Rational approximations on smooth rational surfaces

by
Diana Carolina Castañeda Santos
A thesis
presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of
Doctor of Philosophy
in
Pure Mathematics

Waterloo, Ontario, Canada, 2019
(c) Diana Carolina Castañeda Santos 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote.

External Examiner: Arthur Baragar
Professor, Dept. of Mathematical Science University of Nevada, Las Vegas

Supervisor: David McKinnon
Professor, Dept. of Pure Mathematics
University of Waterloo

Internal Member: Spiro Karigiannis
Professor, Dept. of Pure Mathematics
University of Waterloo
$\begin{array}{ll}\text { Internal Member: } & \text { Jason Bell } \\ & \text { Professor, Dept. of Pure Mathematics }\end{array}$
University of Waterloo

Internal-External Member: Kevin Purbhoo
Professor, Dept. of Combinatorics and Optimization
University of Waterloo

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

In this thesis, we study a conjecture made by D. McKinnon about rational approximations to rational points in algebraic varieties. The conjecture states that if a rational point P on a variety X lies on a rational curve, then the best approximations to P can be chosen to lie along a rational curve on X. According to the conditions of the conjecture, it is natural to study this problem on algebraic varieties that contain a dense subset of rational points. Motivated by this remark, we study the conjecture on smooth rational surfaces, which not only contain a dense set of rational points, but their classification is also well understood.

Given a point P on an algebraic variety and an ample divisor D, the approximation constant $\alpha_{P}(D)$ measures how well P can be approximated by rational points on the variety, with respect to a height function associated to D. In the study of the conjecture, it became clear that if a curve C contains the best approximations to P with respect to ample divisors D and D^{\prime}, then C turns out to be also a curve containing the best approximations for any divisor that is a linear combination of D and D^{\prime}. This property motivated the study of the nef cone of the algebraic variety. Every ample divisor belongs to the interior of the nef cone and can be written as a linear combination of the generators of the nef cone.

By an exhaustive study of the effective and nef cones on a smooth rational surface, it is possible to find a curve that contains the best approximations to the point P with respect to an ample divisor, which can be written in terms of the generators of the nef cone. In this work we use the fact that a smooth rational surface is obtained by a finite number of blow-ups of a Hirzebruch surface or of the projective plane. The Hirzebruch surfaces are equipped with morphisms to the projective line \mathbb{P}^{1} and to cones in some projective space. The study of the fibres of these morphisms provides good candidates of curves with best approximations and we rely on them to prove the conjecture for these cases.

We review the conjecture proved by McKinnon in the case of smooth rational surfaces of Picard rank 4. We explore some of the examples in this case to present the techniques using the nef cone of the variety, and then we extend the result for surfaces of bigger Picard ranks. Finally, we extend the result to surfaces obtained by blowing up an arbitrary number of times on smooth points of the reducible fibre of the map to \mathbb{P}^{1}.

Acknowledgements

I would like to thank to the Department of Pure Mathematics at the University of Waterloo. I am grateful to be part of such a friendly and supportive department. First, I want to thank my advisor David McKinnon for being so generous with his time and for willing to meet with me even multiple times the same day, thanks for his patience. Thanks for sharing so many stories of life and for always having words of support and care about grad student's life. I also want to thank Matt Satriano for teaching me Algebraic Geometry and for recommending to me resources that were helpful for the study of this thesis. Thanks to my committee: Jason Bell, Spiro Karigiannis, Kevin Purhboo, and Arthur Baragar, for their time reading through and providing comments on this thesis.

Thanks to the awesome staff of the Pure Math department. Jackie Hilts, Lis D'Alessio, Nancy Maloney, and Pavlina Penk, who are always willing to help and who make the department a warm, friendly, and efficient environment in which to work. I also want to thank my fellow grad students that made my journey so enjoyable and happy. Special thanks to my friend Nick Rollick for the countless meetings in which we learn algebraic geometry together, without his help and our long discussions, I wouldn't be able to complete this work. Thanks to Zack, Pat, Ragini, Shubham, Hongdi, Alan, Nanis, and Luis for these years of friendship that made my life so happy and that showed me the true value of friendship.

Thanks to my family for all the support during my PhD. Thanks for let me navigate in this adventure of studying abroad and for giving me all the support to continue. Thanks for being there to warm my heart even when the winter tends to make it colder.

Finally, thanks to Juli. Thanks amor for your friendship and unconditional love. There are no words to express my gratitude to you. Thanks for willing to read and understand Hartshorne with me. Thanks for hearing all my discussions about schemes, sheaves, and blow ups, and for always having questions that made me grow in understanding. Specially, thanks for having this wonderful idea of doing our grad studies together in Waterloo. It has being a pleasure to embark in this adventure together.

Dedication

To my grandma, the most courageous woman that I've ever met. Thanks for all your love and care, I know you will be always with me.

Table of Contents

1 Introduction 1
1.1 Complexity: Height functions 3
1.2 Distance functions 4
1.3 The approximation constant 5
2 Properties of α and curves of best approximation 8
2.1 Properties of the approximation constant α 8
2.2 Curves of best approximation 11
3 Birational Geometry of Rational surfaces 16
3.1 Hirzebruch Surfaces 20
3.2 The nef cone of smooth rational surfaces 21
4 Revisited Examples 23
4.1 The case of \mathbb{P}^{2} blown up at a point 24
4.2 The case of \mathbb{P}^{2} blown up at three non-collinear points 29
5 Split rational surfaces of Picard rank at least 5 35
5.1 Blowing-up smooth points in the reducible fibre 39
5.2 Blowing-up singular points in the reducible fibre 57
6 Further work 71
6.1 Blowing-up surfaces with multiple reducible fibres 71
References 78
APPENDICES 81
A The case of \mathbb{P}^{2} blown up at two points 82
B Explicit calculation of α 86

Chapter 1

Introduction

The main question in the area of Diophantine approximations asks how well an irrational number can be approximated by rational numbers. Explicitly, given $x \in \mathbb{R}$, we want to study how closely we can approximate x by rational numbers $\frac{p}{q}$. It is known that since rational numbers are dense in \mathbb{R}, we can approximate x as closely as we want. However, if we put some constraints on these approximations, the question becomes more subtle.

In this context there are three main theorems that describe the historical progress on answering the approximation problem on the real numbers.

Theorem 1.1. (Dirichlet (1842)). Let $x \in \mathbb{R}, x \notin \mathbb{Q}$. Then there are infinitely many rational numbers $\frac{p}{q}$ such that $\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2}}$.

Theorem 1.1 tells us that we can always approximate an irrational number x, by a rational number $\frac{p}{q}$ within a distance of $\frac{1}{q^{2}}$. One of the applications of this theorem in number theory is its connections with arithmetic progressions and distribution of prime numbers. For more details see [12, Part D].

Theorem 1.2. (Liouville (1844)). Let x be a real algebraic number of degree $d \geq 2$, then for any $\epsilon>0$ there are only finitely many rational numbers $\frac{p}{q}$ such that $\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{d+\epsilon}}$.

Liouville's theorem implies that algebraic numbers cannot be closely approximated by rational numbers. Liouville used this result to prove the existence of trascendental numbers.

Theorem 1.3. (Roth (1955)). Let x be a real algebraic number, then for any $\epsilon>0$ there are only finitely many rational numbers $\frac{p}{q}$ such that $\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2+\epsilon}}$.

It took about a century to complete the gap between the approximation exponents provided by Dirichlet and Liouville. There were improvements to the approximation exponent, but it was Roth who provided the argument that essentially the exponent 2 is the best possible. The proof of this fact by Klaus Roth made him the winner of the Fields medal in 1958.

These problems from number theory are reformulated in algebraic geometry. Given a rational point in an algebraic variety defined over a number field, how well can we approximate this point by rational points in the variety? We study this problem for the case of smooth surfaces birational to \mathbb{P}^{2} and study where these approximations can be found.

In general, we can take an algebraic variety X over \mathbb{Q} and a point $x \in X(\overline{\mathbb{Q}})$ and study how well we can approximate x by rational points in $X(\mathbb{Q})$. Roth's theorem can be rewritten in the context of algebraic varieties as it was described by D. McKinnon and M. Roth in [21]. The authors defined an invariant $\alpha_{x}(L)$ that measures how quickly rational points accumulate around x with respect to a divisor L. We briefly describe these constructions in the next chapter.

In the process of calculating the approximation constants in algebraic varieties, in particular when approximating a rational point x in $X(\mathbb{Q})$, it was possible to find sequences of best approximations to x lying along a curve. In [19], the author made the conjecture that sequences of best approximation to x can be chosen to lie in a curve as long as the point x lies in a rational curve defined over \mathbb{Q}.

In general, we will take an algebraic variety X defined over a number field k and any rational point point $x \in X(k)$. We want to study how "well" we can approximate x by a sequence of rational points in $X(k)$ different from x. To study this problem, first we need an interpretation of Roth's theorem in terms of varieties. So, we rewrite the statement of Roth's theorem as: For any $\epsilon>0$, there are only finitely many numbers $\frac{p}{q}$ such that

$$
\begin{equation*}
q\left|x-\frac{p}{q}\right|^{\frac{1}{2}-\epsilon} \leq 1 \tag{1.1}
\end{equation*}
$$

The factor q is known as the "complexity" of the rational point $\frac{p}{q}$ and the power $\frac{1}{2}$ is what we call the "approximation exponent" to describe the smallest exponent with the property
that the inequality (1.1) has only finitely many solutions $\frac{p}{q} \in \mathbb{Q}$. Notice that now we are looking for the smallest exponent, since we moved the exponent to the distance and we got the reciprocal $\frac{1}{2}$ of the original exponent 2 .

In order to interpret Roth's theorem on algebraic varieties, we need to describe the distance and the complexity in an algebraic variety. We briefly describe these notions here.

1.1 Complexity: Height functions

To study the complexity of a rational point in an algebraic variety, we use height functions. It is well known that given a divisor class D in an algebraic variety X, there is a height function $H_{D}: X(\overline{\mathbb{Q}}) \longrightarrow[0, \infty)$. For details in this construction and the properties of H_{D} see [12, Section B.3] or [15, Chapter 4]. In particular, if we choose an ample divisor class D, its associated height function H_{D} measures the complexity of the point on the variety X.

One important property for the height associated to an ample divisor class is the finiteness property. Explicitly, if D is an ample divisor on a projective variety X, the set $\left\{x \in X(\mathbb{Q}): H_{D}(x) \leq B\right\}$ is finite for all $B \in \mathbb{R}$. This property is also known as the Northcott property.

The choice of height function H_{D} with respect to a divisor class D is not unique. However, all the choices of heights with respect to a divisor are equivalent. Concretely, given two choices of heights associated to a divisor D, H_{D} and H_{D}^{\prime}, there exist real constants c and C with $0<c \leq C$ such that $c H_{D}^{\prime} \leq H_{D} \leq C H_{D}^{\prime}$.

Example 1.4. Let $X=\mathbb{P}_{\mathbb{Q}}^{n}$, let D be the divisor class of a hyperplane in X, and let $x=\left[x_{0}: x_{1}: \cdots: x_{n}\right] \in X(\mathbb{Q})$. We can choose the coordinates $x_{i} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(x_{0}, x_{1}, \cdots, x_{n}\right)=1$. Then

$$
H_{D}(x)=\max \left\{\left|x_{0}\right|,\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right\} .
$$

This definition of the height can be extended to number fields. More precisely, let k be a number field. Consider D a divisor class of a hyperplane in $\mathbb{P}^{n}(k)$ and $x=\left[x_{0}: x_{1}: \cdots\right.$: $\left.x_{n}\right] \in \mathbb{P}^{n}(k)$, then

$$
H_{D}(x)=\prod_{v \in M_{k}} \max \left\{\left\|x_{0}\right\|_{v},\left\|x_{1}\right\|_{v}, \cdots,\left\|x_{n}\right\|_{v}\right\}
$$

where M_{k} is the set of all places of k and all of them are normalized with respect to k. In this work all the heights will be multiplicative, relative to the number field k.

We will simply denote this height as H with no sub-index or $H_{\mathcal{O}(1)}$, where $\mathcal{O}(1)$ is the line bundle on \mathbb{P}^{n} associated to a hyperplane.

Recall that an ample divisor D on a variety X defined over k, induces an embedding $\phi_{D}: X \rightarrow \mathbb{P}^{n}$ of X into some projective space \mathbb{P}^{n}. Thus, it is natural to define a height function H_{D} on $X(\bar{k})$ such that for each point $x \in X(\bar{k}), H_{D}(x)=H\left(\phi_{D}(x)\right)$. Using this fact, one can construct a height function for each divisor in $\operatorname{Div}(X)$. See [12].

1.2 Distance functions

Let k be a number field, X be a variety over k, and $v \in M_{k}$ be a place in k. We also denote by v the completion of v in k_{v}, where k_{v} is the complete field under v, i.e. k_{v} is obtained from k by adding all the limits of Cauchy sequences in k with respect to the place v.

There is a standard procedure to define a distance function d_{v} on $X\left(k_{v}\right)$ by choosing an embedding $X \hookrightarrow \mathbb{P}_{k}^{n}$ and pulling back the distance function d_{v} on $\mathbb{P}^{n}\left(k_{v}\right) \times \mathbb{P}^{n}\left(k_{v}\right)$. The following are common distances that are used in the literature. For properties of these v-adic distances, see Silverman [24].
If v archimedean: Let $x=\left[x_{0}: x_{1}: \cdots: x_{n}\right]$ and $y=\left[y_{0}: y_{1}: \cdots: y_{n}\right]$ be points in $\mathbb{P}^{n}(\mathbb{C})$.

$$
d_{v}(x, y)=\left(1-\frac{\left|\sum_{i=1}^{n} x_{i} \overline{y_{i}}\right|^{2}}{\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)}\right)^{\left[k_{v}: \mathbb{R}\right] / 2}
$$

If v non-archimedean: Let $x=\left[x_{0}: x_{1}: \cdots: x_{n}\right]$ and $y=\left[y_{0}: y_{1}: \cdots: y_{n}\right]$ be points in $\mathbb{P}^{n}\left(k_{v}\right)$.

$$
d_{v}(x, y)=\frac{\max _{0 \leq i<j \leq n}\left\|x_{i} y_{j}-x_{j} y_{i}\right\|_{v}}{\left(\max _{0 \leq i \leq n}\left\|x_{i}\right\|_{v}\right)\left(\max _{0 \leq j \leq n}\left\|y_{j}\right\|_{v}\right)}
$$

Notice that the distance defined depends on the embedding of X into projective space. However, it was proven in [20, Proposition 2.4] that the distances associated to a place v are all equivalent. Moreover, the following proposition was proven in the same paper (Lemma 2.6):

Proposition 1.5. Let $x \in X(\bar{k})$, and K be any finite extension of k over which x is defined. Let U be any open affine subset of X_{K} containing x. Let $u_{1}, u_{2}, \cdots, u_{r}$ be any elements of $\Gamma\left(U, O_{X_{K}}\right)$ that generate the maximal ideal of x. Then for any sequence $\left\{x_{i}\right\} \subset U\left(K_{v}\right)$ such that $d_{v}\left(x_{i}, x\right) \rightarrow 0$ as $i \rightarrow \infty, d_{v}\left(x, x_{i}\right)$ is equivalent to $\max \left(\left\|u_{1}\left(x_{i}\right)\right\|_{v}, \cdots,\left\|u_{r}\left(x_{i}\right)\right\|_{v}\right)$.

For our purposes of finding approximation constants, the choice of the distance will not change the values of the approximation constants. Since we will study sequences $\left\{x_{i}\right\} \in$ $X(k)$ such that $d_{v}\left(x, x_{i}\right) \rightarrow 0$, we will use Proposition 1.5 to calculate the distances when needed.

1.3 The approximation constant

Recall that the approximation exponent is the smallest exponent for which the inequality (1.1) has only finitely many rational solutions. In order to generalize this exponent in the context of algebraic varieties, we define the last ingredient, called the approximation constant of a point on a variety X with respect to a divisor on X.

Definition 1.6. Let D be a divisor on X and $x \in X(\bar{k})$. Consider a sequence $\left\{x_{i}\right\} \subset X(k)$ of distinct points such that $d_{v}\left(x, x_{i}\right) \rightarrow 0$. The approximation constant of $\left\{x_{i}\right\}$ with respect to D is

$$
\alpha_{x}\left(\left\{x_{i}\right\}, D\right):=\inf \left\{\gamma \in \mathbb{R}: d_{v}\left(x_{i}, x\right)^{\gamma} H_{D}\left(x_{i}\right) \text { is bounded }\right\} .
$$

We also define the approximation constant of x with respect to D as

$$
\alpha_{x}(D):=\inf _{\left\{x_{i}\right\} \rightarrow x}\left\{\alpha_{x}\left(\left\{x_{i}\right\}, D\right)\right\} .
$$

Where the last definition takes the infimum over all the possible sequences that converge to x with respect to a previously fixed v-adic distance. If there is no such sequence $\left\{x_{i}\right\} \rightarrow x$ then we set $\alpha_{x}(D)=\infty$.

Example 1.7. In this new language, consider $X=\mathbb{P}^{1}$ be the projective line over the algebraic closure of \mathbb{Q}, and let $x \in \mathbb{P}^{1}(\overline{\mathbb{Q}})$, and H be a hyperplane (i.e. a divisor of a point)
in X.

$$
\begin{aligned}
\text { Liouville } & : \quad \alpha_{x}(H) \geq \frac{1}{d}, \text { where } x \in \mathbb{R}, \quad d=[\mathbb{Q}(x): \mathbb{Q}] \\
\text { Dirichlet } & : \quad \alpha_{x}(H) \leq \frac{1}{2}, x \in \mathbb{R} \cap \overline{\mathbb{Q}}, x \notin \mathbb{Q} \\
\text { Roth } & : \quad \alpha_{x}(H) \geq \frac{1}{2}, x \in \mathbb{R} \cap \overline{\mathbb{Q}} .
\end{aligned}
$$

In the course of computing approximation constants on algebraic varieties, it was possible to find sequences of best approximation (i.e. sequences $\left\{x_{i}\right\} \subset X(k)$ for which $\left.\alpha_{x}(D)=\alpha_{x}\left(\left\{x_{i}\right\}, D\right)\right)$ lying along curves passing through the point being approximated. This idea gave origin to the notion of curves of best approximation, as those curves containing a sequence of best approximation. In chapter 2, we will give more details about this type of curves.

The following conjecture was studied in [19] for smooth rational surfaces of Picard rank at most 4.

Conjecture 1.8. Let X be an algebraic variety defined over k and D be any ample divisor on X. Let x be any k-rational point on X such that there is some rational curve on X, defined over k and passing through x. Then, there exists a curve of best approximation to x on X with respect to D.

The results of this thesis are analogs of the approximation of rational numbers by sequences of rational numbers. We restrict to this case because the Conjecture 1.8 is known to be false if instead, we approximate an algebraic point $P \in X(\bar{k})$ not in $X(k)$.

Additionally, notice that if we do not impose the condition of x lying in a rational curve is important, then the Conjecture 1.8 is false. For instance, abelian varieties contain a dense set of rational points, yet they do not contain rational curves.

The main purpose of this thesis is to study this conjecture on smooth rational surfaces. This type of varieties have two main characteristics that motivate the study of the conjecture in these cases. First, the fundamental property of this type of varieties is that they contain a dense set of rational points, so we are able to find infinite sequences of best approximation. Second, these types of varieties have a nice classification provided, for instance, in [3], [1], [18], [6]. All of these surfaces are obtained by doing a finite number of blow-ups of the
ruled surfaces. In this work, we study this conjecture for smooth surfaces of bigger Picard ranks. By making use of the classification, in this thesis we prove:

Theorem A. Let X be the blow-up of a surface of Picard rank 4 with only one reducible fibre F of the map to \mathbb{P}^{1}, at k smooth points of F. Then the conjecture is true for X.

Theorem B. Let X be the blow-up of a surface of Picard rank 4 with only one reducible fibre F of the map to \mathbb{P}^{1}, at a singular point of F. Then the conjecture is true for X.

Theorem C. Let $n \geq 2$, and let X be the blow-up of the Hirzebruch surface \mathbb{F}_{n} at $k<n$ points, no two of which lie in the same fibre of the map to \mathbb{P}^{1}. Let Y be the blow-up of X at $s \leq k$ points all lying on different reducible fibres of the map to \mathbb{P}^{1}, then the conjecture is true for Y.

One of the most important contributions of this work is the study of the effective and nef cones of the surfaces mentioned in the theorems above. Readers interested on using the nef and the effective cones of smooth rational surfaces can find in this work the explicit descriptions of the generators of these cones.

In chapter 2 , we briefly describe some of the properties of the approximation constant that will be used later in this work. We also review the properties of curves of best approximation. In chapter 3, we review some of the properties of smooth rational surfaces, the effective cone, and the nef cone.

In chapter 4, we revisit some of the examples developed by D. McKinnon in [19] to understand the methods used in calculating the curves of best approximation. In chapter 5, we continue the work on proving the conjecture for smooth rational surfaces of Picard rank five and try to extend the results to smooth surfaces of bigger Picard rank by using the explicit description of the nef cone in each case.

Chapter 2

Properties of α and curves of best approximation

In this chapter we state and prove some of the properties of the constant α and the curves of best approximation, that are used later in this work. We state the main conjecture that will be studied for certain algebraic varieties. Most of the properties in this chapter were presented in [19], [21], and [20].

2.1 Properties of the approximation constant α

The following proposition was proven in [19, Proposition 2.6].
Proposition 2.1. Let $x \in \mathbb{P}^{n}(k)$ and let H be a hyperplane in \mathbb{P}^{n}. Then $\alpha_{x}(H)=1$ and any line L through x contains a sequence $\left\{x_{i}\right\} \subset L(k)$ for which $\alpha_{x}(H)=\alpha_{x}\left(\left\{x_{i}\right\}, H\right)$.

Remark 2.2. Proposition 2.1 is independent of the choice of the v-adic distance on k. This is the main reason why in our definition of the approximation exponent we do not define $\alpha_{x}(D)$ relative to the distance. Conjecture 1.8 relies on the analog of approximating rational points by rational points on a projective variety over a number field k. Since the varieties studied in this work are considered embedded into some projective space, the results of this work are also independent of the choice of the distance.

Proposition 2.3. Let X be a projective variety over $\operatorname{Spec}(k), x \in X(\bar{k})$, and D and D^{\prime} be divisors on X, then

1. Let $\left\{x_{i}\right\} \subset X(k)$ be a sequence of points converging to x. Let $\left\{x_{i}^{\prime}\right\}$ be a subsequence of $\left\{x_{i}\right\}$. Then, $\alpha_{x}\left(\left\{x_{i}^{\prime}\right\}, D\right) \leq \alpha_{x}\left(\left\{x_{i}\right\}, D\right)$.
2. For any positive integer $n, \alpha_{x, X}(n D)=n \cdot \alpha_{x, X}(D)$.
3. For any a, b positive rational numbers,

$$
\alpha_{x, X}\left(a D+b D^{\prime}\right) \geq a \alpha_{x, X}(D)+b \alpha_{x, X}\left(D^{\prime}\right)
$$

4. Suppose that X is reducible over k and let $X_{1}, X_{2}, \cdots, X_{r}$ be the irreducible components over k containing x. Then

$$
\alpha_{x, X}(D)=\min \left\{\alpha_{x, X_{1}}\left(\left.D\right|_{X_{1}}\right), \cdots, \alpha_{x, X_{r}}\left(\left.D\right|_{X_{r}}\right)\right\} .
$$

5. If D is an ample divisor and $x \in X(k)$, then $\alpha_{x}(D)>0$.

Proof. The following proofs are given in [20]. We provide brief proofs of them here.

1. Notice that the sequence $d_{v}\left(x, x_{i}^{\prime}\right)^{\gamma} H_{D}\left(x_{i}^{\prime}\right)$ is a subsequence of $d_{v}\left(x, x_{i}\right)^{\gamma} H_{D}\left(x_{i}\right)$. Hence, any value for γ that makes the latter bounded will make the former bounded. Thus, $\alpha_{x}\left(\left\{x_{i}^{\prime}\right\}, D\right) \leq \alpha_{x}\left(\left\{x_{i}\right\}, D\right)$.
2. This follows because $H_{n D}=H_{D}^{n}$ and thus $d_{v}\left(x, x_{i}\right)^{\gamma} H_{n D}\left(x_{i}\right)=\left(d_{v}\left(x, x_{i}\right)^{\frac{\gamma}{n}} H_{D}\left(x_{i}\right)\right)^{n}$.
3. Let $\alpha_{1}=\alpha_{x}(D)$ and $\alpha_{2}=\alpha_{x}\left(D^{\prime}\right)$. We want to study the sequence:

$$
\left\{d_{v}\left(x, x_{i}\right)^{\gamma} H_{a D+b D^{\prime}}\left(x_{i}\right)\right\} .
$$

Recall that our height functions are multiplicative, so $H_{D+D^{\prime}}=H_{D} H_{D^{\prime}}$. Hence, we can rewrite this sequence as

$$
d_{v}\left(x, x_{i}\right)^{\gamma} H_{a D+b D^{\prime}}\left(x_{i}\right)=\left(d_{v}\left(x, x_{i}\right)^{\frac{\gamma}{2 a}} H_{D}\left(x_{i}\right)\right)^{a}\left(d_{v}\left(x, x_{i}\right)^{\frac{\gamma}{2 b}} H_{D^{\prime}}\left(x_{i}\right)\right)^{b} .
$$

But, by definition of α_{1}, for the sequence $\left(d_{v}\left(x, x_{i}\right)^{\frac{\gamma}{2 a}} H_{D}\left(x_{i}\right)\right)^{a}$ to be bounded from above, $\frac{\gamma}{2 a} \geq \alpha_{1}$, and similarly for $\left(d_{v}\left(x, x_{i}\right)^{\frac{\gamma}{b}} H_{D^{\prime}}\left(x_{i}\right)\right)^{b}$ to be bounded, $\frac{\gamma}{2 b} \geq \alpha_{2}$. Thus, $\gamma \geq a \alpha_{1}+b \alpha_{2}$, so $\alpha_{x, X}\left(a D+b D^{\prime}\right) \geq a \alpha_{x, X}(D)+b \alpha_{x, X}\left(D^{\prime}\right)$, as desired.
4. Let $x \in X_{n}$ for some $n \in\{1, \cdots, r\}$. Since X_{n} is a subvariety of X, we can restrict the height H_{D} to a height $H_{\left.D\right|_{X_{n}}}$ on X_{n}, and the distance on $X(\bar{k})$ to a distance on $X_{n}(\bar{k})$. Thus, for a sequence $\left\{x_{i}\right\} \subset X_{n}(k), \alpha_{x, X_{n}}\left(\left\{x_{i}\right\},\left.D\right|_{X_{n}}\right)=\alpha_{x, X}\left(\left\{x_{i}\right\}, D\right)$. But, by definition of $\alpha_{x, X}(D)$, we see that

$$
\alpha_{x, X}(D) \leq \min \left\{\alpha_{x, X_{1}}\left(\left.D\right|_{X_{1}}\right), \cdots, \alpha_{x, X_{r}}\left(\left.D\right|_{X_{r}}\right)\right\}
$$

Conversely, for any sequence $\left\{x_{i}\right\} \subset X(k)$ in X that converges to x, pick a component X_{n} that contains x. Then, we can restrict the sequence $\left\{x_{i}\right\}$ to a subsequence $\left\{x_{i}^{\prime}\right\} \subset$ $X_{n}(k)$ that still converges to x. Then, by item 1 in this proposition, $\alpha_{x, X}\left(\left\{x_{i}^{\prime}\right\}, D\right) \leq$ $\alpha_{x, X}\left(\left\{x_{i}^{\prime}\right\}, D\right)$. But since the subsequence $\left\{x_{i}^{\prime}\right\}$ belongs to X_{n}, we see that

$$
\alpha_{x, X_{n}}\left(\left.D\right|_{x_{n}}\right) \leq \alpha_{x, X_{n}}\left(\left\{x_{i}^{\prime}\right\},\left.D\right|_{x_{n}}\right)=\alpha_{x, X}\left(\left\{x_{i}^{\prime}\right\}, D\right) \leq \alpha_{x, X}\left(\left\{x_{i}\right\}, D\right)
$$

which implies that $\alpha_{x, X_{n}}\left(\left.D\right|_{X_{n}}\right) \leq \alpha_{x, X}(D)$, as desired.
5. Let D be an ample divisor. Then there is some positive integer m such that $m D$ is very ample. Hence, there is an embedding $\phi: X \hookrightarrow \mathbb{P}^{r}$ associated to $m D$ for some $r \in \mathbb{N}$. Let $v \in M_{k}$, let $\left\{x_{i}\right\} \subset X(k)$ be a sequence that converges to x with respect to d_{v}, and let $\gamma \in \mathbb{R}$. Then,

$$
\begin{equation*}
d_{v}\left(x, x_{i}\right)^{\gamma} H_{m D}\left(x_{i}\right) \gg d_{v}\left(\phi(x), \phi\left(x_{i}\right)\right)^{\gamma} H_{L}\left(\phi\left(x_{i}\right)\right) \tag{2.1}
\end{equation*}
$$

where L is a hyperplane in \mathbb{P}^{r}. This inequality follows because ϕ is an isomorphism between X and its image $\phi(X) \subset \mathbb{P}^{r}$ and the fact that distances are equivalent under embeddings. Notice that the right hand side of inequality (2.1) is studying the approximation on \mathbb{P}^{r} and by proposition 2.1 we know that the sequence is bounded if and only if $\gamma \geq 1$. Thus $\alpha_{x}(m D) \geq 1$. But by statement 2 in this proposition, we know that $\alpha_{x}(m D)=m \alpha_{x}(D)$, which implies that $\alpha_{x}(D) \geq \frac{1}{m}>0$.

