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Abstract

Over the recent few years, condensed matter physics has keenly been testing out the
compelling techniques from the toolbox of machine learning. Order parameters, phase
transitions, and other thermodynamic quantities have been learned for different systems,
including the Ising model and its variants, the XY model, many-fermion systems, and
more. In the following work, we apply three different machine learning architectures
towards the problem of identification of topological defects, specifically those seen in square-
confined, two-dimensional liquid crystals, though the concepts and methods outlined are
by no means restricted to this application.

Simulated liquid crystals were modeled by off-lattice, hard, rod-like molecules via Monte
Carlo. At high molecular density, geometric frustrations from the square confinement
cause the nematic director field to develop an inhomogeneous pattern containing various
topological defects as the main physical feature. We show machine learning can capture
the correlation between defect positions and the nematic directors around them to classify
these different topologies. With a feed-forward neural network, pre-sorting the off-lattice
simulation data in a coarse-grained fashion is necessary for effective learning. We also
bring to light the often overlooked reason for why pre-sorting was needed in this case.
As a more generalizable approach, we show that a recurrent neural network, via feature
correlation, can also learn the topologies without pre-sorting or any other input engineering.
Finally, we investigate how unsupervised learning with principal component analysis can
be used to accurately pinpoint the location and the type of winding disclinations in our
two-dimensional liquid crystal model.
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Chapter 1

Introduction

A new type of matter

In 1888 the Austrian botanist Friedrich Reinitzer remarked the curious melting behaviour
of cholesteryl benzoate [75] (English translation: [76]). The chemical displayed two distinct
melting points: first melting into a cloudy liquid, then upon further heating, melting again
into a clear liquid. Reinitzer promptly corresponded his findings, along with samples of
cholesterol benzoate and cholesterol acetate, to physicist Otto Lehmann in March that same
year [53]. Lehmann looked more closely at these samples and discovered the crystalline
order present in the liquid. Publishing his findings in 1889 [56], liquid crystal (LC) research
began in earnest.

As the name implies, liquid crystals are unique in their properties that combine both
those of liquids (such as flow, inability to support shear, and the formation/coalescence of
droplets) and those of crystals (such as anisotropy of electromagnetic/optical properties
and the periodic arrangement of molecules in spatial dimensions) [1]. Having a controllable
dynamic state gives LCs interesting applications across many material domains. For
example, in the nanosciences, it is typically desirable for carbon nanotubes (CNTs) to have
a high degree of alignment for their applications. CNTs can be dispersed in a liquid LC
solvent, and transitioning the LC into its aligned state aligns the CN'Ts with it [20, 27, 62].

Another, exciting emergent technology are liquid crystal elastomers (LCEs) [91]. LCEs
combine liquid crystal anisotropy and rubber elasticity to create unique materials that
may feature properties like actuation, soft elasticity, birefringence, and may even have
applications in biomedical devices. These mechanics are often temperature driven, causing
volumetric changes or transparency.



Nature had long ago uncovered their utility, though. In the production of spider dragline
silk, an aqueous solution of the silk fibroin takes on a nematic phase as an orienting
mechanism at an intermediate stage of the process [18, 52, 72]. Cases of LC mesophases
have been observed in certain DNA packings: inside the heads of bacteriophages [29],
dinoflagellates [60], or plasmid DNA within bacteria [74]. Inside bacteriophages, the
packing takes on a columnar shape within concentric rings [l 1]. In dinoflagellates, the
chromosomes assume a twisted cholesteric phase. And at physiological concentrations,
in vitro plasmid DNA of FEscherichia coli bacteria show birefringent LC textures of a
cholesteric phase [71]. LC phases have been found both in vivo as well as in vitro for major
classes of biological compounds including lipids, proteins, carbohydrates and nucleic acids
[37]. Nematic and chiral nematic (cholesteric) phases are most common in this domain,
but hexagonal columnar (such as in DNA) and smectic phases (such as in the arrangement
of amylopectin side chains in starch) have also been observed [37].

Different topologies may be traversed by the modification of confinement geometry or an
external field, as in LC displays [, 28, 51, 101]. Controlling the nematic director alignment
allows control over its optical properties. Defect regions, where the nematic alignment is
divergent, can also be utilized in fascinating ways, such as nanomaterial self-assembly.
Gurevich et al. [36], simulating a nanoparticle and LC mixture under a variety of quenches
and concentrations, found that nanoparticles could be concentrated in defects or in the
channels and pockets formed by slower growing regions of the nematic-isotropic interface
as nematic regions expanded. Directing the assembly of nanoparticles into addressable
arrangements can lead to materials with high processability, self-healing properties, and
reversible control [30].

Such defects are at the heart of this study. At nematic densities, many stable or
metastable states can exist. We present several states, generated from our Monte Carlo, of
LCs in square confinement in Figure 1.1, replicating numerical solutions from Yao, Zhang,
and Chen [102]. These comprise the subjects of our work. States are characterized by the
different ways in which the local order parameters around the features couple with their
locations. Developing a characterization procedure to categorize these defect states is a
challenging task, and a neural net presents itself as an ideal candidate.

Machine learning in condensed matter

In the past few years, machine learning (ML) has made a significant foray into condensed
matter research and other areas of physics. This merge is not too surprising though since
they share some similar methods and goals. Both analyze large amounts of data to learn



Figure 1.1: Past the critical density, lyotropic LCs phase change from isotropic (a) to
nematic. In the nematic phase, different topologies may persist. In (b)-(e) are four
examples which will be the topological subjects of our study. The defect state in (b)
has a diagonal (D) pattern, and the nematic textures in (c)-(e) resemble the tilted letter
T, letter U, and letter X. Blue and yellow circles mark —1/2 and —1 winding disclinations,
respectively. Images were generated from our Monte Carlo (details given in Section 4.1).



about, and predict the behaviour of complex systems. After all, much of ML is (or at least
borrows from) statistical methodology, especially unsupervised learning. Their approaches
are quite different, though. Whereas physicists use their knowledge and intuition with
sound mathematical steps, ML conversely extracts physics of the system from collected
data.

One of the marvels and advantages of this technique is how little statistical-physics
information (energies, order parameters, etc.) is needed for the classification of states or
the pinpointing of critical physical parameters. Even relatively simple neural network
models can learn phase-transition temperatures, order parameters, and quantum-state
tomography, from the information of a simple feature such as position coordinates in an
off-lattice model or the location and value of spins in an Ising model. This could all be
done without any knowledge of the original Hamiltonian or interaction potential energies

[7 )y ? Y Y ? Y ? Y ? Y Y ? ? ? ]

Convolutional neural nets (CNNs), which have dominated modern image recognition,
have shown their use in multiple physical systems. Without any knowledge of the energy
or locality conditions of the Ising model, a CNN can learn subtly different phases, difficult
to distinguish even to the human eye [9]. Learning quantum phase transitions of many-
fermion systems was also bested by them [3], even in three dimensions [15]. CNNs were also
recently tested to see if the Berezinskii-Kosterlitz-Thouless vortex binding transition in the
XY model could be learned, with some interesting results. Beach, Golubeva, and Melko
[0], found CNNs appeared to nearly converge on the critical temperature from theory, but
found it was likely learning from the magnetization, and not the real spatial relationship
of vortices. Some feature engineering of the raw spin data into vortices before input to
the NN was then explored to correct for this, with success. In another study, Zhang, Liu,
and Wei [101] also used CNNs to learn the percolation transition and BKT transition in
the XY and Generalized XY models, but again required, sometimes substantial, feature
engineering. Minimal or no feature engineering is a goal in physical science applications
of ML, not only for the sake of complexity, but part of the utility and interest in these
studies is that the NN is supposed to do all the work in uncovering the underlying physics.
Feature engineering aids the NN, pulling from our present understanding of the subject
model. Thus, although many conventional, symmetry-breaking, phase transitions can be
effectively captured by ML approaches due to the local nature of the order parameter,
topological phase transitions are particularly difficult for an NN to learn. The difficulty
stems from the fact that topological phase transitions are characterized by the proliferation
of non-local, topological defects that are suppressed in the topologically ordered phase

[54, 80].



Learning defects in liquid crystals

The problem of learning defects in our LC system is further compounded by the off-lattice
nature. The incredible power of CNNs cannot be leveraged in such systems because CNNs
require a lattice input structure. Lattice approximations are not an ideal route because
such approximations often bring in heuristics (e.g. the distribution of lattice sites) and lose
information, especially more local details which are very important for learning topological
phase transitions and defects. Hence, we must solve how to capture the main features in
a topological defect state when the correlation between defect positions and the physical
properties around them is the vital property. In this thesis different ways of incorporating
existing NNs for this purpose are discussed. One of the main obstacles comes from the
off-lattice format of our system. Lattice applications can take advantage of the spatially
consistent mapping of the physical space to the NN input. As our study shows, this sorting
takes care of the position correlating of features. We propose two different architectures
for navigating this problem.

First, a modified feed-forward neural network (FNN) performs a coarse grain sorting
of rod-molecules before input to the network. This degree of positional sorting was found
to be successful even for very coarse sorting, but is certainly application-dependent. We
also present a more general method, using a recurrent neural network (RNN), that avoids
the need for any presorting. The RNN is a neural network specialized in correlating
sequential information (e.g. analyzing a time series of images [(0], or predicting upcoming
words in a sentence based on previous words [19, 65]). We propose a scheme to feed
the Cartesian coordinates and orientational data of molecules sequentially, akin to three
time sequenced images, which enables the RNN to correlate these three features. Turning
temporal correlation to spatial correlation, an RNN can efficiently identify different states
in the original raw data, without any of the coarse-graining or presorting needed for the
FNN. Our findings on this matter were recently published in June of this year [93].

The methods so far discussed have all been “supervised” methods wherein each image
has an associated label that helps guide the NN in its learning. Another paradigm of
ML architectures are considered unsupervised and deal with unlabeled data. Unsupervised
learning (UL) is, in a sense, a more pure learning, from an artificial intelligence standpoint.
In this paradigm, the network learns to classify data not from given labels, but from the
actual structure of the data. Some unsupervised methods separate or cluster data. Another
recently popular branch of UL called generative networks has opened up, where networks
essentially try to reproduce data types from a training set. Auto-encoders are a popular
language modeling tool [25], and generative adversarial networks can generate high quality
reproductions across many data types, recently making waves with their seamless facial



image generators [10, 73].

In our third application of ML, we use Principle Component Analysis (PCA) on a
dataset of many samples of small rod clusters to identify what sort of structure is present.
PCA is a popular UL technique, but has been at play in the statistics community for
over a hundred years since its proposal in 1901 by Karl Pearson [70]. Specifically, we
are interested if PCA can identify winding disclinations from the set of +1/2, +1 winding
numbers. We intend to soon publish these results. The winding plays an important
role in various contexts, such as in the topological classification of band insulators [37]
and superconductors [50]. PCA is a dimension reduction technique that simultaneously
transforms data along axes that maximize variance to present the most salient parts of a
dataset. These transformations often relate to some underlying feature of the data.

Some successful efforts with PCA have determined phase transitions in Ising models,
XY models, Kitaev chains, quantum spin chains, and the same classical L.C system studied
here [15, 92, 94, 95, 96]. In learning the Ising model temperature phase transition, PCA
automatically produced the magnetization order parameter as the primary transformation
for separating high and low temperature states [96]. On the XY model, Wang & Zhai
[94, 95] found PCA delivered order parameters that (reasonably well) marked the phase
transition in the XY model on multiple lattice structures. In another work, Jadrich,
Lindquist, and Truskett [15] used PCA on an off-lattice LC system to locate the I-N phase
transition density, and again the algorithm produced the classical order parameter used to
predict the transition.

We find that PCA can indeed interpret defect sample structures properly and with
reasonable effectiveness. Deciding on the input vectors to the algorithm is non-trivial, and
similar to the CNN work on the XY model, some feature engineering is necessary. Three
different input engineering models were tested: Random, Winding Difference (WD), and
Winding Alignment (WA). In short, the Random method cannot differentiate defect types,
whereas the WD method can. The WA method cannot identify defect polarity (whether
it is +1 or —1), but is more robust to unclear samples from the Monte Carlo.

Following this introduction, we will first look at some essential concepts in supervised
machine learning and the methods used to discern topological defect states. In Chapter 3,
we move on to unsupervised learning with PCA, providing an overview of its mechanics,
some examples of its use in other works, and how it will be used for LC defect learning.
Chapter 4 provides an overview of Monte Carlo molecular dynamics and how our liquid
crystals were simulated with it, also of continuum-based liquid crystal simulations, with
an outline of the Onsager model, and we take a close look at what orientational order is



in LCs and how to quantify it. The proceeding two chapters will then present the results
of our supervised and unsupervised studies.

Research in machine learning on problems in physics is in stride. It is already providing
computational speed-ups, for example in Monte Carlo sampling both classical [12, 58, ]
and quantum [12, 59, 68, 83]. Unsupervised networks can be used to generate new physical
observables and quantum states [20, 78, 81, 89]. Physical structure can be learned to
determine useful quantities like critical temperatures, order parameters, etc. [0, 8, 9, 10,

, 45, 63, 88, 92, 94, 95, 96, 97, 98, , , |. No doubt this direction of research
will continue to deliver fascinating insights into state-of-the-art models, and perhaps even
shake them up.



Chapter 2

Supervised Machine Learning of
Liquid Crystal Defect States

In the following section we will explore a few different NN architectures for learning
topological defects as it pertains to our LC system. As was outlined in the above, both
FNNs and CNNs have proven largely effective in supervised learning phase transitions,
order parameters, and other physical quantities for a handful of systems [0, 8, 9, 10, 18, 88,

, 98, 103]. It should be noted that all but [97] are on lattice systems, and their methods
developed are incompatible with our LC system. At the same time, there is thus still fertile
ground for research in this direction. To appreciate this roadblock, we will go over some
neural net essentials.

The main function of an NN is to read an input (e.g. an image, text, or sound bite),
perform a sequence of simple mathematical operations on this input, and then generate
an output. In condensed matter, the input form is usually a representation of a system,
such as a list of 1’s and -1’s representing a system of 1/2-spinors, or a series of molecular
Cartesian coordinates for example. The output is often a classification estimate of the
input, but in other architectures may be another data structure (another image or sound
bite for instance). We first consider classifying system states via an FNN, sketched in
Figure 2.1(a).

