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Abstract

In this thesis, we study comparison based problems in a new comparison model called
three-way, where a comparison can result in {>,=, <}. We consider a set of n balls with
fixed ordered coloring. Particularly, we are interested in finding a ball of the majority
color, the color that occurs more than half, when there are 2 colors, partition problem,
where the goal is to determine groups of balls with the same color when there are 2 and
3 colors, respectively. We study these problems using both deterministic and randomized
approaches.
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Chapter 1

Introduction

1.1 Comparison-Based Problems

The computational complexity of comparison-based problems deals with finding the mini-
mum number of comparisons necessary to solve certain problems. Interestingly, there are
some fundamental problems in this area which remain unsolved. For example, theoreti-
cally, sorting requires at least lg(n!) comparisons even in the expected case and at least
dlg(n!)e in the worst case. This bound is not achievable for certain values of n including 12.
The Ford-Johnson merge-insertion sort algorithm comes with approximately 0.028n more
comparisons than the information-theoretic lower bound [14]. Similarly, by the works of
Dor and Zwick, it is known that 2n comparisons are necessary and 3n are sufficient to find
the median of n values [9, 10], while the constant is conjectured by Paterson to be log4/3 2
[18]. Beside sorting and median-finding, several other fundamental problems fit into the
category of comparison-based problems and there is still gap between their lower and up-
per bounds [4, 13, 8]. In this work, we focus on the problem of determining whether any
value is in the majority of n values (and if so finding this value). We are also interested
in determining the most frequently occurring value (plurality) and also partitioning the
elements based on their value. Our interest is in both the equality-test comparison model,
i.e. the set of outcomes of a comparison is {=, 6=}, and the three-way comparison model,
i.e. values are ordered and the set of outcomes is {<,=, >}. Formally,

Definition 1.1.1. The three-way comparison model is a type of comparison model in
which, regarding an ordering on the values of the elements, any two elements can be
compared with respect to their values and the outcome of any comparison is either <,=,
or >.
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Consistent with the literature, the scenario in which we express the problem is a set of
n balls with a fixed coloring from which we can take any two and, without knowing the
color of each ball, compare their colors. Our work focuses on cases in which the number
of distinct possible colors is known and restricted to two or three, and considers both
deterministic and randomized Las Vegas methods along with proof of correctness for each
proposed algorithm. One of the classical results in this area is for the problem of finding
the majority in a set of n colored balls with unrestricted number of colors in linear time.
In 1980 (though not published until 1991), Boyer and Moore [7] found a clever solution by
sweeping the sequence of balls from left to right and keeping track of a candidate and a
counter: starting from the first number and counter = 0, depending on whether the next
number equals to the candidate or not increase or decrease the counter by 1, respectively,
and if the counter drops down to zero, change the candidate to the next number. It is easy
to see that the last candidate is the only potential candidate, therefore, by comparing this
candidate to all other numbers we can confirm if it is, in fact, the majority. This beautiful
algorithm uses no storage and 2n comparisons to find the majority; a natural question is
what is the minimum number of comparisons needed to do so. Fischer and Salzberg [12]
answered this question by modifying the mentioned algorithm. The modified version, with
the help of a storage of size n though, finds the majority in d3n

2
e−2 comparisons. They also

proposed an adversary which shows this solution is indeed the best one for all deterministic
algorithms. Recently, new results have improved these bounds by introducing randomness.
For instance, in the majority problem with only two colors, any deterministic algorithm
needs at least n−o(n) comparisons (the exact number is discussed in 1.2.1), while a random
pairing of balls with the assumption that colors occur uniformly has a run-time of 2n

3
[3].

For reference, Table 1.1 summarizes the previous results on these problems [16].

Table 1.1: Previous Results on Equality-test Comparison Model
Problem Deterministic Randomized

Lower bound Upper bound Lower bound Upper bound
Majority

2 colors n−B(n) n−B(n) 2n
3
− o(n) 2n

3
+ o(n)

unrestricted colors
⌈
3n
2

⌉
− 2

⌈
3n
2

⌉
− 2 cn− o(n) 7n

6
+ o(n)

Plurality
3 colors 3n

2
−O(1) 5n

3
+O(1) 3n

2
− o(n) 3n

2
+O(1)

Partition
2 colors n− 1 n− 1 n− 1 n− 1
3 colors 2n− 3 2n− 3 5n

3
− 8

3
5n
3
− 8

3
+ o(1)

n is the size of input and B(n) is number of 1′s in binary representation of n [16].
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However, there are problems for which there is a gap between the known lower and upper
bounds for both deterministic and randomized algorithms. Besides, some of them have
been studied in the equality-test comparison model, only one of the possible comparison
systems. Although previous studies mostly focus on the equality-test model, the three-
way comparison is actually being used in practice. Many processors support three-way
comparison on primitive types by having relevant instruction sets. For instance, some
signed number representations allow machines to differentiate positive, negative, and zero
integers. This thesis studies the problems of plurality and partition under a three-way
comparison, where colors are ordered and the result of a comparison can be any of >,<
, or =. A three-way comparison system can be simulated by combining two comparisons
such as A = B and A < B, or A < B and A > B. This observation naturally raises the
question of how many comparisons can be saved by having direct access to the results of
these two comparisons in a three-way model, which is the main theme of this thesis. As the
problems studied in this thesis concern fundamental operations being atoms of high-level
computations, even a small decrease in the number of comparisons can be tremendously
beneficial on a larger scale. In the remainder of this chapter, we overview the contributions
of this thesis along with a number of directions for future research.

1.2 Our Contributions

1.2.1 Majority

In the majority problem, we are interested in finding the color (if any) that occurs more
than half of the times in a sequence of colored balls. The input consists of n balls tagged
with different colors where the number of colors can be restricted or unrestricted. In the
equality-test comparison model, we only can check if the two colors are the same or not. In
this setting, Fischer and Salzberg [12] proved that for an unrestricted number of colors, in
the deterministic case

⌈
3n
2

⌉
−2 is the number of comparisons needed which is necessary and

sufficient in the worst case. For this problem, Yang [24] showed the three-way comparison
model cannot improve the bound for equality-test deterministic algorithms, but it can
result in better upper bounds for probabilistic strategies. A special case of the problem
when there are only two colors was later considered by Saks and Werman [19]. They
showed that n−B(n) number of comparisons is a tight bound, where B(n) is the number
of 1’s in the binary representation of n. In this thesis, we study the majority problem in
both the equality-test and the three-way comparison models. We propose a randomized
algorithm for the problem of 2-color majority in equality-test comparison model and prove
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an upper bound on the randomized 2-color majority in both models. We prove a lower
bound on the number of comparisons in the problem of deterministic 2-color majority in
the three-way comparison model by giving an adversary argument. We also prove that
there exist families of inputs in 2-color majority in which the upper bound for the three-
way comparison model is better than the tight bound for the equality-test model. Our
contributions to the majority problem can be formalized as below:

Theorem 2.2.1. There is no deterministic algorithm for 2-color majority with n balls in
the three-way comparison model that makes less than cn comparisons for c < 1: there is
an adversary showing the lower bound is at least n− 2

√
n.

Theorem 2.3.1. Compared to equality-test comparison model, three-way can solve the
2-color majority problem with fewer comparisons for the following families of input size n:

F1 = {n = 2k | k ∈ N, k ≥ 3},
F2 = {n = 2k + 1 | k ∈ N, k ≥ 3}.

Theorem 3.0.1. Let α ∈
[
1
2
, 1
]

be the fraction of the majority color. Then, there is
a Las Vegas algorithm which solves 2-color majority problem with at most g(α)n + o(n)
comparisons for input size of n with high probability, where g(α) is defined as below and is
always between 1

2
and 2

3
:

g(α) =
2α− 1

4α

lgn∑
k=0

1

2k
α2k + (1− α)2

k

α2k − (1− α)2k
.

1.2.2 Plurality and Partition

The plurality problem was first introduced by Aigner [1] in 2004. In this problem, we are
given with n balls each colored with one of the possible k colors and the objective is to
find a ball with the plurality color: the ball for which the number of balls with this color is
more than those of any other color; if no such color exists, we declare that there is a tie. As
in the previous problem, we are only allowed to compare two balls at each turn. It is clear
that in the case of 2 distinct colors, the plurality and the majority problems are the same.
A deterministic algorithm for 3 colors is proposed by [2] which can solve the problem in
5n
3
− 2 comparisons; the authors also proved a lower bound of

⌊
3n
2

⌋
− 2 comparisons for

3-color plurality. A probabilistic approach by [11] revealed that 3n
2

+ o(n) comparisons for
n balls and 3 colors is necessary and sufficient in the expected case.
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In the same context of the previous problems, the partition problem asks for partitioning
the balls with respect to their colors. In 2005, [11] showed that any deterministic algorithm
solving the problem with n balls and k colors needs at least (k−1)n−

(
k
2

)
comparisons, and

this number is also sufficient. For 3 colors, they proved the necessary and sufficient expected
number of comparisons is 5n

3
− 8

3
+o(1). For the problem of partition with 3 distinct colors,

we show an upper bound with both deterministic and randomized approaches. Because
the partition problem yields plurality, these are upper bounds for 3-color plurality as well.
Our results are formalized as follows:

Theorem 3.5.1. There is a Las Vegas algorithm which solves 2-color partition problem
in the three-way comparison model making at most 2αg(α)n+ o(n) comparisons with high
probability, where α is the fraction of majority color and 2

3
≤ 2αg(α) ≤ 1 is given by the

following:

g(α) =
2α− 1

4α

lgn∑
k=0

1

2k
α2k + (1− α)2

k

α2k − (1− α)2k

Theorem 4.0.1. Given a set of n balls colored with numbers 1 < 2 < 3, there is a
deterministic algorithm which partitions the balls using at most 3n

2
− 2 comparisons.

Theorem 5.0.1. Given a set of n balls colored with numbers 1 < 2 < 3, there is a Las
Vegas algorithm which partitions the balls with h(β)n + o(n) comparisons in the expected
case, where 1 ≤ h(β) ≤ 3

2
is a function of the distribution of colors.

Table 1.2 summarizes the results studied in this section and the preceding one.

