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Abstract 

Due to the physical separation of their processing elements and storage units, contemporary digital 

computers are confronted with the thorny memory-wall problem. The strategy of in-memory computing 

has been considered as a promising solution to overcome the von Neumann bottleneck and design high-

performance, energy-efficient computing systems. Moreover, in the post Moore era, post-CMOS 

technologies have received intense interests for possible future digital logic applications beyond the 

CMOS scaling limits. Motivated by these perspectives from system level to device level, this thesis 

proposes two effective processing-in-memory schemes to construct the non-von Neumann systems 

based on nonvolatile resistive random-access memory (RRAM). 

In the first scheme, we present functionally complete stateful logic gates based on a CMOS-compatible 

2-transistor-2-RRAM (2T2R) structure. In this structure, the programmable logic functionality is 

determined by the amplitude of operation voltages, rather than its circuit topology. A reconfigurable 

3T2R chain with programmable interconnects is used to implement complex combinational logic 

circuits. The design has a highly regular and symmetric circuit structure, making it easy for design, 

integration, and fabrication, while the operations are flexible yet clean. Easily integrated as 3-

dimensional (3-D) stacked arrays, two proposed memory architectures not only serve as regular 3-D 

memory arrays but also perform in-memory-computing within the same layer and between the stacked 

layers. The second scheme leverages hybrid logic in the same hardware to design efficient digital 

circuits and systems with low computational complexity. Multiple-bit ripple-carry adder (RCA), 

pipelined RCA, and prefix tree adder are shown as example circuits, using the same regular chain 

structure, to validate the design efficiency. The design principles, computational complexity, and 

performance are discussed and compared to the CMOS technology and other state-of-the-art post-

CMOS implementations. The overall evaluation shows superior performance in speed and area. The 

result of the study could build a technology cell library that can be potentially used as input to a 

technology-mapping algorithm. The proposed hybrid-logic methodology presents prospect of hardware 

acceleration and future beyond-von Neumann in-memory computing architectures. 
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Chapter 1 

Introduction 

1.1 In-Memory Computing 

The ever-increasing artificial intelligent (AI) applications, including image recognition, speech 

understanding, robot intelligence, and data analytics, demand high-performance computation and 

memory resources. To fuel the development of these applications, hardware-friendly algorithms [1], 

domain specific architecture [2] as well as post-CMOS emerging technologies [3] are under extensive 

exploration. Researchers and engineers are attempting to address the challenges of hardware 

acceleration from many aspects in order to design novel, efficient digital systems [4-5]. Examples are 

solving the computing challenges [6], dealing with the memory challenges [7], and designing novel 

architectures with emerging technologies [8]. In particular, in today’s big-data era, memory accesses 

and data transfer between the central processing unit (CPU) and memory storage via the bus consume 

the majority of the processing time and power [9]. The performance gap between the microprocessor 

and computer memory (DRAM) keeps growing [10] at a rate of 50% per year as shown in Figure 1.1, 

indicating that most of the single core performance loss is on the memory system due to the much 

slower memory operations relative to those of the CPU. This is known as the von Neumann bottleneck, 

which severely hinders the rapid development of high-performance and energy-efficient computing. 

       

 

 

Figure 1.1 Processor-memory performance gap grows at a rate of 50%/year. 

[https://cs.nyu.edu/courses/fall12/CSCI-GA.3033-012/lecture3.pdf] 
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Therefore, in-memory computing (IMC), also known as processing-in-memory (PIM), serves as a 

promising method to address the “memory wall” challenges for future computer systems [11].  

   Attracting most attention among several paradigms from industry and academia, IMC paves a direct 

and efficient way to design beyond von Neumann architectures (Figure 1.2), aiming to subvert the von 

Neumann architecture by conducting computation tasks within the memory, exactly where the 

computation operands are located [12]. This solution is efficient because it provides a clear method to 

suppress the overhead in latency and power consumption to overcome the bottleneck. Among the 

explorations in PIM scheme thus far, designs based on computational memory devices [13-16] are one 

of the most effective implementations as efficient in-memory computing generally requires fast, low-

power, high-density, scalable devices. It benefits from the in-situ calculations of the nonvolatile 

memory devices, which are capable of storing data and computing at the same time.  

Figure 1.2 (a) Von Neumann structure and (b) beyond von Neumann structure based 

on in-memory computing. 

       

(a)             (b) 
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1.2 Resistive Random Access Memory (RRAM) 

Over the past few decades, progress in the semiconductor industry was enabled by the downscaling of 

the metal-oxide-semiconductor field-effect transistor (MOSFET), serving as the workhorse of digital 

complementary metal-oxide-semiconductor (CMOS) systems for modern chips. Today, however, this 

scaling has reached a plateau due to several critical factors such as ever-increasing power dissipation 

and heating issues (including the leakage currents), quantum mechanical effects, and intrinsic parameter 

fluctuations [17]. To tackle this barrier, emerging devices such as carbon nanotube FETs (CNFETs) 

[18], resistive random access memories (RRAMs) [19], and superconducting devices [20] are 

investigated to support post-CMOS technologies [21].  

Resistive switching devices, such as RRAM, have widespread use among these post-CMOS 

memories. RRAM is a new RAM technology to watch out for, while RAM is an important part of all 

computing systems as it helps improve process and read-write speeds. This means that applications 

running on a computer or laptop are able to perform much better and faster. It employs resistive-

switching characteristics in a simple sandwiched metal-insulator-metal structure to store binary 

information using its resistance in a nonvolatile manner [22]. As shown in inset of Figure 1.3(a), a 

bipolar RRAM device consists of two terminals, a top electrode (TE, anode p) and a bottom electrode 

(BE, cathode n) and a metal-oxide layer in between. Its resistive switching is typically induced by 

application of a voltage on the two electrodes (Vpn), which leads to the formation and rupture of a 

conductive filament (CF) in the insulator layer driven by the electrical field along the x direction, shown 

 

 

Figure 1.3 (a) Schematic of metal-insulator-metal structure for oxide-RRAM and basic current-

voltage characteristics of (b) a unipolar RRAM and (c) a bipolar RRAM. [22] 
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in Figure. 1.4. In a bipolar RRAM, a positive voltage beyond a threshold value (VSET), i.e. when 

Vpn>VSET>0, forms CF to short the two electrodes, thus changing the RRAM state from a high resistance 

state (HRS) to a low resistance state (LRS). On the contrary, a negative voltage below a certain negative 

threshold (VRESET), i.e. when Vpn<VRESET<0, causes rupture of CF, switching its state from LRS back to 

HRS. The two transition processes are named SET and RESET, respectively. Overall, RRAM possesses 

advantages of simple device structure, high density, low power, fast speed, descent scalability, and 

 

(A) 

 

(B) 

 

 
Figure 1.4 RRAM working principle. (A) Formed and dissolved conductive filament resulting 

from set and reset operations respectively in Metal/Insulator/Metal (MIM) structure. 

[Compact Modeling Solutions for Oxide-Based Resistive Switching Memories (OxRAM)] (B) 

A filament growth model for RRAM switching. The application of a positive voltage to the 

TE results in the migration of positively ionized defects from the reservoir on the TE side (a) 

toward the BE, thus resulting in the nucleation of the CF (b) and its growth at an increasing 

time (c), (d). The increase of the diameter of the CF thus results in the decreasing resistance 

observed during the set transition. [45] 
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excellent compatibility with the CMOS process [22], [23]. Therefore, this computation memory has 

been considered as a suitable candidate not only for next-generation high-density storage but also in 

emerging circuit design and novel computation systems [24-26]. In addition, the use of RRAM (R) 

could help to address power dissipation in emerging processors by employing transistor (T) or selector 

(S) device as switch to form the 1T1R or 1S1R structure. 

1.3 Scope of Research 

   In this thesis, we propose two PIM schemes in the digital domain based on 2-transistor-2-RRAM 

structure, where the two bipolar RRAMs are connected in a back-to-back manner. In the first scheme, 

we start from introducing the logic gate principle and then design a unified circuit structure to perform 

any combinational logic. The computation methodologies are discussed accordingly. In addition, two 

possible 3-D stacked memory array structures (mem1 and mem2) capable of both regular memory 

functions and CIM, are illustrated to support large-scale integration. The stacked memory arrays can 

perform the computation flexibly (within one same layer or between different stacking layers), enabled 

by multiple computation modes. The second memory array, mem2, is able to carry out concurrent 

computations, enhancing the processing parallelism and efficiency. 

   In the second scheme, we propose a hybrid-logic computation methodology in the same circuit, 2-

transistor-2-RRAM (2T2R) structure, which fully utilizes available computation resources. The hybrid 

logic encodes input variables as both voltage levels and RRAM states, while the output results are 

stored and represented by the RRAM states after operation. The hybrid-logic gate is still nonvolatile as 

it is capable of storing computation results. For this scheme, we illustrate the hybrid-logic design 

principle and show multiple logic families (LFs) of the 2T2R available to be used in arithmetic circuits. 

Boolean logics for multiple operands (up to six) can be implemented efficiently in a single operational 

step. Following that, the 1-bit full adder is realized with low complexity, in three steps with only two 

cascaded 2T2R gates. Multiple-bit ripple-carry adder (RCA), pipelined RCA with higher throughput, 

and logarithmic (tree) Brent-Kung adder with full parallelism are shown to build larger digital systems, 

all using a repeated and regular chain structure. The designs are discussed and evaluated based on their 

computational complexity. Eventually, the work is compared to commercial 65nm CMOS technology 

and some popular RRAM-based computing platforms with regard to their speed and area. The overall 

result of the evaluation shows superior performance and prospect in the future beyond-von Neumann 

IMC architectures. 
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1.4 Organization 

This thesis is divided up into four main sections. In Chapter 2, an overview of related work based on 

the emerging technologies as well as their advantages and disadvantages are presented to the readers. 

Chapter 3 illustrates the design of (1) functionally complete, stateful logic gates based on 2T2R; (2) a 

regular, repeated, and reconfigurable 3T2R chain with programmable interconnects. Chapter 4 presents 

the design of two dense 3-D stacked memory array structures, the second one capable of performing 

concurrent computations. The 3-D arrays integrate the functionalities of processing element and storage 

together, with multiple computation modes available to achieve flexible calculations inside the 

memory. Lastly, in Chapter 5, we propose another efficient in-memory computing scheme based on 

hybrid logic in 2T2R RRAM whose programmable logic functionality is determined by the amplitude 

of voltage operands and variable assignments. A repeated, uniform, and reconfigurable 2T2R-gate 

chain with programmable interconnects is designed to efficiently implement any arithmetic logic block. 
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Chapter 2 

Related Work 

In-memory computing schemes have been explored in both digital and analog spaces. In the last 20 

years, the major digital IMC based on computational memories has been focusing on defining novel 

logic gate concepts to carry out digital Boolean operations with lower energy and area consumption 

[27-31]. Some works such as [13], [27], [29] deal with general implementations containing the basic 

operations like bitwise OR, AND, XOR, and INV. The analog IMC takes advantages of dense RRAM 

crossbar to implement the acceleration of matrix-vector multiplication, which has been extensively used 

in AI applications such as machine learning algorithms. 

2.1 Digital R-R Stateful Logic 

An early work [13], back to 2010, experimentally demonstrates the material implication (IMP, 

commonly used among logicians) in a relatively simple RRAM-based circuit combining a conventional 

resistor to enable stateful logic operations (belongs to the family of resistance-to-resistance stateful 

logic, R-R logic, shown in Figure 2.1). The IMP is a fundamental but powerful Boolean logic operation 

       

 

 

 

Figure 2.1 Resistance-to-resistance stateful logic (R-R logic) gate and illustration of 

the IMP operation for the four input values of p and q. (a) IMP is performed by two 

simultaneous voltage pulses, VCOND and VSET, applied to switches P and Q, 

respectively, to execute conditional toggling on switch Q depending on the state of 

switch P. (b) The truth table for the operation q’ = p IMP q.  The detailed operation 

principle can be found in [13]. 
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on two operands (p and q) such that “p IMP q” is equivalent to “(NOT p) OR q”. Containing an 

inversion function (NOT), it is able to form a computationally complete logic basis through the 

iterations of IMP logic. However, the IMP itself is only able to execute computations with lengthy 

iterative operations, increasing the difficulty to implement certain logics flexibly (e.g. EQUAL) and 

build large digital systems efficiently. In addition, the circuit needs extra resistors to assist each IMP 

operation so that they add great area overhead and reduce program margin. 

   In [27], the stateful nonvolatile RRAM logic (whose input and output operands are both RRAM 

states) is designed for normally-off digital computing by adopting a serial resistive switch arrangement 

(shown in Figure 2.2). The switching devices (or switches) both store the input/output states, and 

operate in response to an applied driving pulse. Different logic functions are achieved by different 

values of the pulse voltage, e.g., high/low voltages, or positive/negative voltages. AND, IMP, NOT, 

and bit transfer operations are demonstrated, each using a single clock pulse, while other functions (e.g., 

OR and XOR) are achieved in multiple steps. 

