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Abstract 

 The field of lipidomics can further our understanding of the biochemical processes of 

human health and disease. Generally, lipidomics methods utilize high-performance liquid 

chromatography (HPLC) for lipid separation, followed by detection using tandem mass 

spectrometry (MS/MS). The joint use of HPLC and MS/MS has increased dramatically over the 

past few years, and novel technologies continue to increase the versatility and practical usability 

of various lipidomics methods. However, a lack of harmonized language, nomenclature and 

standardized analytical strategies can result in lipid misannotations, improper analyte 

identifications, and incorrect quantitative results. In this thesis, the importance of adopting 

appropriate analytical strategies to answer research hypothesis(es) will be highlighted. 

Specifically, this entails a comparison between analytical platforms and four HPLC-MS/MS data 

acquisition strategies for untargeted/global lipidomic profiling of highly-abundant lipids 

including phospholipids, triacylglycerols and cholesteryl esters in human whole blood. In 

addition, the advantages of targeted analytical approaches for the measurement of specific lipid 

classes will be examined through the development of a tailored method for the determination of 

regioisomers of lysophosphatidic acid in plasma (mouse), the acyl species of triacylglycerols in 

cooking oil (sunflower), and the acyl species of phospholipids in brain tissue (mouse). Finally, 

comprehensive profiling of various lipid classes in whole blood using a novel retention time-

based negative/positive ion mode switching method will be used to screen for potential blood 

biomarkers of omega-3 polyunsaturated fatty acid intake. This will include samples from a cross-

sectional dietary assessment study in humans, and an acute/chronic docosahexaenoic acid 

supplementation study in rats. The methods presented in this thesis have the potential to be 

expanded for use in agriculture, nutrition, research and clinical settings.  
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CHAPTER 1 

General Introduction 

 Lipids are involved in cellular structure and compartmentalization, energy storage, and 

signaling pathways [1]. Traditionally, fatty acid compositional data has been invaluable in our 

understanding of metabolism, as well as in characterizing how perturbations in lipid pathways 

are related to the onset and progression of various diseases [2-6]. However, the emergence of 

novel lipidomic measurements have enabled the elucidation of complex lipid structures in their 

naturally occurring states. The ability to monitor specific lipid molecules has the potential to 

provide more molecular information that could be of physiological relevance, rather than 

examining changes in gross fatty acid levels. The rapid growth of the field of lipidomics has 

been possible through the advent of high-resolution mass spectrometry, which has been essential 

in our ability to confidently measure individual lipid species and characterize biochemical 

processes [7-9]. Since the introduction of the term “lipidomics” in the mid-2000’s, the evolution 

of the field has also been accompanied by the emergence of new challenges pertaining to the 

standardization of common language and nomenclature, analytical methods, and data reporting. 

Various international initiatives have been established in order to address these issues and set 

guidelines for quality assurance and quality control [10-16]. However, there are large gaps in the 

literature that still remain. 

 Many of the challenges associated with lipidomic measurements stem from the 

exceptional diversity of the thousands of different molecules that can be classified as lipids 

within a cell, as well as their dynamic concentrations, which can span over several orders of 

magnitude [17, 18]. In many cases, lipids that are found in high abundance can be profiled using 

untargeted and generic methods that can be considered “macrolipidomics”. Conversely, lipids 
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that are part of the very-low abundance regime often require targeted and specialized methods 

for accurate and reliable identification and quantitation that can be considered 

“microlipidomics”. Thus, methods that are tailored for the analysis of a specific lipid class may 

not be suitable when measuring other lipid classes. Intra- and inter-laboratory comparisons using 

standard reference materials have identified a lack of consensus in lipidomic approaches and 

methods, and have emphasized the high variance that is associated with various lipidomic 

measurements [14, 16, 19]. 

 Several mass spectrometry platforms have previously been used for lipidomic analyses, 

but hybrid instruments including the quadrupole-orbitrap [20], quadrupole-time-of-flight [21], 

and triple-quadrupole mass spectrometers [22] are the most popular. Additionally, innovative 

data-dependent (DDA)/data-independent acquisition (DIA) and ion mobility methods have 

increased the versatility of lipidomic analyses. However, the advantages and pitfalls of these 

analytical strategies are still poorly understood. This thesis presents a systematic examination of 

analytical lipidomics methods. This includes a comparison between mass spectrometry platforms 

(quadrupole-orbitrap vs. quadrupole-time-of-flight), data acquisition modes (DDA vs. DIA) and 

a brief examination of ion mobility-mass spectrometry coupled to DDA. We found that the 

quadrupole-time-of-flight mass spectrometer was able to generate more data than the 

quadrupole-orbitrap mass spectrometer due to faster sampling frequencies. Additionally, higher-

quality data was consistently generated from the DDA methods as compared with DIA, and the 

use of ion mobility resulted in significant losses in sensitivity but did not provide any advantages 

in terms of data quality or reducing the frequency of false positive identifications. DDA-based 

methods were utilized in all subsequent macrolipidomic profiling studies in this thesis, but future 
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technological developments may allow DIA and ion mobility-based methods to be used to make 

meaningful contributions in untargeted lipidomics.  

 Sample preparation and sample introduction approaches can greatly influence analytical 

results. This can include sample extraction protocols, sample introduction techniques such as 

direct infusion versus chromatography-based methods, and ionization settings. The impact of 

different mass spectrometry-based workflows will be examined through the development of a 

targeted microlipidomic method for lysophosphatidic acid (LPA) regioisomers in plasma 

(mouse), a semi-targeted macrolipidomic method for cooking oils (sunflower oil), and a semi-

targeted macrolipidomic method for brain tissue (mouse striatum). Through the development of 

the targeted LPA profiling method, we demonstrated that measuring species from this lipid 

subclass requires a specialized lipid extraction protocol, and that chromatographic resolution of 

regioisomeric LPA species can be achieved using conventional-flow UHPLC. From the cooking 

oil and brain tissue experiments, we emphasized that semi-targeted methods can be optimized 

when the general lipid profile of a sample is known prior to analysis. This information can be 

used to generate high-quality data in a discovery-based approach. We then integrated features 

from both semi-targeted workflows to develop a retention time-based ionization polarity-

switching method to improve the characterization of fatty acyl-containing complex lipids in the 

blood macrolipidome in a single analytical run. This method was applied for the identification of 

novel blood biomarkers of omega-3 polyunsaturated fatty acid intake in 120 human whole blood 

samples from a dietary assessment project of the Danish National Food Institute. This is the 

largest human study assessing lipidomic biomarkers of omega-3 polyunsaturated fatty acid 

intake, and the only study to be completed in a population-based observational study. To confirm 

some of the observations from the human study, a rodent study (rat) was completed to examine 
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blood lipidomic responses after controlled acute and chronic dietary interventions with 

docosahexaenoic acid. The rodent study allowed us to identify potential acyl species of lipids as 

biomarkers of acute and chronic omega-3 polyunsaturated fatty acid intake. 
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CHAPTER 2 

Scientific Background 

2.1 Lipidomics 

 “Lipidomics”, is a rapidly growing discipline that has been fueled by technological 

developments in the separation sciences, specifically mass spectrometry (MS) and high-

performance liquid chromatography (HPLC) [23, 24]. Although the principles of MS have been 

adapted for the analysis of lipid molecules for several decades, the emergence of electrospray 

ionization (ESI)-mediated soft ionization applications in the early 1990’s propelled the 

expansion of the field by providing dramatic improvements in the versatility of MS-based lipid 

analyses. More recently, novel technologies have increased the sensitivity, resolution, mass 

accuracy and overall robustness of modern instruments and applications, allowing us to 

appreciate the vast structural diversity of lipid species and further our understanding of human 

disease.  

Over the past few years, these analytical advancements have coincided with an increased 

interest in the physiological roles of lipids in health and disease. As such, the ability to identify 

and quantify species of lipids within their lipid classes can provide metabolic insight into the 

roles of lipids in cellular structure and cell signaling, along with energy-storage. Sophisticated 

methods have been developed to characterize and elucidate the structure of discrete lipid species 

at the molecular level in disease states [25, 26], genetic knock-out models [27, 28], agriculture 

[29, 30], and food science and nutrition [31, 32]. New subdisciplines such as neurolipidomics 

and functional lipidomics have emerged [33, 34] that aim to answer more focused research 

hypotheses through targeted methodological approaches. While “targeted” methods often refers 

to the process of screening a sample for defined compounds by m/z ratios or diagnostic 
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fragments, “targeting” can include tailored extraction techniques [35-37], complementary multi-

dimensional separations [38, 39], and innovative ion separation and detection instruments [40, 

41]. Still, the core of lipidomics as an -omics field remains at the study and characterization of all 

of the molecular moieties that can be defined as lipids in their naturally-occurring state. 

To date, there exists a virtually unlimited number of MS-based applications employing 

different methodological approaches to answer specific research questions. The MS approach 

used can impact the data produced and has been defined in the literature as “levels of 

information” [31, 42]; this is discussed in detail below in Section 2.2. Analytical strategies used 

for lipidomics can generally be categorized as untargeted and targeted. In untargeted or 

discovery-based analyses, there may not be a specific a priori hypothesis, but rather an interest 

in capturing a global snapshot of the lipidome at a specific point in time. In this case, automated 

software packages can be used to identify and select compounds that are statistically different 

between experimental conditions. Untargeted lipidomic profiling generally utilizes exhaustive 

lipid extraction techniques and ESI coupled to full-scan MS and either data-dependent or data-

independent MS/MS on a variety of platforms [36]. Conversely, targeted analyses are 

hypothesis-driven and typically aim to profile a specific set of well-characterized analytes in the 

samples of interest [43, 44]. This generally entails tailored extraction techniques, the use of 

appropriate internal standards, and more elaborate MS or MS/MS methods such as selected ion 

monitoring, multiple reaction monitoring and neutral-loss scanning, which can only be done 

using a few types of hybrid MS platforms. 

Untargeted and targeted MS approaches influence the analytical workflow, from sample 

preparation choices, sample introduction and ionization techniques, analytical platforms and 

acquisition modes. Sample introduction can vary, but introduction by direct infusion or after 
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liquid chromatographic separation are the two main approaches, although the use of matrix-

assisted/laser-desorption ionization in increasing. These techniques are described in detail in 

Sections 2.3, 2.4 and 2.5, respectively. Finally, the manner in which a mass spectrometer 

acquires data can influence the results and how they can be interpreted. The most popular 

acquisition modes in lipidomics are single/multiple reaction monitoring, data-dependent or data-

independent acquisition, which are described in detail in Section 2.6. 

 

2.2 Levels of Lipidomic Information 

New challenges have also emerged with the evolution of the field, particularly relating to 

the standardization of language that can be used to easily describe, categorize and convey 

lipidomic information, as well as contrasting and translating published data [19, 45]. The term 

“lipidomics” is often used to describe the analysis and characterization of transient lipids that are 

natively found in low abundance and have highly bioactive and/or signaling properties [46-48]. 

In theory, “lipidomics” should refer to the comprehensive analysis of cellular lipidomes, which 

includes these low abundant lipids but also highly-abundant lipid species that play structural 

and/or energy-storing roles [19, 49, 50]. Recently, we introduced the terms “microlipidomics” to 

define the examination of lipids of low abundance and “macrolipidomics” to define the 

examination lipids of high abundance within a sample to quickly infer the analytical approach 

and define the experimental strategy [31].  

Another challenge with the language of lipidomics involves the ability to convey the 

level of molecular information known about a specific lipid. A shorthand notation system to 

describe lipids that encompasses different fatty acyl-chain lengths, degrees of unsaturation, 

regioisomeric configurations and carbon-carbon double-bond locations has been defined [51]. At 
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the most basic level, full-scan accurate mass data may be used to deduce the sum composition of 

a lipid molecule, which includes the lipid class followed by the total number of carbon atoms: 

number of carbon-carbon double bonds across all fatty acyl chains. For example, a lipid with an 

m/z ratio of 802.5604 has elemental composition C43H81NO10P and corresponds to the formate 

adduct ([M+formate]-) of PC 34:2 following ESI in the negative ion mode. This indicates that 

this specie is a phosphatidylcholine with fatty acyls that cumulatively have 34 carbon atoms and 

2 carbon-carbon double bonds. This has been defined previously as the “brutto” level of 

information [52, 53]. In addition to “brutto”, we have defined “medio”, “genio” and “infinio” 

levels of information [31, 42] to refer to increasing molecular information known about of 

specific fatty acyl-containing complex lipids (Figure 1). At the medio level, MS/MS spectra can 

be used to discriminate between isomeric species and recognize the fatty acyl chains. Medio 

requires MS/MS level diagnostic ions that correspond to specific acyl chains. For example, if 

16:0 (m/z 255.2330) and/or 18:2 (m/z 279.2330) are observed in the MS/MS spectra, the 

molecule previously defined as PC 34:2 at the brutto level could be defined as PC 16:0_18:2. 

The underscore denotes that the sn-1- and sn-2-regioisomeric configurations of the two acyl 

chains are not known. If these sn-1- and sn-2-regioisomeric configurations are known, this is 

indicated using a forward slash as PC 16:0/18:2, with sn-1 position first and the sn-2 position 

second. We have termed this regioisomeric level of information as the genio level. Genio 

information can be determined following the chromatographic separation of regioisomeric pairs, 

and the specific sn-glycerol fatty acyl configurations can be deduced by examining relative 

fragment ion intensities in MS/MS spectra [31, 54-56]. Finally, the infinio level of information 

relates to the most detailed characterization of a discrete lipid molecule by adding stereoisomeric 

configuration and carbon-carbon double bond positionality, for example PC 16:0/18:2 (9Z,12Z). 
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This type of information can be determined using more targeted approaches and novel 

fragmentation techniques such as ozone-induced dissociation [57], ion mobility [58, 59], and 

derivatization-dependent methods such as the Paternò–Büchi reaction [60]. Innovative methods 

are emerging [61, 62], which may allow for the simultaneous elucidation of structures from all 

lipid classes at the infinio level.  

 

2.3 Direct-Infusion Mass Spectrometry (Shotgun Lipidomics) 

Shotgun lipidomics refers to the analysis of complex samples by direct infusion of lipid 

extracts into the ionization source of a mass spectrometer, without prior chromatographic 

separation [7]. This technique relies on the intrinsic ability of lipid molecules belonging to 

different lipid classes to differentially ionize in the positive or negative ion modes. Specifically, 

this endogenous electric potential can be utilized to resolve individual lipid classes in the ion 

source, and individual molecular species can then be further discriminated by high-resolution 

mass spectrometry. One of the most appealing features of shotgun lipidomics is that it allows for 

the simultaneous acquisition of spectra from all lipid species at a constant concentration of the 

sample solution. This particular capability enables a limitless number of experiments to be 

performed using a constant analyte/solvent ratio, including numerous scanning and 

fragmentation techniques, collision energies, ionization voltages, etc., which makes this an ideal 

initial strategy for the development and optimization of methods for novel compounds. 

Additionally, the ability to acquire spectra and analyze lipid samples in just a few minutes makes 

shotgun lipidomics an optimal candidate for high-throughput applications [63]. 

One of the most prevalent challenges within shotgun lipidomics arises from the 

concurrent ionization of lipids from all lipid classes, which is the characterizing feature of this 
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technique. Notably, the presence of highly-ionizable lipids such as phosphatidylcholines (PC) 

and sphingomyelins (SM) can result in ionization suppression of species with lower electric 

potentials, causing significant decreases in sensitivity [64-66]. PC and SM are known to be 

present in high amounts in many biological samples as they are important components of cellular 

membranes [67, 68]. The quaternary nitrogen feature that these zwitterionic species possess 

allows them to generate intense cations as protonated molecular species by neutralizing the 

negative charge of the phosphate group (i.e., [M+H]+) and/or alkali-metal adducts (i.e., [M+Li]+, 

[M+Na]+, [M+K]+) following positive ESI. As such, PC and SM can exert strong inhibitory 

effects on molecules that are not easily ionized, including phosphatidylinositols (PI) and 

phosphatidylserines (PS), resulting in low ion intensities that could fall below the limits of 

detection. Furthermore, the deconvolution of isotopic contributions and the resolution of 

isomeric species using a direct-infusion approach can be a daunting and laborious task, 

especially in discovery-based experiments, and may require specialized MS instrumentation and 

software. Multi-dimensional MS-based strategies [69, 70], ion mobility technologies [71-74] and 

powerful software solutions [74-79] have emerged over the past few years in an attempt to make 

shotgun lipidomics more automated and increase its practical usability. 

 

2.4 Lipidomics Methods with Front-End Liquid Chromatography Separations 

As with mass spectrometry, the development of novel technologies for liquid 

chromatography (LC) has been crucial in our ability to characterize and quantitate cellular 

lipidomes for two particular reasons. Firstly, analyte separation by HPLC prior to sample 

introduction into the ionization source of a mass spectrometer circumvents many of the 

challenges that are typically encountered with direct-infusion approaches. The unmatched 
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robustness and versatility of chromatography have been shown to be critical in the resolution of 

acyl-isomers, regioisomers and stereoisomers using a variety of commercially-available columns 

and solvent systems [80, 81]. Secondly, the introduction of ultra-high performance liquid 

chromatography (UHPLC) and nano-flow LC methods have made it possible to achieve 

unprecedented levels of sensitivity, with some reporting limits of detection at the attomole-

zeptomole level (i.e., 10-18 to 10-21 mole) [82-84]. As such, microlipidomic studies for the 

targeted characterization of lipids that are natively found in very low abundance remains a feat 

that only LC-based methods can accomplish. 

 Most HPLC- and UHPLC-based lipidomic methods utilize reversed-phase C18 columns 

and aqueous mobile phases, which results in analyte partitioning based on the degree of non-

polarity of particular lipid classes [85]. This is dictated by the hydrophobic nature of different 

lipid species, considering the number of fatty acyl constituents (i.e., monoacylglycerols vs. 

diacylglycerols vs. triacylglycerols), fatty acyl chain lengths and degrees of unsaturation, and 

phospholipid head group composition. In some cases, specific reversed-phase methods have also 

been shown to have the ability to resolve lipid species by sn-glycerol regioisomeric 

configurations [31, 54, 86]. A representative full-scan total ion chromatogram from a reversed-

phase UHPLC-MS run is shown in Figure 2, indicating the approximate retention times for the 

major lipid classes in human whole blood. More specialized methods also exist, and use tailored 

configurations of columns with different C18 chemistries and bond phases that change the 

selectivity of the analysis. Some examples of this will be shown in Chapter 6. The second most-

popular type of modern LC-based methods for lipidomics involves the use of hydrophilic 

interaction liquid chromatography (HILIC), which enables the separation of lipids based on their 

hydrophilic properties, i.e., by lipid class rather than by number and type of fatty acyl chains 
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[87]. HILIC is a variant of normal-phase LC, but utilizes a semi-aqueous mobile phase system 

similar to what is used in reversed-phase LC. Consequently, as compared with normal-phase LC, 

HILIC run times are significantly shorter, there is less back-pressure which allows for higher 

mobile phase flow rates, and the avoidance of organic solvents such as chloroform and hexane 

allow HILIC use with most UHPLC systems. HILIC is traditionally used for the separation of 

highly polar metabolites such as sugars, peptides and nucleic acids [88-91], providing modest 

increases in sensitivity relative to what is typically seen using reversed-phase LC [92]. Although 

reversed-phase methods appear to provide the highest separation efficiency as compared with 

HILIC due to the higher hydrophobic content of the lipidome [93], it is often argued that there is 

still value in the use of HILIC in lipidomics for the separation of lipids based on their 

hydrophilic properties (i.e., by lipid class). By column elution over narrow timeframes, all of the 

species that belong to the same lipid class experience similar degrees of matrix- and ionization-

suppression effects, allowing for the use of single internal standards per lipid class for peak area 

normalization and quantitation [94]. While HILIC may provide some advantages in specialized 

subdisciplines such as phospholipidomics [95], the resolution of organic lipids such as 

triacylglycerols and cholesteryl esters can be particularly challenging due to poor retentivity and 

early coelution near the void volume [96]. Furthermore, the need for dedicated software capable 

of performing isotope-overlap correction algorithms [97, 98] and the difficulty in deconvoluting 

isomeric species can limit the amount of lipidomic information that can be derived from HILIC-

based methods [93].  

 Finally, the use of two-dimensional LC has increased in lipidomics, where orthogonal 

chromatographic techniques can be integrated by using two complimentary columns of different 

chemistries to separate the analytes of interest based on multiple physical and chemical 
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properties [99]. In this sense, both reversed-phase and HILIC columns can be connected in 

tandem, in parallel, or used offline to obtain two dimensions of separation, one which works on 

the hydrophilic (HILIC) and one on the hydrophobic (reversed-phase) properties of different 

lipids. While comprehensive two-dimensional LC can be used to generate remarkable amounts 

of data from cellular lipidomes, the need for costly state-of-the-art instrumentation have limited 

the widespread adoption of this technique by the lipidomics community thus far. Other 

specialized two-dimensional LC methods have also been reported and utilize a wide range of 

combinations of column technologies including normal-phase [100], reversed-phase [101], 

silver-ion [102], ion exchange [103], size-exclusion [104], HILIC [105] and chiral columns 

[106].  

 

2.5 Matrix-Assisted/Laser-Desorption Ionization (MALDI) and Lipidomics 

 MALDI is a soft ionization technique that has been widely used in the proteomics field 

since the 1980s for the analysis of peptides and proteins that are difficult or impossible to ionize 

using conventional ionization techniques such as ESI [107, 108]. The versatility of MALDI has 

been more recently applied in lipidomics, enabling high throughput lipid analyses with little 

sample preparation [109-111], and the ability to visualize the spatial distribution of specific lipid 

species in biological tissues by imaging [112, 113]. One of the features that differentiate MALDI 

from other ionization techniques is the ability to use dry or solid samples. The sample is first 

mixed and cocrystallized with a ultra-violet (UV) absorbing matrix that enables the desorption 

and ionization of the analytes of interest upon irradiation with a UV laser [114, 115]. Following 

ionization, analyte ions in the gas phase are accelerated through an electric field and are 

separated based on their mass-to-charge ratios (i.e., m/z) typically using Time-of-Flight (ToF) 
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technology [116, 117]. Full-scan MS spectra can be acquired from dried target spots on a 

MALDI plate following a laser blast, similar to what is obtained from shotgun lipidomic 

analyses. Due to this, some of the limitations that were discussed regarding direct-infusion ESI in 

Section 2.3 are also frequently observed in MALDI-based analyses, namely the ionization 

suppression effects of highly-ionizable species and the extensive convolution and overlap of 

isomeric species [118, 119]. Furthermore, the resolving power and mass accuracy of many 

MALDI-ToF instruments is relatively poor compared to some of the best mass spectrometers 

that are currently available [120, 121]. Nevertheless, its exceptional speed, unmatched potential 

for automation, and high quantitative abilities have made MALDI an invaluable tool in lipidomic 

discovery and screening applications [111, 122-124]. The ability to analyze solids through 

MALDI has also enabled MALDI-based mass spectrometry imaging, which enables the 

localization of specific lipids within a thin tissue section [125]. 

 

2.6 Collecting Lipidomic Data: Common Targeted and Untargeted MS Acquisition Modes 

There are many mass spectrometry-based approaches that can be used to obtain lipidomic 

data, encompassing various acquisition modes and ion fragmentation strategies. Most modern 

mass spectrometers have MS/MS capabilities. This can offer various advantages depending on 

the technology and vendor platform, but the decision of the type of mass spectrometer to be used 

should be based primarily on the desired research outcome (i.e., accurate quantitation or 

structural elucidation).  

In targeted analyses, triple-quadrupole mass spectrometers are widely regarded as the 

gold-standard instrument for quantitation [126]. These instruments typically acquire data using 

selected-reaction monitoring (SRM) or multiple-reaction monitoring (MRM) methods, which 
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offer the highest sensitivity. In SRM and MRM, the first quadrupole serves as a mass filter for 

the m/z ratio of the precursor ion, collision-induced dissociation then takes place in the collision 

cell (second quadrupole), and the m/z ratio(s) or neutral losses of defined fragment structures are 

monitored by the third quadrupole. While most mass spectrometry vendors have developed their 

own triple quadrupole technologies, these instruments provide nominal mass data (integer 

precision) and are not capable of high resolution/accurate mass (HRAM) analyses. This can 

severely reduce the certainty with which unknown compounds are characterized, and limits the 

usability of this type of instrument in discovery-based analyses.  

Orbitrap and Time-of-Flight (ToF) mass spectrometers offer HRAM capabilities, with 

resolving power greater than 10,000 and up to 500,000 on some of the newest platforms, as well 

as sub-ppm mass accuracy [127]. Orbitrap mass analyzers generate HRAM data by trapping ions 

and acquiring multiple measurements of their harmonic oscillation frequencies across rotational, 

axial and radial axes around a central spindle. Mathematical transformations are then applied to 

these data to generate m/z values [128]. In ToF instruments, m/z ratios are generated based on the 

amount of time that ions spend in the gas phase after they are accelerated towards the detector 

using discrete amounts of kinetic energy. Separation then takes place based on the molecular 

weight (i.e., m) and charge state (i.e., z), of different ions, where low molecular weight and 

multiply-charged species travel faster. ToF instruments have unmatched scanning speeds, but 

orbitraps generally have much higher resolving power. HRAM facilitates proper annotation of 

lipid species as the large number of molecules with isobaric nominal masses in complex lipid 

samples can be discriminated by differences in their accurate masses. Untargeted analyses can be 

completed using these instruments by integrating full-scan HRAM data with MS/MS. This 

results in the confident determination of the elemental make-up and medio-level (or higher) 
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composition of fatty acyl-containing complex lipids, while circumventing some of the challenges 

associated with the resolution of isomers that were discussed in Section 2.2. With HRAM, there 

are several ways in which MS/MS spectra can be obtained, depending on the platform, software, 

and acquisition modes that are available. In addition to the targeted SRM and MRM techniques, 

these instruments can acquire data using untargeted approaches. Generally, these can be 

categorized as data-dependent (DDA) or data-independent acquisition (DIA) methods.  

In DDA, top-n experiments can be defined where n is an integer that relates to the 

number of MS/MS ions that are sequentially filtered by the quadrupole and fragmented in the 

collision cell, starting with the most intense ion in the full-scan spectrum (i.e., the base peak) 

followed by the ion with the second highest intensity, then the third, etc. Inclusion/exclusion lists 

and dynamic exclusion settings are also widely implemented to enable the system to acquire 

MS/MS spectra for as many analytes as possible while limiting the unwanted selection of intense 

background ions. DDA is a powerful technique that can help in the characterization of 

macrolipidomes due to its bias towards highly-abundant ion species. With microlipidomics, 

untargeted DDA profiling can be particularly challenging when the precursor ions are not in the 

top n most intense ions of an MS survey scan at a given point in time, as they will not be filtered 

and fragmented to generate MS/MS data. While n can be set as any integer ≥ 1 (and typically 

≤ 30), DDA-based methods that utilize HPLC or UHPLC are limited with regards to the number 

of MS/MS scans that can be obtained in between full-scan MS survey scans. This is due to short 

compound elution times and narrow peak widths. Additionally, as the n is set at higher values, 

the frequency of MS survey scans decreases (i.e., individual scans are further apart in the 

chromatogram), which can cause aliasing of the MS survey trace, resulting in inaccurate 

quantitation. 
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Recently, DIA has been introduced by several MS vendors due to its ability to fragment 

all of the ions within a survey scan, including those of low intensity, without pre-selection or 

discrimination by a quadrupole mass filter [129-132]. This is achieved by allowing all of the ions 

within an MS survey scan to enter the collision cell to generate fragment ions for every precursor 

ion that is present. Alternating low-energy (i.e., MS survey) and high-energy (i.e., MS/MS) ion 

traces can then be processed and deconvoluted using time-matching algorithms, allowing product 

ions to be linked to their parent species based on their chromatographic retention times. In 

principle, DIA-based methods are an excellent solution for the untargeted analysis of low-

abundant lipid species. In practice, however, the exceptional diversity of many biological 

samples renders the complete chromatographic resolution of structurally-similar lipids virtually 

impossible, resulting in considerable co-elution and the inability to match precursor and 

fragment ions by retention time with confidence. Newer technologies that incorporate ion 

mobility separations have been developed, notably the Sciex Lipidyzer Platform and Waters 

Travelling-Wave Ion Mobility feature which can be incorporated into SRM, MRM, DIA and 

DDA-based methods [133]. These technologies exploit the size, shape, charge and/or mass of 

compounds to provide an additional dimension of separation, which has the potential to increase 

the number of discrete lipid species that can be identified [71, 134-137]. 
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Figure 2. Total ion chromatogram from a UHPLC-MS/MS run of a human whole blood lipid 
extract sample. The approximate elution times of the major lipid classes in blood are shown. 
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CHAPTER 3 

General Methods and Materials 

3.1 Chemicals and Materials 

 All solvents, including chloroform, methanol, isopropanol, n-butanol, acetonitrile and 

hexane (HPLC grade or higher) were purchased from Thermo-Fisher Scientific (Napean, ON, 

Canada). Citric acid, disodium phosphate, ammonium formate, formic acid, and 14% BF3 in 

methanol were purchased from Sigma-Aldrich (Oakville, ON, Canada). All lipid standards used 

for peak area normalization were purchased from Avanti Polar Lipids (Alabaster, AL, USA). 

 

3.2 Instrumentation 

 UHPLC-MS/MS was completed using two analytical platforms. A Dionex UltiMate 3000 

UHPLC system (Dionex Corporation, Bannockburn, IL, USA) coupled to a Thermo Q-Exactive 

Quadrupole-Orbitrap mass spectrometer (QE; Thermo-Fisher Scientific, Waltham, MA, USA) 

and a Waters Acquity UPLC system coupled to a Waters Synapt G2Si Quadrupole-Time-of-

Flight mass spectrometer (QToF; Waters Corporation, Milford, MA, USA). The column used 

was a Waters Acquity UPLC Charged Surface Hybrid (CSH) 1.7 µm x 2.1 mm x 150 mm, unless 

stated otherwise. 

 

3.3 Lipid Extraction 

 In general, lipids were extracted from samples (whole blood, sunflower oil, brain tissue) 

using a modified Folch-based protocol [138]. Briefly, samples were mixed with 3 mL of 2:1 

chloroform/methanol (v/v) which contained the internal standard(s). This was followed by 

vigorous vortexing for 1 min, the addition of 500 µL of 0.2 M NaH2PO4 buffer, inversion, and 
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centrifugation at 1734 rcf at room temperature for 5 min. The organic layer was carefully 

extracted and saved, and 2 mL of chloroform were added to the remaining aqueous phases. The 

samples were vortexed and centrifuged, and the organic layer was again carefully extracted and 

combined with the first set of extracts. Samples were dried under N2 gas and stored in 

chloroform at 4 ºC until analysis. Prior to analysis by UHPLC-MS/MS, the samples were 

evaporated again, and lipids were solubilized in 100 µL of the reconstitution solvent (65:35:5 

acetonitrile/isopropanol/water (v/v/v) +0.1% formic acid). 

 

3.4 Untargeted Macrolipidomics of Biological Samples by UHPLC-MS/MS 

UHPLC was performed using a multi-step reversed-phase gradient described previously 

[31, 36]. The mobile phase consisted of (A) 60:40 acetonitrile/water (v/v) +10 mM ammonium 

formate +0.1% formic acid, and (B) 90:10 isopropanol/acetonitrile (v/v) +10 mM ammonium 

formate +0.1% formic acid. The multi-step gradient used was as follows: solvent B was 32% 

from 0-1.5min, followed by a linear increase to 45% B from 1.5-4 min, 50% B from 4-8 min, 

55% B from 8-18 min, 60% B from 18-20 min, 70% B from 20-35 min, 95% B from 35-40 min, 

95% B from 40-45 min, a decrease to 32% B at 45.1 min and a hold at 32% B until the 48 min 

mark. The flow was 250 µL/min, column compartment temperature was 45 ºC, autosampler 

temperature was 4 ºC, and the injection volume was 5 µL. The QE and QToF mass spectrometers 

were operated in positive and/or negative ESI modes, detailed methods for the various 

experiments in this thesis are presented in the appropriate Chapters. 
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3.5 Fatty Acid Analysis by Gas Chromatography-Flame Ionization Detection 

 Fatty acid analyses were completed by gas chromatography of fatty acid methyl esters 

(FAME) [139]. Lipid extracts (obtained as described in Section 3.3) were dried fully under a 

gentle stream of N2 gas, followed by the addition of 1.0 mL of 14% BF3 in methanol and 300 µL 

of hexane. The samples were capped, vortexed for 1min, and placed in a heating block at 95 ºC 

for 1hr to generate FAME. Samples were then cooled to room temperature, and 1 mL of double-

distilled ultra-pure water (ddH2O) and 1 mL of hexane were added, followed by vigorous 

vortexing for 1min and centrifugation at 1734 rcf for 5 min. The hexane layer, which contained 

the FAME, was collected and evaporated under N2 gas. The FAME were then resuspended in 

65 µL of heptane and were stored in vials until analysis. The FAME were analyzed by gas 

chromatography-flame ionization detection using a Varian 3900 gas chromatograph equipped 

with a DB-FFAP 15 m x 0.1 mm x 0.1 µm film thickness nitroterephthalic acid-modified 

polyethylene glycol capillary column (J&W Scientific from Agilent Technologies, Mississauga, 

ON, Canada). Hydrogen was used as the carrier gas at a flow rate of 0.5 mL/min with a split ratio 

of 100:1. The inlet was heated to 250 ºC and the flame ionization detector was heated to 300 ºC 

with an air flow rate of 100 mL/min, hydrogen flow rate of 30 mL/min, and nitrogen make-up 

gas flow rate of 25 mL/min. The detector sampling frequency was set at 50 Hz. The initial oven 

temperature was 150 ºC with a hold for 0.25 min, followed by a 35 ºC/min ramp to 200 ºC, at 

8 ºC ramp to 245 ºC and a hold at 245 ºC for 15 min. Peaks were identified by comparison of 

retention times to an external standard mix (GLC-462, Nu-Chek Prep, Elysian, MN, USA). 
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3.6 Data Handling, Automated Lipid Identifications and Statistical Analyses 

 Peak areas from QE-based analyses were integrated using the Thermo Xcalibur 

QualBrowser software (version 2.1; Thermo-Fisher Scientific, Waltham, MA, USA), while peak 

areas from QToF-based analyses were integrated using MassLynx software (version 4.1; Waters 

Corporation, Milford, MA, USA). Peak areas were normalized by comparison to the area under 

the curve for the internal standard(s). Automated lipid identifications were made with SimLipid 

software (version 6.02; PREMIER Biosoft, Palo Alto, CA, USA) using 0.1 Da and 10 ppm 

precursor and product mass tolerances, respectively. Progenesis QI software (version 2.3; 

Nonlinear Dynamics, Waters Corporation, Milford, MA, USA) was also used for automated 

compound identifications using 25 ppm and 5 ppm precursor and product mass tolerances, 

respectively, with the ChemSpider [140] and LipidBlast [141] databases. One-way ANOVAs 

and bi-variate Pearson correlations were completed using SPSS for Windows software (release 

11.5.1; SPSS Inc. Chicago, IL, USA), Principal Component Analysis (PCA) was completed 

using Progenesis QI software. 
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CHAPTER 4 

Rationale 

Technological advancements in mass spectrometry have enabled the development of 

sophisticated methods for targeted and untargeted lipidomic profiling, as well as the 

development of extensive spectral libraries for the identification of tens of thousands of lipid 

molecules. This has allowed us to better understand and characterize physiological mechanisms 

that influence human disease. However, the expansion of the field has also resulted in the 

emergence of several new challenges pertaining to the spectra that is obtained from mass 

spectrometry-based analyses, as well as the manner in which data are handled and interpreted. In 

this thesis, special attention will be drawn to particular challenges related to the targeted and 

untargeted analyses of various sample types. Instrument selection and settings, data acquisition 

methods, collection preparation and introduction of different types of samples into the mass 

spectrometer, and interpretation approaches for determining nutritional biomarkers will be 

examined. Critical differences between various methodological workflows and how they are 

appropriate to the research question and sample will be highlighted. 

