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Abstract

Runtime Verification (RV) is the formal analysis of the execution of a system against some
properties at runtime. RV is particularly useful for stochastic systems that have a non-zero
probability of failure at runtime. The standard RV assumes constructing a monitor that
checks only the currently observed execution of the system against the given properties.

This dissertation proposes a framework for predictive RV, where the monitor instead
checks the current execution with its finite extensions against some property. The exten-
sions are generated using a prediction model, that is built based on execution samples
randomly generated from the system. The thesis statement is that predictive RV for
stochastic systems is feasible, effective, and useful.

The feasibility is demonstrated by providing a framework, called Prevent , that builds a
predictive monitor by using trained prediction models to finitely extend an execution path,
and computing the probabilities of the extensions that satisfy or violate the given property.
The prediction model is trained using statistical learning techniques from independent and
identically distributed samples of system executions. The prediction is the result of a
quantitative bounded reachability analysis on the product of the prediction model and the
automaton specifying the property. The analysis results are computed offline and stored in
a lookup table. At runtime the monitor obtains the state of the system on the prediction
model based on the observed execution, directly or by approximation, and uses the lookup
table to retrieve the computed probability that the system at the current state will satisfy
or violate the given property within some finite number of steps.

The effectiveness of Prevent is shown by applying abstraction when constructing the
prediction model. The abstraction is on the observation space based on extracting the
symmetry relation between symbols that have similar probabilities to satisfy a property.
The abstraction may introduce nondeterminism in the final model, which is handled by
using a hidden state variable when building the prediction model. We also demonstrate
that, under the convergence conditions of the learning algorithms, the prediction results
from the abstract models are the same as the concrete models.

Finally, the usefulness of Prevent is indicated in real-world applications by showing
how it can be applied for predicting rare properties, properties with very low but non-zero
probability of satisfaction. More specifically, we adjust the training algorithm that uses
the samples generated by importance sampling to generate the prediction models for rare
properties without increasing the number of samples and without having a negative impact
on the prediction accuracy.
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Chapter 1

Introduction

The prevalence of digital computing in every aspect of life is undeniable. From cell phones
to cloud-based services, computing systems are becoming ubiquitous in various forms in-
cluding Cyber-Physical Systems (CPSs). CPSs are used in the applications that require
a high level of reliability (e.g., aerospace, automative, and healthcare). Due to the inter-
twined nature of software, hardware, and the physical components in such systems, they
exhibit complex and distinctive modalities at runtime.

With an exponentially increasing complexity of computing systems, achieving such re-
liability, particularly in safety- and mission-critical systems, is difficult. A miscalibrated
sensor input to the system may result in software to lead an airplane to nose-dive and
crash [125]. An overflow can cause the software to never issue a required command to
activate a hardware module to operate an actuator, and lead an entire project to a disas-
ter [17].

Testing [88] is perhaps the most accessible method to verify the behaviour of a system,
where the inputs and the desired outputs are provided and checked against the generated
outputs. The coverage of testing depends on the inputs and how much they cover the state
space of the system. For a system with limited information about its internal mechanism,
i.e., gray- or black-box systems, the coverage of testing is difficult to be measured, which
makes it an incomplete approach to verify such systems.

Model checking [8] provides an exhaustive verification of a mathematical model of the
system, typically in the form of a finite transition machine. Model checking provides
a higher level of guarantee when verifying a system; however, it suffers from the state-
explosion problem, where the number of states in the model becomes so large that the
state space can not be stored in the memory or effectively explored. Further, in many
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cases, a model of the system that represents all possible states of the system is infeasible
to achieve.

Runtime Verification (RV) [75] is proposed as a middle ground that compromises be-
tween the practicality of testing and the thoroughness of model checking. RV is the study
and analysis of the execution artifacts of software [77], where instead of the entire model
of the system, only the current execution is verified at runtime against some properties.
RV has been applied in a variety of systems, from CPSs [84] to biological systems [33].

Amongst all, RV [75] has become a particularly important element in monitoring and
analysing stochastic systems [77, 117], where they represent a wide range of systems with
randomness involved in one or more of their constituent components. Although the more
anticipated failures are detected using design-time verification techniques (e.g., model
checking); in practice there is almost surely a non-zero probability of failure at runtime.

In RV, a monitor checks the execution against a given property and produces a verdict
at runtime. The execution is considered the finite prefix of an infinite execution path. The
given property, typically expressed in Linear Temporal Logic (LTL) [97], represents a set of
acceptable infinite paths. If all the infinite extensions of the prefix belong (do not belong)
to the set of acceptable infinite paths, i.e., they satisfy the property, the monitor accepts
(respectively rejects) the prefix. However, if the monitor is not able to reach a verdict with
the given prefix because it can be extended to both infinite paths that satisfy and violate
the property, the monitor outputs unknown [13].

As an example consider the property eventually an error occurs (always there is no
error), captured in LTL with ♦e (respectively �¬e). This property is satisfied (respectively
not satisfied) on any infinite paths with the prefix u1 = ¬e¬ee, in which case the monitor
outputs satisfied (respectively violated). On the other hand, the prefix u2 = ¬e¬e can be
extended to both a path that satisfies the formula (e.g., any extension of u1) and a path
that violates it (e.g., (¬e)ω), in which case the monitor outputs unknown.

The challenge of inconclusive results to evaluate LTL properties over finite paths is
initially discussed in [79], and several suggestions based on modifying the semantics of
LTL are proposed, such as FLTL [79], LTL∓ [41], LTL3 [12], RV-LTL (LTL4) [14], and
RV∞-LTL [86]. In all of the aforementioned semantics, the evaluation of the LTL property
is assumed to be happening only on the current execution (the finite prefix). In [135] the
authors introduce a predictive semantics definition based on LTL3 such that, besides the
current execution u, a finite suffix v is predicted from the program’s Control Flow Graph
(CFG), and the evaluation occurs on the path uv.

In this dissertation, we propose a predictive runtime verification framework, called
Prevent , in which the monitor calculates the probability of all the finite extensions of the
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prefix, i.e., the current execution, that satisfy or violate a monitorable property using a
prediction model. A property is non-monitorable [43] if and only if the monitor always
produces unknown regardless of the prefix. Therefore, if the property is monitorable, the
monitor is able to reach a verdict with a finite extension of the prefix. In our framework the
LTL semantics does not change, and the prediction model is built from independent and
identically distributed (iid) samples of executions of the system using statistical learning
methods, which makes Prevent more suitable for black- or gray-box systems.

In contrast to the traditional RV frameworks where only the violations are detected at
the time of occurrence, in our proposed framework, the violation of a property is predicted
in advance, hence, there is a wider range of actions to be taken to correct the behavior
of the system. Although, devising and taking a corrective action is not in the scope of
this thesis, in the next section we roughly explain how Prevent can be used in a scenario
adopted from real-world to avoid a failure and increase the reliability of a CPS.

1.1 Motivating Example

In October 2018 and March 2019 two Boeing 737 MAX airplanes crashed shortly after
departure [125]. Further analysis revealed a series of design decisions that led the airplanes
into those fatal incidents. One key issue was within the Maneuvering Characteristics
Augmentation System (MCAS), a control system developed to compensate for the risk
of stalling due to the larger engines used in this model. The MCAS task is to read the
direction of the nose measured by a sensor, and change the tail flaps accordingly to adjust
the nose and prevent the airplane from stalling (see Figure 1.1).

One of the factors that played a key role in causing the crashes was that the MCAS upon
receiving wrong data from a faulty sensor kept issuing the commands to change the tail
flaps and led the airplane into a nose-diving situation. Since the MCAS was implemented
in the flight management system its commands could not be overridden by the pilot, which
made the situation worse. This is a perfect example of how even a highly reliable system
can still malfunction due to incorrect inputs (in this case due to a faulty sensor).

Although the cause of the crashes was multi-factor and complicated; there are vari-
ous proposals to resolve it [124, 3]; incorporating a runtime monitoring framework with
predictive capacity might reduce the risk of such disasters. Notice that such a runtime
monitoring system verifies the behaviour of a controller (e.g., an MCAS), which demon-
strably is a crucial difference between our approach, a verification mechanism, and other
seemingly similar approaches such as Model Predictive Control [103], a controlling mecha-
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Figure 1.1: The MCAS mechanism to prevent the airplane from stalling.

nism. In other words, our framework is a verification layer that can be inserted on top of
any controller to cross-check its outputs at runtime based on some specification properties.

As an example, a predictive monitor for MCAS can be implemented to observe three
indicators and decides if the controller’s output is going to deviate from the desired be-
haviour. If a deviation is deemed to be likely, a corrective action can be taken. For instance,
we can simply disengage the MCAS and alert the pilots so that they can take over the
control of the tail flaps.

The monitor can combine the data from other sensors (by means of sensor fusion [47, 3]),
and measure the change of the altitude or the vertical speed to determine if the vertical
fluctuations of the airplane are within a safe envelope. In addition, the monitor is able to
observe the output commands of the MCAS and predicts if the sequence of the commands
issued by the system is likely to lead the airplane into a dangerous nose-dive situation, by
checking the execution of the MCAS against the following property:

�¬(α < threshold ∧ down) (1.1)

where α is the angle of the airflow over the wings, so-called Angle-of-Attack, which
is obtained from various sensors, threshold indicates the threshold for which the nose is
allowed to be negative (down) and the plane is not considered in a risky position, and
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down is the command issued by MCAS to drive the nose down. Property (1.1) is a safety
property. We can similarly develop a guarantee property that specifies that the MCAS will
eventually drive the airplane in a level flight and prevents the plane from stalling.

In this thesis we introduce Prevent , a framework in which a predictive monitor is
constructed for each property such that the monitor is able to predict if the sequence of
the output commands by a system such as the MCAS is going to lead to the violation of
a safety or the satisfaction of a guarantee property. Using the result of the prediction the
monitoring system can detect a hazardous situation and issue a corrective action based
on the severity of the risk. In our example, the corrective action is simply disengaging
the MCAS and alerting the pilots, but a more sophisticated adaptive system could be
implemented in the case of an likely crash or stalling. The mechanism to use the prediction
results for devising and taking the corrective actions is beyond the scope of this dissertation.

1.2 Related Work

In this section we provide the related work to the prediction runtime verification in gen-
eral, and leave the specific research related to each part of the framework to the chapter
dedicated to it.

With a growing interest in RV, assorted tools such as JPAX [50], MOP [26], Java-
MaC [66], Copilot [95], are developed to apply RV within various industrial applications.
These tools, however, focus more on verifying non-probabilistic properties on non-stochastic
systems. Consequently, the output of the monitor is a discrete value (typically from some
Boolean lattice) that shows given the current execution if the property is satisfied or not.

Modifications to such tools such as [109, 110, 129], or brand-new tools such as Eagle [10],
Temporal Rover [37], ProMon [46, 136] propose RV tools that allow for a probabilistic
system to be verified against probabilistic properties. The interpretation of the probability
varies in the literature. In [129], for instance, using a probabilistic model with hidden
states (similar to a prediction model in Prevent) is justified by the presence of faults and
degrading hardware. Prevent uses the probabilistic models for prediction on the stochastic
black- or gray-box systems, which is not offered in any of these works.

A few predictive RV methods are proposed for white-box systems [133, 135, 74] using the
Control Flow Graph (CFG) of a program to generate the extensions of an execution. While
some of the ideas in these approaches can be also applied to our framework, for example,
using event-triggered monitors or considering only the calculations of local variables in each
method call [135]; Prevent is specifically developed for black- and gray-box systems, where
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the future behaviour of the system must be approximated by only observing the sampled
executions. Also, even for a white-box system, although using CFG provides additional
information for the monitor at runtime and potentially makes its prediction more accurate;
the analysis of the CFG involves graph analysis algorithms which impose space and time
overhead at runtime and are not practically useful for embedded systems [133]. A key
insight in the development of Prevent is to minimize the time and space overhead of the
monitor at runtime.

Srinivas Pinisetty et al. [96] propose a predictive RV approach that fits the black- or
gray-box system better: a prior knowledge of the system is provided in the form of a
timed property, which the monitor uses to predict the satisfaction or violation of a timed
property, and the minimum time instant that it will happen. The prior knowledge in
Prevent is obtained by training a prediction model from the execution samples, which can
also be used to extract timed properties that specify the behaviour of the system [30, 5].

RV with state estimation (RVSE) [120] uses an HMM to fill the gaps that are caused
by an imperfect sampling in the traces. The gaps are added to the traces during instru-
mentation of the program, and with a distribution on the length of the gap, RVSE gives
an estimation of how probable an LTL property is satisfied over the incomplete trace. The
idea of incomplete or noisy traces is orthogonal to the idea of Prevent ; however, the as-
sumption in the current thesis is that the sampling is perfect, i.e., there is no data loss or
noise in the collected training samples.

To the best of our knowledge, prediction of the future behaviour of a stochastic sys-
tem and verifying a property with respect to the execution extensions at runtime is not
explored in any of the discussed works. More specifically, the main novelty of this thesis
is the development of a predictive runtime verification framework for a black- or gray-box
stochastic system, which is based on predicting the extensions of an execution path using
a trained prediction model.

1.3 Formulating the Research Problems

In building the predictive runtime verification framework, we address three research prob-
lems:

6



1.3.1 Predictive Monitor

Probabilistic language of finite strings is used to model the executions of a stochastic
system. More specifically, the probabilistic language model is a probability space over all
the finite executions and the probability measure function that maps each execution to
its probability. The probabilistic language model is used by the monitor as the prediction
model to extend the execution paths at runtime.

Within the context of black- or gray-box systems, the probabilistic language model is
not available. The first research problem that is addressed in this dissertation is how to
construct a monitor that uses the trained model to predict the satisfaction or violation of
a monitorable property.

The predictive monitor is constructed with two key insights that are important to
consider for systems with limited resources at runtime: (1) the overhead of the prediction
must be as low as possible at runtime, (2) using the prediction model should not have a
significant impact on the size of the monitor. Since the monitor construction occurs offline,
the cost of construction itself is not crucial.

Addressing these two challenges leads us to the second research problem.

1.3.2 The Size of the Prediction Model

Both the time and space overhead of the monitor relies on the size of the prediction model.

Monitor construction in Prevent specifically relies on building a lookup table that con-
tains the probability of satisfying or violating a property from each state of the prediction
model. Hence, the size of the table is directly determined by the size of the prediction
model, which needs to be stored with the monitor, which in turn, directly impacts the
space usage of the monitor.

The state of the system is determined at runtime by estimating the state of the pre-
diction model. The state estimation techniques at best have a linear complexity in the
number of the states. Hence, having a smaller prediction model decreases the execution
time of the state estimation, and consequently, the runtime overhead of the monitor.

Reducing the size of the prediction model should not significantly affect the accuracy
of the predictions. Therefore, the second research question is how to obtain a small pre-
diction model, i.e., with fewer states, from a set of execution samples without significantly
compromising the prediction accuracy.
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1.3.3 Predicting Rare-Events

Given that real-world software systems are thoroughly verified at design-time, the proper-
ties that are checked at runtime have very low probability of violation, what we call rare
properties. Training the prediction models for rare properties requires a large number of
samples. In the context of machine learning, the size of training sample to successfully
train a target model is referred to as the sample complexity [108]. Having a large sam-
ple complexity leads to a slow training process and an excessive memory usage, which is
impractical to handle during training a model.

Therefore, in the third research problem we address how to build a prediction model for
rare properties without increasing the sample complexity.

1.4 Summary of Contributions

The current dissertation makes the following contributions in an attempt to address each
research question raised in Section 1.3.

1.4.1 Constructing Predictive Monitor using Statistical Learning

First, we formulate the notion of predictability of an LTL property within the context of
stochastic systems, and generalize some related theories in the literature to discuss the
theoretical limits of predictive monitoring. The remainder of the dissertation assumes that
these limits hold.

Second, we use statistical learning methods to construct a prediction model from the
execution samples. My focus here is only on Markovian models, with a discussion on
the convergence of the learning algorithms in the limit, i.e., with large enough number of
samples.

Third, we show how to use the prediction model to construct a predictive monitor
that extracts the probability of the extensions that satisfy or violate a given specification
property. Depending on the property, the predicted extensions may specify the prefixes that
satisfy the property (good extensions) or violate it (bad extensions). Since the property
is assumed to be monitorable [43], only the finite extensions of the execution path are
considered. In addition, the length of the finite extensions is bounded with a maximum
length, which demonstrates the horizon of the prediction.
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Finally, we discuss the monitoring process given the prediction model, the state esti-
mation algorithms, and two approaches to evaluate the prediction of a monitor: one with
knowing the true model of the system, and the other without any knowledge about the
system and just via hypothesis testing. we show the feasibility of Prevent on two case
studies.

1.4.2 Trace-Level Abstraction

To reduce the size of the prediction model, we define a trace-level abstraction using projec-
tion. The projection relation maps symmetrical symbols with respect to the probability of
satisfying a given property to a single symbol, and thus reducing the size of the observation
space.

We apply the k-gapped pair model and hypothesis testing to infer the symmetry relation
in the observation space. The prediction model is then trained on the abstract traces, that
contain fewer symbols, and hopefully has a smaller size.

The prediction model trained from abstract traces, called an abstract model, can be
deterministic or nondeterministic depending on the abstraction. If the abstract model is
deterministic that means that the state of the model can be exactly determined by just
using the observation. In this case, we show that in the limit the prediction by the abstract
model is identical to the prediction by the concrete model. If the model is nondeterministic,
i.e., the system could be at more than one states, we resolve the nondeterminism by using
a hidden state variable during the training, which also in the limit converges to the actual
model and produces the same prediction results. Training the nondeterministic models
takes the number of hidden states as an input, which can be chosen in a way that reduces the
size of the prediction model without significantly impacting the accuracy of the predictions.

We show the effectiveness of Prevent on a stochastic distributed system in which the
size of the prediction model is reduced without any impact on the prediction accuracy.

1.4.3 Training with Importance Sampling

We use the samples generated by Importance Sampling (IS) to train the prediction model
for a rare property, i.e., a property with very low satisfaction or violation probability. The
samples generated using IS are not necessarily iid but follow a distribution that increases
the likelihood of the events that satisfy or violate a property, hence, requires fewer samples
compared to the original distribution.
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Since the distribution of the samples obtained from the IS is skewed, the training al-
gorithm needs to be modified so that the final probabilities reflect the actual probability
distributions. We achieve this goal by introducing a weight for each sample that is cal-
culated based on the likelihood ratio of the original probability distribution and the IS
distribution.

The usefulness of Prevent is demonstrated through a series of experiments, in which we
show how training with IS reduces the sample complexity of training a prediction model
for a rare property.

1.4.4 Thesis Statement

In summary, in this dissertation we provide evidence for the following statement:

Thesis. Predictive runtime verification of a stochastic system with respect to a monitorable
property is feasible, effective, and useful.

1.5 Overview of the Dissertation

The remaining of this dissertation is organized as follows. Chapter 2 provides the necessary
definitions and notations that are used throughout the dissertation. Chapter 3 defines the
notion of predictability, predictive monitoring, and the theoretical circumstances under
which predictive monitoring is possible. Then the formal definition of the two types of
Markovian models, the Discrete-Time Markov Chain (DTMC) and the Hidden Markov
Model (HMM) used as prediction models, are provided. The remainder of the chapter lays
out a schematic description of the framework architecture and its building blocks, each
of which is fully described in the subsequent chapters. We conclude the chapter with a
running example that is used in all the following chapters, and reviewing the related work
to predictive RV.

Chapters 4, 5 and 6 are each dedicated to one of the claims in the thesis.

Chapter 4 supports the feasibility claim by explaining the learning techniques to con-
struct a prediction model. The prediction is described as a quantitative bounded reacha-
bility analysis, and how the results are used to construct a monitor as a lookup table. The
runtime verification process, which involves state estimation and retrieving the prediction
probability from the lookup table, is then discussed, and at the end a measure to evaluate
the prediction accuracy is defined with some experimental results.
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Chapter 5 establishes the effectiveness claim by introducing the trace-level abstraction
and its inference using k-gapped pair model. Statistical t-test is used to extract the symbols
that have the same prediction power, and HMMs are applied to handle the nondeterminism
introduced by the abstraction. The inferred abstraction is then used to generate abstract
traces that are used to construct an abstract prediction model.

Chapter 6 provides support for the usefulness claim by applying importance sampling to
generate more samples for a rare property. A modification of the state-merging algorithm
used to train a DTMC is introduced to compensate for the perturbation of the sample
distribution generated by IS. A comparison between the results of IS samples and simple
Monte-Carlo is also provided in the experiments.

At the end, Chapter 7 summarizes the dissertation with some future directions.

Notice that for clarity purposes, the related work is provided within each chapter, as
the context of each chapter is widely different from that of the other ones.
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Chapter 2

Preliminaries

In this chapter, we briefly introduce definitions and notations that are necessary for the
following chapters in the dissertation.

A probability distribution over a finite set S is a function Pr : S → [0, 1] such that∑
s∈S Pr(s) = 1. We use u and w to denote a finite and an infinite sequence, respec-

tively. The ith element in the sequence w is shown as w(i). We use u(1:n) to abbreviate
u(1)u(2) . . . u(n). The set of all the finite and infinite paths over the alphabet Σ is shown as
Σ∗ and Σω, respectively (Σ+ = Σ∗ · Σ). Notice that we use the terms sequence and path
interchangeably.