   The R-R nonvolatile logic approach allows suppressing the static leakage power dissipation while 

reducing the area consumption because of the scalable two-terminal structure of the RRAM switch. 

RRAM stateful logic differs from CMOS logic by the topological organization of the logic gate; in 

CMOS logic, each logic function has a specific circuit topology. R-R stateful logic instead totally lacks 

topological organization of the logic gates, thus allowing for standardization of the circuit architecture 

through the adoption of the crossbar array with extremely high density. Nevertheless, a third resistance 

       

 

 Figure 2.2 Schematic of (a) 2R stateful logic gate and (b) 2T2R structure used for 

experimental verification. Two switches are connected in series, while the logic 

operation is dictated by the applied voltage. [27] 
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state needs to be programed into RRAM devices by adjusting the compliance current. Moreover, the 

logic circuits require expensive and complicated reconfigurable wiring which add area overhead. In 

each step, the cell connections have to be changed, which is hard to achieve in practical applications. 

2.2 Digital V-R Logic 

Instead of R-R mapping method, the work in [32] uses the two voltage values applied to the two 

terminals of an RRAM device (has to be initially prepared in a low resistance state) as the two input 

variables. The output of the logic gate is stored as the final state of the device (belongs to the family of 

voltage-to-resistance logic, V-R logic). The relationship between the input voltages and output 

resistance is also an IMP function, magically. Although the single IMP logic is far from designing high-

performance digital systems, the two works above brought the previously uncommon digital logic IMP 

into many RRAM-based designs, which is internally intrinsic in the operations of resistive memories. 

In the V–R logic gate, the output result remains stored as the resistive state without any voltage bias, 

thus allowing a considerable saving of static power. On the other hand, the efficient sequential cascade 

of two operations is impossible, as input and output signals are physically different. Converting the 

output resistance into an input voltage can be achieved by additional circuits, typically located out of 

the memory area. 

       

 

 

 

Figure 2.3 Voltage-to-resistance logic (V-R logic) gate and corresponding truth table 

for material implication (IMP) operation. The V–R logic gate consists of a single 

resistive switch, where the input signals are the applied voltages at the two ends of 

the device (X1 and X2) and the output signal is the switch conductance state (Y). [11] 



 

 10 

2.3 Analog Computing using RRAM crossbar 

   From the viewpoint of in-memory computing, the crossbar array naturally provides a hardware 

accelerator for analogue, approximated matrix–vector multiplication (MVM). Therefore, dense RRAM 

crossbars are widely utilized to accelerate MVM of neural networks, leveraging the property of natural 

current accumulation (KCL) to realize the addition function [33]. This popular method attributes to the 

family of voltage-to-current logic, V-I logic, in which RRAM resistance stores parameters (pre-trained 

network weights) rather than input or output operand information. The work in [34] explores an in-situ 

processing approach, where memristor crossbar arrays not only store input weights, but are also used 

to perform dot-product operations in an analog manner. The analog MVM in the crosspoint can be 

carried out in one step, as opposed to the digital MAC operation, which is a time and energy-consuming 

step in classical computers. 

   Another important work [49] reports the experimental demonstration of a fully operational neural 

network based on an integrated, transistor-free crossbar with metal-oxide RRAM with device 

variability sufficiently low to allow operation of integrated neural networks, in a simple network: a 

single-layer perceptron (an algorithm for linear classification). This crossbar performed, on the physical 

(Ohm’s law) level, the analogue vector-by-matrix multiplication, which is by far the most 

computationally intensive part of the operation of any neuromorphic network used repeatedly in the 

Figure 2.4 Voltage-to-current logic, V-I logic. (a) Using a bitline to perform an analog sum 

of products operation. (b) A memristor crossbar used as a vector-matrix multiplier. [34] 

    

       (a)  Multiply-Accumulate operation                     (b) Vector-Matrix Multiplier  
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same environment. The network can be taught in situ using a coarse-grain variety of the delta rule 

algorithm to perform the perfect classification of 3x3 3-pixel black/white images into three classes 

(representing letters). 

   Additionally, some more works attempt to improve the design efficiency by employing new structures 

and computation methods. Recent examples are 1T1R RRAM [31], [35], hybrid CMOS circuits [36], 

memristor ratioed logic (MRL) [44], complementary resistive switches (CRS) crossbar [37]. These 

works shift the digital design focus from gate level (basic bitwise operations) to arithmetic-block level 

(adders and multipliers). Nevertheless, crucial problems such as the cascade, leakage current or 

destructive-read still exist and thus severely restrict their strategies in practical application. Although 

some of them are solvable, such as the cascade problem in [31], where the implementation supports 

gate cascading in a complex manner, it needs an additional readout step for cascade using complicated 

peripheral circuits such as sense amplifiers, block decoders, register stack, etc. As a consequence, this 

thesis aims to propose a novel structure and computational methodologies to design digital logic circuits 

and building blocks of arithmetic logic unit (ALU) by leveraging the capability and advantages of post-

CMOS RRAM in implementing beyond-von Neumann processing in-memory architectures. 

Figure 2.5 Pattern classification experiment (physical-level description). (a) An 

implementation of a single-layer perceptron using a 10x6 fragment of the RRAM crossbar. 

(b) An example of the classification operation for a specific input pattern (stylized letter ‘z’), 

with the crossbar input signals equal to +VR or -VR, depending on the pixel colour. (c) An 

example of the weight adjustment in a specific (first positive) column, for a specific error 

matrix. [49] 
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Chapter 3 

Digital Design based on Stateful Logic 

3.1 Introduction 

In this chapter, we propose a stateful IMC scheme in the digital domain based on a symmetric 2-

transistor-2-RRAM structure, where the two bipolar RRAMs are connected in the back-to-back manner. 

We start from introducing the logic gate principle and then design a unified circuit structure to perform 

any combinational logic circuits. All the input and output operands are RRAM resistive states in this 

stateful logic gate. The design has a highly regular and symmetric circuit structure, while the operations 

are flexible yet clean (without the need of complicated peripheral circuitry or a third resistive state). 

Implementations of XNOR and full-adder functions using 3T2R chain without extra routing/control 

gates or resistors are shown as example circuits to demonstrate the arithmetic unit design. The proposed 

computing scheme is intrinsic and efficient for PIM applications and presents superior performance in 

speed and area. The computation methodologies, design principles, and advantages/disadvantages are 

discussed in details accordingly. 

3.2 2T2R Stateful Logic Gate 

Figure 3.1 depicts the I-V characteristics of a bipolar HfOx-based RRAM device, generated by ASU 

RRAM model [23] using HSPICE. The model used in this thesis is calibrated to match the experimental 

HfOx-RRAM device behavior from IMEC [38] with 20mV/s SET/RESET pulses. In the HSPICE 

simulation, faster pulses (0.2 V/ns) are used which result in VSET = 2V and VRESET = -1.33V. The relevant 

parameters used in this RRAM model are listed in Table 3.1 (“g” parameters represent gap distance, 

which is defined as the average distance between the TE and the tip of the CF).  

The structure of the proposed 2T2R logic gates is shown in Figure 3.2, where the two serial bipolar 

RRAMs are connected in a back-to-back manner. The two NMOS transistors act as access devices to 

each RRAM. The operation is explained as follows. First, prepare two RRAM resistive states as two 

inputs: P (initial state of lower cell) and Q (initial state of upper cell). The initialization can be done by 

applying SET/RESET voltages between top/bottom terminal and the middle node “M” (labelled in 

Figure 3.2).  Then apply three voltage pulses simultaneously on the corresponding terminals: VUL 

(operational voltage), GP (enable/control voltage of the lower cell), and GQ (enable/control voltage of 
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the upper cell). Finally, the two outputs of the logic gate are in situ stored as the RRAM states after the 

operation: P’ (final state of lower cell) and Q’ (final state of upper cell). Overdrive gate voltages are 

       

 

 

 

Parameter Value Parameter Value

   ( 𝐴)

I-V fitting parameter
61.4    (  )

I-V fitting parameter
0.275

   ( )

I-V fitting parameter
0.43      

Gap dynamics fitting parameter
1

 

Gap dynamics fitting parameter
1.25   

Gap dynamics fitting parameter
16.5

   (   )

Gap dynamics fitting parameter
150     (  )

Activation energy for vacancy generation
1.501

    (  )

Activation energy for vacancy recombination
1.5    (  )

Oxide thickness
5

    (  )

Effective thermal time constant
0.23    (  )

Atomic hopping distance
0.25

     (  )

Maximum gap distance
1.367    ( )

Ambient temperature
298

     (  )

Minimum gap distance
0.543 𝐶   (    )

Effective thermal capacitance
0.318

Figure 3.1 Current-voltage characteristics of the RRAM device used in this chapter. 

The device is simulated with ASU RRAM model [23] calibrated to IMEC device [38]. 

(Inset shows an RRAM device with two terminals (p as anode and n as cathode). 

Table 3-1 RRAM model parameters 
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applied to transistors to reduce transistor resistance and avoid any threshold voltage drop between gate 

and source. The concept and operation are similar to those introduced in [13] and [27]. In this work, 

the LRS (50kΩ) and HRS (1MΩ) represents logic “0” and logic “1”, respectively. However, this design 

does not require additional resistors to assist logic operation as compared with [13]. Additionally, the 

upper cell and lower cell are connected back-to-back (p-n-n-p) rather than the p-n-p-n connection in 

[27]. Due to the back-to-back configuration in this logic gate, by applying a positive VUL, the upper cell 

Q can only go through SET process (no RESET possible) while lower cell P can only go through 

RESET process (no SET possible). The opposite case happens when VUL is negative. This proposed 

2T2R structure offers several significant advantages: 

1) Improved program margin as no voltage drops across the extra resistors.  

2) No need of the third resistive state (a quasi-LRS, 0*, achieved by adjusting the compliance 

current) to trigger the effective operation, as discussed in [27]. 

 

VGP=2.5V

VGQ=VOP1=3V

2 ns 8 ns0 10 ns

Voltages for OP1

Figure 3.2 Proposed 2T2R logic gate with back-to-back RRAM pair. NMOS are 

simulated using PTM65nm [39] at 500nm widths. An overdrive gate voltage is applied 

to transistors to reduce transistor resistance and avoid any threshold voltage drop 

between gate and source. 
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3) Capability to form regular and symmetric chain structure to design combinational logic 

circuit and 3D stacked memory array structure (for both RAM storage and CIM), 

tremendously reducing the design complexity. 

4) Elimination of additional routing control to reconfigure the interconnect between the 

operation cells as in [27]. This feature is reflected in Section 4, where any two of the cells 

from different stacks are already automatically connected in a back-to-back manner. 

5) The logic function of the gate is determined by the amplitude of operation voltage (VUL) 

instead of the circuit itself, possessing superior reconfigurability. 

To explain the logic gate principles, first, we define a parameter k as 

              𝑘 =  
𝑉𝑆𝐸𝑇

|𝑉𝑅𝐸𝑆𝐸𝑇|
                              (3.1) 

which is the ratio of SET and RESET voltage. For different RRAM devices with different k values, the 

available operation combinations (OPs) and their corresponding VUL ranges are also different. All the 

possible cases are listed in Table 3.2. However, for any given bipolar RRAM device, i.e. any given k, 

the operations AND and IMP are always achievable, guaranteeing the functional completeness. In this 

chapter, the operations are proved based on the IMEC’s device presented in Figure 3.1, whose k equals 

to 1.5. 

Given one specific RRAM with fixed k value, there are a few logic operations available, enabled by 

different ranges of VUL (operation voltage across the RRAM pairs). For the RRAM used in this work 

with k=1.5, three operations OP1, OP2, and OP4 will be analyzed in details in Chapter 3.2.1, 3.2.2, and 

 

k
VOP1 for OP1:
bit hold (P’=P)
AND (Q’= P∙Q)

VOP2 for OP2
IMP (P’=Q→P)
bit set (Q’=0)

VOP3 for OP3:
bit hold (P’=P)
bit set (Q’=0)

VOP4 for OP4:
IMP (P’=Q→P)
AND (Q’=P·Q)

VOP5 for OP5:
IMP (P’=Q→P)
bit hold (Q’=Q)

<1 (VSET, 2VSET) >2|VRESET| (2VSET, 2|VRESET|) N/A N/A

1 (VSET, 2VSET) >2VSET N/A N/A N/A

(1, 2) (VSET, 2|VRESET|) >2VSET N/A (2|VRESET|, 2VSET) N/A

2 N/A >2VSET N/A (VSET, 2VSET) N/A

>2 N/A >2VSET N/A (VSET, 2VSET) (2|VRESET|, VSET)

Table 3-2 Ranges of voltages across the 2T2R pair to perform different operations 

(OP1-OP5) for different k (=VSET/|V|RESET|) values. 
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3.2.3, respectively. OP3 and OP5 under other k cases can be obtained similarly, as summarized in Table 

I. All OPs in Table I are given with positive value of VUL.  

3.2.1 OP1: P’=P (bit hold) and Q’= P∙Q (AND) 

In OP1, the range of operation voltage, VUL, is given by 

     𝑈𝐿 =  𝑂𝑃 ∈ ( 𝑆𝐸𝑇 , 2| 𝑅𝐸𝑆𝐸𝑇|).              (3.2) 

In the cases of P=Q=0 or P=Q=1, VOP1 will be equally distributed on the upper and lower cells since 

they have the same resistance (both in LRS or both in HRS). Hence, the voltages across the P and Q 

have the following relationship  

         𝑄𝑝𝑛 = − 𝑃𝑝𝑛 = 0.5 𝑂𝑃 ∈ (0.5 𝑆𝐸𝑇 , | 𝑅𝐸𝑆𝐸𝑇|) < | 𝑅𝐸𝑆𝐸𝑇|                   (3.3) 

where VQpn is less than VSET and |VPpn| is less than |VRESET|, neither sufficient to trigger any transitions. 