In the first study, the impact of two different HRAM analytical platforms and four 

untargeted data acquisition modes on the lipidomic profile of human whole blood will be 

contrasted to assess the feasibility of macrolipidomic profiling for biomarker screening. Human 

whole blood was chosen as it contains a wide spectrum and mix of lipid classes. This will 

include an evaluation of a novel DIA method and the utility of ion mobility separation using 

traveling-wave technology, but also an assessment of the abilities of automated software for data 

processing. In the second study, the ability to perform targeted microlipidomic analyses on an 

HRAM instrument to support mechanistic research will be examined. Specifically, levels of 



 25 

lysophosphatidic acid, an endogenously-synthesized lipid signaling molecule that is relatively 

polar will be determined in mouse plasma. In the third study, macrolipidomic approaches to 

profile plant oils and mouse brain samples will be developed. These sample types are different in 

lipid content with plant oils being largely nonpolar lipids such as triacylglycerols, and brain 

tissue consisting mainly of polar lipids such as glycerophospholipids. Lipidomic profiling of 

plant oils has potential applications in the food industry for verification of authenticity of types 

of oils [142]. It is also well known that lipid composition of the brain impacts function and is 

implicated in neurodegeneration [143, 144], therefore, lipidomic profiling has tremendous 

potential for understanding brain lipid metabolism. Finally, these methods will be applied to 

discover novel blood biomarkers for the dietary intake of omega-3 polyunsaturated fatty acids. 

This will include an examination of human whole blood samples and dietary intake data from a 

Danish cohort, and blood samples from rats under tight dietary control with and without 

docosahexaenoic acid (DHA) for different lengths of time. Specific objectives and hypotheses 

will be presented at the beginning of each project Chapter. 
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CHAPTER 5 

A Cross-Platform and Cross-Acquisition Method Comparison for the Macrolipidomic 

Analysis of Human Whole Blood 

5.1 Objectives 

The ability to identify lipids using automated computer solutions is critical for the future 

of untargeted macrolipidomic profiling. Commercially-available software packages can match 

experimental data to extensive spectral libraries [75, 133, 141, 145, 146]. However, different 

instruments and settings within an instrument employing different separation and detection 

technologies that influence the ions generated in MS and MS/MS spectra, which differentially 

impacts the number and quality of lipid identifications by automated software [147]. Although 

there are some reports of cross-platform and inter-laboratory comparisons for lipidomic and 

metabolomic profiling [19, 148-152], a systematic examination of the advantages of ion mobility 

in untargeted lipidomic profiling by UHPLC-MS/MS on different analytical platforms for fatty 

acyl-containing complex lipids has not been completed. 

The purpose of this study was to examine the total number and quality of positive lipid 

identifications in human whole blood samples across different HRAM MS platforms and 

acquisition modes using automated identification software. Specifically, a Quadrupole/Orbitrap 

mass spectrometer (QE) and a Quadrupole/Time-of-Flight mass spectrometer (QToF) were used. 

Data dependent acquisition (DDA) was possible on both instruments, the QToF instrument is 

also capable of ion mobility separations (annotated as HD for “high-definition”) as well as data-

independent acquisition (DIA). Preliminary experiments on the QToF revealed that HD 

separation was critical for DIA mode. Therefore, QE data-dependent acquisition (QE DDA), 

QToF data-dependent acquisition (QToF DDA), QToF high-definition data-dependent 
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acquisition (QToF HD-DDA) and QToF high-definition data-independent acquisition (QToF 

HD-DIA) were examined. Whole blood was selected as the reference sample due to its 

comprehensive complex lipid profile and the potential in biomarker discovery through dried 

blood spot screening and analysis. 

 

5.2 Hypotheses 

1. Based on the faster scanning capabilities of the QToF instrument, more MS/MS spectra 

will be acquired, resulting in a higher number of lipid identifications as compared with 

the QE. 

2. The use of ion mobility in the QToF HD-DDA method will result in the identification of 

a higher number of lipid species as compared with the QToF DDA method. 

3. The unbiased QToF HD-DIA method will generate the highest number of lipid 

identifications using automated software as compared with the QE DDA, QToF DDA 

and QToF HD-DDA and methods. 

 

5.3 Methods and Materials 

 In order to minimize the potential effects of other variables, protocols for sample 

collection, lipid extraction and chromatographic separation by UHPLC were kept identical. 

Based on the technological differences between the QE and QToF mass spectrometers, some 

initial differences were expected, including linear dynamic ranges, limits of 

detection/quantitation, and detector saturation thresholds. Due to this, some preliminary 

experiments were completed in order to assimilate MS and MS/MS spectra between the two 

platforms, which included optimizing sample dilution factors and ESI voltages. 
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5.3.1 Sample Collection and Lipid Extraction 

This study received ethics clearance from the University of Waterloo Office of Research 

Ethics. Venous blood was obtained by a phlebotomist from the antecubital vein of the volunteer 

study participant (26-year-old healthy male) into ethylenediaminetetraacetic acid-lined 

vacutainers. The samples were inverted gently on a rocker for 10min and aliquots (500 µL) were 

saved in cryovials at -80 ºC until lipid extraction. Lipids were prepared from 16 technical 

replicate samples (20 µL aliquots of whole blood each) as explained in Section 3.3, with 

500 pmol of the internal standard (diheptadecanoyl phosphatidylcholine; PC 17:0/17:0) added to 

each sample. Four samples each were allocated for four different acquisition analysis modes 

described below. 

 

5.3.2 UHPLC-MS/MS Conditions and Data Handling 

 Technical replicate whole blood lipid extract samples were analyzed using identical 

UHPLC conditions on the Waters Acquity UPLC and Dionex UHPLC systems, using the multi-

step mobile phase gradient described in Section 3.4 and the Waters Acquity UPLC Charged 

Surface Hybrid (CSH) 1.7 µm x 2.1 mm x 150 mm column, equipped with a VanGuard CSH 

1.7 µm pre-column (Waters Corporation, Milford, MA, USA).  

Tandem mass spectrometry was completed using four data acquisition strategies in order 

to examine the effect that different analytical platforms and data acquisition modes may have on 

the quality of MS/MS spectra. The four conditions were: (1) QE DDA for top-5 ions with a 

± 1.0 Da isolation window and used a normalized collision energy of 17.5 units; (2) QToF DDA 

for top-5 ions with a ± 1.0 Da isolation window, scan frequency of 0.1 s and transfer cell 

collision energy ramps of 20 V to 30 V at low mass (m/z 50) and 30 V to 50 V at high mass (m/z 
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1000) ; (3) QToF HD-DDA for top-5 ions using the same isolation window and collision energy 

settings as in QToF DDA ; and (4) QToF HD-DIA with scan frequency 0.2 s, transfer cell 

collision energy ramp of 20 V to 50 V. For the QE experiment, the mass spectrometer (Thermo 

Q-Exactive) was operated in positive ESI mode, spray voltage 2.5 kV, 35,000 resolution in MS 

and 17,500 resolution in MS/MS, scan range m/z 70 to 1000, sheath gas flow rate 35 and 

capillary temperature 300 ºC. All spectra were lock mass-corrected using di-isooctyl phthalate 

(m/z 391.28429) which was present in the mobile phase. For the 3 QToF experiments, the mass 

spectrometer (Water Synapt G2Si) was operated in positive ESI mode, spray voltage 2.5 kV, 

high-resolution mode (continuum; approximately 55,000 resolution in HD, 42,000 resolution in 

non-HD), scan range m/z 50 to 1000, scan time 0.2 s/scan, cone voltage 40 V, cone gas flow 

100 L/hr, desolvation gas flow 600 L/hr, nebulizer gas flow 7.0b ar, source temperature 140 ºC, 

desolvation temperature 400 ºC. All spectra were lock mass-corrected using a dedicated ESI 

spray that infused a 0.2 µg/mL solution of leucine enkephalin (m/z 556.2771) in 1:1 

acetonitrile/water (v/v) +0.1% formic acid.  

Automated lipid identifications were made using SimLipid software for each of the four 

data acquisition strategies, using the search parameters described in Section 3.6. Consensus 

identifications within each of the four data acquisition strategies were determined using custom 

rule-based algorithms (if/then conditional statements) in Microsoft Excel (version 16.14; 

Microsoft Corporation, Redmond, WA, USA). Repeated analyte hits were collapsed into a single 

identification by data-sorting based on lipid confirmation names and fragmentation scores, then 

removing redundant features to generate harmonized lists of compounds. The quality of lipid 

identifications was assessed by determining the number of observed fatty acyl fragments within 

MS/MS spectra for all lipids. If only some fragments were observed (e.g., only 1 acyl fragment 
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for diacylglycerophospholipids), the other acyl chain(s) were deduced mathematically by mass 

subtraction using the m/z ratio of the precursor ion. If all fragments were observed (e.g., 2 acyl 

fragments for diacylglycerophospholipids), these species were labelled as Full-Acyl 

Identifications (FAID). Analyte abundances were determined by adding the absolute intensities 

of all fragment ions within individual MS/MS scans. Relative-quantitative abundances were 

generated by normalizing all analyte summed ion values by the summed ion value of the internal 

standard (PC 17:0/17:0). The quantitative abilities of the four methods were assessed by 

converting normalized analyte abundances into Log2-transformed values. 

 

5.4 Results 

5.4.1 Number and Quality of Lipid Identifications and the Effect of HD on MS/MS Spectra 

 There were 678 identifications made with the QE DDA method, including 240 

glycerophospholipids, 5 cholesteryl esters, and 433 triacylglycerols (TAG) (Table 1). There were 

substantially more lipid identifications made with the QToF HD-DDA (1,695) and QToF DDA 

(1,258) methods, but only815 lipids that were identified using the QToF HD-DIA method. Of 

these, there were only 344 species that were identified in consensus across all four methods. 

Using the QToF HD-DDA method, a larger number of triacylglycerols were identified (906) as 

compared with the QToF DDA method (474), as well as a higher number of 

phosphatidylethanolamines (250 in QToF HD-DDA vs. 108 in QToF DDA) and a lower number 

of phosphatidylcholines (500 in QToF HD-DDA vs. 646 in QToF DDA). Upon closer 

examination, it was apparent that the intensity of precursor ions (for example m/z 876.8024 for 

TAG 16:0_18:1_18:1 in Figure 3) was much higher in MS/MS spectra from the QToF HD-DDA 

method (Figure 3C) as compared with spectra from the QToF DDA method (Figure 3B) 
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suggesting less fragmentation. Similarly, glycerophospholipid MS/MS spectra from the QToF 

HD-DDA method showed much higher intensities of precursor ions as compared with spectra 

from the QToF DDA method (spectra not shown).  

 The QToF DDA method produced the highest number of total lipid identifications with 

FAID with 432; there were only 238 lipids with FAID from the QE DDA 280 from QToF HD-

DDA, and 201 from QToF HD-DIA method (Figure 4). The QToF DDA method had the highest 

number of total phospholipids (77) and triacylglycerols (355) with FAID as compared with the 

other methods. The three DDA-based methods had the highest level of agreement as similar 

proportions of lipids with FAID were identified (approximately 20% of total identifications were 

phospholipids, 80% were triacylglycerols). However, the QToF HD-DIA method was 

particularly ineffective at making phospholipid FAID confirmations (only 3% of total 

identifications). Furthermore, 77 consensus species were found with FAID between QE DDA, 

QToF DDA and QToF HD-DDA, but this number dropped to 49 when the QToF HD-DIA 

method was included (Table 2). This included 46 triacylglycerols, only 2 

lysophosphatidylcholines and 1 phosphatidylethanolamine. 

 

5.4.2 Differences in DDA Spectra between MS Platforms & Method Quantitative Potentials 

 The fragmentation behaviour of all lipids was similar between the QE DDA and QToF 

DDA methods. Ions in the low mass range (i.e., < m/z 200) were moderately more intense in the 

QToF DDA spectrum (Figure 3B) as compared with QE DDA (Figure 3A), and the intensity of 

precursor ions was moderately lower in QToF DDA spectra (approximately 1% of the base peak 

ion) as compared with QE DDA (approximately 5% of the base peak ion). Although the quality 
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of MS/MS spectra between these two methods was similar, the QToF DDA method produced 

77,404 individual MS/MS scans while the QE DDA method only produced 54,754. 

 Log2-transformed normalized abundances of the 49 consensus FAID species were similar 

between the three DDA methods (QToF HD-DDA, QToF DDA, QE DDA), but they were not in 

agreement with data from QToF HD-DIA method (Figure 5). Inter-sample variability was 

measured at < 5% for all four methods by comparison of normalized peak areas. 

 

5.5 Discussion 

 There are many variables that can affect the behaviour and detection of lipids from 

biological samples in UHPLC-MS/MS-based analyses, including various sample preparations, 

the utilization and type of chromatographic separations, ion creation, separation, fragmentation 

and detection techniques, and compound identification software solutions. Within our four 

different mass spectrometry-based strategies, there were comparisons between platforms (QE vs. 

QToF), MS/MS acquisition modes (DDA vs. DIA) and analyte ion separations in the gas phase 

with or without ion mobility (DDA vs. HD-DDA).  

 Only minor differences were visible between QToF DDA and QE DDA spectra which 

was somewhat surprising. However, the higher number of total identifications with FAID by 

QToF DDA versus QE DDA may be explained by the much faster sampling frequency of the 

QToF. The increased identifications appear to be a result of the acquisition of over 22,000 

additional MS/MS scans with the QToF, which is in agreement with the first hypothesis.  

 The QToF HD-DDA method resulted in the highest number of raw identifications, but 

the QToF DDA method generated the highest quality data, as determined from the high number 

of lipid confirmations with FAID. The lower number of species with FAID in the QToF HD-
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DDA method was associated with lower intensity of product ions in MS/MS scans. Interestingly, 

the ion mobility (QToF HD-DDA) appeared to have a dampening effect on the amount of energy 

that was actually applied in MS/MS mode as compared with the non-HD method (QToF DDA), 

despite having set the collision energy ramps in both methods at the same voltages. This was 

suggested by the higher intensity of precursor ions in MS/MS spectra from the QToF HD-DDA 

method (Figure 3C and 3B for QToF HD-DDA and QToF DDA, respectively). This behaviour 

may be due to the utilization of He and N2 gases in HD-mode, which are necessary for ion 

mobility separations [153]. When a specific collision energy voltage is set in a gas-filled region, 

some portion of this energy is lost due to non-fragment-inducing collisions with the collision 

partner (in this case Argon), resulting in less energetic collisions of analytes in the transfer cell 

(i.e., less fragmentation of precursor ions). Additionally, some N2 from the ion mobility cell can 

leak into the collision cell, producing in an Ar/N2 mixture that would result in the deposition of 

less internal energy in precursor ions through the collision-induced dissociation process [154, 

155]. This phenomenon also appears to be dependent on molecule type, structure, charge, size 

and mass [155], which may explain the inconsistencies that were observed in the number of lipid 

identifications of different lipid classes that were made between both methods (i.e., higher 

triacylglycerols & phosphatidylethanolamines, lower phosphatidylcholines in QToF HD-DDA as 

compared with QToF DDA). These ion “cooling” effects have not yet been fully characterized, 

and a correction factor that can be used to provide the same amount of kinetic energy to all 

precursor ions in the collision cell in HD and non-HD methods does not exist for this platform. 

In regard to the second hypothesis, it appears that ion mobility may increase the number of 

identifications, but additional experiments examining increased collision energies appear to be 
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required to determine if meaningful MS/MS spectra can be generated to confirm the 

identifications at the FAID level. 

 The QToF HD-DIA method resulted in a remarkably low number of identifications 

relative to the QToF HD-DDA and QToF DDA methods. Based on the unbiased ion 

fragmentation approach that is utilized by the QToF HD-DIA approach, it was hypothesized that 

this method would result in the highest total number of lipid identifications as compared with the 

three DDA-based methods. These contrary observations may be explained by the fact that the 

DIA method relies on retention time-matching of precursor (low-energy scanning) and product 

ions (high-energy scanning) in order to associate ion transitions. In this case, the high degree of 

complexity and diversity of lipids in whole blood resulted in significant chromatographic co-

elution. This appears to have limited the abilities of the peak picking/spectral deconvolution 

algorithms in identifying lipids. The DIA approach was especially limited in identifying 

phospholipid species. In the positive ion mode, phospholipids generate fatty acyl product ions of 

very low intensity, which in a DIA-based approach, may be difficult to discern from signal 

contributions of other co-eluting species or background chemical noise. With the fundamental 

difference in the DIA approach, it should not have been a surprise that the DIA approach had the 

lowest quantitative agreement of product ion sums. 

 Most lipid identification databases contain MS/MS spectra that have been generated 

using computer models to simulate fragmentation patterns and quickly build in silico libraries 

[78, 141, 156-158]. These artificial spectra typically rely on ideal conditions where the 

fragmentation behaviour of specific lipid classes is conserved, considering factors such as the 

common losses of head groups (i.e., m/z 184.0733 ion corresponding to the choline group of all 

phosphatidylcholines in the positive ion mode), predictable fatty acyl chain length fragments or 
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neutral losses, etc. Through this, similarity scores can be generated to provide an idea of the 

confidence of the identification. However, as shown in this Chapter and elsewhere [156, 159], 

the intensity of lipid fragments can vary considerably between MS platforms and acquisition 

modes. This can result in a decreased ability to match experimental spectra to lipid libraries, 

lowering the number of positive lipid identifications and an increasing the likelihood of lipid 

misannotations. Other factors are known to influence the number of false-positives (i.e., incorrect 

identifications) and false-negatives (i.e., missing annotations) including unintentional in-source 

fragments [160] and sample preparation-related artifacts [161]. From this project, it is clear that 

further work is needed in order to characterize the ion cooling effects that were observed here in 

HD mode, and the DIA method requires technological advances that allows matching of product 

ions to their respective precursor ions.  
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Table 1. Number of lipid identifications from whole blood samples using four mass spectrometry acquisition 
strategies 

Main Class Lipid Sub-Class 
Acquisition Mode 

QE 
DDA 

QToF 
DDA 

QToF 
HD-DDA 

QToF 
HD-DIA 

Glycerophosphocholines Diacylglycerophosphocholines 104 400 268 69 
Glycerophosphocholines 1-alkyl,2-acylglycerophosphocholines 42 114 77 38 
Glycerophosphocholines Monoacylglycerophosphocholines 14 21 17 14 
Glycerophosphocholines 1-(1Z-alkenyl),2-acylglycerophosphocholines 7 67 44 7 
Glycerophosphocholines Dialkylglycerophosphocholines 4 22 16 5 
Glycerophosphocholines 1-acyl,2-(1Z-alkenyl)-glycerophosphocholines 1 7 4 0 
Glycerophosphocholines 1-acyl,2-alkylglycerophosphocholines 0 7 2 1 
Glycerophosphocholines 1Z-alkenylglycerophosphocholines 0 3 2 1 
Glycerophosphocholines Monoalkylglycerophosphocholines 0 2 2 2 
Oxidized Glycerophospholipids Oxidized glycerophosphocholines 0 3 0 0 
Glycerophosphoethanolamines Diacylglycerophosphoethanolamines 34 95 164 16 
Glycerophosphoethanolamines 1-(1Z-alkenyl),2-acylglycerophosphoethanolamines 10 8 35 6 
Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines 6 0 9 0 
Glycerophosphoethanolamines 1-alkyl,2-acylglycerophosphoethanolamines 1 0 35 1 
Glycerophosphoethanolamines Dialkylglycerophosphoethanolamines 0 0 2 0 
Glycerophosphoethanolamines 1-acyl,2-alkylglycerophosphoethanolamines 0 0 1 1 
Oxidized Glycerophospholipids Oxidized glycerophosphoethanolamines 5 5 4 4 
Glycerophosphoserines Diacylglycerophosphoserines 12 25 25 7 
Glycerophosphoinositols Diacylglycerophosphoinositols 0 0 7 0 
Glycerophosphoglycerols Dialkylglycerophosphoglycerols 0 0 3 1 
Glycerophosphoglycerols Diacylglycerophosphoglycerols 0 0 0 1 
Glycerophosphates Diacylglycerophosphates 0 0 67 4 
Glycerophosphates Monoacylglycerophosphates 0 0 1 0 
Sterols Steryl esters 5 5 4 6 
Triradylglycerols Triacylglycerols 433 474 906 631 
 Total 678 1258 1695 815 
QE, Q-Exactive mass spectrometer; QToF, Quadrupole-Time-of-Flight mass spectrometer; HD, high-
definition; DDA, data-dependent acquisition; DIA, data-independent acquisition.
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Figure 3. MS/MS Spectra for TAG 16:0_18:1_18:1 (m/z 876.8015 as [M+NH4]+) acquired using 
A. the QE DDA method, B. the QToF DDA method, C. QToF HD-DDA method, and D. QToF 
HD-DIA method. QE, Q-Exactive mass spectrometer; QToF, Quadrupole-Time-of-Flight mass 
spectrometer; HD, high-definition; DDA, data-dependent acquisition; DIA, data-independent 
acquisition; MS/MS tandem mass spectrometry; TAG, triacylglycerol. 
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Figure 4. Number of lipid identifications with full-acyl identifications. PC, phosphatidylcholine; 
LPC lysophosphatidylcholine; PE, phosphatidylethanolamine; LPE, 
lysophosphatidylethanolamine; PS, phosphatidylserine; PI, phosphatidylinositol; TAG, 
triacylglycerol; QE, Q-Exactive mass spectrometer; QToF, Quadrupole-Time-of-Flight mass 
spectrometer; HD, high-definition; DDA, data-dependent acquisition; DIA, data-independent 
acquisition. 
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Table 2. Lipid species with full-acyl identifications that were found in consensus 
Main Class Lipid Sub-Class Lipid Identification 
Glycerophosphocholines Monoacylglycerophosphocholines PC 0:0_17:0 
Glycerophosphocholines  Monoacylglycerophosphocholines PC 0:0_18:1 
Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 16:0_18:2 
Triradylglycerols Triacylglycerols TAG 12:0_18:1_18:1 
Triradylglycerols Triacylglycerols TAG 12:0_18:1_18:2 
Triradylglycerols Triacylglycerols TAG 14:0_16:0_18:2 
Triradylglycerols Triacylglycerols TAG 14:0_16:1_18:1 
Triradylglycerols Triacylglycerols TAG 14:0_16:1_18:2 
Triradylglycerols Triacylglycerols TAG 14:0_18:1_18:3 
Triradylglycerols Triacylglycerols TAG 14:0_18:2_18:2 
Triradylglycerols Triacylglycerols TAG 15:0_18:1_18:1 
Triradylglycerols Triacylglycerols TAG 15:0_18:1_18:2 
Triradylglycerols Triacylglycerols TAG 15:0_18:2_18:2 
Triradylglycerols Triacylglycerols TAG 16:0_16:0_18:1 
Triradylglycerols Triacylglycerols TAG 16:0_16:1_16:1 
Triradylglycerols Triacylglycerols TAG 16:0_17:0_18:1 
Triradylglycerols Triacylglycerols TAG 16:0_17:1_18:0 
Triradylglycerols Triacylglycerols TAG 16:0_17:1_18:1 
Triradylglycerols Triacylglycerols TAG 16:0_17:1_18:2 
Triradylglycerols Triacylglycerols TAG 16:0_18:0_18:1 
Triradylglycerols Triacylglycerols TAG 16:0_18:1_18:2 
Triradylglycerols Triacylglycerols TAG 16:0_18:1_22:0 
Triradylglycerols Triacylglycerols TAG 16:0_18:1_22:5 
Triradylglycerols Triacylglycerols TAG 16:0_18:1_22:6 
Triradylglycerols Triacylglycerols TAG 16:0_18:2_18:2 
Triradylglycerols Triacylglycerols TAG 16:0_18:2_18:3 
Triradylglycerols Triacylglycerols TAG 16:1_17:0_18:1 
Triradylglycerols Triacylglycerols TAG 16:1_17:1_18:1 
Triradylglycerols Triacylglycerols TAG 16:1_18:1_18:1 
Triradylglycerols Triacylglycerols TAG 16:1_18:1_18:3 
Triradylglycerols Triacylglycerols TAG 16:1_18:1_19:1 
Triradylglycerols Triacylglycerols TAG 16:1_18:2_18:2 
Triradylglycerols Triacylglycerols TAG 17:0_17:0_17:1 
Triradylglycerols Triacylglycerols TAG 17:0_17:1_19:1 
Triradylglycerols Triacylglycerols TAG 17:0_18:1_18:1 
Triradylglycerols Triacylglycerols TAG 17:0_18:1_18:2 
Triradylglycerols Triacylglycerols TAG 17:1_18:0_18:1 
Triradylglycerols Triacylglycerols TAG 17:1_18:1_18:1 
Triradylglycerols Triacylglycerols TAG 17:1_18:1_18:2 
Triradylglycerols Triacylglycerols TAG 17:1_18:1_19:1 
Triradylglycerols Triacylglycerols TAG 18:0_18:1_18:2 
Triradylglycerols Triacylglycerols TAG 18:0_18:1_20:0 
Triradylglycerols Triacylglycerols TAG 18:1_18:1_18:1 
Triradylglycerols Triacylglycerols TAG 18:1_18:1_18:2 
Triradylglycerols Triacylglycerols TAG 18:1_18:1_20:0 
Triradylglycerols Triacylglycerols TAG 18:1_18:1_20:4 
Triradylglycerols Triacylglycerols TAG 18:1_18:1_20:5 
Triradylglycerols Triacylglycerols TAG 18:1_19:0_19:0 
Triradylglycerols Triacylglycerols TAG 18:2_18:2_18:3 
PC, phosphatidylcholine; PE, phosphatidylethanolamine; TAG, triacylglycerol.  
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Figure 5. Log2-transformed normalized abundances of the 49 consensus lipid species with full 
acyl identifications between the four mass spectrometry acquisition strategies. Lipid 
Identification Variable: species can be found in Table 2. QE, Q-Exactive mass spectrometer; 
QToF, Quadrupole-Time-of-Flight mass spectrometer; HD, high-definition; DDA, data-
dependent acquisition DIA, data-independent acquisition. 
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CHAPTER 6 

Microlipidomic Analysis of Lysophosphatidic Acid Regioisomeric Species in Mouse Plasma 

6.1 Objectives 

Lysophosphatidic acids (LPA) are highly-polar lipids that can act as potent signaling 

molecules, and which have been implicated in many pathophysiological processes including 

glucose intolerance, cancer, cardiovascular disease, arthritis, and asthma [162-164]. LPA are the 

simplest form of all glycerophospholipids. They are comprised of a single fatty acyl moiety 

esterified to the sn-1 or sn-2 position of glycerol-3-phosphate and can range in molecular weight 

from approximately 215 Da (for LPA 2:0) to 522 Da (for LPA 24:0). These bioactive lipids are 

highly polar in nature, and as such, they are relatively immiscible in organic solvents. This 

presents a major analytical challenge as compared with other phospholipids which are easily 

solubilized in solvents like chloroform and methanol, rendering global liquid-liquid extraction 

techniques inadequate for LPA analysis [161]. Furthermore, LPA are typically found in the very-

low abundance regime, with LPA 18:2 being the specie of highest abundance in plasma 

(concentration < 1.0 µmol/L) [161]. Therefore, LPA measurements necessitate the 

implementation of targeted analytical methods for accurate quantitation.  

Several extraction protocols have been compared [161, 165], and regioisomeric 

discrimination of LPA species (i.e., specifying sn-1-acyl or sn-2-acyl localization on the glycerol 

backbone) has been demonstrated using untargeted nano-flow liquid chromatography-tandem 

mass spectrometry [86]. Like other lysophospholipids, LPA species appear to have a regioisomer 

distribution ratio of sn-1-acyl:sn-2-acyl of approximately 9:1, which is due to a higher molecular 

stability when the fatty acyl chain is located at the sn-1 position at physiological pH and 

temperature [166-168]. In this study, a butanol-based extraction was modified by reducing the 
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volume of solvents used. We also sought to determine regioisomeric species of LPA in plasma 

using conventional-flow UHPLC-MS/MS with standard instrumentation. This was achieved by 

evaluating the chromatographic resolution of LPA 16:0 using various commercially-available 

reversed-phase C18 UHPLC columns with different chemistries. Generally, C18 columns consist 

of alkyl chains (18 carbons) covalently linked to a silicon base to form a stationary phase. C18 

columns can vary based on modifications to the size and porosity of the particles, the addition of 

functional groups, and bridged or cross-linked residues on the silica matrix. Three of the columns 

examined (Supelco Ascentis Express, Waters BEH, Waters CSH) were purchased for lipidomic 

analyses of various samples in our laboratory [31, 36, 169, 170], and have also been used by 

others [171-173]. The fourth column has been used for polar compound separations (Waters 

HSS-T3) [174, 175]. Additionally, we optimized collision energy voltages to maximize the 

abundance of a glycerol-phosphate rearrangement product ion to enable high sensitivity with 

Time-of-Flight/Multiple Reaction Monitoring technology (ToF-MRM). Finally, the method 

presented here was used to quantitate regioisomeric LPA species in mouse plasma. 

 

6.2 Hypotheses 

1. The use of a UHPLC column compatible with polar analytes (Waters HSS-T3) will result 

in the best chromatographic separation of LPA species as compared with other reversed-

phase C18 UHPLC columns. 

2. A modified butanol-based extraction protocol will result in satisfactory LPA yields 

similar to what has been reported for the original protocol. 
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6.3 Methods, Materials and Study Design 

6.3.1 Sample Collection and Standards 

The collection of blood samples from mice received ethics clearance from the University 

of Waterloo Office of Research Ethics. Male C57BL/6 mice (18 weeks old, n = 4) were used in 

this study. The mice were housed in groups of 5 per cage, they were fed a Teklad standard rodent 

diet (Envigo Mississauga, ON, Canada) and had ad libitum access to food. The mice were 

sacrificed by cervical dislocation and whole blood was collected via cardiac puncture into 

ethylenediaminetetraacetic acid-lined vacutainers. Blood samples were centrifuged at 1734 rcf at 

4 ºC for 15 min, and the plasma fraction was collected, aliquoted (100 µL) and stored at -80 ºC 

until lipid extraction. LPA 16:0 and LPA 17:0 lipid standards containing a mix of both sn-1 and 

sn-2 regioisomers in a ratio of approximately 9:1 sn-1-acyl:sn-2-acyl were purchased from 

Avanti Polar Lipids (Alabaster, AL, USA). 

 

6.3.2 Instrument Settings 

UHPLC-MS/MS was completed using the Waters Acquity UPLC System and Waters 

Synapt G2Si QToF mass spectrometer. Chromatography was evaluated using four commercially-

available reversed phase UHPLC columns (details in Section 6.3.3). The mobile phase consisted 

of (A) 60:40 methanol/water (v/v) +5 mM ammonium formate +1% formic acid and (B) 100% 

methanol +5 mM ammonium formate +1% formic acid. The multi-step gradient used was as 

follows: solvent B was 10% from 0-1min at 350 µL/min, followed by a linear increase to 100% 

B from 1-3 min at 400 µL/min, 100% B from 3-8 min at 400 µL/min, a decrease to 10% B at 

8.1 min at 350 µL/min and a hold at 10% B until the 10 min mark. The column compartment was 

40 ºC, autosampler temperature was 4 ºC, and the injection volume was 10 µL. 
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The mass spectrometer was operated in negative electrospray ionization mode, spray 

voltage -2.0 kV, sensitivity mode (centroid), scan time 0.2 s/scan, scan range m/z 60 to 600, cone 

voltage 40 V, cone gas flow 100 L/hr, desolvation gas flow 600 L/hr, nebulizer gas flow 7.0 bar, 

source temperature 140 ºC, desolvation temperature 400 ºC. Spectra were lock mass-corrected 

using leucine enkephalin (m/z 554.2615). Fragmentation in the transfer cell using several 

collision energy ramps was optimized in a series of trial and error experiments described in 

Section 6.3.4. 

