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Abstract

In this thesis, three models for the Perishable Inventory Routing Problem (PIRP) are

explored. The first model of the inventory routing problem considers one perishable product

and known (deterministic) demands in the context of consignment inventory. The objective

of the problem maximizes the profit of the supplier who owns all the inventory until it is

sold. The supplier gives a fixed percentage discount on the selling price of the product as

it deteriorates. The shelf life and the number of vehicles used in this problem is also fixed.

Computational results, comparing the PIRP with the standard Inventory Routing Problem

(IRP), are presented. Based on the calculations using the branch-and-cut algorithm, we

conclude that adding perishability to the IRP leads to better inventory management as

a result of which fresher products are delivered to the customers. The PIRP model is

also solved using the Benders Decomposition algorithm. The results indicate that in the

above stated problem, the branch-and-cut algorithm yields better results as compared to

the Benders Decomposition algorithm.

The second model extends the PIRP to consider uncertain (stochastic) demands (SPIRP).

This is done to make the model comparable to a real-life problem. Several demand sce-

narios are created within a fixed range to capture the uncertainty with respect to the

perishable product. Since estimating the actual probability is difficult, a large number of

equally probable demand scenarios are assumed. The model was run on the branch-and-cut

and the Benders Decomposition algorithm. The results generated were then compared. It

was inferred that even when demand scenarios enable easy decomposition of the problem,

the Benders algorithm performs worse than the branch-and-cut algorithm.

In the third model, the robust formulation of the SPIRP is proposed to resolve the

above-mentioned limitations. Robustness was added to the SPIRP to enable the use of a
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small number of scenarios to obtain solutions that are competitive with modeling a large

number of scenarios in the case of SPIRP. An innovative way of formulating the robust

counterpart of the SPIRP was developed while keeping the probability of each demand

scenario uncertain. An algorithm was devised to compare the effectiveness of the robust

model to the deterministic and stochastic models.

Computational results compare the average profit values generated by the three models.

It is concluded that while the deterministic model captures no uncertainty, the stochastic

model with many scenarios accounts for the most demand uncertainty; the robust model,

through the use of far fewer scenarios, can account for a significant uncertainty in demand.

Another interpretation of the results is that an increased number of robust scenarios has

a significant effect on the average profit values of that model.
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Chapter 1

Introduction

A supply chain is the basis of each and every industry and process that happens in the

world. Everything, from the food we eat to the clothes we buy, is the result of a well-

designed supply chain. Supply chain management is the management of all entities in-

volved in the process of converting raw materials to the finished product. Supply chain

is a dynamic process of many interconnected entities and a failure of even one of those

entities at any point of the chain will lead to losses. This may be in terms of money or

customer service. As stated by Chopra and Meindl (2013), the nodes or entities involved

in a supply chain are usually raw-material suppliers, manufacturers, wholesalers/ distrib-

utors, retailers, and customers. It involves a constant flow of information, products, and

funds among different entities. The flow of a supply chain occurs in both directions. An

important thing to note is that each supply chain is different, having a greater number or

few interconnected entities. They have different functions at varied times during the course

of the supply chain depending on the industry. Even within an industry, the functions per-

formed by the entities could vary from company to company. Furthermore, supply chain
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nodes are connected by means of transportation that facilitates the pickup and delivery of

the product to and from the entities involved.

The objective of any supply chain is to get the product to the consumer at the lowest

possible cost for a given level of service. Thus, inter-dependency among all the processes

and the people involved is of utmost importance for the smooth flow of the product across

the chain. A supply chain can only be profitable if there is a good relation among all

the different entities involved in the network, and the overall cost of the supply chain is

minimized (or profit is maximized). This dynamism and importance of supply chain man-

agement in the world makes it one of the most interesting and ever-growing subjects. That

is the main motivation for me to write this thesis in the field of supply chain management.

The vast field of supply chain management encompasses several different processes that

may be studied while researching the subject. Some of the processes involved in the study

of supply chain are production management, by which goods are manufactured in the best

way at the lowest possible cost, and inventory management, which requires optimization of

stocks at the supplier or at the retailer’s end. Transportation, another important process,

facilitates the movement of goods among the different nodes of the supply chain. Also

significant is warehouse management, which optimizes the storing of goods at a facility

such as a distribution centre. These are just some of the processes that exist in a supply

chain.