Table 1.2: New Results on the Three-way Comparison Model
Problem Deterministic Randomized

Lower bound Upper bound Upper bound
Majority

2 colors n− 2
√
n n−B(n)− 1 g(α)n+ o(n)

(
1
2
≤ g(α) ≤ 2

3

)
∀n = 2k or 2k + 1 and k ≥ 8

Partition
2 colors 2αg(α)n+ o(n)

(
2
3
≤ 2αg(α) ≤ 1

)
3 colors 3n

2
− 2 h(β)n+ o(n)

(
1 ≤ h(β) ≤ 3

2

)
B(n) denotes the number of 1’s in the binary representation of n. g(α) and h(β) are functions based on the
fraction of the majority color, α ∈ [ 12 , 1], and the fraction of the plurality color, β ∈ [0, 1].
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1.3 Overview

In Chapter 2, we propose a lower bound on the problem of the 2-color majority in the
three-way comparison model. We then study the upper bound on the problem and provide
two families of inputs in which the upper bound beats the tight bound on the problem in
the equality-test model. In Chapter 3, we present a randomized approach to solving the
problem of 2-color majority which can be used both in the equality-test and the three-way
comparison models. Then, we provide an upper bound based on the same approach for the
three-way 2-color partition. In Chapter 4, we move to the problem of the 3-color partition
and plurality. We study the problem in the deterministic setting. In Chapter 5, we use a
randomized approach to the problem. Lastly, in Chapter 6, we discuss open problems and
future work in this area.
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Chapter 2

Deterministic 2-color Majority

The problem of finding the majority when there are only two colors was first solved in the
equality-test model by Saks and Werman [19] by giving an elegant proof using generating
functions. Later, Alonso et al. [3] found a combinatorial proof based on a number-theoretic
argument on the number of leaves in the decision tree of the problem. Completely solved
in the equality-test model, the upper bound and lower bound are found to be n − B(n),
where B(x) denotes the number of 1′s in the binary representation of natural number
x. The methods used to prove the lower bound in equality-test relied on the following
property: at each step of the problem, the information obtained so far can be described
by a vector (C1, C2, . . . , Cs) where each Ci is a set of balls known to have the same color,
i.e, a homogeneous component. Starting from (1, 1, . . . , 1︸ ︷︷ ︸

n times

), if two balls, representatives of

Ci, Cj, happen to be of the same color in a comparison, then in the next step, instead of
Ci and Cj, we will have a new homogeneous component of size |Ci| + |Cj|. On the other
hand, if they are not of the same color, we can replace Ci and Cj with a component of
size ||Ci| − |Cj||; no more information can be obtained by an inequality. This is however
not true in the three-way model as an inequality can reveal the color of two balls: the
greater one should be of color 2 while the other should be of color 1. This seemingly minor
difference makes the proofs in equality-test comparison irrelevant to the case of three-way
comparison. In fact, by knowing a > b and c > d (obviously, in three-way comparison
model) we can deduce a = c = 2 and b = d = 1. To obtain the same information we would
have needed 3 comparisons in the equality-test model, and therefore three-way saves us one
comparison. This may suggest that the lower bound and upper bound for 2-color majority
problem in the three-way model is different from those in the equality-test model. In this
chapter, we propose an adversary which shows the lower bound is at least n − 2

√
n, and
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therefore, even if three-way is better, there is no algorithm with at most cn comparisons for
c < 1. However, we also characterize two families of the input where three-way comparison
model outperforms the equality-test model by at least one comparison.

The problem of finding the majority can be formalized as follows:

Definition 2.0.1 (2-color Majority). Given n balls of 2 different ordered colors, 1 and 2
which 1 < 2, the goal is to find the color that occurred more than half of the times with
the minimum number of comparisons.

2.1 Preliminaries

In order to count the number of comparisons comparison, we need to first define the
following:

Definition 2.1.1 (Homogeneous Component). A set of balls known to have the same
color, which is unknown. For a homogeneous component C, we refer to its size by |C|.

Definition 2.1.2 (Known Component). A and B: A is a component known to have balls
of color 1 and B is a component known to have balls of color 2.

Definition 2.1.3 (IUU). The number of comparisons made until now between two homo-
geneous components that result in an inequality.

We assume that an algorithm does not perform any comparison between two known
components. By having the above definitions, we can now state the following lemma on
the number of comparisons made up to now:

Lemma 2.1.1. If there are m homogeneous components, then the number of comparisons
is equal to

c = n−m− IUU .

Proof. Using induction on m, we show that each comparison increases c by 1. At first,
m = n and IUU = 0, therefore c = 0 and therefore the identity holds. Suppose the lemma
is true for all m > k. We show it also true for m = k. Indeed, the next comparison is either
between two homogeneous components or between one known and one homogeneous, as

8



there is no benefit in comparing two known components. In the former case, if the outcome
is equality, then two components will be unified and m changes to m − 1 and therefore
c increases by 1; otherwise, the outcome is inequality and therefore two components will
be split among known components. In this way, m decreases by 2, while IUU increases
by 1. Thus c increases by 1. Similarly, in the case when one of the components is known
and the other is not, the result of comparison determines to which known component the
homogeneous one belongs. Therefore, m decreases by 1 and IUU remains unchanged, so c
increases by 1.

2.2 Lower Bound

In light of 2.1.1, an adversary maximizing the number of comparisons should keep m+ IUU
as low as possible. We know regardless of the comparison m decreases either by 1 or 2
and this change is common between the three-way and equality-test comparison models.
Consequently, in order to achieve a lower bound for the three-way, we need to minimize
IUU . To this end, we propose an adversary in which IUU increases only if the total size of
the two components being paired is more than

√
n. At the same time, to make the game

longer, upon each occurrence of IUU , we split two components such that A and B have
almost the same size. We give a formal proof in the following theorem.

Theorem 2.2.1 (Deterministic 2-color Majority Lower Bound). No deterministic algo-
rithm exists for 2-color majority in three-way comparison model that can solve the problem
with less than cn comparisons for c < 1: there is an adversary showing the lower bound is
at least n− 2

√
n.

In our adversary, if the opponent asks for the result of comparison x : y then

• If x, y belong to two homogeneous components Cx, Cy, and |Cx| + |Cy| <
√
n we

announce x = y; otherwise, we announce the colors such that smaller of Cx and Cy
goes to the larger of A and B.

• If x belongs to a known component, we announce the color of y to be the color of
the smaller one between A and B.

We show this adversary can force the opponent to make at least n−2
√
n comparisons. We

start with the following lemma:
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Lemma 2.2.2. For any homogeneous component C, |C| − 1 comparisons have been made.

Proof. This is true for all components of size 1. We proceed by induction on |C|. If
|C| > 1, then the component has been made by merging two components C1 and C2 where
|C1|+ |C2| = |C|, and because |C1|, |C2| < |C|, the induction hypothesis implies that each
component needs |C1| − 1 and |C2| − 1 comparisons to be created. Together with the last
comparison, we have |C1| − 1 + |C2| − 1 + 1 = |C| − 1 comparisons.

Lemma 2.2.3. To obtain two known components A and B, exactly |A|+ |B| − IUU com-
parisons have been made.

Proof. By the definition of IUU , we know that exactly IUU comparisons resulted in in-
equalities. Each of these inequalities reveal the color of two components, thus adds one
component (say C1) to A and one component (say C2) to B. In this way, |A|+ |B| increases
by |C1|+|C2|. The number of comparisons made to obtain C1 and C2 is |C1|−1+|C2|−1 =
|C1| + |C2| − 2; together with the last comparison, |C1| + |C2| − 2 + 1 = |C1| + |C2| − 1
comparisons increase |A| + |B| by |C1| + |C2|, if there was an inequality between C1 and
|C2|. On the other hand, if |A| + |B| increases as a result of comparing one homogeneous
component (say C3) to a known component (A), then |C3|−1 + 1 = |C3| comparisons have
been made. With having these in mind, a similar argument to the above lemma yields the
identity stated in the lemma.

Lemma 2.2.4. IUU is at most
√
n.

Proof. The adversary only responds inequality when the sizes of the two components X
and Y exceeds

√
n, which implies by each inequality |A| + |B| increases by at least

√
n.

Hence, we have at most n√
n

=
√
n comparisons between two homogeneous components that

result in an inequality.

Lemma 2.2.5. In all steps ||A| − |B|| ≤
√
n.

Proof. Clearly, this true at the beginning where |A| = |B| = 0. Because of the first
condition in the adversary, all the homogeneous components are of the size ranging from
1 to

√
n. At each step, if A and B, with |A| ≥ |B| become updated and change to A′ and

B′ then depending on the order of |A′| and |B′| we have:

||A′| − |B′|| ≤ max(|A| − |B|, |B| − |A|+ ((
√
n− 1)− 1)) ≤

√
n.
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Proof of Theorem 2.2.1. A terminal state is either a state in which one of the known com-
ponents is larger than n

2
, or both A and B are known to be n

2
, i.e, we have no majority. In

the proof below we assumed the first case happens because the proof of the latter case is
clear: if |A| becomes larger than n

2
, by Lemma 2.2.5, |A|+ |B| ≥ |A|+ |A| −

√
n ≥ n−

√
n

. Hereafter, by terminal state, we refer to the first case when there is a majority.

We have two scenarios for the terminal states. The first one is when we compare two
balls x and y from homogeneous components Cx and Cy, and the second one is when we
compare on ball x from homogeneous component Cx with a ball from a known component.
In the first scenario, |Cx|+ |Cy| >

√
n so that the adversary has to respond inequality and

split the two components between A and B in a way that the difference between their sizes
is being kept low. However, as this is a terminal state, in either dividing A← x,B ← y or
A← y,B ← x the algorithm terminates. Thus either of these two happens:(

|A|+ |Cx| >
n

2
∨ |B|+ |Cy| >

n

2

)
∧(

|A|+ |Cy| >
n

2
∨ |B|+ |Cx| >

n

2

)
Suppose |A| ≥ |B|, thus by Lemma 2.2.5 we conclude that |A| ≥ n

2
−
√
n and |B| ≥

n
2
− 2
√
n. Using Lemma 2.2.2 and Lemma 2.2.3, we know for Cx and Cy and for A and B,

|Cx|−1+|Cy|−1 and |A|+|B|−IUU comparisons were made, respectively. The total number
of comparisons is then |A|+ |B|+ |Cx|+ |Cy|− 1− IUU . As a consequence of Lemma 2.2.4,
to show this number is at least n− 2

√
n, we only need to prove |A|+ |B|+ |Cx|+ |Cy| − 1

is at least n−
√
n. We prove this by considering each of four possible cases separately:

Case 1. |A|+ |Cx| > n
2
∧ |A|+ |Cy| > n

2

Combining Lemma 2.2.5 with the given condition, in this case, we have

|A|+ |B|+ |Cx|+ |Cy|
= (|A|+ |Cx|) + (|A|+ |Cy|) + |B| − |A|

≥ n

2
+
n

2
−
√
n

= n−
√
n.

