 and
3.3, and thus the proof is omitted.

The implications of this proposition are given as follows. On one hand, Part (i) (resp.,
Part (ii)) states that the monotonicity (resp., monotonicity and concavity) of the value function
estimate obtained at time step t+1 warrants the monotonicity (resp., monotonicity and concavity)
of the function V̂ ∗t . On the other hand, recall that V̂ ∗t is taken as the regression function in the
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preceding RL-LSMC algorithm and V̂ E
t is the corresponding regression estimate produced by

the sieve estimation method. Combing these two observations together, an induction argument
implies that V̂t, V̂

∗
t , and V̂ E

t are monotone (resp., monotone and concave) functions for all t ∈ T
if the conditions of the preceding Proposition 3.4 hold and the regression estimate may inherit
the monotonicity (resp., monotonicity and concavity); see Figure 3.2 for an illustration diagram.

Furthermore, Part (iii) of Proposition 3.3 discloses that the concavity of the local optimization
problem at time step t rests on the monotonicity and concavity of the value function estimate at
time step t+ 1. In view of these, employing the shape-preserving sieve estimation method brings
benefits at least in two-fold.

(B1) The shape properties such as monotonicity and concavity of the optimal value function
accompanying the original stochastic control problem (3.3) (i.e., Vt) can be inherited by V̂t
and its regression estimate V̂ E

t . This renders V̂ E
t economically sensible.

(B2) The concavity of the optimization problem involved in the RL-LSMC algorithm is war-
ranted, which in turn makes the evaluation of Eq. (3.19) relatively more tame than the
case without concavity.

3.4.2 Convergence Analysis

This subsection devotes to establishing the convergence result associated with the preceding RL-
LSMC algorithm. To this end, a technical assumption is imposed.

Assumption 3.9. For each x ∈ cl (XR) and each a ∈ At(x), let FŜ(·;x, a) be the distribution

function of X̂t+1 given that X̂t = x and the DM’s action at time step t is a. Assume that FŜ(·;x, a)
is absolutely continuous with respect to Q(·) with density w(·;x, a); and that there exists a constant
ζw such that

sup
a∈At(x)

|w(y;x, a)| ≤ ζw for all (x, y)ᵀ ∈ cl (XR)× cl (XR) .

The following theorem summarizes the convergence result of the RL-LSMC algorithm. The
associated proof is relegated to Appendix B.2.

Theorem 3.2. Suppose Assumptions 3.1 and 3.9 hold. In addition, assume that the conditions

of Assumption 3.2 holds for g(·) = Vt(·), U (m) = Vt

(
X̂

(m)
t

)
, and Z(m) = X̂

(m)
t uniformly in t.

Then, ∣∣∣V̂0(x0)− V̂ E
0 (x0)

∣∣∣ = OP
(
ζT−1ρ̂J

)
, as M −→∞, (3.23)
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· · · V̂ E
t+1(·) V̂ ∗t (·)

Eq. (3.19)
V̂ E
t (·)

Eq. (3.20)
. . .

· · · V̂t+1(·) V̂t(·)
Bellman equation (3.13)

. . .

error from T
down to t + 1

error from
T down to t

Figure 3.3: A diagram for the error propagation in the RL-LSMC algorithm.

where ζ is some constant independent of t,M, and J , ρ̂J is some sequence such that ρ̂J → 0
as M → ∞ as given in Assumption 3.2, and the notation OP(·) is defined in Definition B.9 of
Appendix B.2.

The gap between V0(x0) and V̂ E
0 (x0) is can be divided into two parts:∣∣∣V0(x0)− V̂ E

0 (x0)
∣∣∣ ≤ ∣∣∣V0(x0)− V̂0(x0)

∣∣∣︸ ︷︷ ︸
truncation error

+
∣∣∣V̂0(x0)− V̂ E

0 (x0)
∣∣∣︸ ︷︷ ︸

LSMC error

.

The first term on the R.H.S. of the above inequality stands for the truncation error caused by
using the value function of the auxiliary problem as a proxy for the original value function. This
has been characterized by the preceding Theorem 3.1. The second term corresponds to an error
arising from the preceding RL-LSMC algorithm which is further contributed by two resources.

(E1) In each step of the RL-LSMC algorithm, the value function is approximated by a linear
combination of basis functions. The resulting approximation error is of the order O(ρ̂J),
which clearly follows from Part (iii) of the preceding Assumption 3.2. Since a random
sample with a finite size is used to estimate the coefficients of the basis function, extra
statistical errors are incurred and this is reflected by the subscript P in OP(ρ̂J).

(E2) Recall from Section 3.2.3 that the regression-later method takes Vt(Xt) as the response

variable and thus in principle one should generate a random sample
{
Vt

(
X̂

(m)
t

)}M
m=1

.

However, one could only use
{
V̂ ∗t

(
X̂

(m)
t

)}M
m=1

as a proxy which involves the estimation

error accumulated from preceding time steps of the algorithm; see Step 3.1 of the RL-LSMC
algorithm. In view of this, it is not surprising that the error of the algorithm is amplified as
time step goes from T down to 0, which is reflected by a factor ζT−1 in Eq. (3.23). Figure
3.3 depicts a diagram for the error propagation mechanism of the RL-LSMC algorithm.
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3.4.3 When Does Forward Simulation Work?

This subsection discusses the choice of the sampling measure in the RL-LSMC algorithm and
sheds light on the following question:

• When is it legitimate to simulate the state process forward in time based on a control ran-
domization technique?

The preceding Assumptions 3.3 and 3.9 implicitly impose restrictions on the sampling dis-
tribution Q(·). It is notable that FŜ(·;x, a) might not have a Lebesgue density over cl (XR) due

to the construction of the auxiliary state process X̃. In particular, X̃t might exhibit nonzero
probability over the truncation boundary. This observation casts shadow to using the uniform
distribution with support set cl (XR) as the sampling distribution Q(·).

Furthermore, the preceding Assumption 3.3 requires Q(·) to have density bounded away from
zero. [65, pp. 157] also points out that this requirement can be relaxed by allowing probability
masses over some points, which is not hard to expect as the regression function of interest is
assumed to be a continuous function.

Suppose that FŜ(·;x, a) has an absolutely continuous density function with respect to the
Lebesgue measure restricted on the interior of cl (XR) and meanwhile exhibits probability masses
over the boundary. In this case, it is easy to see that one may choose Q(·) as a mixture of the
uniform distribution on the interior and a degenerated distribution on the boundary such that
the above two assumptions hold.

The above discussion casts insights to the legitimacy of using forward simulation to generate
the regression data: if the resulting distribution of the state variable satisfies the conditions
imposed by Assumptions 3.3 and 3.9, then the convergence of the RL-LSMC algorithm is ensured.
However, it is hard to expect this can be achieved based on an arbitrary control randomization
method especially when the state process has certain absorbing states, as we have seen from the
numerical example in the previous Chapter 2.

3.4.4 Discussions

This subsection makes some comparisons between the proposed RL-LSMC algorithm and the
BSBU counterpart developed in Chapter 2. The RL-LSMC exhibits the following advantages.

(A1) By comparing Eq. (3.23) with the convergence result delivered in Theorem 2.2 of Chapter
2, we notice that one additional term

√
J/M appears in the converge rate in Theorem

2.2. This additional term arises because in Chapter 2 the sieve estimation method is used
to estimate the continuation function instead of the value function. This shows the first
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advantage of the RL-LSMC algorithm over the regression-now counterparts in terms of
reducing regression error. The observation that the error of a regression-later Monte Carlo
algorithm is solely contributed by the term ρ̂J has also been revealed by [19, Theorem 3.1]
in the context of one single period regression problem.

Remark 3.6. It is worth stressing that the decay rate of ρ̂J depends on the smoothness of
the regression function (i.e., value function in the present context); see, e.g., [65]. Therefore
the expression of ρ̂J can be substantially different from that of ρJ in Theorem 2.2. In view
of this, the RL-LSMC has more appealing convergence rate than the BSBU counterpart
if the value function has the same order of differentiability as the continuation function.
Otherwise, it is unfair to compare the convergence speeds of the RL-LSMC and BSBU peers
due to the difference between ρ̂J and ρJ .

(A2) Rather than simulating the post-action value of the state process as in Chapter 2, the RL-

LSMC algorithm proposed in the present chapter samples X̂
(m)
t over its feasible set cl (XR).

Since cl (XR) is independent of t, one may choose one common sampling distribution Q for
all time steps. However, the feasible set of the post-action value is generally time-dependent
and accordingly, the sampling distribution in the BSBU algorithm is time-dependent; see
Section 2.4 of Chapter 2.

(A3) As previously commented in Remark 3.5, the estimate of the value function V̂ E
t in the

RL-LSMC algorithm is a simple linear combination of the basis functions. However, the
parallel value function estimate is obtained as the optimal value of an optimization problem
in regression-later algorithms because in such algorithms the continuation function is instead
approximated by basis functions. An explicit expression of V̂ E

t brings much convenience
to calculating its derivatives which is useful for finance applications. We will demonstrate
such convenience with a specific application in Section 3.5.

On the other hand, the merits of the RL-LSMC mentioned above come at a price.

(P1) As stressed previously, the success of the RL-LSMC is placed on the ground that the
expectation term in Eq. (3.21) can be evaluated in a facile way. This poses restrictions on
the function Ŝ and the distribution of the disturbance term εt+1.

(P2) As commented in the item “(Q2)” in Section 3.2.3, the legitimacy of applying the RL-
LSMC relies on the continuity of the value function which however is not required in the
regression-now algorithms. This continuity requirement narrows the application range of
the RL-LSMC.

To sum up, compared with regression-now LSMC algorithms, the benefits of the RL-LSMC
algorithm come at the expense of extra restrictions on the stochastic control problem at hand.
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3.5 Application: Delta-hedging of Variable Annuities

This section applies the RL-LSMC algorithm to the dynamic hedging of variable annuities.

3.5.1 Model Setup

Variable annuities (VAs) are equity-linked products issued by insurance companies which provide
policyholders (PHs) protection against the downside risk of the equity market. Pricing variable
annuities leads to a discrete-time stochastic optimal control problem; see [40], [6], [47], and [48],
among others. For the convenience of illustration, this section considers a simplified VA contract.

In the VA policy, the PH’s initial payment, say x0, is invested into a certain risky asset (re-
ferred to as policy fund) and the PH is allowed to take periodical withdrawals from the investment
account. The collection of withdrawal dates is labeled by T and the length between two consecu-
tive withdrawal dates is assumed to be δ. Furthermore, Xt corresponds to the value of the PH’s
investment account right before the withdrawal at withdrawal date t. It evolves recursively as
follows: {

X0 = x0,

Xt+1 = (Xt − at)+ S(t+1)δ

Stδ
, at ∈

[
0, G ∨Xt

]
, t ∈ T ,

(3.24)

where Su is the time-u price of the policy fund, and at corresponds to the PH’s withdrawal
amount. It is worth noting that the PH can withdraw up to the amount of G even if the
investment account value falls below this level. This is the guarantee provided by the insurance
company for a potential market decline.

Assume the price process of the policy fund follows a geometric Brownian motion (GBM)
under a martingale pricing measure Q, i.e.,

S(t+1)δ = Stδ exp
((
r − q − σ2/2

)
δ + σ

√
δZt+1

)
=: Stδ · εt+1, t ∈ T , (3.25)

where r, q, σ, and {Zt+1}t∈T0 denote the risk-free rate, insurance fee rate, volatility rate, and a
sequence of independent standard normal random variables, respectively. log εt+1 can be inter-
preted as the log-return of the underlying asset over (tδ, (t+ 1)δ].

In view of Eqs. (3.24) and (3.25), one may write down the transition equation for the state
process as follows:

Xt+1 = S(Xt, at, εt+1) =
(
Xt − at

)+
εt+1, t ∈ T . (3.26)

The reward functions in the present context correspond to the policy payoffs which are given
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by {
fT (XT ) = XT ,

ft(Xt, at) = at − κt(at −G)+, t ∈ T0 = T \{0}.
(3.27)

In other words, the remaining value of the investment account is returned to the PH at matu-
rity. Before the maturity, the payoff equals the PH’s withdrawal amount subject to a certain
proportional penalty κt.

Now the stochastic control problem (3.3) can be interpreted such that the PH strives to
maximize the financial value of her cash inflows. V0(x0) corresponds to the no-arbitrage price of
the VA policy.

3.5.2 The RL-LSMC Algorithm

In the present context, X = [0,∞) as the investment account always has nonnegative value. Let
XR = [0, R] and accordingly, Q(x) = min[x,R]. In the present case, the transition equation of
the auxiliary state process (3.10) becomes

X̂t+1 = Ŝ
(
X̂t, at, εt+1

)
= min

[(
Xt − at

)+
εt+1, R

]
, t ∈ T0, (3.28)

given X̂0 = x0.

In Appendix B.1, the preceding technical assumptions are verified in the context of the VA
policy considered here, which warrants the legitimacy of applying the RL-LSMC algorithm. Sim-
ilarly to [6], [47], and [72], one may show that the optimal decision at each time step is attained
in the subset A?t (x) = {0, G, x} of At(x). So, we can restrict our attention to the lattice A?t (x) in
solving the optimization problem involved in Eq. (3.19).

It remains to address how to evaluate Eq. (3.19). Appendix B.1 presents explicit expressions
of expectation term (3.21) involved in Eq. (3.19) under two particular types of basis functions,
power function and Bernstein polynomial, respectively. Now it is ready to implement the RL-
LSMC algorithm of Section 3.4 to get the estimate for the no-arbitrage price of the policy. In view
of Theorems 3.1 and 3.2, we henceforth turn our attention to V̂ E

t which is a good approximation
for the value of the hedging portfolio.

3.5.3 The Delta-hedging

We consider the dynamic hedging of the VA policy which is an indispensable risk management
tool for the insurance company. It is worth stressing that the policy fund is typically a basket
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of mutual funds and there generally does not exist a vanilla options market over such an asset.
Due to such a reason, the delta-hedging is the common practice of the insurance companies in
offsetting their risk exposures which means the underlying asset is the sole hedging instrument.
This amounts to calculating the first-order sensitivity of the replication portfolio3 with respect
to the policy fund price.

It is notable that the hedging frequency might be more intensive than the withdrawal fre-
quency. For instance, suppose δ = 1/12, that is, the PH takes monthly withdrawals, however, the
hedger may dynamically rebalance the hedging portfolio on a daily basis. Thus, it is necessary
to define the value of the replication portfolio at a particular time point between two consecutive
withdrawal dates.

Suppose (Xt−at)/Stδ = x which is observable to the hedger at time u ∈
(
tδ, (t+ 1)δ

]
. Define

the time-u value of the hedging portfolio as:

Pt,x(u, y) := ϕ(t+1)δ−uEQ
[
V̂ E
t+1

(
X̂t+1

) ∣∣∣∣Su = y,
Xt − at
Stδ

= x

]
, u ∈ (t, t+ 1], t ∈ T0,

where ϕ is the discounting factor and EQ[·] is taken under the martingale pricing measure Q.

Remark 3.7. The rationale behind the above definition is that the policy fund Su is traded by

the insurance company to replicate the payoff V̂ E
t+1

(
X̂t+1

)
. The ratio (Xt − at)/Stδ corresponds

to the number of shares of policy fund held by the PH immediately after her t-th withdrawal.
In view of this, Pt,x(u, y) is thought of as the time-t value of the replication portfolio given that
time-to-expiry is (t+ 1)δ − u, the PH holds x shares of policy fund, and the policy fund’s time-u
price is y.

It follows from Eqs. (3.24) and (3.28) that

Pt,x(u, y) = ϕ(t+1)δ−uEQ
[
V̂ E
t+1

(
min

[
xS(t+1)δ, R

] )∣∣∣Su = y
]
.

Our goal is to calculate the partial derivative ∂Pt,x(u, y)/∂y which corresponds to the number
of shares of policy fund held in the hedging portfolio at time u. Recall from Eq. (3.20) that V̂ E

t+1

is a linear combination of basis functions that are explicitly given. This observation implies that
the evaluation of ∂Pt,x(u, y)/∂y is essentially the same as calculating the delta of a European
option. This is generally easy to handle. Under the GBM assumption (3.25), one may even get

3In this chapter, the hedging/replication portfolio corresponds to the portfolio that can replicate the cash inflows
of the PH and the associated delta should be interpreted accordingly. As a matter of fact, the insurer’s payout
should be the part of the PH’s cash inflow in excess of the balance of the investment account because the investment
account value is fully covered by the mutual funds. Therefore, the number of shares of the hedging instrument held
by the insurer should be adjusted from the delta calculated in this section; see, e.g., [74, Section 6.5].
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an analytical expression for ∂Pt,x(u, y)/∂y whose derivation is relegated to Appendix B.1. For
more general dynamics, one may resort to the path-wise method to calculate the delta; see [21]
for instance.

To sum up, the replication of variable annuities boils down to replicating a sequence of Euro-
pean options and therefore demands to calculate the associated deltas. This is relatively easy to
tackle since the RL-LSMC algorithm makes the V̂ E

t+1 exhibit a simple expression as given in Eq.
(3.20).

3.5.4 Numerical Experiments

This subsection conducts several numerical experiments to show the merits of the proposed RL-
LSMC algorithm.

Consider a contract with maturity Tδ = 1 (year) which allows the PH to take monthly
withdrawals, i.e., δ = 1/12. Appendix B.1 derives an explicit expression for the error bound
in the preceding Theorem 3.1. This allows us to estimate the truncation error for any chosen
truncation parameter R. In the subsequent numerical experiments, the truncation parameter is
chosen as R = 4, which causes a truncation error less than 10−7; see the dashed line depicted in
Figure 3.1. All parameters are summarized in Table 3.1.

In the subsequent experiments, two sieve estimation methods are employed.

• (RSE) The first method chooses basis function φ(x) =
(
1, x, . . . , xJ

)ᵀ
and set AJ as the

null matrix. In other words, this sieve estimation method uses a linear combination of
power series to approximate the optimal value function. Henceforth it is referred to as the
raw sieve estimation (RSE) method.

• (SPSE) The second method is the shape-preserving sieve estimation (SPSE) method of
[83] which chooses φ(x) as a vector of Bernstein polynomials. It is easy to verify that the
conditions of the preceding Proposition 3.2 are satisfied in the stochastic control problem
accompanying the VA contract considered here. In view of this, the optimal value function
is a monotone function and the constraint AJ in Eq. (3.7) is chosen such that this mono-
tonicity is inherited by the sieve estimate. The expressions of φ(x) and AJ are relegated
to Appendix A.1.1 for the clarity of presentation.

We first conduct a convergence test for the RL-LSMC algorithm. Table 3.2 collects the
estimate for the no-arbitrage price of the VA contract, V̂ E

0 (x0), under different settings of number
of simulated paths M and maximal degree of the basis functions J . Recall that V̂ E

0 (x0) is random
due to the randomness of the sample generated throughout the algorithm. In view of this, for each
pair (M,J), the algorithm is repeated 30 times and the associated sample mean and standard
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Table 3.1: Parameters used for numerical experiments.

Parameter Value

Volatility rate σ 0.15

Risk-free rate r 0.03

Insurance fee rate q 0.01

Number of time steps T 12

Length of time interval δ 1/12

Discounting factor ϕ = e−rδ 0.9975

Initial purchase payment x0 1

Withdrawal penalty κt 0.8

Guaranteed amount G 0.05

Truncation parameter R 4

deviation as reported in the “Mean” and “S.d.” columns, respectively. From Settings 0 and 1 of
Table 3.2, we observe that the sample mean of the price estimate changes little as M increases
from 103 to 2× 103, whereas, the standard deviation is nearly halved. This observation is more
perceivable from the empirical density plots of the price estimate delineated in Figure 3.4: a
larger M brings more spiked empirical density of V̂ E

0 (x0). One may conclude that simulating two
thousand sample points in the RL-LSMC already produces a stable numerical result with sample
standard deviation around 5× 10−4. This is in contrast to the case of regression-now algorithms
where the number of simulated paths should be generally larger than hundred thousand in order
to ensure the stability of the numerical estimate; see the numerical experiments of Chapter 2
for comparison. This discrepancy is not surprising if we note that the error rate of the RL-
LSMC is smaller than that of the regression-now counterparts as disclosed by a comparison
between Theorems 2.2 and 3.2. In the numerical settings 0, 2, and 3, the sample size is fixed as
M = 1 × 103 and the parameter J increases from 15 to 17. One can observe that as J hikes,
the sample mean of the price estimate changes accordingly but the trend is very creeping. This
signals the convergence of the RL-LSMC algorithm.

Next, we investigate the performance of the SPSE method in terms of preserving the mono-
tonicity of the value function. We fix J = 15 and M = 2×103. Figure 3.5 delineates the estimates
of the value function, V̂ E

t , produced by the RSE and SPSE methods, respectively. To highlight
the subtle difference between the estimates resulted by the two regression methods, the plots are
restricted over the interval [0, 1]. Observe that the RSE method does not necessarily preserve the
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Table 3.2: Mean and standard deviation (S.d.) of V̂ E
0 (x0) produced by SPSE and RSE

methods. The results are obtained by repeating the RL-LSMC algorithm 30 times.

Setting (M,J)
SPSE RSE

Mean S.d. Mean S.d.

0 (1× 103, 15) 0.9839 0.0009 0.9950 0.0012

1 (2× 103, 15) 0.9840 0.0005 0.9952 0.0005

2 (1× 103, 16) 0.9838 0.0008 0.9963 0.0009

3 (1× 103, 17) 0.9848 0.0006 0.9965 0.0007

monotonicity of the value function and the lost of monotonicity is propagated from time step 10
down to 0; see solid lines depicted in Figure 3.5. Specifically, the monotonicity is clearly broken
by the RSE method at time steps 10, 4, and 2. The violation of monotonicity is more perceivable
from Figure 3.6 which depicts a local plot of V̂ E

4 (x) over the sub-interval [0, 0.6]. On the contrary,
the SPSE method warrants the monotonicity of the regression estimate throughout all time steps
as reflected by dashed lines in Figure 3.5. These observations are consistent with the preceding
Proposition 3.4 and show the major merit of the SPSE method. Also, note that the difference
between the estimates produced by these two regression methods is small over the whole domain
of the value function V̂t(x).

Finally, we study the delta of the hedging portfolio accompanying the VA policy. Recall that
hedging the VA policy is essentially replicating a sequence of European payoffs sequentially. For
the convenience of comparing the deltas of the hedging portfolio over different time period, define
the quantity

∆t,x(τ, y) :=
∂Pt,x(u, y)

∂y

∣∣∣∣
u=(t+τ)δ

, for τ ∈ (0, 1),

with
∂Pt,x(u,y)

∂y given by Eq. (B.12) or (B.13) depending on the choice of the basis function φ. In
view of the previous Remark 3.7, this quantity corresponds to the number of shares of the policy
fund held in the hedging portfolio at time (t+ τ)δ given that the PH holds x shares of the policy
fund over the time period

(
tδ, (t+1)δ

]
. For a fixed τ = 0.5, ∆t,1(τ, y) as a function of policy fund

price y is ploted in Figure 3.7. Two major observations can be made from Figure 3.7. First, the
disagreement between the deltas produced by the RSE and SPSE methods exaggerates as fund
price y declines. The delta accompanying the RSE method exhibits fluctuations around small
fund price as reflected by the solid lines at time steps 6, 4, 2, and 0, whereas, the delta produced
by the SPSE method has a smooth shape, see the dashed lines depicted in Figure 3.7. Second, the
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Figure 3.4: Density and rug plots of price estimate V̂ E
0 (x0) obtained by repeating the

RL-LSMC algorithm 30 times.

delta of the hedging portfolio is bounded above from 1. This is consistent with the observation
of [47, pp. 922] in the context of the Guaranteed Lifelong Withdrawal Benefit, a particular type
of VA policy; see their Figure 6.

The above two observations are interpreted as follows. On one hand, one recalls from Remark
3.7 that ∆t,1(τ, y) corresponds to the delta of the hedging portfolio that aims to replicate a
European payoff V̂ E

t+1

(
min

[
S(t+1)δ, R

])
. On the other hand, Figure 3.5 shows that V̂t+1 has a

shape similar to the payoff function of a call option plus a risk-free bond. Combing these together,
it is not surprising that ∆t,1(τ, y) is bounded between 0 and 1. Moreover, since the value function
estimate accompanying the RSE method exhibits perturbation around the origin x = 0, it is not
hard to expect that the associated delta of the hedging portfolio vibrates at small fund price y.

Figure 3.8 plots the surface plot of the bivariate function (τ, y) 7→ ∆t,1(τ, y) which shows that
the function is insensitive to τ . This means the delta of the hedging portfolio changes little as
time progresses, which might be attributed to the small magnitude of the time interval δ.

To sum up, the RL-LSMC algorithm produces a stable numerical estimate for the optimal
value function at a much smaller sample size of 2000 compared with the regression-now coun-
terparts. This is in line with the result of Theorem 3.2 and the subsequent discussion in item
“(A1)”. Moreover, the SPSE method produces more economically sensible value function esti-
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mate (resp., the delta of the hedging portfolio) when the investment account value x (resp., fund
price y) is small. The numerical estimates accompanying these two regression methods agree with
each other fairly well over the whole domain.

3.6 Conclusion

This chapter developed a Monte Carlo algorithm to solve stochastic optimal control problems.
This algorithm approximates the optimal value function by a nonparametric sieve estimation
method. The algorithm is referred to as the Regression-later Least Squares Monte Carlo (RL-
LSMC) algorithm. An auxiliary stochastic control problem was constructed which confines the
feasible set of the associated state process into a compact set. By virtue of the elaborate con-
struction, the optimal value function of the auxiliary problem is shown to inherit the regularities
such as continuity, monotonicity, and concavity of the value function accompanying the original
problem. This paves the way for the application of the nonparametric sieve estimation theory
to establishing the convergence result of the RL-LSMC algorithm. We then disclosed that the
error rate of the proposed algorithm is better than those Monte Carlo algorithms that use non-
parametric regression to estimate the continuation function. To further show the merits of the
RL-LSMC, we studied a concrete application in hedging equity-linked insurance products. The
consequential numerical experiments confirm the advantages of the RL-LSMC algorithm.
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t=4

RSE,̂̂J=15 SPSE,̂̂J=15

Figure 3.6: Loss of monotonicity of V̂ E
t (x) at time step t = 4. J = 15 and M = 2000.