The FNN, recognized as the prototypical neural network, can be easily visualized as
stages of networked layers of nodes. These nodes, or “perceptrons”, are inspired by the
neuron model of the brain and are the building blocks of many neural networks, and
though individually quite simple, complex functions can be represented by networking
many perceptrons together [79]. As in Figure 2.1(a), the FNN has input, hidden, and



Figure 2.1: Schematics of (a) an FNN with two hidden layers and the sequence (z;, y;, 0;) as
input, where I = 1,2,...N, and (b) an RNN (unrolled) with the sequence z; (I = 1,2,...N)
as the input to the first LSTM block, y; (I = 1,2,...N) to the second LSTM block, and 6,
(I =1,2,...N) to the third LSTM block. LSTM blocks also have LSTM-LSTM connections.
The final output of the two networks are v, vy, ..., 1,, where n is adjusted according to the
type of features to be identified.
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output layers. Input and output layers are single layers, but hidden layers most often
consist of multiple layers of nodes. In an FNN, the nodes of one layer strictly only influence
nodes of the immediately next layer (moving left-to-right). There is no communication
between nodes of the same layer. When processing an input, each node carries a single
value or “activation”, and each arrow (see Figure 2.1(a)) represents a function call on this
activation for input to the next node. Going from input to output, data is repeatedly
manipulated through function calls at each layer, with each containing their own network
parameters—usually referred to as weights and biases. In effect, neural networks are
function approximators, approximating the true relationship between input and output.
Indeed, as mentioned in Section 5.2.1 on the Universal Approximation Theorem, FNNs
can approximate any continuous function to arbitrary accuracy with only a single layer,
limited by computer resources.

Returning to the explanation of FNNs, mathematically speaking, for a length N input
x, we proceed to the first hidden layer by the matrix multiplication z = Wx, where W
is the n, x N matrix of weights that transforms the N input nodes into the n;, nodes in
the first hidden layer. On an aside, this is considered a fully connected network since each
node has a connection to every node in the layer before it. The activation across a given
layer, a, is actually an element-wise, transformed z by means of an activation function,
g(z). The choice of activation function is up to the user, though popular choices are the
sigmoid and tanh functions (Figure 2.4). They introduce non-linearity to the model being
approximated, which is essential for approximating non-linear functions.

By varying network parameters the final output is consequently affected, since it is
the product of successive iterations of the matrix multiplication and activation process
described above. Training a network then involves optimizing the network’s performance
in producing the desirable output with respect to these network parameters. Within one
“epoch” the network is trained once on the selected dataset, and in general multiple epochs
are needed for a network to converge to an acceptable performance.

2.1 Supervised training and accuracy testing

As shown in Figure 2.1, the output layers of both networks are (vq, vy, ..., v,), each element
being a number in the range (0,1) and >_; ; = 1 by the normalization (softmax function)
of the final output. Hence v; may be viewed as the confidence or probability that the tested

image is in state ¢. For a vector of unnormalized outputs (v, v3, - ,v}), softmax is the
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operation
V*

Zj e"s
When training to learn the DTUX states, four output nodes (n = 4) are needed, and in
our I-N transition study (Appendix A), n = 2 for isotropic or nematic.

(2.1)

v

In supervised training, each image carries an identifier a for the known state, and
correspondingly the expected values (v{, 15, ..., ). To train the network on the I-N states,
for example, o can be I or N, and

(Vlla VQI) = (LO)?

(V{V> Vév) = (O’ 1)'

To train the network for the DTUX states, a can be D, T, U, or X, and

D D D D
(V17V27V37V4

) = (1,0,0,0),
) = (0,1,0,0),
(' vy v ) = (0,0,1,0),
) =( )

X X X X
(vi vy, v3 .1 0,0,0,1).

T T T T
(V17V27V37V4

In the process of supervised training, we feed K configuration files to a network. The jth
file, where j = 1,2, ..., K, carries a known identifier o, determined by human observation.
Its data is then fed into the network to produce an output (ij ), uéj ) ey V,(Lj)), whose values
depend on the network parameters, known as weights and biases. We attempt to match
this output to the identifier «; listed above. This is done by minimizing the cross entropy

cost function,
n

K
S= LS i l0g ), (2.2)
K==
with respect to the network parameters. For example, the elementary, though still plenty
powerful, technique gradient descent modifies network parameters, W, along the negative
gradient —0S/0W, as, after all, v and hence S are functions of W As one can see, in
an idealized scenario when the network is perfectly trained, S = 0, whereas an untrained
network has S > 0. Network parameters are updated multiple times per epoch. Plotting .S
as a function of epoch step can indicate how fast a network is learning (showing a decreasing
S) or if the learning is not going well (showing a plateau after multiple epochs).

A separate set of test configuration data files, not used in the training, can benchmark
the degree of learning during the training by providing a measurement known as the
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accuracy A. A total of k such data files are used and the jth file also carries a known
identifier o;. We consider an image correctly classified if the node with the maximum
output across (ij), I/éj), ..., v9)) is the same as the output node with value 1 in (117, 57, ..., n?).
For example, if testing on an image with label a;; = 7" the NN output is (0.03,0.91, 0.03, 0.03),
this would be a correct classification and A; = 1 is assigned. Otherwise, A; = 0. Averaged

over all k test files, a mean accuracy A can be defined

A }{ZAj. (2.3)

Jj=1

2.2 Learning topological defects

FNNs are able to accomplish a variety of image recognition tasks [32], a frequent benchmark
test being the MNIST hand-written digit data set [7]. Figure 2.2(a) shows one such digit
from the MNIST set. Increasing the size and number of layers in an FNN allows more
complex features to be learned. A shallow network may learn edges, but a deeper network
could identify eyes, for instance. CNNs are much like FNNs but with one crucial difference.
Where an FNN has a unique connection to each input channel, a CNN only trains a very
small sweeper of weights that sweep across the entire image for input to the next layer. This
has the two-fold benefit of much fewer weights, and importantly, a translational invariance
to the response of features in the image [55]. CNNs have thus been a natural choice for
condensed matter research, and rightly so.

In an ordered domain, particles, molecules, etc., exhibit spatial correlations in long
range. Two typical examples are shown in Figure 2.2. In the ferromagnetic state, within
an ordered domain spins align in one direction, as illustrated in Figure 2.2(b). In the
nematic liquid crystal state, within an ordered domain molecular directions are all aligned
towards a common angle (Figure 2.2(c)). Here, an “image” is not a graphic image in the
conventional sense. Rather, it is represented by the system configuration data containing
physical features of each molecule (values of spins, angles specifying the orientations, etc.).

These ordered states, on the other hand, sometimes have topological defects in their
substantially ordered background. Different patterns can be characterized by different ways
in which the local order parameters around the defects couple with the locations of the
defects. Typically, developing a characterization procedure to categorize these defects is a
challenging task, but we have seen that FNNs and CNNs are more than capable. However,
they are not readily appropriate for our off-lattice system.
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Figure 2.2: (a)-(d) Digitization of a two-dimensional hand-written image, Ising model,
nematic state, and coordinates for a rod-like molecule, as well as (e)-(h) example
configurations of different defect states generated by Monte Carlo. The parameters used
to generate these example configurations are [NV, a/L] = [784,6.32]. The defect state in (e)
has a diagonal (D) pattern, and the nematic textures in (f)-(h) resemble the tilted letter
T, letter U, and letter X. The yellow and blue circles mark the defect locations of —1 and
—1/2 winding numbers, respectively.

13



A typical configuration file generated from the computer simulations has a single-line
data structure [l,x;,y;,6;] for a given molecule, where [ is the label of a molecule, and
[1, 1, 0] specify its Cartesian coordinates and angular orientation (see Figure 2.2(d)).
Because the molecules are allowed to randomly move in space, the label of a molecule,
[, has no relationship at all with the spatial coordinates (see Figure 2.2(c)). This can
be contrasted with a simulated data file produced by a lattice model. In such a case,
positional information is already embedded in the order in which molecules are labeled
(one naturally reads the data in the same order every time), as demonstrated by the arrow
in Figure 2.2(b). An NN that attempts to capture position-correlated patterns is thus
implicitly aided from this direct mapping of physical position to the ordering of data in a
lattice model.

Hence, we must solve how to capture the main features in a topological-defect state
when the correlation between defect positions and the physical properties around them is
the vital property. As it turns out, an FNN or CNN finds correlation between the order of
appearance of data in the input and the physical features to be correlated. In an off-lattice
model, index [ has no correlation with [z, y;,6;]. Even if we use z;,y; as an input together
with 6;, an FNN cannot find the correlation between [ and the input features [z, v, 6;].
This is discussed in Section 5.2.

Can the relationship between [ and (z;,y;) be re-connected in a way that can be easily
used by an FNN for an off-lattice dataset? Our first approach is a course-graining method
which cuts the original simulation box into m x m equally sized cells where m = 1,2,4,8....
The NN input is then ordered by cell index M, with the information inside each cell
unordered. By such means, it is as though the system is approximated to a lattice form,
with increasing accuracy as the cells become smaller and more numerous. An FNN can
then begin to correlate physical features with position and identify topological defects with
appropriate cell size.

2.2.1 DTUX topologies

The subject LC system has been the focus of recent theoretical and experimental studies
due to its practical relevance [22, 31, 57, 85] and interesting theoretical aspects [13, 31,

, 61, 77, 90, |. For example, the possible defect states were recently studied in-
depth in terms of the continuum Landau-de Gennes model [77] and the Onsager model
[102], producing a comparable ensemble of stable and metastable states as the result of
minimizing the free energies in these different models.

The location of the nematic defect points are indicated in Figure 2.2(e)-(h) by colored
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circles. Here we see only two types of defects: those with winding number —1/2 (blue)
and —1 (yellow). Although one could argue that the defects are point-like local objects, in
a finite system, the overall nematic ordering in separate bulk areas are strongly connected
with these local features. Each topology has a unique arrangement of the defect locations
and overall nematic texture. Robinson et al. [77] also provide an in-depth look and
comparison using several numerical methods of this system (off-lattice, on-lattice, and
continuum). From the Landau-de Gennes framework, they found many of the same states
the Onsager model produced by Yao, Zhang, and Chen [102].

Returning to the classic example of identifying hand-written numerical digits from 0
to 9, we make a comparison between the darkened pixels in this case with the topological
defects in our confined liquid crystal system. In a sense, what a neural network looks for
is the feature correlation of the spatial position of the darkened pixels in these images. In
Appendix B, we re-enforce some of our concepts mentioned above, by treating the digit
recognition problem as a defect state identification problem.

2.3 Preparation of the training and testing data

In total, N = 784 rod-like molecules of length L are confined to a square box of dimensions
a X a. Mutual crossing of rods and crossing of box boundaries by rods are forbidden to
simulate the excluded-volume interactions.

One can show that the parameter that drives the phase transition is the reduced density,

NIL?

5

p (2.4)

a

Above the critical value p* the system is in a nematic state with directional ordering and
below the critical value the system is in an isotropic state with random orientations (except
those near the walls). For system sizes of N = 20%, N = 24% and N = 282, our FNN study
(Appendix A) suggests p* = 6.71 £ 0.25, 6.95 4+ 0.25, and 7.08 £ 0.25, respectively. Such
values are comparable to those from previous numerical and experimental studies, which
suggest values of p* of ~ 7.0 [30], 6.5 [23], and 6 — 9 [32]; the mean-field theory calculation
of p* = 3w /2L? &~ 4.71 based on the Onsager theory is a known under-estimate [16, 47].

Returning to defect topologies, within the nematic state the system can display a stable
D-defect pattern, or can be trapped in the free energy minima corresponding to one of the
X-, T-, or U-defect patterns, due to the finite confinement effects. The nature of the
metastability has been recently addressed extensively in References [13, 22, 31, 34, 57, 61,
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, 90]. In order to explore the best machine learning techniques in identifying the defect
states, we established a database from the MC simulations at a fixed p = 19.63 (produced
by setting a = 6.32L). The relatively high p enables the trapping of the metastable defect
patterns during simulation runs. In total, 4400 independent configurational snapshots
were collected for each of the defect states (see Section 5.1). Of these, 400 snapshots were
reserved for the testing dataset.

For each defect type in Figs. 2.2(e)-(h), 4000 snapshots were used for training. A typical
defect pattern can be rotated by a 7/2-, m-, or 37/2-angle and maintains its topological
structure, because of the square boundary geometry. Since these 4000 snapshots were
taken from MC simulations, they already contained all different orientations of the defect
pattern naturally. To ensure that all four orientations of the square boundary are indeed
equally treated, we further rotated snapshots by these angles. The raw dataset of each
snapshot contained coordinate data ordered by the label of molecules, [, and followed by
[, y1,0;] (see Figure 2.2(d)), where [ = 1,2,..., N. The treatment differs from the pixel
approach of a digital image, for which a pixel grid system would be established.

2.4 Recurrent Neural Networks

A typical structure of the recurrent neutral network is represented in Figure 2.1(b). The
crux of this RNN is the long short-term memory (LSTM) module [39]. An RNN can
be made with different types of modules, but the LSTM is a popular choice and is well-
sufficient for this work. Except for the first block, an LSTM cell has two input channels:
an LSTM-external connection to new raw input data from the system to be studied, and
an LSTM-LSTM connection, taking its own output and internal weights (also called its
cell state) from the previous step as input, hence the recurrent aspect. The cell state of
the LSTM enables the correlation of sequential input because it acts as a memory space
in the model that persists across time, modifying its weights based on current and past
inputs. Schematically, it helps to represent this as a series of LSTM cells for each raw data
input. To complete the RNN, a single layer of perceptrons is appended to act as a final
interpretive layer of the LSTM output, compressing the large LSTM output to the smaller
prediction output (11, va, ..., Vp).

An LSTM takes raw data at each iteration of input, and considers it together with its
own previous state simultaneously. That is, an LSTM establishes data correlations with
those fed into earlier cell states through LSTM-LSTM connections. In its composition,
like an FNN, an RNN (including the LSTM) is still merely an ensemble of floating-point
network parameters. The logic of supervised training is the same here as with an FNN:
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determination of the network parameters through optimization of a cost function. The
RNN can be coded in terms of Tensorflow [1] libraries efficiently.

LSTM units have several working parts, schematically displayed in Figure 2.3. The
memory ability is thanks to the LSTM’s “cell state” C;. The cell state is updated at each
iteration t to account for new information received I;. In defect learning, the inputs are
the three feature vectors as in Figure 2.1, I = x, I; =y, and Iy = 6.

Inside the cell, x and + indicate element-wise multiplication and addition. There are
also three “gates” made of sigmoid, o, and tanh operations. The sigmoid function (Figure
2.4) can be used as a gate since it suppresses negative inputs and allows positive inputs,
and the tanh function is used to help normalize and regulate values by compressing input
to the range (—1,1). In Figure 2.3, each green bubble marks a set of trainable network
weights and biases: W1, by, Wa,, ba,, etc.