2.1 The Syntax and Semantics of LTL

Linear Temporal Logic (LTL) [97] is used to specify properties with modalities referring to
linear time. Definition 1 describes the syntax of LTL:

Definition 1 (The Syntax of LTL [79]). The set of LTL formulas, shown by LTL, over a
finite set of atomic propositions denoted by Σ is defined by the following grammar:

ϕ = Σ | ¬ϕ |ϕ ∨ ϕ |Xϕ |ϕ U ϕ

In addition, we use ϕ ∧ ψ, ♦ϕ, �ϕ, and ϕ → ψ as abbreviations for, ¬(¬ϕ ∨ ¬ψ),
true U ϕ, ¬♦¬ϕ, and ¬ϕ ∨ ψ, respectively.

The semantics of LTL over infinite paths is defined as follows:

12



Definition 2 (The Semantics of LTL [79]). Let w be an infinite path in Σω for a given set
of atomic propositions, Σ. The semantics of an LTL formula is given by the function [
|= ] : Σω × LTL→ B2 = {>,⊥} as follows:

[w |= p] =

{
> if p ∈ w(1)

⊥ else
p ∈ Σ

[w |= ¬ϕ] = [w |= ϕ]

[w |= ϕ ∧ ψ] = [w |= ϕ] and [w |= ψ]

[w |= ϕ ∨ ψ] = [w |= ϕ] or [w |= ψ]

[w |= Xϕ] = [w(2) |= ϕ]

[w |= ϕ U ψ] = ∃t ≥ 1, [w(t) |= ψ], and, ∀1 ≤ t′ < t, [w(t′) |= ϕ]

We use Lϕ = {w ∈ Σω : [w |= ϕ] = >} to denote the set of strings that satisfy ϕ
according to the LTL semantics in Definition 2.

As an example, with Σ = {r, s, t} the evaluations of r ∨ X t and � t are both > on
w = (t, t . . . ); whereas ♦ s is not satisfied on w, i.e., [w |= ♦ s] = ⊥.

2.2 Monitorability

We use the notions introduced in [15] to define monitorability.

Definition 3 (Good, Bad, and Ugly Prefixes [13]). Let ϕ be an LTL property. A finite
prefix u ∈ Σ∗ is defined a good (bad) prefix w.r.t. ϕ iff ∀w ∈ Σω, uw |= ϕ = > (⊥
respectively). A prefix that is neither bad or good is ugly.

Using the notion of an ugly prefix we define the notion of monitorability:

Definition 4 (Monitorability [15]). An LTL property ϕ is defined to be monitorable iff
∀u ∈ Σ∗, u is not an ugly prefix for ϕ.

Checking the monitorability of a property is EXPSPACE [91]. Nevertheless, it is known
that guarantee and safety properties are monitorable [44]. A guarantee (safety) property is
always accepted (respectively, refuted) by a good (respectively, bad) prefix [15]. Throughout
this dissertation we consider only guarantee and safety LTL properties.

We use a Deterministic-Finite Automata (DFA) to specify the prefixes that specify the
pattern of guarantee and safety properties [44].
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Definition 5 (DFA). A Deterministic Finite Automaton (DFA) is a tuple A : (Q,Σ,
δ, qI , F ), where Q is a set of finite states, Σ is a finite alphabet, δ : Q × Σ → Q is a
transition function determining the next state for a given state and symbol in the alphabet,
qI ∈ Q is the initial state, and F ⊆ Q is the set of final states.

We use LA ⊆ Σ∗ to denote the set of all the finite sequences accepted by the DFA
A. In the remainder of this work we refer to the specification as an LTL property or
a DFA, interchangeably. Notice that there are safety or guarantee properties that are
not recognizable by a DFA, the so-called non-regular properties [8] (e.g., require a push-
down automaton to specify the prefixes), but we do not consider such properties in this
dissertation.

2.3 Stochastic System

A stochastic system is defined by the notion of probabilistic languages, where there is a
set of sequences and a probability associated with each sequence.

Definition 6 (Stochastic System). A stochastic system S is defined as the tuple (L,F ,P),
which represents a probabilistic space on the set of sequences, such that L ⊆ Σ∗ ∪ Σω (Σ
is the output alphabet), F ⊆ 2L is a σ−algebra, and P : F → [0, 1] ∈ R is a probability
measure.

We assume that P is computable. We also use the symbol S to denote the set of all
the stochastic systems.

The sequence w(1)w(2) . . . is an execution path of the stochastic system S iff P(w(1)w(2)

. . . ) > 0. An execution path at runtime is a prefix, i.e., a finite sequence, of a possibly
infinite path. We denote by Pathk(o) the set of all finite execution paths of length k that
start with the symbol o. The set of all the finite execution paths of the system S of an
arbitrary length is denoted by Path(S).
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Chapter 3

An Overview of Predictive Runtime
Verification

In this chapter we formally define the notion of predictability and the conditions under
which we consider a system predictable (Section 3.1). We also formally state the notion
of a predictive monitor given that the system is predictable (Section 3.2), and define the
Markovian models that are used as the prediction models (Section 3.3). We then propose
a framework, called Prevent , that realizes the notion of predictive monitoring, and briefly
describe its components (Section 3.4). At the end, we present the running example, that
is used in the subsequent chapters (Section 3.5), and the literature review (Section 3.6).

3.1 Predictability

In this section, we formalize the notion of predictability. We first define the finite extension
of a path that needs to be predicted.

Definition 7 (Finite Extensions of a Path). Let u = u(1..n) be a finite execution path of
a stochastic system. The set of finite extensions of u is denoted by Extu and defined as
follows:

Extu = {u ∈ Pathk(u(n))|k ≥ 0}

We use the notation Ext≤hu , if k ≤ h in Definition 7.

In predictive runtime verification, we extend the notions of a good, bad, and ugly prefix
(Definition 8) to the extensions of a prefix.
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Definition 8 (Good, Bad, and Ugly Extensions). Let ϕ be an LTL property, and v ∈ Extu
be an extension to the finite path u ∈ Σ∗. Extension v is defined a good (bad) extension of
u w.r.t. ϕ iff ∀w ∈ Σω, uvw |= ϕ = > (⊥ respectively). If v is neither bad nor good, it is
an ugly extension.

Trivially, any extension of a good (bad) prefix is a good (bad respectively) extension.

Lemma 1. Let u be a good (bad) prefix for the LTL property ϕ. Then ∀v ∈ Extu, v is a
good (bad respectively) extension of u w.r.t. ϕ.

To make the prediction, we need to distinguish the good or the bad extensions, and
compute the probability of them.

Definition 9 (Set of Satisfying or Refuting Extensions). We define C(u,ϕ) the set of satis-
fying (refuting) extensions of u w.r.t. the LTL property ϕ, such that ∀v ∈ C(u,ϕ) iff v is a
good (bad, respectively) extension.

In other words, C(u,ϕ) in Definition 9 is strictly the set of all the extensions of u generated

by the system that satisfy (violate) property ϕ. We denote C≤h(u,ϕ) iff the length of the
extensions is bounded by some non-zero positive integer h, i.e., the extensions are selected
from Ext≤hu .

Next we define the notion of predictability.

Definition 10 (Predictability). A stochastic system S is called predictable w.r.t. an LTL
formula ϕ iff ∀u ∈ Path(S), C(u,ϕ) ∈ F exists and is measurable.

Clearly a property that is non-monitorable (Definition 4) is also non-predictable, re-
gardless of the behaviour of the stochastic system.

Lemma 2. A stochastic system S is non-predictable w.r.t. an LTL property if it is non-
monitorable.

Suppose that S is the stochastic system such that F is defined based on the cylinder
sets, the set of sequences that have a common finite prefix [18]. Notice that the cylinder
sets are measurable by defining a probability measure P such that the probability of
each sequence in the set is defined based on the probability of the common prefix. It is
straightforward to demonstrate that any bounded finite extension of an execution path of
S is also measurable.
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Theorem 1. Let S = (L,F ,P) be a stochastic system, where F is defined using some
cylinder sets measurable by P. Then, for any integer h > 0, C≤h(u,ϕ) ∈ F , is also measurable
by P.

Proof. The proof directly follows from the fact that C≤h(u,ϕ) is a finite set, hence, its measure
can be simply defined using the measures of the cylinder sets that comprise the finite
sequences in C≤h(u,ϕ).

If a stochastic system S is representable by a probabilistic finite-state machine, we can
show that it is predictable with respect to any guarantee or safety properties.

Theorem 2. Let S = (L,F ,P) be a stochastic system, that can be represented by a
probabilistic finite-state machine, and ϕ be a guarantee or safety property. Then S is
predictable with respect to ϕ.

Proof. It suffices to find an integer h > 0 such that C≤h(u,ϕ) ∈ F (Theorem 1). Since S is a
finite-state machine, h exists and is bounded to the number of states.

Notice that according to the non-universality problem of probabilistic finite state au-
tomata determining that a stochastic system S is predictable with respect to an LTL
formula in general is undecidable [117].

In the remainder of the dissertation we consider predicting guarantee and safety proper-
ties, which are monitorable, and use probabilistic finite-state machines to model stochastic
systems, thus, holding the predictability conditions.

3.2 Predictive Monitoring

In this work, we realize predictive runtime verification through constructing a predictive
monitor. Given that the system is predictable, we define the output of a predictive monitor
to be a real value in [0, 1] that demonstrates the probability of C≤h(u,ϕ), i.e., the set of satisfying
or refuting extensions of u, and of length at most h, with respect to the guarantee or safety
property ϕ.

Definition 11 (Predictive Monitor). Let u ∈ Σ∗ be an execution path of a predictable
stochastic system S w.r.t. ϕ, a guarantee or safety LTL formula. A predictive monitor is
a function PM( , , ): Σ∗ × S× LTL→ [0, 1]:

PM(u,S, ϕ) = P(C(u,ϕ)) (3.1)
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As an example, consider the following stochastic language models for the executions
of three hypothetical stochastic systems: S1 = (Σ∗, {Σ+}, 2−|u|), S2 = (Σ∗, {p+}, 2−|u|),
S3 = (Σ∗, {pq+}, 2−|u|), where, Σ = {p, q}; {Σ+}, {p+}, {pq+} are the trivial partition of
Σ+, p+, and pq+, respectively; and |u| is the length of the string u in each partition.
Suppose ϕ1 = ♦q, and that the system has generated u1 = (p). According to Definition 11,
the output of the predictive monitor for ϕ1 on u1 using S1,S2,S3 as prediction models are
1/2 + 1/4 + · · · = 1, 0 and 1/4 + 1/8 + · · · = 1/2, respectively.

For a probabilistic finite-state machine, (3.1) is defined over bounded finite extensions
(see Theorem 2). In practice, however, this upper bound is unknown, e.g., for a black-box
system, and needs to be provided as an input by the engineer. Therefore, the predictive
monitor takes an extra input, an integer h > 0, we call the prediction horizon, and, (3.1)
changes to PM(u,S, ϕ, h) = P(C≤h(u,ϕ)).

3.3 Prediction Model

The full model of the stochastic system within the context of RV is often unknown. How-
ever, we typically are able to collect execution traces from the system. As a result, we
can generate an arbitrary number of execution samples and build a prediction model that
describes the behaviour of the system precise enough for prediction purposes.

The prediction models in the current dissertation are finite probabilistic state machines,
represented as Markovian models. We assume that the state space is not directly observ-
able, but an execution path consists of the symbols from a known finite alphabet, we call
the observation space. We also assume that the observation space is known and is some-
how related to the state space. We focus on two specific models that represent the relation
between the state space and the observation space in two distinct ways: Discrete-Time
Markov Chain (DTMC) and Hidden Markov Model (HMM).

3.3.1 Discrete-Time Markov Chain

A DTMC is a simple probabilistic finite-state transition system that describes a wide range
of systems. The observation space in a DTMC is related to the state space via a function.

Definition 12 (DTMC). A Discrete-Time Markov Chain (DTMC) is a tupleM = (S,Σ, π,
P, L), where S is a non-empty finite set of states, Σ is a non-empty finite alphabet,
π : S → [0, 1] is the initial probability distribution over S, P : S × S → [0, 1] is the
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transition probability, such that for any s ∈ S, P (s, ·) is a probability distribution, and
L : S → Σ is the labelling function.

We denote [s |= ϕ] = > (= ⊥) for some s ∈ S and LTL property ϕ iff u =
u(0)u(1) · · ·u(n) ∈ Lϕ (respectively /∈ Lϕ) for some n > 0 such that L(s) = u(0). Notice
that the property is defined on the observation space, i.e., Σ, not the state space. We use
Pathk(u

(i)) to denote the execution paths of length k that start with u(i).

Given a DTMC, the sequence of states are derivable from the execution path, i.e., the
sequence of labels, if the DTMC is deterministic. A deterministic DTMC is a DTMC that
can be in at most one state after an observation sequence u.

Definition 13 (Deterministic DTMC [80]). A DTMC is deterministic iff:

• There exists sinit ∈ S such that π(sinit) = 1.

• For all s ∈ S and σ ∈ Σ, there exists at most one s′ ∈ S such that P(s, s′) > 0 and
L(s′) = σ.

Therefore, a deterministic DTMC requires no state estimation, as the state is deter-
mined by the observation path u.

3.3.2 Hidden Markov Model

HMMs are similar to DTMCs except they enable us to model nondeterminism (See Chap-
ter 5) by relating the observation space to the state space via a probability distribution
(Definition 14). More particularly, an HMM describes the distribution of a sequence as the
joint distribution of two random variables: the hidden state variable X and the observation
variable Y . The joint distribution is such that Pr(Y (i) = o | X(1:i), Y (1:i)) = Pr(Y (i) =
o | X(i) = s) for i ∈ [1, n], i.e., the probability of the current observation o is conditioned
only on the current state s, and Pr(X(i) = s | X(1:i−1), Y (1:i−1)) = Pr(X(i) = s | X(i−1))
for i ∈ [1, n] i.e., the probability of the current state s is only conditioned on the previous
hidden state. We use π to denote the initial probability distribution over the state space,
i.e., Pr(X(1)) = π(X(1)). As a result, an HMM can be defined with three distributions:

Definition 14. A finite discrete Hidden Markov Model (HMM) is a tupleH : (S,Σ, π, T,O),
where S is the non-empty finite set of states, Σ is the non-empty finite set of observations,
π : S → [0, 1] is the initial probability distribution over S, T : S × S → [0, 1] is the transi-
tion probability, and O : S ×Σ→ [0, 1] is the observation probability. We use Θ to denote
(π, T,O).
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Figure 3.1: Overview of predictive RV with abstraction.

Similar to a DTMC we use Pathk(o) to denote the execution paths of length k that
start with the symbol o. The corresponding state sequence to an execution path needs to
be estimated in an HMM.

3.4 The Prevent Framework

In this section we provide the details of the generic framework for predictive runtime
verification, called Prevent . The goal of Prevent is to construct a predictive monitor
according to the Definition 11 for a discrete-time black- or gray-box stochastic system,
where only the observation space is known. The framework is implemented and is available
online1, with part of the code displayed in Appendix B. An overview of Prevent is depicted
in Figure 3.1.

Prevent takes the following inputs:

Inputs.

• Samples: Sample execution paths are collected from the system for learning purposes.
We assume that the samples are independent and identically distributed unless im-
portance sampling is used for rare properties. The length of the samples are drawn

1https://bitbucket.org/rbabaeecar/prevent/
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from a geometric distribution with parameter λ > 0 [81]. We also assume that the
number and the maximum length of the samples are set so that the state space is
sufficiently covered, hence can represent the stochastic system S.

• Specification ϕ: The specification is a guarantee or safety LTL property, where the
satisfying or violating prefixes are specifiable by a DFA. In the remainder of the
dissertation we suppose that the LTL property is converted to the corresponding
DFA, for which the details are not discussed but can be found at [15].

• Prediction Horizon h: The length of the finite extensions predicted in Prevent is
limited by an upper bound given as a non-zero positive integer value h, which we
call the prediction horizon. Having this upper bound gives the user the flexibility to
predict satisfaction or violation of a property within a certain number of steps, and
avoid obtaining the vacuous value 1 in an unbounded case (e.g., some failure with
non-zero probability will eventually happen).

• Current Execution Path u: At runtime, the monitor receives the current execution
path u generated by the system. The path u is assumed to be a prefix of an infinite
execution path, and is used by the monitor to estimate the state of the system and
consequently calculate the probability of the satisfaction or the violation of the given
specification at runtime.

The output of Prevent is as follows:

Output. As formulated in Definition 11, the output of the monitor is the probability of
the extensions that satisfy a guarantee property or violate a safety property. Under the
condition of the convergence of the learning algorithm computing this probability using
the trained prediction model gives the same result as the actual model.

Prevent comprises the following components:

Learning. Constructing the prediction model is performed via statistical learning from
iid samples. Under the assumption that the learned model converges to the actual model
in the limit, the output of a predictive monitor, i.e., (3.1) using the learned model is
equivalent to that of a predictive monitor using the actual model. We show that in the
case of a DTMC, the state-merging algorithms, such as Alergia [34, 80], suffice to produce
a prediction model that in the limit is as accurate as the actual model. In the case where
there is nondeterminism (for example due to abstraction), an HMM is trained from the
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samples, using the Baum-Welch algorithm [101], which is a form of the Expectation-
Maximization (EM) algorithm, and provides an approximation to find the parameters of
the HMM that maximizes the likelihood of the training data.

Reachability Analysis & Monitor Construction. The monitor is the result of a
quantitative bounded reachability analysis on the product of the prediction model and the
specification. We use Prism [90] to compute the probability results of the quantitative
bounded reachability analysis. The monitor is constructed as a lookup table, where each
entry is a combination of three elements: an integer variable t, a state of the prediction
model, and the probability that from that state the system reaches the states that satisfy
or violate the given property within t steps. The value of t is bounded by the prediction
horizon h.

State Estimation. Given that the original DTMC is deterministic, the system state
can be determined by the prefix u. However, if the prediction model is nondeterministic,
the state of the system needs to be estimated based on u [120]. Although we use the
Forward-Backward algorithm [101]; any filtering techniques [105] can be exploited to
estimate the state at runtime. If the size of the model is large, approximate techniques
such as the Viterbi algorithm [126, 7] is applied.

The three aforementioned components of Prevent are fully discussed in Chapter 4.

Abstraction. The size of the prediction model significantly impacts both the size and the
performance of the monitor. We employ abstraction to decrease the size of the observation
space by extracting symbols that have similar transient probability [70] to reach the states
that satisfy a reachability property. The abstraction technique is in fact a form of symmetry
reduction [69] on the observation space that is implemented at the trace level [89]. More
specifically, we employ the k-gapped pair model [36] to detect the symbols that have similar
empirical probability to reach the states satisfying the property within k steps. The symbols
that have probability zero are considered irrelevant in the prediction and are lumped
together. Other symbols with non-zero and symmetrical probabilities are lumped into
equivalence partitions over the observation space to create a smaller observation space,
we call the abstract alphabet. The abstract alphabet is then used to convert the traces
of the training set into abstract traces. Training a prediction model from the abstract
traces typically produces a model with smaller size. The abstraction is fully described in
Chapter 5.
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Importance Sampling. The rareness of a given property poses a challenge for statistical
learning in our framework in terms of the number of samples. We use Importance Sampling
(IS)[107, 106] to generate samples that have more instances of the events related to a rare
property. Using IS we train a prediction model for a rare property without having to
increase the number of training samples, where the relationship between the IS and the
original distributions is well defined by the likelihood ratio (LR). We use the LR in the
training algorithm to compensate the distribution of the samples, that are drawn using IS,
and build an accurate prediction model of the rare property with fewer samples. Building
a prediction model from the rare-event samples is explained in Chapter 6.

3.5 Running Example
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Figure 3.2: Simulating
rolling a fair die with flip-
ping a fair coin.

We use the die example of [90] as the running example in the
following chapters. This example demonstrates the simula-
tion of throwing a fair 6-sided die by flipping a fair coin [67].
The model is shown as a DTMC in Figure 3.2 (The Prism
description is provided in Appendix A.1).

Let C be the output of the flipped coin (C ∈ {ii, hh, tt}),
where hh, tt signify head and tail, respectively, and ii is a
special symbol to indicate the initial state of the coin. Also,
let D ∈ {0, . . . , 6} be the output of the simulated die, where
1, . . . , 6 is the simulated output of the die, and 0 shows that
the output of the die is not determined yet and the coin needs
to be flipped again. The coin needs to be flipped at least three
times to simulate observing a number on the die. We define
Σdie = C × D as the observation space, that denotes the
output of the coin and the die in the process.

We consider a guarantee and a safety property (Fig-
ure 3.3). Suppose checking the guarantee property even-
tually the outcome of the die is “6”, at runtime, which
translates to the LTL property ϕF = ♦(D = 6), the DFA
of which is depicted in Figure 3.3a. Any (infinite) execu-
tion paths with the prefix uF = (ii, 0)(tt, 0)(hh, 0)(hh, 6)
satisfies ϕF. However, the result on the prefix u′F =
(ii, 0)(tt, 0)(hh, 0)(tt, 0) is unknown [14], as it can be extended to an infinite path that
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q0 q1

D=6

ΣdieΣdie \{D=6}

(a) The DFA of the property ϕF = ♦(D = 6).

q0 q1

D=1

ΣdieΣdie \{D=1}

(b) The DFA of the property ϕG = �¬(D = 1).

Figure 3.3: The corresponding DFAs of the satisfying or violating extensions for ϕF and
ϕG, respectively.

satisfies ϕF (e.g., (ii, 0)(tt, 0)(hh, 0) (tt, 0)(hh, 0)(hh, 6)ω), or an infinite path that violates
ϕF (e.g., (ii, 0)(tt, 0)(hh, 0)(tt, 0)(tt, 0)(tt, 5)ω).