When P=0 and Q=1, VOP1 is dropped mainly across Q (VQpn≈VOP1>VSET, VLpn≈0) due to much higher 

resistance. Thus a SET process is initiated on the upper cell Q so that Q’=0 (LRS). Meanwhile, lower 

cell P remains at LRS so that P’=0. In the case of P=1 and Q=0, almost all of VOP1 drops across P 

(VQpn≈0, VPpn≈-VOP1). Since P is already in HRS, i.e. RESET state, no transition could take place, thus 

P’=1 and Q’=0. The truth table containing all the input and output cases is summarized in Table 3.3 as 

the result of above analysis. The table indicates the Boolean functions of the outputs, with regard to 

inputs, are P’=P (bit hold) and Q’=P∙Q (AND).  A special case can be used to perform “bit transfer” 

operation, i.e. Q’=P, highlighted in green, if the initial state of upper cell is prepared in HRS (Q=1). 

This allows the data stored in upper/lower cell to be transferred to lower/upper cell, important for the 

gate cascade, chain logic and CIM array operations in Chapter 3.3 and Chapter 4.  

 

 

P Q P’=P Q’=P·Q
0 0 0 0
0 1 0 0
1 0 1 0
1 1 1 1

Table 3-3 Truth table for OP1: P’=P (bit hold), Q’=P·Q (AND) 

Q’=P·1 (bit transfer) operation is highlighted in green 
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3.2.2 OP2: P’ = Q→P (Implication, IMP) and Q’=0 (bit set) 

In OP2, the range of operation voltage, VUL, is given by 

     𝑈𝐿 =  𝑂𝑃2 > 2 𝑆𝐸𝑇 >  2| 𝑅𝐸𝑆𝐸𝑇|.              (3.4) 

In the case of P=Q=0, similarly, VOP2 will be averagely divided by the upper and lower cells. So the 

voltages across the P and Q are  

        𝑄𝑝𝑛 = − 𝑃𝑝𝑛 = 0.5 𝑂𝑃2 >  𝑆𝐸𝑇 > | 𝑅𝐸𝑆𝐸𝑇|                           (3.5) 

now the |VPpn| is greater than |VRESET|, which is sufficient to trigger a RESET transition on P so that P’ 

equals to 1 after operation. Similar analysis from OP1 applies for the cases of (P=1, Q=0) and (P=0, 

Q=1). For P=Q=1, the voltage relationship is same as the one displayed in Eq. (5), where VQpn is greater 

than VSET, also sufficient to initiate a SET transition on Q so that Q’ equals to 0 after operation. The 

truth table as in Table 3.4 summarizes all the combinations. The Boolean functions available in OP2 

are P’=Q→P (IMP) and Q’=0 (bit set).  The material implication (IMP) function, proposed by [12], is 

significant as it guarantees logic completeness, based on which any arbitrary Boolean function can be 

transformed into the form of multiple IMPs. In addition, same as in OP1, a special case can be used to 

perform a NOT function, i.e. P’=Q→0=NOT (Q), highlighted in blue, if the initial state of the lower 

cell is prepared in LRS (P=0). The NOT operation of OP2 and the AND operation of OP1, from another 

combinational point of view, offer functionally complete logic as well. 

3.2.3 OP4: P’ = Q→P (Implication, IMP) and Q’= P∙Q (AND) 

In OP4, the range of operation voltage, VUL, is given by 

     𝑈𝐿 =  𝑂𝑃 ∈ (2| 𝑅𝐸𝑆𝐸𝑇|, 2 𝑆𝐸𝑇).              (3.6) 

 

 

P Q P’=Q→P Q’=0

0 0 1 0
0 1 0 0
1 0 1 0
1 1 1 0

Table 3-4 Truth table for OP2: P’=Q→P (IMP), Q’=0 (bit set) 

P’=Q→0 (NOT) operation is highlighted in blue 
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The outputs of (P=Q=0), (P=0, Q=1), and (P=1, Q=0) can be derived exactly same as the cases in OP2. 

When P=Q=1, VOP2 will be equally divided between P and Q as they have same high resistance. As a 

result, the voltages across the P and Q are  

    𝑄𝑝𝑛 = − 𝑃𝑝𝑛 = 0.5 𝑂𝑃4 ∈ (| 𝑅𝐸𝑆𝐸𝑇|,  𝑆𝐸𝑇) <  𝑆𝐸𝑇             (3.7) 

where VQpn is less than VSET, not enough for implementing a SET process on Q anymore. Therefore, 

the outputs stay at the same states as initial states. 

For all of the above operation combinations, each of them is effectively completed in one-step 

operation, only by applying the corresponding operational voltage VUL. However, the (0, 1) to (0, 0) 

transition in Table 3-5 could be unstable due to the additional step/transition from (0, 0) to (1, 0) if the 

pulses/voltages are not properly designed. In this section, the voltage pulses are predesigned and chosen 

as inset shown in Figure 3.2 to avoid this over-operation, just like those in multilevel RRAMs. An 

alternative approach is that we could add a current limiter (compliance) in the path to constrain the 

current so that after (0, 1), (0, 0) would not change continuously to next (1, 0). It is also worth noting 

that because both the input and output variables are RRAM states, the cascade of the 2T2R logic gates 

could be easily achieved in two ways: (1) through a bit-transfer operation in OP1 or OP4, propagating 

the output of the current gate to one of the inputs (prepared/initialized as “1”) of the next stage; (2) 

through the pass gate transistor of the following 3T2R chain in Section 3.3 to select different RRAM 

pairs in action.  In addition, note that thick-oxide transistors might be required due to reliability 

concerns (out of the scope of this thesis). Due to the symmetry of the 2T2R structure, application of a 

negative VUL with same amplitude performs exactly same operations as its positive counterparts by 

 

 

 

P Q P’=Q→P Q’=P·Q
0 0 1 0
0 1 0 0
1 0 1 0
1 1 1 1

Table 3-5 Truth table for OP4: P’=Q→P (IMP), Q’=P·Q (AND) 

Q’=P·1 (bit transfer) operation is highlighted in green 

P’=Q→0 (NOT) operation is highlighted in blue 
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exchanging the positions of upper and lower cells, i.e. exchanging P/Q and P’/Q’ in the functions 

resulted from |VUL| (as shown in Figure 3.3(a) and 3.3(b)). When negative VUL is applied on the top of 

the structure, the two gate control voltages, VGQ and VGP, need to be calibrated accordingly. 

Alternatively, we can just swap the relative positions of upper and lower cells and apply a positive VUL 

on the bottom terminal to obtain the equivalent results (as shown is Figure 3.3(c)). The equivalent 

circuit conversions are presented in Figure 3.3, providing flexibility in designing combinational circuits 

and memory arrays in the following Sections. In this chapter, all transistors are implemented using the 

Predictive Technology Model (PTM) [39] with the same size, W/L=500nm/65nm, simulated in 

HSPICE. The voltage drops across these transistors are marginal at ON states. If narrower transistors 

are used, the voltage drop across NMOS will have to be considered and compensated in VUL.  

 

   (a)        (b)                  (c) 

 

Figure 3.3 Equivalent circuit transformation of the 2T2R logic gate. (a) A positive 

VUL applied to the top terminal with Q/P as upper/lower cells is equivalent to (b) a 

negative VUL to the top terminal with P/Q as upper/lower cells. It is also equivalent 

to (c) a positive VUL applied to the bottom terminal with P/Q as upper/lower cells. 

All the operation voltages VUL are supposed to have the same amplitude |VUL| to 

achieve the same computation result. 
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3.3 3T2R Chain for Combinational Logic 

To implement more complex arithmetic functions based on the 2T2R logic gate, a 3T2R chain structure 

is designed to connect multiple 2T2R units through one NMOS pass gate transistor (1T), as circled in 

  

(a)                          (b) 

  

(b)                               (d) 

Figure 3.4 3T2R chain structure to implement complex combinational logic. (a) A 

two-unit 3T2R chain example, the dashed box refers to one 3T2R unit. 

Reconfigurable interconnects to connect two cells (highlighted in red): (b) one in 

the upper row and the other one in the lower row (P1 and P4); (c) both in the upper 

row (P1 and P2). (d) The two-unit 3T2R chain is used to realize an XNOR gate, as 

an example circuit (the dashed pass gate in the second 3T2R unit is in fact not 

needed in XNOR gate). 
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the dashed box of Figure 3.4(a). The back-to-back connection (p-n-n-p) of 2T2R makes it possible that 

any two of the 1T1R cells in the chain can form a 2T2R pair to perform the OPs discussed in Chapter 

3.2, regardless of the RRAMs positions. The node “In” is used to initialize states of RRAMs by applying 

SET/RESET voltages between “In” and “Ti”. The reconfigurable/programmable interconnects are 

realized by the gate control signals (1/0 for connection/disconnection) of these transistors (G1-Gx). 

That is to say, logic gates can be inter-wired in different configurations, which is similar to the 

architecture of a field-programmable-gate-array (FPGA). For example, the combination of (G1, G2, 

G3, G4, Gx) = (1, 0, 0, 1, 1) enables the red path connecting two cells, P1 and P4, one in the upper row 

and the other one in the lower row (Figure 3.4(b)). The path in Figure 3.4(c) is formed when (G1, G2, 

G3, G4, Gx) = (1, 1, 0, 0, 1) in order to perform OPs on P1 and P2. The programmable interconnects 

can be realized by leveraging static random access memories (SRAMs) for gate controls (G1, G2, G3, 

G4, Gx), which is in-system programmable and re-programmable. The data stored in SRAM (0/1) 

controls routing of the chain (open/short). The idea is similar to that of SRAM-based FPGAs to obtain 

reconfigurable interconnects. The proposed 3T2R architecture eliminates the need to change or add 

additional routing and controls to form the p-n-p-n pair as discussed in [27]. Additionally, more gates 

are added in [16] to change the interconnects and configure cells in p-n-p-n sequence. These extra gates 

are used differently for different logics, increasing both design complexity and area. 

3.3.1 XNOR Gate 

The two-unit 3T2R chain can implement an XNOR gate using IMP/AND functions (Equation 3.8), 

    𝐴⊙ 𝐵 = (𝐴 + 𝐵̅) ∙ (𝐴̅ + 𝐵) = (𝐵 → 𝐴) ∙ (𝐴 → 𝐵).             (3.8) 

as an example circuit, which is shown in Figure 3.4(d). The dashed transistor is not required for the 

operation, reducing the area needed of the XNOR logic. Figure 3.5 depicts the four computation steps, 

10 ns for each step, to perform an XNOR function when A=0 and B=1, corresponding to the method 

of Eq. (8). The result A⊙B=0 is computed and in situ stored in the cell P4 in the 4th step. In the 

simulation, the VUL are set to be VOP1 = 2.5V, VOP2 = 4.2V, and VOP4=3V for OP1, OP2, and OP4, 

respectively. If narrower transistors and/or a longer chain are used, VOP or VG will have to be adjusted 

to accommodate the voltage drop across the transistors.  
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3.3.2 1-bit Full Adder 

Following the implementation of XNOR gate in the previous section, a 1-bit full adder is realized to 

demonstrate the design of arithmetic block units. A 3T2R chain with five units can perform a 3-operand 

(A, B, and Cin) addition as shown in Figure 3.6. The computation methodologies for carry out (Cout) 

and Sum (S) are given by the following equations. 

