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Abstract

This thesis examines the dynamics and control of a class of systems furnished by kinematic
systems on exponential matrix Lie groups, when the plant evolves in continuous-time, but
whose controller is implemented in discrete-time. This setup is called sampled-data and
is ubiquitous in applied control. The class of Lie groups under consideration is motivated
by our previous work concerning a similar class of kinematic systems on commutative Lie
groups, whose local dynamics were found to be linear, which greatly facilitated control
design. This raised the natural question of what class of systems on Lie groups, or class
of Lie groups, would admit global characterizations of stability based on the linear part
of their local dynamics. As we show in this thesis, the answer is—or at least includes—
left- or right-invariant systems on exponential Lie groups, which are necessarily solvable,
nilpotent, or commutative.

We examine the stability of a class of difference equations that arises by sampling a
right- or left-invariant flow on a matrix Lie group. The map defining such a difference
equation has three key properties that facilitate our analysis: 1) its Lie series expansion
enjoys a type of strong convergence; 2) the origin is an equilibrium; 3) the algebraic ideals
enumerated in the lower central series of the Lie algebra are dynamically invariant. We show
that certain global stability properties are implied by stability of the Jacobian linearization
of dynamics at the origin, in particular, global asymptotic stability. If the Lie algebra is
nilpotent, then the origin enjoys semiglobal exponential stability.

We then study the synchronization of networks of identical continuous-time kinematic
agents on a matrix Lie group, controlled by discrete-time controllers with constant sampling
periods and directed, weighted communication graphs with a globally reachable node. We
present a smooth, distributed, nonlinear discrete-time control law that achieves global syn-
chronization on exponential matrix Lie groups, which include simply connected nilpotent
Lie groups as a special case. Synchronization is generally asymptotic, but if the Lie group
is nilpotent, then synchronization is achieved at an exponential rate. We first linearize
the synchronization error dynamics at the identity, and show that the proposed controller
achieves local exponential synchronization on any Lie group. Building on the local anal-
ysis, we show that, if the Lie group is exponential, then synchronization is global. We
provide conditions for deadbeat convergence when the communication graph is unweighted
and complete.

Lastly, we examine a regulator problem for a class of fully actuated continuous-time
kinematic systems on Lie groups, using a discrete-time controller with constant sampling
period. We present a smooth discrete-time control law that achieves global regulation on
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simply connected nilpotent Lie groups. We first solve the problem when both the plant
state and exosystem state are available for feedback. We then present a control law for
the case where the plant state and a so-called plant output are available for feedback. The
class of plant outputs considered includes, for example, the quantity to be regulated. This
class of output allows us to use the classical Luenberger observer to estimate the exosystem
states. In the full-information case, the regulation quantity on the Lie algebra is shown to
decay exponentially to zero, which implies that it tends asymptotically to the identity on
the Lie group.
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Chapter 1

Introduction

The main results of this thesis, presented in Chapter 3, give easily checkable conditions
to ensure, among other properties, global asymptotic stability of the origin for a class
of discrete-time dynamical systems on solvable Lie algebras with state X and exogenous
signal W . We make no general assumptions on the exogenous signal W . We show that,
for this class of systems, global stability properties can be determined from the linear part
of the dynamics.

As we delineate in this chapter, study of this class of systems is motivated by the
sampled-data control of right- (or left-) invariant systems on matrix Lie groups:

Ẋ(t) =

(
A+

m∑
i=1

Biui(t)

)
X(t), (1.1)

where the state X(t) evolves on the Lie group, A,B1, . . . , Bm belong to the associated Lie
algebra, and u1(t), . . . , um(t) are the control signals. Our stability results in Chapter 3 for
system (3.1) are applied to synchronization and regulation problems for system (1.1) in
Chapters 4 and 5, respectively.

In particular, we consider the case where the Lie group is solvable or nilpotent. Our
study of this class of Lie groups was initially motivated by our synchronization [73] and
regulation [74] results for commutative Lie groups. In those works, it was found that,
locally, the dynamics of (1.1) were linear. This raised the natural question of what class
of systems on Lie groups, or class of Lie groups, would admit global characterizations of
stability based on the linear part of their local dynamics. As we show in this thesis, for
systems of the form (1.1), the answer is—or at least includes—exponential Lie groups,
which are necessarily solvable, nilpotent, or commutative.
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The mathematical object that has been come to be known as a Lie group was initially
studied by Sophus Lie in the latter half of the nineteenth century. He sought to do for ordi-
nary differential equations, what Évariste Galois had done for polynomial equations—that
is, identify groups characterizing symmetries of these equations, thereby granting insight
to their solubility and solutions [87]. In 1868, Wilhelm Killing published the first of a
series of papers that would lay the foundation for the classification of what would become
known as semisimple Lie algebras [42, §II]. In his doctoral dissertation, Élie Cartan ex-
tended Killing’s discoveries on semisimple and solvable Lie algebras [42, §III.6.2]. In the
early twentieth century, Hermann Weyl made significant advancements in the study of irre-
ducible representations of Lie groups [42, §IV]. In 1900, David Hilbert published his list of
Mathematische Probleme [45] (Mathematical Problems [46]). The fifth of these problems
is commonly interpreted as “are all locally Euclidean topological groups Lie groups? [108]”
This question was answered in the affirmative in 1952 by Deane Montgomery, Leo Zip-
pin [79], and Andrew M. Gleason [36]. This result leads to the simple characterization of
Lie groups: they are groups that are also topological manifolds.

1.1 Control Systems on Matrix Lie Groups

Control systems on Lie groups differ from classical control systems in that the state does
not evolve on a vector space. Such systems are often controlled using differential geometric
techniques, i.e., using coordinate charts on the Lie group to represent the system dynamics
in local coordinates on Rn. This effects artificial singularities that arise from the choice of
local coordinates, rather than being intrinsic to the system’s dynamics.

Example 1.1.1. (Rotating rigid body in R3) Rotating rigid bodies appear frequently
in engineering. Examples include UAVs [110] and robotic manipulators [101]. Fix an
inertial reference frame

Σintertial = {Oinertial, {g1, g2, g3}},

which allows us to treat points in space as vectors in R3, relative to the origin Oinertial,
with components taken relative to the basis {g1, g2, g3}. To the rigid body, attach a body
reference frame

Σbody = {Obody, {b1, b2, b3}},

that moves with the body.

If Oinertial = Obody, and the bases {g1, g2, g3} and {b1, b2, b3} have the same orientation,
then the matrix R ∈ R3×3, whose ith column is the components of bi expressed in the basis
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{g1, g2, g3}, represents the orientation of the rigid body frame with respect to the inertial
frame. The matrix R is an element of the special orthogonal group of 3 × 3 orthogonal
matrices SO(3) = {R ∈ R3×3 : det(R) = 1, R>R = I}. It is easy to show that the evolution
of the orientation of the rigid body R(t) is modelled by

Ṙ = RΩb, (1.2)

where Ωb ∈ so(3), the Lie algebra of 3× 3 skew-symmetric matrices. If the system is fully
actuated, then Ωb has three independent control inputs and the system can be taken to be
of the form (1.1) with A = 0,

B1 =

0 0 0

0 0 −1

0 1 0

 , B2 =

 0 0 1

0 0 0

−1 0 0

 , B3 =

0 −1 0

1 0 0

0 0 0

 .
These dynamics can also be expressed in the coordinate frame Σinertial as

Ṙ = ΩgR. (1.3)

N

In the previous example, no local coordinates were used; the elements of SO(3) were
represented as matrices embedded in R3×3. However, such matrices have only 3 indepen-
dent entries. This motivates many researchers to use the minimum number of differential
equations to describe the dynamics (1.2) (or (1.3)). This is done by treating SO(3) as
a 3-dimensional manifold and with local coordinate charts. The next example illustrates
how the common practice of using local coordinates introduces artificial singularities.

Example 1.1.2. (Rotating rigid body in R3 in local coordinates) Consider the
rotating rigid body of Example 1.1.1 with dynamics (1.2). A common choice of local
coordinates is roll-pitch-yaw, whose coordinate map is defined only on the open subset
U = {R ∈ SO(3) : −1 not in spectrum of R} on which it is invertible. Given a rotation
matrix R ∈ U , the coordinate chart (U,ϕ) is given by ϕ : U → ϕ(U) ⊂ R3,

ϕ(R) :=

 atan2(R32, R33)

atan2(R21, R11)

atan2(−R31, cos (atan2(R21, R11))R11 + sin (atan2(R21, R11))R21)

 ,
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where atan2 is the 4 quadrant arctan, and with inverse,

ϕ−1(ξ) =

cos ξ2 cos ξ3 cos ξ2 sin ξ3 sin ξ1 − sin ξ2 cos ξ1 cos ξ2 sin ξ3 cos ξ1 + sin ξ2 sin ξ1

sin ξ2 cos ξ3 sin ξ2 sin ξ3 sin ξ1 + cos ξ2 cos ξ1 sin ξ2 sin ξ3 cos ξ1 − cos ξ2 sin ξ1

− sin ξ3 cos ξ3 sin ξ1 cos ξ3 cos ξ1,

 .
The variables ξ1, ξ2, and ξ3 represent rotations in ϕ(U) ⊂ R3. The dynamics (1.2) can be
expressed in local coordinates by applying the chain rule:1

ξ̇ =
∂ϕ

∂R

∣∣∣∣
R=ϕ−1(ξ)

Ṙ
∣∣∣
R=ϕ−1(ξ)

=

ω1 + tan (ξ3) (ω3 cos (ξ1) + ω2 sin (ξ1))
ω3 cos(ξ1)+ω2 sin(ξ1)

cos(ξ3)

ω2 cos (ξ1)− ω3 sin (ξ1)

 .
We see that ξ̇1 and ξ̇2 are unbounded as ξ3 → ±π

2
.

The vector field ξ̇ has singularities at cos(ξ3) = cos(ξ2) cos(ξ3) = sin(ξ2) cos(ξ3) =
0 [4]. These singularities are mathematical artifacts associated with the choice of local
coordinates; they are not physical properties of any rotating rigid body. N

The study of (1.1) was pioneered in the 1970s with the works of Jurdjevic, Sussmann [54]
and Brocket [12] on controllability; the latter also addressed observability and realization
theory. Brockett’s observability results in [12] were extended, and necessary and suffi-
cienct conditions were identified in [20]. We refer the reader to [93] for a more recent
comprehensive treatment of control theory on Lie groups.

Many engineering systems can be modelled on Lie groups, which is advantageous be-
cause it eliminates dependence on local coordinates, thereby avoiding singularities in the
dynamical model. The study of systems in this global framework allows one to identify its
intrinsic properties, i.e., the properties that are invariant under smooth diffeomorphisms.
Networks of coupled oscillators are common in science and engineering: biological systems
such as neural networks, crickets chirping, and pacemaker cells of the heart [102], parts of
the power grid [71, 97, 31], and robots moving on a plane [57]. The Kuramoto oscillator
is used to model the synchronization behaviour of networks of oscillators. The Kuramoto
oscillator evolves on the circle [30], which is isomorphic to the commutative Lie group
SO(2), the group of rotations on R2. The motion of robots in a plane is modelled on the
solvable Lie group SE(2) [55, 53]; motion in space, such as that of underwater vehicles [64],
UAVs [62, 91], and robotic arms [101], is modelled on SE(3), where SE(n) is the special

1Here we are using the fact that SO(3) is embedded in R3×3 in order to apply the chain rule.
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Euclidean group of homogeneous transformations on Rn. Quantum systems evolve on the
groups U(n) [65] of n × n unitary matrices over the complex field, and SU(n) [88, 3, 2],
the subgroup of unitary matrices with unit determinant. Even the noise responses of
some circuits evolve on Lie groups [115], specifically the solvable Lie group of invertible
upper-triangular matrices. Control on the nilpotent Heisenberg group H has also been the
object of much study [78, 6]. In continuous-time, certain classes of vector fields can be
approximated as being on nilpotent Lie algebras [43, 104] and, more generally, solvable Lie
algebras [23]. This is of interest because of the relatively simple Lie algebraic structure
of nilpotent and solvable Lie algebras. In particular, left- and right-invariant systems on
nilpotent matrix Lie groups have trajectories characterized by finite series of Lie brackets,
as will be made apparent when we discuss the Magnus expansion in Section 1.2.

Our main results concern nilpotent and solvable Lie groups. In this section, we outline
how these classes of Lie groups are relevant in engineering applications. Consider Brockett’s
nonholonomic integrator [14]

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 − x1u2.

(1.4)

This system can be used to model, for example, a special case of the dynamical constraints
that furnish the equations of planar motion of a particle in a magnetic field [10, §7.5]. The
nonholonomic integrator is an example of a nonlinear system that is globally controllable,
but whose linearization at the origin is not useful for control design:

ẋ1 = u1

ẋ2 = u2

ẋ3 = 0,

which is not even stabilizable.

The nonholonomic integrator (1.4) can be expressed as a system on the nilpotent 3-
dimensional real Heisenberg group H of matrices of the form

X =

1 x1 x3

0 1 x2

0 0 1

 .
A basis for its Lie algebra h is

e1 =

0 1 0

0 0 0

0 0 0

 , e2 =

0 0 0

0 0 1

0 0 0

 , e3 =

0 0 1

0 0 0

0 0 0

 ,
5



whose nonzero Lie brackets are given by [e1, e2] = e3. Consider the control system

Ẋ = (e1u1 + e2u2)X, (1.5)

where e1, e2 ∈ h are the input vector fields, X ∈ H is the state, and u1, u2 ∈ R are the
inputs. System (1.5) is of the form (1.1), with A = 0, B1 = e1 and B2 = e2. From (1.5)
we have

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2.

(1.6)

Applying the global change of coordinates [112]

ξ1 := x1

ξ2 := x2

ξ3 := 2x3 − x1x2,

we recover the nonholonomic integrator (1.4), which shows that (1.4) and (1.5) are differ-
entially equivalent.

System (1.6) is an example of a system in so-called chained form, introduced by Mur-
ray [83]. In particular, system (1.6) is an example of a one chain system:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

ẋ4 = x3u1

...

ẋn = xn−1u1.

(1.7)

Such systems are expressions of a kinematic system on a particular nilpotent Lie group
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SUP(n) [103] of matrices of the form

X =



1 x2 x3 x4 x5 · · · xn

0 1 x1
1
2
x1

1
6
x3

1 · · · 1
(n−2)!

xn−2
1

...
. . . 1 x1

1
2
x1

. . .
...

...
. . . 1 x1

. . . 1
6
x3

1

...
. . . 1

. . . 1
2
x2

1

...
. . . . . . x1

0 · · · · · · · · · · · · 0 1


,

where x := (x1, . . . , xn) ∈ Rn, in exponential coordinates of the second kind, i.e.,

X = exp(e1x1) · · · exp(enxn).

A basis for its Lie algebra sup(n) is

e1 =



0 0 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

...
...

. . . 1

0 0 · · · · · · 0


, e2 =



0 1 0 · · · 0

0 0 0
. . .

...
...

...
. . . . . . 0

...
...

. . . 0

0 0 · · · · · · 0


, . . . , en =



0 0 0 · · · 1

0 0 0
. . .

...
...

...
. . . . . . 0

...
...

. . . 0

0 0 · · · · · · 0


,

whose nonzero Lie brackets are given by

[e1, ei] = (−1)i+1ei+1, i = 1, . . . , n− 1.

It is easy to verify that SUP(n) is a nilpotent Lie group (see Definition 2.3.4). We re-
mark that SUP(3) is isomorphic to the Heisenberg group H, which is the Lie group of
the nonholonomic integrator (1.4). This can be seen by observing that their respective
Lie algebras have the same bases, up to reordering. Again consider a control system of
the form (1.5), where e1, e2 ∈ sup(n) and X ∈ SUP(n). Expressing these dynamics in
exponential coordinates of the second kind, we obtain (1.7).
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Example 1.1.3. (Car-like robot, [82]) Consider the vehicle in Figure 1.1. We can

Figure 1.1: Car-like robot.

model this vehicle using the kinematic model

ẋ = cos(θ)u1

ẏ = sin(θ)u1

φ̇ = u2

θ̇ =
1

`
tan(φ)u1.

(1.8)

Applying the coordinate and feedback transformation [112, §4] given by

x1 := x

x2 :=
1

`
sec(θ)3 tan(φ)

x3 := tan(θ)

x4 := y

u1 = sec(θ)v1

u2 =
−3

`
sin(φ)2 tan(θ) sec(θ)v1 + ` cos(φ)2 cos(θ)3v2,

8



we obtain a system in chained form:

ẋ1 = v1

ẋ2 = v2

ẋ3 = x2v1

ẋ4 = x3v1,

which can be expressed as a system on the nilpotent matrix Lie group SUP(4):

Ẋ = X




0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 v1 +


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 v2

 ,

where

X :=


1 x2 x3 x4

0 1 x1
1
2
x2

1

0 0 1 x1

0 0 0 1

 .
N

Finally, if a left- or right-invariant kinematic control system on a Lie group does not
evolve on a nilpotent Lie group, it can always be approximated by one that does. The
following example illustrates the nilpotent approximation technique of [104].

Example 1.1.4. ([104, Example 3.3]) Consider an underactuated rigid body in space,
which can be modelled as a left-invariant system on the Lie group SE(3)

Ẋ = X (e1u1 + e2u2 + e4u3 + e5u4) , (1.9)

where {e1, . . . , e6} is a basis for the Lie algebra se(3), whose nonvanishing Lie brackets are
given by

[e1, e2] = e3, [e1, e3] = −e2, [e1, e5] = e6, [e1, e6] = −e5,

[e2, e3] = e1, [e2, e4] = −e6, [e2, e6] = e4,

[e3, e4] = e5, [e3, e5] = −e4.

9



In exponential coordinates of the second kind, the dynamics (1.9) are

ẋ =



sec(x2) cos(x5) − sec(x2) sin(x5) 0 0

sin(x5) cos(x5) 0 0

x4 tan(x2) cos(x5)− x6 sin(x5) −x4 tan(x2) sin(x5)− x6 cos(x5) cos(x5) − sin(x5)

cos(x5)(x6 − x3 tan(x2)) sin(x5)(x3 tan(x2)− x6) sin(x5) cos(x5)

− tan(x2) cos(x5) tan(x2) sin(x5) 0 0

x3 sin(x5)− x4 cos(x5) x3 cos(x5) + x4 sin(x5) 0 0


u.

(1.10)

The nilpotent approximation technique of [104] first constructs a nilpotent Lie algebra
by copying the structure constants of the original Lie algebra, then judiciously setting some
of them to zero, such that the resultant Lie algebra is nilpotent, while preserving a subset
of the original Lie brackets. The nilpotent Lie algebra in this example has nonvanishing
Lie brackets given by

[n1, n2] = n5, [n1, n4] = n6, [n2, n3] = −n6.

We define the dynamics on the nilpotent Lie group associated with the foregoing nilpotent
Lie algebra:

Ẏ = Y (n1u1 + n2u2 + n3u3 + n4u4),

which in exponential coordinates of the second kind is

ẏ1 = u1

ẏ2 = u2

ẏ3 = u3

ẏ4 = u4

ẏ5 = −y2u1

ẏ6 = −y4u1 + y3u2.

(1.11)

To see how the dynamics (1.11) are an approximation for (1.10), first define

F e
k := spanR{words over the letters e1, e2, e4, e5 of length at most k},

F n
k := spanR{words over the letters n1, n2, n3, n4 of length at most k}.

The sequences {F e
k} and {F n

k } are called the control filtrations of LieR{e1, e2, e4, e5} and
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LieR{n1, n2, n3, n4}, respectively. We have

F e
1 = spanR{e1, e2, e4, e5}
F e

2 = spanR{e1, e2, e4, e5, [e1, e2], [e1, e5], [e2, e4]} = se(3)

F n
1 = spanR{n1, n2, n3, n4}
F n

2 = spanR{n1, n2, n3, n4, [n1, n2], [n1, n4], [n2, n3]} = se(3)

The dynamics (1.11) are an approximation for (1.10) in the sense that Y evolves on
the nilpotent Lie group, whose Lie algebra is given by a subset of the structure constants
of se(3), and

dimF e
1 = dimF n

1

dimF e
2 = dimF n

2 .

More generally, the method of [104] furnishes approximations such that for all k,
dimF e

k = dimF n
k . N

The foregoing examples serve to motivate the study of nilpotent Lie groups in the
context of control theory. In the case of the nonholonomic integrator (1.4), the system is
described as a system on a nilpotent matrix Lie group (1.5) via a coordinate transformation.
In the car-like robot example, the dynamics (1.8) are put into chained form via a feedback
transformation. Note that nilpotent Lie groups are a special case of solvable Lie groups.

Remark 1.1.1. A so-called left-invariant dynamical system on a Lie group is

Ẋ = X

(
A+

m∑
i=1

Biui

)
, (1.12)

where X evolves on a Lie group G, A,B1, . . . , Bm belong to the associated Lie algebra g over
the field F, and the input u takes values Fm. The name left-invariant indicates that the
action of G on g is left-invariant, i.e., if X, Y ∈ G and Ẋ = f(X), then f(Y X) = Y f(X).
Such systems include Schrödinger’s equation in SU(n) [3] and the rotational dynamics of
rigid bodies on SO(3) [116].

Applying the change of coordinates Z := X−1 to (1.12), we obtain a right-invariant
system of the form (1.1) [93, §3.2]. Results applying to left-invariant systems apply mutatis
mutandis to right-invariant systems. Henceforth, we use whichever of (1.12) or (1.1) is most
convenient. �
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1.2 Sampled-Data Feedback Control of Systems on

Matrix Lie Groups

This thesis is concerned with the control of plants on Lie groups in the sampled-data
setting, i.e., a plant evolving in continuous-time and a controller evolving in discrete-time.
The plant often has an output Y = h(X, u), where h : G×Fm → Y and Y is the output set:
a Cartesian product of Lie groups or vector spaces. In the standard feedback control system
setup, there is a reference signal R ∈ Y, which represents the desired value of the output.
A closed-loop sampled-data setup is illustrated in Figure 1.2, where C is the controller, E
is the tracking error, and S and H are ideal sample and hold operators, respectively.

Figure 1.2: Sampled-data error feedback system on a Lie group.

The sampled-data setup is ubiquitous in applied control [38]. In this context, the plant,
as seen from the controller’s perspective, is the composition of the plant dynamics with
the sample and hold operators, as illustrated in Figure 1.3. In the LTI case, the plant

Figure 1.3: Sampled-data plant.

can be exactly discretized, i.e., the map u[k] 7→ y[k] has an exact closed-form expression
and, if the plant is stabilizable, i.e., the restriction of the dynamics to the unstable modal
subspace are controllable, and the sampling period is not pathological, then a discrete-
time controller can be designed such that closed-loop stability is achieved. Such stability
guarantees cannot generally be enforced for nonlinear plants, as nonlinear ODEs generally
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do not have closed-form solutions, necessitating the use of approximations for discrete-time
design or implementation. As discussed in the next subsection, right- and left-invariant
systems on matrix Lie groups are an exception. The design of a discrete-time controller
for the discretized plant is called direct design. Since nonlinear ODEs generally do not
have closed-form solutions, the plant dynamics are usually approximately discretized, for
example, using series approximations of the state trajectories [77]. For a broad class
of nonlinear systems, sufficient conditions for closed-loop stability of the sampled-data
system were identified in [84]: 1) given a fixed sampling period, stability is achieved if
the plant discretization is sufficiently accurate [84, Theorem 1]; 2) if the approximation’s
accuracy is a function of only the sampling period, e.g., Euler’s method, then stability
is achieved for sufficiently small sampling periods [84, Theorem 2]. Approximation-based
direct design has two main weaknesses [84]: 1) closed-loop stability may be impossible for
a given discretization method; 2) when closed-loop stability is achievable, it relies on fast
sampling, which may be infeasible. For example, when using machine vision, the sampling
rate may be limited by the framerate of the camera [69]. The latter issue is also the main
weakness of emulation—solving the control problem in continuous-time, but implementing
a discrete-time controller that approximates the continuous-time controller at the sampling
instants [85].