Similarly consider the safety property always never the outcome of the die is “1”, which
translates to the LTL property ϕG = �¬(D = 1), the DFA of which is depicted in Fig-
ure 3.3b. Any (infinite) execution paths with the prefix uG = (ii, 0)(hh, 0) (tt, 0)(tt, 1)
violates ϕG. However, the result on the prefix u′G = (ii, 0)(hh, 0)(tt, 0)(hh, 0) is un-
known, as it can be extended to an infinite path that satisfies ϕ (e.g., (ii, 0)(hh, 0)(tt, 0)
(hh, 0)(hh, 0)(tt, 3)ω), or an infinite path that violates ϕG (e.g., (ii, 0)(hh, 0)(tt, 0)(hh, 0)
(tt, 0)(tt, 1)ω).

To deal with the inconclusive results due to unknown extensions [13], we provide the
monitor with a prediction model to extend the prefix and generate the results based on the
probability of the extensions that satisfy ϕF and violate ϕG.

3.6 Related Work

In this section we review the work related to the predictive runtime verification framework,
and contrast it to Prevent . We group the literature into three sections: the semantic-based,
the probabilistic, and the statistical approaches.

In the semantic-based approaches, a modified definition of the LTL semantics provides
a logic-based method to interpret the extensions of a finite prefix, and evaluate an LTL
property. These approaches typically use the semantic information (e.g., the CFG) of
the program execution for prediction [135]. Hence, the semantic-based approaches are
considered within the context of white-box systems.

In the probabilistic approaches, a probabilistic model of the system execution is pro-
vided and this is verified against given properties using numerical methods [70]. Since
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the probabilistic model is given, the probabilistic approaches are applicable to white-box
systems.

In the statistical approaches, a given property is tested against a series of executions
using statistical methods and hence are useful in the context of black-box systems.

Prevent can be seen as a fusion of the probabilistic and statistical approaches: instead
of checking the execution samples, a stochastic model is built from them [89, 80, 31]
and then the model is checked against a given property. In the proposed framework the
probability is calculated when constructing the monitor, and the property itself remains
non-probabilistic. The calculated probability is merely used as a quantitative measure to
reflect how likely the given property is going to be satisfied or violated.

In the following sections, we describe the work related to each of these methods in the
literature.

3.6.1 Semantics-based Approaches

The semantics-based approaches interpret the evaluation of an LTL property with respect
to a finite prefix, by developing new semantics and the truth-value domain. The monitor
uses the new semantics to issue a verdict based on either only the current path (non-
predictive semantics) or different possible extensions of the paths, regardless of what the
system is able to generate (predictive semantics) [74]. In the following, we review the
related work in each category as well as some related work in the literature that use
quantitative semantics and evaluation for purposes other than prediction.

Non-predictive Semantics. The semantics of LTL over finite paths was initially dis-
cussed in [79], with following modifications proposed later on, such as FLTL [79], LTL∓ [41],
LTL3 [12], RV-LTL (LTL4) [14, 24], and RV∞-LTL [86]. In FLTL and LTL∓, the semantics
of the next operator is redefined to deal with non-existent future state, often considered
an empty path.

Introducing separate semantics for the empty path results in vacuous evaluation for
certain LTL formulas [86, 41]. For example, the evaluation of �(Xp) in LTL∓ is ⊥ at
any temporal step on any sequence, if the next operator is interpreted weak (denoted by
X [14]). The only way to make a distinction on using different next operators is to consider
the context of the formula. In the previous example, we must interpret next strong, if the
formula contains �, and weak, if the formula contains ♦. This leads to RV∞-LTL [86], in
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which each LTL formula has different semantics and a truth-value domain depending on
the class they belong to in the LTL hierarchy [111].

LTL3 is essentially an extension of the original LTL with an extra truth value, i.e., un-
known [12]. However, despite the original LTL, the semantics of LTL3 is non-inductive [14].
If the truth value of an LTL formula can not be yielded over a finite path, it will be un-
known. It is extensively discussed in the literature that the evaluation of the so-called
non-monitorable properties over any finite paths, is always unknown in LTL3 [14, 13]. RV-
LTL (LTL4) combines the semantics definitions of both FLTL and LTL3 [14] to provide a
more conclusive result for the properties with unknown evaluation in LTL3.

In Prevent , we only focus on the monitorable properties with unknown evaluation in
LTL3. However, despite the semantics-based approaches, Prevent uses a prediction model
trained from the execution samples of the system to evaluate the LTL formula on only the
extensions that the system could generate. Therefore, our approach provides a predictive
evaluation of the LTL formula without changing the LTL semantics and based on the
observed behaviour of the system.

Predictive Semantics. Some previous works define predictive semantics of LTL over
finite paths based on LTL3 such that, besides the current execution u, a finite suffix v is
predicted from the program’s CFG, and the evaluation occurs on the path uv [135, 133].
Nonetheless, the predictive semantics of LTL is different from LTL3 and is more similar
to Prevent in the sense that it detects the violation of a formula before it occurs. Their
approach can be seen as the semantics-based predictive RV for white-box non-stochastic
systems.

Quantitative Semantics & Evaluation. In [78] a quantitative semantics definition
is proposed for specifying properties over continuous signals with real values. The logic
is based on a subset of Metric Interval Temporal Logic (MITL) [4], and is called Signal
Temporal Logic (STL). An atomic proposition in STL is defined over the value of a signal
that is in the time domain. Since a STL formula is an MITL[a,b] formula, the semantics
is inherently bounded in time and defined on finite traces [78]. Fainekos & Pappas [42]
propose a metric to measure the robustness of the satisfaction of an STL formula. The
quantified evaluation in Prevent is the result of a probability measure that reflects how
likely the formula will be satisfied in the future. Although we do not discuss the details, it
is not difficult to extend Prevent to predict the satisfaction of a STL property with respect
to the robustness measure.
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3.6.2 Probabilistic Approaches

In probabilistic model checking (PMC) [70, 68], an explicit probabilistic model, such as
a Markov chain, is given, and a probabilistic property needs to be verified on the model.
In PMC and SMC, the probability can be embedded into the specification language, e.g.,
Probabilistic CTL (PCTL) [49, 70]. In both cases, the probability of the formula can also
be calculated quantitatively [89].

3.6.3 Statistical Approaches

Statistical Model Checking. Statistical model checking [132, 113, 52] (SMC) refers to
verifying a property on a sampled set of execution paths, and generalizing it to the entire
system by hypothesis testing. In SMC, the model of the system is statistical and based on
Bernoulli distribution of the evaluation of the property on each simulated path. The goal
of SMC is to compute the statistical confidence for Pr(S |= ϕ), given an LTL formula ϕ
and a stochastic system S.

In [31], a fast SMC approach is introduced where unbounded LTL properties are verified
on a Markov chain whose only minimum transition probability is known. The topology or
even the number of states of the Markov chain is not required to be known in advance,
because the model is constructed on the fly when the hypothesis is tested on a trace.
They use a technique that combines detecting Bottom Strongly Connected Components
(BSCCs) and fast termination of the executions using the observed prefix from the system.
The algorithm then gives confidence bounds of whether the property is satisfied or not.

In our context, the prediction is only required for the properties that can not be evalu-
ated on the current execution path, hence, fast termination is irrelevant to our framework.
In the current implementation of Prevent , we only consider bounded properties and the
model is constructed offline. However, we propose constructing or refining the prediction
model online as one of the future directions to the proposed framework (see Chapter 7).

Statistical Runtime Verification. Statistical runtime verification (SRV) [53] is an
approach resembling SMC, in which an LTL-based formula is verified against sampled
traces generated via simulation. The main difference is that in SRV instead of a set
of traces, the statistical reasoning about the system takes place with observing a single
execution of the system [110]. The confidence and accuracy of the verification is bound to
the sample size, or the number of subtraces that are extracted from the execution. One can
use the sliding window technique [110] to evaluate a probabilistic formula on the subtraces
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of an execution. The idea of evaluation with a sliding window can be used in Prevent
to obtain an optimal value for the prediction horizon without hindering the prediction
accuracy.

Despite [110], which is based on the hypothesis testing, the SRV method introduced
in [53] is based on the notion of approximate probabilistic model checking (APMC) [52].
The monitoring algorithm in [53] is based on temporal testers [65] which evaluates a formula
with the semantics similar to LTL3 [12].

The online nature of SRV, similar to SMC [31], creates an optimal verification frame-
work in the sense that checking a property terminates as soon as the evaluation result
is yielded. As mentioned before, Prevent only predicts the satisfaction or violation of a
formula whose evaluation can not be determined using the current prefix, hence the op-
timal termination is not applicable in our context. However, it is worth mentioning that
the termination of predicting extensions is based on the prediction horizon, the maximum
length that the extensions can take. In addition, the prediction model, that is trained from
several executions of the system covers more of the state space compared to a single trace.
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Chapter 4

Constructing a Predictive Monitor

A monitor is a finite-state machine that consumes the output of the system execution
sequentially, and produces the evaluation of a given property at each step, typically as a
Boolean value [14]. The monitor in Prevent takes the form of a lookup table, that instead
of Boolean values produces a value in [0, 1]. The value indicates the probability of the
extensions that satisfy or violate the property, assuming that it is currently not satisfied
or violated. These probability values are the result of a bounded reachability analysis on
the product of the trained prediction model and the specification.

In this chapter, we describe the procedure to construct the predictive monitor using
two types of prediction models, a DTMC and an an HMM. First, we discuss learning the
prediction models from iid samples (Section 4.1), and describe the realization of prediction
by performing a quantitative bounded reachability analysis on the product of the prediction
model and the specification (Section 4.2). We use the results of the reachability analysis to
construct the monitor as a lookup table (Section 4.3), and describe how to use the lookup
table with state estimation to predict the satisfaction or violation of a property at runtime
(Sections 4.4 and 4.5). To assess the accuracy of the predictions we formally define two
error functions (Section 4.6), and two case studies to demonstrate the feasibility of our
approach (Section 4.8). We conclude this chapter by reviewing some of the related works
(Section 4.9).

4.1 Learning Models

Inferring the probabilistic languages of infinite strings from a set of samples is defined as
obtaining the probability distribution over Σω. In this section, we review the learning
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algorithms of the two types of prediction models from the literature that are used in
Prevent : Discrete-Time Markov Models (DTMCs) and Hidden Markov Models (HMMs).

4.1.1 Training a DTMC from iid Samples

The state-merging algorithms [23, 80] are shown to be effective in learning probabilistic
finite automata (PFA) [34], which in turn can be converted to a DTMC [80]. We choose
the Alergia algorithm [34] as the representative of the state-merging learning algorithms.
In Alergia first the training data is converted into a Frequency Prefix Tree Acceptor
(FPTA), which simply is another representation of the execution samples based on the
prefixes and their frequencies:

Definition 15 (FPTA). A Frequency Prefix Tree Acceptor (FPTA) is a tuple A : (Q,Σ,Fr I ,
δ,FrF ,FrT ), where Q is a non-empty finite set of states, Σ is a non-empty finite alphabet,
Fr I : Q → N is the initial frequency of the state(s), δ : Q × Σ → Q is the transition
function, FrF : Q→ N is the final frequency of the state(s), and FrT : Q× Σ×Q→ N is
the transition frequency function between two states.

The states of the FPTA are then merged into one another based on a compatibility
test, e.g., based on Hoeffding bound [81] or Angluin’s bound [80], until some convergence
criteria are met [82].

Algorithm 1 demonstrates the main steps of Alergia, adapted from [80] and [23].
The algorithm starts by building the FPTA (line 3). Each node of the tree represents a
prefix, with its frequency, i.e., the number of times the prefix appeared in the entire sample
dataset (see Figure 4.1).

After building the FPTA, the algorithm initializes and maintains two sets of nodes:
Red and Blue. The red nodes are those that have already been merged and are part of
the final model. The blue nodes are the candidates to be merged with a red node. The set
Red is initialized with qε (line 4), that is, the initial node in the FPTA that represents
the empty string, i.e., no prefix. The set Blue is initialized with all the nodes connected
to qε, which represent prefixes of length one (line 5). We use Pref(D) to denote the set
of all the prefixes in the sample dataset D.

The main while loop (lines 6-16) selects a blue node based on the lexicographical order
(the function SelectBlueState in line 7), and tests it against all the red nodes (lines 9-
13) for compatibility (the function in CompatibilityTest in line 10). To be faithful
to the training data, similar to [80], we assume that the compatibility test is performed
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1 Alergia(Sample dataset D, α > 0)

output: PFA A
2 begin
3 A ← BuildFPTA(D)
4 Red ← {qε}
5 Blue ← {qa : a ∈ Σ ∩Pref(D)}
6 while Blue 6= ∅ do
7 qb ← SelectBlueState
8 merge ← false
9 foreach qr ∈ Red do

10 if CompatibilityTest(qb, qr, α) then
11 A ← StochasticMerge(A, qr, qb)
12 merge ← true
13 break

14 if ¬merge then
15 Red ← Red ∪{qb}
16 Blue ← {qua | qu ∈ Red, a ∈ Σ, ua ∈ Pref(D)}\Red

17 A ← NormalizeFPTA(A)
18 return A

Algorithm 1: Generating a PFA from a set of iid samples.

on the original FPTA, rather than the intermediate automaton. The parameter α is used
for the compatibility criterion, which is in (0, 2] for the Hoeffding bound [81] and > 0 for
Angluin’s bound [80, 6]. If the two nodes are compatible, they are merged, with all the
frequencies of the blue node and its descendants recursively added to the red nodes (the
procedure StochasticMerge in line 11).

If there is no compatible red node with a given blue node, then the blue node is promoted
to a red node (line 15). In either case, Blue is updated in line 16 according to its
declarative definition: all the successors of red nodes that are not themselves red.

Example. Table 4.1 demonstrates 1000 samples that are randomly generated from the
DTMC in Figure 3.2. For simplicity, the maximum length of the samples is 3 which covers
all the transitions in the model except for the self-loops. Figure 4.1 depicts the FPTA
obtained from these samples, with Table 4.2 showing the prefix and final frequency (fin.
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Table 4.1: A training set containing 1000 randomly generated samples from the model in
Figure 3.2.

trace freq. trace freq.
(ii, 0) 300 (ii, 0)(hh, 0)(hh, 0)(hh, 2) 49
(ii, 0)(hh, 0) 51 (ii, 0)(hh, 0)(hh, 0)(tt, 3) 51
(ii, 0)(tt, 0) 49 (ii, 0)(hh, 0)(tt, 0)(hh, 0) 52
(ii, 0)(hh, 0)(hh, 0) 48 (ii, 0)(hh, 0)(tt, 0)(tt, 1) 48
(ii, 0)(hh, 0)(tt, 0) 52 (ii, 0)(tt, 0)(hh, 0)(tt, 0) 51
(ii, 0)(tt, 0)(hh, 0) 52 (ii, 0)(tt, 0)(hh, 0)(hh, 6) 49
(ii, 0)(tt, 0)(tt, 0) 48 (ii, 0)(tt, 0)(tt, 0)(hh, 4) 52

(ii, 0)(tt, 0)(tt, 0)(tt, 5) 48

freq.) associated with each state of the FPTA. The final frequency of each state is the
frequency of the traces that are equal to the prefix corresponding to the state.

The output of Algorithm 1 is a PFA, which is essentially the transformation of the
merged FPTA by normalizing all the frequencies to obtain a probability distribution for
each transition (line 12).

Definition 16 (PFA). A Probabilistic Finite Automaton (PFA) is a tuple A = (Q,Σ, π, δ,
PT ,PF ), where Q is a non-empty finite set of states, Σ is a non-empty finite alphabet,
π : Q→ [0, 1] is the initial probability distribution over Q, δ : Q×Σ→ Q is the transition
function that maps the state-symbol pair to another state, PT : Q × Σ → [0, 1] is the
transition probability distribution, and PF : Q→ [0, 1] is the final probability distribution,
such that for any q ∈ Q, PT (q, ·) + PF (q) is a probability distribution.

Algorithm 2 constructs a DTMC from the trained PFA. Constructing the states of the
DTMC begins by iterating over all the successor states of q0, i.e., the state representing the
empty string in the PFA. Notice that we assume the length of the samples is non-zero, i.e.,
there is no empty string (ε) in the training data. The for loop in lines 4-8 sets the initial
probability distribution of the underlying DTMC, which is obtained from the transition
from q0 to the states using an alphabet symbol a (line 7). Those states are added to the
set of states of the DTMC (line 6), and labelled with a (line 8).

The for loop in lines 9-13 computes the transition probability distribution of the DTMC
for each pair (q, a). Notice that each state in the DTMC is also in the PFA, hence q ∈ S
and δ(q, a) is well defined. In line 12, we normalize the transition probability by dividing it
by the complement of the final probability distribution in the PFA (see Definition 16). To
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Figure 4.1: FPTA constructed from the samples of Table 4.1.

Table 4.2: The prefixes and their final frequencies associated with each state of the FPTA
in Figure 4.1.

state prefix fin. freq. state prefix fin. freq.
q0 ε 0 q1 (ii, 0) 300
q2 (ii, 0)(hh, 0) 51 q3 (ii, 0)(tt, 0) 49
q4 (ii, 0)(hh, 0)(hh, 0) 48 q5 (ii, 0)(hh, 0)(tt, 0) 52
q6 (ii, 0)(tt, 0)(hh, 0) 52 q7 (ii, 0)(tt, 0)(tt, 0) 48
q8 (ii, 0)(hh, 0)(hh, 0)(hh, 2) 49 q9 (ii, 0)(hh, 0)(hh, 0)(tt, 3) 51
q10 (ii, 0)(hh, 0)(tt, 0)(hh, 0) 52 q11 (ii, 0)(hh, 0)(tt, 0)(tt, 1) 48
q12 (ii, 0)(tt, 0)(hh, 0)(tt, 0) 51 q13 (ii, 0)(tt, 0)(hh, 0)(hh, 6) 49
q14 (ii, 0)(tt, 0)(tt, 0)(hh, 4) 52 q15 (ii, 0)(tt, 0)(tt, 0)(tt, 5) 48

generate a distribution over Σω, if a state in the PFA does not have any outgoing transition,
we turn it into an absorbing state in the DTMC by adding a self loop (lines 14-15).
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1 Pfa2Dtmc(A = (Q,Σ, πA, δ,PT ,PF ))

output:M = (S,Σ, πM,P, L)
2 begin
3 S ← {}
4 foreach a ∈ Σ where δ(q0, a) exists do
5 q ← δ(q0, a)
6 S ← S ∪ {q}
7 πM(q)← PT (q0, a)
8 L(q)← a

9 foreach a ∈ Σ and q ∈ S, where δ(q, a) exists do
10 q′ ← δ(q, a)
11 S ← S ∪ {q′}
12 P(q, q′)← PT (q, a)/(1−PF (q, a))
13 L(q′)← a

14 if δ(q, a) does not exist ∀a ∈ Σ then
15 P(q, q)← 1

16 returnM
Algorithm 2: Constructing a DTMC from a PFA.

Example. Figure 4.2 shows the final DTMC after merging the states of the FPTA and
turning the resulting PFA into a DTMC.

Convergence. Under the assumption that the length of each sample is drawn from a
geometric distribution [81], the model learned by the Alergia algorithm converges to the
actual model with probability one:

Theorem 3 ( [81] [80]). Let ϕ be an LTL property, Mtrue be the generating model for the
training data containing N samples used in Algorithm 1, and M = (S,Σ, πM,P, L) be the
output of Algorithm 2. Then we have:

lim
N→∞

Pr(Mtrue |= ϕ =M |= ϕ) = 1

The proof of Theorem 3 follows from showing that a bisimulation relationship exists
between the states of Mtrue and M as N →∞ [81].
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Figure 4.2: The final
learned DTMC after merg-
ing the states of the FPTA
in Figure 4.1.

Complexity. The complexity of the Alergia algorithm is
cubic to the number of training samples at worst [23], but in
practice the learning terminates in linear time with respect to
the number of samples [80].

4.1.2 Training HMM

We use the Maximum Likelihood Estimation (MLE) tech-
nique [114] to train an HMM. The log-likelihood function
L(Θ) of the HMM with parameters Θ = (π, T,O) over the
observation and the state sequence Y (1:n) and X(1:n), respec-
tively, is defined as:

L(Θ) = log(
∑
X(1:n)

Pr(X(1:n), Y (1:n) | Θ)) (4.1)

Since the probability distribution over the state sequence
X(1:n) is unknown, L(Θ) does not have a closed form [123],
leaving the training techniques to heuristics such as EM. One
well-known EM technique for training an HMM is the Baum-
Welch algorithm [101] (BWA), where the training alternates
between estimating the distribution over the hidden state
variable, Q : X → [0, 1], with some fixed choice for Θ (Ex-
pectation), and maximizing the log-likelihood to estimate the
values of Θ by fixing Q (Maximization) [105].

The Expectation phase in BWA computes Pr(X(t) = s | Y,Θ) and Pr(X(t) = s,X(t+1) =
s′ | Y,Θ) for s, s′ ∈ S through the Forward-Backward algorithm [101] (S is the set
of hidden states in the HMM). Given Θ, the Forward algorithm (Algorithm 3) calcu-
lates the probability of being at state i ∈ S at time τ and observing the sequence Y (1:τ).
Given Θ, the Backward algorithm (Algorithm 4) computes the probability of observing
the partial path Y (τ+1:n) given that the HMM is at state i ∈ S at time τ . Given Θ, the
Forward-Backward algorithm (Algorithm 5) uses the Forward and the Backward
algorithms to compute the probability of being at state i ∈ S given that we observed
Y (1:n). We later also use the Forward-Backward algorithm to estimate the posterior
probability distribution of the state space during runtime monitoring (see Section 4.4.1).