81



0 1 2 3
Fund price y

0.5
0.6
0.7
0.8
0.9
1.0

De
lta

 Δ
t,
xΔτ

,y
)

τ=0.5, t=10

RSE,   J=15 SPSE, J=15

0 1 2 3
F nd price y

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

 Δ
t,
xΔτ

,y
)

τ=0.5, t=8

0 1 2 3
F nd price y

0.2

0.4

0.6

0.8

De
lta

 Δ
t,
xΔτ

,y
)

τ=0.5, t=6

0 1 2 3
F nd price y

0.2

0.4

0.6

0.8

De
lta

 Δ
t,
xΔτ

,y
)

τ=0.5, t=4

0 1 2 3
F nd price y

0.0

0.2

0.4

0.6

0.8

De
lta

 Δ
t,
xΔτ

,y
)

τ=0.5, t=2

0 1 2 3
F nd price y

0.2

0.4

0.6

0.8

De
lta

 Δ
t,
xΔτ

,y
)

τ=0.5, t=0

Figure 3.7: Plots of y 7→ ∆t,1(0.5, y) produced by the RSE and SPSE methods. J = 15
and M = 2000.

82



τ

0.0 0.2 0.4 0.6 0.8 Fun
d p

rice
 y

0
1

2
3

4

De
lta

 Δ
t,
xΔτ

, y
)

0.0
0.2
0.4
0.6
0.8

x=1, t=2

(a) Delta produced by RSE method.

τ
0.0 0.2 0.4 0.6 0.8 Fun

d p
rice

 y

0
1

2
3

4

De
lta

 Δ
t,
xΔτ

, y
)

0.0
0.2
0.4
0.6
0.8

x=1, t=2

(b) Delta produced by SPSE method.

Figure 3.8: Surface plot of (τ, y) 7→ ∆t,x(τ, y) with x = 1 and t = 2.

83



Chapter 4

Pricing Bounds and Bang-bang
Analysis of the Polaris Variable
Annuities

4.1 Introduction

The numerical experiments of Chapters 2 and 3 are conducted in the context of pricing and hedg-
ing equity-linked insurance products. The products considered in those chapters are simplified
versions of the variable annuity which is a prevailing equity-linked product in North America.
This chapter studies a more complicated product whose pricing problem is challenging from both
theoretical and numerical sides.

The pace of innovation in the market of variable annuities (VAs) has been fairly remarkable
in the past two decades. By the second quarter of 2017, the net amount of U.S. assets invested
in VAs has been approximately 1.98 trillion dollars; see “Second-Quarter 2017 Annuity Sales
Report” issued by Insured Retirement Institute ([50]). Roughly speaking, VAs are long-term
equity-linked insurance products embedded with various guarantees which are also known as rid-
ers. These riders provide policyholders with the flexibility of dynamic withdrawals, additional
purchases, longevity protection, and guaranteed minimum income payments even after the in-
vestment account is depleted which all contribute to the popularity of VAs. Therefore, it comes
as no surprise that pricing and hedging various kinds of VA riders have raised great interest from
both academics and practitioners.

This chapter studies the pricing problem of a new rider –“Polaris Income Plus Daily” income
benefit– structured in the “Polaris Choice IV” VAs recently issued by the American International
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Group.1 Similar to most popular VA riders, the writer of the Polaris initially receives an up-
front payment from the policyholder which is then invested into a basket of mutual funds. The
policyholder is allowed to take dynamic withdrawals during the contract life and enjoys certain
downside protection against the adverse performance of the underlying fund. As an important
sweetener to policyholders, the income base in the Polaris can step up to a certain level (referred
to as step-up value), periodically. The step-up value is prescribed as the high water mark (i.e.,
running maximum) of the investment account since the inception of the contract if the policy-
holder has not taken any withdrawal; otherwise, it only locks in the running maximum between
two consecutive withdrawal dates. In other words, the income base steps up to the running
maximum of the policy fund over a certain monitoring period while the length of the monitoring
period depends on the withdrawal behaviors of the policyholder. In addition, both the Pro-
tected Income Payment applied after the underlying fund is depleted and the Maximal Annual
Withdrawal Amount that is free of withdrawal charge are dependent on the policyholder’s age at
the first withdrawal. These complex behavior-dependent payoff features distinguish the Polaris
from the other withdrawal benefits in VAs, such as Guaranteed Minimum Withdrawal Benefits
(GMWB) and Guaranteed Lifelong Withdrawal Benefits (GLWB), which have been extensively
studied in the literature.

Since the seminal work of [62] and [33], the no-arbitrage approach has been the dominating
paradigm for pricing dynamic withdrawal benefits in VAs akin to pricing financial derivatives;
see, e.g., [14], [28], [47], [48], [74], and the references therein. This prevailingness is attributed to
the fact that the major risk undertaken by the insurer in VAs is the financial risk which cannot
be diversified in the way like traditional insurance products by pooling but might be hedged (or
at least mitigated) by trading available securities in the financial market; see, e.g., [45]. In recent
years, there has also been an upsurge of studies in building lifetime utility models to value the
withdrawal benefits from the perspective of policyholders, see, e.g., [41, 42], [77], and [46], among
others. For an overview of this strand of research, see [12].

This chapter abides the no-arbitrage pricing framework to study the valuation problem of the
Polaris because this paradigm guides the insurer’s hedging strategy and is robust to the policy-
holder’s actual withdrawal behavior; see [12]. Under such a framework, the pricing problem poses
many challenges from both theoretical and numerical sides. In particular, it leads to a stochastic
optimal control problem due to the uncertainty of the withdrawal behaviors of policyholders. By
resorting to the Dynamic Programming Principle, the price function is characterized as a solution
to a backward recursion equation system, often known as the Bellman equation. The analytical
intractability of the solution to the Bellman equation renders the valuation problem fairly cum-
bersome unless some unrealistic simplifications are conducted, e.g., assuming static withdrawal
behavior and discarding the stochastic control formulation. As a remedy, the existence of a bang-
bang solution might be established for a stochastic control problem which means the optimal

1Specifically, the Polaris VAs are sold by American General Life Insurance Company beyond New York City. In
New York, they are sold by The United States Life Insurance Company; see the cover page of the prospectus [1].
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decision at each time step is confined to a finite number of choices. In such a case, one can drasti-
cally reduce the searching space for the optimization problem in the Bellman equation. The study
on the existence of the bang-bang solution of the stochastic optimal control models accompany-
ing VAs was pioneered by [6] which shows that the optimal withdrawal strategy2 is among three
choices: zero withdrawal, withdrawal at contractual withdrawal amount, and complete surrender.
A similar result is established by [47] for the GLWB contract when the underlying risky asset
follows 3/2 stochastic volatility model. Recently, the newest variant of GLWB which exhibits
different contract features in income and accumulation phases has also been shown to exhibit
a bang-bang solution, see [48]. In spite of those results for the GLWB, the bang-bang solution
does not exist for general VA products and its analysis should be carried on a case by case base
according to the specific contract provisions and model assumptions. Indeed, [6] also shows that
the pricing model accompanying the GMWB does not exhibit a bang-bang solution. This chapter
will show that the stochastic control model associated with the Polaris also exhibits a bang-bang
solution upon a modification of the fee scheme. This modified contract is referred to as the syn-
thetic contract which serves an important benchmark for the real contract. In particular, we will
show that the no-arbitrage price of this synthetic contract is an upper bound for that of the real
contract.

In terms of numerical implementation of the pricing models associated with VAs, the key chal-
lenge lies in the efficient calculation of conditional expectation involved in the Bellman equation
and searching for the optimal withdrawal strategy at each time step. There are three prevalent
numerical methods for solving stochastic optimal control problems arising from pricing VAs: fi-
nite difference method (lattice tree method), numerical integration approach, and Least Squares
Monte Carlo (LSMC) method. The finite difference method rests on a certain partial differential
equation (PDE) characterization of the conditional expectation. Since the withdrawal strategy
changes the initial condition of the PDE at each time step, one should solve a sequence of PDEs
under discrete-time withdrawal models; see, e.g., [33], [7], [40], [6], among others. The numerical
integration method lays its ground on a certain integral representation of the conditional expec-
tation. Specifically, the Gaussian-Quadrature approach and Fourier transform approach can be
employed as long as the transition density and the characteristic function of the pricing process
are known at first hand, respectively; see, e.g., [59], [74], [48], [4], and the references therein.

As a Monte-Carlo-simulation-based method, the LSMC brings large flexibility in choosing
price dynamics and has gained enduring popularity since its emergence. As highlighted in the
previous chapters, an LSMC typically requires a forward simulation of the state variable. In
the context of pricing variable annuities, [47] proposes to simulate the policyholder’s investment
account value based on the strategy of withdrawing at a constant rate. As we have seen from the

2Throughout the chapter, the “optimality” of the withdrawal strategy should be understood as the strategy
that maximizes the insurer’s liability. Despite that the policyholder might not behave in accordance with such a
strategy, it is instructive to study the pricing problem under such a stochastic optimal control framework, which
in turn guides the insurer’s hedging strategy; see [40] and [7] for detailed discussions.
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numerical experiments of Chapter 2, such a forward simulation method might render the LSMC
algorithm miss the optimal solution when the contract payoff depends on the first withdrawal
time of the policyholder. This is particularly the case of the Polaris; see also the subsequent
Remark 4.1. To circumvent this annoying issue, in this chapter we will implement the BSBU
algorithm developed in Chapter 2 with a slight modification to get a numerical solution to the
pricing problem of the Polaris.

The contributions of this chapter are in three-fold. Firstly, a comprehensive no-arbitrage pric-
ing framework is established for the “Polaris Income Plus Daily”. Despite the complex behavior-
dependent features mentioned previously, we manage to formulate the pricing problem under a
Markovian stochastic optimal control framework by prudently introducing certain auxiliary state
and decision variables. By virtue of the nice Markov property, the no-arbitrage price of the Polaris
can be obtained by solving the Bellman equation in a backward recursion manner. Secondly, the
existence of a bang-bang solution is established for the accompanying stochastic control model
after a modification on the fee structure of the contract. Specifically, this chapter will prove that
the optimal withdrawal strategy at each withdrawal date is among three explicit choices for this
synthetic contract. Thirdly, the no-arbitrage price of the synthetic contract is further shown to
dominate that of the real contract. The argument used to establish this result also sheds lights
on how to construct an upper bound for the optimal value function of a discrete-time stochastic
control problem.

This chapter proceeds as follows. Certain notations and abbreviations are provided in the
rest of this section. Section 4.2 provides a brief description of the contract and the model setup.
Section 4.3 gives the mathematical formulation of the pricing model, some theoretical results
related to the existence of bang-bang solution for the synthetic contract, and a study on the
pricing bounds of the Polaris. Section 4.4 addresses the numerical approach. Section 4.5 provides
numerical studies, and Section 4.6 concludes the chapter. Proofs and some technical results are
relegated to Appendix C.

Notations and Abbreviations.

I0 I0 := {0, 1, . . . , N − 1}
I I := {1, 2, . . . , N − 1}
P0 upfront purchase payment of the policyholder
W (t) time t value of investment account
A(t) time t value of income base
Z(t) time t value of step-up value
B(t) time t value of adjusted purchase payment
In an auxiliary state variable indicating first withdrawal time
Xn state process Xn =

(
W (tn), Z(tn), A(tn), B(tn), In

)
accompanying the synthetic contract

x x = (W,Z,A,B, I), a realized value of Xn

η the annual insurance fee rate
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MAWA maximal annual withdrawal amount
PIP protected income payment
G(ξ) MAWA/PIP percentage given the withdrawal is initiated at tξ
ξn(I) timing of the initiation of the withdrawal given In = I

G̃n(I) G̃n(I) = G(ξn(I)), MAWA/PIP percentage given In = I
γn policyholder’s withdrawal amount at time tn
τn auxiliary decision variable indicating whether to take the first withdrawal at time tn
πn πn := (γn, τn)
Xn+ Xn+ :=

(
W (t+n ), Z(t+n ), A(t+n ), B(t+n ), In+1

)
Kn(·, ·) transition function of the state process of the synthetic contract across tn
K̄n(·, ·) transition function of the state process of the real contract across tn
Dn(x) feasible set of πn at Xn = x
Γi,n Γ1,n := {0}, and Γ2,n corresponds to the feasible set of γn given In > 0.

kp0 probability that a t0-age policyholder survives over the time interval (t0, tk]
qk−1 probability that a tk−1-age policyholder dies during the time interval (tk−1, tk]

X̂n+ X̂n+ := (W (t+n ), Z(t+n ), 1, B(tn+1), In+1)

X̂n+1 X̂n+1 := (W (tn+1), Z(tn+1), 1, B(tn+1), In+1)

X̂
(I,m)
n+ X̂

(I,m)
n+ :=

(
W

(m)
n+ , 1, 1, B

(m)
n+1, I

)
X̂

(I,m)
n+1 X̂

(I,m)
n+1 :=

(
W

(m)
n+ eL

(m)
n , 1 ∨W (m)

n+ eL̄
(m)
n , 1, B

(m)
n+1, I

)
x̂I x̂I := (w, z, 1, b, I), a realized value of X̂

(I,1)
n+1

4.2 Model Setup and Contract Descriptions

In this section, we present the model setup and a brief contract description of the “Polaris Income
Plus Daily” rider. For the detailed contract provisions, we refer to the contract prospectus [1].

In reality, contract events, such as withdrawals and deduction of insurance fees, only happen at
a collection of deterministic time points: {t1, t2, . . . , tN−1} with each tn referred to as withdrawal
time or event time. Further denote t0 and tN := T as the attained age of the policyholder
and the contract maturity3, respectively. The time interval between two consecutive event times
∆t := tn − tn−1 is assumed to be one year without loss of generality (w.l.o.g.); see, e.g., [47] and
[48]. Let I := {1, 2, . . . , N − 1} label the collection of all event times and denote I0 := I ∪ {0}.
Assume that all the random elements involved are defined on a common probability space (Ω,F ,P)
equipped with a filtration F = (Ft)t∈[0,T ]. Also assume that there exists an equivalent martingale
measure Q such that the discounted underlying asset price is a martingale.

3Here the maturity refers to the Latest Annuity Date when the contract is converted into a fixed annuity
automatically, see the discussion in “Terminal payoff” below.
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Figure 4.1: A diagram illustrating the mechanism of a variable annuity policy.

At the inception of the contract, the policyholder (PH) pays a lump sum to the writer, say P0,
which is invested in a basket of funds. An investment account is set to record the market value
of the underlying funds and its time t value is denoted by W (t). A shadow account, referred
to as income base in the contract prospectus [1], is used to determine the guaranteed income
payments whose time t value is denoted by A(t). Throughout the contract life, the PH is entitled
to withdraw any portion of the market value of the investment account. The insurer provides
guaranteed income payments to the PH regardless of the performance of the underlying funds. In
this sense, the insurer provides certain protection for the PH against the potential market decline.
As compensation, the insurer deducts insurance fees from the investment account, periodically.
The above mechanism is illustrated in Figure 4.1.

The remainder of this section is organized as follows. Section 4.2.1 introduces some auxiliary
decision and state variables to render our mathematical discussions under a Markovian setting.
The evolution mechanisms of all state variables, in particular, the investment account and the
income base, are presented in Section 4.2.2 which prepare the ground of our pricing model in the
next section.

4.2.1 Auxiliary Decision and State Variables

As commented in the introduction section, the payoffs of the Polaris depend on the timing of the
first withdrawal of the PH. Therefore, it is necessary to introduce an auxiliary state variable to
record the time of the first withdrawal, which paves the way to formulating the pricing problem
under a Markovian stochastic optimal control framework.

First withdrawal time

First introduce a decision variable τn to model the PH’s decision to initialize the withdrawal or
not by taking values 1 and 0, respectively. Moreover, we use a new state variable In to record
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· · ·
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1

ξ
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tN Time

Figure 4.2: Evolution scheme of In and τn. tξ is the first withdrawal time.

the first withdrawal time which is recursively defined as follows: I0 = 0 and

In =

{
n− 1, if In−1 = 0 and τn−1 = 1,

In−1, otherwise.

The above definition is interpreted as follows. In = 0 corresponds to the case that the PH has
not initialized the withdrawal by time tn. Once the first withdrawal is taken at tξ for some ξ ∈ I,
In freezes at ξ forever. Therefore, In is a jump process with jump size equal to the index of the
first withdrawal time.

Further prescribe that the feasible set of τn is a singleton {1} once the withdrawal is initialized.
Before the first withdrawal, the feasible set of decision variable τn is {0, 1} instead. Therefore,
the feasible set of τn is state-dependent.

Given In and τn = 1, the index of the first withdrawal time is given by

ξn(In) = In1{In>0} + n1{In=0}, (4.1)

where 1{E} = 1 if event E happens; otherwise, 1{E} = 0. The evolution mechanisms of In and
τn are depicted by the diagram in Figure 4.2.

Remark 4.1. From Figure 4.2, we can get a clear picture of the drawback of the forward simu-
lation method proposed by [47] which simulates the state process by activating the withdrawal at a
predetermined time step; see the first paragraph of their Section 3.3.2.4 Suppose one initializes the
withdrawal at tξ, then all simulated values of the above state variable In equal ξ for all n ≥ ξ+ 1.
However, the feasible set of In is {0, 1, . . . , n − 1} for n ∈ I, and therefore the simulated values
do not evenly spread over the feasible set and the regression estimate of the continuation function

4To be more precise, in simulating the trajectories of the state process, [47] assumes the PH withdraws at a
fixed amount throughout the contract life, or equivalently, the PH initiates the withdrawal at t1 and maintains a
constant withdrawal amount thereafter.
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is severely skewed.

Guaranteed Income Payment

The necessity of introducing the state variable In stems from two important contract provisions
of the Polaris. Firstly, any withdrawal amount smaller than a certain pre-specified amount does
not reduce the income base value. This cap is called as Maximal Annual Withdrawal Amount
(MAWA) and is calculated as a certain percentage of the income base. Specifically, if the first
withdrawal happens at an age between 45 and 59, the MAWA is determined by 4.0% of the income
base; and this MAWA percentage climbs to 5.0% if the age at the first withdrawal is between 60
and 64.

Secondly, even after the investment account is depleted, the PH is still entitled to withdraw
a certain amount at each withdrawal time, which is referred to as the Protected Income Payment
(PIP). Analogously, the PIP is computed as a certain percentage of the income base value and
the PIP percentage steps up if the PH defers the withdrawal. In what follows, let us focus on
the case that the MAWA percentage coincides with the PIP percentage and denote G(ξ) as the
MAWA/PIP percentage given the first withdrawal is taken at tξ. This is in accordance with the
“Income Option 3” of the Polaris contract.5

In accordance with the above discussions, given the state variable In, the MAWA/PIP per-
centage is given by

G̃n(In) := G(ξn(In)). (4.2)

Feasible set of decision variables

Let γn denote the PH’s withdrawal amount at event time tn. Next, we discuss the feasible set
of the bivariate decision variable πn := (γn, τn). Define the feasible set of πn, denoted by Dn, as
follows:

Dn =

{
Dn,1

⋃
Dn,2, if In = 0

Dn,2, if In > 0
(4.3)

where

Dn,1 := Γn,1 × {0} := {0} × {0}, (4.4)

Dn,2 := Γn,2 × {1} =
[
0,W (tn) ∨ G̃n(In)A(tn)

]
× {1} (4.5)

5See the “Supplement to the variable annuity prospectus” of the prospectus [1] for details.
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with a ∨ b := max{a, b}. The above equation system can be understood as follows. If In = 0, no
withdrawal has been taken by time tn and the PH has the option to initialize the withdrawal or
not, which corresponds to a feasible set for πn either being Dn,1 or Dn,2. In particular, if the PH
chooses to postpone withdrawal (τn = 0), the feasible set of withdrawal amount γn is clearly a
singleton {0}. In the case In > 0, withdrawal was initialized before tn and accordingly, the feasible

set for the withdrawal amount is a continuum as given by Γn,2 =
[
0,W (tn) ∨ G̃n(In)A(tn)

]
. It is

notable that the PH can always enjoy a withdrawal amount up to the greater between MAWA/PIP
and the investment account value, which is in accordance with the discussion in the last item
“Guaranteed Income Payment”.

It is worth stressing that the feasible set of the decision variable πn depends on the state
variables. Such dependency is sometimes highlighted by writing Dn (Xn) with Xn being the state
process defined in the next subsection.

4.2.2 Evolution Mechanisms of State Variables

Evolution of investment account

The investment account is reduced by withdrawals and insurance fees (also referred to as rider
charge) periodically. We model the log-return of the underlying fund by a Lévy process and
denote its increment over (tn, t] by Ln(t), for t > tn and n ∈ I0. Hereafter, we use W (t+n ) to
denote the value of investment account right after the deduction of the PH’s withdrawal and
insurance fee at an event time tn. All the other quantities affixed with “(t+n )” in this chapter
should be interpreted in the same manner.

The evolution mechanism of the investment account is inductively prescribed as follows.

• At the inception, the investment account value equals the initial investment, i.e., W (t0) =
P0.

• Across the withdrawal time tn, the investment account value is reduced by withdrawal and
insurance fee charged by the insurer. We consider two different fee schemes in the sequel.

– Real contract. In the real contract specification, the insurance fee charged at each
event time is calculated as a certain percentage of the income base [1, pp. C-1],
denoted by η ∈ (0, 1).6 Accordingly, investment account exhibits the following jump

6Here the rider charge percentage is assumed to be deterministic. In real contract specification, the value of η
is tied to the VIX and thus is not a constant. Our framework can easily accommodate this feature by introducing
an extra state variable as it is done in [32]. The key point is that the evolution of VIX is not influenced by the
PH’s decision and thus introducing this state variable would not ruin the argument for proving the existence of a
bang-bang solution.
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mechanism across an event time:

W (t+n ) = max
[
W (tn)− γn︸︷︷︸

withdrawal

− ηA
(
t+n
)︸ ︷︷ ︸

insurance fee

, 0
]
, n ∈ I. (4.6)

Remark 4.2. One important observation can be made from the above equation: the
insurance fees deducted by the insurer increases as the income base steps up. There-
fore, a larger income base value might not be desirable to the PH as that means more
fees levied by the insurer. This observation is in stark contrast with that of the GLWB
contract studied by [6] and [47], as stated in Remark 4.16 of [6] that a larger benefit
base7 brings more value to the PH. In a formal mathematical language, the price func-
tion of the Polaris considered here is not necessarily monotone with respect to the state
variable. This breaks the argument for proving the existence of the bang-bang solution
where the monotonicity of the value function plays a pivotal role.

– Synthetic contract. As alluded by Remark 4.2, the special fee scheme of the Polaris
ruins the monotonicity of the price function which in turn brings a technical challenge
to the pricing model discussed later. To circumvent this difficulty, we modify the fee
scheme and consider the following transition equation of the investment account across
an event time:

W (t+n ) = (1− η)
(
W (tn)− γn

)+
, n ∈ I, (4.7)

with (a)+ := max [a, 0]. The above equation assumes that the insurance fee is propor-

tional to the investment account and therefore the amount η
(
W (tn)−γn

)+
is deducted.

This is commonly assumed in the literature of variable annuities, see, e.g., [6], [47],
[74], among others. Under such an assumption, the monotonicity of the price function
might hold and the accompanying pricing problem is easier to solve as we will see
in the subsequent section. In the subsequent discussion, we will first concentrate on
the jump mechanism (4.7) for our pricing model and call this modified contract as
the “synthetic contract”. We will show that the no-arbitrage price of this synthetic
contract can be used as an upper bound for that of the “real contract” corresponding
to the fee scheme (4.6).

• Between two consecutive event times, the investment account evolves according to:

W (t) = W (t+n )eLn(t), t ∈ (tn, tn+1], n ∈ I0. (4.8)

Since the PH is not allowed to withdraw at t0, we have W (t0) = W (t+0 ). This convention

7The benefit base is the parallel income base in a GLWB contract. It basically plays the role of determining the
guaranteed payment of the insurer.
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applies to the other state variables.

Evolution of step-up value

Prior to PH’s first withdrawal, the income base locks in the high water mark of the investment
account since the inception (“global” running maximum); see the first case of system (4.9) below.
This level is referred to as step-up value. After the initiation of the withdrawal, the income base
value steps up to the running maximum of the investment account between two consecutive event
times (“local” running maximum).

Introduce step-up value as an additional state variable and denote its time t value as Z(t). In
accordance with the preceding discussion, its evolution mechanism is inductively given as follows.

• At initiation, Z(t0) = P0.

• For n ∈ I, the jump mechanism of step-up value across the withdrawal time tn is given by

Z(t+n ) =

{
Z(tn), if τn = 0,

W (t+n ), otherwise.
(4.9)

• Between two consecutive withdrawal times,

Z(t) = max

[
sup

s∈(tn,t]
W (s), Z(t+n )

]
, t ∈ (tn, tn+1], for n ∈ I0. (4.10)

Some interpretations regarding the above state variable Z(t) are given as follows. Z(tn) gives
the global running maximum of investment account over [0, tn] if no withdrawal has been made
before tn; see the first case of the above system (4.9). If a withdrawal is taken at tn, i.e., τn = 1,
then the step-up value is reset to be the post-withdrawal value of the investment account, which
corresponds to the second case of Eq. (4.9). Accordingly, the state variable Z(tn+1) records the
running maximum of the underlying fund over (tn, tn+1].

Evolution of income base

As commented previously, the income base is a shadow account which plays a crucial role in
determining the MAWA/PIP. Let us discuss the jump mechanism of the income base in several
cases. If the first withdrawal has not been taken, the income base locks in the high water
mark of the investment account since inception; see the first case of Eq. (4.11) below. If the first
withdrawal is less than MAWA and is taken at tn, the income base only steps up to the investment
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account value after withdrawal, see the second case of Eq. (4.11) below. If the first withdrawal
has been taken but the annual withdrawal is less than the MAWA, the income base steps up to
the running maximum of the investment account between two consecutive anniversaries; see the
third case of Eq. (4.11) below. If the annual withdrawal amount exceeds the MAWA which is

referred to as excess withdrawal, the income base is first reduced by the factor W (tn)−γn
W (tn)−G̃n(I)A(tn)

and then steps up to the greater between the income base and the investment account, see the
last case of Eq. (4.11) below. The detailed jump mechanism of the income base is inductively
summarized as follows.

