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Abstract

In this thesis, we explore some applications of recent developments in the hyperbolic ge-
ometry of Riemann surfaces and moduli spaces thereof in string theory [1, 2, 3].

First we show how a proper decomposition of the moduli space of hyperbolic surfaces can
be achieved using the hyperbolic parameters. The decomposition is appropriate to define
off-shell amplitudes in bosonic-string, heterotic-string and type-II superstring theories.
Since the off-shell amplitudes in bosonic-string theory are dependent on the choice of local
coordinates around the punctures, we associate local coordinates around the punctures in
various regions of the moduli space. The next ingredient to define the off-shell amplitudes
is to provide a method to integrate the off-shell string measure over the moduli space of
hyperbolic surfaces. We next show how the integrals appearing in the definition of bosonic-
string, heterotic-string and type-II superstring amplitudes can be computed by lifting
them to appropriate covering spaces of the moduli space. In heterotic-string and type-
II superstring theories, we also need to provide a proper distribution of picture-changing
operators. We provide such a distribution. Finally, we illustrate the whole construction in
few examples. We then describe the construction of a consistent string field theory using
the tools from hyperbolic geometry.
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Chapter 1

Introduction

Quantum field theory is the best-understood framework for describing microscopic phe-
nomena. Not only it provides a conceptual and theoretical framework for describing the
Nature, the main power of quantum field theory, as a framework, is that it can be used to
explicitly compute quantities that can be measured in real-world experiments. This com-
putational strength is formulated in terms of a set of relatively simple rules. For instance,
we compute the quantities of interest, mainly scattering amplitudes, as a perturbative ex-
pansion in the coupling parameters of the theory by evaluating Feynman diagrams and
using Feynman rules. These rules can be derived from the Lagrangian of the theory. Using
Feynman rules associated to a Lagrangian, one can express any amplitudes in a quan-
tum field theory with arbitrary external states and loops as explicit integrals. Depending
on the complexity of resulting expressions, simple or sophisticated methods are devised
to compute them. Therefore, we can consider Feynman prescription as a calculable for-
mulation of the perturbative quantum field theory. Any framework which claims to be
more fundamental than quantum field theory first and foremost must be able to reproduce
results of quantum field theory in some limit. Furthermore, it must be able to provide
theoretical framework for explanation of theoretical questions that quantum field theory
in its current formulations or some possible unification of it with general relativity are not
able to resolve. Finally, this more fundamental framework must provide a way to compute
physically-relevant quantities very explicitly just like in quantum field theories.

Superstring theory is an approach to the problem of quantization of gravity and its unifi-
cation with the rest of fundamental forces of nature. In this approach, one replaces local
interactions of quantum field theory with interactions of strings. Most of the insights
about the structure of string theory comes from Polyakov’s formulation of string perturba-
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tion theory [4, 5]. The absence of gauge and gravitational anomalies together with stability
of the vacuum leaves five consistent theories for superstrings in 10d

1. Type-I Theory: This is a theory with N = (1, 1)2 supersymmetry on the world-
sheet, where the subscript 2 denotes the two dimensions of the worldsheet. This
theory contains both open- and closed-strings with unoriented worldsheet [6];

2. Type-II Theory: This theory has two variants: the non-chiral type-IIA theory, or
the chiral type-IIB theory both with N = (1, 1)2 supersymmetry on the worldsheet.
The theory contains only closed strings with oriented worldsheet and it does not
require an open-string sector for its consistency [7]. However, one can introduce D-
branes into the story which in turn introduces open-string sector in the theory. The
open- and closed-strings interact via open-closed interactions in the bulk [8];

3. Heterotic Theory: This theory has N = (1, 0)2 supersymmetry on the worldsheet
and the only possible space-time gauge groups are Spin(32)/Z2 or E8× E8 [9, 10, 11]
or broken SO(16)×SO(16) [12]. It is believed that heterotic string can only be closed.
However, Spin(32)/Z2 heterotic string can have endpoints and admits a consistent
boundary condition [13]. We do not consider this exotic case in this thesis;

In the conventional formulation of string theory, scattering amplitudes are obtained by
evaluating the contribution from string diagrams, which are the string-theory analogue of
Feynman diagrams. Unlike quantum field theories, the rules for evaluating string diagrams
are not derived from a Lagrangian and it is given by Polyakov prescription [4, 5]. By
exploring the conformal structure of string theory, powerful covariant methods to compute
amplitudes in perturbative string theory were introduced in [14, 15]. However, this picture,
which give rise to the so-called on-shell amplitudes, is not satisfying due to various type
of divergences. There has been a considerable progress in recent years in resolving the
issues associated to divergences in string theory [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. We
can now safely say that perturbative string theory is a very well-developed formalism that
provides a well-defined formal procedure for computing amplitudes, at least in the case of
closed bosonic-string and closed superstring theories. We should emphasize that these de-
velopments are developed based on two complementary pictures of string dynamics, i.e. 1)
formulation of off-shell amplitudes which provides the worldsheet perspective, and 2) string
field theory which provides the space-time perspective. Also, most of these developments
have been done in the so-called picture-changing formulation of string perturbation theory
and string field theory [15], as we will explain below. Although two-loop computations
have only been done in the so-called supergeometry formulation [26, 27, 28, 29, 30, 31, 32],
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the issues regarding divergences is barely studied especially the divergences associated to
massive states [16].

Despite this firm theoretical ground, the practical computations in perturbative string
theory is not still feasible. Although the path integral definition of scattering amplitudes
in string theory reduces to a finite-dimensional integral, which is a huge simplification,
the complicated structure of the resulting finite-dimensional space, the moduli space of
Riemann surfaces, makes the practical computation almost hopeless. If we wish to ever
get any testable prediction from string theory, one should come up with an efficient way to
explicitly compute these integrals. In principle, there are two ways to compute the stringy
effects

1. Holography: holography is a relation between a quantum field theory in d dimen-
sions and a gravity theory in d + 1 dimensions. The most celebrated realization of
holography is The AdS/CFT Correspondence where the relevant quantum field the-
ory is the N = 4 supersymmetric version of Yang-Mills theory (SYM) with gauge
group SU(N) and the relevant (quantum) gravity theory is the type-IIB superstring
theory on AdS5 × S5 [33]. According to the assertion of The Correspondence, these
two theories are considered to be dynamically equivalent which means that one can
extract any information of one theory from the other one, i.e. they describe the
same physics using completely different degrees of freedom. Free parameters of SYM
theory gYM , the Yang-Mills coupling, and N are mapped to free parameters in the
string theory side, i.e. gs, the string coupling, and L/ls, where L is the radius of
curvature of space-time and ls is the string length, via

g2
YM = 2πgs, 2λ ≡ 2Ng2

YM =

(
L

ls

)4

. (1.0.1)

λ is called the ’t Hooft coupling. Using these identification, one can consider various
forms of AdS/CFT correspondence. The result is summarized in table 1.1. Therefore,
The Mild Form of the AdS/CFT Correspondence can be used to extract perturbative
stringy effects by studying N = 4 SYM theory in large-N limit with fixed ’t Hooft
coupling. One can thus explore quantum-gravitational effects by developing tools to
study a quantum field theory.

Although this method is very effective and practical, especially in large-N and large-λ
limit, the other limits are not very well-explored [34, 35, 36]. The Correspondence also
depends on some miraculous cancellations in the decoupling limit that led to the sem-
inal paper of Maldacena [33]. On the other hand, establishing the duality completely
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provides a complete formulation of a quantum gravity theory in asymptotically-AdS
space-times which is not The Universe we live in. A more systematic method is thus
required to explore the stringy effects on physical phenomena. It seems reasonable
to expect that if string theory is more fundamental than quantum field theories in
describing physical phenomena, it should be described in its own terms not in terms
of some supposedly-equivalent theory.

AdS/CFT
Correspondence

N = 4 SYM theory side type-IIB theory side

Weak Form N −→∞, large λ
gs −→ 0,

(
ls
L

)2 −→ 0.
(classical supergravity)

Mild Form N −→∞, arbitrary fixed λ
gs −→ 0,

(
ls
L

)2 6= 0.
(perturbative string

theory)

Strong Form arbitrary N and λ
gs 6= 0,

(
ls
L

)2 6= 0.
(nonperturbative string

theory)

Table 1.1: The various forms of AdS/CFT correspondence and the relevant limits in quantum
field theory and string theory sides. The Mild Form of The AdS/CFT Correspondence can be
used to extract perturbative stringy information by studying N = 4 SYM theory.

2. Direct Approach: Primary objects of study in string theory are scattering ampli-
tudes. In this approach, one is studying scattering amplitudes directly, i.e. by trying
to perform integrals over the moduli space of Riemann surface explicitly. The genus-g
contribution to an scattering process in string theory have the following schematic
form

Ag =

∫
Mg

Ω(m), (1.0.2)

where Ω is a form on Mg, the moduli space of genus-g Riemann surfaces, parametrized
by a coordinate system m. Regarding the fact that Mg does not have a simple
geometry, once Ω is constructed explicitly in term of m, one needs to come-up with
a procedure to compute these integrals explicitly.

In this thesis, we pursue the second approach. It must be emphasized here that the method
described in this thesis leads to practical computations if and only if the form Ω in (1.0.2)
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can be computed explicitly in terms of a specific set of coordinates m on the moduli space,
or more precisely, the so-called Teichmüller space of Riemann surfaces. We will introduce
these coordinates below. A method for computing Ω on a Riemann surface is the gluing
of pairs of pants. However, this method is not very effective for generic amplitudes. There
should exist a systematic method to compute Ω on any genus-g surface in terms of these
coordinates, a method similar to the one used in [37] to compute Ω in terms of the period
matrix of the surface.

1.1 Off-Shell Amplitudes in String Theory

In the presence of mass renormalization and dynamical shift of the vacuum, the conven-
tional definition of scattering amplitudes in string theory breaks down [38, 39, 40, 41]. To
deal with these issues, one needs to suitably generalize the definition of amplitudes in string
theory. It turns out that a suitable generalization of the Polyakov prescription is provided
by the so-called off-shell amplitudes [20]. Off-shell amplitudes in string theory are defined
by relaxing the tree-level on-shell condition on external states. A state satisfying tree-level
on-shell condition is represented by a vertex operator having conformal dimension (0, 0).
As such, an off-shell state is represented by a vertex operator having arbitrary conformal
dimension. As a result, off-shell amplitudes will depend on the chosen set of local coordi-
nates around marked points on Riemann surfaces. On the other hand, off-shell superstring
amplitudes are dependent on the choice of distribution of picture-changing operators. An
off-shell amplitude is schematically looks like

Ag;n =

∫
Sg;n

Ωg,n, (1.1.1)

where S contains the information of genus-g surface with n marked points, the choice of
local coordinates and/or the choice of picture-changing operators. These dependence are
undesirable feature of the formalism since it implies that the result of computation is de-
pendent on the chosen local coordinates and/or distribution of picture-changing operators.
However, it turns out that none of the physical quantities extracted from off-shell am-
plitudes depend on these choices as long as they satisfy a special condition, namely The

Gluing-Compatibility Condition [17, 18, 20]. A gluing-compatible set of local coordinates
and/or a gluing-compatible choice of distribution of PCOs respects the gluing of Riemann
surfaces. Therefore, if one is interested in taming infrared divergences in bosonic-string
and superstring theories, it is essential to find an explicit choice of gluing-compatible set of
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local coordinates and/or distribution of picture-changing operators. We postpone a more
detailed discussion of off-shell amplitudes to the main body of the thesis.

1.2 String Field Theory

The Polyakov prescription for computing scattering amplitudes in string theory is a formal
definition. However, as we have mentioned, this prescription is very incomplete. On the
other hand, many of formal properties of the string perturbation theory like unitarity,
background independence etc seems to be obscure in this formulation. Therefore, it is
necessary to find a machinery that such formal properties can be understood and also
provides a more systematic framework for computing scattering amplitudes. String field
theory is a quantum field theory that is constructed in such a way that its Feynman
diagrams computes S-matrix elements. One advantage of this framework is that, unlike the
ad hoc definition of string perturbation theory series, all the rich toolbox of quantum field
theory is available within string field theory. Although “the physical content of the theory is
buried under mountains of computationally-inaccessible data”1, however regarding recent
developments, it seems indispensable to use string field theory to provide a full definition of
string perturbation theory. Some theoretical applications of string field theory are [43, 42]

• formal properties of string perturbation theory: The formal properties of string
perturbation theory is difficult to establish using the worldsheet perspective. How-
ever, string field theory can be used to address these issues. For example unitarity
[44], analyticity and crossing symmetry of amplitudes [45], and background indepen-
dence [46, 47, 48] can be established using string field theory for closed-superstring
field theories. It can also be shown that amplitudes satisfy cutting rules [49].

• studying the non-perturbative regime: Since string field theory is based on a
Lagrangian, it has the potential to open the door towards the non-perturbative regime
of the theory. This possibility has been explored in the case of open-string field theory
[50, 51, 52, 53]. However, the case of closed-string field theory has not been explored
much due to the complicated structure of corresponding Lagrangian [54].

• low-energy dynamics of the theory: string field theory can be used for the first-
principle construction of the effective action describing the dynamics below certain
mass scale [55].

1This sentence has been borrowed from [42].
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• treatment of divergences: string field theory can be used to address problems
associated to divergences like mass renormalization or the vacuum-shift issue. These
issues have been settled using 1PI effective actions of closed-superstring field theories
in an important recent paper [23].

• string theory in RR backgrounds: Since string field theory can be formulated in
any background, it has been used recently to analyze string spectrum in the RR
background flux [56].

String field theory is thus a very powerful theoretical ground. However, similar to the
string perturbation theory, it is not very well-suited to compute amplitudes explicitly. The
main reason again goes back to the appearance of moduli space of Riemann surfaces.

The complicated gauge structure of closed-string field theory demands the use of the most
sophisticated available machinery for the quantization of gauge systems, i.e. the Batalian-
Vilkovisky (BV) formalism [57, 58]. The perturbative solution of BV quantum master
equation for the closed bosonic-string field theory and closed-superstring field theories have
been constructed [59, 24]. The theory has only one independent parameter, the closed-
string coupling. The interaction strengths of elementary interactions are expressed as
integrals over the distinct two dimensional worldsheets describing elementary interactions
of closed strings. The collection of worldsheets describing elementary interactions of closed
strings are known as string vertices. The interaction term associated to Vg,n, a genus-g
string vertex with n marked points, takes the following form∫

Vg,n

Ω, (1.2.1)

where Ω is a form on the moduli space. This term shows that we need to integrate over
a region in the moduli space corresponding to the string vertex to be able to compute
interaction terms of string field theory. The explicit evaluation of these integrals requires

1. a convenient choice of parametrization of the moduli space of Riemann surfaces. This
parametrization must be accompanied by a condition that specifies regions of moduli
spaces corresponding to string vertices;

2. an explicit procedure for constructing string measure in terms of the chosen coordi-
nates of moduli space;

3. a consistent choice of local coordinates around marked points and/or a consistent
choice of picture-changing operators on Riemann surfaces belonging to string vertices.
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4. an explicit procedure for integrating string measures over the region corresponding
to the string vertex.

A consistent set of string vertices provides a decomposition of the moduli space of Riemann
surfaces. String field theory must be formulated in such a way that it gives a construction
of the moduli space, i.e. a region corresponding to string vertex together with Feynman
diagrams of the theory must provide a single cover of the moduli space. The main challenge
in constructing string field theory is thus to find such a decomposition. String vertices
that provide such a decomposition of the moduli space can be constructed using Riemann
surfaces endowed with minimal-area metrics [59]. There exists an alternative construction
of string vertices using Riemann surfaces endowed with the constant-curvature metric [2, 3].
It is also possible to construct vertices of effective actions of closed-superstring field theories
using hyperbolic geometry [60]. This alternative approach is based on ideas presented in
this thesis [1].

1.3 Moduli Space of Riemann Surfaces

Regarding what we have explained so far, we conclude that in order to obtain a practical
prescription for evaluating amplitudes in string theory, whether using off-shell formulation
of the theory or using string field theory, we need to deal with the moduli space of genus-g
Riemann surfaces with n punctures and integration over it. g plays the role of loop-counting
parameter and n is the number of external incoming and outgoing states. Unfortunately
there is no simple description of the moduli space. This is mainly due to the following fact.
Characterizing the space of Riemann surfaces requires varying the complex structure by
infinitesimal deformation of the metric on the surface. However, infinitesimal deformations
only lead us to the space Tg,n, the Teichmüller space of Riemann surfaces, instead of the
moduli space. The Teichmüller space is the space of inequivalent Riemann surfaces in the
following sense [61]. Fix a Riemann surface R. Consider a pair (S, φ), where S is a surface
and φ : R −→ S is an orientation-preserving diffeomorphism. Two such pairs (S1, φ1) and
(S2, φ2) are equivalent if φ2 ◦ φ−1

1 : S1 −→ S2 is homotopy-equivalent to a biholomorphism
between S1 and S2. It is easy to see that this relation is an equivalence relation. We denote
the equivalence classes by [S, φ]. The set of all such equivalence classes is the Teichmüller
space of R and it is denoted by T(R).

It turns out that we need to deal with more elaborate spaces in string theory, the moduli
spaces. They can be obtained from the corresponding Teichmüller spaces. Let Mod(R) be
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the set of homotopy-equivalence class of orientation-preserving diffeomorphisms f : R −→
R. Such diffeomorphisms form a group, the so-called mapping-class group (MCG) of the
surface. An element [f ] ∈ Mod(R) acts on T(R) as follows

[f ]([S, φ]) = [S, φ ◦ f−1], [S, φ] ∈ T(R). (1.3.1)

The moduli space M(R) is defined by the quotient of the Teichmüller space by the action
of mapping-class group

M(R) ≡ T(R)

Mod(R)
. (1.3.2)

In the following we use the notation T(R), Mod(R), and M(R) or, in the case we want to
emphasize the topological type of the surface, Tg,n, Modg,n, and Mg,n for the Teichmüller
space, the mapping-class group, and the moduli space, respectively.

Geometry and topology of the moduli space is complicated because the action of mapping-
class group on Teichmüller space is complicated, and as a result, finding explicit funda-
mental domains for the action of mapping-class group on the Teichmüller space is very
challenging. This makes explicit integration over the moduli space very difficult. More
concretely,

1. Mapping-class groups act properly-discontinuously on the corresponding Teichmüller
space but the fundamental domain of the action is not known explicitly, i.e. the
fundamental interval of coordinates which specify the fundamental domain of the
action inside the Teichmüller space for some set of coordinates;

2. The moduli space is not a manifold. It is a connected orbifold [62]. The set of fixed
points of the action of the mapping-class group is not dense and is finite;

3. The explicit mapping-class-group-invariant volume form on the moduli space is not
known for some arbitrary coordinate system.

To the best of author’s knowledge, the first explicit computation of an integral over the
moduli space of Riemann surfaces is due to Wolpert [63]. He computed the Weil-Petersson
(WP) volume of M1,1, the moduli space of once-punctured tori. The result is

VolWP(M1,1) =

∫
M1,1

1 =
π2

6
. (1.3.3)
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Another computation of this sort was done by Penner [64]. He described a method to
compute the integral of a top-degree differential form over the moduli space of Riemann
surfaces. He applied his method to compute the WP volume of M1,2, the moduli space of
twice-punctured tori

VolWP(M1,2) =

∫
M1,2

1 =
π4

8
. (1.3.4)

Zograf has obtained a recursive formula for WP volumes of the moduli space of punctured
spheres [65]. Manin and Zograf obtained generating functions for WP volumes of the
moduli space of punctured Riemann surfaces [66]. The systematic generalization of all
these results, i.e. the explicit computation of WP volumes of Mg,n(L), the moduli space of
genus-g surfaces with n borders of fixed lengths L ≡ (L1, · · · , Ln), subject to the condition
2g + n ≥ 3, is due to Mirzakhani in her seminal work [67]. This outstanding progress is
based on the idea that an integral over the moduli space of Riemann surfaces can be lifted
to integrals over a covering space of the moduli space. These covering spaces are obtained
by the quotient of the corresponding Teichmüller space by a subgroup of the mapping-class
group. A set of global coordinates on the Teichmüller space is the so-called Fenchel-Nielsen
(FN) coordinates [68]. We can thus hope that these coordinates could be used to formulate
string perturbation theory. This is one of the main points explored in this thesis. More
precisely, we describe a practical procedure for performing computations in perturbative
string theory.

1.4 Objectives of the Thesis

In this thesis, we explore the formulation of on-shell and off-shell string perturbation theory
using hyperbolic geometry. As we have explained above, the genus-g contribution to the
off-shell string amplitudes involving n external states2 is given by

Ag =

∫
Sg,n

Ω, (1.4.1)

where S is a section of a fiber bundle whose fibers involve the information about possi-
ble choice of local coordinates around marked point and, in the case of heterotic-string
and superstring theories, involve the information about the possible choice of locations of

2For the case of heterotic-string theory, n = nNS + nR.

10



picture-changing operators (PCOs). Therefore, we need to specify the following data to be
able to compute (off-shell) amplitudes like (1.4.1) explicitly

1. Local coordinates around the marked points must be specified. To be able to deal
with divergences, it is known that the choice of local coordinates must be gluing-
compatible [17, 18].

2. Locations of PCOs should be specified. As in the previous case, this choice of PCOs
must be gluing-compatible [17, 18];

3. The form Ω should be computed in terms of a specific coordinates on the moduli
space;

4. The integral of Ω should be done.

In this thesis, we consider Riemann surfaces equipped with hyperbolic metric with constant
curvature −1. As far as we aware, there is no alternative method that provides all necessary
ingredients for computing off-shell amplitudes. We briefly explain some of these alternative
approaches in appendix 3.A. Main objectives of this thesis are as follows

1. We first argue that local coordinates induced from the hyperbolic metric is not gluing-
compatible. This means that hyperbolic metric is not suitable for formulating off-shell
amplitudes in string theory.

2. We then argue that this apparent conflict with the requirement of gluing-compatibility
can be resolved by resorting to The Uniformization Theorem and doing a rescaling
which makes the metric on the family of plumbed surfaces hyperbolic [69]. The idea
is to use the so-called curvature-correction equation [70, 71, 72, 73].

3. We then provide a gluing-compatible choice of local coordinates around the marked
points.

4. We next provide a distribution of PCOs on Riemann surfaces.

5. Finally, we turn to integration over the moduli space based on the work of Mirzakhani
[67]. In this approach, one needs to use Fenchel-Nielsen coordinates for the associated
Teichmüller space.

These steps provides a prescription for computing amplitudes in string theory, whether
on-shell or off-shell. We again emphasize that this prescription can be used for practical
computations if and only if the form Ω can be computed explicitly in terms of Fenchel-
Nielsen coordinates.
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Chapter 2

Off-Shell Amplitudes in
Bosonic-String and Superstring
Theories

In this chapter, we shall review the general construction of off-shell amplitudes in bosonic-
string and superstring theories [20].

2.1 Off-Shell Bosonic-String Amplitudes

In this section, we review the construction of off-shell amplitudes in bosonic-string theory.
On-shell amplitudes in bosonic-string theory is obtained by integrating an appropriate
6g − 6 + 2n real dimensional differential form over the moduli space of Riemann surfaces
denoted by Mg,n. This differential form on Mg,n is constructed by computing the correlator
of the vertex operators with conformal dimension (0, 0). These operators correspond to
the external states satisfying the tree-level on-shell condition. However, generic states of
string theory undergo mass renormalization. States having masses different from that at
tree level are mapped to vertex operators having conformal dimension different from (0, 0).
Therefore, on-shell amplitudes defined using vertex operators having conformal dimension
(0, 0) do not compute S-matrix elements beyond tree level for generic states in string theory.
This forces us to consider the off-shell amplitudes constructed using vertex operators of
arbitrary conformal dimensions.
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2.1.1 The World-Sheet Theory

The bosonic-string theory is formulated in terms of a conformal field theory (CFT) defined
on a Riemann surface. This conformal field theory has two sectors: the matter sector
and the ghost sector. The matter CFT has central charge (26, 26) and the central charge
of CFT of reparametrization ghosts is (−26,−26). The ghost system is composed of the
anti-commuting fields b, c, b̄, c̄. The total CFT has central charge (0, 0). The Hilbert space
of CFT is denoted by H. We denote by H0 a subspace of H consists of states |Ψ〉

(b0 − b̄0)|Ψ〉 = 0, (L0 − L̄0)|Ψ〉 = 0, (2.1.1)

where Ln and Ln denote the total Virasoro generators in the holomorphic and anti-
holomorphic sectors of the world-sheet theory [74]. A complete set of states {φi} ∈ H0

satisfies the following orthonormality and completeness relation

〈φci |φj〉 = δij,
∑
i

|φi〉〈φci | = 1, (2.1.2)

where 〈φci | is the BPZ-conjugate of the state |φi〉. Physical states that appear as external
states in S-matrix computation belong to the subspace H1 of H0 consists of states |ψ〉 ∈ H0

satisfying following additional constrains

1. They satisfy the Siegel-gauge condition (b0 + b̄0)|Ψ〉 = 0;

2. The ghost number of |Ψ〉 is 2.

2.1.2 Off-Shell Amplitudes

On-shell amplitudes are defined using the unintegrated vertex operators of conformal di-
mension (1, 1), and as such the associated integration measures do not depend on the choice
of local coordinates around the marked points at which vertex operators are inserted. This
means that the integration measure of an on-shell amplitude is a genuine differential form
on Mg,n. One can then integrate this integrand over Mg,n to get on-shell amplitudes. How-
ever, off-shell amplitudes defined using vertex operators of arbitrary conformal dimension
depend on the choice of local coordinates around marked points. Therefore, we can not
consider the integration measure of an off-shell amplitude as a genuine differential form
on Mg,n. Instead, we need to think of them as differential forms on a section of a larger
space Pg,n. This space is defined as a fiber bundle over Mg,n. The fiber direction of Pg,n
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corresponds to possible choices of local coordinates around the marked points of a genus-g
Riemann surface with n marked points Rg,n ∈Mg,n

Pg,n −→Mg,n. (2.1.3)

If we restrict ourselves to states belong to H0, we can consider the string measure to
be defined on a section of space P̂g,n. This space is smaller compared to Pg,n

1. We can

understand P̂g,n as a base space of the fiber bundle Pg,n with the fiber direction corresponds
to a choice of local coordinates up to phase rotation

Pg,n −→ P̂g,n −→Mg,n. (2.1.4)

We can thus say that a genus-g contribution to a bosonic-string amplitude involving n

external states and characterized by the integrand Ω can be written obtained as

Ag =

∫
Sg,n

Ω, Sg,n ∈ Γ(P̂g,n), (2.1.5)

where Γ(P̂g,n) denotes the space of sections of P̂g,n. Once a choice of local coordinates
has been made, we can express them in terms of the moduli parameters, and integrate the
resulting expression over the moduli space Mg,n.

Tangent Vectors of Pg,n

In order to construct a differential form on any space, we need to first study its tangent
space at a generic point. Since we are interested in constructing a differential form on
a section of Pg,n, we need to study the tangent space of Pg,n associated with deforma-
tions of the punctured Riemann surface and/or the choice of local coordinates around the
punctures. A tool that turns out to be useful is the so-called Schiffer variation [75, 20].

To elucidate the idea of Schiffer variation consider a Riemann surface R ∈ Pg,n. This
means that R is a genus-g Riemann surface with n punctures and a specific choice of local
coordinates around its marked points. A typical Riemann surface equipped with a choice
of local coordinates is shown in figure 2.1. We shall denote the local coordinate around the
ith marked points by wi and the disc around ith puncture, defined by the equation |wi| < 1,

1We mode out the phases of local coordinates. Thus we essentially consider the quotient of Pg,n by

the phase of local coordinates. The resulting space, P̂g,n, is thus smaller that Pg,n.
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•p

Dp

R

Figure 2.1: A genus-2 surface with local coordinate z around the marked point p defined by the
equation |z − z(p)| = 1. We take the local coordinate such that z(p) = 0. Therefore, the disk Dp

is defined by |z| = 1.

by Di for i = 1, · · · , n. Consider a pair-of-pants decomposition of R−
∑

iDi by choosing
3g − 3 + n homotopically non-trivial disjoint curves on it. This gives 2g − 2 + n pairs of
pants denoted by Pi, i = 1, · · · , 2g − 2 + n. We denote the coordinate inside Pi by zi.
Assume that ith disc Di shares its boundary |wi| = 1 with the jth pair of pants Pj, and
also the kth pair of pants Pk shares a boundary with the mth pair of pants Pm. Then,

• On Di ∩ Pj, there is a transition function

zj = fi(wi). (2.1.6)

fj can have singularities elsewhere.

• On Pk ∩ Pm, there is a transition function

zk = fkm(zm). (2.1.7)

fkm can have singularities elsewhere.

The Schiffer variation generates all deformations of Pg,n by varying the transition function
associated with discs around the punctures fi(wi), i = 1, · · · , n and by keeping all other
transition functions fkm(zm) fixed [75]. We can generate such variations by keeping the
coordinates zk inside the pair of pants Pk, k = 1, · · · , 2g− 2 + n fixed and then changing
the coordinates inside discs Di from wi → wεi for i = 1, · · · , n. This change of coordinates
deforms the transition function associated with the disc Di around the ith puncture as
follows

f εi (wi) = fi(wi)− εv(i)(zj), v(i)(zj) ≡ f ′i(wi)v
(i)(wi). (2.1.8)
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We have assumed that the boundary of Di is shared with Pj. The form of v(i)(wi) can be
obtained from the fact that f εi (w

ε
i) = zk = fi(wi). Then the tangent vector of Pg,n is given

by
~v = (v(1), · · · , v(n)). (2.1.9)

The behavior of v(i) on R determines the type of deformation it induces on Pg,n. The
proofs of following statements are given in section 7 of [59]

• ~v is a null vector: If it is holomorphic everywhere except possibly at marked points.

• ~v deforms the local coordinates around the puncture: if it is holomorphic inside
Di, i = 1, · · · , n, vanishes at the puncture, and it does not homomorphically extend
into R−

∑
iDi.

• ~v moves the puncture: if it is holomorphic insideDi, i = 1, · · · , n, it is non-vanishing
at the marked point, and also it does not homomorphically extend into R−

∑
iDi.

• ~v deforms the moduli of R: if it has poles at one or more punctures and further it
can not be homomorphically extended into R−

∑
iDi. A set of 3g−3 of such vector

fields with poles of order 1, · · · , 3g− 3 at any of punctures generate the complete set
of deformations of Mg.

Differential Forms on P̂g,n

Consider p tangent vectors V1, · · · , Vp of Pg,n and let ~v1, · · · , ~vp be the corresponding n-
tuple vector fields. We can construct an operator-valued p-form Bp. The contraction of
Bp tangent vectors V1, · · · , Vp is given by

Bp[V1, · · · , Vp] ≡ b(~v1) · · · b(~vp), (2.1.10)

where b(~v) is defined as

b(~v) ≡
n∑
a=1

∮
dwa
2πi

v(a)(wa)b
(a)(wa) +

n∑
a=1

∮
dw̄a
2πi

v̄(a)(w̄a)b̄
(a)(w̄a). (2.1.11)

b, b̄ denote the anti-ghost fields. Using Bp, we can define a p-form on Pg,n

Ωp(|Φ〉) ≡ (2πi)−(3g−3+n)〈R|Bp|Φ〉. (2.1.12)
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Here, |Φ〉 is some element of H⊗n with ghost number

G# = p+ 6− 6g. (2.1.13)

〈R| is the surface-state associated with the surface R. 〈R| describes the state that is
created on the boundaries of Di by performing a functional integral over fields of CFT on
R−

∑
iDi. It is clear that Ω

(g,n)
p (|Φ〉) is a p-form on Pg,n. Remember that a p-form on a

space generates a number when contracted with p tangent vectors of this space and this
number is anti-symmetric under the exchange of any pair of tangent vectors. Since the
anti-ghost fields b, b̄ are anti-commuting Ω

(g,n)
p (|Φ〉) also has this property. It is thus clear

that Ω
(g,n)
p (|Φ〉) is a p-form on Pg,n.