Maximization is performed on a lower bound of L(Θ) in (4.1) using Jensen’s inequality:
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1 Forward(Sample dataset Y (1:τ),Θ, i)

output: α(i, τ) = Pr(Y (1:τ), X(τ) = i|Θ)
2 begin
3 α(i, 1)← π(i)O(i, Y (1))
4 for t← 1 to τ − 1 do

5 α(i, t+ 1)← O(i, Y (t+1))
M∑
j=1

α(j, t)T (i, j)

/* M is the number of hidden states */

6

7 return α(i, τ)

Algorithm 3: The Forward algorithm to compute Pr(Y (1:τ), X(τ) = i|Θ).

1 Backward(Sample dataset Y (1:τ),Θ, i)

output: β(i, 1) = Pr(Y (2:τ)|X(1) = i,Θ)
2 begin
3 β(i, τ)← 1
4 for t← τ − 1 down to 1 do

5 β(i, t)←
M∑
j=1

β(j, t+ 1)T (i, j)O(j, Y (t+1))

/* M is the number of hidden states */

6

7 return β(i, 1)

Algorithm 4: The Backward algorithm to compute Pr(Y (2:τ)|X(1) = i,Θ).
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1 Forward-Backward(Sample dataset Y (1:n),Θ, i)

output: γ(i, n) = Pr(X(n) = i|Y (1:n),Θ)
2 begin
3 Pr(X(n) = i, Y (1:n)|Θ) = Forward(Y (1:n),Θ, i) ·Backward(Y (1:n),Θ, i)

4 Pr(Y (1:n)|Θ) =
M∑
j=1

Forward(Y (1:n),Θ, j) ·Backward(Y (1:n),Θ, j)

/* Marginal probability */

5

6 γ(i, n)← Pr(X(n)=i,Y (1:n)|Θ)

Pr(Y (1:n)|Θ)

7 return γ(i, n)

Algorithm 5: The Forward-Backward algorithm to compute Pr(X(n) =
i|Y (1:n),Θ) using Bayes’ rule.

L(Θ) ≥ Q(X) logPr(X(1:n), Y (1:n) | Θ)−Q(X) logQ(X) (4.2)

Since the second term in (4.2) is independent of Θ [105], only the first term is maximized
in each iteration:

Θ(k) = argmax
Θ

Q(X) logPr(X(1:n), Y (1:n) | Θ(k−1)) (4.3)

The BWA uses (4.3) to update Θ in an iterative manner. Algorithm 6 demonstrates the
BWA with the Expectation and Maximization steps. The training starts with random initial
values for Θ (denoted by Θ(0)—line 3). The loop in lines 7-14 shows the Maximization
step where γ(i, t) is computed for all t ∈ [1, n] and i ∈ S using the Forward-Backward
algorithm. In addition, given Y (1:t) and Θ, the probability of transitioning between states
i and j at time t, denoted by ξ(i, j, t), is computed for all t ∈ [1, n] and i, j ∈ S using the
Forward and Backward algorithms as well as Bayes’ theorem.

The Maximization step (lines 15-17) updates the new parameters using γ and ξ, divided
by the marginal probabilities to obtain a probability distribution. The function 1o=Y (t) is
the indicator function that returns 1 if the tth observation in the sequence Y is the symbol
o; and 0 otherwise.
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1 Baum-Welch(Sample dataset Y (1:n),Number of states M)

output: Θ = (π, T,O)
2 begin
3 Θ(0) ← RandomInitialization()
4 k ← 0
5 repeat
6 Compute(L(Θ(k)))

/* The Expectation step */

7 foreach t ∈ [1, n], i, j ∈ S/* S is the set of hidden states */

8 do
9 γ(i, t)← Forward-Backward(Y (1:t),Θ(k), i)

10 Pr(X(t) = i,X(t+1) = j, Y |Θ) =

Forward(i, t) · T (k)(i, j) ·Backward(j, t+ 1) ·O(k)(j, Y (t+1))

11 Pr(Y |Θ) =
M∑
i=1

M∑
j=1

Forward(Y (1:t),Θ(k), i) · T (k)(i, j) ·

Backward(Y (t+1:n),Θ, j) ·O(k)(j, Y (t+1))

12 Pr(X(t) = i,X(t+1) = j|Y (1:t),Θ) = Pr(X(t)=i,X(t+1)=j,Y |Θ)
Pr(Y |Θ)

/* Bayes’

theorem */

13

14 ξ(i, j, t)← Pr(X(t) = i,X(t+1) = j|Y (1:t),Θ)

/* The Maximization step */

15 π(k+1)(i)← γ(i, 1)

16 T (k+1)(i, j)←
∑n−1

t=1 ξ(i,j,t)∑n−1
t=1 γ(i,t)

17 O(k+1)(i, o)←
∑n

t=1 1o=Y (t) ·γ(i,t)∑n
t=1 γ(i,t)

18 k ← k + 1

19 Compute(L(Θ(k)))

20 until L(Θk) ≤ L(Θk−1)

21 return Θ(k−1)

Algorithm 6: The Baum-Welch algorithm to find the parameters of an HMM, de-
noted by Θ.
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Number of Hidden States. The BWE requires the number of hidden states (size
of S denoted by M) in addition to the training sample as input. We apply the Bayesian
Information Criterion (BIC) [28] to choose the number of hidden states. BIC assigns a score
to a model according to its likelihood, but also penalizes models with more parameters to
avoid overfitting:

BIC(H) = log(N)|Θ| − 2L(Θ), (4.4)

where |Θ| = M2 +M |Σ|, and N is the number of training samples.
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Figure 4.3: The trained HMM
using 1000 samples and 11 hid-
den states.

Convergence. In each iteration of the loop in lines 4-
20, the likelihood of the updated Θ is compared to the
likelihood of the previous value of Θ (denoted by Θ(k)

and Θ(k−1), respectively), and if the previous value has a
larger likelihood then the algorithm terminates. There-
fore, the BWA is essentially a gradient-descent approach,
and its outcome is guaranteed to converge to a local max-
imum [123].

Complexity. Since BWE uses dynamic programming,
its complexity is polynomial with a slight sacrifice in
space. The Forward-Backward algorithm is of
O(M2 · n) where M is the number of hidden states
and n is the length of the sample. The BWE runs
the Forward-Backward algorithm for each iteration
and sample, hence the total complexity of BWE is of
O(# of iterations ·M2 ·N ·nmax) where nmax is the max-
imum length of the samples and N is the number of train-
ing samples. The space complexity of the BWE is of
O(M · nmax).

Example. Figure 4.3 depicts the trained HMM using
the 1000 samples shown in Table 4.1. The optimal num-
ber of hidden states, 11, is calculated by finding the
minimum BIC score among HMMs with 1 to 20 hidden
states.
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4.2 Prediction as Quantitative

Bounded Reachability Analysis on a DTMC

In this section, we explain how to build the product model of the prediction model and
the DFA, as a DTMC. A quantitative bounded reachability analysis is performed on the
product model to construct the lookup table that creates our predictive monitor (Defini-
tion 11).

4.2.1 Building the Product of the Prediction Model and the DFA

The monitor needs to expand the observed execution, u, and predict the expected prob-
ability of the extensions that satisfy or violate the given property. The expansion of u is
based on a DFA that specifies good or bad extensions with respect to the given guarantee
or safety property. To maintain the configurations of both the DFA and the prediction
model we adapt a similar technique in the literature [129, 134] and create the product of
the two models.

If the prediction model is a DTMC, the product model is simply built by combining
the states and transitions of the DTMC and the DFA, and relabelling the states of the
DTMC according to the final states of the DFA.

Definition 17 (The Product of a DTMC and a DFA). Let M = (S,Σ, π,P, L) and
A = (Q,Σ, δ, qI , F ) respectively be a DTMC and a DFA. We define the product DTMC of
M and A,MM×A = (S ′ = S ×Q× Σ, {‘Accept’}, π′,P′, L′) as follows:

π′(s, q, o) =

{
π(s) if q ∈ qI
0 otherwise

L(s, q, o) =

{
{‘Accept’} if q ∈ F
∅ otherwise

P′((s, q, o), (s′, q′, o′)) =

{
P(s, s′) if δ(q′, o) = q

0 otherwise

A similar approach is taken in an HMM, except that the transition probabilities and
observation probabilities are multiplied together:

Definition 18 (The Product of an HMM and a DFA). Let H = (S,Σ, π, T,O) and
A = (Q,Σ, δ, qI , F ) respectively be an HMM and a DFA. We define the DTMC MH×A =
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(S ′ = S ×Q× Σ, {‘Accept’}, π′,P, L) as follows:

π′(s, q, o) =

{
π(s) if q ∈ qI
0 otherwise

L(s, q, o) =

{
{‘Accept’} if q ∈ F
∅ otherwise

P((s, q, o), (s′, q′, o′)) =

{
T (s, s′) ·O(s′, o′) if δ(q′, o) = q

0 otherwise

Notice that the joint probability distribution represented byH remains intact atMH×A
in Definition 18.

4.2.2 Quantitative Bounded Reachability Analysis
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Figure 4.4: The product of
the learned DTMC in Fig-
ure 4.2 and the DFA in Fig-
ure 3.3a for the die exam-
ple.

LetM be a DTMC that is the product of the prediction model
and the DFA. The purpose of the monitor is to estimate the
probability of all the extensions of length at most h that sat-
isfy or violate ϕ. In a discrete-time setting, the variable h is
a positive integer, which we call the prediction horizon. Com-
puting the probability of the satisfying or refuting extensions
is achieved by performing a bounded reachability analysis on
the product model.

Let u /∈ Lϕ be the execution on M observed so far, and
Extu be the set of finite extensions of u. Recall that the
output of the monitor is the probability measure of the set of
the finite paths that satisfy or violate ϕ (Definition 11).

In the product DTMC, suppose that s is the state corre-
sponding to the last label in u, which is obtained by some
state estimation technique [120, 7, 63]. As u extends, the new
state is consequently estimated at runtime (see Section 4.4).

The probability in Definition 11 can be obtained by re-
cursively computing the transient probability of the states in
the product DTMC [70]: starting from the composite state
σ = (s, q, o), the probability of being at state σ′ = (s′, q′, o′)
after h steps, such that L(s′, q′, o′) = ‘Accept’, that is, all the
paths that end at s′ and satisfy or violate ϕ. We can effec-
tively turn computing the transient probability into checking
the following quantitative PCTL property [49, 70]:
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Pr(σ |= ♦≤h ‘Accept’ = >) (4.5)

h
The Result of
(4.5) for σF

1 0.0
2 0.26
3 0.26
4 0.33
5 0.33
6 0.34
7 0.34
8 0.35
9 0.35
10 0.35

Figure 4.5: The proba-
bility that property ϕF

will be satisfied within
h steps, given that the
modelM in Figure 4.4
is at σF.

Example. Figure 4.4 demonstrates the product modelM of the
learned DTMC for the die example (Figure 4.2) and the DFA of the
property ϕF (Figure 3.3a). The light gray node demonstrates the
corresponding state after observing u′F = (ii, 0)(tt, 0)(hh, 0)(tt, 0),
shown by σF, and the dark gray node displays state (s11, q1, (hh, 6))
that is labelled ‘Accept’.

Figure 4.5 demonstrates the probability (4.5) for σF and dif-
ferent values of h on the product model in Figure 4.4. Notice
that the prediction results for ϕG and u′G are similar, except that
σG = (s2, q0, (hh, 0)) and the ‘Accept’ state is (s10, q1, (tt, 1)).

Since the DTMC in Figure 4.2 is deterministic σF and σG are
directly derivable from u′F and u′G.

4.3 Constructing the Monitor as a

Lookup Table

In the systems where RV is used, the time and space overhead of
the monitor must be minimal, as the computational and memory
capacities are limited [77]. Due to multiplications of large and
typically sparse matrices, the calculation of (4.5) is not practical
during runtime [70]. Hence we suggest implementing the monitor
as a lookup hash table that has O(1) retrieval time. We compen-
sate the memory usage of the lookup table by reducing the size of
the prediction model. Fewer number of states in the prediction model also expedites the
state estimation process at runtime (see Section 4.4). We discuss the details of reducing
the size of the prediction model in Chapter 5.

Given a final path that ends at the state σ(n), let σ(n)σ(n+1) · · ·σ(n+t) be the extension,
such that L(σ(n+t)) = ‘Accept’ in the product model M, where σ(n+i) = (si, qi, oi) is the
composite state of the model, for all 0 ≤ i ≤ t. The monitor output is

Pr(σ(n+1)σ(n+2) · · ·σ(n+t)), t ≤ h. (4.6)
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In order to compute this probability we adopt the transformation from [70]:

PAcc(σ, σ
′) =


0 if L(σ) = ‘Accept’ and σ 6= σ′

1 if L(σ) = ‘Accept’ and σ = σ′

P(σ, σ′) otherwise

(4.7)

The transformation (4.7) allows us to recursively compute (4.5) as follows:

Pr(σ |= ♦≤h ‘Accept’) =
∑
σ′∈S′

PAcc(σ, σ
′)Pr(σ′ |= ♦≤h−1 ‘Accept’) (4.8)

This is the transient probability for σ(n)σ(n+1) · · ·σ(n+t)w, that is, starting from σ(n) the
probability of being at state σ(n+t) (i.e., after t steps), such that L(σ(n+t)) = ‘Accept’, where
w ∈ Σω is any infinite extension of the path. The probability measure of σ(n)σ(n+1) · · ·σ(n+t)w
is based on the cylinder set defined on the prefix σ(n)σ(n+1) · · ·σ(n+t)[70].

Algorithm 7 demonstrates the monitor construction procedure. For all t ≤ h and
σ ∈ S ′, we compute the probabilities offline and store them in a table MT (σ, t), where
MT (σ, t) = Pr(σ |= ♦≤t ‘Accept’). The monitor is thus a lookup table with the size of
O(|S ′|×h), where |S ′| ∈ O(|S| · |Q| · |Σ|). Algorithm 7 has the time complexity O(|S ′|2 +h).

Example. Table 4.3 shows the MT table for ϕF and ϕG and for h = 5, obtained from
the product model in Figure 4.4. The probabilities are only shown for the states that can
reach the ‘Accept’ state.

4.4 State Estimation

Recall that σ = (s, q, o) is the composite state of the product model, where o is the
observation obtained from the execution path u, and q is the state of the DFA that is
derivable by running the DFA over u. The only remaining element is the (hidden) state s
that the monitor needs to obtain at runtime.

If the prediction model is deterministic s is determined by the execution path u (see
Definition 13). However, if the prediction model is nondeterministic, s is not directly
derivable from u, hence needs to be estimated.

To have consistent notations for both types of prediction model, i.e., DTMC and HMM,
we define the notations Obs(s, a) and Trans(s, s′) as follows (s, s′ ∈ S, a ∈ Σ):
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1 ConstructMonitor(Product Model M = (S ′ =
S ×Q× Σ, {‘Accept’}, π′,P, L),Prediction Horizon h)

output: Table MT (σ, t) for all σ ∈ S ′ and t ∈ [1, h]
2 begin
3 forall σ, σ′ ∈ S ′ do
4 if L(σ) = ‘Accept’ then
5 if σ = σ′ then
6 PAcc(σ, σ)← 1

7 else
8 PAcc(σ, σ

′)← 0

9 else
10 PAcc(σ, σ

′)← P(σ, σ′)

11 for σ ∈ S ′ do
12 MT (σ, 1)←

∑
σ′∈S′ PAcc(σ, σ

′)

13 for t← 2 to h do
14 MT (σ, t)←

∑
σ′∈S′ PAcc(σ, σ

′)MT (σ′, t− 1)

15 return MT

Algorithm 7: Constructing the monitor as a lookup table.

If the prediction model is a DTMC:

Obs(s, a) =

{
1 if L(s) = a

0 otherwise.

Trans(s, s′) = P(s, s′)

(4.9)

If the prediction model is an HMM:

Obs(s, a) = O(s, a)

Trans(s, s′) = T (s, s′)
(4.10)
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Table 4.3: The monitor table for ϕF and ϕG, from the product model in Figure 4.4.

ϕF ϕG

σ = (s,q,o) t MT(σ, t) σ = (s,q,o) t MT(σ, t)

(s1, q0, (ii, 0))

1 0

(s1, q0, (ii, 0))

1 0
2 0 2 0
3 0.12 3 0.13
4 0.12 4 0.13
5 0.16 5 0.16

(s3, q0, (tt, 0))

1 0

(s2, q0, (hh, 0))

1 0
2 0.26 2 0.25
3 0.26 3 0.25
4 0.32 4 0.32
5 0.32 5 0.32

(s6, q0, (hh, 0))

1 0.50

(s5, q0, (tt, 0))

1 0.48
2 0.50 2 0.48
3 0.62 3 0.61
4 0.62 4 0.61
5 0.66 5 0.65

4.4.1 Computing the Posterior State Probability Distribution

The Bayesian-based approach to derive the state of the system computes the posterior
probability distribution over the state space, given the execution path u. The Forward-
Backward algorithm (Algorithm 5) employs dynamic programming to compute the pos-
terior probability distribution using the prediction model and u:

Pr(X(n) = s | u,Θ) (4.11)

where n is the length of u.

Algorithm 8 demonstrates computing (4.11) for all the states of the prediction model
using the Forward-Backward algorithm. Since the algorithm is defined for an HMM,
if the prediction model is a DTMC we turn the observation function into a probability
distribution (PrD(S) in line 5). Notice that this algorithm can also be used for a deter-
ministic DTMC, where the returned probability distribution will only contain one state.
The for loop in line 4 calls the Forward-Backward function in Algorithm 5 to compute
the posterior probability for each state. The algorithm normalizes the probability in line 5
and returns the posterior probability distribution denoted by PrD(S).
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1 PosteriorState(M, u)

inputs : Execution observation u, Prediction Model M with parameters
Θ = (π, Trans,Obs) and state space S

output: Posterior probability distribution over S
2 begin
3 foreach s ∈ S do
4 Pr(s)← Forward-Backward(u,Θ, s)

5 PrD(S)← Pr(s)∑
s∈S Pr(s)

6 return PrD(S)

Algorithm 8: Computing the posterior state probability distribution using the
Forward-Backward algorithm.

Complexity. Algorithm 8 calls the Forward-Backward algorithm M times, where
M is the number of states in the prediction model. Therefore, in total Algorithm 8 is of
O(M3 · n). For an average sized prediction model the CPU time of the monitor might
still be very limited for this complexity. We can modify Algorithm 8 so that the most
probable state is returned, instead of the distribution. This approximation improves the
performance of obtaining the state to a quasilinear time complexity, and explained in the
next section.

4.4.2 Viterbi Approximation

The Viterbi algorithm [126] provides an approximation procedure, where instead of cal-
culating the posterior probability distribution, only the most probable state is determined.

For an observation sequence Y = Y (1:n), the Viterbi algorithm [126, 39] derives
X∗(1:n) = argmaxX(1:n) Pr(X(1:n)|Y,Θ), the so-called Viterbi path. Let vt(s) be the proba-
bility of the Viterbi path ending with state s at time t:

vt+1(s) = O(s, Y (t+1)) max
s′∈S

(vt(s
′)T (s′, s)) (4.12)

To find X∗(t+1) the monitor only requires vt(s
′) for all s′ ∈ S. Therefore, we can obtain

X∗(t+1) by using only two vectors that maintain the values of vt+1(s) and vt(s): we call the
current and the next Viterbi vectors, respectively.

Algorithm 9 demonstrates state estimation using the Viterbi algorithm. Line 3 ini-
tializes the current Viterbi vector. Each iteration of the for loop in lines 6-13 is over
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1 Viterbi(M, u)

inputs : Observation sequence Y , Prediction Model M with state space S
output: s ∈ S

2 begin
3 foreach s ∈ S do v(s)← Obs(s, Y (1))π(s) // Initialize the Viterbi

vector

4 forall i← 1 to |Y | do
5 s← argmaxs v(s)
6 forall s ∈ S do // Updating the next Viterbi vector

7 vnext(s)← Obs(s, Y (i+1)) maxs′(v(s′)Trans(s′, s))

8 v ← vnext, i← i+ 1

9 return Vectorize(s)

Algorithm 9: State estimation using the Viterbi approximation.

one observation in the sequence Y . For each observation Y (i), the next Viterbi vector is
obtained in lines 6-8, according to (4.12). The algorithm returns a vector of the states
with the most probable state having the value 1 and the rest having the value 0 by calling
the Vectorize function in line 9, so that the returned value has a similar structure to
that of Algorithm 8. This will enable us to use either Algorithm 8 or 9 in the monitoring
procedure without having to change their outputs.

Complexity. Each iteration of the loop in lines 6-13 is done at the same time as observ-
ing a new element, i.e., when the system emits a new observation symbol. For a prediction
model with M (hidden) states, updating the Viterbi vector requires O(M) operations of
finding maximums, which can be improved to log(M) using a Max-Heap. Therefore, each
monitoring iteration is of O(M · logM) in execution time, which is significantly better than
Algorithm 8.