𝑆 = 𝐴⊕𝐵⊕ 𝐶  = 𝐴⊕𝐵⊕ 𝐶𝑖 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → 0 

           = {[(𝐶  → (𝐴⊕𝐵)) · ((𝐴 ⊕𝐵) → 𝐶  )]} → 0;            (3.9) 

   𝐶𝑜𝑢 = 𝐴𝐵 + 𝐵𝐶  + 𝐴𝐶  = 𝐴𝐵̅̅ ̅̅ → [(𝐴⊕ 𝐵) · 𝐶  ] 

           = 𝐴𝐵̅̅ ̅̅ → {[(𝐴ʘ𝐵) → 0] · 𝐶  ]}.                          (3.10) 
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Figure 3.5 Computation steps and control/operation signals to perform XNOR gate. The 

simulation is performed as design verification when A=0, B=1. The XNOR gate needs four steps 

(10 ns for each step) to compute/store the result A⊙B=0 in P4, highlighted in green. In each 

step, the input operands, gate control/operation signals, operations, and computation results 

are listed in the table. Important intermediate signals are annotated in the waveforms. 
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As plotted in Figure 3.7, the adder unit needs nine steps to calculate Cout and ten steps for S, guided by 

the computing procedures of XNOR and Equations (3.9), (3.10). The implementation is verified by 

simulation to compute the results when A=1, B=0, and Cin=1. The intermediate result A⊙B=0 is 

obtained in the 4th step and duplicated in 5th step (through bit transfer operation) to be reused because 

both Cout and S need it for their individual calculations. The results Cout=1 is stored in P10 in 9th step 

and S=0 is finally in situ computed in P4. 

      

 

Figure 3.6 A five-unit 3T2R chain to implement the 1-bit full adder. The dashed 

part in the chain is not necessary in the adder implementation. 
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3.4 Design Evaluation and Comparison 
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Figure 3.7 Computation steps to realize a 1-bit full adder. The simulation is 

performed as design verification when A=1, B=0, and Cin=1. The adder circuit needs 

nine steps (10 ns for each step) to compute/store Cout=1 in P10 and ten steps to obtain 

S=0 in P4, both highlighted in green. In each step, the input operands, computation 

cells, operations, and intermediate results are annotated in the waveforms 

accordingly. 
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Validated by the realization of example circuits, XNOR and 1-bit full adder, the 3T2R chain 

architecture is capable of implementing any combinational circuits. Theoretically, it is able to solve any 

problem statefully which is computable. The proposed 3T2R chain greatly simplifies the design and 

fabrication of the complex digital combinational circuits. The functionality of the unified/repeated 

chain is only determined by the external control and operation signals, independent of the circuit 

structure. The design focuses on finite state machines (FSMs) to generate and control the data path to 

be employed by the predesigned/prefabricated circuits, whose principle differs from the modern 

application-specific integrated circuits (ASIC) designs. This feature indicates that the chain block can 

be reprogrammed to implement different logic functions, just like a FPGA, allowing flexible 
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Figure 3.8 Area comparison with CMOS designs for the 1-bit full adder. The 

3T2R chain saves ~53% area from static adder, ~45% area from mirror adder 

and TG-based adder. 
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reconfigurable computing as performed in computer software. Meanwhile, the logic circuits are 

normally-off thanks to the fact that the computation results and intermediate information are all stored 

in the nonvolatile RRAM devices, dispelling the concern of interrupted power supply during compute 

process. 

The performance of a computing scheme is evaluated by its computational complexity, i.e. spatial 

complexity and temporal complexity. As for RRAM-based logic circuits in this work, the required 

number of RRAMs and transistors represents spatial complexity; temporal complexity is the 

computation steps/cycles it takes. First, the 3T2R chain design is compared to 65 nm CMOS technology 

based on a 1-bit full adder implementation. The device technology used for evaluation is listed in Table 

3.6. Compared to CMOS static adder, mirror adder, and transmission-gate (TG) based implementations, 

this 3T2R chain saves around 53%, 45%, and 45% area, respectively. 

Furthermore, the 1-bit full adder design of 3T2R chain is compared to other popular state-of-the-art 

RRAM-based implementations [13], [29], [31], [37], [40], [41], with respect to their delay (steps) and 

area (RRAMs). Overall, the 3T2R chain demonstrates superior performance. Siemon’s [37] adder is 

based on implication logic using CRS cells which requires complicated peripheral circuitry to assist the 

operations. Not only that, the CRS itself has a “destructive read” problem, restricting the application. 
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Figure 3.9 Design comparison with other state-of-the-art RRAM-based designs for 

the 1-bit full adder. 
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Wang’s [31] 1T1R RRAM implementation is efficient as it encodes inputs as both voltages and RRAM 

states. However, the disadvantage is also obvious as the sophisticated peripheral circuits including 

sense amplifiers, block decoders, and register stack are mandatory to support the in-memory operation. 

This is mainly due to the requirement of state-to-voltage conversion. On the contrary, for this work, the 

structure is regular and simple with clean operations [42]. 

3.5 Conslusions 

Processing-in-memory provides an effective means to conquer the restrictions of existing von 

Neumann-based computing methodologies. It is able to subvert the conventional computer’s 

architecture and eliminate the memory wall of modern digital systems. This chapter proposes a 

promising scheme for such applications, from gate level to circuit level, finally to system-architecture 

level. It illustrates the design of (1) functionally complete, stateful logic gates based on 2T2R; (2) a 

regular, repeated, and reconfigurable 3T2R chain with programmable interconnects. The design is 

comprehensively evaluated and compared with contemporary CMOS digital designs and other 

emerging schemes based on post-CMOS technologies as well, from the perspectives of design 

principle, circuit structure, difficulty of integration and fabrication, and performance. The study in this 

chapter is possible to push forward and accelerate the development of emerging computing and novel 

architectures in the post-Moore microelectronics industry. 
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Chapter 4 

3-D Stacked Memory Arrays for Data 

Storage/PIM 

4.1 Introduction 

In this chapter, two possible 3-D stacked memory array structures (mem1 and mem2) capable of both 

regular memory functions and CIM, are illustrated to support large-scale integration. The stacked 

memory arrays can perform the computation flexibly (within one same layer or between different 

stacking layers), enabled by multiple computation modes. The regular RAM operations and CIM 

 

 

 

 

 

(a) 

 

Figure 4.1 Mem1: (a) 3D crossbar array (mem1) based on the proposed 2T2R gates, (b) 

planform schematic of the center physical stack (#5) containing upper cell 5U and lower cell 

5L, and (c) bias schemes for UL1 computation (WLs are not present for clarity). The 

transistors here could be potentially replaced with selector devices to achieve the BEOL 3D 

stacking crossbars. 
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schemes are discussed. In addition, possible layout structure and sneak path problem are also 

mentioned. The status of half-selected and unselected cells when performing in-memory operations on 

the selected cells are presented, bias schemes proposed to protect undesired ones from disturbance. The 

second memory array, mem2, is able to carry out concurrent computations by rearranging/redefining 

the WL/SL/BL directions, enhancing the processing parallelism and efficiency via off NMOS or 

lowering the voltages across them. The mem2 has strong potential to be adopted as practical 3-D dense 

memory storage and in the future PIM applications where the computations require substantial parallel 

processing. 

4.2 3-D Memory Array 1 (mem1) 

Following the implementations of digital logic circuits, we propose a 3-D array (mem1) based on the 

proposed 2T2R gates so as to achieve dense in-memory operations for large scale integration. The 

memory array has multiple stacked layers, two of them schematically shown in Figure 4.1(a). The upper 

layer contains upper cells (1T1Rs) with same polarity direction while the lower layer is built by lower 

cells with reverse polarities. Two 1T1Rs of adjacent layers or of same layer could form a basic 2T2R 

gate to perform previously introduced OPs. For this 3-D array, two sets of bitlines (BLs) run in the 

horizontal direction: BLU as the top nodes of the upper cells and BLL to the bottom nodes of the lower 

cells. Two sets of wordlines (WLs), WLU and WLL, run in the vertical direction as switch controls of 

upper and lower 1T1R cells, respectively. Another set of select lines (SLs) run in parallel with WLs, 

connecting the middle nodes of each 2T2R stack sharing same WLs. Figure 4.1(b) displays a 2-D stick 

figure to describe the vertical view of one physical stack, the stack #5 in the center of the 3x3 array, 

with control signals. The planform of the 3x3 3-D array is pictured in Figure 4.1(c), WLs are omitted 

for clarity. Figure 4.2 briefly depicts the 3-D view of the physical implementation for one stack in the 

memory array (mem1). Further area saving and structure simplification could be achieved by replacing 

the NOMS transistors with simpler selector devices, which is able to result in practical CMOS-

compatible back-end of line (BEOL) 3-D stacking crossbars.  
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4.2.1 Conventional Random-Access Memory (RAM) Operations 

The 3-D array described above can be used as a conventional RRAM-based RAM. To write/read a 

particular cell (e.g. 5U in the array in Figure 4.1(c)), the operations are similar to those of 1T1R arrays: 

WLUB is set high (enabled) while all other WLU and all WLL are set low (disabled). All SL are grounded. 

BLUB are set to VSET, VRESET, and Vread (=2V, -1.33V, and 0.1V in this chapter, respectively) for SET, 

RESET, and read operations, respectively. Other BLU and BLL all are grounded. 
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Figure 4.2 Schematic of the layout (3-D view) for one stack in the memory array 

(mem1). Select line (SL) connects the cathode of left RRAM (of lower cells) and the 

drain of right NMOS (of upper cells). 
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4.2.2 Processing-in-Memory (PIM) 

The proposed 2T2R-gate OPs can be mapped and performed in this 3-D array, interactions taking place 

in different adjacent layers or within the same layer. There are basically four computation modes 

available. First, we explain how to compute a pair formed by two cells from different layers, an upper 

cell and a lower cell, at the same physical stack. Figure 4.1(c) gives an instance of 5U-5L pair (stack 

#5) in the 3x3 array to illustrate the first mode “UL1”. WLUB and WLLB are set to high to select two 

cells 5U and 5L, while all the other WLs are grounded (disabled). All SLs are floating to allow free 

operation on middle nodes. For the selected cells (5U and 5L), BLUB is biased at various VUL to trigger 

different OPs, V0 =VOP1 for OP1 or V0=VOP2 for OP2, etc. As for BLs, BLLB is grounded to establish a 

path from BLUB and all other BLU and BLL are floating. Under this bias scheme, there exists four types 
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NMOS+RRAM 

NMOS ON?
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V0 No

Half-selected 
type II

0 (BL/SL floating) Yes
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Figure 4.3 Bias schemes for 3-D memory array mem1 for different modes of in-memory 

computation: . (a) UL2, (b) UU1, and (c) UU2. (d) Status of selected, half-selected (type I-III), 

unselected cells/pairs during proposed CIM process. 
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of cells here defined by the bias/control conditions (painted in different colors): (1) selected cells/pair 

(5U, 5L); (2) half-selected cells type I (4U, 4L, 6U, 6L), sharing biased BL with the selected cells; (3) 

half-selected cells type II (2U, 2L, 8U, 8L), sharing WL and SL with the selected cells; (4) unselected 

cells (others). The selected pair will go through designated computation according to amplitude of V0. 

During this process, all other cells preserve their states since no unwanted voltage can impose on the 

RRAMs. More specifically, RRAMs in half-selected type I cells are disconnected from V0 (biased BL) 

due to disabled (OFF) NMOS (Figure 4.1(a)). As for half-selected type II cells which are connected 

with selected cells through SLB, their NOMS are ON. Nevertheless, since the BLs of them are floating, 

voltages of BLs will just follow SLB. Consequently, there is zero voltage drop across these cells, not 

affecting their states. 

Other three modes are defined by how the selected pair is composed: (1) “UL2” mode (Figure 4.3(a)): 

an upper cell and a lower cell from different layers (5U and 8L), at different stack sharing the same SL; 

(2) “UU1”/“LL1” mode (Figure 4.3(b)): an upper/lower cell with another upper/lower cell of the same 

layer (2U/2L and 5U/5L), sharing the same SL; (3) “UU2”/“LL2” mode (Figure 4.3(c)): an upper/lower 

cell with another upper/lower cell of the same layer (5U/5L and 6U/6L), sharing the same BL. Note in 

UU2/LL2 computation mode, another half-selected type III cells (2U, 3U, 8U, 9U) share both SL and 

WL with selected cells (5U and 6U). For these third-type cells, operation disturbance (state transition) 

is supposed to be avoided on them by biasing the BL of these cells at a separate voltage θV0 to ensure 

that the voltage drop across them are lower than the minimum voltage of VSET and |VRESET|. The bias 

scheme is labelled as in Figure 4.3(c). Constant θ needs to be restricted by the following range so as to 

not trigger any SET/RESET process.  

  1 −    { 𝑆𝐸𝑇 , | 𝑅𝐸𝑆𝐸𝑇|}   < θ <     { 𝑆𝐸𝑇 , | 𝑅𝐸𝑆𝐸𝑇|}                                   (4.1) 

The table shown in Figure 4.3(d) summarizes the status including cell bias and transistor status of 

the all the types of cells/pairs. Furthermore, to validate the bias schemes, simulation is carried out to 

verify that none of the half-selected cells and unselected cells are disturbed during OP1 computation 

(bit transfer and AND) on the selected cells/pair (shown in Figure 4.4).  
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Taking the advantage of various and flexible computation modes proposed above, complicated PIM 

schemes are achievable. We propose two schemes as case studies here. 