Case 2. |A|+ |Cx| > n
2
∧ |B|+ |Cx| > n

2

Using the fact that a homogeneous component size is at least 1 and at at most
√
n,

11



|Cy| − |Cx| is at least 1−
√
n and we have

|A|+ |B|+ |Cx|+ |Cy|
= (|A|+ |Cx|) + (|B|+ |Cx|) + |Cy| − |Cx|

≥ n

2
+
n

2
+ 1−

√
n

= n+ 1−
√
n

> n−
√
n

Case 3. |B|+ |Cy| > n
2
∧ |A|+ |Cy| > n

2

Using the fact that |Cx| − |Cy| is at least 1−
√
n, we have

|A|+ |B|+ |Cx|+ |Cy|
= (|A|+ |Cy|) + (|B|+ |Cy|) + |Cx| − |Cy|

≥ n

2
+
n

2
+ 1−

√
n

= n+ 1−
√
n

> n−
√
n

Case 4. |B|+ |Cy| > n
2
∧ |B|+ |Cx| > n

2

Using the assumption that |A| ≥ |B|, we have

|A|+ |B|+ |Cx|+ |Cy|
= (|B|+ |Cy|) + (|B|+ |Cx|) + |A| − |B|

≥ n

2
+
n

2
= n

> n−
√
n

In the second scenario for the terminal state, we have a ball x from a component Cx
that is compared to a ball from one of the known components; it is a terminal state because
announcing x as each of two colors will result in a known component of size more than n

2
.

This condition can be written as

|A|+ |Cx| >
n

2
∧ |B|+ |Cx| >

n

2
.

12



Similar to above cases, we need to show |A|+ |B|+ |Cx| is at least n−
√
n, which is true

because |Cx| is less than
√
n and

|A|+ |B|+ |Cx|
= (|A|+ |Cx|) + (|A|+ |Cx|)− |Cx|

≥ n

2
+
n

2
−
√
n

= n−
√
n.

2.3 Upper Bound

The three-way comparison model includes the equality-test model in itself; hence, the
upper bound n − B(n) holds for the three-way comparison model as well. In particular,
this association can be described by mapping three-way comparisons resulting in < or >
to a 6= in the equality-test model. The question is can we solve 2-color majority problem
with less than n−B(n) comparisons in the three-way model. Although the general answer
is not known to date, in this section, we show that for two families of the input size we can
save at least one comparison and find the majority by using n−B(n)− 1 comparisons in
total.

Theorem 2.3.1. For the following families of input size n, the three-way model can solve
the 2-color majority problem with n−B(n)− 1 comparisons:

F1 = {n = 2k | k ∈ N, k ≥ 3},
F2 = {n = 2k + 1 | k ∈ N, k ≥ 3}.

2.3.1 Upper bound for F1 = {n = 2k | k ∈ N, k ≥ 3}

When n = 2k (k ≥ 3) we would like to show n− 2 (= n−B(n)− 1) comparisons suffices.
From Lemma 2.1.1 if IUU ≥ 2 we are done. Therefore, we must consider the cases in which
IUU = 0 or 1. Based on these ideas, we divide the input into three groups of roughly
the same sizes. In each group, we compare one ball with all other balls, if there is an
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inequality inside a group, we know the color of the ball we are comparing in that group,
hence the color of all balls in that group. Therefore, in each group, we can have at most one
inequality between two unknown balls. We consider the two cases IUU = 0 and IUU = 1
and solve the problem in these cases.

Algorithm 2.3.1 2-color majority for n = 2k

1: Group the balls in 3 groups of equal sizes
2: IUU ← 0
3: while IUU ≤ 1 and in each group there is at least one ball left to compare do
4: In each group, compare one ball with all others
5: If there is an inequality between two homogeneous components: IUU ← IUU + 1
6: end while
7: switch IUU do
8: case 0
9: Compare the two homogeneous components of the same size
10: if they are equal then Return their color as majority
11: else Return the color of the third homogeneous component as majority end if

12: case 1
13: Compare the two homogeneous components
14: if they are equal then Return their color as majority
15: else Count the balls of each color and determine the majority end if

16: case 2
17: Compare one known ball with all remaining unknown balls
18: Count the balls of each color and determine the majority

2.3.2 Correctness and Complexity

Depending on the remainder of 2k when divided by 3, we can either group the balls into
three groups of sizes

⌈
n
3

⌉
,
⌈
n
3

⌉
and

⌊
n
3

⌋
or of sizes

⌊
n
3

⌋
,
⌊
n
3

⌋
and

⌈
n
3

⌉
; note in both cases

there are exactly two groups with the same size. In each group, we compare one ball with
all the other balls in that group.

Lemma 2.3.2. In each group, we can have at most one comparison between two balls of
unknown color that results in an inequality.

Proof. After the first inequality, the color of the ball that is compared to all other balls is
determined. Therefore, further comparisons, if any, are between a known and an unknown
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ball and IUU remains unchanged.

We count the number of these inequalities and, as before, call it IUU . If IUU reaches
2, we stop comparing within groups and start to compare one known ball with all the
remaining unknown balls. We prove the correctness in all three possible cases:

1. IUU = 0

If there is no comparison resulting in inequality in any group, the result of all compar-
isons within each group was equality. Therefore, we have three components in each
of which all balls have the same color. We compare two balls from the components
of the same size. If they are equal, it means that we have a component of size at
least 2n−2

3
which is more than n

2
, hence we found the color of majority. By Lemma

2.1.1, the total number of comparisons is

n−m− IUU = n− 2− 0 = n− 2 = n−B(n)− 1.

Otherwise, if the result is an inequality, it means they have different colors and
because they have the same size, we can discard them. Thus, in this case, the
remaining component is the majority. IUU = 1 and by Lemma 2.1.1, the total
number of comparisons is

n−m− IUU = n− 1− 1 = n− 2 = n−B(n)− 1.

2. IUU = 1

In this case, we know two groups are homogeneous and we determined colors of
balls in the third group in which the inequality happened. We compare two balls
from the two homogeneous groups. If they are equal, their size will be at least
n−1
3

+ n−1
3

> n
2

and thus we found the majority. In this case, by Lemma 2.1.1, the
number of comparisons is

n−m− IUU = n− 1− 1 = n− 2 = n−B(n)− 1

If they are not equal, we know the colors of all balls so we can count the number of
occurrences of each ball and determine the majority color (if it exists). The number
of comparisons is still

n−m− IUU = n− 0− 2 = n− 2 = n−B(n)− 1

15



3. IUU ≥ 2

By Lemma 2.3.2, we know that the inequalities happened in two different groups. We
stop comparing and compare one ball of known color with all remaining unknown
balls. We know the color of each ball after the algorithm and can determine the
majority. By Lemma 2.1.1, the total number of comparisons is

n−m− IUU = n− 0− 2 = n− 2 = n−B(n)− 1

2.3.3 Upper bound for F2 = {n = 2k + 1 | k ∈ N, k ≥ 3}

With the same approach as Algorithm 2.3.1, we can force the opponent to give us at most
two inequalities between two homogeneous components. This time, we group the balls in
five groups of sizes 2k−2 − 1, 2k−2 − 1, 2k−2 + 1, 2k−2 + 1 and 1. We compare one ball
with all the other balls in a group. If there are three inequalities between homogeneous
components, we stop and compare one ball with all the other unknown balls. This way,
n−m− IUU = n− 0− 3 comparisons are made, which is one comparison better than the
tight bound given by the equality-test model. Three other cases happen: IUU = 0, 1, 2. We
solve the problem for each case separately, knowing that IUU = 0 means five homogeneous
components of the sizes of groups, IUU = 1 means we know the color of all the balls in
one group (this can be of size 2k−2 − 1 or 2k−2 + 1) and all the other four groups are
homogeneous components and IUU = 2 means we have two homogeneous components (this
can be any two from the four groups of sizes more than 1) and two groups of known color
balls.
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Algorithm 2.3.2 2-color majority for n = 2k + 1

1: Group the balls in five groups of sizes 2k−2 − 1, 2k−2 − 1, 2k−2 + 1, 2k−2 + 1 and 1.
2: IUU ← 0
3: while IUU ≤ 2 and in each group there is at least one ball left to compare do
4: In each group, compare one ball with all others
5: If there is an inequality between two homogeneous components: IUU ← IUU + 1
6: end while
7: switch IUU do
8: case 0
9: Compare homogeneous components 2k−2 + 1 and 2k−2 + 1
10: if they are equal then Return as majority
11: else Compare homogeneous components 2k−2 − 1 and 2k−2 − 1

12: if they are equal then Return as majority
13: else Return the color of the group of size 1 as the majority end if end if

14: case 1
15: if inequality was in component 2k−2 − 1 then Compare homogeneous compo-

nents 2k−2 + 1 and 2k−2 + 1

16: if they are equal then Return as majority
17: else Compare a known ball with a ball in the homogeneous component of

size 2k−2 − 1

18: Count the balls of each color and determine the majority end if

19: else Compare homogeneous components 2k−2 − 1 and 2k−2 + 1

20: if they are equal then Compare remaining homogeneous components

21: if they are equal then Return as majority
22: else Count the balls of each color and determine the majority end if

23: else find the color of the last component

24: Count the balls of each color and determine the majority end if

25: case 2
26: Compare the two homogeneous components
27: if they are equal then Return as majority
28: else Count each color and determine the majority end if

29: case 3
30: Compare one known ball with all remaining unknown balls
31: Count the balls of each color and determine the majority
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2.3.4 Correctness and Complexity

We divide the balls into five groups of sizes 2k−2 − 1, 2k−2 − 1, 2k−2 + 1, 2k−2 + 1 and 1.
Similar to the proposed algorithm for F1, we compare one ball in each group with all other
balls and compute IUU . This time, we stop the algorithm when IUU ≥ 3 and compare one
known ball with the unknown remaining balls.