Remark 2.4. If D is a divisor satisfying the Northcott property (i.e. a divisor for which there is only a finite number of points of bounded height with respect to D), then $\alpha_{x}(D) \geq 0$. This is because if for some negative power γ, then sequence $d_{v}\left(x, x_{i}\right)^{\gamma} H_{D}\left(x_{i}\right)$ would be bounded from above. This will imply that $H_{D}\left(x_{i}\right) \rightarrow 0$, which is impossible.

2.2 Curves of best approximation

Throughout this work a curve will mean an irreducible algebraic variety of dimension one, and a surface will mean an algebraic variety of dimension two. If X is a surface, the curves on X are all the non-zero irreducible effective divisors on X.

Definition 2.5. A sequence $\left\{x_{i}\right\} \rightarrow x$ whose approximation constant $\alpha_{x}\left(\left\{x_{i}\right\}, D\right)$ is equal to $\alpha_{x}(D)$ is called a sequence of best approximation. A curve C passing through x is called a curve of best approximation (we use the abbreviation "COBA") with respect to D if it contains a sequence of best approximation to x.

Through the study of approximation constants on algebraic varieties, many examples showed that under certain conditions, the sequences with best approximation constants could be chosen to lie on curves.

Conjecture 2.6. [19, McKinnon] Let $P \in X(k)$, where X is an algebraic variety defined over k and an ample divisor D on X. If $P \in C$ where C is rational curve in X defined over k, then, there exists a sequence on $X(k) \backslash\{P\}$ of best approximation to P with respect to D, and moreover that sequence can be chosen to lie on some rational curve through P.

The purpose of this work is to verify this conjecture on rational surfaces. We want to study the conjecture on this type of varieties, since the set of rational points in these surfaces is dense, and the classification of these surfaces is also widely known.

Proposition 2.7. Let X be an algebraic variety defined over $k, x \in X(k), C$ be a curve in X passing through x, and D be an ample divisor on X. Then, C is a curve of best approximation for x with respect to D if an only if $\alpha_{x}(D)=\alpha_{x}\left(\left.D\right|_{C}\right)$.

Proof. First notice that is is always true that $\alpha_{x}(D) \leq \alpha_{x}\left(\left.D\right|_{C}\right)$, since every sequence in C that converges to x is also a sequence in X.

Assume that C is a COBA with respect to D. Then C contains a sequence of best approximation to x, call it $\left\{x_{i}\right\}$. Then

$$
\alpha_{x}(D)=\alpha_{x}\left(\left\{x_{i}\right\}, D\right)=\alpha_{x}\left(\left\{x_{i}\right\},\left.D\right|_{C}\right) \geq \alpha_{x}\left(\left.D\right|_{C}\right)
$$

The second equality holds because $H_{\left.D\right|_{C}}\left(x_{i}\right)=H_{D}\left(\iota\left(x_{i}\right)\right)$, where $\iota: C \hookrightarrow X$ is the inclusion of C in X. Hence for the fixed sequence $\left\{x_{i}\right\}$ and a fixed $\gamma \in \mathbb{R}$, the sequence
$\left\{d_{v}\left(x, x_{i}\right)^{\gamma} H_{D}\left(x_{i}\right)\right\}$ is bounded if and only if the sequence $\left\{d_{v}\left(x, x_{i}\right)^{\gamma} H_{D}\left(\iota\left(x_{i}\right)\right)\right\}$ is bounded.

Thus, if C is a COBA, then $\alpha_{x}(D)=\alpha_{x}\left(\left.D\right|_{C}\right)$.

Conversely, assume that $\alpha_{x}(D)=\alpha_{x}\left(\left.D\right|_{C}\right)$, then there exists a sequence $\left\{y_{i}\right\}$ in C such that $\alpha_{x}(D)=\alpha_{x}\left(\left.D\right|_{C}\right)=\alpha_{x}\left(\left\{y_{i}\right\},\left.D\right|_{C}\right)$. But that sequence is also in X. Thus C is a COBA for x with respect to D.

The statement of the following proposition was made in [19]. We provide the proof here.

Proposition 2.8. Let X be a variety defined over a number field k. If C is a COBA for $x \in X(\bar{k})$ with respect to a divisor D, then C is rational.

Proof. Notice that since C is a COBA with respect to $D, \# C(k)$ is infinite as it contains an infinite sequence of rational points. So C has genus 0 or 1. Assume C has genus 1. By Siegel's theorem (See [25, page 276]), if $x \in C(\bar{k})$,

$$
\begin{equation*}
\lim _{\substack{P \in C(k) \\ H_{D}(P) \rightarrow \infty}} \frac{\log (d(P, x))}{\log \left(H_{D}(P)\right)}=0 \tag{2.2}
\end{equation*}
$$

Let $\alpha:=\alpha_{x}(D)<\infty$. Then there is a sequence $\left\{x_{i}\right\} \in C(k)$ such that $d\left(x_{i}, x\right)^{\alpha} H_{D}\left(x_{i}\right)=$ $O(1)$. So, there is a positive constant B such that

$$
\begin{array}{r}
\alpha \log \left(d\left(x_{i}, x\right)\right)+\log \left(H_{D}\left(x_{i}\right)\right)<B \\
\alpha\left(\frac{\log \left(d\left(x_{i}, x\right)\right)}{\log \left(H_{D}\left(x_{i}\right)\right)}\right)+1<\frac{B}{\log \left(H_{D}\left(x_{i}\right)\right)} .
\end{array}
$$

Hence, if we take the limit over the rational points in C with $H_{D}\left(x_{i}\right) \rightarrow \infty$, and use equation (2.2), we see that the last inequality is impossible. Thus, C must have genus 0 .

Now we define what nef divisors are. These type of divisors will be relevant for this work since they are closely related with ample divisors. Any nef divisor is the limit of ample divisors. This relation will be explained in the next chapter. Here we define the notion of nef divisor to provide some of the properties of curves of best approximation with respect to nef divisors.

Definition 2.9. Let X be an algebraic variety and let D be a divisor on X. Then D is called nef if its degree on every curve $C \subset X$ is non-negative. i.e. if $D \cdot C \geq 0$.

The following results will be used when considering curves of best approximation with respect to nef divisors, in Chapter 5.

Theorem 2.10. [21, Liouville-type theorem] Let X be an algebraic variety over $\operatorname{Spec}(k)$, $x \in X(k)$ any point, and $d=[K: k]$ where K is the field of definition of x.
Let $X_{K}=X \times_{k} K, \widetilde{X}$ be the blowup of X_{K} at x with exceptional divisor E, and set $\pi: \widetilde{X} \underset{\sim}{\sim}$ $X_{K} \longrightarrow X$. Let L be a nef divisor on X, and $\gamma \in \mathbb{Q}$ such that $L_{\gamma}:=\pi^{*}(L)-\gamma E \in E f f(\widetilde{X})$. Finally let B^{\prime} be the stable base locus of L_{γ} and set $B=\pi\left(B^{\prime}\right)$. Then, there is a positive real constant M such that for all $y \in X(k)-B(k), d_{v}(x, y)^{\frac{\gamma}{d}} H_{L}(y) \geq M$, and
(a) For any sequence $\left\{x_{i}\right\} \subset X(k)$ approximating x, if infinitely many points of $\left\{x_{i}\right\}$ are outside B then $\alpha_{x}\left(\left\{x_{i}\right\}, L\right) \geq \frac{\gamma}{d}$.
(b) If $\alpha_{x}(L)<\frac{\gamma}{d}$ then $x \in B$ and $\alpha_{x}(L)=\alpha_{x}\left(\left.L\right|_{B}\right)$.
(c) If $x \in B$ and $\alpha_{x}\left(\left.L\right|_{B}\right) \geq \frac{\gamma}{d}$, then $\alpha_{x}(L) \geq \frac{\gamma}{d}$.

Furthermore there is a subvariety Y of X such that $x \in Y$ and for all $y \in X(k)$, we have $d_{v}(x, y)^{\frac{\gamma}{d}} H_{L}(y) \geq M$ provided that $\left.(L-\gamma E)\right|_{Y}$ is in the effective cone of Y.

Theorem 2.11. [20, Thm. 2.16] Let C be a k-rational curve (possibly singular) and $\phi: \mathbb{P}^{1} \longrightarrow C$ be its normalization map. Then for any ample divisor D on C and any $x \in C(\bar{k})$, we have

$$
\alpha_{x}(D)=\min _{q \in \phi^{-1}(x)}\left\{\frac{d}{m_{q} r_{q}}\right\}
$$

where $d=\operatorname{deg}(D), m_{q}$ is the multiplicity of the branch of C through x corresponding to q, and

$$
r_{q}= \begin{cases}0 & \text { if } \kappa(q) \nsubseteq k_{v} \\ 1 & \text { if } \kappa(q)=k \\ 2 & \text { otherwise }\end{cases}
$$

Where $\kappa(q)$ is the field of definition of the point q.

Proof. The proof is given in theorem in [20, Page 19].

Remark 2.12. If C in Theorem 2.11 is smooth, then ϕ is an isomorphism. So, there is only one point $q=\phi^{-1}(x)$, and $m_{q}=1$. Moreover, if C is smooth and we want to approximate $x \in C(k)$, then $\kappa(q)=k$, thus $r_{q}=1$. In this case $\alpha_{x, C}(D)=\operatorname{deg}(D)$.

Remark 2.13. Let $x \in X(k)$ and let C be a COBA for x with respect to a nef divisor D on X. Then, $\alpha_{x}(D)=\alpha_{x, C}\left(\left.D\right|_{C}\right)$. We also know that since D is nef in $X,\left.D\right|_{C}$ is effective in C. If $\left.D\right|_{C}$ is not the zero divisor, $\operatorname{deg}\left(\left.D\right|_{C}\right)>0$, thus by Riemann Roch $\left.D\right|_{C}$ is ample, so theorem 2.11 applies for the divisor $\left.D\right|_{C}$ on C.

Theorem 2.14. Let X be a variety defined over k and $x \in X(k)$. Let D_{1} and D_{2} be two nef divisors on X, and let $D=a_{1} D_{1}+a_{2} D_{2}$ where $a_{1}, a_{2} \geq 0$. If C is a COBA for both D_{1} and D_{2} then C is also a $C O B A$ for D.

Proof. By properties of α (Proposition 2.3, (3)) we know that $\alpha_{x}(D) \geq a_{1} \alpha_{x}\left(D_{1}\right)+$ $a_{2} \alpha_{x}\left(D_{2}\right)=a_{1} \alpha_{x, C}\left(\left.D_{1}\right|_{C}\right)+a_{2} \alpha_{x, C}\left(\left.D_{2}\right|_{C}\right)$. Let us denote $\alpha_{i}:=\alpha_{x}\left(D_{i}\right)=\alpha_{x, C}\left(\left.D_{i}\right|_{C}\right)$ for $i=1,2$.

Since the intersection of divisors is a linear pairing, and D_{1} and D_{2} are nef divisors, D is also a nef divisor. Thus, by Theorem 2.11,

$$
\alpha_{x}(D) \leq \alpha_{x, C}\left(\left.D\right|_{C}\right)=\frac{\operatorname{deg}\left(\left.D\right|_{C}\right)}{m_{q}}
$$

where m_{q} is the maximal multiplicity corresponding to the point $q \in \phi^{-1}(x)$. Recall that $\operatorname{deg}\left(\left.D\right|_{C}\right)=a_{1} \operatorname{deg}\left(\left.D_{1}\right|_{C}\right)+a_{2} \operatorname{deg}\left(\left.D_{2}\right|_{C}\right)$, which implies that

$$
\alpha_{x, C}\left(\left.D\right|_{C}\right)=a_{1} \frac{\operatorname{deg}\left(\left.D_{1}\right|_{C}\right)}{m_{q}}+a_{2} \frac{\operatorname{deg}\left(\left.D_{2}\right|_{C}\right)}{m_{q}}=a_{1} \alpha_{1}+a_{2} \alpha_{2} .
$$

Hence $\alpha_{x}(D) \leq \alpha_{x, C}\left(\left.D\right|_{C}\right)=a_{1} \alpha_{1}+a_{2} \alpha_{2}$ giving us the equality $\alpha_{x}(D)=a_{1} \alpha_{1}+a_{2} \alpha_{2}$. So C is also a COBA for D as desired.

The following proposition which is a new contribution, will be used later in this work (chapter 5).

Proposition 2.15. Let D be a base point free divisor on X with associated map ϕ_{D} : $X \longrightarrow \mathbb{P}^{n}$, and let C be a smooth curve passing through a rational point $x \in X(k)$ such that $D \cdot C=1$. If $x \notin C^{\prime}$ for any C^{\prime} with $D \cdot C^{\prime}=0$, then C is a $C O B A$ for x with respect to D.

Proof. Let $\left\{x_{i}\right\}$ be a sequence in $X(k)$ and $\left\{x_{i}\right\} \rightarrow x$. We study the sequence $d\left(x, x_{i}\right)^{\gamma} H_{D}\left(x_{i}\right)$. Recall that $H_{D}\left(x_{i}\right)=H\left(\phi_{D}\left(x_{i}\right)\right)$ is the height with respect to a hyperplane section in \mathbb{P}^{n}. Then there is some positive constant λ (depending on v) such that

$$
d_{v}\left(x, x_{i}\right)^{\gamma} H_{D}\left(x_{i}\right) \geq \lambda d_{v}\left(\phi_{D}(x), \phi_{D}\left(x_{i}\right)\right)^{\gamma} H\left(\phi_{D}\left(x_{i}\right)\right) .
$$

Hence, approximating $x \in X(k)$ is equivalent to approximating $\phi_{D}(x) \in \mathbb{P}^{n}$. Also notice that since x does not belong to any curve contracted by x, we can pick the sequence $\left\{x_{i}\right\}$ such that the points x_{i} do not belong to any contracted curve as well, hence $d_{v}\left(\phi_{D}(x), \phi_{D}\left(x_{i}\right)\right) \neq 0$. Thus, the smallest value of γ so that the sequence is bounded is $\gamma=1$.

Finally, notice that since $C \cdot D=1, C$ is isomorphic to $\phi_{D}(C)$ which is a line, and by Proposition 2.1 lines are curves of best approximation. Hence, C is a COBA for x with respect to D.

Theorem 2.16. Let X be a variety defined over k, and let D be a nef divisor on X and E be an effective divisor on X. Let $P \in X(k)$ be a rational point, and C be a curve of best D-approximation to P. If $C \cap E=\emptyset$, then C contains a sequence of best $(D+E)$ approximation to P.

Proof. See [19, Theorem 3.3].

Note: Throughout this work we will fix a place $v \in M_{k}$ and find α with respect to the distance d_{v}. In all the cases that we will study, the curves in which we look for sequences of approximation are smooth and thus α will be independent of the v-adic distance.

Chapter 3

Birational Geometry of Rational surfaces

From now on we will consider X to be a smooth surface over the complex numbers.

In this section we will briefly describe convex cones in the Néron Severi Space $\operatorname{NS}(X) \otimes \mathbb{R}$ that have some information about the birational geometry of X. Particularly, we will study the convex nef cone of X. This cone contains all the ample divisors of X and that will help us to describe any ample divisor as a combination of nef divisors. We will study curves of best approximation for generators of the nef cone and then provide curves for an arbitrary ample divisor.

Definition 3.1. Let $D_{1}, D_{2} \in \operatorname{Div}(X)$. We say that D_{1} and D_{2} are numerically equivalent, $D_{1} \equiv D_{2}$, if they have the same intersection number $D_{1} \cdot C=D_{2} \cdot C$ for any curve $C \subset X$. The Néron-Severi space $N S(X)$ of X is the \mathbb{Q}-vector space of \mathbb{Q}-divisors modulo numerical equivalence i.e. $N S(X)=\operatorname{Div}(X) \otimes \mathbb{Q} / \equiv$.

Note: In general numerical equivalence (\equiv) and linear equivalence (\sim) are different notions. However, we are interested in X being a rational smooth surface and in these structures, \equiv and \sim are equivalent. In this case $\operatorname{NS}(X)=\operatorname{Pic}(X) \otimes \mathbb{Q}$.

Theorem 3.2. (Nakai-Moishezon Criterion). A divisor D on a surface X is ample if and only if $D^{2}>0$ and $D \cdot C>0$ for all irreducible curves in X.

The proof of this theorem can be found in [11] (V, 1.10).

Remark 3.3. In the following chapters we will use the following facts that are consequences of the previous theorems.

- Notice that given two numerically equivalent divisors $D_{1} \equiv D_{2}, D_{1}$ is ample if and only if D_{2} is ample. Thus we can consider ampleness on classes of numerical equivalence. i.e. this notion makes sense in $N S(X)$.
- Although the Nakai-Moishezon Criterion is related to divisors, it can be extended to \mathbb{Q}-divisors. Indeed, a \mathbb{Q}-divisor D is ample if there is a positive integer m that clears denominators and make $m D \in \operatorname{Div}(X)$ an ample divisor.
- The criterion can also be extended to \mathbb{R}-divisors. We can set an \mathbb{R}-divisor to be ample if it is a positive \mathbb{R}-linear combination of ample divisors. Thus ampleness can be considered for divisor classes in $N S(X) \otimes \mathbb{R}$.
- Since the intersection of divisors is a linear operation, the set of ample divisor classes form a cone in $N S(X)$, which is named the Ample cone of X and it is denoted by $\operatorname{Amp}(X)$.

Similarly, the condition of being nef behaves well under numerical equivalence classes, and although the notion of nef refers to divisors on X, this notion can be extended to \mathbb{Q}-divisors and to \mathbb{R}-divisors, hence the nef condition can be studied in $\mathrm{NS}(X) \otimes \mathbb{R}$. In particular, the classes of nef divisors under numerical equivalence form a closed and convex cone, which we call the nef cone of X and we denote it by $\operatorname{Nef}(X)$. In particular we have the containment $\operatorname{Amp}(X) \subset \operatorname{Nef}(X)$. The following theorem gives us a more strict relation between these cones. The proof of the following theorem can be found in [16, 1.4.9].

Theorem 3.4. (Kleiman's Criterion). The nef cone is the closure of the ample cone. The ample cone is the interior of the nef cone.

In the cases that we will consider in the following chapter, we will study the nef cone of a rational surface. In many of the cases, the generators of the cone are base point free. The following proposition will be applied when we study base point free divisors that are generators of the nef cone.

Proposition 3.5. Every base point free divisor is nef.

Proof. Let D be a base point free divisor on X and let $C \subset X$ be an irreducible curve on X. We want to show that $C \cdot D \geq 0$. Recall that D is a codimension one subvariety and that its intersection with a curve could be negative only if it contains the curve. So it is enough to show that D does not contain C. Let $x \in C$ be a point in the curve. Since D is base point free, it corresponds to a morphism $\phi: X \longrightarrow \mathbb{P}^{n}$ to some projective space. Let H be a hyperplane in \mathbb{P}^{n} that does not contain $\phi(x)$. Then $\phi^{*}(H)$ is a linearly equivalent divisor to D and it does not contain x as a base point. Then $C \nsubseteq \phi^{*}(H)$, thus $C \cdot D=C \cdot \phi^{*}(H) \geq 0$.

Definition 3.6. Let $D=\sum_{i=1}^{k} n_{i} Y_{i}$ be a divisor, where Y_{i} is a divisor class of a curve, we say that D is effective, and we denote it by $D \geq 0$, if $n_{i} \geq 0$ for all $i \in\{1, \cdots, k\}$. The effective cone of X, denoted by $E f f(X)$ is the convex cone in $N S(X) \otimes \mathbb{R}$, generated by the classes of all effective divisors in X.

Remark 3.7. If X is a surface, the effective divisors of X are the curves on X. Moreover the nef cone is the dual of the effective cone. We use the notation $E f f^{\nu}(X)=\operatorname{Nef}(X)$.

For the proof of the following facts, see for example [3, Chapter II], [23, Chapter 4, Section 3], or [11, Section V.3].

Theorem 3.8. Let X be a surface and p be a point on X and let $\epsilon: \widetilde{X} \longrightarrow X$ be the blow-up of X at the point p, with exceptional curve E.

1. Let C be an irreducible curve on X passing through p with multiplicity m and let \widetilde{C} be the strict transform of C under ϵ. Then,

$$
\epsilon^{*}(C)=\widetilde{C}+m E .
$$

2. $\operatorname{Pic}(\tilde{X}) \cong \operatorname{Pic}(X) \oplus \mathbb{Z} E \cong \operatorname{Pic}(X) \oplus \mathbb{Z}$.
3. Let D and D^{\prime} be divisors on X. Then $\left(\epsilon^{*} D\right) \cdot\left(\epsilon^{*} D^{\prime}\right)=D \cdot D^{\prime}, E \cdot\left(\epsilon^{*} D\right)=0, E^{2}=-1$. 4. $N S(\tilde{X}) \cong N S(X) \oplus \mathbb{Z} E$.

Corollary 3.9. Let X be a surface and C be a curve on X. Let $\epsilon: \widetilde{X} \longrightarrow X$ be the blow-up map of X at a point p lying on C with multiplicity m. Let \widetilde{C} be the strict transform of C under the map ϵ. Then, $\widetilde{C} \cdot \widetilde{C}=(C \cdot C)-m^{2}$.

Proof. By the previous theorem, $\epsilon^{*}(C)=\widetilde{C}+m E$. Thus

$$
\begin{aligned}
C^{2} & =\epsilon^{*}(C) \cdot \epsilon^{*}(C) \\
& =(\widetilde{C}+m E)^{2} \\
& =\widetilde{C}^{2}+2 m(E \cdot \widetilde{C})+m^{2} E^{2} \\
& =\widetilde{C}^{2}+m^{2}
\end{aligned}
$$

So $\widetilde{C}^{2}=C^{2}-m^{2}$.
The proof of the following facts can be found in [3, Chapter 2] or [1, Chapter VI]
Theorem 3.10. (Elimination of indeterminacy) Let $\phi: S \rightarrow X$ be a rational map, where S is a surface and X is a projective variety. Then there exists a surface $S^{\prime \prime}$ and a morphism $\eta: S^{\prime} \longrightarrow S$ which is a composition of a finite number of blow-ups, and a morphism $f: S^{\prime} \longrightarrow X$ such that $\phi \circ \eta=f$.

Theorem 3.11. (Universal property of blowing-up) Let $f: X \longrightarrow S$ be a birational morphism of surfaces, and suppose that the rational map f^{-1} is not defined at a point p in S. Then f factors as $f=\epsilon \circ g$, where $g: X \longrightarrow \widetilde{S}$ is a birational morphism and $\epsilon: \widetilde{S} \longrightarrow S$ is the blow-up at p.
Remark 3.12. The previous theorems justify the following facts.

- Any birational morphism $f: S \longrightarrow S^{\prime}$ that is a composition of n blow-ups and an isomorphism gives the relation $N S(S) \cong N S\left(S^{\prime}\right) \oplus \mathbb{Z}^{n}$.
- Let $\epsilon: \widetilde{S} \longrightarrow S$ be the blow-up of S at a point on S and let $f: \widetilde{S} \longrightarrow X$ be a morphism, where X is a variety and f contracts E. Then f factors through S, i.e. there exists a morphism $g: S \longrightarrow X$ such that $f=g \circ \epsilon$.

Definition 3.13. Let X be a surface. We define $B(X)$ to be the set of isomorphism classes of surfaces birationally equivalent to X. Let S_{1} and S_{2} be surfaces in $B(X)$. Then we say that S_{1} dominates S_{2} if there is a birational morphism $S_{1} \longrightarrow S_{2}$. We also say that the surface X is minimal if its class in $B(X)$ is minimal, so that every birational morphism $X \longrightarrow S^{\prime}$ is an isomorphism.

The proof of the following facts can be found in [3, Chapter 2] or [6, Chapter 3].
Proposition 3.14. Every surface dominates a minimal surface.
Theorem 3.15. (Castelnuovo's contractibility criterion). Let S be a surface and $E \subset S$ be a curve isomorphic to \mathbb{P}^{1} with $E^{2}=-1$. Then E is an exceptional curve on S.

3.1 Hirzebruch Surfaces

In this section we present a short introduction to these type of surfaces and some of the properties that will be relevant to our study. Some good references for the subject are [11, Charter 5, Section 2], [3, Chapter 4], and [5, Chapter 5, Section 5].

Hirzebruch surfaces are ruled surfaces over the base curve \mathbb{P}^{1}. They can be obtained by a sequence of blow-ups and blow-downs of the complex projective plane. However, we will consider them as the projectivization of a rank 2 vector bundle over \mathbb{P}^{1}. More precisely, we define the n-th Hirzebruch surface \mathbb{F}_{n} as:

$$
\mathbb{F}_{n}:=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)
$$

for $n \in \mathbb{N} \cup\{0\}$. We call $\pi: \mathbb{F}_{n} \longrightarrow \mathbb{P}^{1}$ the morphism associated to \mathbb{F}_{n} as a vector bundle.

The following facts justify that every rank 2 vector bundle over \mathbb{P}^{1} is decomposable and they justify the choices of the decomposition in the definition of \mathbb{F}_{n}. The proofs of these facts can be found in [3, Chapter III], [11, Chapter 5, Section 2], or [6, Chapter 12].

Proposition 3.16. Every geometrically ruled surface over C is C-isomorphic to $\mathbb{P}_{C}(E)$ for some rank 2 vector bundle E over C. (The bundles $\mathbb{P}_{C}(E)$ and $\mathbb{P}_{C}\left(E^{\prime}\right)$ are C-isomorphic if there exists a line bundle L over C such that $\left.E^{\prime}=E \otimes L\right)$.

Proposition 3.17. Every rank 2 vector bundle on \mathbb{P}^{1} is decomposable, as the sum of two invertible sheaves. In particular every geometrically ruled surface over \mathbb{P}^{1} is isomorphic to one of the surfaces $\mathbb{F}_{n}=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$ for $n \geq 0$.

We denote by S_{n} for the section of the map $\pi: \mathbb{F}_{n} \longrightarrow \mathbb{P}^{1}$ that has self-intersection $-n$, and we denote by F_{n} a general fibre of π. When it is clear from the context or when the value of n is not relevant for our proofs, we will simply use the notation S and F, for S_{n} and F_{n} respectively.

The divisors F and S on \mathbb{F}_{n} generate freely $\operatorname{Pic}\left(\mathbb{F}_{n}\right)$, which in this case coincides with $\mathrm{NS}\left(\mathbb{F}_{n}\right)$, and the intersection theory on $\operatorname{Pic}\left(\mathbb{F}_{n}\right)$ is given by $F \cdot F=0, F \cdot S=1, S \cdot S=-n$, and it extends by linearity.

Theorem 3.18. Let S be a minimal rational surface. Then S is isomorphic to \mathbb{P}^{2} or to one of the surfaces \mathbb{F}_{n} for $n \neq 1$.

Proof. See [3, Theorem V.10, Page 59] .
This theory gives us an algorithm to study rational surfaces. Every rational surface is obtained by blowing up a finite number of times a minimal rational surface. We will follow this algorithm to study rational approximations in smooth rational surfaces in the next chapters.