This thesis focuses on two of the processes defined above; inventory management and

transportation management. Inventory management is a crucial component when it comes

to the overall cost of the supply chain. In the case of excess inventory, a perishable

product might degrade and become unsaleable. Whereas a non-perishable product would

occupy space in the warehouse and may also be damaged. On the other hand, a lack of

inventory would lead to losses and might also negatively impact the customer service level.

2



Transportation management is necessary for a product to be delivered in an undamaged

and timely manner for the customer to get the most value from that product. According

to the latest report by Kearney (2019) on the United States Business Logistics Costs,

transportation costs have been increasing every year by a large margin. The costs of

transportation increased from 622.7 billion dollars in 2009 to 1037.4 billion dollars in 2019.

The report also states that transportation currently contributes 5.1% to the Gross Domestic

Product (GDP) of the United States, up from 4.3% in 2009. The Total Business Inventory

accounts for about 13% and the Inventory Carrying Costs constitute 2.4% of the GDP.

These numbers stress the importance of optimizing transportation and inventory for the

success of a supply chain.

In this thesis, a simplified version of an actual supply chain with a single point of

origin (supplier or warehouse) and a set of stores as destination points is considered. The

illustration for the supply chain is shown in Figure 1.1. The decisions to be made in this

system are related to inventory (how much and how often to deliver to these stores) and

distribution (how to dispatch vehicles to deliver to these stores). A model that combines

both decisions and aims at maximizing the profit is the objective of this thesis. Creating

such a model is not a trivial task. It requires many underlying assumptions to make the

decision model scalable in terms of implementation.

This thesis models the supply chain of an industry that focuses on perishable products.

These kind of products add to the complexity of the problem. In a real supply chain, several

perishable products that differ in terms of age and shelf life, have stochastic demands.

Despite imposing simplifying assumptions, mathematical models are valuable because they

provide insights for practitioners and managers. The more realistic the assumptions are,

the more reliable the insights will be.
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Supplier Retailer Customer

Physical flow Physical flow

Information flow Information flow

Revenue flow Revenue flow

• There is a single supplier

• There are multiple retailers

• Each retailer will have its own customers

• Goods flow from the supplier to the retailers and then are sold to the

customers

• The customers pay the retailer for the goods and the retailer pays the

supplier from which it got those goods

Figure 1.1: Supply Chain used in this thesis
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1.1 Research Motivation

The motivation behind choosing the topic of perishable products comes from the impor-

tance of this research in several industries. The present research on perishable products can

be used in food retail industries which have very small profit margins; managers involved

are looking to optimize their supply chain in a way that increases their profits and cus-

tomer service level. This research can also be implemented for products like blood, whose

supply chain is of utmost significance since it is very demand focused. Optimization here

can result in reduced costs, freeing up hospital delivery costs and wastage, and ensuring a

safe and stable blood supply.

Integration of the two processes, inventory and transportation, could lead to substan-

tial savings as opposed to the traditional Retailer Managed Inventory (RMI) policy. Under

RMI, each store applies its own inventory control system and places its orders indepen-

dently of other stores with the objective of minimizing long-term inventory costs. In such

a system, either transportation costs are completely neglected or a fixed delivery cost is

incurred by each store when it is visited.

The RMI policy is simple to implement and abundant in practice but not efficient

enough in terms of overall long-term inventory and routing costs. Incorporation of Vendor

Managed Inventory (VMI) into the research has helped managers decrease the magnitude

of the bullwhip effect and has led to major advancements in the field of supply chain man-

agement. Many other relevant works in the literature take into account the synchronization

of inventory and transportation. However, those works generally neglect the perishability

of products or the randomness of demand from end customers. In this sense, there is a

research gap between the real world problems and the problems addressed in literature.

This thesis aims to address the existing gap.
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1.2 Research Objectives

The following are the objectives of this research.

1. To develop a model that optimizes the inventory and transportation of a supply chain

for a perishable product to assist managers in making their decisions

2. To implement an algorithm that solves the model developed and to address the

possible shortcomings of the method applied

3. To compare the results of different variations of the problem and provide useful

business insights

The main goal of this research is to provide useful insights to supply chain managers on

inventory control and distribution of perishable products. The aim is to develop an efficient

way of solving this problem. The problem is built through the help of three different models

with varying assumptions. For each problem a mathematical model is formulated; the final

model is developed to resemble a real supply chain in the best way possible. The model’s

significance is proved by conducting a comparative analysis with the previous models.