Observation 2.3.3. If there is an equal number of two colors in the first four groups, the
last ball is the majority. Otherwise, as the total number of balls is even, the number of
balls of the majority color in the first four groups is at least 2 more than the minority.
Therefore, the last ball does not need to be checked.

Four cases might happen:

1. IUU = 0

In this case, all groups are homogeneous components. We compare the two compo-
nents of sizes 2k−2 + 1 and 2k−2 + 1. If they are equal, they are the majority because
the sum is 2k−2 + 1 + 2k−2 + 1 = 2k−1 + 2 > n

2
. By Lemma 2.1.1, the number of

comparisons is

n−m− IUU = n− 3 = n−B(n)− 1

If they are not equal, we can discard them as they have the same size. We then
compare components of sizes 2k−2−1 and 2k−2−1 together. If these two components
are equal, announce them as the majority because they are more than half of the
remaining balls. The number of comparisons is

n−m− IUU = n− 2− 1 = n− 3 = n−B(n)− 1.

If these two components are not equal, we can discard them because they have the
same size; consequently, the last component of size 1 is the majority color. In this
case, the number of comparisons is

n−m− IUU = n− 1− 2 = n− 3 = n−B(n)− 1.

2. IUU = 1

If the inequality is in one of the groups of size 2k−2 − 1, compare two components
of size 2k−2 + 1. If they are equal, they are the majority color, and the number of
comparisons we made is

n−m− IUU = n− 3− 1 = n− 4 = n−B(n)− 2.
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If they are not, discard these two components. Then compare one ball from the
homogeneous component of size 2k−2 − 1 with one ball with known color. Colors of
all balls are determined in this way and the number of comparisons is

n−m− IUU = n− 1− 2 = n− 3 = n−B(n)− 1.

If the one inequality occurred in a component of size 2k−2 + 1, compare a component
of size 2k−2 − 1 with the homogeneous component of size 2k−2 + 1. If they are not
equal, compare the remaining 2k−2 − 1 component with a known ball and all colors
are determined with the following number of comparisons:

n−m− IUU = n− 1− 2 = n− 3 = n−B(n)− 1.

If they are equal, compare one ball from them with the component 2k−2 − 1. If they
are equal, they are the majority and

n−m− IUU = n− 2− 1 = n− 3 = n−B(n)− 1.

If they are not, we know all colors except the last one, which does not to be checked
by Observation 2.3.3. The number of comparisons is

n−m− IUU = n− 1− 2 = n− 3 = n−B(n)− 1.

3. IUU = 2

By Lemma 2.3.2, the two inequalities happen in two different groups and we know
the colors of all balls in them. By comparing a ball with known color with two
homogeneous groups we can determine the colors of the first four groups and the
majority can be found by Observation 2.3.3. Total number of comparisons is

n−m− IUU = n− 1− 2 = n− 3 = n−B(n)− 1.

4. IUU ≥ 3

If that happens, we stop comparing within groups and compare one ball with known
color with all the remaining unknown balls except the last ball in the fifth group
(Observation 2.3.3). By Lemma 2.1.1, we used

n−m− IUU = n− 3− 0 = n− 3 = n−B(n)− 1

comparisons in total.
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Chapter 3

Randomized 2-color Majority

In the previous chapter, we achieved a lower bound for deterministic algorithms for 2-color
majority problem, and we showed three-way cannot decrease the number of comparisons
more than o(n). It is then reasonable to approach the same problem with randomized
methods to see whether three-way can make a difference. Previously, Alonso et al. [3]
used martingales to show that the expected number of comparisons that any randomized
algorithm makes for solving 2-color majority in the equality-test model is 2n

3
+ o(n). In

this chapter, we propose a Las Vegas algorithm for this problem which can be applied
in the equality-test comparison model as well and has expected number of comparisons
g(α)n+ o(n), where α is the fraction of the majority color in the input and g is a function
defined momentarily that takes values ∈

[
1
2
, 2
3

]
for α ∈

[
1
2
, 1
]
. Meeting the lower bound, this

algorithm also provides a parameterized cost for this problem. In contrast with previous
results, the proof given here is completely elementary: as with the method of Boyer and
Moore [7], we use the fact that if we find a group of 2r balls, with r of one color and r of
the other we can discard those elements. Then, starting from the initial input, we estimate
the number of comparisons in each step using an estimated number of comparisons in the
previous step, until we reach the terminal state. We then use Chebyshev’s inequality to
show the propagated error in estimating these numbers is small with high probability. We
first formally state the theorem and algorithm. Next, we explain each step of it in detail,
and finally prove its correctness and compute the complexity.

Theorem 3.0.1. Let α ∈
[
1
2
, 1
]

be the fraction of the majority color. Then, there is
a Las Vegas algorithm which solves 2-color majority problem with at most g(α)n + o(n)
comparisons for input size of n with high probability, where g(α) is defined as below and is
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always between 1
2

and 2
3
.

g(α) =
2α− 1

4α

m∑
k=0

1

2k
α2k + (1− α)2

k

α2k − (1− α)2k

Corollary 3.0.1.1. There is a Las Vegas algorithm which solves 2-color majority problem
making at most 2n

3
+ o(n) comparisons with high probability.

The graph of function g is depicted in Figure 3.

Figure 3.1: Coefficient of n in the expected number of comparisons

3.1 Proposed Algorithm

For a given coloring of n balls consisting of b black and w white balls, let α = max (b,w)
n

≥ 1
2

be the fraction of the most frequent color. An accurate estimation of α, α̂ can be obtained
by sampling a small set ns of size o(n) from the original set. Colors in this set can be
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determined by comparing one ball with all others (näıve algorithm). The key idea of the
algorithm is the expected number of balls of the majority color in a sample of size n0 = n

2α

balls from the original set is n
2
. Roughly speaking, by assuming a symmetric distribution,

with a probability of 0.5, there are at least n
2

balls of the majority color in this sample, which
is enough balls to conclude this color is certainly the majority in the input. To increase
the probability of finding the majority in a sample, one can increase the size of the sample
n0 by a factor of 1 + λ. With the same argument, this time the expected number of balls
of the majority color in our sample is α× n

2α
× (1 +λ) = (1 +λ)n

2
; therefore, any sample in

which the number of balls of majority color is in interval
[
n
2
, (1 + λ)n

2

]
is desirable. As a

result of concentration inequalities such as Chebyshev [23], the probability of having such
a sample is very high. We are interested in decreasing the total number of comparisons
and therefore smaller λ is desired. However, in the analysis, we show by decreasing λ we
need to decrease the error in our estimation of the fraction of the majority color, which,
in turn, requires a higher number of balls to be sampled. This trade-off is addressed by
suggesting certain values for these variables in terms of n so that (1 + λ) n

2α
= n

2α
+ nν for

some ν < 1 - asymptotically compensating for the cost induced by adding (1 + λ).

Pairing in each step happens only between groups of equal size; we pair two balls from
two different components, compare the two balls in each pair, merge the two components
if the balls are of the same color and discard them if they are not. Consequently, the size
of the components is always a power of 2. During each round, if there is an odd number of
components, we put one of the components aside and continue with the others. In the end,
sizes of the remaining components are distinct powers of 2; otherwise, the pairing could
have been done. Consequently, the number of remaining components is at most lg(n), and
determining the majority in them takes at most lg(n) ∈ o(n) comparisons, which does not
asymptotically change the total number of comparisons which is in Θ(n) and depends on
the number of pairings during previous steps.
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Algorithm 3.1.1 Randomized 2-color majority

1: Randomly sample ns ∈ o(n) balls.
2: Count the number of balls of each color b and w
3: Define α̂ = max(b,w)

ns
.

4: Randomly sample n0 = (1 + λ) n
2α̂

balls for a λ > 0
5: FOLDED-PAIRING(n0)
6: if majority found then
7: Return the majority color
8: else
9: Switch to the näıve algorithm
10: end if

Algorithm 3.1.2 Folded pairing

1: procedure folded-pairing(n0)
2: while more than one ball remains do
3: Pair the balls in n0 randomly
4: Compare the two balls in each pair
5: if they are equal then
6: discard one of the balls
7: take the other ball to the next round as a representative of the two balls
8: else
9: discard both of them
10: keep the number of balls of each color which is 2i balls for round i
11: end if
12: if |n0| is odd then
13: Keep the number of the unpaired ball which is a representative of 2i balls
14: end if
15: Update n0 with the balls we take to the next round
16: end while
17: Compare the possible remaining ball and all unpaired balls with each other
18: Determine if there is a majority
19: end procedure
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3.2 Correctness

In the ith round of the Algorithm 3.1.2, each ball is a representative of 2i−1 balls of the
same color. When we discard a heterogeneous pair, we discard exactly 2i−1 balls of each
color. Keeping track of the number of balls of each color, the algorithm ends when there
are at least n

2
balls of the same color in the sample of n0 = (1 +λ) n

2α̂
balls, which is clearly

the majority color in the whole input set as well. If the algorithm does not find the n
2

balls
of the same color among these n0 balls, it switches to the näıve algorithm and compares a
ball with known color with all other balls, until it finds a majority or there are no other
balls. Note that there is always at least one inequality in this case, as otherwise all the
n
2α
≥ n

2
were of the same color and algorithm would not switch to the näıve algorithm.

3.3 Comparison Complexity

In this section, a formal, step-by-step analysis of the complexity of the algorithm proposed
in the first part of the chapter is given. To compute the expected number of comparisons,
we need to calculate ps, the probability of an early-success - finding the majority in the
small sample of n

2α̂
(1 + λ) balls. Then, we can compute the average cost of our Las Vegas

algorithm as

ps × E[cost given early-success] + (1− ps)× cost given näıve algorithm

3.3.1 Estimating α

As a consequence of the law of large numbers [20], the fraction of the majority color in the
input, α can be estimated by sampling large enough number of balls. Formally, we have
the following theorem from [22]

Theorem 3.3.1 (Estimating α). By sampling ns ≥ 2+ε
ε2

ln(2
δ
) balls, estimated α̂ is within

[α− ε, α + ε] with probability 1− δ.