Proposition 3.19. Let $\phi: X \longrightarrow Y$ be a morphism and let $D \in \operatorname{Div}(Y)$ be a base point free divisor. Then $\phi^{*}(D)$ is a base point free divisor in X.

Proof. Since D is base point free, D corresponds to a morphism $f: Y \longrightarrow \mathbb{P}^{n}$ from Y to some projective space \mathbb{P}^{n}. This means that there is a hyperplane section H in \mathbb{P}^{n} such that $f^{*}(H)=D$. Hence $\phi^{*}(D)=\phi^{*}\left(f^{*}(H)\right)$ and $f \circ \phi: X \longrightarrow \mathbb{P}^{n}$ is a morphism. Thus $\phi^{*}(D)$ is base point free.

3.2 The nef cone of smooth rational surfaces

In this work, the main ingredients for proving the conjecture rely on finding the generators of the nef cone of rational surfaces. The methods to find the effective cone and the nef cone for these type of varieties are given in [17], [18], or [6]. We provide an explicit method to find the effective and nef cones that we use further in this work as follows:

1. We prove that the Picard group of the smooth rational surfaces studied in this work is generated by the exceptional curves of the blow-ups and the section of the map $\pi: X \longrightarrow \mathbb{P}^{1}$. Since these generators of $\operatorname{Pic}(X)$ are effective, we choose them as potential generators of the effective cone. Call this cone σ. We know that $\sigma \subset \operatorname{Eff}(X)$.
2. Since X is a surface, we know that $\operatorname{Nef}(X)=\operatorname{Eff}(X)^{\vee} \subset \sigma^{\vee}$. So, to show that $\sigma^{\vee}=\operatorname{Nef}(X)$ we use two approaches:
(a) Verify that each generator of σ^{\vee} is nef. Then, $\operatorname{Nef}(X)=\sigma^{\vee}$. Thus, the initial assumption that σ was the effective cone was correct. In the examples that we will study, most of the generators of the cone σ^{\vee} are in fact base point free and thus by Proposition 3.5 those generators will be nef.
(b) By Kleiman's Criterion, we know that the nef cone is the closure of the ample cone. So if we verify that any divisor in the interior of σ^{\vee} is ample, we prove that σ^{\vee} is the nef cone. We use the Nakai-Moishezon Criterion to study the intersection theory of the divisors in the interior of the cone σ^{\vee}.

The following fact will be used in Chapter 5, to determine the dual cone of a simplicial cone on $\mathrm{NS}(X) \otimes \mathbb{R}$.

Proposition 3.20. Consider \mathbb{R}^{n} with an inner product $\langle\cdot, \cdot\rangle$. Let $C=\operatorname{Cone}\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ be a simplicial cone in \mathbb{R}^{n}. Let $\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ be a set of vectors in \mathbb{R}^{n} such that $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j}$ where $\delta_{i j}$ is the Kronecker delta. Then $C^{\vee}=\operatorname{Cone}\left(w_{1}, w_{2}, \cdots, w_{n}\right)$.

Proof. Let $\tau:=\operatorname{Cone}\left(w_{1}, w_{2}, \cdots, w_{n}\right)$. Notice that since $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j} \geq 0$ for all i, j, then $\tau \subseteq C^{\vee}$.
Assume for the sake of contradiction that τ is a proper subset of C^{\vee}. Then, there exists a vector $w \in C^{\vee} \backslash \tau$. By the separation theorem [2, page 105], there exists a vector $e \in \mathbb{R}^{n}$ such that

$$
\begin{align*}
& \left\langle e, w_{i}\right\rangle \leq 0 \quad \text { for all } i \in\{1,2, \cdots, n\} \tag{3.1}\\
& \langle e, w\rangle>0 \tag{3.2}
\end{align*}
$$

But, since C is simplicial, we can write $e=\sum_{i=1}^{n} \lambda_{i} v_{i}$ for some scalars $\lambda_{i} \in \mathbb{R}$. Thus $\left\langle w_{i}, e\right\rangle=\lambda_{i} \leq 0$ which implies that $-e \in C$, so $\langle-e, w\rangle \geq 0$. Hence $\langle e, w\rangle \leq 0$ which contradicts (4.2). Thus such w does not exists and the statement holds.

Chapter 4

Revisited Examples

In this section we verify the conjecture for some examples that were provided in [19]. Although all the cases were completely developed in that paper, we provide more detailed proofs here and we use these examples to present the strategy that will be used when proving the main conjecture in this thesis for rational surfaces of bigger Picard ranks. The propositions in this chapter are new contributions to that previous work.

The method to show the conjecture for these examples is given in the following steps:

1. Find the $\operatorname{Pic}(X)$ and the $\operatorname{NS}(X)$.
2. Find the Nef cone, $\operatorname{Nef}(X)$. To do this, we study the subcone σ of the effective cone $\operatorname{Eff}(X)$, generated by the exceptional curves in $\operatorname{Pic}(X)$. We verify if the dual cone σ^{\vee} is our desired nef cone.
3. For each generator of $\operatorname{Nef}(X)$, we find a COBA C.
4. For each curve C in the previous step, we find a subcone Γ_{C} in which possibly C is a COBA for every divisor in this subcone. This gives us a division of $\operatorname{Nef}(X)$ into subcones in which possibly each curve in the previous step is a COBA.
5. We verify if for each generator of Γ_{C}, C is indeed a COBA. If so, then by Theorem 2.14, C will be a COBA for every divisor in Γ_{C}.

4.1 The case of \mathbb{P}^{2} blown up at a point

Let $X=\widetilde{\mathbb{P}^{2}}$ the blow up of \mathbb{P}^{2} at one point. Without loss of generality, we can choose the blown up point to be $p=[0: 0: 1]$. Hence X can be written as

$$
X=\left\{([x: y: z],[u: v]) \in \mathbb{P}^{2} \times \mathbb{P}^{1}: x v=y u\right\} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{1}
$$

Consider the two projections of $X, \pi: X \longrightarrow \mathbb{P}^{2}$ and $\pi_{1}: X \longrightarrow \mathbb{P}^{1}$ and let E be the exceptional divisor on X. Notice that $\pi: X \backslash E \rightarrow \mathbb{P}^{2} \backslash\{p\}$ is an isomorphism. Hence $\operatorname{Pic}(X \backslash E) \cong \operatorname{Pic}\left(\mathbb{P}^{2} \backslash\{p\}\right)$. Also, since $\{p\}$ has codimension 2 on \mathbb{P}^{2}, we know that $\operatorname{Pic}\left(\mathbb{P}^{2} \backslash\{p\}\right) \cong \operatorname{Pic}\left(\mathbb{P}^{2}\right) \cong \mathbb{Z}$. Let $L=\pi^{*}\left(L^{\prime}\right)$ to be the pullback by π of the class of a line L^{\prime} in \mathbb{P}^{2}, then $\operatorname{Pic}(X \backslash E) \cong \mathbb{Z} L$. Using the exact sequence [11, page 133]:

$$
0 \longrightarrow \mathbb{Z} E \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(X \backslash E) \longrightarrow 0
$$

We find that $\operatorname{Pic}(X) \cong \mathbb{Z} L \oplus \mathbb{Z} E$.

Now we study the intersection theory on X. First notice that if L_{1} and L_{2} are lines in \mathbb{P}^{2} avoiding p, then $\pi^{*}\left(L_{1}\right)$ and $\pi^{*}\left(L_{2}\right)$ are lines in X that do not intersect E and since $L_{1} \cdot L_{2}=1$ and π is an isomorphism away from $p, L^{2}=1$ and $L \cdot E=0$.

Claim 4.1. If H is a line in \mathbb{P}^{2} passing through $p=[0: 0: 1]$, then there exists a point $q \in \mathbb{P}^{1}$ such that $\pi^{*}(H)=\pi_{1}^{*}(q)+E$.

Proof. Let H be a line through p. Without loss of generality, H is cut out by the equation $y=a x$ for some $a \in k \backslash\{0\}$. Then

$$
\pi^{-1}(H)=\{([x: y: z],[u: v]): y=a x \text { and } x v=y u\}=E \cup \pi_{1}^{-1}([1: a])
$$

From the equations $y=a x$ and $x v=u y$ we get $x(v-a u)=0$. Let us consider the cases in which this last equation holds.

If $x=0$, we get the elements in the exceptional divisor E. So we can cover E by the affine pieces $E=\left(E \cap U_{z, u}\right) \cup\left(E \cap U_{z, v}\right)$ where $U_{z, u}=\{z \neq 0, u \neq 0\}$ and $U_{z, v}=\{z \neq 0, v \neq 0\}$. Each affine piece is isomorphic to \mathbb{A}^{1}. So for a point $q \in E, q$ lies in some affine neighborhood and using the isomosphism with \mathbb{A}^{1}, we get that the local ring $\mathcal{O}_{q}=k[x]_{x}$ and it has
maximal ideal (x), so q vanishes in the equation $x(v-a u)=0$ with multiplicity 1 .

If $(v-a u)=0$, we get the elements in $\pi_{1}^{-1}([1: a])$ which is a line in \mathbb{P}^{2} passing through p with slope $[1: a]$ in X, i.e. $\pi_{1}^{-1}([1: a])=\{[x, y, z],[1: a]: a x=y\}$ So by a similar argument this can be covered by two affine pieces isomorphic to \mathbb{A}^{1} and again, a point in this line vanishes in $x(v-a u)$ with multiplicity 1 . So now we can conclude that as divisors $\pi^{*}(H)=\pi_{1}^{*}([1: a])+E$.

From the previous claim we have that $\pi_{1}^{*}(q)=L-E$ where q is a divisor (i.e. a point) on \mathbb{P}^{1}. Also notice that given two distinct points q_{1} and q_{2} in \mathbb{P}^{1}, their inverse image under π_{1} are two distinct curves in X that do not intersect. So $(L-E)^{2}=\left(\pi_{1}^{*}\left(q_{1}\right)\right) \cdot\left(\pi_{1}^{*}\left(q_{2}\right)\right)=0$. Hence

$$
0=(L-E)^{2}=L \cdot L-2 L \cdot E+E \cdot E
$$

which implies that $E^{2}=-1$. This gives us the complete structure of the intersection theory on X, which is summarized in the following table:

\cdot	L	E
L	1	0
E	0	-1

So, we can see that L and E are linearly independent since the matrix from the table is invertible. This tells us that $\operatorname{NS}(X) \otimes \mathbb{R}=\mathbb{R} L \oplus \mathbb{R} E$. Now, to find $\operatorname{Nef}(X)$, recall that $\operatorname{Nef}(X)=\overline{\operatorname{Amp}(X)}$ where $\operatorname{Amp}(X)$ is the cone of ample divisors of X. Since L and $L-E$ define the morphisms π and π_{1} respectively, we see that L and $L-E$ are base point free and so, they are nef divisors. Also, notice that none of them are ample (for example E and $L-E$ are curves and $\left.L \cdot E=0=(L-E)^{2}\right)$. Then, these divisors are extreme rays of $\operatorname{Nef}(X)$ and since $\operatorname{NS}(X)$ is two dimensional, we have that $\operatorname{Nef}(X)=\operatorname{Cone}(L, L-E)$.

Now, given a point $x \in X(k)$, we want to find a COBA for each divisor $D \in \operatorname{Nef}(X)$. We start by finding a COBA for each of the generators of the nef cone. These approximations depend on the position of the point that we are approximating. So we need to consider some cases:

CASE 1: $x \notin E$. Recall that π is an isomorphism on $\mathbb{P}^{2} \backslash\{p\}$. So if we choose a sequence $\left\{x_{i}\right\}$ on $X(k)$ converging to x, we can assume none of the elements in the sequence belong
to E. Then, using the morphism π, this is equivalent to choose a sequence $\left\{\pi\left(x_{i}\right)\right\}$ on $\mathbb{P}^{2}(k)$ converging to $\pi(x)$. So we have

$$
d\left(x, x_{i}\right)^{\gamma} H_{L}\left(x_{i}\right)=\lambda d\left(\pi(x), \pi\left(x_{i}\right)\right)^{\gamma} H\left(\pi\left(x_{i}\right)\right)
$$

Where λ is some real constant, and H is the height on \mathbb{P}^{2} described in Example 1.4. Thus, the problem is equivalent to the problem of approximating the rational point $\pi(x)$ in \mathbb{P}^{2}.

By Proposition 2.1, any line through $\pi(x)$ is a COBA with approximation constant 1 . Let C_{1} be a line in X passing through x. Then C_{1} is a COBA with respect to L, and we know that $\alpha_{x}(L)=\alpha_{x, C_{1}}\left(\left.L\right|_{C_{1}}\right)=C_{1} \cdot L=1$.

Now, we study the approximation of x with respect to $L-E$. Consider a sequence in $X(k)$, $\left\{x_{i}\right\} \rightarrow x$. Recall that $L-E$ is base point free, thus $H_{L-E} \geq O(1)$, so $d\left(x, x_{i}\right)^{\gamma} H_{L-E}\left(x_{i}\right) \geq$ $d\left(x, x_{i}\right)^{\gamma} O(1)$. Since $d\left(x, x_{i}\right) \rightarrow 0, \alpha_{x}(L-E) \geq 0$. Consider $C=\pi_{1}^{-1}\left(\pi_{1}(x)\right)$, then the sequence

$$
d\left(x, x_{i}\right)^{\gamma} H_{L-E}\left(x_{i}\right)=d\left(x, x_{i}\right)^{\gamma} H\left(\pi_{1}\left(x_{i}\right)\right)=d\left(x, x_{i}\right)^{\gamma} H\left(\pi_{1}(x)\right)
$$

is bounded if $\gamma=0$, hence $\alpha_{x}(L-E)=0$ and C is COBA for x with respect to $L-E$. Notice that C is a line on X passing through x, which tells us that C is also a COBA for x with respect to L.

Finally, let $D=a L+b(L-E)$ for some $a, b \geq 0$ be a nef divisor, $D \in \operatorname{Nef}(X)$. By Theorem 2.14, C is also a COBA with respect to D. Additionally, by remarks on Theorem 2.11, $\alpha_{x}(D)=D \cdot C=(a L+b(L-E)) \cdot(L-E)=a$. We conclude the results on the following table:

Divisor	COBA	α_{x}
L	$C=\pi_{1}^{-1}\left(\pi_{1}(x)\right) \sim L-E$	1
$L-E$	$C=\pi_{1}^{-1}\left(\pi_{1}(x)\right) \sim L-E$	0
$a L+b(L-E)$	$C=\pi_{1}^{-1}\left(\pi_{1}(x)\right) \sim L-E$	a

CASE 2: $x \in E$. In this case, consider $C_{1}=\pi^{-1}(p)=E$. By a similar argument as case 1 (with the curve C), we see that C_{1} is a COBA for x with respect to L and that $\alpha_{x}(L)=L \cdot E=0$. On the other hand, to approximate x with respect to $L-E$, we can use exactly the same argument as in case 1 , this is because all the fibers of π_{1} are lines (this is independent of the choice of the point x). So in this case $C=\pi_{1}^{-1}\left(\pi_{1}(x)\right)$ is still a COBA with respect to $L-E$. Also, notice that E is not a COBA for x with respect to
$L-E$. This is because using the map π_{1} we can see that $\alpha_{x, E}(L-E)=1>0$.

In this case, we need to divide the nef cone into subcones that have a common COBA. Let us assume that E is a COBA for a divisor $D \in \operatorname{Nef}(X)$, then $\alpha_{x}(D)=\alpha_{x, E}\left(\left.D\right|_{E}\right)=D \cdot E$. In particular $\alpha_{x, E}(D) \leq \alpha_{x, C}\left(\left.D\right|_{C}\right)=D \cdot(H-E)$, and if we write $D=a L+b(L-E)$, then $D \cdot E \leq D \cdot(L-E)$ implies that $b \leq a$. On the other hand, if we assume that C_{1} is a COBA for D we have the reverse inequality $D \cdot E \geq D \cdot(L-E)$ which tells us that $b \geq a$. This analysis suggests that we can divide the nef cone into the subcones

$$
\begin{equation*}
\operatorname{Nef}(X)=\langle L, 2 L-E\rangle \cup\langle 2 L-E, L-E\rangle \tag{4.1}
\end{equation*}
$$

where a divisor in the first cone has E as a COBA and a divisor on the second cone has C as a COBA. Let us verify this.

Claim 4.2. E is a $C O B A$ for x with respect to $2 L-E$.

Proof. Let $\left\{x_{i}\right\}_{i \in \mathbb{N}} \in E(k)$ be a sequence converging to x and consider the sequence

$$
d\left(x, x_{i}\right)^{\gamma} H_{2 L-E}\left(x_{i}\right)=\left(d\left(x, x_{i}\right)^{\delta} H_{L}\left(x_{i}\right)\right)\left(d\left(x, x_{i}\right)^{\beta} H_{L-E}\left(x_{i}\right)\right)
$$

Where $\gamma=\delta+\beta$. Since E is COBA with respect to L, the first factor of the RHS of the equation is bounded with minimal value $\delta=0$. Since E is not a fiber of π_{1} and the image of E under π_{1} is all \mathbb{P}^{1}, we see that the second factor of the RHS is bounded with minimal value $\beta=1$. Then, the minimal value for γ is $\gamma=1$. Notice that any sequence that has infinitely many points not belonging to the fiber of $\pi_{1}(x)$ will have approximation constant at least 1 . Hence E is a COBA for $2 L-E$.

Claim 4.3. C is a $C O B A$ for x with respect to $2 L-E$.

Proof. Let $\left\{x_{i}\right\}_{i \in \mathbb{N}} \in C(k)$ be a sequence converging to x and consider the sequence

$$
d\left(x, x_{i}\right)^{\gamma} H_{2 L-E}\left(x_{i}\right)=\left(d\left(x, x_{i}\right)^{\delta} H_{L}\left(x_{i}\right)\right)\left(d\left(x, x_{i}\right)^{\beta} H_{L-E}\left(x_{i}\right)\right)
$$

where $\gamma=\delta+\beta$. Since C is a COBA for $L-E$, we see that the second factor is bounded with minimal value of $\beta=0$. By a similar argument as in case 1 , we see that C, which is a line through x gives the approximation constant $\delta=1$. Hence, the minimal value for γ is 1 , which implies that C is also a COBA for x with respect to $2 L-E$.

From Claims 4.2 and 4.3, we can conclude that the division of the nef cone in equation (4.1) is correct and finally we calculate the approximation constant in each case. If $D \in$ $\langle L, 2 L-E\rangle$, say $D=a L+b(2 L-E)$ for some $a, b \geq 0$. Then $\alpha_{x}(D)=D \cdot E=b$. If $D \in\langle L-E, 2 L-E\rangle$, say $D=c(L-E)+d(2 L-E)$ for some $c, d \geq 0$. Then $\alpha_{x}(D)=D \cdot(L-E)=d$. We conclude the results in the following table:

Divisor	COBA	α_{x}
$D=a L+b(2 L-E)$	E	b
$D=c(L-E)+d(2 L-E)$	$C=\pi_{1}^{-1}\left(\pi_{1}(x)\right) \sim L-E$	d

In view of the claims 4.2 and 4.3 , we prove the following proposition that applies to further cases.

Proposition 4.4. Let D_{1} and D_{2} be base point free divisors on X with associated morphisms to projective spaces f_{1} and f_{2} respectively. Let $x \in X(k)$, and let C be an irreducible rational smooth component in the fibre of f_{1} through x. If x does not lie on any curve contracted by both f_{1} and f_{2}, and if $C \cdot D_{2}=1$, then C is $C O B A$ for x with respect to $D_{1}+D_{2}$.

Proof. Let $\left\{x_{i}\right\} \subset X(k)$ be a sequence that converges to x. We study the sequence

$$
d_{v}\left(x, x_{i}\right)^{\gamma} H_{D_{1}+D_{2}}\left(x_{i}\right)=\left(d_{v}\left(x, x_{i}\right)^{\delta} H_{D_{1}}\left(x_{i}\right)\right)\left(d_{v}\left(x, x_{i}\right)^{\beta} H_{D_{2}}\left(x_{i}\right)\right)
$$

where $\gamma=\delta+\beta$. Since C is contracted by f_{1} and it contains x, C is COBA for x with respect to D_{1} and minimal value of $\delta=0$. Additionally, since $C \cdot D_{2}=1, f_{2}(C)$ is a line through $f_{2}(x)$ and in this case, approximating x by points in C is equivalent to approximating $f_{2}(x)$ by points in a line through $f_{2}(x)$ in a projective space. By Proposition 2.1, $d_{v}\left(x, x_{i}\right)^{\beta} H_{D_{2}}\left(x_{i}\right)$ is bounded with minimal value of $\beta=1$, and C obtains that value. So, the minimal value of γ is $\gamma=1$. Hence, as there is no curve through x that is contracted by both f_{1} and f_{2}, there is no curve that attains a value of γ less than 1 , which implies that C is COBA for $D_{1}+D_{2}$.

The case of blowing up the plane at two points can be found in the Appendix.

4.2 The case of \mathbb{P}^{2} blown up at three non-collinear points

In this section we develop the example using the techniques from [19]. The proof of the conjecture in this case is roughly the same provided in [19]. Some of the generators of the cones provided there were missing. We consider this case including the new elements in the cones and complete the gap in that proof.

Let $X=B L_{3} \mathbb{P}^{2}$ the blow up of \mathbb{P}^{2} at three non-collinear points. Without loss of generality, we can choose the blown-up points to be $p_{1}=[0: 0: 1], p_{2}=[0: 1: 0]$ and $p_{3}=[1: 0: 0]$. As before, we can describe X explicitly by

$$
X=\{([x: y: z],[u: v],[s, t]),[r, w]): x v=y u, x t=z s, y w=r z\} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

We call π the projection of X to \mathbb{P}^{2}, and π_{i} the projection of X to the i-th copy of \mathbb{P}^{1} for $i=1,2,3$. Let E_{i} be the exceptional divisor corresponding to the projection π_{i}. Explicitly,

$$
\begin{aligned}
& E_{1}=[0: 0: 1] \times \mathbb{P}^{1} \times[0: 1] \times[0: 1] \\
& E_{2}=[0: 1: 0] \times[0: 1] \times \mathbb{P}^{1} \times[1: 0] \\
& E_{3}=[1: 0: 0] \times[1: 0] \times[1: 0] \times \mathbb{P}^{1}
\end{aligned}
$$

By a similar argument as in Section 4.1, we see that $\operatorname{Pic}(X) \cong \mathbb{Z} L \oplus \mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3}$, and that $L \sim \pi^{*}\left(L^{\prime}\right)$ and $L-E_{i} \sim \pi_{i}^{*}(P)$, where L^{\prime} is a line in \mathbb{P}^{2} and P is the divisor of a point in \mathbb{P}^{1}. (By the correspondence between Cartier divisors and line bundles, it is common to use the notation for L and $L-E_{i}$ as line bundles and write $L=\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$ and $L-E_{i}=\pi_{i}^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$, where $\mathcal{O}_{\mathbb{P}^{n}}(1)$ is the line bundle associated to a hyperplane in $\left.\mathbb{P}^{n}\right)$. The intersection theory on X is given by

\cdot	L	E_{1}	E_{2}	E_{3}
L	1	0	0	0
E_{1}	0	-1	0	0
E_{2}	0	0	-1	0
E_{3}	0	0	0	-1

Clearly all the generators of $\operatorname{Pic}(X)$ are linearly independent, hence $\operatorname{NS}(X) \oplus \mathbb{R}=\mathbb{R} L \oplus$ $\mathbb{R} E_{1} \oplus \mathbb{R} E_{2} \oplus \mathbb{R} E_{3}$. Let L_{12} be the line joining the points p_{1} and p_{2}, L_{23} be the line joining
p_{2} and p_{3}, and let L_{13} be the line joining p_{1} and p_{3}. Consider the inverse image of the points $[0: 1]$ and $[1: 0]$ in \mathbb{P}^{1} under the projections π_{1} and π_{2} and π_{3}.

$$
\begin{aligned}
\pi_{1}^{-1}([0: 1]) & =\{([0: y: z],[0: 1],[s: t],[r: w]): z s=0, y w=r z\} \\
& =E_{2} \cup\{([0: y: z],[0: 1],[0: 1],[y: z]): z \neq 0\} \\
\pi_{2}^{-1}([0: 1]) & =\{([0: y: z],[u: v],[0: 1],[r: w]): y u=0, y w=r z\} \\
& =E_{1} \cup\{([0: y: z],[0: 1],[0: 1],[y: z]): y \neq 0\} \\
\pi_{3}^{-1}([0: 1]) & =\{([x: 0: z],[u: v],[s: t],[0: 1]): x v=0, x t=s z\} \\
& =E_{1} \cup\{([x: 0: z],[1: 0],[x: z],[0: 1]): x \neq 0\} \\
\pi_{1}^{-1}([1: 0]) & =\{([x: 0: z],[1: 0],[s: t],[r: w]): r z=0, x t=s z\} \\
& =E_{3} \cup\{([x: 0: z],[1: 0],[x: z],[0: 1]): z \neq 0\} \\
\pi_{2}^{-1}([1: 0]) & =\{([x: y: 0],[u: v],[1: 0],[r: w]): y w=0, x v=y u\} \\
& =E_{3} \cup\{([x: y: 0],[x: y],[1: 0],[1: 0]): y \neq 0\} \\
\pi_{3}^{-1}([1: 0]) & =\{([x: y: 0],[u: v],[s: t],[1: 0]): x t=0, x v=y u\} \\
& =E_{2} \cup\{([x: y: 0],[x: y],[1: 0],[1: 0]): x \neq 0\}
\end{aligned}
$$

Let $S_{i j}$ be the strict transform of the line $L_{i j}, 1 \leq i<j \leq 3$. Explicitly,

$$
\begin{aligned}
S_{12} & =\left\{([0: y: z],[0: 1],[0: 1],[y: z]):[y: z] \in \mathbb{P}^{1}\right\} \\
S_{13} & =\left\{([x: 0: z],[1: 0],[x: z],[0: 1]):[x: z] \in \mathbb{P}^{1}\right\} \\
S_{23} & =\left\{([x: y: 0],[x: y],[1: 0],[1: 0]):[x: y] \in \mathbb{P}^{1}\right\}
\end{aligned}
$$

Notice that $\pi\left(S_{i j}\right)=L_{i j}, 1 \leq i<j \leq 3$.

Claim 4.5. $L_{i j}=S_{i j}+E_{i}+E_{j}, 1 \leq i<j \leq 3$.

Proof. Notice that $S_{i j}$ is a line, and $L_{i j} \cdot S_{i j}=E_{i} \cdot S_{i j}=E_{j} \cdot S_{i j}=1$, and $S_{i j} \cdot E_{k}=0$, where $k \in\{1,2,3\}, k \neq i$, and $k \neq j$. Then, as a divisor, $S_{i j}=a_{0} L+a_{i} E_{i}+a_{j} E_{j}+a_{k} E_{k}$. Using the intersection pairing in this case, we see that $a_{0}=1, a_{i}=a_{j}=-1$, and $a_{k}=0$. Hence, the claim follows.

Claim 4.6. Let $\sigma=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, S_{12}, S_{13}, S_{23}\right)$. Then, $\operatorname{Eff}(X)=\sigma$ and $\operatorname{Nef}(X)=\sigma^{\vee}$.