The first gate, marked by the blue 1, serves as a sort of “forgetting” layer. Based on
the input and previous output (concatenated together), some cell state units are turned
off or left alone (or somewhere in between) from the element-wise sigmoid multiplication.
Mathematically,

C’El—)l =Cio1x0 (Wy - [It,he 1]+ bq).

It is considered a forgetting layer because it does not add new information to the cell state
but drops elements. The next layers, 2a and 2b, handle that.

The sigmoid gate of 2a chooses which information to add to the cell state, with the
tanh gate controlling their normalized magnitudes.

C‘E2—)1 =0 (Waa - [It, he_q] 4+ baa) * tanh (Way, - [Ig, he_1] + bay) .

Adding the cell update C,(;z_)l to the forgotten cell state C,El_)l provides the new cell state
C, — C(l) 0(2)
t t—1 + t—1-

Finally, a third sigmoid gate decides what variables to output based on hy_; and I,
and multiplies this by the (compressed) cell state:

hy = tanh(Cy) x 0 (W3 - [I, hy 1] + bs).
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Figure 2.3: LSTM unit schematic. Output hy is generated from the integration of its cell
state C;_1, previous output hy_1, and input I;. The details on interior workings are given
in text.
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Figure 2.4: tanh(z) and sigmoid function o(x) =
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Chapter 3

Unsupervised Machine Learning of
Defects with PCA

3.1 Principal Component Analysis

In this section we explore Principal Component Analysis (PCA) as a technique for detecting
defect regions. PCA is a multipurpose statistical method that performs a dimension
reduction on a dataset, while simultaneously this transformation results in a form that
better distinguishes features in the data. It falls into the category of unsupervised learning
since it reveals features in the data without any label-directed goals.

The goal of PCA, in this context, is to find a transformation on our dataset that
redistributes it in a way that highlights certain features of the data. This transformed
set may then be amenable to classification, either by discrete clustering or sorting along
a continuum. To do so, PCA determines the vectors, or “components”, which maximize
variance in a dataset. Components are ordered based on their associated variance. Once
the first component is determined, subsequent components are found by subtracting out
all previous components and finding the maximal variance of the result.

PCA has had some, though limited, usage in condensed matter. We will go into the
details of two relevant examples in Section 3.2. In these examples, and in our own use,
each data point belongs to an R™ dimension space, where each dimension of m corresponds
to an element (e.g. a molecule or spinor) of a system sample. For example, in the work
of Wang [06], an RY data point represented a complete Ising configuration of N spins.
Each dimension corresponded to a unique spin coordinate. In this way, configurations that
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are similar to each other occupy a similar location in this N-dimensional Euclidean space.
PCA can then be used as a tool view the distribution of configuration data points, and
subsequently create a classification rule to differentiates configurations. Interestingly, in
this Ising example, when applied to a dataset of Ising configurations generated in and
around the ferromagnetic critical temperature, PCA correctly found that the average
magnetization was the best way to classify data points.

One might wonder: Is variance really proportional to the significance of a feature? To
this, we must recognize that the significance of a feature is subjective. Really, the question
should be reversed: Is what I am placing significance on discoverable by the variance of my
dataset? In support of variance equating importance, it helps to note that a dimension with
very low variance is very unimportant-scrapping it would minimally effect the information
within the data.

To provide a mathematical backing and further explanation, we’ll follow the outline
offered by Johnathan Shlens [31]. We let an m X n matrix X represent our dataset of m
observations across n dimensions. The goal of PCA is to find the n x k, k < n matrix W
that best transforms our dataset to a new set of orthogonal axes, or “principal components”:

Y = XW.

The condition k < n is applied since one need not project onto n components, and indeed
would in general not want to, as one of the greatest benefits of this method is that often
the first few components capture all the necessary information. The m x k matrix Y then
is our dataset projected onto this new set of axes. The best axes of course are not arbitrary,
but are such that they capture the maximal variance within the original dataset, with the
variance monotonically decreasing with increasing axis index. In other words, the first
PCA axis captures the largest variance, the second axis captures the next largest variance,
and so on. The column vectors w; of W are in fact the unit vectors that describe the
orientation of these new axes in the original n-dimensional space, and hence describe how
each observation in X projects onto them.

To begin, we note the covariance matrix of X (normalized to zero-mean and unit
variance)

1
Cx = —X'X
m

Normalizing puts every feature on the same playing field. The diagonal elements of Cx are
the variances of the n variables, and the off-diagonal elements are their covariances. We
note that high covariances indicate a redundancy in our dataset, and we wish to minimize
these.
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We can now define a goal for optimizing W: to diagonalize the covariance matrix
Cy of our transformed dataset. Such a matrix minimizes redundancy across variables and
maximizes variance. There are multiple ways to diagonalize Cy, but PCA opts for a simple
route by having PCA components form an orthonormal basis. To find W we perform an
eigendecomposition on Cy and find that the PCA components are in fact the eigenvectors
of Cx. We begin by writing Cy in terms of W:

Cy = Lyry
m
1
= —(W'X")(XW
—(WIXT)(XW)
1
- W (- XTX) W
m
= WICxW. (3.1)

We may draw on the property that any symmetric matrix A is diagonalizable, A = SDST,
for diagonal eigenvalue matrix D and orthonormal eigenvector matrix S. If we now define
W as this matrix of eigenvectors for Cx (since Cx is symmetric), we have

Cy = W/(WDWHW
= (W'W)D(W'W)
pu— D,

where we also use the orthonormality of W. The eigenvalues, A\, are also called the
“explained variance” in the context of PCA. Their normalized values, \j = A/ A,
or explained variance ratios (EVRs), are used as a metric as to the importance of each
axis and are equivalent to the fraction of variance in the dataset captured by component
[. Values close to 1 indicate more significance and those closer to 0 being less significant.
Generally, one expects only a small number of dimensions to be significant and will see
a noticeable drop in A\* indicating where component axes may be ignored. We can verify
that our conditions are met:

e By Eq. 3.1, the ¢th diagonalized variance of Cy is the variance of X along the ith
principal component.

e W indeed diagonalizes Cy.

Going forward, we will index PCA components starting from 1. As usual, vectors will
be bold lower-case, and matrices will be bold upper-case. So the first, most significant
component would be wj.
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3.2 PCA learning of order parameters

Recently, PCA has seen some fascinating use on condensed matter systems. In 2016, Wang
[96], with a dataset of simulated Ising spin systems (each observation was an instance of
a system and each spin location was a feature dimension of X), PCA could locate phase
transitions in both the standard Ising model, but also the conserved order parameter
(COP) Ising model. In the standard Ising model, reduction showed that only the first
PCA component was significant for capturing the distinguishing information of the system.
Indeed, the corresponding eigenvector wy; was simply a constant function, meaning that
it was in fact the magnetization order parameter, and cluster analysis of the data along
this component (although it was also visually evident) showed two clusters corresponding
to the high and low temperature states. The author took things a step further with
the COP model because each system had a net-zero magnetization, so the magnetization
order parameter would not suffice and PCA would need to find other indicators of the
phase transition. Overcoming this restriction, PCA found that four components were all
that was necessary and together could form the structure factor indicative of the phase
transition.

In 2018, Jadrich, Lindquist, and Truskett [15] applied PCA to detect phase transitions of
multiple off-lattice systems, including the fluid-nematic transition of a liquid crystal system
much like the one of focus here (although with ellipsoid molecules as opposed to rod-like).
Their methods were similar to those just described, but instead of each observation being
a whole system, they were smaller local samples centered on random probe molecules (e.g.
the orientations of 20 nearest neighbours). Additionally, the off-lattice nature carried with
it some ambiguity as to the structuring/ordering of the nearest neighbours that formed the
X dimensions. Using an intuitive distance-to-probe ordering, they found again only the
first PCA component was needed to learn the transition, and that it modeled the classical
order parameter used to locate the transition.

What is crucial to note here, and what is so exceptional about this method, is that,
apart from the raw particle information (location, spin, orientation, etc.), it requires no
additional information about each system such as Hamiltonians or interaction potentials.
On top of this, PCA does not cluster observations in some black-box style, but discovers
the precise order parameters that are classically used to indicate the phase change.
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Figure 3.1: (a)-(d) Examples of initialized disclinations with winding numbers —1, —1/2,
+1/2, and +1 respectively. In proceeding counter-clockwise around a defect, winding
polarity indicates the direction of rotation about the rod axis, and magnitude indicates
how many rotations about this axis. Coloured dots are included as a visual aid. (e)-(h)
Below, uncrossed samples of the above disclinations. Such samples would be included in
the PCA dataset.
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3.3 PCA learning of disclinations

We now put forth the questions: Can PCA use nearest neighbour information of our LC
system to identify defects within nematic samples? Can it go beyond that and learn
which type of defect? Figure 3.1 shows the first four winding disclinations that are simple
and complete in the sense that a +k7/2 rotation about the rod axis occurs after a full
precession. The following discusses these questions, with results on the endeavor presented
in Section 6.

The results of Jadrich et al. [15] are certainly encouraging, though their objective was
somewhat different. PCA showed that a long-range angular correlation appeared signaling
the nematic phase. For this they used every 10" nearest neighbour. Here we are concerned
with detailed local features. In theory, the nematic vs. non-nematic states should be easily
differentiable by the bulk angular order. For a given probe i (either a rod or a point
in space), we may construct a feature vector x(¥ = [xgi),xgi), .., 2W] (the i*" row of X)
of some physical quantity (or quantities) x. Rod orientation relative to the probe rod,
6;;, or, to account for the rod symmetry, the transformed cos(26;;) may be sufficient, but
the probe rod orientation is highly variable within a characteristic defect orientation, so
defects may appear significantly different in their feature vectors. A counter to this is to
take neighbouring rod orientations with respect to a local nematic director « instead.

A random ordering of neighbours may work in detecting nematic vs. defect states, but
should not be expected to work for the more detailed defect type detection. In a perfectly
shaped defect, a maximal 6,; or frequency of certain angles may signal a defect type, but
the Monte Carlo defect samples would have too much overlap/similarity for a randomly
ordered feature vector. Thus, in the same way that humans visually identify winding
numbers, a feature vector that is ordered by a counter-clockwise precession around the
defect center should be a more effective approach. Starting the precession from the «
director is also important for a consistent feature vector representation.

Using rods as probes introduces a spatial bias to the probing. For instance, an ideal
defect center contains no rods, so using rod probes biases the probe centers to be on the
edges of defects. We thus use an evenly spaced lattice probe array of 20 x 20 probes,
and assemble nearest neighbours based on these probe centers. After collecting neighbours
around a given probe, the center of mass is used as the point of rotation for ordering
neighbours in non-random feature vectors.

Three different feature construction methods were tested: Random, Winding Alignment
(WA), and Winding Difference (WD). Their results provide an interesting insight into the
problem at hand.
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Random: In the Random method, x(® is constructed by a random ordering of neighbours,
and :cy) = cos(20},). This method captures any degree of alignment among neighbours if
present, but loses positional ordering information.

Winding Difference: In the WD method, index j is ordered by occurrence in a
counterclockwise precession about the defect center of mass and starting from the direction
«. The feature value of each neighbour is an adjusted relative orientation, SBE»Z) = Oja.
The adjusted value is a correction of km,k € 7Z, due to the rod symmetry. This rod
adjustment can actually be problematic. “False rotations” may occur in which a few rods
may increase/decrease the accumulated winding difference by a large amount and signal
a rotation, when really those rods are outliers from the sample pattern. This problem is
looked at in more depth in Section 6.2. However, in well-behaved samples, this method
gives all the necessary information for characterizing defects: rod orientation as a function

of the precession around the defect.

Winding Alignment: This method bears the same ordering of index j around the
defect as the WD method, but uses a different feature value: xg»z) = cos(20},). Unlike the
WD method, which gauges the difference in rod orientation, the WA method avoids the
symmetry issue by measuring neighbour j’s alignment with o(?. This method sacrifices
winding polarity for overcoming the value adjusting problem in the WD method.

When calculating o, we use a discretized version of the method outlined in Section
4.3 that produces the @-matrix in equation 4.12:

Qon = 2 <Tnn(x,y) —Sm(:r;,y).>

where S,,,, and T, are averaged over N,, neighbours,

1
Spn = I > cos(26;)

nno
1
Tnn = Nnn ;Sin(er),

with 6; simply being rod orientation about the z-axis. By diagonalizing @), the leading
eigenvalue is equivalent to the order parameter derived in Eq. 4.15, and its corresponding
eigenvector is the nematic director a® [1, 14].
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Chapter 4

Computational Methods and Order
in Liquid Crystals

Two main approaches for simulating liquid crystals are molecular dynamic (MD) and
continuum phenomenological models. MD simulations are generally more computationally
intensive, but can capture finer details at the microscopic level. Importantly, they also
simulate the dynamic evolution of the system, unlike static continuum models. Both
approaches are used to search for stable solutions of confined LCs. In the following, we will
first detail the Monte Carlo MD approach used here for generating liquid crystal states.
Then we will go over the Onsager continuum model used by Yao et al. [102] to produce
these DTUX topological solutions. Lastly, we will discuss the concept of order in liquid
crystals as it is an important concept central to topological states and defects.

4.1 Monte Carlo molecular dynamics

The Monte Carlo technique has been a widespread method for simulating liquid crystals
and molecular dynamics at large. With credit generally awarded to John von Neumann,
Stanislaw Ulam, and Nicholas Metropolis, the method was devised in the late 1940s as
part of the Second World War effort by studying the diffusion of neutrons in fissionable
material ([2] pg. 147). The principle is to treat a determinate mathematical problem with
a probabilistic analogue and solve it by stochastic sampling. More specifically, we use the
Metropolis Monte Carlo method published in 1953 by Metropolis et al. [64].

The method aims to explore the state space, while also tending towards states of higher
statistical probability. We let ¢ count the number of “Monte Carlo Sweeps” (MCSs), where
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one MCS attempts N random movements of molecules, either by iterating over the molecule
list or randomly selecting N molecules, though Hastings [33] found iterating over the list
equally valid with the benefit of being that bit simpler. We also let T'(¢) represent the
system state at time step ¢, with I'(0) being the initial state. In the case of our liquid
crystal system of hard rods, a random rod movement would mean

ri(t+1) =r;(t)+ or
0;(t +1) = 0;(t) + 06 (4.1)

for rod label 4, and small spatial and angular displacements dr and 66. In the Metropolis
algorithm, we must create a rule for the acceptance or rejection of a proposed move. We
start by considering abstractly the state energy at time ¢, FE(t). The first condition in our
rule is that if E(t+1) < E(t), then this is energetically favourable and we accept the move
(postponing the calculation of E(t) for now). In the case of E(t + 1) > E(t) we do not
immediately reject this. Instead we consider the Boltzmann factor, that is the probability
of the system being in state I'(¢t + 1):

1
pr(t+1) = EefE(tH)/kBT (4.2)

with the canonical partition function Z. Further, we may compare the probability of this
state with I'(¢)

pF(t 4 1) 67E(t+1)/kBT

pr(t) e BW/ksT
— o (BU+)—EW®)/kpT _ ,~AE/kpT (4.3)

We then base the decision of acceptance/rejection off this relative probability. To do
so, a random number ¢ € [0, 1] is generated, and compared with the probability ratio
pr(t +1)/pr(t). The rule is to accept the proposed move if ¢ < pr(t + 1)/pr(t).