However, we are interested to construct differential forms on P̂g,n. To construct a p-form

on P̂g,n, we need to just impose a restriction on the state |Φ〉. Instead of allowing |Φ〉 to be
any state belongs to H⊗n restrict it to be an element of H⊗n0 . We can check this claim by
showing that if any tangent vector of Pg,n is chosen from the set of tangent vectors which
change the phase of local coordinates, the result of the contraction of the form with such a
tangent vector vanishes. To see this, note that such a vector has components of the form
v(i)(wi) = wi and v̄(i)(w̄i) = −w̄i. It is clear that such vectors do not change Ω

(g,n)
p (|Φ〉) if

|Φ〉 ∈ H0. This is because for ~v = (0, · · · , wi, · · · , 0), b(~v) = b
(i)
0 − b̄

(i)
0 and T (~v) = L

(i)
0 −L̄

(i)
0 ,

where superscripts denote that the modes b0, L0 and their complex conjugates are defined
with respect to the local coordinates inside the ith puncture, i.e. it acts on the Hilbert
space associated to the ith puncture. Here

T (~v) ≡
n∑
a=1

∮
dwa
2πi

v(a)(wa)T
(a)(wa) +

n∑
a=1

∮
dw̄i
2πi

v̄(a)(w̄a)T̄
(a)(w̄a). (2.1.14)

Since (b0 − b̄0)|Φ〉 = (L0 − L̄0)|Φ〉 = 0, the change in Ω
(g,n)
p (|Φ〉) due to the phase rotation

of local coordinates vanishes [20].

Differential Forms on Sections of P̂g,n

We shall now discuss a general construction of tangent vectors on a section of P̂g,n, where
we allow both fi and fkm to vary [76]. Since we are interested in a section that corresponds
to choosing a specific local coordinates around punctures, we need to just worry about
tangent vectors that deform the intrinsic moduli of the surface. In this case, the tangent
vector will have 3g−3+2n number of components associated with 3g−3+n homotopically
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non-equivalent curves that are used for the pair of pant decomposition of R and n circles
bounding the discs Di, i = 1, · · · , n around n punctures. These 3g− 3 + 2n closed curves
on R gives 2g − 2 + 2n coordinate patches. Let us denote the local coordinate on the
mth patch by zm, and the real coordinates of the moduli space of genus-g Riemann surface
with n punctures by (t(1), · · · , t(6g−6+2n)). Assume that coordinate patches m and n have
a non-empty intersection and contour Cmn runs between them. The change in transition
function that relates patches m and n under a change in the moduli t(k) is given by [76]

∂zm
∂t(k)

∣∣∣∣
zn

= vzmkm −
∂zm
∂zn

∣∣∣∣
t

vznkn = vzmkm − v
zm
kn , (2.1.15)

where vzmkm = dzm
dt(k)

. The (3g−3+2n)-tuple vector field ~vk =
(
· · · , ∂zm

∂t(k)

∣∣
zn
, · · ·

)
corresponds

to varying the moduli t(k) and

b(~vk) =
∑
(mn)

∮
Cmn

(
dzm

∂zm
∂tk

∣∣∣
zn
bzmzm − dz̄m

∂z̄m
∂tk

∣∣∣
zn
bz̄mz̄m

)
, (2.1.16)

where the summation over (mn) denotes the summation over 3g− 3 + 2n closed curves on
R which gives 2g− 2 + 2n coordinate patches. Using (2.1.15), we have

b(~vk) =

2g−2+2n∑
m=1

∮
Cm

(
dzmv

zm
kmbzmzm − dz̄mv

z̄m
kmbz̄mz̄m

)
. (2.1.17)

Using The Stokes Theorem, we get

b(~vk) =

∫
R

d2z (bzzµ
z
kz̄ + bz̄z̄µ

z̄
kz) . (2.1.18)

Here µk denotes the Beltrami differential associated with the moduli t(k). The variation of
the surface associated with the Beltrami differential can be related to vector fields as

µz̄mkzm = ∂zmv
z̄m
km, µzmkz̄m = ∂z̄mv

zm
km. (2.1.19)
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2.1.3 Gluing-Compatible Integration Cycles

Off-shell amplitudes relevant to the computation of S-matrix elements in bosonic-string
theory are constructed by integrating differential forms on P̂g,n. Such forms are built
using state |Φ〉 belongs to H⊗n1 . In particular the ghost number of |Φ〉 is 2n. So the rank
of relevant differential form is p = 6g − 6 + 2n, as it should be since it matches with the
dimension of moduli space of genus-g Riemann surfaces with n punctures. However, we
stress that although the rank of Ω

(g,n)
p (|Φ〉) matches with the dimension of the moduli

space Mg,n, we can not regard it as a genuine top form on Mg,n. The reason is that it
depends on the choice of local coordinates around the punctures and it is non-zero even if
the tangent vectors ~v generate deformations of local coordinate without varying the surface
R. We thus need to integrate Ω

(g,n)
p (|Φ〉) over a section of the fiber bundle P̂g,n whose

base space is Mg,n.

A necessary requirement for off-shell amplitudes is that physical quantities that can be
extracted from off-shell amplitudes like the renormalized masses and S-matrix elements
must be independent of the choice of the section of P̂g,n [20]. To ensure this requirement,
we need to impose a condition on the choice of this section. To describe this condition,
known as The Gluing-Compatibility Requirement introduced in [17, 18], consider two
Riemann surfaces R1 and R2. R1 is a genus g1 surface with n1 punctures and R2 is a genus

g2 surface with n2 punctures. Denote the collection of pairs of pants on R1 by {P (1)
k } and

disks around punctures by D
(1)
1 , · · · , D(1)

n1 . Similarly denote the collection of pairs of pants

on R2 by {P (2)
k } and disks around punctures by D

(2)
1 , · · · , D(2)

n2 . We can glue disks D
(1)
i

and D
(2)
j using the plumbing fixture relation:

w
(1)
i w

(2)
j = e−s+iθ, 0 ≤ s <∞, 0 ≤ θ < 2π. (2.1.20)

This will produce another surfaceR having genus g = g1+g2 and n = n1+n2−2 punctures.
Surfaces that can be constructed this way belong to the region near points at infinity of
Mg,n. This part of Mg,n can be parametrized by moduli of Mg1,n1 , the moduli of Mg2,n2

and (s, θ). The gluing-compatibility condition requires that the section in fiber bundle P̂g,n
over this region of moduli space be chosen such that the relationship between coordinates

of {P (1)
k } and D

(1)
1 , · · · ,���D

(1)
i , · · · , D(1)

n1 depends only on the moduli of Mg1,n1 and not on

the moduli of Mg2,n2 and (s, θ). Similarly the relation between coordinates of {P (2)
k } and

D
(2)
1 , · · · ,

�
��D
(2)
j , · · · , D(2)

n2 depends only on the moduli of Mg2,n2 and not on the moduli of
Mg1,n1 and (s, θ). Also the dependence of these relations on the moduli of Mgl,nl must be

the one induced from the choice of of the section P̂gl,nl for l = 1, 2. Therefore, we can say
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that the requirement of gluing-compatibility is equivalent of the following two conditions
[17, 18]

• The choice of local coordinates around marked points of the two component surfaces
must be such that the relations between the local coordinates on each piece are
independent of the local coordinates of the other piece and the parameters (s, θ)
used for plumbing fixture of the two pieces in (2.1.20);

• The choice of local coordinate in each of the two pieces is induced from the choice of
an appropriate section P̂gi,ni , i = 1, 2 over the moduli space of each piece. In other
words, on the regions of the moduli space that we can use (2.1.20) to construct the
surface, we have:

P̂g,n = P̂g1,n1

⊕
P̂g2,n2

⊕
P̂(s, θ). (2.1.21)

In this relation, P̂(s, θ) is the space of possible local coordinates on the plumbing
tube.

2.2 Off-Shell Superstring Amplitudes

We now turn to the general construction of the off-shell amplitudes in superstring the-
ory [20]. For concreteness, we shall discuss the heterotic-string theory whose holomor-
phic sector is similar to a superstring theory and whose antiholomorphic sector is similar
to a bosonic-string theory compactified on a 16 dimensional integer, even, self-dual lat-
tice [9, 10, 11]. The generalization of this construction to type-II superstring theories is
straightforward.

2.2.1 The World-Sheet Theory

The worldsheet theory of the heterotic-string theory contains the matter field theory with
central charge (26, 15), and the ghost system of total central charge (−26,−15) containing
anti-commuting fields b, c, b̄, c̄ and commuting β and γ ghosts. Most of complications in
RNS formulation of the superstring theory stems from the curious properties of the βγ
system. Therefore, we shall discuss the βγ system and its representations in some detail.
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The βγ system is a commuting fermionic system. The mode expansion of its fields is given
by

β(z) =
∑
n∈Z+a

βnz
−n− 3

2 , γ(z) =
∑
n∈Z+a

γnz
−n+ 1

2 , (2.2.1)

where

a =

{
1
2
, for NS sector,

0, for R sector.
(2.2.2)

The modes βn and γn satisfy the following commutation relation

[γm, βn] = δn,−m. (2.2.3)

There are infinite number of inequivalent representations of this algebra. These inequivalent
representations can be constructed using the raising operators by acting on infinite number
of vacuum states |q〉, where q is the ghost charge of the vacuum state |q〉, is integer or half
integer. The ghost charge is the eigenvalue of the ghost charge operator given by

Qgh =
∑
n

βnγ−n. (2.2.4)

The number q is called the Bose-sea level or the picture number of the representation.
These sets of vacua are inequivalent because unlike in the case of the degenerate ground
states of the bc system, here we can not go from the vacuum with one value of q to another
vacuum with a different value for q by acting with finite number of oscillators [15].

Let us denote the operators which can increase or decrease q by δ(γm) and δ(βn). The
action of these operators on the q-vacua are given by

δ(β−q− 3
2
)|q〉 = |q + 1〉,

δ(γq+ 1
2
)|q〉 = |q − 1〉. (2.2.5)

Similarly, we can define operators, spin fields, Σ+ and Σ− mapping states in the R-sector
to states in the NS-sector or vice versa. The ghost charge for the NS-sector is an integer
and for the R-sector is a half-integer. They are also defined by their action on the q-vacua

Σ+(0)|0〉 =

∣∣∣∣12
〉
, Σ−(0)|0〉 =

∣∣∣∣−1

2

〉
. (2.2.6)

Therefore, each of the states in the Hilbert space of superstring theory has an infinite
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number of inequivalent representation based on the q-vacua that we use for building the
tower of states. From the operator-state correspondence, we know that there exist a
vertex operator associated to each state in the Hilbert space. Therefore, there are infinite
number of inequivalent vertex operators for any specific state and we distinguish them by
associating a picture number which indicates the q-vacua used for constructing the state.

Things become more transparent if we represent βγ system using a free scalar φ and a pair
of free chiral fermionic fields ξ and η of conformal weight (0, 0) and (1, 0), respectively,
known as the bosonization of the βγ system [15]. The action for the combined system is

S[φ, ξ, η] =
1

2π

∫
R

(
∂zφ(z)∂z̄φ(z)− 1

2
Rφ(z)

)
+

1

π

∫
R

η(z)∂z̄ξ(z). (2.2.7)

The stress-energy tensor is given by

Tβ,γ(z) = Tφ + Tη,ξ, (2.2.8)

where

Tη,ξ(z) ≡ −η(z)∂ξ(z), Tφ(z) ≡ −1

2
∂φ(z)∂φ(z)− ∂2φ(z). (2.2.9)

The bosonization prescription reads

β(z) = ∂zξ(z)e−φ(z), γ(z) = η(z)eφ(z). (2.2.10)

Reversing this prescription, we get the following identifications [77]

ξ(z) = H(β(z)), η(z) = ∂zγ(z)δ(γ(z)),

eφ(z) = δ(β(z)), e−φ(z) = δ(γ(z)), (2.2.11)

where H denotes the Heaviside step function. Therefore, the complete set of bosonization
relations are:

β(z) = ∂zξ(z)e−φ(z), δ(β(z)) = eφ(z),

γ(z) = η(z)eφ(z), δ(γ(z)) = e−φ(z). (2.2.12)

The q-vacua in this representation is defined as

φn|q〉 = ηn|q〉 = ξm|q〉 = 0, n ≥ −1, m ≥ 0,

φ0|q〉 = q|q〉. (2.2.13)
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We also have
Σ±(z) = e±

1
2
φ(z). (2.2.14)

It is important to note that only the derivative of ξ-field is present in the identification
(2.2.12) between the two systems. This means that the Hilbert space Hξηφ of the (ξ, η, φ)
has more states than the Hilbert space Hβγ of the β-γ system. The precise equivalence is
the following [15]

Hβγ ≡ {|ψ〉 ∈ Hξηφ| η0|ψ〉 = 0} . (2.2.15)

We saw that it is possible to construct the operators which can take us from one q-vacua
to another. This means that it should be possible to change the Bose-sea charge of a
vertex operator and this procedure is known as The Picture-Changing Operation. This
operation is done using the picture-changing operator (PCO) χ(z) defined as follows

χ(z) ≡ {QB, ζ(z)} =

∮
dw

2πi
jB(w)ζ(z),

jB(z) ≡ c(z) (Tm(z) + Tβ,γ(z)) + γ(z)TF (z) + b(z)c(z)∂c(z)− 1

4
γ2(z)b(z). (2.2.16)

Here QB denotes the worldsheet BRST charge, jB denotes the BRST current and TF (z)
denote the superpartner of the matter stress tensor Tm(z). The picture-changing operator
is BRST-invariant, and a dimension-zero primary operator with the picture number one.
Therefore, although the picture-changing operator looks like an exact operator, it acts
non-trivially on states.

We end our discussion on pictures by mentioning that we need to introduce enough number
of PCOs on the worldsheet to make sure that the total picture number is zero to get a
sensible superstring amplitude [20]. On a genus-g surface with nNS NS marked point in
picture number qNS and nR R marked points in picture number qNS, the number of PCOs
is given by

# of PCOs = 2g− 2 + (−qNS)nNS + (−qR)nR. (2.2.17)

The canonical picture numbers for states in the NS sector is −1 and for states in the
R sector is −1

2
. It is not very clear how to do the superstring perturbation theory with

positive picture numbers [16].

Let us denote the total Hilbert space of the worldsheet theory by H = HNS ⊕HR, where
HNS denotes the Hilbert space of the Nevue-Schwarz (NS) sector and HR denotes the
Hilbert space of the Ramond (R) sector. We denote by H0 ≡ HNS

0 ⊕HR
0 , a subspace of H
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defined as all the states |Ψ〉 satisfying

(b0 − b̄0)|Ψ〉 = 0, (L0 − L̄0)|Ψ〉 = 0, η0|Ψ〉 = 0. (2.2.18)

Picture numbers of states in these spaces are chosen as follows:

picture number of |Ψ〉 = −1, |Ψ〉 ∈ HNS
0 ,

picture number of |Ψ〉 = −1

2
, |Ψ〉 ∈ HR

0 . (2.2.19)

The physical states that appear as external states in the S-matrix computation belong to
the subspace H1 of H0 satisfying extra conditions

(b0 + b̄0)|Ψ〉 = 0, ghost number(|Ψ〉) = 2. (2.2.20)

2.2.2 Off-Shell Amplitudes

The construction of off-shell amplitudes in the superstring theory is similar to the con-
struction of off-shell amplitudes in the bosonic-string theory. For instance, we need to
choose a gluing-compatible local coordinates around marked points. However, there are
additional complications that we need to address. These complications are arising from
the following fact. In order to construct the genus-g contribution to amplitudes in the
heterotic-string theory with nNS NS marked points and 2nR R marked points, we need to
insert 2g− 2 + nNS + nR PCOs on genus-g surfaces with n = nNS + 2nR marked points. In-
serting these operators on the Riemann surface introduces the following additional issues
compared to the bosonic-string theory

• The distribution of PCOs should be gluing-compatible, i.e. it should be compatible
with sewing of surfaces.

• The existence of PCOs introduces divergences into integrands of amplitudes. These
divergences are called spurious singularities and they have three origins 1) the col-
lision of PCOs with each other, 2) the collision of PCOs with marked points, 3)
singularities coming from correlation functions of βγ system. As a result, in order
to define superstring amplitudes we need to define the superstring measure and the
integration cycle carefully by avoiding the occurrence of these spurious singularities.

Therefore, just like in the bosonic-string theory, the integration measure of off-shell am-
plitudes in the superstring theory is not a genuine differential form on the moduli space.
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Instead, we need to think of integration measures of off-shell superstring amplitudes in-
volving nNS NS marked points and 2nR R marked points as a differential form defined
on a section of a larger space Pg,nNS,2nR

, defined as a fiber bundle over Mg,nNS,2nR
. The

fiber direction corresponds to different choices of local coordinates around punctures and
positions of 2g − 2 + nNS + nR PCOs. If we restrict ourselves to states belonging to the
Hilbert space H0, then we can consider the differential form of our interest as defined on a
section of a space P̃g;nNS,nR

, where phases of local coordinates are forgotten. The rest of the
construction is similar to the case of bosonic-string theory [20]. The genus-g contribution
to the heterotic-string theory with nNS external states and nR external states is given by

Ag =

∫
S̃g;nNS,nR

Ω̃d, S̃ ∈ Γ(P̃g;nNS,nR
), (2.2.21)

where d ≡ 6g− 6 + 2nNS + 2nR is the dimension of Mg;nNS,nR
.

2.2.3 Gluing-Compatible Integration Cycles

In the superstring theory, the gluing-compatibility of integration cycle refers to choosing
local coordinates and PCOs distribution that respect the plumbing-fixture construction.
The definition of the gluing-compatible choice of the local coordinates is the same as
described in subsection 2.1.3 for the bosonic-string theory. We shall briefly discuss the
meaning of the gluing-compatibility requirement on the distribution of PCOs.

Consider the situation where a genus-g Riemann surface with (nNS, 2nR) marked points
degenerates into surfaces with signatures (gi; n

i
NS, 2n

i
R) for i = 1, 2. There are two possible

types of degenerations:

• The degeneration where an NS-sector state propagates along the tube connecting the
two component surfaces. We have

g = g1 + g2, nNS = n
1
NS + n

2
NS − 2, nR = n

1
R + n

2
R. (2.2.22)

We should make sure that the component surfaces have appropriate number of PCOs.
It turns out that it is always possible to do this.

• The degeneration where an R-sector state propagates along the tube connecting the
two component surfaces. We have

g = g1 + g2, nNS = n
1
NS + n

2
NS, nR = n

1
R + n

2
R − 1. (2.2.23)
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We again should make sure that the component surfaces have appropriate number
of PCOs. It turns out that one needs to put a PCO on the tube connecting the two
surfaces

χ0 =

∮
dz

2πi

χ(z)

z
. (2.2.24)

There is a reason for distributing the extra PCO on a homotopically non-trivial cycle
on the plumbing tube, instead of placing it at a point on the tube. If we put the
extra PCO on a point in the plumbing tube, then it is not possible to interpret the
integration over the moduli of the plumbing tube with the R-sector state propagating
through it as the propagator of the R-sector states. This is due to the fact that the
reparametrization ghost field mode b0 do not commute with the PCO. However, if we
work within the Hilbert space H0, then the PCO distributed over a cycle commute
with b0, L0 and b̄0, L̄0. This means that smearing the PCO on a cycle in the plumbing
tube allows us to interpret the integration over the moduli of the plumbing tube with
the R-sector state propagating through it as the propagator in the R sector [20].
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Appendix

2.A On-Shell Amplitudes

There are two ways to formulate the superstring perturbation theory for the RNS super-
string

1. The natural setting for doing RNS superstring is supergeometry, i.e. super-Riemann
surfaces and supermoduli spaces thereof. This formulation and the concept of super-
Riemann surface was introduced by Friedan [14]. This formulation is natural in the
sense that a supersymmetric theory is naturally formulated on a supermanifold rather
than an ordinary manifold. A super-Riemann surfaces is the superspace on which
the RNS superstring theory lives.

2. The RNS superstring can be formulated using ordinary Riemann surfaces and mod-
uli spaces thereof using the so-called picture-changing formalism. This formalism
introduced by Friedan, Shenker, and Martinec [15].

The relation between two formulations was first found in [77], and then elaborated in [25].
In the following, we work within the second formalism. Extensive reviews of the first
approach can be found in [78, 79, 80, 16].

Here we provide a very heuristic explanation of path integral of string perturbation theory.
A systematic treatment can be found in chapter 5 of [76]. A modern treatment is given in
sections 2 and 3 of [16].

In path integral formulation of the dynamics of point-like objects (particles), one sums
over all the paths between initial and final configurations. This provides a first-quantized
description of particle dynamics. Similarly, one can consider path integral definition of
the dynamics of one-dimensional objects (strings). To define string scattering amplitude,
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the wisdom of S-matrix theory is that string states are coming from far past (asymptotic
incoming states), interact, and go to the far future (asymptotic outgoing states). Dur-
ing this process, the one-dimensional strings sweeps a surface called worldsheet of string
propagation. However, due to a symmetry of the world-sheet, i.e. the conformal (gauge)
symmetry2, one can map these asymptotic states to some points on an intermediate surface,
i.e. one has an intermediate surface together with several of the so-called vertex operators
describing the asymptotic states inserted on some marked points on the surface. It can
also have a number of handles. Therefore, the stringy processes can be described by the
path integral over all such surfaces as the summation over all one-dimensional worldline
of particles gives quantization of particle motion. For asymptotic incoming states {I} and
asymptotic outgoing states {O}, the string correlation function, i.e. scattering amplitude,
can be written schematically as

AString =

∫
{I},{O}

D(R) ACFT[R], (2.A.1)

where R denotes a possible worldsheet, ACFT[R] denotes the correlation function of a
CFT, describing the worldsheet theory, on R, and D(R) denotes the formal summation
over all possible worldsheets between the incoming states {I} and outgoing states {O}.
For special case of zero incoming and outgoing state, we get the string partition function,
i.e. the vacuum amplitude. The possible worldsheet can be different in two ways

1. Topological Equivalence: one can distinguish two topologically-distinct oriented
surfaces by the number of handles and number of boundaries. In closed-string theory3,
the number of boundaries are fixed by the number of asymptotic states, and therefore,
distinct topologies are classified by the number of handles of the surface, i.e. its genus.

2. Conformal Equivalence: One of the advantages of string theory is that space-time
processes can be described by an S-matrix computed in a 2d quantum field theory.
In the naive path integral approach, any process in the space-time involving quan-
tum gravitational effects can be computed upon integration over the space of all
Lorentzian metrics on a four-dimensional manifold modulo the action of the diffeo-

2There is no need to work with gauge-fixed version of the Polyakov action. Any 2d (super)CFT
with appropriate central charges can be used to define string perturbation theory or string field theory
[81, 82, 83].

3In open- and open-closed-string theories, the number of boundaries can change. For example a disk
can develop a hole that adds a boundary.
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morphism group4 by knowing the UV-completion of general relativity. This space is
infinite-dimensional and is difficult to handle. In string theory, after Wick rotating
the 2d coordinates, we are dealing with a 2d conformally-invariant quantum field
theory which is only sensitive to the conformal class of the metric of the surface on
which the 2d theory is defined. Not all two topologically-equivalent Riemann surfaces
can be mapped to each other by a conformal transformation. The ones that can be
mapped to each other by such transformations form elements of an equivalence class
and are called conformally-equivalent. Therefore, the computation of above integrals
involves the integration over the space of distinct conformal classes of metrics on a
Riemann surface.

Using these facts, the above integral can be written as

AString =
∞∑
g=0

∫
Mg

ACFT[Rg], (2.A.2)

where Rg is a genus-g surface, and ACFT[Rg] is the CFT correlation function on Rg. Mg

denotes the space of distinct conformal classes on a genus-g surface. The vertex operators
in this expression are integrated vertex operators, i.e. the vertex operator integrated over
the whole surface. Amplitudes in string theory can be written either as an integral over
Mg using integrated vertex operators or equivalently as an integral over Mg,n, the space of
distinct conformal classes on a genus-g surface with n marked points, using unintegrated
vertex operators

AString =
∞∑
g=0

∫
Mg,n

ACFT[Rg,n]. (2.A.3)

With some modification, this expression also works for superstring theory. In superstring
theory, n = nNS + nR correspond to nNS states from the NS sector and nR states from the
R sector. Also, ACFT should be interpreted as a correlation function in a superconformal
field theory. Therefore, we need to deal with integrals over Mg,n in string perturbation
theory5.

Two metrics gab and g′ab are said to be conformally-equivalent or in the same conformal

4This is correct if one ignores the topology-changing processes.
5Although one usually prefers to work with integrated vertex operators for practical purposes, however,

due to the subtleties coming from the infinities of the moduli space, we rely on the unintegrated form of
the vertex operator which always works. For illustration of this point see figures 1 and 2 in [16].
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class if they are related by

g′ab = e2ωgab, a, b = 1, 2, (2.A.4)

for some function ω ≡ ω(x1, x2), where x1 and x2 are coordinates on the worldsheet. To
handle the conformal classes of metrics on a Riemann surface, it turns out to be useful
to deal with complex structures instead. There are two equivalent ways to think about
complex structure which are essentially the same. The first is the usual viewpoint of the
theory of manifolds. The exceptionality of 2d is that any metric g on a 2d manifold is
conformally-flat, i.e. it can be written as

ds2 = gab dx
a ⊗ dxb = f(x1, x2)

(
dx1 ⊗ dx1 + dx2 ⊗ dx2

)
, (2.A.5)

where f(x1, x2) is a real and positive function on the local chart (x1, x2). Therefore,
the transition functions between two local charts are provided by orientation-preserving6

conformal diffeomorphisms or biholomorphisms, i.e. we have a complex structure defined
by the local charts and the biholomorphisms between them. By definition, this complex
structure depends only on the conformal class of the metric. From the second point of view,
we use the fact that there is a one-to-one correspondence between metrics and complex
structures in 2d [78]. Having a metric gab in local coordinates (x1, x2), a mixed tensor can
be defined as

J b
a ≡

√
g εac g

cb, a, b, c = 1, 2, (2.A.6)

where ε is the totally-antisymmetric tensor in two dimensions defined by ε12 = −ε21 = 1.
It satisfies

J c
a J

b
c = −δ b

a , ∇cJ
b

a = 0, (2.A.7)

and therefore, defines a complex structure. It is clear from (2.A.6) that two conformally-
equivalent metrics define the same complex structure. This fact has an important impli-
cation, namely, the integration over distinct conformal classes of metrics reduces to the
integration over the space of all complex structures modulo infinitesimal diffeomorphisms,
i.e. the Teichmüller space. This space is finite-dimensional and the continuous parameters
specifying a conformal class or a complex structure are called Teichmüller parameters. We
emphasize that on a generic Riemann surface two arbitrary metrics cannot be related by
conformal transformation. The reason is that in a local complex coordinate z ≡ x1 + ix2,
a (conformal) diffeomorphism is given by a holomorphic function z −→ f(z). However, a
general infinitesimal transformation is of the form z −→ f(z, z̄) and therefore changes a
metric to another metric which is not in the same conformal class. As a result, it defines

6In this thesis, we are only interested in oriented surfaces.

30



another complex structure. Such transformations are called quasi-conformal transforma-
tions.

There is a twist in the story: the theory must be invariant under the action of Modg,n, the
mapping-class group of the surface. The reason is that there are two types of coordinate
transformations (x1, x2) → 2(x̃1 = f 1(x1, x2), x̃2 = f 2(x1, x2)), 1) the infinitesimal coordi-
nate transformations, i.e. those that can be reached from the identity transformation, and
2) the global or large coordinate transformations that can not be reached by successive
infinitesimal transformations from the identity. The second type of coordinate transfor-
mations form a group called the mapping-class group of the surface, and its elements are
called mapping-classes. Any genus-zero surface with at least four marked points and all
higher-genus surfaces have non-trivial mapping-class groups. These are residual gauge-
redundancies of the theory and must be divide-out in the path integral. From another
point of view, the invariance under large diffeomorphism is essential for the unitarity of
the theory. In the light-cone gauge, the Teichmüller parameters of the worldsheet are re-
lated to the physical light-cone time, and also there is a one-to-one correspondence between
the S-matrix poles and a surface with a fixed-set of Teichmüller parameters, i.e. there is
a unique set of Teichmüller parameters for each S-matrix pole. Using the fact that in the
light-cone gauge, the perturbation theory is manifestly unitary, one deduce that unitarity
of the theory demands the invariance under large diffeomorphisms [84]. Using this fact,
the integrals of string perturbation theory reduce to a fundamental region of the action of
the mapping-class group on the Teichmüller space. This fundamental region is called the
moduli space of Riemann surfaces. Technically, one has to consider the compactification of
moduli space by adding the so-called Riemann surfaces with nodes to the uncompactified
moduli space. This region give rises to divergences in string theory [16].

There is a further twist in the story for superstring theories. These theories contain fermions
which are fields on the worldsheet. To define these fermions, one need to choose a spin
structure, i.e. specify the behavior of fermions under parallel transport along non-trivial
1-cycles of the surface. On a genus-g surface, there are 22g choices of spin structure. The
summation over all spin structures is important for at least three reasons

1. Each choice of boundary condition for fermions gives rise to a sector in the Hilbert
space. To get the contribution from all sectors, one thus need to sum over all spin
structures;

2. One has to impose GSO projection [85]. Some of its significance are 1) it ensures
that all of the multiplets are supersymmetric, 2) it removes the tachyon from the
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spectrum of the theory. In the path integral formulation of theory, the summation
over all possible spin structures imposes GSO projection on the spectrum [86].

3. To integrate over the moduli space, we need to construct a modular-invariant top-
degree form on the moduli space Mg,n. One can construct this form for a specific
choice of spin structure. However, a generic element of the mapping-class group of
the surface changes the spin structure. Therefore, to get a modular-invariant form,
one must some over all possible choices of spin structure. By abuse of notation,
we denote the (compactified) moduli space of Riemann surfaces with Mg,n where
the summation over spin structures is understood. The modular invariance is also
important from another point of view. There is no UV divergences in string theory.
The reason is as follows [87]. The propagator in open- or closed-string theory can be
written as integration over the proper time s, or the so-called Schwinger proper time,
that strings propagates. The s −→ 0 limit normally corresponds to UV divergences
in a quantum field theory. However, since string theory is modular invariant, a
worldsheet in which the proper time s −→ 0 is equivalent to a worldsheet in which
all the proper times are away from zero. Therefore, modular invariance is the origin
of UV-finiteness of string theory. This is intimately related to the fact that the
Deligne-Mumford compactification of the moduli space of Riemann surfaces can be
constructed by adding divisors containing Riemann surfaces with only simple nodal
singularities [16].

4. It can be shown that the divergence due to dilaton tadpole in type-II-superstring
theory cancels only after summation over all spin structures [88]. This shows the
finiteness of the type-II-superstring perturbation theory.

Putting all the ingredients together, we can write on-shell amplitudes as

AString =
∞∑
g=0

∫
Mg,n

22g∑
s=0

ASCFT[Rg,n;s], (2.A.8)

where Rg,n;s is a genus-g Riemann surface with n marked points and spin structure s. One
can construct ASCFT[Rg,n;s] and sum over all spin structures. This gives ACFT[Rg,n] that
can be integrated over Mg,n. It can be shown that the string measure (the integrand of
(2.A.8)) reproduces the correct measure on the moduli space [84, 81, 82], and therefore, can
be integrated over it. This series is thus the definition of superstring perturbation theory.
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The bosonic-string theory contains Tachyons and also involves non-vanishing massless tad-
poles. These properties shows themselves as IR singularities. Due to all these reasons,
the definition of S-matrix in the bosonic-string theory is purely formal [89, 16]. We can
however do the following procedure to define superstring amplitudes7

1) Choose a set of vertex operators associated to external states. These are representa-
tives of the cohomology classes of Q, the BRST operator of the theory. Due to the fact
that all BRST-exact states A = {Q, · · · } decouple from the S-matrix computations,
any set of representatives of cohomology classes give the same result [81, 82];

2) Construct ASCFT[Rg,n;s] using the vertex operators. After summing over all spin
structures, it becomes a representative of the top-degree de-Rahm cohomology class
of the moduli space Mg,n, where n = nNS + nR [81, 82];

3) Compute
∑

sASCFT[Rg,n;s] in terms of a set of coordinate system on Mg,n;

4) Since
∑

sASCFT[Rg,n;s] is a top-degree form on the moduli space, and by construction
is invariant under the mapping-class group of Rg,n, one can integrate it over Mg,n.
The result is the scattering amplitude of the relevant process.

This is the on-shell prescription for computing scattering amplitudes in string theory.

2.B The Need for Off-Shell Amplitudes

In this section, we explain why the prescription given in the previous section is incomplete
in general. This leads us to the necessity of defining off-shell amplitudes.