Proof. Since all the generators of σ are effective, we see that $\sigma \subseteq \operatorname{Eff}(X)$, so $\operatorname{Nef}(X)=$ $\operatorname{Eff}(X)^{\vee} \subseteq \sigma^{\vee}$. If we show that all generators of σ^{\vee} are nef, the claim will follow. Using Polymake, we calculate that $\sigma^{\vee}=\operatorname{Cone}\left(L, L-E_{1}, L-E_{2}, L-E_{3}, 2 L-E_{1}-E_{2}-E_{3}\right)$. Recall that $L-E_{i}$ is the divisor associated to the morphism $\pi_{i}, i \in\{1,2,3\}$, so $L-E_{i}$ is base point free and thus, it is nef for all i. Moreover, L is the divisor associated to π, so by the same reason, L is nef. Finally, $2 L-E_{1}-E_{2}-E_{3}$ is associated to the morphism $\phi: X \longrightarrow \mathbb{P}^{2}$ that contracts the three strict transforms S_{12}, S_{13}, and S_{23}. So it is also base point free and thus it is nef. We conclude that

$$
\begin{gathered}
\operatorname{Eff}(X)=\left\langle E_{1}, E_{2}, E_{3}, S_{12}, S_{13}, S_{23}\right\rangle \\
\operatorname{Nef}(X)=\left\langle L, L-E_{1}, L-E_{2}, L-E_{3}, T\right\rangle
\end{gathered}
$$

where $T=2 L-E_{1}-E_{2}-E_{3}$.
Now, we consider the following cases:

Case 1: $x \in X(k) \backslash\left(E_{1} \cup E_{2} \cup E_{3}\right)$. This case is similar to case 1 in the previous example. Since x is the only element on the fibre of $\pi(x)$ through π, any line containing x is a COBA for x with respect to L, and the approximation constant is 1 . Let $C_{i}=\pi_{i}^{-1}\left(\pi_{i}(x)\right)$ for $i \in\{1,2,3\}$. Notice that if $x \notin S_{i j}$ for any $1 \leq i<j \leq 3$, then C_{i} is an irreducible component. Moreover, C_{i} is a COBA for $L-E_{i}$, and $C_{i} \sim L-E_{i}$. On the other hand, if $x \in S_{i j}$ for some i, j, then $C_{i}=E_{j} \cup S_{i j}$ and $C_{j}=E_{i} \cup S_{i j}$, but since $x \in S_{i j}$, we pick $S_{i j}$ as a COBA. We use the same notation for the curves $C_{i}=C_{j}=S_{i j}$. Finally, consider approximations to x with respect to T. Notice that ϕ is an isomorphism from $X \backslash\left(\cup_{i, j} S_{i j}\right)$ to $\mathbb{P}^{2} \backslash\left(\cup_{i, j} \phi\left(S_{i j}\right)\right)$. Assume $x \notin S_{i j}$. Then, to approximate $x \in X$ is equivalent to approximate $\phi(x)$ in \mathbb{P}^{2}, so in this case we can approximate x with any line through x and the approximation constant is 1 . Assume $x \in S_{i j}$ for some i, j. Then a COBA for x with respect to T is $S_{i j}$ with approximation constant $T \cdot S_{i j}=0$. Hence, we consider two subcases of this case:

Case 1.1: $x \in S_{i j}$ for some i, j. Then, we summarize the results in the following table.

Divisor	COBA	α_{x}
L	$S_{i j}$ or $C_{k} \sim L-E_{k}$	1
$L-E_{i}$	$S_{i j}$	0
$L-E_{j}$	$S_{i j}$	0
$L-E_{k}$ where $k \notin\{i, j\}$	$C_{k} \sim L-E_{k}$	0
T	$S_{i j}$	0

Let $D=a_{0} L+a_{i}\left(L-E_{i}\right)+a_{j}\left(L-E_{j}\right)+a_{k}\left(L-E_{k}\right)+a_{4} T \in \operatorname{Nef}(X)$. Assume that $S_{i j}$ is a COBA for D, then $D \cdot S_{i j} \leq D \cdot\left(L-E_{k}\right)$, i.e. $a_{0}+a_{k} \leq a_{0}+a_{i}+a_{j}+a_{4}$. We divide the nef cone as $\operatorname{Nef}(X)=\Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{1}=\left\langle L, L-E_{i}, L-E_{j}, T, T+L-E_{k}, 2 L-E_{i}-E_{k}, 2 L-E_{j}-E_{k}\right\rangle$ and $\Gamma_{2}=\left\langle L, L-E_{k}, 2 L-E_{i}-E_{k}, 2 L-E_{j}-E_{k}, T+L-E_{k}\right\rangle$. Notice that $S_{i j}$ is a COBA for x with respect to any generator of Γ_{1} that has intersection 0 with $S_{i j}$. Additionally, by Proposition 4.4, $S_{i j}$ is also a COBA with respect to any generator of Γ_{1} that has intersection 1 with $S_{i j}$. Thus, $S_{i j}$ is a COBA for x with respect to any divisor in Γ_{1}. Similarly, $L-E_{k}$ is a COBA for any divisor in Γ_{2}. So we conclude:

Divisor	COBA	α_{x}
$b_{0} L+b_{1}\left(L-E_{i}\right)+b_{2}\left(L-E_{j}\right)+b_{3} T+$		
$b_{4}\left(T+L-E_{k}\right)+b_{5}\left(2 L-E_{i}-E_{k}\right)+b_{6}\left(2 L-E_{j}-E_{k}\right)$	$S_{i j}$	$b_{0}+b_{4}+b_{5}+b_{6}$
$c_{0} L+c_{1}\left(L-E_{k}\right)+c_{2}\left(2 L-E_{i}-E_{k}\right)$		
$+c_{3}\left(2 L-E_{j}-E_{k}\right)+c_{4}\left(T+L-E_{k}\right)$	$L-E_{k}$	$c_{0}+c_{1}+c_{2}+c_{3}+c_{4}$

Case 1.2: $x \notin S_{i j}$ for all i, j. Then, we summarize the results in the following table.

Divisor	COBA	α_{x}
L	C_{1} or C_{2} or C_{3}	1
$L-E_{1}$	$C_{1} \sim L-E_{1}$	0
$L-E_{2}$	$C_{2} \sim L-E_{2}$	0
$L-E_{3}$	$C_{3} \sim L-E_{3}$	0
T	C_{1} or C_{2} or C_{3}	1

In this case the nef cone is divided as $\operatorname{Nef}(X)=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$, where $\Gamma_{i}=\left\langle L, T, L-E_{i}, 2 L-\right.$ $\left.E_{i}-E_{j}, 2 L-E_{i}-E_{k}\right\rangle$, where $\{i, j, k\}=\{1,2,3\}$. Notice that $L-E_{i}$ is a COBA for x with respect to any divisor in Γ_{i} because the intersection with a generator of Γ_{i} is 0 or 1 . In the
latter case, Proposition 4.4 proves that $L-E_{i}$ is a COBA. We summarize as follows.

Divisor	COBA	α_{x}
$b_{0} L+b_{1} T+b_{2}\left(L-E_{i}\right)+b_{3}\left(2 L-E_{i}-E_{j}\right)$ $+b_{4}\left(2 L-E_{i}-E_{k}\right)$	$C_{i} \sim L-E_{i}$	$b_{0}+b_{1}+b_{3}+b_{4}$

Case 2: $x \in E_{1}(k) \cup E_{2}(k) \cup E_{3}(k)$, and $x \notin S_{i j}$ for $1 \leq i<j \leq 3$. Say, $x \in E_{i}(k)$ for some $i \in\{1,2,3\}$. In this case, Since E_{i} is contracted by L, E_{i} is a COBA for x with respect to L. On the other hand, since x is not in any of the $S_{i j}$, we see that E_{i} is also a COBA for T because E_{i} is a line passing through x. Notice that $C_{i}=\pi_{i}^{-1}\left(\pi_{i}(x)\right) \sim L-E_{i}$ is a line through x, so C_{i} is also a COBA for T. Lastly, let $C_{m}=\pi_{m}^{-1}\left(\pi_{m}(x)\right)$, for $m \in\{1,2,3\}$, we know as before that C_{m} is a COBA for $L-E_{m}$, but notice that since $x \in E_{i}$ and $x \notin S_{i j} \cup S_{i k} \cup S_{j k}, C_{j}=C_{k}=E_{i}$. So we conclude the following table:

Divisor	COBA	α_{x}
L	E_{i}	0
$L-E_{i}$	$C_{i} \sim L-E_{i}$	0
$L-E_{j}$	E_{i}	0
$L-E_{k}$	E_{i}	0
T	E_{i} or C_{i}	1

Let $D=a_{0} L+a_{i}\left(L-E_{i}\right)+a_{j}\left(L-E_{j}\right)+a_{k}\left(L-E_{k}\right)+a_{4} T \in \operatorname{Nef}(X)$. Assume that E_{i} is a COBA for D, then $D \cdot E_{i} \leq D \cdot\left(L-E_{i}\right)$, and we get $a_{i} \leq a_{0}+a_{j}+a_{k}$, which is the cone $\Gamma_{1}=\left\langle L, T, L-E_{j}, L-E_{k}, 2 L-E_{i}, 2 L-E_{i}-E_{j}, 2 L-E_{i}-E_{k}\right\rangle$. Notice that E_{i} is a COBA for all the generators in Γ_{1}. By analogous argument we find that $\Gamma_{2}=\left\langle T, L-E_{i}, 2 L-E_{i}, 2 L-E_{i}-E_{j}, 2 L-E_{i}-E_{k}\right\rangle$, and $L-E_{i}$ is a COBA for all generators as well. We summarize as follows:

$$
\begin{array}{|c|c|c|}
\hline \text { Divisor } & \text { COBA } & \alpha_{x} \\
\hline b_{0} L+b_{1} T+b_{2}\left(L-E_{j}\right)+b_{3}\left(L-E_{k}\right)+ & & \\
b_{4}\left(2 L-E_{i}\right)+b_{5}\left(2 L-E_{i}-E_{j}\right)+b_{6}\left(2 L-E_{i}-E_{k}\right) & E_{i} & b_{1}+b_{4}+b_{5}+b_{6} \\
\hline b_{0} T+b_{1}\left(L-E_{i}\right)+b_{2}\left(2 L-E_{i}\right)+ & & \\
b_{3}\left(2 L-E_{i}-E_{j}\right)+b_{4}\left(2 L-E_{i}-E_{k}\right) & L-E_{i} & b_{0}+b_{2}+b_{3}+b_{4} \\
\hline
\end{array}
$$

Case 3: $x \in \bigcup_{1 \leq i<j \leq 3, m \in\{i, j\}}\left(E_{m} \cap S_{i j}\right)$. Let $x \in E_{i} \cap S_{i j}$. In this case E_{i} is still a COBA for x with respect to L. Now, since the corresponding morphism of T contracts $S_{i j}$ and $x \in S_{i j}$, we see that $S_{i j}$ is a COBA for x with respect to T. We also know that a COBA for $L-E_{i}$ is inside of the fibre $\pi_{i}^{-1}\left(\pi_{i}(x)\right)$, but since $\pi_{i}^{-1}(x)=E_{j} \cup S_{i j}$ and $x \in S_{i j} \backslash E_{j}$, $S_{i j}$ is a COBA for $L-E_{i}$. Similarly, since the fibre $\pi_{j}^{-1}\left(\pi_{j}(x)\right)=E_{i} \cup S_{i j}$ and $x \in E_{i} \cap S_{i j}$, both E_{i} and $S_{i j}$ are COBAs for x with respect to $L-E_{j}$. Finally, since E_{i} is an irreducible component of the fibre $\pi_{k}^{-1}\left(\pi_{k}(x)\right)=E_{i} \cup S_{i k}$ and $x \in E_{i} \backslash S_{i k}, E_{i}$ is a COBA for x with respect to $L-E_{k}$.

Divisor	COBA	α_{x}
L	E_{i}	0
$L-E_{i}$	$S_{i j}$	0
$L-E_{j}$	E_{i} or $S_{i j}$	0
$L-E_{k}$	E_{i}	0
T	$S_{i j}$	0

Let $D=a_{0} L+a_{i}\left(L-E_{i}\right)+a_{j}\left(L-E_{j}\right)+a_{k}\left(L-E_{k}\right)+a_{4} T \in \operatorname{Nef}(X)$. Assume that E_{i} is a COBA for D, then $D \cdot E_{i} \leq D \cdot S_{i j}$. As before we get $a_{i}+a_{4} \leq a_{0}+a_{k}$, then $\operatorname{Nef}(X)=\Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{1}=\left\langle L, L-E_{j}, 2 L-E_{i}, L+T, L-E_{k}+T, L-E_{k}, 2 L-E_{i}-E_{k}\right\rangle$ and $\Gamma_{2}=\left\langle L-E_{j}, 2 L-E_{i}, L+T, L-E_{k}+T, T, L-E_{i}, 2 L-E_{i}-E_{k}\right\rangle$. Notice that $S_{i j}$ and E_{i} are both COBAs for the generators $2 L-E_{i}, L+T, L-E_{k}+T$ and $2 L-E_{i}-E_{k}$, thus E_{i} is a COBA for divisors in Γ_{1} and $S_{i j}$ is a COBA for divisors in Γ_{2}. We conclude:

Divisor	COBA	α_{x}
$b_{0} L+b_{1}\left(L-E_{j}\right)+b_{2}\left(2 L-E_{i}\right)+b_{3}(L+T)+$		
$b_{4}\left(L-E_{k}+T\right)+b_{5}\left(L-E_{k}\right)+b_{6}\left(2 L-E_{i}-E_{k}\right)$	E_{i}	$b_{2}+b_{3}+b_{4}+b_{6}$
$b_{0} T+b_{1}\left(L-E_{j}\right)+b_{2}\left(2 L-E_{i}\right)+b_{3}(L+T)+$		
$b_{4}\left(L-E_{k}+T\right)+b_{5}\left(L-E_{i}\right)+b_{6}\left(2 L-E_{i}-E_{k}\right)$	$S_{i j}$	$b_{2}+b_{3}+b_{4}+b_{6}$

We conclude from the examples developed in this chapter, that the conjecture 1.8 is true for blow up of the projective plane at one, two or three non-collinear points. The case of blowing up at two points is in the Appendix.

Chapter 5

Split rational surfaces of Picard rank at least 5

In this chapter we verify the following conjecture for surfaces obtained by blowing up smooth rational surfaces of Picard rank 4.

Conjecture 5.1. Let X be an algebraic variety defined over k and D be any ample divisor on X. Let x be any k-rational point on X such that there is some rational curve on X, defined over k and passing through x. Then, there exists a curve of best approximation to x on X with respect to D.

Recall that the Hirzebruch surface \mathbb{F}_{n} is characterized by the two maps $\pi_{0}: \mathbb{F}_{n} \longrightarrow \mathbb{P}^{1}$ and $\phi: \mathbb{F}_{n} \longrightarrow A$ where A is the cone in \mathbb{P}^{n+1} over the rational normal curve in \mathbb{P}^{n}.

Since every time that we blow up a point in a surface X, the rank of the Picard group increases by one, we need to blow-up \mathbb{F}_{n} three times to study the split rational surfaces X of Picard rank 5. We may assume that none of the blown up points lie on the $(-n)$-section on \mathbb{F}_{n}, since blowing up a point in that section would only increase the value of n by 1 (see Corollary 3.9). By Theorem 3.8, we can describe the process of blowing up the Hirzebruch surface \mathbb{F}_{n} in the following commutative diagram:

where $X_{1}=B l_{1}\left(\mathbb{F}_{n}\right)$ is the blow up of \mathbb{F}_{n} at one point, $X_{2}=B l_{1}\left(X_{1}\right)$ is the blow up of X_{1} at one point (i.e. $X_{2} \cong B l_{2}\left(\mathbb{F}_{n}\right)$ the blow up of \mathbb{F}_{n} at two points), and f_{i} is the map of blowing down in steps $i=0,1,2$. Notice that X_{1} could be different depending on the blowup points. However, the Picard groups of all possible surfaces X_{1} have the same rank.

Notation 5.2. From now on, we use the following notation:

- $\operatorname{Pic}\left(\mathbb{F}_{n}\right)=\mathbb{Z} F_{n} \oplus \mathbb{Z} S_{n}$, where $F_{n} \sim \pi_{0}^{*}(y)$ for any point $y \in \mathbb{P}^{1}$ and $n F_{n}+S_{n}=\phi^{*}(H)$ for any hyperplane section H in A, and S_{n} is the $(-n)$-section on \mathbb{F}_{n}.
- $\operatorname{Pic}\left(X_{1}\right)=\mathbb{Z} S \oplus \mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2}$, where $S:=f_{0}^{*}\left(S_{n}\right)$, E_{1} is the strict transform of F_{n} under the map f_{0}, and E_{2} is the exceptional divisor of the blow up map f_{0}. On X_{1} we also will use the letter F for $F:=f_{0}^{*}\left(F_{n}\right)$.
- $\operatorname{Pic}\left(X_{2}\right)=\mathbb{Z} S \oplus \mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3}$, where we use the same letter S for $S:=f_{1}^{*}(S)$, and the same letters E_{1} and E_{2} for the strict transforms of E_{1} and E_{2} respectively, under the map f_{1}. Also, E_{3} is the exceptional divisor corresponding to f_{1}, and we use the same letter F for $F:=f_{1}^{*}(F)$.
- $\operatorname{Pic}(X)=\mathbb{Z} S \oplus \mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3} \oplus \mathbb{Z} E_{4}$, where we use the same letter S for $S=f_{2}^{*}(S)$, and the letters E_{i} for the strict transform of E_{i} under f_{2} for $i=1,2,3, E_{4}$ is the exceptional divisor corresponding to f_{2}, and we use the same letter F for $F:=f_{2}^{*}(F)$.

The study of the conjecture on surfaces X_{2} is given in [19, Theorem 3.17]. The proof in that paper was divided in three cases of X_{2} that depend on the configuration of the
reducible fibre of the map π. We summarize the results obtained in that paper since we use them for the study of surfaces of bigger Picard ranks.

Notation 5.3. We use the following notation:
Surfaces X_{2} of type 1: These are surfaces with two reducible fibres, each with two components that intersect transversely at one point. It was proven that Pic $(X)=\mathbb{Z} S \oplus$ $\mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3}$ with intersection theory given by:

\cdot	F_{1}	E_{1}	E_{2}	S
F_{1}	-1	1	0	1
E_{1}	1	-1	0	0
E_{2}	0	0	-1	0
S	1	0	0	$-n$

Here $F \sim F_{1}+E_{1} \sim F_{2}+E_{2}$, and it was also proven that $\operatorname{Eff}(X)=\operatorname{Cone}\left(S, F_{1}, E_{1}, F_{2}, E_{2}\right)$ and $\operatorname{Nef}(X)=\operatorname{Cone}\left(F, D_{\alpha}\right)$, where $\alpha \in\{0,1\}^{2}$ and $D_{\alpha}=S+n F-\alpha \cdot\left(E_{1}, E_{2}\right)$. The surfaces X obtained by blowing up this type of surfaces are not considered in this chapter. We provide some ideas on how to develop these cases in the next chapter.

Surfaces X_{2} of type 2: These are surfaces with one reducible fibre of the map π in diagram 5.1, with three components configured like a letter F. It was proven that Pic $\left(X_{2}\right)=$ $\mathbb{Z} S \oplus \mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3}$ with intersection table

\cdot	E_{1}	E_{2}	E_{3}	S
E_{1}	-2	1	1	1
E_{2}	1	-1	0	0
E_{3}	1	0	-1	0
S	1	0	0	$-n$

Here $F \sim E_{1}+E_{2}+E_{3}$, and it was also proven that $\operatorname{Eff}(X)=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, S\right)$, and
$\operatorname{Nef}(X)=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}\right)$, where

$$
\begin{aligned}
& D_{1}=n F+S, \\
& D_{2}=D_{1}-E_{2}, \\
& D_{3}=D_{1}-E_{3} .
\end{aligned}
$$

Surfaces X_{2} of type 3: These are surfaces with one reducible fibre of the map π, with three components configured like a letter H. In this case we only include the case where the reducible fibre has no multiple component. It was proven that $\operatorname{Pic}\left(X_{2}\right)=\mathbb{Z} S \oplus \mathbb{Z} E_{1} \oplus$ $\mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3}$ with intersection table

\cdot	E_{1}	E_{2}	E_{3}	S
E_{1}	-1	1	0	1
E_{2}	1	-2	1	0
E_{3}	0	1	-1	0
S	1	0	0	$-n$

Here $F \sim E_{1}+E_{2}+E_{3}, \operatorname{Eff}(X)=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, S\right)$, and $\operatorname{Nef}(X)=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}\right)$, where

$$
\begin{aligned}
D_{1} & =n F+S \\
D_{2} & =D_{1}-E_{2}-E_{3} \\
D_{3} & =D_{1}-E_{2}-2 E_{3}
\end{aligned}
$$

Surfaces X_{2} of type 4: These are surfaces of type 3 that have a double component. It was proven that $\operatorname{Pic}\left(X_{2}\right)=\mathbb{Z} S \oplus \mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3}$ with intersection table

\cdot	E_{1}	E_{2}	E_{3}	S
E_{1}	-2	0	1	1
E_{2}	0	-2	1	0
E_{3}	1	1	-1	0
S	1	0	0	$-n$

Here $F \sim E_{1}+E_{2}+2 E_{3}, E f f(X)=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, S\right)$, and $\operatorname{Nef}(X)=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}\right)$, where

$$
\begin{aligned}
& D_{1}=n F+S, \\
& D_{2}=D_{1}-E_{2}-E_{3}, \\
& D_{3}=2 D_{1}-E_{2}-2 E_{3} .
\end{aligned}
$$

Remark 5.4. In all cases it was proven that each of the generators of the nef cone was base point free. Thus, to study the case of blowing up a point in X_{2}, using the notation f_{2} for that blow-down map in diagram 5.1, we see that $f_{2}^{*}\left(D_{1}\right), f_{2}^{*}\left(D_{2}\right)$, and $f_{2}^{*}\left(D_{3}\right)$ are also base point free by Proposition 3.19. Additionally, by Theorem 3.5, they belong to the nef cone of X. We use the same letters D_{1}, D_{2}, and D_{3} to denote $f_{2}^{*}\left(D_{1}\right), f_{2}^{*}\left(D_{2}\right)$, and $f_{2}^{*}\left(D_{3}\right)$ respectively.

5.1 Blowing-up smooth points in the reducible fibre

In this section we prove Conjecture 5.1 for surfaces obtained by blowing up a surface X_{2} at a smooth point of the fibre F. We find a complete description of the effective and the nef cone in these cases and we use the generators of the nef cone to find a COBA with respect to each generator of $\operatorname{Nef}(X)$.

Most of the proofs in this section seem very similar. However, in each case the divisors D_{3} and D_{4} were different, and in the cases in which they were base point free, the morphisms to projective space that they defined were also distinct. For this reason we kept our proofs as they are presented in this chapter.

Theorem 5.5. Let X be the blow-up of the type 2 surface X_{2} at k points all lying in $E_{1} \backslash\left(S \cup E_{2} \cup E_{3}\right)$, where $k, n \in \mathbb{N}$. Then Conjecture 5.1 is true for X.

Proof. The reducible fibre of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ is $F=\sum_{j=1}^{k+3} E_{j}$. Note that F is a comb with $k+2$ teeth.

Notice that $\operatorname{Pic}(X)=\mathbb{Z} S \bigoplus_{j=1}^{k+3} \mathbb{Z} E_{j}$, where E_{j} is the exceptional divisor of the blow-up of X_{2} at a point $p_{j} \in E_{1} \backslash\left(S \cup E_{2} \cup E_{3}\right)$, with the following intersections, where $i, j \in$ $\{2,3, \cdots, k+3\}$ and $i \neq j$:

$$
\begin{aligned}
E_{1}^{2} & =-(k+2) \\
E_{i}^{2} & =-1 \\
S^{2} & =-n \\
E_{1} \cdot E_{i} & =1 \\
E_{i} \cdot E_{j} & =0 \\
S \cdot E_{1} & =1 \\
S \cdot E_{i} & =0
\end{aligned}
$$

Claim 5.6. The effective cone of X is generated by E_{1}, \cdots, E_{k+3}, and S. The nef cone of X is generated by the divisors $F, D_{1}=n F+S$, and $D_{i}=n F+S-E_{i}$ for all $i \in\{2,3, \cdots, k+3\}$.

Proof. Let $\sigma=\operatorname{Cone}\left(S, E_{1}, E_{2}, \cdots, E_{k+3}\right)$. Since the generators of σ are all linearly independent over k, σ is a simplicial cone. So by Proposition 3.20, its dual cone is generated by divisors T_{i} where $T_{i} \cdot E_{j}=\delta_{i j}$, where δ is the Kronecker delta, and $i, j \in\{1,2, \cdots, k+3\}$, $T_{0} \cdot S=1$, and $T_{0} \cdot E_{j}=0$ for all j.

We can verify that $D_{i} \cdot E_{j}=\delta_{i j}, F \cdot E_{i}=0$, and $F \cdot S=1$. Hence $T_{i}=D_{i}$ for all $i \in\{1,2, \cdots, k+3\}$ and $T_{0}=F$, which tells us that $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, \cdots, D_{k+3}\right)$. If we
show that all the generators of σ^{\vee} are base point free, we prove that $\sigma^{\vee}=\operatorname{Nef}(X)$.

Clearly F and D_{1} are base point free, since they correspond to the morphisms π and f respectively in the diagram 5.1. Let $\phi_{i}: X \longrightarrow Y_{i}$ be the blow-down map of the exceptional divisors E_{j} where $j \in\{2,3, \cdots, k+3\}$, where $j \neq i$, and let $\phi_{1, i}: Y_{i} \longrightarrow \mathbb{F}_{n-1}$ be the blow-down map of E_{1}.

Now we show that D_{i} is base point free for all $i \in\{2,3 \cdots, k+3\}$. Let H be a hyperplane section of $A \subset \mathbb{P}^{n}$, where A is the cone over a rational normal curve in \mathbb{P}^{n-1}. Let ϕ : $\mathbb{F}_{n-1} \longrightarrow A \subset \mathbb{P}^{n}$, the map in diagram 5.1. Then $\phi^{*}(H) \sim(n-1) F_{n-1}+S_{n-1}$. Then

$$
\begin{aligned}
\phi^{*}(H) & \sim(n-1) F_{n-1}+S_{n-1} \\
\phi_{1, i}^{*}\left(\phi^{*}(H)\right) & \sim(n-1)\left(E_{i}+E_{1}\right)+\left(S+E_{1}\right) \\
\phi_{i}^{*}\left(\phi_{1, i}^{*}\left(\phi^{*}(H)\right)\right) & \sim(n-1)\left(E_{i}+E_{1}+\sum_{1<j \leq k, j \neq i} E_{j}\right)+\left(S+E_{1}+\sum_{1<j \leq k, j \neq i} E_{j}\right) \\
\phi_{i}^{*}\left(\phi_{1, i}^{*}\left(\phi^{*}(H)\right)\right) & \sim(n-1) F+S+F-E_{i}=n F+S-E_{i}=D_{i} .
\end{aligned}
$$

Hence, since the E_{i} 's and S are effective, and F and the D_{i} 's are base point free, we see that

$$
\begin{aligned}
\operatorname{Eff}(X) & =\operatorname{Cone}\left(S, E_{1}, E_{2}, \cdots, E_{k+3}\right), \\
\operatorname{Nef}(X) & =\operatorname{Cone}\left(F, D_{1}, \cdots, D_{k+3}\right) .
\end{aligned}
$$

To finish the proof, we choose an arbitrary point $x \in X(k)$. We know that the only curves contracted by D_{i} are S and E_{j} where $j \neq i$. Hence, if x does not lie in the reducible fibre F, we let $C=\pi^{*}(\pi(x))$, then $C \sim F, C \cdot D_{i}=F \cdot D_{i}=1$, and $C \cdot F=0$. So by Proposition 2.15, C is a COBA for x with respect to any generator of the nef cone of X. Hence, for any $D \in \operatorname{Nef}(X), C$ is a COBA for x with respect to D and $\alpha_{x}(D)=D \cdot C$.

On the other hand, suppose that x belongs to the reducible fibre, i.e. x belongs to some exceptional curve E_{i} or S, and $D \in \operatorname{Nef}(X)$. We let $T=\left\{S, F, E_{1}, \cdots, E_{k}\right\}$. Then $\alpha_{x}(D)=\min _{\{R \in T: x \in R\}}\{D \cdot R\}$, and whichever curve in T that contains x and has minimal intersection with D is a COBA for x with respect to D.

Theorem 5.7. Let X be the blow-up of the type 3 surface X_{2} at k points all lying in $E_{2} \backslash\left(E_{1} \cup E_{3}\right)$, where $k, n \in \mathbb{N}, n \geq 2$. Then Conjecture 5.1 is true for X.