Figure 4.1 shows the chances of acceptance/rejection of a move for a given AE. Moves
that are energetically costly always have a finite chance of being accepted, though it is
exponentially unlikely as AFE increases. This feature is essential for the simulation to
explore the phase space properly. Notice also that the acceptance approaches unity as
AFE — 0 as we expect.

In calculating AE/kgT', we needn’t calculate the total system energies E(t) and E(t 4 1),
rather since we only need their difference we simply calculate the energy change associated
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Figure 4.1: Probability ratio of Eq. 4.3 showing chances of acceptance or rejection upon
generating ¢ for a given AF.

with the proposed move. As described in Allen & Tildesley [2] (pg. 156), the change in
potential energy is calculated by summing over the interaction energies, ¢;;, between our
selected molecule i and the other relevant molecules 7,

This also has the advantage that interactions beyond a certain cutoff distance for both
molecular positions, such as from a mean field, cancel each other out.

Returning to our liquid crystal model of steric rods, the situation gains a simplification.
Recall that the interaction potential of neighbouring molecules is approximated as a delta
function: it is zero everywhere except for if there is an overlap at which point it is infinite.
Thus, when a proposed move causes an overlap this results in A F = 400, and conversely
if the move grants no overlap, the system perceives no change in potential energy and
A E = 0. As these are the only two scenarios, we may circumnavigate the entire ¢
generation and comparison phase, with an overlap having no probability of success and a
non-overlap always being accepted.

It is up to the simulator to determine which magnitudes of ér and 66 from Eq. 4.1 work
best for their system. There is no theoretic solution for an optimal choice ([2] pg. 159).
Generally, the smaller a degree of movement, the more likely a move is to be accepted.
However, there is an inverse consequence in that the system generally explores the phase
space more slowly. As briefly discussed in Allen & Tildesley ([2] pg. 159), often simulators
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will choose a failure rate of around 0.5, but a study by Wood & Jacobson [99] found
0.9 maximized the root-mean-square displacement of atoms as a function of computer
time. Allen & Tildesly soundly point out though, this study was carried out on a first
generation computer (1959), with 32 hard spheres at a particular packing fraction, and
there is no reason to believe that their optimum is universal, or even that root-mean-
square displacement is always the desired metric for phase space exploration.

Our Monte Carlo simulated system contained N rigid rods, each having length L,
confined to a 2D square area of side-length a. In 2D, a single rod can be represented by
a straight line, described by the center-of-mass coordinates, [x,y], and the direction that
the rod makes with respect to the x-axis, 8. No rod thickness is considered here, as in a
2D space, two infinitesimally thin rods already interact with each other by an excluded
“volume”, namely, an excluded area. A successfully generated configuration contains the
[, x1, 1, 0;] coordinates of all N rod-like molecules, line by line for [ = 1,2,3...N. The wall-
confinement effect is enforced by disallowing the intersection of a rod-like molecule with
the wall boundaries. Although the macrostate of a system is specified by three parameters
N, L, and a, only two are relevant, N, and the ratio L/a. The magnitudes of ér and &6
from Eq. 4.1 were determined by trial and error to maintain acceptance rates close to 50%
to allow sufficient system evolution. To speed up the simulation, the cell-index technique
[2] (pg. 195) was incorporated in the algorithm. For this technique, we evenly divided the
domain into a grid of square cells, where the edge length of each cell is no smaller than
a rod length. Each rod also has a property that keeps track of which cell it is in (based
on its center of mass). When checking the overlap with neighbouring rods, we only need
to check rods in neighbouring cells because there can be no rod overlap between rods that
have centers more than a rod length L away. This speeds up overlap calculations since we
only need to check neighbouring cells.

4.1.1 At the computational crossroads

Confined LC topologies have been well documented and observed both experimentally
[22, 31, 57, 85, 90] and theoretically through various models [13, 34, 57, 61, 77, 90, ].
On the simulation front, unifying the results of off-lattice MD models and continuum
mathematical models is a sound goal. As the recent work of Robinson et al. [77] shows,
there is still progress to be made there. In their work, they provide a close look at
how MD and continuum methods compare on a square-confined LC. They looked to

replicate experimental states found by Tsakonas et al. [90] (which match the D and U
states discussed here) using Hard Gaussian Overlap (HGO) [3] and Gay-Berne (GB) [37]
off-lattice, molecular level models, and a continuum Landau-de Gennes model [241]. For
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example, the authors found that it can be tricky to produce higher energy, metastable
states with MD methods, especially states in extreme or narrow parameter fields. In their
study, both off-lattice methods failed to produce the metastable U state.

4.2 Omnsager continuum model

In studying LCs there are three main continuum theories which use different order parameters
to capture the anisotropic behaviour: the Oseen-Frank model, the Onsager model, and the
Landau-de Gennes model. Going through each continuum model would be exhausting
and divergent from the goal of this work. However, the Onsager model, being the most
appropriate for hard rod molecules, was the choice of Yao, Zhang, and Chen [102] in the
preliminary work which produced the DTUX solutions as energy minima. It is fitting to
outline its framework and see how the DTUX states are arrived at.

Put forth by Lars Onsager in 1949 [69], the model has been a popular choice in
describing the interaction of anisotropic colloidal particles. Here we focus our attention
on the model as it applies to confined rod molecules under no external potential. Via
this model we can gain insight into system properties, in particular the I-N transition and
solving for stable configurations.

To begin, we define a density distribution p(r,u) where r represents the location of a
given rod’s center, and u its orientation. This density distribution is normalized such that
[ p(r,;u)drdu = N. The Onsager model then prescribes a free energy functional

1
SF = /p(r,u) In [Lgp(r,u)} drdu + 5 /p(r, ww(r,u;r’', u)p(r’,u')drdudr’du’; (4.5)

where 5 = 1/kgT for Boltzmann constant kg and temperature 7. The first term relates to
the positional and orientational entropies. Spatial entropy prefers a uniform distribution
of particles, and orientational entropy prefers a uniform distribution of angles. The second
term emerges from the second-virial approximation and contains the interaction effects
between molecules, represented by the kernel function w(r,u;r'u’). Via a Mayer cluster
expansion,

w(r, w ') = 1— exp{— (e, w ', w)}, (4.6)
where v(r, u;r'u’) is our non-overlapping interaction potential

+o00  if rods gverlap (4.7)
0 otherwise

vir,u;r',u’) = {
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This means w(r, u;r’,u’) = 1 if rods overlap, increasing F’, and 0 if not. The interaction
integral in 4.5 can be simplified for a spatially homogeneous system (with thin rods of high
aspect ratio) to

/w(r,u;r’,u’)dr’ = L*lu x v/|, (4.8)

(in two dimensions). It is clear that parallel rods optimize this orientation term. However,
at the same time the entropy term is pushing for a uniform spread of angles and positions.
From the competition of these terms then emerges the isotropic-nematic transition.

As discussed in Chen (2016) [11] (pg. 25), truncating 4.5 at the second virial term
is valid in three dimensions—this was already resolved in Onsager’s original work where
he argued there was no need for higher-order terms for small thin-rod systems—but is
less appropriate in two dimensions where the higher-order terms are closer to the second
order magnitude. This does render the equation for the free energy quantitatively less
accurate, but importantly the principal physics are still captured in this form. Indeed,
this underestimates the critical density, p., of the I-N transition at NL?/A = 37/2 ~ 4.71.
Values from previous numerical studies suggest p. ~ 7.0 [30], 6.5 [23]; or in a recent
macro-scale experiment of confined vibrated needles, 6 — 9 [32].

In their separate works, Chen (2013) [13] and Yao et al. [102] determine numerical
solutions from a mathematically equivalent self-consistent field theory model. This model
introduces a mean-field acting on rod segments and enacts Euler’s forward scheme on a
propagator of a modified diffusion equation to carry out the computation and locate energy
minima. Additionally, special care was taken in incorporating the hard-wall boundary
effects. This derivation is more involved and not essential for our purposes.

The two free phenomenological system parameters are the reduced density p* = N L?/a?
and L/a [11] (Yao [102] introduce a third quantity, b/a, for rectangular confinements with
width b). The ratio L/a is really a finite size scaling parameter, and the reduced density
essentially determines the system topology as either isotropic or nematic, and which (meta-
) stable topologies are realizable. Phase diagrams as functions of these three parameters
are shown in Figure 4.2. We can see that regardless of b/a and L/a, a low enough reduced
density will produce an isotropic state, and above which the specific nematic topology
depends on all three parameters. The L phase is another topology, but is not considered
in this work.
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Figure 4.2: Phase diagrams of the rectangular confined rod system, reproduced with
permission from Yao et al. [102]. Here, py = N/a? and the dashed line indicates a second-
order phase transition.
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4.3 Orientational order

Naturally, of great interest is a quantitative way to mark whether a system is nematic or
isotropic. That is, to mark when the higher symmetry of the isotropic phase is broken
in the nematic phase. Qualitatively we describe this less symmetric nematic phase as
having more order. The task then is to create a quantitative order parameter that, for
example, vanishes to zero in the isotropic phase and approaches unity in the nematic
phase. In a ferromagnetic system, for instance, the magnetization is conveniently readily an
appropriate order parameter. However, conjuring one for liquid crystals is more complicated.

We proceed with our derivation in three dimensions, referencing Andrienko’s LC summary
[1], and then consider the two dimensional case. Naively one may opt for a directional
average but since rods have a head-tail symmetry the average of u will cancel out. The
next invariant is then the tensor

1 S w1

i

in d dimensions, where o and 3 represent the Cartesian variables x,y and z, d,4 is the
Kronecker delta, and the summation is a thermal average over a small but macroscopic
volume. This Q)-tensor has several useful properties:

e [t is symmetric since ug)ug) = ug)ug)-

e [t has zero trace:
TrQap = Quz + Quy + Q-2
= 5 [0 + ()2 + (@) 1]
=0 z

since u is a unit vector.

e As the nematic approaches perfect alignment,

~1/3 0 0
o=| o -1/3 0 |,
0 0 2/3
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since Q., = w,u, —1/3 = 1 —1/3 = 2/3, then with @ being traceless and the
symmetry of z and y, Qup = Qyy = —1/3.

A final and important property emerges, that Q.3 = 0 in the isotropic phase. To see
this we note in spherical coordinates

U, = sin 6 cos ¢,
u, = sin @sin ¢,

u, = cosf.

We also introduce f(6, ¢) as the probability of finding a molecule with angles 6 and ¢ in
the given region. Now, (), may be equivalently expressed as

Qus = /02” dé /Oﬂ sin 60 £ (6, ) (uauﬁ - ;5a5> .

In the isotropic phase f(6,¢) = 1/4m. Thus, any Qs term of x or y is zeroed because of
the periodic integral in ¢. This only leaves

B 1 2T T . 9 ]_
Qe = 1 /0 dé /0 sin 00 (cos 9 3)

-5

Reducing to two dimensions is fairly straight forward. Our @) tensor becomes

1
=0.

-1

Qap = 0% f(0) (uau/s - ;%5) do, (4.10)

where we now let 6 describe the angle a rod makes with the z-axis. To generalize the
expression for a given region centered on (x,y), we simply have

Qap(r,y) = /0277 f(z,y,0) (uau/s - ;5043) do, (4.11)

with f(z,y,0) now as the probability of a rod having orientation 6 at the location (z,y).
We may concisely express () as the matrix

_1(S(xy) T(zy)
@= 2 (T(a:,y) —S(m,y).) (4.12)
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Given u = (cosf,sin ), we define the elements

S(x,y) = —2Qyy = 2Q, = 2/027r flz,y,0) <COS2 0 — ;) do
= /027r f(z,y,0) cos(20)db (4.13)
and

T(x,y) =2Qu =2Qy, = 2/027T f(x,y,0) (cosfsin ) db

-/ " (2, y, 0) sin(20)d6. (4.14)

Qualitatively, these elements describe the strength of alignment along the x and y axes,
and their diagonals at § = w/4 and 37/4. S(z,y) responds to alignment with the = and
y axes, yielding 1 for z-axis alignment and —1 for y-axis alignment. With T'(z,y), the
response is 1 for 7/4-axis alignment and —1 for 37 /4-axis alignment. We may also observe
that both elements go to zero in isotropic phases. Finally, the largest eigenvalue of @)
pertains to the main order parameter, and its eigenvector is the nematic director ([2], pg.
93),

A(z,y) = /S2(x,y) + Tz, y). (4.15)

An intensity map of T and S on the stable diagonal D and metastable X solutions in
Figure 4.3 show how these parameters can be used to characterize different topologies.

Should we wish to determine a bulk nematic order parameter, we may take the mean
values of S(z,y) and T'(z,y),

a/2  ra/2 S
_ , 4.16
S(z,y) /a/2/a/2 a2 zdy ( )
_ 4.17
:C y /a/2/a/2 CL2 y’ ( )

for box edge length a. A bulk order parameter
A=\ +T (4.18)
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Figure 4.3: Stable D and metastable X solutions from Chen (2013) [13], reproduced with
permission. In this work the D state is labeled O, and the X state is Oy, with D, labeling
the isotropic state. p. indicates a transition past the critical transition density. Order
parameters S and 7' are also given. T presents itself as an clear way to distinguish these
two topologies.
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may then be utilized to gauge if the whole system is in a nematic or isotropic state.