• At initiation, A(t0) = P0.

• For n ∈ I, the jump mechanism of the income base across withdrawal time tn is given by

A(t+n ) =


A(tn) ∨ Z(tn), if τn = 0,

A(tn) ∨ (W (tn)− γn), if In = 0, 0 < γn ≤ G̃n(In)A(tn),

A(tn) ∨ Z(tn), if In > 0, 0 ≤ γn ≤ G̃n(In)A(tn),(
W (tn)−γn

W (tn)−G̃n(In)
A(tn)

)
∨ (W (tn)− γn), if G̃n(In)A(tn) < γn ≤W (tn),

(4.11)

where one should recall from Eq. (4.2) that G̃(In) = G(ξn(In)) is the MAWA/PIP percent-
age.

• The income base remains constant over time interval (tn, tn+1]: A(t) ≡ A(t+n ), t ∈ (tn, tn+1],
for n ∈ I0.

Evolution of adjusted payment

If the PH passes away during the contract life, death benefits are paid to the beneficiary. The
amount of death benefits is determined by the greater of the investment account value and the
initial purchase payment of the PH adjusted by the withdrawals and this quantity is referred to
as adjusted payment in what follows. Accordingly, it is necessary to introduce a state variable
B(t) to record the adjusted payment so as to further determine the death payment payable at
each event time. The amount of withdrawal-adjusted payment is initially set as P0 since there is
no withdrawal at inception. If the annual withdrawal amount is less than MAWA, the adjusted
payment is simply reduced by the withdrawal amount; otherwise, the adjusted payment is first
reduced by MAWA and then scaled by the factor W (tn)−γn

W (tn)−G̃n(In)A(tn)
. Therefore, the evolution

mechanism of B(t) is given as follows.

• At initiation, B(t0) = P0.
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• The jump mechanism across withdrawal time tn is given by

B(t+n ) =

{(
B(tn)− γn

)+
, if 0 ≤ γn ≤ G̃n(In)A(tn)

W (tn)−γn
W (tn)−G̃n(In)A(tn)

(
B(tn)− G̃n(In)A(tn)

)+
, if G̃n(In)A(tn) < γn ≤W (tn),

(4.12)

for n ∈ I.

• The adjusted payment changes its value only at each withdrawal time and therefore B(t) ≡
B(t+n ) for t ∈ (tn, tn+1] and n ∈ I0.

Transition of state process across withdrawal time

So far defined five state variables have been introduced and they together compose a multivariate
controlled Markov process, denoted as Xn :=

(
W (tn), Z(tn), A(tn), B(tn), In

)
. Its dependency on

the PH’s decision is suppressed for notational simplicity. The readers should bear in mind that
Xn implicitly depends on the action taken by the PH up to time tn−1, i.e., {πi}n−1

i=1 . Define the
transition equation of Xn across an event time tn as

Kn(Xn, πn) =
(
W (t+n ), Z(t+n ), A(t+n ), B(t+n ), In+1

)
=: Xn+ . (4.13)

The transition function Kn(·, ·) is determined in accordance with Eqs. (4.7, 4.9, 4.11, 4.12) and
its expression is relegated to Appendix C.1 for the clarity of presentation. Henceforth we will call
Xn+ as the post-withdrawal value of the state process.

The expression of Kn(·, ·) is based on Eq. (4.7) for the jump mechanism of the investment
account, whereas, as commented in Remark 4.2, the transition of the investment account across
an event time is governed by Eq. (4.6) in the real contract specification of the Polaris. In such
a case, the accompanying transition function, denoted by K̄n(·, ·), differs from Kn(·, ·) only in
the first component which corresponds to the transition function of the investment account; see
Appendix C.1 for the specific expression of K̄n(·, ·). The state process obeying this transition
mechanism can be defined in a similar manner and is denoted by X̄n. Accordingly,

X̄n+ := K̄n

(
X̄n, πn

)
. (4.14)

It is worth noting that while the transition mechanism across a withdrawal date differs between
X̄n and Xn, their evolution schemes between two consecutive withdrawal dates are exactly the
same.
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4.3 Pricing Model

4.3.1 Stochastic Control Formulation

This subsection formulates the pricing model of the Polaris variable annuity under a stochastic
optimal control framework.

Withdrawal charge

Let gn(Xn, πn) be the dollar amount of the PH’s cash inflow resulted from a decision πn at time
tn. It is given by

gn(Xn, πn) = γn − κn
(
γn − G̃n(In)A(tn)

)+
.

In other words, only the excess withdrawal part γn − G̃n(In)A(tn) is subject to a proportional
penalty κn which is time-dependent [1, pp. 26–27].

Terminal payoff

Starting from the inception, the contract stays in the Accumulation Phase during which the
preceding contract provisions apply. After the Latest Annuity Date tN , the Accumulation Phase
terminates and the Income Phase is automatically initiated, that is, the contract is converted
into a fixed annuity with time-tN value equal to W (tN ). Therefore, w.l.o.g., we assume that the
terminal payoff is a lump sum payment of W (tN )8.

Mortality risk

The literature of variable annuity conventionally assumes the mortality risk faced by the insurer
can be diversified via issuing a large number of similar contracts; for a theoretical foundation
behind this, see [39]. We adopt actuarial notation to denote kp0 as the probability that a t0-age
PH survives over the period (t0, tk] and qk−1 as the probability that a tk−1-age PH passes away
during the time interval (tk−1, tk].

8The notions of income phase and accumulation phase in the Polaris are different from those in the GLWB
policy studied by [48].
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Dynamic programming equation

Let r be a certain risk-free rate and denote ϕ := e−r. Given an initial state X0 and a PH’s
decision π := (πk)

N−1
k=1 , the expected present value (EPV) of all future policy payoffs is given by

J (X0, π) = EQ

[
N−1∑
k=1

ϕkfk(Xk, πk) + ϕNN−1p0W (tN )

]
,

where

fk(Xk, πk) = kp0gk(Xk, πk) + k−1p0qk−1

[
B(tk) ∨W (tk)

]
, (4.15)

and the superscript in EQ stresses the expectation is taken under the martingale measure Q.

From the insurer’s perspective, the first term kp0gk(Xk, πk) represents the cash inflows of
living PHs at time tk. The second term in Eq. (4.15) corresponds to the death benefits paid at
time tk for those PHs who passed away during the time period [tk−1, tk]. Therefore, fk(Xk, πk)
gives the total payoff of the policy at time tk. Finally, the term N−1p0W (tN ) is the value of
converted fixed annuity of living PHs at the maturity.

The no-arbitrage price of the synthetic contract at inception is characterized as the optimal
value function of the following stochastic optimal control problem:

V0(X0) := sup
π∈Π
J (X0, π),

where Π is the set of all admissible decisions:

Π :=
{

(πk)
N−1
k=1

∣∣∣ πk is Fk −measurable, πk ∈ Dk (Xk) , k = 1, . . . , N − 1
}
, (4.16)

and X0 = (P0, P0, P0, P0, 0) with P0 being the intitial purchase amount of the policyholder.

Let x = (W,Z,A,B, I) be a realized value of the state process. Via exploiting the Bellman’s
principle of optimality, the value function V0(·) can be solved through the following backward
recursion procedure:

1. For n = N , VN (x) = N−1p0W ;

2. For n = N − 1, . . . , 1,

Vn(x) = sup
πn∈Dn(x)

[
fn(x, πn) + ϕCn

(
Kn(x, πn)

)]
, (4.17)
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where

Cn (·) := EQ
[
Vn+1(Xn+1)

∣∣∣Xn+ = ·
]

; (4.18)

3. Finally, V0(x) = ϕEQ [V1(X1)
∣∣X0 = x

]
.

Note that the transition equation (4.13) is adopted for calculating the conditional expectation
Cn
(
Kn(x, πn)

)
, and accordingly, V0(x0) returns the fair value of the synthetic contract with the

initial state x0 =
(
P0, P0, P0, P0, 0

)
. The value function accompanying the real contract, denoted

by V̄n(·), can be similarly solved via the preceding dynamic programming equation except that
Kn(·, ·) should be replaced by K̄n(·, ·) as given by Eq. (4.14).

Two key issues arise in implementing the above backward recursion procedure. The first issue
is the evaluation of the continuation function Cn(·). This can be numerically resolved in the spirit
of the BSBU algorithm developed in Chapter 2. The second issue is the possibility of not being
able to find the global optimizer of the optimization problem at each time step. This is due to
the fact that the objective function of the optimization problem is in general neither convex nor
concave and there does not exist a generic optimization algorithm to find its global optimizer in
a computationally efficient way. One possible idea to circumvent this dilemma is considering the
optimization problem over a finite subset of the original feasible set Dn, denoted by D̂n, and then
showing the equivalence of these two optimization problems. If this is achievable, the stochastic
control problem is said to exhibit a bang-bang solution. In the subsequent subsection, we will
prove the existence of the bang-bang solution for the stochastic optimization problem associated
with the synthetic contract, and such a result is critical to the efficacy of the numerical approach
we will develop in Section 4.4 for the computation of the fair value of the synthetic contract.
We will further prove that V0(x0) ≥ V̄0(x0) in Section 4.3.3, that is, the fair value for the real
contract is bounded from above by that of the synthetic contract, which is the primary driving
force behind introducing the synthetic contract.

4.3.2 Bang-bang Analysis

In the following, we will see that the stochastic optimal control problem associated with the
synthetic contract exhibits the bang-bang solution, that is, the optimal withdrawal strategy at
each event time is restricted into a few choices.

We will first establish the scaling property (positive homogeneity) of the optimal value function
which is beneficial in two-fold: first, it simplifies the proof of the existence of the bang-bang
solution; second, it reduces the dimension of the state variable by one (see Eq. (4.23) in the
sequel) and accordingly alleviates the computational burden of the numerical algorithm proposed
in Section 4.4 in the sequel.
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Proposition 4.1 (Positive Homogeneity). For c > 0, let xc := (c ·W, c · Z, c · A, c · B, I) and
x := (W,Z,A,B, I) be two realized values of the state variable Xn. Then, the value functions of
the synthetic contract and real contract exhibit the following scaling property:

Vn(xc) = c · Vn(x) and V̄n(xc) = c · V̄n(x), for n = 0, 1, . . . , N.

The proof of the preceding proposition is relegated to Appendix C.4. The statements delivered
in the above proposition are not trivial since the feasible set of the PH’s decision depends on
whether the withdrawals begin or not. A dedicated investigation should be carried out. It is
worth stressing that the positive homogeneity does not hold for general VA products, for example,
the GMWB; see [7] for a discussion.

The following theorem gives a full characterization of the optimizer of the optimization prob-
lem in the Bellman equation (4.17).

Theorem 4.1 (Bang-bang Solution). For any withdrawal time tn, let x = (W,Z,A,B, I) be a
realized value of Xn. Suppose that ξ 7−→ G(ξ) for any ξ ∈ I is monotone. Then the synthetic
contract exhibits the following optimal withdrawal strategies:

(i) If the withdrawal has been initialized, i.e., I > 0, the optimal withdrawal amount is either (i)
γ̂n = 0, (ii) γ̂n = G(I)A, or (iii) γ̂n = W .

(ii) If the withdrawal has not been initialized, i.e., I = 0, the optimal strategy is either to postpone
the withdrawal, i.e. τn = 0, or to activate the withdrawal, i.e. τn = 1, and the corresponding
optimal withdrawal amount is either (i) γ̂n = G(n)A, or (ii) γ̂n = W .

The proof of Theorem 4.1 is relegated to Appendix C.4. Here we give some intuitions behind
the existence of the bang-bang solution. In view of the Bellman equation (4.17), one has to solve
a deterministic optimization problem at each event time. If the accompanying objective function
is convex and the feasible set of the decision variable is a convex set, then the supremum of the
objective is attained among the collection of extreme points. In order to guarantee the convexity
of the optimization problem can be propagated from step T down to step 0, the monotonicity
of value function plays an indispensable role. As commented in Remark 4.2, when the insurance
fee is proportional to the income base (see Eq. (4.6)), it is not clear whether the value function
is monotone w.r.t. the income base or not because a higher income base means more insurance
fees charged by the insurance company. Accordingly, it is generally difficult to show the existence
of a bang-bang solution for the pricing model corresponding to the real contract. We conjecture
that the statements delivered in the above theorem do not hold for the real contract.

The conclusions in Theorem 4.1 can be equivalently stated as:

Vn(x) = max
πn∈D̂n

[
fn(x, πn) + ϕCn

(
Kn(x, πn)

)]
=: max

πn∈D̂n
Vn(x, πn), (4.19)
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for n ∈ I, where

D̂n =

{{
(0, 0),

(
G(n)A, 1

)
,
(
W, 1

)}
, if I = 0,{

(0, 1),
(
G(I)A, 1

)
,
(
W, 1

)}
, otherwise,

(4.20)

and its dependency on state x = (W,Z,A,B, I) is suppressed for notational brevity.

The sequel proposition gives a closed-form expression for the value function given the invest-
ment account is depleted.

Proposition 4.2 (Explicit Solution). Let Xn = (W,Z,A,B, I) with I > 0. Suppose W = 0 and
I > 0. Then the no-arbitrage prices of the real contract and the synthetic contract at time tn are
exactly the same and exhibit the following analytical expression:

V S
n (0, Z,A,B, I) = np0G(I)A+ n−1p0qn−1B +

N−1∑
j=n+1

jp0ϕ
j−nG(I)

(
A ∨ Z

)
+

N−1∑
j=n+1

j−1p0qj−1ϕ
j−n

(
B̃ − (j − n)G(I)

(
A ∨ Z

))+
, (4.21)

with B̃ :=
(
B −G(I)A

)+
and n ∈ I.

The proof of the preceding proposition is straightforward. We give the intuition behind the
above equation as follows. On one hand, it is easy to see that the optimal withdrawal strategy
after the investment account is depleted is always withdrawing at the amount G(I)A. On the
other hand, once the investment account is depleted, no future insurance fee will be deducted and
accordingly, the impact of the difference in fee schemes on the contract value vanishes. In view
of this, it is not surprising that the above Eq. (4.21) holds for both synthetic and real contracts.
The first summation term corresponds to the present value of future withdrawals and the second
summation gives the present value of future death benefits.

4.3.3 Pricing Bounds

The following theorem discloses the relationship between the no-arbitrage prices of the synthetic
contract and the real contract.

Theorem 4.2 (Pricing Upper Bound). Let P0 be initial investment amount of the policyholder.
Denote x0 :=

(
P0, P0, P0, P0, 0

)
. The no-arbitrage price of the real contract is dominated by that

of the synthetic contract, that is, V̄0(x0) ≤ V0(x0).
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Remark 4.3. The above theorem casts new insights on the design of the fee structure. In most
earlier guaranteed withdrawal benefits, the rider charge is prescribed to be proportional to the
investment account and the prevailing market fee rate is observed to be less than the theoretical
fee rate obtained from the no-arbitrage pricing framework; see, e.g., [62], [28], [63], and [52].
In other words, the insurance fees received by the insurer are insufficient to finance the hedging
portfolio. The above theorem discloses that the insurer’s risk exposure can be reduced by charging
the fees against the income base. This shows the advantage of the fee structure of the Polaris
over those in the GMWB and GLWB studied in the literature, see, e.g., [6] and [47].

Pricing lower bound A lower bound for V̄0(x0) is easy to obtain. One may first restrict the
feasible set of the decision variable at each time step, Dn, into the finite subset D̂n given in Eq.
(4.20) and then solve a similar stochastic optimization problem as (4.19) except that Kn(·, ·) is
replaced by K̄n(·, ·). Since the original feasible set is reduced into a subset, this will produce a
sub-optimal solution, or equivalently, a lower bound of the no-arbitrage price of the real contract.

4.4 Numerical Approach

This section develops a Least Squares Monte Carlo (LSMC) algorithm to compute the no-arbitrage
price of the synthetic contract. It is worth noting that our proposed approach is also applicable
to computing the lower bound of the no-arbitrage price of the real contract by the procedure
described at the end of the last section.

The road map of this section is as follows: firstly, we will discuss the approximation of the
continuation function Cn(·) by exploiting some dimension reduction tricks and a nonparametric
sieve estimation method; secondly, we propose to directly simulate the post-withdrawal value of
the state process and present the whole LSMC algorithm; finally, the convergence analysis of the
algorithm and some discussions are given.

4.4.1 Nonparametric Sieve Estimation for Continuation Function

Dimension reduction

To enhance the efficiency of approximating Cn(·) by the regression method proposed in the sequel,
we would like to first reduce the dimensionality of the state variable. Introduce the following
normalized transition function:

K̂n(x, πn) =
(
K̂n,1(x, πn), K̂n,2(x, πn), 1, K̂n,4(x, πn),Kn,5(x, πn)

)
, (4.22)

where K̂n,i(x, πn) = Kn,i(x, πn)/Kn,3(x, πn), i = 1, 2, 4, for Kn,3(x, πn) > 0.
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By exploiting the scaling property delivered in Proposition 4.1, Vn(x, πn) (see Eq. (4.19)) can
be equivalently written as

Vn(x, πn) =

fn(x, πn) + ϕKn,3(x, πn) · Cn
(
K̂n(x, πn)

)
, if Kn,3(x, πn) > 0,

np0

[
(1− κn)W + κnG̃n(I)A

]
+ n−1p0qn−1

(
B ∨W

)
, otherwise,

(4.23)

where the second case of the above system holds because Kn,3(x, πn) = 0 entails γn = W .

Observe that all terms in the above equation are exact except for the continuation function
Cn(·) which is essentially a four-variate function since the third component of K̂n(x, πn) is fixed as
1; see Eq. (4.22). Hence the dimension of the state process has been reduced by one. Compressing
the dimension of the state process by exploiting the positive homogeneity property of the value
function is a common technique in the literature of variable annuity; see, e.g., [7] and [47].

The following proposition discloses that the dimensionality of the problem can be further
reduced by one if one restricts her attention of the continuation function into some bounded set.

Proposition 4.3 (Shape Constraints). The continuation function Cn (·) defined in Eq. (4.18)
exhibits the following properties:

(i) k2 7−→ Cn (k1, k2, 1, k4, k5) is constant over [0, 1];

(ii) k1 7−→ Cn (k1, k2, 1, k4, k5) and k4 7−→ Cn (k1, k2, 1, k4, k5) are convex and monotone.

The proof of the above proposition is relegated to Appendix C.4.

Property (i) of Proposition 4.3 states that Cn (k1, k2, 1, k4, k5) is invariant to k2 over certain
region and therefore one may view it as a three-variate function. This property stems from the
unique structure of the Polaris instead of the homogeneity result in Proposition 4.1 which has
already been exploited by us to reduce the dimensionality by one in deriving Eq. (4.23). Such a
special structure does not apply to the GMWB and the GLWB.

Property (ii) of the above proposition gives extra shape information of the continuation func-
tion which further implies the value function is convex and monotone (C.M.) according to the
proof of Theorem 4.1; see Appendix C.4. The C.M. property is commonly observed in various
financial products. For instance, it can be shown that the price function of an American call op-
tion is C.M. w.r.t. the spot price under some mild conditions, see, e.g., [34]. The C.M. property
of the price function of the GLWB has been studied in [6] and [47]. In light of this, it is natural
to expect a good numerical estimate for the continuation function can inherit the C.M. property
which is meaningful in at least two aspects: first, the C.M. properties of the continuation function
and price function have sensible economic interpretations; second, as we have seen in Chapter
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2, the shape-preserving sieve estimation method makes the regression estimate insensitive to the
tuning parameter and thus reduces the computational cost. Unfortunately, for most LSMC algo-
rithms proposed in the literature, the regression estimate often violates the C.M. shape constraint
because a linear combination of the basis functions might not be a C.M. function, see, e.g., [34]
and [48, pp. 825–826]. This dilemma not only applies to the LSMC but also is suffered by many
other numerical approaches such as Fourier transform approach ([48]). In the sequel, we will em-
ploy the shape-preserving sieve estimation technique of [83, 84] to approximate the continuation
function as in Chapter 2.

Artificial simulation of the state process

Let us restrict our attention of the continuation function Cn(·) to the following bounded set:

Kn := [0, 1]× {1} × {1} × [0, 1]× {0, 1, . . . , n}.

The motivation behind approximating Cn(·) over the above set Kn will become clear after the
presentation of the whole LSMC algorithm; see the subsequent Remark 4.5. Inductively assume
that there already exists an estimate for the value function at time step n+1, denoted by V E

n+1(·),
because the value function VN−1 will be shown explicitly known.

Simulation of post-withdrawal value at t+n Let

X̂n+ :=
(
W (t+n ), Z(t+n ), 1, B(tn+1), In+1

)
,

and

X̂n+1 := (W (tn+1), Z(tn+1), 1, B(tn+1), In+1) .

It is notable that the third component of X̂n+ (resp., X̂n+1) is normalized to be one in comparison
with Xn+ (resp., Xn+1) defined previously. For each In+1 = I ∈ {0, 1, . . . , n}, denote the m-th
simulated value of X̂n+ by

X̂
(I,m)
n+ =

(
W

(m)
n+ , 1, 1, B

(m)
n+1, I

)
. (4.24)

Note that the simulated values of Z(t+n ) and A(t+n ) are fixed as 1 because one is solely interested in

the value of continuation function over Kn. The superscript in X̂
(I,m)
n+ stresses that the simulated

value of In+1 is fixed as I.

The pair
(
W

(m)
n+ , B

(m)
n+1

)
is simulated from some exogenously given bivariate distribution with

support [0, 1]2 and cumulative distribution function µ(·, ·). For each m and n, we simulate the
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pair
(
W

(m)
n+ , B

(m)
n+1

)
as follows:

1. Simulate two independent random variables from exponential distribution with mean 1,
denoted as Y1 and Y2, respectively.

2. Set
(
W

(m)
n+ , B

(m)
n+1

)
=
(
Y1 ∧ 1, Y2 ∧ 1

)
with a ∧ b := min{a, b}.

Simulation of the state process at tn+1 Given X̂
(I,m)
n+ , generate the random sample of the

state process at tn+1 as follows. Let
(
L

(m)
n , L̄

(m)
n

)
be the m-th simulated value of the increment

and running maximum of Lévy process over time interval [tn, tn+1] which are independent of

X̂
(I,m)
n+ . The simulated value of X̂n+1 is given by

X̂
(I,m)
n+1 :=

(
W

(m)
n+ eL

(m)
n , 1 ∨W (m)

n+ eL̄
(m)
n , 1, B

(m)
n+1, I

)
(4.25)

which is in accordance with the evolution mechanisms of the investment account and step-up
value; see Eqs. (4.8) and (4.10), respectively.

Shape-preserving sieve estimation In the following, we employ the shape-preserving sieve
estimation method of [83, 84] in the following. Different from the case in Chapter 2, the covariate

variable/regressor has dimension two in the present regression problem. Let
{
bJ`,k(x1, x2)

}
0≤`,k≤J

be a set of bivariate Bernstein polynomials, that is,

bJ`,k (x1, x2) =

(
J

`

)(
J

k

)
x`1 (1− x1)J−` xk2 (1− x2)J−k , (4.26)

for x1, x2 ∈ [0, 1], `, k = 0, 1, . . . , J.

Remark 4.4. The notation J here stands for the maximal degree of the Bernstein polynomials.
While cautious readers might note that J + 1 corresponds to the total number of basis functions
used in the sieve estimation method in the previous Chapters 2 and 3. We abuse this notation a
little bit as long as it causes no confusion in the present chapter.

The shape-preserving sieve estimation method approximates the continuation function Cn (·)
by a linear combination of the above Bernstein polynomials, that is,

CE
n

(
k1, 1, 1, k4, I

)
= bᵀ (k1, k4) · βE

n,I , for
(
k1, 1, 1, k4, I

)
∈ Kn, (4.27)
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(Xn, πn) Xn+

Kn(·, ·)
EQ
[
Vn+1(Xn+1)

∣∣∣Xn+

]Cn(·)

Simulated from µ(·, ·)

Recovered by regression
over a bounded support

Figure 4.3: A diagram for estimating the continuation function. It is worth noting that
the regression is conducted once to recover Cn(·) per time step and Cn

(
Kn(Xn, πn)

)
can be

computed for various pairs of (Xn, πn).

where b (k1, k4) is a (J + 1)2-by-1 vector-valued function with each element given by bJ`,k(k1, k4)

and βE
n,I solves:  min

β

1
M

∑M
m=1

[
V E
n+1

(
X̂

(I,m)
n+1

)
− bᵀ

(
X̂

(I,m)
n+

)
β
]2

subject to Aβ ≥ 0,
(4.28)

with X̂
(I,m)
n+ and X̂

(I,m)
n+1 given in Eqs. (4.24) and (4.25), respectively, β being a (J+1)2-by-1 vector,

and 0 denoting a 2(J2 + J)-by-1 null vector. Under a particular choice of A (see Appendix C.3),
the linear constraint Aβ ≥ 0 in the above optimization problem ensures kj 7→ CE

n

(
k1, 1, 1, k4, I

)
is C.M. for j = 1 and 4 ([84]).

It is worth noting that βE
n,I depends on I due to the dependency of the random sample

V E
n+1

(
X̂

(I,m)
n+1

)
on I. The superscript E emphasizes that βE

n,I is a statistical estimate (random

vector). Figure 4.3 is an illustrative diagram for the artificial simulation method and the estima-
tion of continuation function.

Estimate for the value function

Now it is ready to give a numerical estimate for the value function. Recall that an analytical
expression of the value function is available when the investment account is depleted (Eq. (4.21)),
and therefore, there is no need to use a numerical estimate under such a situation. In view of
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. . . CE
n+1(·)

∣∣
Kn+1

V E
n+1(·)

Eq. (4.29)
CE
n (·)

∣∣
Kn

Solve (4.28)
V E
n (·)

Eq. (4.29)
. . .