 

6.3.3 Column Evaluation 

An LPA 16:0 stock solution was prepared at a concentration of 50 pmol/µL in 3:1 

methanol/isopropanol (v/v) and columns were evaluated using the same mobile phase gradient. 

The columns were a Waters Acquity UPLC Ethylene Bridged Hybrid (BEH), 1.7 µm x 2.1 mm x 

50 mm; a Waters Acquity UPLC Charged Surface Hybrid (CSH), 1.7 µm x 2.1 mm x 150 mm; a 

Waters Acquity UPLC High-Strength Silica (HSS-T3), 1.8 µm x 2.1 mm x 100 mm; and a 

Supelco Ascentis Express, 2.7 µm x 2.1 mm x 150 mm. The application of this method for the 

analysis of mouse plasma was completed using the Waters Acquity UPLC High-Strength Silica 

(HSS-T3), 1.8 µm x 2.1 mm x 100 mm equipped with a VanGuard HSS-T3 1.8 µm pre-column 

(Milford, MA, USA). The resolution of extracted peak profiles were assessed using the following 

formula: Resolution = (difference in peak apex retention times)/(average peak widths at 

baseline), and satisfactory separations were considered with Resolution values ³ 1 [176].  
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6.3.4 Time-of-Flight Multiple Reaction Monitoring Optimization 

For the optimization of ToF-MRM settings, several combinations of collision energy 

ramps were examined in order to maximize the abundance of product ions in MS/MS using the 

LPA 16:0 stock solution. The specific voltages that were tested can be found in Table 3. The 

analyte transitions that were monitored included the deprotonated molecular ion for LPA 16:0 

(as precursor and product), the acyl fragment from this molecule as a carboxylate anion (R-COO-

product), and the dehydrated cyclic glycerol-3-phosphate ion with m/z 152.9954 (product). 

 

6.3.5 Assessment of Extraction Efficiency and Linearity 

Lipids were extracted using a modified n-butanol-based protocol described earlier [161], 

using half of the volumes of all solvents while keeping the same ratios. The extraction solvents 

were 1.5:4:2 buffer/butanol/water-saturated butanol (v/v/v); the buffer was 30 mM citric acid and 

40 mM disodium phosphate at pH = 4.0, and the water-saturated butanol was 9:1 butanol/water 

(v/v). The efficiency of this modified protocol was assessed using a spike and recovery approach 

using LPA 16:0 in methanol at a concentration of 0.02 nmol/µL. Aliquots (25 µL) delivering 

0.5 nmol of LPA 16:0 (sum of both sn-1 and sn-2 regioisomers) were pipetted into nine 10 mL 

test tubes, and samples were dried fully under N2 gas. Three aliquots were prepared for analysis 

by reconstituting into 100 µL of the reconstitution solvent (Spike), which was 3:1 

methanol/isopropanol (v/v), with 0.5 nmol of the internal standard (LPA 17:0). Another three 

aliquots went through the extraction protocol (Spike-Extract) and the matrix effect was examined 

in the remaining three aliquots (Spike+Plasma-Extract) by resuspending in 50 µL of mouse 

plasma prior to extraction. Extraction of the Spike-Extract and Spike+Plasma-Extract samples 

began with the addition of 750 µL of the buffer followed by vigorous vortexing. The n-butanol 



 46 

(2.0 mL) was added to the samples followed by vigorous vortexing. Water-saturated n-butanol 

(1 mL) was then added. Samples were then vortexed, centrifuged at 2000 rcf for 15min, and the 

resulting top organic layer, which contained the lipids, was collected. The lipid extracts were 

then dried fully under N2 gas, resuspended in the reconstitution solvent and stored at 4 ºC until 

analysis. 

A series of standard dilutions were prepared using LPA 17:0 in the presence of 50 μL 

plasma in order to assess linearity between 125 μmol/L (1250 pmol on column) down to 

0.00064 μmol/L (0.0064 pmol on column), with a total of 9 points on the curve. Lipids were 

extracted using the modified butanol-based protocol described above, and the samples were 

reconstituted in 100 μL of 3:1 methanol/isopropanol (v/v) to achieve the desired internal standard 

concentrations. The samples were then analyzed by UHPLC-MS/MS using the Waters Acquity 

UPLC High-Strength Silica (HSS-T3) column, and a 20 V to 30 V collision energy ramp. Details 

for these latter choices are provided in Section 6.4. 

 

6.3.6 Application of Method Using Mouse Plasma 

Lipids were extracted from plasma samples using n-butanol containing 20 pmol 

LPA 17:0 as the internal standard in each sample. Lipid extracts were then analyzed by the 

UHPLC-MS/MS with conditions described above, following the inclusion of precursor-product 

ion transitions in ToF-MRM for 6 LPA species that have been previously measured in plasma 

[161, 177, 178]. 
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6.3.7 Data Normalization and Statistical Analyses 

For the evaluation of collision energy ramps in ToF-MRM, data are presented as raw 

peak areas from extracted ion chromatograms. For the spike and recovery and the quantitative 

mouse plasma experiments, raw peak areas were normalized using the area under the curve for 

the LPA 17:0 internal standard, and concentrations were adjusted to the volume of plasma used. 

Regioisomer identifications of resolved chromatographic peaks were confirmed using the known 

ratio of sn-1-acyl:sn-2-acyl of the LPA 16:0 standard, where the sn-2 isomer eluted earlier in the 

chromatogram than the sn-1 isomer. Comparisons of LPA 16:0 abundances in the spike and 

recovery experiments were assessed by one-way ANOVA with Tukey post-hoc test (significance 

was inferred at p < 0.05). Differences in regioisomer distributions in mouse plasma were 

assessed using two-tailed Student’s t-tests (significance was inferred at p < 0.05). Values are 

presented as mean ± standard deviation of technical replicates (n=3) and biological replicates 

(n=4) for the spike and recovery experiment and the quantitative mouse plasma experiments, 

respectively.  

 

6.4 Results 

6.4.1 Development of the Chromatographic Method 

We examined the ability of four commercially-available reversed-phase columns to 

resolve LPA 16:0 sn-1 and sn-2 regioisomers using a methanol/water-based mobile phase. Both 

the BEH and CSH columns performed poorly, and resulted in broad, tailing peaks that eluted 

over the course of 5 min and 2.5 min, respectively (Figure 6A and B). There was a modest 

improvement in peak shape with the use of the Ascentis Express column (Figure 6C) despite 

having a larger particle size (2.7 µm) as compared with the BEH and CSH columns (both 
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1.7 µm), but the extracted ion peak profiles from the Ascentis Express column were 

approximately 1 min wide and regioisomers were still unresolved. Finally, the use of the HSS-T3 

column resulted in the best peak shapes, with peak widths < 20 s (Figure 6D) and a base peak ion 

intensity that was over 10-fold higher (7.74x105) than that of the extracted ion chromatogram 

from the Ascentis Express run (5.97x104). Resolution values of all regioisomeric peak pairs were 

calculated to be greater than 1.0, suggesting adequate separations. 

 

6.4.2 Optimization of the Time-of-Flight/Multiple-Reaction Monitoring (ToF-MRM) Method 

Direct infusion-MS/MS of the LPA 16:0 stock standard solution revealed a characteristic 

LPA spectrum with a base peak ion at m/z 152.9954, corresponding to the dehydrated cyclic 

anion of glycerol-3-phosphate (Figure 7). Less intense fragment ions corresponding to the 

carboxylate anion form of the fatty acyl moiety (as R-COO-), and three other glycerol-3-

phosphate or phosphate head group-related ions were also observed. In preliminary ToF-MRM 

experiments, we observed that the inclusion of the m/z 152.9954 ion in the list of product 

transitions was critical in achieving the highest sensitivity. The exclusion of this ion resulted in a 

nearly 100-fold decrease in the intensity of the base peak ion in ToF-MRM extracted ion 

chromatograms. To optimize the sensitivity of this method, several combinations of collision 

energy ramp voltages were examined to maximize the intensity of the m/z 152.9954 ion (Table 

3). We determined that a ramp of 20 V to 30 V resulted in the highest product ion intensity, as it 

appears to balance providing enough kinetic energy to maximize the fragmentation of precursor 

ions without causing significant ion scattering. This collision energy ramp was used to assess the 

efficiency of the modified butanol-based extraction procedure. Precursor and product ion ToF-

MRM transitions were generated theoretically for LPA 17:0 (internal standard), 18:0, 18:1, 18:2, 
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20:4 and 22:6 by examining the fragmentation behaviour of LPA 16:0 (Figure 7), this 

information can be found in Table 4. 

 

6.4.3 Assessment of Extraction Efficiency, Linearity, and Quantitative Profiling of Mouse 

Plasma LPA Species 

LPA 16:0 recoveries of approximately 91% (0.45 nmol recovered from the 0.5 nmol that 

were spiked) were observed following lipid extraction (i.e., Spike-Extract samples; Figure 8). 

Furthermore, losses of approximately 31% were observed in the Spike+Plasma-Extract samples 

(0.34 nmol recovered from 0.5 nmol spiked). The present method was evaluated using a series of 

standard dilutions in order to determine linear dynamic ranges and limits of detection (Figure 9). 

A linear response was observed between 0.0032 pmol and 50 pmol of the LPA 17:0 standard on 

column, and a plateau in the response was observed at higher concentrations up to 1250 pmol on 

column. The limits of detection were estimated at 0.00064 pmol on column (signal:noise ratio 

= 3:1).  

Finally, the UHPLC-MS/MS method developed was used to quantitatively profile highly-

abundant species of LPA in mouse plasma by including ToF-MRM precursor-product ion 

transitions for 6 common LPA species previously measured in plasma [161, 177, 178]. All of the 

measured LPA species elute in under 1.0min of each other, starting with LPA 22:6 at 

approximately 3.4 min and finishing with LPA 18:0 at approximately 3.9 min. We observed that 

LPA sn-1-18:2 was the most highly-abundant molecule from this family (0.56 ± 0.13 µmol/L; 

Figure 10), which is in agreement with previous literature [161, 177, 178]. From highest to 

lowest, the concentrations of the species identified here were as follows: 18:2 > 22:6 > 20:4 > 

16:0 > 18:0 > 18:1. Additionally, it appears that the sn-1-acyl isomers are more abundant than 
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their sn-2-acyl counterparts for 16:0, 18:0, 18:2, 20:4 and 22:6 species, but no significant 

differences were observed in the abundances of sn-1- and sn-2-18:1 species (p = 0.79). 

 

6.5 Discussion 

 Although the analysis of most lipids is possible using untargeted macrolipidomic 

workflows, profiling LPA species in plasma requires careful sampling, specialized extraction 

protocols, and highly-sensitive detection techniques. In this study, we have optimized a method 

for the measurement of six regioisomeric LPA pairs through 1) assessing the chromatographic 

peak resolution of an LPA 16:0 regioisomer standard mix with four reversed-phase C18 UHPLC 

columns, 2) evaluating the extraction efficiency of a modified butanol-based extraction method, 

and 3) optimizing ToF-MRM technology for sensitive analyte detection.  

 Regioisomeric discrimination of LPA species has been shown previously using 

untargeted nano-flow LC-MS [86]. Although this technique promises better sensitivity than 

conventional-flow applications [179], it appears to be less robust in terms of sample capacity and 

retention time precision [180], and remains largely unadopted by the lipidomics community. 

Additionally, long run times (approximately 50 min) do not make these methods amenable for 

high-throughput and screening applications. In this Chapter, we examined four reversed-phase 

C18 UHPLC columns in their ability to resolve regioisomeric pairs of LPA using conventional 

instrumentation. We found that the BEH and CSH columns performed poorly, and while there 

was a modest improvement in peak shapes through the use of the Ascentis Express column, the 

use of the HSS-T3 column resulted in the best peak shapes and the resolution of regioisomeric 

LPA pairs. These observations may be due to the larger surface area of the of the HSS-T3 

particles (230 m2/g) as compared with the others (185 m2/g for BEH and CSH, and 225 m2/g for 
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Ascentis Express), which enables faster interactions of the analytes with the stationary phase, 

resulting in better retentivity [181, 182]. Additionally, the T3-endcapping and lower ligand 

density of this column has been shown to perform well with low molecular weight, polar 

analytes [174, 175]. Based on these findings, the HSS-T3 column was used in subsequent 

analyses. 

Previously, butanol-based protocols have been criticized for being time-consuming 

relative to other liquid-liquid extraction procedures [165]. Here, halving of all solvent volumes 

resulted in a reduced environmental impact of the extraction and reduced evaporation times 

during sample processing, which improved throughput. With this modified extraction protocol, 

only small lipid losses were observed as determined from the spike and recovery experiments, 

and the losses were similar to previous findings [177, 183, 184]. Additionally, matrix-related ion 

suppression effects were also in agreement with what has been reported in the literature [165, 

184, 185]. There are other extraction protocols that have been evaluated in their ability to extract 

highly-polar lipids, including some that use methyl-tert-butyl ether [165] and modified Folch 

[36, 138] and Bligh-Dyer methods [186-188]. Many of these techniques utilize strong acids, such 

as concentrated HCl, to shift the equilibrium of the polar analytes and increase their partitioning 

into the organic phase. However, it has been noted in several studies [177, 183-185, 189] that the 

use of strong acids can result in the non-enzymatic/spontaneous hydrolysis of the phospholipid 

head groups of other lysophospholipids, especially lysophosphatidylcholine, which introduces 

extraction-produced LPA artefacts into the sample. Although only 2% of total 

lysophosphatidylcholine has been observed to undergo acid-mediated hydrolysis into LPA in 

plasma [185], the large proportion of lysophosphatidylcholine that is present in plasma relative to 

LPA could artefactually increase LPA levels by several fold.  
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Finally, we applied this method for the quantitation of sn-1/sn-2 regioisomeric pairs of 

LPA with 16:0, 18:0, 18:1, 18:2, 20:4 and 22:6 fatty acyl chains, and found that the 

concentrations of these species were similar to those reported earlier [161, 190-192]. 

Interestingly, it appears that the sn-1-acyl isomers are more abundant than the sn-2-acyl isomers 

for 16:0, 18:0, 18:2, 20:4 and 22:6 species which was in agreement with the literature [166-168], 

but no significant differences were observed in the abundances of sn-1- and sn-2-18:1 species 

(p = 0.8). This suggests that there may be an underlying physiological mechanism responsible for 

regulating the levels of specific LPA regioisomers in plasma, which can act as preferred 

substrates to different LPA-receptors [193, 194]. 

In addition to plasma, serum is often collected in research and clinical settings as part of 

routine laboratory procedures. It has been previously reported that LPA concentrations in serum 

are approximately 10-fold higher than in plasma [195, 196]. We confirmed this phenomenon in 

an ad hoc analysis (total LPA were 8.45 µmol/L in serum from a similar rodent model). LPA are 

generated through the onset of the clotting process by platelet activation and phospholipase-D-

mediated hydrolysis of lysophosphatidylcholines and other lysophospholipids. Although LPA 

levels are higher in serum than in plasma, these concentrations are still within the linear dynamic 

range of the present method. However, the use of serum for LPA measurements should be 

avoided due to potential for high variability that is related to sample collection. Therefore, blood 

samples should be collected in the presence of anticoagulants such as ethylenediaminetetraacetic 

acid or lithium-heparin. 

Although several papers exist in which regioisomeric species of phospholipids and 

lysophospholipids have been resolved by reversed-phase UHPLC [183, 197, 198], to our 

knowledge this is the first method that has been developed specifically for the targeted analysis 
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of LPA regioisomeric species using conventional flow UHPLC-MS/MS. Additionally, the short 

run times (10 min) and the ability to monitor several precursor/product ion transitions using ToF-

MRM with high sensitivity and selectivity allows for fast profiling of plasma LPA species. 

Novel solid phase extraction cartridges are also available [199], which have shown excellent 

selectivity and high extraction efficiencies and can be coupled to the present UHPLC-MS/MS 

workflow for high-throughput analyses. Further work remains in evaluating the behaviour and 

regioisomeric distributions of LPA species in plasma that contain other fatty acids besides the 

ones that were identified here, as well as adapting this method for the analysis of other biological 

samples. 
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Table 3. Collision energy (CE) ramps and the resulting peak areas from extracted ion 
chromatograms (arbitrary units) for LPA 16:0. 

Initial CE 
(V) 

Final CE 
(V) 

Area Under the 
Curve (AU) 

10 10 0.71 
10 20 2.86 
10 30 3.98 
10 40 3.12 
10 50 2.64 
20 20 5.50 
20 30 5.82* 
20 40 3.54 
20 50 2.54 
30 30 4.01 
30 40 1.60 
30 50 0.98 
40 40 0.46 
40 50 0.14 
50 50 0.02 

* The highest peak area from ToF-MRM extracted ion chromatograms was obtained by using a 
collision energy ramp of 20 V to 30 V. LPA, lysophosphatidic acid; CE, collision energy; AU, 
arbitrary units. 
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Figure 6. Extracted ion chromatograms for LPA 16:0 (m/z 409.2361 ± 0.02 Da) using various 
reversed-phase columns including A. Waters ethylene-bridged hybrid (BEH); B. Waters charged 
surface hybrid (CSH); C. Supelco Ascentis Express; and D. Waters high-strength silica-T3 
(HSS-T3).  Peak intensities shown are in ion counts.
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Figure 7. MS/MS spectrum for LPA 16:0 and structures for the major product ions. 
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Table 4. Precursor and product ion ToF-MRM transitions and collision energy (CE) voltages 
used for plasma LPA profiling 

Species CE Ramp (V) Precursor Ion Carboxylate Anions* 

LPA 16:0 20 à 30 409.2361 255.2330 
LPA 17:0 20 à 30 423.2517 269.2486 
LPA 18:0 20 à 30 437.2674 283.2643 
LPA 18:1 20 à 30 435.2517 281.2486 
LPA 18:2 20 à 30 433.2361 279.2330 
LPA 20:4 20 à 30 457.2361 303.2330 
LPA 22:6 20 à 30 481.2361 327.2330 

*Product ion ToF-MRM transitions for all LPA species included the precursor ion of each 
molecule in the product ion spectra, as well as several product ions common to all LPA species, 
including the glycerol-3-phosphate ion (m/z 171.0064), the dehydrated cyclic ion of glycerol-3-
phosphate (m/z 152.9958), phosphate (m/z 96.9696) and dehydrated phosphate ion (m/z 78.9591). 
ToF-MRM, time-of-flight/multiple reaction monitoring; LPA, lysophosphatidic acid; CE, 
collision energy. 
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Figure 8. Recoveries of LPA 16:0 following extraction without plasma (Spike-Extract) and with 
plasma (Spike+Plasma-Extract). The values shown are based on analyses of technical replicates 
(n=3 per condition, mean ± standard deviation). Different letters indicate statistically-significant 
differences inferred at p < 0.05 following a one-way analysis of variance (ANOVA). LPA, 
lysophosphatidic acid; SD, standard deviation. 
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Figure 9. Serial dilutions of LPA 17:0. Linearity appears to be maintained between 0.0032 pmol 
and 50 pmol on column.  
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Figure 10. Regioisomers of common LPA species in mouse plasma. Values reported are based 
on analyses of biological replicates (n = 4, mean ± standard deviation). Statistical significance 
was inferred at p < 0.05 following Student’s t-tests. LPA, lysophosphatidic acid; SD, standard 
deviation. 
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CHAPTER 7 

Macrolipidomic Analysis of Sunflower Oil and Mouse Striatum 

7.1 Objectives 

 UHPLC-MS/MS-based methods have been shown to be remarkably versatile, but 

untargeted macrolipidomic methods are often overestimated in their abilities to accurately profile 

lipids from multiple lipid classes simultaneously. Generally, the lack of knowledge regarding the 

complex lipid composition of new samples can lead to the generation of artefacts through sample 

preparation and analysis, resulting in improper annotations of lipid species [37, 160, 200]. Semi-

targeted workflows where the general lipid profile is known can still be used for the discovery of 

novel compounds. In this sense, generic analytical protocols can be tuned for the accurate 

detection of lipids from known lipid classes that share similar physical and chemical properties, 

increasing the adaptability of these methods. This will be illustrated in this Chapter through the 

development and application of two semi-targeted macrolipidomic profiling methods, one for the 

analysis of sunflower oil, and the other for the analysis of mouse striatum. 

 

7.1.1 Sunflower Oil Analysis 

Triacylglycerol (TAG) analysis has not been a major priority of lipidomic 

characterizations [19, 201], as they are considered, perhaps inappropriately, as relatively inert 

storage lipids. Given that most dietary fat is in the form of TAG [42], and there has been an 

increased appreciation of the importance of adipocyte function [202], methods to better 

characterize TAG species are needed. Sunflower oil is 95% TAG by weight and is one of the 

most highly consumed vegetable oils worldwide [203]. Traditionally, the fatty acid composition 

of sunflower oil is mainly linoleic acid (18:2n-6), with considerable amounts of oleic (18:1n-9), 
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palmitic (16:0) and stearic (18:0) acids [204]. While fatty acid composition data is informative in 

characterizing novel seed oils, the ability to quantitate and elucidate the fatty acyl chains of 

complex lipids in their native state has the potential to provide even further insights into their 

nutritional value, palatability, stability and impact on livestock and human health [205, 206].  

The large number of distinct TAG species that may be present in oils and biological 

samples such as plasma and adipose tissue can encompass various fatty acyls with differing 

carbon chain lengths, degrees of unsaturation, regioisomeric configurations as well as double 

bond locations and geometries. Thus, TAG profiling can present a significant analytical 

challenge as compared with less complex lipid classes. Many of these species are structurally 

and chemically-similar, and may not be fully resolved using shotgun approaches or conventional 

liquid chromatography techniques [207, 208]. As a result, serial and parallel column couplings, 

multi-dimensional UHPLC configurations, and supercritical fluid chromatography applications 

have been adapted to improve TAG analyses in the past few years [38, 205, 209-213]. Increased 

chromatographic separation enables the discrimination of species of lipids from a brutto level of 

information to more detailed fatty acyl species at the medio (acyl-isomers) or even genio 

(regioisomers) level. In this study, we developed a UHPLC-MS/MS method that utilizes a dual 

UHPLC column serial coupling setup and data-dependent tandem mass spectrometry in the 

positive ion mode to profile the macrolipidome of sunflower oil.  

 

7.1.2 Mouse Striatum Analysis 

The second part of this Chapter focuses on the analysis of phospholipids in mouse 

striatum samples. Brain lipidomic approaches are of considerable interest to explore associations 

between perturbed lipid homeostasis and lipid signaling with the onset and progression of 
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various neurodegenerative diseases such as Alzheimer’s Disease [214-216]. The striatum was 

chosen as this brain region is known to be important in various aspects of cognition and 

behaviour [217, 218]. Approximately 1/3 of the dry weight of the human brain is made up by 

phospholipids [219-222], with high proportions of phosphatidylcholines (PC) and 

phosphatidylethanolamines (PE) and intermediate amounts of phosphatidylserines (PS) and 

phosphatidylinositols (PI). Other than free cholesterol, non-polar lipids such as triacylglycerols, 

diacylglycerols and cholesteryl esters constitute less than 1% of the brain lipidome [219]. 

Additionally, this tissue is particularly rich in long-chain polyunsaturated fatty acids, such as 

arachidonic acid (ARA) and docosahexaenoic acid (DHA), which account for approximately 25-

30% of total fatty acids [223, 224]. As such, brain lipidomics presents a very different analytical 

challenge as compared with TAG-rich sunflower oil.  

Although brain lipids can be detected using untargeted lipidomics techniques with 

positive ESI, the characterization of phospholipids can be completed more effectively and 

reliably in the negative ion mode for two main reasons: 1) the fragment ions that are diagnostic 

for the fatty acyl chains of phospholipids are much more intense in the negative ion mode as 

compared with fragment ions in the positive ion mode, which results in a lower frequency of 

false positive identifications (this was discussed in Chapter 5); and 2) the ion suppression effects 

that phosphatidylcholine species impart upon other co-eluting lipids (described in Chapter 2) are 

significantly reduced. This method utilizes reversed-phase UHPLC and data-dependent MS/MS 

in the negative ion mode to profile phospholipids in mouse striatum. 
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7.2 Hypotheses 

1. The use of a two-column coupling setup in the analysis of sunflower oil will enable the 

resolution of isomeric TAG species and the identification of the most abundant lipids in 

sunflower oil. 

2. The analysis of mouse striatum samples using negative ESI-MS/MS will enable the 

detection and quantitation of highly-abundant lipid species across the major phospholipid 

classes (PC, PE, PI, PS). 

 

7.3 Methods, Materials and Study Design 

7.3.1 Sample Collection and Lipid Extraction 

7.3.1.1 Sunflower Oil 

 Sunflower oil (Compliments, Sobeys Inc.) was purchased from a local grocery store in 

Waterloo, ON, Canada in November of 2018. Lipid extracts were obtained in triplicate using the 

Folch-based protocol described in Section 3.3. Briefly, 3 mL of 2:1 chloroform/methanol (v/v) 

were added to 20 µL oil aliquots, delivering 30 µmol of triheptadecanoin (TAG 17:0/17:0/17:0) 

as the internal standard. Samples were vortexed, and 500 µL of 0.2M NaH2PO4 buffer were 

added. Samples were inverted, centrifuged at 1734 rcf for 5min, and the organic layer was 

carefully extracted and saved. The samples were then diluted by aliquoting 2 µL of the lipid 

extract and adding 2500 µL of the reconstitution solvent (65:35:5 acetonitrile/isopropanol/water 

(v/v/v) +0.1% formic acid). Samples were then vortexed briefly and stored at 4 ºC until analysis. 

 

 

 



 65 

7.3.1.2 Mouse Striatum Samples 

 Mouse tissue samples were provided from a study conducted by the Laboratory of 

Membrane Biophysics and Biochemistry (Section of Nutritional Neuroscience) of the National 

Institute on Alcohol Abuse and Alcoholism, National Institutes of Health. The samples were part 

of a larger study examining the interaction between polyunsaturated fatty acids and ethanol 

consumption that received ethics clearance from the National Institutes of Health and the sample 

analyses were ethically approved by the University of Waterloo Office of Research Ethics. Male 

C57BL/6 mice (20 weeks old, n = 3) were used in this study. The mice were housed individually 

and had ad libitum access to food. The diets were custom-made with 35% energy from fat, 19% 

energy from protein and 44% energy from carbohydrate (Dyets Inc., Bethlehem, PA, USA). The 

mice were sacrificed by cervical dislocation following anesthetization with isofluorane, and 

striatum samples were harvested, flash frozen in liquid nitrogen, and stored at -80 ºC. The 

samples were shipped to the University of Waterloo, ON, Canada, on dry ice, and were kept at -

80 ºC until sample preparation. Lipid extracts were obtained by homogenizing the samples in 

3 mL of 2:1 chloroform/methanol (v/v) which delivered known amounts of various deuterium-

labelled internal standards for the major lipid classes (Splash Lipidomix, Avanti Polar Lipids, 

Alabaster, AL, USA). This was followed by the addition of a sodium-phosphate buffer as 

described in Section 3.3. Lipid extracts were dried under N2 gas and reconstituted in 100 µL of 

the reconstitution solvent. Samples were then vortexed briefly and stored at 4 ºC until analysis. 

 

7.3.2 Gas Chromatography-Flame Ionization Detection 

 Due to the anticipated challenge in characterizing TAG using lipidomics, the fatty acid 

composition of sunflower oil was quantitatively determined by gas chromatography-flame 
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ionization detection. Lipid extracts were obtained from 20 µL aliquots of the sunflower oil as 

technical triplicates as explained in Section 3.3, using 3 mL of 2:1 chloroform/methanol (v/v) 

that contained 500 µg of triheptadecanoin as the internal standard (NuChek-Prep, Elysian, MN, 

USA). The extracts were derivatized with 14% BF3 in methanol to generate fatty acid methyl 

esters as explained in Section 3.5 prior to analysis. 

 

7.3.3 UHPLC-MS/MS Instrument Settings 

Untargeted macrolipidomic analyses of sunflower oil and mouse brain samples were 

completed using the Waters Acquity UPLC System and Waters Synapt G2Si QToF mass 

spectrometer. Initially, a subset of samples were analyzed in pilot work using the UHPLC-

MS/MS method described in Chapter 5, which used conventional UHPLC with a Waters Acquity 

UPLC CSH C18 column, 1.7 µm x 2.1 mm I.D. x 150 mm equipped with a VanGuard CSH 

1.7 µm pre-column (Milford, MA, USA), positive ESI-MS and top-5 DDA. Two semi-targeted 

workflows were then developed in order to increase the quality of the data. The specific 

experiments used different UHPLC and MS/MS data acquisition settings, which are described in 

detail below. 

 

7.3.3.1 Sunflower Oil Lipidomics 

 UHPLC was completed using a dual column coupling setup with two reversed-phase C18 

columns connected in series. The first column was an Ascentis Express C18 column, 2.0 µm x 

2.1 mm I.D. x 150 mm equipped with an Ascentis Express 2.0 µm Guard (Sigma-Aldrich, St. 

louis, MO, USA). The second column was a Waters Acquity UPLC BEH C18 column, 1.7 µm x 

2.1 mm I.D. x 100 mm equipped with a VanGuard BEH 1.7 µm pre-column (Milford, MA, 
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USA). Both columns were connected using a 5 cm piece of polyetheretherketone (PEEK) tubing 

(Figure 11). The first column (Supelco Ascentis Express) was chosen as it has the same length 

(150 mm) and internal diameter (2.1 mm) as the Waters Acquity CSH column which is used in 

all other untargeted macrolipidomic profiling methods in this thesis, but has a larger particle size 

(2.0 µm as compared with 1.7 µm in the Waters CSH column), which enables faster solvent flow 

rates at lower instrument pressures. The second column (Waters Acquity BEH 100 mm) was 

chosen as the column compartment of the Waters Acquity UPLC system was too small to fit two 

150 mm columns, and a 100 mm Supelco column was unavailable at the time of these 

experiments. Although both columns have a C18-particle base structure, the chemistry of the 

BEH column (porous bridged ethyl-siloxane/silica C18 hybrid, 130 Å pore size) is different than 

that of the Supelco column (fused-core C18, 90 Å pore size). However, the main objective of 

adopting this serial column coupling setup was to increase the surface area of the stationary 

phase, rather than using columns with different C18 chemistries. The joining of these two 

columns in series also had implications on the mobile phase gradient protocol, as solvent flow 

rates had to be reduced to 150 µL/min to account for the increased instrument pressures. The 

mobile phase gradient ramps were kept similar to that of the protocol described in Section 3.4, 

with (A) 60:40 acetonitrile/water (v/v) +10 mM ammonium formate +0.1% formic acid, and (B) 

90:10 isopropanol/acetonitrile (v/v) +10m M ammonium formate +0.1% formic acid. The multi-

step gradient used was as follows: solvent B was 32% from 0-1min, followed by a linear increase 

to 55% B from 1-12min, 70% B from 12-24min, 80% B from 24-35min, 95% B from 35-50min, 

95% B from 50-60min, a decrease to 32% B at 60.1min and a hold at 32% B until the 65min 

mark. The column compartment temperature was 50 ºC, autosampler temperature was 4 ºC, and 

the injection volume was 5 µL. 
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 The mass spectrometer was operated in positive ESI mode, spray voltage 1.0 kV, 

enhanced resolution mode (continuum, approximately 60,000 resolution), scan range m/z 100 to 

1200, scan time 0.2 s/scan, cone voltage 40 V, cone gas flow 100 L/hr, desolvation gas flow 

600 L/hr, nebulizer gas flow 7.0 bar, source temperature 140 ºC, desolvation temperature 400 ºC. 

Spectra were lock mass-corrected using leucine enkephalin (m/z 554.2615). Tandem mass 

spectrometry was performed under DDA conditions for top-5 ions with a ± 1.0 Da isolation 

window, scan frequency 0.1 s/scan, transfer cell collision energy ramp of 30 V to 50 V at low 

mass (m/z 100) and 40 V to 60 V at high mass (m/z 1200). 

 

7.3.3.2 Mouse Striatum Lipidomics 

 UHPLC was completed using the binary multi-step gradient described in Section 3.4 with 

the Waters Acquity UPLC Charged Surface Hybrid (CSH), 1.7 µm x 2.1 mm x 150 mm column 

equipped with a VanGuard CSH 1.7 µm pre-column. The two-column setup that was used for the 

analysis of sunflower oil was not used in the analysis of striatum tissue samples, as we have 

shown that a single column (Waters CSH 150 mm) is sufficient to achieve chromatographic 

resolution of isomeric phospholipids [31]. The mass spectrometer was operated in negative ESI 

mode, spray voltage -2.5 kV, resolution mode (continuum; approximately 30,000 resolution), 

scan range m/z 100 to 1200, scan time 0.2 s/scan, cone voltage 40 V, cone gas flow 100 L/hr, 

desolvation gas flow 600 L/hr, nebulizer gas flow 7.0 bar, source temperature 140 ºC, 

desolvation temperature 400 ºC. Spectra were lock mass-corrected using leucine enkephalin 

(m/z 554.2615). Tandem mass spectrometry was performed under DDA conditions for top-5 ions 

with a ± 1.0 Da isolation window, scan frequency 0.1 s/scan, transfer cell collision energy ramp 

of 30 V to 45 V at low mass (m/z 100) and 35 V to 60 V at high mass (m/z 1200). 
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7.3.4 Data Normalization and Statistical Analyses 

 Peak areas under the curve were integrated using Progenesis QI. In the sunflower oil 

experiments, the chromatographic resolution of extracted peak profiles was assessed using the 

following formula: Resolution = (difference in peak apex retention times)/(average peak widths 

at baseline), and satisfactory separations were considered if the resolution coefficients were 

³ 1.0. Lipid abundances were normalized using the internal standard belonging to the same lipid 

class as the analyte of interest (i.e., all TAG species in oil were normalized using the TAG 

internal standard, PC lipid species in mouse striatum were normalized using the PC internal 

standard). Concentration data are presented as mean ± standard deviation of all analytes in µmol 

lipid/mL for the sunflower oil samples, and as nmol lipid/mg tissue for the mouse striatum 

samples. Peak alignment, integration and compound identifications were made using Progenesis 

QI. 