Example. Table 4.4 demonstrates the estimated states of the HMM in Figure 4.3 for
each step of u′F and u′G. Notice that the posterior state probabilities are 1 for the states
shown on the table and 0 for all other states. The Viterbi estimation has the same
results.
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Table 4.4: The estimated state of the HMM in Figure 4.3 for each step of u′F and u′G.

u′F (ii, 0) (tt, 0) (hh, 0) (tt, 0)
State s1 s3 s10 s3

u′G (ii, 0) (hh, 0) (tt, 0) (hh, 0)
State s1 s2 s4 s2

1 Monitoring(u,MT,M, h)

inputs : Execution observation u, The probability table MT , Prediction model
M, Prediction horizon h

output: PM(C(u,M, ϕ, h)) (see (3.1))
2 begin
3 t← h
4 q ← qI
5 n← |u|
6 forall i← 1 to n do
7 StateProbV ector ← StateEstm(M, u)

8 q ← δ(q, u(i))

9 Print(MT (σ = (s, q, u(i)), t)× StateProbV ector)
10 if q ∈ F or t = 0 then
11 t← h

12 else
13 t← t− 1

Algorithm 10: Predictive monitoring of software execution.

4.5 Monitoring

Algorithm 10 demonstrates the monitoring procedure using the monitor table constructed
in Algorithm 7. The algorithm takes the entire execution path as an argument, thus, can
be seen as an offline monitoring procedure. It is straightforward to call Algorithm 10 upon
the occurrence of an event or with a certain frequency to respectively create event- or
time-triggered online monitoring procedures [19].

The variable t is the horizon index that is initialized to h (line 3), i.e., the prediction
horizon. The horizon index is reset to h, if q ∈ F , i.e., the property is satisfied, or once
t = 0, i.e., we have reached the prediction horizon and the property is still not satisfied.
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Monitor Output

index
u′F : (ii, 0) (tt, 0) (hh, 0) (tt, 0)

−0.16

−0.32

−0.66

−0.46

×

×

×

×

◦

◦
◦

◦

◦: HMM
×: DTMC

Figure 4.6: The output of the predictive monitor for u′F at different time indices and using
DTMC and HMM as prediction models.

Otherwise, t is decremented (lines 10-13).

The state of the DFA is derived on the fly, by starting from the initial state qI (line 4),
and updating the state by using the transition function on the output symbol u(i) (line 8).

The function StateEstm in line 7 calls one of the Algorithms 8 or 9 which return
a row vector that has M ′ rows, where M ′ is the size of the product model. Each entry
of the vector contains the probability of the hidden state after observing u(1:i). If there
is only one state (e.g., in the case of the Viterbi algorithm) the entry has the value 1
for that state and 0 for the rest of the states. The monitor outputs the cross product of
the vector StateProbV ector by the vector MT (σ, t) in line 9 to obtain the probability
described in (3.1).

Complexity. For each iteration of the for loop in line 6, i.e., each observation, the
complexity of Algorithm 10 is O(M ′) for the multiplication in line 9, times the complexity
of the state estimation.

Example. Figure 4.6 displays the result of the predictive monitor for u′F at different
indices using Algorithm 10, assuming that the monitor is invoked for each index. The
prediction results are shown using DTMC and HMM (Figures 4.2 and 4.3). Notice that the
StateProbV ector has only one element with value 1, and the rest are 0 (see Table 4.4).
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4.6 Prediction Evaluation

In this section, we define two measures that we use to evaluate the accuracy of the predic-
tions made by the monitor. One measure is defined using the actual model of the system,
and the other measure is defined for when the actual model is unavailable. In this case,
we assume that we are still able to run the system an arbitrary number of times to collect
additional samples.

4.6.1 Evaluation Using the True Model (White-box)

Using a true model of the system execution, we are able to obtain the true values of (4.5),
and use Mean-Square Prediction Error (MSPE) [45] to measure the performance of the
predictions by the trained models. The evaluation is conducted on a separate set of iid
samples, where the following is computed for each instance i that the prediction is made:

ε2
i = (Pr(s(i) |= ♦≤hϕ)− Pr(σ(i) |= ♦≤h ‘Accept’)2, (4.13)

where s(i) is the state of the actual model and σ(i) is the state of the product model at
index i (see Definition 18). The value of ε2

i reflects both the error associated with training
the prediction model as well as the state estimation.

For a single sample execution, we define MSPE as the average of (4.13), i.e., 1
t

∑t
i=1 ε

2
i ,

where t indicates the number of points on the sample where a prediction is made.

Example. The MSPE of the monitor with the output shown in Figure 4.6 using the
DTMC as prediction model is 5 × 10−5 and using the HMM as prediction model is 10−2.
The MSPE of the HMM monitor is high due to the error of the training algorithm that
did not converge to a global optimum, and consequently, the model in Figure 4.3 has the
hidden states with labels (tt, 0) and (hh, 0) that are not fully distinguished, e.g., states s3

and s10 emit the same symbol, i.e., (tt, 0).

4.6.2 Evaluation using Hypothesis Testing (Black-box)

In the case where the true model of the system is not available, we use hypothesis testing
on a set of execution samples from the system to evaluate the accuracy of the prediction.
We call these samples the test samples, which are different from the training samples.
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Given the execution path u, let u(i)..(i+λi(A)) be its extension of length λi(A) at point i
that is accepted by a given DFA A, i.e., (u(i)..(i+λi)) ∈ LA. For brevity, we use λi instead
of λi(A). Recall that the monitor output at point i is the probability of all the extensions
of length at most h that are accepted by A (4.5). For any λi ≤ h we have:

Pr(σ(i) |= ♦≤h‘Accept’) ≥ Pr(σ(i)..(i+λi) |= ‘Accept’)

λi × Pr(σ(i) |= ♦≤h‘Accept’) ≥ λi × Pr(σ(i)..(i+λi) |= ‘Accept’)

We define λ̂i = λi · Pr(σ(i) |= ♦≤h ‘Accept’) as the expected value of λi estimated by
the monitor. Therefore, one can obtain the following minimum error of the prediction at
point i:

εmini = λi − λ̂i (4.14)

Notice that since λi ≥ λ̂i, ε
min
i is always positive. If there is no k, i < k < λi, such

that (u(i..i+k)) ∈ LA, i.e., u(i..i+λi) is the minimal extension that is accepted by A, then
εmini+t = (λi− t)− λ̂λi−t, 0 ≤ t < λi ≤ h, where t is the horizon index. As a result, the value
of εmini can be computed on the fly.

In our implementation, we assume that there exists at least one point k ≤ h such that
(u(i..i+k)) ∈ LA; otherwise, εmini is not well-defined, and the prediction accuracy can not
be calculated. If such a point does not exist, we can extend the prediction horizon by
increasing h such that there is at least one accepting extension in the trace. The rest of
the path after the last point in which the trace is accepted by A is discarded, as there is
no observation to compare the prediction and compute the error.

To assess the performance of the prediction, we use hypothesis testing on a set of test
samples. Given the expected value of a prediction λi, let Λ = 1

τ

∑τ
i=1 λi be the random

variable that represents the mean of all λi values, for 1 ≤ i ≤ τ . Notice that for iid
samples, the value of Λ for a trace is independent of that value for other traces.

Let λ̄M be the estimation of Λ by the monitor over a set of monitored traces, and λ̄ be
the mean of Λ on a separate set of n iid test samples with variance ν. We test the accuracy
of the prediction using the following two-sided hypothesis H0 : λ̄M = λ̄. Using confidence
α, we employ the t-distribution to test H0:

λ̄− λ̄M
√
ν
n

≤ tn−1,α (4.15)
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4.7 Limitations

In this section we discuss some of the limitations and trade-offs that need to be made in
constructing a predictive monitor. First notice that we assume that the observable be-
haviour of the system is learnable by a Markovian model. This implies that the system
possesses the Markovian property, i.e., the future behaviour of the system can be esti-
mated based on a static probabilistic model of the past behaviour. To a certain extent,
modeling the real systems that exhibit extreme dynamic behaviour violates the Markovian
assumption. With adding more states it is possible to model a system with non-Markovian
property using a Markovian model but again that poses the risk of state explosion in the
learned model.

In addition, adding more states to the prediction model although may increase the
prediction accuracy; it also impacts the state estimation performance which may increase
the monitoring overhead at runtime. Therefore it is important to consider the trade-off
between the prediction accuracy and the overhead of the monitor, which may be different
depending on the nature of the system.

4.8 Case Studies

We evaluate Prevent on two case studies: (1) the randomized dining philosophers from
the Prism case studies [38], which includes the original algorithm, and a modified version
that we introduce specifically for evaluating Prevent ; (2) the QNX Neutrino kernel traces
collected from the flight control software of a hexacopter [104]. We show the estimation of
good and bad extensions in the randomized dining philosophers and hexacopter traces to
demonstrate the predictive monitoring of guarantee and safety properties, respectively. In
addition, these properties represent the most commonly used property patterns in Dwyer
et al.’s survey [40]: response pattern in the randomized dining philosophers algorithm, and
the absence pattern for monitoring a regular safety property [8] in the flight control of a
hexacopter. The implementation of monitoring in both experiments is conducted offline.

4.8.1 Randomized Dining Philosopher

We adapt Rabin & Lehmann’s solution [100] to the dining philosophers problem that has
the characteristics of a stochastic system to be trained using HMM. We also present a
modification of their algorithm, which represents a generic form of decentralized online
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resource allocation [122], where our monitoring approach can be seen as a component of
the liveness enforcement supervisory [85].

We consider the classic setting of the problem, where philosophers are in a ring topol-
ogy and are selected for execution by a fair scheduler. Figure 4.7a demonstrates a state
diagram of one philosopher, with Th, H, T, P, D, and E representing the philosopher to
be, respectively, thinking, hungry, trying, picking a fork, dropping a fork, and eating. A
philosopher starts at Th, and immediately transitions to H1. Based on the outcome of a
fair coin, the philosopher then chooses to pick the left or the right fork if they are available,
and moves to T. If the fork is not available, the philosopher remains at T until it is granted
access to the fork. The philosopher moves to E, if the other fork is available; otherwise,
the philosopher drops the obtained fork, moves to D, and eventually transitions back to
H. After the philosopher finishes eating, it drops the forks in an arbitrary order D, and
moves back to Th. The algorithm is deadlock-free, but lockouts are still possible [100].
The Prism model of the algorithm for 3 philosophers is provided in Appendix A.2.

Our modification of the algorithm is to add a self-transition at P (shown with dotted
lines in Figure 4.7a): a philosopher does not drop the first obtained fork with probability
c and it stays at P. The transition from P to D has the probability 1− c (not shown in the
figure). This modification enables the philosopher to control its waiting time: the period
between when it becomes hungry for the first time after thinking and when it eats. A higher
value of c means that, instead of going back to H, the philosopher is more likely to stay at
P so that as soon as the other fork is available it starts eating. In a distributed real-time
system, where each philosopher represents a process with unfixed deadlines, changing the
value of c enables the processes to dynamically adjust their waiting time according to their
deadlines. It is not difficult to observe that as long as there is at least one philosopher with
c 6= 1, the symmetry that causes the deadlock [100] eventually breaks, and our modification
to the algorithm maintains it deadlock-free.

The purpose of the experiments is to implement a monitor that observes the outputs
of a single philosopher, and predicts a potential starvation (lockout) by estimating the
extensions that leads to eating.

Predicting Starvation at Runtime. We use the Matlab HMM toolbox to train HMMs,
with 100 iid samples collected from the implementation of the modified version, with c = 1
for all philosophers except the one that is being monitored. The trained model presents

1For simplicity, we remove a self-transition to Th; however, unlike [38] we do not merge the states Th
and H because we want to distinguish between the incoming transitions to Th and H in computing the
waiting time.
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(a) The states of one philosopher.
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(b) The trained HMM of one philosopher, in a system
with three philosophers.

Figure 4.7: Training an HMM for the monitored philosopher in a program with 3 philoso-
phers.

the behavioural signature of the system when a longer waiting time is likely. The size
of HMM (i.e., the number of hidden states) is chosen based on the BIC score of each
model with different sizes (see Section 4.1.2). Figure 4.7b demonstrates the trained HMM
of one philosopher that is constructed from the traces of a 5-second execution of three
philosophers, which contains in average 1500 state transitions for each philosopher. The
trained model reflects the distribution of the prefixes in the training sample, which in
turn is determined by how the scheduler as well as other philosophers, behaved during
training, i.e., how the nondeterminism of the model is resolved during training. For in-
stance, multiple consecutive trys in the training sample create several states in the trained
HMM, each emitting the symbol T, but only one has a high probability to transition to
P and the others model the state where the philosopher can not pick a fork. The finite
extensions that we consider for prediction are based on the following regular expression:
(¬H)∗(H(¬E)∗E(¬H)∗)∗.

Figure 4.8 gives a comparison between the prediction results of two trained models
for three philosophers, one trained using the samples from the original implementation
(LR) and the other one trained from the samples of the modified version (LR-sap). The
monitor observes the behaviour of one philosopher and at each index (horizontal axis)
outputs the probability (vertical axis) that the philosopher can eat within maximum 33
steps (h = 33). The output probability can be interpreted as the probability of that the
monitored philosopher does not starve. This monitored trace is synthesized in a way that
it does not contain any eat, and up to point 33 the philosopher is only at state T. After
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that, the philosopher frequently picks and drops a fork.

According to the results of Figure 4.6, when the last event of a prefix is pick, compared
to when it ends with any other observations, the philosopher has a higher chance to reach
eat (e.g., with probability 0.98 at index 35 using the LR-sap model); however, since the
HMM maintains the history of the trace, a prefix with frequent picks and drops shows a
decline in the probability of observing eat and a potential starvation (e.g., with probability
of 0.8 at index 57 using LR-sap model).

In addition, the results in Figure 4.8 demonstrate that the model trained on the bad
extensions (LR-sap) provides an under-approximation of the model that is trained on the
good traces (LR), thus, tends to produce more false positives. More specifically, the monitor
that uses the LR-sap prediction model predicts that the philosopher is going to starve with
a higher probability than the monitor that uses the LR model. The reason is that the
LR-sap model is learned from the traces where the philosophers stay at the state P hence
increasing the chances of starvation for their neighbours.

The summary of the results is displayed in Table 4.5. We use Prism to perform the
reachability analysis on the product of the trained HMM and the DFA, and build the
monitor lookup table. The size of the product model is equal to the size of the HMM, as
each state in the trained HMMs emits exactly one observation. The minimum prediction
horizon (denoted by hmin) is the mean of the length of the shortest good or bad finite
extensions in the test sample, and obtained empirically from 100 test samples. We choose
the prediction horizon to be three times as large as hmin during monitoring. The average
of the estimated length of the acceptable extensions by the monitor is shown as λ̄M , and
the mean of the error on the entire testing set is denoted by mean(εmin). On average,
the monitor predicts the next eat (within the prediction horizon) with one step error.
Therefore, the monitor is not able to detect the waiting periods that are longer than
3×hmin±1. Increasing the prediction horizon decreases the error, with the cost of a larger
monitor table (MT ). The value of λ̄M is influenced by the total number of discrete events
produced by the monitored philosopher. With more philosophers λ̄M decreases because
the monitored philosopher, and hence the monitor, are scheduled less often.

4.8.2 Hexacopter Flight Control

In this section, we apply Prevent to detect some injected faults in the QNX Neutrino’s
kernel calls [99]. The traces are obtained using QNX tracelogger during the flight of a
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Table 4.5: Prediction results on 100 test sam-
ples.

N
# of

hidden
states

BIC
(×103)

hmin

# of

steps

# of
rows
in MT

λ̄M

# of

steps

mean(εmin)
# of

steps

3 17 25.1 9.94 360 9.30 1.75
4 14 11.9 5.49 180 5.30 1.28
5 10 10.1 6.36 154 6.16 0.80
6 14 7.69 5.61 180 5.17 1.05
7 16 6.09 4.28 170 3.84 1.06
8 10 5.42 4.94 110 4.32 1.33
9 14 4.83 3.15 120 2.77 0.92
10 10 4.40 4.31 110 3.84 0.97 Figure 4.8: The comparison of the pre-

diction results from two trained models.

hexacopter2. The vehicle is equipped with an autopilot, but can be controlled manually
using a remote transmitter. The autopilot system uses a cascaded PID controller. QNX’s
microkernel uses message-passing architecture, where almost all the processes (even the
kernel processes) communicate via sending and receiving messages that are handled by the
kernel calls MSG-SENDV, MSG-RECEIVEV, and MSG-REPLY. Figure 4.9a shows a sub-trace of
the kernel call sample from the hexacopter flight control system.

In this case study, the faults are injected by introducing an interference process, with the
same priority as the autopilot process, that simply runs a while-loop to consume CPU time.
The interference process interrupts message-passing between the processes of the same or
lower priorities, causing a kernel call to handle the error, typically due to a timeout, and to
unblock the sender (shown as event MSG ERROR in Figure 4.9a). The purpose of the monitor
is to predict the existence of an interference process by monitoring the kernel calls.

In this experiment we use SFIHMM [35] to be able to train HMMs on multiple cores.
We train several HMMs from 1-second of the auto-pilot execution, with the intervening
process in full effect, on an Intel Xeon 2.40GHz 128GB RAM machine with Debian 9.3.
The HMM with the minimum BIC has 19 states. The regular expression (¬MSG ERROR)∗

(MSG ERROR)Σ∗ is used to generate the finite extensions that contain the bad prefixes of the
property �¬MSG ERROR.

The monitoring is performed on part of the trace that is generated from another sce-
nario, where the interference process is partially in effect and started executing in the mid-

2Full system description is available at https://wiki.uwaterloo.ca/display/ESGDAT/QNX+

Hexacopter+Flight+Control+Dataset
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...
10850 : MSG-SENDV
10851 : CONNECT-CLIENT-INFO
10852 : MSG-REPLYV
10853 : MSG-RECEIVEV
10854 : MSG-SENDV
10855 : CONNECT-CLIENT-INFO
10856 : MSG-REPLYV
10857 : MSG-RECEIVEV
10858 : MSG-RECEIVEV
10859 : MSG-SENDV
10860 : CONNECT-CLIENT-INFO
10861 : MSG-ERROR
...

(a) A sub-trace of the kernel
calls, 20 steps before the event
MSG ERROR.

(b) The monitor prediction 50 steps before the event
MSG ERROR.

Figure 4.9: The monitoring of �¬MSG ERROR on the flight control trace with the interference
process.

dle of the flight. The prediction results are depicted in Figure 4.9. The points where the
probability is zero arise because the monitor was not able to correctly estimate the hidden
state of the model. In this case for example, three consecutive instances of MSG RECEIVEV

have not appeared in the training sample, hence the prefix can not be associated to any
state of the model by the monitor. More training samples are required to enable the
monitor to estimate the correct state of the model.

The event MSG ERROR is emitted at index 10, 861, and the probability of the prefix that
contains MSG ERROR within the next 50 steps is 0.15 at index 10, 815. This is the highest
probability that the monitor produces for this trace. The decline that we see after this
point is due to the decrement of the prediction horizon as the execution proceeds (see
Algorithm 10). This result notably shows that even though the monitor was not trained
exactly on this scenario; it still can predict that the message error will occur with 15%
chance, almost 45 steps before its occurrence.
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4.9 Related Work

To the best of our knowledge [7] is the first approach in verifying finite paths based on the
extensions obtained from a trained model.

Learning Markov Chain models for verification purposes is introduced in [89, 80].
HMMs are trained in [64] for statistical model checking. Our work focuses on predic-
tive monitors using a similar technique. We also provide assessments for evaluating the
learned model and inferring its size.

HMMs have been used in runtime monitoring of CPSs [120, 63, 117, 118, 131, 116, 11].
Sistla et al. [117] propose an internal monitoring approach, i.e., the property is specified
over the state space instead of the observation space, using specification automata and
HMMs with infinite states. Learning an infinite-state HMM is a harder problem than a
finite HMM, but does not require inferring the size of the model [16].

The notion of acceptance accuracy and rejection accuracy in [116] are the complement
to our notion of prediction error. According to their definition, the Viterbi approximation
generates a conservative monitor for any regular safety property and regular finite horizon.
The analytical method to find an upper bound as a threshold for the timeliness of a
monitor [118] can be applied to find an upper bound for the prediction horizon h.

Several works focus on efficiently estimating the internal states of an HMM at run-
time using particle filtering [120, 63]. Particle filtering uses weights based on the number
of particles in each state, and updates the weights in each observation. The Viterbi
algorithm provides the most likely state, as an overapproximation. Adaptive Runtime Ver-
ification [11] couples state estimation [120] with a feedback control loop to generate several
monitors that run on different frequencies. These works are orthogonal to Prevent and
can be combined to improve the performance of our framework.
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Chapter 5

Abstraction of the Prediction Model

The size of the prediction model significantly impacts both the space and the time overhead
of the monitor. To reduce the size of the prediction model, we apply abstraction to the
observation space by reducing the number of symbols in the alphabet and converting the
training samples to abstract traces based on the new alphabet. More specifically, we use a
finite partitioning of the observation space, Σ, and assign a new symbol to each partition,
therefore, our abstraction is realized as a projection.

Typically, training the prediction model from abstract samples has shorter training time
and produces a smaller model. Moreover, since the size of the product model is directly
influenced by the size of the alphabet, the monitor table will have a smaller size too (see
Section 4.2.1). Since the abstraction is inferred from execution samples, we only focus on
the discrete-time reachability properties that specify reaching some target symbols on the
observation space (e.g., ϕF). Notice that these properties are a subset of guarantee and
safety properties.

In this chapter, first we describe our abstraction as a form of symmetry reduction [69]
on the observation space that is implemented at the trace-level [89] (Section 5.1). Second
we explain how to recognize symbols that have similar transient probability [70] to reach
one or more target symbols by using the k-gapped pair model [36] (Section 5.2). Third we
show how the symbols that have similar empirical probability to reach the target symbols
within k steps are lumped into equivalence partitions over the observation space using
hypothesis testing (Section 5.3). The symmetrical symbols are then used to convert the
traces of the training set into abstract traces, which in turn, are used to train a prediction
model. Fourth we discuss how the prediction of the trained models from abstract traces are
comparable to the prediction of the models trained from the concrete traces (Section 5.4).
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We show the effectiveness of our approach on a case study (Section 5.6) and conclude the
chapter with reviewing some related work (Section 5.7).