Figure 4.4: A diagram illustrating the propagation of information. It is worth noting that
in the evaluation of V E

n (·), the information of CE
n+1(·)

∣∣
Kn+1

is implicitly required.

this and Eqs. (4.19, 4.23), the numerical estimate for the value function is given by

V E
n (x) =


max
πn∈D̂n

[
fn(x, πn) + ϕKn,3(x, πn)CE

n

(
K̂n(x, πn)

)]
, if Kn,i(x, πn) > 0 for i = 1, 3,

max
πn∈D̂n

[
fn(x, πn) + ϕKn,3(x, πn)V S

n+1

(
K̂n(x, πn)

)]
, if Kn,1(x, πn) = 0 and Kn,3(x, πn) > 0,

np0

[
(1− κn)W + κnGA

]
+ n−1p0qn−1B, otherwise.

(4.29)

Recall that D̂n is a lattice (see Eq. (4.20)), and therefore, the optimization problem in the above
equation can be solved by a linear search.

Before closing this subsection, we make a remark on the set Kn.

Remark 4.5. It is easy to see from the proof of Proposition 4.3 in Appendix C.4 that only the
knowledge of Cn+1(·) restricted on the set Kn+1 is required in calculating V E

n (x); see Figure 4.4
for an illustrative diagram. Therefore, although the domain of the value function is unbounded
(as the policy fund value may take values in the positive real line), it is only necessary to acquire
the continuation function over some bounded support. This observation implies that different
from the previous Chapters 2 and 3 there is no need to construct an auxiliary stochastic control
problem. Accordingly, the truncation error (see Section 2.4 of Chapter 2) does not contribute to
the overall error of the subsequent LSMC algorithm.

For general VA products, one cannot expect a similar property holds as Part (i) of Proposi-
tion 4.3 and thus a truncation argument is indispensable before the implementation of an LSMC
algorithm.

4.4.2 The LSMC Algorithm

Before presenting the details of the numerical algorithm, it is convenient to derive a closed-form
expression of the value function at the penultimate year. According to the derivations in Appendix
C.2, one has

VN−1 (x) = N−2p0qN−2 (B ∨W ) + N−1p0

(
G̃N−1(I)A ∨W

)
. (4.30)

The LSMC algorithm used for pricing the Polaris is given as follows.
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1 Initiation: Set V E
N−1(·) = VN−1 (·) which is given by the above Eq. (4.30). For n =

N − 2, N − 3, . . . , 1, do the two steps below.

2 Artificial Simulation and Backward Updating:

2.1 For a given I, generate an independent and identically distributed (i.i.d.) random

sample
{
X̂

(I,m)
n+1

}M
m=1

according to (4.25).

2.2 Solve the quadratic programming problem (4.28) and obtain the corresponding numer-
ical estimates of the continuation function and the value function according to Eqs.
(4.27) and (4.29), respectively.

2.3 Repeat Steps 2.1 and 2.2 for I = 0, 1, . . . , n.

3 Price Estimate:

3.1 Generate a random sample:

X
(m)
1 :=

(
P0e

L
(m)
0 , P0e

L̄
(m)
0 , P0, P0, 0

)
, m = 1, 2, . . . ,M, (4.31)

where
{(
L

(m)
0 , L̄

(m)
0

)}M
m=1

are M i.i.d. simulated values of the log-return of the policy

fund and the associated running maximum over [t0, t1].

3.2 The no-arbitrage price of the contract with initial purchase payment P0 is estimated
by

V E
0 (x0) :=

1

M

M∑
m=1

ϕV E
1

(
X

(m)
1

)
,

where x0 = (P0, P0, P0, P0, 0) and ϕ := e−r∆t.

Remark 4.6. In the real contract specification, the MAWA/PIP can only take a few distinct
values. For example, suppose the PH’s first withdrawal time is tξ, the MAWA/PIP percentage in
the “Income Option 3” of the contract [1] are prescribed as follows:

G(ξ) =

{
5%, if ξ = 1, 2, . . . , 6,

5.25%, otherwise.
(4.32)

Since the state variable In is mainly used to determine the MAWA/PIP percentage, Step 2.3 in
the above algorithm is only necessarily repeated for very few distinct values of I, e.g., 0, 1, and 7
under the above specification.
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4.5 Numerical Experiments

4.5.1 Contract and Model Parameters

In all subsequent numerical experiments, the dynamics of the underlying policy fund is modelled
as a Geometric Brownian motion, i.e., Ln(t) = r(t− tn) + σBt−tn , t ∈ (tn, tn+1], n ∈ I0, where Bt
is the standard Brownian motion under the risk-neutral measure. Since the joint distribution of
the Brownian motion and its running maximum has explicit expression ([55, Eq. (4.1.24)]), the
simulation of

(
Ln(t), L̄n(t)

)
is straightforward. For the simulation of the running maximum of a

wide class of Lévy processes, see [54]. In terms of the financial market parameters, the risk-free
interest rate r is chosen as 0.04 and the annualized volatility σ is set to be 0.19 which approxi-
mately equals the historical volatility of the S&P 500 index between 1989 and 2008 ([63]).9 It is
worth noting that the policy fund, in general, is not the equity index and might involve alterna-
tive investments and fixed-income securities depending on the choice of the PH. Accordingly, the
annualized volatility rate might be smaller than 0.19 in reality as the diversification lowers the
uncertainty of the investment.

The survival and death probabilities are determined according to the DAV 2004R mortality
table for a 65-year-old male from [67]. The maturity date is chosen as the Latest Annuity Date
which is the 95th birthday of the PH [1, pp. 4]. Accordingly, there are N = 30 time steps in the
backward recursion procedure. As mentioned previously, the annual insurance fee rate η is tied
to the VIX and further truncated to lie between the minimal and maximal annual fee rates, with
60 bps and 220 bps, respectively [1, Appendix C]. Here, we set η = 220 bps to investigate whether
the maximal fee rate charged by the insurer is sufficient to hedge the policy. The initial purchase
amount of the PH, P0, is normalized to be 1 unit. The withdrawal penalty is only charged during
the first four contract years, i.e., κn = 0% for n > 4[1, footnote 1, pp. 7]. The MAWA/PIP
percentage is set to be consistent with the “Income Option 3” of the “Polaris Income Plus Daily”
rider; see the earlier Remark 4.6. Table 4.2 summarizes the parameters used in sequel numerical
experiments.

4.5.2 Impact of the Maximal Degree of the Basis Function

A numerical experiment is conducted to study the sensitivity of regression estimate CE
n (·) with

respect to the degree of Bernstein polynomials. We take the continuation function at time step
N − 2 as the illustrating example due to its analytical tractability (see Eq. (C.1) in Appendix

9The use of historical volatility might be debatable since the no-arbitrage pricing framework requires calibrating
the model to the market. However, the lack of long-term (more than ten years or even lifetime) and highly liquid
derivatives renders the usual model calibration procedure–as it is adopted in the pricing of financial derivatives–also
questionable.
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Table 4.2: Parameters used for numerical examples.

Parameter Value

Financial market parameters

Volatility σ 0.19

Interest rate r 0.04

Policyholder & contract specifications

Latest Annuity Date tN 95th birthday of the policyholder

Attained age t0 65th birthday of the policyholder

Mortality DAV 2004R (65-year-old male)

Withdrawal times Yearly

Initial investment P0 1

Time periods N 30

Insurance fee rate η 220 bps

Withdrawal penalty κn n = 1 : 8%, n = 2 : 7%, n = 3 : 6%,

n = 4 : 5%, n > 4 : 0%

MAWA/PIP percentage G(ξ) 1 ≤ ξ ≤ 6 : 5%, ξ > 6 : 5.25%

C.2). Let us focus on estimating the marginal function k4 7−→ CN−2(1, 1, 1, k4, 0) for the clarity
of the presentation.

Specifically, simulate an i.i.d. random sample
{
k

(m)
4

}M
m=1

from the exponential distribution

with mean 1 and further truncate them with the cap 1. We also generate a random sample{(
L

(m)
N−2, L̄

(m)
N−2

)}M
m=1

as discussed in Section 4.4. Let

X̃
(m)
N−1 =

(
eL

(m)
N−2 , 1 ∨ eL̄

(m)
N−2 , 1, k

(m)
4 , 0

)
.

Regress
{
VN−1

(
X̃

(m)
N−1

)}M
m=1

against
{

b
(

1, k
(m)
4

)}M
m=1

according to the CLS regression in (4.28).

We also conduct an Ordinary Least Squares (OLS) estimation by relaxing the linear constraints in
(4.28) in order to compare the resulting regression estimate with that of the CLS regression. The
number of simulated paths M is set to be 104 and the maximal degree of Bernstein polynomials
is varied from 6 to 10 with an increment of 2.
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Figure 4.5 depicts the regression estimates produced by these two regression methods. It
is palpable that the OLS method is sensitive to J and gives economically insensible estimates
which are neither convex nor monotone. Furthermore, the behaviors of these regression estimates
are erratic near the boundaries of the support set. In contrast, the fitted curves of the CLS
counterpart preserve the C.M. property and are insensitive to the choice of maximal degree. This
confirms the advantages of the CLS method in terms of insensitivity with respect to the parameter
J and mitigating overfitting/underfitting.
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(a) Fitted curves using CLS method.
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(b) Fitted curves using OLS method.

Figure 4.5: Fitted curves of k4 7−→ CN−2 ((1, 1, 1, k4, 0)). The curves are fitted by using 104

simulated data points but only 103 data points are plotted in the figure for the clarity. The
range of vertical axis is limited to [0.15, 0.25].

4.5.3 Performance of Pricing Bounds

This subsection aims to validate the convergence of the numerical algorithm and demonstrate
the performance of the pricing bounds. As discussed previously, increasing the maximal degree
J brings marginal change to the numerical result. So, we set J = 6 and consider 4 different
values (ranging from 1 × 104 to 5 × 105) for M . The “Upper bound” column of Table 4.3 gives
the no-arbitrage price of the synthetic contract, i.e., V0(x0), and the “Lower bound” column
reports the time-0 objective value of the stochastic control problem with a finite feasible set D̂n

as described in the last paragraph of Section 4.3. As there is no prior information about the
C.M. property of the continuation function of the stochastic control problem corresponding to
the real contract, the lower bound is obtained by the LSMC algorithm where the OLS regression
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is conducted instead. Each result in columns “Lower bound” and “Upper bound” is obtained by
repeating the LSMC algorithm 40 times. The associated sample mean and standard deviation
(s.d.) are also reported.

The upper and lower pricing bounds become increasingly stable as the number of simulated
paths climbs. Such a trend is more perceivable by the boxplots depicted in Figure 4.6. It is
clear that the height of the boxes shrinks as the refinement level increases. Furthermore, the
“Upper bound”, obtained via the CLS regression, exhibits smaller standard deviation than that
of the “Lower bound” which is produced by the OLS regression. This shows better finite sample
performance of the CLS estimate. Finally and most importantly, the gap between pricing bounds
is generally less than 3%. This indicates that the fair value of the synthetic contract can serve
as a sharp upper bound of the no-arbitrage price of the real contract. It is also notable that the
lower bound is generally larger than the initial purchase payment (1 unit). This reveals that the
policy is underpriced in the sense that the fees received by the insurer are insufficient to hedge
his financial risk exposure. Like most prevailing equity derivatives, the pricing results of Polaris
are sensitive to the volatility level. The sequel subsection will investigates how sensitive the price
bounds are to various model parameters including the volatility of the underlying fund.

Table 4.3: Results from validation test, data in Table 4.2. The mean and standard deviation
are obtained by running the algorithm 40 times. The percentage difference is calculated as
the difference between upper and lower bounds divided by the lower bound.

Refinement Number of simulated paths
Lower bound Upper bound Percentage

Mean S.d. Mean S.d. difference (%)

1 1× 104 1.0278 0.0143 1.0409 0.0050 1.2746

2 5× 104 1.0184 0.0051 1.0411 0.0024 2.2290

3 1.5× 105 1.0169 0.0039 1.0408 0.0014 2.3503

4 5× 105 1.0159 0.0021 1.0407 0.0007 2.4412

4.5.4 Sensitivity Analysis

This subsection aims to investigate the sensitivity of the pricing bounds with respect to various
model parameters. In each subsequent numerical experiment, 5×105 sample paths are simulated.
The pricing bounds are obtained via implementing the algorithm for one single time.

Let us start by exploring the effect of financial market parameters. Table 4.4 shows that the
pricing bounds are rather sensitive to the perturbation of these parameters, which is in agreement
with many other studies for VA products of other types, see, e.g., [40]. In general, a lower risk-free
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Figure 4.6: Boxplot of pricing bounds in Table 4.2. The x-axis represents the different
refinement level in terms of the number of simulated paths ranging from 1× 104 to 5× 105;
see Table 4.3 for details. The height of each box gives the discrepancy between 75th and
25th percentiles.

rate yields a higher price, whereas, the policy becomes more valuable to the PH with increasing
market volatility. One possible interpretation is that a lower interest rate raises the EPV of the
cash inflows of the PH and therefore increases the value of the policy. Moreover, a surge of the
market volatility causes a wider spread of the investment account. Accordingly, the income base
might step up to a higher level but never decrease as long as the PH does not take any excess
withdrawal. This asymmetric evolution pattern of the income base exposes the insurer to larger
financial risk, or equivalently, a larger value of the policy from the PH’s point of view. It is
also notable that the larger volatility, the wider wedge between the pricing bounds. Recall that
the difference between the synthetic and real contracts arises from the discrepancy between the
income base and the investment account. Intuitively, one would expect that this discrepancy is
exaggerated when the policy fund price has large swings as the income base has limited downside
risk while the policy fund might plunge.

Next, we consider the effects of different contract parameters on the pricing bounds. Table
4.4 shows that the price hikes as the insurance fee rate slips. This is not surprising since the
investment account may remain at a higher level with less reduction of insurance fees, which in
turn yields a larger cash inflow of the PH. Also observe that an annual insurance fee rate of 300
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bps might be more appropriate in comparison to the prevailing rate of 220 bps levied by the
insurer. Moreover, we investigate the effect of MAWA/PIP percentage. As mentioned previously,
one new contract feature provided by the Polaris is the MAWA/PIP percentage depends on the
PH’s age at the first withdrawal. Therefore, it is interesting to compare the no-arbitrage prices of
contracts with fixed MAWA/PIP percentage and the floating scheme in Table 4.2. By comparing
the ”MAWA/PIP percentage” panel with the “Base” case in Table 4.4, it is clear that the floating
scheme of MAWA/PIP percentage adds value to the contract since the PH can enjoy a higher
free-of-charge withdrawal amount in the later phase of the contract life. The last row of Table
4.4 also shows that a 25 bps drop in the MAWA/PIP percentage causes nearly 1% decline in the
fair value of the contract.

Finally, we observe that the percentage difference between the upper and lower pricing bounds
is generally less than 3% in most cases.

Table 4.4: Effect of parameters on pricing bounds under the numerical setting in Table 4.2,
except as noted. 5× 105 sample paths are simulated in the LSMC algorithm and the results
are obtained by running the algorithm one time.

Parameter Lower bound Upper bound Percentage difference (%)

Base 1.0159 1.0407 2.4412

Risk-free rate

r = 0.03 1.1098 1.1390 2.6311

r = 0.05 0.9467 0.9630 1.7218

Volatility

σ = 0.15 0.9582 0.9741 1.6594

σ = 0.23 1.0922 1.1270 3.1862

Rider charge rate

260 (bps) 1.0042 1.0285 2.4198

300 (bps) 0.9907 1.0166 2.6143

MAWA/PIP percentage

ξ ≥ 1 : 5% 1.0041 1.0284 2.4201

ξ ≥ 1 : 4.75% 0.9924 1.0123 2.0052
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4.6 Concluding Remarks

This chapter established a pricing framework for “Polaris Choice IV” variable annuities. Auxil-
iary state and decision variables were introduced to make the mathematical discussion under a
Markovian stochastic optimal control setting, and accordingly, the Dynamic Programming Prin-
ciple is applicable. We considered a contract, referred to as the synthetic contract, which charges
insurance fees proportional to the investment account and proved the existence of a bang-bang
solution to the associated stochastic control problem. The no-arbitrage price of this synthetic
contract can be approximated by an LSMC algorithm which is in the same spirit of the BSBU
algorithm developed in Chapter 2. We have also shown that the price of the synthetic contract
dominates that of the real contract. This upper bound has been shown to be fairly sharp by
consequential numerical studies.

One crucial implication obtained from studying the present pricing problem is that the control
randomization method does not necessarily guarantee the convergence of an LSMC algorithm to
the optimal solution, which discloses one limitation of the forward simulation commonly adopted
in the literature.

Finally, the modification of the fee structure in this chapter is essentially a modification on
the transition equation of the state process, and the construction of the upper bound for the price
function results from such a modification. This observation provides an idea for the construction
of the upper bound of the value function for a stochastic control problem which is different from
the information relaxation method commonly used in the literature; see e.g. [23].
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Chapter 5

Conclusion and Future Work

5.1 Summary of the Thesis Work

This thesis studied numerical solutions to discrete-time stochastic optimal control (DTSOC)
problems by integrating Monte Carlo simulation with nonparametric regression techniques.

• We constructed two different auxiliary DTSOC models whose state processes are confined
into a compact domain and the accompanying optimal value functions are legitimate ap-
proximations for those of the original DTSOC problems. This not only enables one to steer
by extrapolating the numerical estimate but also paves the way for applying nonparametric
regression methods to approximate the value function or the continuation value. Since most
numerical algorithms can barely afford to recover the value function over an unbounded do-
main with sufficient accuracy, the constructed auxiliary models can be expected to have
wide applications.

• We proposed two Least Squares Monte Carlo (LSMC) algorithms to approach numerical
solutions to general DTSOC problems. We showed that the forward simulation of the
state process is not indispensable in an LSMC algorithm. We further proposed an artificial
simulation method to bypass the forward simulation and control randomization which are
widely used in the literature. Certain shape information of the value function/continuation
function was exploited to improve the efficiency of the regression method and enhance the
interpretability of the numerical estimates. Convergence results were established to build
theoretical foundations of these algorithms.

• We studied the pricing problem of a complicated equity-linked insurance product, the Polaris
variable annuities. With a prudent modification on the fee structure of the product, We
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proved the existence of a bang-bang solution to the accompanying DTSOC model. We
also disclosed the connection between the no-arbitrage price of this modified product and
that of the original one. This casts new insights to pricing the variable annuity product in
the absence of a bang-bang solution: one might first construct a modified contract whose
pricing problem is less convoluted and then show the relation between the modified and real
contracts. As a byproduct, we proposed a new way to construct upper and lower bounds
for the optimal value function of a DTSOC problem, which is different from the information
relaxation or duality method widely adopted in the literature and is of independent interest.

• We have not addressed how to solve the local optimization problem involved in the Bellman
equation when the objective function is not convex or concave and there is no bang-bang
solution. In such a situation, solving the local optimization problem is generally formidable
and it is hard to expect that there exists a generic algorithm that can find the global
optimizer with reasonable computational costs. This thesis focuses on responding to the
problems mentioned in the introduction chapter, however, admittedly, this challenge ham-
pers the application of the LSMC algorithms developed in the thesis. One attempt to handle
this thorny issue is to discretize the feasible set of the action and run a linear search to
solve the optimization problem. By doing so, one can still employ an LSMC algorithm to
get a numerical estimate for the optimal value function which however is only a suboptimal
solution.

5.2 Future Research Avenues

There are several avenues of research that remain to be explored.

• Curse of Dimensionality On one hand, it is notable from Chapters 2 and 3 that the
convergence of an LSMC algorithm is ensured only when the number of simulated paths M
increase at a faster rate than the number of basis function J ; see in particular Condition
(v) of Assumption A.1. On the other hand, when there are multiple state variables, as one
may see from Chapter 4, the multivariate basis function should be generated by the tensor-
product of its univariate peers, which means J surges exponentially as the dimension hikes.
Combing these two observations together implies that the number of simulated paths should
grow at an exponential rate with respect to the dimension of the state process in order to
guarantee the convergence of the algorithm, which is computationally formidable in reality.
This casts shadows to a statement in some literature that the LSMC can handle high-
dimensional stochastic control problem that renders the traditional lattice-based methods
impotent. This dilemma has been well acknowledged by statistics literature and is named
as the “Curse of the Dimensionality”. In view of this, it is instructive to study how one
can leverage some dimension reduction techniques developed by the statistical community
to mitigate this thorny problem in the context of DTSOC problems.
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• Sensitivity Calculation It will be fruitful to numerically evaluate the sensitivities of the
optimal value function of a DTSOC model. This research direction is driven by the risk
management problem of the variable annuities. Although Chapter 3 addressed the delta-
hedging of the variable annuity, the insurer might also be concerned with the sensitivity of
his hedging portfolio with respect to various parameters such as volatility and interest rate.
This naturally calls for developing a numerical algorithm to calculate the sensitivities of
the optimal value function. It is notable that the optimal value function is not necessarily
differentiable and therefore dedicated investigation should be carried out. One possible
avenue for future research is to extend the result of [26] from the optimal stopping problem
to a general DTSOC setting.
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Appendix A

Appendix for Chapter 2

A.1 Supplements for Sieve Estimation Method

A.1.1 Forms of Matrix AJ

Below we collect several forms of the constraint matrix AJ in (2.29) which ensures monotonicity,
convexity, or concavity of the sieve estimate (2.30) if the basis function φ(z) is a vector of
Bernstein polynomials. For the simplicity of notation, we only consider the univariate case, i.e.,
z ∈ R.

It is worth noting that the Bernstein polynomials are solely defined on the unit interval and
thus one may first normalize z in defining φ(z). To be specific, when the domain of the conditional
mean function g(·) is Z = [0, R], we choose

φ(z) = b
(
z/R

)
=
(
bJ,0
(
z/R

)
, . . . , bJ,J

(
z/R

))ᵀ
, z ∈ [0, R], (A.1)

where

bJ,j(v) =

(
J

j

)
vj(1− v)J−j =

J∑
`=j

(−1)`−j
(
J

`

)(
`

j

)
v`, v ∈ [0, 1]. (A.2)

Monotonicity Suppose the conditional mean g(·) defined in Eq. (2.26) is monotone. Then
the corresponding monotonicity-preserved sieve estimate ĝ(·) is obtained from (2.30) with
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HJ and φ(z) given by Eqs. (2.29) and (A.1), respectively, and

AJ =


−1 1 0 · · · 0
0 −1 1 0 · · ·

. . .

0 · · · 0 −1 1


J×(J+1)

.

Convexity/Concavity If g(·) is convex, we choose the matrix AJ as

AJ =


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . .

0 · · · 0 1 −2 1


(J−1)×(J+1)

.

Moreover, the matrix AJ accompanying a concave g(·) is obtained by taking negative of
the above matrix.

Convexity and Monotonicity If g(·) is convex and monotone, the corresponding AJ is given
by

AJ =


−1 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . .

0 · · · 0 1 −2 1


J×(J+1)

.

A.1.2 A Data-driven Choice of J

Below we present some common methods of choosing the number of basis functions J in a sieve
estimation method; see, e.g., [56].

Mallows’s Cp For a discrete set J ⊆ N, J is determined by solving the following minimization
problem:

Ĵ = arg min
J∈J

1

M

M∑
m=1

[
U (m) − ĝ

(
Z(m)

)]2
+ 2σ̂2

(
J/M

)
,

where ĝ(·) is given in (2.30) and σ̂2 := M−1
∑M

m=1

[
U (m) − ĝ

(
Z(m)

)]2
which is an estimate

for the variance of residual term.
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Generalized cross-validation J is determined by

Ĵ = arg min
J∈J

M−1
∑M

m=1

[
U (m) − ĝ

(
Z(m)

)]2(
1−

(
J/M

))2 ,

with ĝ(·) given in (2.30).

Leave-one-out cross-validation Select J to minimize

CV(J) :=
1

M

M∑
m=1

[
U (m) − ĝ−m

(
Z(m)

)]2
,

where ĝ−m(·) is similarly obtained by Eq. (2.30) with the sample point
(
U (m), Z(m)

)
re-

moved.

A.1.3 Technical Assumption of Sieve Estimation Method

We impose the following assumption accompanying the sieve estimation method discussed in
Section 2.4.3 which follows from [65].

Assumption A.1. (i)
{(
U (m), Z(m)

)}M
m=1

are i.i.d. and Z(m) has compact support Z. Further-

more, Var
[
U (m)

∣∣Z(m) = ·
]

is bounded over Z.

(ii) There exists a sequence Υ(J) such that ‖φ‖ ≤ Υ(J) with ‖·‖ denoting the supremum norm
of a continuous function over Z.

(iii) For the sieve space HJ defined either in Eq. (2.28) or Eq. (2.29), there exists a (J + 1)-by-1
vector β̃ and a sequence ρJ such that ρJ −→ 0 as J −→∞, and

inf
h(·)∈HJ

‖h− g‖ =
∥∥∥β̃ᵀφ− g∥∥∥ = O (ρJ) , (A.3)

where one should recall that g(·) := E
[
U (m)

∣∣Z(m) = ·
]
.

(iv) Let Φ := E
[
φ
(
Z(m)

)
φᵀ
(
Z(m)

)]
. There exists a positive constant cΦ independent of J such

that 0 < cΦ ≤ λmin (Φ) ≤ λmax (Φ) ≤ c̄Φ < ∞, with λmin (Φ) and λmax (Φ) denoting the
smallest and largest eigenvalues of Φ, respectively.

(v) As M −→∞, J −→∞, and Υ2(J)J/M −→ 0.

We give some comments on the above technical conditions.
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1. The i.i.d. condition in Part (i) of the above assumption pinpoints the necessity of generating
an independent sample at each time step in an LSMC algorithm; see also the discussion
in the earlier item “Cost of forward simulation” of Section 2.2.2. Part (i) further requires
Z(m) has a compact support, which is conventional in statistics literature see, e.g., [65] and
[27]. In the context of BSBU algorithm, this shows that restraining the state process into
a bounded domain is not only beneficial in eliminating undesirable extrapolation but also
indispensable in guaranteeing the convergence of the regression estimate to the continuation
function. This has also been pointed out in the literature of LSMC, see, e.g., [78] and [87].