Example 1.2.1. Consider a network of 3 Kuramoto oscillators of the form

θ̇i = ω0i −
3∑
i=1

sin(θi − θj), i ∈ {1, 2, 3}. (1.13)

Frequency synchronization is achieved, i.e., for all i, θ̇i → ω as t→∞, but can be lost under
sampling. We simulate this network, where each agent can only update its neighbours’
phase information at the sampling instants. As seen in Figure 1.4, synchronization is
achieved with sampling period T = 0.1, but not for T = 0.8. Although not surprising, this
example illustrates one of the weaknesses of emulation. N

The limitations inherent to approximate discretization do not necessarily pose a prob-
lem for the class of kinematic systems on matrix Lie groups (1.1), which are nonlinear, yet
have dynamics that admit exact closed-form solutions [32], thereby enabling direct design
using discretized plant models whose states coincide with those of the continuous-time
plant at the sampling instants. To our knowledge, sampled-data control of systems on
Lie groups has not been explored extensively in the literature. Brockett and Willsky in-
troduced and established controllability and observability properties for the class of group
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Figure 1.4: Phases of the agents (1.13) under different sampling periods.

homomorphic sequential systems :

x[k + 1] = b(u[k])a(x[k])

y[k] = c(x[k]),

where a, b, and c are morphisms of groups [13, 15, 114]. However, they only studied these
systems in the case where the group is finite.

Consider the general class of time-invariant right-invariant kinematic systems on matrix
Lie groups, whose dynamics are governed by

Ẋ = A(t, u)X, (1.14)

where X(t) ∈ G, u(t) ∈ Fm, A : R × Rm → g. For piecewise constant inputs u, the
state trajectory can be solved exactly, thereby furnishing a step-invariant transform, as for
linear systems. The solution X(t) for (1.14) is given by the Magnus expansion [9], which
provides an expression for Log(X(t)) ∈ g wherever the principal logarithm Log : G→ g is
well-defined. Given fixed A ∈ g, its adjoint operator is adA : g → g, X 7→ [A,X], where
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the Lie bracket [·, ·] is the commutator AX −XA. Recursively define

Ω1(t) :=

∫ t

0

A(τ, u(τ))dτ

Ωn(t) :=
n−1∑
j=1

Bj

j!

∑
k1+···+kj=n−1
k1,...,kj≥1

∫ t

0

adΩk1
(s) · · · adΩkj

(s)A(s, u(s))ds, n ≥ 2

Ω(t) :=
∞∑
n=1

Ωn(t),

(1.15)

where the Bj are the Bernoulli numbers.2 Then, whenever the series defining Ω, which is
a linear combination of the integral of A and nested Lie brackets Ωn(t), n ≥ 2, converges,

X(t) = exp(Ω(t))X(0), (1.16)

In the sampled-data setup, due to the hold operator H, the plant is driven by a piecewise
constant input signal. When A(t, u) is constant over the interval t ∈ [kT, (k + 1)T ),
from (1.15), a straightforward computation yields

Ω[k + 1] = Ω[k] +

∫ (k+1)T

kT

A(τ, u[k])dτ

+
∞∑
n=2

n−1∑
j=1

Bj

j!

∑
k1+···+kj=n−1
k1,...,kj≥1

∫ (k+1)T

kT

adΩk1
(s) · · · adΩkj

(s) A(s, u[k])ds,

which furnishes an exact discretization of (1.16):

X[k + 1] = exp

(
Ω[k] +

∫ (k+1)T

kT

A(τ, u[k])dτ

+
∞∑
n=2

n−1∑
j=1

Bj

j!

∑
k1+···+kj=n−1
k1,...,kj≥1

∫ (k+1)T

kT

adΩk1
(s) · · · adΩkj

(s) A(s, u[k])ds

)
X(0).

2Using the convention B1 = 1
2 .
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If, for all t1, t2 ∈ [kT, (k+ 1)T ), A(t1, u(t1)) commutes with A(t2, u(t2))—as is the case
for (1.1) under sampling, since u(t1) = u(t2)—then this expression simplifies significantly:

X[k + 1] = exp

(
Ω[k] +

∫ (k+1)T

kT

A(τ, u[k])dτ

)
X(0)

= exp

(∫ (k+1)T

kT

A(τ, u[k])dτ

)
exp (Ω[k])X(0)︸ ︷︷ ︸

X[k]

.

which yields a step-invariant transform on the group G:

X[k + 1] = exp

(∫ T

0

A(τ, u[k])dτ

)
X[k]. (1.17)

There also exist approximate discretization methods for such systems [32, §1.8], for
example, the Euler discretization

X[k + 1] =

(
I + T

(
A+

m∑
i=1

Biui[k]

))
X[k] (1.18)

and the Padé approximant

X[k + 1] =

(
I +

T

2

(
A+

m∑
i=1

Biui[k]

))(
I − T

2

(
A+

m∑
i=1

Biui[k]

))−1

X[k]. (1.19)

The Euler discretization is attractive from the perspective of analysis because it preserves
the algebraic form of (1.12), where A and Bi have been replaced by I + TA—which is not
necessarily in g—and TBi, respectively; additionally, the approximation error tends to 0
as T → 0. The step-invariant transform does not preserve this structure; its right side is
the product of two elements of G. The vector fields in (1.18) and (1.19) are not necessarily
in g, consequently, X may leave G.

Exact solutions, and therefore step-invariant transforms, are not unique to right- (or
left-) invariant vector fields. For example, the ODE in the variable X ∈ g,

Ẋ = adAX = XA− AX

has the closed-form solution
X(t) = eadtAX(0),
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where eadtA := Idg + adtA + 1
2!

ad2
tA + 1

3!
ad3

tA + · · · , which furnishes the step-invariant trans-
form

X[k + 1] = eadTAX[k] = X[k] + T [A,X[k]] +
T 2

2!
[A, [A,X[k]]] +

T 3

3!
[A, [A, [A,X[k]]]] + · · · .

Other than the Euler discretization and Padé approximant, the local expressions one
obtains via the matrix logarithm of all the sampled dynamics presented in this section
are examples of Lie functions, in particular, they belong to class-A, which we define in
Section 3.1 and is the main class of systems studied in this thesis.

1.3 Relevant Stability Concepts

The main results of this thesis—Theorems 3.2.3, 3.3.3, 3.3.7, and Corollaries 3.3.6 and 3.3.9—
assert that, if the spectral radius of the Jacobian linearization of the dynamics is sufficiently
small, then various global stability properties of the origin are implied, the weakest and
strongest of which, are global attractivity and global asymptotic stability of the origin,
respectively. This is a rare property. Of course, Lyapunov’s Second Method can be used
to establish local stability of an equilibrium, and it is a strong and surprising result when
this method establishes global stability for a class of dynamical systems. In continuous-
time, Krasovskii’s Method [56, p. 183] asserts that, given dynamics ẋ = f(x), if there
exists a symmetric positive definite P ∈ Rn×n, which, for all x0 ∈ Rn, solves the Lyapunov
equation,

∂f

∂x

∣∣∣∣
x0

P + P
∂f

∂x

∣∣∣∣
x0

= −Q, (1.20)

where Q is positive definite, then the (unique) equilibrium is globally asymptotically stable.
Again in the continuous-time case, the Markus-Yamabe Conjecture [75] supposes that
global attractivity of a (unique) equilibrium is implied by the Jacobian of the vector field
being everywhere Hurwitz; this conjecture is true for vector fields on R2, but is in general
false. The Conjecture asserts only that (1.20) is everywhere solvable, whereas Krasovskii’s
Method asserts that there exists a P that solves (1.20) at all x0 ∈ Rn. The discrete-time
analog of the Conjecture—the key difference being that it supposes that the Jacobian is
everywhere Schur—similarly to the continuous-time case, is true for polynomial maps on
R2 [21, Theorem B] and in general false on Rn, n ≥ 3. However, it is true for triangular
maps on Rn [21, Theorem A].

The proofs of our main stability results in Chapter 3 leverage a structure of solvable
Lie algebras that results in “subsystems” that are evocative of a cascade or triangular
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structure. Consider a dynamical system of the form

x[k + 1] = f(x[k], z[k])

z[k + 1] = g(z[k]),
(1.21)

which can be viewed as a cascade of a subsystem with state z[k] ∈ Rm driving another
subsystem with state x[k] ∈ Rn.

Theorem 1.3.1 ([106, Theorem 2]). Suppose that the origin of the respective state spaces is
a globally asymptotically stable equilibrium of f(x, 0) and g(z). If all trajectories of (1.21)
are bounded, then the origin in Rn × Rm is a globally asymptotically stable equilibrium
of (1.21).

Thus, when a system’s dynamics can be decomposed into a cascade connection of
subsystems, it potentially greatly facilitates the stability analysis of the overall system.
However, the foregoing theorem asserts that the trajectories of the system are bounded.
If this is not the case, then global asymptotic stability of both subsystems is not suffi-
cient for stability of the cascade. The peaking phenomenon [107] is the observation that
when the trajectories of the driving system exhibit large transients, the state of a globally
asymptotically stable driven system can be forced irreversibly far away from the origin.

The notion of input-to-state stability (ISS), introduced by Sontag [98], has proven to
be a powerful concept in the analysis of cascaded systems.

Definition 1.3.2 ([100, Definition 2.1]). Given a C1 map f : Rn × Rm → Rn, the
continuous-time dynamical system

ẋ = f(x, u)

is input-to-state stable (ISS) if there exists a class-K L function β and a class-K
function γ such that for any bounded input u ∈ Lm∞ and any initial condition x(0),

‖x(t)‖ ≤ β(x(0), t) + γ(‖u‖∞)

for all t ≥ 0.

Intuitively, the ISS property asserts that the state of a system tends to zero if the input
tends to zero. The function β bounds the transient behaviour, and γ bounds the steady-
state behaviour effected by the input. As with most concepts in nonlinear control, ISS
has been studied primarily in the continuous-time setting, however, there is an analogous
discrete-time formulation [52]. In cascade, the state of one subsystem serves as the input
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to the subsequent subsystem. Thus, one would intuitively expect that if each subsystem
is ISS, and the driving system is globally asymptotically stable, then the state of the
entire system will be driven to zero. This is in fact the case: the cascade connection of a
globally asymptotically stable subsystem driving an ISS system is globally asymptotically
stable [99, §4].

The foregoing concepts and results are important and useful in the broader context
of the stability and control of cascaded systems, but we take a different approach in our
stability analysis in Chapter 3. We instead take the perspective that each subsystem is
a “larger piece” of the overall system. Each subsystem is a quotient system induced by
a subalgebra of the overall state space. The subalgebra inducing each driven system is
strictly contained in the subalgebra that induces its driving system. We recognize a form
to the dynamics of each subsystem that resembles a linear system with an input, and we
explicitly bound the convergence of the state trajectories.

1.4 Notation and Terminology

Given N ∈ N, let NN := {1, . . . , N}. Given a matrix M ∈ Cn×n, M> is its (non-Hermitian)
transpose. Let 1n ∈ Rn denote the column vector of ones. The symbol I denotes the
identity matrix; to avoid ambiguity, we will sometimes use In to refer to the n×n identity
matrix. Let R− denote the set of nonpositive real numbers. Given a set S, let IdS : S → S
denote the identity map on S, and |S| its cardinality. The disjoint union of two sets S1

and S2 is denoted by S1 t S2. Given A ∈ Cm×n, B ∈ Cp×q, let A ⊗ B ∈ Cmp×nq denote
their (generally noncommutative) Kronecker product.

Given a set X , a map x : Z → X is a discrete-time signal. The notation x[k], with
brackets, in contrast to parentheses, implies that the domain of x is the integers. The
notation x and x+ will often be used as shorthand for x[k] and x[k+ 1], respectively, when
the time index is clear or irrelevant. When a discrete-time signal appears in a continuous-
time expression, it is to be understood as having passed through an ideal zero order hold.

All vector spaces in this thesis are finite dimensional. The symbol 0 will be used to
represent the additive identity on any vector space. Many of our results hold whether the
Lie algebra is either a real or complex vector space. We will denote the field of g by F,
which is either C or R. Given a vector space X with subspace V ⊆ X , X/V denotes the
quotient (or factor) space with cosets x̄ := {v ∈ X : x− v ∈ V}; we will sometimes use the
notation x + V for this same coset. If T is a Cartesian product of a vector space X with
itself n times, and a subspace V ⊆ X , we will sometimes use the notation T /V as shorthand
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for T /Vn = X n/Vn = (X/V)n. Given an endomorphism of vector spaces A : X → X ,
let σ(A) denote its spectrum, including repeated eigenvalues, and ρ(A) denote its spectral
radius, and ‖A‖ denote the operator norm induced by the vector norm ‖ · ‖ on X ; unless
stated otherwise, the choice of norm is immaterial. Given an A-invariant subspace V ⊆ X ,
let A|V : V → V denote the restriction of A : X → X to V . Given vector spaces X1, . . . ,Xn,
with respective norms ‖ · ‖X1 , . . . , ‖ · ‖Xn , we define the product norm on X1 × · · · × Xn by
‖(X1, . . . , Xn)‖ :=

∑n
i=1 ‖Xi‖Xi

.

1.5 Organization and Contributions

Chapter 2 covers the preliminaries of the mathematics used throughout this thesis. Chap-
ter 3 presents stability results for a class of discrete-time dynamics on solvable Lie algebras.
The main results are Theorem 3.2.3, which asserts conditions for semiglobal exponential
stability on nilpotent Lie algebras, and Theorem 3.3.3, which asserts conditions for global
attractivity on solvable Lie algebras. The former furnishes Corollary 3.2.6, which asserts
simpler conditions for semiglobal exponential stability on nilpotent Lie algebras when the
exogenous signal is bounded, and the latter furnishes Corollary 3.3.6, which asserts con-
ditions for global asymptotic stability on solvable Lie algebras. Another interesting result
in this chapter is Theorem 3.3.7, which asserts conditions for finite-time convergence on
solvable Lie algebras. Corollaries 3.2.6 and 3.3.6 are used to solve regulation and synchro-
nization problems in Chapters 4 and 5, respectively. Chapter 4 presents a solution to the
sampled-data synchronization problem for fully actuated kinematic systems on exponential
matrix Lie groups; the main result is Theorem 4.4.8. In Chapter 5, we propose a solution
to a sampled-data regulator problem for a class of fully actuated kinematic systems on
nilpotent matrix Lie groups. The main results are Theorems 5.3.10 and 5.3.16, which as-
sert conditions for regulation using full information and partial information, respectively.
The former is proven by invoking Theorem 3.3.7. We briefly address how the regulator
problem can be solved on solvable Lie groups.
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Chapter 2

Mathematical Preliminaries

In this chapter, we introduce the mathematical concepts used in this thesis. Section 2.1
formalizes the concepts of Lie groups and Lie algebras. The Lie theoretic content of this
chapter is is based primarily on Brian C. Hall’s algebraic treatment of matrix Lie groups [41]
and Veeravalli S. Varadarajan’s much more general and abstract treatment [111], as well
as the comprehensive, yet accessible trilogy by Vladimir V. Gorbatsevich, Arkadij L. On-
ishchik, and Ernest B. Vinberg [39]. Section 2.2 discusses the matrix exponential and
matrix logarithm maps, which are fundamental in the study of Lie groups. In Section 2.3,
we discuss the class of Lie groups and Lie algebras we focus on in this thesis: solvable
and nilpotent. In Section 2.4, we review basic concepts from linear algebra, and establish
several lemmas that are used in this thesis.

2.1 Lie Groups and Lie Algebras

Definition 2.1.1 ([81, p. 145] Topological Group). If G is a group that is also a topological
space, such that sets of finitely many points are closed, and the group product and group
inverse operations are continuous, then G is called a topological group.

Definition 2.1.2 ([111, §2.1] Lie Group). A Lie group is a topological group that is also
an analytic manifold

Remark 2.1.3. It is common to define a Lie group as having only a smooth structure [61,
16]. However, any such Lie group can be equipped with an analytic structure [89, §53]. If
the Lie group is real, then this analytic structure is unique [111, Theorem 2.11.3]. �
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Example 2.1.1. (The General Linear Group GL(n,F)) Let GL(n,F) denote the set of
invertible n × n matrices over the field F. This collection of matrices, equipped with the
operation of matrix multiplication, is a group, and further, it is a Lie group. By definition,
if A ∈ GL(n,F), then A is invertible. Clearly, its inverse A−1 is also invertible, and therefore
is also in GL(n,F). Using the property of determinants that det(AB) = det(A) det(B), it is
easy to see that the product of invertible matrices is also invertible, and therefore GL(n,F)
is closed under matrix multiplication. The identity matrix serves as the identity element.
Therefore, GL(n,F) is a group with matrix multiplication as its group operation. That
GL(n,F) is a Lie group follows from matrix inversion and multiplication being analytic in
the entries of the matrices. The Lie group GL(n,F) is called the general linear group. N

The general linear group GL(n,F) is an example of a matrix Lie group.

Definition 2.1.4 ([41, Definition 1.4] Matrix Lie Group). A subgroup G ⊆ GL(n,F) is a
matrix Lie group if the limit of every convergent sequence in G is either in G or not in
GL(n,F).

Example 2.1.2. (Nonconvergent sequence in GL(n,F)) Consider the sequence {Xk} ⊂
GL(n,F), where Xk = 1

k
I. For all k ∈ N, Xk ∈ GL(n,F), but limk→∞Xk = 0 /∈ GL(n,F).

Despite this sequence, one can verify that the set of invertible diagonal matrices,
equipped with the operation of matrix multiplication, is a matrix Lie group. This is
because the limit, which is not an invertible diagonal matrix, is not in GL(n,F), by virtue
of not being invertible. N

Definition 2.1.4 is equivalent to asserting that G be closed as a subset of GL(n,F); it
does not require that G be closed as a subset of Fn×n. The Lie group G is closed in the
subspace topology if and only if G is an embedded submanifold of Fn×n.

Definition 2.1.5 ([111, §2.2] Lie Algebra). A vector space g over F is a Lie algebra if
there exists a binary operator [·, ·] on g, called the Lie bracket, satisfying

1. (bilinearity) for all x, y, z ∈ g and all α, β ∈ F,

[αx+ βy, z] = α[x, z] + β[y, z]

[x, αy + βz] = α[x, y] + β[x, z];

2. (skew-symmetry) for all x, y ∈ g,

[x, y] = −[y, x];
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3. (Jacobi identity) for all x, y, z ∈ g,

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Example 2.1.3. (The General Linear Algebra gl(n,F)) The space of n× n matrices
over the field F equipped with the matrix commutator [A,B] := AB−BA is a Lie algebra,
called the general linear algebra gl(n,F). N

Example 2.1.4. (The Special Euclidean Algebra se(2)) The special Euclidean algebra
has basis

e1 =

0 0 1

0 0 0

0 0 0

 , e2 =

0 0 0

0 0 1

0 0 0

 , e3 =

0 −1 0

1 0 0

0 0 0

 ,
whose Lie bracket is the matrix commutator, yielding the nonvanishing Lie brackets [e1, e3] =
−e2 and [e2, e3] = e1. N

Definition 2.1.6 ([111, §2.2, p. 49] Linear Representation). A representation of g
in a vector space V is a map π : g → End(V ), where End(V ) is the vector space of
endomorphims of V , such that

1. π is linear;

2. for all x, y ∈ g, π([x, y]) = π(x)π(y)− π(y)π(x).

If a representation π is injective, then it is said to be faithful. When a Lie algebra
is finite-dimensional, the definition of a representation is equivalent to a morphism of Lie
algebras π : g→ gl(n,F), where the Lie bracket of gl(n,F) is the matrix commutator

[x, y] = xy − yx.

Theorem 2.1.7 ([39, Theorem 5.3] Ado’s Theorem). Any finite-dimensional Lie algebra
g over F admits a faithful finite-dimensional linear representation over F.

Ado’s Theorem greatly facilitates the study and use of finite-dimensional Lie algebras,
as it allows us to assume, without loss of generality, that the Lie algebra of interest is a
matrix Lie algebra.

Definition 2.1.8 (Lie Algebra of a Lie Group). The Lie algebra g of the Lie group
G is the tangent space to G at the identity element.
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Example 2.1.5. ([93, Example 2.12]) The Lie algebra of GL(n,F) is gl(n,F). For
arbitrary A ∈ gl(n,F), define the curve X(t) = I + tA. Then X(t) ∈ GL(n,F) for t
sufficiently small, X(0) = I, and Ẋ(0) = A. Since A ∈ gl(n,F) was arbitrary, the tangent
space at I ∈ GL(n,F) is all of gl(n,F). N

Definition 2.1.9 (Adjoint Operators). Given X ∈ G, its adjoint operator is an action
of the manifold G on its tangent space g, equal to the differential of the conjugate operator
Y 7→ XYX−1. If G is a matrix Lie group, then the definition reduces to

AdX : g→ g

y 7→ XyX−1.

Given x ∈ g, its adjoint operator is

adx : g→ g

y 7→ [x, y].

Definition 2.1.10 ((Lie) Subalgebra of a Lie Algebra). Given a Lie algebra g, a subset
h ⊆ g is a subalgebra if h is a Lie algebra with the Lie bracket inherited from g.

Given two Lie subalgebras h1, h2 ⊆ g, [h1, h2] := {[H1, H2] ∈ g : H1 ∈ h1, H2 ∈ h2}.
Definition 2.1.11 (Ideal of a Lie Algebra). Given a Lie algebra g, a subalgebra h ⊆ g is
an ideal if [h, g] ⊆ h.

Definition 2.1.12 (Centre of a Lie Algebra). Given a Lie algebra g, its centre z is the
maximal subalgebra (in terms of subspace inclusion) such that [z, g] = 0.

Given a Lie group G, let g be its associated Lie algebra; more generally, a Lie group and
its associated Lie algebra are denoted by sans-serif majuscule letters and the corresponding
Fraktur minuscule letters, respectively. A word ω ∈ g with length |ω| ∈ N over the
n ∈ N letters X1, . . . , Xn ∈ g is a (nested) Lie bracket [Xω1 , [Xω2 , [. . . Xω|ω| ] · · · ], where
Xωi
∈ {X1, . . . , Xn}.