5.1 Abstraction via Projecting Symmetrical Symbols

to a Single Symbol

A straightforward abstraction is to divide the observation space into two partitions based
on the symbols that appear in the property, denoted by G and we call the target symbols,
and the symbols that do not appear in the property, i.e., Σ \ G, which we denote by ΣḠ
and call non-target symbols [89]. We define the projection RG : Σ→ {gg, nn} such that a
symbol in Σ is mapped to the symbol gg if it is in the property, i.e., R(σ) = gg iff σ ∈ G;
it is mapped to the symbol nn otherwise.

Example. Consider GϕF
= {(hh, 6)} and the traces uF and u′F. The projection RG :

Σdie → {gg, nn} maps (hh, 6) to gg and all other symbols in Σdie to nn. The projection of
uF and u′F using the projection relation RGϕF

are, respectively, ũ = (nn)(nn)(nn)(gg) and

ũ′ = (nn)(nn)(nn)(nn).

The projection RG, however, may merge the non-target symbols, which have a non-zero
probability to reach a target symbol within some bounded steps, with symbols that never
reach the target symbols, i.e., have probability zero. The symbols with probability zero of
reaching the target symbols can be discarded as they are irrelevant to the prediction. As
a result, the information that some symbols may provide for prediction might be lost.

Example. Compare the symbols (hh, 0) and (hh, 4). The former often appears imme-
diately before the target symbol (hh, 6) in a sample path; whereas the latter has no ap-
pearance before any of (hh, 6) (see Figure 3.2). Both are replaced with nn in RG, thus the
predictive information provided by (hh, 0) and (hh, 4) are combined.

The key insight in the proposed abstraction method is to not only detect the symbols
that do not reach the target symbols, but also recognize the ones that have similar empirical
probability within a fixed number of steps, and merge them together. As a result, we
exploit the notion of symmetry [69] on the observation space to recognize the symbols with
similar prediction power and lump them into the same partition. We define the symmetry
relation with respect to reaching the target symbols. More specifically, we say two symbols
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are symmetrical iff the probability measure of a fixed length path, that starts from some
non-target symbol and ends with a target symbol, is equal.

Let M be a deterministic DTMC. Let Pk : ΣḠ → ΣḠ be a permutation on the set
containing only non-target labels, such that Pr(PathGk (Pk(σ))) = Pr(PathGk (σ)) for all
σ ∈ ΣḠ, and some fixed integer k > 0, where PathGk (·) = Pathk(·) ∩ LG. A group of
permutations on ΣḠ, such as Pk, provides an equivalence relation (so-called the orbits) on
ΣḠ that together with G define the equivalence classes over the observation space. We
denote by Σk the abstract alphabet set that contains a unique representative symbol for
each partition, and by Rk : Σ → Σk the corresponding projection that maps each symbol
to its respective symbol in the abstract alphabet.

In the remainder, we use the k-gapped pair model combined with hypothesis testing to
infer Rk, and consequently, Σk.

5.2 k-gapped Pair Model

The k-gapped pair model [36] has been successfully applied in mining biological sequences
[57] as well as context-dependent text prediction [25]. We use the k-gapped pair model to
extract the symmetrical symbols with respect to reaching some target symbols in the some
execution samples.

A k-gapped pair model is a triplet (σ, σ′, k), where σ, σ′ ∈ Σ, and k ≥ 0 is an integer
that indicates the number of steps (gaps) between σ and σ′. If k = 0 the k-gapped pair is
equivalent to a bigram [83].

The k-gapped occurrence frequency of the symbols σ and σ′ is the frequency that σ
appeared within exactly k steps before σ′ over the sample path. Assuming that σ′ ∈ G,
we use the sum of k-gapped occurrence frequency of a given symbol in the sample set, and
define it as the k-prediction support.

Algorithm 11 shows computing k-prediction support of symbol σ. Symbols σ(j) and
σ(j+k+1) are the jth and (j+ k+ 1)th symbols of the sample path ui in each iteration of the
loop in line 3, and 1(σ(i)=σ∧σ(i+k+1)=σ′)(ui) in line 5 is the indicator function that returns 1

if σ(i) = σ and σ(i+k+1) = σ′; and 0 otherwise. The output of Algorithm 11 is the vector
[Fu1 . . . Fum ], the k-prediction support values of each sample path for symbol σ.

Complexity. The complexity of Algorithm 11 is quadratic in the length of each sample
path. Assuming that there are m samples with the size of O(L), the time complexity of
the algorithm is of O(L2 ·m).
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Table 5.1: The k-prediction support of all the symbols except the target labels, (hh, 6), with
respect to ϕF for k = 0, 1, 2, obtained from samples in Table 4.1 (scale ×10−3).

k = 0 k = 1 k = 2
(ii, 0) 0 0 11.01
(hh, 0) 4.63 10.03 11.6
(tt, 0) 5.11 10.53 11.61
(tt, 1) 0 0 0
(hh, 2) 0 0 0
(tt, 3) 0 0 0
(hh, 4) 0 0 0
(tt, 5) 0 0 0

1 ComputePredictionSupport(S, σ,G, k)

inputs : The iid sample set S = [u1 . . . um], σ ∈ Σ, the set of target labels G, and
an integer k ≥ 0

output: [Fu1 . . . Fum ]
2 begin
3 foreach ui ∈ S do
4 n← length(ui)

5 Fui ← 1
n−k−1

n−k−1∑
j=1

1(σ(j)=σ∧σ(j+k+1)∈G)(ui)

Algorithm 11: Computing the k-prediction support of σ over the sample set.

Example. Table 5.1 demonstrates the k-prediction support of the symbols (tt, 0) and
(hh, 0), for k = 0, 1, 2 with respect to ϕF ( GϕF

= {(hh, 6)}), over the 1000 samples shown
in Table 4.1.

The k-prediction support of σ is essentially the empirical estimation of Pr( PathGk (σ)).
Under the assumption that Fu1 , . . . , Fum is covariance-stationary [48], i.e., the mean is
time-invariant and the autocovarinace function depends only on the distance k, both of
which hold if the samples are iid and the underlying generating model is a deterministic
DTMC, we are able to use hypothesis testing to extract Rk.
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1 ExtractAbstractAlphabet(Sample set S,Σ,G, k)

output: Partition [G ∪ V1 ∪ · · · ∪ Vt ∪R] over Σ
2 begin
3 t← 1
4 R ← Σ \ G
5 while R 6= ∅ do
6 [σmax Fmax]← maxσ∈R

∑m
i=1 Fui

7 if Fmax = 0 then break
8 Vt ← {σmax}
9 for σ ∈ R \ {σmax} do

10 Fσ ← ComputePredictionSupport(S, σ,G, k)
11 if HypothesisTesting(Fmax − Fσ) then
12 Vt ← Vt ∪ {σ′}

13 R ← R \ Vt
14 t← t+ 1

Algorithm 12: Extracting the equivalence classes on the alphabet set.

5.3 Extracting Symbols with Similar Prediction Sup-

port

Algorithm 12 demonstrates the procedure of extracting the abstract alphabet set, based
on the symmetry between the k-prediction support of the symbols. The algorithm receives
the sample set, the alphabet set, the set of target symbols, and k, as inputs, and infers Rk,
by generating the partitions V1, . . . , Vt.

The algorithm iterates over the symbols not considered in any equivalence classes, which
are stored in R (the loop in lines 5-14). In each iteration, the symbol with the maximum
k-prediction support score is found in R and stored in σmax with its score in Fmax (line 6).
The score 0 for a symbol indicates that there is no path of length k to any target symbols
from that symbol and we can end the procedure (line 7); otherwise, the symbols with
statistically similar k-prediction support score to σmax are extracted from R, and inserted
in Vt (for loop in 9-12).

The statistical testing is conducted via the function HypothesisTesting, which per-
forms a two-sided hypothesis t-test to check H0 : Fmax−Fσ = 0. Depending on the chosen
confidence, an appropriate number of samples is required to test H0.
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Figure 5.1: The abstract
nondeterministic DTMC
obtained by relabelling the
states of the DTMC in
Figure 3.2 using R2.

Algorithm 12 terminates, if there are no more symbols to
classify, i.e., R = ∅, or if all the remaining symbols in R
have the k-prediction support equal to zero. We dedicate a
representative symbol for each extracted partition, including
G and R if it is not empty, and define Rk accordingly.

Complexity. At worst, a total number of O(|Σ|2) compar-
isons is required to extract the abstract alphabet. Given that
the size of the actual model is at least as large as |Σ|, storing
the entire vector of k-prediction support scores for all symbols
is impractical for large models. In fact, to make use of the
memory independence of the size of the alphabet, the com-
putation of F in Algorithm 11 can be performed on the fly,
which only depends on the size of the sample set. The space
complexity of the algorithm depends on the size of the ab-
stract alphabet, which at worst is O(|Σ|), i.e., when there is
no symmetry between symbols. However, for a model that
has symbols with symmetry relation, our approach is more
memory-efficient compared to inferring the abstract alphabet
from a model that is trained from the concrete traces. In
addition, training a model from abstract traces is in general
faster than training a model from the concrete traces.

Example. The equivalence classes obtained by Algo-
rithm 12 for k = 2 are as follows: R2(σg) = gg,∀σg ∈
GϕF

, R2(σv) = v1, ∀σv ∈ V1 = {(ii, 0), (hh, 0), (tt, 0)}, R2(σn) = nn,∀σn ∈ R =
Σdie − Gϕ − V1. Notice that according to the original model in Figure 3.2 the probability
of reaching (hh, 6) from (ii, 0), (hh, 0), (tt, 0) in 3 steps (within 2 gaps) is equal.

5.4 Prediction with Abstract Models

Let Mk be the quotient of M, where Σ is replaced with Σk, and Lk : S → Σk such that
Lk(s) = Rk(L(s)). We call Mk the abstract model, and it may be nondeterministic due
to the applied abstraction.

64



Example. Figure 5.1 demonstrates the abstract model of the model in Figure 4.2 rela-
belled with R2. Relabeling the model creates nondeterminism as the sequence (v1v1v1)
corresponds to several state sequences in the model.

Observe that learning and abstraction are commutative [89], that is, we can apply
abstraction to the traces and learn a model from abstract traces as described in Section 5.1,
or learn a model from the actual traces and then apply abstraction. As we show in the
following sections, the prediction results in both cases are similar; however, as mentioned
before applying abstraction to the traces and learning from abstract traces leads to a faster
learning process and is more efficient in space.

Learning the prediction model from abstract traces is similar to the algorithms described
in Section 4.1. Given that Mk is deterministic, in the following we show that Mk is
bisimilar to M. Therefore bounded predictions from any state in both models are equal
(Theorem 4). In the case that Mk is nondeterministic, we use a hidden state variable to
infer the nondeterminism imposed by the abstraction.

5.4.1 Prediction via Deterministic Abstract DTMC

The following theorem is an extension of Theorem 1 in [89], which shows that, given that
Mk is deterministic, in the limit the predictions are equivalent to the predictions made via
the true model.

Theorem 4. Let Mk : (S,Σk, π,P, Lk) be the representation of M, where the states are
relabelled based on the symbols in Σk. Suppose G ⊆ Σ is the set of target symbols, and gg
is their representative symbol in Σk. Also let M# : (S̃,Σk, π̃, P̃, L̃) be the learned model
from the samples of Mk, using any PAC learning algorithm. Then, under the assumptions
of the convergence of the learning algorithm,

Pr(s̃ |= ♦≤h(gg)) = Pr(s |= ♦≤hG),∀s̃ ∈ S̃, ∀s ∈ S. (5.1)

Proof. First observe that the prediction in our setting is a bounded LTL property, there-
fore (5.1) is valid for the initial state (Case i in Theorem 1 in [89]). Given that Mk is a
deterministic DTMC, the states of the trained model M#, almost surely bisimulates the
states of Mk in the limit (see Theorem 1 in [80]). As a result, under the assumptions of
the convergence of the learning algorithm, (5.1) follows.

Notice that the state-merging algorithms described in Section 4.1.1 train a deterministic
DTMC regardless of the generating model. Obtaining the actual nondeterministic model
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Figure 5.2: Two abstract prediction models obtained from using 2-prediction support,
which gives R2 and the alphabet {gg, v1, nn}.

means retrieving the entire model, which defies the purpose of abstraction. Since the
number of states in an HMM is given as a parameter, we can achieve a trade-off between
the size of the model and the prediction accuracy by allowing to adjust the number of
hidden states to obtain a small prediction model with a reasonable accuracy.

Example. Figure 5.2a demonstrates the learned deterministic DTMC model from the
abstract traces generated from the nondeterministic model in Figure 5.1.

5.4.2 Prediction via Nondeterministic Abstract DTMC

If the generating model becomes a nondeterministic abstract DTMC due to abstraction,
we can use HMM to resolve the nondeterminism. In the abstraction setting, observations
are the symbols of the abstract alphabet, Σk, and hidden states are the states of the
generating model, i.e., the nondeterministic DTMC. The random hidden state variable
creates an extra degree of freedom which allows to distinguish states that emit the same
symbol but have different joint probability distributions.

A similar result to Theorem 4 can be achieved for nondeterministic models (an extension
of Case ii of Theorem 1 in [89] to all the states). However, that relies on the convergence of
the learning algorithm, which as we discuss in Section 4.1.2 is a hard problem for HMMs,
and approximate methods are applied instead. In addition, even if the convergence of
the trained nondeterministic model to the generating nondeterministic abstract DTMC is
guaranteed, the trained model is as large as the generating model, and applying abstraction
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becomes useless. As a result, we may choose the number of hidden states in an HMM based
on the prediction accuracy measures defined in Section 4.6, i.e., compute the prediction
error of HMMs with different sizes on a set of testing samples and select the one with
minimum error.

Example. Figure 5.2b displays the trained HMM over the abstract traces obtained by
R2 from Table 5.1. The HMM has 4 hidden states, similar to the size of the trained
DTMC in Figure 5.2a. Each hidden state corresponds to the set of states in the DTMC
in Figure 5.1 with the same labels. There are two hidden states associated with the label
v1 to distinguish between the states s3 and s6 in Figure 5.1 that reach the target state,
labelled gg, in 2 steps with different joint probabilities.

5.5 Limitations

Our abstraction technique relies on the assumption that there is a symmetry relation be-
tween the observable symbols. The symmetry relation is defined in terms of the probability
of reaching some target symbols. As we show in the next section, in some applications this
symmetry exists which enables us to reduce the size of the prediction model. However, in
some applications it is difficult to extract a symmetry relation between the emitted events
by the system. In particular, in systems that emanate the events with complex dynamic
relation it is more difficult to find a symmetry relation. For instance, in a vehicle the speed
and the steering angle may have some relation that are not observable from the values di-
rectly. One solution is to apply a transformation on the values of the observable variables
such that the existing symmetries unravel. Finding and applying such transformations are
beyond the scope of this thesis, but are interesting directions to follow in the future.

5.6 Experiments

We use a model of the Herman’s self-stabilising algorithm [55] to demonstrate the abstrac-
tion component in Prevent . The algorithm provides a protocol for N identical processes (N
is odd) in a token ring network, with unidirectional synchronous communication. Starting
from an arbitrary configuration, the network will eventually converge to a defined stable
state within a finite number of steps. The token is infinitely circulated in the ring amongst
the processes in a fair manner. The stable state is defined such that there is exactly one
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Table 5.2: The prediction results of different models on 100 random samples.

Learned DTMC
conc.

Learned DTMC
abst.

Learned HMM

N
Orig.
Alph.

Size
Training
Time(s)

Abst.
Alph.

Size
Training
Time(s)

MSPE
10−02 Size

Training
Time(s)

MSPE
10−02

5 32 18 1047.12 5 5 16.12 27.57 4(7) 9.95 0.70
7 128 1319 19605.47 3 3 866.27 32.28 3(5) 61.13 1.39
9 512 7914 135004.38 2 2 275.54 79.36 3(4) 47.16 1.79
11 2048 O/M − 2 2 2696.73 87.52 2(3) 2496.20 1.35

process that has the token. The process i has a local Boolean variable xi. If xi = xi−1

there is a token with process i, in which case process i randomly chooses to set xi to the
next value or leave it unchanged, i.e., equal to xi−1. See Appendix A.3 for a Prism model
of 5 processes.

The observation space for a ring with N processes has 2N symbols, each representing
a different combination of the values of the local Boolean variable in each process. The
observation space maps one-to-one to the state space of the corresponding DTMC. The
monitoring is performed for the property ϕstable = ♦≤h“stable” which translates into the
target symbols in which only one process has the same label as its left neighbour, i.e.,
there exists only one i such that xi = xi−1. The monitoring procedure throughout the
experiments is performed offline; however, in principle the online monitoring procedure is
the same, except that the execution path keeps expanding as the system continues running.

We collected 1000 iid samples from the DTMC using the Prism simulation tool [90].
The length of the samples is uniformly distributed and constrained by an upper bound. We
first run Algorithm 12 to extract the predictive symbols for the target symbols specified
by ϕstable. We replaced the symbols of the sampled traces based on the found partitioning,
and performed the training algorithms to learn a deterministic DTMC as well as an HMM.

Table 5.2 summarizes the results of three different prediction models compared to the
prediction results obtained from the original model for N ∈ {5, 7, 9, 11}, k = 0 (a bigram
model), and prediction horizon equal to one step. The evaluation of the prediction is based
on the results from the true model (see Section 4.6.1). The size of the original model is
identical to the size of the alphabet, as there is exactly one state corresponding to the val-
uation of the local variables in each process. We used Aalergia [1] to train deterministic
DTMCs from both the concrete and abstract traces, and Matlab HMM toolbox to train
the HMMs. The training was performed on an Ubuntu 17.10 machine with 24GB RAM.
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Training a DTMC from concrete traces was aborted for N=11 due to lack of memory,
as the size of the FPTAs grows exponentially with the size of the alphabet. The trained
DTMCs from abstract traces have significantly smaller size in direct relation to the size
of the inferred abstract alphabet, and consequently a shorter training time. This result is
consistent with the fact that the actual model is highly symmetrical with respect to the
stable states, i.e., the probability of reaching the stable states from the states within an
equivalence class in one step is equal (see Appendix A.3).

The sizes of the trained HMMs, shown in parentheses, are comparable to the size of their
equivalent abstract DTMCs. As we can see HMMs with comparable size are substantially
more accurate in making predictions than the abstract DTMCs. The state estimation also
benefits from the small size of the HMM with virtually no computational overhead. Since
the prediction horizon is formulated as an upper bound, the probability of an accepting
extension increases as the prediction horizon increases, which in turn results in a lower
MSPE. However, as depicted in Figure 5.3a a trained HMM has smaller error for short-
range predictions. For example, for h = 5 the MSPE of the HMM is 0.03×10−2 as opposed
to 0.85× 10−2 for the abstract DTMC.

Figure 5.3b demonstrates the prediction results of the DTMC trained from concrete
traces, and the traces abstracted by k-prediction support, using k = 0, 5, 10. The prediction
results are from the initial state, and as we can see, the models learned from abstract traces
almost perfectly follow the values of the actual model. The best result belongs to k = 10,
which echos the maximum expected time to reach a stable state, i.e., that the path to the
target labels from the initial state is of length at most about 9.

5.7 Related Work

Our approach is novel in terms of applying learning and abstraction at the trace level to
predictive RV, and using HMM to handle nondeterminism. In [74] using an abstraction
of a program is suggested to develop a predictive RV framework. The abstraction model
is similar to the notion of prediction model in Prevent , that is neither extremely large
to have the state-explosion problem similar to model checking, nor is non-existent similar
to the standard RV, which provides no information about the future behaviour of the
program. The approach in [74], however, assumes that the abstraction is given, and the
system is white-box; whereas, in our framework the abstraction is inferred from the sample
executions of a black-box system. The idea of using abstraction for a black-box system
during learning is originally discussed in the Aalergia paper [80]. However, no detail is
provided on how to obtain a good abstraction.
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(a) MSPE of the trained DTMC and
HMM on abstract traces with k = 0,
N = 5 (prediction horizon [1, 10]).

(b) The prediction results from the initial
state of different prediction models com-
pared to the original model for N = 9.

Figure 5.3: The experiment results for abstract models in the Herman algorithm.

Nouri et al. [89] use abstraction and learning to expedite statistical model checking [73].
Their approach is the probabilistic variant of black box checking [92] in which the inferred
model, in the form of a DFA, is checked against some properties. In our case, we use
abstraction to obtain a smaller prediction model for predictive RV. In [89] the atomic
propositions in the property are used for abstracting the traces. We perform a statistical
analysis on the traces to obtain partitions that leave the prediction probabilities intact.
We also use HMM to handle the nondeterminism induced by abstraction.