2. Part (ii) specifies how the magnitude of φ(·) is amplified as the number of basis function

functions grows up. In particular, [65] shows that Υ(J) = O
(√

J
)

for B-splines and

Υ(J) = O(J) for power series; for the cases of other types of basis functions, we refer to
[27].

3. Part (iii) states that there exists a function β̃ᵀφ(·) in the sieve space HJ that “best”
approximates the conditional mean function g(·) under the supremum norm; see Figure
A.1 for a graphical illustration. The existence of β̃ (referred to as oracle) is guaranteed by
the convexity of sieve space HJ . For the sieve space (2.29), the existence of ρJ relies on
the convexity, concavity or monotonicity of the function g(·) which follows by the Property
3.2 of [84]. Figure A.1 depicts the relationship between β̃ᵀφ(·) and g(·): their discrepancy
vanishes as J increases and, for a fixed J , the sieve estimate β̂ᵀφ(·) converges to β̃ᵀφ(·) as
the sample size M approaches infinity. Therefore, one may view the sieve estimation as a
two-stage approximation for the conditional mean function g(·).

4. The condition in Part (iv) ensures the design matrix of the regression problem is nonsingular
with a high probability and does not blow up as J approaches infinity. Finally, Part (v)
prescribes the growth rates of J and M in order to avoid overfitting or underfitting.

A.2 Supplements for Section 2.5

A.2.1 Verification of Assumptions

In this subsection we verify the Assumptions 2.2 and 2.3 in the context of Section 2.5. In partic-
ular, we will exemplify the terms ET (x0, R), ξ(R), and ζ in order to give an explicit expression
for the error estimate in (2.20).
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g(·)

Sieve Spaces HJ

J = 1

β̃ᵀφ(·) oracle

J = 2 J = 3
ρJ → 0, as J →∞

Figure A.1: A diagram illustrating the relationship between oracle β̃ᵀφ(·) and g(·).

Verification of Assumption 2.2

Recall from Section 2.5 that X = [0,∞)×T0 and XR = [0, R)×T0. It is also notable that X and
X̃ has one common absorbing state {0}. In view of these, we observe that{

Xt = X̃t for all t ∈ T
}c
⊆
{
Xt ∈ XR for all t ∈ T

}c
=
{

max
t∈T

Wt ≥ R
}
, (A.4)

where one should recall that Xt = (Wt, It).

We recall that the underlying asset price follows a Geometric Brownian Motion with drift
and volatility rates r − q and σ, respectively. Suppose the price process is driven by a standard
Brownian Motion {Bu}u∈[0,T δ]. We define a continuous time process Y := {Yu}u∈[0,T δ] as follows:

Yu = w0e
(r−q−σ2/2)u+σBu = w0e

µu+σBu . (A.5)

In view of the above equation and the transition equation accompanying Wt (Eq. (2.34)), we get
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Ytδ ≥Wt for all t ∈ T regardless of the PH’s withdrawal strategy. And therefore,

sup
a∈A

P
[
max
t∈T

Wt ≥ R
]
≤ P

 sup
u∈[0,T̃ ]

Yu > R


= P

w0 exp

 sup
u∈[0,T̃ ]

[µu+ σBu]

 > R


= P

 sup
u∈[0,T̃ ]

[
µu+ σBu

]
> log

(
R/w0

)
= P

 sup
u∈[0,T̃ ]

[
αu+ Bu

]
> m

 ,
with α := µ/σ = (r − q − σ2/2)/σ, T̃ := Tδ, and m := σ−1 log

(
R/w0

)
. Combing the above

display with (A.4), we get

inf
a∈A

P
[
Xt = X̃t for all t ∈ T

]
≥ P

 sup
u∈[0,T̃ ]

[
αu+ Bu

]
> m


= 1−N

(
m− αT̃√

T̃

)
+ e2αmN

(
−m− αT̃√

T̃

)
:= ET (x0, R), (A.6)

where N (·) denotes the cdf of a standard normal random variable and the last equality follows
by the cdf of the continuous running maximum of a Brownian Motion with nonzero drift; see [75,
Corollary 7.2.2, pp. 297].

Verification of Assumption 2.3

Denote x = (w, I) and a = (γ, τ). Recall that in the context of Section 2.5 we have ft(x, a) =
γ − κ(γ − gt(I)w0)+. Further recall that At(x) = [0, gt(I)w0 ∨ w] and thus,

sup
a∈At(x)

|ft(x, a)|2 ≤ (w ∨ gt(I)w0)2 ≤ 2
(
w2 +G2

0

)
:= B(x) (A.7)

132



with G0 := maxt∈T0

[
max

0≤I≤t−1
gt(I)

]
. Consequently, we get

sup
x∈cl(XR)

(
sup

a∈At(x)
|ft(x, a)|2

)
≤ B2(R) = 2

(
R2 +G2

0

)
:= ξ(R), (A.8)

and

sup
a∈A

E [B (Xt)] = 2

(
G2

0 + sup
a∈A

E
[
W 2
t

])
≤ 2
(
G2

0 + E
[
Y 2
tδ

] )
= 2

[
G2

0 + e2(µ+σ2)T̃
]

:= ζX . (A.9)

Combing Eqs. (A.6)–(A.9) together, one may get an explicit expression for the error bound
in (2.20).

A.3 Proofs of Statements

A.3.1 Proof of Proposition 2.1

Preliminary

Lemma A.1. Let

Ā :=
{
a = {āt}t∈T0

∣∣∣ at is Ft-measurable and at ∈ A for t ∈ T0

}
.

For each a ∈ Ā, the following statements hold:

(i)
{
τR ≤ t

}
=
{
X̃t ∈ ∂XR

}
for t = 1, 2, . . . , T ;

(ii)
{
τR = t+ 1

}
=
{
X̃t ∈ X̊R, S

(
X̃t, at, εt+1

)
/∈ X̊R

}
for t = 0, 1, . . . , T − 1,

where τR and X̃t are defined in Eqs. (2.11) and (2.12), respectively.

Proof of Lemma A.1. (i) According to Eq. (2.12), we observe{
X̃t ∈ ∂XR

}
=

{
Xt ∈ ∂XR, τR > t

}
∪
{
Q (XτR∧t) ∈ ∂XR, τR ≤ t

}
=

{
Q (XτR∧t) ∈ ∂XR, τR ≤ t

}
,

where the second identity is by the definition of the stopping time τR and the fact that
∂XR ∩ X̊R = ∅. To show the statement in Part (i) of Lemma A.1, it suffices to prove
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{
τR ≤ t

}
⊆ {Q (XτR∧t) ∈ ∂XR}. Indeed, τR ≤ t implies XτR∧t /∈ X̊R, and thusQ (XτR∧t) ∈

∂XR.

(ii) In view of Part (i) and Eq. (2.12), we obtain{
X̃t ∈ X̊R

}
=
{
X̃t ∈ ∂XR

}c
=
{
τR > t

}
⊆
{
X̃t = Xt

}
.

Therefore, we obtain{
X̃t ∈ X̊R, S

(
X̃t, at, εt+1

)
/∈ X̊R

}
=

{
X̃t ∈ X̊R, X̃t = Xt, S

(
X̃t, at, εt+1

)
/∈ X̊R, τR > t

}
=

{
Xt ∈ X̊R, S (Xt, at, εt+1) /∈ X̊R, τR > t

}
=

{
Xt ∈ X̊R, Xt+1 /∈ X̊R, τR > t

}
=
{
τR = t+ 1

}
.

This proves Part (ii) of Lemma A.1.

Proof of the Main Result

Proof of Proposition 2.1. By exploiting Lemma A.1 and Eq. (2.12), we get

X̃t+1 = Xt+11{τR>t+1} +Q
(
XτR∧(t+1)

)
1{τR≤t+1}

= Xt+11{τR>t+1} +Q (XτR∧t)1{τR≤t} +Q (Xt+1)1{τR=t+1}

= S (Xt, at, εt+1)1{τR>t+1} +Q (XτR∧t)1{τR≤t}

+Q (S (Xt, at, εt+1))1{τR=t+1}

= S
(
X̃t, at, εt+1

)
1{τR>t+1} + X̃t1{τR≤t}

+Q
(
S
(
X̃t, at, εt+1

))
1{τR=t+1}

= S
(
X̃t, at, εt+1

)
1{τR>t+1} + X̃t1{Xt∈∂XR}

+Q
(
S
(
X̃t, at, εt+1

))
1{X̃t∈X̊R, S(X̃t,at,εt+1)/∈X̊R},

where the fourth equality follows from Eq. (2.12) and the last equality follows from Lemma A.1.

The above equation together with Eqs. (2.5) and (2.14) yields Eq. (2.13). This completes
the proof.
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A.3.2 Proof of Theorem 2.1

Preliminary

Recall that X and X̃ implicitly depend on certain actions a; see Eqs. (2.1) and (2.13), respectively.
In the sequel, we sometimes stress such dependency by writingXt(a) (resp. X̃t(a)) and X(a) (resp.
X̃(a)).

Lemma A.2. For the state process X̃ defined through Eq. (2.13), the following statements hold.

(i) For each a ∈ A, there exists ã ∈ Ã such that X̃t (a) = X̃t (ã) for all t ∈ T almost surely.

(ii) For each ã ∈ Ã, there exists a ∈ A such that X̃t (a) = X̃t (ã) for all t ∈ T almost surely.

Proof of Lemma A.2. (i) Given a ∈ A and X̃(a), we construct ã as follows: ã0 = a0, and

ãt = at1{X̃t(a)∈X̊R} + a∗t

(
X̃t (a)

)
1{X̃t(a)∈∂XR}, (A.10)

for t = 1, 2, . . . , T − 1, where a∗t (·) is any measurable function such that a∗t (x) ∈ At(x).

It is easy to see from the above construction that ã is F-adapted. It remains to show that

ãt ∈ At
(
X̃t (ã)

)
and X̃t(a) = X̃t (ã) , for t ∈ T . (A.11)

Firstly, we observe ã0 = a0 ∈ A0(X0) and X̃0 (ã) = x0. As induction hypothesis, we assume
the statement (A.11) holds for time step t. For time step t+ 1, we split the discussions into
two cases.

1. If X̃t(a) = X̃t (ã) ∈ ∂XR, then

X̃t+1 (ã) = X̃t (ã) = X̃t(a) = X̃t+1(a),

where the first and third equalities follow by Eq. (2.13) and the second equality is due
to the induction hypothesis.

2. In the second case that X̃t(a) = X̃t (ã) ∈ X̊R, we apply Eq. (2.13) to get

X̃t+1 (ã) = H̃
(
K
(
X̃t (ã) , ãt

)
, εt+1

)
= H̃

(
K
(
X̃t (a) , at

)
, εt+1

)
= X̃t+1 (a) ,

where the second equality follows by Eq. (A.10) and the induction hypothesis (A.11).
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Next, we will show that ãt+1 ∈ At+1

(
X̃t+1 (ã)

)
. In either of the above two cases, X̃t+1 (a) =

X̃t+1 (ã), which further implies that Xt+1 (a) = X̃t+1 (a) if X̃t+1 (ã) ∈ X̊R by Lemma A.1
and Eq. (2.12). In view of these and Eq. (A.10), we get

ãt+1 = at+1 ∈ At+1 (Xt+1 (a)) = At+1

(
X̃t+1 (a)

)
= At+1

(
X̃t+1 (ã)

)
,

if X̃t+1 (ã) ∈ X̊R. On the flip side, if X̃t+1 (a) = X̃t+1 (ã) ∈ ∂XR, we get

ãt+1 = a∗t+1

(
X̃t+1 (a)

)
= a∗t+1

(
X̃t+1 (ã)

)
∈ At+1

(
X̃t+1 (ã)

)
according to Eq. (A.10). This proves the statement (A.11) holds for time step t + 1. The
proof of Part (i) is complete.

(ii) Given ã ∈ Ã and X̃ (ã), we construct a as follows: a0 = ã0, and

at = ãt1{X̃t(ã)∈X̊R} + ât (Xt (a))1{X̃t(ã)∈∂XR}, for t = 1, 2, . . . , T − 1, (A.12)

where ât(·) is any measurable function satisfying ât(x) ∈ At(x) for x ∈ X and t ∈ T0.

It is easy to see that a is F-adapted. Next, we use a forward induction argument to show
that

at ∈ At (Xt (a)) and X̃t(a) = X̃t (ã) , for t ∈ T . (A.13)

The above statement holds trivially for t = 0. As induction hypothesis, we assume it holds
for time step t. For time step t+ 1, we consider two separate cases.

1. If X̃t(a) = X̃t (ã) ∈ ∂XR, Eq. (2.13) combined with (A.13) implies

X̃t+1 (a) = X̃t (a) = X̃t(ã) = X̃t+1(ã).

2. In the second case that X̃t(a) = X̃t (ã) ∈ X̊R, applying Eq. (2.13) gives

X̃t+1 (a) = H̃
(
K
(
X̃t (a) , at

)
, εt+1

)
= H̃

(
K
(
X̃t (ã) , ãt

)
, εt+1

)
= X̃t+1 (ã) ,

where the second equality follows by Eq. (A.12) and the induction hypothesis (A.13).

Overall, we always observe X̃t+1 (a) = X̃t+1 (ã). To prove the statement (A.13) holds for
time step t+ 1, it remains to show at+1 ∈ At+1 (Xt+1 (a)) . We split the discussion into two
separate cases.
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1. Firstly, suppose X̃t+1 (a) = X̃t+1 (ã) ∈ ∂XR. Eq. (A.12) implies

at+1 = ât+1 (Xt+1 (a)) ∈ At+1 (Xt+1 (a)) .

2. Secondly, suppose X̃t+1 (a) = X̃t+1 (ã) ∈ X̊R. By Part (i) of Lemma 1,
{
X̃t+1 (a) ∈ X̊R

}
={

τR > t+ 1
}

and thus, it follows from Eq. (2.12) that

X̃t+1 (a) = Xt+1 (a) , if X̃t+1 (a) ∈ X̊R.

Consequently, we apply Eq. (A.12) to get

at+1 = ãt+1 ∈ At+1

(
X̃t+1 (ã)

)
= At+1

(
X̃t+1 (a)

)
= At+1 (Xt+1 (a)) .

The proof of Part (ii) is complete.

A direct consequence of the preceding lemma is the following corollary.

Corollary A.1. The value function Ṽ0(x0) defined in Eq. (2.15) exhibits:

Ṽ0(x0) = sup
a∈A

E

[
T−1∑
t=0

ϕtft

(
X̃t, at

)
+ ϕT fT

(
X̃T

)]
. (A.14)

It is worth noting that the optimization problems in Eq. (A.14) and Eq. (2.15) are taken
over the set A and Ã, respectively. The above corollary states that the optimal values of these
two optimization problems are exactly the same as given by Ṽ0(x0).

Proof of the Main Result

Proof of Theorem 2.1. In view of Eqs. (2.2) and (A.14), we obtain

∣∣∣Ṽ0(x0)− V0(x0)
∣∣∣ ≤ sup

a∈A
E

[
T−1∑
t=0

∣∣∣ft (X̃t, at

)
− ft(Xt, at)

∣∣∣1{X̃t 6=Xt}
]

+ sup
a∈A

E
[∣∣∣fT (X̃T

)
− fT (XT )

∣∣∣1{X̃T 6=XT }] := I1 + I2. (A.15)

Below we establish upper bounds for the I1 and I2 defined in the above display, respectively.

Let E :=
{
Xt = X̃t for all t ∈ T

}
. Note that E ⊆

{
Xt = X̃t

}
=⇒

{
Xt 6= X̃t

}
⊆ Ec, and
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accordingly, we get

I1 = sup
a∈A

E

[
T−1∑
t=0

∣∣∣ft (X̃t, at

)
− ft(Xt, at)

∣∣∣1{Xt 6=X̃t}
]

≤ sup
a∈A

E

[
T−1∑
t=0

(∣∣∣ft (X̃t, at

)∣∣∣+ |ft(Xt, at)|
)
1{Xt 6=X̃t}

]

≤ sup
a∈A

E

[
T−1∑
t=0

(∣∣∣ft (X̃t, at

)∣∣∣+ |ft(Xt, at)|
)
1Ec

]

≤ sup
a∈A

E

[
T−1∑
t=0

(
ξ

1
2 (R) +B

1
2 (Xt)

)
1Ec

]
= sup

a∈A
E

[(
T−1∑
t=0

Yt

)
1Ec

]
, (A.16)

with Yt := ξ
1
2 (R)+B(Xt)

1
2 , where the first inequality is by triangular inequality and Assumption

2.3 and the third inequality is due to Part (ii) of Assumption 2.3. Applying Cauchy–Schwarz
inequality twice gives

I1 ≤ sup
a∈A

E[1Ec ] · E

(T−1∑
t=0

Yt

)2


1
2

≤ T
1
2 · sup

a∈A

{
E[1Ec ] · E

[
T−1∑
t=0

Y 2
t

]} 1
2

≤ T
1
2 · sup

a∈A

{
E[1Ec ] · E

[
2
T−1∑
t=0

(
ξ(R) +B(Xt)

)]} 1
2

≤
√

2T
1
2 · sup

a∈A

{
E[1Ec ] ·

T−1∑
t=0

E [ξ(R) +B(Xt)]

} 1
2

,

where the third inequality follows because (a+ b)2 ≤ 2a2 + 2b2 for two real numbers a and b. In
view of Assumption 2.3, we get

T−1∑
t=0

E [ξ(R) +B(Xt)] ≤ T
(
ξ(R) + sup

a∈A
E [B(Xt)]

)
≤ T

(
ξ(R) + ζ

)
.
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Combing the last two displays with Assumption 2.2 implies

I1 ≤
√

2T
(
ξ(R) + ζ

) 1
2

(
sup
a∈A

E[1Ec ]

) 1
2

=
√

2T
(
ξ(R) + ζ

) 1
2

(
1− inf

a∈A
E[1E ]

) 1
2

≤ T
√

2
(
ξ(R) + ζ

)
ET (x0, R). (A.17)

A similar argument gives

I2 ≤
√

2
(
ξ(R) + ζ

)
ET (x0, R). (A.18)

Combining (A.15), (A.17), and (A.18) together implies∣∣V0(x0)− Ṽ0(x0)
∣∣ ≤ (T + 1)

√
2
(
ξ(R) + ζ

)
ET (x0, R).

The proof is complete.

A.3.3 Proof of Theorem 2.2

Preliminary lemmas

We first give the definitions of “Big O p” and “Small O p” notations which are commonplaces in
statistics literature.

Definition A.1. (i) For two sequences of random variables {aM}M∈N and {bM}M∈N, we say
aM = OP(bM ) if limk→∞ lim supM→∞ P (|aM | > kbM ) = 0.

(ii) Moreover, we say aM = oP(bM ) if lim supM→∞ P (|aM | > kbM ) = 0 for all k > 0.

Some Matrices Let ht(x) =

(
sup

a∈At(x)
φ1

(
K(x, a)

)
, . . . , sup

a∈At(x)
φJ
(
K(x, a)

))ᵀ
, for x ∈ cl (XR),

and we suppress its dependency on J . Define matrices

Ψt = E
[
ht

(
X

(m)
t

)
hᵀt

(
X

(m)
t

)]
and Ψ̂t =

1

M

M∑
m=1

ht

(
X

(m)
t

)
hᵀt

(
X

(m)
t

)
for t = 1, 2, . . . , T − 1 with the superscript ᵀ denoting vector transpose. It is palpable that Ψ̂t is
a finite-sample estimate for Ψt. In the sequel, we denote λmax(B) (resp. λmin(B)) as the largest
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(resp. smallest) eigenvalue of a square matrix B. We impose the following Assumption on the
eigenvalues of Ψt.

Assumption A.2. (i) For each x and t, At(x) is a compact set. Moreover, a 7−→ K(x, a) and
φj(·) : Rr −→ R are continuous functions for 1 ≤ j ≤ J .

(ii) There exists a positive constant c̄Ψ independent of t and J such that λmax (Ψt) ≤ c̄Ψ <∞.

Part (i) of the preceding assumption guarantees that the function ht(·) is well-defined for
t ∈ T0. The continuity requirement of a 7−→ K(x, a) can be removed if At(x) is a lattice (discrete
set), which is particularly the case when the stochastic optimal control problem exhibits the
bang-bang solution, see, e.g., [6] and [47]. Part (ii) requires the largest eigenvalue of the matrix
Ψ̂t does not blow up as M and J approach infinity. This condition ensures the sample eigenvalue
converges to the non-sample counterpart as M approaches infinity as shown in the subsequent
Lemma A.3.

Moreover, we define matrices

Φt = E
[
φ
(
X

(m)
t+

)
φᵀ
(
X

(m)
t+

)]
and Φ̂t =

1

M

M∑
m=1

φ
(
X

(m)
t+

)
φᵀ
(
X

(m)
t+

)
.

The following lemma relates the eigenvalues of Φ̂t and Ψ̂t to those of Φt and Ψt.

Lemma A.3. (i) Suppose Condition (ii) of Theorem 2.2 is satisfied. Then,∣∣∣λmax (Φt)− λmax

(
Φ̂t

)∣∣∣ = OP

(
Υ(J)

√
J/M

)
,

and ∣∣∣λmin (Φt)− λmin

(
Φ̂t

)∣∣∣ = OP

(
Υ(J)

√
J/M

)
,

for t ∈ T0.

(ii) Suppose Assumption A.2 holds. In addition, Condition (v) of Assumption A.1 is satisfied.

Then, λmax

(
Ψ̂t

)
= OP(1) for t = 1, 2, . . . , T − 1.

Proof of Lemma A.3. Lemma A.3 can be proved by a similar argument as that used in the proof
of Eq. (A.1) in [65].

The above lemma shows the sample eigenvalues converge to the non-sample counterparts as
M approaches infinity. In view of Condition (iv) of Assumption A.1, Lemma A.3 also implies the
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largest (resp., smallest) eigenvalue of Φ̂t is bounded from above (resp., below) with probability
approaching 1 as M −→ ∞. This fact is exploited in the proofs of subsequent Lemmas A.4 and
A.5.

Pseudo Estimate, Oracle, and True Estimate Next, we introduce the concept of pseudo
estimate. Let β̄t (resp. β̂t) be the solution to the optimization problem in Eq. (2.31) with U (m) =

Ṽt+1

(
X

(m)
t+1

)
(resp. Ṽ E

t+1

(
X

(m)
t+1

)
) and Z(m) = X

(m)
t+

. Given β̄t and β̂t, denote the associated

regression estimates by C̃PE
t (·) = β̄ᵀtφ(·) and C̃E

t (·) = β̂ᵀtφ(·), respectively. C̃PE
t (·) is essentially

the sieve estimate for the continuation function C̃t(·) when the true value function Ṽt+1(·) is
employed in the regression. We further define function Ṽ PE

t (x) for x ∈ X̊R by substituting C̃E
t (·)

in Eq. (2.25) with C̃PE
t (·). For x ∈ ∂XR, we set Ṽ PE

t (x) = Ṽt(x) with Ṽt(·) given by Eq. (2.16).

Admittedly, in the implementation of the BSBU algorithm, β̄t is not tractable because the
true value function is unknown and should be replaced by the numerical estimate Ṽ E

t+1(·) obtained
inductively. For this reason, following [16], we call β̄t the pseudo estimate. Despite this, the
pseudo estimate plays an indispensable role in establishing the convergence result of Theorem
2.2. In addition to the two estimates β̄t and β̂t defined in the above, we further define the oracle
βo
t as the solution to the optimization problem (A.3) with g(·) replaced by C̃t(·).

The following lemma discloses that the gap between pseudo estimate and the oracle vanishes
when both M and J increase at a certain rate.

Lemma A.4. Suppose the conditions of Theorem 2.2 are satisfied. Then,∣∣β̄t − βo
t

∣∣ = OP

(√
J/M + ρJ

)
, for t ∈ T0.

Proof of Lemma A.4. Recall that β̄t solves the optimization problem:

min
β∈RJ+1

1

M

M∑
m=1

[
Ṽt+1

(
X

(m)
t+1

)
− βᵀφ

(
X

(m)
t+

)]2
, subject to βᵀφ(·) ∈ HJ .

On the other hand, βo
t is a suboptimal solution to the above optimization problem. Therefore,

we get ∣∣Vt+1 − P β̄t
∣∣2 ≤ |Vt+1 − Pβo

t |
2 ,

where P is a M -by-J matrix with m-th row being φᵀ
(
X

(m)
t+

)
and Vt+1 is a M -by-1 vector with

m-th element given by Ṽt+1

(
X

(m)
t+1

)
.
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By adding and subtracting the term Pβo
t in the L.H.S. of the above inequality, we get∣∣∣Ũ− P δ̄∣∣∣2 ≤ ∣∣∣Ũ∣∣∣2 ,

where we use the shorthand notations δ̄ := β̄t−βo
t and Ũ := Vt+1−Pβo

t . Expanding both sides
of the above inequality gives

∣∣P δ̄∣∣2
2M

≤

∣∣∣ŨᵀP δ̄∣∣∣
M

≤

∣∣∣P ᵀŨ∣∣∣ ∣∣δ̄∣∣
M

,

where the second inequality is by Hölder’s inequality. For the L.H.S. of the above inequality, it
follows from the definition of the smallest eigenvalue that∣∣P δ̄∣∣2

2M
=
δ̄ᵀP ᵀP δ̄

2M
≥
∣∣δ̄∣∣2

2
λmin

(
Φ̂t

)
.

Combing the last two inequalities together implies∣∣δ̄∣∣λmin

(
Φ̂t

)
≤ 2

M

∣∣∣P ᵀŨ∣∣∣ .
It follows from Lemma A.3 that the event

{
cΦ/2 ≤ λmin

(
Φ̂t

)}
holds with probability approaching

1 as M −→∞. And therefore, ∣∣δ̄∣∣ ≤ (4/cΦ

)
M−1

∣∣∣P ᵀŨ∣∣∣ (A.19)

holds with probability approaching 1 as M −→∞.