Proof. The reducible fibre of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ is $F=\sum_{j=1}^{k+3} E_{j}$. Notice that F is a comb with $k+2$ teeth. We represent the fibre as:

	E_{k+3}
E_{2}	E_{k+2}
	\vdots
	E_{4}
	E_{3}

Notice that $\operatorname{Pic}(X)=\mathbb{Z} S \bigoplus_{j=1}^{k+3} \mathbb{Z} E_{j}$, where E_{j} is the exceptional divisor of the blowup of X_{2} at the point $p_{j} \in E_{2} \backslash\left(E_{1} \cup E_{3}\right), j \in \mathbb{N}, 4 \leq j \leq k+3$. We have the following intersection theory, where $i, j \in\{1,3,4, \cdots, k+3\}$ and $i \neq j$:

$$
\begin{aligned}
E_{2}^{2} & =-(k+2) \\
E_{i}^{2} & =-1 \\
S^{2} & =-n \\
E_{2} \cdot E_{i} & =1 \\
E_{i} \cdot E_{j} & =0 \\
S \cdot E_{1} & =1 \\
S \cdot E_{2}=S \cdot E_{i} & =0 \quad(\text { for } i \geq 3)
\end{aligned}
$$

Claim 5.8. The effective cone of X is generated by $E_{1}, \cdots E_{k}$, and S. The nef cone of X is generated by the divisors $F, D_{1}=n F+S, D_{2}=D_{1}-\sum_{i \geq 2} E_{i}$, and $D_{i}=D_{2}-E_{i}$ for all $i \in\{3, \cdots, k+3\}$.

Proof. Let $\sigma=\operatorname{Cone}\left(S, E_{1}, E_{2} \cdots, E_{k+3}\right)$. Since the generators of σ are linearly independent over k, σ is a simplicial cone. Hence, its dual σ^{\vee} is generated by divisors
$T_{0}, T_{1}, \cdots, T_{k+3}$ of the dual space such that $T_{n} \cdot E_{m}=\delta_{n m}$, where $n, m \in\{0,1, \cdots k+3\}$ where we have $E_{0}:=S$. But notice that $D_{m} \cdot E_{m}=1$ for all $m \in\{0,1, \cdots, k+3\}$ (where we have $D_{0}:=F$), and that $D_{n} \cdot E_{m}=0$ for all $n, m, n \neq m$. Hence by Proposition 3.20, $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, \cdots, D_{k+3}\right)$.

We know that F is base point free, corresponding to the morphism $\pi: X \longrightarrow \mathbb{P}^{1}$. Similarly D_{1} is base point free, since it corresponds to the morphism f to a cone in the diagram 5.1. Also, D_{2} is base point free, since it corresponds to a morphism to a cone in \mathbb{P}^{n} that contracts all $E_{j} j \neq 2$ and S.

Now, for each $i \in\{3, \cdots, k+3\}$ we let $\phi_{i}: X \longrightarrow Y_{i}$ be the blow-down map with exceptional divisors E_{j} for $j \in\{1,3,4, \cdots k+3\}$ and $j \neq i$. Notice that $\phi_{i}\left(E_{2}\right)$ is a divisor, which we denote with the same letter E_{2} in Y_{i} that has self intersection -1 . So now we can contract it by letting $\phi_{2, i}: Y_{i} \longrightarrow \mathbb{F}_{n-2}$ be the blow-down map of E_{2} on Y_{i} to \mathbb{F}_{n-2}. Recall that in \mathbb{F}_{n-2} we have a morphism $\phi: \mathbb{F}_{n-2} \longrightarrow A \subset \mathbb{P}^{n-1}$ where A is a cone.

We let H be a hyperplane section in \mathbb{P}^{n-1}. Then

$$
\begin{aligned}
\phi^{*}(H) & \sim(n-2) F_{n-2}+S_{n-2} \\
\phi_{2, i}^{*}\left(\phi^{*}(H)\right) & \sim(n-2)\left(E_{i}+E_{2}\right)+\left(E_{2}+S\right) \\
\phi_{i}^{*}\left(\phi_{2, i}^{*}\left(\phi^{*}(H)\right)\right) & \sim(n-2)\left(E_{i}+\sum_{\substack{j \neq i \\
1 \leq j \leq k+3}} E_{j}\right)+\left(\sum_{\substack{j \neq i \\
1 \leq j \leq k+3}} E_{j}+S+E_{1}\right) \\
& =(n-2) F+F-E_{i}+S+E_{1}=D_{1}-\left(\sum_{2 \leq j \leq k+3} E_{j}\right)-E_{i}=D_{i}
\end{aligned}
$$

Hence, we can conclude that

$$
\begin{aligned}
\operatorname{Eff}(X) & =\operatorname{Cone}\left(S, E_{1}, E_{2}, \cdots, E_{k+3}\right) \\
\operatorname{Nef}(X) & =\operatorname{Cone}\left(F, D_{1}, D_{2}, \cdots, D_{k+3}\right)
\end{aligned}
$$

Finally, we consider a point $x \in X(k)$. Similarly to the earlier cases, since the product $F \cdot D_{j}=1$ for all $j \in\{1,2,3, \cdots, k+3\}$, by Proposition $2.15, F$ is a COBA for x with respect to a divisor D unless that x belongs to an exceptional curve. We let $T=\left\{S, E_{1}, \cdots, E_{k+3}\right\}$.

If D belongs to the nef cone, $\alpha_{x}(D)=\min _{R \in T: x \in R}\{D \cdot F, D \cdot R\}$ and such a curve that provides the value of $\alpha_{x}(D)$ is a COBA for x with respect to D.

Theorem 5.9. Let X be the blow-up of the type 3 surface X_{2} at k points all lying in $E_{1} \backslash\left(E_{2} \cup S\right)$, where $k, n \in \mathbb{N}$. Then Conjecture 5.1 is true for X.

Proof. The reducible fibre of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ is $F=\sum_{j=1}^{k+3} E_{j}$. Note that F is a comb with $k+1$ teeth, but one of the teeth has been blown-up. We represent the fibre as:

Notice that $\operatorname{Pic}(X)=\mathbb{Z} S \bigoplus_{j=1}^{k+3} \mathbb{Z} E_{j}$, where E_{j} is the exceptional divisor of the blowup of X_{2} at the point $p_{j} \in E_{1} \backslash\left(E_{2} \cup S\right), j \in \mathbb{N}, 4 \leq j \leq k+3$, with the following intersection
theory, where $i, j \in\{3,4, \cdots, k+3\}$ and $i \neq j$:

$$
\begin{aligned}
E_{1}^{2} & =-(k+1) \\
E_{2}^{2} & =-2 \\
E_{i}^{2} & =-1 \\
S^{2} & =-n \\
E_{1} \cdot E_{2}=E_{1} \cdot E_{i} & =1 \quad(\text { for } i \geq 4) \\
E_{1} \cdot E_{3} & =0 \\
E_{2} \cdot E_{3} & =1 \\
E_{2} \cdot E_{i} & =0 \quad(\text { for } i \geq 4) \\
E_{i} \cdot E_{j} & =0 \\
S \cdot E_{1} & =1 \\
S \cdot E_{2}=S \cdot E_{i} & =0
\end{aligned}
$$

Claim 5.10. The effective cone of X is generated by $E_{1}, \cdots E_{k}$, and S. The nef cone of X is generated by the divisors $F, D_{1}=n F+S, D_{2}=D_{1}-E_{2}-E_{3}, D_{3}=D_{1}-E_{2}-2 E_{3}$, and $D_{i}=D_{1}-E_{i}$ for all $i \in\{4,5, \cdots, k+3\}$.

Proof. Let $\sigma=\operatorname{Cone}\left(S, E_{1}, E_{2} \cdots, E_{k+3}\right)$. Since the generators of σ are linearly independent over k, σ is a simplicial cone. Hence, its dual σ^{\vee} is generated by divisors $T_{0}, T_{1}, \cdots, T_{k+3}$ of the dual space such that $T_{n} \cdot E_{m}=\delta_{n m}$, where $n, m \in\{0,1, \cdots k+3\}$ and we have $E_{0}:=S$. But notice that $D_{m} \cdot E_{m}=1$ for all $m \in\{0,1, \cdots, k+3\}$ (where we have $\left.D_{0}:=F\right)$, and that $D_{n} \cdot E_{m}=0$ for all $n, m, n \neq m$. Hence by Proposition 3.20, $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, \cdots, D_{k+3}\right)$.

As before, we know that F and D_{1} are base point free.

To prove that D_{2} and D_{3} are base point free, consider the map $\phi_{2}: X \longrightarrow X_{2}$ that blows down all E_{j} for $j \geq 4$. Now, recall that D_{2} and D_{3} in X_{2} are base point free. Thus, in $X, D_{2}=\phi_{2}^{*}\left(D_{2}\right)$ and $D_{3}=\phi_{2}^{*}\left(D_{3}\right)$ which implies that D_{2} and D_{3} in X are also base point free.

Now, for each $i \in\{4, \cdots, k+3\}$ we let $\phi_{i}: X \longrightarrow Y_{i}$ be the blow-up map with exceptional divisors E_{j} for $j \in\{3,4, \cdots, k+3\}$ and $j \neq i$. Notice that $\phi_{i}\left(E_{2}\right)$ is a divisor, which we denote with the same letter E_{2}, in Y_{i} that has self intersection -1. Similarly, $\phi_{i}\left(E_{1}\right)$ is a divisor, which we also call E_{1} in Y_{i} that has self intersection -2 . So now we can
contract E_{2} in Y_{i} by letting $\phi_{2, i}: Y_{i} \longrightarrow Y_{2}$ be the blow-down map of E_{2} on Y_{i}. Notice that $E_{1}:=\phi_{2, i}\left(E_{1}\right)$ is a divisor in Y_{2} with self intersection -1 . Thus, we can contract it with a blow-down map $\phi_{1, i}: Y_{2} \longrightarrow \mathbb{F}_{n-1}$. Recall that in \mathbb{F}_{n-1} we have a morphism $\phi: \mathbb{F}_{n-1} \longrightarrow A \subset \mathbb{P}^{n}$ where A is a cone.

We let H be a hyperplane section in \mathbb{P}^{n}. Then

$$
\begin{aligned}
\phi^{*}(H) & \sim(n-1) F_{n-1}+S_{n-1} \\
\phi_{1, i}^{*}\left(\phi^{*}(H)\right) & \sim(n-1)\left(E_{i}+E_{1}\right)+\left(E_{1}+S\right) \\
\phi_{2, i}^{*}\left(\phi_{1, i}^{*}\left(\phi^{*}(H)\right)\right) & \sim(n-1)\left(E_{i}+E_{1}+E_{2}\right)+\left(E_{1}+E_{2}+S\right) \\
\phi_{i}^{*}\left(\phi_{2, i}^{*}\left(\phi_{1, i}^{*}\left(\phi^{*}(H)\right)\right)\right) & =(n-1)\left(\sum_{1 \leq j \leq k+3} E_{j}\right)+\left(E_{1}+\sum_{\substack{j \neq i \\
3<j \leq k+3}} E_{j}+E_{2}+E_{3}+S\right) \\
& =n F+S-E_{i}=D_{1}-E_{i}=D_{i}
\end{aligned}
$$

Hence, we can conclude that

$$
\begin{aligned}
\operatorname{Eff}(X) & =\operatorname{Cone}\left(S, E_{1}, E_{2}, \cdots, E_{k+3}\right) \\
\operatorname{Nef}(X) & =\operatorname{Cone}\left(F, D_{1}, D_{2}, \cdots, D_{k+3}\right)
\end{aligned}
$$

Finally, we consider a point $x \in X(k)$. Similarly to the earlier cases, since F has intersection 1 with each generator of the nef cone, by Proposition 2.15, F is a COBA for x with respect to a divisor D unless that x belongs to an exceptional curve. We let $T=\left\{S, E_{1}, \cdots, E_{k+3}\right\}$. If D belongs to the nef cone, then $\alpha_{x}(D)=\min _{R \in T: x \in R}\{D \cdot F, D \cdot R\}$.

Theorem 5.11. Let X be the blow-up of the type 3 surface X_{2} at k points all lying in $E_{3} \backslash E_{2}$, where $k, n \in \mathbb{N}, n \geq 3$. Then Conjecture 5.1 is true for X.

Proof. The reducible fibre of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ is $F=\sum_{j=1}^{k+3} E_{j}$. Notice that F is a comb with $k+1$ teeth, but one of the teeth has been blown-up. We represent the fibre as:

Notice that the fibre looks very similar to the fibre in Theorem 5.9, but the difference is that E_{3} does not intersect S. So this is a different case. Also notice that $\operatorname{Pic}(X)=$ $\mathbb{Z} S \bigoplus_{j=1}^{k+3} \mathbb{Z} E_{j}$, where E_{j} is the exceptional divisor of the blowup of X_{2} at the point $p_{j} \in$ $E_{3} \backslash E_{2}, j \in \mathbb{N}, 4 \leq j \leq k+3$, with the following intersection theory, where $i, j \in$ $\{4,5 \cdots, k+3\}$ and $i \neq j$:

$$
\begin{aligned}
E_{1}^{2}=E_{i}^{2} & =-1 \\
E_{2}^{2} & =-2 \\
E_{3}^{2} & =-(k+1) \\
S^{2} & =-n \\
E_{1} \cdot E_{2}=E_{2} \cdot E_{3} & =1 \\
E_{1} \cdot E_{3} & =0 \\
E_{1} \cdot E_{i}=E_{2} \cdot E_{i} & =0 \\
E_{3} \cdot E_{i} & =1 \\
E_{i} \cdot E_{j} & =0 \\
S \cdot E_{1} & =1 \\
S \cdot E_{2}=S \cdot E_{3}=S \cdot E_{i} & =0
\end{aligned}
$$

Claim 5.12. The effective cone of X is generated by E_{1}, \cdots, E_{k+3}, and S. The nef cone
of X is generated by the divisors $F, D_{1}=n F+S, D_{2}=(n-1) F+S+E_{1}, D_{3}=$ $(n-2) F+S+2 E_{1}+E_{2}$ and $D_{i}=D_{3}-E_{i}$ for all $i \in\{4,5, \cdots, k+3\}$.

Proof. Let $\sigma=\operatorname{Cone}\left(S, E_{1}, E_{2} \cdots, E_{k+3}\right)$. Since the generators of σ are linearly independent over k, σ is a simplicial cone. Hence, its dual σ^{\vee} is generated by divisors $T_{0}, T_{1}, \cdots, T_{k+3}$ of the dual space such that $T_{n} \cdot E_{m}=\delta_{n m}$, where $n, m \in\{0,1, \cdots k+3\}$ and we have $E_{0}:=S$. But notice that $D_{m} \cdot E_{m}=1$ for all $m \in\{0,1, \cdots, k+3\}$ (where we have $\left.D_{0}:=F\right)$, and that $D_{n} E_{m}=0$ for all $n, m, n \neq m$. Hence by Proposition 3.20, $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, \cdots, D_{k+3}\right)$.

As before, F and D_{1} are base point free. To prove that D_{2} and D_{3} are base point free, consider the map $\phi_{2}: X \longrightarrow X_{2}$ that is the blow-up of X_{2} with exceptional divisors E_{j} for $j \geq 4$. Now, recall that D_{2} and D_{3} in X_{2} are base point free. Now, in X,

$$
\begin{aligned}
& \phi_{2}^{*}\left(D_{2}\right)=\phi_{2}^{*}\left(D_{1}-E_{2}-E_{3}\right)=D_{1}-E_{2}-\left(\sum_{3 \leq j \leq k+3} E_{j}\right)=D_{2} \\
& \phi_{2}^{*}\left(D_{3}\right)=\phi_{2}^{*}\left(D_{1}-E_{2}-2 E_{3}\right)=D_{1}-E_{2}-2\left(\sum_{3 \leq j \leq k+3} E_{j}\right)=D_{3}
\end{aligned}
$$

Hence, D_{2} and D_{3} in X are also base point free.
Now, for each $i \in\{4, \cdots, k+3\}$ we let $\phi_{i}: X \longrightarrow Y_{i}$ be the blow-up map with exceptional divisors E_{j} for $j \in\{1,4,5, \cdots, k+3\}$ and $j \neq i$. Notice that $\phi_{i}\left(E_{2}\right)$ is a divisor, which we denote with the same letter E_{2}, in Y_{i} that has self intersection -1. Similarly, $\phi_{i}\left(E_{3}\right)$ is a divisor, which we also call E_{3} in Y_{i} that has self intersection -2 . So now we can contract E_{2} in Y_{i} by letting $\phi_{2, i}: Y_{i} \longrightarrow Y_{2}$ be the blow-up map of E_{2} on Y_{i}. Notice that $E_{3}:=\phi_{2, i}\left(E_{3}\right)$ is a divisor in Y_{2} with self intersection -1 , thus, we can contract it with a blow-up map $\phi_{3, i}: Y_{2} \longrightarrow \mathbb{F}_{n-3}$ (Notice that the target of the last map is \mathbb{F}_{n-3} because we are contracting curves that intersect S, i.e. since $E_{1} \subset X$ is contracted, $\phi_{i}(S)=S_{n-1}$. Since $E_{2} \subset Y_{i}$ is contracted, $\phi_{2, i}\left(S_{n-1}\right)=S_{n-2}$, and since $E_{3} \subset Y_{2}$ is contracted, $\left.\phi_{3, i}\left(S_{n-2}\right)=S_{n-3}\right)$. Recall that in \mathbb{F}_{n-1} we have a morphism $\phi: \mathbb{F}_{n-1} \longrightarrow A \subset \mathbb{P}^{n}$ where A is a cone.

We let H be a hyperplane section in \mathbb{P}^{n} that intersects A non-trivially. Then

$$
\begin{aligned}
\phi^{*}(H) & \sim(n-3) F_{n-3}+S_{n-3} \\
\phi_{3, i}^{*}\left(\phi^{*}(H)\right) & \sim(n-3)\left(E_{i}+E_{3}\right)+\left(E_{3}+S\right) \\
\phi_{2, i}^{*}\left(\phi_{3, i}^{*}\left(\phi^{*}(H)\right)\right) & \sim(n-3)\left(E_{i}+E_{3}+E_{2}\right)+\left(E_{3}+E_{2}+S+E_{2}\right) \\
\phi_{i}^{*}\left(\phi_{2, i}^{*}\left(\phi_{3, i}^{*}\left(\phi^{*}(H)\right)\right)\right) & =(n-3) F+\left(\sum_{\substack{j \neq i \\
3 \leq j \leq k+3}} E_{j}\right)+2\left(E_{2}+E_{1}\right)+S+E_{1} \\
& =(n-2) F+E_{2}+2 E_{1}+S-E_{i}=D_{3}-E_{i}=D_{i} .
\end{aligned}
$$

Hence D_{i} is base point free for all i, and we can conclude that

$$
\begin{aligned}
\operatorname{Eff}(X) & =\operatorname{Cone}\left(S, E_{1}, E_{2}, \cdots, E_{k+3}\right) \\
\operatorname{Nef}(X) & =\operatorname{Cone}\left(F, D_{1}, D_{2}, \cdots, D_{k+3}\right)
\end{aligned}
$$

Finally, we consider a point $x \in X(k)$. Similarly to the cases before, since F has intersection 1 with each generator of the nef cone, by Proposition $2.15, F$ is a COBA for x with respect to a divisor D unless that x belongs to an exceptional curve. We let $T=\left\{S, E_{1}, \cdots, E_{k+3}\right\}$. If D belongs to the nef cone, then $\alpha_{x}(D)=\min _{R \in T: x \in R}\{D \cdot F, D \cdot R\}$.

Theorem 5.13. Let X_{2} be a split rational surface of type 2. Let X be the blow up of X_{2} at a point y in some exceptional curve and not on S, then Conjecture 5.1 is true for X.

Proof. We consider two cases.
Case(1): y belongs to exactly one of E_{2} or E_{3}. (Notice that the case of blowing up a point y in E_{1} was covered in Theorem 5.5).

Case(2): $y=E_{1} \cap E_{2}$ or $y=E_{1} \cap E_{3}$.

We do not consider here the case of blowing-up the Hirzebruch surfaces \mathbb{F}_{0} or \mathbb{F}_{1}, since \mathbb{F}_{0} is the surface $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and \mathbb{F}_{1} is isomporphic to the blowup of \mathbb{P}^{2} at a point.

Case(1): Notice that this case was covered in Theorem 5.9. If for instance, y belongs to E_{2} we can swap the notation of E_{4} and E_{3} in Theorem 5.9.

Case(2): Let $y=E_{1} \cap E_{i}$, for $i \in\{2,3\}$. We also let $j \in\{2,3\}$ such that $j \neq i$. We represent the fibre of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ as

In this case $F \sim E_{1}+E_{i}+E_{j}+2 E_{4}$ and the intersection matrix is given by

\cdot	E_{1}	E_{i}	E_{j}	E_{4}	S
E_{1}	-3	0	1	1	1
E_{i}	0	-2	0	1	0
E_{j}	1	0	-1	0	0
E_{4}	1	1	0	-1	0
S	1	0	0	0	$-n$

Claim 5.14. $\operatorname{Eff}(X)=\left\langle E_{1}, E_{j}, E_{i}, E_{4}, S\right\rangle$ and $\operatorname{Nef}(X)=\left\langle F, D_{1}, D_{j}, D_{i}, D_{4}\right\rangle$ where

$$
\begin{aligned}
D_{1} & =n F+S \\
D_{i} & =D_{1}-E_{i}-E_{4} \\
D_{j} & =D_{1}-E_{j} \\
D_{4} & =2(n F+S)-E_{i}-2 E_{4}=D_{1}+D_{i}-E_{4}
\end{aligned}
$$

Proof. Let $\sigma=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, E_{4}, S\right)$. Using Matlab, we can verify that the dual cone of σ is $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{i}, D_{j}, D_{4}\right)$. Notice that S, E_{1}, E_{j}, E_{i}, and E_{4} are all effective.

Therefore $\sigma \subset \operatorname{Eff}(X)$, and $\operatorname{Nef}(X) \subset \sigma^{\vee}$.

As we did in the previous case, use the same notation from diagram 5.1 and using the same letters for the generators D_{1}, D_{i} and D_{j} of the nef cone of X_{2}. We see that

$$
\begin{aligned}
f_{2}^{*}\left(D_{1}\right) & =D_{1} \\
f_{2}^{*}\left(D_{i}\right)=f_{2}^{*}\left(n F+S-E_{i}\right) & =n F+S-E_{i}-E_{4}=D_{i} \\
f_{2}^{*}\left(D_{j}\right)=f_{2}^{*}\left(n F+S-E_{j}\right) & =n F+S-E_{j}=D_{j}
\end{aligned}
$$

Hence, since D_{1}, D_{i}, and D_{j} in X_{2} are base point free, then D_{1}, D_{i}, and D_{j} in X are also base point free.

Now we show that D_{4} is base point free. We first consider the morphisms $\phi_{1}: X \longrightarrow A_{1} \subset$ \mathbb{P}^{n+1} and $\phi_{i}: X \longrightarrow A_{2} \subset \mathbb{P}^{n}$ associated to D_{1} and D_{i} respectively, where A_{1} and A_{2} are cones. Notice that ϕ_{1} contracts E_{i}, E_{j}, E_{4}, and S, and ϕ_{i} contracts E_{1}, E_{j}, E_{4}, and S. Consider the composition $\psi: X \longrightarrow \mathbb{P}^{N}$ in the following commutative diagram:

where $N=(n+2)(n+1)-1, \iota$ is the inclusion of the Cartesian product of cones into the Cartesian product of projective spaces, γ is the Segre embedding, and for every point $p \in X, \phi_{1, i}(p)=\left(\phi_{1}(p), \phi_{i}(p)\right)$. In fact $\phi_{1, i}^{*}(H) \sim D_{1}+D_{i}$ for any hyperplane H in \mathbb{P}^{N}.

Since ϕ_{1} and ϕ_{i} are isomorphisms away from the exceptional curves, we know that $\phi_{1, i}$ is also an isomorphism away from the exceptional curves. Now, let z_{1} (and z_{2}) be the vertex of the cone $A_{1}\left(\right.$ resp. $\left.A_{2}\right)$. Notice that $\phi_{1, i}\left(E_{4}\right)=\left(x, z_{2}\right)$ where x is a smooth point in the cone $A_{1}, \phi_{1, i}\left(E_{i}\right)=\{x\} \times l_{1}$, where l_{1} is a line through the vertex $z_{2}, \phi_{1, i}\left(E_{j}\right)=\left(y, z_{2}\right)$ where y is a smooth point in A_{1} and $y \neq x, \phi_{1, i}\left(E_{1}\right)=l_{2} \times\left\{z_{2}\right\}$ where l_{2} is a line passing through x and z_{1}, and finally, $\phi_{1, i}(S)=\left(z_{1}, z_{2}\right)$.

Hence, we see that $\phi_{1, i}^{-1}\left(x, z_{2}\right)=E_{4}$. So, to show that D_{4} has no base points we make use of the morphism ψ. Let $p \in X \backslash E_{4}$, and let H be a hyperplane in \mathbb{P}^{N} that passes through
$\psi\left(E_{4}\right)$ and not through $\psi(p)$. Then, $\psi^{*}(H)=\widetilde{C}+E_{4}$, where \widetilde{C} is the strict transform of the curve C in $\mathbb{P}^{n+1} \times \mathbb{P}^{n}$ passing through $\iota\left(x, z_{2}\right)$ and corresponding to the hyperplane H. Thus, $\psi^{*}(H)-E_{4}=\widetilde{C}+E_{4}-E_{4} \in\left|D_{1}+D_{i}-E_{4}\right|$ and p does not belong to \widetilde{C}. Hence, p is not a base point for $D_{1}+D_{i}-E_{4}$.

Now, if $p \in E_{4}$, then p corresponds to a tangent direction of a hyperplane section in \mathbb{P}^{N} passing through the point $\psi\left(E_{4}\right)$. Let T be a hyperplane in \mathbb{P}^{N}, passing through $\psi\left(E_{4}\right)$ and missing the direction p. Then, $\psi^{*}(T)$ is a divisor in $\left|D_{1}+D_{i}\right|$ that has a copy of E_{4}, thus $\psi^{*}(T)-E_{4} \in\left|D_{1}+D_{i}-E_{4}\right|$, and p is not a base point for $\psi^{*}(T)-E_{4}$. Hence $D_{1}+D_{i}-E_{4}$ is base point free.

Finally we conclude that since all the generators of σ^{\vee} are base point free, they are nef and the claim follows.

We prove the conjecture for this case. Let $x \in X(k)$ be a rational point on X. Assume that x belongs to the reducible fibre F. Let C be an irreducible component of F containing x. If there is only one irreducible component C of F that contains x, then, since the intersection of C with any generator of $\operatorname{Nef}(X)$ is at most 1 , by Proposition 2.15, C is a COBA for x with respect to any divisor $D \in \operatorname{Nef}(X)$, and $\alpha_{x}(D)=C \cdot D$. If x belongs to two irreducible components of F, say C_{1} and C_{2}, then for any divisor $D \in \operatorname{Nef}(X)$ a COBA for x with respect to D is any of C_{1} or C_{2} that has the smallest intersection number with D, and $\alpha_{x}(D)=\min \left\{D \cdot C_{1}, D \cdot C_{2}\right\}$.

Assume that x is not in the reducible fibre F. Let $C=\pi^{*}(\pi(x))$ be the fibre of π that contains x. Recall that C is a smooth irreducible rational curve and $C \sim F$. Then, $C \cdot D_{1}=C \cdot D_{i}=C \cdot D_{j}=1$, and $C \cdot F=0$. So, by Proposition 2.15, C is a COBA for any divisor $D \in \operatorname{Cone}\left(F, D_{1}, D_{i}, D_{j}\right)$. On the other hand, notice that $D_{4}=2 D_{i}+E_{i}$ and since C is a COBA with respect to D_{i} and $C \cap E_{i}=\emptyset$, by Theorem 2.16, C is also a COBA to x with respect to D_{4}. Thus, C is a COBA with respect to any $D \in \operatorname{Nef}(X)$, and $\alpha_{x}(D)=C \cdot D$. Thus the conjecture is true in this case.

Corollary 5.15. The Conjecture 5.1 holds for X, where X is obtained by blowing up a smooth point in E_{1} on X_{2}, where X_{2} is of type 4.

Proof. The intersection theory for X is given by the following table:

\cdot	E_{1}	E_{2}	E_{3}	E_{4}	S
E_{1}	-3	0	1	1	1
E_{2}	0	-2	1	0	0
E_{3}	1	1	-1	0	0
E_{4}	1	0	0	-1	0
S	1	0	0	0	$-n$

Notice that this case is the same case (2) in Theorem 5.13 , where we change E_{4} by E_{3}, $i=2$, and $j=4$.

Theorem 5.16. Let X_{2} be a split rational surface of type 4 . Let X be the blow-up of X_{2} at a smooth point y of the fibre at the multiple component E_{3}. Then, Conjecture 5.1 is true for X.