 

7.4 Results 

7.4.1 Sunflower Oil Macrolipidomics 

There was significant isomeric coelution of TAG species in sunflower oil when using 

conventional (i.e., single-column) UHPLC. This was determined based on the presence of 

diagnostic fragment ions from multiple TAG precursor species in MS/MS spectra (Figure 12, 

showing the extracted ion chromatogram for TAG 54:3, m/z 902.8171 as [M+NH4]+ in A, and 

MS/MS spectrum in B). Specifically, the ion highlighted in blue represents the DAG fragment of 

TAG 18:1/18:1/18:1, and the ions highlighted in red represent DAG fragments of TAG 

18:0_18:1_18:2 following neutral losses of fatty acyl chains and ammonium as [R-COOH +NH3] 

(m/z 601.5190, 603.5348 and 605.5488 represent neutral losses of 18:0, 18:1 and 18:2, 
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respectively). There was a significant improvement in chromatography and the resolution of 

isomeric TAG species with the use of the dual-column setup (Figure 12C, resolution coefficient 

= 1.02), which enabled the deconvolution of MS/MS spectra and the characterization of fragment 

ions from the two different precursor ions (Figures 12D and 12E for TAG 18:1/18:1/18:1 and 

TAG 18:0_18:1_18:2, respectively). However, upon further examination of MS/MS spectra, we 

still observed coelution of other TAG species, even with the dual-column setup (Figure 13). 

Despite the persistent coelution of some isomeric species in sunflower oil, we identified (at the 

medio or genio level) and quantitated 20 highly-abundant TAG, and specified isomeric 

contributions of multiple species if they were unresolved (Figure 14). We found that trilinolein 

(TAG 18:2/18:2/18:2) was the TAG molecule of highest abundance in sunflower oil, accounting 

for approximately 2.4% of the weight of this oil. There were considerable amounts of 18:2- 

and/or 18:1-containing TAG in sunflower oil, as these fatty acids were present in all 20 of the 

species that were profiled. These observations are consistent with the fatty acid composition of 

sunflower oil (Table 5), as linoleic acid and oleic acid constitute approximately 49% and 38% by 

weight of total fatty acids, respectively. From the 20 TAG species of highest abundance in 

sunflower oil, it appears that there was only one instance in which coelution of multiple TAG 

acyl-isomers occurred (TAG 18:0_18:1_22:0, denoted with an asterisk in Figure 14, coeluted 

with TAG 16:0_18:1_24:0). The other 19 species were isomerically pure (at the medio-level), 

after manual confirmation of diagnostic fragments from single TAG precursor ions in MS/MS 

scans. 
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7.4.2 Mouse Striatum Lipidomics 

 Using negative ESI-MS/MS, we were able to obtain fragment spectra that contained 

diagnostic ions for fatty acyl chains that were of much higher intensity relative to what is 

typically seen in the positive ion mode (an example of a negative ion MS/MS spectrum of PC 

16:0/22:6 can be found in Figure 15A, and positive ion MS/MS spectrum in B). Specifically, 

fatty acyl carboxylate anions are typically in the range of approximately 10% to 30% of the base 

peak ion in MS/MS (m/z 255 and 327 ions correspond to 16:0 and 22:6, respectively). 

Interestingly, the relative intensity of these ions can be used to determine regio-specific 

information, where the fatty acyl ion of highest intensity indicates its localization to the sn-2 

position of the glycerol backbone [31, 54]. In contrast, positive-ion MS/MS gives rise to 

fragments of very low intensity that can be difficult to discern from baseline noise (Figure 15B). 

Similar to the interpretation of TAG MS/MS spectra, phospholipid acyl information in the 

positive ion mode is determined based on the presence of lysophospholipid fragments that result 

from the neutral losses of fatty acids as [R-COOH]. These weak fragment ions are generally 

< 1% of the base peak ion (Figure 15B), where m/z 496 and 550 are 16:0- and 22:6-

lysophosphatidylcholine (LPC) fragments corresponding to the neutral losses of 22:6 and 16:0, 

respectively, and the base peak ion (m/z 184) corresponds to the phosphocholine head group.  

 Using the negative-ion method, we profiled phospholipid species from the major 

phospholipid classes in striatum and generated genio-level information for 20 highly-abundant 

lipids by manually examining MS/MS spectra (Figure 16 A). We found high proportions of 

phosphatidylcholines and phosphatidylethanolamines, with PC 16:0/18:1 (1.72 ± 0.26 nmol/mg) 

and PE 18:0/22:6 (2.35 ± 0.21 nmol/mg), being the PC and PE species of highest abundance, 

respectively. Phosphatidylinositols and phosphatidylserines were also found in considerable 
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amounts, with PI 18:0/20:4 (1.44 ± 0.03 nmol/mg) and PS 18:0/22:6 (3.44 ± 0.84 nmol/mg) 

being the species of highest abundance in these respective lipid classes. In addition, we were able 

to quantitate phospholipids of lower abundance containing fatty acyl groups of high interest for 

nutritional studies (Figure 16 B). This included three EPA-containing species (PC 16:0/20:5, 

0.04 ± 0.01 nmol/mg; PC 16:1/20:5, 0.014 ± 0.01 nmol/mg; PI 18:0/20:5, 0.04 ± 0.01 nmol/mg), 

a PS specie with two DHA fatty acyl chains (PS 22:6/22:6, 0.07 ± 0.02 nmol/mg), and two 

omega-6 PUFA-containing species (PE 16:0/20:4, 0.22 ± 0.02 nmol/mg and PS 22:4/22:6, 

0.12 ± 0.03 nmol/mg). 

 

7.5 Discussion 

 Although untargeted mass spectrometry-based methods can be used to easily generate 

lipid spectra, there are several considerations that should be taken in order to accurately identify 

and measure lipid structures. Cellular lipidomes can be vastly diverse, and the concentrations of 

individual lipid species are known to range over several orders of magnitude [16]. These 

characteristics can present significant analytical challenges, but semi-targeted methods can be 

created from untargeted or generic lipidomic profiling methods in order to increase the quality of 

the data for specific lipid classes. This was illustrated in this Chapter through the development 

and tuning of two semi-targeted methods, one for the analysis of TAG in sunflower oil, and the 

other for the analysis of phospholipids in mouse brain samples. 

 The analysis of TAG in complex lipid samples is notoriously difficult due to the large 

number of isobaric and isomeric structures (both acyl-isomers and regioisomers) that may be 

present. While high-resolution/accurate-mass applications can be used to resolve isobaric lipids, 

chromatography is still the best approach for the separation of TAG isomers. Presently, we 
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showed that conventional reversed-phase UHPLC can separate TAG species based on their 

brutto-level composition (i.e., number of carbon atoms and carbon-carbon double bonds across 

all three fatty acyl chains), but not at the level of identifying acyl-isomers (medio-level). Using a 

two-column serial coupling setup, we demonstrated that TAG structures can be further resolved 

based on the distribution of carbon-carbon double bonds on fatty acyl chains. For example, TAG 

18:1_18:1_22:1 has three monounsaturated fatty acids, and can be resolved from its acyl-isomer 

TAG 18:1_18:2_22:0 since this lipid has one saturated (22:0), one monounsaturated (18:1), and 

one polyunsaturated (18:2) fatty acid. However, other TAG species with the same distribution of 

classes of fatty acids (e.g., a different TAG that also contains three monounsaturated fatty acids 

such as TAG 18:1_20:1_20:1) may not be resolved. Nevertheless, this two-column method 

enabled the characterization of 20 of the most abundant TAG in sunflower oil, which 

cumulatively account for approximately 15% of the weight of sunflower oil. These results were 

in general agreement with the fatty acid composition data we generated by gas chromatography, 

and with analyses using supercritical CO2 ultra-performance convergence chromatography-

tandem mass spectrometry [205]. 

Overall, the two-column coupling approach allowed the successful identification of 

highly abundant lipids in sunflower oil at the acyl species or medio-level, in agreement with the 

first hypothesis of this Chapter. Beyond the medio-level data that was presented here for TAG in 

this type of oil, determining regioisomeric distributions is challenging due to the presence of 

three fatty acyl chains, as compared with just two acyl chains in phospholipids. There are some 

reports examining the effects of various ionization techniques on TAG fragmentation behaviour 

(e.g., atmospheric-pressure chemical ionization, atmospheric pressure photoionization, ESI) [38, 

225], as well as mathematical models for determining regiospecificity [226], but these 
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applications often require more targeted methods and can be impractical in discovery-based 

approaches. Furthermore, recent developments in silver-ion UHPLC have been shown to enable 

the resolution of TAG regioisomers [227, 228]. 

For the mouse striatum analyses, we were able to successfully characterize the most 

abundant lipids, as well as lower abundance lipids containing EPA and DHA. The PC class of 

lipids was the most abundant, followed by PE-P, PE, PS and PI. We were unable to confirm 

these results as we appear to have been the first to characterize mouse striatum at the lipidomic 

level, however, these results generally resembled the lipidomic profiles of other brain regions 

[229, 230]. As such, we can accept our second hypothesis that a negative mode MS/MS can be 

used to identify and quantitate the macrolipidome of mouse striatum. Most phospholipids exhibit 

zwitterionic properties, which enables their detection in both positive and negative polarities. 

Although high sensitivities may be achieved in the positive ion mode for phospholipid species 

with high electric potentials, there are three major advantages for analyzing phospholipid-rich 

samples in the negative ion mode. Firstly, the strong ion-suppression effects that 

phosphatidylcholines and sphingomyelins impart upon less ionizable phospholipids are 

ameliorated (this was discussed in Chapter 2). Secondly, there is generally less chemical noise 

and background interference from ESI contaminants in the negative ion mode as compared with 

the positive ion mode [231]. Finally, and perhaps most importantly, the fragmentation of 

phospholipids in the negative ion mode gives rise to intense fatty acyl carboxylate anions that 

can be easily recognized and annotated. This information can significantly increase the 

confidence of lipid identifications, reducing the frequency of analyte misannotations and false-

positive features. Furthermore, regioisomeric distributions can be deduced from the relative 

intensities of fatty acyl fragments in MS/MS scans. 
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In this Chapter, we have demonstrated that there are various advantages associated with 

positive and negative ESI depending on the lipid class of interest, as well as the importance of 

chromatography in the resolution of isomeric lipids. These data illustrate that while there is a 

virtually-unlimited number of mass spectrometry-based methods that can be adapted for lipid 

analysis, knowing the general lipid profile of a sample can help in tailoring the analytical method 

to increase the confidence in the results, as well as answering the research question 

appropriately. Combining some of the features from the methods presented in this Chapter has 

the potential to create robust and comprehensive methods that have the ability to simultaneously 

measure polar and non-polar lipids in complex matrices. This will be illustrated in Chapter 8 

through the application of a retention time-based polarity-switching UHPLC-MS/MS method for 

the analysis of human whole blood samples. 
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Figure 11. Illustration of the dual UHPLC column serial coupling setup. Column specifications: 
Ascentis Express C18 2.0 µm x 2.1 mm I.D. x 150 mm; Ascentis Express 2.0 µm guard; Acquity 
UPLC BEH C18 1.7 µm x 2.1 mm I.D. x 100 mm; VanGuard BEH 2.0 µm pre-column; columns 
are connected using a 5 cm piece of polyetheretherketone (PEEK) tubing. UHPLC, ultra-high 
performance liquid chromatography; ESI, electrospray ionization; BEH, ethylene bridged hybrid; 
PEEK, polyetheretherketone. 
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Figure 14. Concentrations of twenty of the major lipid species in sunflower oil. The values 
shown are based on analyses of technical replicates (n = 3, mean ± standard deviation). The 
molecule with the asterisk (*) was confirmed to be a contribution of two coeluting isomeric 
species (TAG 18:0_18:1_22:0 and TAG 16:0_18:1_24:0). TAG, triacylglycerol. All other 
species were confirmed to be isomerically-pure at the medio-level. 
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Table 5. Fatty acid composition of sunflower oil. 
Fatty Acid Weight percent of total fatty acids 
10:0 0.01 ± 0.01 
12:0 0.01 ± 0.01 
14:0 0.06 ± 0.01 
16:0 5.55 ± 0.04 
18:0 3.57 ± 0.01 
20:0 0.25 ± 0.01 
22:0 0.69 ± 0.02 
23:0 0.04 ± 0.01 
24:0 0.22 ± 0.02 
Total saturates 10.37 ± 0.02 
12:1 0.01 ± 0.01 
14:1 0.01 ± 0.01 

16:1 0.09 ± 0.01 
18:1n-7 0.72 ± 0.01 
18:1n-9 38.44 ± 0.04 
20:1n-9 0.17 ± 0.01 
22:1n-9 0.01 ± 0.01 
24:1n-9 0.01 ± 0.01 

Total monounsaturates 39.43 ± 0.02 
18:2n-6 48.60 ± 0.20 
18:3n-6 0.01 ± 0.01 
20:2n-6 0.01 ± 0.01 
20:3n-6 0.01 ± 0.01 
20:4n-6 0.01 ± 0.01 

22:2n-6 0.01 ± 0.01 

22:4n-6 0.01 ± 0.01 

22:5n-6 0.01 ± 0.01 

Total omega-6 polyunsaturates 
polyunsaturates 

48.60 ± 0.20 
18:3n-3 0.28 ± 0.01 
20:3n-3 0.01 ± 0.01 
20:5n-3 0.01 ± 0.01 

22:5n-3 0.01 ± 0.01 

22:6n-3 0.01 ± 0.01 

Total omega-3 polyunsaturates 0.28 ± 0.01 

Total fatty acids (mg/mL) 955 ± 8 

Values are mean ± standard deviation of technical triplicate samples.
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Figure 15. MS/MS spectra for PC 16:0/22:6 in A. the negative ion mode (precursor ion = 
m/z 850.5604 as [M+formate]-), and B. the positive ion mode (precursor ion = m/z 806.5694 as 
[M+H]+), highlighting the structures of the major product ions in both polarities. 
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Figure 16. Concentrations of A. twenty of the major lipid species in mouse striatum, and B. low-
abundant species containing HUFA (highly unsaturated fatty acids). The values shown are based 
on analyses of technical replicates (n = 3, mean ± standard deviation). PC, phosphatidylcholine; 
PE, phosphatidylethanolamine; PS, phosphatidylserine; PI, phosphatidylinositol. 
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CHAPTER 8 

Quantitative Lipidomics of Novel Whole Blood Biomarkers for the Dietary Intake of 

Omega-3 Polyunsaturated Fatty Acids 

8.1 Objectives 

 The relationship between diet and blood levels of omega-3 polyunsaturated fatty acids 

(omega-3 PUFA) has been examined [232-234]. Most of this research has been focused on gross 

levels of fatty acids in total lipids or lipid fractions of plasma/serum and erythrocytes, which has 

led to the development of blood biomarkers for stratifying disease risk [235], and estimating 

dietary intakes of EPA and DHA [236, 237]. These observations were developed from fatty acid 

compositional data which uses gas chromatography-based analyses that rely on removing fatty 

acyl chains from complex lipids and derivatizing to fatty acid methyl esters [238]. This limits the 

ability to characterize complex lipid structures, and specific structural information of lipids that 

could be of physiological relevance is lost. UHPLC-MS/MS-based analyses have the potential to 

characterize complex lipids as they exist in their natural states. This “lipidomic” characterization 

can be considered a metabolic phenotype resulting from genetic and environmental influences. 

The lipidome therefore has considerable potential to be able to provide information about dietary 

habits and lipid metabolism.  

Blood is a difficult matrix to analyze as it contains a mixture of polar and non-polar 

lipids. As demonstrated previously (in Chapter 7), the characterization of polar and non-polar 

lipids improves with semi-targeted analytical approaches. A previous solution has been to 

complete repeated iterations of analytical runs of the same sample to achieve comprehensive 

characterizations of the plasma lipidome [201]. This increases the analytical burden and 

decreases throughput, which is particularly problematic in blood-based screening exercises. 
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Based on the differences in ionization polarities that are exhibited by the various lipid classes [7], 

and the fact that polar lipids tend to elute first with standard C18 reverse-phase LC we developed 

a retention time-based ESI polarity-switching method to capture both polar (ionized in the 

negative ion mode) and non-polar lipids (ionized in the positive ion mode). 

This novel method was then used to complete lipidomic analyses on blood samples 

collected to evaluate dietary assessment methods of the Danish National Survey of Dietary 

Habits and Physical Activity. Validating food surveys is typically done using fatty acid analyses 

[239-243]. Lipidomics has seldom been used to examine the relationship between dietary omega-

3 PUFA intake and the levels of fatty acyl-containing complex lipids in human whole blood. 

Most lipidomic studies have focused on the examination of isolated blood fractions of humans or 

rodents using interventions with fish, fish oil or DHA supplementation [244-250]. Previous pilot 

work from our laboratory [251] has indicated that levels of PC 16:0_20:5 and PE P-16:0_20:5 in 

whole blood are positively correlated with intakes of EPA, while PC 16:0_22:6 and PE P-

16:0_22:6 are positively correlated with intakes of DHA. However, these relationships remain to 

be confirmed using larger sample sizes and with precise assessments of dietary omega-3 PUFA 

intakes. In regard to dietary ALA, most of the lipidomic studies have focused on the downstream 

oxidative metabolites of this essential fatty acid along with other oxylipins [252-254]. Despite 

the fact that there can be relatively high amounts of ALA in PC and PE relative to other complex 

lipid [251], there are no reports on the role of ALA in the macrolipidome of whole blood.  

 The purpose of this study is to identify complex lipids in human whole blood that are 

correlated with dietary intakes of ALA, eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA). To do this, quantitative lipidomic analyses will be completed on whole blood samples 

collected by the Technical University of Denmark as part of their National Dietary Survey. The 
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estimated dietary intakes of omega-3 PUFA including ALA, EPA and DHA will be correlated 

with the lipidomic data in order to identify acyl-specific lipids that could serve as novel blood 

biomarkers for dietary habits around omega-3 PUFA consumption. 

 

8.2 Hypotheses 

1. A retention time-based polarity switching method will characterize both polar (PC, PE, 

PI, PS, FFA) and non-polar (TAG, CE) lipids in whole blood within a single UHPLC 

MS/MS analytical run. 

2. The concentrations of ALA-containing PC and PE species will be positively correlated 

with the dietary intake of ALA. 

3. The concentrations of PC 16:0_20:5 and PE P-16:0_20:5 will be positively correlated 

with the dietary intake of EPA. 

4. The concentrations of PC 16:0_22:6 and PE P-16:0_22:6 will be positively correlated 

with the dietary intake of DHA. 

 

8.3 Methods, Materials and Study Design 

8.3.1 Sample Collection and Lipid Extraction 

 Human blood samples (n = 120) were collected as part of the National Surveys of Diet 

and Physical Activity by the Danish National Food Institute, which received ethics clearance 

from the Danish National Committee of Health Research Ethics. Sample analyses were ethically 

approved by the University of Waterloo Office of Research Ethics. Dietary intakes for all 

participants were assessed using 7-day food records for macronutrients, fatty acid classes, and 

some individual fatty acids through the Danish Food Composition Database 
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(https://frida.fooddata.dk) [255, 256]. Whole blood samples were shipped to the University of 

Waterloo, ON, Canada, in dry ice, and were kept at -80 ºC until sample preparation. Lipid 

extracts were obtained from 20 µL aliquots of whole blood as described in Section 3.3, using 

3 mL of 2:1 chloroform/methanol (v/v) which delivered known amounts of various deuterium-

labelled internal standards for the major lipid classes (Splash Lipidomix, Avanti Polar Lipids, 

Alabaster, AL, USA). Lipid extracts were dried under N2 gas and reconstituted in 100 µL of the 

reconstitution solvent (65:35:5 acetonitrile/isopropanol/water (v/v/v) +0.1% formic acid). 

Samples were then vortexed briefly and stored in vials at 4 ºC until analysis by UHPLC-MS/MS. 

 

8.3.2 Instrument Settings 

 UHPLC was completed using the binary multi-step gradient described in Section 3.4 with 

the Waters Acquity UPLC Charged Surface Hybrid (CSH), 1.7 µm x 2.1 mm x 150 mm column 

equipped with a VanGuard CSH 1.7 µm pre-column. A retention time-based polarity-switching 

MS/MS method was developed by first identifying a thirty-second region in the chromatogram 

between the elution times of phospholipids/sphingolipids and triacylglycerols/cholesteryl esters 

when no other lipids could be identified (Figure 17). This was done by manually evaluating all 

MS/MS spectra in the positive and negative ion modes between 27 and 27.5 min of the LC 

gradient for the presence of diagnostic ions for phospholipid head groups (e.g., m/z 184 for 

phosphatidylcholines and sphingolipids), fatty acyl chains (acylium ions in the positive ion 

mode, carboxylate anions in the negative ion mode), as well as any precursor ions with m/z 

ratios > 400 that could yield recognizable MS/MS patterns. Upon confirmation that no lipids 

were being eluting in that region of the chromatogram, the sequence and instrument were set up 

so that the mass spectrometer was operated in the negative ion mode from 0 – 27 min, followed 
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by a 0.5 µL dummy injection of the eluent, a dwell time of approximately 20 s between 

ionization polarities, and then positive ESI until the 45 min mark. This allowed for the 

simultaneous characterization of polar lipids (free fatty acids, lysophospholipids, phospholipids, 

sphingolipids) and non-polar lipids (triacylglycerols and cholesteryl esters) which can be better 

characterized in the negative- and positive-ion modes, respectively, using a single sample 

injection and within the same analytical run. The spray voltages were -2.25 kV and +2.25 kV for 

the negative and positive-ion modes, respectively. In both ion modes, the mass spectrometer was 

operated in high-resolution mode (continuum; approximately 42,000 resolution), scan range m/z 

100 to 1200, scan time 0.2 s/scan, cone voltage 40 V, cone gas flow 100 L/hr, desolvation gas 

flow 600 L/hr, nebulizer gas flow 7.0 bar, source temperature 140 ºC, desolvation temperature 

400 ºC. Spectra were lock mass-corrected using leucine enkephalin (m/z 554.2615 for [M-H]- 

and m/z 556.2771 for [M+H]+). Tandem mass spectrometry was performed under DDA 

conditions for top-5 ions with a ± 1.0 Da isolation window, scan frequency 0.1 s/scan. Collision 

energies in the transfer cell were ramped from 30 V to 45 V at low mass (m/z 100) and 35 V to 

60 V at high mass (m/z 1200) for negative-ESI, and from 30 V to 50 V at low mass (m/z 100) and 

40 V to 60 V at high mass (m/z 1200) for positive ESI. 

 

8.3.3 Gas Chromatography-Flame Ionization Detection 

 Lipid extracts were obtained from 20 µL aliquots of whole blood as explained in Section 

3.3, using 3 mL of 2:1 chloroform/methanol (v/v) with 10 µg of docosatrienoate methyl ester as 

the internal standard (NuChek-Prep, Elysian, MN, USA). The fatty acid composition of lipid 

extracts was determined by gas chromatography-flame ionization detection following 
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derivatization with 14% BF3 in methanol to generate fatty acid methyl esters as explained in 

Section 3.5. 

 

8.3.4 Data Normalization and Statistical Analyses 

 Lipid identifications were made using SimLipid software, which provides a list of lipid 

features in the sample(s) of interest by automatically comparing experimental and reference 

fragment spectra, but it is unable to perform peak picking/peak area integration. To determine 

peak areas of manually-confirmed analytes, Progenesis QI was used. Lipid abundances were 

normalized using the internal standard belonging to the same lipid class as the analyte of interest 

(i.e., all PC lipid species were normalized using the PC internal standard). Concentration data are 

presented as mean ± standard deviation of all analytes in nmol lipid/mL blood. Two-tailed 

bivariate correlations were performed between dietary intake data and lipid concentrations to 

generate Pearson r-values as a measure of the strength of the associations, and Fisher’s exact z-

test [257] was used for comparisons of correlations between complex lipids, fatty acid 

concentrations and intake levels. Statistical significance was inferred at p < 0.05.  

 

8.4 Results 

 The polarity-switching method enabled the detection and characterization of free fatty 

acids, lysophospholipids, phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines, 

phosphatidylinositols and sphingolipids in the negative ion mode, as well as triacylglycerols and 

cholesteryl esters in the positive ion mode (Figure 17). Monoacylglycerols, diacylglycerols, and 

free cholesterol were not characterized as their detection requires positive ion mode, but they 

elute in the first half of the chromatographic run with the polar lipids. Similarly, cardiolipins 
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were not identified as they require negative ion mode and they eluted in the second half of the 

chromatographic run with the nonpolar lipids. In total, there were 710 positive lipid 

identifications that were made with FAID (Table 6). Of these, 54 lipids contained 18:3, 61 

contained 20:5, and 54 contained 22:6. The majority of these PUFA-containing lipids were 

distributed across the major phospholipids (72%, 79%, and 89% of total 18:3, 20:5 and 22:6 

identifications were phospholipids, respectively), where most of the 18:3-lipids were found as 

PC, and most of the 20:5- and 22:6-lipids as PS. A detailed list of all of the species that were 

identified with FAID can be found in Appendix A. Quantitative data was generated for 140 lipids 

of high abundance, including two 18:3-species, twenty-four 20:5-species, and thirty-one 22:6-

species (Table 7). The 18:3-, 20:5- and 22:6-containing phospholipid species with the highest 

abundance were PC 18:0_18:3 (33.07 ± 7.33 nmol/mL), PC 16:0_20:5 (60.81 ± 15.68 nmol/mL) 

and PC 16:0_22:6 (81.90 ± 17.80 nmol/mL), respectively. 

Dietary intakes of ALA, EPA, DHA and total omega-3 PUFA were 1.73 ± 1.04, 

0.10 ± 0.10, 0.16 ± 0.17, and 2.16 ± 1.14 g/d, respectively (participant characteristics and dietary 

intakes can be found in Table 8). Fatty acid compositional analyses indicated relative weight 

percent of EPA+DHA in total fatty acids in whole blood was 4.41 ± 1.13 % (Table 9). By 

correlating quantitative lipidomic data for all 140 lipids versus dietary intakes of omega-3 PUFA, 

several associations were found to reach statistical significance. We plotted the three complex 

lipids that had the strongest Pearson correlation r-values with individual fatty acid intakes 

(Figure 18; ALA intakes A – C; EPA intakes E – G; and DHA intakes I – K), and sums of fatty 

acids (Figure 19; EPA+DHA intakes A – C; and Total Omega-3 PUFA intakes E – G). 

Interestingly, the three lipids that were the most strongly correlated with ALA intakes were all 

TAG species that did not contain ALA. This included TAG 16:0_18:1_22:5 (r = 0.245, 
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p = 0.007), TAG 16:0_18:1_22:6 (r = 0.228, p = 0.012) and TAG 18:0_18:1_18:2 (r = 0.209, 

p = 0.022). PC 18:0_18:3 and CE 18:3, which both contained 18:3 were not correlated 

significantly with ALA intakes (r = 0.090 and -0.024, respectively and p > 0.05 for both). 

Further inspection of the scatterplots between the intake of ALA and the concentrations of the 

three blood TAG species indicated that a single participant with an estimated ALA intake of 

11.3g/d was influencing the correlations. After removing this outlier from the sample set, two 

different TAG (TAG 18:1_20:5_22:6 and TAG 16:1_18:2_22:6) and a CE (CE 20:4) were found 

to have statistically-significant associations to ALA intakes (Figure 20 A – C; p ≤ 0.001 for all).  

The lipids that were the most-strongly correlated with EPA, DHA and EPA+DHA intakes 

were all DHA-containing phosphatidylethanolamine plasmalogens. For EPA intakes, the top-

three correlated lipids were PE P-16:0_22:6, PE P-18:1_22:6 and PE P 18:0_22:6 (r = 0.465, 

0.445 and 0.410, respectively; p < 0.001 for all). From our hypothesis, PE P-16:0_20:5 

(r = 0.379; p < 0.001) was correlated, but PC 16:0_20:5 was not correlated (r < 0.15, p > 0.05) 

with EPA intake. For DHA intakes, the top-three correlated lipids were PE P-16:0_22:6, PE P-

18:1_22:6 and PE P-20:0_22:6 (r = 0.425, 0.399 and 0.383, respectively; p < 0.001 for all). This 

included PE P-16:0_22:6 but not PC 16:0_22:6 from our hypothesis, although PC 16:0_22:6 was 

still correlated with DHA intake (r = 0.302; p < 0.01). For EPA+DHA intakes, the top-three 

correlated lipids were PE P-16:0_22:6, PE P-18:1_22:6 and PE P-18:0_22:6 (r = 0.445, 0.420 

and 0.389, respectively; p < 0.001 for all). The removal of the outlier with the highest ALA 

intake did not change the lipid species that had the strongest associations to EPA (Figure 20 E – 

G), DHA (Figure 20 I – K) and EPA+DHA intakes (Figure 21 A – C). 

The correlations between lipidomic markers and total omega-3 PUFA intakes resembled 

the correlations with ALA intakes. TAG 16:0_18:1_22:6 (r =0.232, p < 0.05) that was correlated 
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with ALA intake was again a top-three correlated lipid, with TAG 18:1_20:5_22:6 (r = 0.253, 

p < 0.05) and TAG 18:0_18:1_22:6 (r =0.239, p < 0.05) also being within the top-three lipids 

correlated with total omega-3 PUFA intake. Removal of the participant with unusually high ALA 

intake again changed the intake-blood lipid correlations. Interestingly, TAG 18:1_20:5_22:6 

remained in the top 3 with an increased strength (r = 0.369, p < 0.001), with PE P-16:0_22:6 

(r = 0.289, p = 0.001), and PE P-16:0_20:5 (r = 0.273, p = 0.003) replacing the other TAG 

species in the top-three lipids correlated with total omega-3 PUFA intake (Figure 21 A – C). 

Dietary intakes of ALA, EPA, and DHA, (Figure 18 D, H, and L) and EPA+DHA and 

total omega-3 PUFA (Figure 19 D and H) were correlated against their corresponding levels in 

whole blood as fatty acids. DHA intake and DHA as a fatty acid in blood tended to have the 

strongest correlation which was relatively similar to DHA intake correlations to the DHA-

containing lipidomic measurements. Correlations between ALA and EPA intake and blood fatty 

acid levels appeared slightly weaker, but not statistically different than the correlations with 

lipidomic measurements (p > 0.05 by Fisher’s exact z-test). Interestingly, the lipidomic approach 

highlighted that ALA and EPA may correlate more strongly with lipid species that do not contain 

ALA and EPA, respectively. Ad hoc comparisons to all fatty acids revealed that ALA intake 

correlated significantly only with 18:0 (r = 0.182, p = 0.047) and 18:1n-9 (r = 0.206, p = 0.024). 

EPA intake correlated with several blood fatty acids, with DHA being the strongest (r = 0.407, 

p < 0.001). 
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8.5 Discussion 

8.5.1 Method Application and Assessment 

In this study, we utilized a UHPLC-MS/MS method with retention time-based ESI 

polarity switching to achieve the optimal ionization of the major polar and non-polar lipids in 

whole blood within a single analytical run. Similar approaches have been adapted previously for 

the analysis of targeted drugs and metabolites in pharmacological studies [258-261], but not in 

discovery-based lipidomics. The inherent problems of acquiring data in only positive or negative 

polarities (discussed in Chapter 7) have also been addressed with newer technologies that enable 

fast polarity switching with alternating positive and negative scans [22, 130, 262-264]. However, 

this capability is technologically-demanding, and only a few analytical platforms have polarity-

switching dwell times that are fast enough (a few milliseconds) to make them amenable for 

HPLC- and UHPLC-based protocols [99, 265]. Special attention should also be given in top-n 

DDA-based applications since MS-survey scans would be acquired less frequently, and true 

chromatographic peak profiles may not be captured. On the mass spectrometer that was used for 

the experiments in this Chapter (Waters Synapt G2Si QToF), the total dwell time for switching 

between positive and negative ion modes is approximately 20 s, making fast polarity-switching 

unfeasible on our platform.  

There were lipids from a few lipid classes that were not detected since they eluted at 

times when the mass spectrometer was being operated in an ESI polarity that was not optimal for 

these classes. Specifically, monoacylglycerols, diacylglycerols and free cholesterol eluted within 

the first 27 min of the LC gradient when spectra are being acquired in the negative ion mode, but 

species from these lipid classes are more easily ionized in the positive ion mode [266-268]. 

Similarly, cardiolipins are eluted at approximately the same time as triacylglycerols and 
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cholesteryl esters when the mass spectrometer is being operated in the positive ion mode (27-

45 min), but these species can be better characterized in the negative ion mode [170, 269]. 

Therefore, the present method has limitations in characterizing the full lipidome, but it is well 

suited for examining differences in the acyl species of complex blood lipids in response to 

different intakes of fatty acids. While free cholesterol is an important biomarker for health and 

disease [270], it does not contain a fatty acyl moiety and cannot be used to directly differentiate 

intakes of different fatty acids. Monoacylglycerols, diacylglycerols and cardiolipins do contain 

fatty acids, but their abundance in human whole blood is relatively low and they contain < 10% 

of total fatty acids in blood [251]. Measuring the low-abundant species of these lipid classes is 

important [271], but targeted methods may be better suited for their characterization. For 

assessing omega-3 PUFA intake, monoacylglycerols and diacylglycerols are metabolically 

linked to TAG, which are more abundant [234] and have low EPA and DHA content [271]. 

Cardiolipin acyl composition is tightly regulated and more resistant to differences in dietary 

intake [272] and the complexity of the cardiolipin molecule is better suited using targeted 

analyses [170]. 