1) Use both upper and lower layers identically, for storage and computation. 

2) Use one layer (e.g. upper layer) as regular RAM only for the general purpose of memory 

storage and another layer (lower layer) for the processing process (feasible within the same 

layer as discussed previously). One can transfer the data stored in the upper layer cells to 

lower layer when necessary (via bit transfer operation of OP1/OP4 under UL1/UL2 modes). 

Then, the fetched data can be processed using lower layer cells (via all available logic gates 

under LL1 and/or LL2). 

More sophisticated combinations and processing algorithms can be explored to manage data storage 

and sequential computation steps. We could even attempt to integrate 3T2R chain for logic circuits and 

3-D memory array together to realize more efficient PIM. 

4.3 3-D Memory Array 2 (mem2) 

Although the mem1 leverages the 2T2G logic gate and is good at performing flexible in-memory 

operations, it is still hard for it to enhance the processing efficiency by carrying out concurrent 

computations (compute multiple 2T2R pairs at the same time) owing to “sneak path” problem. When 

the transistors are turned on for multiple cells, current will also flow on paths from other rows through 

 

 

5U = 1 5U' = 0

5L = 0 5L' = 0

2U = 1 2U' = 1

2L = 0 2L' = 0

4U = 1 4U' = 1

4L = 0 4L' = 0

5U' = 5U·5LHRS

LRS

HRS

LRS

HRS

LRS

HRS

LRS

HRS

LRS

HRS

LRS

5U = 1 5U' = 0

8L = 0 8L' = 0

8U = 1 8U' = 1

5L = 0 5L' = 0

4U = 1 4U' = 1

7L = 0 7L' = 0

5U' = 5U·8L
5U = 1 5U' = 0

2U = 0 2U' = 0

8U = 1 8U' = 1

4U = 1 4U' = 1

1U = 0 1U' = 0

5U' = 5U·2U
6U = 1 6U' = 0

5U = 0 5U' = 0

3U = 1 3U' = 1

2U = 0 2U' = 0

6U' = 5U·6U
R

es
is

ta
n

ce
 [

Ω
]

0                        10

Time [ns]

0                         10

Time [ns]

0                        10

Time [ns]

0                        10

Time [ns]

(a) (b) (c) (d)

3L = 1 3L' = 1

2L = 0 2L' = 0

Figure 4.4 Simulation results for mem1: (a) UL1, (b) UL2, (c) UU1, (d) UU2 computation modes 

to validate the corresponding bias schemes. Selected cells/pair undergo OP1 (bit hold and 

AND), while half-selected type I, type II, and type III (with θ=0.5) remain undisturbed. 
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select line (similar to the sneak-path problem in conventional RRAM crossbar array). Voltage will be 

divided from the middle point between RRAM cells and may affect the transition state. The extra paths 

could cause computation errors. This is schematically described by Figure 4.5. 

   In order to facilitate concurrency, the second 3-D stacked memory array configuration (mem2) is 

designed by simply rearranging the mutual connections and directions of the SL/BL in the mem1. The 

structure of mem2 is pictured in Figure 4.6(a). The parallel computations are supported by mem2 for 

modes: UL1, UL2, LL1, LL2 (followed by similar mode definition of mem1). The 3-D view of the 

physical implementation for one stack of mem2 is presented in Figure 4.7. The single pair computation 

under UL1 is shown in Figure 4.6(c), while the parallel computations under UL1 computes selected 

pair #2, #5, and #8 concurrently (Figure 4.8(a)). All other cells remain unselected due to OFF NMOS. 

Furthermore, concurrent computations under modes UL2, LL1, and LL2 with parallelism are drawn as 

in Figure 4.8. The simulation is done to validate the correctness of parallelism for mem2. Note that 

there is no UU1 and UU2 modes available in mem2, meaning that the interaction within the upper layer 

is not achievable in this array due to shared connections of upper cells. However, it excellently offers 

 

Figure 4.5 Sneak path problem when conducting concurrent computations in mem1. 
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us computation concurrencies under other modes so that we can process data more efficiently for 

applications like matrix manipulations, ubiquitous in machine learning.   

4.4 Conclusions 

This chapter discusses two dense 3-D stacked memory array structures, the second one capable of 

performing concurrent computations. The 3-D arrays integrate the functionalities of processing element 

and storage together, with multiple computation modes available to achieve flexible calculations inside 

the memory. 

 

            (b) 

 

   (c) 

 

 

 

(a)  

 

Figure 4.6 Mem2: (a) 3D crossbar array (mem2) by rearranging the mutual connections and 

directions of the SL/BL in the mem1, (b) planform schematic of the center physical stack 

(#5) containing upper cell 5U and lower cell 5L, and (c) bias schemes for UL1 computation 

(WLs are not present for clarity). 
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(a)                        (b) 

       

                   (c)            (d) 

 Figure 4.8 Bias schemes for 3-D memory array mem2 for different modes of concurrent 

in-memory computations: (a) UL1, (b) UL2, (c) LL1, and (d) LL2. 
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Figure 4.7 Schematic of the layout (3-D view) for one stack in the memory array (mem2). 
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Chapter 5 

Digital Design based on Hybrid Logic 

5.1 Introduction 

Most of the RRAM logics so far compute digitally and statefully, in which the binary resistance states 

of RRAM device represent logic “0” and “1”, instead of the binary voltage potentials in transistor-based 

digital systems. The stateful logic gate is implemented by mapping the input operands to the RRAM 

states and then performing the predesigned operation. The output results can be eventually collected by 

reading out the RRAM states. The logical execution is reflected by RRAM state transitions, where both 

inputs and outputs are purely resistive states [42], [43]. The computation variables are uniformly 

stateful, but the efficiency is also restricted owing to limited computing resource. Furthermore, most of 

the existing studies implement arithmetic blocks (e.g. XOR gate and adders) with lengthy operation 

steps or complicated peripheral circuits [28], [36], [37], [44]. In this chapter, hybrid logic families based 

on emerging RRAM are presented to support such architecture. A symmetric 2-transistor-2-RRAM 

(2T2R) structure is proposed, as a fundamental building block, to implement digital logic circuits. In 

this structure, the programmable logic functionality is determined by the amplitude of operation 

voltages and variable assignments, rather than its circuit topology. By performing an one-step 

operation, any Boolean logic functions for two input operands (including XOR and XNOR) can be 

realized, while common complex circuits for multiple operands (including 3-bit majority) are also 

achievable. The efficient implementation makes it possible to design arithmetic logic blocks with 

functional reconfiguration and low computational complexity. For instance, a 1-bit full adder can be 

implemented in only three steps, without complicated peripheral circuitry for signal conversion. 

Multiple-bit adders can be designed by simply replicating the 2T2R to form a repeated, reconfigurable 

chain structure with programmable interconnect. The 4-bit ripple-carry adder (RCA), pipelined RCA, 

and prefix tree adder are shown as example circuits, using the same regular chain structure, to validate 

the proposed in-memory computing scheme. The design principles, computational complexity, and 

performance are discussed and compared to the CMOS technology and other state-of-the-art post-

CMOS implementations. The proposed hybrid-logic computation methodology can be employed not 

only by similar RRAM-related structures, but also in some other nonvolatile-memory based 
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applications. This chapter provides an efficient approach to constructing the beyond Von Neumann in-

memory computing systems. 

5.2 2T2R Hybrid Logic Gate 

The ASU RRAM model [23] is employed in chapter to simulate the bipolar HfOx-based RRAM device 

in a 1T1R structure, experimentally measured by IMEC with a 20mV/s SET/RESET pulses [38]. Under 

the faster ladder-shaped SET/RESET pulses with 10ns period plotted in Figure 5.1, the current-voltage 

transfer characteristics of the HfOx-RRAM is obtained in 1T1R using Cadence Spectre, where VSET = 

2V and VRESET = -1.58V, RLRS = 50kΩ, RHRS = 1MΩ, and ICC = 150µA (compliance current). Key 

parameters of the compact RRAM model used in this work are given in Table 3.1 and the corresponding 

meanings are available in [23]. 

Figure 5.2 depicts the circuit schematic of the proposed 2T2R hybrid logic gate, consisting of six 

input operands and two output operands. Four of the inputs are encoded as four terminal voltages (VU, 

VL, GP, and GQ) and the rest two inputs are the two initial states of the RRAM devices (P and Q). The 

logic operation is conducted by applying the four voltages simultaneously at the four terminals, with 

two input RRAM states prepared. The initialization process is similar to that in the 1T1R structure by 

       

Figure 5.1 Current-voltage transfer characteristics of the RRAM device 

used in this chapter. The device is simulated using ASU RRAM model [23] 

calibrated to IMEC’s HfOx-based RRAM device [38]. Insets show the 

symbol of a bipolar RRAM device and SET/RESET voltage pulses. 
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simply applying SET/RESET voltages across terminal VU/VL and the middle node “M”. After the 

operation, the two outputs, P’ and Q’, are in situ stored in the two nonvolatile memory cells, able to 

store computation results. The logic gate concept here combines both voltage potentials and RRAM 

states as input operands, defined as R/V-R hybrid logic, different from others such as R-R logic and V-

R logic. The 2T2R hybrid logic circuit can be regarded as both/either combinational circuit (when the 

logic gate is used for once so that the current output P’/Q’ is only determined by the current hybrid 

input (VU, VL, GP, GQ, P, Q) and/or sequential circuit (when the logic gate is used for multiple times so 

that output P’/Q’ is determined by current voltage input (VU, VL, GP, GQ) and previous resistive output 

P/Q).  

In this chapter, high/low (0V or grounded) voltage potential represents logic “1”/“0” and RRAM 

state HRS/LRS refers to logic “1”/“0”. The full utilization of computing resource enhances the 

computation efficiency and flexibility significantly, one simple logic gate with six input operands. GP 

and GQ are overdrive gate voltages applied to gates of the two transistors (serving as switch controls) 

to reduce transistor resistance and avoid any threshold voltage drop between gate and source. 

 

 

Figure 5.2 Proposed 2T2R hybrid logic (R/V-R logic) gate with two RRAMs 

connected back-to-back. 2The four terminal voltages (VU, VL, GP, GQ) and two 

RRAM initial states before computation (P, Q) are encoded as six input operands. 

The two RRAM states after one-step computation (P’, Q’) refer to two nonvolatile 

output results of the logic gate. 
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Furthermore, by choosing different ranges of high potential (corresponding to logic “1”) for two of 

these voltage-operand amplitudes (more specifically, VU and VL), the same logic gate is capable of 

performing different functions under each range, which endows it with great reconfigurability and 

multiple functionally complete logic families (LFs). The choices of ranges of VU and VL are determined 

by the target logic computations (chosen from different LFs), which are discussed in Chapter 5.2.1-

5.2.3. These advantages can be reflected in the following efficient designs of arithmetic blocks. It is 

worth pointing out one important feature of the proposed 2T2R structure that swapping the input 

operands VU and VL in variable assignments is equivalent to the original circuit/gate in Figure 5.2 by 

swapping relative positions of lower cell and upper cell, i.e. the input operands P and Q, GP and GQ 

(equivalent circuit transformation shown in Figure 5.3). It benefits from the symmetric circuit structure 

where the two RRAMs are serially connected in a back-to-back (p-n-n-p) manner. This advantage gives 

us the capability to assign variables flexibly and efficiently in the complex designs.  

For different RRAM devices, the ratio ranges of their SET and RESET voltages could vary. Since 

the operation of 2T2R gate is dependent on the relative relationship between VSET and VRESET, the logic 

 

 

               (a)                    (b) 

Figure 5.3 Equivalent circuit transformation of the 2T2R hybrid logic gate. (a) The 

original logic gate with Q/P as upper/lower cells is equivalent to (b) swapping VU 

and VL with P/Q as upper/lower cells (swapping P and Q, GP and GQ). 
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gates formed by different RRAMs may have different LFs and the voltage range for each LF is different 

as well. Fortunately, for any given bipolar RRAM device with different VSET and |VRESET| ratios in the 

ranges of (0, 1), 1, (1, 2), 2, or (2, + ∞), the functional completeness of LFs are always available. In this 

work, the hybrid logic gate and its LFs are presented based on the ASU’s model to simulate IMEC’s 

RRAM device (shown in Figure 5.1), whose SET/RESET voltage ratio is 

          
𝑉𝑆𝐸𝑇

|𝑉𝑅𝐸𝑆𝐸𝑇|
=

2

 .58
= 1.27 ∈ (1,2).                               (5.1) 

For other ranges of VSET/|VRESET|, i.e. (0, 1), 1, 2, and (2, + ∞), the corresponding similar LFs can be 

derived in the same manner. 