It follows as in Eq. (A.2) of [65, pp. 163] that

M−1
∣∣∣P ᵀŨ∣∣∣ = OP

(√
J/M + ρJ

)
. (A.20)

This in conjunction with the last display proves the desired result. The proof is complete.

The next lemma relates the discrepancy between the pseudo estimate β̄t and the true estimate
β̂t to the estimation error of the value function at time step t + 1. This result is not hard to
expect because the primary difference between the pseudo estimate and the true estimate stems
from the estimation error of value function.

Lemma A.5. Suppose the conditions of Theorem 2.2 are satisfied. Then, for t ∈ T0, there exists
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a constant ψ > 0 independent of t, R and J such that∣∣∣β̄t − β̂t∣∣∣ ≤√ ψ

M

∣∣∣Vt+1 − V̂t+1

∣∣∣+OP

(√
J/M + ρJ

)
holds with probability approaching 1 as M −→∞, where Vt+1 and V̂t+1 are two M -by-1 vectors

with m-th element given by Ṽt+1

(
X

(m)
t+1

)
and Ṽ E

t+1

(
X

(m)
t+1

)
, respectively.

Proof of Lemma A.5. Firstly, by triangle inequality, we get∣∣∣β̄t − β̂t∣∣∣ ≤ ∣∣β̄t − βo
t

∣∣+
∣∣∣β̂t − βo

t

∣∣∣ = OP

(√
J/M + ρJ

)
+
∣∣∣β̂t − βo

t

∣∣∣ , (A.21)

where the last equality is by Lemma A.4.

Next, we would like to establish an upper bound for
∣∣∣β̂t − βo

t

∣∣∣. Using the argument as in the

proof of inequality (A.19), we obtain∣∣∣β̂t − βo
t

∣∣∣ ≤ (4/cΦ

)
M−1

∣∣∣P ᵀÛ∣∣∣ ,
holds with probability approaching 1 as M −→ ∞, where we adopt shorthand notation Û :=
V̂t+1 − Pβo

t .

We also note that∣∣∣Û∣∣∣ =
∣∣∣V̂t+1 −Vt+1 + Vt+1 − Pβo

t

∣∣∣ ≤ ∣∣∣V̂t+1 −Vt+1

∣∣∣+ |Vt+1 − Pβo
t | .

Combing the last two inequalities implies∣∣∣β̂t − βo
t

∣∣∣ ≤ (4/cΦ

)
M−1 (|P ᵀ∆|+ |P ᵀU|) =

(
4/cΦ

)
M−1 |P ᵀ∆|+OP

(√
J/M + ρJ

)
(A.22)

with shorthand notations ∆ := V̂t+1 − Vt+1 and Ũ := Vt+1 − Pβo
t , where the last equality

follows by Eq. (A.20).

It follows from Lemma A.3 that

M−2 |P ᵀ∆|2 = M−1∆ᵀ
(
M−1PP ᵀ

)
∆ ≤M−1λmax

(
Φ̂t

)
|∆|2 ≤M−12c̄Φ |∆|2

holds with probability approaching 1 as M −→ ∞. Combing the above inequality with (A.22)
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implies

∣∣∣β̂t − βo
t

∣∣∣ ≤√32c̄Φ

c2
Φ

1

M
|∆|+OP

(√
J/M + ρJ

)
.

This in conjunction with (A.21) proves the desired result.

The final lemma quantifies the discrepancy between the value function and its numerical
estimate under the empirical L2 norm.

Lemma A.6. Let FXt (·) be the probability distribution function of X
(m)
t for t = 1, 2, . . . , T − 1.

Suppose the assumptions of Theorem 2.2 hold. Then

M−1
∣∣∣Vt − V̂t

∣∣∣2 = OP
(
ψT−t−1

(
J/M + ρ2

J

))
, for t = 1, 2, . . . , T − 1, (A.23)

where Vt and V̂t are two M -by-1 vectors with m-th element being Ṽt

(
X

(m)
t

)
and Ṽ E

t

(
X

(m)
t

)
,

respectively.

Proof of Lemma A.6. We use a backward induction procedure to prove the statement of Lemma
A.6. For t = T −1, we note that C̃E

T−1(·) is in agreement with C̃PE
T−1(·) because Ṽ E

T (x) = ṼT (x) =

fT (x) for x ∈ cl (XR). We get Ṽ E
T−1(x) = Ṽ PE

T−1(x) for x ∈ cl (XR), accordingly. Furthermore, we
observe that∣∣∣Ṽ E

T−1(x)− ṼT−1(x)
∣∣∣ =

∣∣∣Ṽ PE
T−1(x)− ṼT−1(x)

∣∣∣
≤ sup

a∈AT−1(x)

∣∣∣C̃PE
T−1

(
K(x, a)

)
− C̃T−1

(
K(x, a)

)∣∣∣
= sup

a∈AT−1(x)

∣∣∣β̄ᵀT−1φ
(
K(x, a)

)
− C̃T−1

(
K(x, a)

)∣∣∣
≤ sup

a∈AT−1(x)

∣∣(β̄T−1 − βo
T−1

)ᵀ
φ
(
K(x, a)

)∣∣
+ sup
a∈AT−1(x)

∣∣∣φᵀ(K(x, a)
)
βo
T−1 − C̃T−1

(
K(x, a)

)∣∣∣
≤

∣∣(β̄T−1 − βo
T−1

)ᵀ
hT−1(x)

∣∣+
∥∥∥φᵀβo

T−1 − C̃T−1

∥∥∥
=

∣∣(β̄T−1 − βo
T−1

)ᵀ
hT−1(x)

∣∣+O(ρJ), (A.24)

where the third inequality is by the definition of function hT−1(·) and the last equality is guar-
anteed by Assumption A.1.
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Consequently, we obtain

M−1
∣∣∣VT−1 − V̂T−1

∣∣∣2 =
1

M

M∑
m=1

∣∣∣Ṽ E
T−1

(
X

(m)
T−1

)
− ṼT−1

(
X

(m)
T−1

)∣∣∣2
≤ 1

M

M∑
m=1

∣∣∣(β̄T−1 − βo
T−1

)ᵀ
hT−1

(
X

(m)
T−1

)∣∣∣2 +O
(
ρ2
J

)
=

(
β̄T−1 − βo

T−1

)ᵀ
Ψ̂T−1

(
β̄T−1 − βo

T−1

)
+O

(
ρ2
J

)
≤ 2λmax

(
Ψ̂T−1

) ∣∣β̄T−1 − βo
T−1

∣∣2 +O
(
ρ2
J

)
= OP

(
J/M + ρ2

J

)
, (A.25)

where the second inequality follows from the definition of the largest eigenvalue of a matrix and
the last equality is guaranteed by Lemma A.4 and Lemma A.3. In view of the above display, Eq.
(A.23) holds for t = T − 1.

As induction hypothesis, we assume (A.23) holds for t+ 1. Note that, for x ∈ X̊R,∣∣∣Ṽt(x)− Ṽ E
t (x)

∣∣∣ ≤ ∣∣∣Ṽt(x)− Ṽ PE
t (x)

∣∣∣+
∣∣∣Ṽ E
t (x)− Ṽ PE

t (x)
∣∣∣ . (A.26)

An argument similar to the one used in establishing (A.25) shows that

1

M

M∑
m=1

∣∣∣Ṽ PE
t

(
X

(m)
t

)
− Ṽt

(
X

(m)
t

)∣∣∣2 = OP
(
J/M + ρ2

J

)
. (A.27)

Next, we investigate the term
∣∣∣Ṽ E
t (x)− Ṽ PE

t (x)
∣∣∣. Observe that∣∣∣Ṽ E

t (x)− Ṽ PE
t (x)

∣∣∣ ≤ sup
a∈At(x)

∣∣∣C̃E
t

(
K(x, a)

)
− C̃PE

t

(
K(x, a)

)∣∣∣
= sup

a∈At(x)

∣∣∣(β̂t − β̄t)ᵀφ(K(x, a)
)∣∣∣

≤
∣∣∣(β̂t − β̄t)ᵀ ht

(
x
)∣∣∣ . (A.28)

We adopt the same argument as in the proof of (A.25) to get

1

M

M∑
m=1

∣∣∣Ṽ E
t

(
X

(m)
t

)
− Ṽ PE

t

(
X

(m)
t

)∣∣∣2 ≤ λmax

(
Ψ̂t

) ∣∣∣β̂t − β̄t∣∣∣2 .
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Applying Lemma A.5 yields

1

M

M∑
m=1

∣∣∣Ṽ E
t

(
X

(m)
t

)
− Ṽ PE

t

(
X

(m)
t

)∣∣∣2 ≤ 2λmax

(
Ψ̂t

)[ ψ
M

∣∣∣Vt+1 − V̂t+1

∣∣∣2 +O
(
ψρ2

J

)]
= OP

(
ψT−t−1

(
J/M + ρ2

J

))
,

where the last equality is due to induction hypothesis (A.23) and λmax

(
Ψ̂t

)
= OP(1) (see Lemma

A.3). The above display in conjunction with (A.26) and (A.27) implies

M−1
∣∣∣Vt − V̂t

∣∣∣2 = OP
(
J/M + ρ2

J

)
+OP

(
ψT−t−1

(
J/M + ρ2

J

))
= OP

(
ψT−t−1

(
J/M + ρ2

J

))
.

This completes the proof.

Proof of the Main Result

Proof of Theorem 2.2. Following the arguments used to prove (A.24), we get∣∣∣Ṽ PE
0 (x0)− Ṽ0(x0)

∣∣∣ ≤ ∣∣∣(β̄0 − β̃0

)ᵀ
h0(X0)

∣∣∣+O(ρJ) = OP

(√
J/M + ρJ

)
,

where the last equality is by Lemma A.4 and Part (ii) of Assumption A.2.

On the other hand, an argument similar to the one used in deriving (A.28) shows∣∣∣Ṽ PE
0 (x0)− Ṽ E

0 (x0)
∣∣∣ ≤ ∣∣∣(β̂0 − β̄0

)ᵀ
h0(X0)

∣∣∣ ≤M−1/2
∣∣∣V1 − V̂1

∣∣∣ |h0(X0)| .

The above two displays in conjunction with (A.23) implies∣∣∣Ṽ0(x0)− Ṽ E
0 (x0)

∣∣∣ ≤ ∣∣∣Ṽ PE
0 (x0)− Ṽ0(x0)

∣∣∣+
∣∣∣Ṽ PE

0 (x0)− Ṽ E
0 (x0)

∣∣∣
= OP

(√
ψT−1

(
J/M + ρ2

J

))
.

This shows (2.32) and completes the proof of Theorem 2.2.
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Appendix B

Appendix for Chapter 3

B.1 Supplements for Section 3.5

B.1.1 Verification of Assumptions

This subsection aims to verify the Assumptions 3.4 and 3.5 and the additional condition of
Theorem 3.1 in the context of the variable annuity contract studied in Section 3.5. In particular,
we will give concrete expressions of Ex0,T (R), B̄(x), ξ̄(R), ζX , and the error bound in the R.H.S. of
inequality (3.17). This allows us to choose an appropriate truncation parameter R in conducting
the numerical experiments in Section 3.5.4.

First recall that in the context of Section 3.5 At(x) =
[
0, G ∨ x

]
, S(x, a, e) =

(
x − a

)+
e,

ft(x, a) = a − κt
(
a − G

)+
, and fT (x) = x, with x ∈ X = [0,∞), a ∈ A = [0,∞), and e ∈ D =

(0,∞). Moreover, εt+1 follows a log-normal distribution with E[log εt+1] =
(
r− q− σ2/2

)
δ := µδ

and Var[log εt+1] = σδ.

Verification of Assumption 3.4

First recall that

Ā =
{
a = {at}t∈T0

∣∣ at is Ft-measurable and at ≥ 0
}
.

Next define a continuous-time process Y := {Yu}u∈[0,T δ] as follows:

Yu = x0 exp
((
r − q − σ2/2

)
u+ σBu

)
= x0 exp (µu+ σBu)
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with {Bu}u∈[0,T δ] being a standard Brownian Motion under the pricing measure Q. In view of
the above display and the transition equation of the PH’s investment account (Eq. (3.24)), one
gets Yδt ≥ Xt for all t ∈ T and a ∈ Ā.

To proceed, note that the truncated region is XR = [0, R] and accordingly,

{Xt ∈ XR, for all t ∈ T0}c ⊆
{

max
t∈T0

Xt ≥ R
}
⊆

{
sup

u∈[0,T δ]
Yu ≥ R

}
.

And thus,

sup
ā∈Ā

P
[
{Xt ∈ XR, for all t ∈ T0}c

]
≤ P

 sup
u∈[0,T̃ ]

Yu > R


= P

x0 exp

 sup
u∈[0,T̃ ]

[µu+ σBu]

 > R


= P

 sup
u∈[0,T̃ ]

[
µu+ σBu

]
> log

(
R/x0

)
= P

 sup
u∈[0,T̃ ]

[
αu+ Bu

]
> m

 ,
with α := µ/σ = (r − q − σ2/2)/σ, T̃ := Tδ, and m := σ−1 log

(
R/x0

)
. In view of the above

inequality, one may choose

Ex0,T (R) = P

 sup
u∈[0,T̃ ]

[αu+ Bu] > m


= 1−N

(
m− αT̃√

T̃

)
+ e2αmN

(
−m− αT̃√

T̃

)
m ≥ 0,

where N (·) denotes the cdf of a standard normal random variable and the second equality follows
by the distribution function of the continuous running maximum of a Brownian Motion with
nonzero drift; see [75, Corollary 7.2.2, pp. 297]. The plot of function Ex0,T : (0,∞) → [0, 1] is
depicted in Figure 3.1; see the solid line.
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Verification of Assumption 3.5

For any ā ∈ A = [0,∞) one may choose a = min
[
ā, G ∨ x

]
such that a ∈ At(x) =

[
0, G ∨ x

]
and

S (x, ā, e) =
(
x− ā

)+
e =

(
x− ā

)
e1{ā≤x} =

(
x− a

)
e1{a≤x} = S (x, a, e) ,

where the second equality follows by {ā ≤ G ∨ x} = {a = ā} ⊆ {ā ≤ x}. Thus, the additional
condition of Theorem 3.1 is fulfilled under the above choice of a.

Next we would like to verify Assumption 3.5. Note that one may choose ht(x) ≡ 0 such that
Part (i) is satisfied and accordingly,∣∣f̄t(x, a)

∣∣ ≤ (G ∨ x)2 ≤ (G+ x)2 ≤ 2G2 + 2x2, for all a ∈ A = [0,∞).

In view of this, one may choose B̄(x) = 2G2 + 2x2. Recall that XR = [0, R] and that ξ̄(R) is an
upper bound (uniformly in t) for B̄(x) over XR. Thus one may choose ξ̄(R) = 2

(
G2 +R2

)
.

Recall that Yδt ≥ Xt for all t ∈ T and a ∈ Ā almost surely. This implies

sup
a∈Ā

E
[
X2
t

]
≤ E

[
Y 2
δt

]
= e2µδt+2σ2δt = e2(µ+σ2)T̃

with T̃ = δT for all t ∈ T . And consequently,

sup
a∈Ā

E
[
B̄ (Xt)

]
= 2

(
G2 + sup

ā∈Ā
E
[
X2
t

])
≤ 2

[
G2 + e2(µ+σ2)T̃

]
:= ζX .

To sum up, in the context of Section 3.5, one may choose ξ̄(R) = 2
(
G2 +R2

)
, B̄(x) =

2
(
G2 + x2

)
, and ζX = 2

[
G2 + e2(µ+σ2)T̃

]
such that Assumption 3.5 holds.

Combing the above results together, one can give an explicit expression of the error bound
given in (3.17). Its plot as a function of truncation parameter R is depicted in Figure 3.1 under
the parameter setting of Section 3.5.4.

B.1.2 Evaluation of Eq. (3.21)

Combing Eq. (3.19) with Eq. (3.21) gives

V ∗t (x) = sup
a∈At(x)

{
ft(x, a) + ϕβ̌ᵀt+1E

Q
[
φ
(
Ŝ(x, a, εt+1)

)]}
, t ∈ T0.
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In the setting of Section 3.5, εt+1 follows a log-normal distribution such that EQ[log εt+1] =(
r − q − σ2/2)δ and VarQ [log εt+1] = σ2δ.

In the sequel, we will evaluate the expectation term involved in the above equation under
different choices of basis functions. To this end, we present a formula for the partial expectation
of a log-normal random variable which will be frequently used. Let Z be a log-normal random
variable with E[logZ] = m and Var[logZ] = v. Then

E
[
Z1{Z≤y}

]
= em+v2/2N

(
log y −m− v2

v

)
, for y > 0, (B.1)

where N (·) denotes the cdf of a standard normal random variable.

Power series

Let p(x) =
(
1, x, . . . , xJ

)ᵀ
and β̌t =

(
β̌t,0, β̌t,1, . . . , β̌t,J

)ᵀ
. By choosing φ(x) = p(x), Eq. (3.21)

reads

β̌ᵀt+1E
Q
[
p
(
Ŝ(x, a, εt+1)

)]
= β̌t+1,0 +

J∑
j=1

β̌t+1,jEQ
[
Ŝj(x, a, εt+1)

]
. (B.2)

Since Ŝ(x, a, e) = Q(S(x, a, e)) with S(x, a, e) given in Eq. (3.26) and Q(x) = min
[
x,R

]
,

EQ
[
Ŝj(x, a, εt+1)

]
= EQ

[
min

[(
(x− a)+εt+1

)j
, Rj

]]
=

{
0, if x = a,

(x− a)jEQ
[

min
[
Zj , Yj

]]
, if x > a,

j = 1, 2, . . . , J, (B.3)

where Zj := εjt+1 and Yj :=
(

R
x−a

)j
, respectively.

Note that Zj follows a log-normal distribution with

EQ[logZj ] = EQ
[
log
(
εjt+1

)]
= j(r − q − σ2/2)δ := mj(δ), (B.4)

and

VarQ[logZj ] = VarQ
[
log
(
εjt+1

)]
=
(
jσ
√
δ
)2

:= vj(δ)
2. (B.5)
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By exploiting the partial expectation formula (B.1), some routine calculations give

EQ
[

min
[
Zj , Yj

]]
= emj(δ)+vj(δ)

2/2N (d1,j) + YjN (d2,j), (B.6)

where

d1,j =
log Yj −mj(δ)− vj(δ)2

vj(δ)
=

log
(

R
x−a

)
−
(
r − q − σ2

2

)
δ − jσ2δ

σ
√
δ

, (B.7)

d2,j = − log Yj −mj(δ)

vj(δ)
=

log
(
x−a
R

)
+
(
r − q − σ2

2

)
δ

σ
√
δ

, (B.8)

for x > a and j = 1, 2, . . . , J .

Combing Eqs. (B.2), (B.3), and (B.6) together implies

β̌ᵀt+1E
Q
[
p
(
Ŝ(x, a, εt+1)

)]
=

{
β̌ᵀt+1

[
ψ1(x− a) ◦E +ψ2(x− a) ◦ p(R)

]
, x > a,

β̌ᵀt+1e, x = a,
(B.9)

where

e = (1, 0, . . . , 0)ᵀ,

E =
(

1, em1(δ)+v1(δ)2/2, . . . , emJ (δ)+vJ (δ)2/2
)ᵀ
,

ψ1(x− a) =
(
1, (x− a)N (d1,1), . . . , (x− a)JN (d1,J)

)ᵀ
,

ψ2(x− a) = (0,N (d2,1), . . . ,N (d2,J))ᵀ

with mj(δ), vj(δ), and di,j , i = 1, 2 given in Eqs. (B.4), (B.5), (B.7), and (B.8), respectively, and
◦ denoting the element-wise product between two vectors.

It is worth noting that vectors E and p(R) are independent of x− a and thus can be reused
in computing Eq. (B.9) for different input pairs (x, a).

Bernstein polynomials

Consider φ(x) = b
(
x/R

)
=
(
bJ,0
(
x/R

)
, bJ,1

(
x/R

)
, . . . , bJ,J

(
x/R

))ᵀ
with bJ,j(v) given in Eq.

(A.2). We note from Eq. (A.1) that b(v) = Bp(v), where p(v) =
(
1, v, . . . , vJ

)ᵀ
and B =

(Bj,`)0≤j,`≤J is a (J + 1)-by-(J + 1) matrix with Bj,` = (−1)`−j
(
J
`

)(
`
j

)
1{j≤`≤J}.
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Under the above choice of φ, Eq. (3.21) reads

β̌ᵀt+1E
Q
[
φ
(
Ŝ(x, a, εt+1)

)]
= β̌ᵀt+1BE

[
p
(
R−1Ŝ(x, a, εt+1)

)]
= β̌ᵀt+1B

(
p
(
R−1

)
◦ E
[
p
(
Ŝ(x, a, εt+1)

)])
=

{
β̌ᵀt+1B

[
p
(
R−1

)
◦ψ1(x− a) ◦E +ψ2(x− a)

]
, x > a,

β̌ᵀt+1Be, x = a,

where the last equality is by Eq. (B.9) and e ◦ p
(
R−1

)
= e.

B.1.3 Delta Calculation

This subsection derives an explicit expression for ∂Pt,x(u, y)/∂y with P xt given in Eq. (3.29).

Recall from Eq. (3.29) that

Pt,x(u, y) = ϕ(t+1)δ−uEQ
[
V̂ E
t+1

(
min

[
xS(t+1)δ, R

])∣∣∣Su = y
]

= ϕ(t+1)δ−uβ̌ᵀt+1E
Q
[
φ
(

min
[
xS(t+1)δ, R

])∣∣∣Su = y
]
,

where the last equality is by the definition of V̂ E
t+1 (Eq. (3.20)). Since Su follows a Geometric

Brownian Motion,

Pt,x(u, y) = ϕ(t+1)δ−uβ̌ᵀt+1E
Q
[
φ
(

min
[
xyeL, R

] )]
where L := (r − q − σ2/2)

(
(t+ 1)δ − u

)
+ σ

√
(t+ 1)δ − uZ and Z stands for a standard normal

random variable.

Taking derivatives on the both sides of the above equation gives

∂Pt,x(u, y)

∂y
= ϕ(t+1)δ−uβ̌ᵀt+1

∂

∂y
EQ
[
φ
(

min
[
xyeL, R

] )]
(B.10)

= ϕ(t+1)δ−uxβ̌ᵀt+1E
Q
[
φ′
(
xyeL

)
eL1{xyeL<R}

]
with φ′ denoting the derivative of φ. Note that we interchange the derivative and expectation
operators in deriving the last equality. By exploiting the dominated convergence theorem, this is
legitimate if

EQ
[
φ′
(
xyeL

)
eL
]
<∞, and EQ[1{xyeL=R}] = 0.
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In the following, we give explicit expressions of the above display under two particular choices
of the basis function φ.

Power series

Let φ(x) = p(x) =
(
1, x, . . . , xJ

)ᵀ
and accordingly, φ′(x) =

(
0, 1, . . . , xJ−1

)ᵀ
. Substituting this

expression into Eq. (B.10) gives

∂Pt,x(u, y)

∂y
= ϕ(t+1)δ−ux

J∑
j=1

β̌t+1,j(xy)j−1EQ
[
ejL1{xyeL<R}

]

= ϕ(t+1)δ−uy−1
J∑
j=1

(xy)j β̌t+1,jEQ
[
ejL1{xyeL<R}

]
.

Further note that

EQ
[
ejL1{xyeL<R}

]
= exp

[
mj

(
(t+ 1)δ − u

)
+
v2
j

(
(t+ 1)δ − u

)
2

]
N
(
d̃xj (y)

)
, (B.11)

where

d̃xj (y) =
j log

(
R
xy

)
−mj

(
(t+ 1)δ − u

)
− v2

j

(
(t+ 1)δ − u

)
vj
(
(t+ 1)δ − u

)
with mj(·) and vj(·) given in Eqs. (B.4) and (B.5), respectively.

Combing the last two displays together gives

∂Pt,x(u, y)

∂y
=
(
ϕ(t+1)δ−uy−1

)
β̌ᵀt+1

[
p (xy) ◦ ηt,x(u, y)

]
, (B.12)

where

ηt,x(u, y) =
(

0,EQ
[
eL1{xyeL<R}

]
, . . . ,EQ

[
eJL1{xyeL<R}

] )ᵀ
is a (J + 1)-by-1 vector with EQ

[
ejL1{xyeL<R}

]
given by Eq. (B.11).
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Bernstein polynomials

In the sequel we choose φ(x) = b(x/R) with b(v) being a vector of Bernstein polynomials up to
degree J as given in Eq. (A.2). Accordingly, φ(x) = B

[
p
(
R−1

)
◦p(x)

]
. This combined with Eq.

(B.10) gives

∂Pt,x(u, y)

∂y
= ϕ(t+1)δ−uβ̌ᵀt+1B

(
p
(
R−1

)
◦ ∂

∂y
EQ
[
p
(

min
[
xyeL, R

] )])
=

(
ϕ(t+1)δ−uy−1

)
β̌ᵀt+1B

[
p
(
xyR−1

)
◦ ηt,x(u, y)

]
, (B.13)

where the last equality is by Eq. (B.12).

B.2 Proofs of Statements

B.2.1 Proof of Theorem 3.1

Preliminaries

Recall that the state variable Xt (resp., X̂t) implicitly depends on the DM’s action a = {at}t∈T0 .
In what follows, we sometimes stress such a dependency by writing Xa

t (resp., X̂a
t ).

Lemma B.1. For each a ∈ Ā defined by Eq. (3.15),

T⋃
t=1

{
Xa
t 6= X̂a

t

}
⊆
{
Xa
t ∈ XR, for all 0 ≤ t ≤ T

}c
.

Proof of Lemma B.1. Observe that

T⋃
t=1

{
Xa
t 6= X̂a

t

}
=

(
T⋂
t=1

{
Xa
t = X̂a

t

})c
=
{
Xa
t = X̂a

t , for all 0 ≤ t ≤ T
}c
.