In Figure 4.4, T is shown for the D state at various a/L ratios. The critical density
shows a sudden onset of order T'. The reduced free energy difference per particle BAF/N in
(b) is for the D state relative to the X state, indicating the D state to be more energetically
favourable. Our Monte Carlo simulations also support this, as all other non-D nematic
states eventually melted into the D state.
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Figure 4.4: (a) Mean order parameter T and (b) reduced free energy difference per particle
BAF/N as functions of reduced density for the D state at a/L = 3 (circles), 5 (squares), 7
(diamonds), 9 (left triangles), 11 (right triangles). Energy in (b) is relative to the X state.
Results are from an Onsager mean-field model by Chen (2013) [13]. Figure reproduced
with permission.
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Chapter 5

Results: Supervised Learning of
Topological States

5.1 Monte Carlo data generation

All DTUX data sets had N = 784 rods and a box-edge to rod length ratio a/L = 6.32,
amounting to a density p = 19.63. The relatively high density ensures the lifetime of
metastable XTU states. Trapping of a particular type of defect state depends on the
initial condition. We take the approach of randomly placing rods in the box to start with
and then align the directions of the rods according to a particular defect pattern. After
this, each rod was given a small random positional and orientational nudge to add some
randomization. Generally, there would still be substantial crossing between the rods and
between rods and walls. An uncrossing MC period was then conducted; typically for density
p ~ 19, this period was approximately 5 x 10* MCS. After that, the systems were run for
10* MCS to further equilibrate the system. This was followed by taking a “snapshot” (i.e.
writing the rod coordinates and angles to a file). For each topology, 4400 snapshots were
taken from independent runs, each having a different initial condition from the random
nudging. Among these, 4000 snapshots were used for training and 400 set aside for testing.
To cover rotational degeneracy of the topologies, an equal number of images were rotated
7/2, 7, and 37/2.
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5.2 Application of FNN

A few technical details are provided. We used a multilayer perceptron FNN of modest
size, having two hidden layers: the first of size 128, and the second of size 32. With the
implementation of Tensorflow, exponential linear units were the chosen neurons for their
proven effectiveness and quick learning [21, 1], and an early stopping technique determined
sufficient training time [67]. Dropout was used at a 50% drop rate to reduce overfitting
while training [86]. The Adam algorithm was used for optimization [19], and Softmax was
applied to the output neurons to normalize the output set (see Section 2.1). For evaluating
NN performance, a separate test dataset of images not seen during training is needed. A
useful NN model needs to be able to correctly classify images it has not been trained on,
otherwise it may merely have found a set of parameters that only work for the training set.

We used cross entropy S as the cost function to measure the training quality on the
training data set; plotted as a function of epoch, we can see how the model learns over
time and estimate its learning trajectory. When the network is adequately trained, S
approaches 0. Another unique insight into the network’s performance is the accuracy A,
defined to measure the network performance on the unseen test set. An accuracy of 1 is
scored for correct classification on the entire test set. Both S and A are quantitatively
defined in Section 2.1.

A naive approach would be directly taking an FNN for identifying these defect states,
sequentially feeding the raw [x;,y;, 6] data into the 3N input nodes, and training the
network to recognize the four different topologies by supervised learning. This approach
has seen success in learning phase transitions of Ising systems [9], polymer systems [97],
and the XY model to a degree [6]. However, this method showed a pronounced failure in
the current application. As we show in Figure 5.1(a), indicated as m = 1, this approach
does not come close to an acceptable performance, producing a plateau in an undiminishing
cost. In addition, A reaches a plateau at an unsatisfactory level of approximately 60%.

Why is this so? One of the essential features the network needs to learn for these
defect configurations is the correlation between the position of a topological defect and
the molecular orientation in the vicinity of the defect. A typical raw snapshot datafile
records the [x,y, 0] data sequentially according to the order of the label of the rod-like
molecules [. Because there is no a priori knowledge of which molecules show up in the
defect regions, the labels of the defect-region molecules differ from file to file. Indeed, in a
statistically independent set of files, such as the ones produced here from different initial
conditions, there are no label-position correlations of the defect-region molecules among the
learning data files. This all addresses a crucial, but often unappreciated, aspect of image

40



classification: by filling input vectors in a positionally sorted fashion (Figure 2.2(a),(b)),
positional information, and indeed its correlation to whichever feature is being written to
the input vector, is consequently encoded. If this sorting is destroyed, even if we give
the positions (such as [z,y] ) as part of the input data, the position-feature correlation is
destroyed. This unseen property, and its essential importance can also be demonstrated
via the digit recognition problem in Appendix B.

Hence, the key information is the position sorting in the initial data input, as the FNN
relates features with the ordering of the input data. We develop the following coarse-
graining procedure to train an FNN in identifying the DTUX defect states.

A schematic in Figure 5.2 shows the coarse graining method used here. The confinement
box is divided into m x m cells, where m is an integer. The cells are labeled M =
1,2,...mxm in a left-right, top-down order. The raw data in every snapshot is consequently
presorted according to the center-of-mass coordinates of the molecules, [x,y], so that
molecules belonging to the M = 1 cell show up first, M = 2 cell show up second, etc.
Within a cell, the order of data is still random and no further presorting is made. The
fixed size of the NN input vector means each rod must only appear once, even if it extends
into multiple cells. Using the center of mass of the rod to decide its cell is a natural choice.
The m = 1 case returns to the raw data format. By the end, the order of appearance
of molecular information is no longer according to [, but, according to M for all coarse-
graining degree m > 2. The presorted data is then used in supervised training.

The presorting procedure worked well with an FNN. Figures 5.1(a) and (b) show how
the cost function and accuracy quickly approach the ideal value of 0 and 1 respectively,
as we presort the data beyond m = 2. In the case of m = 4,8, less than 20 epochs
(surprisingly short) are needed to adequately train the FNN. This can be attributed to
the defect patterns in Fig. 2.2 themselves. By dividing the square box in m = 4 cells, for
example, one can already distinguish the defect structures, by ignoring fine details inside
a given cell. Of course, in general we expect that the degree of coarse-graining, m, needs
to increase for a more complicated defect pattern with more defect features.

In summary, to effectively train an FNN to identify features in an image or simulation
data file, the ordering of data points (pixels in image, spins in Ising models, and rod-
like molecules in the current study) contains vital information of the data. An off-lattice
model usually produces data with a random order and it must be presorted according their
approximate [z,y| coordinates, if we are looking for the correlation between coordinates
and the physical features.

Using neural networks to classify these states is largely an exercise and proof-of-concept
in investigating if NNs can be utilized to classify states in this unique topology (for example,
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Figure 5.1: Cost function S and accuracy A, defined on the training and test datasets
respectively, monitored on an FNN [(a) and (b)] and RNN [(c¢) and (d)] as functions of
epoch step. Symbols in the plots represent the averaged S and A produced from 20 repeated
training runs, from which error bars are also estimated. Circles, squares, triangles, and
diamonds in (a) and (b) correspond to the degrees of coarse-graining in the presorting
procedure used: m = 1 (unsorted raw data), 2, 4, and 8, respectively. For coarse-graining,
the original simulation box in Fig. 2.2(e)-(h) is divided into m x m cells [see Section 5.2].
The circles in (c¢) and (d) also represent the same averaged S and A, where an RNN was
used with raw, unsorted data as the input (i.e., m = 1).

42



— / 14 \ 1
rodi
____J 2 F
( \ —_ 5 N
N
rodj 3
___J
- 4

Figure 5.2: Schematic of the coarse graining method. Within a cell, rods are randomly
ordered, however cells are positionally ordered for input to the network.

its off-lattice nature), and if so, what architectures are necessary or optimal. This success
also green-lights other related research. In addition, the product is an extremely fast
and accurate classification tool. Classically, one might attempt classification either by
eye or by an order parameter calculation. One could produce an image of localized order
parameter calculations, as in Figure 4.3, but this would still necessitate classification by
eye afterwards. Using a global averaged or sum of the order parameter is also unreliable
to differentiate states. The NN can intake the entire system configuration, and with near-
instantaneous speed deliver an accurate state identification for use on either experimental
or simulated images. Along with this, NNs scale very well with system size at O(N) for
input size N. The reason being that the size of the hidden portion of the network largely
does not change with N—and if it does, it is well below O(N). Thus, all the internal math
operations from input to output are O(1) except the operation between the input and first
hidden layer, which is in fact O(N).

As an additional curiosity, it is often interesting what lies in regions of NN uncertainty.
For example, when supervise trained on different phases, as in Wei et al. [97] or our work
in Appendix A, the location of NN uncertainty locates the phase transition point. Perhaps
in a similar way, an uncertain NN trained on different topological phases may point at
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unique topologies.

5.2.1 FNN as a universal approximator

There is a matter that cannot be ignored on this subject. The Universal Approximation
Theorem for neural networks. Rigorously proved by Hornik, Stinchcombe, and White [10],
the theorem’s main points are:

Multilayer FNNs, even those with a single hidden layer, are universal approximators:
they can approximate any continuous function to arbitrary accuracy.

The above result is independent of choice of activation function so long as it is
bounded and non-constant.

Functions with finite support can be approximated exactly with a single hidden layer.

Lack of success is either due to an insufficient number of hidden neurons or lack of a
deterministic relationship between input and output.

We emphasize the last point because this is the root cause of the failure of the FNN in
learning the DTUX topologies. There is no consistency in what will appear in a given input
node. For example, due to the randomness of the input loading, the same configuration
may be loaded completely differently on separate instances.

Each input node to the NN represents a dimension along which the network is trying
to recognize patterns. If there is no consistency in the relationship (the ordering) between
dimensions then the network does not stand a chance of recognizing patterns. We show
this explicitly with our MNIST testing in Appendix B.

5.3 Application of RNN

Here we demonstrate a novel usage of an RNN in condensed matter systems. Exploiting
its ability to correlate physical features through LSTM blocks, we adopt a triple iterative
structure shown in Fig. 2.1(b) to find the correlation between the spatial coordinates x, y
and the orientational coordinate #. The three main features, x;,y; and #; are input into
the network model iteratively through the LSTM-external layer, one after another. As a
technical note, we used a rather small RNN having only a single layer LSTM of 64 hidden
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neurons, and a single perceptron layer of 128 neurons. Dropout, Adam optimization, and
early stopping were again used throughout the supervised training [19, 67, 80].

The performance of this RNN is exceptionally good in identifying the defect states.
Figures 5.1(c) and (d) demonstrate that within an initial 20 epochs, our RNN efficiently
captures the main features of the four defect states, evaluated on an unseen test dataset.
We stress here that unlike the procedure used to produce Figs. 5.1(a) and (b), we used
the raw, unsorted data as the input on our RNN experiment.

Without other analysis tools it is difficult to say which ezact topological features the
RNN is learning to distinguish the DTUX image set. One could argue that the location of a
defect in a larger system is a point-like object, but the DTUX topologies here, complete in
their square confinement, are compositions of bulky nematic patterns interrupted at defect
points (Figures 2.2(e)-(h)). In a finite system such as the one we take here, the exact
division between defect points and the overall nematic pattern becomes artificial. We
believe that the RNN examines their entire topologies by correlating the spatial-angular
information.

Beyond liquid crystals, many other classes of materials contain topological defects that
are of practical or fundamental interest; some are detectable by the naked eye and some are
subtle to visualize. Especially when a molecular configuration file is given, either produced
directly from computer simulations or indirectly reproduced from real experiments, the
fluctuating microscopic configurations of all molecules could obscure the existence of a
certain topological feature. Hence it would be desirable to have a computer algorithm to
deal with the nontrivial task of identifying these states.

In order to design a classical algorithm to identify the topological states, understanding
the main features (spatial dimensionality, line defect versus point defect, definition of
winding number, etc.) is required to describe a specific nature of the state. Well-thought-
out mathematical procedures would be needed to capture the correlation (or discorrelation)
between defect regions for different states. Classification would then require tools that
identify defects, locate them reliably, and finally try to correctly classify this to their
human-defined templates. The NN model here presents a universal and simple method
that sidesteps this non-trivial process by requiring only the raw data as input. The RNN
can masterfully learn these defect topologies by using its ability of making correlations
between data features, without asking the question of the specific mathematical and
physical properties such as where to look for the defects and what kind of defects a system
may contain.

The neural network approach we suggest here is simple, automated, and universal.
Additionally, neural nets can provide a near instantaneous computing time for classification,
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of course minus the time required for training. In our case though, this was agreeable,
requiring only tens of minutes.
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Chapter 6

Results: Learning and Locating
Disclinations by PCA

We show here how PCA can be very effective at distinguishing nematic, isotropic, and
defect regions. Three different methods, described in Section 3.3, are showcased here:
Random, Winding Difference (WD), and Winding Alignment (WA). The Random method
is the simplest, but is limited to only discerning strength of nematic ordering. The WD
method takes us to the doorstep of our goal, but may misread edge-cases with false
rotations. We find the WA method is ignorant of the rod correcting problem, but sacrifices
the ability to learn 4+ winding polarity.

In the following, the PCA-reduced datasets are analyzed to glean how, and to what
degree, each method is separating the data. By viewing the component eigenvectors and
explained variance ratios (EVRs), we also understand what features of the data are used for
its separation, and how significant each component is. Finally, we consider the component
“responses” (their y output vector) to several test inputs of isotropic, nematic, or isolated
defect samples, and full boxed topologies from Section 5.

6.1 Preparation of data

The dataset was prepared from a combination of images from the isotropic-nematic (I-N)
transition study in Appendix A, and images from a new set of isolated defects created for
this purpose. Generation of the LC images is done by Monte Carlo, as described in Section
5.1, with parameters particular to the I-N images described in Appendix A. For a diversity
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of samples, I-N images at densities p = 16.0,11.6,8.7,7.2,5.7, and 4.2 were used. Figure
A.1 shows where each density lies along the I-N spectrum.

For the isolated defect portion of the dataset, four different initial conditions were used,
one for each defect shown in Figure 3.1, where images (a)-(d) show the rod initialization,
and (e)-(h) show the systems after a rod uncrossing phase plus an additional 10 MC sweeps.
Only the uncrossed, partially relaxed snapshots were added to the dataset. Equilibration
is not the goal here since defects will disappear, so only a few MC sweeps are performed.
The number of rods in the files of isolated defects had to equal NN, so that the entire
defect is captured in a given probe. Since the MC simulation is initialized in a lattice,
we heuristically chose N,, = 62 for this PCA study. As can be seen in Figure 3.1, this
number produces clear defects that are well spaced. Different values of N,,, may be worth
investigating, however, smaller values would miss important rods that define a defect. In
the other direction, too large a number may capture conflicting topologies, for example if
the sample were near a boundary wall or corner.

When extracting samples from the I-N images, a 20 x 20 uniform lattice of probes would
grab 400 samples. Doing this for 60 snapshots of 6 different files amassed 144 000 I-N
samples. Taking 400 probes for a given isolated defect snapshot would produce redundant
images, so only a single sample would be taken for each defect snapshot. During the
MC production run, each isolated defect was regenerated from scratch with randomization
applied to their positions and orientations so they have no correlation. For each defect
type, 24 000 individual samples were collected. In total, the complete dataset included
240 000 samples.