2.2 The Matrix Exponential and Logarithm

Of fundamental importance in the study of Lie groups and Lie algebras is the exponential
map exp : g→ G, which for matrix Lie groups is given by

exp(X) =
∞∑
k=0

Xk

k!
.
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Definition 2.2.1 ([41, Definition 3.18] Lie Algebra of a Matrix Lie Group). The Lie
algebra g of the matrix Lie group G is the set of all matrices x such that, for all
t ∈ R, exp(tx) ∈ G, equipped with the matrix commutator as the Lie bracket.

Example 2.2.1. Based on this most recent definition, it is obvious that the Lie algebra
of GL(n,F) is gl(n,F), since the exponential of any matrix is invertible. N

The exponential map is invertible in a neighbourhood of the origin of g.

Theorem 2.2.2 ([44, Theorem 1.31]). Let X ∈ Cn×n have no eigenvalues in R−. There
is a unique logarithm A ∈ Cn×n of X, all of whose eigenvalues lie in the strip {z : −π <
Im(z) < π}. If X ∈ Rn×n, then A ∈ Rn×n.

The unique matrix A from Theorem 2.2.2 is called the principal logarithm of X and
is denoted by Log(X). If ‖X − I‖ < 1, then

Log(X) =
∞∑
k=1

(−1)k−1

k
(X − I)k.

Given a Lie group G, the principal logarithm is well-defined only on some neighbourhood
of the identity U ⊆ G, where in general U 6= G. For example, Log(X) is guaranteed to
be well-defined for all X = exp(A) such that ‖A‖ < Log(2). Wherever Log : G → g is
well-defined, it is the inverse of exp : g → G. Hereinafter, the symbol U always denotes
the neighbourhood of the identity in G on which Log is well-defined.

The Baker-Campbell-Hausdorff (BCH) formula relates the product of two elements on
the Lie group G to an analytic function of their principal logarithms. If A,B ∈ g, then the
BCH formula has the series representation

Log(exp(A) exp(B)) = A+B +
1

2
[A,B] +

1

12
[A, [A,B]]− 1

12
[B, [A,B]] + · · · ,

where the remaining terms are nested brackets of increasing order [41, §5.6]. The conver-
gence of the BCH series is the subject of much study [8], but for our purposes, we will be
content with the fact that there is always some nonempty neighbourhood of the origin on
which the series converges.

The BCH formula can be generalized to arbitrary finite products [25, §5]. Given
A1, . . . , An ∈ g,

Log(exp(A1) · · · exp(An)) =
n∑
i=1

Ai +
1

2

∑
i<j

[Ai, Aj] + · · · , (2.1)
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where the coefficients for third- and higher-order terms are increasingly complicated, specif-
ically, not all words of the same length have the same coefficient. It is easy to see that the
linearization of (2.1) at the origin of gn is

Log(exp(A1) · · · exp(An)) ≈ A1 + · · ·+ An. (2.2)

We will use (2.1) and (2.2) extensively in Chapters 4 and 5.

Given a Lie group G with Lie algebra g, if exp : g → G is a global diffeomorphism,
then G is said to be exponential. The following theorem characterizes when a simply
connected Lie group enjoys the rather strong property of being exponential.

Theorem 2.2.3 ([39, Theorem 6.4]). If G is simply connected, then the following are
equivalent:

1. exp : g→ G is a global diffeomorphism;

2. exp : g→ G is globally injective;

3. exp : g→ G is locally injective;

4. for all x ∈ g, adx has no nonzero imaginary eigenvalues;

5. for all X ∈ G, AdX has no nonunity eigenvalues of unit modulus;

6. there is no ideal h ⊆ g such that g/h is isomorphic to se(2).

Remark 2.2.4. If G is exponential, then U = G. �

Borrowing from the definition of complex powers of scalars [59, §III.6], we define com-
plex powers of a matrix, which we will use in Chapter 4.

Definition 2.2.5 (Matrix Power). Suppose X ∈ Cn×n has no eigenvalues in R−. If α ∈ C,
then Xα := exp(αLog(X)).

2.3 Solvability and Nilpotency

In this thesis we study dynamics on solvable Lie algebras. A Lie algebra is solvable if and
only if its derived length (see Definition 2.3.2) is finite. The complementary classification
of Lie algebras is called semi-simple, which is defined as those Lie algebras whose maximal
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solvable ideal—the radical—is zero. Any Lie algebra g admits a Levi decomposition, g =
l A r, where r is the radical of g, l is a semi-simple subalgebra of g, and A means semidirect
sum.1 This establishes that solvable Lie algebras are of fundamental importance in Lie
theory. Of particular interest in this thesis, is that any exponential Lie group is solvable [39,
Theorem 6.3].

Definition 2.3.1 (Derived Series). The derived series of a Lie algebra g is defined
recursively by g0 := g, gi+1 := [gi, gi], for i ≥ 0 .

A consequence of the definition of gi is that for all i ≥ 0, gi ⊇ gi+1.

Definition 2.3.2 (Solvable). A Lie algebra g is solvable if there exists a finite v such that
gv+1 = 0. The smallest such v is called the derived length of g. A Lie group is solvable
if its Lie algebra is solvable.

If g is solvable with derived length v, then for all i ≤ v, the containment gi ⊃ gi+1 is
strict.

Example 2.3.1. Consider the 6-dimensional real upper triangular algebra, whose nonva-
nishing Lie brackets are given by

[e1, e4] = e4, [e1, e6] = e6, [e2, e4] = −e4, [e2, e5] = e5,

[e3, e5] = −e5, [e3, e6] = −e6, [e4, e5] = e6.

It follows that
g2 = LieR{e4, e5, e6}
g3 = spanR{e6},

and its derived length is 3. N

Definition 2.3.3 (Lower Central Series). The lower central series of a Lie algebra g
is defined recursively by g(1) := g, g(i+1) := [g(i), g], for i ≥ 1.

There are two important consequences of Definition 2.3.3: the algebras of the lower
central series g(i) are ideals, and for all i ≥ 1, g(i) ⊇ g(i+1).

Definition 2.3.4 (Nilpotent). A Lie algebra g is nilpotent if there exists a finite p such
that g(p+1) = 0. The smallest such p is called the nilindex of g. A Lie group is nilpotent
if its Lie algebra is nilpotent.

1A detailed treatment of this decomposition can be found in, for example, [39, §4] or [111, §3.14].
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The property that serves as the foundation of our analysis, is that if g is nilpotent, then

g(1) ⊃ g(2) ⊃ · · · ⊃ g(p) ⊃ g(p+1) = 0.

Example 2.3.2. The Heisenberg algebra h has basis vectors e1, e2, and e3, whose nonzero
commutator relations are given by [e1, e2] = e3. Therefore, h(2) = spanR{e3}, and p = 2. N

Lemma 2.3.5 ([22, Lemma 1.1.1]). The ideals of the lower central series of a Lie algebra
g satisfy [g(i), g(j)] ⊆ g(i+j).

Although Definition 2.3.2 is the formal definition of solvability, it is the structure en-
dowed by the following theorem that will be leveraged in our analysis.

Theorem 2.3.6 ([39, p. 9, Corollary 3]). A Lie algebra g over F is solvable if and only if
its derived algebra [g, g] is nilpotent.

Theorem 2.3.7 ([22, Theorem 1.2.1]). If G is a simply connected nilpotent Lie group with
Lie algebra g, then exp : g→ G is an analytic diffeomorphism.

2.4 Linear Algebraic Results

In the proofs of our main results in Chapter 3, we examine the quotient dynamics on the
quotient spaces modulo the ideals of the lower central series. To that end, we require the
notion of canonical projection.

Definition 2.4.1 (Canonical Projection). Let X be a vector space with subspace V ⊆ X .
The canonical projection of X onto V is the unique linear map P : X → X/V, x 7→
x+ V.

Proposition 2.4.2 ([117, §0.7]). Given a linear map A : X → X and an A-invariant
subspace V ⊆ X , i.e., AV ⊆ V, there exists a unique linear map Ā : X/V → X/V such
that the following diagram commutes.

X
P
��

A // X
P
��

X/V
Ā
// X/V
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The map Ā in Proposition 2.4.2 is called the map induced in X/V by A, or in short,
the induced map.

Lemma 2.4.3. Let X be a vector space with subspace V ⊆ X and P : X → X/V be the
canonical projection. For any right-inverse ı : X/V → X of P , (IdX − ı ◦ P )X ⊆ V.

Proof. P (IdX−ı◦P ) = P−P ◦ı◦P = P−P = 0, which implies (IdX−ı◦P )X ⊆ KerP .

Definition 2.4.4 (Quotient Norm). Given a vector space X with norm ‖ · ‖ and subspace
V ⊆ X , if x ∈ X , then the quotient norm of the coset x+ V is

‖x+ V‖X/V := inf
v∈V
‖x+ v‖.

The following result is an obvious consequence of Definition 2.4.4. We formally state it
because it is important in the proofs of our main results.

Lemma 2.4.5. Let X be a normed vector space with subspaces V1 and V2, such that
V1 ⊆ V2. For all x ∈ X , ‖x+ V2‖X/V2 ≤ ‖x+ V1‖X/V1 ≤ ‖x‖.

The following result is elementary, but we state and prove it for completeness, and will
use it in our analysis.

Proposition 2.4.6. Let X be a vector space with norm ‖ · ‖, and let V ⊆ X be a subspace.
If the quotient norm is used on X/V, then the canonical projection P : X → X/V has unit
norm.

Proof. Beginning with the definition of operator norm, we have

‖P‖ : = max
‖x‖=1

inf
v∈V
‖x+ v‖

≤ max
‖x‖=1

inf
v∈V
{‖x‖+ ‖v‖}

= max
‖x‖=1

‖x‖

= 1,

which establishes an upper bound of 1.
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Consider a vector x ∈ X , x /∈ V . For all v ∈ V

‖Px‖X/V = ‖P (x+ v)‖X/V ≤ ‖P‖‖x+ v‖
=⇒ ‖Px‖X/V ≤ ‖P‖ inf

v∈V
‖x+ v‖︸ ︷︷ ︸
‖Px‖X/V

⇐⇒ 1 ≤ ‖P‖.

This establishes a lower bound of 1, and so ‖P‖ = 1.

Throughout the majority of this thesis, any choice of norm is immaterial. However, in
some specific circumstances, a norm of the class described in the following theorem will be
used.

Theorem 2.4.7 ([28, §7]). Given a linear map A : X → X and a constant ε > 0,
there exists a vector norm ‖ · ‖ : X → R such that the induced operator norm satisfies
‖A‖ < ρ(A) + ε.

Remark 2.4.8. Given a matrix Lie algebra g with norm ‖ · ‖, there exists µ ∈ [0, 2], such
that for all X, Y ∈ g, ‖[X, Y ]‖ ≤ µ‖X‖‖Y ‖.

The lower bound of 0 holds when g is commutative, and the upper bound of 2 is verified
by the triangle inequality and submultiplicativity of induced norms:

‖[X, Y ]‖ = ‖XY − Y X‖ ≤ ‖X‖‖Y ‖+ ‖Y ‖‖X‖ = 2‖X‖‖Y ‖.

The constant µ is not necessarily either 0 or 2. For example, if g is any matrix Lie
algebra equipped with the Frobenius norm, then µ =

√
2 [11, Theorem 2.2]. �
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Chapter 3

Stability on Solvable Lie Algebras

In this chapter, we examine the stability of a class of difference equations that arises by
sampling a right- or left-invariant flow on a matrix Lie group. The map defining such a
difference equation has three key properties that facilitate our analysis: 1) its Lie series
expansion enjoys a type of strong convergence; 2) the origin is an equilibrium; 3) the
algebraic ideals enumerated in the lower central series of the Lie algebra are dynamically
invariant. We show that certain global stability properties are implied by stability of the
Jacobian linearization of dynamics at the origin, in particular, global asymptotic stability.
If the Lie algebra is nilpotent, then the origin enjoys semiglobal exponential stability,
as characterized in Theorem 3.2.3. In the most general case, when the Lie algebra is
solvable, then the origin is globally attractive, as characterized in Theorem 3.3.3. Under
certain additional hypotheses, if the linearization has spectral radius zero, then even on
a solvable Lie algebra, the state converges to the origin in finite time, as characterized in
Theorem 3.3.7.

3.1 The Class of Systems

Recall that the right-invariant kinematic model (1.1) admits an exact solution, thereby
furnishing the step invariant transform (1.17), which is a product of elements on the Lie
group G. Applying the Baker-Campbell-Hausdorff formula (2.2) to the step invariant
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transform (1.17), we express the sampled dynamics on the Lie algebra:

Log(X[k + 1]) = Log(X[k]) +

∫ T

0

A(τ, u[k])dτ +
1

2

[∫ T

0

A(τ, u[k])dτ,Log(X[k])

]
+

1

12

[∫ T

0

A(τ, u[k])dτ,

[∫ T

0

A(τ, u[k])dτ,Log(X[k])

]]
+

1

12

[
Log(X[k]),

[
Log(X[k]),

∫ T

0

A(τ, u[k])dτ

]]
+ · · · ,

which is a linear combination of words of all lengths. These dynamics are a function
of the state X and an exogenous signal u. In this thesis, we study a generalization of
these dynamics. We allow for multiple plant states X = (X1, . . . , Xn) ∈ gn, and multiple
exogenous signals W = (W1, . . . ,Wr) ∈ gr. We study the dynamics of X, namely

X+ = f(X,W ), (3.1)

where X ∈ X := gn, n ≥ 1, W ∈ W := gr, r ≥ 0, and f : X × W → X is a Lie
function that belongs to class A, which we define in this section. We make no general
assumptions on the evolution of W . To state the assumptions we impose on (3.1), we must
first introduce several key concepts.

Definition 3.1.1 (Lie Element). Let X1, . . . , Xn be elements of a Lie algebra g. The
elements X1, . . . , Xn are called Lie elements (in {X1, . . . , Xn}) of degree one. The
Lie brackets [Xi, Xj] are Lie elements of degree two, [Xi, [Xj, Xk]] Lie elements of degree
three, and so forth. Any F-linear combination of Lie elements—not necessarily finite or
convergent—is also a Lie element.

Definition 3.1.2. A map f : gn → g is a Lie function if there exists a domain D ⊆ gn

containing the origin, and a Lie element E ∈ D in {X1, . . . , Xn}, such that, for all X ∈ D,
f(X) = E; the Lie element E is called the Lie series of f on the domain D. A
product map f1 × · · · × fm : gn → gm is a Lie function if each component map is a Lie
function.

We now develop a convenient and succinct expression for product Lie functions. Define
the tensor product (Fn ⊗ g,⊗). If f1, . . . , fm are Lie functions, whose scalar coefficients of
the word ω are respectively c1

ω, . . . , c
m
ω ∈ F, where F is C or R, then

f(X1, . . . , Xn) :=

f1(X1, . . . , Xn)
...

fm(X1, . . . , Xn)

 =


∑

ω c
1
ωω

...∑
ω c

m
ω ω

 =
∑
ω

c
1
ω

...

cmω

⊗ ω,
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which we write compactly as

f(X) =
∑
ω

cω ⊗ ω. (3.2)

Given f : gn → g, the following theorem can be used to test whether it is a Lie function.

Theorem 3.1.3 (Friedrichs’ Theorem [68, Theorem 1]). A map f : gn → g equals a Lie
element if and only if, for all X1, . . . , Xn, Y1, . . . , Yn ∈ g such that for all i, j, [Xi, Yj] = 0,

f(X1 + Y1, . . . , Xn + Yn) = f(X1, . . . , Xn) + f(Y1, . . . , Yn).

We refine the class of functions considered in the following definition. We consider
systems whose dynamical maps are Lie functions, but we also impose that they enjoy a
strong form of convergence, as characterized in the following definition.

Definition 3.1.4 (Class-A Function). Let g be a normed Lie algebra, and let µ > 0 be
such that, for all X, Y ∈ g, ‖[X, Y ]‖ ≤ µ‖X‖‖Y ‖. A Lie function f : gn → g belongs to
class-A—which we write as f ∈ A—if there exists a neighbourhood of the origin in gn

where the Lie series of f satisfies the strong absolute convergence property∑
ω

µ|ω|−1|cω|‖Xω1‖ · · · ‖Xω|ω|‖ <∞. (3.3)

A product map f1×· · ·×fm : gn1×· · ·×gnm → gm belongs to class-A if each component
map belongs to class-A.

Remark 3.1.5. Property (3.3), enjoyed by f ∈ A, is stronger than absolute convergence,
i.e.,

∑
ω |cω|‖ω‖ <∞, since ‖ω‖ ≤ µ|ω|−1‖Xω1‖ · · · ‖Xω|ω|‖. �

Remark 3.1.6. By the Baker-Campbell-Hausdorff formula (2.2), we have that the map

Log(exp(X) exp(Y ))

belongs to class-A. To see that (2.2) satisfies (3.3), refer to [25, Proof of Theorem 8] or [8],
and the references therein. That the BCH is class-A precipitates out of the proofs the
various characterizations of its regions of convergence. �

Remark 3.1.7. That Log(exp(X) exp(Y )) belongs to class-Ameans that the sampled-data
dynamics of a system on a matrix Lie group of the form (1.17) have local dynamics that
are class-A, which, as discussed in Chapter 1 and the beginning of this section, motivates
the study of this class of systems. �
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Proposition 3.1.8. If the product map (3.2) belongs to class-A, then∑
ω

µ|ω|−1‖cω‖‖Xω1‖ · · · ‖Xω|ω|‖ <∞.

Proof. By definition, f ∈ A implies fi ∈ A, which means that for all i ∈ {1, . . . ,m},∑
ω

µ|ω|−1|ciω|‖Xω1‖ · · · ‖Xω|ω|‖ <∞. (3.4)

Summing (3.4) over 1 ≤ j ≤ m:∑
ω

µ|ω|−1‖cω‖1‖Xω1‖ · · · ‖Xω|ω|‖ <∞,

where ‖ · ‖1 is the 1-norm. On a finite dimensional vector space, all norms are equivalent,
so this summation differs from that in the proposition by at most a constant, finite factor
γ, i.e., ‖cω‖ ≤ γ‖cω‖1, which implies∑

ω

µ|ω|−1‖cω‖‖Xω1‖ · · · ‖Xω|ω|‖ ≤ γ
∑
ω

µ|ω|−1‖cω‖1‖Xω1‖ · · · ‖Xω|ω|‖ <∞.

If the Lie algebra g is nilpotent, then only finitely many words are nonzero; conse-
quently (3.5) trivially satisfies the class-A convergence property (3.3) globally. The func-
tion (3.2) can be written in the form (3.1) by relabeling r of the variables as W ∈ gr and
redefining X as the remaining variables. We now impose the major structural assumption
on the class of systems (3.1) under consideration.

Assumption 1. The function f : X ×W → X in (3.1) enjoys the following properties:

(a) f belongs to class-A;

(b) the origin of the state-space X is a unique equilibrium,

f(X,W) = 0 ⇐⇒ X = 0;

(c) there exists an ideal h ⊆ g with nilindex p, such that h ⊇ [g, g], whereof each ideal in
the lower central series of h,

(
h(i)
)n ⊆ gn is invariant under f , i.e.,

f
((

h(i)
)n
,W
)
⊆
(
h(i)
)n
.
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Remark 3.1.9. Assumption 1(c) may seem restrictive, however, in the context of control
theory, it is not unreasonable, because the control signal can be used to enforce invariance.
Consider, for example, the step-invariant transform of the driftless kinematics of a fully
actuated rigid body with velocity inputs on the solvable Lie group SE(2):

X[k + 1] = exp

T

0 −1 0

1 0 0

0 0 0

u1[k] +

0 0 1

0 0 0

0 0 0

u2[k] +

0 0 0

0 0 1

0 0 0

u3[k]


X[k],

where X ∈ SE(2), u1, u2, u3 ∈ R, T > 0. The inputs u1, u2, u3 can be chosen to make any
subspace of se(2) invariant under the local dynamics. �

Define the notation X̃ := {X1, . . . , Xn} and W̃ := {W1, . . . ,Wr}. Henceforth, we adopt
the convention that summations over ω are restricted to words of length at least 2; words of
length 1 will be written separately, in particular, under Assumption 1, the dynamics (3.1)
can be written as

f(X,W ) = AX +BW +
∑
ω

cω ⊗ ω, (3.5)

where A : X → X , B : W → X are linear maps, ω is a word with letters in X̃ ∪ W̃ , and
cω ∈ Fn is the vector of coefficients of ω in the series representation of each component
function fi.

Proposition 3.1.10. If the function f : X × W → X in (3.1) is a Lie function that

satisfies Assumption 1(b), then every word in the series of f has at least one letter in X̃.

Proof. By bilinearity of the Lie bracket, all words with at least one letter in X̃ vanish at
X = 0. Setting X = 0 in (3.5) yields

0 = BW +
∑

ω with no letters in X̃

cω ⊗ ω, (3.6)

which holds identically for all W ∈ W .

Therefore, without loss of generality, we can take B and the coefficients of all words ω
with no letters in X̃ to be zero. By Proposition 3.1.10, henceforth, systems that satisfy
Assumption 1 will be written:

X+ = AX +
∑
ω

cω ⊗ ω, (3.7)

where every word ω has at least one letter in X̃.
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Proposition 3.1.11. If the function f : X ×W → X in (3.1) satisfies Assumptions 1(a)
and 1(b), then its linearization at the origin, (X,W ) = (0, 0) ∈ X ×W, is f(X,W ) ≈ AX.

Proof. The Fréchet derivative of f(X,W ) at the origin in the direction H := (HX , HW ) ∈
X ×W is the unique linear map Df := DXf ×DWf that satisfies

lim
H→0

‖f(HX , HW )− f(0, 0)−DfH‖
‖H‖

= 0. (3.8)

Substituting definitions, and invoking Assumption 1(b) and Proposition 3.1.10 to set
B = 0, the left side of (3.8) becomes

lim
H→0

‖(A−DXf)HX +
∑

ω cω ⊗ ω −DWfHW‖
‖H‖

,

where the letters of ω are H1, . . . , Hn instead of X1, . . . , Xn and Hn+1, . . . , Hn+r instead of
W1, . . . ,Wr. Suppose DXf = A and DWf = 0, then

lim
H→0

‖f(HX , HW )− f(0, 0)−DfH‖
‖H‖

= lim
H→0

‖
∑

ω cω ⊗ ω‖
‖H‖

.

By the result discussed in Remark 2.4.8,

‖ω‖ = ‖[Hω1 , [. . . , Hω|ω| ] · · · ]‖ ≤ µ|ω|−1‖Hω1‖ · · · ‖Hω|ω|‖ ≤ µ|ω|−1‖H‖|ω|.

By the triangle inequality,∥∥∥∥∥∑
ω

cω ⊗ ω

∥∥∥∥∥ ≤∑
ω

‖cω‖µ|ω|−1‖H‖|ω|,

whose right side converges, by Assumption 1(a). Therefore,

lim
H→0

‖
∑

ω cω ⊗ ω‖
‖H‖

≤ lim
H→0

∑
ω ‖cω‖µ|ω|−1‖H‖|ω|

‖H‖
= 0.

Since any such Df is unique, the choice of Df = A × 0 is the Fréchet derivative of f
at the origin. Therefore, near the origin, f(X,W ) ≈ AX.
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Our main results assert that global stability properties of (3.1) under Assumption 1
can be inferred from its Jacobian linearization, as quantified in Proposition 3.1.11. The
following proposition asserts that the dynamical invariance described in Assumption 1(c)
can also be inferred from the Jacobian linearization. This latter result is due to strong
centrality of the lower central series, i.e., the property described in Lemma 2.3.5.