Only a small proportion of the lipid features that were identified using SimLipid software 

(710 features) were fully characterized using Progenesis QI (140 total identifications, 57 were 

confirmed to contain 18:3, 20:5 or 22:6). Although SimLipid is an automated solution designed 

for the identification of lipid features without necessitating user confirmation, at the time of this 

thesis this software package is incapable of determining compound peak areas which would be 

used to determine analyte concentrations. As a measure of abundance, it provides absolute 

product ion intensity sums (as a surrogate measure of peak height) but does not consider 

chromatographic peak widths. Conversely, Progenesis QI does have peak picking and peak area 
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integration tools in addition to an assisted compound identification algorithm. This latter 

workflow is time-consuming as it requires user confirmation of every lipid identification, and 

while the resulting list of analytes may not be exhaustive, these high-quality identifications are 

quantitated. As discussed in Chapter 5, the process of searching for all possible fatty acyl 

fragments within a given MS/MS scan to classify a lipid feature as FAID within SimLipid can 

significantly increase the confidence in the results by lowering the number of false positive 

identifications. However, background ions or noise in MS/MS spectra can be misidentified as 

fatty acyl fragments. This is evident from some of the identifications that are reported in 

Appendix A, which includes a large number of lipids with odd-chain fatty acids which are 

relatively uncommon in human blood [273]. Although some of these identified lipids could be 

real, it is highly unlikely that multiple odd chain fatty acids would be arranged together on the 

same molecule. For example, TAG 15:1_19:0_19:1 was reported as a lipid feature with FAID, 

but upon manual examination of MS/MS spectra, all of the diagnostic fragments that were used 

to confirm this lipid were background ions. Conversely to SimLipid’s lipid identification 

workflow, Progenesis QI relies on a user-assisted approach, whereby possible identifications 

with a high level of agreement are presented based on precursor ion mass error and 

fragmentation pattern matches. The software then allows the user to pick the most likely 

candidate. Due to the conservative nature of this workflow which requires human input in order 

to annotate lipid species, the list of 140 identified compounds is not exhaustive. Overall, by 

adopting a retention time-based polarity-switching algorithm to our upfront UHPLC protocol, we 

were able to acquire high-quality spectra for the major lipids in human whole blood, including 

phospholipids, triacylglycerols and cholesteryl esters which is in agreement with the first 

hypothesis. 
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8.5.2 Lipidomic Blood biomarkers of Omega-3 PUFA Intake 

We identified several lipid molecules that could serve as potential biomarkers of intake 

for ALA, EPA, DHA, EPA+DHA and total omega-3 PUFA. Although the correlations between 

the concentrations of three different TAG species and ALA as well as total omega-3 PUFA 

intakes reached statistical significance, they were relatively weak. Regarding the second 

hypothesis, there were only two 18:3-containing lipids (PC 18:0_18:3 and CE 18:3) that were 

identified and quantitated, but neither of these were significantly correlated with ALA intakes. 

More targeted analyses may enable the detection and characterization of a higher number of 

18:3-containing complex lipids, which could be stronger predictors of ALA and total omega-3 

PUFA intake. However, it appears that predicting ALA intakes from blood biomarkers is 

difficult and may require other statistical approaches such a multiple linear regression [274]. 

We found that 22:6-containing phosphatidylethanolamine plasmalogens (PE P-16:0_22:6, 

PE P-18:0_22:6, PE P-18:0_22:6 and PE P-20:0_22:6) were better predictors of EPA, DHA and 

EPA+DHA intakes as compared with 20:5-containing lipids. From the lipids that were 

hypothesized to be strongly correlated with EPA intakes, only PE P-16:0_20:5 reached statistical 

significance. However, both PC 16:0_22:6 and PE P-16:0_22:6 which were hypothesized to be 

correlated with DHA intakes reached statistical significance. These observations could be due to 

differences in the rates of turnover of PE lipids and 22:6-containing lipids as compared with 

others [236, 251, 275, 276], and suggests that these species could be used as indicators of chronic 

or habitual intake of EPA+DHA.  

Several studies have examined the relationship between dietary omega-3 PUFA and the 

adaptations that take place in blood [277]. This has led to the identification of various PUFA-

containing species such as PC 38:6, PC 38:8 and PC 40:6 which are associated with omega-3 
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PUFA intake [244-246, 250]. One of the limitations of many of these studies is that lipidomic 

data are presented at the brutto level. While assumptions can be made regarding the specific fatty 

acyl composition of discrete lipid species from brutto-level data, the large number of isomeric 

species that may be present in a biological sample limit our ability to make definite conclusions 

about the metabolism of specific lipid molecules. Some studies have reported medio-level 

information for species that are responsive to omega-3 PUFA supplementation, including PC 

18:0_20:5, PC 16:0_22:6, PE 16:0_22:6 and PS 18:0_22:6 [247, 248], all of which were found to 

be significantly correlated with EPA or DHA intake in this Chapter. Interestingly, only one 

recent study on the post-prandial response in plasma to omega-3 PUFA intake has reported an 

enrichment of specific EPA- or DHA-containing ether-linked phospholipid species [249]. 

Although the digestion, absorption and gross metabolism of ether-linked lipids is still poorly 

understood, several studies have observed relatively higher proportions of both omega-3 and 

omega-6 PUFA in these lipids as compared with di-acyl phospholipids of the same subclass 

[278-281].  

One of the limitations of the present work is that the population that was studied has 

relatively higher consumption and blood levels of omega-3 PUFA than most of the world [238, 

282], which could limit the translatability of these findings and necessitates confirmation in 

populations with lower/more infrequent intakes. In addition, a 7-day food record was used to 

assess omega-3 PUFA intakes which only represents dietary intakes of the 7 days prior to sample 

collections, which may not necessarily reflect usual long-term intakes [283]. Contrasting 

lipidomic blood biomarkers of intake with other common methods of dietary assessment such as 

food frequency questionnaires and 24h dietary recalls should be examined.  
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The inability to determine the specific locations of carbon-carbon double bonds within 

fatty acyl chains using the current methodology could also limit the interpretation of these 

results. While this may not be an issue for 20:5 (EPA)- and 22:6 (DHA)-containing lipids which 

have all methylene-interrupted cis-double bonds, 18:3 can be either ALA (18:3n-3) or gamma-

linolenic acid (18:3n-6), both of which are present in human blood [284]. Infinio level 

characterization of the acyl species in blood should be pursued through complex double bond-

locating methods [57-60], which could then be used to assess the ability of simplified methods to 

discriminate these acyl species for example by retention time. Nevertheless, to our knowledge 

this is the largest lipidomic examination of complex blood lipids as potential biomarkers of 

omega-3 PUFA intake and the only lipidomic assessment in a national observational survey 

study that has been completed. Moreover, studies using controlled intakes of omega-3 PUFA 

under different conditions (acute/sporadic and chronic/frequent intake) are needed to confirm 

these observations and increase our understanding of changes in lipidomic biomarkers in 

response to diet. 
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Figure 17. Total ion chromatogram and approximate elution times of the major lipid classes in 
whole blood, highlighting the ionization polarity used to acquire spectra. ESI, electrospray 
ionization. 
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Table 6. Distribution of lipid species with full acyl identifications (FAID) in whole blood 

Main Class Lipid Sub-Class 
Number of Species with FAID 

18:3-
Lipids 

20:5-
Lipids 

22:6-
Lipids 

Total 
Lipids 

Phosphosphingolipids Ceramide phosphocholines (sphingomyelins) 0 0 0 12 
Phosphosphingolipids Ceramide phosphoethanolamines 0 0 0 1 
Glycerophosphates Diacylglycerophosphates 0 0 0 10 
Glycerophosphocholines Diacylglycerophosphocholines 15 12 11 172 
Glycerophosphoethanolamines Diacylglycerophosphoethanolamines 11 11 11 127 
Glycerophosphoglycerols Diacylglycerophosphoglycerols 1 2 4 28 
Glycerophosphoinositols Diacylglycerophosphoinositols 3 3 4 41 
Glycerophosphoserines Diacylglycerophosphoserines 8 18 16 137 
Glycerophosphocholines Monoacylglycerophosphocholines 1 1 1 14 
Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines 0 1 1 9 
Glycerophosphoinositols Monoacylglycerophosphoinositols 0 0 0 2 
Glycerophosphoserines Monoacylglycerophosphoserines 0 0 0 2 
Ceramides N-acylsphingosines (ceramides) 0 0 0 1 
Oxidized glycerophospholipids Oxidized glycerophosphocholines 0 0 0 1 
Fatty Acyls Fatty Acids & Conjugates 1 1 1 8 
Sterols Steryl Esters 1 1 1 6 
Triradylglycerols Triacylglycerols 13 11 4 139 
 Total 54 61 54 710 
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Table 7. Concentrations of lipid species in the macrolipidome of whole blood samples from the 
Danish National Surveys of Diet and Physical Activity 

Lipid Sub-Class Brutto- 
Species 

Medio- 
Species m/z Concentration 

(nmol/mL) 
N-acylsphingosines (ceramides) CER d42:1 CER d18:1_24:0 694.6351 1.86 ± 0.41 
N-acylsphingosines (ceramides) CER d42:2 CER d18:1_24:1 692.6194 4.34 ± 0.97 
Monoacylglycerophosphocholines LPC 14:0 LPC 14:0 512.2988 1.20 ± 0.40 
Monoacylglycerophosphocholines LPC 16:0 LPC 16:0 540.3303 47.27 ± 10.36 
Monoacylglycerophosphocholines LPC 18:0 LPC 18:0 568.3617 51.52 ± 11.07 
Monoacylglycerophosphocholines LPC 18:1 LPC 18:1 566.3460 13.30 ± 3.99 
Monoacylglycerophosphocholines LPC 18:2 LPC 18:2 564.3303 18.46 ± 6.65 
Monoacylglycerophosphocholines LPC 20:5 LPC 20:5 586.3145 1.76 ± 0.73 
Monoacylglycerophosphocholines LPC 22:6 LPC 22:6 612.3302 1.16 ± 0.52 
Monoalkylglycerophosphocholines LPC O-16:0 LPC O-16:0 526.3505 0.93 ± 0.19 
Monoalkylglycerophosphocholines LPC O-18:1 LPC O-18:1 552.3664 0.77 ± 0.17 
Monoacylglycerophosphoethanolamines LPE 16:0 LPE 16:0 452.2778 0.75 ± 0.24 
Monoacylglycerophosphoethanolamines LPE 18:0 LPE 18:0 480.3091 2.88 ± 0.79 
Monoacylglycerophosphoethanolamines LPE 20:0 LPE 20:0 554.3459 0.83 ± 0.22 
Monoacylglycerophosphoethanolamines LPE 20:5 LPE 20:5 498.2619 0.13 ± 0.08 
Monoacylglycerophosphoethanolamines LPE 22:6 LPE 22:6 524.2776 0.44 ± 0.12 
Diacylglycerophosphocholines PC 32:2 PC 14:0_18:2 774.5280 6.22 ± 2.50 
Diacylglycerophosphocholines PC 34:4 PC 14:0_20:4 798.5274 1.51 ± 0.75 
Diacylglycerophosphocholines PC 34:5 PC 14:0_20:5 796.5127 0.39 ± 0.47 
Diacylglycerophosphocholines PC 36:6 PC 14:0_22:6 822.5280 1.63 ± 0.80 
Diacylglycerophosphocholines PC 32:0 PC 16:0_16:0 778.5595 43.28 ± 6.73 
Diacylglycerophosphocholines PC 34:1 PC 16:0_18:1 804.5756 226.18 ± 36.29 
Diacylglycerophosphocholines PC 34:2 PC 16:0_18:2 802.5600 282.79 ± 35.33 
Diacylglycerophosphocholines PC 36:4 PC 16:0_20:4 826.5598 94.83 ± 22.57 
Oxidized Glycerophosphocholines PC 36:4(OH) PC 16:0_20:4(OH) 842.5527 0.80 ± 0.60 
Diacylglycerophosphocholines PC 36:5 PC 16:0_20:5 824.5440 60.81 ± 15.68 
Diacylglycerophosphocholines PC 38:5 PC 16:0_22:5 852.5753 18.69 ± 3.41 
Diacylglycerophosphocholines PC 38:6 PC 16:0_22:6 850.5597 81.90 ± 17.80 
Diacylglycerophosphocholines PC 34:3 PC 16:1_18:2 800.5437 20.55 ± 6.32 
Diacylglycerophosphocholines PC 36:6 PC 16:1_20:5 822.5280 0.28 ± 0.37 
Diacylglycerophosphocholines PC 38:7 PC 16:1_22:6 848.5439 2.39 ± 1.17 
Diacylglycerophosphocholines PC 36:1 PC 18:0_18:1 832.6068 80.31 ± 12.19 
Diacylglycerophosphocholines PC 36:3 PC 18:0_18:3 828.5754 33.07 ± 7.33 
Diacylglycerophosphocholines PC 38:4 PC 18:0_20:4 854.5910 63.00 ± 11.29 
Diacylglycerophosphocholines PC 38:5 PC 18:0_20:5 852.5752 12.25 ± 4.43 
Diacylglycerophosphocholines PC 40:5 PC 18:0_22:5 880.6062 3.64 ± 1.00 
Diacylglycerophosphocholines PC 40:6 PC 18:0_22:6 878.5909 21.61 ± 6.56 
Diacylglycerophosphocholines PC 36:2 PC 18:1_18:1 830.5912 218.61 ± 29.33 
Diacylglycerophosphocholines PC 38:6 PC 18:1_20:5 850.5582 0.16 ± 0.08 
Diacylglycerophosphocholines PC 40:7 PC 18:1_22:6 876.5746 2.91 ± 0.85 
Diacylglycerophosphocholines PC 38:7 PC 18:2_20:5 848.5432 1.05 ± 0.56 
Diacylglycerophosphocholines PC 40:8 PC 18:2_22:6 874.5593 1.16 ± 0.38 
Alkylacylglycerophosphocholines  PC O-38:4 PC O-18:0_20:4 840.6106 8.13 ± 1.70 
Alkylacylglycerophosphocholines  PC O-40:5 PC O-18:0_22:5 866.6256 1.33 ± 0.32 
Alkenylacylglycerophosphocholines PC P-34:2 PC P-16:0_18:2 786.5625 10.12 ± 2.12 
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Alkenylacylglycerophosphocholines PC P-36:5 PC P-16:0_20:5 808.5495 5.67 ± 1.25 
Diacylglycerophosphoethanolamines PE 36:6 PE 14:0_22:6 734.4754 0.07 ± 0.07 
Diacylglycerophosphoethanolamines PE 32:1 PE 16:0_16:1 776.5436 10.02 ± 4.59 
Diacylglycerophosphoethanolamines PE 34:1 PE 16:0_18:1 716.5229 69.45 ± 13.28 
Diacylglycerophosphoethanolamines PE 36:4 PE 16:0_20:4 738.5072 29.89 ± 5.43 
Diacylglycerophosphoethanolamines PE 36:5 PE 16:0_20:5 736.4914 5.18 ± 2.50 
Diacylglycerophosphoethanolamines PE 38:6 PE 16:0_22:6 762.5071 15.27 ± 3.83 
Diacylglycerophosphoethanolamines PE 38:7 PE 16:1_22:6 760.4916 0.10 ± 0.08 
Diacylglycerophosphoethanolamines PE 37:5 PE 17:1_20:4 796.5126 3.59 ± 0.82 
Diacylglycerophosphoethanolamines PE 36:1 PE 18:0_18:1 744.5560 35.70 ± 6.42 
Diacylglycerophosphoethanolamines PE 38:4 PE 18:0_20:4 766.5383 46.91 ± 7.88 
Diacylglycerophosphoethanolamines PE 40:6 PE 18:0_22:6 790.5393 9.09 ± 1.63 
Diacylglycerophosphoethanolamines PE 36:2 PE 18:1_18:1 788.5417 3.35 ± 0.92 
Diacylglycerophosphoethanolamines PE 38:5 PE 18:1_20:4 764.5227 40.41 ± 6.85 
Diacylglycerophosphoethanolamines PE 38:6 PE 18:1_20:5 762.5071 2.28 ± 0.73 
Diacylglycerophosphoethanolamines PE 40:7 PE 18:1_22:6 788.5227 6.03 ± 1.48 
Diacylglycerophosphoethanolamines PE 38:7 PE 18:2_20:5 760.4911 0.47 ± 0.24 
Diacylglycerophosphoethanolamines PE 40:8 PE 18:2_22:6 786.5071 1.96 ± 0.70 
Diacylglycerophosphoethanolamines PE 39:3 PE 19:0_20:3 828.5754 62.01 ± 15.64 
Diacylglycerophosphoethanolamines PE 39:4 PE 19:0_20:4 826.5598 88.78 ± 20.99 
Diacylglycerophosphoethanolamines PE 40:9 PE 20:4_20:5 784.4916 0.06 ± 0.07 
Diacylglycerophosphoethanolamines PE 42:10 PE 20:4_22:6 810.5074 0.74 ± 0.29 
Alkenylacylglycerophosphoethanolamines PE P-36:4 PE P-16:0_20:4 722.5123 45.46 ± 8.95 
Alkenylacylglycerophosphoethanolamines PE P-36:5 PE P-16:0_20:5 720.4966 3.90 ± 2.22 
Alkenylacylglycerophosphoethanolamines PE P-38:5 PE P-16:0_22:5 748.5275 54.84 ± 9.46 
Alkenylacylglycerophosphoethanolamines PE P-38:6 PE P-16:0_22:6 746.5122 13.57 ± 3.25 
Alkenylacylglycerophosphoethanolamines PE P-38:4 PE P-18:0_20:4 750.5436 110.47 ± 19.49 
Alkenylacylglycerophosphoethanolamines PE P-38:5 PE P-18:0_20:5 748.5277 10.94 ± 4.14 
Alkenylacylglycerophosphoethanolamines PE P-40:4 PE P-18:0_22:4 778.5742 40.59 ± 8.86 
Alkenylacylglycerophosphoethanolamines PE P-40:5 PE P-18:0_22:5 776.5581 36.87 ± 5.89 
Alkenylacylglycerophosphoethanolamines PE P-40:6 PE P-18:0_22:6 774.5434 32.83 ± 7.43 
Alkenylacylglycerophosphoethanolamines PE P-38:6 PE P-18:1_20:5 746.5123 5.14 ± 2.06 
Alkenylacylglycerophosphoethanolamines PE P-40:7 PE P-18:1_22:6 772.5276 9.35 ± 2.51 
Alkenylacylglycerophosphoethanolamines PE P-42:6 PE P-20:0_22:6 802.5739 0.80 ± 0.20 
Ceramide phosphoethanolamines PE-Cer d35:1 PE-Cer d14:1_21:0 719.5340 2.84 ± 0.52 
Ceramide phosphoethanolamines PE-Cer d35:2 PE-Cer d14:2_21:0 717.5180 0.26 ± 0.09 
Ceramide phosphoethanolamines PE-Cer d37:2 PE-Cer d14:2_23:0 745.5494 2.31 ± 0.31 
Ceramide phosphoethanolamines PE-Cer d33:1 PE-Cer d15:1_18:0 691.5024 0.14 ± 0.07 
Diacylglycerophosphoinositols PI 36:5 PI 16:0_20:5 855.5022 0.20 ± 0.24 
Diacylglycerophosphoinositols PI 38:6 PI 16:0_22:6 881.5176 0.97 ± 0.50 
Diacylglycerophosphoinositols PI 38:4 PI 18:0_20:4 885.5492 42.74 ± 9.28 
Diacylglycerophosphoinositols PI 38:5 PI 18:0_20:5 883.5330 0.43 ± 0.29 
Diacylglycerophosphoinositols PI 40:6 PI 18:0_22:6 909.5491 16.72 ± 7.28 
Diacylglycerophosphoserines PS 36:5 PS 16:0_20:5 780.4823 0.05 ± 0.07 
Diacylglycerophosphoserines PS 38:6 PS 16:0_22:6 806.4970 1.44 ± 0.60 
Diacylglycerophosphoserines PS 38:4 PS 18:0_20:4 810.5297 85.01 ± 12.96 
Diacylglycerophosphoserines PS 38:5 PS 18:0_20:5 808.5160 4.88 ± 1.36 
Diacylglycerophosphoserines PS 40:6 PS 18:0_22:6 834.5288 39.19 ± 9.36 
Diacylglycerophosphoserines PS 40:7 PS 18:1_22:6 832.5154 0.40 ± 0.17 
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Diacylglycerophosphoserines PS 42:10 PS 20:4_22:6 854.4969 5.36 ± 2.40 
Alkenylacylglycerophosphoserines PS P-36:1 PS P-18:0_18:1 818.5532 1.74 ± 1.09 
Sphingomyelins SM d34:1 SM d18:0_16:1 747.5651 270.86 ± 38.11 
Sphingomyelins SM d34:1(OH) SM d18:0_16:1(OH) 761.5434 0.75 ± 0.33 
Sphingomyelins SM d42:1 SM d18:0_24:1 859.6905 174.57 ± 25.77 
Sphingomyelins SM d36:1 SM d18:1_18:0 775.5958 46.50 ± 9.75 
Sphingomyelins SM d40:1 SM d18:1_22:0 831.6592 113.39 ± 20.12 
Sphingomyelins SM d41:2 SM d18:1_23:1 797.6535 48.60 ± 7.09 
Sphingomyelins SM d42:2 SM d18:1_24:1 857.6751 341.34 ± 46.65 
Sphingomyelins SM d44:2 SM d18:1_26:1 885.7059 18.05 ± 4.20 
Steryl Esters CE 18:1 CE 18:1 668.6347 320.43 ± 58.92 
Steryl Esters CE 18:2 CE 18:2 666.6192 1306.22 ± 188.87 
Steryl Esters CE 18:3 CE 18:3 664.6035 194.12 ± 77.23 
Steryl Esters CE 20:4 CE 20:4 690.6193 778.34 ± 172.31 
Steryl Esters CE 20:5 CE 20:5 688.6036 437.84 ± 224.80 
Steryl Esters CE 22:6 CE 22:6 714.6191 222.70 ± 116.61 
Triacylglycerols TAG 46:2 TAG 12:0_18:1_16:1 792.7079 1.42 ± 2.26 
Triacylglycerols TAG 46:0 TAG 14:0_16:0_16:0 796.7395 0.66 ± 0.78 
Triacylglycerols TAG 48:1 TAG 14:0_16:0_18:1 822.7553 6.39 ± 6.77 
Triacylglycerols TAG 50:1 TAG 16:0_16:0_18:1 850.7867 12.20 ± 8.91 
Triacylglycerols TAG 50:2 TAG 16:0_16:1_18:1 848.7710 23.01 ± 14.44 
Triacylglycerols TAG 51:1 TAG 16:0_17:0_18:1 864.8019 2.32 ± 2.35 
Triacylglycerols TAG 51:2 TAG 16:0_17:1_18:1 862.7866 3.09 ± 2.55 
Triacylglycerols TAG 52:2 TAG 16:0_18:1_18:1 876.8030 48.38 ± 18.80 
Triacylglycerols TAG 52:3 TAG 16:0_18:1_18:2 874.7872 47.64 ± 16.94 
Triacylglycerols TAG 56:6 TAG 16:0_18:1_22:5 924.8014 10.16 ± 4.38 
Triacylglycerols TAG 56:7 TAG 16:0_18:1_22:6 922.7854 6.54 ± 2.96 
Triacylglycerols TAG 52:4 TAG 16:0_18:2_18:2 872.7706 38.83 ± 17.83 
Triacylglycerols TAG 54:7 TAG 16:0_18:2_20:5 894.7546 2.04 ± 1.48 
Triacylglycerols TAG 60:12 TAG 16:0_22:6_22:6 968.7670 0.28 ± 0.24 
Triacylglycerols TAG 56:9 TAG 16:1_18:2_22:6 918.7548 0.65 ± 0.46 
Triacylglycerols TAG 53:2 TAG 17:0_18:1_18:1 890.8178 3.62 ± 2.32 
Triacylglycerols TAG 53:3 TAG 17:0_18:1_18:2 888.8022 2.69 ± 1.46 
Triacylglycerols TAG 54:2 TAG 18:0_18:1_18:1 904.8334 14.32 ± 7.94 
Triacylglycerols TAG 54:3 TAG 18:0_18:1_18:2 902.8176 22.26 ± 7.92 
Triacylglycerols TAG 58:7 TAG 18:0_18:1_22:6 950.8181 0.25 ± 0.14 
Triacylglycerols TAG 54:4 TAG 18:1_18:1_18:2 900.8016 20.90 ± 7.98 
Triacylglycerols TAG 58:8 TAG 18:1_18:1_22:6 948.8020 2.04 ± 1.01 
Triacylglycerols TAG 58:3 TAG 18:1_18:2_22:0 958.8797 0.61 ± 0.68 
Triacylglycerols TAG 58:9 TAG 18:1_18:2_22:6 946.7856 2.36 ± 1.36 
Triacylglycerols TAG 60:11 TAG 18:1_20:4_22:6 970.7859 0.38 ± 0.28 
Triacylglycerols TAG 60:12 TAG 18:1_20:5_22:6 968.7698 0.05 ± 0.05 
Triacylglycerols TAG 62:13 TAG 18:1_22:6_22:6 994.7874 0.15 ± 0.16 
Triacylglycerols TAG 58:10 TAG 18:2_18:2_22:6 944.7706 0.68 ± 0.48 
Concentration values are reported as mean ± standard deviation (n = 120). CER, ceramide; LPC, 
lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PE-Cer, Ceramide phosphoethanolamine; PI, phosphatidylinositol; PS, 
phosphatidylserine; SM, sphingomyelin; CE, cholesteryl ester; TAG, triacylglycerol. 
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Table 8. Participant characteristics and dietary intakes  
Characteristic N = 120 (52 M, 68 F) 
Age (years) 39.1 ± 12.0 
Body mass index 24.2 ± 3.2 
Dietary intake  
Total energy (kJ) 9449 ± 2456 
Protein (g/d) 83 ± 24 
Carbohydrate (g/d) 238 ± 70 
Fat (g/d) 90 ± 27 
 Saturated fat  33.57 ± 11.49 
  12:0 1.30 ± 0.75 
  14:0 3.25 ± 1.40 
  16:0 17.97 ± 5.91 
  18:0 7.55 ± 2.82 
 Monounsaturated fat  31.18 ± 10.57 
  16:1n-7 1.52 ± 0.66 
  18:1n-9 29.66 ± 10.10 
 Polyunsaturated fat  13.49 ± 4.64 
 Omega-6 fatty acids  11.15 ± 3.85 
  18:2n-6 11.09 ± 3.84 
  20:4n-6 0.12 ± 0.07 
 Omega-3 fatty acids 2.06 ± 1.14 
  18:3n-3 1.73 ± 1.04 
  20:5n-3 0.10 ± 0.11 
  22:5n-3 0.04 ± 0.04 
  22:6n-3 0.16 ± 0.17 
Values are mean ± SD, n = 120. 



 104 

Table 9. Fatty acid composition of whole blood  
Fatty Acid Weight percent of total fatty acids 
10:0 0.08 ± 0.04 
12:0 0.03 ± 0.02 
14:0 0.60 ± 0.19 
16:0 21.03 ± 1.26 
17:0 0.32 ± 0.05 

18:0 11.95 ± 1.24 
20:0 0.38 ± 0.06 
22:0 0.98 ± 0.13 
23:0 0.24 ± 0.05 
24:0 1.81 ± 0.24 
Total saturates 39.86 ± 1.90 
12:1 0.01 ± 0.01 

14:1 0.03 ± 0.02 
16:1 1.02 ± 0.41 

18:1n-7 1.56 ± 0.16 
18:1n-9 16.19 ± 1.60 
20:1n-9 0.23 ± 0.04 
22:1n-9 0.24 ± 0.08 
24:1n-9 2.30 ± 0.34 
Total monounsaturates 21.93 ± 1.72 

18:2n-6 19.01 ± 2.31 
18:3n-6 0.20 ± 0.10 
20:2n-6 0.22 ± 0.04 
20:3n-6 1.47 ± 0.31 
20:4n-6 9.29 ± 1.13 

22:2n-6 0.07 ± 0.01 

22:4n-6 1.06 ± 0.24 

22:5n-6 0.19 ± 0.06 

Total omega-6 polyunsaturates 31.51 ± 2.30 
18:3n-3 0.41 ± 0.14 
20:3n-3 0.03 ± 0.01 

20:5n-3 0.97 ± 0.46 

22:5n-3 1.27 ± 0.22 

22:6n-3 3.44 ± 0.77 

Total omega-3 polyunsaturates 6.11 ± 1.24 

20:3n-9 0.10 ± 0.04 
Total polyunsaturates 37.72 ± 2.34 
Total HUFA 17.82 ± 1.71 
EPA+DHA 4.41 ± 1.13 
Omega-6/omega-3 ratio 5.37 ± 1.18 
%n-3 HUFA in total HUFA 31.92 ± 5.61 
Total Concentration (µg/100µL) 213 ± 29 
HUFA, highly-unsaturated fatty acid; EPA, eicosapentaenoic acid; 
DHA, docosahexaenoic acid. Values are mean ± SD, n = 120. 
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CHAPTER 9 

Identification of Omega-3 Fatty Acid Biomarkers in a Rat Model of Acute and Chronic 

Docosahexaenoic Acid Feeding 

9.1 Objectives 

Although many studies have reported positive associations between the dietary intake of 

omega-3 PUFA and various health benefits [237, 285-290], contradictory results are not 

uncommon in the literature. Reasons for these discrepancies have been discussed [42, 237], 

including a lack of attention to baseline dietary intake of EPA and DHA, as well as poor 

measures of compliance/adherence to fish oil interventions. Blood fatty acid biomarkers can be 

used as surrogate measures of other blood pools and dietary fatty acid intake [275, 291]. Earlier 

in this thesis, it was demonstrated that applying a lipidomic approach can identify hundreds of 

fatty acyl-containing complex lipids, which could provide insights on metabolism and be used to 

monitor adherence to omega-3 PUFA supplementation trials. Lipid species such as LPC 22:6 and 

PE 18:1_22:6 are elevated acutely in humans after ingestion of fish oil [249], but it is not known 

if these species remain elevated in blood with continued intake and if they could be used to 

monitor omega-3 PUFA intake up to a few days. In Chapter 8, PE P-16:0_22:6 was associated 

with DHA intakes with humans and there is evidence that PE lipids with 22:6 turnover more 

slowly [276]. Additionally, in previous collaborative work in rodents fed DHA we identified PS 

18:0_22:6 as a potential marker of intake over 8 weeks [292].  

Previous studies using fatty acid compositional analyses indicate that there are lipid pools 

in blood that respond to omega-3 PUFA intakes at different rates [236, 275, 276]. Specifically, a 

lack of increase in the percentage of DHA in erythrocytes has been used to detect non-adherence 

in a long-term intervention study [236]. EPA appears to be incorporated into plasma and 
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erythrocytes rapidly with intake, while DHA incorporates into plasma much more rapidly than 

erythrocytes [275].  It is possible that there are lipid species containing DHA that incorporate 

DHA rapidly and then serve as a source of DHA for other lipid species with slower incorporation 

rates.   

We are not aware of lipidomic studies examining changes in acyl species of high 

abundant lipids (medio-level macrolipidome characterization) after acute and chronic 

interventions with n-3 PUFA. Given the strong associations between DHA intake and DHA-

containing lipids, we chose a DHA source without EPA (DHASCO, DSM Nutritional, 

Baltimore, MD, USA) as oil to add to a diet that had a fat profile similar to that of humans 

(TWD; total western diet). In this study, we examined changes in the blood lipidome of Sprague-

Dawley rats after consuming a control diet without (TWD-) and after acute (5 days) and chronic 

(9 weeks) DHA feeding (TWD+). 

 

9.2 Hypotheses 

1. The concentrations of LPC 22:6 and PE 18:1_22:6 will be higher in the acute (5-day 

TWD+) group as compared with the chronic (9-week TWD+) and control group (9-week 

TWD-) groups.  

2. The concentrations of PE P-16:0_22:6 and PS 18:0_22:6 will be higher in the chronic 

DHA group (9-week TWD+) as compared with the acute (5-day TWD+) and control (9-

week TWD-) groups. 
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9.3 Methods and Materials 

9.3.1 Sample Collection and Lipid Extraction 

 The study received ethics clearance from the University of Waterloo Office of Research 

Ethics. Six male and six female Sprague-Dawley Rats were bred at the University of Waterloo 

Central Animal Facility from dams that were fed a Teklad 22/5 Rodent Diet (Envigo 

Mississauga, ON, Canada). Male and female rats were used to account for potential sex 

differences in macrolipidomic responses to DHA feeding. After weaning, 4 pups (2M, 2F) were 

placed on a TD.110424 Total Western Diet with DHA (TWD+) providing 1.13mg DHA/g diet 

(0.36% of total energy) and 8 pups (4M, 4F) were placed on a Total Western Diet without DHA 

(TWD-) providing 0.01mg DHA/g diet (<0.01% of total energy). Dietary details are provided in 

Table 10. The four TWD+ (chronic DHA group) and four TWD- rats (control group) were 

sacrificed at 9 weeks of age by exsanguination following anesthesia using isofluorane after an 

overnight fast. The remaining 4 TWD- rats were placed on a TWD+ diet for five days (acute 

DHA group), at which point they were sacrificed (study design in Figure 22). Whole blood was 

collected via cardiac puncture into ethylenediaminetetraacetic acid-lined vacutainers, and 

aliquots were saved at -80 ºC. 

Lipid extracts were obtained from whole blood samples as explained in Section 3.3. 

Briefly, samples were aliquoted (20 µL of blood), and 3 mL of 2:1 chloroform:methanol (v/v) 

were added, delivering known amounts of various deuterium-labelled internal standards for the 

major lipid classes (Splash Lipidomix, Avanti Polar Lipids, Alabaster, AL, USA). Lipid extracts 

were dried under N2 gas and reconstituted in 100 µL of the reconstitution solvent (65:35:5 

acetonitrile/isopropanol/water (v/v/v) +0.1% formic acid). Samples were then vortexed briefly 

and stored at 4 ºC until analysis. 
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9.3.2 Instrument Settings 

UHPLC was completed using the binary multi-step gradient described in Section 3.4 with 

the Waters Acquity UPLC Charged Surface Hybrid (CSH), 1.7 µm x 2.1 mm x 150 mm column 

equipped with a VanGuard CSH 1.7 µm pre-column. Mass spectrometry was completed using 

the polarity-switching method described in Chapter 8, where from 0min to 27min, the mass 

spectrometer was operated in negative ESI mode, and from 27min to 47min, it was operated in 

positive ESI mode. Spray voltages, DDA MS/MS settings and all other parameters were similar 

to those described in Section 8.3.2. 