In view of the above display, the statement of Lemma B.1 follows if one proves that{
Xa
t ∈ XR, for all 0 ≤ t ≤ T

}
⊆
{
Xa
t = X̂a

t , for all 0 ≤ t ≤ T
}
,

or equivalently, Xa
t ∈ XR, for all 0 ≤ t ≤ T, implies

Xa
t = X̂a

t , for all 0 ≤ t ≤ T. (B.14)
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Next, we would like to prove the above display. Clearly, Xa
0 = X̂a

0 = x0 according to Eq.
(3.10). Suppose (B.14) holds for time step t. Eq. (3.1) implies

Xa
t+1 = S (Xa

t , at, εt+1) = Q (S (Xa
t , at, εt+1)) = Q

(
S
(
X̂a
t , at, εt+1

))
= X̂a

t+1,

where the second equality holds because Q(x) = x for x ∈ cl (XR), the third equality is by
induction hypothesis that Xa

t = X̂a
t , and the last equality follows by Eq. (3.10). This proves the

statement (B.14). The proof of Lemma B.1 is complete.

A direct consequence of the preceding lemma is that one may control the probability that the
state processes X and X̂ disagrees with each other by Ex0,T (R) given in Assumption 3.4.

Corollary B.1. Under the conditions of Lemma B.1, then,

sup
a∈Ā

P

[
T⋃
t=1

{
Xa
t 6= X̂a

t

}]
≤ Ex0,T (R).

Proof of Corollary B.1.

sup
a∈Ā

P

[
T⋃
t=1

{
Xa
t 6= X̂a

t

}]
≤ sup

a∈Ā
P
[
{Xa

t ∈ XR, for all 0 ≤ t ≤ T}c
]

= sup
a∈Ā

(
1− P

[
Xa
t ∈ XR, for all 0 ≤ t ≤ T

])
= 1− inf

a∈Ā
P
[
Xa
t ∈ XR, for all 0 ≤ t ≤ T

]
≤ Ex0,T (R),

where the above two inequalities follows by Lemma B.1 and Assumption 3.4, respectively.

Recall that sets A and Ā are defined in Eqs. (3.2) and (3.15), respectively.

Lemma B.2. Suppose the conditions of Theorem 3.1 are satisfied. Then, for the state process
X defined through Eq. (3.1), the following statements hold.

(i) For each a ∈ A, there exists ā ∈ Ā such that ft (Xa
t , at) = f̄t (X ā

t , āt) and fT (Xa
T ) = fT (X ā

T )
for all t ∈ T0 almost surely.

(ii) For each ā ∈ Ā, there exists a ∈ A such that ft (Xa
t , at) ≥ f̄t (X ā

t , āt) and fT (Xa
T ) = fT (X ā

T )
for all t ∈ T0 almost surely.

Proof of Lemma B.2. (i) First note that A ⊂ Ā. Then Part (i) holds trivially by letting ā = a.
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(ii) Let us divide the discussion into two cases. If ā0 ∈ A0(x0), then one may let a0 = ā0 and
therefore,

f0 (Xa
0 , a0) = f0 (x0, a0) = f̄0(x0, ā0) = f̄0

(
X ā

0 , ā0

)
.

If ā0 /∈ A0(x0), one may choose an a0 ∈ At(x0) such that S(x0, a0, e) = S (x0, ā0, e) for all
e ∈ D. In this case, Parts (i) and (ii) of Assumption 3.5 imply that

f0 (Xa
0 , a0) = f0 (x0, a0) ≥ h0(x0) = f̄0(x0, ā0) = f̄0

(
X ā

0 , ā0

)
.

Combing the above cases together proves the first statement of Part (ii) for t = 0.

For the second claim, it is easy to see that in either of the above cases one gets

Xa
1 = S (Xa

0 , a0, ε1) = S(x0, a0, ε1) = S (x0, ā0, ε1) = S
(
X ā

0 , ā0, ε1

)
= X ā

1 .

Applying the above argument inductively proves the desired statement. The proof is com-
plete.

Remark B.1. From the above proof, one may see the statement of the preceding Lemma B.2 also
holds for the state process X̂ defined through Eq. (3.10).

The preceding Lemma B.2 in conjunction with Remark B.1 implies the following corollary.

Corollary B.2. Under the conditions of Theorem 3.1,

V0(x0) = sup
ā∈Ā

E

[
T−1∑
t=0

ϕtf̄t(Xt, āt) + ϕT fT (XT )

]
, (B.15)

V̂0(x0) = sup
ā∈Ā

E

[
T−1∑
t=0

ϕtf̄t

(
X̂t, āt

)
+ ϕT fT

(
X̂T

)]
, (B.16)

where V0(x0) and V̂0(x0) are defined in Eqs. (3.3) and (3.12), respectively.

Proof of Corollary B.2. We only sketch the proof. By exploiting Part (i) of the preceding Lemma
B.2 and the definition of V0(x0) (Eq. (3.3)), it is straightforward to see that

V0(x0) ≤ sup
ā∈Ā

E

[
T−1∑
t=0

ϕtf̄t(Xt, āt) + ϕT fT (XT )

]
.
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On the other hand, Part (ii) of Lemma B.2 implies that the above inequality also holds
reversely. This proves Eq. (B.15). Eq. (B.16) can be proved in parallel by exploiting Remark
B.1.

The above corollary states that to study the optimal value function V0(x0) (resp., V̂0(x0)), one
may switch her attention from its primal definition Eq. (3.3) (resp., Eq. (3.12)) to the problem
Eq. (B.15) (resp., Eq. (B.16)) where the state constraint is eliminated and a penalty term is
imposed on the reward functions; see also the subsequent paragraph below Assumption 3.5.

Proof of main result

Proof of Theorem 3.1. Corollary B.2 implies that

∣∣∣V0(x0)− V̂0(x0)
∣∣∣ ≤ sup

ā∈Ā
E

[
T−1∑
t=0

ϕt
∣∣∣f̄t (Xt, āt)− f̄t

(
X̂t, āt

)∣∣∣+ ϕT
∣∣∣fT (XT )− fT

(
X̂T

)∣∣∣]

= sup
ā∈Ā

E

[
T−1∑
t=0

ϕt
∣∣∣f̄t (Xt, āt)− f̄t

(
X̂t, āt

)∣∣∣1{Xt 6=X̂t}
+ϕT

∣∣∣fT (XT )− fT
(
X̂T

)∣∣∣1{XT 6=X̂T}
]

≤ sup
ā∈Ā

E

[
T∑
t=0

ϕt
∣∣∣B̄ 1

2 (Xt) + ξ̄
1
2 (R)

∣∣∣1{Xt 6=X̂t}
]

:= I,

where the last inequality follows from Assumption 3.5.

Next, we would like to establish an upper bound for the term I. Denote

E0 :=
T⋃
t=1

{
Xa
t 6= X̂a

t

}
and Ȳt := B̄

1
2 (Xt) + ξ̄

1
2 (R).

Note that
{
Xt 6= X̂t

}
⊂ E0 for t ∈ T . This implies

I ≤ sup
ā∈Ā

E

[(
T∑
t=0

ϕtȲt

)
· 1E0

]
.
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An application of Cauchy-Schwarz inequality to the R.H.S. of the above display gives

I ≤ sup
ā∈Ā

√P [E0] ·

E

( T∑
t=0

ϕtȲt

)2
 1

2


≤

(
T∑
t=0

ϕ2t

) 1
2

· sup
ā∈Ā

√P [E0] ·

(
E

[
T∑
t=0

Ȳ 2
t

]) 1
2


≤

(
1− ϕ2(T+1)

1− ϕ2

) 1
2

·
√
Ex0,T (R) · sup

ā∈Ā


(
E

[
T∑
t=0

Ȳ 2
t

]) 1
2


=

{
1− ϕ2(T+1)

1− ϕ2
· Ex0,T (R) · sup

ā∈Ā

(
E

[
T∑
t=0

Ȳ 2
t

])} 1
2

, (B.17)

where the last inequality follows from Corollary B.1 and the last equality holds because taking
square root preserves monotonicity.

Assumption 3.5 implies that

E

[
T∑
t=0

Ȳ 2
t

]
≤ 2

T∑
t=0

E
[
ξ̄(R) + B̄(Xt)

]
≤ 2(T + 1)

(
ξ̄(R) + ζX

)
, (B.18)

where the first inequality holds because (a + b)2 ≤ 2a2 + 2b2 for two real numbers a and b and
the last inequality is by Assumption 3.5. Combing (B.17) with (B.18) implies

I ≤

√
2(T + 1)

1− ϕ2(T+1)

1− ϕ2
Ex0,T (R)

(
ξ̄(R) + ζX

)
.

This proves the desired result.

B.2.2 Proof of Proposition 3.1

Preliminaries

We first give the definition of the lower (resp., upper) semicontinuity of a correspondence.

Definition B.1 (Lower Semicontinuity). A correspondence A : X ⇒ A is lower semicontinuous
at x ∈ X if A(x) 6= ∅ and if, for each sequence xn → x and for each y ∈ A(x), there exists N ≥ 1
and a sequence {yn}n≥N such that yn → y and yn ∈ A(xn) for all n ≥ N .
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Definition B.2 (Upper Semicontinuity). A correspondence A : X ⇒ A is upper semicontinuous
at x ∈ X if A(x) 6= ∅ and if, for each sequence xn → x and for each sequence {yn}n≥1 such that
yn ∈ A(xn) for all n ≥ 1, there exists a convergent sub-sequence of {yn}n≥1 whose limit point is
in A(x).

Definition B.3 (Continuous Correspondence). A correspondence A : X ⇒ A is continuous at
x ∈ X if and only if it is both upper and lower semicontinuous at x. Furthermore, A is called a
continuous correspondence if it is continuous at each x ∈ X .

Definition B.4 (Compact-valued Correspondence). A correspondence A : X ⇒ A is compact-
valued if and only if for each x ∈ X , A(x) is a compact set.

Next, we present the Berge’s Maximum Theorem; see [18].

Lemma B.3 (Berge’s Maximum Theorem). Let X ⊆ Rd and A ⊆ Rp with d, p ∈ N. Let
V : X ×A→ R be a continuous function and A : X ⇒ A be a compact valued and continuous cor-
respondence in accordance with Definitions B.4 and B.3. Then function V (x) = maxa∈A(x) V(x, a)
is well-defined and continuous.

Proof of main results

Proof of Proposition 3.1. We would like to prove the proposition via a backward induction. First,
notice that VT (·) = fT (·) which is continuous by Assumption 3.6.

Now assume that Vt+1 : X → R is continuous. The Bellman equation (3.4) implies that
Vt(x) = supa∈At(x) Vt(x, a) where

Vt(x, a) := ft(x, a) + C̄t(x, a). (B.19)

Eq. (3.5) in conjunction with Eq. (3.1) implies that

C̄t(x, a) = E
[
Vt+1(Xt+1)

∣∣∣Xt = x, at = a
]

= E
[
Vt+1

(
S
(
x, a, εt+1

)) ]
(B.20)

which is continuous in (x, a)ᵀ by Assumption 3.6. In view of the last two displays and Assumption
3.6, one gets Vt : X×A→ R is continuous. Applying Lemma B.3 implies Vt : X → R is continuous.

A similar argument will lead us to conclude that V̂t : X → R is continuous. The proof is
complete.

B.2.3 Proofs of Propositions 3.2 and 3.3

Preliminaries

To make the paper self-contained, we give some preliminary definitions.
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Definition B.5 (Partial Order). A partial order is a binary relation ≤ over a set X satisfying
the following axioms:

(i) (Reflexivity) For each x ∈ X , x ≤ x;

(ii) (Antisymmetry) For each x and y ∈ X , if x ≤ y and y ≤ x, then x = y;

(iii) (Transitivity) For each x, y and z ∈ X , if x ≤ y and y ≤ z, then x ≤ z.

Definition B.6 (Monotone Function). Let X and Y be sets equipped with partial orders ≤X and
≤Y , respectively. f : X → Y is monotone if for all x, x′ ∈ X , x ≤X x′ implies f(x) ≤Y f (x′).

Definition B.7 (Convex Set). Let W be a vector space over R. X ⊂W is a convex set if for all
x′, x′′ ∈ X and λ ∈ (0, 1), λx′ + (1− λ)x′′ ∈ X .

Definition B.8 (Concave Function). Let X be a convex set and Y a vector space over R equipped
with a partial order ≤Y . f : X → Y is a concave function if for all x′, x′′ ∈ X and λ ∈ (0, 1),

λf
(
x′
)

+ (1− λ)
(
x′′
)
≤Y f

(
λx′ + (1− λ)x′′

)
.

Next, we state a lemma from convex analysis whose proof is omitted; see e.g. [20].

Lemma B.4. Let X be a convex set and let B and C be two vector spaces over R equipped with
partial orders ≤B and ≤C, respectively. If f : X → B and h : B → C are concave functions with
h monotone, then h ◦ f is a concave function.

The following lemma is used in the proof of Proposition 3.3.

Lemma B.5. Suppose Assumptions 3.1 and 3.8 hold. Then Vt : X → R is bounded uniformly in
t, that is, there exists a constant ζV such that supx∈X |Vt(x)| ≤ ζV for all t ∈ T .

Proof. Firstly, by recalling that VT = fT , Part (ii) of Assumption 3.8 implies that supx∈X |VT (x)| ≤
ζf . Inductively assume that supx∈X |Vt+1(x)| ≤ (T − t)ζf .

Recall from Eqs. (3.4) and (3.5) that

Vt(x) = sup
a∈At(x)

{
ft(x, a) + E

[
Vt+1(Xt+1)

∣∣∣Xt = x, at = a
]}

.

Combing the above display with Part (ii) of Assumption 3.8 gives Vt(x) ≤ (T − t+ 1)ζf with the
R.H.S. independent of x.

Thus, one may choose ζV = (T + 1)ζf such that the assertion of Lemma B.5 holds. The proof
is complete.
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Proof of main results

Proof of Proposition 3.2. First note that VT (x) = fT (x) is monotone in x by Assumption 3.7.
Inductively assume Vt+1 : X → R is a monotone function.

Let x, x′ ∈ X such that x ≤X x′. We observe that for each a ∈ At(x),

Vt(x, a) := ft(x, a) + C̄t(x, a)

= ft(x, a) + E
[
Vt+1

(
S
(
x, a, εt+1

)) ]
≤ ft

(
x′, a′

)
+ E

[
Vt+1

(
S
(
x′, a′, εt+1

)) ]
= Vt

(
x′, a′

)
,

where the second equality is by Eqs. (3.1) and (3.5) and the first inequality follows from Assump-
tion 3.7 in conjunction with the monotonicity of Vt+1 : X → R. And thus, for each a ∈ At(x),

Vt(x, a) ≤ Vt
(
x′, a′

)
≤ sup

a′∈At(x′)
Vt
(
x′, a′

)
= Vt

(
x′
)
,

where the last equality is by the Bellman equation (3.4). Since the R.H.S. of the above inequality
is independent of a ∈ At(x),

Vt(x) = sup
a∈At(x)

Vt(x, a) ≤ Vt
(
x′
)
.

This proves the monotonicity of Vt : X → R.

Analogously, one can prove that V̂t : X → R is a monotone function for all t ∈ T0.

Proof of Proposition 3.3. We only prove the assertion for Vt : X → R. The assertion for V̂t : X →
R can be proved in parallel.

Firstly, Assumption 3.8 in conjunction with the Bellman equation (3.4) implies that VT = fT
is a concave and monotone function. As induction hypothesis, one may assume Vt+1 is a concave
and monotone function.

Let

Vt(x, a) := ft(x, a) + C̄t(x, a) = ft(x, a) + E
[
Vt+1

(
S
(
x, a, εt+1

)) ]
,

where the last equality is by Eq. (3.5). Recall that Vt+1 : X → R is concave and monotone
(induction hypothesis) and that for each e, S(·, ·, e) : X × A → X is a concave function (Part
(i) of Assumption 3.8). Then Lemma B.4 implies that C̄t(x, a) is a concave function. This in
conjunction with the concavity of ft : X × A → R implies that Vt : X × A → R is a concave
function.
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Recall from Eq. (3.4) that Vt(x) = supa∈At(x) Vt(x, a). In the sequel, we would like to show
that Vt : X → R is a concave function. By Lemma B.5, and Vt is uniformly bounded. This
combined with Assumption 3.8 implies that for any pair (x′, x′′) and any ε > 0, there exists
a′ ∈ At (x′) and a′′ ∈ At (x′′) such that λa′ + (1− λ)a′′ ∈ At (λx′ + (1− λ)x′′),

Vt
(
x′, a′

)
+ ε > Vt

(
x′
)
, and Vt

(
x′′, a′′

)
+ ε > Vt

(
x′′
)
.

Consequently, for any λ ∈ (0, 1),

λVt
(
x′
)

+ (1− λ)Vt
(
x′′
)

< λVt
(
x′, a′

)
+ (1− λ)Vt

(
x′′, a′′

)
+ ε

≤ Vt
(
λx′ + (1− λ)x′′, λa′ + (1− λ)a′′

)
+ ε

≤ Vt
(
λx′ + (1− λ)x′′

)
+ ε

where the last second inequality is by the concavity of Vt. Since ε can be arbitrarily small by
choosing a′ and a′′, we get

λVt
(
x′
)

+ (1− λ)Vt
(
x′′
)
≤ Vt

(
λx′ + (1− λ)x′′

)
.

This proves the desired result.

B.2.4 Proof of Theorem 3.2

Preliminaries

We first give the definitions of “Big O p” and “Small O p” notations.

Definition B.9. (i) For two sequences of random variables {aM}M∈N and {bM}M∈N, we say
aM = OP(bM ) if limk→∞ lim supM→∞ P (|aM | > kbM ) = 0.

(ii) Moreover, we say aM = oP(bM ) if lim supM→∞ P (|aM | > kbM ) = 0 for all k > 0.

Recall that β̌t solves the following optimization problem:

inf
β∈RJ+1

1

M

M∑
m=1

[
V̂ ∗t

(
X̂

(m)
t

)
− φ

(
X̂

(m)
t

)]2
s.t. AJβ ≥ 0b(J), (B.21)

where AJ is given in Eq. (3.7). Similarly define a pseudo estimate βPE
t as the optimizer to the

above optimization problem with V̂ ∗t

(
X̂

(m)
t

)
replaced by V̂t

(
X̂

(m)
t

)
. Consequently, define

V̂ PE
t (x) = φᵀ(x)βPE

t , for x ∈ cl (XR) . (B.22)
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Further define the oracle β?t as the optimizer of the following problem:

inf
β∈RJ+1

‖φᵀβ − Vt+1‖ , s.t. AJβ ≥ 0b(J). (B.23)

The first lemma discloses the discrepancy between the oracle and the pseudo estimate.

Lemma B.6. Under the conditions of Theorem 3.2,∣∣β?t − βPE
t

∣∣ = OP (ρ̂J) for t ∈ T .

Proof. The proof is parallel to that of [73, Lemma 4] and thus is omitted.

Remark B.2. The conclusion of the above lemma is substantially different with that of [73,
Lemma 4], although they can be proved by the same argument. In particular, the wedge between
the pseudo estimate and the oracle is contributed by one additional term

√
J/M in [73, Lemma

4], whereas this term does not appear in the above lemma. This is the benefit one may get from
directly approximating the value function instead of the continuation function as it is done in
[73].

The subsequent lemma relates the gap between the regression coefficient estimate β̌t and the
pseudo estimate βPE

t at time step t to the estimation error of the optima value function at time
step t+ 1.

Lemma B.7. Under the conditions of Theorem 3.2, there exits a generic constant Γ > 0 such
that

∣∣β̌t − βPE
t

∣∣ ≤ (Γ

∫ ∣∣∣V̂t+1(y)− V̂ E
t+1(y)

∣∣∣2 dQ(y)

) 1
2

+OP (ρ̂J)

holds with probability approaching 1 as M →∞ for t ∈ T , where Q(·) is the sampling distribution

of X̂
(m)
t which is independent of m and t.

Proof. Via the argument used by [73] in proving their Lemma 5, one may get

∣∣β̌t − βPE
t

∣∣ ≤√ χ

M

∣∣∣V̂t − V̂∗t

∣∣∣+OP (ρ̂J) , for some generic χ > 0, (B.24)

where V̂t and V̂∗t are twoM -by-1 vectors with theirm-th elements being V̂t

(
X̂

(m)
t

)
and V̂ ∗t

(
X̂

(m)
t

)
,

respectively.
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Next it follows from Eq. (3.19) that for each x ∈ XR,∣∣∣V̂t(x)− V̂ ∗t (x)
∣∣∣ ≤ sup

a∈At(x)

∫ ∣∣∣(V̂t+1(y)− V̂ E
t+1(y)

)
w(y;x, a)

∣∣∣ dQ(y)

≤ ζw

∫ ∣∣∣V̂t+1(y)− V̂ E
t+1(y)

∣∣∣dQ(y)

where the second inequality is guaranteed by Assumption 3.9. It is worth stressing that the
R.H.S. of the above inequality is independent of x and m.

The above display in conjunction with Jensen’s inequality implies∣∣∣V̂t (X̂(m)
t

)
− V̂ ∗t

(
X̂

(m)
t

)∣∣∣2 ≤ ζ2
w

∫ ∣∣∣V̂t+1(y)− V̂ E
t+1(y)

∣∣∣2 dQ(y),

and therefore,

∣∣∣V̂t − V̂∗t

∣∣∣ =

(
M∑
m=1

∣∣∣V̂t (X̂(m)
t

)
− V̂ ∗t

(
X̂

(m)
t

)∣∣∣2)
1
2

≤ ζw
√
M

(∫ ∣∣∣V̂t+1(y)− V̂ E
t+1(y)

∣∣∣2 dQ(y)

) 1
2

.

Coming the above display with inequality (B.24) yields the desired result with Γ = χζw.

We give some intuition behind the result delivered by the above lemma. Recall that the
difference between β̌t and βPE

t comes from the mismatch between V̂ ∗t and V̂t. In view of the
definitions of these two functions (see Eqs. (3.19) and (3.13), respectively), one may see that
their discrepancy is essentially triggered by the estimation error of the value function at time
step t + 1, i.e., the disagreement between V̂ E

t+1 and V̂t+1. Thus, it is not surprising that the
conclusion of Lemma B.7 holds.

Proof of main results

Proof of Theorem 3.2. First recall that V̂ ∗T (x) = V̂T (x) = fT (x). In view of this and the defini-
tions of βPE

t and β̌t, one gets

V̂ E
T (x) = φᵀ(x)β̌T = φᵀ(x)βPE

T = V̂ PE
T (x) for x ∈ cl (XR) ,
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and thus, ∣∣∣V̂T (x)− V̂ E
T (x)

∣∣∣ =
∣∣∣V̂T (x)− V̂ PE

T (x)
∣∣∣

≤
∣∣∣V̂T (x)− φᵀ(x)β?T

∣∣∣+
∣∣φᵀ(x)

(
β?T − βPE

T

)∣∣
≤

∣∣φᵀ(x)
(
β?T − βPE

T

)∣∣+O (ρ̂J) ,

where the last inequality follows because Condition (iii) of Assumption 3.2 holds for g(·) = V̂T (·)
and β? = β?T . And therefore,∫ ∣∣∣V̂T (x)− V̂ E

T (x)
∣∣∣2 dQ(x) ≤ 2

(
β?T − βPE

T

)ᵀ ∫
φ(x)φᵀ(x)dQ(x)

(
β?T − βPE

T

)
+ 2O

(
ρ̂2
J

)
= 2

(
β?T − βPE

T

)ᵀ E [φ(X(m)
T

)
φᵀ
(
X

(m)
T

)] (
β?T − βPE

T

)
+O

(
ρ̂2
J

)
≤ 2c̄Φ

∣∣β?T − βPE
T

∣∣2 +O
(
ρ̂2
J

)
(B.25)

where the first equality follows because Q(·) is the sampling distribution of X
(m)
T and the last

inequality is by Condition (iv) of Assumption 3.2. The last display in conjunction with Lemma

B.6 implies
∫ ∣∣∣V̂T (x)− V̂ E

T (x)
∣∣∣2 dQ(x) = OP

(
ρ̂2
J

)
.

Now assume that(∫ ∣∣∣V̂t+1(x)− V̂ E
t+1(x)

∣∣∣2 dQ(x)

) 1
2

= OP
(
ζT−t−1ρ̂J

)
for some ζ > 0. (B.26)

Applying triangle inequality implies∣∣∣V̂t(x)− V̂ E
t (x)

∣∣∣ ≤ ∣∣∣V̂t(x)− V̂ PE
t (x)

∣∣∣+
∣∣∣V̂ PE
t (x)− V̂ E

t (x)
∣∣∣ . (B.27)

An argument similar to that used in establishing (B.25) implies∫ ∣∣∣V̂t(x)− V̂ PE
t (x)

∣∣∣2 dQ(x) = OP
(
ρ̂2
J

)
. (B.28)

Next, we would like to investigate the second term in the R.H.S. of (B.27). By exploiting Lemma
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B.7, one gets∫ ∣∣∣V̂ PE
t (x)− V̂ E

t (x)
∣∣∣2 dQ(x) =

(
βPE
t − β̌t

)ᵀ E [φ(X̂(m)
t

)
φᵀ
(
X̂

(m)
t

)] (
βPE
t − β̌t

)
≤ c̄Φ

∣∣βPE
t − β̌t

∣∣2
≤ c̄ΦΓ

∫ ∣∣∣V̂t+1(y)− V̂ E
t+1(y)

∣∣∣2 dQ(y) +OP (ρ̂J)

= c̄ΦΓOP

(
ζ2(T−t−1)ρ̂2

J

)
+OP

(
ρ̂2
J

)
, (B.29)

where the last equality follows by the induction hypothesis (B.26). Combing inequalities (B.27),
(B.28), and (B.29) yields:(∫ ∣∣∣V̂t(x)− V̂ E

t (x)
∣∣∣2 dQ(x)

) 1
2

= OP
(
ζT−tρ̂J

)
for all t ∈ T . (B.30)

Now it is ready to establish a bound for
∣∣∣V̂0(x0)− V̂ E

0 (x0)
∣∣∣. We observe that∣∣∣V̂0(x0)− V̂ PE

0 (x0)
∣∣∣ ≤ ∣∣φᵀ(x0)

(
β?0 − βPE

0

)∣∣+
∣∣φᵀ(x0)

(
β?0 − βPE

0

)∣∣ = OP (ρ̂J) .