Proposition 3.1.12. Let h ⊆ g be an ideal. If the function f : X ×W → X in (3.1) is
a Lie function that satisfies Assumption 1(b), then f

((
h(i)
)n
,W
)
⊆
(
h(i)
)n

if and only if(
h(i)
)n

is invariant under A.

Proof. Let h ⊆ g be an ideal. Suppose X ∈
(
h(i)
)n

. Under Assumption 1(b), by Propo-

sition 3.1.10, every word ω has at least one letter in X̃. Since h(i) is an ideal, every word
ω belongs to h(i). From (3.7), we conclude f

((
h(i)
)n
,W
)
⊆
(
h(i)
)n

if and only if
(
h(i)
)n

is
invariant under A.

Corollary 3.1.13. If the function f : X ×W →W in (3.1) is a Lie function that satisfies
Assumption 1(b), then it satisfies Assumption 1(c) if and only if

(
h(i)
)n

is invariant under
A.

Our next result emphasizes that A-invariant subspaces induce well-defined quotient
systems associated with the nonlinear dynamics.

Proposition 3.1.14. If the function f : X ×W → X in (3.1) satisfies Assumptions 1(a)
and 1(b), then, given an A-invariant ideal V ⊆ X with canonical projection P : g→ g/V,
there exists a unique function f̄ : X/V ×W/V → X/V that satisfies Assumptions 1(a) and
1(b), and makes the following diagram commute.

X ×W
(In⊗P )×(Ir⊗P )

��

f // X
In⊗P
��

X/V ×W/V
f̄

// X/V

Proof. Along the path X ×W f−→ X In⊗P−−−→ X/V , we have

(In ⊗ P )f(X,W ) = (In ⊗ P )AX + (In ⊗ P )
∑
ω

cω ⊗ ω.

By Proposition 2.4.2, there exists a unique map Ā : X/V → X/V such that (In ⊗ P )A =
Ā(In ⊗ P ). Using the property of tensor products that (M1 ⊗N1)(M2 ⊗N2) = (M1M2)⊗
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(N1N2), the projection of the summation over ω equals
∑

ω cω ⊗ (Pω). Then, since the
canonical projection of an algebra onto an ideal is a morphism of algebras [67, p. 537],1

we have

Pω = P [Yω1 , [. . . , Yω|ω| ] · · · ] = [PYω1 , [. . . , PYω|ω| ]g/V · · · ]g/V , Yωi
∈ X̃ ∪ W̃ .

The map f̄ : X/V ×W/V → X/V is then given by

f̄(X̄, W̄ ) := ĀX̄ +
∑
ω

cω ⊗ [Ȳω1 , [. . . , Ȳω|ω| ]g/V · · · ]g/V ,

where Ȳωi
= PYωi

. That f̄ satisfies Assumption 1(a) follows from Lemma 2.4.5; satisfaction
of Assumption 1(b) is clear from the definition of f̄ .

3.2 Nilpotent Lie Algebras

In this section, we present a global stability result in the case that g is nilpotent, and the
ideal h satisfying Assumption 1(c) is g itself. We devote this section to this specific case
because, as will be seen, the results are much stronger than in the general case. The general
case where Assumption 1(c) is satisfied by a proper ideal is addressed in Section 3.3. The
stability property proved in this section is semiglobal-exponential stability. The following
definition is the natural adaptation of a continuous-time definition, taken from [66].

Definition 3.2.1 ([66, Definition 2.7]). Given a discrete-time dynamical system x+ =
f(k, x), x ∈ X , the origin of X is semiglobally exponentially stable if for all M > 0,
there exist α ≥ 0, λ < 1 such that if ‖x[0]‖ ≤M , then for all k ≥ 0,

‖x[k]‖ ≤ αλk‖x[0]‖.

It follows immediately from the definition that semiglobal exponential stability implies
local exponential stability. Exponential stability differs from semiglobal exponential sta-
bility, in that α and λ do not depend on M . Our main result in the nilpotent case is that a
sufficiently small spectral radius of A implies semiglobal exponential stability. Additionally,
the constant λ is shown to not depend on M .

Our proof of the main result of this section makes extensive use of canonical projec-
tions of g onto g/g(i+1), where g(i+1) is an ideal of the lower central series of g (recall

1In [67], a proof is provided in the context of graded algebras, but this additional structure is not used.
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Definition 2.3.3). Throughout this section, let Pi : g → g/g(i+1) denote the canonical
projection of g onto g(i+1), and let ıi : g/g(i+1) → g denote any linear injection such that
Pi ◦ ıi = Idg/g(i+1) . Before proving the main result, we establish the following lemma.

Lemma 3.2.2. Let g be a Lie algebra. Given a word ω with letters Y1, . . . , Y|ω| ∈ g,

Piω = Pi[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ].

Proof. By bilinearity of the Lie bracket and Lemma 2.4.3,

Piω = Pi [(Idg − ıi−1 ◦ Pi−1)Y1︸ ︷︷ ︸
∈g(i)

, [Y2, [. . . , Y|ω|] · · · ]

︸ ︷︷ ︸
∈g(i+1)︸ ︷︷ ︸

0

+Pi[ıi−1◦Pi−1Y1, [Y2, [. . . , Y|ω|] · · · ], (3.9)

where membership in g(i+1) follows from the property of the ideals discussed in Lemma 2.3.5;
the first term is zero, since Pig

(i+1) = 0, by definition of Pi. Applying the same decompo-
sition to the second letter yields

Piω = Pi[ıi−1 ◦ Pi−1Y1, [ıi−1 ◦ Pi−1Y2, [Y3, [. . . , Y|ω|] · · · ].

Continuing in this way completes the proof.

Theorem 3.2.3. Let g be a nilpotent Lie algebra with nilindex p, and define X := gn and
W := gr. Consider the dynamics (3.1) and suppose f : X×W → X satisfies Assumption 1,
where Assumption 1(c) is satisfied with h = g. If there exist β ≥ 0, s ≥ 1 such that

‖W [k]‖ ≤ βsk, and ρ(A) < s−
p(p−1)

2 , then the origin of X is semiglobally exponentially
stable.

Proof of Theorem 3.2.3. Assume that there exist β ≥ 0, s ≥ 1 such that ‖W [k]‖ ≤ βsk,

and that ρ(A) < s−
p(p−1)

2 ; the latter implies that A is Schur, since p, s ≥ 1. Let M > 0 be
arbitrary and assume ‖X[0]‖ ≤M . We examine the quotient dynamics on X/g(i+1) for all
i. Since g is nilpotent, the quotient algebra g/g(i+1) is nilpotent with nilindex i, thus for
all |ω| > i, Piω = 0. By Proposition 3.1.14,

X̄+
i = ĀiX̄i +

∑
|ω|≤i

cω ⊗ (Piω̄i−1), (3.10)

where ω̄i−1 ∈ g is the word ω with ıi−1◦Pi−1 applied to each of its letters, per Lemma 3.2.2.
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Since A : gn → gn is Schur, every induced map Āi :
(
g/g(i+1)

)n → (
g/g(i+1)

)n
is also

Schur. The quotient dynamics (3.10) have the form of a linear system with state X̄i and
exogenous input

ui :=
∑
|ω|≤i

cω ⊗ (Piω̄i−1), (3.11)

which does not depend on X̄i. Even though quotient state i−1 drives quotient state i, the
analysis does not exploit a serial structure; rather, each subsequent quotient system is a
“larger piece” of the full dynamics. We will show that each quotient system is semiglobally
exponentially stable. Our proof is by finite induction. The approach is to show that each
quotient system is semiglobally exponentially stable, and, since g(i) = 0 for i > p, the pth
quotient system is simply the original system.

Before proceeding, we define some key values. Since A is Schur, for any ε ∈ (0, 1−ρ(A)),
define Λ := ρ(A) + ε, then there exists a σ ≥ 0 such that for all k ≥ 0, ‖Ak‖ ≤ σΛk [60,
§5]. Define

Λi := ρ(Āi) +
i

p+ 1
ε, 1 ≤ i ≤ p,

then for all i, there exists σi ≥ 0 such that ‖Āki ‖ ≤ σiΛ
k
i . Note Λ1 < · · · < Λp < Λ < 1.

We begin with the base case, i = 1:

X̄+
1 = Ā1X̄1,

which is an unforced linear time-invariant system. Consequently, X̄1[k] = Āk1X̄1[0], so we
have ‖X̄1[k]‖ ≤ σ1Λk

1‖X̄1[0]‖ ≤ σ1Λk‖X̄1[0]‖. Let α1 := σ1 and λ1 := Λ.

By way of induction, we assert that there exists αi−1 > 0 such that

‖X̄i−1[k]‖ ≤ αi−1λ
k
i−1‖X̄i−1[0]‖, (3.12)

where for 1 ≤ i − 1 ≤ p − 1, λi−1 := Λs
(i−1)(i−2)

2 . We remark that (i−1)(i−2)
2

is the sum of
all natural numbers less than i− 1. Note also that by Lemma 2.4.5, ‖X[0]‖ ≤ M implies
‖X̄i−1[0]‖ ≤M .

We now prove that case i − 1 implies case i. Fix 1 ≤ j ≤ n and choose an arbitrary
word ω in the series of fj. Denote its letters by Yk ∈ X̃ ∪ W̃ , k ∈ {1, . . . , |ω|}, and the

number of these letters in X̃ by q. We will show that the projection of each word Piω
converges to zero exponentially. Beginning with Lemma 3.2.2,

Piω = Pi[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ],
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then

‖Piω‖ ≤ µ|ω|−1‖ıi−1‖|ω|
|ω|∏
j=1

‖Pi−1Yj‖.

We have ‖Pi−1Xj‖ ≤ ‖(In ⊗ Pi−1)X‖, and Lemma 2.4.5 implies ‖Pi−1Wj‖ ≤ ‖W‖. Com-
bining these inequalities with the induction hypothesis (3.12) yields

‖Piω̄i−1[k]‖ ≤ µ|ω|−1‖ıi−1‖|ω|‖X̄i−1[k]‖q‖W [k]‖|ω|−q

≤ µ|ω|−1‖ıi−1‖|ω|
(
αi−1λ

k
i−1‖X̄i−1[0]‖

)q
(βsk)|ω|−q

= µ|ω|−1‖ıi−1‖|ω|αqi−1β
|ω|−q(λqi−1s

|ω|−q)k‖X̄i−1[0]‖q. (3.13)

Since ‖X[0]‖ ≤ M , in (3.13), we use Lemma 2.4.5 to upper bound q − 1 of the factors of
‖X̄i−1[0]‖ by M , and the single remaining factor by ‖X̄i[0]‖:

‖Piω̄i−1[k]‖ ≤ µ|ω|−1‖ıi−1‖|ω|αqi−1β
|ω|−q(λqi−1s

|ω|−q)kM q−1‖X̄i[0]‖. (3.14)

Claim 3.2.4. There exists γi ≥ 0 such that the norm of the exogenous input (3.11) satisfies

‖ui[k]‖ ≤ γi(λi−1s
i−1︸ ︷︷ ︸

λi

)k‖X̄i[0]‖.

Proof of Claim 3.2.4. Fix the word length ` ≥ 2 and the number of letters in X̃, 1 ≤ q ≤ `.
There are nq choices of letters in X̃, r`−q choices of letters in W̃ , and

(
`
q

)
ways to position

the letters in X̃. Thus, there are
(
`
q

)
nqr`−q words of length ` with q letters in X̃. First,

recall from (3.11), that ui :=
∑
|ω|≤i cω ⊗ (Piω̄i−1). Applying (3.14), we have

‖ui[k]‖ ≤

∑
2≤`≤i
1≤q≤`

max
|ω|=`
{‖cω‖}

(
`

q

)
nqr`−qµ`−1‖ıi−1‖`αqi−1‖X̄i−1[0]‖qβ`−q

 max
2≤`≤i
1≤q≤`

{λqi−1s
`−q}k,

whose right side is bounded above by(
i∑

`=2

max
|ω|=`
{‖cω‖}µ`−1‖ıi−1‖`

∑̀
q=1

(
`

q

)
nqr`−qαqi−1M

q−1β`−q

)
︸ ︷︷ ︸

=:γi

max
2≤`≤i
1≤q≤`

{λqi−1s
`−q}

︸ ︷︷ ︸
λi

k‖X̄i[0]‖.

Since 0 < λi−1 < 1 and s ≥ 1, the maximization is solved by ` = i and q = 1, thus, the
maximization term is equal to λi.
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Note that even though X̄i and X̄i−1 are both projections of the state X, by the induction
hypothesis, the trajectory of X̄i−1 is fixed, i.e., a function of only time. Thus, despite
X̄i−1[k] partially determining X̄i[k], we can view X̄i−1 in the dynamics of X̄i as an exogenous
signal.

By linear systems theory, we can express X̄i[k] as the sum of a zero-input response
X̄zi
i [k] = Āki X̄i[0] and a zero-state response X̄zs

i [k] =
∑k−1

j=0 Ā
j
iui[k− 1− j]. We now bound

the zero-state response thus:

‖X̄zs
i [k]‖ ≤

k−1∑
j=0

‖Āji‖‖ui[k − 1− j]‖

≤
k−1∑
j=0

σiΛ
j
iγiλ

k−1−j
i ‖X̄i[0]‖ (by Claim 3.2.4)

≤ σiγiλ
k−1
i ‖X̄i[0]‖

∞∑
j=0

(
Λi

λi

)j
.

Recall that for all 1 ≤ i ≤ p, Λi < Λ, and that by the induction hypothesis, λi ≥ Λ.
Therefore, for all 1 ≤ i ≤ p, λi > Λi. Hence,

‖X̄zs
i [k]‖ ≤ σiγi

λi − Λi

λki ‖X̄i[0]‖.

Applying the triangle inequality to X̄i[k] = X̄zi
i [k] + X̄zs

i [k], we have

‖X̄i[k]‖ ≤ σiΛ
k
i ‖X̄i[0]‖+

σiγi
λi − Λi

λki ‖X̄i[0]‖

≤ σi

(
1 +

γi
λi − Λi

)
︸ ︷︷ ︸

=:αi

λki ‖X̄i[0]‖.

This proves that the origin of PiX = gn/
(
g(i+1)

)n
is semiglobally exponentially stable.

This concludes the induction. Recall that Pp+jg = g/g(p+j) = g/0 ∼= g, so step i = p of the
induction proves that the origin of X = gn is semiglobally exponentially stable.

Remark 3.2.5. The assertion that W is bounded by a function of the form βsk implies
that it is Z-transformable. �

Corollary 3.2.6. Let g be a nilpotent Lie algebra and f : X ×W → X satisfy Assump-
tion 1, where Assumption 1(c) is satisfied with h = g. If W is bounded, then the origin of
X is semiglobally exponentially stable if and only if A is Schur.
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Proof. Suppose A is Schur. Since W is bounded, ‖W [k]‖ ≤ βsk, for s = 1 and some
finite β. Theorem 3.2.3 implies semiglobal exponential stability. For necessity, recall that
semiglobal exponential stability implies local exponential stability, which implies that the
linearization is Schur. By Proposition 3.1.11, the linearization is X+ ≈ AX.

Remark 3.2.7. If g has nilindex 1, i.e., g is commutative, then the dynamics (3.1) reduce
to a linear time-invariant system. This was exploited for output regulation and synchro-
nization on commutative matrix Lie groups in [74] and [73], respectively. �

In the following example, we illustrate the application of Theorem 3.2.3 to control
design. We will first define a simple regulator problem, then, using Theorem 3.2.3, we will
show that the error dynamics are semiglobally exponentially stable. This foreshadows our
treatment of the regulator problem in Chapter 5.

Example 3.2.1. Let g be the 3-dimensional Heisenberg algebra, which is defined by the
commutator relations

[h1, h2] = h3, [h1, h3] = 0, [h2, h3] = 0.

The lower central series of g is g =: g(1) ⊃ g(2) ⊃ g(3) = 0, where g(2) = LieR{h3} ∼=
SpanR{h3}, thus, g has nilindex p = 2.

Consider the right-invariant dynamical system with state X ∈ G

Ẋ = (h1u1 + h2u2 + h3u3)X,

where u ∈ R3 is the control input. Suppose this system is sampled with period T = 1. The
step-invariant transform of this system is

X+ = exp(h1u1 + h2u2 + h3u3)X. (3.15)

Suppose we want X to track a reference that is given implicitly by the tracking error

E = exp((h1 + 2h2 + 3h3)w)X,

where w ∈ R is a known exogenous signal, which evolves according to

w+ = 2w. (3.16)

The goal is to choose u such that E tends to the identity in G. This is equivalent to
driving Log(E) ∈ g to 0, where we express e := Log(E) in the basis {h1, h2, h3}:

Log(E) =: e1h1 + e2h2 + e3h3.
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Using (3.15) and the definition of E, we find

E+ = exp(2(h1 + 2h2 + 3h3)w) exp(h1u1 + h2u2 + h3u3)X

= exp(2(h1 + 2h2 + 3h3)w) exp(h1u1 + h2u2 + h3u3) exp(−(h1 + 2h2 + 3h3)w)E.

Using the generalized BCH (2.1), we express the error dynamics on the Lie algebra:

e+ = 2(h1 + 2h2 + 3h3)w + (h1u1 + h2u2 + h3u3)− (h1 + 2h2 + 3h3)w + e

+
1

2
[2(h1 + 2h2 + 3h3)w, h1u1 + h2u2 + h3u3]

+
1

2
[2(h1 + 2h2 + 3h3)w,−(h1 + 2h2 + 3h3)w]

+
1

2
[2(h1 + 2h2 + 3h3)w, e] +

1

2
[h1u1 + h2u2 + h3u3,−(h1 + 2h2 + 3h3)w]

+
1

2
[h1u1 + h2u2 + h3u3, e] +

1

2
[−(h1 + 2h2 + 3h3)w, e]

= (w + u1)h1 + (2w + u2)h2 + (3w + u3)h3 + e

+
1

2
[(w + u1)h1 + (2w + u2)h2 + (3w + u3)h3, e]

− 3

2
[h1u1 + h2u2 + h3u3, (h1 + 2h2 + 3h3)w︸ ︷︷ ︸

=:W

].

The independent signal W evolves according to

W+ = (h1 + 2h2 + 3h3)w+

= 2(h1 + 2h2 + 3h3)w

= 2W,

which yields
W [k] = 2kW [0]

‖W [k]‖ = 2k‖W [0]‖.

Thus, setting β = ‖W [0]‖ and s = 2, we have ‖W [k]‖ ≤ βsk.

To apply Theorem 3.2.3 to the dynamics of e, we must choose the control law u such
that Assumption 1 is satisfied, and the linear part of (3.17) has spectral radius smaller than
s−1 = 1

2
. After choosing our control law u, we will verify that each of Assumptions 1(a),

1(b), and 1(c) are satisfied. Per Proposition 3.1.10, Assumption 1(b) is satisfied only if the
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linear part of the dynamics does not depend on W . This observation, in part, motivates
the control law

u =

−0.75 0.25 0

−0.25 −0.75 0

0 0 −0.99

 e−
1

2

3

w.
Substituting into the dynamics of e, we obtain

e+ = (0.25e1 + 0.25e2)h1 + (−0.25e1 + 0.25e2)h2 + (0.01e3)h3

+
1

2
[(0.25e1 + 0.25e2)h1 + (−0.25e1 + 0.25e2)h2, e1h1 + e2h2]

− 3

2
[(0.25e1 + 0.25e2)h1 + (−0.25e1 + 0.25e2)h2, (h1 + 2h2)w]. (3.17)

The dynamics (3.17) are of the form

e+ = Ae+
∑
|ω|=2

cωω,

where in the basis g = LieR{h1, h2, h3} ∼= SpanR{h1, h2, h3}, A : g → g has matrix repre-
sentation

MatA =

 0.25 0.25 0

−0.25 0.25 0

0 0 0.01

 , (3.18)

We now verify that (3.17) satisfies Assumption 1. By the form of (3.17) and nilpotency
of g, the dynamics of e are clearly class-A, thus Assumption 1(a) is satisfied.

That e = 0 is an equilibrium is verified by substituting e = 0 into (3.17). To verify
that e = 0 is the only equilibrium, note that by the definition of the Lie bracket on g, the
bracket terms in (3.17) lie in SpanR{h3}. Therefore, a point e is an equilibrium only if[

e1

e2

]
=

[
0.25 0.25

−0.25 0.25

][
e1

e2

]
,

which holds if and only if e1 = e2 = 0. If e1 = e2 = 0, then (3.17) reduces to e[k + 1] =
0.01e3h3, whose only equilibrium is e3 = 0. This verifies Assumption 1(b).

The block diagonal structure of (3.18) makes it clear that g(2) = LieR{h3} ∼= SpanR{h3}
is invariant. By Corollary 3.1.13, this verifies Assumption 1(c). By Theorem 3.2.3, e = 0
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is semiglobally exponentially stable if ρ(A) < s−1 = 1
2
. The eigenvalues of (3.18) are

{−0.25 + i0.25,−0.25 − i0.25, 0.01}, thus ρ(A) = 1
2
√

2
. Therefore, e = 0 is semiglobally

exponentially stable. We simulate the dynamics of the tracking error using the initial
conditions e[0] = 3h1 + 2h2 − h3, w[0] = 1. The trajectory of e is in Figure 3.1. As can be
seen, e tends to 0. N

-5

0

5

10

15

0 2 4 6 8 10 12 14 16 18 20

Figure 3.1: The tracking error e ∈ g at the sampling instants.

3.3 Solvable Lie Algebras

In this section we present various global stability results in the case that g is solvable, but
not necessarily nilpotent. Our analysis exploits the structure endowed by Theorem 2.3.6.
The proof of the main result of this section takes a similar geometric approach to that
of Theorem 3.2.3, but the analysis is significantly complicated by the nontrivial quotient
space K := g/h. The dynamics on K will be treated from an analysis perspective, rather
than using geometric arguments, and be shown to converge to the origin via contradiction.
Throughout this section, let Pi : g→ g/h(i+1) ∼= K⊕h/h(i+1) denote the canonical projection
of g onto h(i+1). We will require the following lemma, which is the solvable analogue of
Lemma 3.2.2 in the nilpotent case.
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Lemma 3.3.1. Let g be a solvable Lie algebra. Then, given a word ω with letters Y1, . . . , Y|ω|,

Piω = Pi[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ]

+ Pi[

1st letter︷ ︸︸ ︷
(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , ı0 ◦ P0Y|ω|] · · · ]

+ Pi[ı0 ◦ P0Y1, [

2nd letter︷ ︸︸ ︷
(Idg − ıi−1 ◦ Pi−1)Y2, [ı0 ◦ P0Y3, [. . . , ı0 ◦ P0Y|ω|] · · · ] + · · ·

· · ·+ Pi[ı0 ◦ P0Y1, [. . . , [ı0 ◦ P0Y|ω|−1, (Idg − ıi−1 ◦ Pi−1)︸ ︷︷ ︸
|ω|th letter

Y|ω|] · · · ].