The mathematical models developed in this thesis aim to assist managers in addressing

real situations. This thesis addresses a part of a larger problem at a smaller scale. Further-

more, every industry has its own specific set of decisions to make and this thesis cannot

make broad generalizations for the industry as a whole. However, it can offer a micro per-

spective. Similar to other scientific works, this thesis provides some generic models which

can be viewed as benchmarks for the inventory and distribution part of any supply chain

that deals with perishable products.
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1.3 Outline of the thesis

The thesis will start with the standard Inventory Routing Problem (IRP) and Chapter 2

will have the Literature Review. Chapter 3 begins with the deterministic IRP and will

describe the problem and the model. This will establish the foundation of the thesis. In

Chapter 4 perishability will be instituted in the IRP. This chapter will have the relevant

literature of the deterministic perishable IRP, the model, and results. Chapter 5 will

introduce randomness to the perishable IRP; the pertinent literature, the model of the two

stage stochastic perishable IRP, and results will follow. In Chapter 6, robust optimization

will be added to the stochastic perishable IRP. This will be followed by the description

and formulation of the robust model. Chapter 7 encompasses the business insights of

the problem under consideration, and will present results of the comparison between the

models of the deterministic, the stochastic and the robust stochastic perishable IRP. Lastly,

Chapter 8 will conclude the thesis.
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Chapter 2

Literature Review

The inventory routing problem is a combination of two major components of supply chain

management, namely, inventory and transportation. The IRP has been derived from the

Vehicle Routing Problem (VRP). This is used to design delivery routes from a depot to a set

of a geographically scattered customers with the objective of minimizing the overall routing

costs. Each route starts and ends at the depot. The VRP was first introduced 60 years back

in 1959 as “The Truck Dispatching Problem”. The authors define it as a generalization

of the Travelling Salesman Problem (TSP), with constraints on vehicle capacity and on

demand at the retailer’s end. The problem by Dantzig and Ramser (1959) requires the

delivery of a product to all destinations, such that demands are satisfied with minimum

routing cost. They use a linear programming approach to solve the problem. Since then, the

subject has been extensively studied in combination with several aspects such as inventory

management, production scheduling, resource utilization and transshipments.

As described by Desaulniers et al. (2016),the IRP is based on the concept of Vendor

Managed Inventory (VMI). VMI is a contrast to the Retailer Managed Inventory (RMI),
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where the customers are responsible for monitoring their own inventories. Under RMI cus-

tomers place orders to the supplier, who is responsible for satisfying those orders. The VRP

is based on the RMI. In contrast, in a VMI system, the supplier takes over the responsi-

bility of managing the inventory of customers by deciding on replenishment quantities and

delivery periods. The goal is a win-win situation for both entities. Customers employ fewer

resources for controlling their inventory, and the supplier having to manage several cus-

tomers at a time is in a better position to manage the routes and replenishment across pe-

riods for each of its customers. This minimizes the total costs of production/procurement,

inventory, and transportation.

The inventory routing problem was first introduced by Bell et al. (1983). They find

a periodic distribution policy where they plan for whom to serve, how much to deliver

and the route traversed by the vehicles. This plan is repeated regularly, minimizing the

total transportation cost with constraints on the vehicle and the customer capacity being

satisfied, with no stockouts at any customer. Although in their model, inventory costs

play no role, they deduce that taking a joint decision about inventory and transportation

provides a 7% - 10% more efficient decision than when only taking the location of customers

into consideration.

Coelho et al. (2013) present an extensive review of the IRP. The review classifies the

problem according to two schemes: the first refers to the possible structural variants present

in IRPs, whereas the second is related to the availability of information on demand. Ac-

cording to the first scheme, papers can be classified according to seven criteria, namely,

time horizon, structure, routing, inventory policy, inventory decisions, fleet composition,

and fleet size. The time horizon is categorized as finite or infinite. The number of suppliers

and customers may vary, and therefore the structure can be one-to-one when there is only

a single supplier serving a sole customer, one-to-many in the case of one supplier and mul-
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tiple customers, or many-to-many with several suppliers and several customers. Routing

can be direct when there is only one customer per route, multiple when there are several

customers on the same route, or continuous when there is no central depot.