Proof. We represent the reducible fibre of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ as the following:

In this case the reducible fibre on X is $F \sim E_{1}+E_{2}+2 E_{3}+2 E_{4}$. The intersection matrix for X is:

\cdot	E_{1}	E_{2}	E_{3}	E_{4}	S
E_{1}	-2	0	1	0	1
E_{2}	0	-2	1	0	0
E_{3}	1	1	-2	1	0
E_{4}	0	0	1	-1	0
S	1	0	0	0	$-n$

So, we can see from the intersection table that all five divisors form a basis for $N S(X) \otimes \mathbb{R}$.

Claim 5.17. $\operatorname{Eff}(X)=\left\langle E_{1}, E_{2}, E_{3}, E_{4}, S\right\rangle$ and $\operatorname{Nef}(X)=\left\langle F, D_{1}, D_{2}, D_{3}, D_{4}\right\rangle$, where:

$$
\begin{aligned}
& D_{1}=n F+S \\
& D_{2}=D_{1}-E_{2}-E_{3}-E_{4} \\
& D_{3}=2 D_{1}-E_{2}-2 E_{3}-2 E_{4}=2 D_{2}+E_{2} \\
& D_{4}=D_{3}-E_{4}
\end{aligned}
$$

Proof. Let $\sigma=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, E_{4}, S\right)$. Notice that E_{i} and S are effective divisors, $\sigma \subset$ $\operatorname{Eff}(X)$. Using Matlab, we verify that the dual cone is indeed $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}, D_{4}\right)$.

Let C be an irreducible curve in X. Then $C=a_{0} S+a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}+a_{4} E_{4} \in \mathrm{NS}(X) \otimes \mathbb{R}$ for some $a_{i} \in \mathbb{R}$. Assume that C is different from E_{i} and S. Since C is an effective divisor, C intersects properly E_{i} and S, i.e. $C \cdot E_{i} \geq 0$ and $C \cdot S \geq 0$. So $C \in \sigma^{\vee}$. This tells us that $C=b_{0} F+b_{1} D_{1}+b_{2} D_{2}+b_{3} D_{3}+b_{4} D_{4}$ for some $b_{i} \geq 0$. Then, C can be represented in two ways:

$$
\begin{aligned}
C= & a_{0} S+a_{1} E_{1}+a_{2} E_{2}+a_{3} E_{3}+a_{4} E_{4}=b_{0} F+b_{1} D_{1}+b_{2} D_{2}+b_{3} D_{3}+b_{4} D_{4} \\
= & b_{0}\left(E_{1}+E_{2}+2 E_{3}+2 E_{4}\right)+b_{1}\left(n E_{1}+n E_{2}+2 n E_{3}+2 n E_{4}+S\right)+ \\
& b_{2}\left(n E_{1}+(n-1) E_{2}+(2 n-1) E_{3}+(2 n-1) E_{4}+S\right)+ \\
& b_{3}\left(2 n E_{1}+(2 n-1) E_{2}+(4 n-2) E_{3}+(4 n-2) E_{4}+2 S\right)+ \\
& b_{4}\left(2 n E_{1}+(2 n-1) E_{2}+(4 n-2) E_{3}+(4 n-3) E_{4}+2 S\right)
\end{aligned}
$$

Recall that $\mathrm{NS}(X)$ is a free group, so comparing coefficients for E_{i} and S in both expressions, we see that

$$
\begin{aligned}
& a_{0}=b_{1}+b_{2}+2 b_{3}+2 b_{4} \\
& a_{1}=b_{0}+n b_{1}+n b_{2}+2 n b_{3}+2 n b_{4} \\
& a_{2}=b_{0}+n b_{1}+(n-1) b_{2}+(2 n-1) b_{3}+(2 n-1) b_{4} \\
& a_{3}=2 b_{0}+2 n b_{1}+(2 n-1) b_{2}+(4 n-2) b_{3}+(4 n-2) b_{4} \\
& a_{4}=2 b_{0}+2 n b_{1}+(2 n-1) b_{2}+(4 n-2) b_{3}+(4 n-3) b_{4}
\end{aligned}
$$

Notice that since $b_{i} \geq 0$ and $n \geq 1$, then $a_{i} \geq 0$. Then $C \in \sigma$. Hence $\sigma=\operatorname{Eff}(X)$ and $\sigma^{\vee}=\operatorname{Nef}(X)$ as desired.

We also can see that in fact F, D_{1}, D_{2}, and D_{3} are all base point free. Clearly F and D_{1} are base point free since they correspond respectively to the maps π and f in the diagram 5.1. Also, considering the morphism f_{2} in 5.1, we see that

$$
\begin{aligned}
& f_{2}^{*}\left(D_{2}\right)=f_{2}^{*}\left(D_{1}-E_{2}-E_{3}\right)=D_{1}-E_{2}-E_{3}-E_{4}=D_{2} \\
& f_{2}^{*}\left(D_{3}\right)=f_{2}^{*}\left(2 D_{1}-E_{2}-2 E_{3}\right)=2 D_{1}-E_{2}-2\left(E_{3}+E_{4}\right)=D_{3}
\end{aligned}
$$

Thus, D_{2} and D_{3} are base point free. Call ϕ_{2} and ϕ_{3} the morphisms associated to D_{2} and D_{3} respectively.

The morphism ϕ_{2} is the blowdown map of the exceptional divisors E_{4}, E_{3}, and E_{1} in that order. Thus, $\phi_{2}: X \longrightarrow B \subset \mathbb{P}^{n}$, where B is a cone in \mathbb{P}^{n}.

Now we prove the conjecture for this case. Let $x \in X(k)$ be a rational point on X. We assume that x does not lie on S or any of the E_{i} 's. Let C be an irreducible component of F passing through x. Recall that F corresponds to a map to \mathbb{P}^{1} and that D_{1} and D_{2} correspond to maps to a cone in a projective space. Moreover,

$$
\begin{aligned}
& D_{1} \cdot D_{1}=n=\operatorname{deg}(f) \operatorname{deg}(\operatorname{Im}(f)) \\
& D_{2} \cdot D_{2}=n-1=\operatorname{deg}\left(\phi_{2}\right) \operatorname{deg}\left(\operatorname{Im}\left(\phi_{2}\right)\right)
\end{aligned}
$$

Since $\operatorname{deg}(\operatorname{Im}(f))=n$ and $\operatorname{deg}\left(\operatorname{Im}\left(\phi_{2}\right)\right)=n-1$, we see that $\operatorname{deg}(f)=\operatorname{deg}\left(\phi_{2}\right)=1$. So, using the intersection table, we see that f contracts E_{2}, E_{3}, E_{4}, and S, and away from these divisors f is an isomorphism. Similarly, ϕ_{2} contracts E_{1}, E_{3}, E_{4}, and S, and away from these divisors, ϕ_{2} is an isomorphism.

Now, since x is not in any of the curves contracted by f or ϕ_{2}, by Proposition 2.15 , we see that the approximation constant with respect to D_{1} and D_{2} is 1 and that C is a COBA with respect to these two divisors.

For D_{3}, recall that $D_{3}=2 D_{2}+E_{2}$. We already know that $C \sim F$ is a COBA with respect to D_{2}, E_{2} is effective, and $F \cdot E_{2}=0$. By Theorem 2.16, we know that F is a COBA with respect to D_{3}.

Finally, we consider D_{4}. Let H be a hyperplane on the cone $A \subset \mathbb{P}^{n+1}$ passing through x^{\prime} and P, where P is the point that we blow up to obtain X and x^{\prime} is the point in \mathbb{F}_{n}
corresponding to the point $x \in X$ that we are approximating. Then, $2 H$ is divisor on A vanishing with order 2 at both x^{\prime} and P. Also $f^{*}(2 H)=2 f^{*}(H) \sim 2(n F+S)$ on X. Then $2(n F+S)-2\left(E_{2}+2 E_{3}+2 E_{4}\right)$ is effective, since $2 H$ vanishes with order 2 at P, and $E_{2}+2 E_{3}+2 E_{4}$ is the exceptional divisor of f. We see that $D_{4}=f^{*}(2 H)-2\left(E_{2}+2 E_{3}+\right.$ $\left.2 E_{4}\right)+E_{2}+2 E_{3}+E_{4}$. This means that $f^{*}(2 H)-D_{4}=E_{2}+2 E_{3}+3 E_{4} \in \operatorname{Cone}\left(E_{2}, E_{3}, E_{4}\right)$.

Now, let $f_{3}: B L_{1}(X) \longrightarrow X$ be the map of blowing up the point x that we are approximating, with exceptional divisor E. Since $f^{*}(2 H)$ also vanishes with multiplicity 2 at x, we know that $f_{3}^{*}\left(f^{*}(2 H)\right)-2 E$ is effective. Therefore,

$$
f_{3}^{*}\left(D_{4}+E_{2}+2 E_{3}+3 E_{4}\right)-2 E=f_{3}^{*}\left(D_{4}\right)+f_{3}^{*}\left(E_{2}\right)+2 f_{3}^{*}\left(E_{3}\right)+3 f_{3}^{*}\left(E_{4}\right)-2 E \geq 0
$$

But, since $x \notin E_{2} \cup E_{3} \cup E_{4}, E \cap f_{3}^{*}\left(E_{i}\right)=\emptyset$ for $i=2,3,4$. This implies that $f_{3}^{*}\left(D_{4}\right)-2 E$ is effective. So by the Liouville-type Theorem 2.10, we know that outside of the base locus $B=f_{3}\left(B^{\prime}\right)$, where B^{\prime} is the base locus of $f_{3}^{*}\left(D_{4}\right)-2 E, \alpha_{x}\left(D_{4}\right) \geq 2$. Notice also, that there are no curves in B passing through x, so by the Liouville-type theorem, we see that $\alpha_{x}\left(D_{4}\right) \geq 2$.

On the other hand, notice that C is a curve passing through $x, C \sim F$, and $F \cdot D_{4}=2$. Then, $\alpha_{x}\left(D_{4}\right) \leq 2$. This tells us that C is a COBA for x with respect to D_{4}. We conclude the analysis in the following table:

Divisor	COBA	α_{x}
F	$C \sim F$	0
D_{1}	$C \sim F$	1
D_{2}	$C \sim F$	1
D_{3}	$C \sim F$	2
D_{4}	$C \sim F$	2

Thus, for any divisor $D \in \operatorname{Nef}(X), C$ is a COBA for x with respect to D, and if we let $D=a_{0} F+a_{1} D_{1}+a_{2} D_{2}+a_{3} D_{3}+a_{4} D_{4}$, for $a_{i} \in \mathbb{N} \cup\{0\}, \alpha_{x}(D)=D \cdot F=a_{1}+a_{2}+2 a_{3}+2 a_{4}$.

Notice that this shows that for any divisor $D \in \operatorname{Nef}(X)$, and any $x \in X(k), F$ is a curve of best approximation to x with respect to D, unless that x belongs to an exceptional curve. If x belongs to some exceptional curve (i.e. S, E_{1}, E_{2}, E_{3}, or E_{4}), let $D \in \operatorname{Nef}(X)$, $x \in X(k)$, and let $T=\left\{S, E_{1}, E_{2}, E_{3}, E_{4}\right\}$. Since any curve in T has intersection 0 or 1
with any generator of the nef cone, then whichever curve that contains x that has minimal intersection with D will be a COBA for x with respect to D, and

$$
\alpha_{x}(D)=\min _{\{R \in T: x \in R\}}\{D \cdot F, D \cdot R\} .
$$

See the appendix for explicit calculations of α in the cases of this theorem. Although the theorem was proved here, there is an approach by dividing the nef cone into subcones of divisors that have the same curve of best approximation. This approach is the same as the one used in the previous chapter.

Remark 5.18. Up to this point we have proven that Conjecture 5.1 holds for every rational surface obtained by blowing up a smooth point in the reducible fibre of a surface X_{2} of type 2, 3, and 4, except for a smooth point of the reducible fibre on E_{2} of type 4. This last consideration will be made in Corollary 5.24.

5.2 Blowing-up singular points in the reducible fibre

In this section we will work with cases where X is the blow-up of a surface X_{2} at a singular point of the reducible fibre. We will study these cases in the following theorem:

Theorem 5.19. Conjecture 5.1 holds for any split rational surface X of Picard rank five with only one reducible fibre of the map to \mathbb{P}^{1}.

Proof. Any such rational surface is the blowup of a split rational surface of Picard rank 4. In our notation, it is the blowup of a surface X_{2}. The cases in which we blow-up a smooth point of the reducible fibre were covered in the previous theorems. Now we study the cases where we blow-up singular points in the reducible fibre of the map to \mathbb{P}^{1} on X_{2}.

Case 1: X is the blow-up of a surface X_{2} of type 2 at the point y, where $y=E_{1} \cap E_{2}$ or $y=E_{1} \cap E_{3}$.

This case was covered in Theorem 5.13, case (2).

Case 2: X is the blow-up of a surface X_{2} of type 3 at a point y, where y is a singular point in the reducible fibre.

Case 2.1: $y=E_{1} \cap E_{2}$ in X_{2} of type 3.

In this case we represent the fibre of the map π as:

In this case the fibre of this map is $F \sim E_{1}+E_{2}+E_{3}+2 E_{4}$ and the intersection matrix is given by:

\cdot	E_{1}	E_{2}	E_{3}	E_{4}	S
E_{1}	-2	0	0	1	1
E_{2}	0	-3	1	1	0
E_{3}	0	1	-1	0	0
E_{4}	1	1	0	-1	0
S	1	0	0	0	$-n$

Claim 5.20. The effective cone of X is generated by $E_{1}, E_{2}, E_{3}, E_{4}$, and S. The nef cone of X is generated by the divisors $F, D_{1}=n F+S, D_{2}=D_{1}-E_{2}-E_{3}-E_{4}, D_{3}=D_{2}-E_{3}$, and $D_{4}=2 D_{1}-E_{2}-E_{3}-2 E_{4}=D_{1}+D_{2}-E_{4}$.

Proof. Let $\sigma=\operatorname{Cone}\left(S, E_{1}, E_{2}, E_{3}, E_{4}\right)$. As in previous cases, using the inner product of divisors in Matlab or Polymake one can verify that $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}, D_{4}\right)$. We want to prove that the generators of σ^{\vee} are nef divisors.

We know that F and D_{1} are base point free corresponding to the morphisms π and f in the diagram 5.1 respectively. On the other hand, in diagram 5.1, $f_{2}: X \longrightarrow X_{2}$ is the blow-up map with exceptional divisor E_{4}. Notice that in $X, f_{2}^{*}\left(D_{2}\right)=f_{2}^{*}\left(D_{1}-E_{2}-E_{3}\right)=$
$D_{1}-E_{2}-E_{4}-E_{3}=D_{2}$ and $f_{2}^{*}\left(D_{3}\right)=f_{2}^{*}\left(D_{2}-E_{3}\right)=D_{2}-E_{3}=D_{3}$. Hence, both D_{2} and D_{3} are base point free and thus, they are nef.

Finally, we study D_{4}. We first consider the morphisms $\phi_{1}: X \longrightarrow A_{1} \subset \mathbb{P}^{n+1}$ and $\phi_{2}: X \longrightarrow A_{2} \subset \mathbb{P}^{n}$ defined by D_{1} and D_{2} respectively, where A_{1} and A_{2} are cones. Recall that ϕ_{1} contracts E_{2}, E_{3}, E_{4}, and S, and ϕ_{2} contracts E_{1}, E_{3}, E_{4}, and S. Consider $\psi: X \longrightarrow \mathbb{P}^{N}$ be the composition:

where $N=(n+2)(n+1)-1$, ι is the inclusion of the cartesian product of cones into the cartesian product of projective spaces, γ is the Segre embedding, and for every point $p \in X, \phi_{1,2}(p)=\left(\phi_{1}(p), \phi_{2}(p)\right)$. In fact $\phi_{1,2}^{*}(\mathcal{O}(1,1))=D_{1}+D_{2}$, where $\mathcal{O}(1,1)$ is the line bundle of hyperplane divisors in $\mathbb{P}^{n+1} \times \mathbb{P}^{n}$.

Since ϕ_{1} and ϕ_{2} are isomorphisms away from the exceptional curves, we know that $\phi_{1,2}$ is also an isomorphism away from the exceptional curves. Now, let z_{1} (resp. z_{2}) be the vertex of the cone A_{1} (resp. A_{2}). Notice that $\phi_{1,2}\left(E_{4}\right)=\left(x, z_{2}\right)$ where x is a smooth point in the cone $A_{1}, \phi_{1,2}\left(E_{2}\right)=\{x\} \times l_{1}$, where l_{1} is a line through the vertex $z_{2}, \phi_{1,2}\left(E_{3}\right)=(x, y)$ where y is a smooth point in A_{2} (notice that the line l_{1} passes through y), $\phi_{1,2}\left(E_{1}\right)=l_{2} \times\left\{z_{2}\right\}$ where l_{2} is a line passing through x and z_{1}, and finally, $\phi_{1,2}(S)=\left(z_{1}, z_{2}\right)$.

Hence, we see that $\phi_{1,2}^{-1}\left(x, z_{2}\right)=E_{4}$. So, to show that D_{4} has no base points we make use of the morphism ψ. Let $p \in X \backslash E_{4}$, and let H be a hyperplane in \mathbb{P}^{N} that passes through $\psi\left(E_{4}\right)$ and not through $\psi(p)$. Then, $\psi^{*}(H)=\widetilde{C}+E_{4}$, where \widetilde{C} is the strict transform of the curve C in $\mathbb{P}^{n+1} \times \mathbb{P}^{n}$ passing through $\iota\left(x, z_{2}\right)$ and corresponding to the hyperplane H. Thus, $\psi^{*}(H)-E_{4}=\widetilde{C}+E_{4}-E_{4} \in\left|D_{1}+D_{2}-E_{4}\right|$ and so, p is not a base point for $D_{1}+D_{2}-E_{4}$.

Now, let $p \in E_{4}$. Then p corresponds to a tangent direction of a hyperplane section in \mathbb{P}^{N} passing through the point $\psi\left(E_{4}\right)$. Let T be a hyperplane in \mathbb{P}^{N}, passing through $\psi\left(E_{4}\right)$ and missing the direction p. Then, $\psi^{*}(T)$ is a divisor in $\left|D_{1}+D_{2}\right|$ that has a copy of E_{4}.

Thus p is not a base point for $\psi^{*}(T)-E_{4}$. Hence $D_{4}=D_{1}+D_{2}-E_{4}$ is base point free.

We conclude that since all the generators of σ^{\vee} are base point free, thus, they are nef. The claim follows.

Now, we find a COBA with respect to each generator of the nef cone. First, we study the COBAs with respect to D_{4}. Assume that $x \in X(k)$ is a point lying in some of E_{1}, E_{2}, E_{3} or S. Then, since D_{4} intersects any of these curves trivially, whichever contains x is a COBA for x with respect to D_{4} and $\alpha_{x}\left(D_{4}\right)=0$.

Assume that $x \in X(k)$ is a point not lying in any exceptional curve. Let $C=\pi^{*}(\pi(x))$. We know that $C \sim F$ and $F \cdot D_{4}=2$, so $\alpha_{x}\left(D_{4}\right) \leq 2$. Now, let $g: \widetilde{X} \longrightarrow X$ be the blow-up morphism of X at the point x with exceptional divisor E. We want to show that $g^{*}\left(D_{4}\right)-2 E$ is effective.

Recall from diagram 5.1, that D_{1} is base point free with associated morphism f which is the composition $f=\phi \circ g_{1}$ where $g_{1}:=f_{0} \circ f_{1} \circ f_{2}: X \longrightarrow \mathbb{F}_{n}$ and $\phi: \mathbb{F}_{n} \longrightarrow A \subset \mathbb{P}^{n+1}$. So, we have the following diagram:

$$
\widetilde{X} \xrightarrow{g} X \xrightarrow{g_{1}} \mathbb{F}_{n} \xrightarrow{\phi} \mathbb{P}^{n+1} .
$$

Let H be a hyperplane section on \mathbb{P}^{n+1} passing through the points $\phi\left(g_{1}(x)\right)$ and $\phi\left(g_{1}\left(E_{4}\right)\right)$. Then $\phi^{*}(2 H)$ is a curve in \mathbb{F}_{n} that vanishes with order 2 at the points $g_{1}(x)$ and $g_{1}\left(E_{4}\right)$. Let us call this curve $M:=\phi^{*}(2 H)$. Thus, $g_{1}^{*}(M)-2\left(E_{2}+E_{3}+2 E_{4}\right)$ is an effective divisor (recall that $E_{2}+E_{3}+2 E_{4}$ is the exceptional divisor corresponding to the morphism g_{1}). Moreover, $g_{1}^{*}(M)-2\left(E_{2}+E_{3}+2 E_{4}\right) \sim D_{4}-E_{2}-E_{3}-2 E_{4}$. Hence, $g_{1}^{*}(M) \sim D_{4}+E_{2}+E_{3}+2 E_{4}$. Also, since $g_{1}^{*}(M)$ vanishes with order 2 at $x, g^{*}\left(g_{1}^{*}(M)\right)-2 E \geq 0$ is an effective divisor. Thus $g^{*}\left(D_{4}\right)+g^{*}\left(E_{2}\right)+g^{*}\left(E_{3}\right)+2 g^{*}\left(E_{4}\right)-2 E \geq 0$. But since $x \notin E_{2} \cup E_{3} \cup E_{4}, g^{*}\left(E_{i}\right) \cap E=\emptyset$ for all $i \in\{2,3,4\}$, so $g^{*}\left(D_{4}\right)-2 E$ is effective. Thus, by the Liouville-type Theorem 2.10, since outside the base locus $B=g\left(B^{\prime}\right)$ where B^{\prime} is the base locus of $g^{*}\left(D_{4}\right)-2 E$, there are no curves in the base locus of B that pass through x. Then $\alpha_{x}\left(D_{4}\right) \geq 2$.

The previous analysis and the fact that $D_{4} \cdot F=2$ tells us that if $x \in X(k)$ and x does not lie in an exceptional curve, then $C \sim F$ is a COBA for x with respect to D_{4}.

Finally, assume that $x \in E_{4}(k)$ is a point that belongs only to E_{4} and not to any other exceptional curve. Then, since $E_{4} \cdot D_{4}=1$, by Proposition 2.15 , we know that E_{4} is a COBA for x with respect to D_{4} and that $\alpha_{x}\left(D_{4}\right)=1$.

To finish this case, we study the intersections of F with the generators of the nef cone and we see that $F \cdot F=0, F \cdot D_{i}=1$ for all $i \in\{1,2,3\}$. Hence, by Proposition 2.15, given a point $x \in X(k), F$ is a COBA for x with respect to any of F, D_{1}, D_{2}, or D_{3}, unless x belongs to an exceptional curve that is contracted by some generator, in which case that exceptional curve would be a COBA.

Hence, we conclude that for any divisor $D \in \operatorname{Nef}(X)$, the component of F of minimal D-degree through x is always a COBA with respect to D, unless x lies in S, in which case whichever of S or $C=\pi^{*}(\pi(x))$ (if C is irreducible) that has minimal intersection with D is a COBA for x with respect to D, and $\alpha_{x}(D)=\min \{D \cdot C, D \cdot S\}$. So, the theorem follows.

Case 2.2: $y=E_{2} \cap E_{3}$ on X_{2}, where X_{2} is of type 3 .

In this case we represent the fibre of the map π as:

The fibres of this map are $F \sim E_{1}+E_{2}+E_{3}+2 E_{4}$ and the intersection matrix is given by:

\cdot	E_{1}	E_{2}	E_{3}	E_{4}	S
E_{1}	-1	1	0	0	1
E_{2}	1	-3	1	1	0
E_{3}	0	0	-2	1	0
E_{4}	0	1	1	-1	0
S	1	0	0	0	$-n$

Claim 5.21. The effective cone of X is generated by $E_{1}, E_{2}, E_{3}, E_{4}$, and S. The nef cone of X is generated by the divisors $F, D_{1}=n F+S, D_{2}=D_{1}-E_{2}-E_{3}-2 E_{4}$, $D_{3}=D_{2}-E_{3}-E_{4}$, and $D_{4}=D_{2}+D_{3}-E_{4}$.

Proof. Let $\sigma=\operatorname{Cone}\left(S, E_{1}, E_{2}, E_{3}, E_{4}\right)$. As in previous cases, using Matlab or Polymake we can verify that $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}, D_{4}\right)$. We want to prove that the generators of σ^{\vee} are nef divisors.

We know that F and D_{1} are base point free corresponding to the morphisms π and f in the diagram 5.1 respectively. On the other hand, in diagram 5.1, $f_{2}: X \longrightarrow X_{2}$ is the blow-up map with exceptional divisor E_{4}. Notice that in $X, f_{2}^{*}\left(D_{2}\right)=f_{2}^{*}\left(D_{1}-E_{2}-E_{3}\right)=$ $D_{1}-E_{2}-E_{3}-2 E_{4}=D_{2}$ and $f_{2}^{*}\left(D_{3}\right)=f_{2}^{*}\left(D_{2}-E_{3}\right)=D_{2}-E_{3}-E_{4}=D_{3}$. Hence, both D_{2} and D_{3} are base point free and thus, they are nef.

Now we study D_{4}. We first consider the morphisms $\phi_{2}: X \longrightarrow A_{2} \subset \mathbb{P}^{n}$ and $\phi_{3}: X \longrightarrow$ $A_{3} \subset \mathbb{P}^{n-1}$ associated to D_{2} and D_{3} respectively, where A_{2} and A_{3} are cones. Recall that ϕ_{2} contracts in order E_{4}, E_{3}, E_{1}, and S, and ϕ_{3} contracts in order E_{4}, E_{1}, E_{2}, and S. Consider $\psi: X \longrightarrow \mathbb{P}^{N}$ be the composition:

where $N=(n+1)(n)-1, \iota$ is the inclusion of the cartesian product of cones into the cartesian product of projective spaces, γ is the Segre embedding, and for every point $p \in X$, $\phi_{2,3}(p)=\left(\phi_{2}(p), \phi_{3}(p)\right)$. In fact $\phi_{2,3}^{*}(\mathcal{O}(1,1))=D_{2}+D_{3}$.

Since ϕ_{2} and ϕ_{3} are isomorphisms away from the exceptional curves, we know that $\phi_{2,3}$ is also an isomorphism away from the exceptional curves. Now, let z_{2} (resp. z_{3}) be the
vertex of the cone A_{2} (resp. A_{3}). Notice that $\phi_{2,3}\left(E_{4}\right)=\left(x, z_{3}\right)$ where x is a smooth point in the cone $A_{2}, \phi_{2,3}\left(E_{2}\right)=l_{1} \times z_{3}$, where l_{1} is a line through the vertex z_{2} and through the point $x, \phi_{2,3}\left(E_{3}\right)=\{x\} \times l_{2}$ where l_{2} is a line that passes through z_{3}, and $\phi_{2,3}\left(E_{1}\right)=\phi_{2,3}(S)=\left(z_{2}, z_{3}\right)$.

Hence, we see that $\phi_{2,3}^{-1}\left(x, z_{3}\right)=E_{4}$. So, to show that D_{4} has no base points we make use of the morphism ψ. Let $p \in X \backslash E_{4}$, and let H be a hyperplane in \mathbb{P}^{N} that passes through $\psi\left(E_{4}\right)$ and not through $\psi(p)$. Then, $\psi^{*}(H)=\widetilde{C}+E_{4}$, where \widetilde{C} is the strict transform of the curve C in $\mathbb{P}^{n+1} \times \mathbb{P}^{n}$ passing through $\iota\left(x, z_{3}\right)$ and corresponding to the hyperplane H. Thus, $\psi^{*}(H)-E_{4}=\widetilde{C}+E_{4}-E_{4} \in\left|D_{2}+D_{3}-E_{4}\right|$ and so, p is not a base point for $D_{2}+D_{3}-E_{4}$.

Now, let $p \in E_{4}$. Then p corresponds to a tangent direction of a hyperplane section in \mathbb{P}^{N} passing through the point $\psi\left(E_{4}\right)$. Let T be a hyperplane in \mathbb{P}^{N}, passing through $\psi\left(E_{4}\right)$ and missing the direction p. Then, $\psi^{*}(T)$ is a divisor in $\left|D_{2}+D_{3}\right|$ that has a copy of E_{4}. Thus p is not a base point for $\psi^{*}(T)-E_{4}$. Hence $D_{4}=D_{2}+D_{3}-E_{4}$ is base point free.