6.2 Results of PCA

In the series of Figures 6.2, 6.5, and 6.11, observations in the PCA reduced space and their
EVRs are shown for each method. The Python library sklearn was used for the PCA
reduction, and the necessary data normalization. In addition to such information, the first
few component eigenvectors are plotted in Figure 6.1 to see which aspects of the feature
vectors the model is extracting.

Random method

With the Random mode of Figure 6.2, only the first component is significant, as indicated
by the EVRs, and the random-noise components for [ > 1 in Figure 6.1. The constant
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Figure 6.1: The first three (Random) or five (WD/WA) component eigenvectors. wy
always captures an average angular alignment. The PCA algorithm fails to learn any other
features in the Random mode. The text discusses the higher order waveforms in WD &

WA.
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form of wy indicates it performs a summation operation (with some multiplicative scalar)
on x¥. As xy) = cos(26},), this amounts to an effective alignment along a® . Although
this can detect whether a sample is nematic or not, more is needed to differentiate defects,
as will become apparent when tested on isolated defects.

The results of Figures 6.3 & 6.4 confirm the limited utility of the Random mode for
detecting nematic samples. Figure 6.3 shows the feature vectors of a nematic and isotropic
sample, and their corresponding PCA responses. The nematic sample produces a strong
positive y; &~ 5 response, and reciprocally the isotropic produces a negative y; ~ —2
response.

In Figure 6.4, we can see response averages across nematic, isotropic, and defect
samples. This information reveals that the large mass of samples surrounding y; = —4
in Figure 6.2 is from the defect dataset. Defects are, in this sense, maximally unaligned
because of their uniform angular distribution. The negative value comes from standardizing
of the feature vectors. As we can see in Figure 6.3, standardization always reduces feature
values, so an isotropic or defect sample will average about a negative center (Figure 6.3(b)).
Dotting such a vector with the positive w; component of Figure 6.1 produces a negative
response.

20



Figure 6.2: Samples in the PCA reduced space for the first three components, and the
EVRs for the first 10 components, using the Random method. Every fifth data point is
plotted to reduce saturation.
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Figure 6.3: Feature vectors (middle column) and their PCA-basis response (right column)
for nematic (a) and isotropic (b) samples under the Random model. Neighbour numbers
are overlain on top of the rods and the nematic director is indicated with a black arrow.
Dotted lines are feature vectors after standardization. We can see that y; captures isotropic

and nematic information by the strong opposing responses.
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Figure 6.4: Response curves from the Random method on (a) nematic and isotropic
samples, and (b) defect state samples. Each point is an average of 800 samples, with error
bars measuring the standard deviation.
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WD method

The PCA-reduced samples of the WD method are shown in Figure 6.5 along with the
EVRs. The most prominent features of the reduced samples are several clear strikes or
bands and a large rotated-S curve that spans y. There is also a concentrated cluster around
[y1,¥2] = [—10,—2]. We can understand these clusters by considering the eigenvectors of
Figure 6.1, and by inverting the PCA decomposition to find what a feature vector looks
like for a given point (since W is invertible). Before doing so, it is worth viewing the
feature vectors of nematic, isotropic, and defect samples.

Figures 6.8 & 6.9 show feature vectors and response curves for these six samples. We
recall that the WD feature vector is the adjusted rod orientations relative to the nematic
director,

X(l) = [gl,aa 52,047 s ’gNﬂmO‘]'

The adjustment is required so that rotations can be signaled, and is due to the rod
symmetry. Without adjustment the feature vector signal would be scattered from rods
that are some factor of 7 from the angle that they should be: the angle that makes sense
with their surrounding neighbours and in step with the winding, if present. Consider
several rods that are adequately aligned with angle §. From the Monte Carlo, some rods
will reliably be a factor of m away from this orientation. However, the PCA algorithm
needs to have consistency in the representation of aligned rods. It is no good for any given
sample of aligned rods to have a random number of them be degrees of m away from the
group alignment, they must all be expressed as the angle closest to 6.

From this point the solution suggests that while proceeding around the sample, reexpress
each rod angle as that which is closest to the neighbour just before it. This solves much
of the problem, but unfortunately has its limits. In detecting defects, the sticky issue of
“false rotations” thus emerges. It is occasional for some number of rods to be disruptive
of what seems to be the general trend of a sample. Consider a uniformly aligned nematic
sample. It only takes a few deviant rods that are even only somewhat perpendicular to the
general alignment to produce a false rotation. For example, if each deviant rod is ~ +m/4
from its neighbour, it only takes a few to cause a significant positive net rotation. After
returning to the other rods that are well aligned, a +m or even +27 rotation could have
been falsely signaled.

Indeed, what the alignment should be is not always clear and is the Achilles heel of this
method. In some cases it is even ambiguous to human scrutiny what the correct angle of
such a rod is, and whether a rotation or defect is really present. Two such examples are
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Figure 6.5: Samples in the PCA reduced space for the first three components, and the
EVRs for the first 10 components, using the WD method. Every fifth data point is plotted
to reduce saturation.
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shown in Figure 6.7. In 6.7(a), rods 16-19 cause a clear false —7 rotation, and in 6.7(b)
rods 2-4 cause a false +7 rotation.

In Figure 6.8 are two examples of the WD response to nematic and isotropic states.
The nematic state in (a) shows a minimal response as desired. The behaviour of isotropic
states is undefined. As in (b), a —27 rotation is signaled, but the sample is not actually a
—1 winding defect.

Figure 6.9 shows responses from four defect samples, each producing a clear signal in
the desired form. Averages for isotropic, nematic, and defect samples are shown in Figure
6.10. Each point is an average over 800 images of each type of sample. Nematic aligned
samples all strongly have a zero response, and isotropic samples have the large variance
predicted. The unpredictable response on isotropic samples is actually not of concern since
defect detection of the sort considered here only applies to nematic domains.

Most interestingly, the four defect states are relatively well distinguished. The +1 defect
samples have very little variance. Because its initialized form has (almost) no crossing, the
relaxed form looks highly similar. Additionally, its radial symmetry means that it is not
sensitive to the direction of . These two factors cause minimal variance for +1 defect
types. Conversely, other states may lose their shape somewhat after uncrossing, and are
also sensitive to a. Thus, they have a higher variance in their feature vectors and responses.

This variance can also be seen in Figure 6.6 when recovering the feature vectors of the
PCA bands, which indeed return the anticipated defect forms. Each defect band has a
large variance, less the +1 defects. Additionally, it can be seen how the wy component
responds to a vertical shift in feature vectors corresponding to the starting direction of
a. Each of the higher order components (w3, wy,...) respond to feature vectors similar to
their shape. wjz responds to a single bump in the first half, etc.

Although the WD method is susceptible to giving false responses for edge cases, it is
very effective at sensing and classifying defect samples if they are reasonably clear. On
this point, we note that defect detection is inherently imperfect with plenty of cases being
unclear or partial defects, and even being ambiguous to human classification.
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Figure 6.7: Feature vectors (middle column) in units of 7 and their PCA-basis response
(right column) for two cases of potential false rotations. Dotted lines are feature vectors
after standardization.
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Figure 6.8: Feature vectors (middle column) in units of 7 and their PCA-basis response
(right column) for nematic (a) and isotropic (b) samples under the WD method. Neighbour
numbers are overlain on top of the rods and the nematic director is indicated with a black
arrow. Dotted lines are feature vectors after standardization.
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Figure 6.9: Feature vectors for the studied defect states in the WD method. The values
in x are in units of . Going from light to dark, rod colouring indicates neighbour index.
Winding starts from the black arrow nematic director.
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Figure 6.10: Response curves from the WD method on (a) nematic and isotropic samples,
and (b) defect state samples. Each point is an average of 800 samples, with error bars
measuring the standard deviation.
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WA method

Reduced dimension samples from the WA method are plotted in Figure 6.11. Recall each
neighbour j feature xy) = c0s(20,,). The first component EVR captures ~ 30% of the
variance, with the subsequent three sharing ~ 15% each. The 5" component captures
~ 10% before a sharp drop to = 1% for the remaining components.

To understand the forms of Figure 6.11 we consider the eigenvectors in Figure 6.1, and
the I-N and defect feature vector and responses of Figures 6.12 & 6.13. First off, similar to
the other models, wy (Figure 6.1) captures the average alignment to «, with a couple extra
dips at the ends and middle. The dips indicate, for uncertain reasons, those neighbours
are slightly less significant for signaling what wy is trying to capture. The dips at the
endpoints are likely because a large portion of defect sample feature vectors start and end
near 1 (see examples in Figure 6.13). Nematic and other well-aligned states will also be
~ 1 (Figure 6.12), so the neighbours near the start and end are not as useful in discerning
defects from nematic samples. Again, £1 defect vectors return to 1 in their centers and so
the center information is less useful as well.

The next four eigenvectors show a pronounced sinusoidal form. These forms respond
to the sinusoidal forms of defect samples, as can be seen in Figure 6.13. Notice that in
the eigenvectors in Figure 6.1, w4 and wy pair with wo and wg, respectively, by a phase
difference. This would arise from different starting points, «, in the precession. Being 7 /2
out of phase with their pair, w4 and wg capture the maximum number of defects missed
by wo and ws. For the sake of a more effective defect detector, we may add the responses
from these pairs in quadrature. That is

5’(2i) =1/y2® + ya,

}N’g) = ys® + y50).

In these forms, y» is an effective £1/2 defect detector, and y3 for £1 defects.

In Figure 6.14, responses of for I-N and defect samples are shown. w; is certainly
effective at distinguishing nematic samples from others, and even the defects are distinguished
from the isotropic states by a clear margin. However, w; cannot discern defect type
whatsoever. In the quadrature components, Wy has a clear response to £1/2 defects, and
to the same degree ws responds to +1 defects.
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Figure 6.11: Samples in the PCA reduced space for the first three components, and the
EVRs for the first 10 components, using the WA method. Every fifth data point is plotted
to reduce saturation.
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Figure 6.12: Feature vectors (middle column) and their PCA-basis response (right column)
for nematic (a) and isotropic (b) samples under the WA method. Neighbour numbers are
overlain on top of the rods —and the nematic director is indicated with a black arrow.
Dotted lines are feature vectors after standardization.
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Figure 6.13: Feature vectors for the studied defect states in the WA method. Going from
light to dark, rod colouring indicates neighbour index. Winding starts from the black arrow
nematic director.
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Figure 6.14: Response curves from the WA method on (a) nematic and isotropic samples,
and (b) defect state samples. Each point is an average of 800 samples, with error bars
measuring the standard deviation.
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PCA on full domains

To see how these methods perform on full LC domains, we may cast a 20 x 20 lattice of
probes on the DTUX topologies, and a large system of 3600 rods at a nematic density of
p = 16. This large system was randomly initialized and allowed to equilibrate for 100 000
MCSs. This stopping point was selected because it had a suitable number of nematic grains
and defect points.

First, in Figure 6.15 (a)-(d) the WD probe responses to DTUX states are overlain the
LC snapshot, and the same responses are overlain the training dataset in (e)-(h). We can
see that the proper regions (those predicted from theory and highlighted in Figure 2.2) are
excited. Of note, the center —1 defect of X is captured by the points in the —1 band of
(e), and none of the other states have points in this band. In every case, the —1/2 defects
are well captured.

Looking at Figure 6.16, WD captures almost all areas that could be argued as defects.
There are a couple spots (bottom-left, near-top-right) that look missed. However, this
could easily be a colouring issue along with the fact that the transition from nematic to
defect is not sharp. The top and bottom of the nematic band connects with the 41/2
bands. The scatter plot of Figure 6.16 shows multiple points in this critical region, along
with some others that hover on the colour dropoft zone.

The next few Figures, 6.17, 6.18, 6.19, and 6.20 show the WA method performance on
the same DTUX states and the large 3600 rod system. The quadrature components y,
and ys are used for the 2°¢ and 3™ components (except for in Figure 6.15 since colouring
is based on y;). The DTUX responses are accurate and also cleaner than the WD method.
As a plain defect vs. nematic detector, this provides a great tool. Looking at the probe
responses to wg, we should expect something similar the y; except for a weakening on
defects closer to +£1 winding. Indeed, we can see the response does weaken near the center
of the X state. Otherwise, it delivers the appropriate responses, minus a bit of patchiness in
the U state. The w3 response in Figure 6.19 is not too clean. We can see from plots (e)-(h)
that the samples in these DTUX states do not have the strong +1 defects the model was
trained on. The patchiness shows that wj is not well generalized. Finally, in Figure 6.20,
all three components responses are coloured on the large system snapshot. Each method
picks up all the defects, except for in (¢) ws ignores the +1/2 strong defect on the right
wall. The WA method more completely covers the defect areas than the WD method.

In summary, these methods form an intriguing study on learning topological features
with PCA. The Random method is only useful for detecting nematic regions. The WD
method is the most useful tool for differentiating defect types and nematic regions. Its
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response could possibly be further cleaned up with some clustering on the defect and
nematic bands, but the gradual transition from nematic to +1/2 to +1 cannot be avoided.
The highly variable responses to isotropic samples is a non-issue since defect detection only
applies to nematic systems. The WA method sacrifices winding polarity for a more robust
defect detector. The efficacy of the wo and w3 components is likely hindered from their
bias towards the eigenvector forms wq, w3, wy, and wy which have weaker responses as
samples deviate from their forms.
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Figure 6.15: WD method on the X (a,e), T (b,f), U (c,g) an
colours are overlaid with the rod plots in (a)-(d), and over the training set in (e
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Figure 6.16: WD method on a large liquid crystal domain. Purple (orange) colouring
corresponds to positive (negative) defect winding. Probe samples are overlaid with the
training set (left) and the corresponding rod-molecule plot (right).
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Figure 6.17: WA w; response to X (a,e), T (b,f), U (c,g) and D (d,h) topologies. Probe
colours are overlaid with the rod plots in (a)-(d), and over the training set in (e)-(h).
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Figure 6.18: WA ws response to X (a,e), T (b,f), U (c,g) and D (d,h) topologies. Probe
colours are overlaid with the rod plots in (a)-(d), and over the training set in (e)-(h).
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Figure 6.19: WA w3 response to X (a,e), T (b,f), U (c,g) and D (d,h) topologies. Probe
colours are overlaid with the rod plots in (a)-(d), and over the training set in (e)-(h).
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Chapter 7

Summary & Outlook

From this study, we may walk away with the following conclusions. Although CNNs and
FNNs are effective for a large set of problems in condensed matter and many-body physics,
their architecture is inappropriate for off-lattice systems since there is no bijection between
spatial coordinates and input index. We illustrated this dependence with a coarse graining
method that added a level of positional sorting to the input. With this aid, the FNN could
then learn the DTUX states.