Inventory policies define preestablished rules to replenish customers. The two most

common are the maximum-level (ML) policy and the order-up-to level (OU) policy. Under

an ML inventory policy, an upper bound is set on inventory at the retailer and the only

constraint is that the quantity delivered should be less than that level. In most cases it is

the capacity at the retailer’s end. Under an OU policy, both the maximum and minimum

levels are specified at the retailer. When the product is delivered, the quantity is such that

the inventory is always filled to the maximum defined level. Inventory decisions indicate

how the management of the stocks has been modeled. If inventory is allowed to become

negative, then back-ordering occurs and the corresponding demand will be served at a

later stage; if there are no back orders, then the unsatisfied demand is considered as lost

sales. In both cases there is generally a penalty for the stockout. In the deterministic

context, where demand of each customer is known beforehand, the inventory can be taken

as nonnegative. The fleet composition can be either homogeneous or heterogeneous. The

last criterion is the size of the fleet. The number of vehicles available may be fixed at one,

fixed at many, or unconstrained.

The second classification refers to the time when information on demand becomes

known. If that information is fully available to the decision maker at the beginning of

the planning horizon, the problem is then deterministic. If the probability distribution of

demand is known, the problem is stochastic, which yields the stochastic inventory-routing

problem (SIRP). Dynamic IRPs arise when demand is not fully known in advance, but is

gradually revealed over time, as opposed to the full information being available at time

zero. In the dynamic IRP case, one can still exploit the statistical distribution in the
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solution process, yielding a dynamic and stochastic inventory-routing problem (DSIRP).

The basic IRP is NP-hard because it subsumes the classical VRP. Given the complexity

of the problem, initially only heuristics were proposed for its solution. With the advance-

ment in technology, the IRP is now being solved using exact algorithms, for problem

instances of reasonable size.

The ML policy, as stated, clearly encompasses the OU policy and is more flexible, but

also more difficult to solve, given the extra set of decision variables. Archetti et al. (2007)

propose the first branch-and-cut algorithm for the IRP with one vehicle. They develop

models for both the OU and ML inventory policies. They also modify their model such that

there are no constraints on the shipping capacity. Their model is based on the work done

by Bertazzi et al. (2002) which uses the OU policy. Archetti et al. (2007) develop an IRP in

which a product is to be shipped from a supplier to a set of customers within a time horizon.

The supplier has to monitor the level of inventory at the customers and replenish their stock

such that the inventory level reaches its maximum allowed. The supplier guarantees that

there will be no stockouts at customers. The customers themselves define their maximum

inventory level. Therefore, this problem has a vendor-managed, order-up-to-level inventory

policy. The demands are known, and the vehicle has a certain capacity. The goal is to

determine the quantities shipped in each time period, and to design the routes. Archetti

et al. (2007) present a mixed integer linear programming model and solve it by adding

some valid inequalities to the LP relaxed model. An exact branch-and-cut algorithm is

used to solve all three models.

Solyalı and Süral (2011) suggest a stronger formulation for the model with OU policy

given by Archetti et al. (2007), by using the shortest path network representation for the

customer inventory replenishment part. Coelho and Laporte (2013) extend the model of

Archetti et al. (2007) by considering multiple vehicles. Also, Adulyasak et al. (2014) extend
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the stronger formulation of Solyalı and Süral (2011) to the case of multiple vehicles. They

also solve a model for the Production Routing Problem (PRP) along with IRP. Both the

models are solved using a branch-and-cut algorithm.

Another exact approach was the branch-and-price-and-cut algorithm used by De-

saulniers et al. (2016). In the most recent work, those authors apply the latest algorithm

to solve an IRP with an ML inventory replenishment policy. Route delivery patterns

are generated, where such a pattern specifies the quantity delivered to each customer

along the corresponding route. Only extreme route-delivery patterns are considered, and

their convex combinations are used to generate any other route delivery patterns. In

the branch-and-bound algorithm, the lower bounds at each node are computed using

a column generation algorithm, where one subproblem for each period is solved as an

Elementary Shortest Path Problem with Resource Constraints (ESPPRC). Cutting planes

are added dynamically to tighten the linear relaxations. Each of the papers above provides

an algorithm to solve the problem under the same assumptions. Those algorithms are

tested on the same set of benchmark instances, thus allowing for a clear comparison of the

performance of each algorithm.
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Chapter 3

Deterministic Inventory Routing

Problem

3.1 Introduction

This section discusses the deterministic IRP. This will include the notations and the for-

mulation of the deterministic problem.