The idea here is, by having an accurate estimation of α, namely α̂, the number of balls
of majority color in a sample of n0 balls should be approximately n0α̂. We need to have
at least n

2
balls from the majority color, thus we should take n0 to be at least n

2α̂
. Roughly

speaking, in half of the cases, the number of majority balls in such sample is less than the
expected, which is n

2
α
α̂

, or approximately n
2
. Therefore, by choosing n0 = n

2α̂
we cannot
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decide in half of the cases when the sample average falls below the expected. It motivates
us to let n0 be (1 +λ)( n

2α̂
), where the value of λ can regulate the trade-off between solving

the problem in the sample of n0 balls and switching to näıve algorithm.

3.3.2 Creating Sample of Size n0

Theorem 3.3.2. For λ = 2.01n−
1
3 and ε = n−

1
3 , the probability of having more than n

2

balls of majority color in a sample of (1 + λ) n
2α̂

balls goes to 1 as n goes to infinity.

Proof. We are going to compute the probability of having at least n
2

balls of majority color
in a sample of size n0 = (1 + λ)( n

2α̂
). For 1 ≤ i ≤ n0, let Ti denote the indicator random

variable of the ith sample, which is 1 if the ith ball is of the majority color, and otherwise
is 0. As n0 ∈ o(n), the sampling process can be estimated by sampling with replacement,
therefore Ti follows a Bernoulli distribution with parameter α. As a result of linearity of
expectation, the random variable T = T1 + · · · + Tn0 indicating the number of balls of
majority color has a mean of n0α and a variance of n0α(1−α). The last statement follows
from the fact that

V ar(Ti) = α− α2

As a well-known result about approximation of Bernoulli distributions [6], T can be trans-
formed into a standard normal distribution (µ = 0, σ2 = 1):

Z =
T − n0α√
n0α(1− α)

,

which shows

Pr[T ≥ n

2
] = Pr[Z ≥

n
2
− n0α√

n0α(1− α)
].

What we need to show is
n
2
−n0α√

n0α(1−α)
goes to negative infinity as n grows. After substituting

n0 = (1 + λ)( n
2α̂

), the right hand side becomes

n
2
− n0α√

n0α(1− α)
=

√
n

2

(
1− α

α̂
(1 + λ)√

(1 + λ)α
α̂

(1− α)

)
.

We are going show the coefficient of
√

n
2

in the above expression is a negative number

tending to zero asymptotically slower than 1√
n
, which implies the expression tends to
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negative infinity as desired. We show this by giving a lower bound on the absolute value

of nominator and an upper bound on the denominator of
1−α

α̂
(1+λ)√

(1+λ)α
α̂
(1−α)

. From the results

of the previous section on the accuracy of our estimation of α, we know α
α+ε
≤ α

α̂
≤ α

α−ε
with probability of 1− δ and thus

1− α
α̂

(1 + λ)√
(1 + λ)α

α̂
(1− α)

≤
1− α

α+ε
(1 + λ)√

(1 + λ)α
α̂

(1− α)
.

By the definition in the theorem we have ε < λ
2

which is at most αλ, therefore

1− α

α + ε
(1 + λ) < 1− α

α + λ
2

(1 + λ) ≤ 1− α

α + αλ
(1 + λ) = 0

which is true because α ≥ 1
2
; therefore, the coefficient is negative. As long as this number

goes to zero slower than 1√
n
2

we can be sure that Pr[T ≥ n
2
] is close to 1. To show this,

note that ∣∣∣1− α

α̂
(1 + λ)

∣∣∣ ≥ ∣∣∣∣1− α

α + ε
(1 + λ)

∣∣∣∣ ≥ ∣∣∣∣1− 1
2

1
2

+ ε
(1 + λ)

∣∣∣∣ =
λ− 2ε

1 + 2ε

For the direction of inequality, we used the fact that numbers in the absolute function are
negative. We also know the maximum value of α(1 − α) is 1

4
and α̂ is at least 1

2
− ε with

probability 1− δ, therefore√
(1 + λ)

α

α̂
(1− α) ≤

√
1 + λ

4α̂
≤

√
1 + λ

4(1
2
− ε)

Combining these results together, we get∣∣∣∣∣ 1− α
α̂

(1 + λ)√
(1 + λ)α

α̂
(1− α)

∣∣∣∣∣ ≥ λ−2ε
1+2ε√
1+λ

4( 1
2
−ε)

Substituting λ = 2.01ε first to remove λ and then ε = n−
1
3 , the right hand side of the above

expression is equal to

=
0.01ε
1+2ε√
1+2.01ε
(2−4ε)

=

√
2

100

√
2− ε

1 + 2.01ε
ε ∈ Θ(ε) ⊆ Θ(n−

1
3 ),
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The latter asymptotic bound is true as 2 − ε and 1 + 2.01ε tend to 2 increasingly and
1 decreasingly, respectively, as ε goes to zero in the sequence ε = εn = n−

1
3 . Thus the

function f(ε) =
√

2−ε
1+2.01ε

is a monotonous function bounded between f(1) =
√

1
3.01

and

f(0) =
√

2.

We showed the coefficient of
√

n
2

is a negative number whose absolute value tends to

zero as fast as n−
1
3 does, which is slower than 1√

n
and we are done as we proved

n
2
− n0α√

n0α(1− α)

is a negative number with absolute value in Θ(
√
nn−

1
3 ) = Θ(n

1
6 ) hence

Pr[T ≥ n

2
] = Pr[Z ≥

n
2
− n0α√

n0α(1− α)
]

tends to 1.

Corollary 3.3.2.1. λ and ε defined in Theorem 3.3.2 results in a sample of size n0 =
(1 + λ)( n

2α̂
) = n

2α̂
+ o(n), and ns ∈ Θ(n−

1
3 ).

3.3.3 Expected Number of Heterogeneous Pairs

Each round of the algorithm has an instance of the pairing problem, which is defined and
analyzed below for the case when the number of balls in a round is even. The same
probability for odd n can be computed in similar manner, but as the below formula is only
intended to demonstrate the nature of the problem and not being used in the analyses, we
do not mention it for the sake of simplicity.

Lemma 3.3.3. (Pairing Problem) A set of b black balls and w white balls are paired up
randomly, where n = b+ w is even. If b ≤ w then for a fixed k, 0 ≤ k ≤ b, the probability
of having k heterogeneous pairs is

Pb,w(k) =

(
b
k

)(
w
k

)
k! (b−k)!(w−k)!

( b−k
2

)!(w−k
2

)!2
b−k
2 2

w−k
2

n!

(n
2
)!2

n
2

.
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Proof. There are
(
b
k

)
and

(
w
k

)
ways to choose the k black balls and k white balls which are

paired with a ball of opposite color. After choosing these 2k balls, there are k! ways to pair
them up. Other balls need to be paired within their color; for the remaining b − k black
balls, there are

(
b−k
2

)
ways for choosing the first pair,

(
b−k−2

2

)
ways for choosing the second

pair,
(
b−k−4

2

)
ways for choosing the third pair, and so on. These b− k pairs can be chosen

in any order, so each pairing is achieved by ( b−k
2

)! different combinations. Therefore, the
number of ways to pair black balls is(

b− k
2

)(
b− k − 2

2

)(
b− k − 4

2

)
. . .

(
2

2

)
1

( b−k
2

)!

=
(b− k)(b− k − 1)

2

(b− k − 2)(b− k − 3)

2
. . .

(2)(1)

2

1

( b−k
2

)!

=
(b− k)!

( b−k
2

)!2
b−k
2

.

With the same argument, the number of ways for pairing white balls is (w−k)!

(w−k
2

)!2
w−k
2

. In a

similar way, the number of ways of pairing all balls is(
n

2

)(
n− 2

2

)(
n− 4

2

)
. . .

(
2

2

)
1

(n
2
)!

=
n!

(n
2
)!2

n
2

,

which proves the lemma.

Let Mb,w be the expected number of heterogeneous pairs calculated by
∑b

k=0 kPb,w(k).
Although calculating expectation via the above formula seems to need an enormous effort,
we easily derive the explicit form of the expected value and variance in the next two lemmas
with the aid of auxiliary random variables.

Lemma 3.3.4. Given the condition in Lemma 3.3.3, Mb,w = bw
b+w−1 = α(1− α)

n2
0

n0−1

Proof. If Xi denotes the indicator random variable which shows the ith black ball is paired
with a white one, then the number of heterogeneous pairs is H = X1 +X2 + · · ·+Xb. From
the linearity of expectation, we have

Mb,w = E [H]

= E [X1 +X2 + · · ·+Xb]

= E [X1] + E [X2] + · · ·+ E [Xb]

28



For the ith black ball Xi,

E [Xi] = P [Xi = 1] =
w

b+ w − 1

because there are w white balls among the total b+w− 1 potential balls to be paired with
this ball. To complete the proof, note that by the definition of α we have b+ w = n0 and

bw = αn0(1− α)n0, thus the identity bw
b+w−1 = α(1− α)

n2
0

n0−1 holds.

Lemma 3.3.5. The variance of the number of heterogeneous pairs is V ar(H) = 2 bw(b−1)(w−1)
(n0−1)2(n0−3) ≈

2α2(1− α)2n0

Proof. With the same notation as in Lemma 3.3.4, to compute expectation and variance
of H = X1 + · · ·+Xb we use the below identity

V ar(H) = V ar(X1 + · · ·+Xb)

=
b∑
i=1

V ar (Xi) +
∑
i 6=j

Cov (XiXj) .