 

9.3.3 Data Normalization and Statistical Analyses 

 Lipids were identified and peak areas were integrated using Progenesis QI. Lipid 

abundances were normalized using the internal standard belonging to the same lipid class as the 

analyte of interest (i.e., all PC lipid species were normalized using the PC internal standard). 

Principal component analysis was completed using Progenesis QI. Concentration data are 

presented as mean ± standard deviation of all analytes in pmol/mL blood. The lipid 

concentrations between the three groups were examined by one-way ANOVA followed by 

Tukey post-hoc testing, statistical significance was inferred at p < 0.05. 

 

9.4 Results 

 Each experimental group formed distinct clusters by principal component analysis 

(PCA), with the controls (9-week TWD-) being particularly isolated (Figure 23). This latter 

isolation was driven primarily by various 20:4-, 22:4- and 22:5-containing PC and PE species 

such as PC 16:0_20:4, PC 16:0_22:5 and PE P-18:0_22:4 that were significantly higher in the 
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control group as compared with the acute (5-day TWD+) and chronic (9-week TWD+) groups 

(Table 11; p < 0.05 for all). Additionally, there were several 20:5- and 22:6-containing PC, PE, 

PI and PS species such as PC 16:0_20:5, PE P-18:0_22:6, PI 18:0_20:5 and PS 18:0_22:6 that 

were significantly higher in the chronic group as compared with the other two groups (p < 0.05 

for all). Although there is less isolation of the acute group which indicates a higher degree of 

similarity with the other groups, there were two lipid species (PC 16:0_20:4 and TAG 

16:0_22:6_22:6) in the acute group that fell between levels observed in the control group, and 

chronic group (p < 0.05 for both). 

When examining relative changes in lipid abundances, a common –omic approach, LPC 

20:5 and PE 16:0_20:5 were flagged as having an “infinity” maximum fold change between the 

control and chronic groups. However, this is due to the extremely low concentrations of these 

lipids in the control group (both were < 0.01 nmol/mL). Therefore, we added the control 

concentrations data to the fold change data as a reference (Figure 24). The absolute changes in 

LPC 20:5 (+0.31 nmol/mL, p < 0.01) and PE 16:0_20:5 (+1.52 nmol/mL, p < 0.01) in the 

chronic group as compared with control were small but significant. Similarly, other species of 

low abundance such as PI 18:0_20:5 have high maximum fold changes, with small changes in 

absolute concentrations (fold change for PI 18:0_20:5 was 11.95, absolute change was 

+1.30 nmol/mL in the chronic group as compared with control; p < 0.001). Other species such as 

PC 16:0_20:4, PE 18:1_20:4, PE P-18:0_22:6 and PE P-18:1_22:6 had relatively small 

maximum fold changes between the three groups (1.40, 1.72, 1.63 and 2.39), but these 

differences were statistically significant in the ANOVA analysis due to the large absolute 

changes in the concentrations of these highly-abundant lipids (-48.54, -282.27, +176.38 and 
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+131.95 nmol/mL in the chronic group vs. control for PC 16:0_20:4, PE 18:1_20:4, PE P-

18:0_22:6 and PE P-18:1_22:6, respectively; p < 0.01 for all).  

We identified six lipids that were similar between the acute and chronic groups, but were 

statistically different than the control group (Table 11). This included four lipids that were 

elevated in the acute and chronic groups (LPC 18:2, LPC 22:6, PC 18:1_22:6 and PS 16:0_22:6), 

and two lipids that decreased as compared with the controls (PC 16:0_22:5 and PE P-18:0_22:4; 

p < 0.05 for all). Additionally, we identified 13 lipids that were significantly higher in the 

chronic group, but were not different between the acute and control groups (Table 12). The 

majority of these lipids were phosphatidylethanolamines with 20:5 (PE 16:0_20:5), 22:6 (PE 

18:1_22:6, PE 18:2_22:6, PE P-18:0_22:6, PE P-18:1_22:6 and PE P-20:0_22:6) which were 

higher in the chronic group as compared with the other groups (p < 0.05 for all), or omega-6 

PUFA such as docosatetraenoic acid (PE P-16:0_22:4) and docosapentaenoic acid (PE O-

18:1_22:5) which were lower in the chronic group (p < 0.05 for both). Other lipids followed 

similar trends, including LPC 20:5, PC 16:0_20:5 and PS 18:0_22:6, which were all higher in the 

chronic group (p < 0.05 for all). Next, we identified lipids that were significantly different 

between the chronic and control groups, but the levels of these species in the acute group were in 

between the other groups (Table 13). PC 18:0_18:2, PE 18:0_22:6 and PI 16:0_22:6 were higher 

in the chronic group than in the control (p < 0.05) but the levels in the acute group were not 

different from either group. PE 16:0_20:4, PE 18:0_20:4, PE 18:1_20:4 and PS 18:0_20:4 were 

lower in the chronic group as compared with the control, but the levels in the acute group were 

not significantly different from the other two. Interestingly, the levels of PC 16:0_20:4 and TAG 

18:1_22:6_22:6 were significantly different between all three groups. PC 16:0_20:4 was highest 

in the control, followed by the acute, and then chronic DHA feeding (p < 0.05 for all). TAG 
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18:1_22:6_22:6 was highest with chronic feeding, followed by acute feeding, and then the 

control group (p £ 0.01 for all). Lastly, there were 16 species that were measured that did not 

differ between experimental groups (Table 14). Surprisingly, this included various omega-3 and 

omega-6-containing lipids such as PC 16:0_22:6, PC 18:0_20:4 and PE P-18:0_22:5 (p > 0.08 

for all). 

 

9.5 Discussion 

 Fatty acyl-containing complex lipid species can be used as biomarkers for DHA 

consumption. We hypothesized that we would be able to find individual lipid species that would 

serve as biomarkers of acute and chronic intake. Our results indicate that identifying blood 

biomarkers that are specific to acute intake is problematic. In general, we identified six lipid 

species that increased in both acute and chronic DHA intervention. This included LPC 22:6 that 

we hypothesized would be specific for acute DHA intake. The acute biomarker that we proposed 

was PE 18:1_22:6, which increased only with chronic DHA intake. Therefore, we must reject 

our first hypothesis. For biomarkers of chronic DHA consumption, we identified 13 lipid species 

with increased concentrations with chronic DHA feeding while the acute DHA concentrations 

remained similar to controls. This included the PS 18:0_22:6 which we hypothesized, but not the 

PE P-16:0_22:6. PE P-16:0_22:6 levels were similar across all groups, but other 

phosphatidylethanolamine plasmalogens (PE P-18:0_22:6 and PE P-18:1_22:6) did increase 

specifically with chronic feeding. Our second hypothesis was therefore only partially correct.  

 LPC 22:6, PC 16:0_20:4, PC 16:0_22:5 and PS 18:0_22:6 have been associated with 

omega-3 PUFA intake in the few studies that have examined the fatty acyl-specific complex 

lipids in blood with dietary intervention [247, 248, 292]. Our findings also reflect previous 
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observations on the competition of omega-3 and omega-6 PUFA for incorporation into 

phospholipids, with the concentrations of ten 20:4-, 22:4-, or 22:5-containing species being 

significantly reduced in the 9-week DHA supplementation group as compared with the control 

group [247, 248]. As indirect biomarkers of omega-3 PUFA intake, additional research with 

different diets are needed to evaluate their predictive value in human populations. Additionally, 

we observed significant increases in EPA-containing species despite this being a DHA-only 

feeding trial. These observations have also been reported previously [247, 292, 293], and have 

recently been attributed to a slowed rate of turnover resulting in an accumulation of EPA with 

DHA feeding [294], rather than peroxisomal retroconversion of DHA back to EPA [295]. 

Nevertheless, this study is the first to apply an unbiased discovery-based macrolipidomic 

approach for the identification of complex lipids as blood biomarkers of acute and chronic DHA 

intake. 

 For acute intake biomarkers, we found nine lipids with concentrations after acute 

supplementation that fell between control and chronic intake. Most of these acute levels were 

significantly similar to both control with the exception of PC 16:0_20:4 and TAG 

18:1_22:6_22:6. As an indirect marker of DHA intake, the ability to use PC 16:0_20:4 in human 

populations remains questionable. TAG 18:1_22:6_22:6 appears to be unique, but routine 

quantitation for biomarker use may be a challenge. It is of relatively low abundance, and as a 

triacylglycerol, blood levels are subject to considerable variation based on lipoprotein 

metabolism which has been documented for fatty acid-based biomarkers [296]. Rather than 

individual biomarkers of acute intake, it is possible that combining multiple measurements (e.g., 

ratios or sums) of various lipid species could result in the identification of a valid strategy for 

assessing acute DHA intake. For example, examining the relationship between the levels of LPC 
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22:6 and PS 18:0_22:6 could allow the investigator to determine if a participant has consumed 

DHA recently and regularly (if LPC 22:6 and PS 18:0_22:6 are both high), regularly but not 

recently (if LPC 22:6 is low but PS 18:0_22:6 is high) or recently but not regularly (if LPC 22:6 

is high but PS 18:0_22:6 is low). 

 For chronic biomarkers, concentrations of DHA in phosphatidylserine has been 

previously proposed to be a good marker of DHA intake [292]. The use of DHA in PS as a fatty 

acid biomarker has been limited, as isolation of the PS fraction prior to fatty acid analysis is 

tedious and difficult to adapt to large clinical studies that require cost-efficient high throughput 

screening [297]. The finding that PE P-16:0_22:6 did not change with chronic DHA feeding 

while PE P-18:0_22:6 and PE P-18:1_22:6 did was not expected. DHA is known to accumulate 

in phosphatidylethanolamine plasmalogens [298] particularly in brain tissue [299] through fatty 

acyl remodeling by plasmalogen-specific PLA2 [300]. In blood plasmalogens, the content of 16:0 

and 18:0 tend to be similar while 18:1 is about half when determined as dimethyl acetyls with 

gas chromatography [301]. In rat brain, 18:1n-9 tends to be the dominant fatty acid followed 

closely by levels of 16:0 while levels of 18:0 are much lower [302]. While 

phosphatidylethanolamine plasmalogen remodeling is known to occur, the mechanisms through 

which this occur are not well elucidated [303]. 1-Alkenylglycerophosphoethanolamine O-

acyltransferase activity and specificity for the incorporation of certain acyl-CoA have been 

documented [304] but the specificity of different lysophosphatidylethanolamine plasmalogens 

does not appear to have been examined. Our results appear to be the first to document a lack of 

change in PE P-16:0_22:6 with DHA feeding and follow up studies of examining 

phosphatidylethanolamine plasmalogen metabolism with lipidomic analyses could be 

particularly informative.  
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The observations of the present study are limited to DHA-only feeding. In free-living 

humans, DHA is typically consumed with dietary EPA, therefore studies using acute and chronic 

fish oil supplementation should be pursued to identify blood biomarkers of omega-3 PUFA. 

However, feeding DHA only did simplify our research approach and provided some insight on 

the interplay between EPA and DHA metabolism, such that studies using EPA-only feeding 

should also be considered. Within this rodent model, the relationship between lipidomic profiles 

in blood against those of organs and tissues can be examined to further our understanding of fatty 

acyl-specific lipid metabolism. In the future, in both rodent and human studies, it will be 

important to examine sex differences in the lipidomic profiles as sex differences in lipoprotein 

and fatty acid metabolism are well documented [305-308].  
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Table 10. Nutrient and fatty acid composition of the DHA-deficient (TWD-) and DHA-
supplemented (TWD+) Total Western Diets. 
Diet TWD- TWD+ 
Energy Density (kcal/g) 4.4 4.4 
Macronutrients (g/100g)  
Protein (% weight) 16.8 16.8 
Carbohydrate (% weight) 54.6 54.6 
Fat (% weight) 16.7 16.7 
 Saturated fatty acids  32.80 ± 0.13 32.15 ± 0.10 
  16:0 18.79 ± 0.04 18.27 ± 0.07 
  18:0 8.44 ± 0.07 8.04 ± 0.03 
 Monounsaturated fatty acids 40.55 ± 0.10 40.53 ± 0.11 
  16:1 1.16 ± 0.01 1.18 ± 0.01 
  18:1n-7 1.22 ± 0.17 1.23 ± 0.11 
  18:1n-9 37.55 ± 0.20 37.50 ± 0.04 
 Omega-6 fatty Acids  20.85 ± 0.09 19.64 ± 0.02 
  18:2n-6 20.53 ± 0.09 19.34 ± 0.02 
  20:4n-6 0.07 ± 0.01 0.07 ± 0.01 
 Omega-3 fatty Acids  1.78 ± 0.01 2.82 ± 0.01 
  18:3n-3 1.70 ± 0.01 1.61 ± 0.01 
  20:3n-3 0.02 ± 0.01 0.02 ± 0.01 
  20:5n-3  0.02 ± 0.01 0.02 ± 0.01 
  22:5n-3 0.03 ± 0.01 0.04 ± 0.01 
  22:6n-3 0.01 ± 0.01 1.13 ± 0.01 
Fatty acid composition data are presented as mean ± standard deviation of technical triplicates as 
% weight of fatty acids in total fatty acids. Samples were analyzed by gas chromatography-flame 
ionization detection as described in Section 3.5. TWD+, Total Western Diet with DHA; TWD-, 
Total Western Diet without DHA. 
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Figure 22. Experiment design. The nutrient and fatty acid composition of the DHA 
supplemented (TWD+) and DHA deficient (TWD-) Total Western Diets can be found in Table 
10. DHA, docosahexaenoic acid; n = 4 (2 males, 2 females) per diet group. 
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Table 11. Markers of DHA intake 
Lipid m/z Control 5-day DHA+ 9-week DHA+ 
   nmol/mL  
LPC 18:2 564.3291 23.54 ± 3.86a 36.35 ± 4.45b 42.45 ± 7.69b 
LPC 22:6 612.3289 4.90 ± 1.70a 15.86 ± 3.18b 17.73 ± 2.86b 
PC 16:0_22:5 852.5743 34.92 ± 2.74a 23.26 ± 5.02b 19.34 ± 2.54b 
PC 18:1_22:6 876.5730 0.20 ± 0.14a 0.53 ± 0.07b 0.60 ± 0.15b 
PE P-18:0_22:4 778.5737 425.45 ± 48.56a 396.96 ± 28.21b 273.71 ± 32.76b 

PS 16:0_22:6 806.4963 1.41 ± 0.56a 6.05 ± 2.32b 7.44 ± 1.73b 

Concentration data are presented as mean ± standard deviation of biological replicates (n = 4 per 
group). Letter superscripts represent statistically-significant differences between diet groups 
following one-way ANOVA with Tukey post-hoc test; significance was inferred at p < 0.05. 
LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, 
phosphatidylserine. 
 
 
 
 
Table 12. Markers of chronic DHA intake 
Lipid m/z Control 5-day DHA+ 9-week DHA+ 
   nmol/mL  
LPC 20:5 586.3148 < 0.01 ± 0.01a < 0.01 ± 0.01a 0.31 ± 0.18b 
PC 16:0_20:5 824.5425 1.71 ± 0.75a 7.15 ± 2.70a 13.41 ± 4.46b 
PE 16:0_20:5 736.4913 < 0.01 ± 0.01a 0.04 ± 0.04a 1.52 ± 0.41b 

PE 18:1_22:6 788.5218 20.86 ± 5.82a 30.37 ± 4.08a 62.02 ± 16.12b 

PE 18:2_22:6 832.5113 42.15 ± 3.32a 44.77 ± 1.55a 101.55 ± 21.87b 

PE O-18:1_22:5 776.5579 109.90 ± 9.68a 92.03 ± 8.83a 44.67 ± 8.82b 

PE P-16:0_22:4 750.5427 426.61 ± 58.75a 361.07 ± 32.09a 198.66 ± 36.99b 

PE P-18:0_22:6 774.5430 282.20 ± 22.91a 279.50 ± 13.28a 455.88 ± 61.18b 

PE P-18:1_22:6 772.5271 94.98 ± 17.76a 105.14 ± 3.63a 226.93 ± 46.12b 

PE P-20:0_22:6 802.5716 2.75 ± 1.08a 4.27 ± 0.88a 9.56 ± 3.95b 

PI 16:0_18:2 833.5162 11.27 ± 2.27a 11.56 ± 0.32a 15.66 ± 2.25b 

PI 18:0_20:5 883.5306 0.12 ± 0.03a 0.29 ± 0.14a 1.42 ± 0.48b 

PS 18:0_22:6 834.5277 9.49 ± 1.22a 9.47 ± 1.61a 21.54 ± 4.92b 

Concentration data are presented as mean ± standard deviation of biological replicates (n = 4 per 
group). Letter superscripts represent statistically-significant differences between diet groups 
following one-way ANOVA with Tukey post-hoc test; significance was inferred at p < 0.05. 
LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, 
phosphatidylinositol; PS, phosphatidylserine. 
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Table 13. Markers of the transition to chronic DHA intake 
Lipid m/z Control 5-day DHA+ 9-week DHA+ 
   nmol/mL  
PC 16:0_20:4 826.5601 171.33 ± 8.76a 145.47 ± 9.49b 122.79 ± 9.84c 
PC 18:0_18:2 830.5910 142.04 ± 9.05a 168.32 ± 24.85ab 191.20 ± 26.18b 
PE 16:0_20:4 738.5067 100.13 ± 8.71a 84.67 ± 10.51ab 81.87 ± 8.15b 
PE 18:0_20:4 766.5382 225.36 ± 42.36a 196.94 ± 24.75ab 165.77 ± 10.51b 

PE 18:0_22:6 790.5373 3.73 ± 1.22a 6.66 ± 2.86ab 8.64 ± 1.14b 

PE 18:1_20:4 764.5245 675.43 ± 57.94a 519.34 ± 100.84ab 393.15 ± 90.45b 

PI 16:0_22:6 881.5164 1.15 ± 0.68a 1.96 ± 0.93ab 3.41 ± 1.20b 

PS 18:0_20:4 810.5290 147.29 ± 21.81a 114.80 ± 10.92ab 85.97 ± 17.59b 

TAG 18:1_22:6_22:6 994.7866 1.82 ± 0.41a 9.56 ± 3.43b 22.14 ± 3.56c 

Concentration data are presented as mean ± standard deviation of biological replicates (n = 4 per 
group). Letter superscripts represent statistically-significant differences between diet groups 
following one-way ANOVA with Tukey post-hoc test; significance was inferred at p < 0.05. PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, 
phosphatidylserine; TAG, triacylglycerol. 
 
 
 
 
Table 14. Lipids unaffected by DHA supplementation 
Lipid m/z Control 5-day DHA+ 9-week DHA+ 
   nmol/mL  
PC 16:0_18:2 802.5600 156.91 ± 18.16 159.52 ± 23.97 168.12 ± 34.93 
PC 16:0_22:6 850.5595 25.82 ± 4.33 28.25 ± 4.99 30.75 ± 2.48 
PC 18:0_20:4 854.5915 159.86 ± 34.42 137.22 ± 41.07 122.10 ± 42.24 
PC 18:0_22:6 878.5905 18.15 ± 6.14 22.38 ± 9.10 28.52 ± 15.37 
PC 18:1_18:2 828.5737 7.67 ± 1.50 7.70 ± 0.89 8.59 ± 1.88 
PE 18:0_18:1 744.5536 50.02 ± 8.69 42.99 ± 6.15 44.69 ± 9.27 
PE 18:0_18:2 742.5380 48.33 ± 10.51 47.10 ± 11.62 56.15 ± 14.89 
PE P-16:0_22:6 746.5117 200.77 ± 24.51 143.76 ± 57.05 158.18 ± 54.59 
PE P-18:0_22:5 776.5586 65.83 ± 16.70 56.24 ± 7.84 62.57 ± 13.36 
PE P-18:1_20:4 748.5276 418.70 ± 79.25 356.61 ± 61.04 326.24 ± 86.95 
PI 18:1_20:4 883.5325 12.25 ± 1.25 12.72 ± 0.91 12.86 ± 0.45 
PS 16:0_20:4 782.4962 78.18 ± 24.12 64.82 ± 28.80 72.70 ± 20.14 
PS 18:1_20:4 808.5121 115.70 ± 25.25 103.92 ± 32.59 109.44 ± 34.81 
TAG 16:0_18:2_20:5 894.7537 123.38 ± 19.11 82.90 ± 32.26 98.87 ± 11.34 
TAG 18:0_18:1_22:6 950.8166 11.35 ± 3.95 15.39 ± 4.93 16.73 ± 8.12 
TAG 18:2_18:2_20:4 920.7687 127.73 ± 11.15 78.57 ± 49.46 79.98 ± 21.72 
Concentration data are presented as mean ± standard deviation of biological replicates (n = 4 per 
group). PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, 
phosphatidylserine; TAG, triacylglycerol. 
 
 



 124 

 
Figure 24. Baseline concentrations and maximum fold-changes in response to diet intervention 
in the complex lipids of whole blood. Concentration data are presented as mean ± standard 
deviation of biological replicates (n = 4). *The largest fold change of either diet from baseline is 
shown. LPC, lysophosphatidylcholine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
PI, phosphatidylinositol; PS, phosphatidylserine; TAG, triacylglycerol.
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CHAPTER 10 

Summary and General Discussion 

 The purpose of this thesis was to develop microlipidomic and macrolipidomic methods 

that could be adopted for use in nutritional research. This included five primary objectives: (1) a 

cross-platform and cross-acquisition mode comparison of untargeted workflows for the 

macrolipidomic analysis of whole blood, (2) the development of a targeted method for the 

analysis of LPA regioisomers in plasma, (3) the development of semi-targeted methods for the 

analysis of TAG in cooking oil and phospholipids brain tissue, (4) the application of a retention 

time-based polarity switching method for the identification of blood biomarkers of omega-3 

PUFA intake in an observational study in humans, and (5) the identification of complex lipids as 

biomarkers of acute and chronic DHA intake in rodents. 

 In the first objective, we compared two mass spectrometers (QToF vs. QE), explored the 

advantages of ion mobility coupled to DDA (HD-DDA vs. DDA) and evaluated two data 

acquisition strategies (HD-DDA vs. HD-DIA). We observed that the QToF-DDA method 

resulted in a higher number of lipid identifications with FAID as compared with the QE-DDA 

method, but both platforms performed comparably in terms of sensitivity and quantitative 

potential. Additionally, there were no advantages for using ion mobility, and the HD-DIA 

method resulted in the lowest number of lipid identifications due to the inability to deconvolute 

coeluting lipid species. Logistically, the QE instrument is more user-friendly, but it is a shared 

instrument in the University of Waterloo Mass Spectrometry Facility with limited access. The 

QToF instrument was purchased through NSERC and CFI infrastructure grants by Dr. Stark and 

the Department of Kinesiology and the agreement to place the QToF in the Mass Spectrometry 

Facility included priority access. Given the similarities between QToF-DDA and QE-DDA, we 
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completed all subsequent experiments in this thesis on this the QToF instrument and used the 

DDA method for any discovery-based experiments. 

 Although lipid data for highly-abundant species can be generated easily using untargeted 

mass spectrometry, the analysis of lipids that are natively found in very low abundance is 

generally limited to triple-quadrupole mass spectrometers which have been shown to be 

remarkably sensitive instruments [309]. Therefore, the second objective of this thesis was to 

evaluate our ability to measure LPA species in plasma which are known to be part of the very-

low abundance regime, using the QToF instrument with ToF-MRM technology. After optimizing 

our extraction protocol and UHPLC-MS/MS settings, we obtained plasma LPA profiles which 

were consistent with those published in the literature [161]. It is important to reiterate that while 

triple-quadrupole mass spectrometers are sensitive, they are not capable of HRAM 

measurements, which are becoming the new standard in mass spectrometry [310].  

 Our third objective was to develop semi-targeted lipidomics methods for the analysis of 

TAG in sunflower oil and phospholipids in mouse striatum. We demonstrated that preexisting 

information on the general lipid classes of a sample can be used to tune generic mass 

spectrometry methods prior to sample analysis in discovery-based studies to significantly 

increase the quality of the results. Specifically, we applied a two-column UHPLC-MS/MS setup 

and positive ESI-DDA-MS/MS for TAG analysis of sunflower oil, and conventional reversed-

phase UHPLC with negative ESI-DDA-MS/MS for phospholipid analysis in mouse striatum. We 

characterized the 20 lipids of highest abundance in both sample types and it was clear that 

numerous other lipids could be identified and quantitated.  

Through the improvements that were observed in data quality by adopting semi-targeted 

approaches, we then re-evaluated our whole blood QToF DDA method from Chapter 5, and 
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developed a retention time-based ESI polarity-switching method that was used to characterize 

both polar (FFA, PC, PE, PI, PS in negative ESI) and non-polar lipids (TAG and CE in positive 

ESI) within a single UHPLC-MS/MS analytical run. Therefore, the fourth objective of this thesis 

was to apply this method for the analysis of whole blood samples from an observational study by 

the Danish National Food Institute. This observational study had fatty acid dietary intake 

estimates, therefore we were able to correlate lipidomic data to known intakes of omega-3 PUFA 

to identify blood biomarkers of omega-3 PUFA intake. Through this, we identified several lipids 

that were associated with omega-3 PUFA intake, but these results also highlighted that ALA and 

EPA may correlate more strongly with complex lipids that do not contain ALA and EPA, 

respectively. 

In the last objective of this thesis, we examined the intake-blood biomarker response in a 

more controlled research protocol. Given the finding that DHA-containing lipids, tended to 

dominate as biomarkers of omega-3 PUFA intake in general, we examined the relationship 

between DHA feeding and the blood levels of complex lipids in whole blood using an 

acute/chronic model in rodents with a rodent diet designed to resemble the fat consumption of 

humans. We identified several complex lipids that were indicative of DHA intake in general 

(elevated with both acute and chronic feeding), and lipids that were elevated only with chronic 

intake, but no lipids were found to reflect only acute intake.  

Across these objectives, numerous lipids were identified, largely based on the type of 

sample and the type of analytical approach. In the first objective, the instrument platforms, and 

the ion mobility and acquisition modes were compared by the number of lipid compounds 

identified within each lipid class by accurate mass (MS level) and with confirmation of the fatty 

acyl fragments by MS/MS, which we defined as FAID (Full Acyl Identification). A detailed 
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comparison of the exact lipid molecules was not completed as the number of compounds 

identified by accurate mass ranged from 678 to 1695. In general, the pattern of lipid classes 

identified reflected what is known and published about the lipid composition of blood. When 

specific acyl lipids were identified in the subsequent objectives, a pattern of a high content of 

16:0, 18:0, 18:1 and 18:2 was apparent which has been documented and reflects both 

endogenous fatty acid synthesis and the abundance of these fatty acids in the food supply [42]. 

The mouse striatum analyses also confirmed known tissue and lipid class specificity for certain 

fatty acyls [311] as the abundance of 20:4- and 22:6-containing lipids was high. For the omega-3 

PUFA blood biomarkers, there were some biomarkers that were identified in both the human and 

rodent studies despite the DHA only intake in the rodents. In human blood, PE P-16:0_22:6, PE 

P-18:0_22:6, PE P-20:0_22:6 had the strongest correlation with DHA intakes, although there 

were a total of 50/140 correlations between blood lipids and DHA intake that were significant. In 

the rat study, 28 lipids increased with DHA intake, with 13 of these lipids requiring chronic 

DHA intake. These chronic markers included P-18:0_22:6 and PE P-20:0_22:6 that were 

observed in the human study but not PE P-16:0_22:6. From this thesis, it is not clear if this is due 

to differences between species, or a mixed intake of EPA+DHA versus DHA only intakes, but it 

is clear that tightly controlled dietary interventions in rodent models are informative for 

nutritional biomarker research in humans.  

Limitations specific to each of these studies were discussed in their respective Chapters. 

However, one challenge that carried over across all of these studies was the difficulty in 

comparing our lipidomic data to the existing literature. This was largely driven by a lack of 

consensus in the field with regards to standardized language [31] and methodological approaches 

[99, 312]. This has been identified in the lipidomic field by a recent interlaboratory comparison 
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exercise for lipidomics using the Standard Reference Material (SRM)-1950 “Metabolites in 

Human Plasma” sample [19]. Specifically, 31 international laboratories participated in this 

exercise, and provided submissions of quantitative lipidomic data for species in this reference 

plasma sample. Though 1527 individual lipids were reported across all laboratories, only 339 

were identified by consensus of 5 or more laboratories. Furthermore, there were inconsistencies 

in lipid annotations (e.g., reporting brutto vs. medio-level information), and importantly, 

methods for quantitation. As such, the data was reported at the brutto level only, and reference 

data on acyl-specific species of highly-abundant lipids is still not available at the time of this 

thesis.  

One of the underpinning reasons for the lack of harmonization in the field is the difficulty 

in lipidomic quantitation [313-315]. There is no clear community-wide consensus on the best 

approach for determining lipid concentrations, which stems from fundamental differences for the 

word “quantitation” including absolute-, semi-, and relative-quantitation. These differences are 

translated from methodological strategies in the selection of internal standards, and can have 

profound effects on the validity of the quantitative results. For absolute quantitation, the use of 

stable isotope-labeled versions of the analyte(s) of interest (i.e., deuterated or 13C-labeled) is 

ideal, as these allow for correcting analyte losses during lipid extraction and matrix- and/or 

ionization-suppression effects in ESI [85, 315, 316]. However, these standards may not always 

be commercially-available, and in discovery-based lipidomics it is unfeasible to have stable-

isotope standards for every analyte that is measured. Thus, exogenous lipids that are chemically- 

and structurally-similar to the lipids of interest may be used instead [315, 317, 318]. This often 

includes the use of odd-chain fatty acid-containing complex lipids, which are generally less 

costly than stable-isotope standards. With this approach, it is critical to screen the sample of 



 130 

interest for the analyte that is anticipated for use as an exogenous standard. Furthermore, the 

effects of lipid class chemistry, and fatty acyl carbon chain length and degree of unsaturation on 

ionization efficiency must be considered [317, 318]. The use of multiple internal standards for all 

types and classes of lipids is recommended as this can improve quantitation, especially in 

untargeted lipidomic studies. Nevertheless, the implementation of semi- and relative-quantitative 

approaches is still valuable for monitoring lipid species between experimental conditions (i.e., 

disease state vs. healthy; wild-type vs. knock-out), rather than determining absolute 

concentrations. 

The lipidomic field will benefit from increased quantitation. This will allow researchers 

to evaluate their methods by comparing their results of quality control samples to reference 

values, such as the SRM 1950 plasma sample [15]. In addition, the emergence of several 

international initiatives have emphasized the importance of adopting common language such as 

the short-hand system for annotating lipid features, and the implementation of minimum 

reporting guidelines by journals that cover common types of workflows [12, 51, 315, 319, 320]. 

Characterizing the lipids that are present in various types of blood and tissue samples, from 

different populations and/or animal species with different dietary intakes, will allow for the 

creation of reference lipid profiles that can be used to build future inclusion lists. These lists of 

compounds can be generated manually with the help of repeated MS/MS iterations in top-n DDA 

approaches, and should be made available in shared repositories for public access. 

In conclusion, through the development and application of microlipidomic and 

macrolipidomic methods, we have highlighted the importance of appropriate sample handling, 

lipid extraction, and analysis using mass spectrometry in order to generate high quality data. In 

addition, the work presented in this thesis expands on the current state of knowledge of the field 
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of lipidomics in health and nutrition. We identified significant limitations of current DIA and ion 

mobility methods, which should be addressed in future platforms in order to enable the use of 

these technologies in untargeted macrolipidomics. With the LPA experiments, we have 

demonstrated that HRAM instruments and not just triple quadrupole mass spectrometers can be 

used in targeted analyses with high sensitivity to quantitate and provide genio-level information 

for lipid species in the microlipidome. The sunflower and mouse striatum studies highlighted the 

importance of semi-targeted approaches in the characterization of lipids in samples with different 

matrices. As lipidomic initiatives move towards standardization in the field, it will be important 

to allow analysts flexibility in tailoring their analytical workflows to their specific research 

questions and sample types. While comparing different methods will be confusing, emphasis on 

reporting quantitative results will be a better path towards standardization as methods will also 

continue to evolve with the technology of mass spectrometers. The blood omega-3 PUFA 

biomarker experiments in humans and rats indicate that the adoption of lipidomic approaches 

will have significant implications in all aspects of nutritional research. The ability to characterize 

fatty acyl species of lipids will greatly enhance our ability to study and understand lipid 

metabolism under various physiological and environmental challenges including diet. In this 

thesis, we identified potential selective incorporation of 22:6 into 18:0- and 18:1-containing 

lysophosphatidylethanolamine plasmalogens. Detailed mechanistic studies using metabolic 

tracers can easily be adapted to the mass spectrometry workflows described herein. We also 

identified that lipidomic blood biomarkers can provide insight on dietary patterns and habits of 

the consumption of omega-3 PUFA in addition to estimates of daily intake. The use of lipidomic 

blood biomarkers in clinical populations has the potential to revolutionize the ability of 
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nutritional epidemiology to uncover and characterize the relationship between diet and disease in 

human populations. 
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Appendix A (Supplementary Data for Chapter 8) 
 

Table A.1 Lipids with Full-Acyl Identifications (FAID) in whole blood from the Danish National Survey of 
Diet and Physical Activity using SimLipid software. 