Proof. Using Idg − ıi−1 ◦ Pi−1 + ıi−1 ◦ Pi−1 = Idg and bilinearity of the Lie bracket,

Piω = Pi[(Idg− ıi−1 ◦Pi−1)Y1, [Y2, [. . . , Y|ω|] · · · ]+Pi[ıi−1 ◦Pi−1Y1, [Y2, [. . . , Y|ω|] · · · ], (3.19)

where Yj ∈ X̃ ∪ W̃ .

We next decompose the second letter of the first term in (3.19) with respect to ı0 ◦ P0

and invoke Lemma 2.4.3:

Pi[(Idg− ıi−1 ◦Pi−1)Y1, [Y2, [. . . , Y|ω|] · · · ] = Pi[(Idg− ıi−1 ◦Pi−1)Y1, [ı0 ◦P0Y2, [. . . , Y|ω|] · · · ]
+ Pi [(Idg − ıi−1 ◦ Pi−1)Y1︸ ︷︷ ︸

∈h(i)

, [(Idg − ı0 ◦ P0)Y2︸ ︷︷ ︸
∈h(1)

, [. . . , Y|ω|] · · · ]

︸ ︷︷ ︸
∈h(i+1)

, (3.20)

where membership in h(i+1) follows from Lemma 2.3.5; the second term is zero, since
Pih

(i+1) = 0. Decomposing the rest of the letters in (3.20) with respect to ı0 ◦ P0 yields

Pi[(Idg−ıi−1◦Pi−1)Y1, [Y2, [. . . , Y|ω|] · · · ] = Pi[(Idg−ıi−1◦Pi−1)Y1, [ı0◦P0Y2, [. . . , ı0◦P0Y|ω|] · · · ].

Now decompose the second letter of the second term in (3.19) with respect to ıi−1◦Pi−1:

Pi[ıi−1◦Pi−1Y1, [Y2, [. . . , Y|ω|] · · · ] = Pi[ıi−1◦Pi−1Y1, [

∈h(i)︷ ︸︸ ︷
(Idg − ıi−1 ◦ Pi−1)Y2, [Y3, [. . . , Y|ω|] · · · ]

+ Pi[ıi−1 ◦ Pi−1Y1, [ıi−1 ◦ Pi−1Y2, [Y3, [. . . , Y|ω|] · · · ].

We continue in a fashion similar to that following (3.19), the only noteworthy difference
is the decomposition of ıi−1 ◦ Pi−1Y1 with respect to ı0 ◦ P0.
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Claim 3.3.2. For all i ≥ 1, the following diagram commutes.

g

P0
((

Pi−1// g/h(i) ıi−1 // g

P0

��
g/h

Proof of Claim 3.3.2. From the definitions of P0, Pi−1, and ıi−1, we have g = Im ıi−1⊕ h(i)

and KerP0 = h ⊇ h(i) = KerPi−1. Then P0g = P0 Im ıi−1 ⊕ P0h
(i) = P0 Im ıi−1.

It follows immediately from Claim 3.3.2 that ı0 ◦ P0 ◦ ıi−1 ◦ Pi−1 = ı0 ◦ P0. Thus, the
decomposition process specified above yields

Piω = Pi[ıi−1 ◦ Pi−1Y1, [ıi−1 ◦ Pi−1Y2, [Y3, [. . . , Y|ω|] · · · ]
+ Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , ı0 ◦ P0Y|ω|] · · · ]

+ Pi[ı0 ◦ P0Y1, [(Idg − ıi−1 ◦ Pi−1)Y2, [ı0 ◦ P0Y3, [. . . , ı0 ◦ P0Y|ω|] · · · ]. (3.21)

Applying this process to the rest of the letters in the first word of (3.21) completes the
proof.

Theorem 3.3.3. Let g be a solvable Lie algebra, and define X := gn and W := gr. Con-
sider the dynamics (3.1) and suppose f : X×W → X satisfies Assumption 1. If A is Schur,
and as k → ∞, W [k] → hr, then there exists β > 0 such that if lim supk→∞ ‖W [k]‖ ≤ β,
then the origin of X is globally attractive.

Proof. Analogous to the proof of Theorem 3.2.3, we will examine the quotient dynamics
on X/h(i+1), where i ≥ 0. By Proposition 3.1.14, the quotient dynamics on X/h(i+1) are

X̄+
i = ĀiX̄i +

∑
ω

cω ⊗ (Piω). (3.22)

We begin by examining the quotient dynamics on X/h = Kn:

X̄+
0 = Ā0X̄0, (3.23)

which is an unforced linear time-invariant system. That A is Schur implies Ā0 is Schur,
so the origin of P0X = gn/hn ∼= Kn is globally exponentially stable under the quotient
dynamics (3.22).
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We assert the induction hypothesis that the origin of Pi−1X ∼= Kn⊕
(
h/h(i)

)n
is globally

asymptotically stable. We now show that the origin of PiX ∼= Kn ⊕ (h/h(i+1))n is globally
asymptotically stable.

By Lemma 3.3.1,

Piω = Pi

ω̂i−1:=︷ ︸︸ ︷
[ıi−1 ◦ Pi−1Y1, [. . . , ıi−1 ◦ Pi−1Y|ω|] · · · ]

+ Pi[(Idg − ıi−1 ◦ Pi−1)Y1, [ı0 ◦ P0Y2, [. . . , ı0 ◦ P0Y|ω|] · · · ] + · · ·
· · ·+ Pi[ı0 ◦ P0Y1, [. . . , [ı0 ◦ P0Y|ω|−1, (Idg − ıi−1 ◦ Pi−1)Y|ω|] · · · ].

By the induction hypothesis, each term Pi−1Yj in ω̂i−1 tends to zero, which implies
ω̂i−1 → 0. We now show Piω → 0. By the result discussed in Remark 2.4.8, Lemma 3.3.1,
and that Pi is a morphism of algebras, the norm of each projected word can be bounded
thus

‖Piω‖ ≤ ‖ω̂i−1‖+ µ|ω|−1

|ω|∑
j=1

(
‖Pi ◦ (Idg − ıi−1 ◦ Pi−1)Yj‖

∏
`6=j

‖Pi ◦ ı0 ◦ P0Y`‖

)
. (3.24)

By submultiplicativity of operator norms and Proposition 2.4.6, we have

‖Pi ◦ ı0 ◦ P0Yj‖ ≤ ‖ı0 ◦ P0Yj‖ ≤ ‖ı0‖‖P0Yj‖. (3.25)

By Proposition 2.4.6 and the triangle inequality, we have

‖(Pi − Pi ◦ ıi−1 ◦ Pi−1)Yj‖ ≤ ‖PiYj‖+ ‖ıi−1‖‖Pi−1Yj‖ ≤ (1 + ‖ıi−1‖)‖PiYj‖, (3.26)

where the second inequality follows from Lemma 2.4.5. Recalling the notation X̃ =
{X1, . . . , Xn} and W̃ = {W1, . . . ,Wr}, we partition the words into the sets ΩX := {ω :

every letter is in X̃} and ΩW := {ω : at least one letter is in W̃}. First consider ω ∈ ΩX .
Applying (3.25) and (3.26) to (3.24), we obtain

‖Piω‖ ≤ ‖ω̂i−1‖+ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)‖X̄i‖
|ω|∑
j=1

∏
`6=j

‖P0Y`‖

≤ ‖ω̂i−1‖+ (µ‖ı0‖)|ω|−1|ω|(1 + ‖ıi−1‖)‖X̄0‖|ω|−1‖X̄i‖,

(3.27)

where we have used ‖PiXj‖ ≤ ‖(In ⊗ Pi)X‖ = ‖X̄i‖, for all j ∈ {1, . . . , n}.
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Now consider ω ∈ ΩW and let 1 ≤ q ≤ |ω| − 1 be the number of letters in X̃. Without

loss of generality, suppose Y1, . . . , Yq ∈ X̃, and Yq+1, . . . , Y|ω| ∈ W̃ . Then

q∑
j=1

‖PiYj‖
∏
` 6=j

‖P0Y`‖ ≤ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)‖X̄i‖q‖X̄0‖q−1‖W̄0‖|ω|−q

and

|ω|∑
j=q+1

‖PiYj‖
∏
` 6=j

‖P0Y`‖ ≤ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)‖W‖(|ω| − q)‖X̄0‖q‖W̄0‖|ω|−q−1.

Using the bounds q, |ω| − q ≤ |ω| − 1, we have

‖Piω‖ ≤ ‖ω̂i−1‖+ (µ‖ı0‖)|ω|−1(1 + ‖ıi−1‖)(‖X̄i‖+ ‖W‖)(|ω| − 1) max{‖X̄0‖, ‖W̄0‖}|ω|−1.
(3.28)

Using (3.27) and (3.28), we upper bound ‖X̄+
i ‖:

‖X̄+
i ‖ ≤ ‖Āi‖‖X̄i‖+

∑
ω∈ΩW

‖cω‖‖Piω‖+
∑
ω∈ΩX

‖cω‖‖Piω‖

≤ ‖Āi‖‖X̄i‖+
∑

ω∈ΩW∪ΩX

‖cω‖‖ω̂i−1‖

+ (1 + ‖ıi−1‖)‖X̄i‖
∑
ω∈ΩX

|ω|(µ‖ı0‖)|ω|−1‖cω‖‖X̄0‖|ω|−1

+ (1 + ‖ıi−1‖)(‖X̄i‖+ ‖W‖)
∑
ω∈ΩW

(|ω| − 1)(µ‖ı0‖)|ω|−1‖cω‖max{‖X̄0‖, ‖W̄0‖}|ω|−1

≤ ‖Āi‖‖X̄i‖+
∑
ω

‖cω‖‖ω̂i−1‖

+ (1 + ‖ıi−1‖)(2‖X̄i‖+ ‖W‖)
∑
ω

|ω|(µ‖ı0‖)|ω|−1‖cω‖max{‖X̄0‖, ‖W̄0‖}|ω|−1.

Claim 3.3.4. There exists % > 0 such that for all ‖X̄0‖, ‖W̄0‖ < %,∑
ω

|ω|(µ‖ı0‖)|ω|−1‖cω‖max{‖X̄0‖, ‖W̄0‖}|ω|−1 <∞. (3.29)

Proof of Claim 3.3.4. Suppose f satisfies (3.3). In particular, suppose there exists %1 ≤ 1
such that

‖X1‖, . . . , ‖Xn‖, ‖W1‖, . . . , ‖Wr‖ < %1.

50



On this domain, we have ‖ω‖ ≤ µ|ω|−1%
|ω|
1 and∑

ω

µ|ω|−1‖cω‖%|ω|1 <∞.

We can rewrite this summation by grouping all words of the same length:

∞∑
`=2

µ`−1

∑
|ω|=`

‖cω‖

 %`1,

which can be viewed as a series over the single index `. Since this series converges, by the
root test [92, Theorem 3.33], we have

lim sup
`→∞

√̀
µ`−1%`1

∑
|ω|=`

‖cω‖ = %1 lim sup
`→∞

µ1− 1
` lim sup

`→∞

√̀∑
|ω|=`

‖cω‖

= %1µ lim sup
`→∞

√̀∑
|ω|=`

‖cω‖

≤ 1.

Let 0 < %2 <
%1
‖ı0‖ . Applying the root test to the series∑

ω

(µ‖ı0‖)|ω|−1|ω|‖cω‖%|ω|2 , (3.30)

we have

lim sup
`→∞

√̀
`(µ‖ı0‖)`−1%`2

∑
|ω|=`

‖cω‖ = %2µ‖ı0‖ lim sup
`→∞

√̀
` lim sup

`→∞

√̀∑
|ω|=`

‖cω‖

= %2µ‖ı0‖ lim sup
`→∞

√̀∑
|ω|=`

‖cω‖

< %1µ lim sup
`→∞

√̀∑
|ω|=`

‖cω‖

< 1,

which implies that (3.30) converges. Let % ≤ %2
2, then for all |ω| ≥ 2, %|ω|−1 < %

|ω|
2 . Then,

by the comparison test [92, Theorem 3.25], if ‖X̄0‖, ‖W̄0‖ ≤ %, then (3.29) converges.
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First, note that the hypothesis W [k]→ hr implies W̄0 → 0. Now, since (3.29) converges
for ‖X̄0‖, ‖W̄0‖ sufficiently small, it follows that since X̄0 and W̄0 tend to zero as k →∞,
that (3.29) tends to zero.

We divide both sides by ‖X̄i‖ and upper bound the limiting supremum thus

lim sup
k→∞

‖X̄+
i ‖

‖X̄i‖
≤ ‖Āi‖

+
lim supk→∞

∑
ω ‖cω‖

(
‖ω̂i−1‖+ (1 + ‖ıi−1‖)‖W‖|ω|(µ‖ı0‖)|ω|−1 max{‖X̄0‖, ‖W̄0‖}|ω|−1

)
lim infk→∞ ‖X̄i‖

.

Suppose, by way of contradiction, that lim infk→∞ ‖X̄i‖ > 0. Since ω̂i−1 → 0 and
W̄0 → 0 by hypothesis, W is bounded, and X̄0 → 0, the limiting supremum on the right
side is 0, so

lim sup
k→∞

‖X̄+
i ‖

‖X̄i‖
≤ ‖Āi‖. (3.31)

All our analysis heretofore has been independent of a specific choice of norm. However,
at this point, we invoke Theorem 2.4.7 and choose the norm ‖ · ‖ : g → R such that for
some ε ∈ (0, 1 − ρ(Āi)), ‖Āi‖ = ρ(Āi) + ε < 1. By (3.31), we have limk→∞ ‖X̄i‖ = 0,
which is a contradiction. Therefore, lim infk→∞ ‖X̄i‖ = 0, so given any ε > 0, there exists
a time kε such that ‖X̄i[kε]‖ < ε. By Proposition 3.1.11, A Schur and W = 0 implies
local exponential stability of the origin, so by a standard perturbation argument, for W
sufficiently small, the origin remains locally exponentially stable. Thus, there exist β > 0,
k̄ ≥ 0 such that if, for all k ≥ k̄, ‖W [k]‖ ≤ β, then the origin of X is locally attractive.
Therefore, X̄i eventually enters the basin of attraction, so X̄i → 0. This establishes that
the origin is globally attractive. This proves the induction.

Remark 3.3.5. Since the dynamics on X/h are linear, it could be argued that [g, g] is the
“best” possibility for h, since this maximizes the dimension of X/h. However, the choice
of h does not change the analysis or results. �

Theorem 3.3.3 is somewhat weaker than Theorem 3.2.3 for the nilpotent case. Although
Theorem 3.3.3 would of course apply when the Lie algebra is nilpotent, Theorem 3.2.3 is
not a special case of Theorem 3.3.3. If we assert that W is bounded, rather than the less
restrictive condition in Theorem 3.3.3, then we can strengthen the attractivity result of
Theorem 3.3.3 to stability.

Corollary 3.3.6. Let g be a solvable Lie algebra, and define X := gn and W := gr.
Consider the dynamics (3.1) and suppose f : X ×W → X satisfies Assumption 1. If A is
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Schur, and as k → ∞, W [k] → hr, then there exists β > 0 such that if ‖W [k]‖ ≤ β, then
the origin of X is globally asymptotically stable.

Proof. The proof is the same as that of Theorem 3.3.3, where k̄ = 0 (defined near the end
of the proof of Theorem 3.3.3), which implies that the origin of X is locally exponentially
stable for all k ≥ 0.

The requirement that W be indeterminately small in Theorem 3.3.3 and Corollary 3.3.6
is rather restrictive. However, when the map A has spectral radius 0, W need not be
bounded, and we can even relax the assumption that f belongs to class-A.

Theorem 3.3.7. Consider the dynamics (3.1). Let g be a solvable Lie algebra and f :
X ×W → X be a Lie function that satisfies Assumptions 1(b) and 1(c). If ρ(A) = 0 and
for all k ≥ 0, W [k] ∈ hr, then X converges to zero in finite time.

Proof. The quotient dynamics on X/h = Kn are

X̄+
0 = Ā0X̄0.

That A has spectral radius zero implies that Ā0 : Kn → Kn has spectral radius zero,
which implies ĀdimK

0 = 0. Therefore, for all k ≥ dimK, we have X̄0[k] = 0.

By way of induction, we assert that for all k ≥ i dim g−
∑i

j=1 dim h(j), X̄i−1[k] = 0.

Define ω̂i−1, q, ΩX , and ΩW as in the proof of Theorem 3.3.3. If ω ∈ ΩX , then
from (3.27), for all k ≥ dimK, ‖Piω‖ ≤ ‖ω̂i−1‖. Since ‖W̄0‖ = 0, if ω ∈ ΩW , then
from (3.28),

‖Piω‖ ≤ ‖ω̂i−1‖+ (1 + ‖ıi−1‖)(µ‖ı0‖)|ω|−1‖W‖‖X̄0‖|ω|−1,

which for k ≥ dimK, simplifies to ‖Piω‖ ≤ ‖ω̂i−1‖. Since every word ω has at least one

letter in X̃, the induction hypothesis implies ω̂i−1 = 0 for all k ≥ i dim g−
∑i

j=1 dim h(j).

Therefore, for all k ≥ i dim g−
∑i

j=1 dim h(j), the quotient dynamics reduce to

X̄+
i = ĀiX̄i,

where ρ(Āi) = 0, and so Ā
dim(g/h(i+1))
i = 0, where dim

(
g/h(i+1)

)
= dim g − dim h(i+1); in

particular, dimK = dim g− dim h. Thus, for all k ≥ (i+ 1) dim g−
∑i+1

j=1 dim h(j), X̄i[k] is
zero.

Since p is the nilindex of h, we have Ppg = g/h(p+1) = g/0 ∼= g, and so the induction
terminates at i = p. Consequently, for all k ≥ (p+ 1) dim g−

∑p
j=1 dim h(j), X[k] = 0.
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Corollary 3.3.8. Consider the dynamics (3.1). Let g be a solvable Lie algebra and f :
X ×W → X be a Lie function that satisfies Assumptions 1(b) and 1(c). If ρ(A) = 0 and
for all k ≥ 0, W [k] ∈ hr, then the origin of X is globally attractive.

Proof. By Theorem 3.3.7, the state X tends to the origin for any initial conditions.

Corollary 3.3.9. Consider the dynamics (3.1). Let g be a solvable Lie algebra and f :
X ×W → X be a Lie function that satisfies Assumptions 1(b) and 1(c). If ρ(A) = 0, there
exists β ≥ 0 such that ‖W‖ ≤ β, and for all k ≥ 0, W [k] ∈ hr, then the origin of X is
semiglobally exponentially stable.

Proof. By Theorem 3.3.7, X[k] converges to zero in finite time. Define k̄ := arg mink{X[k] =
0} and let M ≥ 0 be arbitrary. Since ‖ · ‖ : X → R is continuous, ‖X[k]‖ attains its max-
imum on the compact set {X[k] : 0 ≤ k ≤ k̄, ‖W [k]‖ ≤ β, ‖X[0]‖ ≤ M}. Choosing any
λ ∈ [0, 1), there exists finite α > 0 such that ‖X[k]‖ ≤ αλk‖X[0]‖, where α depends on
‖X[0]‖ and β.

Remark 3.3.10. Theorem 3.3.7 and Corollaries 3.3.8 and 3.3.9 easily extend to the case
where there exists kh ∈ Z≥0 such that, for all k ≥ kh, W [k] ∈ hr, but W [0] is not necessarily
in hr. �

Example 3.3.1. Consider the 6-dimensional Lie algebra of 4 × 4 real upper triangular
matrices, with basis {t1, . . . , t6}, such that the nonvanishing Lie brackets are given by

[t1, t4] = t4, [t1, t6] = t6, [t2, t4] = −t4, [t2, t5] = t5, [t3, t5] = −t5, [t3, t6] = −t6, [t4, t5] = t6.

The derived algebra is h = LieR{t4, t5, t6}, which has lower central series h =: h(1) ⊃
h(2) ⊃ h(3) = 0, where h(2) = LieR{h6} ∼= SpanR{h6}. We remark that the derived algebra
h and the Heisenberg algebra are isomorphic as Lie algebras.

We will consider a dynamical system driven by the exogenous signal W := (W1,W2) ∈
g2 =:W

W+
1 = 2

(
1− k(1.1)−0.5k

)
sin(10k)W0

W+
2 =

(
2− k2(1.1)−2k

)
cos(20k)W0,

where W0 = t4 + 7t5 + 6t6 ∈ h. Note that W is bounded.

Consider the dynamical system with state X := (X1, X2) ∈ g2 =: X

X+
1 =

1

2
exp(W1)X1 exp(−W1)− exp(X2)X1 exp(−X2) +

1

2
exp(W2)X2 exp(−W2)

X+
2 =

1

2
exp(X2)X1 exp(−X2) +

1

4
exp(X1 +W1)X2 exp(−(X1 +W1)),
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where for all Y ∈ g, exp(Y )Xi exp(−Y ) ∈ g [41, Propositions 2.16, 2.17]. To see that these
dynamics are indeed a Lie function, we use exp(Y )Xi exp(−Y ) = eadYXi [41, Proposition
3.35]:

X+
1 =

(
1

2
eadW1 − eadX2

)
X1 +

1

2
eadW2X2

X+
2 =

1

2
eadX2X1 +

1

4
eadX1+W1X2.

Recall eadY = Idg + adY + 1
2!

ad2
Y + 1

3!
ad3

Y + · · · , yielding

X+
1 = −1

2
X1 +

1

2
X2 +

∞∑
`=2

1

`!

((
1

2
ad`W1

− ad`X2

)
X1 +

1

2
ad`W2

X2

)
X+

2 =
1

2
X1 +

1

4
X2 +

∞∑
`=2

1

`!

(
1

2
ad`X2

X1 +
1

4
ad`X1+W1

X2

)
.

Using the basis {t1, t2, t3, t4, t5, t6} for g, and letting I6 ∈ R6×6 be the identity matrix,
we can express the dynamics of X as

X+ =

([
−1

2
1
2

1
2

1
4

]
⊗ I6

)
︸ ︷︷ ︸

MatA

X +
∞∑
`=2

1

`!

[(
1
2

ad`W1
− ad`X2

)
X1 + 1

2
ad`W2

X2

1
2

ad`X2
X1 + 1

4
ad`X1+W1

X2

]
.

We now verify that Assumption 1 is satisfied. For all Y ∈ g, ‖ ad`Y Xi‖ ≤ µ`‖Y ‖`‖Xi‖,
yielding

‖eadYXi‖ ≤
∞∑
`=0

(µ‖Y ‖)`

`!
‖Xi‖ = eµ‖Y ‖‖Xi‖ <∞,

so the dynamics of X belong to class-A, thereby satisfying Assumption 1(a).

That X = 0 is an equilibrium is verified by substituting X = 0 into the dynamics. To
verify that X = 0 is the only equilibrium, recall that the derived algebra is LieR{t4, t5, t6},
so a point is an equilibrium only if

P0X =

([
−1

2
1
2

1
2

1
4

]
⊗ I3

)
︸ ︷︷ ︸

MatĀ0

P0X,
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where ρ(Ā0) =
⊔3
i=1

{
−3

4
, 1

2

}
, implying that Ā0 is bijective. Therefore, a point can be an

equilibrium only if P0X = 0, or equivalently, X ∈ h2. As mentioned, h is isomorphic to
the Heisenberg algebra, so the rest of the argument that Assumption 1(b) is satisfied is
similar to that in Example 3.2.1.