2.B.1 Divergences in String Theory

In the quantum field theories of point-like particles, interactions happens at points in
space-time. To do computation, one thus need to integrate over all points in space-time.
In particular two interaction points can become arbitrarily close to each other. This is
the source of UV divergences in quantum field theory. Of course quantum field theory
of point-like particles can involve long distance IR divergences as well. However, a string

7For the corresponding procedure using supergeometry formulation of superstring perturbation theory
see [90, 91].
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is an extended object, and therefore, naturally puts cut-off on the integrals appearing in
the computations. This means that there is no UV divergences in string theory8. The
only source of divergence is therefore IR divergences. It is easier to see the dominant
contributions in this regime using Nambu-Goto action. In this formulation, the string
action is written as the area of the world-sheet

SNG = T

∫
R

d2σ
√
−γ(σ, τ), (2.B.1)

were γ is the pull-back of the metric Gµν on the space-time M , defined by the maps
Xµ : R −→ M . In long distances, a string stretches across the space-time, and therefore,
the dominant contribution according to the above action comes from those worldsheet
configurations that minimize the area, i.e. world-sheets with long tubes or conformally-
equivalently tubes with vanishing circumference. In the complete degeneration, i.e. when
the circumference is exactly zero and a point called a node9 formed, the neighborhood of
the node is described by two disks joined at a single point, the node. It turns out that the
deformation of a degenerating surface near the degeneration locus is totally independent
of the rest of the surface. In particular, the nodes are always disjoint, i.e. there is no
notion of approaching nodes because it is conformally-equivalent to a case where the nodes
are well-separated. This is also clear from The Keen’s Collar Lemma which we state in
the next chapter. Therefore, adding Riemann surfaces with nodes to Mg;nNS,nR

gives a
compact space, the compactification of the moduli space of Riemann surfaces, denoted by
Mg;nNS,nR

.

Regarding these facts, there are two types of degenerations

1. Separating-type degenerations: Such degenerations happen when a tube connecting
two component surfaces, i.e. a cycle which is homologous to zero cycle in the un-
derlying unmarked genus-g surface, degenerates. In this case, there are two separate
component surfaces joined at a point in the limit of complete degeneration. If the
original surface is a genus-g surface with n marked points10, the resulting component
surfaces are genus-gi, with g1 + g2 = g surfaces with ni + 1 marked points, including
the node, where n1 +n2 = n− 2. The total number of parameters after the complete
degeneration is 3g1−3+n1 +1+3g2−3+n2 +1 = 3g−3+2n−1. Therefore, adding

8More precisely, the removal of UV divergences is related to the modular invariance of the theory.
9In the math literature, it is also called an ordinary double point.

10To avoid cluttering, we avoid to mention the type of the marked points.
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a degenerating
joining tube•

•

•

•

•

(a) A degenerating joining tube. The small circles represent marked points. Such degenerations
are called separating-type degenerations because after the complete degeneration, the resulting
surface consists of two separate subsurfaces joined at a single point.

a degenerating handle

•
• •

(b) A degenerating handle. The small circles represent marked points. Such degenerations are
called nonseparating-type degenerations because after the complete degeneration, the resulting
surface remains a single surface.

Figure 2.B.1: The two possible degenerations of a surface.

these type of degenerate surfaces amount to adding a loci of complex-codimention
one to Mg;nNS,nR

. An example of such diagrams is sketched in figure 2.B.1a.

2. Non-separating-type degenerations: Such degenerations happen when one of the non-
trivial cycles of the underlying genus-g surface degenerates. In this case, there is
a single surface two of whose points are joined together in the limit of complete
degeneration. If the original surface is a genus-g surface with n marked points, the
resulting surface is a genus-(g − 1) surface with n + 2 marked points. The number
of parameters can be counted as follows: 3(g − 1) − 3 + n + 2 = 3g − 3 + n − 1.
Again, adding these type of degenerate surfaces amount to adding a loci of complex-
codimention one to Mg;nNS,nR

. An example of such diagrams is sketched in figure
2.B.1b.

The fact that in both types of degenerations the compactification divisor D ≡ Mg,n −
Mg;nNS,nR

is a complex-codimention one locus shows that Mg,n does not have a boundary
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and the surfaces in D should be thought of as points at infinity11. The situation is similar
to the one-point compactification of the complex plane by adding the point ∞ which is a
complex codimension-one submanifold. The resulting manifold, the Riemann sphere, does
not have a boundary.

2.B.2 Mass Renormalization

As we have seen above, the conventional formulation of scattering amplitudes in string
theory is based on a prescription given by Polyakov [4, 5]. Consider n states represented by
vertex operators Vi(ai; pi) with momentum pi and quantum numbers ai, then the scattering
amplitude is schematically can be written as

A(p1, a1; · · · ; pn, an) =
∞∑
g=0

∫
D(moduli)

〈
(ghost insertions)

n∏
i=1

Vi(pi; ai)

〉
Rg︸ ︷︷ ︸

a correlation function on Rg

. (2.B.2)

In a conformally-invariant formalism vertex operators have conformal dimension (0, 0).
Equivalently in the BRST formulation, the vertex operators belong to the cohomology of
the BRST operator. In turn, this demands that physical states should satisfy classical
mass-shell condition. We therefore conclude that the Polyakov prescription can be used to
give correct scattering amplitudes for 1) tree-level scatterings, and 2) BPS and massless
states which are protected from renormalization in the perturbation theory.

However, generic states in string theory undergo mass renormalization due to loop cor-
rections [38, 41, 40, 39]. For example, it is shown in [38] that the unitarity of the theory
demands the shift in the momentum of vertex operators in higher loops which corresponds
to mass renormalization. Similar shift must be taken into account to cancel a BRST
anomaly, a contribution comes from points at infinity of moduli space, generated in the
computation of on-shell two-point function in the one-loop order [40]. Hence in order
to compute physical S-matrix elements, the external momenta should be shifted to their
renormalized values. This means that the Polyakov prescription breaks down for comput-
ing the scattering amplitudes of massive states beyond tree level. A typical string-theory
worldsheet associated to the mass renormalization is given in figure 2.B.2.

To overcome this challenge there are two ways to proceed

11In contrast, the moduli spaces of surfaces with boundary do have boundaries.
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the degenerating neck
where the momentum
p going throough

the neck is on-shell
•

•

•

•

Figure 2.B.2: A typical diagram associated with the mass renormalization in string theory. In
such diagrams, there is one of component surfaces of the degenerating surface that there is only
one external states on it. In an on-shell formulation, where all of the external states satisfy the
tree-level mass condition p2

i = mi,0, for tree-level masses mi,0, the momentum p going through
the joining neck is on-shell.

1. Many states can be generated as single-particle intermediate states in some scattering
process in which all external states are massless and/or BPS states. One can then
find the renormalized masses of such states by examining poles of the S-matrix of
such processes. However all massive states are not produced like this. Some examples
are as follows [17, 18]

• Consider the compactification of bosonic-string theory on S1. An example of a
state in this theory is a massive state which has non-zero winding number. Such
state cannot be produced in the scattering of massless states which do not carry
winding numbers. Pairs of such states can be produced in the intermediate
channel. Such states produce a cut in the S-matrix of massless states. One can
determine renormalized masses by examining endpoints of the cut. However,
this is hard in general.

• SO(32) heterotic-string theory contains massive states belonging to the spinor
representation of SO(32) [17]. They cannot appear as single-particle intermediate
states in the scattering of massless external states which are all in the adjoint or
singlet representation of SO(32). As such, the renormalized masses of such states
cannot be computed by examining the S-matrix of some scattering process of
massless and/or BPS states.

2. The alternative option is to compute renormalized masses directly. This requires
the computation of off-shell amplitudes in string theory, i.e. scattering amplitudes of
states whose momenta are not satisfying the classical mass-shell condition. There are
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various subtleties for extracting renormalized masses using the off-shell amplitudes
such as finding a proper definition of the analog of the off-shell Green’s function in
string theory and mixing between physical and unphysical states [17, 18]. We briefly
explain some of these below.

Consider a string theory amplitude corresponding to the scattering of n external states
representing particles carrying momenta p1, · · · , pn and other discrete quantum numbers
a1, · · · , an with tree level masses ma1 , · · · ,man . The momenta pi are required to satisfy
the tree level on-shell condition p2

i = −m2
ai

. The conventional formulation of string theory
yields the result for what in a quantum field theory can be called the truncated Green’s
function on classical mass shell:

R(n)(p1, a1; · · · ; pn, an) ≡ lim
p2i→−m2

ai

F (n)(p1, a1; · · · ; pn, an),

F (n)(p1, a1; · · · ; pn, an) ≡ G(n)(p1, a1; · · · ; pn, an)
n∏
i=1

(p2
i +m2

ai
). (2.B.3)

where G(n)(p1, a1; · · · ; pn, an) is the momentum space Green’s function in the quantum field
theory. This expression is significantly different from the S-matrix elements in quantum
field theory. To define the S-matrix elements in quantum field theory, we need to first
consider the two point function G

(2)
ab (p, p′) for all set of fields whose tree level masses are

all equal to m described by the matrix

G
(2)
ab (p, p′) = (2π)D+1δ(D+1)(p+ p′)Z1/2(p)ac(p

2 +M2
p )−1
cd (Z1/2(−p))Tdb, (2.B.4)

where M2
p is the mass-squared matrix and Z1/2(k) is the wave-function renormalization

matrix, the latter being free from poles near k2 +m2 ' 0. The sum over c, d are restricted
to states which have the same tree level mass m as the states labelled by the indices a, b.
D + 1 is the total number of non-compact space-time dimensions. We can diagonalize
M2

p and absorb the diagonalizing matrices into the wave-function renormalization factor

Z1/2(p) to express M2
p as a diagonal matrix. These eigenvalues, which we shall denote by

m2
a;p, are the squares of the physical masses. Then the S-matrix elements are defined by

[17, 18]

S(n)(p1, a1; · · · pn, an) = lim
p2i→−m2

ai,p

G(n)(p1, b1; · · · ; pn, bn)
n∏
i=1

[
Z
−1/2
i (pi)ai,bi(p

2
i +m2

ai,p
)
]
.

(2.B.5)
mai,p is the physical mass of the i-th particle, defined as the location of the pole as a
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function of −p2 in the untruncated two-point Green’s function G(2), and Zi(pi)ai,bi is the
residue at this pole. At the tree level Z = 1, M2

p = m2 I and hence R(n) defined in (2.B.3)

and S(n) defined in (2.B.5) agree. In general however R(n) and S(n) are different. While
S(n) is the physically-relevant quantity, conventional formulation of string theory directly
computes R(n). This is a serious trouble for states whose masses are renormalized. For
example consider the case that the mass of an external state with the quantum number ai
and the tree level mass mai is being renormalized due to the loop effects. Then radiative
corrections introduce series of 1

p2i+m
2
ai

. However, as we have explained above, the Polyakov

prescription demands that p2
i + m2

ai
= 0. Therefore, the resulting on-shell amplitude will

be ill-defined.

Regarding these facts, the mass renormalization in string theory is one of the main moti-
vations to define off-shell amplitudes is bosonic-string and superstring theories.

2.B.3 Dynamical Shift of the Vacuum

Demanding the Weyl-invariance at the quantum level imposes stringent constraints on
the dimension and geometry of the background space-time through which an string is
propagating. For the bosonic-string theory, the sum of dimension of compact and non-
compact dimension must be 26 and that of the superstring theory must be 10. Also
the background spacetimes that avoid the Weyl anomaly must satisfy a set of classical
equations [83]. Below we shall discuss a situation in which quantum corrections modify
the background.

Consider an N = 1 supersymmetric compactification of string theory down to 3+1 dimen-
sions, where we have U(1) gauge fields with Fayet-Iliopoulos (FI) terms generated at one
loop [92, 93, 94, 95]. It is possible to ensure that only one gauge field has FI term by
choosing suitable linear combination of these gauge fields. Typically there are also mass-
less scalars φi charged under this U(1) gauge field. The FI term generates a term in the
potential of the form

1

g2
s

(∑
i

qiφ
∗
iφi − C g2

s

)2

, (2.B.6)

where qi is the charge carried by φi, C is a numerical constant that determines the co-
efficient of the FI term and gs is the string coupling constant. C could be positive or
negative and qis for different fields could have different signs. If we expand the potential
in powers of φi around the perturbative vacuum φi = 0, it is clear that some of these
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the degenerating neck
where the momentum
p going throough
the neck is zero

•

•

•

Figure 2.B.3: A typical diagram associated with a massless tadpole. In such diagrams, there is
no external state on one of the component surfaces of the degenerating surface. The momentum
conservation forces the momentum p going through the joining neck to be zero. When the state
propagating through the neck is associated with a massless particle, this is an on-shell condition
on p.

scalars can become tachyonic. The form of the effective potential suggests that the cor-
rect procedure to compute physical quantities is to shift the corresponding fields so that
we have a new vacuum where

∑
i qi〈φ∗i 〉〈φi〉 = C g2

s , and quantize string theory around
this new background. However since classically the C g2

s term is absent from the potential
(2.B.6), this new vacuum is not a solution to the classical equations of motion. As a result
on-shell methods given by the Polyakov prescription is not suitable for carrying out a sys-
tematic perturbation expansion around this new background [19]. This is another reason
for introducing off-shell methods in superstring theory.

In conventional quantum field theory the 1PI effective action can be used to deal with issues
regarding the mass renormalization and vacuum shift. 1PI effective action by definition is
the generating function of off-shell 1PI amplitudes, and is free from all infrared divergences
associated with mass renormalization or massless tadpoles. On the other hand, infrared
divergences associated with internal lines in the loop going on-shell are tamed by the
usual iε prescription. Given the 1PI effective action, we are supposed to first find its
local extremum, and then find plane wave solutions to the classical linearized equations
of motion derived from the action. If these occur at momenta p then the values of −p2

give the renormalized squared masses. Once we have determined them, the tree level
S-matrix computed from the 1PI action gives us the full renormalized S-matrix of the
original quantum field theory. The 1PI approach is indeed can be introduced in string
theory to deal with problems of mass renormalization and vacuum shift in the theory. The
1PI effective actions for heterotic and type-II superstring theories in the picture-changing
formalism have been constructed recently [21, 22]. These theories were used to deal with
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issues of mass renormalization and vacuum shift in an important recent paper [23].
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Chapter 3

Hyperbolic Geometry and String
Theory

In this chapter, we shall explicitly construct off-shell amplitudes in bosonic-string theory
using hyperbolic Riemann surfaces following the general construction described in chapter
2. By explicit construction of off-shell amplitudes we mean a gluing-compatible choice of
local coordinates and/or distribution of PCOs, and a prescription for integration over the
moduli space. In the last section, we explain the applications of hyperbolic geometry to
string field theory.

3.1 Sewing of Hyperbolic Surfaces

A Riemann surface is called hyperbolic if it is equipped with a hyperbolic metric, i.e. a
metric with constant curvature −1 everywhere on the surface. One important advantage
of using hyperbolic metric is that Riemann surfaces with nodes obtained by the plumbing
fixture of hyperbolic surfaces are again hyperbolic. This suggests that if we choose local
coordinates around the punctures as the one induced from the hyperbolic metric on the
surface, at least on the complete degeneration limit, where the plumbing parameter vanishes
and a node is developed, this choice will match with local coordinates induced from the
component surfaces. This is an essential constraint satisfied by a gluing-compatible section
of P̂g,n. There are two ways to construct hyperbolic metric by gluing two surfaces

1. We choose two cusps1 and glue them by a gluing relation. As we argue below, the

1We use the work cusp to denote a marked point or puncture on a hyperbolic surface. In what follows,
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resulting family of surfaces, depending on a number of complex sewing parameters,
is not hyperbolic.

2. We cut neighborhood of two cusps such that the resulting boundaries have the same
length. Gluing these boundaries generates a hyperbolic surfaces by construction.

In this thesis, we pursue the first approach. As we will argue below, away from the
degeneration locus, the hyperbolic metric is not gluing-compatible. We then see that this
statement is too naive, and the hyperbolic metric can indeed be made gluing-compatible.

3.1.1 Incompatibility of the Hyperbolic Metric with Sewing

A hyperbolic surface can be represented as a quotient of the upper half-plane H by a
Fuchsian group. A puncture on a hyperbolic surface corresponds to the fixed point of a
parabolic element of the Fuchsian group acting on the upper half-plane H. For a puncture
p, there is a natural local coordinate w with w(p) = 0 and the hyperbolic metric around
the puncture is locally given by2

ds2 =

(∣∣∣∣ dw

w ln |w|

∣∣∣∣)2

. (3.1.1)

Let z be the coordinate on upper half-plane. Then, the local coordinate around a puncture
is given as

• For a puncture corresponding to a parabolic element whose fixed point is located at
infinity, the local coordinate is given by

w = exp (2πi z) . (3.1.2)

As required this choice of local coordinate is invariant under the translation, z → z+1,
which represents the action of the generator of corresponding parabolic element. In
terms of coordinate z, the metric around the puncture takes the form

ds2 =
dzdz̄

(Imz)2
, (3.1.3)

which is the Poincaré metric for the upper half-plane H, as it should be.

we use these words interchangeably.
2For derivation of this result, see around equation (3.B.6) in appendix 3.B.
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• For a puncture corresponding to a parabolic element whose fixed point is located at
x ∈ R, the local coordinate is given by

w = exp

(
− 2πi

z − x

)
. (3.1.4)

In terms of coordinate z, the metric around the puncture takes the form of the
Poincaré metric for the upper half-plane H, as it should be.

As it is clear from the form of the local coordinate around the puncture w given by (3.1.1),
it is unique modulo a phase factor. This means that it is perfectly compatible with the
requirement of local coordinates around marked points in string theory.

Before using the proposed choice of local coordinates for constructing off-shell amplitudes,
it is important to ensure that it satisfies the gluing-compatibility requirement. We should
first answer the following question: What are the local coordinates induced around punctures
on the family of surfaces obtained via the plumbing of two hyperbolic surfaces? We thus
need to find the metric on this family of surfaces to determine whether it is hyperbolic or
not.

Plumbing of two Hyperbolic Surfaces

In this section, we describe the construction of a family of Riemann surfaces parametrized
by a set of complex parameters. A degenerating family of surfaces constructed by consid-
ering two cusps, one on each surface, and glue them by a specific relation [96, 97]. We
describe in detail this construction since it is essential for later discussion. We discuss the
case of genus-g surfaces. The construction can be readily generalize to a surface with any
number of cusps.

Consider Mg, the Deligne-Mumford compactification of the moduli space of genus-g Rie-
mann surfaces [62]. Let us denote the compactification divisor of Mg by D ≡Mg−Mg. A
point of D represents a surface R with nodes. By definition, the neighborhood of a node
n of R is isomorphic to

U ≡
{
w(1)w(2) = 0| |w(1)|, |w(2)| < ε

}
, (3.1.5)

where w(1) and w(2) are local coordinates around the two sides of n. To move away from
the compactification divisor, i.e. to open the node, let us consider the following family of

44



p q

(a) The plumbing-fixture identification of two
cusps on two disconnected hyperbolic surfaces.

(b) The resulting tube connecting the two dis-
connected surfaces.

Figure 3.1: The plumbing of two hyperbolic cusps p and q.

surfaces fibered over a disk with complex coordinate t for some ε� 1{
w(1)w(2) = t| |w(1)|, |w(2)| < ε, |t| < ε

}
. (3.1.6)

We can identify U with the fiber at t = 0. A deformation of R ∈ Mg which opens the
node is given by varying the parameter t. Consider a surface R0 ∈D ⊂Mg with m nodes
denoted by n1, · · · , nm. For the node ni, the punctures pi and qi of R0 − {n1, · · · , nm} are
paired. Let

U
(1)
i =

{
|w(1)

i | < 1
}
, U

(2)
i =

{
|w(2)

i | < 1
}
, i = 1, · · · ,m, (3.1.7)

be disjoint neighborhoods of punctures pi and qi, respectively. Here, w
(1)
i and w

(2)
i with

w
(1)
i (pi) = 0 and w

(2)
i (qi) = 0 are local coordinates around the two sides of the node ni.

Consider an open set V ⊂ R0 disjoint from the set U
(1)
i , U

(2)
i which support the Beltrami

differentials {µa}. Beltrami differentials span the tangent space of the Teichmüller space
of R0 − {n1, · · · , nm}. The dimension of this space is 3g− 3−m. Given

s ≡ (s1, · · · , s3g−3−m) ∈ C3g−3−m, (3.1.8)

for a neighborhood of the origin, the sum µ(s) =
∑

j sjµj is a solution ωµ(s) of the Beltrami

45



D2

|t||t|

D1

Figure 3.2: Two annuli with inner radius |t| and outer radius 1 obtained by removing a disc of
radius |t| from D1 and D2, where t is a complex parameter. The resulting annuli are glued by
identifying w(1) with t

w(2) .

equation. Assume that the surface ωµ(s)(R0) = Rs is a quasiconformal deformation of R0.
Then, we shall parametrize the opening of nodes as follows. The map ωµ(s) is conformal on
U1
i and U2

i and therefore w
(1)
i and w

(2)
i serve as local coordinates for ωµ(s)(U1

i ), ωµ(s)(U2
i ) ⊂

ωµ(s)(R0). Given
t ≡ (t1, · · · , tm) ∈ Cm, |ti| < 1. (3.1.9)

We construct the family of surface Rt,s, parametrized by s and t as follows. We first

remove the discs {0 ≤ |w(1)
i | ≤ |ti|} and {0 ≤ |w(2)

i | ≤ |ti|} from Rs, and then attach

{|ti| < |w(1)
i | < 1} to {|ti| < |w(2)

i | < 1} by identifying w
(1)
i and ti

w
(2)
i

. This provides a local

coordinate near D [96]. This construction has been illustrated in figure 3.2.

We now turn to the plumbing of two hyperbolic surfaces. For a geodesic α on the hyperbolic
surface R of length lα, a neighborhood with area 2lα cot lα

2
is called the collar around α.

The standard collar around the geodesic α is the collection of points p whose hyperbolic
distance from α is less than w(α) given by [98, 97]

sinhw(α) sinh
lα
2

= 1. (3.1.10)

This follows from the Keen’s Collar Lemma that we will state below. The collar can be
described as a quotient of the upper half-plane H. To describe the resulting space, we
consider the transformation z → elαz which is represented by the following matrix in
PSL(2,R)

M =

(
exp

(
lα
2

)
0

0 exp
(
− lα

2

)) . (3.1.11)

It is clear from this form that it generates a cyclic subgroup of PSL(2,R). We shall denote
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(a) The fundamental domain of a the
action of subgroup of PSL(2,R) gener-
ated by M given in (3.1.11). The result
is the hyperbolic annulus.

π − lα lα

(b) The fundamental domain for gen-
erating a standar collar is the region
bounded by the strip and the wedge.
The group which acting is still Γα.

Figure 3.3: The construction of the hyperbolic annulus and the standard collar.

this subgroup by Γα. The fundamental domain is given by a strip in H and it is shown in
figure 3.3. We can then construct

• The hyperbolic annulus: If we quotient H with z → elαz relation, we identify the
two sides of the strip. This fundamental domain is shown in figure 3.3a. This gives a
cylinder which is topologically an annulus and it has an induced hyperbolic structure
from H. The simple closed geodesic of this annulus has hyperbolic length lα.

• The standard collar: By definition, the standard collar is given by the Γα-quotient
of the region bounded by the wedge {lα < arg z < π − lα} and the strip. The
fundamental domain is shown in figure 3.3b.

The degeneration of an annulus can be described as follows. Consider two cusps c1 and
c2 whose local coordinates are denoted by w1 and w2. These local coordinates define two
disks D1 and D2. Consider the plumbing-fixture locus

Ft = {w1w2 = t | |w1|, |w2|, |t| < 1} . (3.1.12)

It is a complex manifold fibered over the disk D = {|t| < 1}. One can describe the
hyperbolic metric on the resulting family of annuli explicitly. There are two different
situation

• the t = 0 fiber: The fiber is singular. D1 and D2 are joined in a single point. In
terms of local coordinates w1 and w2 around the two cusps c1 and c2, each of the
punctures disks D•1 and D•2

ds2
0 =

(
|dwi|

|wi| ln |wi|

)2

, i = 1, 2. (3.1.13)
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• t 6= 0 fibers: These are annuli. We can equip them with the hyperbolic metric,

ds2
t =

(
π

ln |t|
csc

(
π

ln |wi|
ln |t|

) ∣∣∣∣dwiwi

∣∣∣∣)2

. (3.1.14)

For derivation of this result see around equation (3.B.9) in appendix 3.B. For small
|t|, we have the following expansion of the hyperbolic metric on the punctured disc

ds2
t =

(
1 +

1

3
Θ2 +

1

15
Θ4 + · · ·

)
ds2

0, (3.1.15)

where Θ ≡ π ln |wi|
ln |t| .

The length of the core geodesic is given by [96]

l(t) = − 2π2

ln |t|
. (3.1.16)

It is known that there exists a positive constant c∗ such that if the length l of a geodesic
γ on a hyperbolic surface R is less than or equal to c∗, then the standard collar embeds
about γ [99, 100, 96]. This constant c∗ is known as the collar constant. We shall call a
geodesic whose length is at most c∗ a short geodesics. As it is clear from (3.1.16), this
length is under control. Therefore, whenever the length of a simple geodesic along which
the cut-and-paste construction can be done becomes less than the collar constant, a wide
collar is formed around this simple closed geodesic. The width of this collar is given by
the Keen’s Collar Lemma [98]

Lemma 3.1 (Keen’s Collar Lemma). Around a simple closed geodesic γ on a hyperbolic
surface R, there is always an embedded hyperbolic cylinder, called a collar, of width

w(γ) = arcsinh

 1

sinh
(
lγ
2

)
 . (3.1.17)

Furthermore, assuming that cutting along simple closed curves {γ1, · · · , γ3g−3+n} produces
a pairs of pants decomposition of R, the collars around γas are all disjoint.

The second part of the lemma has an important consequence: The fundamental result
on the degeneration of 2d hyperbolic metrics is that the deformation localizes into collar
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neighborhoods about short geodesies, i.e. geodesics γ with length lγ ≤ c∗ [96]. This means
that the geometry of collar is completely determined by the length of its core geodesics,
and also it is independent of the rest of surface.

The disc {|t| < 1} can be thought of as the moduli space for the hyperbolic annulus. The
Weil-Petersson (WP) metric on it is given by [96]

ds2
WP = − 2π3

|t|2(ln |t|)3
|dt|2. (3.1.18)

This formula can be put into a form that is known as The Wolpert’s Magic Formula [101].
We can identify Fenchel-Nielsen coordinates (`, τ) for the moduli space as follows:

` ≡ − 2π2

ln|t|
,

2πτ

`
≡ arg t = Im(ln t). (3.1.19)

Using these relation, (3.1.18) can be written as d` ∧ dτ .

This construction can be generalized to the case of a hyperbolic surface with m disjoint
short geodesics. The collar neighborhood of each of the short geodesics can be interpreted
as a plumbing collar. Given an ε > 0, we have the following estimate for the length li of
the simple closed geodesic of the tthi annulus∣∣∣∣2π2

li
− ln

1

|ti|

∣∣∣∣ < ε, i = 1, · · · ,m. (3.1.20)

Therefore, we see that the degeneration of a hyperbolic metric is associated to the formation
of wide collars about short geodesics.

Let us summarize what we have explained so far. Based on this, we make a conclusion that
is important. For simplicity, we consider the case where a single degeneration happens, and
denote the resulting surface by R0. The generalization to more degenerations are straight-
forward. Deformations that open the node generates a family of surfaces parametrized by a
single complex parameter t, and we denote the family byRt. We consider two disconnected
surfaces R1 and R2, each of which is equipped with the hyperbolic metric. We consider
cusps c1 and c2 with local coordinates w1 and w2 and glue them via the plumbing relation

w1w2 = t, 0 ≤ |t| ≤ 1. (3.1.21)
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collar
R1

R2

Figure 3.4: Rt for a particular value of t. For simplicity in the illustration, we have assumed that
surfaces R1 and R2 do not have any other punctures.

Rt for each t is the following combination

Rt = (R1 −D1)#(collar)#(R2 −D2), ∀t, (3.1.22)

where Di are small disks around cusps, and # denotes the connected sum of components.
For a particular value of t, Rt is illustrated in figure 3.4. We can then take the following
metric on Rt

• The metric for t = 0 fiber is given by (3.1.13).

• The metric for t 6= 0 fiber is given by (3.1.14).

• Away from the collar, the metric is taken to be the hyperbolic metrics on R1 and
R2.

• At the collar boundaries, we consider an interpolation between the above metrics.
We describe an appropriate interpolation in the next section.

These choices will give rise to a grafted metric ds2
g on Rt. The question is the following:

is the grafted metric hyperbolic? To find the answer to this question, we need to compute
Cg, the curvature of grafted metric. It turns out that [73]

Cg = −1−O
(
(ln |t|)−2

)
. (3.1.23)

This result shows that except at t = 0, where Cg = −1, for all t 6= 0 the grafted metric is
not hyperbolic. Since the metric is hyperbolic away from boundaries of the collar, the only
deviation can happen at the collar boundaries where the interpolation leads to a deviation
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from the hyperbolicity. We can thus state the two main conclusions of this section as
follows

1. Sewing of two surfaces equipped with the hyperbolic metric does not give rise to a
family of surfaces whose metrics are not hyperbolic except at t = 0. This proves that
the hyperbolic metric is not compatible with sewing. This result generalizes when
there are more sewing between two surfaces or there are sewing of more surfaces.

2. To construct off-shell amplitudes in bosonic-string theory, we need to choose a gluing-
compatible choice of local coordinates around the cusps, i.e. the choice of local
coordinates must be compatible with gluing [17, 18]. Since the hyperbolic metric
is not compatible with the gluing, as it is clear from (3.1.23), we conclude that we
cannot use the hyperbolic metric to construct off-shell amplitudes in bosonic-string
or superstring theories.

3.1.2 The Hyperbolic Metric on the Family of Sewn Surfaces

In this section, we explain that the two conclusions of the last section were too naive. We
indeed find that

1. Although the sewing of two hyperbolic surfaces does not automatically give rises to
a hyperbolic surface, we can correct the metric systematically such that it becomes
hyperbolic.

2. Since we can make the metric on the family of sewn surfaces hyperbolic, we can
indeed use the hyperbolic metric to construct off-shell amplitudes in bosonic-string
or superstring theories.

It is indeed possible to construct a hyperbolic metric on the family of sewn surfaces. The
main result that helps us to find the hyperbolic metric is found in [73]. It is possible to
find an expansion of the hyperbolic metric ds2

h on Rt in terms of the grafted metric by
doing a rescaling

ds2
h = Σ(t)ds2

g, (3.1.24)

where Σ(t) is a scaling factor given by [73]

Σ(t) ≡ 1− 1

2

(
π

ln |t|

)2

(Dh − 2)−1(Λ(w1) + Λ(w2)) +O
(
ln |t|−4

)
, (3.1.25)
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where Dh is the Laplace-Beltrami operator computed in ds2
h metric, and

Λ(wi) ≡
∂

∂a

(
a4∂η

∂a

)
, a ≡ ln |wi|, i = 1, 2. (3.1.26)

and η is a unit step function with step at the collar boundary. The existence of hyperbolic
metric in (3.1.24) is guaranteed by The Uniformization Theorem. The main tool to deal
with the problem is The Curvature-Correction Equation [70, 71, 72, 73]. Consider
a compact Riemann surface with metric ds2 with curvature C. Then exp(2f)ds2 is a
conformally-equivalent metric with curvature C′. f satisfies the following equation known
as the curvature-correction equation

Df −C = − exp(2f)C′, (3.1.27)

where D is the Laplace-Beltrami operator computed using the ds2 metric. For curvature
functions C < 0 and C′ < 0, (3.1.27) has a unique solution [70, 72].

We are interested in the case that C′ ≡ −1 and C ≡ Cg, where Cg is the curvature of the
grafted metric given by (3.1.23). Then, the curvature-correction equation can be written
as

Dgf − exp(2f) = Cg. (3.1.28)

To proceed, we need to specify the grafted metric precisely. We consider a surface R• with
a single node n. The generalization for an arbitrary surface with more than one node is
straightforward and can be found in [69]. Assume b∗ is a positive constant less than one.

For |t| < b4
∗, we remove from R̂ ≡ R•−{n}, a disconnected surface with a pair of punctures

p1 and p2, the punctured disks {0 < |w(1)| ≤ |t|/b∗} about p1 and {0 < |w(2)| ≤ |t|/b∗}
about p2 to obtain a surface Rt/b∗ . For t 6= 0, we can form an identification space Rt, the
family of sewn surfaces, by identifying the annulus {|t|/b∗ < |w(1)| < b∗} ⊂ Rt/b∗ with the
annulus {|t|/b∗ < |w(2)| < b∗} ⊂ Rt/b∗ by the rule w(1)w(2) = t. To get the grafted metric,
we should combine two different metrics

1. The metric ds2 on R which defines the metric away from the plumbing collar.

2. To define the other metric, we first define:

Ft ≡ {(z, w, t)| zw = t, |z|, |w|, |t| < 1}. (3.1.29)

The metric of this family is denoted by ds2
t . The metric on the family of surfaces Ft

is given by (3.1.13) for t = 0, and by (3.1.14) for t 6= 0. This metric can be restricted
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Figure 3.5: The construction of the grafted metric on the family of sewn surfaces Rt.

to the following plumbing family considered above

F̃b∗ =
{

(w(1), w(2), t)| w(1)w(2) = t, |t| < b4
∗
}
, (3.1.30)

The second metric that is used to define the grafted metric is ds2
t restricted to F̃b∗ .