For each i, we showed in Lemma 3.3.4 that E[Xi] = w
b+w−1 . Similar reasoning shows

E[XiXj] = w
b+w−1 .

w−1
b−1+w−1−1 because after pairing the first black ball with one of the white

balls, these two balls are eliminated from the set of balls and there are b − 1 black and
w − 1 white balls. The rest can be done by calculating V ar(H) using the above formula
for E[XiXj] and the following for V ar (Xi)

V ar(H) = V ar(X1 + · · ·+Xb)

=
b∑
i=1

V ar (Xi) +
∑
i 6=j

Cov (XiXj)

=
b∑
i=1

E[X2
i ]− E[Xi]

2 +
∑
i 6=j

E[XiXj]− E[Xi]E[Xj]

=
b∑
i=1

w

b+ w − 1
−
(

w

b+ w − 1

)2

+
∑
i 6=j

w

b+ w − 1
.

w − 1

b− 1 + w − 1− 1
−
∑
i 6=j

(
w

b+ w − 1

)2

= b

(
w

b+ w − 1
−
(

w

b+ w − 1

)2
)

+ 2

(
b

2

)(
w

b+ w − 1
.
w − 1

b+ w − 3
−
(

w

b+ w − 1

)2
)
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=
bw

b+ w − 1
− (b+ b2 − b)

(
w

b+ w − 1

)2

+
bw(b− 1)(w − 1)

(b+ w − 1)(b+ w − 3)

=
bw

b+ w − 1

(
1− bw

b+ w − 1
+

(b− 1)(w − 1)

b+ w − 3

)
=

bw

b+ w − 1

(
−(b− 1)(w − 1)

b+ w − 1
+

(b− 1)(w − 1)

b+ w − 3

)
=

2bw(b− 1)(w − 1)

(b+ w − 1)2(b+ w − 3)

=
2b2w2(1− 1

b
)(1− 1

w
)

(b+ w)3(1− 1
b+w

)2(1− 3
b+w

)

=
2b2w2

(b+ w)3
(1− 1

b
)(1− 1

w
)

(1− 1
b+w

)2(1− 3
b+w

)

Substituting b and w by αn0 and (1− α)n0, respectively, to obtain the following

2α2(1− α)2n0

(1− 1
αn0

)(1− 1
(1−α)n0

)

(1− 1
n0

)2(1− 3
n0

)

When occurrences of both colors are large enough, the second fraction is approximately 1
and therefore the whole expression is equal to 2α2(1− α)2n0.

The following lemma shows how by having the number of heterogeneous pairs at each
round other parameters can be derived and do not need be analyzed separately.

Lemma 3.3.6. Suppose we start with n0 = w0 + b0 balls with w0 white and b0 black balls.
If ni, wi, bi, and Hi denote the total number of balls, white balls, black balls, and num-
ber of heterogeneous pairs on the ith call of Algorithm 3.1.2 then the following recurrence
relationships hold:

nk =
n0 − 2

∑k−1
j=0 2jHj

2k
,

wk =
w0 −

∑k−1
j=0 2jHj

2k
,

bk =
b0 −

∑k−1
j=0 2jHj

2k
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Proof. In each round, the number of balls is halved because we only keep a representative
from each component. At the same time, each heterogeneous pair deducts a number of
balls from both colors. For instance, n1 is equal to the number of pairs at the first level (n0

2
)

minus the number of heterogeneous pairs (H0). With the same reasoning, nk = nk−1

2
−Hk−1,

and the claim follows from an induction.

Lemma 3.3.7. m, the total number of rounds of pairing balls before at least one set becomes
empty, is not more than log n0.

Proof. It follows from Lemma 3.3.6 that nk ≤ n0

2k
, therefore k is at most log n0.

Lemma 3.3.8. The expected number of heterogeneous pairs Hi, the size of ni+1, and αi+1

are:

E[Hi] = αi(1− αi)ni

E[ni+1] = ni

(
1

2
− αi(1− αi)

)
E[αi+1] =

α2
i

2α2
i − 2αi + 1

.

Proof. To have a heterogeneous pair, we need to have a ball from the majority color and a
ball from the other color. The probability of having a ball of the majority color is αi and
the probability of having a ball of the other color is (1− αi). Since we are sampling with
replacement, the probability of having a heterogeneous pair is 2αi(1 − αi). The 2 in the
term comes from the fact that in a pair either the first element or the second one is the
majority color. We have ni

2
pairs in total, so the expected number of heterogeneous pairs

is
E[Hi] = 2αi(1− αi)

ni
2

= αi(1− αi)ni

After each round, we discard a ball from each pair. We also discard the other ball from
the heterogeneous pairs, so ni+1 becomes ni

2
−Hi. Thus

E[ni+1] =
ni
2
−Hi =

ni
2
− αi(1− αi)ni = ni

(
1

2
− αi(1− αi)

)
.

The expected number of majority color balls in the sample of size ni is αini. In the
next round for the sample size ni+1, the expected number of majority color balls becomes
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αini−Hi
2

, and αi+1 is the fraction of majority balls in the new set, hence

E[αi+1]

=
αini −Hi

ni − 2Hi

= αi +
(2αi − 1)Hi

ni − 2Hi

= αi +
(2αi − 1)αi(1− αi)ni
ni − 2αi(1− αi)ni

=
α2
i

2α2
i − 2αi + 1

Lemma 3.3.9. If for 1 ≥ α0 >
1
2

we define the next term αi+1 :=
α2
i

2α2
i−2αi+1

then {αk}k≥0
is a strictly-increasing sequence, limi→∞{αi} = 1, and αk = 1

1+
(

1
α0
−2α2

i−2αi+11
)2k

.

Proof. Let βi = 1
αi

and re-write the relation as

1

βi+1

=

1
β2
i

2
β2
i
− 2

βi
+ 1

Simplifying the expression gives us

βi+1 = β2
i − 2βi + 2,

therefore, to prove βi+1 < βi, we need to show β2
i − 2βi + 2 < βi, which is equivalent to

(2− βi)(1− βi) < 0

which is true by assumption for β0 = 1
α0

. Thus the sequence is strictly-decreasing.
To show the sequence is bounded, we use induction to prove 1 ≤ βi ≤ 2. This is true for
i = 0 because α0 ≥ 1

2
. If the hypothesis holds for i, we have βi − 2 ≤ 0, therefore

βi+1 = (βi − 1)2 + 1 ≥ 1,

βi+1 = βi(βi − 2) + 2 ≤ 2.
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Hence {βi} is strictly-decreasing, which means {αi} is strictly-increasing. Now we know
{αi} is an increasing bounded sequence and thus has a limit L that must satisfy

L =
L2

2L2 − 2L+ 1

Solving the equation gives us

L = 1 or
1

2

Because we assumed α0 is not 1
2
, the only possible solution is L = 1. It proves the second

claim in the lemma. In fact the sequence {αi} is a constant sequence if α0 = 1
2
.

By defining an auxiliary sequence λi = βi − 1 we can re-write βi+1 = β2
i − 2βi + 2 as

λi+1 = λ2i .

For instance, λ3 = λ22 = λ41 = λ80. An easy induction shows the general solution to this
recurrence relation is

λk = λ2
k

0 = (β0 − 1)2
k

.

Substituting back β and then α, we have

αk =
1

1 +
(

1
α0
− 1
)2k

We need an algebraic lemma about the length of the interval in which E [Hk] lies with
high probability. Intuitively, the sum of lengths of these intervals bound the total error in
estimating the number of heterogeneous pairs. Clearly, we want this value to be as low
as possible, however, decreasing the length of each interval is equivalent to decreasing the
chance of E [Hk] lies in that interval. The lemma addresses this trade-off.

Lemma 3.3.10. For 0 ≤ k ≤ m, where m is the maximum number of rounds in Algorithm
3.1.2 bounded by Lemma 3.3.7, there is a choice of ak ∈ o(n0) such that the sum a0+· · ·+am
is also in o(n0).
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Proof. For a 1 > φ > 0, let ak =
√

1
8
(n0

2k
)
1+φ
2 , which is clearly in o(n0). Each ak can be

bounded by the inequality below:

ak =

√
1

8
(
n0

2k
)
1+φ
2 <

√
1

8
n

1+φ
2

0

1
√

2
k
.

As
∑

k≥0
1√
2
k is a finite constant by geometric series test, the sum is bounded by a constant

times n
1+φ
2

0 , which is in o(n0).

Theorem 3.3.11. The probability of having an error more than ak in estimating Hk by

computing E[Hk] via Lemma 3.3.4 is at most
(
n0

2k

)−φ
.

Proof. By Chebyshev’s inequality [5], due to Lemma 3.3.5 the probability of making a huge
mistake in estimation, as defined in Lemma 3.3.10, is bounded:

Pr [|Hk − E[Hk]| > ak] <
V ar(H)

a2k
=

2α2(1− α)2n0

1
8
(n0

2k
)1+φ

≤
(n0

2k

)−φ

The following theorem assures us that the actual number of the heterogeneous pairs at
the ith round is close to the one computed by estimating parameters of the jth round from
the (j − 1)th round by Lemma 3.3.4 for 1 ≤ j ≤ i− 1.

Theorem 3.3.12. (Folded-Expectation) Suppose we estimate E[Hk] by initial conditions
i.e. b0 and w0 by iteratively computing E[Hj] for 1 ≤ j ≤ k − 1 using Lemma 3.3.4.

If E[Hk|E[Hj<k]] denotes this number, then with probability of at least 1 − n−φ0
1

1−2−φ , as
defined in Lemma 3.3.10, the actual value of Hk lies in[

E[Hk|E[Hj<k]]− ak − ak−1 − · · · − a1, E[Hk|E[Hj<k]] + ak + ak−1 + · · ·+ a1
]
,

where the ai’s are defined in Lemma 3.3.10.

Proof. By union bound, the probability of having at least one i for which the estimation
at round i has an error more than ai is at most the sum of all these errors for 0 ≤ i ≤ m,
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where the total number of round m ≤ log(n0) by Lemma 3.3.7. This probability is bounded
by Theorem 3.3.11 as follows

m∑
k=0

(
n0

2k
)−φ

= n−φ0 (
m∑
0

1

2kφ
)

< n−φ0

1

1− 2−φ
.

Hence with probability of at least 1 − n−φ0
1

1−2−φ , estimation at level i is correct up to an
error of ±ai. Finally, note that adding/removing t balls to/from a configuration of balls
can increase/decrease the number of heterogeneous pairs by at most t/2. Consequently,
carry-over errors defined in Theorem 3.3.11, which are deviations from the correct expected
number of comparisons at each step, add up linearly. Therefore,

E[Hk|E[Hj<k]]− a1 − · · · − ak ≤ Hk ≤ E[Hk|E[Hj<k]] + a1 + · · ·+ ak.