It is clear from the form of MatA that Ah2
i ⊆ h2

i . By Corollary 3.1.13, this verifies
Assumption 1(c).

From MatA, we find ρ(A) =
⊔6
i=1

{
−3

4
, 1

2

}
. Thus, by Theorem 3.3.3, if the limit-

ing supremum of W is sufficiently small, then the origin of X is globally attractive. By
Corollary 3.3.6, if W is bounded sufficiently small, then the origin is globally asymptoti-
cally stable. We illustrate simply that for the arbitrary choice of W in this example, that
X → 0 as k →∞, as seen in Figure 3.2. N
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Figure 3.2: The norms of the states X1, X2 ∈ g.

Remark 3.3.11. In this chapter, we have studied series of words over letters in X̃ and W̃ .
In Chapter 5, we will encounter words of this form, as well as words where these letters
are acted on by linear maps.

Consider a collection of linear operators Mi : g → g, satisfying Mih
(j) ⊆ h(j) for all j,

where i ∈ I ⊆ N, such that M := supi∈N ‖Mi‖ <∞, and h is the nilpotent ideal satisfying
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Assumption 1(c). If each word ω in (3.1) of length at least 2 were instead of the form

ω = [Miω1
Yω1 , [. . . ,Miω|ω|

Yω|ω| ] · · · ],

then all our results still hold. The invariance property of the maps admits straightforward
extensions of Lemmas 3.2.2 and 3.3.1. Then, in the proof of Theorem 3.2.3, the presence of
these linear maps can easily be accounted for by multiplying γi by a factor of max{M i, 1}
in the bound determined in Claim 3.2.4. In the proof of Theorem 3.3.3, the linear maps
merely result in a scaled estimate of the basin of attraction for the linearized dynamics, in
particular, the estimate of the basin of attraction would be scaled by a factor of M−1. �
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Chapter 4

Synchronization of Homogeneous
Networks on Exponential Matrix Lie
Groups

In this chapter, we examine the synchronization of networks of identical continuous-time
kinematic agents on a matrix Lie group, controlled by discrete-time controllers with con-
stant sampling periods and directed, weighted communication graphs with a globally reach-
able node. We present a distributed discrete-time control law that achieves global synchro-
nization on exponential matrix Lie groups. As characterized in Theorem 4.4.8, synchro-
nization is generally asymptotic, but if the Lie group is nilpotent, then synchronization on
the associated Lie algebra is achieved at an exponential rate, as characterized in Propo-
sition 4.4.6. We first linearize the synchronization error dynamics at identity, and show
that the proposed controller achieves local exponential synchronization on any Lie group,
as characterized in Corollary 4.3.3. Building on the local analysis, we show that, if the Lie
group is exponential, then synchronization is global. Proposition 4.4.10 provides conditions
for deadbeat convergence when the communication graph is unweighted and complete.

4.1 Introduction

Synchronization, or consensus, has received a tremendous amount of attention in the lit-
erature [113, 90]. In engineering, synchronization captures problems such as satellite at-

A preliminary version of this work was presented at the 2018 American Control Conference [73].
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titude alignment and vehicle formation control. Such systems are naturally modelled in
a Lie group framework. Synchronization of networks on SE(3) was achieved using pas-
sivity in [47]; synchronization under sampling was studied for a network of Kuramoto-like
oscillators in [35] and harmonic oscillators with a time-varying period in [105], and path fol-
lowing in [48]. The Kuramoto network model was extended from SO(2) to SO(n) in [65]. A
framework for coordinated motion on Lie groups was developed in [94], where the synchro-
nization problem that we consider is a special case of what the authors call “bi-invariant
coordination”. In [29], linear consensus algorithms were applied to continuous-time net-
works on SE(3) with unweighted communication graphs that are complete, ring-shaped, or
spanning trees.

We present a control law that achieves global synchronization for a network of identical
agents on exponential Lie groups—meaning the exponential map is a global diffeomorphism—
with driftless dynamics and a directed communication graph with a globally reachable
node. We use the stability results of Chapter 3 to generalize and extend the results of [73],
which considered only unweighted graphs with agents on one-parameter Lie subgroups.
The controller requires that each agent have access to its relative state with respect to
each of its neighbours. We show that, irrespective of the Lie group, if the sampled dy-
namics achieve synchronization, then the agents synchronize in continuous-time as well. If
the Lie group is exponential, then we show that the proposed controller achieves global
asymptotic synchronization. In the special case that the Lie group is simply connected
and nilpotent, and hence exponential, synchronization is achieved at an exponential rate.
We also provide conditions for global deadbeat convergence on any exponential Lie group
when the communication graph is unweighted and complete. These results hold locally
when the Lie group is only solvable, rather than exponential, or nilpotent but not simply
connected.

We use weighted, directed graphs to model communication constraints between agents.
A graph G is a triple (V ,E , w) consisting of a finite set of vertices V = NN , a set of edges
E ⊆ V × V , and a weight function w : E → R≥0. If agent i has access to its relative
state with respect to agent j, then (i, j) ∈ E . A graph is complete if for all i, j ∈ V ,
(i, j) ∈ E . Define vertex i’s neighbour set as Ni := {j ∈ NN : (i, j) ∈ E }. A node i ∈ V is
globally reachable, if for all k ∈ V , k 6= i, there exists a sequence {j1, . . . , j`} ⊂ V , such that
(i, j1), (j2, j1), . . . , (k, j`) ∈ E . The weight wij := w((i, j)) is nonzero only if (i, j) ∈ E . We
assume that G has no self-loops. A graph is unweighted if, for all i 6= j ∈ NN , wij ∈ {0, 1}.
Associated with G is the Laplacian L ∈ RN×N , defined elementwise as

Lij =

{
−wij, i 6= j,∑

j∈Ni
wij, i = j.
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4.2 Sampled-Data Synchronization Problem

We consider a network of N controlled agents, each modelled by the differential equation

Ẋi = Xi (Biui) , i ∈ NN . (4.1)

Here, Xi ∈ G, where G is an m-dimensional subgroup of the complex general linear group
GL(n,C) of invertible n × n matrices with complex entries, which itself contains the real
general linear group GL(n,R) as a proper subgroup. We allow for such generality in the
choice of G in only Section 4.3, as it allows us to establish local results on any Lie group.
Our strongest results, discussed in Section 4.4, hold when G is an exponential Lie group,
which is a special case of a solvable Lie group. The control input to each agent is ui ∈ Fm
and Bi : Fm → g are linear maps. Equation (4.1) is a kinematic model of a system evolving
on a matrix Lie group G. Each agent is assumed to be fully actuated in the sense that

ImBi = g.

We are interested in the sampled-data control of this multi-agent system in which each
agent’s control law is implemented on an embedded computer, which we explicitly model
using the setup in Figure 4.1. The blocks H and S in Figure 4.1 are, respectively, the ideal
hold and sample operators. Sample and hold are, respectively, idealized models of A/D
and D/A conversion. The following assumption is made throughout this chapter.

Figure 4.1: Sampled-data agent on a matrix Lie group G.

Assumption 2. All sample and hold blocks operate at the same period T > 0 and the
blocks are synchronized for the multi-agent system (4.1).

Under Assumption 2, letting Xi[k] := Xi(kT ) and ui[k] := ui(kT ), the discretized
dynamics of each agent are given by

X+
i = Xi exp (TBiui), i ∈ NN (4.2)

which is an exact discretization of (4.1).
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Given a network of N agents with kinematic dynamics (4.1) or (4.2), define the error
quantities Eij := X−1

i Xj, i, j ∈ NN . Observe that Eij = I if and only if, Xi = Xj. The
error matrix Eij is called left-invariant [58], since for all X ∈ G, (XXi)

−1(XXj) = X−1
i Xj.

Local Synchronization on Matrix Lie Groups : Given a network of N agents with
continuous-time dynamics (4.1), sampling period T > 0 and a weighted communication
graph G = (V ,E , w) with a globally reachable node, find, if possible, distributed control
laws ui, i ∈ NN , such that for all initial errors in a neighbourhood of the identity in GN ,
for all i, j ∈ NN , Eij → I as t→∞. •

By a distributed control law we mean that agent i’s control signal ui depends on Eij
only if (i, j) ∈ E . We propose the distributed feedback control law

ui =
1

T
B−1
i Log

(∏
j∈Ni

E
wij

ij

) 1
K

 , (4.3)

where K ∈ R is a gain.

The gain of exactly 1/T in (4.3) greatly simplifies our analysis by eliminating the
sampling period T in the plant and error dynamics. However, this gain is not truly an
independent parameter. The control law (4.3) simplifies to

ui =
1

TK
Log

(∏
j∈Ni

E
wij

ij

)
,

so the gain of 1/T could be absorbed into the gain of 1/K without loss of generality, but
we will not do this.

The control law (4.3) does not require agent i to know agent j’s state Xj, nor its own
state Xi, but instead requires knowledge of the relative state Eij. The expression (4.3)
is well-defined so long as the product

∏
j∈Ni

Eij has no eigenvalues in R−, as discussed in
Chapter 2; this condition is always satisfied when when the relative states are sufficiently
close to the identity. The control law (4.3) is motivated by exponential coordinates for
Lie groups, classical consensus algorithms in Rn, and the notion of Riemannian mean of
rotations on SO(3), which on a one-parameter subgroup thereof can be explicitly computed

as
∏N

i=1R
1
N
i [76]. When the control law (4.3) is well-defined, the closed-loop discrete-time

dynamics are

X+
i = Xi

(∏
j∈Ni

E
wij

ij

) 1
K

, i ∈ NN (4.4)
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and the synchronization error dynamics are

E+
ij =

(
X+
i

)−1
X+
j

=

(∏
p∈Ni

E
wip

ip

)− 1
K

X−1
i Xj

∏
q∈Nj

E
wjq

jq

 1
K

,

which, using the definition of Eij, yields

E+
ij =

(∏
p∈Ni

E
wip

ip

)− 1
K

Eij

∏
q∈Nj

E
wjq

jq

 1
K

. (4.5)

Remark 4.2.1. The order of multiplication in (4.3) need not be common to all agents or
even constant. �

A key advantage of direct design over emulation, is that stability can be guaranteed at
the sampling instants. As mentioned in Section 4.1, on SE(3), the relative error Eij can
be computed using machine vision, where the speed of sampling is limited by the frame
rate of the camera, for example, 25 Hz [69]. This limits the feasibility of emulation-based
design. However, direct design does not guarantee good performance between sampling
instants. But in the specific case of the plant and problem discussed in this chapter,
achieving synchronization at the sampling instants implies synchronization between the
sampling instants.

Proposition 4.2.2. Suppose that each agent’s controller ui is continuous in the synchro-
nization errors,2 and vanishes if synchronization is achieved at the sampling instants. If
the agents synchronize at the sampling instants, then under the plant dynamics (4.1), syn-
chronization is achieved.

Proof. If Eij[k]→ I, then ui[k], uj[k]→ 0. Fix 0 < δ < T , then

lim
k→∞

Eij(kT + δ) = lim
k→∞

exp (δBiui[k])−1Eij[k] exp (δBjuj[k])

= lim
k→∞

exp (δBiui[k])−1 lim
k→∞

Eij[k] lim
k→∞

exp (δBjuj[k])

= I3 = I.

Since δ is arbitrary, this implies that Eij(t)→ I.

2As is the case with the proposed controller (4.3).
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Proposition 4.2.2 means that asymptotically stabilizing the set where Eij = I, for all
i, j ∈ NN , at the sampling instants is sufficient for solving the synchronization problem.
Thus, hereinafter we can conduct all analysis in the discrete-time setting and do not rely
on T being sufficiently small.

4.3 Linear Analysis on General Lie Groups

We first show that the linearization of the error dynamics (4.5) is exponentially stable. This
will establish that the proposed control law achieves synchronization on any Lie group if
the agents are initialized sufficiently close to one another. In the next section, leveraging
the results of Chapter 3, we will use the stability of the linearization to establish global
stability on exponential Lie groups.

Using (2.2), we establish conditions on the controller gain K ∈ R for local stability.
First, we apply the identity that, for all i, j ∈ NN , Eij = E−1

1i E1j to (4.5):

E+
ij =

(∏
p∈Ni

(
E−1

1i E1p

)wip

)− 1
K

E−1
1i E1j

∏
q∈Nj

(
E−1

1j E1q

)wjq

 1
K

. (4.6)

From (2.2), the linearization of the dynamics of the local error Eij := Log(Eij) is

E+
ij ≈ E1j − E1i −

1

K

∑
p∈Ni

wip(E1p − E1i) +
1

K

∑
q∈Nj

wjq(E1q − E1j)

= E1j − E1i −
1

K

(∑
p∈Ni

wipE1p −

(∑
p∈Ni

wip

)
E1i

)
+

1

K

(∑
q∈Nj

wjqE1q −

(∑
q∈Nj

wjq

)
E1j

)

= E1j − E1i +
1

K
((e>1 L)⊗ Idg)E −

1

K
((e>j L)⊗ Idg)E

= E1j − E1i +
1

K
((e1 − ej)>L)⊗ Idg)E ,

where E := (E11, . . . , E1N) ∈ gN . Setting i = 1 and “stacking” the last line over all j, we
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obtain

E+ ≈
((

(IN − 1Ne
>
i ) +

1

K
(1Ne

>
i − IN)L

)
⊗ Idg

)
E

=

( M :=︷ ︸︸ ︷(
(IN − 1Ne

>
1 )

(
IN −

1

K
L

))
⊗Idg

)
︸ ︷︷ ︸

=:A

E .
(4.7)

The eigenvalues of the state matrix A = M ⊗ Idg in (4.7) are the m-times-repeated
eigenvalues of M [7, Chapter 12, §5]. The linear dynamics (4.7) are (exponentially) stable
if and only if the matrix M is Schur. Therefore, we now establish sufficient conditions on
the gain K.

Lemma 4.3.1. The spectrum of M is

(σ(IN − L/K) \ {1}) t {0}.

Proof. Let V := spanR{1N}. For any Laplacian, we have KerL ⊆ V , which implies (IN −
L/K)|V = 1. Direct calculation verifies Ker(IN−1Ne

>
1 ) = V . This means that V ⊆ KerM .

The spectrum of a map under which V is invariant equals the disjoint union of the spectra
of its own and induced map. Thus σ(M) = σ(M |V) t σ(M̄), where σ(M |V) = 0.

Since V is invariant under both (IN − 1Ne
>
1 ) and (IN − L/K), the map induced on

RN/V by their composition is the composition of their respective induced maps, i.e., M̄ =

(IN − 1Ne>1 ) · (IN − L/K). In the basis {ē2, . . . , ēN}, (IN − 1Ne>1 ) = IN−1, thus M̄ is
similar to (IN − L/K). Since the eigenvalue of (IN−L/K) associated with the eigenvector
1N is 1, σ(IN − L/K) = σ(IN − L/K) \ {1}.

Lemma 4.3.1 holds given the Laplacian of any graph, but under our hypothesis that
G has a globally reachable node, L has a simple zero eigenvalue [1, Theorem 4], which,
by the Spectral Mapping Theorem, implies that (IN − L/K) has a simple eigenvalue of
1. The matrix (IN − L/K) is the Perron matrix from the discrete-time linear consen-
sus problem [86, §II.C]. Lemma 4.3.1 asserts that the spectrum of M is the spectrum
of (IN − L/K), where the simple eigenvalue of 1 has been replaced with a simple eigen-
value of 0. Thus, Lemma 4.3.1 establishes a local equivalence between discrete-time linear
consensus and synchronization of kinematic systems on arbitrary Lie groups using the pro-
posed controller (4.3). Thus, the controller gain K ∈ R can be chosen according to any
of the myriad well-established criteria in the discrete-time linear consensus problem, e.g.,
K = N maxi,j{wij}.
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Assumption 3. The gain K ∈ R solves the discrete-time linear consensus problem for the
directed graph G with Laplacian L.

Lemma 4.3.2. Under Assumption 3, the origin is exponentially stable under the linearized
Lie algebra error dynamics (4.7).

Proof. We have σ(M ⊗ Idg) =
⊔m
i=1 σ(M). Under Assumption 3, by Lemma 4.3.1, M ⊗ Idg

is Schur.

Corollary 4.3.3. For any Lie group G with communication graph G containing a globally
reachable node, if Assumption 3 holds, then the equilibrium {Eij = I : i, j ∈ NN} is locally
exponentially stable.

4.4 Synchronization on Exponential Lie Groups

In this section, we consider the case where G is exponential, and therefore that its Lie
algebra g is solvable. Under this hypothesis, we identify the error Eij ∈ G with its log-
arithm, Eij ∈ g, and examine the network’s synchronization error on gN . We prove that
synchronization is achieved for any initial conditions when G is exponential. To do this,
we use the results of Chapter 3.

4.4.1 Synchronization on Exponential Lie Groups on Networks
with a Globally Reachable Node

To apply the results of Chapter 3, we must verify that the error dynamics (4.5) satisfy
Assumption 1 when expressed on gN . Applying the generalized BCH to the reformulated
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global error dynamics (4.6), a straightforward but tedious computation verifies

E+
ij = E1j − E1i +

1

K
((ei − ej)>L)⊗ Idg)E

−

1 +
1

2K

∑
p∈Ni

wip −
1

2K

∑
q∈Nj

wjq +
1

2K2

∑
p∈Ni

∑
q∈Nj

wipwjq

 [E1i, E1j]

− 1

2K

1− 1

K

∑
q∈Nj

wjq

∑
p∈Ni

wip[E1p, E1j]

− 1

2K

(
1− 1

K

∑
p∈Ni

wip

)∑
q∈Nj

wjq[E1i, E1q]

+
1

2K

∑
r,s∈Ni
r<s

wirwis ([E1i, E1s] + [E1r, E1i]− [E1r, E1s])

+
1

2K

∑
u,v∈Nj
u<v

wjuwjv (−[E1j, E1v]− [E1u, E1j] + [E1u, E1v])

− 1

2K2

∑
p∈Ni

∑
q∈Nj

wipwjq[E1p, E1q] + · · · ,

where the first line was already found in Section 4.3. The exact form of the Lie bracket
terms is not our main focus, rather, we wish to impress upon the reader that the error
dynamics on gN are in the form of (3.1), which we explicitly rewrite as

E+ = f(E) = AE +
∑
|ω|≥2

cω ⊗ ω, (4.8)

where A : gN → gN is defined in (4.7), the words ω are over the letters E11, . . . , E1N , and
the coefficients cω are determined by the repeated application of the generalized BCH and
collecting like terms. This establishes that the error dynamics on gN are a Lie function.
To verify that (4.8) satisfies Assumption 1, we begin with Assumption 1(a).

Lemma 4.4.1. The error dynamics (4.8) belong to class-A.

Proof. The generalized BCH is class-A [25, Proof of Theorem 6]. Therefore,

Log(exp(−TBiui)Eij exp(TBjuj))
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converges in the class-A sense of Definition 3.1.4 for TBiui, TBjuj, Eij sufficiently small.
Recalling the choice of ui in (4.3), we see that ui converges in the class-A sense if, for all
p ∈ Ni, Eip is sufficiently small.

The verification of Assumption 1(b) is facilitated by first verifying that Assumption 1(c)
holds, which is a corollary of a stronger result, which we present on its own, as it could be
of independent interest.

Lemma 4.4.2. Every Lie subalgebra of gN is invariant under the dynamics (4.8).

Proof. A Lie subalgebra h ⊆ g generates a unique connected Lie subgroup H ⊆ G whose
Lie algebra is h [41, Theorem 5.20].

The error dynamics (4.6) are the composition of finitely many group products and
powers, under which any Lie subgroup on which the latter operation is well-defined, is
invariant. Consequently, if E ∈ HN , then E+ ∈ HN . It follows immediately that E ∈ hN

implies E+ ∈ hN .

Corollary 4.4.3. Given any nilpotent ideal h ⊇ [g, g] with nilindex p, h and
(
h(i)
)N

,
i ∈ Np, are invariant under the dynamics (4.8).

In Proposition 3.1.14, it is shown that, if there exists an f -invariant ideal hN ⊂ gN ,
then (4.8) admits well-defined quotient dynamics Ē+ = f̄(Ē) on gN/hN . In particular,
given the canonical projection P : gN → gN/hN , the following diagram commutes.

gN

P
��

f // gN

P
��

gN/hN
f̄

// gN/hN

We exploit this fact to prove the following lemma.

Lemma 4.4.4. Under Assumptions 3 and 1(c), the origin is the unique equilibrium of (4.8).

Proof. It is clear from (4.6) that the identity is an equilibrium on the Lie group, so the
origin is an equilibrium of (4.8) on the associated Lie algebra.

Let h ⊆ g be any ideal that satisfies Assumption 1(c). For i ∈ {0} ∪ Np, define the

canonical projection Pi : gN → gN/
(
h(i+1)

)N
, and let f̄i : gN/

(
h(i)
)N → gN/

(
h(i)
)N

be
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the unique map satisfying Pif = f̄i ◦ Pi. Note that, since h ⊇ [g, g], the Lie bracket on
gN/hN is identically zero, so f̄0 = Ā0, where Ā0 : gN/hN → gN/hN is the unique linear
map satisfying P0A = Ā0P0.

Now suppose E? ∈ gN is an equilibrium. We will show that E? is necessarily the origin.
The error dynamics (4.8) on gN/hN are Ē+

0 = Ā0Ē0. Under Assumption 3, A is Schur,
implying that Ā0 is Schur, so Ē?0 = Ā0Ē?0 if and only if Ē?0 = 0, which holds if and only if
E? ∈ hN .

By way of induction, suppose for j ∈ Ni−1, Ē?+j = f̄j(Ē?j ) is at equilibrium only if Ē?j is

zero. This means that E? is an equilibrium only if E? ∈
(
h(i)
)N

.

By Lemma 2.3.5, the image of the Lie bracket on h(i) is contained in h(2i) ⊆ h(i+1).

Therefore, if E? ∈
(
h(i)
)N

, then Pi maps all Lie brackets to zero, so Ēi = ĀiĒi, where

Āi : gN/
(
h(i+1)

)N → gN/
(
h(i+1)

)N
is the unique linear map satisfying PiA = ĀiPi. Under

Assumption 3, A is Schur, so Āi is Schur, so Ē?i = ĀiĒ?i if and only if Ē?i is zero. This

means that E? is an equilibrium only if E? ∈
(
h(i+1)

)N
. This proves the induction. Since

h(p+1) is zero, Ppg
N ∼= gN . Therefore, E? is an equilibrium only if it is the origin.

Lemma 4.4.1, Corollary 4.4.3, and Lemma 4.4.4 together establish that Assumption 1
is satisfied.

Proposition 4.4.5. Given any nilpotent ideal h ⊇ [g, g], the error dynamics (4.8) satisfy
Assumption 1.

By Theorem 2.3.6, h = [g, g] always satisfies Assumption 1(c), but this is not necessarily
the only valid choice. For example, the largest nilpotent ideal of g, called the nilradical,
contains [g, g] when g is solvable, but the two do not necessarily coincide [39, §5.1]. This
is most obvious when g is nilpotent, so the nilradical is the entire Lie algebra.