We conclude that all the generators of σ^{\vee} are base point free, and hence they are nef and the claim follows.

To finish this case, we study the intersections of F with the generators of the nef cone and we see that $F \cdot F=0, F \cdot D_{i}=1$ for all $i \in\{1,2,3\}$. Hence, by Proposition 2.15, given a point $x \in X(k), F$ is a COBA for x with respect to any of $F D_{1}, D_{2}$, or D_{3}, unless x belongs to an exceptional curve that is contracted by some generator, in which case that exceptional curve would be a COBA.

Finally we study the COBAs with respect to D_{4}. First assume that $x \in X(k)$ is a point lying in some of E_{1}, E_{2}, E_{3} or S. Then, since D_{4} intersects any of these curves trivially, whichever contains x is a COBA for x with respect to D_{4} and $\alpha_{x}\left(D_{4}\right)=0$.

Assume that $x \in X(k)$ is a point not lying in any exceptional curve. Let $C=\pi^{*}(\pi(x))$. We know that $C \sim F$ and $F \cdot D_{4}=2$, then $\alpha_{x}\left(D_{4}\right) \leq 2$. Now, let $g: \widetilde{X} \longrightarrow X$ be the blow-up morphism of X at the point x with exceptional divisor E. We want to show that $g^{*}\left(D_{4}\right)-2 E$ is effective.

Recall from diagram 5.1, that D_{1} is base point free with associated morphism $f: X \longrightarrow$ $A \subset \mathbb{P}^{n+1}$ where A is a cone. So, we have the following diagram:

$$
\tilde{X} \xrightarrow{g} X \xrightarrow{f} \mathbb{P}^{n+1} .
$$

Let H be a hyperplane section on \mathbb{P}^{n+1} passing through the points $f(x)$ and $f\left(E_{4}\right)$. Then $f^{*}(2 H)$ is a curve in X that vanishes with order 2 at the point x and at E_{4}. Let us call this curve $M:=f^{*}(2 H)$. Notice that $M \sim 2(n F+S)$ and also $D_{4}=2(n F+S)-2 E_{2}+3 E_{3}-6 E_{4}$. Thus, $M \sim D_{4}+2 E_{2}+3 E_{3}+6 E_{4}$.

On the other hand, since M vanishes with order 2 at $x, g^{*}(M)-2 E$ is effective, which implies that $g^{*}\left(D_{4}\right)+2 g^{*}\left(E_{2}\right)+3 g^{*}\left(E_{3}\right)+6 g^{*}\left(E_{4}\right)-2 E$ is also effective. But notice that since x does not belong to any exceptional curve, $g^{*}\left(E_{i}\right) \cap E=\emptyset$ for all $i \in\{2,3,4\}$. This implies that $g^{*}\left(D_{4}\right)-2 E$ is effective. Hence, by the Liouville-type theorem 2.10, since outside the base locus $B=g\left(B^{\prime}\right)$ where B^{\prime} is the base locus of $g^{*}\left(D_{4}\right)-2 E$, there are no curves in the base locus of B that pass through x. Then $\alpha_{x}\left(D_{4}\right) \geq 2$.

The previous analysis and the fact that $D_{4} \cdot F=2$ tells us that if $x \in X(k)$ and x does not lie in an exceptional curve, then F is a COBA for x with respect to D_{4}.

Finally, assume that $x \in E_{4}(k)$ is a point that belongs only to E_{4} and not to any other exceptional curve. Then, since $E_{4} \cdot D_{4}=1$, by Proposition 2.15, we know that E_{4} is a COBA for x with respect to D_{4} and that $\alpha_{x}\left(D_{4}\right)=1$.

Hence, we conclude that for any divisor $D \in \operatorname{Nef}(X)$, the component of F through x is always a COBA with respect to D, unless x lies in S, in which case whichever of S or $C=\pi^{*}(\pi(x))$ (if C is irreducible) that has minimal intersection with D is a COBA for x with respect to D, and $\alpha_{x}(D)=\min \{D \cdot C, D \cdot S\}$. So, the theorem follows.

Case 3: X is the blow-up of a surface X_{2} of type 4 at a point y, where y is a singular point of the reducible fibre.

Case 3.1: $y=E_{1} \cap E_{3}$ on X_{2}, where X_{2} is of type 4.
In this case the fibre F of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ is $F \sim E_{1}+E_{2}+2 E_{3}+3 E_{4}$ and we represent it as

As in cases before the Picard group of X is $\operatorname{Pic}(X)=\mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3} \oplus \mathbb{Z} E_{4} \oplus \mathbb{Z} S$, with intersection theory given by:

\cdot	E_{1}	E_{2}	E_{3}	E_{4}	S
E_{1}	-3	0	0	1	1
E_{2}	0	-2	1	0	0
E_{3}	0	1	-2	1	0
E_{4}	1	0	1	-1	0
S	1	0	0	0	$-n$

Claim 5.22. The effective cone of X is generated by $E_{1}, E_{2}, E_{3}, E_{4}$, and S. The nef cone of X is generated by the divisors $F, D_{1}=n F+S, D_{2}=D_{1}-E_{2}-E_{3}-E_{4}$, $D_{3}=2 D_{1}-E_{2}-2 E_{3}-2 E_{4}$, and $D_{4}=D_{1}+D_{2}-E_{4}$.

Proof. Let $\sigma=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, E_{4}, S\right)$. Using Matlab we can verify that the dual cone of σ is $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}, D_{4}\right)$, and we know that $\sigma \subset \operatorname{Eff}(X)$. To show that σ is in fact the effective cone of X, we verify that all generators of the nef cone are base point free. We already know that F is base point free. Also, as before we have take the pullback of the generators of the nef cone of X_{2} of type 4 and we have

$$
\begin{aligned}
& f_{2}^{*}\left(D_{1}\right)=D_{1} \\
& f_{2}^{*}\left(D_{2}\right)=f_{2}^{*}\left(D_{1}-E_{2}-E_{3}\right)=D_{1}-E_{2}-E_{3}-E_{4}=D_{2} \\
& f_{2}^{*}\left(D_{3}\right)=f_{2}^{*}\left(2 D_{1}-E_{2}-2 E_{3}\right)=2 D_{1}-E_{2}-2 E_{3}-2 E_{4}=D_{3}
\end{aligned}
$$

Finally, notice that D_{4} can be written as $D_{4}=D_{2}+D_{3}+E_{2}+E_{3}$. But, since D_{2} and D_{3} are base point free, this representation tells us that the possible base points of D_{4} lie in E_{2} or
E_{3}. Similarly, we can write D_{4} as $D_{4}=(3 n-1) F+E_{1}+3 S$, which tells us that the possible base points for D_{4} should lie in E_{1} or S. Notice that in this case $\left(E_{2} \cup E_{3}\right) \cap\left(E_{1} \cup S\right)=\emptyset$. Hence, D_{4} is base point free, and the claim follows.

To prove the conjecture, first we check the intersection of the generators of the nef cone with the fibre F. The intersections are: $F \cdot F=0, F \cdot D_{1}=F \cdot D_{2}=1, F \cdot D_{3}=2$, and $F \cdot D_{4}=3$.

Let $x \in X(k)$ be a point. By Proposition $2.15, F$ is a COBA with respect to F, D_{1}, and D_{2}, unless x belongs to an exceptional curve, in which case the exceptional curve containing x and having the minimal intersection is a COBA with respect to all F, D_{1}, and D_{2}.

We study the curves of best approximation to x with respect to D_{3}. To do it we will use the blow-up morphism of x and use the Liouville-type theorem. Assume that x is not lying in any exceptional curve. Then, since $D_{3} \cdot F=2, \alpha_{x}\left(D_{3}\right) \leq 2$. Consider the following composition of maps, where we consider the maps as before (i.e. \widetilde{X} is the blow-up of X at x, and D_{1} corresponds to the morphism $f=\phi \circ g_{1}$):

$$
\begin{equation*}
\tilde{X} \xrightarrow{g} X \xrightarrow{g_{1}} \mathbb{F}_{n} \xrightarrow{\phi} \mathbb{P}^{n+1} . \tag{5.2}
\end{equation*}
$$

Let H be a hyperplane section on \mathbb{P}^{n+1} passing through the points $\phi\left(g_{1}(x)\right)$ and $\phi\left(g_{1}\left(E_{4}\right)\right)$. Then $\phi^{*}(2 H)$ is a curve in \mathbb{F}_{n} that vanishes with order 2 at the points $g_{1}(x)$ and $g_{1}\left(E_{4}\right)$. Let us call this curve $M:=\phi^{*}(2 H)$. Thus, $g_{1}^{*}(M)-2\left(E_{2}+2 E_{3}+3 E_{4}\right)$ is an effective divisor (recall that $E_{2}+2 E_{3}+3 E_{4}$ is the exceptional divisor corresponding to the morphism g_{1}). Moreover, $g_{1}^{*}(M)-2\left(E_{2}+2 E_{3}+3 E_{4}\right) \sim D_{3}-E_{2}-2 E_{3}-4 E_{4}$. So $g_{1}^{*}(M) \sim D_{3}+E_{2}+2 E_{3}+2 E_{4}$. Also, since $g_{1}^{*}(M)$ vanishes with order 2 at $x, g^{*}\left(g_{1}^{*}(M)\right)-2 E \geq 0$ is an effective divisor. Thus $g^{*}\left(D_{3}\right)+g^{*}\left(E_{2}\right)+2 g^{*}\left(E_{3}\right)+2 g^{*}\left(E_{4}\right)-2 E \geq 0$. But since $x \notin E_{2} \cup E_{3} \cup E_{4}$, $g^{*}\left(E_{i}\right) \cap E=\emptyset$ for all $i \in\{2,3,4\}$, which implies that $g^{*}\left(D_{3}\right)-2 E$ is effective. Hence, by the Liouville-type theorem 2.10, the approximation constant outside the base locus $B=g\left(B^{\prime}\right)$ where B^{\prime} is the base locus of $g^{*}\left(D_{3}\right)-2 E$, is at least 2 . But, since there are no curves in the base locus of B that pass through x, we conclude that $\alpha_{x}\left(D_{3}\right) \geq 2$. Notice $F \cdot D_{3}=2$, then $\pi^{*}(\pi(x)) \sim F$ is a COBA for x with respect to D_{3}.

Notice that on the other hand, if x belongs to some exceptional curves then the exceptional curve with minimal intersection with D_{3} will be a COBA for x with respect to D_{3}.

Similarly, we study the COBAs for D_{4}. We use the same diagram (5.2). Now, we call $M^{\prime}:=\phi^{*}(3 H)$. Then $g_{1}^{*}\left(M^{\prime}\right)-3\left(E_{2}+2 E_{3}+3 E_{4}\right)$ is an effective divisor, and moreover $g_{1}^{*}(M) \sim D_{4}+2 E_{2}+3 E_{3}+3 E_{4}$, and since $g_{1}^{*}(M)$ vanishes with order 3 at $x, g^{*}\left(g_{1}^{*}(M)\right)-$ $3 E \geq 0$ is an effective divisor. Thus $g^{*}\left(D_{4}\right)+2 g^{*}\left(E_{2}\right)+3 g^{*}\left(E_{3}\right)+3 g^{*}\left(E_{4}\right)-3 E \geq 0$, and similarly, since E does not intersect any exceptional curve, we see that $g^{*}\left(D_{4}\right)-3 E \geq 0$. Hence, by the Liouville-type theorem, outside the base locus $B=g\left(B^{\prime}\right)$ where B^{\prime} is the base locus of $g^{*}\left(D_{4}\right)-3 E$, the approximation constant is at least 3. But since there are no curves in the base locus of B that pass through $x, \alpha_{x}\left(D_{4}\right) \geq 3$. Notice that $F \cdot D_{4}=3$, so $\pi^{*}(\pi(x)) \sim F$ is a COBA for x with respect to D_{4}. Which implies that $\pi^{*}(\pi(x)) \sim F$ is a COBA for x with respect to any divisor in the nef cone.

We conclude this case by noticing that if x belongs to any exceptional curve, since any exceptional curve has intersection 0 or 1 with any generator of the nef cone, whichever exceptional curve that has minimal intersection with a divisor $D \in \operatorname{Nef}(X)$, will be a COBA for x with respect to D.
Case 3.2: $y=E_{2} \cap E_{3}$ on X_{2}, where X_{2} is of type 4 .

In this case the fibre F of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ is $F \sim E_{1}+E_{2}+2 E_{3}+3 E_{4}$ and we represent it as

As in cases before the Picard group of X is $\operatorname{Pic}(X)=\mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2} \oplus \mathbb{Z} E_{3} \oplus \mathbb{Z} E_{4} \oplus \mathbb{Z} S$, with intersection theory given by:

\cdot	E_{1}	E_{2}	E_{3}	E_{4}	S
E_{1}	-2	0	1	0	1
E_{2}	0	-3	0	1	0
E_{3}	1	0	-2	1	0
E_{4}	0	1	1	-1	0
S	1	0	0	0	$-n$

Claim 5.23. The effective cone of X is generated by $E_{1}, E_{2}, E_{3}, E_{4}$, and S and the nef cone of X is generated by $F, D_{1}, D_{2}=D_{1}-E_{2}-E_{3}-2 E_{4}, D_{3}=2 D_{1}-E_{2}-2 E_{3}-3 E_{4}$, and $D_{4}=3 D_{2}+E_{2}$.

Proof. Let $\sigma=\operatorname{Cone}\left(E_{1}, E_{2}, E_{3}, E_{4}, S\right)$. Using Matlab we can verify that the dual cone of σ is $\sigma^{\vee}=\operatorname{Cone}\left(F, D_{1}, D_{2}, D_{3}, D_{4}\right)$, and we know that $\sigma \subset \operatorname{Eff}(X)$. To show that σ is in fact the effective cone of X, we verify that all generators of the nef cone are indeed base point free. We already know that F is base point free. Also, as before we take the pullback of the generators of the nef cone of X_{2} of type 4 and we have

$$
\begin{aligned}
& f_{2}^{*}\left(D_{1}\right)=D_{1} \\
& f_{2}^{*}\left(D_{2}\right)=f_{2}^{*}\left(D_{1}-E_{2}-E_{3}\right)=D_{1}-E_{2}-E_{3}-2 E_{4}=D_{2} \\
& f_{2}^{*}\left(D_{3}\right)=f_{2}^{*}\left(2 D_{1}-E_{2}-2 E_{3}\right)=2 D_{1}-E_{2}-2 E_{3}-3 E_{4}=D_{3}
\end{aligned}
$$

Finally, notice that D_{4} is written in terms of D_{2} and D_{2} is base point free. Hence the only possible base point of D_{4} should lie on E_{2}. Additionally, D_{4} can be written as $D_{4}=(3 n-2) F+2 E_{1}+E_{3}+3 S$, which tells us that the possible base points of D_{4} should lie on E_{1}, E_{3}, or on S. But since $\left(E_{1} \cup E_{3} \cup S\right) \cap E_{2}=\emptyset$, we conclude that D_{4} is base point free. Thus, the claim holds.

It is clear that for a point $x \in X(k)$ not lying in an exceptional curve, F is a COBA with respect to F, D_{1}, and D_{2} (by Proposition 2.15). Otherwise, if x lies on some exceptional curve, the curve with minimal intersection with a divisor $D \in \operatorname{Cone}\left(F, D_{1}, D_{2}\right)$ would be a COBA with respect to D.

To study the COBAs with respect to D_{3}, we first assume that x does not lie in any exceptional curve. We use the set up for the Liouville-type theorem as before, where \widetilde{X} is the blow up of X at the point x.

$$
\tilde{X} \xrightarrow{g} X \xrightarrow{g_{1}} \mathbb{F}_{n} \xrightarrow{\phi} \mathbb{P}^{n+1} .
$$

Let H be a hyperplane section on \mathbb{P}^{n+1} passing through the points $\phi\left(g_{1}(x)\right)$ and $\phi\left(g_{1}\left(E_{4}\right)\right)$. Then $\phi^{*}(2 H)$ is a curve in \mathbb{F}_{n} that vanishes with order 2 at the points $g_{1}(x)$ and $g_{1}\left(E_{4}\right)$. Let us call this curve $M:=\phi^{*}(2 H)$. Then $g_{1}^{*}(M) \sim 2 D_{1}=D_{3}+E_{2}+2 E_{3}+3 E_{4}$.

Also, since $g_{1}^{*}(M)$ vanishes with order 2 at $x, g^{*}\left(g_{1}^{*}(M)\right)-2 E$ is an effective divisor. Thus $g^{*}\left(D_{3}\right)+g^{*}\left(E_{2}\right)+2 g^{*}\left(E_{3}\right)+3 g^{*}\left(E_{4}\right)-2 E \geq 0$. But since $x \notin E_{2} \cup E_{3} \cup E_{4}, g^{*}\left(E_{i}\right) \cap E=\emptyset$ for all $i \in\{2,3,4\}, g^{*}\left(D_{3}\right)-2 E$ is effective. Hence, by the Liouville-type theorem 2.10, outside the base locus $B=g\left(B^{\prime}\right)$ where B^{\prime} is the base locus of $g^{*}\left(D_{3}\right)-2 E$, the approximation constant is at least 2. But there are no curves in the base locus of B that pass through x. Thus $\alpha_{x}\left(D_{3}\right) \geq 2$. Notice that $F \cdot D_{3}=2$. So we conclude that F is a COBA for x with respect to D_{3}.

On the other hand, if x lies in some exceptional curves, then a curve with minimal intersection with D_{3} that contains x is a COBA for x with respect to D_{3}.

Finally, we study COBAs with respect to D_{4}. If x lies on some exceptional curve, as we just described, there will be a COBA for x with respect to D_{4}. If x does not lie in any exceptional curve, then we know that F is a COBA for x with respect to D_{2}, and by Theorem 2.16, as $F \cap E_{2}=\emptyset, F$ is also a COBA for x with respect to D_{4}.

We conclude that for any divisor $D \in \operatorname{Nef}(X)$, the component of F through x is always a COBA with respect to D, unless x lies in S, in which case any of S or $C=\pi^{*}(\pi(x))$ (if C is irreducible) that has minimal intersection with D is a COBA for x with respect to D, and $\alpha_{x}(D)=\min \{D \cdot C, D \cdot S\}$.

Corollary 5.24. The Conjecture 5.1 is true for X, where X is the blowing up of a smooth point of the reducible fibre in E_{2} on X_{2}, where X_{2} is of type 4 .

Proof. The intersection theory for X is given by the following table:

\cdot	E_{1}	E_{2}	E_{3}	E_{4}	S
E_{1}	-2	0	1	0	1
E_{2}	0	-3	1	1	0
E_{3}	1	1	-1	0	0
E_{4}	0	1	0	-1	0
S	1	0	0	0	$-n$

Notice that this case is the same as the case 2.1 in Theorem 5.19, where we interchange E_{4} and E_{3}.

Chapter 6

Further work

In this chapter, we present some possible directions in which the ideas in this thesis can be taken further.

Through this study it was important to completely describe the generators of the nef cone and the effective cone. It is also known that the number of generators of the effective cone grows pretty quickly. In fact, for \mathbb{P}^{2} blown up at six rational points in general position, the nef cone has 99 generators. For the complete list of generators see [21]. It is also known that the nef cone of \mathbb{P}^{2} blown up at 9 points in general position is not finitely generated. Thus, the methods used in this work may not be useful to study these cases. For more reference on the effective cones of blow-ups of projective space, see [8].

6.1 Blowing-up surfaces with multiple reducible fibres

We consider an additional case in this section, that shows the techniques that can be used when blowing up a surface with multiple reducible fibres of the map to \mathbb{P}^{1}.

The surfaces described in the previous chapter are the result of blowing up a surface with only one reducible fibre of the map to \mathbb{P}^{1}. We still need to cover the cases in which the map to \mathbb{P}^{1} has multiple reducible fibres. i.e. blowing up surfaces of type 1.

One of the main constraints on solving this problem is that the effective and nef cones are no longer simplicial and thus, the methods to prove that the effective cone is generated by
the exceptional curves on X is more subtle.

The surfaces of type 1 can be presented in the following general form, in which we blow up a Hirzebruch surface \mathbb{F}_{n} at $k<n$ points none of them lying in the $(-n)$-curve.

Surfaces X_{k} of type 1: We let $n \geq 2$. These type of surfaces are the blowup of a Hirzebruch surface \mathbb{F}_{n} at $k<n$ points, say $p_{1}, p_{2}, \cdots, p_{k}$, no two of which lie in the same fibre of π. These surfaces have k reducible fibres, each with two components that intersect transversely at one point. (The case $n=1$ is the blow-up of \mathbb{P}^{2} at k points and the conjecture was proven for $k \leq 6$ in [21]). It is known that $\operatorname{Pic}(X)=\mathbb{Z} S \oplus \mathbb{Z} F \bigoplus_{i=1}^{k} \mathbb{Z} E_{i}$, where S is the $(-n)$-section, F is a fibre of π, and E_{i} is the exceptional curve of the blowup at the point p_{i}. The configuration of the reducible fibres is given by:

We have $F \sim F_{i}+E_{i}$ for all $i \in\{1,2, \cdots, k\}$, with intersection theory given by:

$$
\begin{aligned}
E_{i}^{2} & =-1 \quad \text { for all } i \in\{1,2, \cdots, k\} \\
S^{2} & =-n \\
F^{2} & =0 \\
E_{i} \cdot E_{j} & =0 \quad \text { for all } i, j \in\{1,2, \cdots, k\}, i \neq j \\
E_{i} \cdot S=E_{i} \cdot F & =0 \text { for all } i \in\{1,2, \cdots, k\} \\
F \cdot S & =1 .
\end{aligned}
$$

It was proven in [19, Theorem 3.5] that $\operatorname{Eff}(X)=\operatorname{Cone}\left(S, F_{i}, E_{i}\right)$ for all $i \in\{1,2, \cdots, k\}$, and $\operatorname{Nef}(X)=\operatorname{Cone}\left(F, D_{\alpha}\right)$, where $\alpha \in\{0,1\}^{k}$ and $D_{\alpha}=S+n F-\alpha \cdot\left(E_{1}, \cdots, E_{k}\right)$.

Theorem 6.1. Let X be the blow-up of the type 1 surface X_{k} at k points, each lying in $F_{i} \backslash\left(S \cup E_{i}\right)$, for $i \in\{1,2, \cdots, k\}$ and $k \in \mathbb{N}$ and $k<n$. Then Conjecture 5.1 is true for X.

Proof. The reducible fibre of the map $\pi: X \longrightarrow \mathbb{P}^{1}$ is $F \sim F_{i}+E_{i}+G_{i}$. The configuration of the reducible fibres is represented as follows:

For the proof we assume that X is the blow-up of X_{1} at k points, each lying in a reducible fibre as is represented above, but this proof also works for X obtained by blowing up smooth points in some of the reducible fibres of X_{1} and not necessarily all k fibres.

Notice that $\operatorname{Pic}(X)=\mathbb{Z} S \oplus \mathbb{Z} F_{1} \bigoplus_{i=1}^{k} \mathbb{Z} E_{i} \bigoplus_{i=1}^{k} G_{i}$, where G_{i} is the exceptional divisor of the blow-up of X_{k} at the point $p_{i} \in F_{i} \backslash\left(S \cup E_{i}\right)$. With the following intersections, where $i, j \in\{1,2,3, \cdots, k\}$ and $i \neq j$:

$$
\begin{aligned}
E_{i}^{2} & =-1 \\
G_{i}^{2} & =-1 \\
S^{2} & =-n \\
F_{i}^{2} & =-2 \\
G_{i} \cdot G_{j}=E_{i} \cdot E_{j}=E_{i} \cdot G_{j}=E_{i} \cdot G_{i} & =0 \\
F_{i} \cdot G_{i}=F_{i} \cdot E_{i} & =1 \\
F_{i} \cdot G_{j}=F_{i} \cdot E_{j}=F_{i} \cdot F_{j} & =0 \\
E_{i} \cdot S=G_{i} \cdot S & =0 \\
F_{i} \cdot S & =1 .
\end{aligned}
$$

Claim 6.2. The effective cone of X is generated by E_{i}, G_{i}, F_{i}, and S for all $i \in\{1,2, \cdots, k\}$. The nef cone of X is generated by the divisors F, and $D_{\alpha, \beta}$, where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right), \beta=$ $\left(\beta_{1}, \cdots, \beta_{k}\right) \in\{0,1\}^{k}, \alpha_{i}+\beta_{i} \leq 1$ for all i, and $D_{\alpha, \beta}=n F+S-\alpha \cdot\left(E_{1}, \cdots, E_{k}\right)-\beta$. $\left(G_{1}, \cdots, G_{k}\right)$.

Proof. Let $\sigma=\operatorname{Cone}\left(S, G_{i}, E_{i}, F_{i}\right)$ and let $\tau=\operatorname{Cone}\left(F, D_{1}, D_{\alpha, \beta}\right)$. First we prove that these cones are dual to one another.

Notation for the proof: For convenience we will use the notation

$$
\begin{gathered}
D_{1}:=n F+S=D_{\overrightarrow{0}, \overrightarrow{0}} \\
I:=\left\{(\alpha, \beta) \in\{0,1\}^{k} \times\{0,1\}^{k}: \begin{array}{r}
\alpha=\left(\alpha_{1}, \cdots, \alpha_{k}\right), \beta=\left(\beta_{1}, \cdots, \beta_{k}\right), \\
\text { and } \alpha_{i}+\beta_{i} \leq 1 \text { for all } 1 \leq i \leq k
\end{array}\right\} .
\end{gathered}
$$

The intersection matrix of the generators of τ and σ is as follows:

\cdot	S	E_{i}	G_{i}	F_{i}
F	1	0	0	0
D_{1}	0	0	0	1
$D_{\alpha, \beta}$	0	α_{i}	β_{i}	$1-\alpha_{i}-\beta_{i} \geq 0$

We see that since the intersections are non-negative, $\tau \subseteq \sigma^{\vee}$.

On the other hand, let $D \in \tau^{\vee}$. Then the intersection of D with each generator of τ is non-negative. More specifically let $D=a_{0} S+\sum_{i=1}^{k} a_{i} E_{i}+\sum_{i=1}^{k} b_{i} G_{i}+b_{0} F_{1} \in \operatorname{NS}(X) \otimes \mathbb{R}$. Then,

$$
\begin{align*}
D \cdot F & =a_{0} \geq 0 \tag{6.1}\\
D \cdot D_{1} & =b_{0} \geq 0 \tag{6.2}\\
D \cdot D_{\alpha, \beta} & =\sum_{i=1}^{k} a_{i} \alpha_{i}+b_{i} \beta_{i} \geq 0 \tag{6.3}
\end{align*}
$$

The inequality (6.3) holds for all $(\alpha, \beta) \in I$. Now, we want to show that D belongs to σ, which means that we need to find an expression of D of the form $A_{0} S+\sum_{i=1}^{k} A_{i} E_{i}+$ $\sum_{i=1}^{k} B_{i} G_{i}+\sum_{i=1}^{k} C_{i} F_{i}$ for some non-negative real values A_{i}, B_{i}, C_{i}. But recall that $F_{i} \sim$ $F_{1}+G_{1}+E_{1}-G_{i}-E_{i}$ for all i. Thus, we can rewrite the wanted expression of D as
$A_{0} S+\left(A_{1}+\sum_{i=2}^{k} C_{i}\right) E_{1}+\sum_{i=2}^{k}\left(A_{i}-C_{i}\right) E_{i}+\left(B_{1}+\sum_{i=2}^{k} C_{i}\right) G_{1}+\sum_{i=2}^{k}\left(B_{i}-C_{i}\right) G_{i}+\left(\sum_{i=1}^{k} C_{i}\right) F_{1}$.
Hence, since $N S(X)$ is a free group, to show that D belongs to σ it is enough to find non-negative real numbers A_{i}, B_{i}, C_{i} such that

$$
\begin{align*}
a_{0} & =A_{0} \tag{6.4}\\
b_{0} & =C_{1}+\sum_{i=2}^{k} C_{i} \tag{6.5}\\
a_{1} & =A_{1}+\sum_{i=2}^{k} C_{i} \tag{6.6}\\
b_{1} & =B_{1}+\sum_{i=2}^{k} C_{i} \tag{6.7}\\
a_{i} & =A_{i}-C_{i} \text { for all } 2 \leq i \leq k \tag{6.8}\\
b_{i} & =B_{i}-C_{i} \text { for all } 2 \leq i \leq k \tag{6.9}
\end{align*}
$$

Clearly, by inequality (6.1), the equation (6.4) holds. Notice, from equation (6.3), that a_{1} and b_{1} are non-negative (by applying (6.3) with $\alpha=(1,0 \cdots, 0), \beta=\overrightarrow{0}$, and $\alpha=\overrightarrow{0}$, $\beta=(1,0 \cdots, 0)$ respectively). Thus, the previous system of equations can be reduced to find non-negative real numbers C_{i} that satisfy all the following inequalities:

$$
\begin{align*}
b_{0}-\sum_{i=2}^{k} C_{i} & \geq 0 \tag{6.10}\\
a_{1}-\sum_{i=2}^{k} C_{i} & \geq 0 \tag{6.11}\\
b_{1}-\sum_{i=2}^{k} C_{i} & \geq 0 \tag{6.12}\\
a_{i}+C_{i} & \geq 0 \text { for all } 2 \leq i \leq k \tag{6.13}\\
b_{i}+C_{i} & \geq 0 \text { for all } 2 \leq i \leq k \tag{6.14}
\end{align*}
$$

Now, for each $i \in\{2,3, \cdots, k\}$, let $C_{i}=-\min \left\{a_{i}, b_{i}, 0\right\}$. Notice that these values satisfy inequalities (6.13) and (6.14). Also, notice that we can write $\min \left\{a_{i}, b_{i}, 0\right\}$ as $\min \left\{a_{i}, b_{i}, 0\right\}=n_{i} a_{i}+m_{i} b_{i}$, for some $n_{i}, m_{i} \in 0,1$ and $n_{i}+m_{i} \leq 1$. So, in particular inequality (6.10) follows from (6.3) with $\alpha=\left(0, n_{2}, \cdots, n_{k}\right)$ and $\beta=\left(0, m_{2}, \cdots, m_{k}\right)$. Similarly, inequality (6.11) follows from (6.3) with $\alpha=\left(1, n_{2}, \cdots, n_{k}\right)$ and $\beta=\left(0, m_{1}, \cdots, m_{k}\right)$, and inequality (6.12) follows with $\alpha=\left(0, n_{2}, \cdots, n_{k}\right)$ and $\beta=\left(1, m_{1}, \cdots, m_{k}\right)$. Thus, $D \in \sigma$, $\tau^{\vee} \subseteq \sigma$ and the cones τ, and σ are dual to one another.