3.3.4 Expected Number of Comparisons in Early-Success

Theorem 3.3.13. If c denotes the number of comparisons, then the difference between the
estimated expected cost of the algorithm E[c] and the actual number is at most o(n0) with
probability of at most ps = 1− n−φ0

1
1−2−φ as defined in Theorem 3.3.12 and Lemma 3.3.10.

Proof. To complete the proof, note that Lemma 3.3.10 assures us that a1+ · · ·+ak ∈ o(n0),
and therefore by using Theorem 3.3.12 about our estimation of Hk’s and their contribution
to nm described in Lemma 3.3.6 we get

E[ck]− o(n0) ≤ ck ≤ E[ck] + o(n0)

with probability of at least 1− n−φ0
1

1−2−φ .

Theorem 3.3.14. The expected cost of the Folded Pairing algorithm is g(α)n, where α =
α0 is the proportion of the majority color in the initial set of balls, and 1

2
≤ g(α) ≤ 2

3
is a

function given by the following expression:

g(α) =
2α− 1

4α

m∑
k=0

1

2k
α2k + (1− α)2

k

α2k − (1− α)2k
.
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Proof. Relations in Lemma 3.3.8 and Lemma 3.3.9 provide us with the expected value of
nk in terms of n0 and α0 as follows

nk = n0
α0

2k

(2− 1
α0

)
(

1 + ( 1
α0
− 1)2

k
)

1−
(

1
α0
− 1
)2k

= n0
1

2k
2α0 − 1

α0

α0
2k + (1− α0)

2k

α0
2k − (1− α0)2

k .

The result follows from the fact that the number of comparisons in Algorithm 3.1.2 is∑m
i=0

ni
2

, where ni denotes the size of remaining components in the ith round of the algo-
rithm and n0 = (1 + λ)( n

2α̂
) is as defined in Theorem 3.3.2.

3.3.5 Total Number of Comparisons

Putting all these results together, we can finally compute the expected number of compar-
isons for the proposed algorithm by Theorem 3.3.13 as below:

ps × E[cost given early-success] + (1− ps)× cost given näıve algorithm

= (1− n−φ0

1

1− 2−φ
)× g(α)n+ (n−φ0

1

1− 2−φ
)n

= g(α)n+ (1− g(α))n−φ0

1

1− 2−φ
n

= g(α)n+ o(n),

where the latter equation follows from the fact that n0 = n
2α
∈ Θ(n).

3.4 Notes on the Pairing Problem

3.4.1 Change in αi

Before finding the proof for the convergence of Algorithm 3.1.2, we studied the behavior of
the algorithm by simulating it for different values of α0 and n = 108 number of balls. As
can be seen in Figure 3.4.1, regardless of α0, the subsequent αi’s tend to 1 very quickly; a
behavior which we proved later (see Lemma 3.3.9).
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Figure 3.2: Increase of α in each round

3.4.2 Calculating the Exact Expected Value of H

Applying the recurrence relationships in Lemma 3.3.6, one can compute the expected value
of the few first terms of each sequence as follows

E[n1] = E[
n0

2
−H0] =

n0

2
− E[H0] =

n0

2
−Mb0,w0

E[n2] = E[
n1

2
−H1] =

b0∑
t=0

EH1|H0=t[
n1

2
−H1|H0 = t]Pb0,w0(t)

=
∑

E[
n0

2
− t
2
−H1]Pb0,w0(t) =

n0

4
− 1

2
Mb0,w0 −

∑
M b0−t

2
,
w0−t

2

Pb0,w0(t)

More generally, the expected number of heterogeneous pairs in each round can be tracked
by the previous ones from the equation below:

E [Hk|Hk−1 = tk−1, . . . , H1 = t1, H0 = t0] = Mbj ,wj(~t)

where Mbj ,wj(~t) = Mbj ,wj for the following values

wk =
w0 −

∑k−1
j=0 2jtj

2k
, bk =

b0 −
∑k−1

j=0 2jtj

2k
.

37



Using this notation, the complete formula is

E [Hk] =
∑
tj ,...,t0

E [Hk|Hk−1 = tk−1, . . . , H1 = t1, H0 = t0]P [Hk−1 = tk−1, . . . , H1 = t1, H0 = t0]

=
∑
tj ,...,t0

Mbk,wk(~t)
k−1∏
j=0

P [Hj = tj|Hj−1 = tj−1, . . . , H1 = t1, H0 = t0]

=
∑
tj ,...,t0

Mbk,wk(~t)
k−1∏
j=0

Pwj ,bj(tj)

Although the recurrence relation gives us the exact value of the expected number of
comparisons, it is relatively hard to solve it. To find a way around it, we suggested using
the expected number of heterogeneous pairs at the ith round to compute the same quantity
at the (i+ 1)th round.

3.5 Randomized 2-Color Partition

Surprisingly, through Algorithm 3.1.2, we actually partitioned our sample of size n0: every
inequality in pairs reveals colors of both components; therefore, in each round of the
algorithm, we know the color of the balls we have discarded so far. The only balls with
unknown colors are the surviving component in the last round (if any) and the unpaired
components in rounds in which the size of ni is odd. After the last round, we compare
the possible surviving component with a ball of known color and we also compare it with
all the remaining components of unknown color. In this way, the color of all balls can
be determined. As the cost of this partitioning for n0 ≈ n

2α
is g(α)n, the number of

comparisons needed to partition n numbers in Algorithm 3.1.2 is 2αg(α)n, where 2
3
≤

2αg(α) ≤ 1 for 1
2
≤ α ≤ 1. The following theorem formally states this result.

Theorem 3.5.1. There is a Las Vegas algorithm which solves the 2-color partition problem
in the three-way comparison model making at most 2αg(α)n+ o(n) comparisons with high
probability, where α is the fraction of the majority color and 2

3
≤ 2αg(α) ≤ 1 is given by

the following:

g(α) =
2α− 1

4α

m∑
k=0

1

2k
α2k + (1− α)2

k

α2k − (1− α)2k
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Chapter 4

Deterministic 3-color Partition

The partition problem is completely solved for deterministic algorithms in the equality-
test comparison mode. It is shown that for n balls the lower bound and upper bound are
2n − 3. For the 3-color plurality problem in the equality-test comparison model, on the
other hand, the lower bound of 3n

2
− O(1) and the upper bound of 5n

3
+ O(1) have been

found. In this chapter, we propose an algorithm for the 3-color partition problem in the
three-way comparison model with 3n

2
− 1 comparisons. Clearly, any upper bound for the

partition problem yields the plurality problem; we, therefore, give an upper bound for the
plurality problem as well. In this chapter we prove the following theorem:

Theorem 4.0.1. Given a set of n balls colored with numbers 1, 2 and 3 with 1 < 2 < 3,
Algorithm 4.1.1 partitions the balls into the sets of their color in 3n

2
− 2 comparisons.

4.1 Proposed Algorithm

Observation 4.1.1. If we have a ball known to have color 2, we can partition a set of
balls with one comparison with each ball: We take a ball of color 2 and compare it with
all other balls. The balls of lesser value have color 1, the equal ones are 2 and the greater
ones are 3.

We start by pairing the balls and then study the problem in three cases. These cases
depend on whether we find a ball of color 2 (Observation 4.1.1).
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Algorithm 4.1.1 3-color partition

1: procedure partition(S)
2: Pair all balls
3: Compare the two balls in each pair
4: if they are equal then put them in E
5: else Put the larger in G and the smaller in S end if
6: if all pairs were equal then
7: partition the set containing one ball from each pair of E
8: Put the other ball from each pair in the same set as the other ball in the pair
9: else
10: Compare one ball from G with all other balls in the set G
11: Compare one ball from S with all other balls in the set S
12: if there is an inequality in G or S then
13: Partition using ball of color 2
14: else
15: Compare a ball from G with one ball from each pair of E and find all balls

with the same color → label them as the first group
16: Compare a ball from S with one ball from each pair of E and find all balls

with the same color → label them as the second group
17: Label the remaining balls (i.e. balls not equal to the colors of balls of G and

S) as the third group
18: end if
19: end if
20: end procedure

4.2 Correctness

We pair the balls and compare the two balls in each pair. We might have three outcomes
for each comparison. We label each ball and divide the balls into these three sets according
to the result of the comparison:

• G: The balls of the larger value in an inequality.

• S: The balls of the smaller value in an inequality.

• E: The balls from an equality comparison.
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Observation 4.2.1. The balls in the set G can only be 2 and 3 for the reason that 1 is
never greater than other balls. By the same argument, balls in the set S can only be 1 and
2. The balls in the set E can have any label.

Observation 4.2.2. E consists of pairs of equal balls. Therefore, in order to partition the
set E, we only need to consider one ball from each pair and put the other ball of the pair
in the same set. Thus, we can only consider half of the balls from the set.

By the nature of comparison, we know that we have the same number of G’s as we have
S’s. Suppose we have a balls of G’s and thus a balls of S’s. We consider different cases for
a:

1. a = 0

This means that all the balls fall into E. By Observation 4.2.2, we have the same
problem with half the size of the original problem. We can solve the problem by
induction on the size of the input n.

2. a 6= 0

For each of sets of G and S we do the following: we compare one of the balls from
the set with all other balls in that set. Depending on finding an inequality in the sets
two cases might happen:

(a) We have at least one inequality in one of the sets of G or S

If we have an inequality, then by Observation 4.2.1 we can find the label of the
balls in that set; therefore we found a ball with label 2. If there is an inequality
in only one of the sets of G and S, it means that the other set is a homogeneous
component. Because the homogeneous is always larger (smaller) than the other
set, we know that its color cannot be 2, so we know its color. Then we compare
the ball labeled 2 with one of each pair in the set E to find their colors.