We also need to define an interpolating metric around the annular regions |w(1)| = b∗ and
|w(2)| = b∗. We first define a function η by

η(a) ≡

{
1, a ≤ a0 < 0,

0, a ≥ 0.
(3.1.31)

We further restrict t to satisfy e2a0b2
∗ ≥ |t|. {ea0b∗ ≤ |w(1)| ≤ b∗} and {ea0b∗ ≤ |w(2)| ≤ b∗}

are called the collar band and are included in the collar. This region is illustrated in figure
3.5. We denote local coordinates around cusps of Rt/b∗ and the fiber coordinate of the F̃b∗
by ζ, the smooth grafted metric is then defined as follows

• We remove the disks Di,b∗ ≡ {0 ≤ |w(1)| ≤ b∗} from R̂. The result is two disconnected
surfaces R1;b∗ and R2;b∗ . By abuse of notation, we use the restriction of metrics of

R̂ to R1;b∗ and R2;b∗ by ds2. In this region and away from the collar, we take the
grafted metric to be ds2

g = ds2.

• In the region complement to the collar band inside the collar, the grafted metric is
taken to be ds2

g = ds2
t .

• In the collar band, the grafted metric is taken to be ds2
g = ds2

i , the interpolation
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metric, which is given by

ds2
i ≡ (ds2)1−η(ds2

t )
η, η ≡ η

(
ln

(
|w(i)|
b∗

))
, i = 1, 2. (3.1.32)

ds2
i matches with the metric in the corresponding region. This is easy to check. At |ξ| = b∗,

η = η(0) = 0, and ds2
i = ds2. At |ξ| = ea0b∗, η = η(a0) = 1, and ds2

i = ds2
t . Therefore, the

interpolation metric is an interpolation between the metric on R̂ − D1,b∗ − D2,b∗ and the
metric on the collar.

We now equipped with the required tools to construct the hyperbolic metric on Rt in terms
of the grafted metric ds2

g. A prominent role is played by the Eisenstein series E(z, s) for
s = 2. The Eisenstein series can be defined as follows. Consider a surface uniformized by
a Fuchsian group Γ. We consider the following subgroup of Γ

Γ∞ ≡

{
±

(
1 n

0 1

)
: n ∈ Z

}
=

〈(
1 1

0 1

)〉
. (3.1.33)

This last notation means that it is a cyclic group generated by the transformation z → z+1
for z ∈ H. This subgroup is the stabilizer of a cusp at infinity. E(z; s) associated to the
cusp at infinity, is defined by the following Eisenstein-Maass series:

E(z; s) ≡
∑

γ∈Γ/Γ∞

(Im(γ · z))s, (3.1.34)

where z is the coordinate on H and

γ =

(
a b

c d

)
, −→ γ · z ≡ az + b

cz + d
. (3.1.35)

This series converges absolutely for all of the values of s with Re(s) > 1 and uniformly in z
on compact subsets of H [102]. One can show that E(z, s) can be extended onto the entire
complex s-plane by analytic continuation [102]. The case we are interested in corresponds
to s = 2

E(z; 2) =
∑

γ∈Γ/Γ∞

(Im(γ · z))2. (3.1.36)

The function (Imz)2 on H is an eigenfunction of the hyperbolic Laplacian with eigenvalue
2. This formula shows that there is an Eisenstein series associated to each cusp. For
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a cusp represented by (3.1.36), the quotient space {Im(z) > 1}/Γ∞ embeds in H/Γ and
determines a cusp region. Cusp regions for distinct cusp are disjoint [69]. The Eisenstein
series, transformed for a cusp represented at infinity, has the expansion:

E(z; 2) = Im(z)2 + ê(z), (3.1.37)

where ê(z) bounded as O((Im(z))−1) for large values of Im(z) [69].

A special truncation of the Eisenstein series is specified by the parameters t and b∗ and the
function η. The special truncation E# of the Eisenstein series is given by a modification
in the cusp regions. To modify the cusp region, we divide the cusp region into two parts
and define a modification E# of the E(z; 2). These two regions and a suitable definition
of the modification E# in each region are specified as follows [69]

• For the cusp c defining the series where E(z; 2) = (Imz)2 + ê(z), for Im(z) > 1 and
χ ≡ 1− η, we define

E#(z; 2) ≡ χ(−2π Im(z)− ln b∗)(Im(z))2 + χ

(
−2π Im(z) + ln

(
b∗
|t|

)
+ a0

)
ê(z).

(3.1.38)

• For a remaining cusp represented at infinity and for Im(z) > 1, we define

E#(z; 2) = χ

(
−2π Im(z) + ln

(
b∗
|t|

)
+ a0

)
E(z; 2). (3.1.39)

• For the components of the surface not containing c, E# is taken to be zero.

For cusp coordinates w(1), w(2) of R, the punctured discs {0 < |w(1)| ≤ |t|/b∗}, {0 <
|w(2)| ≤ |t|/b∗} are removed and the annuli {|t|/b∗ < |w(1)| ≤ b∗}, {|t|/b∗ < |w(2)| ≤ b∗}
are identified by the rule w(1)w(2) = t to form a collar. For w(1) = e2πiz, z ∈ H, the
identified annulus is covered by {ln(|t|/b∗) < −2πIm(z) < ln(b∗)}. This is easy to see

ln(w(1)) = 2πiz = 2π(−Im(z) + i Re(z)),

ln(w(1)) = ln(|w(1)|) + 2πi arg(w(1)),

ln(|t|/b∗) < ln(w(1)) ≤ ln b∗,

 =⇒ ln(|t|/b∗) < −2πIm(z) ≤ ln(b∗).

(3.1.40)
We also have:
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• The primary collar band {b∗ea0 ≤ |w(1)| ≤ ln b∗} is covered by the strip {ln b∗ + a0 ≤
−2πIm(z) ≤ ln b∗}.

• The secondary collar band {|t|/b∗ ≤ |w(1)| ≤ |t|e−a0/b∗} is covered by the strip
ln(|t|/b∗) ≤ −2πIm(z) ≤ ln(|t|/b∗)− a0}

The extended E# has support in the w(1), w(2) cusp regions contained in {|w(1)| ≥ |t|/b∗}∪
{|w(2)| ≥ |t|/b∗}. To define the expansion of the hyperbolic metric in terms of the grafted
metric, we need a counterpart interpolation for the Eisenstein series. It is called the melding
E† on Rt of the Eisenstein series. It is a smooth function associated to any pair of cusps
sewn to form a collar. The melding is defined as follows

• On the overlap {|t|/b∗ < |w(1)| < b∗} ∩ {|t|/b∗ < |w(2)| < b∗}, it is given by the sum
of E# for pairs of cusp regions

E†
(
w(1)

)
≡ E#

(
w(1); 2

)
+ E#

(
w(2); 2

)
= E#

(
w(1); 2

)
+ E#

(
w(1)

t
; 2

)
. (3.1.41)

• On the complement of the identified annuli {|t|/b∗ < |w(1)| < b∗} and {|t|/b∗ <
|w(2)| < b∗}, it is given by the value of E#.

As we mentioned earlier, (Im(z))2 is the eigenfunction of the hyperbolic Laplacian with
eigenvalue 2. The contribution of the truncation of the Eisenstein series to the hyperbolic
metric can be determined by analysing the quantity (Dg − 2)E† on the collar, where Dg

is the Laplacian computed using the grafted metric. In the complement of the collar, the
grafted metric is the hyperbolic metric and E† = E and (Dg− 2)E† becomes (D− 2)E for

D ≡ y2
(
∂2

∂x2
+ ∂2

∂y2

)
. By the definition of E given in (3.1.36), this quantity is zero. However,

This quantity is non-zero on the collar and can be used to determine the contribution to
the hyperbolic metric on the collar from the grafted metric defined on the collar band. It
can be shown that [73, 69]:

(Dg − 2)E†(ζ) = − 1

4π
Λ +O

(
(− ln |t|)−1) , (3.1.42)

and Λ is given by (3.1.26). One can use this result to find an expansion for the hyperbolic
metric onRt in terms of ds2

g. We state the result for a surface formed by a pair of punctures.
The result can be generalized to the case where the surface constructed by sewing m pairs
of punctures. Assume that |t| < b4

∗ is the plumbing-fixture parameter. To find expansion
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of the hyperbolic metric on Rt, one should use the curvature-correction equation (3.1.28).
This approach asserts that the hyperbolic metric ds2

h on the degenerate surface Rt has the
following expansion [73, 69]:

ds2
h =

[
1 + 2(Dg − 2)−1(1 + Cg) +O (‖1 + Cgraft‖)2] ds2

g. (3.1.43)

In which ‖·‖ is an appropriate norm and Cg is the curvature of the grafted metric and is
given by [73]

Cg = −1− ε2

6
Λ +O(ε4), ε ≡ π

ln |t|
. (3.1.44)

Using this expansion, the hyperbolic metric ds2
h on Rt in terms of the grafted metric ds2

g

is given by the following expansion (Theorem 4 of [69])

Theorem 3.1. Given a choice of b∗ < 1, a cut-off function η and for small t, the hyperbolic
metric ds2

h of Rt obtained by sewing a pair of punctures, as explained above, has the
following expansion

ds2
h =

{
1 +

4π4

3
(ln |t|)−2(E†1 + E†2) +O

(
(ln |t|)−3

)}
ds2

g. (3.1.45)

The functions E†1 and E†2 are the melding of Eisenstein series E(·; 2) associated to the pair
of cusps sewn to form the collar.

This metric can be written in terms of the length of the core geodesics on the collar
computed in the metric ds2

t given in (3.1.14). It is given by l = − 2π2

ln |t| +O
(
(ln |t|)−2). The

metric can then be written as

ds2
h =

{
1 +

l2

3
(E†1 + E†2) +O

(
l3
)}

ds2
g. (3.1.46)

Using this metric, we can compute the lengths of two sets of geodesics in the degenerating
surface Rt [69]

• The length of the collar core geodesic

The length of the core geodesic is given by:

lh = − 2π

ln |t|
+O

(
(− ln |t|)−4) = l +O

(
l4
)
. (3.1.47)
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• The length of closed geodesics away from the collars

For the length of a closed geodesic α disjoint from the plumbing collars

lα;h ({l}) = lα;h ({0}) +
l2

6

∫
α

ds
(
E†1 + E†2

)
+O

(
l3
)
. (3.1.48)

In this formula, lα,h ({l}) is the length of α when the length of core geodesic, computed
in the ds2

t metric, is l and lα;h (0) denotes the length of α on Rt=0. Away from the

collars, E†1(z, 2) = E1(z, 2), so we can write:

lα;h ({l}) = lα;h ({0}) +
l2

6

∫
α

ds (E1 + E2) +O
(
l3
)
. (3.1.49)

The result (3.1.45) shows that the metric on the sewn family of surfaces Rt, which we
naively concluded that is not hyperbolic, can be made hyperbolic. The generalization to
family of surfaces involving m collars is as follows. Assuming that t ≡ (t1, · · · , tm) ∈ C,
we consider a family of surfaces Rt, parametrized by t, containing m collars. Then, we
have the following [69]

Corollary 3.1. Given a choice of b∗ < 1, a cut-off function η and for small ti, the hyperbolic
metric ds2

h of Rt obtained by sewing m pairs of punctures, as explained above, has the
following expansion

ds2
h =

{
1 +

4π4

3

m∑
a=1

(ln |ta|)−2(E†a,1 + E†a,2) +O

(
m∑
a=1

(ln |ta|)−3

)}
ds2

g. (3.1.50)

E†a,1 and E†a,2 are the melding of Eisenstein series E(·; 2) associated to the pair of cusps
plumbed to form the ath collar. We can also write the metric in terms of lengths of core
geodesics computed in ds2

t

ds2
h =

{
1 +

m∑
a=1

l2a
3

(E†a,1 + E†a,2) +O

(
m∑
a=1

l3a

)}
ds2

g. (3.1.51)

The length of core geodesics is given by [73]

la;h(t) = − 2π2

ln |ta|
+O

(
1

(ln |ta|)2

m∑
b=1

1

(ln |tb|)2

)
≡ l

(1)
a;h + l

(2)
a;h, a = 1, · · · ,m. (3.1.52)
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The length of a closed geodesic α disjoint from the plumbing collars is also given by

lα;h ({li}) = lα;h ({0}) +
m∑
a=1

l2a
6

∫
α

ds
(
E†a,1 + E†a,2

)
+O

(
m∑
a=1

l3a

)
. (3.1.53)

Using these results, we can state the two main conclusions of this section as follows:

1. The plumbing of two surfaces equipped with the hyperbolic metric does not give rise
to a family of surfaces with hyperbolic metrics except at t = 0. However, one can
find a hyperbolic metric on the resulting surface using the grafted metric ds2

g. The
result is ds2

h and it is given by the expansion (3.1.50).

2. To construct off-shell amplitudes in bosonic-string theory, we need to choose a gluing-
compatible choice of local coordinates around marked points, i.e. the choice of local
coordinates must be compatible with the gluing [17, 18]. Using the result of this
section, we found metric on the family of plumbed surfaces can be made hyperbolic
using the expansion (3.1.50). Therefore, we conclude that the hyperbolic metric
is gluing-compatible, and as such, can be used to construct off-shell amplitudes in
bosonic-string or superstring theories.

3.2 A Gluing-Compatible Section of P̂g,n

In this section, we construct a gluing-compatible integration cycle using hyperbolic geome-
try. To construct off-shell amplitudes, we need to find the 1PI decomposition of the moduli
space [20]. The fundamental result that we need to use is a criteria for the degeneration
of hyperbolic structure. As we stated above, the result is as follows: the deformation of a
degenerating hyperbolic surface localizes into collar neighborhoods about short geodesics.
We can thus use this result to give a 1PI decomposition of the moduli space.

Define t ≡ (t1, · · · , tm) ∈ C, we consider a family of surfaces Rt, parametrized by t,
containing m collars. Such a family can be constructed by gluing m pairs of punctures pa
and pb using

w(1)
a w

(2)
b = ta, 0 ≤ |ta| ≤ fi(c∗), (3.2.1)

where w
(a)
i is the local coordinate around pa, and fi(c∗) is a function of the collar constant

c∗. The reason that the upper tail of the plumbing-fixture relation is a function of c∗ is that
the collar constant provides a first-order approximation to the length of core geodesics.
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The main parameters that enters the construction are lengths of core geodesics inside collars
computed in the metric ds2

h. Let us denote these lengths as la;h. If the hyperbolic metric
on ds2

h has the expansion ds2
h = Σ(t)ds2

g, then the solution of the curvature-correction
equation has the following expansion

Σ(t) =
∞∑
n=0

m∑
a=1

lna;h(t)Σa;n, (3.2.2)

For example, we found in the previous section that

Σa;0 =
1

m
, Σa;1 = 0, Σa;2 =

E†a,1 + E†a,2
3

, ∀a = 1, · · · ,m. (3.2.3)

The decomposition of moduli space in terms of lengths of core geodesics is done by com-
puting la,h at the upper tail of plumbing parameters t, i.e. la,h(fa(c∗)). To proceed further,
we define two classes of simple closed geodesics on the surface

• separating-type simple closed geodesics: a simple closed geodesic γ on a hyperbolic
surface R is called separating-type if cutting R along γ generates two disconnected
surfaces R1 and R2.

• nonseparating-type simple closed geodesics: a simple closed geodesic γ on a hyper-
bolic surface R is called nonseparating-type cutting R along γ generates a connected
surface R′.

We can then define 1PI and 1PR regions of the moduli space as follows

Definition 3.1 (The 1PR Region). Assume that we solve curvature-correction equation and
computed the length of the core geodesics to be la,h. Consider the set of all hyperbolic
surfaces containing at least one separating-type simple closed geodesic whose length is less
than or equal to la,h. We call the region of moduli space containing such surfaces as the
1PR region of moduli space.

Regarding this definition, we can define the 1PI region of the moduli space as follows

Definition 3.2 (The 1PI Region). We call the region of the moduli space containing surfaces
not belonging to the 1PR region as the 1PI region of moduli space.

Having these definitions at hand, we can propose the following gluing-compatible integra-
tion cycle for the off-shell bosonic-string amplitudes. Consider the genus-g contribution to
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an off-shell bosonic-string amplitude containing n external states

Ab
g =

∫
Sg,n

Ω. (3.2.4)

Also, assume that we have the solution ds2
h to the curvature-correction equation and the

length of the ath core geodesics computed in ds2
h is la;h. We want to choose a gluing-

compatible integration cycle Sg,n. We follow the following procedure

1. We define 1PI and 1PR regions of Mg,n using the value of la;h computed at the upper
limit of the plumbing parameters t1, · · · , tm.

2. On the 1PI region of the moduli space, surfaces are equipped with hyperbolic metrics.
We use those metrics to define local coordinates around the marked points. The
hyperbolic metric near punctures with local coordinates wa takes the following form(∣∣∣∣ dwa

wa ln |wa|

∣∣∣∣)2

, a = 1, · · · , n. (3.2.5)

3. On the 1PR region of the moduli space, we equip surfaces with metrics ds2
h(t). We

use this metric to define local coordinates around punctures. The metric satisfies
ds2

h = Σ(t)ds2
g. If we denote local coordinates around punctures in the 1PR region

by w̃a, they satisfy (∣∣∣∣ dw̃a
w̃a ln |w̃a|

∣∣∣∣)2

= Σ(t)ds2
g, a = 1, · · · , n. (3.2.6)

4. Since the metric on the 1PI and 1PI region do not match, we need to introduce a
region at the boundary of 1PI region and introduce a family of hyperbolic metric
ds2

h,ε parametrized by an infinitesimal parameter δ � 1 such that

ds2
h;ε(l; ε) = Σ(t; ε)ds2

g = Σ(lh; ε)ds2
g, 0 ≤ ε ≤ δ, (3.2.7)

where lh ≡ (l1,h, · · · , lm,h). ds2
h;ε(l; ε) provides an interpolation between ds2 in the

1PI region and ds2
h in the 1PR region. If we denote the local coordinates around the
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punctures in ds2
h;ε metric by ŵa;ε, they must satisfy(∣∣∣∣ dŵa,ε

ŵa,ε ln |ŵa,ε|

∣∣∣∣)2

= Σ(t; ε)ds2
g, a = 1, · · · , n. (3.2.8)

Let us summarize what we have describe, 1) we have given a choice of local coordinates
around the punctures all over the moduli space, and 2) this choice of local coordinates is
unique up to a phase rotation. We should now answer an important question. In construct-
ing the hyperbolic metric on the family Rt, we have introduced various parameters like c∗,
η, ε, a0, etc. The question is the following: if we fix the parameters for constructing the
hyperbolic metric on the family of surfaces Rt, and then compute the off-shell amplitudes
using this hyperbolic metric, to which extent the result is dependent on the choice of these
parameters? It turns out that as far as we are sticking to use a gluing-compatible choice of
local coordinates around the punctures, the physical quantities of interest like renormalized
masses and S-matrix elements are independent of the choice of spurious data that is used
to construct the gluing-compatible local coordinates [17, 18, 20].

Let us apply this proposal for the explicit ds2
h we described in section 3.1.2. Consider a

surface with m collars. The length of core geodesics are c∗. The family of sewn surfaces is
described by {

w
(1)
i w

(2)
i = t

∣∣∣∣ 0 ≤ |t| ≤ e−
2π2

c∗

}
. (3.2.9)

In order to define local coordinates in the 1PI region, we divide it into subregions. Let us
denote the subregion in the 1PI region consists of surfaces with m simple closed geodesics
of length between c∗ and (1 + ε)c∗, where ε is an infinitesimal parameter, by Rm. For
surfaces belong to the subregion R0, the local coordinate around the punctures is given by
(3.2.5). For surfaces belong to the region Rm with m 6= 0, the local coordinate ŵa,ε around
the ath puncture satisfies(∣∣∣∣ dŵa,ε

ŵa,ε ln |ŵa,ε|

∣∣∣∣)2

= ds2
g

(
1 +

m∑
b=1

g(lb)
(
E†b,1 + E†b,2

))
. (3.2.10)

g(x) is a smooth function such that g(c∗) = c2∗
3

and g((1 + ε)c∗) = 0. The 1PR region
consists of surfaces with m simple closed geodesics of length 0 ≤ la < c∗, a = 1, · · · ,m.
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Denoting the local coordinate around the ath puncture by w̃a, it satisfies(∣∣∣∣ dw̃a
w̃a ln |w̃a|

∣∣∣∣)2

= ds2
g

(
1 +

m∑
b=1

l2b
3

(
E†b,1 + E†b,2

))
. (3.2.11)

Since we are equipped with a gluing-compatible choice of local coordinates around the
punctures, we can now move to the next task in the construction of off-shell amplitudes,
i.e. the integration of string measure over the moduli space of hyperbolic surfaces. We
postpone the discussion of a gluing-compatible choice of PCOs distribution to section 3.4.

3.3 Integration over the Moduli Space of Hyperbolic

Surfaces

In this section, we explain how to integrate over the moduli space. Throughout this section,
we work with genus-g surfaces with n boundaries having fixed lengths L ≡ (L1, · · · , Ln).
The Teichmüller space of such surfaces is denoted by Tg,n(L), and their moduli space is
denoted by Mg,n(L). A surface with marked points is a special case of a surface with
boundaries where the length of all boundaries goes to zero. We also denote the mapping-
class group of such a surface by Modg,n(L), and the mapping class group of a generic
surface R by Mod(R).

The moduli space Mg,n can be understood as the quotient of the Teichmüller space Tg,n

with the action of mapping-class groups. However, in the generic case, an explicit funda-
mental region for the action of mapping-class groups is not known. This is due to the fact
that the form of the action of mapping-class groups on the coordinate on the Teichmüller
space is either complicated or unknown [103, 104]. This is one of the main reasons that
integration of a form over the moduli space of hyperbolic surfaces is not a straightforward
operation. In this section, we discuss a way to bypass this difficulty using the prescription
for performing the integration over the moduli space introduced by Mirzakhani [67]. Her
method is basically based on unwinding an integral over the moduli space using an identity
and then lift the result to a covering space obtained by the quotient of the associated Te-
ichmüller space with a subgroup of mapping-class group of the surface. She uses a specific
global parametrization of the Teichmüller space called Fenchel-Nielsen coordinates denoted
by (`, τ ) = (`1, · · · , `3g−3+n, τ1, · · · , τ3g−3+n). `is and τis are length-twists coordinates of a
set of curves which gives a pair-of-pants decomposition of a genus-g surface with n bound-
aries. An example of such a pants decomposition is shown in figure 3.1. In an important
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γ1
γ2

γ3

γ4
γ5

γ6

γ7

Figure 3.1: A pants decomposition of a genus-2 surface with four boundaries having fixed lengths
L1, L2, L3, L4. We need 7 simple closed curves to get 6 pairs of pants. The length and twist co-
ordinates of γ1, · · · , γ7, (`γ1 , τγ1 ; · · · ; `γ7 , τγ7), provide a global coordinate on T2,4(L1, L2, L3, L4).

paper [101], Wolpert discovered the following remarkable facts which underlie Mirzakhani’s
seminal paper

1. The 2-form

ωWP =

3g−3+n∑
a=1

d`a ∧ dτa, (3.3.1)

on Tg,n does not depend on the choice of pants decomposition.

2. The interval in which Fenchel-Nielsen coordinates take value is

0 ≤ `a <∞, −∞ < τa <∞, a = 1, · · · , 3g− 3 + n. (3.3.2)

The Teichmüller space is a cell of dimension 6g− 6 + 2n.

3. ωWP is the Kähler form of the Weil-Petersson metric.

4. ωWP is invariant under the action of mapping-class group of surfaces with signature
(g, n).

5. ωWP extends to Mg,n [105].

The Weil-Petersson volume-form on Mg,n is defined as

dVWP(Mg,n) = ω3g−3+n. (3.3.3)

This formula is also applicable to hyperbolic surfaces with signature (g, n; L), where L
denotes the fixed length of geodesic boundary components [67]. The Weil-Petersson volume
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the moduli space of such surfaces is thus given by

VWP(Mg,n(L)) =

∫
Mg,n(L)

ω3g−3+n. (3.3.4)

This is the simplest integral over the moduli space.

3.3.1 A Warm-Up Example: The Weil-Petersson Volume of M1,1

In order to demonstrate the non-triviality of even the simplest integration over the moduli
space, namely the computation of the volume of the moduli space, let us discuss the volume
calculation of the moduli space of once-punctured tori [63]. Suppose that the hyperbolic
transformations A,B ∈ PSL(2;R), with ABA−1B−1 parabolic i.e. (tr (ABA−1B−1))

2
= 4,

freely generate the Fuchsian group Γ ⊂ PSL(2;R) which uniformizes a once-punctured
torus. Assume that the repelling fixed-point of A is 0 and its attracting fixed-point is ∞.
The attractive fixed-point of B is 1. It is not difficult to see that

tr
(
ABA−1B−1

)
= −2. (3.3.5)

The quantities x = tr(A), y = tr(B) and z = tr(AB) uniquely characterize the above
description of Γ. Using (3.3.5), we obtain the following unique relation satisfied by the
triple (x, y, z)

x2 + y2 + z2 = xyz. (3.3.6)

According to [106, 107], T1,1 is the following sublocus

x2 + y2 + z2 = xyz, x, y, z > 2. (3.3.7)

Let us introduce a different coordinate tuple (a, b, c) where a ≡ x/yz, b ≡ y/xz and
c ≡ z/xy. T1,1 can now be described by the following sublocus

a+ b+ c = 1, a, b, c > 0. (3.3.8)

This sublocus is the equation of a simplex. By studying the action of Mod1,1, the mapping-
class group of once-punctured tori, on the Fuchsian group Γ, it is possible to show that the
following domain inside T1,1

∆ =

{
(a, b, c) ∈ T1,1

∣∣∣∣ a, b, c ≤ 1

2

}
, (3.3.9)
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θ

lA
2

lB
2

lAB
2

Figure 3.2: The geodesics corresponding to hyperbolic elements A,B and AB of the group Γ form
a hyperbolic triangle, where A and B generate Γ, the Fuchsian group uniformizing once-punctured
tori.

is a union of three copies of a fundamental domain M1,1, the moduli space of once-punctured
tori, for the action of Mod1,1 [63].

Consider the Weil-Petersson Kähler form ωWP on T(R), the 2m dimensional Teichmüller
space of R. It is a classical result that free homotopy classes γ1, · · · , γ2m can be chosen
such that lengths `γa , 1 ≤ a ≤ 2m provide local real coordinates for T (R) near R [63].
Then ω is given by

ω =
∑
a<b

M−1
ab d`a ∧ d`b, (3.3.10)

where M−1 is the inverse of a matrix whose components are Mab ≡ τγa`γb . By definition,
if Γ represents a point of T with generators A,B then

x = tr(A) = 2 cosh

(
`A
2

)
,

y = tr(B) = 2 cosh

(
`B
2

)
,

z = tr(AB) = 2cosh

(
lAB
2

)
, (3.3.11)

where lA denotes the length of geodesic corresponding to A, lB denotes the length of
geodesic corresponding to B, and lAB denotes the length of geodesic corresponding to AB.
We thus have

ω = (tA`B)−1 d`A ∧ d`B =
d`A ∧ d`B

cos θ
, (3.3.12)

where θ is measured from A to B. The geodesics correspond to A,B and AB forms a
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hyperbolic triangle. They have shown in figure 3.2. From the laws of cosines for the
hyperbolic triangle, we have

cos θ =
cosh

(
lA
2

)
cosh

(
lB
2

)
− cosh

(
lAB

2

)
sinh

(
lA
2

)
sinh

(
lB
2

) , (3.3.13)

Using (3.3.11), we get

ω =
4dx ∧ dy
xy − 2z

. (3.3.14)

In terms of the variables a, b, c, the Kähler form is given by

ω =
da ∧ db

ab(1− a− b)
. (3.3.15)

Expressing everything in terms of a, b, and c, we are ready to perform the integration over
the moduli space M1,1. Using the explicit integration domain (3.3.9)

V1,1;WP =

∫
M1,1

ω

=
1

3

∫
∆

ω

=
1

3

∫ 1
2

0

∫ 1
2

1
2
−b

da ∧ db
ab(1− a− b)

= −1

3

∫ 1
2

0

db
ln(1− 2b)

b(1− b)
. (3.3.16)

We define a new variable v = 1− 2b, we get

V1,1;WP = −4

3

∫ 1

0

dv
ln(v)

1− v2
=
π2

6
. (3.3.17)

This calculation was possible since the fundamental domain ∆ for Mod1,1 was explicitly
constructed. In general, it is very difficult to construct this domain. As such, the inte-
gration over the moduli space is a difficult task. We thus need to have a more efficient
method.
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3.3.2 The General Integration Procedure

In this section, we describe an integration procedure to compute integrals over the moduli
space of genus-g surfaces with n boundaries having fixed lengths L = (L1, · · · , Ln).

Consider the space M with a covering space N . The covering map is given by

π : N −→M. (3.3.18)

If dVM is a volume form for M, then its pullback gives the volume form on N

dVN ≡ π−1 ∗ (dVM). (3.3.19)

Assume that f is a smooth function defined in the space N . Then the push forward of the
function f at a point x in the space M, which is denoted by π∗f(x), can be obtained by
the summation over the values of the function f at all points in the fiber of the point x in
N

(π∗f)(x) ≡
∑

y∈π−1{x}

f(y). (3.3.20)

This relation defines a smooth function onM. As a result, the integral of this pull-backed
function over M can be lifted to the covering space N as follows∫

M

dVM (π∗f) =

∫
N

dVN f. (3.3.21)

For illustration, we consider a simple example, the integration over S1 as an integration
over R. Consider the real line R = (−∞,∞) as the covering space of circle S1 = [0, 1). We
denote the covering map by π : R −→ S1. Assume that f(x) is a function living in S1, i.e.
f(x + k) = f(x), k ∈ Z. We can then convert the integration over S1 into an integration
over R with the help of the identity

∞∑
k=−∞

sin2 (π[x− k])

π2 (x− k)2 = 1. (3.3.22)

The steps are as follows∫
1

0

dx f(x) =

∫
1

0

dx

(
∞∑

k=−∞

sin2 (π[x− k])

π2 (x− k)2

)
f(x)
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=

∫
1

0

dx
∞∑

k=−∞

(
sin2 (π[x− k])

π2 (x− k)2 f(x− k)

)

=
∞∑

k=−∞

∫
1

0

dx
sin2 (π[x− k])

π2 (x− k)2 f(x− k)

=

∫ ∞

−∞

dx
sin2 (πx)

π2x2
f(x). (3.3.23)

In the last step, we absorbed the summation over k and then converted the integration
over S1 to the integration over R. As an example consider f(x) = 1. Using (3.3.23), we
get ∫

1

0

dx =

∫ ∞

−∞

dx
sin2 (πx)

π2x2
= 1. (3.3.24)

The second equality can be easily checked using Mathematica

Integrate
[

Sin[πx]2

π2x2
, {x,−∞,∞}

]
Integrate

[
Sin[πx]2

π2x2
, {x,−∞,∞}

]
Integrate

[
Sin[πx]2

π2x2
, {x,−∞,∞}

]
.

1.

What we have explained is the essence of Mirzakhani’s procedure for integration over the
moduli space. If we have an appropriate covering space of the moduli space, then the
integration of a function defined in the moduli space can be performed by expressing the
function as a push-forward of a function in that covering space of the moduli space using the
covering map. Therefore, if we want to do explicit computations, we need two ingredients,
1) we need a convenient covering map, and 2) we need to construct the covering map
explicitly. In the remaining part of this section, we shall explain these two ingredients.
Based on this, we then explain how to perform integration over the moduli space.

Let R be a genus-g hyperbolic surface with n boundary components. Consider a multi-
curve of the following form on R

γ =
k∑
a=1

caγa. (3.3.25)

where c1, · · · , ck are real weights and γ1, · · · , γk are disjoint non-homotopic simple closed
geodesics on R. Let us define the subgroup Stab(γ) of Modg,n(L). Consider a set S of
homotopy classes of simple closed geodesics on R. We define the following subgroup of
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γ L1

(a) A genus-2 surface R with a single bound-
ary is cut along the curve γ.