Recall that F is base point free, corresponding to the map $\pi: X \longrightarrow \mathbb{P}^{1}$ (and it contracts all $\left.E_{i}, F_{i}, G_{i}\right)$.

For any $(\alpha, \beta) \in I$, define $r(\alpha, \beta):=\left|\left\{i: \alpha_{i}=1\right\} \cup\left\{j: \beta_{j}=1\right\}\right|$. Since $k \leq n, D_{\alpha, \beta}$ is base point free, corresponding to the morphism $\phi_{\alpha, \beta}: X \longrightarrow \mathbb{P}^{n-r(\alpha, \beta)+1}$ which contracts S, E_{i} for all i such that $\alpha_{i}=0, G_{j}$ for all j such that $\beta_{j}=0$, and F_{k} for all k such that $\alpha_{k}=1$ or $\beta_{k}=1$.

Thus, since all the generators of σ^{\vee} are base point free, they are nef, and so, the claim follows.

To finish the proof, we choose an arbitrary point $x \in X(k)$. We know that the only curves contracted by $D_{(\alpha, \beta)}$ are S and some of E_{i} 's, G_{i} 's, and F_{i} 's. We see that if x does not belong to any of the reducible fibres F, let $C=\pi^{*}(\pi(x))$, then $C \sim F_{i}+E_{i}+G_{i}, C \cdot D_{(\alpha, \beta)}=1$, and $C \cdot F=0$. So by Proposition 2.15, C is a COBA for x with respect to any generator
of the nef cone of X. Hence, for any $D \in \operatorname{Nef}(X), C$ is a COBA for x with respect to D and $\alpha_{x}(D)=D \cdot C$.

On the other hand, suppose x belongs to the reducible fibre, i.e. x belongs to some exceptional curve E_{i}, F_{i}, G_{i} or S. Notice that since $D_{(\alpha, \beta)}$ has intersection 0 or 1 with each of the generators of the effective cone, if x does not belong to a curve contracted by $D_{(\alpha, \beta)}$, but it belongs to some exceptional curve C which has intersection 1 with $D_{(\alpha, \beta)}$, we see that C is a COBA for x with respect to $D_{(\alpha, \beta)}$.

We let $T=\left\{S, F, E_{i}, F_{i}, G_{i}\right\}$ for all $i \in\{1,2, \cdots, k\}$, and $D \in \operatorname{Nef}(X)$. Then $\alpha_{x}(D)=$ $\min _{\{R \in T: x \in R\}}\{D \cdot R\}$, and whichever curve in T that contains x and has minimal intersection with D is a COBA for x with respect to D.

References

[1] W. Barth, C. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1984.
[2] Alexander Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[3] Arnaud Beauville. Complex algebraic surfaces, volume 34 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, second edition, 1996. Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid.
[4] Enrico Bombieri and Walter Gubler. Heights in Diophantine geometry, volume 4 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2006.
[5] Vasile Brinzuanescu. Holomorphic vector bundles over compact complex surfaces, volume 1624 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996.
[6] Lucian Bădescu. Algebraic surfaces. Universitext. Springer-Verlag, New York, 2001. Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author.
[7] Izzet Coskun. The birational geometry of moduli spaces. In Algebraic geometry and number theory, volume 321 of Progr. Math., pages 29-54. Birkhäuser/Springer, Cham, 2017.
[8] Izzet Coskun, John Lesieutre, and John Christian Ottem. Effective cones of cycles on blowups of projective space. Algebra Number Theory, 10(9):1983-2014, 2016.
[9] Olivier Debarre. Higher-dimensional algebraic geometry. Universitext. SpringerVerlag, New York, 2001.
[10] Antonio J. Engler and Alexander Prestel. Valued fields. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.
[11] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[12] Marc Hindry and Joseph H. Silverman. Diophantine geometry, volume 201 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. An introduction.
[13] V. A. Iskovskikh and I. R. Shafarevich. Algebraic surfaces. In Algebraic geometry, II, volume 35 of Encyclopaedia Math. Sci., pages 127-262. Springer, Berlin, 1996.
[14] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.
[15] Serge Lang. Fundamentals of Diophantine geometry. Springer-Verlag, New York, 1983.
[16] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.
[17] Yu. I. Manin. Cubic forms, volume 4 of North-Holland Mathematical Library. NorthHolland Publishing Co., Amsterdam, second edition, 1986. Algebra, geometry, arithmetic, Translated from the Russian by M. Hazewinkel.
[18] Kenji Matsuki. Introduction to the Mori program. Universitext. Springer-Verlag, New York, 2002.
[19] David McKinnon. A conjecture on rational approximations to rational points. J. Algebraic Geom., 16(2):257-303, 2007.
[20] David McKinnon and Mike Roth. Seshadri constants, diophantine approximation, and Roth's theorem for arbitrary varieties. Invent. Math., 200(2):513-583, 2015.
[21] David McKinnon and Mike Roth. An analogue of Liouville's theorem and an application to cubic surfaces. Eur. J. Math., 2(4):929-959, 2016.
[22] Rick Miranda. Algebraic curves and Riemann surfaces, volume 5 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1995.
[23] Igor R. Shafarevich. Basic algebraic geometry. 1. Springer, Heidelberg, third edition, 2013. Varieties in projective space.
[24] Joseph H. Silverman. Arithmetic distance functions and height functions in Diophantine geometry. Math. Ann., 279(2):193-216, 1987.
[25] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.

APPENDICES

Appendix A

The case of \mathbb{P}^{2} blown up at two points

Let $X=B l_{2} \mathbb{P}^{2}$ be the blow up of \mathbb{P}^{2} at two points. Without loss of generality, we can choose the blow up at the points $p_{1}=[0,0,1], p_{2}=[0,1,0]$. Explicitly,

$$
X=\left\{([x: y: z],[u: v],[s, t]) \in \mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}: x v=y u, x t=z s\right\} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

In this case there are three projections, $\pi: X \rightarrow \mathbb{P}^{2}:([x: y: z],[u: v],[s, t]) \rightarrow[x: y: z]$, $\pi_{1}: X \rightarrow \mathbb{P}^{1}:([x: y: z],[u: v],[s, t]) \rightarrow[u: v]$, and $\pi_{2}: X \rightarrow \mathbb{P}^{1}:([x: y: z],[u:$ $v],[s, t]) \rightarrow[s: t]$. As in section 4.1, let $L=\pi^{*}(H)$ where H is a line in \mathbb{P}^{2}, and let $E_{1}=\pi^{-1}\left(p_{1}\right)$ and $E_{2}=\pi^{-1}\left(p_{2}\right)$ be the exceptional divisors. Notice that if we restrict $\pi: X \backslash\left\{E_{1}, E_{2}\right\} \longrightarrow \mathbb{P}^{2} \backslash\left\{p_{1}, p_{2}\right\}$, we get an isomorphism. Hence, as in section 4.1, $\operatorname{Pic}\left(X \backslash\left\{E_{1}, E_{2}\right\}\right) \cong \operatorname{Pic}\left(\mathbb{P}^{2} \backslash\left\{p_{1}, p_{2}\right\}\right) \cong \operatorname{Pic}\left(\mathbb{P}^{2}\right) \cong \mathbb{Z} L$. Now, using the exact sequences:

$$
\begin{gathered}
0 \longrightarrow \mathbb{Z} E_{1} \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}\left(X \backslash\left\{E_{1}\right\}\right) \longrightarrow 0 \\
0 \longrightarrow \mathbb{Z} E_{2} \longrightarrow \operatorname{Pic}\left(X \backslash\left\{E_{1}\right\}\right) \longrightarrow \operatorname{Pic}\left(X \backslash\left\{E_{1}, E_{2}\right\}\right) \longrightarrow 0,
\end{gathered}
$$

we see that $\operatorname{Pic}(X) \cong \mathbb{Z} L \oplus \mathbb{Z} E_{1} \oplus \mathbb{Z} E_{2}$. Also, by a similar argument as before $\pi_{1}^{*}(\mathcal{O}(1))=$ $L-E_{1}$ and $\pi_{2}^{*}(\mathcal{O}(1))=L-E_{2}$, and the intersection theory on X is

\cdot	L	E_{1}	E_{2}
L	1	0	0
E_{1}	0	-1	0
E_{2}	0	0	-1

We see that the three generators are numerically independent, so $\mathrm{NS}(X) \otimes \mathbb{R}=\mathbb{R} L \oplus$ $\mathbb{R} E_{1} \oplus \mathbb{R} E_{2}$.

Now, let L^{\prime} be the line joining the points p_{1} and p_{2}. Consider the inverse image of the point $[0: 1] \in \mathbb{P}^{1}$ under the projections π_{1} and π_{2}.

$$
\begin{aligned}
& \pi_{1}^{-1}([0: 1])=E_{2} \cup\{([0: y: z],[0: 1],[0: 1]): z \neq 0\} \\
& \pi_{2}^{-1}([0: 1])=E_{1} \cup\{([0: y: z],[0: 1],[0: 1]): y \neq 0\}
\end{aligned}
$$

We let $S:=\left\{([0: y: z],[0: 1],[0: 1]):[y: z] \in \mathbb{P}^{1}\right\}$ be the strict transform of L^{\prime}. Notice that $\pi(S)=L^{\prime}$.

Claim A.1. $L=S+E_{1}+E_{2}$.

Proof. Notice that S is a line in X, and $S \cdot L=S \cdot E_{1}=S \cdot E_{2}=1$. Also, as a divisor $S \in \operatorname{Pic}(X), S=a_{0} L+a_{1} E_{1}+a_{2} E_{2}$ for some $a_{0}, a_{1}, a_{2} \in \mathbb{Z}$. Then, using the intersection pairing with S, we see that $a_{0}=1$ and $a_{1}=a_{2}=-1$, so the claim holds.

Now, let $\sigma=\operatorname{Cone}\left(S, E_{1}, E_{2}\right)$. Using the software polymake, we see that its dual is $\sigma^{\vee}=\operatorname{cone}\left(L, L-E_{1}, L-E_{2}\right)$. Notice that all the generators of σ^{\vee} are base point free, so they are nef. This tells us that $\sigma=\operatorname{Eff}(X)$ and $\sigma^{\vee}=\operatorname{Nef}(X)$. Now, we find a COBA for each of the generators of $\operatorname{Nef}(X)$. Consider these cases:

Case 1: $x \in X(k) \backslash\left(E_{1} \cup E_{2}\right)$. In this case, a COBA for x with respect to L is any line through x. Let C_{i} be the irreducible component of $\pi_{i}^{-1}\left(\pi_{i}(x)\right)$ for $i=1,2$ that contains x. Since C_{1} and C_{2} are contained in the fibres of π_{1} and π_{2} respectively, we see that C_{i} is a COBA for $L-E_{i}, i=1,2$. Notice that if $x \in S$ then $C_{1}=C_{2}=S$. To find α with respect to each generator, we see that $C_{i} \cdot L=1$ and $C_{i} \cdot\left(L-E_{i}\right)=0$ for $i=1,2$ (regardless of $x \in S$ or $x \notin S$). We conclude

Divisor	COBA	α_{x}
L	C_{1} or C_{2}	1
$L-E_{1}$	C_{1}	0
$L-E_{2}$	C_{2}	0

Now we study how to divide the nef cone into subcones where C_{1} or C_{2} are COBA. First, notice that if $x \in S$, then S is a COBA for all the generators of the nef cone, and by Theorem 2.14, S is a COBA for all divisors in $D \in \operatorname{Nef}(X)$. Also, if $D=a_{0} L+a_{1}\left(L-E_{1}\right)+a_{2}\left(L-E_{2}\right)$, then $\alpha_{x}(D)=D \cdot S=a_{0}$.

On the other hand, if $x \notin S$, let $D=a_{0} L+a_{1}\left(L-E_{1}\right)+a_{2}\left(L-E_{2}\right) \in \operatorname{Nef}(X)$ such that $C_{1} \sim L-E_{1}$ is a COBA for D. Then $D \cdot C_{1} \leq D \cdot C_{2}$, i.e. $a_{0}+a_{2} \leq a_{0}+a_{1}$. We see that we can divide the nef cone as $\operatorname{Nef}(X)=\Gamma_{1} \cup \Gamma_{2}$ where $\Gamma_{1}=\left\langle L, L-E_{1}, 2 L-E_{1}-E_{2}\right\rangle$ and $\Gamma_{2} \cup\left\langle L, L-E_{2}, 2 L-E_{1}-E_{2}\right\rangle$. By a similar argument as in Claim 4.3, we can verify that C_{1} and C_{2} are both COBA with respect to $2 L-E_{1}-E_{2}$. Hence C_{i} is a COBA for any divisor in $\Gamma_{i}, i=1,2$ and we conclude that:

Divisor	COBA	α_{x}
$a_{0} L+a_{1}\left(L-E_{1}\right)+a_{2}\left(2 L-E_{1}-E_{2}\right)$	C_{1}	$a_{0}+a_{2}$
$a_{0} L+a_{1}\left(L-E_{2}\right)+a_{2}\left(2 L-E_{1}-E_{2}\right)$	C_{2}	$a_{0}+a_{2}$

Case 2: $x \in E_{1}(k) \backslash S$ or $x \in E_{2}(k) \backslash S$. Assume, without loss of generality, that $x \in E_{1}$, then a COBA for x with respect to L is E_{1}. To approximate x with respect to $L-E_{1}$, notice that as before we can choose $C_{1}=\pi_{1}^{-1}\left(\pi_{1}(x)\right)$ as a COBA. To approximate x with respect to $L-E_{2}$, notice that we can pick the fibre $C_{2}=\pi_{1}^{-1}\left(\pi_{1}(x)\right)=\pi_{1}^{-1}([0: 1])$, but recall that $x \in C_{2}$, so in this case $C_{2}=E_{1}$, and our table is:

Divisor	COBA	α_{x}
L	E_{1}	0
$L-E_{1}$	$C_{1} \sim L-E_{1}$	0
$L-E_{2}$	E_{1}	0

Let $D=a_{0} L+a_{1}\left(L-E_{1}\right)+a_{2}\left(L-E_{2}\right) \in \operatorname{Nef}(X)$. Assume that E_{1} is a COBA for D, then $D \cdot E_{1} \leq D \cdot\left(L-E_{1}\right)$. In this case we get that $D \in \Gamma_{1}=\left\langle L, L-E_{2}, 2 L-E_{1}, 2 L-E_{1}-E_{2}\right\rangle$. We know that E_{1} is a COBA for $L, L-E_{2}$. By a similar argument as in claim 4.3, we can see that E_{1} and $L-E_{1}$ are both COBA for x with respect to $2 L-E_{1}$ and $2 L-E_{1}-E_{2}$. On the other hand, if $L-E_{1}$ is a COBA for D, we see that $D \in \Gamma_{2}=\left\langle L-E_{1}, 2 L-E_{1}, 2 L-E_{1}-E_{2}\right\rangle$. Hence, we conclude with the table:

Divisor	COBA	α_{x}
$a_{0} L+a_{1}\left(L-E_{2}\right)+a_{2}\left(2 L-E_{1}\right)+a_{3}\left(2 L-E_{1}-E_{2}\right)$	E_{1}	$a_{2}+a_{3}$
$a_{0}\left(L-E_{1}\right)+a_{1}\left(2 L-E_{1}\right)+a_{2}\left(2 L-E_{1}-E_{2}\right)$	$C_{1} \sim L-E_{1}$	$a_{1}+a_{2}$

Case 3: $x \in S(k) \cap E_{1}(k)$ or $x \in S(k) \cap E_{2}(k)$. Without loss of generality, assume that $x \in S(k) \cap E_{1}(k)$. We conclude that:

Divisor	COBA	α_{x}
L	E_{1}	0
$L-E_{1}$	S	0
$L-E_{2}$	S or E_{1}	0

Let $D=a_{0} L+a_{1}\left(L-E_{1}\right)+a_{2}\left(L-E_{2}\right) \in \operatorname{Nef}(X)$. Assume that E_{1} is a COBA for D, then $D \cdot E_{1} \leq D \cdot S$, i.e. $a_{1} \leq a_{0}$. Similarly, if we assume that S is a COBA for D we get $a_{1} \geq a_{0}$. Hence, we divide the nef cone into two regions, $\operatorname{Nef}(X)=\Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{1}=\left\langle L, 2 L-E_{1}, L-E_{2}\right\rangle$ and $\Gamma_{2}=\left\langle 2 L-E_{1}, L-E_{1}, L-E_{2}\right\rangle$.

Claim A.2. S and E_{1} are both $C O B A$ for $2 L-E_{1}$.
Proof. This follows from Proposition 4.4.
We see that E_{1} is a COBA for any divisor in the subcone Γ_{1} and S is a COBA for any divisor in the subcone Γ_{2}. We conclude:

Divisor	COBA	α_{x}
$a_{0} L+a_{1}\left(2 L-E_{1}\right)+a_{2}\left(L-E_{2}\right)$	E_{1}	a_{1}
$a_{0}\left(L-E_{1}\right)+a_{1}\left(2 L-E_{1}\right)+a_{2}\left(L-E_{2}\right)$	S	a_{1}

Appendix B

Explicit calculation of α

Although the complete proof of the conjecture in Theorem 5.16 was presented in the proof of that theorem, here there is an explicit calculation of the approximation constants that follow from the general case. But here we do an exhaustive study of the subcones of the nef cone.

Case 1. $x \in S(k) \backslash E_{1}$.

Let C be the irreducible component of the fibre of π through x. We know that $C \sim F$. Recall S is contracted by the morphisms corresponding to D_{1}, D_{2}, and D_{3}. Also, $S \cdot D_{4}=0$, and since D_{4} is nef, $\alpha_{x}\left(D_{4}\right) \geq 0$, so S is a COBA for D_{4}. We conclude:

Divisor	COBA	α_{x}
F	F	0
D_{1}	S	0
D_{2}	S	0
D_{3}	S	0
D_{4}	S	0

Let $D=a_{0} F+a_{1} D_{1}+a_{2} D_{2}+a_{3} D_{3}+a_{4} D_{4} \in \operatorname{Nef}(X)$. Assume that F is COBA with respect to D, then $a_{1}+a_{2}+2 a_{3}+2 a_{4} \leq a_{0}$, so we obtain the cone $\Gamma_{1}=\left\langle F, F+D_{1}, F+\right.$ $\left.D_{2}, F+2 D_{3}, F+2 D_{4}\right\rangle$. Similarly, if we assume that S is a COBA for D, we obtain the cone $\Gamma_{2}=\left\langle D_{1}, D_{2}, D_{3}, D_{4}, F+D_{1}, F+D_{2}, 2 F+D_{3}, 2 F+D_{4}\right\rangle . \operatorname{Nef}(X)=\Gamma_{1} \cup \Gamma_{2}$.

We verify that F is a COBA for any divisor in Γ_{1} and that S is COBA for any divisor in Γ_{2}.
S and F are both COBA with respect to $F+D_{1}$ and $F+D_{2}$: If C is an irreducible curve such that $C \cdot\left(F+D_{1}\right)=0$, then $C \cdot F=C \cdot D_{1}=0$. So $C \in\left\{E_{2}, E_{3}, E_{4}\right\}$, but none of these curves contains x. Also $S \cdot\left(F+D_{1}\right)=F \cdot\left(F+D_{1}\right)=1$, then by Proposition 2.15, S and F are COBA for x with respect to $F+D_{1}$. Similarly, the only irreducible curves that have intersection zero with $F+D_{2}$ are E_{1}, E_{3}, and E_{4}. But x does not belong to any E_{i}. Thus, since $S \cdot\left(F+D_{2}\right)=F \cdot\left(F+D_{2}\right)=1$, by Proposition 2.15, S and F are also COBA for x with respect to $F+D_{2}$.

Claim B.1. Both S and F are both $C O B A$ with respect to $2 F+D_{3}$.
Proof. Notice that since $x \in S \backslash E_{1}, x$ does not belong to any curve C that is contracted by both F and D_{3}. Thus, since $S \cdot F=1$, by Proposition 4.4, S is COBA for x with respect to $F+D_{3}$, which implies that S is also COBA for x with respect to $2 F+D_{3}$ (again by Proposition 4.4).

The previous argument shows that $\alpha_{x}(2 F+D)=\alpha_{x, S}\left(\left.\left(2 F+D_{3}\right)\right|_{S}\right)=S \cdot\left(2 F+D_{3}\right)=2$. But also notice that the fibre $C=\pi^{*}(\pi(x)) \sim F$ is a smooth rational curve that contains x and $\alpha_{x, C}\left(\left.\left(2 F+D_{3}\right)\right|_{C}\right)=C \cdot\left(2 F+D_{3}\right)=2=\alpha_{x}\left(2 F+D_{3}\right)$. Thus a sequence in C converging to x also attains the minimal value $\alpha_{x}\left(2 F+D_{3}\right)$, so $C \sim F$ is also a COBA for x with respect to $2 F+D_{3}$.

A similar argument as in the previous claim shows that F and S are both COBA for x with respect to $2 F+D_{4}$. Then, we can write the nef cone of X as $\operatorname{Nef}(X)=\Gamma_{1} \cup \Gamma_{2}$, where

$$
\begin{gathered}
\Gamma_{1}:=\left\langle F, F+D_{1}, F+D_{2}, 2 F+D_{3}, 2 F+D_{4}\right\rangle, \\
\Gamma_{2}:=\left\langle F+D_{1}, F+D_{2}, 2 F+D_{3}, 2 F+D_{4}, D_{1}, D_{2}, D_{3}, D_{4}\right\rangle
\end{gathered}
$$

and we conclude the following table:

Divisor	COBA	α_{x}
$a_{0} F+a_{1}\left(D_{1}+F\right)+a_{2}\left(F+D_{2}\right)+$	F	$a_{1}+a_{2}+2 a_{3}+2 a_{4}$
$a_{3}\left(2 F+D_{3}\right)+a_{4}\left(2 F+D_{4}\right)$	F	
$\sum_{i=1}^{4} a_{i} D_{i}+b_{1}\left(F+D_{1}\right)+b_{2}\left(F+D_{2}\right)+$	S	$b_{1}+b_{2}+2 b_{3}+2 b_{4}$
$b_{3}\left(2 F+D_{3}\right)+b_{4}\left(2 F+D_{4}\right)$		

Case 2. x lies exactly on one E_{i} but not in S.

We know that E_{i} is COBA for x with respect to $D_{j}, j \neq i$ and F, since E_{i} is contracted by all of these and $x \in E_{i}$. The irreducible curves contracted by D_{i} are precisely $E_{j}, j \neq i$ and S, but x doesn't belong to any of these, thus by Proposition $2.15, E_{i}$ is COBA for x with respect to D_{i}.

Divisor	COBA	α_{x}
F	E_{i}	0
D_{i}	E_{i}	1
$D_{j}, j \neq i$	E_{i}	0

Since E_{i} is COBA for all the generators of the nef cone, by Theorem 2.14. E_{i} is COBA for x with respect to any divisor in $\operatorname{Nef}(X)$. Let $D \in \operatorname{Nef}(X)$, say $D=a_{0} F+a_{i} D_{i}+\sum_{j \neq i} a_{j} D_{j}$, then $\alpha_{x}(D)=D \cdot E_{i}=a_{i}$.

Case 3. $x=E_{1} \cap S$.

Divisor	COBA	α_{x}
F	E_{1}	0
D_{1}	S	0
D_{2}	S or E_{1}	0
D_{3}	S or E_{1}	0
D_{4}	S or E_{1}	0

We write the nef cone as $\operatorname{Nef}(X)=\Gamma_{S} \cup \Gamma_{E_{1}}$, where

$$
\begin{aligned}
& \Gamma_{S}=\left\langle D_{1}, D_{2}, D_{3}, D_{4}, F+D_{1}\right\rangle \\
& \Gamma_{E_{1}}=\left\langle F, D_{2}, D_{3}, D_{4}, F+D_{1}\right\rangle
\end{aligned}
$$

We saw in case 2 that S is a COBA for x with respect to any divisor in Γ_{S}. By Proposition 2.15, E_{1} is also a COBA with respect to $\left(F+D_{1}\right)$, so E_{1} is COBA for x with respect to any divisor in $\Gamma_{E_{1}}$. So we conclude

Divisor	COBA	α_{x}
$a_{0}\left(F+D_{1}\right)+\sum_{i=1}^{4} a_{i} D_{i}$	S	a_{0}
$a_{0} F+a_{1}\left(F+D_{1}\right)+\sum_{i=2}^{4} a_{i} D_{i}$	E_{1}	a_{1}

Case 4. $x=E_{i} \cap E_{j}$, where $(i, j) \in\{(1,3),(2,3),(3,4)\}$.
Since $x=E_{i} \cap E_{j}$, we know that for any generator of the nef cone, we have E_{i} and E_{j} as candidates for COBA. We write the results as follows:

Divisor	COBA	α_{x}
F	E_{i} or E_{j}	0
D_{i}	E_{j}	0
D_{j}	E_{i}	0
$D_{k}, k \notin\{i, j\}$	E_{i} or E_{j}	0

We can write the nef cone as $\operatorname{Nef}(X)=\Gamma_{i} \cup \Gamma_{j}$, where

$$
\begin{aligned}
\Gamma_{i} & =\left\langle F, D_{k}, D_{j}, D_{i}+D_{j}\right\rangle \\
\Gamma_{j} & =\left\langle F, D_{k}, D_{i}, D_{i}+D_{j}\right\rangle
\end{aligned}
$$

By Proposition 2.15, we know that E_{i} and E_{j} are both COBA for x with respect to $D_{i}+D_{j}$. So, by Theorem 2.14, E_{i} is COBA with respect to any divisor in Γ_{i} and E_{j} is COBA with respect to any divisor in Γ_{j}. We conclude the following table:

Divisor	COBA	α_{x}
$a_{0} F+a_{j} D_{j}+\sum_{k \neq i, j} a_{k} D_{k}+a_{i}\left(D_{i}+D_{j}\right)$	E_{i}	$a_{j}+a_{i}$
$a_{0} F+a_{i} D_{i}+\sum_{k \neq i, j} a_{k} D_{k}+a_{j}\left(D_{i}+D_{j}\right)$	E_{j}	$a_{i}+a_{j}$