Equipped with Proposition 4.4.5, our two main synchronization results follow immedi-
ately from direct application of Corollaries 3.2.6 and 3.3.6.

Proposition 4.4.6. Let g be a nilpotent Lie algebra. Under Assumption 3, the origin is
semiglobally exponentially stable under (4.8).

Proposition 4.4.7. Let g be a solvable Lie algebra. Under Assumption 3, the origin is
globally asymptotically stable under (4.8).

Since Propositions 4.4.6 and 4.4.7 pertain to the error dynamics on the Lie algebra
g, their implications for synchronization on the group G are limited to the region where
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Log : G→ g is well-defined. If G is exponential, then the Lie algebra error dynamics (4.8)
are a globally valid local representation of the Lie group error dynamics (4.6), which are
equivalent to (4.5).

Theorem 4.4.8. Let G be an exponential Lie group. Under Assumption 3, the identity is
globally asymptotically stable under (4.5).

Note that, since Lie groups are generally not vector spaces, the exponential convergence
rate on g, characterized in Proposition 4.4.6, does not readily translate to the group G.

Remark 4.4.9. Under the hypotheses Theorem 4.4.8, the origin is Lyapunov stable, so
given a non-exponential, but nilpotent or solvable, Lie group, there exists some neighbour-
hood of the identity U1 ⊆ U where this theorem holds locally. �

4.4.2 Deadbeat Performance with Unweighted Complete Graphs

If the communication graph G is unweighted and complete, then the synchronization error
E can be driven to identity in finitely many time-steps.

Proposition 4.4.10. Let G be an exponential Lie group and suppose (4.8) satisfies As-
sumptions 1(b) and 1(c). If G is unweighted and complete, and K = N , then synchroniza-
tion is achieved in at most (p+ 1) dim g−

∑p
j=1 dim h(j) time-steps.

Proof. Since G is unweighted and complete, L has a simple eigenvalue of 0, and an eigen-
value of N with multiplicity N − 1. By the Spectral Mapping Theorem, if K = N , then
all eigenvalues of (IN − L/K) are zero. By Lemma 4.3.1, M is nilpotent as an endomor-
phism. Proposition 4.4.10 follows immediately from the bound determined in the proof of
Theorem 3.3.7.

We remark that this property is not robust. If K is not exactly N , then deadbeat
performance will not be achieved. However, even in the case of linear systems, dead-
beat performance requires all eigenvalues of the state matrix to be exactly zero, with no
robustness.
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4.5 Simulations

4.5.1 Network on the Heisenberg Group

To illustrate Proposition 4.4.6 and Theorem 4.4.8, we simulate a network on the simply
connected 3-dimensional Heisenberg group H ⊂ GL+(3,R) with N = 10, K = 11, T = 1,
with communication graph depicted in Figure 4.2.
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Figure 4.2: Communication graph for Heisenberg and upper-triangular networks.

The agents are initialized at

Xi(0) =

1 sin(i) sin(3i) + 1
2

sin(i) sin(2i)

0 1 sin(2i)

0 0 1

 , i ∈ N10.

By Proposition 4.4.6, the origin of the Lie algebra under the discrete-time error dynamics
is semiglobally exponentially stable. The continuous-time synchronization error is shown
in Figure 4.3. As predicted by Proposition 4.2.2, the continuous-time error is driven to
zero.
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Figure 4.3: ‖LogE1j(t)‖, j ∈ {2, . . . , 10} for a network on H with T = 1, N = 10, K = 11,
and graph depicted in Figure 4.2.

4.5.2 Network on the Upper Triangular Group

To illustrate Theorem 4.4.8, we simulate a network on the 6-dimensional Lie group of
upper triangular matrices with positive diagonal entries T(3) ⊂ GL+(3,R). The graph G
and controller gain K are the same as in Section 4.5.1. The initial conditions are given by
Xi[0] = exp(xi[0]), where

xi(0) =

sin(i) sin(4i) sin(6i)

0 sin(2i) sin(5i)

0 0 sin(3i)

 , i ∈ N10.

By Theorem 4.4.8, the origin of the Lie algebra under the discrete-time error dynamics
is asymptotically stable. The continuous-time synchronization error is shown in Figure 4.4.
As predicted by Proposition 4.2.2, the continuous-time error is driven to zero.
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Figure 4.4: ‖LogE1j(t)‖, j ∈ {2, . . . , 10} for a network on T(3) with T = 1, N = 10,
K = 11, and graph depicted in Figure 4.2.

4.5.3 Deadbeat Performance on the Upper Triangular Group

To illustrate Proposition 4.4.10, we simulate a network with a complete connectivity graph
on the simply connected 10-dimensional Lie group of 4 × 4 invertible upper triangular
matrices with positive diagonal entries T(4) ⊂ GL+(4,R) with K = N = 20, T = 1. The
agents are initialized at Xi(0) = exp(xi(0)), where

xi =


xi1 xi5 xi8 xi10

0 xi2 xi6 xi9

0 0 xi3 xi7

0 0 0 xi4

 ∈ g

and
xij(0) = sin(ij) cos(ij), i ∈ N20, j ∈ N10.

The derived algebra h = [g, g] has nilindex p = 2, dim g = 10, dim h = 6, dim h(2) = 3,
dim h(3) = 1, so the bound on the time of convergence is 2 ·10− (6+3+1) = 10 time-steps.
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As seen in Figure 4.5, the discrete-time error on the Lie algebra is driven to zero in
three time-steps, which is consistent with the upper bound of 10 time-steps asserted by
Proposition 4.4.10. As predicted by Proposition 4.2.2, the continuous-time error is driven
to zero.
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Figure 4.5: ‖LogE1j(t)‖, j ∈ {2, . . . , 20} for a network on T(4) with T = 1, K = N = 20,
and G unweighted and complete.

4.5.4 Network on SU(2)

Lastly, we simulate a network on SU(2) to demonstrate our local synchronization result,
Corollary 4.3.3, on a complex, semi-simple—and therefore, by definition, not solvable—Lie
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group. We simulate a network with N = 6, K = 3.5, and graph Laplacian

L =



0.5 −0.1 −0.1 −0.1 −0.1 −0.1

0 0.8 −0.2 −0.2 −0.2 −0.2

0 0 0.9 −0.3 −0.3 −0.3

0 0 0 0.8 −0.4 −0.4

0 0 0 0 0.5 −0.5

0 0 0 0 0 0


. (4.9)

The Pauli matrices constitute the canonical basis of su(2):

σ1 =

[
0

√
−1

√
−1 0

]
, σ2 =

[
0 −1

1 0

]
, σ3 =

[√
−1 0

0 −
√
−1

]
.

We use the Pauli matrices to generate the initial conditions:

xi(0) = i sin(i)σ1 + (7− i) cos(i)σ2 + i sin(i3)σ3, i ∈ N6.

On the group, the agents are initialized at Xi(0) = exp(xi(0)).

By Corollary 4.3.3, the origin of su(2)6 under the discrete-time error dynamics is locally
exponentially stable. The continuous-time synchronization error is shown in Figure 4.6.
As predicted by Proposition 4.2.2, the continuous-time error is driven to zero.
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Figure 4.6: ‖LogE1j(t)‖, j ∈ {2, . . . , 6} for a network on SU(2) with N = 6, K = 3.5,
T = 1, and Laplacian (4.9).
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Chapter 5

Regulation on Simply Connected
Nilpotent Matrix Lie Groups

We examine a regulator problem for a class of fully actuated continuous-time kinematic
systems on Lie groups, using a discrete-time controller. We present a discrete-time control
law that achieves global regulation on simply connected nilpotent Lie groups. We first solve
the problem when both the plant state and exosystem state are available for feedback.
We then present a control law for the case where the plant state and a so-called plant
output are available for feedback. The class of plant outputs considered includes, for
example, the quantity to be regulated. This class of output allows us to use the classical
Luenberger observer to estimate the exosystem states. Theorem 5.3.10 asserts that in
the full-information case, the regulation quantity on the Lie algebra is shown to decay
exponentially to zero, which implies that it tends asymptotically to the identity on the
Lie group. In the plant output feedback case, Theorem 5.3.16 asserts that regulation is
achieved. In Section 5.4, we briefly address the more general case where the Lie group is
solvable, but not necessarily nilpotent.

5.1 Introduction

Tracking in the presence of disturbances is one of the central problems addressed in control
theory. It is closely related to the stabilization problem, since stabilizing the origin of the
error dynamics implies that the output tracks the reference signal. The tracking problem

A preliminary version of this chapter was presented at the 2017 American Control Conference [74].
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for systems on Lie groups has received some attention in the continuous-time setting.
The stability of driftless systems on Lie groups was studied in [80], and an almost-global
controller for tracking for the class of left-invariant systems on compact Lie groups was
identified in [70] using state feedback. A class of regulation problem on SE(3) was solved
using output feedback and an observer, and a separation principle was identified, in [95]. In
the literature, UAVs are a popular application. An almost-global output feedback tracking
controller for systems on SE(3) was designed in [18]. A tracking controller that is robust
to modelling errors was identified in [63]. In [37], a tracking controller was designed for a
UAV carrying a load suspended by a flexible cable.

The regulator problem is central to control theory; it combines reference tracking, dis-
turbance rejection, and stabilization. The problem was completely solved in the continuous-
time linear case in the seminal papers [24, 33, 34]. These linear results were extended to
nonlinear systems in [49], wherein the continuous-time nonlinear regulator equations—
the celebrated Francis-Byrnes-Isidori equations—were developed. Necessary and sufficient
conditions for solvability of the regulator problem for nonlinear systems were identified
in [49], and for structural stability in [17] by using an internal model. The case of an
uncertain exosystem model was solved in [96] by using an adaptive internal model. More
recently, researchers have tried to specialize continuous-time regulator problems to classes
of systems evolving on Lie groups. The output regulation problem was solved for a class of
systems evolving on the special Euclidean group SE(n) in [95] by identifying a separation
principle. In [26], an almost-global solution to the output regulation problem for a class of
systems on SE(3) was proposed; these results were extended to local results on arbitrary
Lie groups in [27].

Necessary and sufficient conditions for solving the regulator equations were identified
for general nonlinear discrete-time systems in [109], by borrowing from the ideas of [49].
Although dynamics can be intrinsically discrete, such dynamics most often arise in prac-
tice through sampling. In [19], solutions to the continuous-time regulator equations were
used to approximate solutions to the discrete-time regulator problem for the sampled-data
system. To the author’s knowledge, the literature on the sampled-data regulator problem
for systems on Lie groups is sparse, currently comprising only our preliminary work [74]
on commutative Lie groups, and step tracking using passivity for general Lie groups [72].

We show that, when the group is nilpotent and the plant is fully actuated, the origin of
the Lie algebra can be made semiglobally exponentially stable; as a corollary, the identity
of the Lie group is globally asymptotically stable. We show that, when the trajectories of
the exosystem are bounded, the intersample behaviour of the closed-loop system is also
bounded. Using the results of Chapter 3, with the same form of controller as [74], which
solved a similar regulator problem on commutative Lie groups, we solve the regulator
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problem for sampled-data systems on simply connected nilpotent Lie groups, and briefly
address the more general case of simply connected solvable Lie groups.

5.2 Sampled-Data Regulator Problem

We study the sampled-data control problem for the system illustrated in Figure 5.1.

Figure 5.1: Sampled-data plant on a Lie group G.

The plant is modelled by the differential equation

Ẋ(t) = (A+Bu(t) +Qdwd(t) +Qcwc(t))X(t). (5.1)

The system has a measured output Ym, which models the information that is available
to the controller. It is convenient to model a so-called plant output

Y (t) = exp(C +Ddwd(t) +Dcwc(t))X(t), (5.2)

which models information that is always available for feedback, either through direct mea-
surement or algebraic computation. This signal could be, for example, the quantity to be
regulated.

We assume, as is typical, that the exogenous signals wd, wc evolve according to known
dynamics, modelled as

wd[k + 1] = Sdwd[k]

ẇc(t) = Scwc(t).
(5.3)

In (5.1) and (5.2), X ∈ G where G ⊆ GL(N,C) is an n-dimensional simply connected
nilpotent Lie group—which is formalized in Assumption 4 below—over the complex field
C which includes, as a special case, real Lie groups. The associated Lie algebra is g, which
is an n-dimensional vector space over the field F. The control input is u ∈ Fn, the discrete-
and continuous-time exostates are wd ∈ Frd and wc ∈ Frc , respectively, and Sd ∈ Frd×rd ,
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Sc ∈ Frc×rc . The quantities A and C are elements of g, and B : Fn → g, Qd : Frd → g,
Qc : Frc → g, Dd : Frd → g, and Dc : Frc → g are linear maps.

Equation (5.1) is a kinematic model of a system evolving on a Lie group G, where
the plant output (5.2) models information that is always available for feedback. The
exosystem (5.3) comprises both discrete- and continuous-time subsystems. This enables
modelling of, for example, physical plants that are subject to continuous-time disturbances,
but are sent reference signals from a computer. In this section, we impose four standing
assumptions; unless explicitly stated otherwise, these assumptions hold hereinafter.

Assumption 4. The Lie group G is simply connected, and nilpotent with nilindex p.

Under Assumption 4, the Lie Group G is diffeomorphic to its Lie algebra g, which is
isomorphic to Fn; in particular, the exponential map exp : g → G is a (global) diffeomor-
phism.

Assumption 5. The spectra of Sd and Sc lie outside the open unit disc and in the closed
right half plane, respectively.

Assumption 5 incurs no loss of generality; if necessary, Sd and Sc can be redefined as
their restrictions to their respective unstable modal subspaces [117, §2.3].

Assumption 6. The plant is fully actuated: ImB = g.

The foregoing assumption is necessary for the linearization of the tracking error dynam-
ics to be stabilizable, as will be seen in Section 5.3.1. The following technical assumption
greatly simplifies our analysis, and guarantees well-posedness of the closed-loop dynamics,
as it obviates use of the Magnus expansion in deriving the exact discretization of (5.1).
See the proof of Proposition 5.2.1.

Assumption 7. The image of Qc is contained in the centre of g.2

Assumption 7 can be interpreted as the continuous exostate acting as a purely linear
disturbance in the plant dynamics on the Lie algebra. Under Assumption 7, letting X[k] :=
X(kT ), u[k] := u(kT ), and wc[k] := wc(kT ), the plant (5.1) and exosystem (5.3) have exact
discretizations, as we will prove at the end of this section:

X+ = exp

(
TA+ TBu+ TQdwd +Qc

∫ T

0

eτScdτ wc

)
X,

2It would be sufficient to assume only that ImQc lies in the centralizer of {A} ∪ ImB ∪ ImQd, but
under Assumption 6, this is equivalent to Assumption 7.
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and [
w+
d

w+
c

]
=

[
Sd 0

0 eTSc

]
︸ ︷︷ ︸

=:S

[
wd

wc

]
︸ ︷︷ ︸

=:w

. (5.4)

To simplify the notation, let r := rd+rc and identify Frd×Frc with Fr, define Q : Fr → g,
(wd, wc) 7→ TQdwd +Qc

∫ T
0

eτScdτwc, and D : Fr → g, (wd, wc) 7→ Ddwd +Dcwc. Equipped
with this notation, we rewrite the discretized plant dynamics and the plant output in the
compact form

X+ = exp(TA+ TBu+Qw)X (5.5)

Y = exp(C +Dw)X.

Proposition 5.2.1. The dynamics (5.5) are the exact discretization of (5.1), in the sense
that for all k ≥ 0, X[k] = X(kT ).

Proof. For t ∈ [kT, (k + 1)T ), let U(t) := (A+Bu(kT ) +Qdwd(kT )) + Qcwc(t). Under
Assumption 7, [U(t1), U(t2)] = 0 for all t1, t2. Thus, using (1.17), over this sampling period,
the ODE (5.1) is satisfied by

X(t) = exp

(
(t− kT )A+ (t− kT )Bu(kT ) + (t− kT )Qdwd(kT ) +Qc

∫ t

kT

wc(τ)dτ

)
X(kT ).

The rest of the proof follows from routine calculation.

The goal of the regulator problem is to drive a regulation quantity to identity. We take
the regulation quantity to be

Z(t) = exp(F +Gw(t))X(t), (5.6)

where F ∈ g and G : Fr → g is a linear map.

More generally, the problem considered in this chapter is as follows. We consider
systems of the form

X+ = f(X, u, w)

Ym = h(X,w)

Z = g(X,w),

where f : G × Fm × Fr → G is given by (5.5), Ym : G × Fn × Fr → Y , where Y is some
Cartesian product of G and Fr, is the measured output, i.e., the information available
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to the controller, and Z is the regulation quantity given by (5.6). The objective of the
sampled-data regulator problem is to find, if possible, a control law of the form

x+
c = fc(xc, Ym)

u = hc(xc, Ym),

where xc belongs to some a priori unspecified, possibly commutative Lie group,3 such that

1. the closed-loop system is well-posed;

2. for all initial conditions, Z[k]→ I as k →∞.

We impose no requirements on internal stability or the intersample behaviour. Con-
cerning the latter, see Remark 5.3.3. Regarding the former, it follows from (5.6) that, when
w ≡ 0, there is a unique constant X? such that if X = X?, then Z = I; when F = 0, this
constant is X? = I. Thus internal stability is trivially satisfied by any regulating control
law. We consider two cases: 1) Ym = (X[k], w[k]); 2) Ym = (Y [k], X[k]). The former is
called the regulator problem with full information, the latter the regulator prob-
lem with plant state information. In both cases, since there is no direct feedthrough
from u to Ym, the closed-loop system is well-posed.

5.3 The Solution

In this section, we show that the regulator problem has a solution under the standing
assumptions of Section 5.2. We first solve the regulator problem with full information, i.e,
Ym = (X[k], w[k]), which is equivalent to Ym = (Y [k], w[k]), since the plant state can be
computed algebraically as X[k] = Y [k] exp(C + Dw[k])−1. We then solve the regulator
problem when the exostate is not measured, i.e., Ym = (X[k], Y [k]). To prove our main
results, we will invoke Theorems 3.2.3 and 3.3.7.

5.3.1 Regulator Problem with Full Information

We solve the regulator problem with full information in two steps: 1) make the tracking
manifold T := {(X,w) ∈ G × Fr : Z = I} positively invariant in discrete-time; 2) make

3For example, Rnc as an additive group.
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the tracking manifold globally attractive. The tracking manifold T is positively invariant
if there exist Π : Fr → G and Ψ : Fr → g satisfying the regulator equations:

Π(Sw) = exp(TA+ TBΨ(w) +Qw)Π(w)

I = exp(F +Gw)Π(w).

Straightforward arithmetic yields the state reference

Π(w) = exp(F +Gw)−1 (5.7)

and the friend

Ψ(w) =
1

T
B−1

(
Log

(
Π(Sw)Π(w)−1

)
− TA−Qw

)
. (5.8)

By construction, if the restriction of u to the tracking manifold equals the friend Ψ,
then the tracking manifold is controlled-invariant under the dynamics (5.5).

Remark 5.3.1. These regulator equations are always solvable, because Z is a product
of group elements on G, and B is invertible under Assumption 6; this decouples the two
equations, which makes it possible for X[k] to track any Π(w[k]) when properly initialized.

In particular, that B is invertible allows us to choose u such that the discrete-time plant
dynamics are of the form X+ = UX, where U ∈ G can be set arbitrarily. Choosing U [k] =
Π(Sw[k])X[k]−1 results in one-step-ahead deadbeat reference tracking for any sampling
period. Technically, such a control law would solve the regulator problem, but, in practice,
this control law would generally be impractical, as it would (attempt to) effect potentially
very large actuations in very small time scales, e.g., rotating a 0.5-meter-long robotic arm
by 60 degrees in 1 millisecond.

The class of control laws that we propose in this section allows for arbitrary finesse
in the control action, and although deadbeat performance will be achievable, it is not
necessary. Additionally, although we do not explore the underactuated case in this thesis,
an interesting avenue of future research would be to use multirate sampling in tandem
with the Lie bracket to exert control effort in a subspace of g that is complementary to
ImB [51]. �

Remark 5.3.2. A more general problem formulation would define Z on a simply connected
nilpotent Lie group H with Lie algebra h:

Z = exp(F +Gw)Φ(X),
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where F ∈ h, ImG ⊆ h, and Φ : G → H is an epimorphism4 of groups. In this case, none
of our analysis or results change in any significant way. The regulator equation (5.7) in
this case becomes

Φ(Π(w)) = exp(F +Gw)−1,

which always has a (non-unique) solution Π : Fr → G. We present a natural choice of Π,
based on the local vector space structure, to guarantee internal stability.

Define Π̂ : Fr → H, w 7→ exp(F +Gw)−1. There exists a unique linear morphism of Lie
algebras φ : g→ h [41, Theorem 3.28] such that Φ = exp ◦φ ◦ Log. Next define π : Fr → g
such that

Π̂ = exp ◦φ ◦ π, (5.9)

which has at least one solution π, by bijectivity of exp, under Assumption 4, and surjectivity
of φ. Since φ is a linear map between vector spaces, it has a unique Moore-Penrose
pseudoinverse φ† : h→ g, which is a right inverse, by surjectivity. By well-known properties
of the Moore-Penrose pseudoinverse,

π := φ† ◦ Log ◦Π̂,

is the solution to (5.9) whose matrix representation has the smallest Frobenius norm. The
state reference is then given by Π = exp ◦π. In terms of the original data:

Π(w) = exp
(
(Log ◦Φ)†(F +Gw)

)−1
. (5.10)

This construction is summarized by the following commutative diagram.

Fr

Π̂

��
Π //

π
��

G

Log

��

Φ // H

g
φ // h

exp

OO

By construction, π is the bounded linear operator of least Frobenius norm that satis-
fies (5.10), therefore, it furnishes a local state reference as close to the origin as possible,
as quantified by the Frobenius norm. This implies that Π furnishes a state reference on
the group that is as close to the identity as possible. �

4This is without loss of generality, since if a morphism of groups Φ is not surjective, then it can be
redefined as the codomain restriction Im Φ|Φ.
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Remark 5.3.3. Regulation at the sampling instants does not imply intersample regulation.
If u[k] = Ψ(w[k]), then the continuous-time plant dynamics (5.1) over the sampling period
t ∈ [kT, (k + 1)T ) are

Ẋ =

(
1

T
Log

(
Π(Sw[k])Π(w[k])−1

)
+Qcwc −

1

T
Qc

∫ T

0

eτScdτwc[k]

)
X[k].

Solving for X(kT + δ), where δ ∈ [0, T ), and setting X[k] = Π(w[k]), we have

X(kT + δ) = exp

(
δ

T
Log

(
Π(Sw[k])Π(w[k])−1

)
+Qc

(∫ δ

0

eτScdτ − δ

T

∫ T

0

eτScdτ

)
wc[k]

)
Π(w[k]). (5.11)

which shows X(t) 6= Π(w[k]) for all t ∈ [kT, (k + 1)T ). �

Remark 5.3.3 may seem ominous, but under the standard assumption that the exosys-
tem (5.4) is neutrally stable, we can partially characterize the intersample behaviour.

Proposition 5.3.4. If the trajectories of (5.3) are bounded and X[k] = Π(w[k]), then for
all t ≥ 0, X(t) is bounded.