L1

L2

L3

(b) Cutting R along γ generates a genus-1 sur-
face with 3 boundaries having fixed lengths L1,
and L2 = L3 = `γ(R), where `γ(R) is the hyper-
bolic length of γ in R.

Figure 3.3: The cutting of a surface along a simple closed curve. The situation for more general
cutting is the same.

Modg,n(L)
Stab(S) ≡ {m ∈ Modg,n(L)| m · S = S} ⊂ Modg,n(L), (3.3.26)

The elements of Stab(γ) may permute components of the multi-curve with equal weights.
The subgroup of Stab(γa) that preserves the orientation of γa is denoted by Stab0(γa). The
symmetry group of γ is then defined as follows

Sym(γ) ≡ Stab(γ)

∩ka=1Stab0(γa)
. (3.3.27)

Elements of this finite symmetry group possibly permute and reverse the orientation of the
component geodesics in γ. We now consider cutting the surface along γ and denote the
resulting surface by R(γ). An example of this is illustrated in figure 3.3.

Cutting along each component γa in γ generates two new boundaries. R(γ) may contain
disconnected components as well. Suppose that the geodesic γa has length `a. We denote
the product of Teichmüller spaces of the component surfaces in R(γ) by T (R(γ); `) , ` ≡
(`1, · · · , `k), the mapping-class group of components by ModR(γ), and the corresponding
product of moduli spaces by T (R(γ); `) /Mod (R(γ)).

We need to find an appropriate covering space associated to the multicurve γ. We define
this covering space of Mg,n(L) as follows

Mγ
g,n(L) ≡ {(R, η)| R ∈Mg,n(L), η ∈ Oγ} , (3.3.28)
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where Oγ is the set of homotopy classes of all images of γ under the mapping-class group

Oγ ≡ {[α]| α ∈ Modg,n(L) · γ} . (3.3.29)

Covering spaces relevant for the integration procedure are of this kind. We thus analyze
the structure of this covering space in some detail. Denoting the Dehn twist along the
curve γ is denoted by φγ, the group Gγ, defined by

Gγ ≡
k⋂
a=1

Stab(γa) ⊂ Modg,n(L), (3.3.30)

is generated by 1) the set of Dehn twists φγa , a = 1, · · · , k, and 2) the elements of
Mod (R(γ)). Mγ

g,n(L) is then given by

Mγ
g,n(L) ≡ Tg,n(L)

Gγ

. (3.3.31)

Moreover, Tg,n(L) admits the following factorization [67]

T(R) =
s∏

a=1

T(Ra(γ))×
∏
γa

R>0 × R, (3.3.32)

where s is the number of disconnected components and Ra(γ) is the surface obtained by
cutting R along γa. We then have [67]

Mγ
g,n(L) =

s∏
a=1

T(Ra(γ))/Mod(Ra(γ))×
∏
γa

(R>0 × R)/Dehn∗(γa). (3.3.33)

In the generic case, the group Dehn∗(γi) is generated by the simple twist. Dehn∗(γa) acts
only on the variables τa with the fundamental domain 0 ≤ τγa ≤ `γa . However, if the
curve γa separates a torus with a single boundary, then Dehn∗(γa) is generated by the half
twist. The reason is that any one-holed torus comes with an elliptic involution. In this case
Stab0(γ) contains a half-twist. A Dehn half-twist acts on the associated Fenchel-Nielsen
coordinates by

(`a, τa)→ (`a, τa + `a/2). (3.3.34)

As such, the fundamental interval for the twist parameter along γa is 0 ≤ τa ≤ `a/2.
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Finally, the volume form on T(R) is decomposed as

dV =
s∏

a=1

dV (Ra(γ))×
∏
γa

d`γa ∧ dτγa . (3.3.35)

Equipped with these results, we can then perform the integration over the covering space
Mγ

g,n(L). Denoting the moduli space of component surfaces by M(Ra(γ)) = T(Ra(γ))/Mod(Ra(γ)),
we can do the integration by first integrating over

∏s
a=1 M(Ra(γ)) for fixed values of lengths

of the curves γa. Then, we can perform the integration over dτγj followed by the d`γj in-
tegration for j = 1, · · · s.

To be able to lift the integration over the moduli space to an integration over the covering
space Mγ

g,n(L), we need the second ingredients we mentioned above, i.e. we need a covering
map. Assume that there exists an identity of the following form∑

[α]∈Modg,n·[γ]

f (`α(R)) = constant, (3.3.36)

where f is a real function of the hyperbolic length `α(R) of curve α, and is suitably small at
infinity. γ is a multicurve of the form (3.3.25). For simplicity, we set the constant in right-
hand side to be 1. This identity can be compared with the identity (3.3.22) which we used
to lift the integral over S1 to R. We assume that cutting along the curves γa, a = 1, · · · , k
generates s disconnected bordered hyperbolic surfaces.

Consider a form Ω(`, τ ; L) on the moduli space Mg,n(L). It satisfies the following identity

Ω(m · `,m · τ ; L) = Ω(`, τ ; L), ∀m ∈ Modg,n(L). (3.3.37)

We would like to integrate Ω(`, τ ; L) over Mg,n(L). We have

IMg,n(L) ≡

∫
Mg,n(L)

Ω(`, τ ; L) =
∑

[α]∈Modg,n(L)·[γ]

∫
Mg,n(L)

f

(
k∑
a=1

ca`m·γa

)
Ω(`, τ ; L)

=
∑

m∈Modg,n(L)/Stab(γ)

∫
Mg,n(L)

f

(
k∑
a=1

ca`m·γa

)
Ω(m · `,m · τ ; L).

(3.3.38)
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To proceed further, we note that

∑
m∈Modg,n(L)/Stab(γ)

f

(
k∑
a=1

ca`m·γa

)
,

is invariant under the finite group Stab(γ)/ ∩ka=1 Stab(γa). Using this fact, we have

∑
m∈Modg,n(L)/Stab(γ)

f

(
k∑
a=1

ca`m·γa

)
=

1

|Sym(γ)|
∑

m∈Modg,n(L)/Stab(γ)

∑
Stab(γ)/∩ka=1Stab(γa)

f

(
k∑
a=1

ca`m·γa

)

=
1

|Sym(γ)|
∑

m∈Modg,n(L)/∩ka=1Stab(γa)

f

(
k∑
a=1

ca`m·γa

)
.

(3.3.39)

Substitute this in (3.3.38), we get

IMg,n(L) =
1

|Sym(γ)|

∫
Mg,n(L)

∑
m∈Modg,n/∩ka=1Stab(γa)

f

(
k∑
a=1

ca`m·γa

)
Ω(m · `,m · τ ; L)

=
1

|Sym(γ)|
∑

m∈Modg,n(L)/∩ka=1Stab(γa)

∫
Mg,n(L)

f

(
k∑
a=1

ca`m·γa

)
Ω(m · `,m · τ ; L)

=
1

|Sym(γ)|

∫
M
γ
g,n(L)

f(`γ)Ω(`, τ ; L). (3.3.40)

Finally, we use (3.3.33) to get

IMg,n(L) =
1

|Sym(γ)|

∫
M(γ)

dV (γ)
s∏

a=1

∫
M(Ra(γ))

f(`γ)Ω(`, τ ; L). (3.3.41)

In this relation, M(γ) denotes the fundamental interval for integration over length-twist
coordinates (`a, τa) associated to γ1, · · · , γk

0 ≤ `a <∞, 0 ≤ τa ≤ 2−Mγa `a, a = 1, · · · , k, (3.3.42)
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`γ
2π

τγ

`γ

Figure 3.4: The domain of integration for Fenchel-Nielsen length `γ and twist τγ coordinates
associated to a curve γ.

and ∫
M(γ)

dV (γ) ≡
k∏
a=1

∫ ∞

0

∫
2−Ma`a

0

d`adτa. (3.3.43)

In these relations, Mγa = 1 if γa bounds a one-holed torus, and is zero otherwise. The
reason for this extra factor, as we have explained above, is the existence of non-trivial
automorphism group for one-holed tori. For all other cases, i.e. (g, n) 6= (1, 1), a generic
point in Mg,n(L) does not have any non-trivial automorphism that fixes the boundary
components [67]. We can then repeat this for the integration over M(Ra(γ)) and continue
the same process until we end up with an integration over a set of infinite cones similar
to (3.3.42). An example of such a cone is illustrated in figure 3.4. The final integrand
would be a product of some number of function similar to f appearing in (3.3.36) times
Ω(`, τ ; L). The fundamental interval of integration is

0 ≤ `a <∞, 0 ≤ τa ≤ 2−Mγa `a, a = 1, · · · , 3g− 3 + n. (3.3.44)

To be able to do the explicit integration, we need to specify the function which appears in
(3.3.36). Some of these identities have been explained in appendix 3.C.

3.4 A Gluing-Compatible Section of P̃g;nNS,nR

In this section, we describe a gluing-compatible section of P̃g;nNS,nR
.

Let us remind a few facts about off-shell superstring measure. The genus-g contribution to
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a generic off-shell heterotic-string amplitude with nNS NS external states and nR R external
states is given by [20]

Ah
g;nNS,nR

=

∫
S̃g;nNS,nR

Ωh
g;nNS,nR

, S̃g;nNS,nR
∈ Γ

(
P̃g;nNS,nR

)
, (3.4.1)

where Ωh
g;nNS,nR

, a (6g− 6 + 2nNS + 2nR)-differential form, is given by

Ωh
g;nNS,nR

≡ 〈R|B6g−6+2nNS+2nR
|Φ〉, Φ ∈ HNS

1

⊗nNS ⊗HR
1

⊗nR . (3.4.2)

To define B6g−6+2nNS+2nR
, we first define the following p-form

K(p) ≡ [X(z1) ∧ · · · ∧ X(zK)](p) , K ≡ 2g− 2 + nNS +
1

2
nR, (3.4.3)

where X(za) ≡ X (za) − dzaξ(za), and the superscript (p) shows that we are taking the
p-form part of the expression. Using this, B6g−6+2nNS+2nR

can be written as

B6g−6+2nNS+2nR
≡

2g−2+nNS+ 1
2
nR∑

a=0

K(p) ∧B6g−6+2nNS+2nR−p. (3.4.4)

The distribution of PCOs must have the following properties

1. It must be gluing-compatible;

2. It should be invariant under the mapping-class group of the surface.

3. It must avoid unphysical singularities.

The general method for avoiding unphysical singularities is the vertical integration proce-
dure [20, 25, 108]. We explain this procedure in appendix 3.D.

To distribute PCOs which are invariant under the mapping-class group of the surface, we
use the following facts

1. The number of PCOs is always less than or equal to the number of pairs of pants

#PCOs ≤ 2g− 2 + nNS + nR. (3.4.5)
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# of curves type of boundary type of external marked point(s) # of PCOs

1 curve
one NS boundary
one R boundary

one NS boundary

two NS marked points
one NS and one R

marked points
two R marked points

one
zero
zero

2 curves

two NS boundaries
one NS and one R

boundaries
two R boundaries

one NS marked point
one R marked point

one NS marked point

one
zero
zero

Table 3.1: Removing a pairs of pants from a genus-g surface with nNS NS marked points and nR

R marked points. The first column shows the number of required curves. The second column
specifies the type of boundary it removes. The third column specifies the type of bounded external
marked points, and the last column denotes the number of PCOs on such a separated pair of
pants.

This means that we can put PCOs on different pairs of pants. One of the unphysical
singularities in string integrand happens when two PCOs collide. By putting PCOs
on different pairs of pants, it is ensured that such unphysical singularities will not
occur.

2. As we have explained in section 3.3, there exists an identity of the following form on
any hyperbolic surface with geodesic boundary components R∑

[α]∈Modg,n(L)·γ

f(`α(R)) = 1, (3.4.6)

where γ is a multicurve on the surface, and Modg,n(L) denotes the mapping-class
group of the surface.

We begin by explaining the possible types of degeneration of R, a genus-g surface with
nNS NS marked points and nR R marked points. To remove a pair of pants from R, there
are two ways, 1) we can either choose a curve on R and two marked points, or 2) we can
choose two curves on R and a single marked point. In general there are six possible cases
which are summarized in table 3.1.

Accordingly, generic boundary components, some of them might be the external marked
points, of a pair of pants in a pants decomposition of a surface can be one of the following
types 1) three NS boundary components which requires a single PCO, 2) one NS and two

76



R boundary components which requires no PCO. We use the following prescription for the
possible cases

• When the associated pair of pants contains two external NS marked points, we can
put a PCO on such a pair of pants. The only possibility for the other boundary
component is an NS-type boundary.

• When the associated pair of pants contains two external R marked points, we do
not put PCO on such a pair of pants. The only possibility for the other boundary
component is an NS-type boundary.

• When the associated pair of pants contains a single external NS marked points, we
can put a PCO on such a pair of pants. However, there is complication here. There
are two possible boundary components: 1) two NS-type boundary components; we
do not move the PCO when the surface develops short geodesics, and 2) two R-type
boundary components; we use vertical integration to distribute the PCO on the core
geodesic of annulus around the short geodesics.

• When the associated pair of pants contains a single external R marked points, we
can put a PCO on such a pair of pants. The only possibility for other boundary
components is two NS-type boundaries.

To illustrate these rule, let us consider an example. Consider a genus-1 surface with
two NS boundaries. Such surfaces contributes to the two-point one-loop amplitudes of
two NS-sector states. In this case, we need 2 PCOs. Possible degenerations of such a
surface is illustrated in figure 3.1. Instead of punctures, we considered NS and R boundary
components.

Let us discuss the possible pants decompositions separately. In figure 3.1a, the resulting
surfaces are two pairs of pants each with three NS marked points. Such pairs of pants
require a single PCO. According to above rules, we put a PCO on each of these pairs of
pants. When the surface develops short geodesics, we do not need to move PCOs.

In figure 3.1b, the resulting surfaces are two pairs of pants with one NS boundary and two
R boundaries, each of which contain a PCO. Once the surface develops short geodesics, we
need to move PCOs to plumbing tubes using the vertical integration.

In figure 3.1c, the resulting surfaces are two pairs of pants with three NS boundaries, each
of which contain a single PCO. Once the surface develop short geodesics, we do not need
to move PCOs.
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NSNS

NS

NS

• •

(a) A possible pants decomposition of a genus-1 surface with 2 NS boundaries. We need 2 PCOs
which are denoted as bullets.

NSNS

R

R

• •

(b) A possible pants decomposition of a genus-1 surface with 2 NS boundaries. We need 2 PCOs
which are denoted as bullets.

NS

NS

NS• •

NS

(c) A possible pants decomposition of a
genus-1 surface with 2 NS boundaries. We
need 2 PCOs which is denoted as bullets.

NS

NS

NS• •

R

(d) A possible pants decomposition of a
genus-1 surface with 2 NS boundaries. We
need 2 PCOs which is denoted as bullets.

Figure 3.1: Possible degenerations of a genus-1 surface with two NS boundaries.
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RR

NS

R

•

(a) A possible pants decomposition of a genus-1 surface with 2 R boundaries. We need 1 PCO
which is denoted as a bullet.

R

R

NS•

NS

(b) A possible pants decomposition of a genus-
1 surface with 2 R boundaries. We need a PCO
which is denoted as a bullet.

R

R

NS•

R

(c) A possible pants decomposition of a genus-
1 surface with 2 R boundaries. We need a PCO
which is denoted as a bullet.

Figure 3.2: Possible degenerations of a genus-1 surface with two R boundaries.

In figure 3.1d, the resulting surface are two pairs of pants. One of them has three NS
boundaries, and the other one has one NS boundary and two R boundaries. Once the
surface develops short geodesics, we do not need to move the PCO on the pair of pants
with three NS boundaries. However, we need to move the PCO on the pair of pants with
two R boundaries to the plumbing tube using the vertical integration.

This example illustrates the consistency of the rules given above. For comparison, let us
consider a genus-1 surface with two R boundary components. Such a surface require one
PCO. We can put it on any of the pairs of pants.

In figure 3.2a, the resulting surfaces are two pairs of pants with one NS boundary and two
R boundaries. Once the surface develops short geodesics, we need to move the PCO on
the plumbing tube corresponding to R degeneration using the vertical integration.

In figure 3.2b, the resulting surfaces are two pairs of pants, one with two R boundaries
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and one NS boundaries, and the other one with three NS boundaries. According to our
rule, it is necessary to put the PCO on the pair of pants with three NS boundaries. Once
the surface develops short geodesics, we do not need to move the PCO. This example
also shows that why we have chosen the rule that avoid to put a PCO on a pair of pants
containing two external R marked points. Note that if we put the PCO on the pair of
pants containing two external R boundaries, we end up with a pair of pants with one NS
boundary and two R boundaries. Such a pair of pants does not require a PCO. We thus
can not achieve gluing-compatibility.

In figure 3.2c, the resulting surfaces are two pairs of pants with one NS boundaries and
two R boundaries. According two our rule, it is necessary to put the PCO on the pairs
of pants containing internal R boundaries. Once the surface develops short geodesics, we
need to move the PCO to the plumbing tube using the vertical integration. Note that if
we put the PCO on the pair of pants containing two external R boundaries, we end up
with a pair of pants with one NS boundary and two external R boundaries. Such a pair
of pants does not require a PCO. We thus can not achieve gluing-compatibility. On the
other hand, once the surface develops an R degeneration, we cannot produce the correct
propagator in the R sector without putting PCO on the plumbing tube [20].

These examples show that PCOs-distribution rules mentioned above are consistent. We
need to emphasize two points, 1) the PCO inserted on a pair of pants can be put on one
of the unique geodesics orthogonal to its boundaries, 2) these geodesics is determined by
the hyperbolic metric on the surface. Therefore, we should use the hyperbolic metrics,
described in section 3.2, in the respective regions of the moduli space to determine these
geodesics.

We now consider the second issue, i.e. the fact that the PCOs distribution must be invariant
under the mapping-class group of surface. For describing such a distribution, we consider
the following expression ∑

m∈Modg;nNS,nR

f(`m·γ(R))K(p)(m · z1, · · · ,m · zK), (3.4.7)

where γ is a multicurve on the surface. m · za denotes the action of the mapping-class m
on za, the location of insertion of ath PCO. As we have explained in the previous section,
the integral of 〈R|B6g−6+2nNS+2nR

|Φ〉 can be written as

Ah
g;nNS,nR

=
1

|Sym(γ)|

∫
M(γ)

dV (γ)
s∏

a=1

∫
M(Ra(γ))

f(`γ)〈R|B6g−6+2nNS+2nR
|Φ〉. (3.4.8)
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To proceed further, we need to have an MCG-invariant PCOs distribution but the inte-
grand does not involve such an expression. Therefore, (3.4.7) is not a complete expression.
The complete expression should contain the summation over all elements of mapping-class
groups of all the resulting surfaces obtained by cutting the surface along multicurves that
gives a pair of pants decomposition. We thus have the following procedure

1. Let consider cutting R along a multicurve γ1, containing k1 curves, produces a sur-
face with s1 disconnected components R1(γ1), · · · ,Rs1(γ2). We need to integrate
over moduli space of these surfaces. Assume that we want to integrate over the
moduli space of Ra1(γ1). We need a multicurve γa12 , containing ka12 curves. Assume
that cutting Ra1(γ1) along these curves produces a disconnected surface with sa12

disconnected surfaces Ra1,1(γ1; γa12 ), · · · ,Ra1,s
a1
2 (γ1; γa12 ). We need to integrate over

the moduli space of such surfaces. Assume that we want to integrate over the moduli
space ofRa1,a2(γ1; γa12 ). We need a multicurve γa1,a23 , containing ka1,a23 curves. Assume
that cutting along these curves produces a surface with sa1,a23 disconnected compo-
nents Ra1,a2,1(γ1; γa12 ; γa1,a23 ), · · · ,Ra1,a2,s

a1,a2
3 (γ1; γa12 ; γa1,a23 ). These process should be

continued until we furnish all of the associated Fenchel-Nielsen coordinates.

2. Assume that the surfaces generated in the previous steps are denoted by R0 ≡
R,R1, · · · ,RN , for some N . A mapping-class-group-invariant PCOs distribution
can be then written as N∏

a=0

∑
ma∈Mod(Ra)

fa(`ma·γa(Ra))

K(p)(m · z1, · · · ,m · zK), (3.4.9)

where we have defined m ≡ m0 · · ·mN .

As an example, consider the figure 3.1c. For such a surface, the possible PCOs distribution
is given by∑

m0∈Mod1;2,0

∑
m1∈Mod1;1,0

f0(`m0·γ0(R1;2,0))f1(`m1·γ1(R1;1,0))K(p)(m0m1 · z1,m0m1 · z2), (3.4.10)

where γ0 is the curve that together with two NS boundaries separates a pair of pants form
the surface, and γ1 is the curve turns a one-holed torus to a pair of pants. This ends our
discussion of a gluing-compatible section of P̃g;nNS,nR

.
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3.5 Applications in String Perturbation Theory

Integration over the moduli space is an essential ingredients of computation of amplitudes
in string perturbation theory. We have seen that the integration over the moduli space
can be done using the method explained in the previous section. The two quantities of
interest in string theory are partition functions (i.e. vacuum amplitudes) and scattering
amplitudes. Accordingly, there are two types of Riemann surfaces that one has to deal
with:

• To compute vacuum amplitudes, one must integrate an appropriate form Ω of degree
6g− 6 over the moduli space of genus-g hyperbolic surfaces without any puncture;

• To compute scattering amplitudes of a scattering process involving n external states
(or nNS states from the NS sector and nR states from the R sector in superstring
theory, for which n = nNS +nR), one has to integrate an appropriate form Ω of degree
6g − 6 + 2n over the moduli space of genus-g hyperbolic surfaces with n punctures
(with nNS NS punctures and nR R punctures in the case of superstring theory);

As we have explained in appendix 3.C, there are various identities for hyperbolic surfaces
of each of the above type. There is an identity, known as The Luo-Tan Identity3 [109],
that can be used for both types of surfaces. However, the Luo-Tan identity has a very
complicated form and it is not useful for practical computations. In principle, we can
consider the following procedure to compute amplitudes in string theory

• Computation of Partition Functions (i.e. Vacuum Amplitudes)

To do the integration over the moduli space of genus-g hyperbolic surfaces without
puncture, one begins with an appropriate identity for such surfaces, namely The

Luo-Tan Identity for borderless surfaces. By inserting this identity, the integration
over the moduli space reduces to a product of integration over the moduli spaces of
surfaces obtained by cutting along the curves appearing in the statement of the Luo-
Tan Identity times a number of cones. To be able to continue the integration, one
requires an identity for surfaces with borders. One can use a simpler identity, known
as The Mirzakhani-McShane Identity or The Generalized McShane Identity

[67];

• Computation of Scattering Amplitudes

To do the integration over the moduli space of genus-g hyperbolic surfaces with n

3We would like to thank G. McShane for introducing this paper.
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cusps, one begins with an appropriate identity for such surfaces. This identity is
known as The McShane Identity for hyperbolic punctured surfaces [110, 111]. By
inserting this identity, the integration over the moduli space reduces to a product of
integration over the moduli spaces of surfaces obtained by cutting along the curves
appearing in the statement of The McShane Identity times a number of cones. To be
able to continue the process of integration, we require an identity for surfaces with
a mixture of borders and punctures. We can then use The Mirzakhani-McShane
Identity or its various special cases where the length of some of boundaries tends to
zero to do this integration.

We can use this prescription to compute any amplitudes in string perturbation theory. The
only missing ingredients is to compute the form Ω that appears as the integrand in the
computation of string amplitudes in terms of Fenchel-Nielsen coordinates.

The curves which give a pair of pants decomposition of a surface provide various ways
that a surface can degenerate. These curves are either separating-type or non-separating
type. To deal with divergences in string theory, we need to impose the condition of gluing-
compatibility on all separating-type degenerations [17, 18].

We also emphasize that the computation of on-shell amplitudes of external states which
do not undergo mass renormalization do not require a choice of local coordinates around
marked points or a choice of locations of PCOs. In these cases, the integration over the
moduli space we explained above can be used to compute any amplitudes involving only
such states.

We thus have all ingredients for the construction of on-shell/off-shell amplitudes in string
perturbation theory, namely

1. We have an explicit gluing-compatible choice of local coordinates around the marked
points;

2. We have an explicit gluing-compatible distribution of picture-changing operators;

3. We have an explicit integration procedure over the moduli space of hyperbolic sur-
faces.

We illustrate the general construction in the some examples.
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3.5.1 Tree-Level Four-Point Amplitudes in Bosonic-String The-
ory

As the first example, let us consider tree level string amplitude with four off-shell external
states in the bosonic-string theory. We first consider the computation of the Weil-Petersson
volume of the moduli space. We consider a more general situation where the surface
has four boundaries having fixed lengths L = (L1, L2, L3, L4). The Mirzakhani-McShane
identity for these surfaces is given by:

4∑
a=2

∑
γ∈F1,a

D2(L1, La, `γ) = L1, (3.5.1)

where the function D2 is defined in (3.C.25). The curves that bound the boundary with
length L1 and other boundaries are illustrated in figure 3.1.

Using this identity, the volume can be computed as follows:

VolWP(M0,4(L)) =
1

L1

4∑
a=2

∫
M0,4(L)

∑
γ∈F1,a

D2(L1, La, `γ)

=
1

L1

4∑
a=2

∫
Mγa

0,4(L)

d`γadτγaD2(L1, La, `γa)

=
1

L1

4∑
a=2

∫ ∞

0

d`γa

∫
`γa

0

dτγaD(L1, La, `γa)

= 2π2 +
1

2

(
L2

1 + L2
2 + L2

3 + L2
4

)
. (3.5.2)

In particular, the Weil-Petersson volume of the moduli space of four-punctured spheres is
2π2.

We now turn to the computation of amplitudes with four external states. Any such am-
plitude can be written as

Ab
0,4 =

∫
M0,4

Ω0,4, (3.5.3)

where Ω is given by
Ω = 〈R0,4|B|Φ〉. (3.5.4)
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L1

L2L3

L4

γ12

(a) The curve γ12 bounds the boundary with length L1 and the boundary with length L2.

L1

L2L3

L4

γ13

(b) The curve γ13 ∈ F13 bounds the boundary with length L1 and the boundary with length L3.

L1

L2L3

L4

γ14

(c) The curve γ14 bounds the boundary with length L1 and the boundary with length L4.

Figure 3.1: The curves appearing in the statement of Mirzakhani-McShane Identity for spheres
with four boundary components.
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Φ ≡ Φ1Φ2Φ3Φ4 represents the external states. One should be able to write Ω in terms of
Fenchel-Nielsen coordinates as

Ω0,4 = Ω0,4(`, τ)d` ∧ dτ. (3.5.5)

To be able to perform the integration over the moduli space, we need the form of Mirzakhani-
Mcshane Identity for fourth-punctured spheres. It is given by (3.5.1). If we denote the
cusps by c1, c2, c3, c4, the different pairs of pants decomposition correspond to the following
grouping of cusps

P1 : {(c1, c2), (c3, c4)} −→ cutting along γ2,

P2 : {(c1, c3), (c2, c4)} −→ cutting along γ3,

P3 : {(c1, c4), (c2, c3)} −→ cutting along γ4. (3.5.6)

Therefore, there are three terms in the decomposition of tree-level 4-point bosonic-string
amplitudes

Ab
0,4 =

4∑
a=2

∫
M
γa
0,4

d`γadτγa
2Ωa

0,4(`γa , τγa)

1 + exp
(
`γa
2

)
=

4∑
a=2

∫ ∞

0

d`γa

∫
`γa

0

dτγa
2Ωa

0,4(`γa , τγa)

1 + exp
(
`γa
2

) . (3.5.7)

To proceed, we consider two separate cases

1. On-Shell Amplitudes: For the cases that Φis represent states that do not undergo
mass renormalization, one can construct Ωa

0,4 in terms of Fenchel-Nielsen coordinates
and integrate (3.5.7) to get the associated on-shell amplitude.

2. Off-Shell Amplitudes: For off-shell amplitudes, we need to consider additional com-
plications. As it is clear from figure 3.2, all curves γ1, γ2, and γ3 are separating-type
simple closed curves. We thus need to impose the condition of gluing-compatibility
on all separating-type curves. This means that we need to evaluate Ω0,4 in different
regions of moduli space using hyperbolic metrics in those regions. The local coor-
dinates around the marked points are given by (3.2.5), (3.2.11), and (3.2.10) in the
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c1

c4

c2

c3

γ2

c1

c4

c2

c3

γ3

c1

c4

c2

c3

γ4

Figure 3.2: Spheres with four punctures with hyperbolic metric. External vertex operators are
inserted at cusps ca, a = 1, 2, 3, 4.

respective region.

Ab
0,4 =

4∑
a=2


∫

c∗

0

d`γa

∫
`γa

0

dτγa
2Ωa,1

0,4(`γa , τγa)

1 + exp
(
`γa
2

) +

∫
(1+ε)c∗

c∗

d`γa

∫
`γa

0

dτγa
2Ωa,2

0,4(`γa , τγa)

1 + exp
(
`γk
2

)
+

∫ ∞

(1+ε)c∗

d`γa

∫
`γa

0

dτγa
2Ωa,3

0,4(`γa , τγa)

1 + exp
(
`γk
2

)
 . (3.5.8)

This concludes the discussion of tree-level 4-point amplitudes in bosonic-string theory.

3.5.2 Tadpole Amplitudes in Bosonic-String Theory

We next consider tadpole diagrams in bosonic-string theory. We again start with the
computation of Weil-Petersson volume of M1,1(L), the moduli space of tori with a boundary
of length L. This surface is illustrated in figure 3.3. To simplify the computations, we first
multiply the volume by the length L of the boundary. Following the integration procedure,
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L

γ

Figure 3.3: A torus with a boundary of length L. Cutting the surface along γ give a pair of pants.

we get

L · VolWP(M1,1(L)) =

∫
M1,1(L)

∑
γ1,γ2∈F

D1(L1, Lγ1 , Lγ2) =

∫
M1,1(L)

∑
γ∈F

D1(L1, Lγ, Lγ)

=

∫
M
γ
1,1(L)

D1(L1, Lγ, Lγ) =

∫ ∞

0

d`γ

∫
`γ

0

D1(L1, Lγ, Lγ)

= 2

∫ ∞

0

d` ` ln

(
exp `+ exp

(
L
2

)
exp `+ exp

(
−L

2

)) =
π2L

6
+
L3

24
, (3.5.9)

where D1 is given by (3.C.23). We thus get

VolWP(M1,1(L)) =
π2

6
+
L3

24
. (3.5.10)

In particular, (3.3.17) is reproduced in the limit L −→ 0.

We now turn to the computation of tadpole amplitudes. A generic tadpole amplitude in
the bosonic-string theory, whose diagram is illustrated in figure 3.4, has the following form

Ab
1,1 =

∫
M1,1

Ω1,1, (3.5.11)

where
Ω1,1 = 〈R1,1|B|Φ〉 = Ω1,1(`, τ)d` ∧ dτ. (3.5.12)
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c

γ

Figure 3.4: A tadpole diagram in bosonic-string theory. The external vertex operator is inserted
on the cusp c.

We proceed as follows

Ab
1,1 =

∫
M1,1

Ω1,1 =
∑
γ∈F1

∫
M1,1

2Ω1,1(`γ, τγ)

1 + exp `γ

=

∫
M
γ
1,1

2Ω1,1(`γ, τγ)

1 + exp `γ

=

∫ ∞

0

d`γ

∫
`γ

0

dτγ
2Ω1,1(`γ, τγ)

1 + exp `γ
. (3.5.13)

This is the final result for on-shell tadpole amplitude that the associated state does not
undergo mass renormalization. However, we have one extra complication for off-shell tad-
pole amplitude. As it is clear from the figure 3.4, the curve γ is a non-separating-type
simple closed curve. Therefore, the tadpole diagram belongs to 1PI region of the moduli
space for all values of `γ. For an off-shell tadpole amplitude, we thus have

Ab
1,1 =

∫ ∞

0

d`γ

∫
`γ

0

dτγ
2Ω1,1(`γ, τγ)

1 + exp `γ

=

∫
c∗

0

d`γ

∫
`γ

0

dτγ
2Ω1

1,1(`γ, τγ)

1 + exp `γ
+

∫ ∞

c∗

d`γ

∫
`γ

0

dτγ
2Ω2

1,1(`γ, τγ)

1 + exp `γ
, (3.5.14)

where the local coordinate around the cusp in the respective region of the moduli space is
given by (3.2.5) and (3.2.11).