5.2.1 Logic Family 1 (LF1) 

In LF1, the range of high potential (logic “1”) for two input voltage operands, VU and VL, is given by 

     𝑈,  𝐿 =  𝐿𝐹 ∈ ( 𝑆𝐸𝑇 , 2| 𝑅𝐸𝑆𝐸𝑇|).                            (5.2) 

The complete function from inputs to outputs in this case can be derived as  

             𝑃′ = 𝑃 · ( 𝑈 +  𝐿̅̅̅ + 𝐺𝑃̅̅̅̅ + 𝐺𝑄̅̅̅̅ + 𝑄);                                        (5.3) 

               𝑄′ = 𝑄 · ( 𝑈̅̅ ̅ +  𝐿 + 𝐺𝑃̅̅̅̅ + 𝐺𝑄̅̅̅̅ + 𝑃).                                                (5.4) 

To better explain the working principle of this logic gate, the above functions with a special input 

combination that (VU, VL, GP, GQ) = (1, 0, 1, 1) are shown in Table 5.1. In this case, Equation (5.3) is 

simplified to P’=P (bit hold) and Equation (5.4) becomes Q’=P·Q (AND). The truth table of input and 

output can be obtained by analyzing the voltage divider formed by the two serial RRAM cells. A special 

case when Q=1 (the initial state of upper cell prepared in HRS) is able to perform “bit transfer” 

 

 

P Q P’=P Q’=P·Q
0 0 0 0
0 1 0 0
1 0 1 0
1 1 1 1

Table 5-1 Truth table for P/Q and P’/Q’ when (VU, VL, GP, GQ) = (1, 0, 1, 1): P’=P 

(bit hold), Q’=P·Q (AND). Q’=P·1 (bit transfer) operation is highlighted in 

green. 
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operation copying data stored in lower cell P to upper cell Q (Q’=P), highlighted in green. The data 

transfer operation is important for the logic gate cascading (copying the resistive computation result of 

 

 

Logic function

𝑃 
𝑃 𝑄  𝑈  𝐿 𝐺𝑃 𝐺𝑄

0 0 X X X A B

1 1 X 1 X A B

𝐴 A X 1 X X B

𝐵 B X 1 X X A

𝐴̅ (NOT A) 1 0 0 A 1 1

𝐵̅ (NOT B) 1 0 0 B 1 1

𝐴 + 𝐵 (OR2) 1 A B 1 1 1

𝐴̅+𝐵̅ (NAND2) 1 0 0 1 A B

𝐴𝐵 (AND2) A B 0 1 1 1

𝐴̅𝐵̅ (NOR2)   0 0 B 1 1

𝐴 + 𝐵̅ (RIMP) 1 0 A B 1 1

𝐴̅ + 𝐵 (IMP) 1 0 B A 1 1

𝐴̅𝐵 (NIMP) B 0 0 A 1 1

𝐴𝐵̅ (RNIMP) A 0 0 B 1 1

Table 5-3 Variable assignments for 14 Boolean logics of output P’ in LF1 for 

multiple input operands 
 

 

Logic function

𝑃 
𝑃 𝑄  𝑈  𝐿 𝐺𝑃 𝐺𝑄

𝐴 + 𝐵 + 𝐶 (OR3) 1 A B  ̅ 1 1

𝐴̅ + 𝐵̅ + 𝐶 ̅ (NAND3) 1 0 C 1 A B

𝐴 + 𝐵 + 𝐶 + (OR4) 1 A B  ̅   1

𝐴̅ + 𝐵̅ + 𝐶 ̅ +  (NAND4) 1 0  ̅ D A B

𝐴 + 𝐵 + 𝐶 + +  
(OR5)

1 A B  ̅     

𝐴̅ + 𝐵̅ + 𝐶̅ +   +   

(NAND5)
1    ̅ D A B

𝐴(𝐵 + 𝐶) A B C 1 1 1

𝐴(𝐵 + 𝐶 +  ) A B C   1 1

𝐴(𝐵 + 𝐶 +  +  ) A B C     1

𝐴(𝐵 + 𝐶 + +  +  ) A B C      ̅

Table 5-2 Variable assignments for 14 Boolean logics of output P’ in LF1 for 

one/two input operands 
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the current stage (P’/Q’) to be used as resistive input of next stage (P/Q)) and widely used in the repeated 

chain structure of Chapter 5.3.  

According to Equation (5.3) and (5.4), the variable assignments to implement 14 Boolean logics in 

one step realized by function/output P’ for 1 or 2 input operands using LF1 are listed in Table 5.2. The 

associated function Q’ corresponding to each P’ can be derived according to Equation (5.4). 

Furthermore, Table 5.3 shows one of the mapping methods to design some common logics for multiple 

inputs.  

5.2.2 Logic Family 2 (LF2) 

In LF2, the range of high potential (logic “1”) for two input voltage operands, VU and VL, is given by 

     𝑈,  𝐿 =  𝐿𝐹2 > 2 𝑆𝐸𝑇 >  2| 𝑅𝐸𝑆𝐸𝑇|.                           (5.5) 

The complete formulas of outputs P’/Q’ in this case are expressed as Equation (5.6) and Equation (5.7) 

                𝑃′ = 𝑃 · ( 𝑈 +  𝐿̅̅̅ + 𝐺𝑃̅̅̅̅ + 𝐺𝑄̅̅̅̅ ) +  𝑈 𝐿̅̅̅𝐺𝑃𝐺𝑄𝑃̅𝑄̅;                                          (5.6) 

                  𝑄′ = 𝑄 · ( 𝑈̅̅ ̅ +  𝐿 + 𝐺𝑃̅̅̅̅ + 𝐺𝑄̅̅̅̅ ) +  𝑈̅̅ ̅ 𝐿𝐺𝑃𝐺𝑄𝑃̅𝑄̅.                                   (5.7) 

 

 

 

P Q P’=Q→P Q’=0

0 0 1 0
0 1 0 0
1 0 1 0
1 1 1 0

Table 5-4 Truth table for P/Q and P’/Q’ when (VU, VL, GP, GQ) = (1, 0, 1, 1): 

P’=Q→P (IMP), Q’=0 (bit set). P’=Q→0 (NOT) operation is highlighted in blue. 
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The above equations can be simplified to P’=Q→P (IMP) and Q’=0 (bit set) when (VU, VL, GP, GQ) = 

(1, 0, 1, 1), shown in Table 5.4. As discussed above, the available IMP function guarantees logic 

completeness. Additionally, a special case when P=0 (the initial state of lower cell prepared in LRS) 

can perform a NOT function, i.e. P’=Q→0=NOT (Q), highlighted in blue. Similarly, the variable 

assignments to implement Boolean logics in one step realized by function/output P’ for 1 or 2 input 

operands and multiple operands using LF2 are shown in Table 5.5 and Table 5.6, respectively. 

 

 

Logic function

𝑃 
𝑃 𝑄  𝑈  𝐿 𝐺𝑃 𝐺𝑄

0 0 X 0 X A B

1 1 X 1 X A B

𝐴 A X 1 1 X B

𝐵 B X 1 1 X A

𝐴̅ (not A) 1 X 0 A 1 1

𝐵̅ (not B) 1 X 0 B 1 1

𝐴 + B (OR2) A 0 1 0 B 1

𝐴̅+𝐵̅ (NAND2) 1 X 0 1 A B

𝐴𝐵 (AND2) A X B 1 1 1

𝐴̅𝐵̅ (NOR2) 0 B 1 A 1 1

𝐴 + 𝐵̅ (RIMP) 1 X A B 1 1

𝐴̅ + 𝐵 (IMP) 1 X B A 1 1

𝐴̅𝐵 (NIMP) B X 0 A 1 1

𝐴𝐵̅ (RNIMP) A X 0 B 1 1

𝐴̅𝐵 + 𝐴𝐵̅ (XOR) A 0   A B 1

𝐴𝐵 + 𝐴̅𝐵̅ (XNOR) A 0   A B 1

Table 5-5 Variable assignments for 16 Boolean logics of output P’ in LF2 for 

one/two input operands 
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5.2.3 Logic Family 3 (LF3) 

In LF3, the range of high potential (logic “1”) for two input voltage operands, VU and VL, is given by 

     𝑈,  𝐿 =  𝐿𝐹3 ∈ (2| 𝑅𝐸𝑆𝐸𝑇|, 2 𝑆𝐸𝑇).                           (5.8) 

The full relationship between outputs and inputs in this case are determined as following Eq.  

                𝑃′ = 𝑃 · ( 𝑈 +  𝐿̅̅̅ + 𝐺𝑃̅̅̅̅ + 𝐺𝑄̅̅̅̅ + 𝑄) +  𝑈 𝐿̅̅̅𝐺𝑃𝐺𝑄𝑃̅𝑄̅;                            (5.9) 

                 𝑄′ = 𝑄 · ( 𝑈̅̅ ̅ +  𝐿 + 𝐺𝑃̅̅̅̅ + 𝐺𝑄̅̅̅̅ + 𝑃) +  𝑈̅̅ ̅ 𝐿𝐺𝑃𝐺𝑄𝑃̅𝑄̅.                             (5.10) 

Similarly, in the case of (VU, VL, GP, GQ) = (1, 0, 1, 1), the functions of P’ and Q’ are presented in Table 

5.7, where P’=Q→P (IMP), Q’=P·Q (AND). Under LF3, Table 5.8 and Table 5.9 are generated 

according to Equation (5.9) and (5.10), summrizing the variable assignments to achieve the Boolean 

logics in one step realized by function/output P’ for 1 or 2 input operands and multiple operands. 

 

 

 

 

Logic function

𝑃 
𝑃 𝑄  𝑈  𝐿 𝐺𝑃 𝐺𝑄

𝐴 + B +  (OR3) 1 X A B  ̅ 1

𝐴̅ + 𝐵̅ + 𝐶 ̅ (NAND3) 1 X 0 A B C

𝐴𝐵𝐶 (AND3) 0 0 A 0 B C

𝐴̅𝐵̅𝐶̅ (NOR3) 0 A 1 B  ̅ 1

𝐴 + B +  +  (OR4) 1 X A B  ̅   

𝐴̅ + 𝐵̅ + 𝐶̅ +    (NAND4) 1 X   A B C

𝐴𝐵𝐶 (AND4) 0 0 A   B C

𝐴̅𝐵̅𝐶 ̅  (NOR4) 0 0   B  ̅   

𝐴𝐵𝐶  (AND5) 0   A   B C

𝐴̅𝐵̅𝐶̅   ̅ (NOR5) 0 E   B  ̅   

𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 (MAJ3) C 0 A B 1 1

Table 5-6 Variable assignments for common logics of output P’ in LF2 for 

multiple input operands 
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Shown in the variable assignment tables, some complex logic gates such as XOR/XNOR and 3-bit MAJ 

(MAJ3) are implemented efficiently in a single step, which is generally difficult for other state-of-the-

art RRAM-based designs. In addition, note that the variable assignments to implement each logic listed 

 

 

 

P Q P’=Q→P Q’=P·Q
0 0 1 0
0 1 0 0
1 0 1 0
1 1 1 1

 

 

Logic function

𝑃 
P Q  𝑈  𝐿 𝐺𝑃 𝐺𝑄

0 0 X 0 X A B

1 1 X 1 X A B

A A X 1 1 X B

B B X 1 1 X A

𝐴̅ (not A) 1 0 0 A 1 1

𝐵̅ (not B) 1 0 0 B 1 1

A+B (OR) A 0 1 0 B 1

𝐴̅+𝐵̅ (NAND) 1 0 0 1 A B

AB (AND) A B 0 1 1 1

𝐴̅𝐵̅ (NOR) 0 B 1 A 1 1

𝐴 + 𝐵̅ (RIMP) 1 0 A B 1 1

𝐴̅ + 𝐵 (IMP) 1 0 B A 1 1

𝐴̅𝐵 (NIMP) B 0 0 A 1 1

𝐴𝐵̅ (RNIMP) A 0 0 B 1 1

𝐴̅𝐵 + 𝐴𝐵̅ (XOR) A 0   A B 1

A B   A 1 1

𝐴𝐵 + 𝐴̅𝐵̅ (XNOR) A 0   A B 1

A B   A 1 1

Table 5-8 Variable assignments for 16 Boolean logics of output P’ in LF3 for 

one/two input operands 

Table 5-7 Truth table for P/Q and P’/Q’ when (VU, VL, GP, GQ) = (1, 0, 1, 1): 

P’=Q→P (IMP), Q’=P·Q (AND). Q’=P·1 (bit transfer) operation is 

highlighted in green; P’=Q→0 (NOT) operation is highlighted in blue. 
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in above tables are not unique and could be designed flexibly in different ways (input operands in the 

form of either voltage or RRAM state), such as the two XOR/XNOR implementations in Table 9. The 

optional assignments are particularly beneficial in gate cascading, since the signals to be cascaded 

should be preferred to be stored as RRAM states, eliminating the need of complicated peripheral 

circuitry for signal conversion (current/RRAM state to voltage). Table 5.1, Table 5.4, and Table 5.7 

provide us one efficient way to implement resistance-to-resistance stateful logic, i.e. R-R logic, utilizing 

the proposed 2T2R logic gate, in which the terminal voltages (VU, VL, GP, GQ) serve as 

control/operation voltages instead of input operands. The 2T2R R-R logic is crucial for the 

cascadability of 2T2R hybrid logic gates as all the information in the R-R logic is stored as RRAM 

states. Since any of the LFs is functionally complete, a single LF is sufficient to implement different 

circuits. For instance, LF3 is used to design arithmetic blocks. Therefore, no more than two electric 

voltage levels are needed, one as VLF and the other as VG, if different from VLF. In this work, all 

transistors are implemented using the TSMC 65nm library with the same minimum NMOS size, 

W/L=60nm/65nm, simulated in Cadence Spectre. 