A more elegant solution to this was to correlate spatial and angular information with an
RNN. This method is also generalizable since it requires no feature engineering. Tested on
the DTUX states and the MNIST digits (Appendix B), the RNN mastered both. Exploiting
the RNN capability to correlate spatial features in their sequential inputs is a novel use as
far as we know. Our study opens up opportunities for many other off-lattice applications
of neural networks. By iteratively feeding an RNN with features to be correlated, it
is able to correlate arbitrary numbers of interesting features of an off-lattice problem.
This is particularly important as off-lattice simulations usually produce datasets with no
embedded spatial ordering, whereas lattice simulations automatically have labels implicitly
representing spatial locations.

On the unsupervised front, PCA brought us close to the goal of a defect identifier and
locater. The Random and WA methods were highly effective at capturing the degree of
alignment of samples. In identifying types, the loss of winding polarity in the WA mode
made it not as effective as WD which maintains polarity. At the same time, the WD
method is not as robust as may be desired on MC samples, and does not produce the
smooth response intensity with distance from defect centers, as was displayed with the
WA method. However, it is important to remember that certain samples are ambiguous
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even to the human eye as to what type of defect is shown, or even if one is present at all.

Looking forward, there are a few enticing directions for further research. A significant
portion of the condensed matter with ML research is on quantum or lattice systems, often
using CNNs or FNNs. Finding a universal way to “connect” off-lattice systems with those
architectures would be extremely useful. One solution may even be a special NN layer at
the beginning that interprets and transforms the off-lattice input into something usable
by lattice architectures. Applying the RNN architecture in the way used here on other
classical systems would be highly interesting. It would also be fascinating to see how
it performs on already-established NN classification benchmarks. Its dominating success
shows we did not push it to its potential. Along with this, testing its limits with number
of features to correlate should be investigated.

On the unsupervised side of things, although theoretically sensible, in practice the
nematic director is not too consistent. As displayed in Figures 6.6 and 6.1, the second WD
component seems to account for this « variation. Perhaps it is too variant to be useful.
Also, more advanced PCA methods exist, and could help improve the abilities of learning
defect samples. Our results here are good proof of concept, but for instance, the WD
method is not robust or reliable enough for a serious usage.

Recently, Huembeli et al. (2018 [13], 2019 [11]), used a relatively new UL architecture
called a “domain adversarial neural network” (DANN) [33] to extract the most important
features for phase learning. The architecture is quite elegant. There are three networks: a
feature extractor F, a domain discriminator D, and label predictor P. The original feature
vectors X (raw spins, etc.) are piped into F, and then the output of F is fed into D and
P. In a phase learning example, the dataset has some data with known labels from deep
in the phase space, and others with no labels, importantly, those near the unknown critical
point. The predictor P is trained to guess the correct labels from the output of F, but
only sees the labeled training set. The discriminator’s goal is to tell if an image comes
from the labeled or the unlabeled set. The training proceeds with the goal that F can
output something that P will know the label of, but D will not know which set it was
from. This trains F to extract the most important features that signal the phase changes
so that those on one side of the phase boundary look the same as the labeled data deep in
that phase. The product of this training is a high-quality feature extractor.

This method was used to learn the phases of the 2D Ising model, the Bose-Hubbard
model, the Su-Schrieffer-Heeger (SSH) model [13], and to detect characteristic features
of phase transitions in many-body localization [11]. What makes this a potentially very
powerful phase learner is that it uses machine learning to create the feature vectors. In
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our PCA analysis, the main bottleneck was choosing the optimal feature vector. Perhaps
a DANN could produce a much better feature vector. Relating to the issue raised above
of connecting off-lattice and lattice systems, maybe here too a DANN could help.

7



References

1]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
TensorFlow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

Michael P. Allen and Dominic J. Tildesley. Computer simulation of liquids. Oxford
University Press, 2017.

Michael P. Allen and Mark R. Wilson. Computer simulation of liquid crystals.
Journal of Computer-Aided Molecular Design, 3(4):335-353, 1989.

Denis Andrienko. Introduction to liquid crystals. Journal of Molecular Liquids,
267:520-541, 2018.

R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-lonescu. Bistable
nematic azimuthal alignment induced by anchoring competition. Journal of Applied
Physics, 84(3):1321-1324, 1998.

Matthew J. S. Beach, Anna Golubeva, and Roger G. Melko. Machine learning vortices
at the Kosterlitz-Thouless transition. Physical Review B, 97:045207, 2018.

Léon Bottou, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon,
Lawrence D. Jackel, Yann LeCun, Urs A. Muller, Edward Sackinger, Patrice Simard,
et al. Comparison of classifier methods: a case study in handwritten digit recognition.
In Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision & Image
Processing., Proceedings of the 12th IAPR International. Conference on, volume 2,
pages 77-82. IEEE, 1994.

Peter Broecker, Juan Carrasquilla, Roger G. Melko, and Simon Trebst. Machine
learning quantum phases of matter beyond the fermion sign problem. Scientific
Reports, 7(1):8823, 2017.

78



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Juan Carrasquilla and Roger G. Melko. Machine learning phases of matter. Nature
Physics, 13(5):431, 2017.

D. Carvalho, Noel A. Garcia-Martinez, Jose L. Lado, and Joaquin Fernandez-Rossier.
Real-space mapping of topological invariants using artificial neural networks. Physical
Review B, 97(11):115453, 2018.

Mario E. Cerritelli, Naigian Cheng, Alan H. Rosenberg, Catherine E. McPherson,
Frank P. Booy, and Alasdair C. Steven. Encapsidated conformation of bacteriophage
T7 DNA. Cell, 91(2):271-280, 1997.

Chuang Chen, Xiao Yan Xu, Junwei Liu, George Batrouni, Richard Scalettar, and
Zi Yang Meng. Symmetry-enforced self-learning Monte Carlo method applied to the
Holstein model. Physical Review B, 98:041102, 2018.

Jeff Z. Y. Chen. Structure of two-dimensional rods confined by a line boundary. Soft
Matter, 9(45):10921, 2013.

Jeff Z. Y. Chen. Theory of wormlike polymer chains in confinement. Progress in
Polymer Science, 54:3-46, 2016.

Jeftf Z. Y. Chen, D. E. Sullivan, and Xiangqun Yuan. Surface-Induced Liquid Crystal
Transitions of Wormlike Polymers Confined in a Narrow Slit. A Mean-Field Theory.
Macromolecules, 40(4):1187-1195, 2007.

Zheng Yu Chen. Continuous isotropic-nematic transition of partially flexible
polymers in two dimensions. Physical Review Letters, 71:93, 1993.

Zheng Yu Chen and Shi-Min Cui. Orientational wetting layer of semiflexible polymers
near a hard wall. Physical Review E, 52:3876-3880, 1995.

Kelvin Ch’ng, Juan Carrasquilla, Roger G. Melko, and Ehsan Khatami. Machine
learning phases of strongly correlated fermions. Physical Review X, 7(3):031038,
2017.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiw:1406.1078, 2014.

79



[20]

[21]

[22]

[23]

Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. Symmetries
and many-body excitations with neural-network quantum states. Physical Review
Letters, 121:167204, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate
deep network learning by exponential linear units (ELUs). arXiv preprint
arXiw:1511.07289, 2015.

Louis B. G. Cortes, Yongxiang Gao, Roel P. A. Dullens, and Dirk G. A. L. Aarts.
Colloidal liquid crystals in square confinement: isotropic, nematic and smectic
phases. Journal of Physics: Condensed Matter, 29(6):064003, 2017.

Marco Cosentino Lagomarsino, Marileen Dogterom, and Marjolein Dijkstra.
Isotropic-nematic transition of long, thin, hard spherocylinders confined in a quasi-
two-dimensional planar geometry. Journal of Chemical Physics, 119(6):3535-3540,
2003.

P. G. de Gennes and J. Prost. The Physics of Liquid Crystals. International Series
of Monographs on Physics. Clarendon Press, 1995.

L. Deng, Michael L. Seltzer, Dong Yu, Alex Acero, Abdel-rahman Mohamed, and
G. Hinton. Binary coding of speech spectrograms using a deep auto-encoder. In
Eleventh Annual Conference of the International Speech Communication Association,
2010.

Ingo Dierking, Giusy Scalia, and Piero Morales. Liquid crystal-carbon nanotube
dispersions. Journal of Applied Physics, 97(4):044309, 2005.

Ingo Dierking, Giusy Scalia, Piero Morales, and Darren LeClere. Aligning and
reorienting carbon nanotubes with nematic liquid crystals. Advanced Materials,
16(11):865-869, 2004.

I. Dozov, M. Nobili, and G. Durand. Fast bistable nematic display using monostable
surface switching. Applied Physics Letters, 70(9):1179-1181, 1997.

William C. Earnshaw and Sherwood R. Casjens. DNA packaging by the double-
stranded DNA bacteriophages. Cell, 21(2):319-331, 1980.

D. Frenkel and R. Eppenga. FEvidence for algebraic orientational order in a two-
dimensional hard-core nematic. Physical Review A, 31(3):1776, 1985.

80



[31]

[32]

[33]

[38]

[39]

[40]

[41]

[42]

Jennifer Galanis, Daniel Harries, Dan L. Sackett, Wolfgang Losert, and Ralph
Nossal. Spontaneous patterning of confined granular rods. Physical Review Letters,
96:028002, 2006.

Jennifer Galanis, Daniel Harries, Dan L. Sackett, Wolfgang Losert, and Ralph
Nossal. Spontaneous patterning of confined granular rods. Physical Review Letters,
96(2):028002, 2006.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
Francois Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. The Journal of Machine Learning Research, 17(1):2096—
2030, 2016.

Ioana C. Garlea and Bela M. Mulder. Defect structures mediate the isotropic-nematic
transition in strongly confined liquid crystals. Soft Matter, 11:608-614, 2015.

J. G. Gay and B. J. Berne. Modification of the overlap potential to mimic a linear
site-site potential. The Journal of Chemical Physics, 74(6):3316-3319, 1981.

Sebastian Gurevich, Ezequiel Soule, Alejandro Rey, Linda Reven, and Nikolas
Provatas.  Self-assembly via branching morphologies in nematic liquid-crystal
nanocomposites. Physical Review E, 90(2):020501, 2014.

lan William Hamley. Liquid crystal phase formation by biopolymers. Soft Matter,
6(9):1863-1871, 2010.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97-109, 1970.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory.  Neural
Computation, 9(8):1735-1780, 1997.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359-366, 1989.

Wenjian Hu, Rajiv R. P. Singh, and Richard T. Scalettar. Discovering phases,
phase transitions, and crossovers through unsupervised machine learning: A critical
examination. Physical Review E, 95(6):062122, 2017.

Li Huang and Lei Wang. Accelerated Monte Carlo simulations with restricted
Boltzmann machines. Physical Review B, 95:035105, 2017.

81



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

Patrick Huembeli, Alexandre Dauphin, and Peter Wittek. Identifying quantum phase
transitions with adversarial neural networks. Physical Review B, 97(13):134109, 2018.

Patrick Huembeli, Alexandre Dauphin, Peter Wittek, and Christian Gogolin.
Automated discovery of characteristic features of phase transitions in many-body
localization. Physical Review B, 99(10):104106, 2019.

R. B. Jadrich, B. A. Lindquist, and T. M. Truskett. Unsupervised machine learning
for detection of phase transitions in off-lattice systems. 1. foundations. The Journal
of Chemical Physics, 149(19):194109, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4401-4410, 2019.

Richard F. Kayser and Harold J. Raveché. Bifurcation in Onsager’s model of the
isotropic-nematic transition. Physical Review A, 17:2067-2072, 1978.

Keven Kerkam, Christopher Viney, David Kaplan, and Stephen Lombardi. Liquid
crystallinity of natural silk secretions. Nature, 349(6310):596, 1991.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiw:1412.6980, 2014.

Alexei Yu Kitaev. Unpaired Majorana fermions in quantum wires. Physics- Uspekhi,
44(10S):131-136, 2001.

Stephen Kitson and Adrian Geisow. Controllable alignment of nematic liquid crystals

around microscopic posts: Stabilization of multiple states. Applied Physics Letters,
80(19):3635-3637, 2002.

D. P. Knight and F. Vollrath. Liquid crystals and flow elongation in a spider’s silk
production line. Proceedings of the Royal Society of London. Series B: Biological
Sciences, 266(1418):519-523, 1999.

P. M. Knoll and H. Kelker. Otto Lehmann, pages 51-56. Books on Demand, 2010.

John Michael Kosterlitz and David James Thouless. Ordering, metastability and
phase transitions in two-dimensional systems. Journal of Physics C: Solid State
Physics, 6(7):1181, 1973.

82



[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278—
2324, 1998.

Otto Lehmann. Uber fliessende krystalle. Zeitschrift fir physikalische Chemie,
4(1):462-472, 1889.

Alexander H. Lewis, Ioana Garlea, José Alvarado, Oliver J. Dammone, Peter D.
Howell, Apala Majumdar, Bela M. Mulder, M. P. Lettinga, Gijsje H. Koenderink,
and Dirk G. A. L. Aarts. Colloidal liquid crystals in rectangular confinement: theory
and experiment. Soft Matter, 10(39):7865-7873, 2014.

Junwei Liu, Yang Qi, Zi Yang Meng, and Liang Fu. Self-learning Monte Carlo
method. Physical Review B, 95:041101, 2017.

Junwei Liu, Huitao Shen, Yang Qi, Zi Yang Meng, and Liang Fu. Self-learning
Monte Carlo method and cumulative update in fermion systems. Physical Review B,
95:241104, 2017.

F. Livolant and Y. Bouligand. New observations on the twisted arrangement of
dinoflagellate chromosomes. Chromosoma, 68(1):21-44, 1978.

Chong Luo, Apala Majumdar, and Radek Erban. Multistability in planar liquid
crystal wells. Physical Review E, 85:061702, 2012.

Michael D. Lynch and David L. Patrick. Organizing carbon nanotubes with liquid
crystals. Nano Letters, 2(11):1197-1201, 2002.

Tomohiro Mano and Tomi Ohtsuki. Phase diagrams of three-dimensional Anderson
and quantum percolation models using deep three-dimensional convolutional neural
network. Journal of the Physical Society of Japan, 86(11):113704, 2017.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087-1092, 1953.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 746-751, 2013.

83



[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent
models of visual attention. In Advances in Neural Information Processing Systems
27, pages 2204-2212. Curran Associates, Inc., 2014.

Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Miiller. Neural networks:
tricks of the trade. Springer, 2013.