Aichernig & Tappler [2] employ black-box checking in the context of reachability anal-
ysis of stochastic systems with controllable inputs. Hence, they use a Markov Decision
Process (MDP), an extension of a Markov chain with nondeterministic choices, as a model
that is trained from random samples. They use the inferred MDP to obtain an adver-
sary with which they collect new samples and incrementally train new MDPs. LAR [127]
is a combination of probabilistic model learning and counterexample guided abstraction
refinement (CEGAR) [56]. These approaches are orthogonal to our technique and it is
straightforward to extend Prevent to training other models such as MDP, and applying
probabilistic CEGAR to obtain a model that guarantees checking affirmative properties.

jPredictor [27] is a runtime analysis tool for concurrent programs that creates a Lam-
port’s happens-before causality abstract model [72] by dynamic slicing [26] and capturing
the sliced causality with vector clocks [112]. The model can then be exhaustively explored
and verified against monitorable safety properties. Similar to the abstraction proposed
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in this chapter, slicing traces in [27] is a way to abstract away the events that are not
contained in the property, without hindering the soundness of the verification. Nonethe-
less, the implementation of jPredictor slightly deviates from the sound implementation of
slicing, without raising any false alarms in practice [27], as sound slicing imposes a high
computational cost for large traces.
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Chapter 6

Learning Prediction Model for Rare
Properties

This chapter addresses the challenge to predict a property when the occurrence of the
property is rare, i.e., when the property is satisfied or violated with very low probability
(e.g., eventually “error”). In short, we call such properties rare properties. Verifying
the rare properties at runtime is common in real applications for two reasons. First, the
violation or satisfaction of such properties are not typically caught by testing due to its
incomplete nature. Second, although more thorough verification techniques, such as model
checking, may be able to verify a rare property, the cost-benefit of fixing the system to
satisfy a rare property may lead the engineers not to change the system, and instead have
a monitoring mechanism to predict the improbable but possible violations at runtime.

Constructing the prediction model for rare properties, however, poses two main chal-
lenges. First, in order to construct an accurate prediction model for rare properties, it
is necessary to observe the system for an unreasonably long time to collect at least one
sample that has one occurrence of the rare properties. Second, the total number of train-
ing samples also needs to be large because we need to observe most of the prefixes that
lead to the satisfaction or violation of the rare properties to be able to build an accurate
prediction model. A large training set of execution samples typically guarantees having
observed most of the prefixes leading to the rare properties, but leads to a slow learning
process.

Our proposed solution adopts notions from rare event simulation techniques [107, 106]
to accelerate the learning of an accurate model of rare properties. More specifically, we
use Importance Sampling (IS, see, e.g., [107, Chap. 5]), which is a standard technique by
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which a measure of an inconvenient probabilistic distribution is estimated by sampling
from a convenient distribution over the same sample space. Typically, as in the present
context, the inconvenience arises because the measure of interest is a rare event and the
convenient distribution makes the rare event more likely. Our approach assumes that the
monitored systems have accessible parameters that allow its behaviour to be modified, and
that there is a well-defined likelihood ratio. The likelihood ratio defines the relationship
between the original distribution and the modified distribution for rare properties. The
sample set, which is drawn from the modified distribution and is compensated on the fly
when learning, gives an accurate estimate of the rare property with fewer samples.

Finding an optimized set of parameters of the system to create the modified distribu-
tion with respect to the rare properties is not discussed in this chapter, but for example,
starting with randomly chosen parameters and how the parameters affect the likelihood
ratio, without having access to a complete and explicit model of the system, it is pos-
sible to find the optimal parameters using an iterative algorithm based on cross-entropy
minimization [58, 62].

In this chapter, we first introduce IS and its related concepts (Section 6.1). We use the
accessible parameters of a stochastic system to alter its behaviour to create IS distributions
with known relationship to the original system distribution. We assemble a training set
by combining samples from arbitrarily many distributions so that the training set covers
a range of prefixes leading to the rare event. We construct a weighted FPTA from the
training set by replacing integer frequency counts with fractional weights based on the
likelihood ratios of the true distribution and the IS distributions (Section 6.2). We show
how to use the weighted FPTA from a single distribution to build a DTMC as a prediction
model in Prevent , that produces the prediction results according to the original distribution
(Section 6.3). Finally, we demonstrate the usefulness of our approach on a file transmission
protocol [51], predicting the rare failure of a sender to report a successful transmission
(Section 6.5), and discuss the related work (Section 6.6).

6.1 Importance Sampling

Suppose a stochastic system with distribution D : Σ∗ → [0, 1], from which we draw random
samples u ∈ Σ∗ according to D, denoted u ∼ D. The indicator function 1ϕ : Σ∗ → {0, 1}
returns 1 iff u satisfies some property ϕ, then the probability of satisfying ϕ under D,
denoted PrD(ϕ), can be estimated using the standard Monte Carlo (MC) estimator,
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PrD(ϕ) ≈ 1

N

N∑
i=1

1ϕ(ui), with ui ∼ D, (6.1)

where N ∈ N iid samples, u1, . . . , uN , are drawn at random according to D and evaluated
with respect to ϕ. The proportion of samples that satisfy ϕ is an unbiased estimate of
PrD(ϕ).

If satisfying ϕ is a rare event under D, i.e., PrD(ϕ)� 1, the number of samples must
be very large to estimate PrD(ϕ) with low relative error [107, Chap. 1]. The intuition of
this is given by the fact that N must be greater than or equal to 1/PrD(ϕ) to expect to
see at least one sample that satisfies or violates ϕ.

Given another distribution, D′ : Σ∗ → [0, 1], such that 1ϕD is absolutely continuous
with respect to D′, PrD(ϕ) can be estimated using the importance sampling estimator,

PrD(ϕ) ≈ 1

N

N∑
i=1

1ϕ(ui)
D(ui)

D′(ui)
, with ui ∼ D′. (6.2)

N samples are drawn according to D′ and the proportion that satisfy ϕ is compensated
by the likelihood ratio, D/D′. Absolute continuity of 1ϕD with respect to D′ requires that
for all u ∈ Σ∗, D′(u) = 0 =⇒ 1ϕ(u)D(u) = 0. This guarantees that (6.2) is always well
defined. If ϕ is not a rare event under D′, (6.2) will typically converge faster than (6.1).
Under these circumstances, the IS estimator (6.2) is said to have lower variance than the
standard MC estimator (6.1). Equation (6.2) is the basis of Statistical Model Checking
(SMC) tools that use IS [59, 20].

We call D the original distribution and D′ the IS distribution, using the symbols as
synonyms for the explicit terms in the remainder of this chapter. Later, we also use
the terms MC and IS to distinguish simulations or models generated from the original
distribution and from an importance sampling distribution, respectively.

In the present context, we assume that D and D′ are members of a family of dis-
tributions generated by two DTMCs, that are identified by different sets of transition
probabilities over a finite set of states. Notice that the model can be described in a suc-
cinct way without having to explicitly build the entire state space. Hence by knowing
some parameters of the model description, we can change the distribution generated by
the underlying DTMC. More specifically, we use the Prism guarded commands format to
describe a model [70]. In the guarded command description of the model we provide a
set of commands that are guarded via predicates over the variables of the model. If the
guard is satisfied the command is executed, where the values of some variables are updated
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based on a probability distribution (see the models in Appendix A). Knowing the update
probabilities, we can infer the transition probabilities without building the state space of
the model. Consequently, without access to the explicit representation of the model, we are
able to calculate an individual transition as well as the likelihood ratio of a trace defined
as the ratio of the transition’s probability under D divided by its probability under D′.
Absolute continuity implies that every zero probability transition in D′ corresponds to a
zero probability transition in D or a transition that does not occur in a trace that satisfies
ϕ.

6.2 Training on Rare-Event Samples
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Figure 6.1: The DTMC of Fig-
ure 3.2 modified to produce
more events (hh, 6).

In this section, we present our modification of the Aler-
gia algorithm (Section 4.1.1) in combination with impor-
tance sampling such that, without increasing the sam-
ple complexity [108], i.e., the size of the training set, a
DTMC is trained to predict the satisfaction or violation
of a rare property. Although we use the Alergia al-
gorithm [34] to explain our approach; in principle, it is
applicable to any learning algorithm that uses an FPTA
in its learning process (e.g., [82]).

We modify building the FPTA (the function BuildF-
PTA in Algorithm 1), to adjust the probabilities of the
final PTA with respect to the sample distribution gener-
ated by the importance sampling.

To achieve this goal, first we use the notion of Like-
lihood Ratio (LR) that is obtained by the importance
sampling for each sample. The LR is effectively the in-
verse of the bias introduced in the transition probabilities
of the model by the importance sampling to increase the
probability of the rare events (see Section 6.1).

Let D(u) be the probability measure of the path u
under the original distribution D, and D′(u) be the prob-
ability measure of the same path under the importance
sampling distribution, D′. Then the likelihood ratio of u
is defined as follows:
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trace freq. LR trace freq. LR
(ii, 0) 200 1 (ii, 0)(hh, 0)(hh, 0)(hh, 2) 4 5
(ii, 0)(hh, 0) 40 5 (ii, 0)(hh, 0)(hh, 0)(tt, 3) 4 5
(ii, 0)(tt, 0) 360 5/9 (ii, 0)(hh, 0)(tt, 0)(hh, 0) 4 5
(ii, 0)(hh, 0)(hh, 0) 12 5 (ii, 0)(hh, 0)(tt, 0)(tt, 1) 4 5
(ii, 0)(hh, 0)(tt, 0) 12 5 (ii, 0)(tt, 0)(hh, 0)(tt, 0) 28 125/81
(ii, 0)(tt, 0)(hh, 0) 44 25/81 (ii, 0)(tt, 0)(hh, 0)(hh, 6) 252 125/729
(ii, 0)(tt, 0)(tt, 0) 12 25/9 (ii, 0)(tt, 0)(tt, 0)(hh, 4) 12 25/9

(ii, 0)(tt, 0)(tt, 0)(tt, 5) 12 25/9

Table 6.1: 1000 IS traces generated from the DTMC in Figure 6.1.

LR(u) =
D(u)

D′(u)
(6.3)

Example. Figure 6.1 displays the modified version of the model in Figure 3.2 obtained
by an importance sampling distribution that increases the probability of ϕF to ≈ 0.8
(the changed transition probabilities are shaded). The samples randomly generated from
this model, with the likelihood ratio for each sample, are shown in Table 6.1. The LR
for each training sample is computed using (6.3). For example, LR((ii, 0)(tt, 0)(hh, 0)) is
0.5×0.5
0.9×0.9

= 25/81.

6.2.1 Weighted Prefix Tree Acceptor

We define the notion of a Weighted Prefix Tree Acceptor (WPTA) to obtain an automaton
as the representation of the samples with different likelihood ratios. A WPTA is similar to
an FPTA except that instead of the integer frequency counts, fractional numbers are used
as weights.

Definition 19 (WPTA). A Weighted Prefix Tree Acceptor (WPTA) is a tuple A : (Q,Σ,
WI , δ,WF ,WT ), where Q is a non-empty finite set of states, Σ is a non-empty finite al-
phabet, Fr I : Q → R is the initial weighted frequency of the state(s), δ : Q × Σ → Q is
the transition function, FrF : Q → R is the final weighted frequency of the state(s), and
FrT : Q× Σ×Q→ R is the transition weighted frequency function between two states.

Let original distribution D : Σ∗ → [0, 1] be absolutely continuous with respect to impor-
tance sampling distributions D′1, . . . ,D′M , with D′i : Σ∗ → [0, 1] for i ∈ {1, . . . ,M}. Then
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let N1, . . . , NM be the number of samples drawn at random using D′1, . . . ,D′M , respectively.

When constructing our WPTA, we assign a weight to each frequency count along the
trace. If pi denotes the probability measure of some property under D and W i is the
expected weight applied to traces drawn from D′i, then we require that in the limit of large
N1, . . . , NM ,

pi =
NiW i∑M
j=1NjW j

(6.4)

That is, we expect the normalized total frequency to equal the total measure of prob-
ability, which follows from the probability axioms and the law of large numbers. The
distribution D′i is obtained such that the likelihood of the rare event is increased (e.g., the
probabilities of the transitions that lead to an error state are increased). Given that the
properties of interest in the present context are rare, in practice the values of pi typically
are estimated using rare event SMC. In order to derive a formula to calculate the weight
applied to an individual simulation trace, in what follows we do not consider the potential
statistical errors arising from finite sampling.

Re-arranging (6.4) for W i gives:

W i =
pi
∑

j∈{1,...,M}\{i}NjW j

Ni(1− pi)
,

however there is no unique solution because the numerator on the right hand side contains
all the other unknown weights. To sufficiently constrain (6.4), for convenience, we set∑M

j=1 NjW j to be equal to
∑M

j=1Nj. Hence, the expected weight for samples from D′i is
given by

W i =
pi
∑M

j=1Nj

Ni

The actual weight used for simulation trace u ∼ D′i is dependent on its likelihood ratio and
is thus given by

Wi =
D(u)

Di(u)

∑M
j=1 Nj

Ni

(6.5)

The relative values of the set of weights calculated by (6.5) are unique up to a posi-
tive scaling factor. This scaling factor may be important when deciding which nodes are
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1 BuildWPTA(Sample dataset S, LR)

output: WPTA A
2 begin
3 A ← (Q,Σ,WI , δ,WF ,WT )
4 Q← {qu|u ∈ Pref(S)} ∪ {qε}
5 WI(qε)←

∑
∀u∈S(u.freq)× LR(u)

6 forall ua ∈ Pref(S) do
7 δ(qu, a)← qua
8 WT (qu, a, qua)← ua.freq × LR(ua)

9 forall u ∈ S do
10 WF (qu)← u.freq × LR(u)

11 return A
Algorithm 13: Building WPTA from the samples obtained by importance sampling.

compatible for merging, since metrics such as the Hoeffding bound [23] or the Angluin
bound [80], are sensitive to the absolute values. We adhere to the Hoeffding bound in our
experiments.

6.3 WPTA Construction from a Single Distribution

In this section we describe the steps of the algorithm to build a WPTA. To simplify the al-
gorithm description, in the remainder of this section we assume that the samples are drawn
from a single distribution, therefore, the weights become essentially the likelihood ratio for
each sample defined in (6.3). In the case of multiple distributions, it is straightforward to
adjust the weights according to the number of samples generated from each distribution
and use (6.5) instead.

Algorithm 13 demonstrates the algorithm to build the WPTA from the IS samples,
where the frequencies are multiplied by the likelihood ratio of each sample. The input is a
dataset which contains samples, denoted by u, their frequency, denoted by freq, and their
likelihood ratio, denoted by LR, provided by importance sampling. Line 4 initializes the
states of the WPTA with all the prefixes that exist in the dataset, with an additional state
qε that represents the empty prefix, and used as the initial state whose initial weighted
frequency is equal to the sum of the weights of the entire dataset (line 5). The remaining
states have the initial weighted frequency equal to zero. For each ua ∈ Pref(S), where
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q0 q1 q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

(ii, 0)|1000 (hh, 0)|400 (hh, 0)|100

(tt, 0)|100

(tt, 0)|400

(hh, 0)|100

(tt, 0)|100

(hh, 2)|20

(tt, 3)|20

((hh, 0)|20

(tt, 1)|20

(tt, 0)|43.21

(hh, 6)|43.21

(hh, 4)|33.33

(tt, 5)|33.33

Figure 6.2: WPTA constructed from the samples of Table 6.1.

a ∈ Σ, the for loop in lines 6-8 sets the transition function between the states qu and qua,
and its transition weighted frequency by multiplying the frequency of ua in the dataset to
its LR (lines 7-8). The final weighted frequency is obtained as the product of the frequency
of each sample and its likelihood ratio (line 10).

Example. Figure 6.2 illustrates the WPTA obtained from the IS samples shown in Ta-
ble 6.1. Table 6.2 shows the final weighted frequencies of each state of the WPTA, which
are used to test the compatibility of two states when we are trying to merge them to obtain
the final PFA (see Algorithm 1).

Correctness & Complexity. Note that the weights in a WPTA are LR(u) × D̃′(u),
where D̃′(u) is the empirical probability of u according to the distribution D′. Using (6.3),
it is trivial to observe that the weights are essentially giving the same empirical probability
distribution that the FPTA provides, i.e., D. Therefore, the correctness of our approach for
predicting the rare properties is implied by the convergence analysis of the compatibility
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Table 6.2: The prefixes and their final weighted frequencies associated with each state of
the WPTA in Figure 6.2.

state prefix
fin. wei.

freq.
state prefix

fin. wei.
freq.

q0 ε 0 q1 (ii, 0) 200
q2 (ii, 0)(hh, 0) 200 q3 (ii, 0)(tt, 0) 200
q4 (ii, 0)(hh, 0)(hh, 0) 60 q5 (ii, 0)(hh, 0)(tt, 0) 60
q6 (ii, 0)(tt, 0)(hh, 0) 13.58 q7 (ii, 0)(tt, 0)(tt, 0) 33.33
q8 (ii, 0)(hh, 0)(hh, 0)(hh, 2) 20 q9 (ii, 0)(hh, 0)(hh, 0)(tt, 3) 20
q10 (ii, 0)(hh, 0)(tt, 0)(hh, 0) 20 q11 (ii, 0)(hh, 0)(tt, 0)(tt, 1) 20
q12 (ii, 0)(tt, 0)(hh, 0)(tt, 0) 43.21 q13 (ii, 0)(tt, 0)(hh, 0)(hh, 6) 43.21
q14 (ii, 0)(tt, 0)(tt, 0)(hh, 4) 33.33 q15 (ii, 0)(tt, 0)(tt, 0)(tt, 5) 33.33

test on an FPTA in the large sample limit (see Theorem 3). The time complexity of
building a WPTA has the additional multiplication operations to compute the weights
which is in the size of the WPTA. The order of merging and training remains cubic with
the size of the training set [23].

6.4 Limitations

As described in Section 6.1, the learning technique described in this chapter is based on
the availability of the likelihood ratio, DD′ in (6.2), without needing to build the underlying
generators for the distributions D and D′. In some applications finding the likelihood
ratio without constructing the model is possible. For example, in the applications that the
model of the system is based on the samples generated from simulations, such as in SMC,
the likelihood ratio can be calculated while a sample path is being simulated. In some
real applications, however, finding a well-defined likelihood ratio is much more challenging,
particularly if the samples are generated from the real execution of the entire system.

6.5 Experiments

We performed experiments to demonstrate the predictive performance of our IS approach
applied to the bounded retransmission protocol (BRP) model of [32]. The BRP model
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describes a sender, a receiver, and a channel between them, which the sender uses to send
a file in chunks with a maximum number of retransmissions for each chunk defined as a
parameter. We use 64 chunks with at most 2 retransmissions. See Appendix A.4 for the
Prism model description.

The rare property that we consider is the sender does not report a successful transmis-
sion [32], which we express in LTL as ♦ “error”. The probability of this property, expressed
as Pr(♦ “error”), is approximately 1.7 × 10−4. We also consider the time-bounded prop-
erty that the sender does not report a successful transmission within k steps, expressed as
♦≤k “error”.

The learned models of the BRP using standard MC and IS were constructed from
simulation traces generated by Plasma [59], according to the algorithms defined in Sec-
tions 4.1.1 and 6.3, respectively. The resulting models were then checked with respect to
the above properties using Prism [71]. The results are illustrated in Figures 6.3 and 6.4.
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Figure 6.3: Predictive performance of a typical 103-trace IS model of BRP (labelled IS) vs.
that of 1000 104-trace MC models (shaded area).

Using standard MC simulation of the original distribution of the BRP model, we con-
structed 1000 learned models, each using a training set of 104 independently sampled
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Figure 6.4: Prediction distributions of learned models of BRP.

traces. These training sets included between 6 and 34 traces that satisfy the property.
Since the performances of different models generated by IS are visually indistinguishable,
for comparison we trained just a single IS model, using a training set of only 103 sampled
traces. The IS training set comprised 500 traces that satisfy the property, selected from
simulations of an IS distribution over the original BRP model, and 500 traces that do
not satisfy the property, selected from simulations of the original distribution of the BRP
model. By combining these traces in accordance with (6.5), the resulting IS distribution
adequately covers the parts of the state space related to both satisfying and not satisfying
the property.

The results for the MC models are represented as a shaded area that encloses the min-
imum and maximum probabilities recorded for each value of k. To give a better intuition
of the distribution of these results, we plot lines representing the empirical mean (µMC)
and empirical mean ±1 standard deviation (µMC ± σ). We also plot the performance of
a typical MC model (labelled MC), where each apparent step in the curve corresponds to
one of the 24 traces that satisfy the property in its training data.

The results for the IS model are almost coincident with the reference curve (ref), cal-
culated by evaluating the property with respect to the original model of the system. The
small difference, occurring at around k = 400 steps, arises due to the learned models using
an abstraction based on only two variables in the original system.

The results presented in Figure 6.3 are with respect to a property in a single initial
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state. To assess the performance of our approach in constructing a predictive monitor, we
consider the predictive accuracy of all the states in the learned models using MC and IS,
with respect to probability Pr(♦ “error”). As in the previous experiments, we constructed
an MC model using 104 traces and an IS model using 103 traces. To eliminate an obvious
source of discrepancy, we generated multiple sets of 104 MC traces and selected a set with
exactly 17 traces that satisfy the property. This ensures that the MC model is based on
approximately the same probability as the IS model.

Each training set contains a different randomly selected set of concrete states in the
original model. Hence, even though we use the same merging compatibility parameter
for both sets (α = 10), the two learned models are different. Also, since we consider the
labels of the states, each learned model state maps to a different set of concrete states in
the original model. Hence, we use the evaluation measure described in Section 4.6, and
for every state in each learned model, we calculate the probability of the property in the
learned model and, for comparison, calculate the probability of the property with respect
to its associated set of concrete states in the original model.

The results of our calculations are two pairs of sets of probabilities, which we visualize
as cumulative distributions in Figures 6.4a and 6.4b. In this form, the maximum vertical
distance between the curves in each pair is a measure of similarity of the two distributions
(the Kolmogorov-Smirnov (K-S) statistic [76]). The K-S statistic for the MC model is 0.63,
while that of the IS model is 0.19 As expected, the IS model outperforms the MC model,
despite using an order of magnitude fewer training samples for IS and hand-selecting a
good MC training set.