 

 

Logic function

𝑃 
𝑃 𝑄  𝑈  𝐿 𝐺𝑃 𝐺𝑄

𝐴 + B +  (OR3) 1 0 A B  ̅ 1

𝐴̅ + 𝐵̅ + 𝐶̅ (NAND3) 1 0 0 A B C

𝐴𝐵𝐶 (AND3) 0 0 A 0 B C

𝐴̅𝐵̅𝐶̅ (NOR3) 0 A 1 B  ̅ 1

𝐴 + B +  +  (OR4) 1 0 A B  ̅   

𝐴̅ + 𝐵̅ + 𝐶̅ +   

(NAND4)
1 0   A B C

𝐴𝐵𝐶 (AND4) 0 0 A   B C

𝐴̅𝐵̅𝐶̅  (NOR4) 0 0   B  ̅   

𝐴 + B +  +  +  
(OR5)

1 E A B  ̅   

𝐴̅ + 𝐵̅ + 𝐶̅ +   +  ̅
(NAND5)

1     A B C

𝐴𝐵𝐶  (AND5) 0   A   B C

𝐴̅𝐵̅𝐶̅   ̅ (NOR5) 0 E   B  ̅   

𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 (MAJ3) C 0 A B 1 1

Table 5-9 Variable assignments for common logics of output P’ in LF3 for 

multiple input operands 
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5.3 Arithmetic Logic Block Design 

To validate the design efficiency in designing digital circuits and systems based on the proposed 2T2R 

hybrid logic, arithmetic logic blocks from the simple 1-bit full adder (FA) to larger 4-bit ripple carry 

adder (RCA), pipelined RCA, and fast prefix tree adder are implemented, as example circuits, in this 

section. The circuit structures of all of these arithmetic blocks are regular and uniform, built by simply 

replicating the 2T2R gate to form a chain structure. The interaction and cascade between these gates in 

the chain are achieved through a programmable interconnect whose connection is controlled by the 

gate/switch of NMOS transistors, similar to which of a SRAM-based field programmable gate array 

(FPGA). Thus, the design of digital circuits is concentrated on the signal/operand assignments, data 

path design, and interconnect controls on the reconfigurable architecture, rather than the circuit 

topology in implementations of conventional expensive application specific integrated circuits (ASIC). 

This makes it easy and cheap for design, fabrication, and integration. 

5.3.1 1-bit Full Adder (FA) 

As a fundamental building block of RCA and an arithmetic logic unit (ALU), the 1-bit FA is initially 

implemented, which adds three binary inputs A, B, and Ci (carry in) to generate two binary outputs S 

(sum) and Co (carry out). The general computing formulas of each output are given as following Eq. 

         𝑆 = 𝐴⊕𝐵⊕ 𝐶 = (𝐴⊕ 𝐶 ) ⊕ 𝐵             (5.11) 

               𝐶𝑜̅̅ ̅ = 𝐴̅𝐵̅ + 𝐴̅𝐶𝑖 + 𝐵̅𝐶𝑖                        (5.12) 

where the S is computed with two XOR operations and Co is obtained by an MAJ3 operation. From 

Table 5.5/5.8 and Table 5.6/5.9, the computation of XOR and MAJ3 can be carried out with one-step 

operation. As previously discussed in the 2T2R hybrid logic gate, the input operands can be either 

voltage or RRAM state, while the outputs are only RRAM state. Therefore, in the cascaded 

gates/multiple step operations, to avoid signal conversion from resistance to voltage, the computation 

results of current gate/step are supposed to be only in the form of RRAM states as inputs of next 

gate/step. The FA implementation is an example of this design rule and the reason why we calculate 

𝐴⊕ 𝐶𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ first in the first step by assigning (𝐴, 𝐶 , 𝐴̅, 𝐴, 1, 1) to (P, Q, VU, VL, GP, GQ) (highlighted as red 

in Table 5.8), shown in Figure 5.4. The first step also computes 𝐶𝑜̅̅ ̅ (complement of carry out, similar 

to the inverted carry in efficient CMOS design) concurrently by assigning (𝐶𝑖 , 0, 𝐴̅, 𝐵, 1, 1) to (P, Q, VU, 

VL, GP, GQ) according to the highlighted row in Table 10. The computation parallelism in first step is 
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achieved thanks to a pass gate (PG) transistor, separating the respective operation on two 2T2R logic 

gates. The second step is simply programming the lower RRAM of the right 2T2R gate from ACi to B, 

while others remain unchanged. The second XOR operation with B is carried out by assigning 

(𝐵, 𝐴 ⊕ 𝐶𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐵̅, 𝐵, 1, 1) to (P, Q, VU, VL, GP, GQ) in the third step to obtain the result of S. Note that the 

result of 𝐴⊕ 𝐶𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ of previous step shows up only as RRAM state Q in this step, while B in the form of 

both voltage and RRAM state P so that no signal conversion is needed. All the intermediate results are 

stored as nonvolatile RRAM states. 

To summarize, the 1-bit FA can be implemented in three steps with two 2T2R hybrid logic gates, 

connected by the PG NMOS to achieve the possible programmable interconnect within the adder 

circuits. The connected 2T2R structure ensures that any two of the 1T1R cells in the chain can form a 

2T2R hybrid logic gate to perform all the available operations, making adder cascade (carry-

propagation) easy to be implemented without complicated peripheral circuits. However, the PG 

transistor does not function in the FA circuits due to the simple operations within each 2T2R gate, i.e. 

no interaction required between them. It plays an important role in other more complex circuits such as 

the RCA and prefix adder in the following sections.  

 

 

1st step 2nd step 3rd step

𝐴̅ 𝐴

𝐵 𝐴̅

1

1

1

1
0

𝐵̅

𝐵

1

1

Figure 5.4 Full adder implementation with 2x 2T2Rs in three steps. The four RRAM-state 

transitions after each step and the corresponding operation voltages are labeled. Step 1 is to 

calculate  ⊕  𝒊̅̅ ̅̅ ̅̅ ̅̅ ̅ and   ̅̅ ̅. Step two is to input  . Step three is to obtain  . 
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5.3.2 4-bit Ripple Carry Adder (RCA) 

Following the design of 1-bit FA, a 4-bit RCA is shown to validate complex arithmetic circuits, 

computing  [𝐴3𝐴2𝐴 𝐴 ] + [𝐵3𝐵2𝐵 𝐵 ] = [𝐶4𝑆3 𝑆2 𝑆  𝑆 ] . The circuit structure is still built by 

repeating the 2T2R gate connected horizontally by PG NMOS transistors, as depicted in Figure 5.5. 

Each dashed box shows the circuit schematic of 1-bit FA as the universal unit block so that an N-bit 

RCA can be implemented using N 1-bit FAs. The example of 4-bit case is presented here to demonstrate 

the adder operations and process. 

Figure 5.7(a) shows the computation flow chart of the 4-bit RCA, which of an N-bit one could be 

otained similarly. The corresponding RRAM state transition in each step is presented in Figure 5.7(b), 

where the carry propagation procedure is actually conducted in two separate steps. One is for bit transfer 

operation between 𝐶𝑜̅̅ ̅ (of current bit) and 1 (of more significant bit); the other for NOT operation 

between  𝐶𝑜̅̅ ̅ (of current bit) and 0 (of more significant bit), after which the current 𝐶𝑜̅̅ ̅ is SET to 0. 

Figure 5.6 combines them together in each carry propagation step for simplicity. An N-bit RCA requires 

3N steps with (6N-1) Transistors and 4N RRAMs. 

The uniform implementation of above RCA with repeated 2T2R-gate chain could be optimized to 

have a more compact structure by sharing one common 4T3R unit for the sole purpose of carry 

 

LSBMSB

1-bit FA2 2T2R gates

Figure 5.5 Schematic of a 4-bit RCA with repeated structure (2T2R chain). Each unit 

shown in the dashed box is a 1-bit FA as the universal unit block. 



 

 51 

computation and propagation (shown in Figure 5.6). The 4T3R carry computation unit (CCU) contains 

one 2T2R (CU and CL) for carry calculation and one 1T1R (CA) to assist RCA carry propagation. The 

2T2R gates (Ui and Li) in the lower sum computation units (SCUs) are used for S calculation. The 

RRAM state transitions of the compact RCA with slightly customized routing are shown in Figure 

5.8(a). The computation of the 4-bit addition 𝐴3𝐴2𝐴 𝐴 (0101) + 𝐵3𝐵2𝐵 𝐵 (1001) =

𝐶4𝑆3𝑆2𝑆 𝑆 (01110) needs 12 steps, conducted as a case study to validate the correctness. As plotted 

in Figure 5.8(b), the summation results 𝐶4𝑆3 𝑆2 𝑆  𝑆 (01110) are stored in the cells  𝐶𝐴𝐿3𝐿2𝐿 𝐿 . 

Generally, an N-bit RCA with the compact implementation could be realized efficiently in 3N steps 

with (3N+4) Transistors and (2N+3) RRAMs, presenting low computation complexity. 

  

 
LSBMSB

1-bit FA

1 2T2R gate

Carry 
Computation 

Unit

Sum Computation Units

  

𝐿 

  

𝐿 
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𝐿2

 3

𝐿3

𝐶𝑈

𝐶𝐿 𝐶𝐴

Figure 5.6 Schematic of the optimized design of 4-bit RCA. The more compact design 

saves about half of the area, with greater customization. 
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(a)                                         (b) 
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𝐴 ⊕ 𝐶 ,𝐶 ,𝐴 𝐵 𝐶  

Carry propagation
𝐶 

Compute 

𝐴 ⊕𝐶 ,𝐶2 ,𝐴 𝐵 𝐶  

Carry propagation
𝐶2

Compute 
𝐴2 ⊕ 𝐶2 ,𝐶3 ,𝐴2𝐵2𝐶2  

Input
𝐵3 −𝐵 

Compute 𝑆3 − 𝑆 

Initialization

Carry propagation
𝐶3

Compute 

𝐴3 ⊕ 𝐶3 ,𝐶4 ,𝐴3𝐵3𝐶3  

Figure 5.7 (a) Computation flow chart of the 4-bit RCA. (b) The corresponding RRAM state 

transition in each step. The values in the boxes represent the RRAM states at the 

corresponding positions. For example, in the initialization step, the four RRAMs of least 

significant bit (LSB) FA unit are programmed to (0, 1, A0, 0). Each bit FA is initialized in a 

uniform pattern as (0, 1, Ai, 0). The missed boxes mean that there is no transition/operation 

in that step. 
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Figure 5.8 (a) The RRAM state transition of the compact 4-bit RCA. The similar steps between 

computing  𝟐  and computing  𝟑 ⊕ 𝟑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and  𝟒̅̅̅̅  are omitted for simplicity. (b) Simulation of 

 𝟑 𝟐    (    ) +  𝟑 𝟐    (    ) =  𝟒 𝟑  𝟐      (     )  as a case study to verify the 

design correctness (all the transistors are at minimum 60nm widths using TSMC 65nm library). The 

simulations are performed in Cadence Spectre. Two electric voltage levels are required for the RCA 

operations including VLF3=VGQ=3.5V and VGP = 3V. 
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5.3.3 4-bit Pipelined Ripple Carry Adder (RCA) 

Pipelining is a popular technique to enhance efficiency and throughput of processing unit in hardware 

design. It allows overlapping of computation for different instructions in the same clock cycle. As 

shown in Figure 5.8(a), while the CCU performs operations in all steps, the SCUs are idle and wait for 

CCU to generate ripple carries in three of the 12 cycles. Thus, the efficiency ERCA_SCU and throughput 

TRCA_SCU of RCA SCUs can be calculated according to 

          𝑅𝐶𝐴_𝑆𝐶𝑈 =
𝑢   𝑢𝑙 𝑐𝑦𝑐𝑙  

𝑡𝑜𝑡 𝑙 𝑐𝑦𝑐𝑙  ⁄ = 9
12⁄ = 75%          (5.13) 