Yuki Nagai, Huitao Shen, Yang Qi, Junwei Liu, and Liang Fu. Self-learning Monte
Carlo method: Continuous-time algorithm. Physical Review B, 96:161102, 2017.

Lars Onsager. The effects of shape on the interaction of colloidal particles. Annals
of the New York Academy of Sciences, 51(4):627-659, 1949.

Karl Pearson. LIII. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559-572, 1901.

A. Poniewierski. Ordering of hard needles at a hard wall. Physical Review E,
47(5):3396, 1993.

D. Porter, F. Vollrath, and Z. Shao. Predicting the mechanical properties of
spider silk as a model nanostructured polymer. The Furopean Physical Journal F,
16(2):199-206, 2005.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

Ziv Reich, Ellen J. Wachtel, and Abraham Minsky. Liquid-crystalline mesophases of
plasmid DNA in bacteria. Science, 264(5164):1460-1463, 1994.

Friedrich Reinitzer. Beitrdge zur kenntniss des cholesterins.  Monatshefte fiir
Chemie/Chemical Monthly, 9(1):421-441, 1888.

Friedrich Reinitzer. Contributions to the knowledge of cholesterol. Liquid Crystals,
5(1):7-18, 1989.

Martin Robinson, Chong Luo, Patrick E. Farrell, Radek Erban, and Apala
Majumdar. From molecular to continuum modelling of bistable liquid crystal devices.
Liquid Crystals, 44(14-15):2267-2284, 2017.

84



(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

8]

[89]

Andrea Rocchetto, Edward Grant, Sergii Strelchuk, Giuseppe Carleo, and Simone
Severini. Learning hard quantum distributions with variational autoencoders. npj
Quantum Information, 4(1):28, 2018.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386, 1958.

Subir Sachdev. Topological order, emergent gauge fields, and Fermi surface
reconstruction. Reports on Progress in Physics, 82(1):014001, 2018.

Hiroki Saito and Masaya Kato. Machine learning technique to find quantum many-
body ground states of bosons on a lattice. Journal of the Physical Society of Japan,
87(1):014001, 2018.

Jirgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85-117, 2015.

Or Sharir, Yoav Levine, Noam Wies, Giuseppe Carleo, and Amnon Shashua. Deep
autoregressive models for the efficient variational simulation of many-body quantum
systems. arXiv preprint arXiv:1902.04057, 2019.

Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

Marina Soares e Silva, José Alvarado, Jeanette Nguyen, Nefeli Georgoulia, Bela M.
Mulder, and Gijsje H. Koenderink. Self-organized patterns of actin filaments in cell-
sized confinement. Soft Matter, 7:10631-10641, 2011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929-1958, 2014.

W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Physical
Review Letters, 42(25):1698, 1979.

Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger G.
Melko, and Giuseppe Carleo. Neural-network quantum state tomography. Nature
Physics, 14(5):447, 2018.

Giacomo Torlai and Roger G. Melko. Learning thermodynamics with Boltzmann
machines. Physical Review B, 94:165134, 2016.

85



[90]

[91]

[99]

[100]

[101]
[102]

C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram. Multistable alignment
states in nematic liquid crystal filled wells. Applied Physics Letters, 90(11):111913,
2007.

Sabina W. Ula, Nicholas A. Traugutt, Ross H. Volpe, Ravi R. Patel, Kai Yu, and
Christopher M. Yakacki. Liquid crystal elastomers: an introduction and review of
emerging technologies. Liquid Crystals Reviews, 6(1):78-107, 2018.

Evert P. L. van Nieuwenburg, Ye-Hua Liu, and Sebastian D. Huber. Learning phase
transitions by confusion. Nature Physics, 13(5):435, 2017.

Michael Walters, Qianshi Wei, and Jeff Z. Y. Chen. Machine learning topological
defects of confined liquid crystals in two dimensions. Physical Review F, 99:062701,
2019.

Ce Wang and Hui Zhai. Machine learning of frustrated classical spin models. I.
principal component analysis. Physical Review B, 96(14):144432, 2017.

Ce Wang and Hui Zhai. Machine learning of frustrated classical spin models (II):
Kernel principal component analysis. Frontiers of Physics, 13(5):130507, 2018.

Lei Wang. Discovering phase transitions with unsupervised learning. Physical Review
B, 94(19):195105, 2016.

Qianshi Wei, Roger G. Melko, and Jeff Z. Y. Chen. Identifying polymer states by
machine learning. Physical Review E, 95:032504, 2017.

Sebastian J. Wetzel and Manuel Scherzer. Machine learning of explicit order
parameters: From the Ising model to SU (2) lattice gauge theory. Physical Review
B, 96(18):184410, 2017.

W. W. Wood and J. D. Jacobson. Monte Carlo calculations in statistical mechanics.
In Papers presented at the the March 3-5, 1959, western joint computer conference,
pages 261-269. ACM, 1959.

Dian Wu, Lei Wang, and Pan Zhang. Solving statistical mechanics using variational
autoregressive networks. Physical Review Letters, 122(8):080602, 2019.

Deng-Ke Yang. Fundamentals of liquid crystal devices. John Wiley & Sons, 2014.

Xiaomei Yao, Hui Zhang, and Jeff Z. Y. Chen. Topological defects in two-dimensional
liquid crystals confined by a box. Physical Review E, 97(5):052707, 2018.

86



[103] Pengfei Zhang, Huitao Shen, and Hui Zhai. Machine learning topological invariants
with neural networks. Physical Review Letters, 120(6):066401, 2018.

[104] Wanzhou Zhang, Jiayu Liu, and Tzu-Chiech Wei. Machine learning of phase
transitions in the percolation and XY models. Physical Review E, 99(3):032142,
2019.

[105] YiZhang and Eun-Ah Kim. Quantum loop topography for machine learning. Physical
Review Letters, 118(21):216401, 2017.

87



Appendix A

Learning the Isotropic-Nematic
Phase Transition

In this work, we used the off-lattice model of rod-like molecules confined in a square box as
an example of a system containing topological defects in its nematic state. The controlling
physical parameter is p. Above a critical value p*, the system is in the nematic (N) state
showing a defect pattern such as those in Figure 2.2, and below p* the isotropic (I) state
where the rod-like molecules, away from the confinement walls, have random orientations.

Although our main focus of the current work is detecting topological defects in the
nematic state, a highly related question is: Can an FNN detect the I-N transition of the
system? An effective way to train an FNN to learn the molecular configurations produced
from a simulation is via a supervised learning approach with classified images. Here, two
classifications, I and N, correspond to nodes (v, v5) respectively. This is the same method
used in Section 5.2 but with no pre-sorting and two states instead of four. Additionally
for this study, configurations produced at different values of p are required. At a fixed NV,
a series of configurations are obtained with varying p by adjusting a/L; this is achieved by
a Monte Carlo procedure described in Section 5.1.

The FNN training session takes the molecular configurations at two densities, p = 4
(when the system is in an I state) and p = 16 (when the system is in a deep N state) so
that it can learn the difference between these two states. For this identification we use the
D defect state. Only the angles §; (I = 1, N) recorded in an MC snapshot are needed here,
hence the input layer contains N nodes. The FNN had two hidden layers of size 128 and
32. Exponential linear units were used, along with early stopping, Adam optimization, and
50% dropout [21, 49, 67, 86]. The FNN easily learned the difference between the I and N
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Figure A.1: Identification of the I-N transition point. An FNN is trained by using training
files at low and high densities (p = 4 and 16 for the I and N states, respectively). Then,
the trained FNN is used to calculate the average outputs 77 and v, at each given p. These
characteristic measures are to indicate if the system is in an I or N state, plotted by
red and white squares, respectively. Error bars of these data points are smaller than the
symbols sizes. The crossing point is defined as the I-N transition point. In the background,
represented by circles (to the right scale), an independent estimate of the variance of the
orientational order parameter o (normalized), shows a peak at the transition point. Blue
and white circles represent the statistics from rods in the entire box and half-sized center
region, respectively. The three plots, (a), (b), and (c), are produced with system sizes
N = 20%, 242, and 282, respectively.
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states, achieving approximately 99% accuracy within 100 training epochs, tested on 600
independent images not used in the training.

Having trained the FNN to identify the ideal I and N states, we then query the network
output on unidentified snapshot data taken from MC simulations at various values of p in
the domain p = [4, 16]. A total of k = 5000 MC snapshots were obtained for each value of
p and fed into the input layer of the trained FNN. The network is looking for when any
order in angular values emerges. When isotropic, the € input will approach a uniform input
(less the box edge alignment). Once the system inclines towards the nematic state, the
network will pick up on deviations from this uniform input, signaling the phase transition.

For a given value of p with k images, an average

is used to identify how strongly the network believes that this density gives an I state;
vy for state N is also calculated in the same fashion. These averages are plotted in
Figure A.1. Near the I-N transition point, due to the large fluctuations of the molecular
configurations, the network can only identify the overall states by a percentage certainty.
In recent literatures [9, 97], it is customary to use the vy = vy = 1/2 crossing position
as the flag to identify the critical point p*. For system sizes of N = 20%, N = 242, and
N = 282, our results suggest p* = 6.71 £ 0.25, 6.95 & 0.25, and 7.08 & 0.25, respectively.
These values are comparable to those from previous numerical and experimental studies,
which suggest values of p* of =~ 7.0 [30], 6.5 [23], and 6 — 9 [32]; the mean-field theory
calculation of p* = 37/2L* &~ 4.71 based on the Onsager theory is a known under-estimate

[10, 47].

While p* were estimated from the FNN study, we provide here independent estimates
from statistical physics for comparison. We start by calculating a nematic order parameter
A for every configuration file. In 2D, we use the definition

A=V02+ 52 (A.1)

where

C' = (cos 20),
S = (sin 20),

are averages over the NV rod-like molecules within a configuration file. Note that in an ideal
[ state A = 0, and in a uniformly aligned N state A = 1. Then, we analyze the statistics of
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A calculated from the 5000 configurations used for each p. According to statistical physics,
the variance o = (A?)" — (A>'2, plotted as a function of p, displays a peak at the phase
transition density p*. Here (...)" represents an algebraic average of the 5000 data points,
not to be confused with a box average (...). One can find the o? data presented by blue
circles in Figure A.1. Indeed, this independent analysis produces peak positions closely
matching the FNN determination of p*.

In the system sizes studied, the boundary effects can permeate into a non-negligible
portion of the domain. Measurements of the order along the box edge is then likely to
produce values higher than the bulk in many cases from rod-wall alignment [15, 17, 71].
The definition in Eq. (A.1) is not affected by these boundary effects if vertical and horizontal
boundaries make equal contributions to U and T. As an independent check, we also used
configurations of rods belonging to a half-sized, centered box to evaluate 0. The resultant
white circles in Figure A.1 show the same transition density within the numerical error.
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Appendix B

FNN and RNN Digit Recognition

The MNIST dataset includes 6 x 10* training images and 10* testing images of handwritten
numerical digits. One of the images is shown in Fig. 2.2(a). An industrial standard of
machine learning is the correct identification of the 10 numerical digits in the MNIST set. It
is well-known that deep FNN is an effective tool for this purpose, reaching accuracies above
99% [52]. The output layer shown in Fig. 2.1 now has n = 10 nodes, each characterizing
a digit, from 0,1, 2,...,9.

A typical data set to represent an MNIST image has the data structure F;;, where
1 = 1,...28 is the row number of the pixels, and j = 1,...28 the column number, and P
the grey scale “ink” intensity of the writing. Implicitly, when the data is stored according
to the order of 7 and j, spatial location (that is, the pixel position specified by i and j)
follows this order. The configuration file of a 2D Ising model would have a similar data
structure where P has only two values, up and down.

To compare with the off-lattice output data, we rewrite a data point P;; by a line of
four numbers [l, 4, ji, P;;] where | = 1,2,...,28 x 28 is a sequential number that labels i,
and 7;. This has the same data structure as the configurational record obtained from an
off-lattice molecular simulation where a typical line reads [l, x;, i, 6;]. However, there is
one important difference: the MNIST data has a correlation between [ and (i, j;) in an
orderly fashion, whereas in the off-lattice coordinate record, there is no correlation between
[ and z;,y;.

If we decorrelate [ from (i, 7) but use (i, ji, P,j,) as the input, can an FNN still
identify the numerical digits? The decorrelation is done by randomizing the line ordering
of (i1, ji1, Pij) data for each digit image. As demonstrated by the circles in Figures B.1(a)
and (b), the FNN now fails to learn the correlation between i, j and P;,;,. The FNN network
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Figure B.1: Demonstration of the importance of pixel ordering for MNIST recognition
when FNN is used (circles) and the automatic pixel-position and feature correlation for
MNIST recognition when RNN is used (squares). When the pixel ordering (green arrows
in Fig. 2.2(a)) is randomized, an FNN cannot be trained adequately to recognize the
MNIST images, shown by the rising cost and low accuracy on test data, even when the
position-feature data are used together in the input to Figure 2.1(a). On the other hand,
when the same data are used with an RNN (Figure 2.1(b)) the network can successfully
identify the 10 different digits, as shown by the minimal cost entropy and near-perfect test
set accuracy.
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looks for the correlation between features (that is, ¢, j and P;;) and the data ordering. This
ordering, of course, is destroyed in randomizing the line ordering. We can also demonstrate
that the coarse-graining method mentioned in the text helps to reestablish the position-
intensity correlation; the plots are omitted here.

A strong contrast is the use of RNN. The three inputs to LSTM blocks in Fig. 2.1(b)
are now ¢, j, F;;, in a random order because of the intentional data randomization. The
cost function S and test set accuracy A are shown in Fig. B.1 by squares. The RNN
manages to effectively learn the correlation between 7, j and F;; and successfully identifies
all 10 numerical digits.

94



	List of Figures
	Abbreviations
	List of Symbols
	Introduction
	Supervised Machine Learning of Liquid Crystal Defect States
	Supervised training and accuracy testing
	Learning topological defects
	DTUX topologies

	Preparation of the training and testing data
	Recurrent Neural Networks

	Unsupervised Machine Learning of Defects with PCA
	Principal Component Analysis
	PCA learning of order parameters
	PCA learning of disclinations

	Computational Methods and Order in Liquid Crystals
	Monte Carlo molecular dynamics
	At the computational crossroads

	Onsager continuum model
	Orientational order

	Results: Supervised Learning of Topological States
	Monte Carlo data generation
	Application of FNN
	FNN as a universal approximator

	Application of RNN

	Results: Learning and Locating Disclinations by PCA
	Preparation of data
	Results of PCA

	Summary & Outlook
	References
	APPENDICES
	Learning the Isotropic-Nematic Phase Transition
	FNN and RNN Digit Recognition