3.2 Description

In this variant of the IRP, the time horizon is finite and the structure is one-to-many.

Since several stores can be visited on a route in any time period, the routing is multiple.

The inventory policy at the retailer’s end is ML. Since the problem is deterministic, the

demand at each retailer is known over the whole horizon. Thus, the inventory will always be

nonnegative. The time horizon is discrete and finite. Finally, the fleet consists of multiple
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identical capacitated vehicles. The objective is to minimize the inventory cost plus the

routing cost. Inventory is held at the depot and also at each retailer, and there is a holding

cost associated with that inventory. There is some initial inventory at the retailer as well

as at the supplier’s end. The cost of routing is dependent on the location of the retailers.

Since it is a VMI system, at the beginning of the time horizon, the supplier has all the

information on the demands and inventory at each retailer. In a deterministic case, the

routes for each period are decided at the beginning of the time horizon; vehicles will be

dispatched to those retailers which require inventory so as to fulfill the demands of the next

periods. A route starts at the depot, visits a subset of retailers, and ends at the depot.

Each retailer can be visited only once in each time period (no split deliveries). Also, each

vehicle can perform only one route per time period although there are no time windows

for delivery. The vehicle and the inventory holding capacity at each retailer should never

be exceeded in any time period over the course of the problem.

3.3 Mathematical Model

In the literature, the deterministic IRP is described by the MIP formulation containing

arc-based decision variables. This makes it is easier to determine the feasibility of the

route. The only case of a route-based formulation is in the work of Desaulniers et al.

(2016). MIP formulations can differ in the way the models depict the subtour elimination

constraints. The constraints can be expressed in two ways, the standard subtour elimina-

tion constraints and the Miller-Tucker-Zemlin (MTZ) elimination constraints. The most

widely used method is to add standard subtour elimination constraints where the whole

family of those constraints is added all at once to the formulation. However, while solving

the model, these constraints are removed. They are then introduced when required using
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the separation algorithm by Padberg and Rinaldi (1991). A more compact way is to use

MTZ elimination constraints as given by Desrochers and Laporte (1991). The number

of these constraints is proportional to the number of nodes in the model and hence no

constraints need to be added later while solving the model.

The mathematical model formulated in this thesis using MTZ constraints is based on

Coelho et al. (2012). However, a few changes are made to their model. These include

the use of homogeneous vehicles instead of heterogeneous vehicles. The holding cost is

included in time period 0 as well.

3.3.1 Notation

The model, defined on an undirected graph G = (V,A) is based on the following notations.

Sets

• Vertex 0 represents the supplier.

• V ′ = {1, ...,m} represents customers.

• V = V ′ ∪ 0 represents the vertex set of the graph.

• A = {(i, j) : i, j ∈ V, i 6= j} is the arc set.

• Set of time periods is T = {1, ..., p}

• M = T ∪ 0 considers time period 0

• K = {1, ..., v} denotes the set of homogeneous vehicles.

15



Parameters

• hi denotes the holding cost at the customers as well as at the supplier (i ∈ V )

• The inventory holding capacity at each customer is Ci (i ∈ V ′)

• The length of the planning horizon is p

• At each time period t, the quantity of product made available at the supplier is rt

• qkti denotes the amount of inventory delivered to customer i by vehicle k in time

period t

• dti denotes the demand of each customer i at time period t

• Q denotes the capacity of each homogeneous vehicle k ∈ K

• cij is the routing cost associated with arc (i, j) ∈ A

• Ukt
i (i ∈ V ′) is used to avoid subtours by vehicle k in time period t

Decision Variables

• I ti (i ∈ V ) defines the inventory levels at the end of period t, at the supplier as well

as at each customer i.

• xktij =

{
1, if arc (i, j) is traversed by vehicle k in time period t

0, otherwise
.