(b) We do not have any inequality in the sets of G and S

We know that both G and S are homogeneous components. We compare ball g
from G with one ball from each pair of E. We find all balls with the same color
as the color of set G. Then we compare s from S with one ball from each pair
of E and find all the balls with the same color as set S. The remaining balls
will be the other set.
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4.3 Complexity

We show that the total number of comparisons is less than 3n
2
−2. We used n

2
comparisons

to pair the balls and compare balls in each pair. We compute the number of comparisons
for each case separately:

1. a = 0 The induction hypothesis tells us the number of comparisons for the halved
problem is at most 3n

4
− 2, which after adding n

2
comparisons that we made, in the

beginning, is

n

2
+

3n

4
− 2 =

5n

4
− 2 <

3n

2
− 2

2. a 6= 0

We used 2(a − 1) comparisons for comparing one ball of each of sets G and S with
other balls in that set.

(a) There is inequality in G or S

In this case we compare the ball labeled 2 with half of the balls in the set E.
There are n− 2a balls in set E; thus, because a ≤ n

2
we use at most

n

2
+ 2(a− 1) +

n

2
− a = n+ a− 2 ≤ 3n

2
− 2

comparisons.

(b) There is no inequality in G or S

We compare one ball from G with one ball from each pair of E and one ball
from S with one ball from each pair of E. Therefore, we use at most

n

2
+ 2(a− 1) + 2(

n

2
− a) =

3n

2
− 2

comparisons in total.

Therefore, in all cases the number of comparisons is bounded by 3n
2
− 2.
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Chapter 5

Randomized 3-Color Partition

Suppose we have a set of n balls colored with three different colors: 1, 2 and 3 with
1 < 2 < 3. We want to know the expected number of comparisons needed to find the color
of each ball and partition the balls according to their color. In randomized algorithms, this
problem is solved in the equality-test comparison model with 5n

3
− 8

3
+ o(1) comparisons

for the partition problem and with 3n
2

+ O(1) comparisons for the plurality problem. We
give an upper bound on 3-color partition in the three-way comparison model. The bound
is also an upper bound for the plurality problem because knowing the color of each ball
implies the frequency of each color, which obviously yields the plurality. In this chapter
we show the following result:

Theorem 5.0.1. Given a set of n balls colored with numbers 1 < 2 < 3, the expected
number of comparisons of Algorithm 5.1.1 for partitioning the balls is between n+o(n) and
3n
2

+ o(n) with high probability.

5.1 Proposed Algorithm

Based on Observation 4.1.1 for partitioning balls of three colors, after finding a ball of color
2 we can partition the balls by comparing them with that ball. We sample k balls from
the input and then partition the balls in the sample using the näıve algorithm as defined
below to see whether there is a ball of color 2:

Lemma 5.1.1 (Näıve Algorithm). Compare one ball with all other balls, determine balls
of the same color and put these balls aside. Then compare one ball from the remaining set
with other balls to partition the remaining set.
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The correctness of the algorithm is trivial and the complexity is 2n − 3 for a set of n
balls. If we find a ball of color 2, we compare that ball with all the balls of the input. If
not, we know that the sample consists of only two different colors. Between the two colors,
we choose the color of the majority and follow the näıve approach defined in Lemma 5.1.1:
compare that ball with all balls outside the sample. Then, compare a ball of the other color
in the sample, if any, with all balls that do not have the same color as the majority one,
in case there are three different colors in the input but not in the sample. The algorithm
is as follows:

Algorithm 5.1.1 Randomized 3-color partition

1: Sample k balls
2: Partition the balls in the sample using näıve algorithm
3: if found a ball with color 2 then
4: Compare the ball with all remaining balls and partition balls
5: else
6: Choose the majority color in the sample
7: Compare the majority color with n− k balls outside the sample
8: Compare the other color with balls not equal to the majority color
9: end if

5.2 Correctness

We partition the sample by first comparing one ball with all other balls in the sample and
find all the balls with the same color as this ball. We then, for the remaining balls, which
can have two different colors, compare one ball with all the balls to find the balls with
the same color as that ball. If some balls are left, they belong to the third group. After
partitioning the sample, two cases might happen:

1. The sample has three different colors

Because of the nature of the three-way comparison model, if we have three different
colors in the sample we know the color of each group as well. By Observation 4.1.1
we know that we can partition the input using a ball colored 2.

2. The sample has less than three different colors

There still might be a ball of color 2 in the sample but because there are not three
different colors in the sample, we cannot distinguish it. We take the ball of the
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majority color in the sample and compare it with all the balls in the input. Thus, we
found all the balls with the same color as the majority color. If there are two colors
in the sample, we compare the other ball from the sample and compare it with the
remaining balls in the input and find all the balls of the same color. The other balls
belong to the third group. If there is only one color in the sample, we choose the
second ball from the balls in the input that are not the same color as the majority
color. We can find the balls of the same color as that ball, and all the other balls are
the third color. Therefore, we partitioned the input.

5.3 Complexity

Restating Theorem 3.3.1, we know given a set of balls with two colors, by choosing
k = 2+ε

ε2
ln(1

δ
) ∈ O( 1

ε2
ln(1

δ
)) the difference between the fraction of majority color and

the estimated fraction of majority in a sample of size k is at most ε with probability 1− δ
[22]. Because in this problem we have three colors, the sampling is from a multinomial
distribution [21]. To utilize Theorem 3.3.1 here, we will use this bound three times where
each time a color is compared against two other colors. In this way, we can bound the
error in estimating the proportion of each color separately and then finish the problem by
the union bound. To this end, we sample ns = 2+ε

ε2
ln(3

δ
); then it follows from Theorem

3.3.1 that the probability of having an error of at least ε in estimating the proportion of a
color against the other two is at most δ

3
. The union bound assures us that the probability

of having at least one estimation (among these three estimations) with such an error is at
most

δ

3
+
δ

3
+
δ

3
= δ.

Therefore, the probability of estimating all proportions with error less than ε is at least
1− δ

We set ε = n−
1
3 and δ = n−2 in our analysis. To compute the expected number of

comparisons, we need to calculate ps = 1− δ, the probability of success in finding a ball of
color 2 in the small sample of ns balls. Then, we can compute the average cost of our Las
Vegas algorithm as

ps × E[cost given success] + (1− ps)× cost given näıve algorithm

In the sampling, we used at most ns − 1 + ns − 2 = 2ns − 3 comparisons in order to
partition the sample. For the cases that can happen, we compute the complexity separately:
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1. The sample has three different colors

If the sample has three different colors, it means that we found a ball of color 2 and
we can compare this number with all the balls outside the sample. Thus, in total,
we used 2ns − 3 + n− ns = n+ ns − 3 comparisons.

2. The sample has less than three different colors

Call the fraction of the majority color in the sample α. In this case, we compare
a ball of this color with all other balls in the input. We used n − ns comparisons.
With high probability, an α fraction of the input is the majority color and (1−α) of
the input is one of the other two colors. Therefore, α(n− ns) of them are the same
color as the majority color. We compare one ball of another color (from the sample
if the sample consists of two different colors or from the input if there is only one
color in the sample) with all the remaining balls. We use an expected (1−α)(n−ns)
number of comparisons to find the balls of the same color as the non-majority ball.
The remaining balls belong to the third group. Thus, in total, we used

2ns − 3 + n− ns + (1− α)(n− ns)
= (2− α)n+ ns(2− 1− 1 + α)− 3

= (2− α)n+ nsα− 3

Comparison. Because α ≥ (1 − α), we know that α ≥ n
2
. Therefore, the number of

comparisons in total in this case is ≤ 3n
2
n+ o(n).

Thus, the average cost of our Las Vegas algorithm is

ps × E[cost given success] + (1− ps)× cost given näıve algorithm

= ps(n+ ns − 3) + (1− ps) ((2− α)n+ nsα− 3)

= n(αps − ps − α + 2) + ns(−αps + ps + α)− 3

= n(1 + δ(1− α)) + ns(−αps + ps + α)− 3

= n (1 + (1− α)(1− ps)) +O(1)

The term ns is approximated by O(1) in the last line as a result of Theorem 3.3.1. The
coefficient of n in the above expression depends on ps, the probability of finding a ball of
color 2 in a sample of size ns; although it depends on the distribution of colors which is
not known to us, we can say

1 ≤ 1 + (1− α)(1− ps) ≤ 1 + 1− α = 2− α ≤ 3

2
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As the estimation of α, the proportion of the majority, is correct up to an error of ε with
probability of 1 − δ, the cost is within n and 3n

2
+ O(nε) with probability 1 − δ. Now by

plugging in ε = n
−1
3 and δ = n−2, we have nε ∈ o(n) and ns ∈ O( 1

ε2
) ⊂ O(n

2
3 ) ⊂ O(n).
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Chapter 6

Conclusion and Future Work

In this thesis we studied under a three-way comparison model (<,=, >) problems that had
previously been considered on an equality-test comparison model (=, 6=). We also proposed
a new approach for computing the complexity of a family of randomized algorithms for
which the outcome of the ith step of the underlying stochastic process can be approximated
by the expected value of the process at the (i − 1)th step. We studied comparison-based
problems for different numbers of colors and for all problems the cost to minimize was the
number of comparisons. In this context, some of the future directions for research in this
area are as follows.

6.1 Comparison Systems

Through this thesis we only consider the case where a comparison acted on two elements;
however, a more complex comparison system can receive more than 2 elements as input.
To illustrate, consider a comparison system called k−sort which receives k elements and
outputs them in sorted order. Note that, for k = 2 this is the same system as the three-
way comparison. Moving from equality-test comparison to three-way can naturally suggest
other comparison systems. For example, although three-way seems to be a complete com-
parison system in real numbers for it is trichotomous, considering a comparison model in
the middle of equality-test and three-way in which the result can be either > or ≤ can be
interesting. It is clear that in the latter system, the two comparisons x : y and y : x can
provide us with the same information as in =, >,<, but the question is whether we can do
better than this. Interestingly, if we increase the dimension then there can be a four-(or
more) way comparison system. For instance, in computational geometry and specifically
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R2, the result of comparing (x1, y1) and (x2, y2) can take several forms which may result in
different number of comparisons needed to answer queries such as determining the convex
hull of n points.

6.2 Cost Models

The focus here was on the total number of comparisons where the cost of using each element
in a comparison was assumed to be the same for every element. However, one can consider
a weighted comparison problem, in which the costs of comparing elements are different. A
real-world instance of this problem is when data are distributed among different servers
with different responding time/cost.
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