 

m/z Main Class Lipid Sub-Class Brutto-
Species 

Medio- 
Species 

Matched Ion 
Intensity (Sum) 

648.6290 Ceramides N-acylsphingosines (ceramides) Cer 42:1 Cer d18:1_24:0 164.39 
810.5660 Oxidized glycerophospholipids Oxidized glycerophosphocholines PC 38:4 PC 18:0_20:4 OH[S] 72.22 
673.4810 Glycerophosphates Diacylglycerophosphates PA 34:1 PA 16:0_18:1 312.23 
671.4670 Glycerophosphates Diacylglycerophosphates PA 34:2 PA 16:0_18:2 218.09 
673.4800 Glycerophosphates Diacylglycerophosphates PA 35:1 PA 18:1_17:0 286.04 
671.4660 Glycerophosphates Diacylglycerophosphates PA 35:2 PA 17:0_18:2 168.38 
701.5100 Glycerophosphates Diacylglycerophosphates PA 36:1 PA 18:0_18:1 303.51 
699.4950 Glycerophosphates Diacylglycerophosphates PA 36:2 PA 18:1_18:1 215.15 
701.5100 Glycerophosphates Diacylglycerophosphates PA 37:1 PA 18:0_19:1 250.90 
701.5140 Glycerophosphates Diacylglycerophosphates PA 37:1 PA 18:1_19:0 288.21 
723.4980 Glycerophosphates Diacylglycerophosphates PA 38:4 PA 18:0_20:4 239.37 
723.4940 Glycerophosphates Diacylglycerophosphates PA 39:4 PA 19:0_20:4 179.01 
722.4970 Glycerophosphocholines Diacylglycerophosphocholines PC 28:0 PC 12:0_16:0 191.18 
722.4970 Glycerophosphocholines Diacylglycerophosphocholines PC 28:0 PC 14:0_14:0 169.50 
750.5270 Glycerophosphocholines Diacylglycerophosphocholines PC 29:0 PC 14:0_15:0 94.48 
750.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 30:0 PC 12:0_18:0 137.92 
748.5130 Glycerophosphocholines Diacylglycerophosphocholines PC 30:1 PC 14:1_16:0 123.71 
718.5380 Glycerophosphocholines Diacylglycerophosphocholines PC 31:0 PC 15:0_16:0 218.83 
716.5230 Glycerophosphocholines Diacylglycerophosphocholines PC 31:1 PC 13:0_18:1 161.38 
776.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 31:1 PC 15:0_16:1 86.55 
776.5450 Glycerophosphocholines Diacylglycerophosphocholines PC 31:1 PC 16:0_15:1 102.40 
714.5100 Glycerophosphocholines Diacylglycerophosphocholines PC 31:2 PC 13:0_18:2 160.46 
714.5080 Glycerophosphocholines Diacylglycerophosphocholines PC 31:2 PC 15:1_16:1 90.42 
712.4910 Glycerophosphocholines Diacylglycerophosphocholines PC 31:3 PC 13:0_18:3 130.76 
778.5600 Glycerophosphocholines Diacylglycerophosphocholines PC 32:0 PC 14:0_18:0 145.83 
778.5570 Glycerophosphocholines Diacylglycerophosphocholines PC 32:0 PC 16:0_16:0 244.81 
776.5450 Glycerophosphocholines Diacylglycerophosphocholines PC 32:1 PC 14:0_18:1 184.44 
776.5430 Glycerophosphocholines Diacylglycerophosphocholines PC 32:1 PC 16:0_16:1 253.29 
714.5080 Glycerophosphocholines Diacylglycerophosphocholines PC 32:2 PC 14:0_18:2 274.37 
774.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 32:2 PC 14:1_18:1 131.51 
774.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 32:2 PC 16:1_16:1 155.65 
712.4930 Glycerophosphocholines Diacylglycerophosphocholines PC 32:3 PC 14:0_18:3 207.45 
786.5270 Glycerophosphocholines Diacylglycerophosphocholines PC 32:3 PC 14:1_18:2 129.39 
724.4910 Glycerophosphocholines Diacylglycerophosphocholines PC 32:4 PC 12:0_20:4 71.55 
792.5730 Glycerophosphocholines Diacylglycerophosphocholines PC 33:0 PC 15:0_18:0 213.14 
792.5750 Glycerophosphocholines Diacylglycerophosphocholines PC 33:0 PC 16:0_17:0 217.38 
790.5590 Glycerophosphocholines Diacylglycerophosphocholines PC 33:1 PC 15:0_18:1 160.25 
790.5600 Glycerophosphocholines Diacylglycerophosphocholines PC 33:1 PC 16:0_17:1 133.79 
790.5600 Glycerophosphocholines Diacylglycerophosphocholines PC 33:1 PC 16:1_17:0 105.93 
818.5550 Glycerophosphocholines Diacylglycerophosphocholines PC 33:2 PC 14:1_19:1 56.06 
788.5410 Glycerophosphocholines Diacylglycerophosphocholines PC 33:2 PC 15:0_18:2 261.29 
742.5380 Glycerophosphocholines Diacylglycerophosphocholines PC 33:2 PC 15:1_18:1 150.67 
788.5420 Glycerophosphocholines Diacylglycerophosphocholines PC 33:2 PC 16:0_17:2 164.12 
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788.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 33:2 PC 16:1_17:1 178.58 
740.5230 Glycerophosphocholines Diacylglycerophosphocholines PC 33:3 PC 15:0_18:3 108.31 
800.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 33:3 PC 15:1_18:2 134.31 
786.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 33:3 PC 16:1_17:2 72.44 
738.5070 Glycerophosphocholines Diacylglycerophosphocholines PC 33:4 PC 13:0_20:4 170.63 
738.5080 Glycerophosphocholines Diacylglycerophosphocholines PC 33:4 PC 15:0_18:4 81.66 
738.5060 Glycerophosphocholines Diacylglycerophosphocholines PC 33:4 PC 15:1_18:3 128.00 
736.4900 Glycerophosphocholines Diacylglycerophosphocholines PC 33:5 PC 13:0_20:5 160.95 
806.5890 Glycerophosphocholines Diacylglycerophosphocholines PC 34:0 PC 14:0_20:0 106.42 
806.5910 Glycerophosphocholines Diacylglycerophosphocholines PC 34:0 PC 16:0_18:0 208.68 
744.5560 Glycerophosphocholines Diacylglycerophosphocholines PC 34:1 PC 14:0_20:1 168.70 
744.5540 Glycerophosphocholines Diacylglycerophosphocholines PC 34:1 PC 16:0_18:1 262.82 
804.5750 Glycerophosphocholines Diacylglycerophosphocholines PC 34:1 PC 18:0_16:1 148.28 
742.5380 Glycerophosphocholines Diacylglycerophosphocholines PC 34:2 PC 16:0_18:2 253.85 
742.5390 Glycerophosphocholines Diacylglycerophosphocholines PC 34:2 PC 16:1_18:1 204.42 
742.5380 Glycerophosphocholines Diacylglycerophosphocholines PC 34:2 PC 18:0_16:2 122.76 
800.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 34:3 PC 14:0_20:3 157.01 
800.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 34:3 PC 16:0_18:3 269.90 
800.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 34:3 PC 16:1_18:2 236.17 
798.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 34:4 PC 12:0_22:4 104.94 
798.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 34:4 PC 14:0_20:4 264.37 
798.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 34:4 PC 14:1_20:3 144.30 
798.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 34:4 PC 16:0_18:4 152.35 
738.5060 Glycerophosphocholines Diacylglycerophosphocholines PC 34:4 PC 16:1_18:3 153.99 
798.5290 Glycerophosphocholines Diacylglycerophosphocholines PC 34:4 PC 16:2_18:2 149.02 
796.5150 Glycerophosphocholines Diacylglycerophosphocholines PC 34:5 PC 14:0_20:5 227.52 
796.5130 Glycerophosphocholines Diacylglycerophosphocholines PC 34:5 PC 14:1_20:4 194.92 
796.5140 Glycerophosphocholines Diacylglycerophosphocholines PC 34:5 PC 16:1_18:4 102.95 
820.6070 Glycerophosphocholines Diacylglycerophosphocholines PC 35:0 PC 17:0_18:0 106.31 
818.5910 Glycerophosphocholines Diacylglycerophosphocholines PC 35:1 PC 16:0_19:1 163.09 
818.5900 Glycerophosphocholines Diacylglycerophosphocholines PC 35:1 PC 16:1_19:0 125.34 
818.5920 Glycerophosphocholines Diacylglycerophosphocholines PC 35:1 PC 17:0_18:1 212.67 
818.5940 Glycerophosphocholines Diacylglycerophosphocholines PC 35:1 PC 17:1_18:0 189.52 
816.5760 Glycerophosphocholines Diacylglycerophosphocholines PC 35:2 PC 13:0_22:2 110.63 
816.5740 Glycerophosphocholines Diacylglycerophosphocholines PC 35:2 PC 15:0_20:2 143.92 
816.5750 Glycerophosphocholines Diacylglycerophosphocholines PC 35:2 PC 17:0_18:2 245.56 
816.5750 Glycerophosphocholines Diacylglycerophosphocholines PC 35:2 PC 17:1_18:1 187.00 
816.5740 Glycerophosphocholines Diacylglycerophosphocholines PC 35:2 PC 17:2_18:0 167.80 
812.5450 Glycerophosphocholines Diacylglycerophosphocholines PC 35:4 PC 13:0_22:4 72.13 
812.5410 Glycerophosphocholines Diacylglycerophosphocholines PC 35:4 PC 15:0_20:4 242.64 
812.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 35:4 PC 15:1_20:3 118.47 
812.5430 Glycerophosphocholines Diacylglycerophosphocholines PC 35:4 PC 17:0_18:4 110.03 
766.5390 Glycerophosphocholines Diacylglycerophosphocholines PC 35:4 PC 18:2_17:2 195.95 
824.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 35:5 PC 15:0_20:5 126.94 
764.5240 Glycerophosphocholines Diacylglycerophosphocholines PC 35:5 PC 15:1_20:4 185.37 
824.5450 Glycerophosphocholines Diacylglycerophosphocholines PC 35:5 PC 17:2_18:3 96.25 
762.5070 Glycerophosphocholines Diacylglycerophosphocholines PC 35:6 PC 13:0_22:6 168.64 
762.5070 Glycerophosphocholines Diacylglycerophosphocholines PC 35:6 PC 15:1_20:5 148.79 
808.5110 Glycerophosphocholines Diacylglycerophosphocholines PC 35:6 PC 17:2_18:4 59.57 
834.6230 Glycerophosphocholines Diacylglycerophosphocholines PC 36:0 PC 16:0_20:0 188.10 
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834.6240 Glycerophosphocholines Diacylglycerophosphocholines PC 36:0 PC 18:0_18:0 216.35 
832.6070 Glycerophosphocholines Diacylglycerophosphocholines PC 36:1 PC 16:0_20:1 183.74 
832.6070 Glycerophosphocholines Diacylglycerophosphocholines PC 36:1 PC 16:1_20:0 126.50 
772.5840 Glycerophosphocholines Diacylglycerophosphocholines PC 36:1 PC 18:0_18:1 236.62 
830.5910 Glycerophosphocholines Diacylglycerophosphocholines PC 36:2 PC 16:0_20:2 175.39 
830.5920 Glycerophosphocholines Diacylglycerophosphocholines PC 36:2 PC 16:1_20:1 112.04 
770.5700 Glycerophosphocholines Diacylglycerophosphocholines PC 36:2 PC 18:0_18:2 253.20 
830.5910 Glycerophosphocholines Diacylglycerophosphocholines PC 36:2 PC 18:1_18:1 220.35 
828.5740 Glycerophosphocholines Diacylglycerophosphocholines PC 36:3 PC 16:0_20:3 246.16 
828.5750 Glycerophosphocholines Diacylglycerophosphocholines PC 36:3 PC 16:1_20:2 101.18 
828.5760 Glycerophosphocholines Diacylglycerophosphocholines PC 36:3 PC 18:0_18:3 192.97 
828.5760 Glycerophosphocholines Diacylglycerophosphocholines PC 36:3 PC 18:1_18:2 281.48 
766.5390 Glycerophosphocholines Diacylglycerophosphocholines PC 36:4 PC 14:0_22:4 201.41 
766.5380 Glycerophosphocholines Diacylglycerophosphocholines PC 36:4 PC 16:0_20:4 246.64 
826.5600 Glycerophosphocholines Diacylglycerophosphocholines PC 36:4 PC 16:1_20:3 163.30 
766.5370 Glycerophosphocholines Diacylglycerophosphocholines PC 36:4 PC 18:0_18:4 143.48 
826.5610 Glycerophosphocholines Diacylglycerophosphocholines PC 36:4 PC 18:1_18:3 177.29 
826.5610 Glycerophosphocholines Diacylglycerophosphocholines PC 36:4 PC 18:2_18:2 230.56 
824.5410 Glycerophosphocholines Diacylglycerophosphocholines PC 36:5 PC 14:0_22:5 158.61 
824.5430 Glycerophosphocholines Diacylglycerophosphocholines PC 36:5 PC 14:1_22:4 100.26 
764.5240 Glycerophosphocholines Diacylglycerophosphocholines PC 36:5 PC 16:0_20:5 258.81 
824.5450 Glycerophosphocholines Diacylglycerophosphocholines PC 36:5 PC 16:1_20:4 243.66 
824.5420 Glycerophosphocholines Diacylglycerophosphocholines PC 36:5 PC 18:1_18:4 141.64 
824.5450 Glycerophosphocholines Diacylglycerophosphocholines PC 36:5 PC 18:2_18:3 295.15 
822.5300 Glycerophosphocholines Diacylglycerophosphocholines PC 36:6 PC 14:0_22:6 225.51 
822.5270 Glycerophosphocholines Diacylglycerophosphocholines PC 36:6 PC 14:1_22:5 130.33 
762.5070 Glycerophosphocholines Diacylglycerophosphocholines PC 36:6 PC 16:1_20:5 197.19 
822.5270 Glycerophosphocholines Diacylglycerophosphocholines PC 36:6 PC 18:3_18:3 182.63 
762.5070 Glycerophosphocholines Diacylglycerophosphocholines PC 36:6 PC 18:4_18:2 200.69 
834.5280 Glycerophosphocholines Diacylglycerophosphocholines PC 36:7 PC 14:1_22:6 101.97 
760.4910 Glycerophosphocholines Diacylglycerophosphocholines PC 36:7 PC 18:3_18:4 110.74 
832.5130 Glycerophosphocholines Diacylglycerophosphocholines PC 36:8 PC 18:4_18:4 100.88 
844.6060 Glycerophosphocholines Diacylglycerophosphocholines PC 37:2 PC 17:1_20:1 132.73 
844.6100 Glycerophosphocholines Diacylglycerophosphocholines PC 37:2 PC 18:1_19:1 148.95 
844.6060 Glycerophosphocholines Diacylglycerophosphocholines PC 37:2 PC 18:2_19:0 198.73 
840.5750 Glycerophosphocholines Diacylglycerophosphocholines PC 37:4 PC 17:0_20:4 193.29 
792.5530 Glycerophosphocholines Diacylglycerophosphocholines PC 37:5 PC 17:0_20:5 111.74 
792.5530 Glycerophosphocholines Diacylglycerophosphocholines PC 37:5 PC 17:1_20:4 115.57 
836.5460 Glycerophosphocholines Diacylglycerophosphocholines PC 37:6 PC 15:0_22:6 215.02 
836.5430 Glycerophosphocholines Diacylglycerophosphocholines PC 37:6 PC 17:2_20:4 111.26 
834.5290 Glycerophosphocholines Diacylglycerophosphocholines PC 37:7 PC 15:1_22:6 102.62 
788.5230 Glycerophosphocholines Diacylglycerophosphocholines PC 37:7 PC 17:2_20:5 99.36 
860.6350 Glycerophosphocholines Diacylglycerophosphocholines PC 38:1 PC 16:0_22:1 169.17 
860.6370 Glycerophosphocholines Diacylglycerophosphocholines PC 38:1 PC 18:0_20:1 140.96 
858.6210 Glycerophosphocholines Diacylglycerophosphocholines PC 38:2 PC 18:0_20:2 195.96 
858.6220 Glycerophosphocholines Diacylglycerophosphocholines PC 38:2 PC 18:1_20:1 147.93 
858.6200 Glycerophosphocholines Diacylglycerophosphocholines PC 38:2 PC 20:0_18:2 190.99 
856.6040 Glycerophosphocholines Diacylglycerophosphocholines PC 38:3 PC 18:0_20:3 253.14 
856.6060 Glycerophosphocholines Diacylglycerophosphocholines PC 38:3 PC 18:1_20:2 170.55 
856.6050 Glycerophosphocholines Diacylglycerophosphocholines PC 38:3 PC 18:2_20:1 214.62 
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854.5920 Glycerophosphocholines Diacylglycerophosphocholines PC 38:4 PC 16:0_22:4 207.31 
854.5920 Glycerophosphocholines Diacylglycerophosphocholines PC 38:4 PC 18:0_20:4 239.28 
854.5930 Glycerophosphocholines Diacylglycerophosphocholines PC 38:4 PC 18:1_20:3 262.88 
854.5900 Glycerophosphocholines Diacylglycerophosphocholines PC 38:4 PC 18:2_20:2 190.24 
792.5540 Glycerophosphocholines Diacylglycerophosphocholines PC 38:5 PC 16:0_22:5 210.01 
792.5540 Glycerophosphocholines Diacylglycerophosphocholines PC 38:5 PC 16:1_22:4 177.64 
852.5770 Glycerophosphocholines Diacylglycerophosphocholines PC 38:5 PC 18:0_20:5 220.46 
852.5740 Glycerophosphocholines Diacylglycerophosphocholines PC 38:5 PC 18:1_20:4 204.23 
852.5740 Glycerophosphocholines Diacylglycerophosphocholines PC 38:5 PC 18:2_20:3 171.21 
852.5760 Glycerophosphocholines Diacylglycerophosphocholines PC 38:5 PC 18:3_20:2 158.48 
790.5370 Glycerophosphocholines Diacylglycerophosphocholines PC 38:6 PC 16:0_22:6 235.86 
850.5580 Glycerophosphocholines Diacylglycerophosphocholines PC 38:6 PC 16:1_22:5 127.07 
850.5590 Glycerophosphocholines Diacylglycerophosphocholines PC 38:6 PC 18:1_20:5 224.19 
850.5590 Glycerophosphocholines Diacylglycerophosphocholines PC 38:6 PC 18:2_20:4 243.13 
850.5610 Glycerophosphocholines Diacylglycerophosphocholines PC 38:6 PC 18:3_20:3 114.24 
848.5440 Glycerophosphocholines Diacylglycerophosphocholines PC 38:7 PC 16:1_22:6 217.19 
848.5420 Glycerophosphocholines Diacylglycerophosphocholines PC 38:7 PC 18:2_20:5 224.60 
848.5430 Glycerophosphocholines Diacylglycerophosphocholines PC 38:7 PC 18:3_20:4 212.03 
788.5230 Glycerophosphocholines Diacylglycerophosphocholines PC 38:7 PC 18:4_20:3 162.07 
786.5080 Glycerophosphocholines Diacylglycerophosphocholines PC 38:8 PC 18:4_20:4 195.09 
882.6240 Glycerophosphocholines Diacylglycerophosphocholines PC 39:4 PC 17:0_22:4 87.53 
882.6210 Glycerophosphocholines Diacylglycerophosphocholines PC 39:4 PC 19:0_20:4 53.43 
880.6080 Glycerophosphocholines Diacylglycerophosphocholines PC 39:5 PC 17:0_22:5 91.05 
810.5080 Glycerophosphocholines Diacylglycerophosphocholines PC 40:10 PC 20:5_20:5 103.94 
884.6410 Glycerophosphocholines Diacylglycerophosphocholines PC 40:3 PC 18:1_22:2 106.99 
884.6410 Glycerophosphocholines Diacylglycerophosphocholines PC 40:3 PC 18:2_22:1 138.16 
882.6230 Glycerophosphocholines Diacylglycerophosphocholines PC 40:4 PC 18:0_22:4 218.21 
882.6230 Glycerophosphocholines Diacylglycerophosphocholines PC 40:4 PC 20:2_20:2 125.68 
880.6060 Glycerophosphocholines Diacylglycerophosphocholines PC 40:5 PC 18:0_22:5 198.41 
880.6050 Glycerophosphocholines Diacylglycerophosphocholines PC 40:5 PC 18:1_22:4 119.53 
880.6060 Glycerophosphocholines Diacylglycerophosphocholines PC 40:5 PC 20:1_20:4 150.49 
880.6050 Glycerophosphocholines Diacylglycerophosphocholines PC 40:5 PC 20:2_20:3 102.83 
878.5910 Glycerophosphocholines Diacylglycerophosphocholines PC 40:6 PC 18:0_22:6 227.48 
878.5930 Glycerophosphocholines Diacylglycerophosphocholines PC 40:6 PC 18:1_22:5 128.80 
878.5910 Glycerophosphocholines Diacylglycerophosphocholines PC 40:6 PC 18:2_22:4 114.77 
878.5910 Glycerophosphocholines Diacylglycerophosphocholines PC 40:6 PC 20:3_20:3 149.37 
876.5770 Glycerophosphocholines Diacylglycerophosphocholines PC 40:7 PC 18:1_22:6 199.56 
874.5590 Glycerophosphocholines Diacylglycerophosphocholines PC 40:8 PC 18:2_22:6 197.12 
874.5590 Glycerophosphocholines Diacylglycerophosphocholines PC 40:8 PC 20:4_20:4 216.49 
916.6990 Glycerophosphocholines Diacylglycerophosphocholines PC 42:1 PC 18:1_24:0 156.16 
898.5590 Glycerophosphocholines Diacylglycerophosphocholines PC 42:10 PC 20:4_22:6 158.33 
512.3000 Glycerophosphocholines Monoacylglycerophosphocholines PC 14:0 PC 14:0_0:0 221.49 
540.3300 Glycerophosphocholines Monoacylglycerophosphocholines PC 16:0 PC 16:0_0:0 209.68 
538.3150 Glycerophosphocholines Monoacylglycerophosphocholines PC 16:1 PC 16:1_0:0 222.28 
568.3640 Glycerophosphocholines Monoacylglycerophosphocholines PC 18:0 PC 18:0_0:0 209.45 
566.3460 Glycerophosphocholines Monoacylglycerophosphocholines PC 18:1 PC 18:1_0:0 210.77 
564.3320 Glycerophosphocholines Monoacylglycerophosphocholines PC 18:2 PC 18:2_0:0 230.44 
562.3140 Glycerophosphocholines Monoacylglycerophosphocholines PC 18:3 PC 18:3_0:0 235.37 
596.3930 Glycerophosphocholines Monoacylglycerophosphocholines PC 20:0 PC 20:0_0:0 170.92 
594.3760 Glycerophosphocholines Monoacylglycerophosphocholines PC 20:1 PC 20:1_0:0 204.50 
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590.3470 Glycerophosphocholines Monoacylglycerophosphocholines PC 20:3 PC 20:3_0:0 212.40 
588.3330 Glycerophosphocholines Monoacylglycerophosphocholines PC 20:4 PC 20:4_0:0 219.28 
586.3150 Glycerophosphocholines Monoacylglycerophosphocholines PC 20:5 PC 20:5_0:0 236.92 
622.4070 Glycerophosphocholines Monoacylglycerophosphocholines PC 22:1 PC 22:1_0:0 132.49 
612.3310 Glycerophosphocholines Monoacylglycerophosphocholines PC 22:6 PC 22:6_0:0 230.00 
690.5060 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 33:0 PE 17:0_16:0 186.51 
718.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:0 PE 18:0_16:0 244.27 
716.5240 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:1 PE 16:1_18:0 107.05 
714.5050 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:2 PE 16:0_18:2 266.40 
714.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:2 PE 18:1_16:1 116.85 
712.4930 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:3 PE 14:0_20:3 112.57 
712.4910 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:3 PE 16:0_18:3 254.29 
712.4920 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:3 PE 18:2_16:1 119.93 
710.4750 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 34:4 PE 20:4_14:0 201.56 
718.5380 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:0 PE 18:0_17:0 185.34 
718.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:0 PE 19:0_16:0 212.80 
716.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:1 PE 16:0_19:1 190.82 
716.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:1 PE 16:1_19:0 109.90 
730.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:1 PE 18:1_17:0 205.67 
714.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:2 PE 17:0_18:2 164.51 
714.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:2 PE 17:1_18:1 79.26 
712.4910 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:3 PE 17:0_18:3 154.47 
712.4920 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:3 PE 17:1_18:2 112.91 
772.5170 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:3 PE 17:2_18:1 135.48 
724.4920 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:4 PE 15:0_20:4 229.15 
782.4990 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 35:5 PE 17:1_18:4 118.67 
746.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:0 PE 16:0_20:0 141.92 
746.5710 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:0 PE 18:0_18:0 149.25 
744.5530 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:1 PE 16:0_20:1 196.43 
744.5570 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:1 PE 16:1_20:0 104.76 
744.5540 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:1 PE 18:0_18:1 255.62 
778.5130 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:2 PE 14:0_22:2 107.32 
742.5380 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:2 PE 14:1_22:1 101.87 
742.5400 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:2 PE 16:0_20:2 146.02 
742.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:2 PE 18:0_18:2 243.50 
742.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:2 PE 18:1_18:1 214.48 
740.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:3 PE 16:1_20:2 103.99 
740.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:3 PE 18:0_18:3 129.13 
740.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:3 PE 18:1_18:2 302.96 
740.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:3 PE 20:3_16:0 254.45 
738.5060 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:4 PE 16:0_20:4 267.51 
738.5080 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:4 PE 16:1_20:3 106.03 
738.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:4 PE 18:1_18:3 284.44 
738.5060 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:4 PE 18:2_18:2 168.67 
738.5090 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:4 PE 18:4_18:0 101.21 
736.4900 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:5 PE 18:2_18:3 182.06 
736.4910 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:5 PE 20:4_16:1 116.46 
736.4910 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:5 PE 20:5_16:0 279.10 
734.4760 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:6 PE 18:3_18:3 114.21 
734.4760 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 36:6 PE 22:6_14:0 142.55 
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746.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:0 PE 18:0_19:0 74.30 
744.5530 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:1 PE 17:0_20:1 135.14 
744.5540 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:1 PE 18:0_19:1 190.31 
744.5550 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:1 PE 18:1_19:0 155.13 
742.5380 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:2 PE 17:0_20:2 108.31 
742.5380 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:2 PE 18:1_19:1 201.09 
742.5370 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:2 PE 18:2_19:0 150.35 
740.5220 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:3 PE 17:0_20:3 160.04 
740.5240 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:3 PE 18:2_19:1 209.05 
740.5240 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:3 PE 18:3_19:0 103.29 
752.5240 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:4 PE 17:0_20:4 217.09 
752.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:4 PE 17:1_20:3 85.62 
738.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:4 PE 18:3_19:1 196.34 
736.4920 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:5 PE 17:0_20:5 169.53 
750.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:5 PE 17:1_20:4 115.62 
736.4920 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 37:5 PE 18:4_19:1 83.71 
772.5840 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:1 PE 16:0_22:1 147.49 
772.5830 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:1 PE 18:0_20:1 186.64 
772.5850 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:1 PE 20:0_18:1 106.71 
770.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:2 PE 16:0_22:2 128.19 
770.5670 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:2 PE 18:1_20:1 242.08 
770.5690 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:2 PE 20:0_18:2 107.83 
770.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:2 PE 20:2_18:0 193.14 
768.5530 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:3 PE 18:1_20:2 116.06 
768.5520 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:3 PE 18:2_20:1 81.88 
768.5530 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:3 PE 20:3_18:0 245.92 
766.5370 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:4 PE 16:0_22:4 241.92 
766.5380 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:4 PE 18:0_20:4 279.61 
766.5380 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:4 PE 18:1_20:3 272.93 
766.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:4 PE 18:2_20:2 138.93 
764.5220 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:5 PE 16:1_22:4 100.36 
764.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:5 PE 18:2_20:3 149.20 
764.5220 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:5 PE 18:3_20:2 109.51 
764.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:5 PE 20:4_18:1 257.23 
764.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:5 PE 20:5_18:0 240.89 
762.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:6 PE 16:0_22:6 269.17 
762.5080 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:6 PE 18:3_20:3 117.55 
762.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:6 PE 20:4_18:2 259.68 
762.5050 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:6 PE 20:5_18:1 269.49 
760.4920 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:7 PE 18:2_20:5 217.77 
760.4910 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:7 PE 18:3_20:4 183.03 
820.5120 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 38:7 PE 22:6_16:1 54.41 
772.5850 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:1 PE 18:1_21:0 108.80 
772.5850 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:1 PE 19:0_20:1 134.93 
770.5710 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:2 PE 17:0_22:2 75.48 
770.5710 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:2 PE 18:2_21:0 87.18 
770.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:2 PE 19:0_20:2 129.59 
770.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:2 PE 19:1_20:1 200.99 
768.5540 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:3 PE 19:0_20:3 149.92 
766.5370 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:4 PE 17:0_22:4 162.78 
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766.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:4 PE 19:0_20:4 141.10 
766.5400 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:4 PE 19:1_20:3 135.34 
764.5240 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:5 PE 19:0_20:5 143.28 
764.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:5 PE 19:1_20:4 155.25 
762.5090 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:6 PE 19:1_20:5 186.68 
762.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:6 PE 22:6_17:0 190.00 
820.5150 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 39:7 PE 17:1_22:6 110.69 
796.5860 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:3 PE 20:0_20:3 145.05 
794.5680 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:4 PE 20:4_20:0 168.72 
794.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:4 PE 22:4_18:0 209.49 
792.5540 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:5 PE 18:1_22:4 250.19 
792.5540 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:5 PE 20:0_20:5 103.02 
792.5550 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:5 PE 20:1_20:4 174.94 
790.5390 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:6 PE 18:0_22:6 227.32 
790.5400 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:6 PE 18:2_22:4 144.66 
790.5370 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:6 PE 20:2_20:4 129.36 
790.5360 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:6 PE 20:3_20:3 113.12 
788.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:7 PE 20:2_20:5 115.63 
788.5240 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:7 PE 20:3_20:4 247.16 
788.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:7 PE 22:6_18:1 271.47 
786.5080 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:8 PE 20:3_20:5 103.74 
786.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:8 PE 20:4_20:4 207.00 
786.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 40:8 PE 22:6_18:2 226.61 
794.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 41:4 PE 19:0_22:4 119.22 
794.5700 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 41:4 PE 20:4_21:0 106.28 
792.5540 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 41:5 PE 19:1_22:4 158.08 
790.5400 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 41:6 PE 19:0_22:6 166.43 
788.5230 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 41:7 PE 19:1_22:6 171.10 
810.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 42:10 PE 20:4_22:6 253.03 
810.5070 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE 42:10 PE 20:5_22:5 102.88 
718.5380 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE-NMe2 32:0 PE-NMe2 16:0_16:0 213.52 
744.5540 Glycerophosphoethanolamines Diacylglycerophosphoethanolamines PE-NMe2 34:1 PE-NMe2 16:0_18:1 268.14 
526.2950 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines LysoPE 22:5 LysoPE 22:5_0:0 189.89 
452.2770 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 16:0 PE 16:0_0:0 145.65 
480.3090 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 18:0 PE 18:0_0:0 205.48 
476.2780 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 18:2 PE 18:2_0:0 170.38 
508.3400 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 20:0 PE 20:0_0:0 58.38 
500.2780 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 20:4 PE 20:4_0:0 177.08 
498.2630 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 20:5 PE 20:5_0:0 193.97 
528.3100 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 22:4 PE 22:4_0:0 65.59 
524.2800 Glycerophosphoethanolamines Monoacylglycerophosphoethanolamines PE 22:6 PE 22:6_0:0 293.86 
781.4890 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 31:1 PG 14:0_17:1 67.60 
809.5170 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 33:1 PG 16:0_17:1 80.65 
807.5020 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 33:2 PG 16:1_17:1 107.84 
807.5020 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 33:2 PG 17:1_16:1 106.87 
835.5310 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 35:2 PG 16:1_19:1 101.10 
833.5160 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 35:3 PG 17:1_18:2 103.63 
833.5180 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 35:3 PG 17:2_18:1 102.10 
833.5170 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 35:3 PG 18:1_17:2 114.66 
833.5180 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 35:3 PG 18:2_17:1 106.02 
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861.5490 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:3 PG 15:1_22:2 85.06 