Proof. Given a square matrix A, ‖ exp(A)‖ ≤ exp(‖A‖). Applying this property to (5.11),
we obtain

‖X(kT + δ)‖ ≤ exp

(
δ

T

∥∥Log
(
Π(Sw[k])Π(w[k])−1

)∥∥
+

∥∥∥∥∥Qc

(∫ δ

0

eτScdτ − δ

T

∫ T

0

eτScdτ

)∥∥∥∥∥‖wc[k]‖

)
‖Π(w[k])‖.

Since w is bounded, Π(w), its inverse, and Π(Sw) are bounded. Since Log : G → g is
continuous, the boundedness of Π(Sw)Π(w)−1 implies that Log(Π(Sw)Π(w)−1) is bounded.
Noting that wc is bounded completes the proof.

The next result addresses the important special case of step reference tracking and
disturbance rejection.
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Proposition 5.3.5. If wd and wc are constant and X[k] = Π(w[k]), then Z is identity for
all t ≥ kT .

Proof. Without loss of generality, we take Sd = I and Sc = 0. Then (5.11) simplifies to
X(kT + δ) = Π(w). Thus, X(t) is constant. The result follows immediately from (5.6)
and (5.7).

The two foregoing Propositions furnish analogous corollaries for the intersample be-
haviour of Z, which follow immediately from (5.6).

We now use state feedback to make the tracking manifold T globally attractive. Define
the state-tracking error E := XΠ(w)−1. By definition, if E = I, then (X,w) ∈ T . We
will design a control law that stabilizes the Jacobian linearization of the tracking error
dynamics on g; this of course implies local exponential stability of the tracking manifold T
on any Lie group. We then invoke the results of Chapter 3 to show that such a controller
achieves global regulation on nilpotent Lie groups.

We propose a controller of the form

u = Γ(X,w) + Ψ(w),

where Ψ is given by (5.8), and Γ(X,w) := K Log(E), where K : g → Fn is a yet-to-be-
specified gain. The tracking manifold T is rendered invariant by the friend Ψ, and attractive
by the state feedback Γ. Define e := Log(E) and π := Log ◦Π; under Assumption 4, e is
well-defined for all E ∈ G. Using the proposed controller, the error dynamics on G are

E+ = X+Π(w+)−1

= exp
(
TBKe+ Log

(
Π(Sw)Π(w)−1

))
XΠ(Sw)−1

= exp
(
TBKe+ Log

(
Π(Sw)Π(w)−1

))
E
(
Π(Sw)Π(w)−1

)−1
.

(5.12)

We examine the tracking error dynamics (5.12) on the Lie algebra g. To facilitate this,
we again invoke the generalized BCH (2.1). Applying the BCH to Log (Π(Sw)Π(w)−1)
in (5.8), and the generalized BCH to (5.12), performing some simplifications and rearrang-
ing, we obtain

e+ = (I + TBK)e+
1

2
[TBKe, e] +

1

2
[π(Sw), e] +

1

2
[−π(w), e]

+
1

2
[TBKe, π(w)] +

1

2
[TBKe,−π(Sw)] + · · · ,
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which can be written in the form of (3.1) thus

e+ = (I + TBK)e+
∑
ω

cω ⊗ ω, (5.13)

where the words ω are over the letters e, BKe, π(Sw), π(w); the disturbance signals are
π(Sw) and π(w). Recall Remark 3.3.11, wherein we discuss that dynamics of the form (5.13)
are amenable to the results of Chapter 3. Note that the pair (I, TB) is stabilizable if and
only if Assumption 6 is satisfied. To leverage the results of Chapter 3 in the proof of the
main result of this section, we require the following Lemma.

Lemma 5.3.6. There exists K : g→ Fn such that the tracking error dynamics on the Lie
algebra (5.13) satisfy Assumption 1.

Proof. We verify that (5.13) satisfies each of Assumptions 1(a), 1(b), and 1(c), in order.
Since g is nilpotent, Assumption 1(a) holds trivially, since there are only finitely many
words in (5.13).

Claim 5.3.7. There exists K : g→ Fn, such that (I + TBK) is Schur and every subspace
h ⊆ g is BK-invariant.

Proof of Claim 5.3.7. Fix α ∈ (0, 2) and K = −α(TB)−1. Then BK = −αT−1I leaves
any subspace invariant, and (I + TBK) = (1− α)I is Schur.

Fix K : g→ Fn such that (I + TBK) is Schur and BKg(i) ⊆ g(i) for all i ∈ Np.

Claim 5.3.8. The dynamics (5.13) satisfy Assumption 1(b).

Proof of Claim 5.3.8. Note that e ∈ g is a fixed point of (5.13) if and only if E = exp(e)
is a fixed point of (5.12). Solving for the fixed points of (5.12),

Π(Sw)Π(w)−1 = exp
(
TBKe+ Log

(
Π(Sw)Π(w)−1

))
⇐⇒ Log

(
Π(Sw)Π(w)−1

)
= TBKe+ Log

(
Π(Sw)Π(w)−1

)
⇐⇒ TBKe = 0.

By the Spectral Mapping Theorem, (I + TBK) is Schur only if 0 is not an eigenvalue
of TBK, implying that TBK is an isomorphism. Therefore, TBKe = 0 if and only if
e = 0.

Claim 5.3.9. The dynamics (5.13) satisfy Assumption 1(c).
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Proof of Claim 5.3.9. By our choice of K, (I + TBK)g(i) ⊆ g(i). By Proposition 3.1.12,
g(i) is invariant under (5.13).

Claims 5.3.8, 5.3.9, and the initial argument verify the Lemma.

Equipped with Lemma 5.3.6, we prove the main result of this section.

Theorem 5.3.10. If Π : Fr → G and Ψ : Fr → Fn are given by (5.7) and (5.8), respec-
tively, then there exists K : g→ Fn such that if

u = K Log(XΠ(w)−1) + Ψ(w), (5.14)

then (5.14) solves the regulator problem with full information.

Proof. Let K = −(TB)−1, which is the controller used in the proof of Lemma 5.3.6, with
α = 1, therefore, by Lemma 5.3.6, Assumption 1 is satisfied. In particular, (I+TBK) = 0.
By Theorem 3.3.7, the tracking error e converges to 0 in finite time. Consequently, E
converges to identity in finite time.

Remark 5.3.11. The use of the deadbeat control law K = −(TB)−1 in the proof of
Theorem 5.3.10 is merely an expeditious existence proof technique. All subspaces are
I-invariant, and B is an isomorphism under Assumption 6, hence all subspaces of g are
controllability subspaces of the pair (I, TB) [117, §5]. Due to the ordering of the lower
central series g(i) ⊃ g(i+1), i ∈ Np, every ideal g(i) can be made simultaneously invariant
under (I + TBK), where the eigenvalues of each restriction (I + TBK)|g(i) can be placed
arbitrarily. Clearly, a subspace is invariant under (I + TBK) if and only if it is invariant
under BK. Any such gain K : g → Fn would furnish a static feedback control law (5.14)
that solves the regulator problem with full information. �

5.3.2 Rate of Convergence

In the proof of Theorem 5.3.10, we invoked Theorem 3.3.7 to demonstrate the existence
of K : g → Fn such that the state-tracking error converges to zero in finite time; in the
proof of Theorem 3.3.7, this time is found to be bounded above by the summation of
the dimensions of g and the ideals of the lower central series of h. In this section, we
characterize the general rate of convergence. In anticipation of invoking Theorem 3.2.3, we
establish the following lemmas, which assert that the growth rates of the exogenous signals
are independent of the choice of norm; this is important, because per Theorem 3.2.3, this
growth rate defines a sufficiently small spectral radius for stability.

87



Lemma 5.3.12. Consider the discretized exosystem (5.4). There exists s ≥ 1, such that
given any norm ‖ · ‖ : Fr → R and any initial condition w[0], there exists β ≥ 0 such that
‖w[k]‖ ≤ βsk.

We emphasize that Lemma 5.3.12 establishes a bound on the rate of growth of w
independent of the norm chosen.

Proof. Let ‖ · ‖ : Fr → R be arbitrary. Fix ε > 0 and let ‖ · ‖ε : Fr → R be a norm such
that its induced norm satisfies ‖S‖ε = ρ(S) + ε =: s. Since all norms are equivalent on
finite-dimensional vector spaces, there exists α > 0 such that for all w ∈ Fr, ‖w‖ ≤ α‖w‖ε.
Since the solution to (5.4) is w[k] = Skw[0], we have ‖w[k]‖ε ≤ sk‖w[0]‖ε, so

‖w[k]‖ ≤ α‖w[k]‖ε = (α‖w[0]‖ε)︸ ︷︷ ︸
=:β

sk.

Since ε was arbitrary, s can be made arbitrarily close to ρ(S), which, under Assumption 5,
is at least 1.

Lemma 5.3.13. There exists s ≥ 1 such that, given any norms on Fr and g, and any
initial condition w[0] ∈ Fr, there exists β ≥ 0 such that∥∥∥∥∥∥∥

 π(Sw)

π(w)

C +Dw


∥∥∥∥∥∥∥ ≤ βsk.

Proof. We first bound the norm of π(Sw[k]):

‖π(Sw[k])‖ = ‖F +GSw[k]‖
≤ ‖F‖+ ‖GS‖‖w[k]‖.

Applying Lemma 5.3.12,

‖π(Sw[k])‖ ≤ ‖F‖+ ‖GS‖β′sk

≤ (‖F‖+ ‖GS‖β′)sk,

where we have used that s ≥ 1. Similarly, we establish ‖π(w[k])‖ ≤ (‖F‖+ ‖G‖β′)sk and
‖C +Dw[k]‖ ≤ (‖C‖+ ‖D‖)β′sk. Let

β := max{‖F‖+ max{‖GS‖, ‖G‖}, ‖C‖+ ‖D‖}β′.
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Proposition 5.3.14. There exists K : g → Fn such that the origin of g is semiglobally
exponentially stable under (5.13).

Proof. Fix α ∈
(

1− ρ(S)−
p(p−1)

2 , 1 + ρ(S)−
p(p−1)

2

)
and K = −α(TB)−1. Then I + TBK =

(1−α)I, whose spectral radius is |1−α| < ρ(S)−
p(p−1)

2 , and the letters ω in (5.13) reduce to
{e, π(Sw), π(w)}, where the exogenous signals are π(Sw) and π(w). Stacking the exogenous
signals into a single variable W ∈ g× g, we apply Lemma 5.3.13. The result then follows
by direct application of Theorem 3.2.3.

Since g is diffeomorphic to G, we translate Proposition 5.3.14 to the group.

Theorem 5.3.15. There exists K : g→ Fn such that the identity of G is globally asymp-
totically stable under the group tracking-error dynamics (5.12).

5.3.3 Regulator Problem with Plant State Information

Four natural choices of a measured output Ym are 1) Ym = (X[k], w[k]); 2) Ym = (Y [k], w[k]);
3) Ym = (Y [k], X[k]); 4) Ym = Y [k].

The first case is that of full information studied in the previous subsection. The second
case is equivalent to the first, because it allows us to algebraically compute X[k] = exp(C+
Dw[k])−1Y [k]. The third case includes, for example, the case where the plant state X and
the regulation quantity Z are measured, i.e., Y = Z, F = C, and D = G. The fourth case
characterizes the regulator problem with output information. In this section, we treat the
third case, and leave the fourth case as a topic for future research.

When Ym = (Y [k], X[k]), at each sampling instant, we can compute

Dw[k] = Log(Y [k]X[k]−1)− C. (5.15)

We therefore propose the linear observer

ŵ+ = Sŵ + L(Dŵ −Dw), (5.16)

which yields the estimation error dynamics

e+
w = (S + LD)ew. (5.17)

Under Assumption 5, L : g→ Fr can be chosen such that (5.17) is stable if and only if
the pair (D,S) is observable.
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Theorem 5.3.16. If the pair (D,S) is observable, then there exist K : g → Fn and
L : g→ Fr such that the control law defined by (5.7), (5.8), (5.16), and

u = K Log(XΠ(ŵ)−1) + Ψ(ŵ) (5.18)

solves the regulator problem with plant state information.

Proof. If (D,S) is observable, then there exists L : g → Fr such that ρ(S + LD) = 0; fix
such an L. Then for all k ≥ r, ew[k] = 0, or equivalently, ŵ[k] = w[k]. For all k ≥ r, the
control law (5.18) reduces to (5.14) from the full-information case. Since all the dynamics
under consideration are polynomial in the dynamical variables, none of the trajectories
can exhibit finite escape time, so for k ≤ r, the trajectories are well-defined, and for all
k ≥ r, the tracking error dynamics are (5.12) on the group, and (5.13) on the algebra. The
proof follows from applying the arguments used in the proof of Theorem 5.3.10 to establish
global attractivity of the origin under the tracking error dynamics.

Remark 5.3.17. Analogous to the discussion in Remark 5.3.2, we could instead define
the plant output as Y = exp(C + Dw)Φ(X). Equation (5.15) would then instead be
Dw[k] = Log(Y [k]Φ(X[k])−1)− C. The rest of the analysis is identical. �

5.4 Solvable Lie Groups

We focus on the full-information case, but obvious extensions can be made to the plant-
state-information case. When g is solvable, we cannot take h to be g in Assumption 1(c),
but instead, for example, the derived algebra or nilradical of g are viable candidates. The
general convergence results are also somewhat weaker (recall Corollary 3.3.6). However, as
in the nilpotent case, we can again invoke Theorem 3.3.7.

Following the same analysis as in the nilpotent case, it soon becomes apparent that to
satisfy the hypotheses of Theorem 3.3.7, we require Im π ⊆ h, which holds for all w if and
only if F ∈ h and ImG ⊆ h, which implies exp(F +Gw) ∈ H := exp h. From (5.6), we see
that on the quotient group G/H, Z and X are equivalent, thus regulation on this quotient
group is equivalent to attractivity of the identity under the plant dynamics (5.5). The
regulator problem on the nilpotent subgroup H ⊂ G is solved in the way already described
in the previous sections.
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5.5 Simulations on the Heisenberg Group

To illustrate our results, we simulate a system on the Heisenberg group G ⊂ GL(3,R). The
Heisenberg system is a prototypical example for nonlinear control problems, and can be
viewed as an approximation to some physical systems whose linearizations provide little
insight, such as reorientation and locomotion systems [10]. We choose the basis for the
Heisenberg algebra g to be {g1, g2, g3}, where

g1 =

0 1 0

0 0 0

0 0 0

 , g2 =

0 0 0

0 0 1

0 0 0

 , g3 =

0 0 1

0 0 0

0 0 0

 .
The lower central series is g =: g(1) ⊃ g(2) ⊃ g(3) = 0, where g(2) = [g, g] = LieR{g3} =

spanR{g3}, thus the nilindex is p = 2.

We present several examples with different exosystems. In every case, ρ(S) = 1, and
the observer gain L is chosen such that ρ(S + LD) = 0. We first consider a system
with exosystem parameters Sd = 1 and Sc = 0, which both define steps in discrete- and
continuous-time, respectively; plant parameters:

A = g1 + g2 + g3, B1 = g1

Qd1 = g1 + g2 + g3, B2 = g2

Qc1 = g3, B3 = g3,

where Bu =
∑3

i=1Biui; plant output parameters:

C = g1 + 2g2 + 3g3, Dd1 = g1 − g2, Dc1 = g2 + g3,

and regulation quantity parameters:

F = −3g1 − 2g2 − g3,

Gd1 = −g1 + 2g2 − 3g3, Gc1 = 2g1 + g2 − 3g3.

We use a sampling period of T = 1 and initialize with

X(0) = exp(g1 + 2g2 − 3g3),

wd[0] = 1, ŵd[0] = 0,

wc(0) = 1, ŵc[0] = 0.
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We choose K = −(1/2)I, which yields (I + TBK) = (1/2)I, whose spectral radius is

1/2 ≤ ρ(S)−
p(p−1)

2 = 1. By Theorem 5.3.16, this choice of K and L furnishes a control law
that solves the regulator problem. As predicted by Proposition 5.3.5, since wd and wc are
constant, z(t)→ 0 as t→∞, as seen in Figure 5.2.

0 5 10 15
-15

-10

-5

0

5

Figure 5.2: Regulation quantity Log(Z) for constant w.

To illustrate non-step-tracking behaviour, we redefine the exosystem dynamics as

Sd =

[
cos(1) − sin(1)

cos(1) sin(1)

]
, Sc =

[
0 −1

1 0

]
,

which define discrete- and continuous-time sinusoids, respectively, both with unit frequency.
We extend the plant, plant output, and regulation quantity definitions with the parameters

Qd2 = −g1 − g2, Qc2 = −g3,

Dd2 = g1 + g2 + g3, Dc2 = g1 + g3

Gd2 = g3, Gc2 = g1 + 2g2 + 3g3,

where now Qdwd =
∑2

i=1 Qdiwdi, etc.

We use the same sampling period T = 1 and initial condition X(0), and initialize the
observer states at the origin, but now initialize the exostates at

wd[0] =

[
0

1

]
, wc(0) =

[
1

−1

]
.
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Figure 5.3: Regulation quantity Log(Z) for sinusoidal w.

We use the same tracking-error feedback gain K. Since the exostates are bounded,
Proposition 5.3.4 predicts that z(t) will be bounded, which is what we see in Figure 5.3.

Repeating the simulation again, but changing the discrete-time exosystem dynamics to

Sd =

[
1 1

0 1

]
,

which defines a ramp, the regulation quantity exhibits the behaviour seen in Figure 5.4. At
the sampling instants, z[k]→ 0, however, the intersample behaviour of z(t) is unbounded.

However, if we remove the continuous-time exostate wc, or equivalently set wc(0) = 0,
then we make the interesting observation that z(t) is bounded, as seen in Figure 5.5.
From (5.11), it is not surprising that eliminating the continuous-time disturbance improves
intersample behaviour, and it seems plausible that when, in addition, the growth rate of wd
is bounded, that the intersample behaviour is bounded. However, due to the nonlinearity
of (5.11), it is not obvious that this is indeed always the case. We leave this as a topic for
future research.

Remark 5.5.1. The nondiagonal gain

K = −1

2

1 1 0

0 1 0

1 1 1

 ,
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Figure 5.4: Regulation quantity Log(Z) for ramp wd and sinusoidal wc.
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Figure 5.5: Regulation quantity Log(Z) for ramp wd and wc ≡ 0.

endows (I+TBK) with the same spectral radius, and leaves g(2) invariant under (I+TBK)
and BK. Simulations (not shown) yield qualitatively similar performance to that seen in
the respective simulations, which is consistent with Remark 3.3.11. �
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Chapter 6

Summary and Future Research

In this thesis, we solved synchronization and regulation problems for kinematic systems
on exponential matrix Lie groups. The exponential property allows for globally valid
analysis on the Lie algebra of the Lie group. We exploited this in order to abstract the
synchronization and regulation problems into a stability problem on solvable Lie algebras.

In Chapter 3, we showed that for a class of systems evolving on solvable Lie algebras,
global stability properties can be inferred from the linear part the dynamics. If the Lie
algebra is solvable, then global asymptotic stability can be established. If the Lie algebra
is nilpotent, then semiglobal exponential stability can be established.

In Chapter 4, we proposed a simple sampled-data control law for global synchroniza-
tion of identical kinematic agents on exponential Lie groups, whose network connectivity
graphs have a globally reachable node. On the associated Lie algebra, the error dynamics
are evocative of those in linear consensus. Synchronization is asymptotic in the general
case, exponentially fast if the Lie group is simply connected and nilpotent, and deadbeat
synchronization is achieved with a specific choice of gain when the communication graph
is connected and unweighted. For the class of systems considered, synchronization at the
sampling instants implies continuous-time synchronization.

In Chapter 5, we solved a regulator problem for a class of kinematic systems on simply
connected nilpotent Lie groups in two cases: 1) when the plant state and exostate are
available for feedback; 2) when the plant state and a so-called plant output are available
for feedback. In the latter, we used a Luenberger observer to estimate the exostates,
thereby furnishing a dynamical control law. In the full-information case, we showed that
the origin of the Lie algebra is semiglobally exponentially stable under the tracking error
dynamics.
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In the area of stability, future work should attempt to strengthen the results in the case
where the Lie algebra is solvable, but not necessarily nilpotent. Although the notion of a
class-A series includes the important class of kinematic systems on matrix Lie groups, it
would be of interest to confirm whether this notion of convergence is truly distinct from
more familiar notions of convergence, such as absolute or strong convergence. Given an
arbitrary finite-dimensional Lie algebra, it would be interesting to explore the use of the
Levi decomposition to study the quotient dynamics on the radical, and see what utility
this offers for studying stability on the full Lie algebra.

In the area of regulation, the case where only the plant output Y is available for feed-
back should be addressed. The last simulation in Section 5.5 suggests that our conditions
for bounded intersample behaviour can be refined. Another natural extension is to re-
move Assumption 7, and use the Magnus expansion to express the local trajectory of the
plant’s state and design control laws. It would also be of interest to identify conditions for
robustness to noise and structural stability of the error dynamics.

In the areas of both synchronization and regulation, future work includes the treatment
of underactuated, but controllable plants, i.e., LieF{ImB} = g, rather than ImB = g.
This could perhaps be achieved using multirate sampling, and would require appeals to
nonlinear tests for controllability. The problem objectives would need to be redefined, e.g,
there exists an integer α > 1 such that Z[αk]→ I, since it would take multiple time steps
to generate the directions that are missing from ImB.

The methods described in this thesis should be combined with the nilpotent and solvable
approximation methods of [43, 104] and [23], respectively. Although not an extension of
the work in this thesis, it could be fruitful to identify conditions under which feedback
transformations to chained form are preserved under sampling. Recall the the car-like
robot of Example 1.1.3. Its dynamics (1.8) were put into chained form via a feedback
transformation. Thus, if the control signals are constrained to update only at discrete time
instants, as in the sampled-data setting, the feedback transformation will be destroyed.
This is the general effect in the case of feedback linearization as well [50, 5]. However,
feedback linearization can be achieved using multirate sampling [40]. An interesting avenue
of future research would be feedback transformation of systems into chained form under
sampling. This would render yet another large and interesting class of systems amenable
to the techniques developed in this thesis.
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[78] Monroy-Pérez, F. and Anzaldo-Meneses, A. (1999). Optimal control on the Heisenberg
group. Journal of Dynamical and Control Systems, 5(4):473–499. 5

[79] Montgomery, D. and Zippin, L. (1952). Small subgroups of finite-dimensional groups.
Proceedings of the National Academy of Sciences, 38(5):440–442. 2

[80] Morin, P. and Samson, C. (2003). Practical stabilization of driftless systems on lie
groups: The transverse function approach. IEEE Transactions on Automatic Control,
48(9):1496–1508. 77

[81] Munkres, J. R. (2000). Topology. Prentice Hall, Upper Saddle River, NJ, 2 edition.
21

[82] Murray, R. and Sastry, S. (1993). Nonholonomic motion planning: steering using
sinusoids. IEEE Transactions on Automatic Control, 38(5):700–716. 8

[83] Murray, R. M. and Sastry, S. S. (1991). Steering nonholonomic systems in chained
form. In Proceedings of the IEEE Conference on Decision and Control, pages 1121–1126,
Brighton, England. 6
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