Also note that∣∣∣V̂ PE
0 (x0)− V̂ E

0 (x0)
∣∣∣ = |φ(x0)|

∣∣βPE
0 − β̌0

∣∣
≤ |φ(x0)|

[(
Γ

∫ ∣∣∣V̂1(x)− V̂ E
1 (x)

∣∣∣2 dQ(x)

) 1
2

+OP (ρ̂J)

]
= OP

(
ζT−1ρ̂J

)
where the last two inequalities follow by Lemma B.7 and (B.30), respectively. Combing the last
two displays yields the desired result. The proof is complete.
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Appendix C

Appendix for Chapter 4

C.1 Expressions of Transition Functions

In this appendix, we give the expressions of transition functions defined in Section 4.2.2.

C.1.1 Transition function accompanying the synthetic contract

Let x = (W,Z,A,B, I). The transition function accompanying the state process Xn across the
event time tn is given by

Kn(x, πn) =
(
Kn,i(x, πn)

)
1≤i≤5

,
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where

Kn,1(x, πn) =
(
W − γn

)+
(1− η),

Kn,2(x, πn) = Z1{τn=0} +Kn,1(x, πn)1{τn=1}, (C.1)

Kn,3(x, πn) =


A ∨ Z, if τn = 0,

A ∨
(
W − γn

)
, if I = 0, 0 < γn ≤ G̃n(I)A(tn),

A ∨ Z, if I > 0, 0 ≤ γn ≤ G̃n(I)A(tn),
W−γn

W−G̃n(I)A
A ∨ (W − γn), otherwise,

(C.2)

Kn,4(x, πn) =

{(
B − γn

)+
, if 0 ≤ γn ≤ G̃n(I)A,

W−γn
W−G̃n(I)A

(
B − G̃n(I)A

)+
, otherwise,

(C.3)

Kn,5(x, πn) =

{
n, if I = 0 and τn = 1,

I, otherwise.
(C.4)

C.1.2 Transition function accompanying the real contract

The transition function of the real contract differs from that of the synthetic contract only in its

first component. Specifically, it is given by K̄n(x, πn) =
(
K̄n,i(x, πn)

)
0≤i≤5

, where

K̄n,i(x, πn) = Kn,i(x, πn), for 2 ≤ i ≤ 5,

and

K̄1,n(x, πn) = max
[

(W − γn)+ − ηKn,3(x, πn), 0
]
.

C.2 Some Explicit Results

For the synthetic contract, this appendix presents some closed-form expressions of the value
function and the continuation function. In what follows, we stipulate κN−2 = 0 for the synthetic
contract because it is the case in the real contract specification in Table 4.2.
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C.2.1 Expression of VN−1(·)

According to the dynamic programming equation Eq. (4.19), direct calculation gives

VN−1(x) = N−2p0qN−2

(
B ∨W

)
+ max
γ∈ΓN−1,2

{
N−1p0γ + N−1p0ϕEQ

[
W (tN )

∣∣∣W (t+N−1) =
(
W − γ

)+
(1− η)

]}
= N−2p0qN−2

(
B ∨W

)
+ max
γ∈ΓN−1,2

[
N−1p0γ + N−1p0ϕ

(
W − γ

)+
(1− η)

]
= N−2p0qN−2

(
B ∨W

)
+ N−1p0

(
G̃N−1(I)A ∨W

)
.

Remark C.1. The first equality of the above display states that it is not optimal to defer with-
drawal at tN−1. This is because the PH’s investment is subject to insurance fee as reflected by
the factor (1− η) in the above display, whereby withdrawing the investment is free of withdrawal
charge if κN−2 = 0.

C.2.2 Expression of CN−2(·)

This subsection aims to derive an analytical expression for CN−2(·). This result is used in con-
ducting the numerical experiment in Section 4.5.2 where one needs to compare the regression
estimates with the true continuation function.

Let k = (k1, k2, k3, k4, k5). The continuation function at time tN−2 is given by

CN−2(k) = EQ
[
VN−1(XN−1)

∣∣∣W (t+N−2) = k1, A(tN−1) = k3, B(tN−1) = k4

]
= N−1p0EQ

[
G̃N−1(k5)k3 ∨ k1e

LN−2

]
+ N−2p0qN−2EQ

[
k4 ∨ k1e

LN−2

]
= N−1p0

{
G̃N−1(k5)k3 + EQ

[(
k1e

LN−2 − G̃N−1(k5)k3

)+
]}

+N−2p0qN−2

{
k4 + EQ

[(
k1e

LN−2 − k4

)+]}
,

where LN−2 denotes the log-return of the policy fund over time horizon [tN−2, tN−1].

When the underlying fund follows a geometric Brownian motion, one has

CN−2(k) = N−1p0

[
G̃N−1(k5)k3 + ϕ−1BSC

(
k1, G̃N−1(k5)k3

)]
+N−2p0qN−2

[
k4 + ϕ−1BSC

(
k1, k4

)]
, (C.1)
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where one should recall that ϕ = e−r and BSC(S,K) denotes the Black-Scholes formula for an
European call option with spot price S, strike price K, and time to expiry 1.

C.3 Form of Matrix A in (4.28)

In this appendix, we give the specific form of matrix A in the quadratic programming problem
(4.28).

Let

A =

(
A(1)

A(2)

)
,

with A(i), i = 1, 2 being (J2 + J)-by-(J + 1)2 sub-matrices. Thus A is a 2(J2 + J)-by-(J + 1)2

matrix.

The sub-matrix A(1) is given by

A(1) =


−IJ+1 IJ+1

IJ+1 −2IJ+1 IJ+1

. . .

IJ+1 −2IJ+1 IJ+1


(J2+J)×(J+1)2

,

where IJ+1 is a (J + 1)-by-(J + 1) identical matrix.

The sub-matrix A(2) is given by

A(2) =


BJ

BJ

. . .

BJ


(J2+J)×(J+1)2

,

with

BJ =


−1 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

. . .
. . .

. . .

0 . . . 0 1 −2 1


J×(J+1)

.
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C.4 Some Proofs

This appendix section collects the proofs of Theorems 4.1, 4.2 and Propositions 4.1, 4.3.

C.4.1 Preliminaries

Below we present some preliminary technical results which will be useful in the proofs of our main
results. In what follows, denote Rn+ := [0,∞)n for some positive integer n and x = (W,Z,A,B, I),
respectively. The definitions of partial order and the monotonicity of a multivariate function are
given as follows.

Definition C.1 (Partial Order). Let m be some integer bigger than 1. For two vectors (y1, y2, . . . , ym)
and (z1, z2, . . . , zm) ∈ Rm+ , we say (y1, y2, . . . , ym) ≤ (z1, z2, . . . , zm) if and only if yj ≤ zj for all
1 ≤ j ≤ m.

Definition C.2 (Monotonicity). We say a function F : Rm+ −→ R is monotone if and only if for
any y, z ∈ Rm+ , y ≤ z implies F (y) ≤ F (z).

The following two technical lemmas come from convex analysis; see e.g. [20].

Lemma C.1. Let A ⊂ R be a convex set, and let B and C be vector spaces equipped with partial
orders ≤B and ≤C, respectively. If h1 : A −→ B and h2 : B −→ C are convex functions with h2

monotone, then h2 ◦ h1 is a convex function.

Lemma C.2. Suppose function F (·, ·) : Rn−1
+ × R+ −→ R for some integer n > 1 satisfies:

(i) for each z ∈ R+, y ∈ Rn−1
+ 7−→ F (y, z) is convex, and

(ii) for each c > 0, y ∈ Rn−1
+ and z ∈ R+, F (cy, cz) = cF (y, z).

Then, F (y, z) is a convex function.

Lemma C.3. For γn = 0 or γn = G̃n(I)A,
(
W,Z,A,B

)
7−→ Kn(x, πn) and

(
W,Z,A,B

)
7−→

fn(x, πn) are convex with G̃n(·), Kn(·, ·), and fn(·, ·) defined in Eq. (4.2), Appendix C.1.1 and
Eq. (4.15), respectively.

Proof. The proof follows from checking the definition of convexity by routine calculation.

Lemma C.4. For each n ∈ I and I ∈ {0, 1, . . . , n− 1}, Vn
(
W,Z,A,B, I

)
≤ Vn (W ′, Z ′, A′, B′, I)

if W ≤W ′, Z ≤ Z ′, A ≤ A′, and B ≤ B′.
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Proof. This lemma can be proved in a manner similar to the one used in proving Theorem 4.2.
The proof is thus omitted.

To proceed, denote

R :=
{(
W,Z,A,B

)
∈ R4

+ : W ≤ Z
}
. (C.2)

Lemma C.5. Suppose for each I (W,Z,A,B) 7−→ Vn+1(W,Z,A,B, I) is C.M. on R. Then, for
each k5, (k1, k2, k3, k4) 7−→ Cn(k) is C.M. on R4

+ with k := (k1, k2, k3, k4, k5) and Cn(·) defined
in Eq. (4.18).

Proof. We first prove the convexity of (k1, k2, k3, k4) 7−→ Cn(k). Let k′ =
(
k′1, k

′
2, k
′
3, k
′
4, k5

)
. For

any λ ∈ (0, 1), direct calculation gives

Cn

(
λk + (1− λ)k′

)
= EQ

[
Vn+1

(
k̃1e

Ln , k̃2 ∨ k̃1e
L̄n , k̃3, k̃4, k5

)]
≤ EQ

{
Vn+1

(
k̃1e

Ln , λ
(
k2 ∨ k1e

L̄n
)

+ (1− λ)
(
k′2 ∨ k′1eL̄n

)
, k̃3, k̃4, k5

)}
≤ λEQ

[
Vn+1

(
k1e

Ln , k2 ∨ k1e
L̄n , k3, k4, k5

) ]
+(1− λ)EQ

[
Vn+1

(
k′1e

Ln , k′2 ∨ k′1eL̄n , k′3, k′4, k5

) ]
= λCn (k) + (1− λ)Cn

(
k′
)
,

where k̃i := λki + (1 − λ)k′i, 0 ≤ i ≤ 4, and the last two inequalities follow by the convexity of
(x, y) 7−→ x ∨ yeLn and (W,Z,A,B) 7−→ Vn+1(x), respectively.

The monotonicity of k 7−→ Cn(k) can be proved in a similar way by exploiting Lemma C.4.
This completes the proof.

C.4.2 Proof of Proposition 4.1

Proof of Proposition 4.1. Only the statements for Vn(·) will be proved because the results for
V̄n(·) follow in parallel. A backward induction strategy is adopted for the proof.

In the following, denote x := (W,Z,A,B, I), xc := (c·W, c·Z, c·A, c·B, I) and πcn := (c·γn, τn)
for some c > 0. Also recall that πn = (γn, τn) and that VN (x) = N−1p0W which obviously exhibits
the positive homogeneity. Inductively assume that Vn+1(x) has the homogeneity and need to show
so does Vn(x). Firstly, routine calculation in conjunction with Eq. (4.15) yields

fn (xc, πcn) = c · fn (x, πn) . (C.3)
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Further, it is easy to see from the expression of Kn(·, ·) given in Appendix C.1.1 that Kn (xc, πcn) =
c ·Kn (x, πn) . This combined with Eq. (4.18) implies

Cn

(
Kn

(
xc, πcn

))
= E

[
Vn+1(Xn+1)

∣∣∣Xn+ = c ·Kn (x, πn)
]

= E
[
Vn+1

(
Xc
n+1

) ∣∣∣Xn+ = Kn (x, πn)
]

= E
[
c · Vn+1 (Xn+1)

∣∣∣Xn+ = Kn (x, πn)
]

= c · Cn
(
Kn

(
x, πn

))
with Xc

n+1 := (c ·W (tn+1), c · Z(tn+1), c ·A(tn+1), c ·B(tn+1), In+1) , where the second equality
holds because A(tn+1) = A(t+n ), B(tn+1) = B(t+n ), and the distribution of W (t)/W (t+n ) is inde-
pendent of W (t+n ) for t ∈ (tn, tn+1] and the third equality is by the induction hypothesis.

The above equation combined with Eq. (C.3) implies

Vn (xc, πcn) = c · Vn (x, πn) , (C.4)

where one should recall from Eq. (4.19) that

Vn(x, πn) = fn(x, πn) + ϕCn

(
Kn (x, πn)

)
. (C.5)

In view of Eq. (C.4), it suffices to show (γ̂cn, τ̂
c
n) = (c · γ̂n, τ̂n), where (γ̂cn, τ̂

c
n) and (γ̂n, τ̂n)

denote the optimal policy at Xn = xc and Xn = x, respectively. Now divide the discussion into
two cases with I = 0 and I > 0, respectively. The proofs for the two cases are similar so we focus
on the first case.

For I = 0, the feasible set of the decision variable is Dn,1 ∪ Dn,2 where one should recall
that Dn,1 and Dn,2 are given in Eqs. (4.4) and (4.5), respectively. The supremum value of the
objective function over Dn,2 is given by

γ̂c1,n := arg sup
γn∈Γn,2(xc)

Vn
(
xc, (γn, 1)

)
= c · arg sup

(γn/c)∈Γn,2(x)
Vn
(
x, (γn/c, 1)

)
:= c · γ̂1,n.

Comparing this value with the objective value over Dn,1, the optimal solution over whole feasible
set Dn is obtained by

(γ̂cn, τ̂
c
n) =

{
(γ̂c1,n, 1), if Vn

(
xc,
(
γ̂c1,n, 1

))
> Vn (xc, (0, 0)) ,

(0, 0), otherwise,

=

{
(c · γ̂1,n, 1), if cVn (x, (γ̂1,n, 1)) > cVn (x, (0, 0)) ,

(0, 0), otherwise,

= (c · γ̂n, τ̂n),
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where the second equality follows from Eq. (C.4). The proof of Proposition 4.1 is complete.

C.4.3 Proof of Theorem 4.1

Proof of Theorem 4.1. Let x :=
(
W,Z,A,B, I

)
, x′ := (W ′, Z ′, A,B′, I), and

x̃ = λx+ (1− λ)x′ :=
(
W̃ , Z̃, A, B̃, I

)
.

Further denote k := (k1, k2, k3, k4, k5).

Assertion for n = N − 1 The assertion of Theorem 4.1 for n = N − 1 is proved in two steps.

(1) In the first step, we show that the optimal withdrawal amount at x is among three choices:

γ̂N−1(x) ∈
{

0, GN−1(I)A,W
}
. (C.6)

In the sequel we split the discussion into two cases.

I > 0 If I > 0, one must have τ̂N−1(x) = 1 and ξN−1(I) = I according to Eqs. (4.5) and
(4.1), respectively. One should also recall from Eq. (4.5) that the feasible set of γN−1 at
XN−1 = x is given by

ΓN−1,2(x) =

{[
0, G(I)A

]
, if 0 ≤W < G(I)A,[

0,W ], otherwise.

It is straightforward to see γN−1 7−→ KN−1,1

(
x, (γN−1, 1)

)
is convex on ΓN−1,2(x). Fur-

thermore, Lemma C.5 implies,

k1 7−→ CN−1(k) = E
[
N−1p0W (tN )

∣∣∣W (t+N−1) = k1

]
is C.M.. Combining this with Lemma C.1 implies

γN−1 7−→ CN−1

(
KN−1

(
x, (γN−1, 1)

))
is convex on ΓN−1,2(x).

It is easy to see γN−1 7−→ fN−1

(
x, (γN−1, 1)

)
is convex on

[
0, G(I)A

]
and

[
G(I)A,W

]
,

respectively, if W > G(I)A. Accordingly, γN−1 7−→ VN−1

(
x, (γN−1, 1)

)
(see Eq. (C.5)) is

convex on ΓN−1,2(x) =
[
0, G(I)A

]
, if W ≤ G(I)A; otherwise it is convex on

[
0, G(I)A

]
and
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[
G(I)A,W

]
, respectively. Thus its supremume over ΓN−1,2(x) is obtained at 0, G(I)A, or

W , as desired.

I=0 In the second case I = 0, the feasible set of τN−1 is {0, 1}. Accordingly, the optimal
decision at Xn = x is either (0, 0) or (γ̃N−1(x), 1), where

γ̃N−1(x) = arg max
γ∈ΓN−1,2(x)

VN−1 (x, (γ, 1))

with Vn(·, ·) given in Eq. (4.19). Note that the policy (0, 0) is always superior to the policy
(0, 1) due to the monotonicity of ξ 7−→ G(ξ) and k 7−→ Cn(k). γ̃N−1(x) can be obtained
via a similar argument used in Case 1.

(2) In the second step, we show that for each I,
(
W,Z,A,B

)
7−→ VN−1(x) is convex on R.

Lemma C.2 implies that it suffices to show that for each I and A,
(
W,Z,B

)
7−→ VN−1(x)

is a convex function. Equivalently, we would like to prove

VN−1 (x̃) ≤ λVN−1(x) + (1− λ)VN−1

(
x′
)
. (C.7)

In the sequel we only prove the above inequality for I > 0. The case for I = 0 can be
proved in parallel. Below we divide the discussion into two cases.

(i) If the optimal withdrawal amount at XN−1 = x̃, denoted as γ̂N−1 (x̃), is bigger than
G(I)A, then one must have γ̂N−1 (x̃) = W̃ according to (C.6). Accordingly,

VN−1 (x̃) = fN−1

(
x̃,
(
W̃ , 1

))
≤ λ

[
N−2p0qN−2

(
B ∨W

)
+ N−1p0gN−1

(
x,
(
W, 1

)) ]
+(1− λ)

[
N−2p0qN−2

(
B′ ∨W ′

)
+ N−1p0gN−1

(
x′,
(
W ′, 1

)) ]
= λfN−1

(
x,
(
W, 1

))
+ (1− λ)fN−1

(
x′,
(
W ′, 1

))
≤ λVN−1(x) + (1− λ)VN−1

(
x′
)
.

(ii) If γ̂N−1 (x̃) ≤ G(I)A, then it equals either 0 or G(I)A according to Eq. (C.6). Lemma
C.3 implies

KN−1,1 (x̃, (γ̂N−1 (x̃) , 1)) ≤ λKN−1,1 (x, (γ̂N−1 (x̃) , 1))

+(1− λ)KN−1,1

(
x′, (γ̂N−1 (x̃) , 1)

)
.

It is also notable that (γ̂N−1 (x̃) , 1) ∈ DN−1,2(x) and (γ̂N−1 (x̃) , 1) ∈ DN−1,2 (x′).
Then the C.M. property of k1 7−→ CN−1(k1), Lemma C.1, and the above inequality
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together imply inequality (C.7).

Assertion for n = N −2, N −3, . . . , 1 We only sketch the proof of the assertion for n = N −2.
Firstly, by using Lemmas C.3 and C.5 one may show that the optimal withdrawal amount at x can
be determined from the few desired choices. Secondly, to show the convexity of

(
W,Z,A,B

)
7−→

VN−2(x), the discussion is divided into two cases: the optimal withdrawal amount is greater
than MAWA or not. Thirdly, the the monotonicity of

(
W,Z,A,B

)
7−→ VN−2(x) is guaranteed by

Lemma C.4. The statements for n = N−3, . . . , 1 can be proved by adopting the above arguments
inductively.

C.4.4 Proof of Theorem 4.2

Proof of Theorem 4.2. On one hand, the no-arbitrage price of the real contract is given by

V̄0(x0) = sup
π∈Π̄

EQ

[
N−1∑
k=1

ϕkfk
(
X̄k, πk

)
+ ϕNN−1p0W̄ (tN )

]
, (C.8)

where Π̄ is defined in a similar way as Eq. (4.16) expect that Xk is replaced by X̄k.

On the other hand, the no-arbitrage price of the synthetic contract is similarly given by

V0(x0) = sup
π∈Π

EQ

[
N−1∑
k=1

ϕkfk (Xk, πk) + ϕNN−1p0W (tN )

]
. (C.9)

By comparing the last two equations, one may observe that the discrepancy between V0(x0)
and V̄0(x0) stems from two sources: the admissible sets and the state processes. In view of this,
to prove V̄0(x0) ≤ V0(x0), it suffices to show:

(i) Π̄ ⊆ Π and

(ii) for each π ∈ Π̄, the term in the bracket of (C.8) is dominated by that in (C.9) almost surely.

Recall from Eq. (4.3) that Dn(x) ⊆ Dn(y) if x ≤ y. Therefore, the preceding statements (i)
and (ii) hold if one could show, for each π ∈ Π̄, X̄k ≤ Xk for all k ∈ I, almost surely. From the
transition functions accompanying B(t) and It (see Eqs. (C.3) and (C.4), respectively), it is easy
to see that for each π ∈ Π̄ B̄(tk) = B(tk) and Īk = Ik for all k ∈ I almost surely. It remains to
show

W̄ (tk) ≤W (tk), Z̄(tk) ≤ Z(tk), Ā(tk) ≤ A(tk), (C.10)
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for all k ∈ I almost surely (a.s.).

Adopt a forward induction strategy to show (C.10). For k = 1, from the end of Section 4.2,
one can tell that all the inequalities in (C.10) hold with equalities. Inductively assume that (C.10)
holds for n. Recall that Ā(t) and A(t) share the same transition function across tn:

Ā(tn+1) =


Ā(tn) ∨ Z̄(tn), if τn = 0,

Ā(tn) ∨
(
W̄ (tn)− γn

)
, if In = 0, 0 < γn ≤ G̃n(In)Ā(tn),

Ā(tn) ∨ Z̄(tn), if In > 0, 0 ≤ γn ≤ G̃n(In)Ā(tn),
W̄ (tn)−γn

W̄ (tn)−G̃n(In)Ā(tn)
Ā(tn) ∨

(
W̄ (tn)− γn

)
, otherwise,

and note Z̄(tn) ≥ W̄ (tn). Therefore, one may conclude Ā(tn+1) ≥
(
W̄ (tn)− γn

)+
.

From Eq. (4.6), it is straightforward to see

W̄ (t+n ) = max
[(
W̄ (tn)− γn

)+ − ηĀ(tn+1), 0
]

≤
(
W̄ (tn)− γn

)+
(1− η)

≤
(
W (tn)− γn

)+
(1− η) = W (t+n ) a.s.,

where the first inequality follows because Ā(tn+1) ≥
(
W̄ (tn)− γn

)+
, and the second inequality is

by the induction hypothesis. The above inequality implies

W̄ (tn+1) = W̄ (t+n )eLn(tn+1) ≤W (t+n )eLn(tn+1) = W (tn+1) a.s.

with Ln(tn+1) being the log-return of the policy fund over [tn, tn+1].

One can obtain Z̄(tn+1) ≤ Z(tn+1) in a similar way and thus (C.10) is true. This completes
the proof.

C.4.5 Proof of Proposition 4.3

Proof of Proposition 4.3. Only property (i) will be proved because property (ii) is clear from the
proof of Theorem 4.1. Let Ln and L̄n be the increment and the running maximum of the log-
return process of the policy fund over [tn, tn+1], respectively. Further denote k̂ :=

(
k1, k2, 1, k4, k5

)
and

xn+1 :=
(
Ŵn+1, Ẑn+1, 1, B̂n+1, I

)
=
(
k1e

Ln , k2 ∨ k1e
L̄n , 1, k4, k5

)
,

where the dependency of xn+1 on k̂ is suppressed. In the remainder of the proof, the readers
should always bear in mind that xn+1 depends on k̂ and thus implicitly depends on k2.
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In view of (4.18) and VN (XN ) = N−1p0W (tN ), property (i) obviously holds for n = N − 1.

Assume as the induction hypothesis that k2 7−→ Cn+1

(
k̂
)

is constant for all k2 ∈ [0, 1]. Recall

from Eq. (4.18) that

Cn

(
k̂
)

= EQ
[
Vn+1

(
k1e

Ln , k2 ∨ k1e
L̄n , 1, k4, k5

)]
= EQ[Vn+1 (xn+1)

]
.

Therefore, in order to prove Cn

(
k̂
)

is invariant with respect to k2 for all k2 ∈ [0, 1], it suffices to

show that k2 7→ Vn+1 (xn+1) is constant over [0, 1].

In view of Eqs. (4.19) and (4.23), one gets

Vn+1 (xn+1) = sup
πn+1∈D̂n+1

Vn+1 (xn+1, πn+1) ,

where

Vn+1 (xn+1, πn+1) = fn+1 (xn+1, πn+1) + ϕKn+1,3 (xn+1, πn+1)Cn+1

(
K̂n+1 (xn+1, πn+1)

)
.

It is easy to see D̂n+1 and fn+1 (xn+1, πn+1) are independent of k2; see Eqs. (4.20) and (4.15),
respectively. Further observe from Eqs. (C.2) and (C.1) that

Kn+1,3(xn+1, πn+1) =



1 ∨
(
k2 ∨ k1e

L̄n
)
, if τn+1 = 0,

1 ∨
(
k1e

L̄n − γn+1

)
, if k5 = 0, 0 < γn+1 ≤ G̃n+1(k5),

1 ∨
(
k2 ∨ k1e

L̄n
)
, if k5 > 0, 0 ≤ γn+1 ≤ G̃n+1(k5),

k1eLn−γn+1

k1eLn−G̃n+1(k5)
∨
(
k1e

Ln − γn+1

)+
, otherwise,

which is invariant with respect to k2 for all k2 ∈ [0, 1], and that

K̂n+1,2(xn+1, πn+1) =



Ẑn+1

1∨Ẑn+1
, if τn+1 = 0,

(Ŵn+1−γn+1)
+

(1−η)

1∨(Ŵn+1−γn+1)
+ , if τn+1 = 1, k5 = 0,(

Ŵn+1−γn+1

)+
(1−η)

1∨Ẑn+1
, if k5 > 0, 0 ≤ γn+1 ≤ G̃n+1(k5),(

1

Ŵn+1−G̃n+1(k5)
∨ 1
)−1

, otherwise,

which takes value in [0, 1].

These, combined with the induction hypothesis, imply that k2 7→ Vn+1 (xn+1) is constant over
[0, 1]. The proof is complete.
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