           

Carry 
Computation 

Unit 1 
(CCU1)

Sum Computation Units

Carry 
Computation 

Unit 2 
(CCU2)

𝐿 𝐿 𝐿2𝐿3

     2 3

𝐶𝑈

𝐶𝐿 𝐶𝐴

𝐶𝑈 

𝐶𝐿 𝐶𝐴 

Figure 5.9 Schematic of the pipelined design of 4-bit RCA with two pipelining 

stages. The pipelining requires another CCU2 as additional cost/area overhead to 

achieve parallel computation. 
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          𝑅𝐶𝐴_𝑆𝐶𝑈 =
# 𝑜  𝑏𝑖𝑡 

𝑡𝑜𝑡 𝑙 𝑐𝑦𝑐𝑙  ⁄ = 4
12⁄ = 33%           (5.14) 

In this section, we present the pipelined 4-bit RCA implementation with two pipelining stages as a 

simple case. The circuit structure is shown in Figure 5.9, requiring another CCU2 (4T3R) as additional 

hardware cost/area overhead to achieve parallel computation. As in Figure 5.10, the computation of 

another set of 𝐴3 𝐴2 𝐴  𝐴  (0101) + 𝐵3 𝐵2 𝐵  𝐵  (1001) = 𝐶4 𝑆3 𝑆2 𝑆  𝑆  (01110)  is done in 

parallel with the first 4-bit addition, adding four more steps as additional delay/latency overhead. The 

efficiency Epipe_RCA_SCU and throughput Tpipe_RCA_SCU of two-stage pipelined 4-bit RCA SCUs are 

boosted to 100% and 50%, respectively. For an N-bit RCA with two-stage pipelining, the efficiency is 

100% and throughput is 2N/(3N+4), approaching 67% when N is larger enough (double than the non-

pipelined design). From Figure 5.10, the carry propagation cycles of CCU1 are in cycle 3/6/9 while 

CCU2’s in 7/10/13. No overlapping of carry propagation between the two units guarantees the 

computation concurrency due to the sharing of the common SCUs.  
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Figure 5.10 Simulation of two sets of 4-bit add computations  𝟑 𝟐    (    ) +

 𝟑 𝟐    (    ) =  𝟒 𝟑  𝟐      (     ) . The pipelining requires four more steps as 

additional delay/latency overhead. 
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5.3.4 4-bit Prefix Brent-Kung Adder 

In the implementation of a multiple-bit RCA, the critical path, i.e. carry propagation from least 

significant bit (LSB) Ci to final most significant bit (MSB) Co, limits the circuit speed because the carry 

terms of each bit has dependency on carry-out of previous bit (dominates for wide adders (N>16)) [46]. 

Thus, the temporal complexity of either CMOS-based or RRAM-based N-bit RCA is O(N). Fast adders 

generally use a tree structure for parallelism, calculating intermediate signals propagate (P) and 

generate (G) as follows 

           𝑃 = 𝐴⊕𝐵                                     (5.15) 

                   𝐺 = 𝐴𝐵                       (5.16) 

which have no dependencies on carry terms so that can be computed concurrently, called prefix 

computation. In this section, we implement a 4-bit tree Brent-Kung adder [33] using recursive carry 

lookahead to demonstrate logarithmic complexity O(log2N) of critical path based on our 2T2R hybrid 

logic method. 

    The PG diagram of the 4-bit prefix Brent-Kung adder is shown in Figure 5.11 and the equation in 

the figure describes the relationship between critical path signal C4/G3:0 and intermediate signals P and 

G in this tree adder. A 2T2R hybrid logic gate is capable of calculating Pi and Gi of each bit concurrently 
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Figure 5.11 PG diagram of a 4-bit prefix Brent-Kung adder and its PG notations. The 
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equation. 
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in a single step by assigning (𝐴 , 𝐵 , 𝐴𝑖 , 𝐴 , 1, 1) to (P, Q, VU, VL, GP, GQ)), in which the Pi/Gi are stored 

in the lower/upper cell, shown in Figure 5.12(a). The circuit schematics of the 4-bit Brent-Kung adder 

are presented in Figure 5.12(b), requiring five 2T2R gates connected by four PG NMOS transistors. 

Figure 5.12(c) gives the simulation results of critical path calculation when performing the 4-bit 

addition 𝐴3𝐴2𝐴 𝐴 (0101) + 𝐵3𝐵2𝐵 𝐵 (1001) = 𝐶4𝑆3 𝑆2 𝑆  𝑆 (01110). The final result C4/G3:0=0 

is stored in cell L4 and can be used for further calculations. Note that in the prefix Brent-Kung adder, 

the C4 is obtained in the 6th cycle, while it is done in 10th cycle in the RCA implementation (Figure 

5.8(b). The improved performance is due to the parallel processing algorithm of each bit. Similarly, for 

an N-bit Brent-Kung adder, it can be derived that the critical-path delay is proportional to log2N, same 

as the CMOS designs.  

5.4 Design Evaluation and Comparison 

Demonstrated by various implementations of arithmetic logic blocks such as 4-bit RCA, pipelined 

RCA, and prefix tree adder, the proposed 2T2R hybrid logic is a promising and efficient approach to 
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Figure 5.12 (a) PG calculation implemented in one step on a 2T2R hybrid logic gate. (b) Circuit 

schematic (five 2T2R gates connected by four PG NMOS transistors) of 4-bit Brent-Kung adder. 

(c) Simulation results of critical path calculation when performing  𝟑 𝟐    (    ) +

 𝟑 𝟐    (    ) =  𝟒 𝟑  𝟐      (     ). 
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designing RRAM-based in-memory computing system. The small RRAM cell in the circuit serves as 

both logic device and storage unit. The 2T2R gate chain connected by horizontal PG NMOS transistors 

is able to implement any logic block with the same uniform and repeated circuit structure. This feature 

endows it with programmability and reconfigurability, similar to that of an FPGA. It allows us to 

program/re-program the chain to realize different designs, significantly simplifying the implementation 

and fabrication of digital circuits and systems.  

   In this section, the performance of the arithmetic units is evaluated and compared to the CMOS 

circuits and other state-of-the-art RRAM designs, based on their computational complexity, more 

specifically, spatial complexity and temporal complexity. In a RRAM-based system, spatial complexity 
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Figure 5.13 Area comparison of this work with CMOS designs for a 32-bit adder. 

The RCA of this work saves ~75% area from mirror adder and TG-based adder, 

while the compact RCA saves ~87% area. 
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is the required area of RRAMs and transistors; temporal complexity refers to the processing 

steps/cycles. The evaluation is based on the device technology listed in Table 5.10, with RRAM’s 

feature size to be 5nm and CMOS’s feature size to be 65nm. Figure 5.13 shows the area evaluation 

results for a 32-bit adder implementation of the RCA and compact RCA. The RCA of this work saves 

around 75% area from CMOS mirror adder/TG-based adder, while the compact RCA design saves 

about 87% area. This work presents decent performance in hardware area. 

In addition, the 32-bit adder design based on the 2T2R hybrid logic is compared to some of the recent 

RRAM-based implementations [13], [29], [31], [37], [40], [41], with regard to the delay (number of 

steps) and area (number of RRAMs), shown as in Figure 5.14. Among these efficient designs, Siemon’s 

[29] implementation uses CRS RRAM to perform IMP logic, which requires complicated peripheral 

circuitry and has the problem of “destructive read”. The novel IMC system based on 1T1R RRAM [31] 

is comparable to this work, requiring small area and less delay. Nevertheless, the main drawback comes 

from sophisticated peripheral circuits to support the logic computation, including sense amplifiers, 

block decoders, and register stack. In this work, benefiting from flexible variable assignments, the 
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Figure 5.14 Design comparison of this work w.r.t. delay (number of steps) and 

area (number of RRAMs) with other state-of-the-art RRAM-based designs for a 

32-bit adder. 
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designs are able to avoid unnecessary signal conversions therefore eliminates the need of complicated 

peripheral circuits [47].  

5.5 Readout Structure 

After the computation is completed, the final results stored in the RRAM cells might need to be readout. 

The readout process of the 3T2R chain can be designed by placing two units of readout circuitry, such 

as a current sense amplifier (CSA) or a transimpedance amplifier (TIA), on top and bottom positions 

of the chain, shown in Fig. 8. During the read process, all horizontal pass gate transistors are ON (the 

red path). Then, apply a read voltage Vread (e.g. 100mV) on the middle nodes (“In” node in the chain). 

The read-cell selection (read enable control) is achieved by the gate control of each 1T1R, similar to 

the function of column mux in the conventional SRAM memory arrays. The readout circuitry acts as a 

current to voltage converter to sense the ILRS/ IHRS (0/1) of the selected cell.  

                

 
Figure 5.15 Readout structure of the 3T2R chain. During read process, all PG transistors are 

ON and a Vread is applied on the middle nodes. Other NMOS transistors in each 1T1R control 

the read-cell selection (read enable control). 
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5.6 Conclusions 

This chapter proposes an efficient in-memory computing scheme based on hybrid logic in 2T2R RRAM 

whose programmable logic functionality is determined by the amplitude of voltage operands and 

variable assignments. The hybrid-logic method fully utilizes the computing resource in a RRAM-based 

structure, which can be potentially adopted similarly in other computational-memory enabled systems. 

Various logic families are available to be used to design digital circuits flexibly. A repeated, uniform, 

and reconfigurable 2T2R-gate chain with programmable interconnects is designed to efficiently 

implement any arithmetic logic block. The example circuits such as ripple carry adder, its pipelined 

implementation, and parallel prefix adder are shown to validate the hybrid-logic design methodology. 

The computing principle is discussed and the arithmetic circuits are compared with CMOS designs and 

popular post-CMOS systems based on their spatial complexity and temporal complexity. The overall 

result shows superior performance of this work in designing efficient digital circuits and systems. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

This thesis has reported two efficient computing/logic methodologies for beyond von Neumann 

processing-in-memory applications by fully exploring a proposed regular, symmetric 2T2R circuit 

structure. The first scheme implements digital logic in a stateful manner, in which the computation 

operands are represented by nonvolatile RRAM states and logic functionality is determined by 

amplitudes of external operation voltages. The second scheme leverages computing resource of the 

circuit in a hybrid manner, by encoding both RRAM states and operation voltages as inputs. The two 

schemes are designed to implement their corresponding logic gates (logic families) based on the unified 

2T2R gate and further build arithmetic building blocks of an ALU using a reconfigurable 3T2R (2T2R 

gate) chain structure with programmable interconnections. 

   The proposed circuit structure and computation methodologies make it easy to design, develop, and 

fabricate digital circuits and systems based on CMOS technology and post-CMOS but CMOS-

compatible RRAM technology. Common digital units such as full adder, ripple-carry adder, pipelined 

ripple-carry adder, and parallel carry look-ahead adder are designed and evaluated to validate the 

efficient implementations. The work is compared to the mature CMOS designs and other RRAM 

systems with respect to its computational complexity, i.e. speed and area. It presents advantages in 

hardware area relative to CMOS circuits and in both area and speed as well as peripheral circuitry 

compared to popular RRAM designs. The in-memory operations are simple and clean, meanwhile the 

circuit structures are regular and symmetric, requiring no signal conversions during whole compute 

process. The result of each scheme could build a technology cell library that can be potentially used as 

input to a technology-mapping algorithm. The proposed stateful-logic and hybrid-logic methodologies 

present prospect of hardware acceleration and future beyond-von Neumann in-memory computing 

architectures. 
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6.2 Future Work 

The results of this work point to a number of potential directions to extend the scope of this project. 

Since the electrical designs are only implemented at the level of front end based on simulation, one 

important future work is to realize the physical design part including the layout design, fabrication, and 

experimental testing in order to complete the design flow and further realize the practical digital circuits 

and integrated dense memory array. 

Future work also includes 

(1) designing new RRAM-enabled emerging circuit architectures; 

(2) exploring logical methods and principles based on other post-CMOS technologies; 

(3) embedding computational memories including RRAM into the commercial mature CMOS 

technology so as to leverage their advantages such as non-volatility, small area, and scalability 

to improve the performance of current circuits and systems; 

(4) using nonvolatile memory to achieve hardware acceleration in the ASIC and FPGA platform; 

(5) addressing and improving the classic RRAM issues including reliability and endurance and 

analyzing how these problems affect the system-level performance, to design fault-tolerant 

circuits and systems. 

The in-memory processing schemes based on the regular and symmetric 2T2R structure proposed by 

this work present the prospect in hardware implementation of post-CMOS and beyond-von-Neumann 

computing systems. The result of the study could build a technology library that can be potentially used 

as standard cell library for ASIC digital designs. The highly integrated 3-D stacked arrays could be 

widely adopted in the future applications of dense nonvolatile data storage and emerging in-memory 

processors.  
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