89



c1 c2

α1

α2

(a) The curves α1 and α2 together with the cusp c1 removes a pair of pants from the surface.
These curves appear in the first term of The McShane Identity for hyperbolic punctures surface
(3.C.28).

c1

c2

γ

α

Lγ

(b) The curve γ together with cusps c1 and c2 separates a pairs of pants from the surface. It
is the curve that appears in the second term of The McShane Identity for hyperbolic punctures
surface (3.C.28). The resulting surface is a one-holed torus with a boundary of length Lγ . Any
simple closed curve which is nonhomotopic to the resulting boundary gives a pair of pants. One
of such curves is the curve α.

Figure 3.5: The possible pants decomposition of a torus with two cusps.

3.5.3 One-Loop Two-Point Amplitudes in Bosonic-String The-
ory

We next consider one-loop two-point amplitudes in bosonic-string theory. Let us compute
the Weil-Petersson volume of M1,2, i.e. the moduli space of twice-punctured tori. We use
the following form of The McShane Identity for hyperbolic punctured surface∑

{α1,α2}∈F1

2

1 + exp
(
`α1 (R1,2)+`α2 (R1,2)

2

) +
∑
γ∈F1,2

2

1 + exp
(
`γ(R1.2)

2

) = 1, (3.5.15)

where curves α1, α2 are shown in figure 3.5a, and the curve γ is shown in figure 3.5b on a
twice-cusped tori R1,2. We proceed as follows
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VolWP(M1,2) =

∫
M1,2

∑
{α1,α2}∈F1

2

1 + exp
(
`α1 (R1,2)+`α2 (R1,2)

2

) +
∑
γ∈F1,2

2

1 + exp
(
`γ(R1.2)

2

)
=

∫
M
{α1,α2}
1,1

1

1 + exp
(
`α1 (R1,2)+`α2 (R1,2)

2

) +

∫
M
γ
1,1

2

1 + exp
(
`γ(R1.2)

2

)
=

∫ ∞

0

d`α1

∫ ∞

0

d`α2

`α1`α2

1 + exp
(
`α1+`α2

2

) +

∫ ∞

0

d`γ

∫
`γ

0

dτγ
2

1 + exp
(
`γ
2

)
∫

M1,1(`γ)

1.

We know that ∫
M1,1(`γ)

1 = VolWP(M1,1(`γ)) =
π2

6
+
`2
γ

24
. (3.5.16)

Using this, we get

VolWP(M1,2) =

∫ ∞

0

d`α1

∫ ∞

0

d`α2

`α1`α2

1 + exp
(
`α1+`α2

2

) +

∫ ∞

0

d`γ

∫ `γ
2

0

dτγ
2
(
π2

6
+

`2γ
24

)
1 + exp

(
`γ
2

) .
These integral can be computed using Mathematica.

Integrate

[
xy

1+Exp[x+y2 ]
, {x, 0,∞}, {y, 0,∞}

]
Integrate

[
xy

1+Exp[x+y2 ]
, {x, 0,∞}, {y, 0,∞}

]
Integrate

[
xy

1+Exp[x+y2 ]
, {x, 0,∞}, {y, 0,∞}

]
.

7π4

45
.

Integrate

[
x
(
π2

6
+x2

24

)
1+Exp[x2 ]

, {x, 0,∞}
]

Integrate

[
x
(
π2

6
+x2

24

)
1+Exp[x2 ]

, {x, 0,∞}
]

Integrate

[
x
(
π2

6
+x2

24

)
1+Exp[x2 ]

, {x, 0,∞}
]
.

17π4

180
.

We thus finally get

VolWP(M1,2) =
7π4

45
+

17π4

180
=
π4

4
. (3.5.17)

This result is in apparent conflict with (1.3.4). However, this conflict is related to different
normalizations used in the two approaches. A more-involved but similar computation shows
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that the Weil-Petersson volume of the moduli space of tori with two boundary components
having fixed lengths L = {L1, L2} is given by

VolWP(M1,2(L)) =
(4π2 + L2

1 + L2
2) (12π2 + L2

1 + L2
2)

192
. (3.5.18)

We now turn to the computation of amplitudes. Any one-loop two-point amplitude can be
written as

Ab
1,2 =

∫
M1,1

Ω1,2. (3.5.19)

Using the above identity, we have

Ab
1,2 =

∫
M

(α1,α2)
1,1

2Ω1,2

1 + exp
(
`α1+`α2

2

) +
Ω1,2

1 + exp
(
`γ
2

)
=

∫ ∞

0

d`α1

∫
`α1

0

dτα1

∫ ∞

0

d`α2

∫
`α2

0

dτα2

2 Ω1,2(`α1 , τα1 ; `α2 , τα2)

1 + exp
(
`α1+`α2

2

)
+

∫ ∞

0

d`γ

∫ `γ
2

0

dτγ

∫
M1,1(`γ)

Ω1,2(`γ, τγ; `α, τα)

1 + exp
(
`γ
2

) . (3.5.20)

To proceed further, we need to insert the identity associated to the one-holed tori which
is given by ∑

α∈Fγ

D1(`γ, `α(R1,1(`γ)), `α(R1,1(`γ)))

`γ
= 1. (3.5.21)

Using this identity, the final expression can be written as

Ab
1,2 =

∫ ∞

0

d`α1

∫
`α1

0

dτα1

∫ ∞

0

d`α2

∫
`α2

0

dτα2

2 Ω1,2(`α1 , τα1 ; `α2 , τα2)

1 + exp
(
`α1+`α2

2

)
+

∫ ∞

0

d`γ

∫ `γ
2

0

dτγ

∫ ∞

0

d`α

∫
`α

0

dτα
D1(`γ, `α(R1,1(`γ)), `α(R1,1(`γ)))

`γ

Ω1,2(`γ, τγ; `α, τα)

1 + exp
(
`γ
2

) .

(3.5.22)
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This is the final expression for any one-loop two-point on-shell amplitude in the bosonic-
string theory. However, there are some complications for off-shell amplitudes. Let us
denote the first term in (3.5.22) by Ab;(1)

1,2 and the second term by Ab;(2)
1,2 . We then have

Ab;(1)
1,2 =

∫
c∗

0

d`α1

∫
`α1

0

dτα1


∫

c∗

0

d`α2

∫
`α2

0

dτα2 +

∫ ∞

c∗

d`α2

∫
`α2

0

dτα2

 2 Ω1,2(`α1 , τα1 ; `α2 , τα2)

1 + exp
(
`α1+`α2

2

)
+

∫ ∞

c∗

d`α1

∫
`α1

0

dτα1


∫

c∗

0

d`α2

∫
`α2

0

dτα2 +

∫ ∞

c∗

d`α2

∫
`α2

0

dτα2

 2 Ω1,2(`α1 , τα1 ; `α2 , τα2)

1 + exp
(
`α1+`α2

2

) .

Similary, we have

Ab;(2)
1,2 =

∫
c∗

0

d`γ

∫ `γ
2

0

dτγ


∫

c∗

0

d`α

∫
`α

0

dτα +

∫ ∞

c∗

d`α

∫
`α

0

dτα

 D1(`γ, `α(R1,1(`γ)), `α(R1,1(`γ)))

`γ

Ω1,2(`γ, τγ; `α, τα)

1 + exp
(
`γ
2

)
+

∫
(1+ε)c∗

c∗

d`γ

∫ `γ
2

0

dτγ


∫

c∗

0

d`α

∫
`α

0

dτα +

∫ ∞

c∗

d`α

∫
`α

0

dτα

 D1(`γ, `α(R1,1(`γ)), `α(R1,1(`γ)))

`γ

Ω1,2(`γ, τγ; `α, τα)

1 + exp
(
`γ
2

)
+

∫ ∞

(1+ε)c∗

d`γ

∫ `γ
2

0

dτγ


∫

c∗

0

d`α

∫
`α

0

dτα +

∫ ∞

c∗

d`α

∫
`α

0

dτα

 D1(`γ, `α(R1,1(`γ)), `α(R1,1(`γ)))

`γ

Ω1,2(`γ, τγ; `α, τα)

1 + exp
(
`γ
2

) .

The final expression is the sum of the above two expressions

Ab
1,2 = Ab;(1)

1,2 +Ab;(2)
1,2 . (3.5.23)

These examples clearly show the power of using hyperbolic geometry in computing the
amplitudes in string perturbation theory. The only missing ingredient is a method to
compute Ω in terms of Fenchel-Nielsen coordinates. Once such a method is developed, any
amplitude whether on-shell or off-shell can be computed very explicitly using the method
explained in this thesis.

3.6 Applications in String Field Theory

In this section, we describe the construction of a consistent string field theory using tools
from hyperbolic geometry following [2, 3]. Since all the basic ingredients is already dis-
cussed in previous sections, we just emphasize the new pieces. For the sake of discussion,
we restrict ourselves to the case of bosonic-string field theory [59]. The case of superstring
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field theory based on the picture-changing formalism, formulated in [24], can be dealt using
similar considerations.

By a consistent string field theory, we mean a description of the string vertices and Feynman
diagrams such that the regions corresponding to these pieces provide a single cover of the
moduli space. This is ensured if the string vertices Vg,n satisfy the BV quantum master
equation

∂Vg,n + ∆Vg−1,n+2 +
1

2

∑
g1+g2=g

n1+n2=n+2

{Vg1,n1 ,Vg2,n2} = 0, (3.6.1)

where ∂ is the operation of taking the boundary, ∆ is the operation of gluing two punctures
on the same surface, and {·, ·} is the operation of gluing of two punctures on two discon-
nected surface4. The BV quantum master equation (3.6.1) tells us that the surfaces living
at the boundary of string vertex, i.e. surface belong to ∂Vg,n, can be constructed by gluing
of punctures on a single surface or on two disconnected surface. This is essentially the con-
dition of gluing compatibility that we imposed on the decomposition of moduli space into
1PI and 1PR regions. Actually the basic insights of the formulation of off-shell amplitudes
by 1PI decomposition of the moduli space is inspired from string field theory. However,
there is a subtle difference. String field theory decomposes the moduli space into string
vertices and Feynman diagrams. In this sense, all surface obtained by gluing of punctures
on a single surface or two disconnected surfaces must be included in the regions of the
moduli space corresponding to the Feynman diagrams of the string field theory. We can
then define the following string-field-theory decomposition of the moduli space as follows

Definition 3.3 (The Feynman-Diagrams Region). Assume that we solve curvature-correction
equation and computed the length of the core geodesics to be la,h for a = 1, · · · ,m. Con-
sider the set of all hyperbolic surfaces containing at least one simple closed geodesic, either
separating-type or nonseparating-type, whose length is less than or equal to la,h. We call
the region of moduli space containing such surfaces the Feynman-diagrams region of moduli
space.

We note that the first-order approximation to la,h is given by

la,h = c∗ +O(c4
∗). (3.6.2)

4In the case of heterotic-string and type-II superstring theories, ∆ = ∆NS + ∆R, where ∆NS is the
operation of gluing of two NS punctures and ∆R is the operation of gluing of two R punctures on the same
surface. Similar comments hold for the operation of gluing of punctures on two disconnected surfaces {·, ·},
i.e. {·, ·} = {·, ·}NS + {·, ·}R. Note that an NS puncture and an R puncture cannot be glued together.
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Regarding this definition, we can define the region of the moduli space corresponding to
the string vertex as follows

Definition 3.4 (The String-Vertex Region). We call the region of the moduli space containing
surfaces not belonging to the Feynman-diagram region as the string-vertex region of moduli
space.

Note that if we can solve the curvature-correction equation exactly, we can obtain the
exact hyperbolic metric on the family of plumbed surfaces. We can then construct a
string field theory in exactly the same manner that we constructed off-shell amplitudes.
We proceed as follows. We equip surfaces belong to the string-vertex region with the
hyperbolic metric, and the local coordinates around the punctures are induced from it.
We equip the surfaces belong to the Feynman-diagrams region of the moduli space with
the hyperbolic metric obtained by solving the curvature-correction equation, and the local
coordinates around the punctures are induced from it. Finally we equip the surfaces
belong to the region between the Feynman-diagrams region and the string-vertex region
with an interpolating hyperbolic metric, and the local coordinates around the punctures
are induced from it. This prescription provides a concrete realization of the BV quantum
master equation (3.6.1), and thus leads to a consistent string field theory. Regarding (3.6.2)
and the approximate solution to the curvature-correction equation given by (3.1.50), we
can construct an approximate gauge-invariant but explicit bosonic-string field theory using
hyperbolic geometry.

The next ingredients is the explicit expression for interaction vertices of the bosonic-string
field theory. An interaction vertex in string field theory is the integration of a convenient
form over the string-vertex region of moduli space

Ig,n ≡

∫
Vg,n

Ω(m; z1(m), · · · , zn(m)), (3.6.3)

where za(m)s are the local coordinates around the punctures depending on 6g − 6 + 2n
moduli parameters m ≡ {m1, · · · ,m6g−6+2n}. Since a surface R ∈ Vg,n is equipped with
local coordinates around the punctures, the above integral should be understood as the
pullback of a form Ω(m; z1, · · · , zn) defined on P̂g,n to the moduli space using a section

s : Mg,n −→ P̂g,n

Ω(m; z1(m), · · · , zn(m)) = s∗(Ω(m; z1, · · · , zn)). (3.6.4)
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Let us denote the vertex operator corresponding to the basis-state |Φs〉 by Y(Φs), and we
define |Ys, p〉 ≡ Y(Φs)|1, p〉. The string field entering in the BV quantum master action
can be expressed as

|Ψ〉 =
∑′

G(Φs)≤2

∑
p

ψs(p)Y(Φs)|1, p〉+
∑′

G(Φs)≤2

∑
p

ψ∗s(p)Y(Φ̃s)|1, p〉, (3.6.5)

where |1, p〉 denotes the SL(2,C)-invariant family of vacua for the worldsheet CFT for
the closed bosonic-string theory, parameterized by p, G(Φs) is the ghost number of the
basis-state Φs, and ψs(p) and ψ∗s(p) are the target-space fields and antifields respectively.

The state |Φ̃〉 is defined by |Φ̃〉 ≡ b−0 |Φc
s〉, where 〈Φc

r|Φs〉 = δrs [59]. The prime over the
summation sign reminds us that the sum is only over those states that are annihilated by
L−0 . Using this expression, the BV quantum master action in terms of the target space
fields and the target space antifields is given by

S(Ψ) =
1

2g2
s

∑′

G(Φs1 )≤2
G(Φs2 )≤2

∑
φs1∈S
φs2∈S

∑
p1,p2

φs1(p1)Ps1s2 (p1, p2)φs2(p2)

+
∑
g≥0

n≥1

~gg2g−2+n
s

n!

∑′

G(Φs1 )≤2

...
G(Φsn )≤2

∑
φs1∈S

...
φsn∈S

∑
p1,··· ,pn

Vg,n
s1···sn (p1, · · · , pn)φs1(p1) · · ·φsn(pn), (3.6.6)

where S = {ψs, ψ∗s} is the set of all fields and antifields of the closed bosonic-string field
theory spectrum, and gs is the string coupling constant. Ps1s2 (p1, p2), the inverse of the
propagator, is given by

Ps1s2 (p1, p2) ≡
〈
Ys1 , p1

∣∣c−0 QB∣∣Ys2 , p2

〉
, (3.6.7)

where QB is the BRST operator of the theory, and

c−0 ≡
1

2
(c0 − c̄0) . (3.6.8)

Vg,n
s1···sn (p1, · · · , pn), the g-loop interaction vertex of n target spacetime fields/antifields
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{φs1(p1), · · · , φsn(pn)}, is given by

Vg,n
s1···sn (p1, · · · , pn) ≡

∫
Vg,n

Ω (m; |Ys1 , p1〉, · · · , |Ysn , pn〉) . (3.6.9)

Here, the ath string field is inserted at the ath puncture using the local coordinates za(m).

The state |Ysa , pa〉 is annihilated by both b
(a)−
0 and L

(a)−
0 , where these operators act on

the state-space of the ath puncture. To be able to do computation in the bosonic-
string field theory, we need to explicitly evaluate the BV quantum master action. The
explicit evaluation of the BV quantum master action requires the explicit evaluation of
Vg,n
s1···sn (p1, · · · , pn). The explicit evaluation requires

1. A convenient choice of parametrization of the Teichmuüller space and the condi-
tions on them that specify the string-vertex region of the moduli space inside the
Teichmüller space.

2. A choice of local coordinates around the punctures on surfaces belong to the string-
vertex region.

3. An explicit procedure for constructing the off-shell string measure in terms of the
chosen coordinates of the moduli space in terms of parameters m.

4. Finally, a procedure for integrating the off-shell string measure over the string-vertex
region inside the moduli space.

Regarding what we have explained in 3.3.2, and the definition of the string-vertex region
given above, (3.6.9) can be explicitly computed once we compute Ω (m; |Ys1 , p1〉, · · · , |Ysn , pn〉)
in terms of the Fenchel-Nielsen coordinates. The region of integration is given by

la,h ≤ `a <∞, 0 ≤ τa ≤ 2−Mγa `a, a = 1, · · · , 3g− 3 + n. (3.6.10)

Note that the first-order approximation to la,h is given by (3.6.2). As an example consider
the four-leg genus-0 string vertex V0,4

s1···s4 (p1, · · · , p4). Considerations similar to those led
to (3.5.7) can be used to compute this vertex. The result is

V0,4
s1···s4 (p1, · · · , p4) =

4∑
a=2

∫ ∞

la,h

d`γa

∫
`γa

0

dτγa
2Ω (`γa , τγa ; |Ys1 , p1〉, · · · , |Ys4 , p4〉)

1 + exp
(
`γa
2

) .

(3.6.11)
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Using (3.6.2), this can be written explicitly as

V0,4
s1···s4 (p1, · · · , p4) =

4∑
a=2

∫ ∞

c∗

d`γa

∫
`γa

0

dτγa
2Ω (`γa , τγa ; |Ys1 , p1〉, · · · , |Ys4 , p4〉)

1 + exp
(
`γa
2

) .

(3.6.12)

Alternatively, we can keep the region of integration as (3.3.44) by extending the form
Ω (m; |Ys1 , p1〉, · · · , |Ysn , pn〉) by zero to the whole moduli space.

Once interaction vertices Vg,n
s1···sn (p1, · · · , pn) is computed explicitly by the prescription

explained, (3.6.6) is the complete action for the bosonic-string field theory. This action
resembles the action of a quantum field theory with infinite number of interaction terms.
We can use the usual methods of quantum field theory to compute the physically-interesting
quantities. Similar comments hold for the heterotic-string and type-II superstring field
theories except that the definition of string vertices involves a choice of locations of PCOs.
This concludes our discussion of string field theory. More details can be found in [2, 3].
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Appendix

3.A Parametrizations of the Space of Riemann Sur-

faces

There are various ways to characterize a Riemann surface of a given topological type (g, n),
i.e. to describe a point in the parametrization space of such surfaces. In this appendix, we
briefly explain some of these parametrizations.

3.A.1 The Period Matrix

The period matrix for a genus-g surface R is a natural generalization of the complex
parameter of the torus. Using the fact that there are g holomorphic and g anti-holomorphic
Abelian differential forms ωa and ωa on a compact genus-g Riemann surfaces, one can
choose a basis for such forms such that:∮

αa

ωb = δab, a, b = 1, · · · , g∮
βa

ωb = τab, a, b = 1, · · · , g. (3.A.1)

Where the set (α1, · · · , αg; β1, · · · , βg) is a basis for first homology group H1(R,Z), with
the following properties:

〈αa, βb〉 = δab 〈αa, αb〉 = 0 〈βa, βb〉 = 0 (3.A.2)

and 〈·, ·〉 : H1(R,Z) × H1(R,Z) −→ Z is the intersection pairing on the first homology
group. τ ≡ [τab] is called the period matrix of the surface R. τ is symmetric (which can
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be seen using Riemann’s bilinear relations), and so it has 1
2
g(g + 1) independent elements,

and its imaginary part is positive definite. There are pros and cons of using period matrix
for characterization of Riemann surfaces of a given topological type. The good properties
for such a parametrization of the moduli space are as follows:

1. The period matrix can be defined explicitly for any Riemann surface;

2. The theta function, in terms of which one can compute one-loop amplitudes, can
be generalized for genus-g surfaces and is defined in terms of period matrix of the
surface. As we mentioned above, the correlation function on a fixed Riemann surface
R is known in terms of well-defined quantities onR, namely theta-function and prime
form [37]. This means that one can in principle do the integration over the moduli
space.

3. Modular invariance of the correlation functions on a fixed surface can be checked
explicitly;

4. A degenerating surface R(t) near the points at infinity of Mg,n can be constructed
by gluing two surfaces R1 and R2 using a specific gluing procedure. t is a complex
parameter whose absolute value is related to the length of the cylinder connecting
the two component surfaces. The period matrix of the degenerating surface R can
be written in terms of the component surfaces as [112, 61]:

τR(t) =

(
τR1 0

0 τR2

)
+O(t), 0 ≤ |t| ≤ 1, (3.A.3)

and the corrections can be systematically computed;

Due to these pros, period matrix is the favorite parametrization of the moduli space for
string theorists. However, there are disadvantages as well:

1. The number of complex moduli parameter of a genus-g Riemann surface is 3g− 3 +
# of CKVs. The difference between the number of parameters is:

1

2
g(g + 1)− (3g− 3)−# of CKVs =

1

2
(g− 2)(g− 3)−# of CKVs. (3.A.4)

For g ≥ 2, # of CKVs = 0, and there is one complex CKV for g = 1. Therefore, the
only cases that the number of complex moduli parameter matches with the number of
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independent components of the corresponding period matrices are g = 1, 2, 3. There
are redundancies for the description of moduli space in terms of period matrix for
g ≥ 4;

2. The explicit integration region is not known for g ≥ 2;

3. As far as we know, the explicit MCG-invariant volume form has not been constructed
for genus g ≥ 2;

3.A.2 Schottky Groups

We now turn to the construction of families of Riemann surfaces by quotient of certain
covering space by the so-called Schottky group.

The group PSL(2,C) is defined as matrices M in GL(2,C) such that

M =

(
a b

c d

)
∈ GL(2,C), ad− bc = 1,

(
a b

c d

)
∼

(
−a −b
−c −d

)
. (3.A.5)

This group acts on Riemann sphere CP1 = C ∪ {∞} as follows

z 7→M(z) =
az + b

cz + d
. (3.A.6)

An element of PSL(2,C) is called hyperbolic (or loxodromic) if it has two fixed points, one
attractive and one repulsive. If zat and zre are attractive and repulsive fixed points, then
a hyperbolic element M can be defined as follows

M(z)− zat

M(z)− zre

= κM
z − zat

x− zre

, 0 < |kM | < 1, (3.A.7)

where κM is called the multiplier of M . This relation shows that any hyperbolic element
of PSL(2,C) is parametrized by three parameters, zat, zre, and κM . We then have the
following definitions.

Suppose that there are 2g circles Ca and C′a for a = 1, · · · , g such that 1) there are g

hyperbolic elements Ma ∈ PSL(2,C) such that Ma(Ca) = C′a, and 2) these circles bound a
connected region F whose boundary is given by ∂F =

∑g
a=1(C′a − Ca).
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C1

C′1

M1

C2

C′2

M2F(G)

Figure 3.A.1: The construction of a genus-2 Riemann surface using the quotient of a fundamental
domain F(G) by a genus-2 Schottky group G ≡ 〈M1,M2〉 freely-generated by {M1,M2}. The
dotted line show how Ca is mapped to C′a for a = 1, 2. The green and red lines denoted the
standard 1-cycles of a genus-2 Riemann surface.

Definition 3.5. The group G freely-generated by g hyperbolic elements Ma is called a genus-
g Schottky group.

F is a fundamental domain for the action of G whose closure, which is obtained by including
the boundary circles Ca and C′a, is denoted by F. If Λ(F) ⊂ CP1 is the limit set of G, i.e.
the set of points in Riemann sphere that are not equivalent to a point in F, then a genus-g
Riemann surface Rg can be formed using the following quotient

Rg '
CP1 − Λ(G)

G
, (3.A.8)

Since all points in CP1 − Λ(G) are equivalent to a point in F, Rg can be constructed
by taking F and identify the boundary circles z ∼ Ma(z) for z ∈ Ca and Ma(z) ∈ C′a.
Any genus-g Riemann surface can be constructed using a Schottky group [113]. The
construction of a genus-2 Riemann surface using a Schottky group is illustrated in figure
3.A.1.

If we choose a specific set of g generators, the Schottky group is called a marked genus-g
Schottky group. We can then parametrize Schottky groups by 3g parameters zat,a, zre,a, and
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κMa , for a = 1, · · · , g, the so-called Schottky parameters. However, this parametrization
is redundant since two Schottky groups which are conjugate in PSL(2,C) will give rise to
the same genus-g Riemann surfaces. The redundancy can be taken care of by fixing the
locations of three fixed points. We are thus left with 3g− 3 parameters which describe the
deformation space of genus-g Schottky groups which is called Schottky space [113].

One of the main reasons that the Schottky groups were used in the early literature of
string perturbation theory is the relation between Schottky parameters and the gluing of
Riemann surfaces [114, 115, 116, 117]. The construction of a genus-g Riemann surface from
sphere requires g gluings and in fact they can be identified with the g hyperbolic generators
of a marked genus-g Schottky group G = 〈M1, · · · ,Mg〉. The construction is recursive. To
construct a genus-g Riemann surfaceRg, we can start with a genus-(g−1) Riemann surface
Rg−1, and we consider two marked points zat,g and zre,g on it. zat,g and zre,g are located
inside the fundamental domain of Gg−1, the Schottky group associated with Rg−1. If we
denote the local coordinates around zat,g and zre,g by z1 and z2 respectively, zat,g and zre,g

are located at z1 = 0 and z2 = 0, respectively. One can glue these marked point using the
following gluing relation

z1z2 = −κMg . (3.A.9)

The gluing is done by first removing disks Di = {|zi| < |κMg|}, for i = 1, 2, around the
marked points zat,g and zre,g, and then identifying the points |kMg| < |zi| < 1 using (3.A.9).
The explicit construction of a genus-1 surface by starting from Riemann sphere is given
in Appendix B of [118]. Therefore, multipliers of Schottky generators M1, · · · ,Mg can be
thought of as gluing parameters to produce handles of a genus-g surfaceRg. Therefore, it is
very easy to describe the nonseparating-type degenerations in the Schottky parameteriza-
tion, we simply take κMa −→ 0. However, the description of separating-type degenerations
using the Schottky parametrization is more involved, and can be found in section B.1.2 of
[118].

We are now mentioning some advantage and disadvantages of the Schottky parametrization
of Riemann surfaces. The main advantage of using the Schottky parameter is that the fac-
torization property of amplitudes due to the gluing relations and the Schottky parameters,
as has been briefly explained above. Due to this property, the unitarity of the amplitudes
by factorization into different channels can be explicitly shown. However, since the action
of mapping-class group on Schottky parameters is not known, the modular invariance is
not easy to check. Also, as far as we are aware, the explicit integration regions for Schottky
parameters has not been considered in the literature.
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3.A.3 The Minimal-Area Metric

The minimal-area metric has been the main tool in the construction of covariant string field
theory [119, 120, 121, 59, 122, 123]. Consider a Riemann surface R, and a set Γ = {[γa]}
of finite or infinite base-point free homotopy classes of nontrivial closed curves on it. We
denote the representative of each classes as γ̂a and for each homotopy class [γa], we choose
a constant ca ≥ 0. A metric ρ on R is called admissible if for any curve γ′a ∼ γ̂a satisfies
the following inequality ∫

γ′a

ρ|dz| ≥ ca, (3.A.10)

and a runs over all homotopy classes. A metric ρ is called a minimal-area metric if in
addition to (3.A.10) also minimizes the area of R. The minimal-area problem relevant for
closed-string field theory can then be state as follows [124, 125]: Under the condition that
all nontrivial closed curves on R are longer than or equal to 2π, any string diagram is
represented by a surface R equipped with the minimal-area metric. The length condition
should be imposed on all homotopy classes of curves on R. There are similar minimal-area
problems for open- and open-closed-string field theory [120, 121]. It can be shown that if
a surface R is constructed by gluing together flat cylinders with circumference 2π and no
closed curve on R is shorter than 2π, then R has the minimal-area metric [59].

Although minimal-area metric is suitable to formally satisfy the properties required by
a string field theory, the explicit construction for most surfaces is lacking. On the other
hand, the integration region for minimal-area parameters is not known.

3.A.4 The Constant-Curvature Hyperbolic Metric

The Euler characteristic of a genus-g Riemann surface R with n marked points is given by:

χ(R) = 2− 2g− n. (3.A.11)

This quantity is negative for:
2g + n ≥ 3. (3.A.12)

If a surface satisfies this relation, then according to Gauss-Bonnet theorem, it can admit
a negative constant curvature metric which can be taken to be −1. This is the content of
The Uniformization Theorem of Poincaré and Koebe, according to which, there exists a
unique hyperbolic metric for every conformal class of a Riemann surface. If m denotes the
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parameters that characterize a conformal structure on the surface:

R(m) ∼= R(hm), (3.A.13)

where hm is the parameters that characterize the corresponding hyperbolic metric. Let’s
consider the cases that do not satisfy condition (3.A.12)

1. Sphere with zero, one, or two marked points: In these cases, the volumes of the
(residual) CKVs are infinite, and the amplitudes simply vanish5.

2. Torus with no marked point: Torus has vanishing curvature and admits flat metric.
It is well-known that the one-loop vacuum amplitude vanishes due to the space-time
supersymmetry6.

The condition (3.A.12) is thus satisfied for all the interesting and non-trivial cases.

The recent developments in hyperbolic geometry has provided the required tools to con-
struct off-shell amplitudes in string theory [67, 69]. The integration over the moduli space
requires the use of a specific set of coordinates for the corresponding Teichmüller space of
the moduli space known as the Fenchel-Nielsen length and twist coordinates. As far as we
know, the first appearance of these coordinates in the string theory literature goes back to
[129]. The use of these coordinates has several advantages:

1. The explicit integration region can be constructed [67]. This is done by lifting the
integration over the moduli space to an appropriate covering space;

2. The explicit volume form on the Teichmüller space can be constructed [101]. This
volume form is given by the Weil-Petersson (WP) symplectic form via The Wolpert’s

Magic Formula:

ωWP =

3g−3+n∑
a=1

d`a ∧ dτa, (3.A.14)

and the WP volume form is given by

dVWP(Mg,n) ≡ (ωWP)3g−3+n . (3.A.15)

5Regarding the two-point amplitudes on sphere, see the interesting observation of [126].
6For a detailed computation of one-loop superstring vacuum amplitude see section 8 of [127] or section

7.6 of [128]. The two-loop computations are done in [26, 27, 28, 29, 30, 31, 32].
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3. The WP volume form extends to the boundary of the Teichmüller space and it can
be written as (3.A.14) [105, 96];

4. The WP volume form is invariant under the action of MCG [101];

5. The explicit hyperbolic metric on a degenerating surface near the boundary of the
compactified moduli space can be constructed explicitly [73, 69];

There are few other parametrization of the space of Riemann surfaces like the Fuchsian
parameterization, the Ribbon graphs, light-cone parameters, etc. Since none of these
parameterization play any essential role in this thesis, we do not explain them here.

3.B Hyperbolic Metrics near a Puncture and on an

Annulus

In this appendix, we derive the hyperbolic metric near a puncture and on the annulus.

The metric on a planar domain can be always written as

ds2 = ρ2(z, z̄)dzdz̄ = (ρ(z, z̄)|dz|)2, (3.B.1)

where ρ(z, z̄) is a positive continuous function called the density of metric. A plane domain
H with at least two boundary points is called a hyperbolic domain, and as such, the
universal cover of a hyperbolic domain is the unit disk D, i.e. we have the following

π : D −→ H. (3.B.2)

One of the important aspects of The Uniformization Theorem is that the metric on an
arbitrary Riemann surface can be defined using the metric on its covering space. On the
other hand, the density of hyperbolic metric on the unit disk is given by

ρD(z, z̄) =
1

1− zz̄
. (3.B.3)

We can thus use π to push-forward ρD(z, z̄) to ρH(z, z̄) on the hyperbolic domain H. For
a point x ∈ D such that π(x) = z, we have [130]

ρH(z) =
ρD(x)∣∣∣dπ(x)
dx

∣∣∣ . (3.B.4)
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One can show that this is a well-defined density on H. It also shows that π is an infinitesimal
hyperbolic isometry, and that H equipped with the density ρH is a complete metric space.