785.5350 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:3 PG 17:0_20:3 116.07 
861.5500 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:3 PG 18:2_19:1 104.43 
859.5330 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:4 PG 19:1_18:3 104.17 
859.5330 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:4 PG 20:3_17:1 101.82 
857.5180 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:5 PG 15:1_22:4 100.22 
857.5210 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:5 PG 17:0_20:5 101.17 
857.5160 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:5 PG 17:1_20:4 105.62 
857.5180 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:5 PG 20:4_17:1 118.33 
857.5180 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 37:5 PG 22:4_15:1 104.44 
785.5350 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 38:3 PG 18:0_20:3 105.68 
887.5650 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 39:4 PG 20:3_19:1 103.75 
885.5470 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 39:5 PG 19:1_20:4 103.44 
885.5490 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 39:5 PG 20:4_19:1 103.43 
883.5360 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 39:6 PG 20:5_19:1 112.36 
881.5160 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 39:7 PG 17:1_22:6 104.72 
881.5170 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 39:7 PG 22:6_17:1 111.54 
909.5500 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 41:7 PG 19:1_22:6 101.34 
909.5520 Glycerophosphoglycerols Diacylglycerophosphoglycerols PG 41:7 PG 22:6_19:1 103.18 
719.5330 Phosphosphingolipids Sphingomyelins SM 32:1 SM d16:1_16:0 103.08 
747.5650 Phosphosphingolipids Sphingomyelins SM 34:1 SM d16:1_18:0 109.08 
687.5430 Phosphosphingolipids Sphingomyelins SM 34:1 SM d18:1_16:0 100.39 
745.5480 Phosphosphingolipids Sphingomyelins SM 34:2 SM d18:1_16:1 105.09 
745.5490 Phosphosphingolipids Sphingomyelins SM 34:2 SM d18:2_16:0 108.29 
775.5950 Phosphosphingolipids Sphingomyelins SM 36:1 SM d16:1_20:0 110.42 
803.6280 Phosphosphingolipids Sphingomyelins SM 38:1 SM d16:1_22:0 100.18 
829.6440 Phosphosphingolipids Sphingomyelins SM 40:2 SM d18:1_22:1 118.39 
829.6440 Phosphosphingolipids Sphingomyelins SM 40:2 SM d18:2_22:0 118.19 
859.6900 Phosphosphingolipids Sphingomyelins SM 42:1 SM d18:0_24:1 122.62 
857.6730 Phosphosphingolipids Sphingomyelins SM 42:2 SM d18:2_24:0 123.33 
887.7230 Phosphosphingolipids Sphingomyelins SM 44:1 SM d18:1_26:0 136.71 
659.5120 Phosphosphingolipids Ceramide phosphoethanolamines PE-Cer 35:1 PE-Cer d15:1_20:0 101.25 
781.4890 Glycerophosphoinositols Diacylglycerophosphoinositols PI 30:0 PI 16:0_14:0 70.43 
781.4890 Glycerophosphoinositols Diacylglycerophosphoinositols PI 31:0 PI 14:0_17:0 66.93 
809.5180 Glycerophosphoinositols Diacylglycerophosphoinositols PI 32:0 PI 16:0_16:0 102.71 
807.5030 Glycerophosphoinositols Diacylglycerophosphoinositols PI 32:1 PI 16:1_16:0 119.31 
807.5010 Glycerophosphoinositols Diacylglycerophosphoinositols PI 33:1 PI 16:1_17:0 109.43 
833.5160 Glycerophosphoinositols Diacylglycerophosphoinositols PI 34:2 PI 18:1_16:1 118.53 
833.5180 Glycerophosphoinositols Diacylglycerophosphoinositols PI 34:2 PI 18:2_16:0 114.77 
833.5190 Glycerophosphoinositols Diacylglycerophosphoinositols PI 35:2 PI 16:1_19:1 114.33 
833.5160 Glycerophosphoinositols Diacylglycerophosphoinositols PI 35:2 PI 17:0_18:2 106.68 
833.5200 Glycerophosphoinositols Diacylglycerophosphoinositols PI 35:2 PI 17:1_18:1 76.42 
861.5490 Glycerophosphoinositols Diacylglycerophosphoinositols PI 36:2 PI 18:2_18:0 108.22 
859.5340 Glycerophosphoinositols Diacylglycerophosphoinositols PI 36:3 PI 18:0_18:3 107.25 
859.5340 Glycerophosphoinositols Diacylglycerophosphoinositols PI 36:3 PI 18:2_18:1 116.29 
859.5330 Glycerophosphoinositols Diacylglycerophosphoinositols PI 36:3 PI 20:3_16:0 113.38 
857.5180 Glycerophosphoinositols Diacylglycerophosphoinositols PI 36:4 PI 16:1_20:3 93.79 
857.5170 Glycerophosphoinositols Diacylglycerophosphoinositols PI 36:4 PI 18:2_18:2 105.58 
857.5170 Glycerophosphoinositols Diacylglycerophosphoinositols PI 36:4 PI 20:4_16:0 117.16 
861.5480 Glycerophosphoinositols Diacylglycerophosphoinositols PI 37:2 PI 18:1_19:1 106.08 
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861.5480 Glycerophosphoinositols Diacylglycerophosphoinositols PI 37:2 PI 18:2_19:0 104.70 
859.5340 Glycerophosphoinositols Diacylglycerophosphoinositols PI 37:3 PI 18:2_19:1 106.35 
859.5340 Glycerophosphoinositols Diacylglycerophosphoinositols PI 37:3 PI 18:3_19:0 103.02 
857.5180 Glycerophosphoinositols Diacylglycerophosphoinositols PI 37:4 PI 15:0_22:4 100.29 
857.5180 Glycerophosphoinositols Diacylglycerophosphoinositols PI 37:4 PI 17:0_20:4 111.37 
887.5650 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:3 PI 20:3_18:0 111.91 
885.5480 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:4 PI 18:0_20:4 112.39 
885.5500 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:4 PI 18:1_20:3 100.69 
883.5330 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:5 PI 18:3_20:2 105.77 
883.5330 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:5 PI 20:4_18:1 116.81 
883.5340 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:5 PI 20:5_18:0 114.70 
881.5190 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:6 PI 16:0_22:6 117.99 
881.5180 Glycerophosphoinositols Diacylglycerophosphoinositols PI 38:6 PI 18:4_20:2 107.85 
887.5660 Glycerophosphoinositols Diacylglycerophosphoinositols PI 39:3 PI 19:0_20:3 104.67 
885.5480 Glycerophosphoinositols Diacylglycerophosphoinositols PI 39:4 PI 19:0_20:4 105.55 
883.5340 Glycerophosphoinositols Diacylglycerophosphoinositols PI 39:5 PI 19:0_20:5 102.37 
883.5330 Glycerophosphoinositols Diacylglycerophosphoinositols PI 39:5 PI 19:1_20:4 107.88 
881.5190 Glycerophosphoinositols Diacylglycerophosphoinositols PI 39:6 PI 22:6_17:0 112.48 
909.5480 Glycerophosphoinositols Diacylglycerophosphoinositols PI 40:6 PI 18:0_22:6 116.34 
909.5500 Glycerophosphoinositols Diacylglycerophosphoinositols PI 40:6 PI 20:1_20:5 100.12 
909.5500 Glycerophosphoinositols Diacylglycerophosphoinositols PI 40:6 PI 20:2_20:4 100.74 
909.5510 Glycerophosphoinositols Diacylglycerophosphoinositols PI 40:6 PI 20:3_20:3 101.39 
909.5510 Glycerophosphoinositols Diacylglycerophosphoinositols PI 41:6 PI 19:0_22:6 103.68 
599.3200 Glycerophosphoinositols Monoacylglycerophosphoinositols PI 18:0 PI 18:0_0:0 134.63 
619.2870 Glycerophosphoinositols Monoacylglycerophosphoinositols PI 20:4 PI 20:4_0:0 170.82 
762.5300 Glycerophosphoserines Diacylglycerophosphoserines PS 34:0 PS 16:0_18:0 118.85 
810.5080 Glycerophosphoserines Diacylglycerophosphoserines PS 35:1 PS 14:1_21:0 76.69 
810.5090 Glycerophosphoserines Diacylglycerophosphoserines PS 35:1 PS 17:1_18:0 113.38 
810.5050 Glycerophosphoserines Diacylglycerophosphoserines PS 35:1 PS 20:0_15:1 103.83 
772.5160 Glycerophosphoserines Diacylglycerophosphoserines PS 35:2 PS 17:1_18:1 148.24 
772.5140 Glycerophosphoserines Diacylglycerophosphoserines PS 35:2 PS 18:2_17:0 103.44 
834.5510 Glycerophosphoserines Diacylglycerophosphoserines PS 36:1 PS 14:0_22:1 117.30 
788.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 36:1 PS 18:0_18:1 267.97 
788.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 36:1 PS 18:1_18:0 274.64 
788.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 36:1 PS 20:1_16:0 206.38 
786.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 36:2 PS 16:0_20:2 175.61 
786.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 36:2 PS 18:0_18:2 277.86 
786.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 36:2 PS 18:1_18:1 205.73 
786.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 36:2 PS 18:2_18:0 280.09 
772.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 36:2 PS 20:2_16:0 97.72 
784.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 36:3 PS 18:0_18:3 111.70 
784.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 36:3 PS 18:1_18:2 168.80 
784.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 36:3 PS 18:2_18:1 232.09 
784.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 36:3 PS 18:3_18:0 60.09 
782.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 36:4 PS 16:0_20:4 355.04 
782.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 36:4 PS 18:2_18:2 234.11 
782.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 36:4 PS 18:4_18:0 101.75 
782.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 36:4 PS 20:3_16:1 176.45 
782.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 36:4 PS 20:4_16:0 339.55 
780.4800 Glycerophosphoserines Diacylglycerophosphoserines PS 36:5 PS 16:0_20:5 197.02 
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780.4800 Glycerophosphoserines Diacylglycerophosphoserines PS 36:5 PS 20:5_16:0 235.46 
788.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 37:1 PS 18:0_19:1 237.35 
788.5420 Glycerophosphoserines Diacylglycerophosphoserines PS 37:1 PS 18:1_19:0 228.60 
788.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 37:1 PS 19:0_18:1 229.89 
788.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 37:1 PS 19:1_18:0 256.64 
786.5270 Glycerophosphoserines Diacylglycerophosphoserines PS 37:2 PS 18:1_19:1 210.19 
786.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 37:2 PS 18:2_19:0 229.49 
786.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 37:2 PS 19:0_18:2 218.06 
786.5270 Glycerophosphoserines Diacylglycerophosphoserines PS 37:2 PS 19:1_18:1 159.27 
786.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 37:2 PS 20:2_17:0 165.86 
798.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 37:3 PS 17:0_20:3 126.83 
798.5270 Glycerophosphoserines Diacylglycerophosphoserines PS 37:3 PS 18:2_19:1 139.43 
798.5270 Glycerophosphoserines Diacylglycerophosphoserines PS 37:3 PS 18:3_19:0 102.99 
784.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 37:3 PS 19:1_18:2 151.66 
798.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 37:3 PS 20:3_17:0 104.37 
782.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 37:4 PS 17:0_20:4 235.30 
782.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 37:4 PS 17:1_20:3 209.65 
796.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 37:4 PS 18:3_19:1 117.11 
796.5140 Glycerophosphoserines Diacylglycerophosphoserines PS 37:4 PS 20:4_17:0 147.38 
780.4800 Glycerophosphoserines Diacylglycerophosphoserines PS 37:5 PS 17:0_20:5 160.19 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 38:3 PS 18:0_20:3 267.58 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 38:3 PS 18:1_20:2 190.97 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 38:3 PS 18:2_20:1 211.45 
798.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 38:3 PS 20:0_18:3 100.29 
798.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 38:3 PS 20:1_18:2 103.10 
812.5450 Glycerophosphoserines Diacylglycerophosphoserines PS 38:3 PS 20:2_18:1 163.55 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 38:3 PS 20:3_18:0 278.74 
796.5150 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 16:0_22:4 63.98 
810.5310 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 18:0_20:4 286.26 
810.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 18:1_20:3 199.87 
810.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 18:2_20:2 168.78 
810.5270 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 18:3_20:1 162.96 
810.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 20:0_18:4 124.31 
810.5300 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 20:2_18:2 160.87 
810.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 20:3_18:1 197.12 
810.5310 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 20:4_18:0 298.50 
810.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 38:4 PS 22:4_16:0 167.05 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 38:5 PS 18:0_20:5 313.46 
808.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 38:5 PS 18:1_20:4 308.93 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 38:5 PS 18:2_20:3 183.93 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 38:5 PS 20:1_18:4 102.11 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 38:5 PS 20:3_18:2 188.42 
808.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 38:5 PS 20:4_18:1 314.72 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 38:5 PS 20:5_18:0 311.43 
806.4960 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 16:0_22:6 311.47 
806.4960 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 18:1_20:5 201.17 
806.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 18:2_20:4 280.36 
806.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 18:3_20:3 104.51 
806.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 20:2_18:4 108.58 
806.4950 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 20:4_18:2 277.65 
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806.4960 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 20:5_18:1 220.78 
806.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 38:6 PS 22:6_16:0 329.97 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 39:3 PS 19:0_20:3 227.65 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 39:3 PS 19:1_20:2 199.46 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 39:3 PS 20:2_19:1 55.60 
812.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 39:3 PS 20:3_19:0 204.34 
826.5600 Glycerophosphoserines Diacylglycerophosphoserines PS 39:3 PS 21:0_18:3 57.50 
812.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 39:3 PS 22:1_17:2 170.28 
810.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 39:4 PS 19:0_20:4 224.29 
810.5270 Glycerophosphoserines Diacylglycerophosphoserines PS 39:4 PS 19:1_20:3 192.94 
810.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 39:4 PS 20:3_19:1 85.43 
810.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 39:4 PS 20:4_19:0 204.89 
810.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 39:4 PS 22:2_17:2 182.24 
822.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 39:5 PS 17:1_22:4 102.63 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 39:5 PS 19:0_20:5 230.30 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 39:5 PS 19:1_20:4 232.88 
808.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 39:5 PS 20:4_19:1 207.27 
808.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 39:5 PS 20:5_19:0 197.43 
806.4990 Glycerophosphoserines Diacylglycerophosphoserines PS 39:6 PS 17:0_22:6 226.71 
806.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 39:6 PS 17:2_22:4 208.05 
820.5140 Glycerophosphoserines Diacylglycerophosphoserines PS 39:6 PS 19:1_20:5 111.23 
806.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 39:6 PS 22:6_17:0 230.20 
838.5600 Glycerophosphoserines Diacylglycerophosphoserines PS 40:4 PS 18:0_22:4 253.66 
838.5600 Glycerophosphoserines Diacylglycerophosphoserines PS 40:4 PS 22:4_18:0 259.58 
836.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 18:1_22:4 193.52 
836.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 20:0_20:5 182.50 
836.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 20:1_20:4 210.88 
836.5460 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 20:2_20:3 104.40 
836.5450 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 20:3_20:2 173.03 
836.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 20:4_20:1 200.19 
836.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 20:5_20:0 172.52 
836.5430 Glycerophosphoserines Diacylglycerophosphoserines PS 40:5 PS 22:4_18:1 178.43 
834.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 18:0_22:6 307.85 
834.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 18:2_22:4 148.14 
834.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 20:1_20:5 140.85 
834.5300 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 20:2_20:4 159.55 
834.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 20:3_20:3 166.71 
834.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 20:5_20:1 183.78 
834.5280 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 22:4_18:2 143.39 
834.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 40:6 PS 22:6_18:0 325.73 
832.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 40:7 PS 18:1_22:6 285.58 
832.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 40:7 PS 20:2_20:5 167.55 
832.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 40:7 PS 20:3_20:4 226.30 
832.5120 Glycerophosphoserines Diacylglycerophosphoserines PS 40:7 PS 20:4_20:3 222.93 
832.5130 Glycerophosphoserines Diacylglycerophosphoserines PS 40:7 PS 22:6_18:1 282.76 
830.4960 Glycerophosphoserines Diacylglycerophosphoserines PS 40:8 PS 18:2_22:6 269.87 
830.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 40:8 PS 20:3_20:5 205.92 
830.4970 Glycerophosphoserines Diacylglycerophosphoserines PS 40:8 PS 20:4_20:4 359.57 
830.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 40:8 PS 20:5_20:3 194.51 
830.4980 Glycerophosphoserines Diacylglycerophosphoserines PS 40:8 PS 22:4_18:4 150.54 
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830.4960 Glycerophosphoserines Diacylglycerophosphoserines PS 40:8 PS 22:6_18:2 258.53 
838.5590 Glycerophosphoserines Diacylglycerophosphoserines PS 41:4 PS 19:0_22:4 215.99 
838.5590 Glycerophosphoserines Diacylglycerophosphoserines PS 41:4 PS 22:4_19:0 171.03 
836.5450 Glycerophosphoserines Diacylglycerophosphoserines PS 41:5 PS 19:1_22:4 181.15 
836.5440 Glycerophosphoserines Diacylglycerophosphoserines PS 41:5 PS 20:5_21:0 200.31 
836.5450 Glycerophosphoserines Diacylglycerophosphoserines PS 41:5 PS 22:4_19:1 176.12 
834.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 41:6 PS 19:0_22:6 226.37 
834.5290 Glycerophosphoserines Diacylglycerophosphoserines PS 41:6 PS 22:6_19:0 179.98 
832.5140 Glycerophosphoserines Diacylglycerophosphoserines PS 41:7 PS 19:1_22:6 271.29 
832.5110 Glycerophosphoserines Diacylglycerophosphoserines PS 41:7 PS 22:6_19:1 213.27 
854.4960 Glycerophosphoserines Diacylglycerophosphoserines PS 42:10 PS 20:4_22:6 341.57 
854.4960 Glycerophosphoserines Diacylglycerophosphoserines PS 42:10 PS 22:6_20:4 326.47 
524.3000 Glycerophosphoserines Monoacylglycerophosphoserines PS 18:0 PS 18:0_0:0 191.53 
544.2670 Glycerophosphoserines Monoacylglycerophosphoserines PS 20:4 PS 20:4_0:0 205.92 
255.2330 Fatty Acyls Fatty Acids & Conjugates FFA 16:0 FFA 16:0 3.93 
283.2643 Fatty Acyls Fatty Acids & Conjugates FFA 18:0 FFA 18:0 3.67 
281.2486 Fatty Acyls Fatty Acids & Conjugates FFA 18:1 FFA 18:1 4.27 
279.2330 Fatty Acyls Fatty Acids & Conjugates FFA 18:2 FFA 18:2 0.75 
277.2173 Fatty Acyls Fatty Acids & Conjugates FFA 18:3 FFA 18:3 0.03 
303.2330 Fatty Acyls Fatty Acids & Conjugates FFA 20:4 FFA 20:4 0.03 
301.2173 Fatty Acyls Fatty Acids & Conjugates FFA 20:5 FFA 20:5 0.02 
327.2330 Fatty Acyls Fatty Acids & Conjugates FFA 22:6 FFA 22:6 0.01 
670.6496 Sterols Steryl Esters CE 16:0 CE 18:0 27.32 
666.6183 Sterols Steryl Esters CE 18:0 CE 18:2 73.65 
664.6027 Sterols Steryl Esters CE 18:2 CE 18:3 0.81 
690.6183 Sterols Steryl Esters CE 20:4 CE 20:4 10.62 
688.6027 Sterols Steryl Esters CE 20:5 CE 20:5 0.80 
714.6183 Sterols Steryl Esters CE 22:6 CE 22:6 0.59 
803.6970 Triradylglycerols Triacylglycerols TAG 45:3 TAG 13:0_15:1_17:2 139.27 
803.6990 Triradylglycerols Triacylglycerols TAG 45:3 TAG 14:1_14:1_17:1 81.00 
803.6990 Triradylglycerols Triacylglycerols TAG 45:3 TAG 14:1_15:1_16:1 256.41 
803.6990 Triradylglycerols Triacylglycerols TAG 45:3 TAG 15:1_15:1_15:1 58.00 
794.8790 Triradylglycerols Triacylglycerols TAG 47:1 TAG 15:0_17:1_15:0 4506.95 
829.7980 Triradylglycerols Triacylglycerols TAG 47:4 TAG 13:0_14:0_20:4 564.77 
851.8810 Triradylglycerols Triacylglycerols TAG 48:0 TAG 16:0_16:0_16:0 14808.38 
803.7010 Triradylglycerols Triacylglycerols TAG 48:1 TAG 14:0_14:0_20:1 84.00 
803.6990 Triradylglycerols Triacylglycerols TAG 48:1 TAG 14:1_17:0_17:0 116.19 
803.7010 Triradylglycerols Triacylglycerols TAG 48:1 TAG 16:0_16:0_16:1 72.00 
865.8420 Triradylglycerols Triacylglycerols TAG 49:0 TAG 16:0_16:0_17:0 486.51 
879.9880 Triradylglycerols Triacylglycerols TAG 50:0 TAG 14:0_17:0_19:0 5824.36 
879.9190 Triradylglycerols Triacylglycerols TAG 50:0 TAG 14:0_18:0_18:0 16221.80 
879.9890 Triradylglycerols Triacylglycerols TAG 50:0 TAG 16:0_16:0_18:0 12835.63 
877.9730 Triradylglycerols Triacylglycerols TAG 50:1 TAG 14:0_16:1_20:0 5370.49 
877.9720 Triradylglycerols Triacylglycerols TAG 50:1 TAG 16:0_16:1_18:0 25346.72 
877.9730 Triradylglycerols Triacylglycerols TAG 50:1 TAG 16:1_17:0_17:0 28121.04 
829.9630 Triradylglycerols Triacylglycerols TAG 50:2 TAG 14:0_16:0_20:2 178645.25 
829.9640 Triradylglycerols Triacylglycerols TAG 50:2 TAG 14:0_18:1_18:1 1038.50 
829.9630 Triradylglycerols Triacylglycerols TAG 50:2 TAG 15:0_15:0_20:2 96535.21 
829.9630 Triradylglycerols Triacylglycerols TAG 50:2 TAG 16:0_16:0_18:2 53.21 
829.9620 Triradylglycerols Triacylglycerols TAG 50:2 TAG 16:0_16:1_18:1 1217.35 
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875.8870 Triradylglycerols Triacylglycerols TAG 50:2 TAG 16:0_17:1_17:1 3760.14 
863.8620 Triradylglycerols Triacylglycerols TAG 50:8 TAG 14:1_14:1_22:6 1540.35 
894.0130 Triradylglycerols Triacylglycerols TAG 51:0 TAG 16:0_17:0_18:0 1023.18 
891.8660 Triradylglycerols Triacylglycerols TAG 51:1 TAG 17:0_17:0_17:1 361.16 
850.9560 Triradylglycerols Triacylglycerols TAG 51:1 TAG 17:0_17:1_17:0 73689.79 
889.8480 Triradylglycerols Triacylglycerols TAG 51:2 TAG 15:0_17:1_19:1 688.56 
889.8480 Triradylglycerols Triacylglycerols TAG 51:2 TAG 16:1_16:1_19:0 570.70 
839.8200 Triradylglycerols Triacylglycerols TAG 51:4 TAG 15:1_17:2_19:1 359.48 
839.8200 Triradylglycerols Triacylglycerols TAG 51:4 TAG 17:0_17:2_17:2 349.40 
839.8190 Triradylglycerols Triacylglycerols TAG 51:4 TAG 17:1_17:1_17:2 57.35 
908.0300 Triradylglycerols Triacylglycerols TAG 52:0 TAG 13:0_17:0_22:0 1637.90 
908.0360 Triradylglycerols Triacylglycerols TAG 52:0 TAG 16:0_18:0_18:0 3882.06 
906.0120 Triradylglycerols Triacylglycerols TAG 52:1 TAG 16:0_16:1_20:0 14065.07 
905.8280 Triradylglycerols Triacylglycerols TAG 52:1 TAG 16:0_18:0_18:1 4904.37 
906.0110 Triradylglycerols Triacylglycerols TAG 52:1 TAG 16:1_18:0_18:0 6706.23 
903.9970 Triradylglycerols Triacylglycerols TAG 52:2 TAG 16:0_18:0_18:2 7792.06 
901.9100 Triradylglycerols Triacylglycerols TAG 52:3 TAG 16:0_18:1_18:2 4467.09 
901.9100 Triradylglycerols Triacylglycerols TAG 52:3 TAG 17:1_17:2_18:0 4496.45 
899.9650 Triradylglycerols Triacylglycerols TAG 52:4 TAG 16:1_18:1_18:2 6761.58 
897.9550 Triradylglycerols Triacylglycerols TAG 52:5 TAG 14:0_16:1_22:4 2561.28 
851.8790 Triradylglycerols Triacylglycerols TAG 52:5 TAG 16:0_16:1_20:4 267.74 
851.8790 Triradylglycerols Triacylglycerols TAG 52:5 TAG 16:0_18:1_18:4 13501.87 
851.8790 Triradylglycerols Triacylglycerols TAG 52:5 TAG 16:1_18:1_18:3 415.34 
891.8640 Triradylglycerols Triacylglycerols TAG 52:8 TAG 14:1_18:4_20:3 8155.46 
889.8490 Triradylglycerols Triacylglycerols TAG 52:9 TAG 14:1_18:4_20:4 2806.90 
917.8890 Triradylglycerols Triacylglycerols TAG 53:2 TAG 15:1_19:0_19:1 1831.05 
917.8880 Triradylglycerols Triacylglycerols TAG 53:2 TAG 17:1_17:1_19:0 975.33 
915.8700 Triradylglycerols Triacylglycerols TAG 53:3 TAG 17:0_17:2_19:1 185.20 
915.8710 Triradylglycerols Triacylglycerols TAG 53:3 TAG 17:1_17:1_19:1 1504.44 
915.8710 Triradylglycerols Triacylglycerols TAG 53:3 TAG 17:1_17:2_19:0 6915.88 
865.8420 Triradylglycerols Triacylglycerols TAG 53:5 TAG 17:2_17:2_19:1 624.28 
932.0420 Triradylglycerols Triacylglycerols TAG 54:2 TAG 16:0_18:1_20:1 3434.26 
932.0430 Triradylglycerols Triacylglycerols TAG 54:2 TAG 16:1_18:0_20:1 14691.40 
885.9660 Triradylglycerols Triacylglycerols TAG 54:2 TAG 18:0_18:1_18:1 3216.90 
929.9830 Triradylglycerols Triacylglycerols TAG 54:3 TAG 14:1_18:1_22:1 2313.94 
883.9500 Triradylglycerols Triacylglycerols TAG 54:3 TAG 16:0_18:1_20:2 10847.42 
883.9520 Triradylglycerols Triacylglycerols TAG 54:3 TAG 16:0_18:2_20:1 20877.06 
883.9510 Triradylglycerols Triacylglycerols TAG 54:3 TAG 18:0_18:0_18:3 349.97 
883.9500 Triradylglycerols Triacylglycerols TAG 54:3 TAG 18:0_18:1_18:2 11902.15 
927.9660 Triradylglycerols Triacylglycerols TAG 54:4 TAG 14:1_18:1_22:2 2784.81 
882.0060 Triradylglycerols Triacylglycerols TAG 54:4 TAG 16:0_16:0_22:4 685.09 
882.0050 Triradylglycerols Triacylglycerols TAG 54:4 TAG 16:0_18:0_20:4 4001.49 
882.0130 Triradylglycerols Triacylglycerols TAG 54:4 TAG 16:0_18:1_20:3 179.93 
927.9320 Triradylglycerols Triacylglycerols TAG 54:4 TAG 16:0_18:2_20:2 10813.14 
927.9680 Triradylglycerols Triacylglycerols TAG 54:4 TAG 16:1_18:1_20:2 2691.05 
881.9350 Triradylglycerols Triacylglycerols TAG 54:4 TAG 18:0_18:0_18:4 27966.03 
927.9680 Triradylglycerols Triacylglycerols TAG 54:4 TAG 18:0_18:2_18:2 3984.79 
925.9930 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:0_16:1_22:4 7909.25 
879.9190 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:0_18:0_20:5 25178.23 
879.9880 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:0_18:1_20:4 9693.33 
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879.9890 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:0_18:2_20:3 913.51 
879.9890 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:0_18:3_20:2 8070.61 
879.9890 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:0_18:4_20:1 15346.41 
879.9190 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:1_18:0_20:4 18214.19 
879.9200 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:1_18:1_20:3 20539.07 
925.9940 Triradylglycerols Triacylglycerols TAG 54:5 TAG 16:1_18:2_20:2 6137.23 
925.9150 Triradylglycerols Triacylglycerols TAG 54:5 TAG 17:1_17:1_20:3 5979.67 
879.9890 Triradylglycerols Triacylglycerols TAG 54:5 TAG 18:0_18:1_18:4 17578.16 
879.7430 Triradylglycerols Triacylglycerols TAG 54:5 TAG 18:0_18:2_18:3 238.38 
879.9890 Triradylglycerols Triacylglycerols TAG 54:5 TAG 18:1_18:1_18:3 7113.67 
877.9730 Triradylglycerols Triacylglycerols TAG 54:6 TAG 16:0_18:1_20:5 24098.29 
877.9730 Triradylglycerols Triacylglycerols TAG 54:6 TAG 16:0_18:2_20:4 6806.74 
877.9740 Triradylglycerols Triacylglycerols TAG 54:6 TAG 16:0_18:3_20:3 5522.61 
877.9720 Triradylglycerols Triacylglycerols TAG 54:6 TAG 18:0_18:2_18:4 17085.33 
877.9030 Triradylglycerols Triacylglycerols TAG 54:6 TAG 18:1_18:1_18:4 29682.70 
877.7960 Triradylglycerols Triacylglycerols TAG 54:6 TAG 18:1_18:2_18:3 4405.41 
875.8850 Triradylglycerols Triacylglycerols TAG 54:7 TAG 14:1_20:1_20:5 6023.35 
875.9570 Triradylglycerols Triacylglycerols TAG 54:7 TAG 16:0_18:2_20:5 11878.13 
875.9560 Triradylglycerols Triacylglycerols TAG 54:7 TAG 16:0_18:3_20:4 4909.17 
875.8880 Triradylglycerols Triacylglycerols TAG 54:7 TAG 16:0_18:4_20:3 4278.12 
875.8870 Triradylglycerols Triacylglycerols TAG 54:7 TAG 16:1_18:1_20:5 5718.66 
875.8870 Triradylglycerols Triacylglycerols TAG 54:7 TAG 16:1_18:2_20:4 8460.51 
875.8860 Triradylglycerols Triacylglycerols TAG 54:7 TAG 18:1_18:2_18:4 18487.84 
875.8860 Triradylglycerols Triacylglycerols TAG 54:7 TAG 18:1_18:3_18:3 21474.83 
875.8890 Triradylglycerols Triacylglycerols TAG 54:7 TAG 18:2_18:2_18:3 6164.54 
873.8710 Triradylglycerols Triacylglycerols TAG 54:8 TAG 18:2_18:2_18:4 5386.37 
901.9820 Triradylglycerols Triacylglycerols TAG 55:1 TAG 15:0_19:1_21:0 3393.77 
897.9660 Triradylglycerols Triacylglycerols TAG 55:3 TAG 17:1_19:1_19:1 1986.27 
897.9540 Triradylglycerols Triacylglycerols TAG 55:3 TAG 18:1_18:1_19:1 3815.50 
897.9530 Triradylglycerols Triacylglycerols TAG 55:3 TAG 18:1_18:2_19:0 5172.88 
895.9540 Triradylglycerols Triacylglycerols TAG 55:4 TAG 17:0_18:0_20:4 7337.21 
895.9540 Triradylglycerols Triacylglycerols TAG 55:4 TAG 18:0_18:3_19:1 206.04 
895.9540 Triradylglycerols Triacylglycerols TAG 55:4 TAG 18:2_18:2_19:0 153.68 
911.9900 Triradylglycerols Triacylglycerols TAG 56:3 TAG 16:0_20:0_20:3 141.29 
911.9890 Triradylglycerols Triacylglycerols TAG 56:3 TAG 18:0_18:0_20:3 17526.57 
911.9900 Triradylglycerols Triacylglycerols TAG 56:3 TAG 18:0_18:1_20:2 7281.84 
911.9900 Triradylglycerols Triacylglycerols TAG 56:3 TAG 18:0_18:2_20:1 3411.76 
911.9900 Triradylglycerols Triacylglycerols TAG 56:3 TAG 18:0_18:3_20:0 10800.97 
909.9740 Triradylglycerols Triacylglycerols TAG 56:4 TAG 18:0_18:0_20:4 29657.88 
909.9720 Triradylglycerols Triacylglycerols TAG 56:4 TAG 18:0_18:1_20:3 12778.69 
910.0510 Triradylglycerols Triacylglycerols TAG 56:4 TAG 18:4_19:0_19:0 601.76 
908.0340 Triradylglycerols Triacylglycerols TAG 56:5 TAG 16:0_18:1_22:4 6118.22 
908.0350 Triradylglycerols Triacylglycerols TAG 56:5 TAG 16:0_20:1_20:4 1273.70 
908.0360 Triradylglycerols Triacylglycerols TAG 56:5 TAG 18:0_18:0_20:5 2922.34 
908.0320 Triradylglycerols Triacylglycerols TAG 56:5 TAG 18:0_18:1_20:4 1329.35 
908.0310 Triradylglycerols Triacylglycerols TAG 56:5 TAG 18:0_18:2_20:3 926.22 
905.9410 Triradylglycerols Triacylglycerols TAG 56:6 TAG 18:0_18:1_20:5 23281.07 
906.0110 Triradylglycerols Triacylglycerols TAG 56:6 TAG 18:0_18:2_20:4 7897.04 
906.0130 Triradylglycerols Triacylglycerols TAG 56:6 TAG 18:1_18:1_20:4 4117.68 
903.9960 Triradylglycerols Triacylglycerols TAG 56:7 TAG 16:0_20:3_20:4 5473.41 
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901.9090 Triradylglycerols Triacylglycerols TAG 56:8 TAG 18:1_18:3_20:4 6206.75 
901.9100 Triradylglycerols Triacylglycerols TAG 56:8 TAG 18:2_18:2_20:4 5048.87 
899.8910 Triradylglycerols Triacylglycerols TAG 56:9 TAG 14:0_20:3_22:6 1921.96 
899.8900 Triradylglycerols Triacylglycerols TAG 56:9 TAG 18:2_18:2_20:5 191.04 
927.9680 Triradylglycerols Triacylglycerols TAG 57:2 TAG 19:0_19:1_19:1 646.69 
925.9510 Triradylglycerols Triacylglycerols TAG 57:3 TAG 19:1_19:1_19:1 805.73 
915.8710 Triradylglycerols Triacylglycerols TAG 57:8 TAG 17:0_18:2_22:6 1823.90 
931.0400 Triradylglycerols Triacylglycerols TAG 58:10 TAG 20:4_18:2_20:4 219.57 
931.9640 Triradylglycerols Triacylglycerols TAG 58:7 TAG 16:0_20:2_22:5 3487.92 
931.9640 Triradylglycerols Triacylglycerols TAG 58:7 TAG 18:0_18:1_22:6 22840.06 
931.9630 Triradylglycerols Triacylglycerols TAG 58:7 TAG 18:0_20:3_20:4 10322.04 
931.9640 Triradylglycerols Triacylglycerols TAG 58:7 TAG 18:1_20:1_20:5 17552.39 
931.9650 Triradylglycerols Triacylglycerols TAG 58:7 TAG 18:1_20:2_20:4 24869.52 
931.9640 Triradylglycerols Triacylglycerols TAG 58:7 TAG 18:1_20:3_20:3 28459.92 
927.9320 Triradylglycerols Triacylglycerols TAG 58:9 TAG 16:0_20:5_22:4 31438.99 
927.9320 Triradylglycerols Triacylglycerols TAG 58:9 TAG 18:1_18:4_22:4 183.22 
927.9310 Triradylglycerols Triacylglycerols TAG 58:9 TAG 18:1_20:3_20:5 13952.62 

 
 
 