6.6 Related Work

In the context of SMC, importance sampling [58, 62] and importance splitting [60, 61, 21]
have already been used to mitigate the joint problems of intractable state space and rare
events. Since SMC is essentially runtime verification of an accurate existing model that
is deliberately not constructed in its entirety (see Section 3.6.2), rare event SMC is not
inherently predictive, so not immediately applicable in the current context. In [21] a biased
automaton is used to increase the probability of finding a rare error in randomized testing.

The focus of this chapter is on training a prediction model using rare-event samples. Im-
portance sampling is used in the related context of reinforcement learning [115] to estimate
the optimal policy in an unknown partially observable MDP [94, 98, 93]. Our technique
uses the state-merging method as a form of supervised learning to build a partially ob-
servable DTMC for a rare event. The authors of [128] introduce a genetic algorithm to
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predict rare events in event sequences. Their approach is based on identifying temporal
and sequential patterns through the mutation and crossover operators. Our approach in-
stead uses importance sampling to identify the rare-event samples, and diversifies them
by adding other (importance) sampling distributions. Our purpose is to construct the
underlying model that captures the probabilities of a rare event.
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Chapter 7

Conclusion

7.1 Summary

This dissertation introduces predictive runtime verification for stochastic systems. The
thesis statement is that predictive runtime verification of a stochastic system is feasible,
effective, and useful.

We showed the feasibility by introducing Prevent , a predictive runtime verification
framework for monitorable properties. The core part of Prevent involves constructing a
predictive monitor. The predictive monitor is essentially a lookup table that consists of
the reachability analysis results for each state of the prediction model. The prediction
model is trained from sample execution paths, and is in the form of a DTMC or an HMM.
The monitor produces a quantitative output that represents the probability that from
the current state, the system satisfies or violates a property within a finite horizon. The
state of the system is either obtained directly by the Forward-Backward algorithm,
or estimated using the Viterbi algorithm. Two measures are introduced for empirical
evaluation of the prediction. One measure is defined based on the prediction result from
the true model of the system, if it is available. If the true model is not available, another
measure is introduced based on the statistical comparison between the monitor prediction
and that of a set of execution path samples with known prediction results. Prevent is
evaluated on two case studies: the randomised dining philosophers problem, and the flight
control of a hexacopter, where the monitor predicted the satisfaction or violation of the
given properties beforehand. In both cases, the trained models are extracted from bad
traces, thus, the monitor has a tendency to produce false positives. To reduce the number
of false positives, we involve a mixture of trained models based on good and bad traces.
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The effectiveness of the framework is demonstrated through reducing the size of the
prediction model. We applied abstraction at the observation space to achieve this goal.
We proposed inferring a projection relation from a random set of samples, that maps the
concrete alphabet to an abstract alphabet of a smaller size. The abstract alphabet is then
used to abstract traces that are used in building the prediction model. Our inference tech-
nique is based on finding a symmetrical relation between the symbols of the alphabet, using
a k-gapped pair model, and lumping them into equivalence classes. We use the abstract
traces to train deterministic DTMC as well as HMM to handle a potential nondeterminism
induced by abstraction. We show that the prediction results remain intact with the model
trained from the abstract traces, under the constraints of the learning algorithms. We
evaluate our abstraction approach on the distributed randomized algorithm, i.e., a model
of the Herman’s algorithm, and demonstrated that in general the trained HMM from the
abstract traces is more accurate than the trained DTMC. Our abstraction technique is
most effective on the systems with large observation space, and where the model benefits
from symmetry in the probability of satisfying or violating a given property. Our experi-
ments confirmed this observation, where the model of the Herman’s algorithm has a large
observation space, exponential to the number of processes, and is highly symmetrical with
regard to satisfying the given property.

Monitoring rare properties at runtime is essential in real-world applications. The sta-
tistical analysis of the samples requires a sufficient number of execution samples, both for
learning and abstraction purposes. For a rare property, the number of samples might be so
large that the introduced training algorithm to learn a prediction model is not as effective.
Therefore, to make our framework useful, we use importance sampling to generate samples
that contain more instances of the rare property without having to increase the number of
samples. We use samples that are generated by importance sampling to train a prediction
model. The importance sampling covers the state space responsible for the rare property,
and the Monte Carlo simulation provides the coverage for the rest of the model. We then
use likelihood ratios for each sample to construct the prediction model that represents the
true distribution of the samples. We applied our approach on a file transmission protocol
as a case study, demonstrating our technique’s benefit in using fewer samples and achieving
greater accuracy compared to the approach using only the Monte Carlo samples.

7.2 Future Directions

We believe predictive runtime verification is an original idea that brings with itself many
interesting directions to the field of RV and analysis of software traces in general.

86



Theoretically, it is interesting to classify the monitorable properties based on how they
can be predicted given a certain predictability characteristic of a stochastic system. For
example, it is interesting to investigate the predictability of the safety-liveness properties
based on the classification presented in [91], i.e., comparing the predictability of always
finitely refutable properties to sometimes finitely refutable properties.

A practically useful, and theoretically interesting, direction is to use online learning
algorithms in order to refine the prediction model on the fly. The cost of learning must be
minimized so that the monitor overhead does not influence the execution of the system.
Bayesian state-merging or -splitting techniques [119, 87] are effective learning algorithm
candidates for an online learning framework.

The online learning framework can be combined with more statistically expressive mod-
els, such as Conditional Random Fields [121], in which the Markovian assumption is re-
laxed, hence, providing a more accurate prediction model for more dynamic systems. How-
ever, the more expressive models imply longer and more complicated training algorithms,
which need to be adjusted if used at runtime.

In line with the abstraction techniques, an interesting future direction is to explore
combining the importance sampling with abstraction, which is necessary when the state
space of the system is intractable. We have already demonstrated in our experiments that
this combination is effective, but obtaining a good abstraction of a complex system may
be challenging. Drawing on experience with parameterized importance sampling [58, 62],
we speculate that it may be possible to exploit cross entropy minimization or the coupling
method [9] to find both good importance sampling distributions and good abstractions.

Practically, applying Prevent to much larger case studies with more real-world scenarios
is also a necessary direction that needs to be taken in the future. Particularly, we believe
a focus needs to be directed towards hybrid systems, where the real-valued and discrete
signals are mixed [78]. For example, for a hybrid system it is necessary to generalize
Prevent to include the robustness of an STL property evaluation in the predictions [42].
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Appendix A

The Prism Models

The description of the running example and some of the case studies are provided using
the Prism guarded command language.

A.1 The Die Example

dtmc

module die

// local state

s : [0..7] init 0;

// value of the die

d : [0..6] init 0;

[] s=0 -> 0.5 : (s’=1) + 0.5 : (s’=2);

[] s=1 -> 0.5 : (s’=3) + 0.5 : (s’=4);

[] s=2 -> 0.5 : (s’=5) + 0.5 : (s’=6);

[] s=3 -> 0.5 : (s’=1) + 0.5 : (s’=7) & (d’=1);

[] s=4 -> 0.5 : (s’=7) & (d’=2) + 0.5 : (s’=7) & (d’=3);

[] s=5 -> 0.5 : (s’=7) & (d’=4) + 0.5 : (s’=7) & (d’=5);

[] s=6 -> 0.5 : (s’=2) + 0.5 : (s’=7) & (d’=6);

[] s=7 -> (s’=7);
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endmodule

label "ii0" = s=0;

label "hh0" = s=1 | s=3 | s=5;

label "tt0" = s=2 | s=4 | s=6;

label "tt1" = d=1;

label "hh2" = d=2;

label "tt3" = d=3;

label "hh4" = d=4;

label "tt5" = d=5;

label "hh6" = d=6;

A.2 The Randomized Dining Philosopher for 3 Philoso-

phers

// randomized dining philosophers [LR81]

// atomic formulae

// left fork free and right fork free resp.

dtmc

formula lfree = (p2>=0&p2<=4)|p2=6|p2=10;

formula rfree = (p3>=0&p3<=3)|p3=5|p3=7|p3=11;

module phil1

p1: [0..11];

[] p1=0 -> (p1’=1); // hungry

[] p1=1 -> 0.5 : (p1’=2) + 0.5 : (p1’=3); // draw randomly - trying

[] p1=2 & lfree -> (p1’=4); // pick up left

[] p1=2 & !lfree -> (p1’=2); // left not free

[] p1=3 & rfree -> (p1’=5); // pick up right

[] p1=3 & !rfree -> (p1’=3); // right not free

[] p1=4 & rfree -> (p1’=8); // pick up right (got left)

[] p1=4 & !rfree -> (p1’=6); // right not free (got left)
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[] p1=5 & lfree -> (p1’=8); // pick up left (got right)

[] p1=5 & !lfree -> (p1’=7); // left not free (got right)

[] p1=6 -> (p1’=1); // put down left

[] p1=7 -> (p1’=1); // put down right

[] p1=8 -> (p1’=9); // move to eating (got forks)

[] p1=9 -> (p1’=10); // finished eating and put down left

[] p1=10 -> (p1’=11); // put down right and return to think

[] p1=11 -> (p1’=0); // put down left and return to think

endmodule

// construct further modules through renaming

module phil2 = phil1 [ p1=p2, p2=p3, p3=p1 ] endmodule

module phil3 = phil1 [ p1=p3, p2=p1, p3=p2 ] endmodule

rewards "num_steps"

[] true: 1;

endrewards

// labels for philosopher 1

label "think" = p1=0;

label "hungry" = p1=1;

label "try" = p1=2 | p1=3;

label "pick" = p1=4 | p1=5;

label "drop" = p1=6 | p1=7;

label "release" = p1=10 | p1=11;

label "eat" = p1=8 | p1=9;

A.3 The Herman’s Algorithm with 5 Processes

// herman’s self stabilising algorithm [Her90]

// the procotol is synchronous with no nondeterminism (a DTMC)

dtmc
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const double p = 0.5;

// module for process 1

module process1

// Boolean variable for process 1

x1 : [0..1];

[step] (x1=x5) -> p : (x1’=0) + 1-p : (x1’=1);

[step] !(x1=x5) -> (x1’=x5);

endmodule

// add further processes through renaming

module process2 = process1 [ x1=x2, x5=x1 ] endmodule

module process3 = process1 [ x1=x3, x5=x2 ] endmodule

module process4 = process1 [ x1=x4, x5=x3 ] endmodule

module process5 = process1 [ x1=x5, x5=x4 ] endmodule

// cost - 1 in each state (expected number of steps)

rewards "steps"

true : 1;

endrewards

// formula, for use in properties: number of tokens

// (i.e. number of processes that have the same value as the process to their left)

formula num_tokens = (x1=x2?1:0)+(x2=x3?1:0)+(x3=x4?1:0)+(x4=x5?1:0)+(x5=x1?1:0);

// label - stable configurations (1 token)

label "stable" = num_tokens=1;

A.4 The Bounded Retransmission Protocol

// bounded retransmission protocol [D’AJJL01]
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// gxn/dxp 23/05/2001

dtmc

// number of chunks

const int N=64;

// maximum number of retransmissions

const int MAX=2;

module sender

s : [0..6];

// 0 idle

// 1 next_frame

// 2 wait_ack

// 3 retransmit

// 4 success

// 5 error

// 6 wait sync

srep : [0..3];

// 0 bottom

// 1 not ok (nok)

// 2 do not know (dk)

// 3 ok (ok)

nrtr : [0..MAX];

i : [0..N];

bs : bool;

s_ab : bool;

fs : bool;

ls : bool;

// idle

[NewFile] (s=0) -> (s’=1) & (i’=1) & (srep’=0);

// next_frame

[aF] (s=1) -> (s’=2) & (fs’=(i=1)) & (ls’=(i=N)) & (bs’=s_ab) & (nrtr’=0);

// wait_ack

[aB] (s=2) -> (s’=4) & (s_ab’=!s_ab);

[TO_Msg] (s=2) -> (s’=3);
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[TO_Ack] (s=2) -> (s’=3);

// retransmit

[aF] (s=3) & (nrtr<MAX) -> (s’=2) & (fs’=(i=1)) & (ls’=(i=N)) & (bs’=s_ab) & (nrtr’=nrtr+1);

[] (s=3) & (nrtr=MAX) & (i<N) -> (s’=5) & (srep’=1);

[] (s=3) & (nrtr=MAX) & (i=N) -> (s’=5) & (srep’=2);

// success

[] (s=4) & (i<N) -> (s’=1) & (i’=i+1);

[] (s=4) & (i=N) -> (s’=0) & (srep’=3);

// error

[SyncWait] (s=5) -> (s’=6);

// wait sync

[SyncWait] (s=6) -> (s’=0) & (s_ab’=false);

endmodule

module receiver

r : [0..5];

// 0 new_file

// 1 fst_safe

// 2 frame_received

// 3 frame_reported

// 4 idle

// 5 resync

rrep : [0..4];

// 0 bottom

// 1 fst

// 2 inc

// 3 ok

// 4 nok

fr : bool;

lr : bool;

br : bool;

r_ab : bool;

recv : bool;

// new_file
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[SyncWait] (r=0) -> (r’=0);

[aG] (r=0) -> (r’=1) & (fr’=fs) & (lr’=ls) & (br’=bs) & (recv’=T);

// fst_safe_frame

[] (r=1) -> (r’=2) & (r_ab’=br);

// frame_received

[] (r=2) & (r_ab=br) & (fr=true) & (lr=false) -> (r’=3) & (rrep’=1);

[] (r=2) & (r_ab=br) & (fr=false) & (lr=false) -> (r’=3) & (rrep’=2);

[] (r=2) & (r_ab=br) & (fr=false) & (lr=true) -> (r’=3) & (rrep’=3);

[aA] (r=2) & !(r_ab=br) -> (r’=4);

// frame_reported

[aA] (r=3) -> (r’=4) & (r_ab’=!r_ab);

// idle

[aG] (r=4) -> (r’=2) & (fr’=fs) & (lr’=ls) & (br’=bs) & (recv’=T);

[SyncWait] (r=4) & (ls=true) -> (r’=5);

[SyncWait] (r=4) & (ls=false) -> (r’=5) & (rrep’=4);

// resync

[SyncWait] (r=5) -> (r’=0) & (rrep’=0);

endmodule

// prevents more than one file being sent

module tester

T : bool;

[NewFile] (T=false) -> (T’=true);

endmodule

module channelK

k : [0..2];

// idle

[aF] (k=0) -> 0.98 : (k’=1) + 0.02 : (k’=2);

// sending

[aG] (k=1) -> (k’=0);

// lost
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[TO_Msg] (k=2) -> (k’=0);

endmodule

module channelL

l : [0..2];

// idle

[aA] (l=0) -> 0.99 : (l’=1) + 0.01 : (l’=2);

// sending

[aB] (l=1) -> (l’=0);

// lost

[TO_Ack] (l=2) -> (l’=0);

endmodule

110



Appendix B

The Source Code of Some Functions
in Prevent

In this appendix we provide the source code in Matlab for some important functions in
Prevent .

B.1 Training HMM

% Alphabet for randomized dining philosopher

Alphabet={’think’,’hungry’,’try’,’pick’,’drop’,’eat’};

% Read the training samples

dir = "randomized-dining-philosophers/Traces/Training/";

filename="LR_3Phils.csv";

Data = readCSVData(dir+filename);

Tolerance = 1e-06;

Iterations = 1000;

% Model folders

modelFolder = "randomized-dining-philosophers/Trained-Models/3-Phils/";
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% The maximum number of states to the trained HMM can have

n = 20;

% The log-likelihood of the trained HMM

logLH = zeros(1,n);

BIC = zeros(1,n);

% Training models with k states, starting from 1 to n

for k=1:n

% Random initialization of trans and emis from a uniform dist.

trans=ones(k,k);

emis=ones(k,length(Alphabet));

for i=1:k

rv = randfixedsum(k,1,1,0,1);

trans(i,:)=rv’;

rv = randfixedsum(length(Alphabet),1,1,0,1);

emis(i,:)=rv’;

end

% applying the initial probability,

rv = randfixedsum(k,1,1,0,1);

p = rv’;

trans_hat=[0 p; zeros(size(trans,1),1) trans];

emis_hat=[zeros(1,size(emis,2)); emis];

% Running the training algorithm

% Size of Training set

SizeTraining=length(Data);

[estTrans,estEmis]=hmmtrain(Data(1:SizeTraining),trans_hat,emis_hat,

’Symbols’,Alphabet, ’Tolerance’, Tolerance,

’Maxiteration’, iterations);

disp(’-----------------’);

output=sprintf(’Number of states:%d\n Estimated HMM:’,k);

display(output);

display(estTrans);

display(estEmis);

% Calculating the log-likelihood and BIC score

for i=1:SizeTraining
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[PSTATEs,logpseq]=hmmdecode(Data{i},estTrans,estEmis, ’Symbols’, Alphabet);

logLH(1,k) = logLH(1,k)+logpseq;

end

BIC(1,k) = log(SizeTraining)*(k*k+k*length(Alphabet))-2*logLH(1,k);

B.2 Offline Monitoring with the Viterbi State Esti-

mation

% Monitoring

% we assume the monitor table, ’monitorV’ is already populated with the

% results from Prism.

% Reading monitoring trace -- can be changed to any other trace

dir = "randomized-dining-philosophers/Traces/Monitoring/";

execFile = "LR-sap_3Phils_B0.csv";

% The set of execution traces that the monitoring is performed on

execTrace = readCSVData(dir+execFile);

nObs = length(execTrace);

% Maximum horizon for the prediction -- currently obtained from the monitor

% vector (the maximum possible value of MAX_T)

MAX_T = size(monitorV, 3);

% The probability prediction computed by the monitor for each step of the

% trace

probVector={};

% The monitor estimated length of the extension that is accepted by the DFA

estLambda={};

% The actual length of the extension that is accepted by the DFA

lambda={};

% The for iterates through each trace in the moniotring set, if there is

% one (usual case), this loop only executes one

for j=1:nObs

% Get a sample execution and simulate running it
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Exec=execTrace{j};

% The first state of the DFA

q=dfa.InitialState;

% Initializing vectors

probVector{j}=[];

estLambda{j}=[];

lambda{j}=[];

% The previous index that the prefix was accepted by the DFA. It’s used

% to determine the length of the new accepted extension

prevAccIdx = 0;

% the horizon index

T=MAX_T;

% Viterbi vectors

Vit = estEmis(:,find(strcmp(Exec(1),Alphabet)))’.*estTrans(1,:);

VitNext = Vit;

% The monitoring for each symbol in the execution trace

for i=1:length(Exec)

% finding the most probable state using Viterbi vector

[value,s]=max(Vit);

% finding the state of the DFA

q=GetTransitionState(dfa,q,Exec(i));

% The emitted symbol

o=find(strcmp(Exec(i),Alphabet));

% CState is the index of the composite state at the DTMC

% (the prediction model)

CState=(s-1)*length(Alphabet)*length(dfa.FiniteSetOfStates)

+(o-1)*length(dfa.FiniteSetOfStates)

+find(strcmp(q,dfa.FiniteSetOfStates));

% Finding the state in the monitor vector

index=find(monitorV(:,1,T)==CState);

% If there is a proabability defined for the composite state

if ~isempty(index)

probVector{j}(i)=monitorV(index,2,T);

end

% if the prefix is accepted by the DFA

if (strcmp(q,dfa.FinalAcceptStates))

% computing the value of lambda

for k=prevAccIdx+1:i-1
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lambda{j}(k) = i-k;

end

% computing the estimation of lambda

for k=prevAccIdx+1:i-1

if(k-prevAccIdx < MAX_T)

estLambda{j}(k) = probVector{j}(k)*(i-k);

else

estLambda{j}(k) = 0;

end

end

prevAccIdx = i;

% Reseting the horizon index

T = MAX_T;

% if the prefix is not accepted by the DFA

else

% Decrease the horizon

T = T-1;

end

% There is no accepting extension of length MAX_T

if( T <= 0 )

% Reseting the horizon index

T = MAX_T;

end

% Updating the Viterbi Vector for the next iteration

if i < length(Exec)

for k=1:size(estEmis,1)

VitNext(k)=estEmis(k,find(strcmp(Exec(i+1),Alphabet)))

*max(Vit.*estTrans(:,k)’);

end

Vit = VitNext;

end

end

end

% Calculating the mean of estLambda for each trace

estMeanVector=[];

for i=1:nObs

estMeanVector(i)=mean(estLambda{i});
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end

B.3 Computing the Prediction Support of Symbols

function [F] = ComputePredictionSupport(Data, sigma, G, k)

% Computes the k-prediction support of sigma w.r.t. G over Data

% computing the sum of F

F = zeros(length(Data),1);

% using the parfor from tha parallel toolbox to speed up

% computation of F

parfor n=1:length(Data)

% if k is larger than the length of the data then skip

if k >= length(Data{n})-1

continue;

end

% Vectorization

% Finding the position of symbols in R over Data{n}

Rpos=ismember(Data{n},sigma);

% Finding the position of symbols in G (target labels) over Data{n}

Gpos=ismember(Data{n},G);

% Shifting Gpos k steps to the right

shiftedGpos=zeros(size(Gpos));

shiftedGpos(1:end-(k+1))=Gpos(k+2:end);

% Computing the number of times that Data{n}(i)=sigma in R and

% Data{n}(i+k)=sigma’ in G

prod=Rpos.*shiftedGpos;

% Computing F as the sum

F(n,1)=sum(prod(1:length(Data{n})-k-1));

% Computing the prediction support

F(n,1) = F(n,1) / (length(Data{n}) - k - 1);

end

end
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