Using (3.B.4) and the Riemann map f : D −→ H for f = i1+z
1−z , the density of hyperbolic

metric on upper half-plane H is given by

ρH(z, z̄) =
1

2Im(z)
. (3.B.5)

We can now consider our cases of interest. We first derive the hyperbolic metric near a
puncture. A model for a hyperbolic surface near a puncture is the punctured disk D•. The
universal covering map π : H −→ D• is given π(z) = exp(iz) ≡ w. Using (3.B.4) and
(3.B.5), we have

ρD•(w) =
ρH
|π′(z)|

=
1

2|w| ln 1
|w|
. (3.B.6)

This is the form of hyperbolic metric near a puncture.

To derive the density of hyperbolic metric on an annulus, consider the strip S = {w| 0 <
Im(w) < L}. The universal covering map between H and S is given by

f(z) =
L ln z

π
. (3.B.7)

Using this relation, we can compute the density of hyperbolic metric on strip using (3.B.4)

ρS(w) =
π

2L sin
(
π
L
Im(w)

) . (3.B.8)

The map exp(iw) maps S to an annuli A = {t|e−L < |t| < 1}. Proceeding as before, we
get the density of hyperbolic metric on an annulus to be

ρA(t) =
π

2|t| lnL
csc

(
π

ln |t|
lnL

)
, (3.B.9)

which is the result we were looking for.

3.C Identities for Hyperbolic Surfaces

In this appendix, we collect some identities on hyperbolic surfaces. These identities are
the statement of the fact that the sum over the orbit of mapping-class group of the values
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of a function, which depends on lengths of simple closed curves on a hyperbolic surfaces,
is a constant. We first give a brief general introduction to the identities on a hyperbolic
surface and then explain some of these identities in some detail.

3.C.1 General Introduction

The study of hyperbolic geometry of surfaces has the advantage that there are many explicit
results which are simply lacking in other methods of studying surfaces. On the other hand,
many of these results rely on the study of very basic objects, namely simple closed curves
on the surface. For example the mapping-class group of a surface can be determined by
the action of its elements on the homotopy classes of simple closed curve on the surface,
just like a linear transformation acting on a vector space can be determined through its
action on basis vectors [131]. Also, there are results for hyperbolic surfaces that do not
exist for Euclidean surfaces. Three classic examples of these results are

1. The Briman-Series result that the set of all simple closed geodesics on a hyperbolic
surface has Hausdorff dimension zero. This means that most points of a hyperbolic
surface do not lie on one of such geodesics [132];

2. The Anosov result that the geodesic flow on a hyperbolic surface (and more generally
higher-dimensional hyperbolic manifolds) is ergodic. This means that if one choose an
arbitrary point on a hyperbolic surface and in addition choose an arbitrary direction
and generates geodesics paths, one can reach arbitrarily close to all points on the
surface [133];

3. The existence of hyperbolic identities on hyperbolic surfaces where the sum of values
of a function of hyperbolic length of (open or closed) curves is equal to a constant.
The proof of the existence of such identities relies one the first two results.

The general idea behind finding identities on a hyperbolic surface is as follows. Let σ be a
measure on a hyperbolic surface R and choose a finite-measure set R′ ⊂ R. One can show
that R′ can be decomposed as:

R′ =

(⋃
a

Ra

)
∪R′′, (3.C.1)
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where {Ra} is a set of countable disjoint finite-measure subsets of R′ and R′′ is a set of
measure zero7. Then, schematically the identity takes the following form

σ(R′) =
∑
a

σ(Ra) + σ(R′′) =
∑
a

σ(Ra). (3.C.2)

By computing the measures of the subsets in {Ra}, one gets an identity for the hyperbolic
surfaceR. For example by choosingR′ = TI(R) (the unit tangent bundle ofR) orR′ = ∂R,
one can get the Luo-Tan identity and the generalized McShane identity, respectively. In
the following, we introduce some of these identities [134].

3.C.2 Luo-Tan Identities

The Luo-Tan identity is an identity for hyperbolic surfaces with borders and cusps. It
looks like the general form (3.3.36). To elucidate and state the Luo-Tan identity, we have
to introduce two concepts which appear in (3.3.36): the geometric objects over which we
sum and the explicit form of the function f . As we see, the first concept is given by two
classes of embedded subsurfaces namely properly-embedded geometric pairs of pants and
quasi-embedded geometric pairs of pants. Let R be a hyperbolic surface. Then a pair of
pants P ⊂ R is called

• Geometric if the boundaries of P are geodesics;

• Proper-embedded if the inclusion map ι : P ↪→ R is injective and all of its boundaries
are mapped onto different geodesics;

• Quasi-embedded is the inclusion map ι : P ↪→ R is injective, all of its boundaries are
mapped onto geodesics, but two of its boundaries are mapped to the same geodesic;

The explicit form of the function f is given by the Roger’s dilogarithm function. The
Luo-Tan identity can be schematically written as the following form∑

P0

f0(P0) +
∑
P1

f1(P1) +
∑
P2

f2(P2) +
∑
P

f(P ) = constant, (3.C.3)

where

7To prove that R′′ has measure zero, one must resort to the results of Birman-Series or Anosov men-
tioned above.
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• The first term is the sum over all properly-embedded geometric spheres with three
holes P0 such that ∂P0 ∪ ∂R = ∅;

• The second term is the sum over all properly-embedded geometric spheres with three
holes P1 such that one of its boundaries is a boundary of R;

• The third term is the sum over all properly-embedded geometric spheres with three
holes P2 such that two of its boundaries are boundaries of R;

• The fourth term is the sum over all quasi-embedded geometric spheres with three
holes P ;

The explicit forms of f0, f1, f2, and f will be given bellow. To write the explicit form of
these functions, we need to introduce the Roger’s dilogarithm function. For |z| < 1, the
dilogarithm function Li2 is defined by the following Taylor series:

Li2(z) ≡
∞∑
n=1

zn

n2
. (3.C.4)

For z ∈ R and z ≤ 1, Li2(z) can be written as follows

Li2(z) = −

∫
z

0

dz′
ln(1− z′)

z′
. (3.C.5)

In the following, we only need dilogarithm function whose argument is real. We can then
define the Roger’s dilogarithm function

L(z) ≡ Li2(z) +
1

2
ln |z| ln(1− z)

= −1

2

∫
z

0

dz′
(

ln(1− z′)
z′

+
ln(z′)

1− z′

)
, 0 ≤ z ≤ 1. (3.C.6)

This function has the following properties

1. L′(z) = −1
2

(
ln(1−z)

z
+ ln(z)

1−z

)
;

2. L(0) = 0;

3. L(z) + L(1− z) = π2

6
;
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Figure 3.C.1: Geodesics that are connecting boundaries of a hyperbolic pair of pants.

4. The pentagon relation: the function (3.C.6) satisfies the following fundamental iden-
tity:

L(x)+L(y)+L(1−xy)+L
(

1− x
1− xy

)
+L

(
1− y

1− xy

)
=
π2

2
, x, y ∈ [0, 1], xy 6= 1.

(3.C.7)

We also need the so-called Lasso function La(x, y)

La(x, y) ≡ L(y) + L
(

1− y
1− xy

)
− L

(
1− x
1− xy

)
, x, y ∈ [0, 1] . (3.C.8)

Equipped with these definitions, we now move on to describe the terms in (3.C.3).

Properly-Embedded Geometric Pairs of Pants

The first term of (3.C.3) is a summation over all properly-embedded pairs of pants. The
function f is a function of some geodesics on each of these pairs of pants. We shall discuss
these geodesics and the explicit form of the function f separately:

• Length Invariants of a Properly-Embedded Pair of Pants

Let R0,3 be a pair of pants, and let βi, i = 1, 2, 3 denote its boundary. There are two
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types of orthogonal geodesic between the boundaries: the orthogonal geodesic from a
boundary to another boundary and the orthogonal geodesic from a boundary to itself.
These orthogonal geodesics are unique. We denote the orthogonal geodesic from
the boundary βi to boundary βj by Gij, its hyperbolic length by lGi , the orthogonal

geodesic from the boundary βi to itself by G̃i, and its hyperbolic length by lG̃i . These
geodesics for a hyperbolic pair of pants is shown in figure (3.C.1). We also denote the
hyperbolic length of the boundary βi by `βi . We can relate the length of the types of
orthogonal geodesics to the lengths of the boundaries by the following two identities:

cosh(lGij) =
cosh

(
`βi
2

)
+ cosh

(
`βj
2

)
cosh

(
`βk
2

)
sinh

(
`βj
2

)
sinh

(
`βk
2

) , {i, j, k} = {1, 2, 3},

cosh(lG̃i) = sinh

(
`βj
2

)
sinh

(
lGk
2

)
, {i, j, k} = {1, 2, 3}. (3.C.9)

Using these two identities and cosh2(x) − sinh2(x) = 1, one can express all lG̃i and
lGij in terms of `β1 , `β2 , and `β3 , the lengths of boundary components.

• The Covering Maps f0, f1, and f2

The function f0, f1, and f2 in (3.C.3) depends on the lengths of three types of
geodesics on R0,3: orthogonal geodesics from one boundary to the other, orthogonal
geodesics from one boundary to itself, and lengths of boundary components. Using
(3.C.9), these functions can be written entirely in terms of `β1 , `β2 , and `β3 , lengths
of boundary components of R0,3. We can now express the functions. Let’s define the
following two parameters:

xi ≡ e−`βi ,

yk ≡ tanh2

(
lGi
2

)
, k 6= i, j. (3.C.10)

There is a useful relation between them:

xi(1− yj)2

(1− xi)2yj
=

1

cosh2
(
l
G̃k

2

) . (3.C.11)
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Then functions appearing in (3.C.3) can be written as

f0(P ) ≡ 4π2 − 8

{
3∑
i=1

[
L
(

1

cosh2(lGi/2)

)
+ L

(
1

cosh2(lG̃i/2)

)]
+
∑
i 6=j

La (`βi , lGi)

}

= 4
∑
i 6=j

[
2L
(

1− xi
1− xiyi

)
− 2L

(
1− yj

1− xiyi

)
− L (yj)− L

(
xi(1− yj)2

(1− xi)2yj

)]
.

(3.C.12)

If ∂P ∪ ∂R = L1, where L1 is one of the boundaries of R, then

f1(P ) ≡ f0(P ) + 8

L
 1

cosh2
(
l
G̃1

2

)
+ La(`β2 , lG3) + La(`β3 , lG2)

 . (3.C.13)

And finally if ∂P ∪ ∂R = L1 ∪ L2, where L1 and L2 are two of the boundaries of R,
then

f2(P ) ≡ f0(P ) + 8

L
 1

cosh2
(
l
G̃1

2

)
+ L

 1

cosh2
(
l
G̃1

2

)
+ L

 1

cosh2
(
lG3

2

)


+ 8 (La(`β1 , lG3) + La(`β3 , lG1) + La(`β2 , lG3) + La(`β3 , lG2)) . (3.C.14)

Quasi-Embedded Geometric Pairs of Pants

The function f in (3.C.3) is a summation over all quasi-embedded geometric pairs of
pants. Such pants are in one-to-one correspondence with properly-embedded one-bordered
tori because cutting such a tori along any simple closed geodesic which is not parallel to a
boundary component gives a quasi-embedded geometric pair of pants. The function f is a
function of some geodesics on one-bordered tori. We shall discuss these geodesics and the
explicit form of the function f separately:

• Length Invariants of a Quasi-Embedded Geometric Pair of Pants

Let R1,1(L) be a torus with one hole whose boundary has fixed length L. If we cut
this surface along non-boundary parallel simple closed geodesic α, we get a pair of
pants R0,3 in which two of the boundaries have the same length. An example of such
a pair of pants is illustrated in figure 3.C.2. We denote the border of R1,1(L) by
β, and the borders resulting from cutting along α by β±α . On the resulting pair of
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α

β β

α

α

Figure 3.C.2: Cutting along the curve α gives a quasi-embedded geometric pair of pants.
Geodesics orthogonal to boundaries are shown with blue and red line.

pants, we can again define the same orthogonal geodesics to the boundaries, whose
lengths can be written in terms of the lengths of the borders of R0,3. The function
f in (3.C.3) depends on the lengths of three types of geodesics on R0,3: orthogonal
geodesics from one boundary to the other, orthogonal geodesics from one boundary
to itself, and the length of the borders. Using (3.C.9), f can be written entirely in
terms of the lengths of the borders of R0,3. The important point to notice is that the
pair of pants obtained by cutting a one-bordered torus along a curve not homotopic to
the border is not a properly-embedded pair of pants but a quasi-embedded geometric
pair of pants.

• The Covering Map f

Using the definitions of Roger’s dilogarithm function (3.C.6) and the Lasso function
(3.C.8), we have:

f(P ) ≡ 4π2 − 8
∑
α

[
L

(
1

cosh2(lG̃α/2)

)
+ 2La(`α, lGα)

]
, (3.C.15)

where

† `α is the hyperbolic length of the curve α, a non-boundary parallel simple closed
geodesic along which we cut R1,1(L) to get a quasi-embedded pair of pants;

† lGα is the hyperbolic length of the orthogonal geodesics from β±α to β;

† lG̃α is the hyperbolic length of the orthogonal geodesics from β to itself;

Using (3.C.9), lGα and lG̃α can be written entirely in terms of `α and `β, the hyperbolic
length of the borders of R0,3(`α, `α, `β = L), the pair of pants obtained by cutting a
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one-holed tori along a simple closed curve α that is not homotopic to β. Therefore,
everything can be written in terms of the hyperbolic length of the borders of the
relevant pair of pants.

The Luo-Tan Identity for Bordered/Cusped Hyperbolic Surfaces

Equipped with these definitions, we are now in a position to state the Luo-Tan identity for
bordered/cusped hyperbolic surfaces [109]:

Theorem 3.2. Let R be a genus-g hyperbolic Riemann surface with n borders, i.e. 2g+n ≥
3. There exist functions f0, f1, f2, and f , given by (3.C.12), (3.C.13), (3.C.14), and
(3.C.15) respectively, involving the dilogarithm of lengths of simple closed geodesics, such
that ∑

P0

f0(P0) +
∑
P1

f1(P1) +
∑
P2

f2(P2) +
∑
P

f(P ) = 4π2(2g + n− 2), (3.C.16)

where in the first three terms the sum runs over all properly-embedded geometric pairs of
pants which have zero, one, or two shared boundary component with R. The fourth term
is the sum over all quasi-embedded geometric pairs of pants. Furthermore, if the length of
m ≤ n of the borders becomes zero, we get an identity for a genus-g surface with m cusps
and n−m borders. We note that all the functions which appear in (3.C.16) are functions
of only the lengths of boundary components of the associated pairs of pants.

Another way to state this summation is as follows: the first three summations are over
all curves that remove a properly-embedded pairs of pants from R. These curves may or
may not be related through the action of mapping-class group. The second summation is
over all curves that remove a properly-embedded one-bordered tori from R. Again, these
curves may or may not be related through the action of the mapping-class group.

The Luo-Tan Identity for Borderless/Uncusped Hyperbolic Surfaces

The Luo-Tan identity can be used for surfaces without any boundary component (i.e.
without borders or cusps)8. The Luo-Tan identity for such surfaces can be stated as
follows [109]

8A general hyperbolic surface can have borders, cusps, and cone points. For string theory, we only need
to consider borders and cusps. There are hyperbolic identities for surfaces with cone points as well.
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Theorem 3.3. Let R be a genus-g hyperbolic surface, i.e. g ≥ 2. There exist functions f0

and f , given by (3.C.12) and (3.C.15) respectively, involving the dilogarithm of the lengths
of simple closed geodesics, such that∑

P0

f0(P0) +
∑
P

f(P ) = 8π2(g − 1), (3.C.17)

where in the first term the sum runs over all properly-embedded geometric pairs of pants
embedded in R, and the second term is the sum over all quasi-embedded geometric pairs of
pants. We note that all functions appearing in (3.C.17) are functions of only the lengths
of boundary components of the associated pairs of pants.

3.C.3 McShane-Type Identities

As it is explained above, we can obtain hyperbolic identities by choosing a finite-measure
subset of the surface. Different choices would give rise to different identities on the same
surfaces. One can choose one of the boundaries as finite-measure subset and try to prove
identities like (3.C.2). Such a process will give rise to McShane-type identities. Here we
shall explain the basic idea behind these identities.

The McShane Identity for Cusped Surfaces

The first identities of this sort was obtained by McShane for a once-punctured tori [110]:

Theorem 3.4. Let R be any hyperbolic torus with a single cusp. Then, the following identity
holds ∑

γ

1

1 + e`α(R)
=

1

2
, (3.C.18)

where the sum is over all simple closed geodesics α, and `α(R) is the hyperbolic length of
α in R.

The generalization of this identity to all cusped hyperbolic surfaces was obtained by Mc-
Shane himself [111]

Theorem 3.5. Let R be any genus-g hyperbolic surface with n 6= 0 cusps. Then, the
following identity holds: ∑

{α1,α2}

1

1 + exp
(
`α1 (R)+`α2 (R)

2

) =
1

2
, (3.C.19)
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where {α1, α2} are a pair of curves which together with a fixed cusp bound a pair of pants.
We need to consider all cusps in this formula.

To implement Mirzakhani’s integration trick, we need to consider the generalization of this
identity for surfaces which have a mixture of boundary components and cusps. A cusp
is the limit of a border when the length of the border goes to zero. Therefore, the most
general form of the McShane identity is for hyperbolic surfaces with geodesic boundary
components.

The Mirzakhani-McShane Identity for Bordered/Cusped Hyperbolic Surfaces

To introduce The Mirzakhani-McShane Identity, we consider a surface R with boundary
components (b1, · · · , bn) having lengths (L1, · · · , Ln). The basic idea of the proof of The
Mirzakhani-McShane Identity is the analysis of relation (3.C.2). One can base the identity
on an arbitrary boundary component. This means that, one takes R′ = Li for i = 1, · · · , n.
To be specific, we base the identity on the boundary component b1. This means that in
(3.C.2)

σ(R′) = σ(b1) = L1. (3.C.20)

Now we need to consider the sum over σ(Ra)’s in the other side of the identity. The subsets
Ra are taken to be all pairs of pants P that is bounded by two curves γ1 and γ2 and b1.
The relation (3.C.2) takes the following form

L1 =
∑
P

σ(P ). (3.C.21)

To establish the identity, we need to compute σ(P ). We consider a pair of pants with
boundaries β1, β2, and β3 with lengths l1, l2, and l3. Let pβ2± and pβ3± be the point of inter-
section of simple geodesics which start at β1 and spiraling towards β2 and β3. The ± means
two directions of spiraling. We consider the order of the points to be (pβ2+ , p

β3
+ , p

β3
− , p

β2
− ).

These points divide the boundary β1 into four intervals [67]

• Each of the intervals [pβ2+ , p
β3
+ ] and [pβ3− , p

β2
− ] contains a unique point which is the end

point of the unique simple orthogeodesics9 from β1 to itself;

9An othogeodesic to a border is a geodesic which is orthogonal to another border or the border itself.
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• The interval [pβ2− , p
β2
+ ] contains a unique point which is the end-point of the unique

simple orthogeodesic from β1 to β2;

• The interval [pβ3+ , p
β3
− ] contains a unique point which is the end-point of the unique

simple orthogeodesic from β1 to β3;

Assume that β1 ≡ b1, one of the borders of the surface R. One can compute σ(P ) in
(3.C.21). It turns out that one can consider the following two cases [67]

• β2 and β3 are two interior curves on the surface R (i.e. they are not borders of R).
We can consider the following cases

σ(P ) = 2l
[p
β2
+ ,p

β3
+ ]

(R) ≡ D1(lβ1 , lβ2 , lβ3) = D1(L1, l2, l3), (3.C.22)

where l
[p
β2
+ ,p

β3
+ ]

(R) is the hyperbolic length of the interval [pβ2+ , p
β3
+ ] in R, and

D1(x, y, z) ≡ 2 ln

(
e
x
2 + e

y+z
2

e−
x
2 + e

y+z
2

)
. (3.C.23)

• β2 is an interior curve and β3 ≡ bi, one of the borders of R. Then

σ(P ) = 2lβ3⊥β1(R) ≡ D2(lβ1 , lβ2 , lβ3) = D2(L1, Li, l3), (3.C.24)

where lβ3⊥β1(R) is the hyperbolic length of the projection of β3 to β1 in R, and

D2(x, y, z) ≡ x− ln

(
cosh

(
y
2

)
+ cosh

(
x+z

2

)
cosh

(
y
2

)
+ cosh

(
x−z

2

)) . (3.C.25)

We can now state The Mirzakhani-McShane Identity for bordered hyperbolic surfaces
(Theorem 4.2 of [67])

Theorem 3.6. Let R be any genus-g hyperbolic surface with n 6= 0 geodesic boundary
components {b1, · · · , bn}. For such a surface, the following identity holds

∑
{α1,α2}∈F1

D1 (L1, `α1(R), `α2(R)) +
n∑
i=2

∑
γ∈F1,i

D2 (L1, Li, `γ(R)) = L1, (3.C.26)
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where Fi is the set of isotopy class of all pair of curves {α1, α2} that together with the
boundary component bi bound a pair of pants, and Fij is the set of isotopy class of all
curves γ that together with the boundary components bi and bj bound a pair of pants.

A special case of (3.C.26) is the case that the length of one of the borders goes to zero, i.e.
we have a surface with a single cusp and n− 1 borders of lengths (L2, · · · , Ln):

∑
{α1,α2}∈F1

1

1 + exp
(
`α1 (R)+`α2 (R)

2

)+
1

2

n∑
i=2

∑
γ∈F1,i

1

1 + exp
(
`γ(R)+Li

2

)+
1

1 + exp
(
`γ(R)−Li

2

) =
1

2
.

(3.C.27)

A further restriction is the case that all of the boundary components have zero length, i.e.
we have a surface with n cusps. Sending (L2, · · · , Ln) −→ (0, · · · , 0) in (3.C.27), we get

∑
{α1,α2}∈F1

1

1 + e
`α1 (R)+`α2 (R)

2

+
n∑
i=2

∑
γ∈F1,i

1

1 + e
`γ (R)

2

=
1

2
. (3.C.28)

This is the Mcshane identity for hyperbolic surfaces with cusps which we have stated in
(3.C.19).

The McShane Identity for Genus Two Hyperbolic Surfaces

In the case of genus-two surfaces, there exist simpler identities. Here we mention one
of such identities due to McShane [135]. To state the identity, we need to define the
notion of a hyperelliptic involution. A hyperelliptic involution of a genus-g surface is a
conformal automorphism of order two10 which has exactly 2g + 2 fixed points. If such an
automorphism exists, it is unique [136]. A surface which has such an automorphism is
called a hyperelliptic surface. If R is a genus-2 hyperbolic surface, it is known that it has
a hyperelliptic involution J which admits six fixed points called Weierstrass points [136].
Therefore, any genus-2 surface is hyperelliptic. There are two facts:

• Every non-separating simple closed geodesic (i.e. a simple closed geodesics that does
not separate R into disconnected pieces) passes through exactly two of Weierstrass
points;

10The order of an authormoshim J : R −→ R of a surface R is the smallest positive number n such that
Jn = I, where I is the identity map.
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• Every separating simple closed geodesic separates R into two one-holed torus each
of which contains exactly three of the Weierstrass points;

If p is a Weierstrass point of R, the Weierstrass class of p is the set of all simple closed
geodesics that pass through p. The dual Weierstrass class of p, denoted by Wp, is the
collection of pairs (α, β) in R−{p}, where α is a non-separating simple closed geodesics, β
is a separating simple closed geodesics, α and β are disjoint, and α and p are in the same
component of R− β. One can state the following result [135]

Theorem 3.7. Let R be a genus-2 borderless hyperbolic surface, and Wp be a fixed dual
Weierstrass class. For such a surface, the following identity holds

∑
(α,β)∈Wp

tanh−1

 2 cosh
(
`α
2
− `β

4

)
sinh(`α) + sinh

(
`β
2

)
 =

π

2
. (3.C.29)

This completes our discussion of identities on hyperbolic surfaces.

3.D The Vertical Integration Procedure

In this section, we describe a method to deal with spurious singularities arising in the
integrands of superstring theories. This method is first suggested in [20] and then further
elaborated in [25].

3.D.1 Spurious Singularities

A typical integrand of superstring theories has the following schematic form

Ωd ≡
〈
R|K(p) ∧Bd−p|Φ

〉
, (3.D.1)

where Φ is a state in the tensor product of Hilbert space of external states, and d ≡
6g − 6 + 2nNS + 2nR. There are however some complications due to the presence of the
PCOs. There is no global choice for locations of PCOs on a surface. The reason is that the
integration over the odd coordinates of the supermoduli space requires a gauge choice for
the gravitino field. However, there is no global gauge choice. Hence, we have to integrate
over the odd coordinates of the supermoduli space locally, by a local choice of gauge.
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This procedure introduces PCOs [77]. From the point of view of the moduli space, the
distribution of the PCOs is local. Therefore, a complete prescription for the computation
of scattering amplitudes in superstring theory in the picture-changing formalism involves
a procedure for gluing local description of PCOs distributions. One the other hand, as
we move in the moduli space, the locations of PCOs, which are dependent on moduli
parameters, change. Regarding this, three phenomenon can happen as we move in the
moduli space

• two PCOs collide

As we explain bellow, the distribution of PCOs on a surface, is a function of the
moduli parameters. If we denote coordinates of the moduli space by m, and the
moduli-dependence of two PCOs X(za) and X(zb) by za = fa(m) and zb = fb(m),
these PCOs collide whenever fa(m)−fb(m) = 0. The result is an spurious singularity
in the superstring integrand.

• a PCO collides with an external vertex operator

Locations of marked points are moduli parameters of the surface. A PCO can collide
with an external marked point as we move in the moduli space. The result is again
an spurious singularity in the superstring integrand.

• genuine singularities

The PCO formalism forces us to consider the bosonization of the (β, γ) ghost system.
After bosonization, the equivalent system can be described by the set of fields (η, ξ, φ).
It turns out that the correlation of these fields can be written in terms of the Riemann
theta function and prime forms [37]〈

n+1∏
i=1

ξ(xi)
n∏
j=1

η(yi)
m∏
k=1

eqkφ(zk)

〉
α,β

(3.D.2)

=

n∏
j=1

Θ[αβ ](−~yj +
∑
~x−

∑
~y +

∑
q~z − 2~∆)∏n+1

j=1 Θ[αβ ](−~xj +
∑
~x−

∑
~y +

∑
q~z − 2~∆)

∏
i1<i2

E(xi1 , xi2)
∏

j1<j2
E(yj1 , yj2)∏

i<j E(xi, yj)
∏

k<lE(zk, zl)qkql
∏

k σ(zk)2qk
,

(3.D.3)

where
m∑
k=1

qk = 2g− 2. (3.D.4)
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Θ[αβ ] is the theta function with characteristic (α, β) for genus-g Riemann surfaces.
The characteristic (α, β) corresponds to a specific choice of spin structure, E(x, y)
is the prime form and σ(z) is a g

2
differential representing the conformal anomaly

of the ghost system.
∑
~x,
∑
~y and

∑
q~z denote respectively

∑n+1
i=1 ~xi,

∑n
j=1 ~yj and∑m

k=1 qk~zk with

xi ≡

∫
x

P0

ωi, (3.D.5)

where ωi are the Abelian differentials and P0 is an arbitrary point on the surface.
~∆ is the Riemann class vector characterizing the divisor of the zeroes of the theta
function. The components of the Riemann class vector are given by

∆a ≡ iπ +
τa
2
− 1

2πi

∑
b 6=a

∫
Ab

ωb(P )

∫
P

P0

ωa, (3.D.6)

where τ denotes the period matrix and Ab denote the bth A-cycle on the surface.
The dependence of the Riemann class on P0 will cancel the dependence of ~x on P0

to make the theta function independent of P0. There are two kinds of singularities
that appear in these correlation functions

1. The prime form E(x, y) has a simple zero at x = y. Therefore, the prime forms
appearing in the denominator introduces poles in correlation functions. These
poles corresponds to the collision of the operators.

2. It is known that on genus-g Riemann surface the Theta function vanishes.
Therefore, the factor

∏n+1
j=1 Θ[αβ ](−~xj +

∑
~x −

∑
~y +

∑
q~z − 2~∆) in the de-

nominator also introduces poles in correlation functions.

Using the identifications (2.2.12) and operator product expansions of η, ξ fields, it is
possible to see that this denominator factor becomes independent of the locations of
βs and γs [137, 138]. As a result, the poles associated with theta functions do note
depend on the locations of insertion of βs and γs. Note that vertex operators and
the BRST charge are constructed using the β and γ fields, but the picture changing
operator contains ∂ξ, η and eqφ factors that can not be expressed as polynomials of
β and γ fields. This suggest that the picture changing operators are the source of
poles in the correlation function that corresponds to the vanishing of Theta functions
appearing in the denominator. Also the locations of these poles are functions of
the locations of PCOs in the correlation function. These quantities appear in the
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denominator of the resulting expression. Therefore, if these expressions vanish, we
have a singularity in the integrand. The singularities coming from the vanishing of the
prime forms are physical singularities that can be avoided. However, the singularities
that coming from the vanishing of the Riemann theta function is a genuine singularity
which does not have any physical origin.

These singularities are collectively known as spurious singularities. In all these cases, the
spurious singularity specifies a complex codimension one locus on the Riemann surface.
The Riemann surface has complex dimension one. Therefore, the locations on the Riemann
surface which introduce spurious singularity into the integrand is a finite set of points. If
we choose a point in P̃g;nNS,nR

, we have to remove these points from each fibers of P̃g;nNS,nR

in such a way that spurious singularities can be avoided. By considering what we have
said so far, the correct prescription for the computation of scattering amplitudes must
be accompanied by a prescription for gluing local data about the distribution of PCOs
which avoid spurious singularities. The data about the locations of PCOs is contained in
P̃g;nNS,nR

. A point in this space contains three pieces of information:

1. A genus-g Riemann surface with nNS + nR marked point. This is a point m ∈
Mg;nNS,nR

. Let us denote this Riemann surface by R(m);

2. A choice of nNS + nR local coordinates around the marked points of R(m);

3. A choice of points of R(m) corresponding to the locations of insertion of K PCOs.
We have to remove the bad points from the Riemann surface on which we should
not insert any PCO to avoid spurious singularities. The space obtained by removing
the bad points from each fibers of P̃g;nNS,nR

is denoted by P̃•g;nNS,nR
. We note that

P̃•g;nNS,nR
is not a smooth fiber bundle over Mg;nNS,nR

since fibers are not smooth due
to the elimination of bad points.

In the following, we shall explain a systematic procedure called The Vertical Integration

for finding a spurious-pole-free integration cycle.

3.D.2 A Warm-Up Example: A Single PCO

To see the general construction of the integration cycle that avoids spurious singularities,
let us consider the case that there is only one PCO. For simplicity, we further assume
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pijk
Ti

Tj

Tk

Bij Bjk

Bki

Figure 3.D.1: The triangulation of the two-dimensional moduli space.

that we have a complex-one-dimensional moduli space. We denote a local coordinate in
P̃•g;nNS,nR

by (m, a). Hence, the expression (3.D.1) takes the following form:

Ω = 〈R| (X (a)− ∂aξ(a)da) ∧B|Φ〉 , (3.D.7)

Ω is defined on a section s : Mg;nNS,nR
−→ P̃•g;nNS,nR

, the scattering amplitude Ag;nNS,nR
is

defined by the pull-back of this form to Mg;nNS,nR
under s

Ag;nNS,nR
=

∫
Mg;nNS,nR

s∗Ω =

∫
Mg;nNS,nR

Ω(m, s(m)). (3.D.8)

In which s(m) = a. In general, there is no global section. The general idea for dealing
with spurious singularities is to find a fine tiling of Mg;nNS,nR

and define a local section
for each of the tiles in the tiling. In the simple case we are considering, the fine tiling
is given by a triangulation of the moduli space. As is clear from the figure 3.D.1, there
are three contributions to the scattering from different regions of the triangulated moduli
space: the triangles Tis, common boundaries of the triangles Bijs and the common vertex
of the triangles pijks. Hence, we need four pieces of information:

1) A triangulation of the moduli space. We denote a triangulation by T ≡
⋃# of triangles
i=1 Ti,

in which Tis are triangles of the triangulation;

2) A set of local sections of P̃•g;nNS,nR
defined on the triangles. The local section of

P̃•g;nNS,nR
defined on Ta is given by the following map

sa : Ta −→ P̃•g;nNS,nR
, a = 1, · · · ,# of triangles. (3.D.9)
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These sections avoid spurious singularities because it is a section of P̃•g;nNS,nR
. The

contribution from Ta to scattering amplitudes is given by

A(a)
g;nNS,nR

≡

∫
Ta

s∗aΩ =

∫
Ta

Ω(m, sa(m)), a = 1, · · · ,# of triangles. (3.D.10)

3) In general, the contributions from the triangle, Ta and Tb, which have common bound-
ary Bab, does not agree on Bab. The reason is clear: local sections sa and sb do not
agree on Bab. Therefore, we need to consider appropriate correction factor from
Bab to the scattering amplitude. We denote correction factors from various common
boundaries of the triangles by A(ab)

g;nNS,nR , a, b = 1, · · · ,# of triangles.

4) In general the contribution from the boundaries Bab, Bbc and Bca do not agree on
the intersection of these boundaries because the corresponding sections do not agree
there. Since the moduli space is 2-dimensional, Bab∩Bbc∩Bca is a point pabc. We need
to consider an appropriate correction factor from pabc to scattering amplitudes. We
denote the correction factors from various common points of various boundaries of
triangles by A(abc)

g;nNS,nR , a, b, c = 1, · · · ,# of triangles. In general, there can be more
that three triangles that share the same vertex. We denote the correction factors from
the common vertex of n triangles by A(a1···an)

g;nNS,nR , a1, · · · , an = 1, · · · ,# of triangles.

Considering all these contributions, scattering amplitudes are given by

Ag;nNS,nR
=

# of triangles∑
a=1

A(a)
g;nNS,nR

± 1

2!

# of triangles∑
a1,a2=1
a1 6=a2

A(a1a2)
g;nNS,nR

±
∑
n≥3

1

n!

# of triangles∑
a1,···an=1
a1 6=···6=an

A(a1···an)
g;nNS,nR

,

(3.D.11)

in which A(a)
g;nNS,nR is given by (3.D.10). The ± sign is fixed by specifying the orientations

of the Bab’s. To find the full amplitude Ag,nNS,nR
, we need to find suitable expressions for

A(a1a2)
g;nNS,nR and all A(a1,··· ,an)

g;nNS,nR for n ≥ 3. The determination of these expressions is done by
the method of vertical integration. We explore each piece separately.

• Determining A(a1a2)
g;nNS,nR

The expression for A(a1a2)
g;nNS,nR can be obtained by choosing a vertical segment Va1a2

over Ba1a2 . To construct this segment, we choose a point m ∈ Ba1a2 and a curve

Pa1a2(m, v) that connects sa1(m) and sa2(m) in R(m) ∈ P̃•g;nNS,nR
. The parameter
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m∗ ∈ Bab

sa(m
∗) sb(m

∗)
sa(m) sb(m)

Pab(m, v)

Mg;nNS,nR

Figure 3.D.2: The vertical segment for a two dimensional moduli space. sa(m) and sb(m) are
sections over Ta and Tb. The definition of a vertical segment involves a choice of the curve
Pab(m, v) in R(m∗) that connects sections sa(m

∗) and sb(m
∗) over m∗ ∈ Bab. For a fixed

m∗ ∈ Bab, as the parameter v changes over the interval [0, 1], the curve connects the two sections
sa(m

∗) and sb(m
∗) over m∗.

v ∈ [0, 1] labels a position along the curve

Pa1a2(m, v) : [0, 1] −→ P̃•g;nNS,nR
. (3.D.12)

The vertical segment can be parametrized as follows

Va1a2 ≡ {(m, v) | m ∈ Ba1a2 , v ∈ [0, 1]} . (3.D.13)

To get the correction factor from the boundary Ba1a2 , Ω should be integrated over
the path Pa1a2(m, v) that connects the sections sa1(m) and sa2(m) over the Ba1a2

instead of the sections themselves. This is illustrated in figure 3.D.2. A point on
Pa1a2(m, v) is given by a value of the parameter v. Therefore, the form is dependent
on (m, v). From (3.D.7), we can first integrate over v:

A(ab)
g;nNS,nR

=

∫
Vab

Ω(m, v) =

∫
m∈Bab

∫
v∈[0,1]

〈R| (X (m, v)− ∂vξ(m, v)dv) ∧B|Φ〉
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=

∫
m∈Bab

〈R|[ξ(sa(m))− ξ(sb(m))] ∧B|Φ〉︸ ︷︷ ︸
a d− 1 form

. (3.D.14)

• Determining A(a1···an)
g;nNS,nR

for n ≥ 3

Let’s consider the simplest case, namely n = 3. The contribution A(abc)
g;nNS,nR is present

only if the vertical segments Vab over Bab, Vbc over Bbc and Vca over Bca do not
match over pabc. However, the formula (3.D.14) is independent of the choice of path
Pab(m, v) and hence the choice of vertical segment. Therefore, we can always choose
the curves Pab(m, v), Pbc(m, v) and Pca(m, v) such that vertical segments Vab over
Bab, Vbc over Bbc and Vca over Bca match over the triple intersection point pabc.
Therefore, there is no contribution from pabc. Similarly, all A(a1···an)

g;nNS,nR can make to
vanish for n ≥ 4 [25].

Putting everything together, we conclude that the final expression for a scattering process
involving nNS external NS states and nR R external states which has a (real) two-dimensional
moduli space and needs only one PCO insertion is given by:

Ag;nNS,nR
=

# of triangles∑
a=1

A(a)
g;nNS,nR

± 1

2!

# of triangles∑
a,b=1
a6=b

A(ab)
g;nNS,nR

, (3.D.15)

where A(a)
g;nNS,nR and A(ab)

g;nNS,nR are given by (3.D.10) and (3.D.14), respectively. Once, we
fixed the orientations of the Babs, the ± sign in (3.D.15) will be fixed and we get a unique
answer for the final amplitude.

This procedure is difficult to generalize to the higher-dimensional moduli spaces. The two
main difficulties are

1. A fine tiling of the moduli space requires an appropriate notion of triangulation, as
in the two dimensional case. The analog of a triangle for the higher-dimensional
case is the notion of simplex. However, simplexes can meet on higher-dimensional
subspaces of the moduli space. It turns out that the contribution for these common
subspaces can not be made to vanish, unlike the case of two-dimensional moduli
space. Therefore, we need to include the corrections from these subspaces as well
[25].

2. If we want to specify a path between sections, say sections sa and sb, over a subspace
C of the moduli space that two or more triangles meet, we have to move one PCO at
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a time from sa to sb over a specified path. Therefore, there would be an ambiguity
from the order of moving of PCOs from sa to sb over C. This implies that the process
of integration is dependent on the choice of vertical segment over C because different
order of moving of PCOs gives another vertical segment. However, there should not
be an ambiguity in the definition of amplitudes.

In the next section, we explain a systematic procedure which resolves these issues.

3.D.3 The General Vertical Integration Procedure

The procedure described above for the case of one PCO can be suitably generalized for the
higher-dimensional moduli spaces with a systematic way to fill the gaps for all subspaces
on which tiles of the tiling of the moduli space meet. The fiber of P̃g;nNS,nR

over the point
m is

Ξ(m) ≡ R(m)× · · · × R(m)︸ ︷︷ ︸
K factors

. (3.D.16)

We denote local coordinates by

(m; a1, · · · , aK) ∈Mg;nNS,nR
× Ξ(m). (3.D.17)

In which m ∈ Mg;nNS,nR
and ais denote a choice of the locations of K PCOs in the ith

factor of Ξ(m) in (3.D.16)

ai ≡ (z1,i, · · · , zK,i) , z1,i, · · · , zK,i ∈ R(m). (3.D.18)

A local coordinate in P̃•g;nNS,nR
is obtained by removing bad points from each fibers of

P̃g;nNS,nR
to avoid spurious singularities. If we denote the Riemann surface obtained by

removing the bad points by R•(m), we can define

Ξ•(m) ≡ R•(m)× · · · × R•(m)︸ ︷︷ ︸
K factors

. (3.D.19)

Therefore, a set of local coordinate on P̃•g;nNS,nR
is given by

(m; a•1, · · · , a•K) ∈Mg;nNS,nR
× Ξ•(m), (3.D.20)
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In which m ∈ Mg;nNS,nR
and a•i s denote a choice of the locations of K PCOs in the ith

factor of Ξ•(m) in (3.D.19) that avoids spurious singularities. It is given by

a•i ≡ (z1,i, · · · , zK,i) , z1,i, · · · , zK,i ∈ R•(m). (3.D.21)

As we noted above P̃•g;nNS,nR
is not a fiber bundle over Mg;nNS,nR

. Therefore, the projection

π : P̃•g;nNS,nR
−→Mg;nNS,nR

can not give rise to a global section of P̃•g;nNS,nR
. However, we

do not need a global section. We first tile the moduli space by appropriate tiles and then
define local sections for each of these tiles. In general, the tiles can meet on subspaces
of codimension 1 ≤ k ≤ d11. A systematic procedure for computing string amplitudes
must give a local section for each tile and also correction factors that fill the gaps between
sections over all codimension 1 ≤ k ≤ d subspaces, on which the tiles can meet. Therefore,
the first task is to specify an appropriate geometric notion of the tiles we are going to use
for tiling of the moduli space.

The Notion of Dual Triangulation

An appropriate tiling of moduli spaces should provide a proper control over the subspaces
on which two or more tiles of the tiling can meet. By definition, a dual triangulation Υ of an
n-dimensional manifold is given by gluing together the n-dimensional polyhedra along their
boundary faces. The faces of an n-dimensional polyhedra have codimensions 1 ≤ k ≤ n.
The gluing should be in such a way that every codimension-k face of a polyhedra in Υ
is contained in exactly k + 1 polyhedra in Υ. The later property of a dual triangulation
gives better control over the number of polyhedra which have a common codimension-k
face. Therefore, it would be easier to find the correction factors from these faces. Hence,
we assume that we have a dual triangulation Υ of the moduli space. A typical example of
dual triangulation for the two-dimensional moduli spaces is illustrated in figure 3.D.3.

We denote by M
α0,··· ,αk
k , a codimension-k face with 0 ≤ k ≤ d of a dual triangulation Υ of

Mg;nNS,nR
which is shared by k+1 codimension-zero faces Mα0

0 , · · · ,M
αk
0 , i.e. the polyhedra

of the dual triangulation. If Mg;nNS,nR
has an orientation, it induces an orientation for each

polyhedron. The orientation on each codimension-k face M
α0,··· ,αk
k can be taken to be:

∂Mα0,··· ,αk
k = −

∑
αk+1

αk+1 6=α0
···

αk+1 6=αk

M
α0,··· ,αk,αk+1

k+1 . (3.D.22)

11Once we introduced an appropriate notion of tiling, we mention an improved upper bound.
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Figure 3.D.3: The dual triangulation of the two-dimensional moduli space. As it is clear, each
codimension-one face (i.e. an edge) is shared by two polyhedra and each codimension-two face
(i.e. a vertex) is shared by three polyhedra. This is in accordance with the rule that in a dual
triangulation codimension-k faces are contained in k + 1 polyhedra.

Under this choice, it is clear that the orientation changes sign under αi ←→ αj for any
pair (i, j). We also consider the sections defined on the codimension-zero faces:

si : Mαi
0 −→ P̃g;nNS,nR

, i = 0, · · · ,# of polyhedra,

si(m) ≡ (m; ai) = (m; z1,i, · · · , zK,i), m ∈Mαi
0 . (3.D.23)

Each of these sections determine a configuration of PCOs in Ξ.

A general scattering amplitude in superstring theory is given by an integration over the
moduli space. Therefore, if we tile the moduli space by dual triangulation, the scattering
amplitude is given by an appropriate sum of the contributions from codimension-k faces
with 0 ≤ k ≤ d. If we denote the contribution from the codimension-k face M

α0,··· ,αk
k by

Aα0,··· ,αk
k , the full scattering amplitude is given by

Ag;nNS,nR
=

d∑
k=0

∑
{α0,··· ,αk}

(±)Aα0,··· ,αk
k . (3.D.24)

The factor ± determines the sign of the contribution from codimension-k faces. We will
fix this factor later. To find the contributions from codimension k faces M

α0,··· ,αk
k which is

shared by co-dimension zero faces Mα0
0 , · · · ,M

αk
0 , we have to find a condition on sections

sis. Hence, we assume that a0, · · · , ak stands for (k + 1) possible PCOs arrangements in

130



R(m). Each ai stands for a K-tuple (z1,i, · · · , zK,i) with zj,i ∈ R(m), j = 1, · · · , K. Any
of coordinates zi in a K-tuple (z1, · · · , zK), which specifies a location for one of the PCOs,
can take values in one of the zj,i, j = 1, · · · , K, i = 0, · · · , k. Therefore there are (k+ 1)K

possible PCOs arrangement. The condition on sections si is that they must avoid spurious
singularities for m ∈M

α0,··· ,αk
k , k = 0, · · · , d. Using (3.D.23)12

si : Mαi
0 −→ P̃•g;nNS,nR

, i = 0, · · · ,# of polyhedra,

si(m) ≡ (m; ai) = (m; z1,i, · · · , zK,i) ∈M
α0,··· ,αk
k × Ξ•. (3.D.25)

In other words, we have the following local expression

(m; s0(m), · · · , sk(m)) ∈M
α0,··· ,αk
k × P̃•g;nNS,nR

× · · · × P̃•g;nNS,nR︸ ︷︷ ︸
k factors

. (3.D.26)

It can be shown that for sufficiently fine dual triangulation such a choice of sections exists
[25]. The general prescription for the vertical integration consists of finding contributions
from all codimension-k faces M

α0,··· ,αk
k to scattering amplitudes. We consider the cases

k = 0 and k 6= 0 separately.

Contributions from Codimension-Zero Faces Mα0
0

Consider a dual triangulation of moduli space with codimension-zero polyhedra {Mα0
0 }.

The contribution of the polyhedron Mα0
0 is given by

Aα0
0 =

∫
M
α0
0

s∗0Ω =

∫
M
α0
0

Ω(m, s0(m)). (3.D.27)

Therefore, we pull-back the form Ω to Mα0
0 using s0 and then integrate it over Mα0

0 . The
section s0 satisfies the condition (3.D.26) and as such they avoid spurious singularities by
construction.

Contributions from Codimension k 6= 0 Faces M
α0,··· ,αk
k

To find the contribution from all codimension k 6= 0 faces Mα0,··· ,αk
k , we need to explain the

basic logic behind the vertical integration. The vertical integration states that we can avoid

12By abuse of notation, we use si for sections of P̃•g;nNS,nR
.
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spurious poles by finding a spurious-pole free integration cycle. To find such an integration
cycle in P̃•g;nNS,nR

, for a given codimension-k 6= 0 face M
α0,··· ,αk
k , we have to find a k-

dimensional subspace, i.e. a path, Pα0,··· ,αk between PCOs locations in Mα0
0 , · · · ,M

αk
0 that

share M
α0,··· ,αk
k . PCOs locations are defined in Ξ(m), as described in (3.D.16). Therefore,

Pα0,··· ,αk is a path in Ξ(m). The vertical integration for a codimension k 6= 0 face M
α0,··· ,αk
k

involves the following steps

1. Finding an appropriate path Pα0,··· ,αk in Ξ(m) that connects the locations of PCOs
in Mα0

0 , · · · ,M
αk
0 over a point m ∈M

α0,··· ,αk
k , k 6= 0;

2. Finding the form that needs to be integrated over codimension k 6= 0 faces M
α0,··· ,αk
k

by integrating the form Ω over the path Pα0,··· ,αk . The path is k-dimensional and we
vary the locations of PCOs on it. On the other hand, the integration only depends on
endpoints of the path. Therefore, we get an (n− k)-form. We denote it by Ωα0,··· ,αk

n−k .

3. Integrating Ωα0,··· ,αk
n−k over M

α0,··· ,αk
k to find Aα0,··· ,αk

k in (3.D.24).

Therefore, the first task is to find an appropriate way to construct a path Pα0,··· ,αk inside
Ξ(m) for m ∈ M

α0,··· ,αk
k . The basic idea is that for K PCOs and a codimension k 6= 0

face M
α0,··· ,αk
k , we choose a path on a lattice in RK that avoids spurious singularities and

then map this back into a path in Ξ(m) for m ∈ M
α0,··· ,αk
k . We shall describe the way to

construct these paths.

Consider the K-dimensional Euclidean space RK . Given a codimension k 6= 0 face Mα0,··· ,αk
k

which is shared by k codimension-zero faces Mα0
0 , · · · ,M

αk
0 , the (k + 1)K possible PCOs

arrangements which is determined by the sections s0, · · · , sk are points on a lattice in Rk.
The coordinate of this point is given by the index of sections si, i.e. the coordinates of
these point is a K-tuple (i1, · · · , iK) with the rule that if ij is determined by the section
sl, then ij = l.

As an example, consider codimension-one faces M
α0,α1

1 with 2 PCOs. There are 22 PCOs
arrangements. It is a codimension-1 face, therefore in a dual triangulation, it is shared with
two codimension-zero faces Mα0

0 and Mα1
0 . Regarding the condition (3.D.26), appropriate

sections are defined as follows

si : Mαi
0 −→ P̃•g;nNS,nR

, i = 0, 1,

si(m) = (m; z1,i, z2,i), m ∈M
α0,α1

1 . (3.D.28)

The possible PCOs arrangement is given by a 2-tuple (i1, i2) in R2. Possible paths are
illustrated in figure 3.D.4. We assign ij = 0, if it is determined by s0 and ij = 1, if it is
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i2

i1(0,0) (1,0)

(0,1) (1,1)

Figure 3.D.4: The Euclidean space R2 corresponds to a codimension-1 face M
α0,α1
1 with two

PCOs. The red path and the green path are the possible one-dimensional paths for moving
PCOs for a point m ∈M

α0,α1
1 .

determined by s1. The possible arrangements of PCOs are thus given by the four 2-tuples,
1) (0, 0), the locations of both PCOs are determined by s0, 2) (0, 1), the location of the
first PCO is determined by s0 and the location of the second one is determined by s1, 3)
(1, 0), the location the first PCO is detemined by s1, and the location of the second one is
determined by s0, and finally 4) (1, 1), the locations of both PCOs are determined by s1.

Returning to the general case, we can determine (k− 1)-dimensional subspaces Qα0,··· ,αk−1

of RK that that are paths for the moving of PCOs. Each of these (k − 1)-dimensional
subspaces is composed of a union of hypercubes (the multi-dimensional generalization of
a rectangle). Vertices of any of these hypercubes label locations of PCOs by the rule
mentioned above. On each hypercube only k − 1 of coordinates of Rk vary. We choose
a k-dimensional subspace Qα0,··· ,αk of RK whose boundary consists of (k − 1)-dimensional
subspaces Qα0,··· ,αk−1

∂Qα0,··· ,αk = −
k∑
i=0

(−1)k−iQα0,··· ,αi−1,αi+1,··· ,αk . (3.D.29)

Qα0,··· ,αk is chosen to be a union of k-dimensional hypercubes. Vertices of these hypercubes
are given by k-tuples of integers according to the rule mentioned above. Along these
hypercubes only k of the coordinates of RK vary. Qα0,··· ,αk is chosen to be antisymmetric
under αi ←→ αj for any pair (i, j). Once a Qα0,··· ,αk with the above-mentioned properties
was constructed, a k-dimensional subspace Pα0,··· ,αk(m) of Ξ(m) for m ∈M

α0,··· ,αk
k can be
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constructed. Qα0,··· ,αk is the union of k-dimensional hypercubes Hk
a

Qα0,··· ,αk =
⋃
a

Hk
a. (3.D.30)

We thus only need to know how to construct a k-dimensional hypercube-shaped regions
in Ξ(m) corresponding to a k-dimensional hypercube in RK . If we know how to construct
these k-dimensional hypercube-shaped regions in Ξ(m), then Pα0,··· ,αk(m) would be the
union of them. The construction of these k-dimensional hypercube-shaped regions in Ξ(m)

is as follows. One replaces Ξ(m) by its universal cover Ξ̃(m)

Ξ̃(m) ≡ R̃(m)× · · · × R̃(m)︸ ︷︷ ︸
K factors

, (3.D.31)

where R̃(m) is the universal cover of R(m). Each point in R(m) is represented by an

infinite number of points in R̃(m). We choose arbitrary (k + 1)K points in Ξ̃(m) corre-
sponding to (k+ 1)K locations of PCOs in Ξ(m). Given a k-dimensional hypercube Hk in
RK , we define the following map

φ : RK −→ Ξ̃(m)

φ(i1, · · · , iK) = (z1,i1 , · · · , z1,iK )
(3.D.32)

To construct the k-dimensional hypercube-shaped subspace in Ξ̃(m), we consider a p-

dimensional face (with p ≤ k) of Hk
a. We construct the k-dimensional subspace of Ξ̃(m) by

starting from p = 1 up to p = k. Along a p-dimensional face only the coordinates i1, · · · , ip
change and the other k − p coordinates of Hk

a are fixed. We associate a p-dimensional

subspace of Ξ̃(m), along which only zi1 , · · · , zip vary. The boundary of this p-dimensional
subspace is fixed by the choice of the (p − 1)-dimensional subspaces in the previous step,
i.e. when we construct (p − 1)-dimensional subspaces. However, the way coordinates
zi1 , · · · , zip change in the interior of this p-dimensional subspace is completely arbitrary.
We continue this process up to p = k 13. Proceeding in this way, we can construct the
k-dimensional hypercube-shaped subspace of Ξ̃(m) by mapping the whole of Hk

a. If we

call the k-dimensional subspaces of Ξ̃(m) that constructed in this way by H̃k
a, then the

k-dimensional subspace of Ξ̃(m) or its projection in Ξ(m), which we are looking for, is the

13This process is similar to the construction of the image of a triangle in a space by first specifying the
location of the vertices mapping it into the space and then map the edges to the space.
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union of these subspaces

Pα0,··· ,αk ≡
⋃
a

H̃k
a. (3.D.33)

Relation (3.D.29) induces the following relation

∂Pα0,··· ,αk ' −
k∑
i=0

Pα0,··· ,αi−1,αi+1,··· ,αk , (3.D.34)

where'meant that the boundary of Pα0,··· ,αk is a collection of (k−1)-dimensional subspaces
of Ξ(m) whose corner points are exactly the corner points of (k−1)-dimensional subspaces
on the right hand side. This process has to be done for every k 6= 0. Another issue is the
upper bound on k i.e. to which value of k we need to do this process. In general 0 ≤ k ≤ d.
However, we have the relation K ≤ d14. Therefore, the upper bound on k is given by:

k ≤ K. (3.D.35)

Assuming the condition (3.D.26), an integration cycle in P̃g;nNS,nR
which avoids spurious

singularities can be constructed as follows

1. Consider a dual triangulation Υ = {Mαi
0 }, consists of codimension-zero faces (i.e.

polyhedra of the dual triangulation) Mαi
0 , and the corresponding sections {si} defined

by
si : Mαi

0 −→ P̃•g;nNS,nR
. (3.D.36)

These sections give subspaces {Vαi} in P̃•g;nNS,nR
;

2. In general, the sections si and sj do not match on the boundary M
αi,αj
1 of Mαi

0 and
Mαi

0 . We fill this gap by finding a path Pαi,αj fibered over M
αi,αj
1 . This gives a

subspace Vαi,αj in P̃•g;nNS,nR
. Doing this for all the pairs (i, j), we get the collection

of subspaces
{
Vαi,αj

}
;

3. The
{
Pαi,αj

}
are also defined over the codimension-two faces

{
M

αi,αj ,αk
2

}
which form

the boundaries of codimension-one faces
{
M

αi,αj
1

}
. In general, the paths Pαi,αj , Pαj ,αk

and Pαk,αi enclose a non-zero subspace in Ξ(m). Therefore the subspaces Vαi,αj ,Vαj ,αk
and Vαk,αi do not meet on M

αi,αj ,αk
2 . We fill this gap by finding a path Pαi,αj ,αk

14With the picture number we associate to the states in NS sector and R sector, the bound is usually
satisfied.
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fibered over M
αi,αj ,αk
2 . This gives a subspace Vαi,αj ,αk in P̃•g;nNS,nR

. Doing this for all

the triples (i, j, k), we get the collection of subspaces
{
Vαi,αj ,αk

}
4. Similarly, we fill the gap for higher codimension-k faces up to k = K. In the kth

step, we fiber the path Pαi0 ,··· ,αik over the codimension-k face M
αi0 ,··· ,αik
k which deter-

mine the subspace Vαi0 ,··· ,αik of P̃•g;nNS,nR
. Doing this for all (k + 1)-tuple (i0, · · · , ik)

determines the subspaces
{
Vαi0 ,··· ,αik

}
.

Then we can define the integration cycle in P̃•g;nNS,nR
as a formal sum of subspaces {Vα0,··· ,αk}

continuous integration

cycle in P̃•g;nNS,nR

≡
K∑
k=1

⋃
{α0,··· ,αk}

Vα0,··· ,αk . (3.D.37)

Subspaces Vα0,··· ,αk for k ≥ 1 are called vertical segments. Each vertical segment comes with
its own correction factor. Our next task is to obtain the correction factors from a vertical
segment Vα0,··· ,αk for k ≥ 1. The correction factor for a codimension-k face M

α0,··· ,α0

k is
the integration of the form Ω over the vertical segment Vα0,··· ,αk defined over Mα0,··· ,α0

k (i.e.
the information about the arrangement of the PCO’s) and then integrating the result over
M

α0,··· ,α0

k (i.e. the information about the moduli space). However, the integration over
the vertical segment Vα0,··· ,αk is nothing but the integration over k-dimensional subspaces
Pα0,··· ,αk of Ξ(m). The reason is that Vα0,··· ,αk is constructed by fibering Pα0,··· ,αk over
M

α0,··· ,α0

k . Therefore, the contribution from the codimension k 6= 0 face M
α0,··· ,αk
k is given

by

Aα0,··· ,αk
k =

∫
M
α0,··· ,α0
k

∫
Vα0,··· ,αk

Ω =

∫
M
α0,··· ,α0
k

∫
Pα0,··· ,αk

Ω. (3.D.38)

This is the generalization of the result with one PCO which is given by (3.D.14). The
integration over Pα0,··· ,αk is the generalization of integration over the path Pij(m, v) i.e.
the integration over the variable v. To proceed, we use a property of Pα0,··· ,αk . Along
Pα0,··· ,αk , the location of only k PCOs zi1 , · · · , zik change while the locations of remaining
K − k PCOs are fixed. If the initial and final values of the zij , j = 1, · · · , k along Pα0,··· ,αk

are z
(in)
ij

and z
(fi)
ij

respectively, we can define the following d− k form

Ωα0,··· ,αk
d−k ≡

∫
Pα0,··· ,αk

Ω. (3.D.39)
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By a generalization of (3.D.14), we have

Ωα0,··· ,αk
d−k = ±

〈
k∏
j=1

[
ξ
(
z

(fi)
ij

)
− ξ

(
z

(in)
ij

)] K∏
p=1

p6=i1,··· ,ik

(
X (zp)− ∂zpξ (zp) dzp

)
∧B

〉
. (3.D.40)

The ± is fixed by the choice of the orientation of Qα0,··· ,αk defined (3.D.29) which in turn
induces an orientation for Pα0,··· ,αk given in (3.D.34). Therefore, we get the following
contribution from the codimension k 6= 0 face Mα0,··· ,αk to scattering amplitudes

Aα0,··· ,αk
k =

∫
M
α0,··· ,αk
k

∫
Vα0,··· ,αk

Ω =

∫
M
α0,··· ,αk
k

Ωα0,··· ,αk
d−k . (3.D.41)

All sections satisfy the condition (3.D.25) which means that
(
z

(in)
ij

, z
(fi)
ij

)
, j = 1, · · · , k

and zp, p = k + 1, · · · , K take value in a section of P̃•g;nNS,nR
. They thus avoid spurious

singularities by construction.

The Full Amplitude

The full amplitude, associated to a dual triangulation Υ of the moduli space, consists of
the contribution from codimension zero faces Mα0

0 , given in (3.D.27), and the contribution
from codimension k 6= 0 faces M

α0,··· ,αk
k , given in (3.D.41) [25]

Ag;nNS,nR
=

K∑
k=0

(−1)
k(k+1)

2

∑
{α0,··· ,αk}

∫
M
α0,··· ,αk
0

Ωα0,··· ,αk
d−k . (3.D.42)

The above expression can be shown to be [25]

• independent of the choice of vertical segments {Vα0,··· ,αk}.
The factor (−1)

k(k+1)
2 in (3.D.42) comes from the details of the proof of the indepen-

dence from the choice of vertical segments.

• gauge invariant

The gauge invariance means that if all the external states are BRST invariant, and
at least one of them is BRST-trivial, the amplitude vanishes.
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• equivalent to the results from supergeometry formulation

The scattering amplitudes in superstring perturbation theory can naturally be un-
derstood as integral of an appropriate form over a cycle Γ ∈ M̂l × M̂r, in which M̂l

and M̂r parametrize the holomorphic and anti-holomorphic complex structure of the
string worldsheet considered as a super-Riemann surface [79, 80]. It can be shown
that the amplitude obtained this way is equivalent to the result given by (3.D.42).

3.D.4 Vertical Integration and Superstring Amplitudes

The vertical integration is used to avoid spurious singularities in the superstring amplitudes.
On the other hand, we have seen in section 3.3 that the integration over moduli space of
hyperbolic surface involves various term coming from integration over the moduli space
and all moduli spaces associated to surfaces generated by cutting the original surface along
some multicurve. Therefore, we have to implement the vertical integration for each term
in such a decomposition. This can be achieved by finding a fine dual triangulation of the
moduli space. According to the vertical integration prescription, we need to compute the
contribution of all codimension k ≤ K faces. For each k, we can extend the definition of its
integrand by zero to the whole moduli space. In this way, we have a form over the whole
moduli space. We can then proceed as before for the computation of the resulting integral
over the moduli space.

This concludes our discussion of the vertical-integration prescription.
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Chapter 4

Future Directions

In this thesis, we gave a prescription to compute any on-shell or off-shell scattering am-
plitudes in the bosonic-string and superstring theories. It seems difficult to compute these
integrals analytically. However, if the string integrand can be constructed in terms of
Fenchel-Nielsen coordinates, it should be possible to explore the resulting expressions nu-
merically. This would provide a framework for explicit computations in bosonic-string and
superstring theories.

Here, there are some problems which are not yet satisfactorily solved. We conclude by
mentioning some of these problems

• The most interesting direction is to compute Ω in terms of Fenchel-Nielsen coordi-
nates. Some of directions for solving these problems are as follows

1. These correlation functions are known in terms of well-defined objects like theta
functions, prime forms, etc [37]. One can express these objects in terms of
Poincaré series [139]. These Poincaré series are dependent on generators of
the uniformizing Fuchsian group. On the other hand, the generators of any
finitely-generated Fuchsian group can be expressed in terms of Fenchel-Nielsen
coordinates [140]. In this way, one obtain an expression in terms of Fenchel-
Nielsen coordinates that can be integrated to get the desired amplitudes. The
appearance of infinite series makes the resulting expression very convoluted and
it is cumbersome to handle the integration.

2. The gluing of pairs of pants or conformal blocks [141] is another method to get
correlation functions in terms of Fenchel-Nielsen coordinates.
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The basic question is how to do conformal field theory on a hyperbolic surface. In
other words, what are the intrinsic objects similar to theta functions and prime forms
for a hyperbolic surface that can be expressed naturally in terms of Fenchel-Nielsen
coordinates?

Let us give an example. The chiral partition function in superstring theory is given by
a combination of the determinant of the operator ∂̄j, the Cauchy-Riemann operator
acting on the space of (j, 0)-differentials on a genus-g surface. For the gauge-fixed
RNS action, the relevant values of j are j = 0 for the Xµ fields, j = +1

2
for the ψµ

fields, j = −1
2

for the βγ system, and j = −1 for the bc system, i.e.

Zg(m) =
22g∑
s=0

det ∂̄−1(
det ∂̄0

) d
2


(

det ∂̄ 1
2

) d
2

det ∂̄− 1
2


s

, (4.0.1)

where we sum over all spin structures for the contribution of fields having half-integer
spin and m denotes the moduli parameters [37]. The precise question is that how
these determinants can be computed in terms of the Fenchel-Nielsen coordinates.

• As we have explained in appendix 3.D, a class of spurious singularities is characterized
by zeros of theta functions which are specific loci in the moduli space. The vertical
integration is a systematic way to avoid any type of spurious singularities. However,
the actual implementation of this procedure requires the study of zeros of theta
function. Therefore, another question of importance for computation of superstring
amplitudes is as follows: How can we specify the zeros of theta functions in terms of
Fenchel-Nielsen coordinates? This question can be addressed more easily if we can
understand how to do conformal field theory on a hyperbolic surface and construct
the correlation functions in terms of Fenchel-Nielsen coordinates.

• It is known that amplitudes in the two-dimensional topological gravity obey cer-
tain recursion relations [142]. It would be interesting to see whether such recursion
relations exist for amplitudes in the full superstring theories or some limit thereof.
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