• ykti =

{
1, if vertex i is used by vehicle k in time period t

0, otherwise
.
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3.3.2 Formulation

minimize
{∑
i∈V

∑
t∈M

hiI
t
i +
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(3.1)

subject to

I t0 = I t−10 + rt −
∑
i∈V ′

∑
k∈K

qkti t ∈ T (3.2)

I ti = I t−1i +
∑
k∈K

qkti − dti i ∈ V ′, t ∈ T (3.3)

I ti ≥ 0 i ∈ V, t ∈ T (3.4)

I ti ≤ Ci i ∈ V, t ∈ T (3.5)∑
k∈K

qkti ≤ Ci − I t−1i i ∈ V ′, t ∈ T (3.6)

∑
i∈V ′

qkti ≤ Q k ∈ K, t ∈ T (3.7)

∑
k∈K

qkti ≤ Ci
∑
i∈V ′

∑
k∈K

xktij i ∈ V ′, t ∈ T (3.8)

qkti ≤ Ciy
kt
i i ∈ V ′, k ∈ K, t ∈ T (3.9)∑

j∈V

xktij =
∑
j∈V

xktji = ykti i ∈ V, k ∈ K, t ∈ T (3.10)

Ukt
j ≥ Ukt

i + qktj +Qxktij −Q i, j ∈ V ′, k ∈ K, t ∈ T (3.11)∑
j∈V ′

xkt0j ≤ 1 k ∈ K, t ∈ T (3.12)

∑
k∈K

ykti ≤ 1 i ∈ V ′, t ∈ T (3.13)

qkti ≥ 0 i ∈ V ′, k ∈ K, t ∈ T (3.14)

xktij ∈ {0, 1} i, j ∈ V, i 6= j, k ∈ K, t ∈ T (3.15)

ykti ∈ {0, 1} i ∈ V, k ∈ K, t ∈ T (3.16)
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Ukt
i ≥ 0 i ∈ V ′, k ∈ K, t ∈ T (3.17)

Objective (3.1) minimizes the total cost of inventory and transportation. Constraints

(3.2) and (3.3) define the inventory at the end of each period at the supplier and cus-

tomers respectively. Constraint (3.4) prevents stockouts at the supplier as well as at the

customers. Constraint (3.5) requires that the customer’s inventory should always be less

than or equal to the holding capacity. Since the formulation is based on the ML inventory

policy, constraint (3.6) forces the quantity delivered to a customer to fill the inventory to

the maximum level. Constraint (3.7) guarantees that the vehicle capacity is maintained.

Constraints (3.8) and (3.9) are used to make sure that a customer is serviced by a vehicle

only if the vehicle visits that customer. Constraint (3.10) is the degree constraint, stating

that if a customer or a supplier is not serviced by a vehicle, then there should be no path to

or from that location. Constraint (3.11) is MTZ subtour elimination constraint. Constraint

(3.12) makes sure that a vehicle covers at most one route per time period. Constraint (3.13)

prevents split deliveries, making sure that each customer is visited at most once per time

period. Finally constraints (3.14)-(3.17) impose integrality and non-negativity conditions

on the variables.

3.4 Conclusion

This chapter has discussed the standard IRP. However this model cannot be applied to

industries that deal with perishable products like food retail and blood industries. To make

the IRP model applicable to such kind of products, a component of perishability has to be

added to the existing model. This is described in Chapter 4.
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Chapter 4

Perishability

4.1 Introduction

This section will introduce the component of perishability to the deterministic IRP. The

problem will henceforth be called the deterministic Perishable IRP (PIRP). The present

chapter includes a description of the problem followed by the relevant literature for the

topic. Then the mathematical model for this problem is described.

4.2 Importance

The management of perishable products forms a major part of the study of Supply Chain

Management. The research done on perishability can be applied to several industries.

These include the food retail industry which deals with many perishable products with

differing lifetimes, and the pharmaceutical industry, where drugs have a fixed expiry date

and have no value after expiry. Another industry where this model can be applied is
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the hospital industry that deals with blood and its components. The management of

blood inventory at blood banks and hospitals as well as the transportation of blood during

emergencies make it a very crucial perishable product that needs to be protected from

wastage.

Looking at the food retail industry, the majority of sales revenue comes from perishable

products. The necessity to maintain a high level of consumer confidence in product safety

causes the management to be even more challenging. It is difficult to manage the supply

chain due to economic trade-offs between the product availability and food supply safety.

Many products are discarded at the end of the supply chain by retailers or are not purchased

by customers which in turn leads to spoilage. According to O’Byrne (2016), one third of

all food produced is lost to spoilage before it can be consumed. This fragility requires the

supply chain to move fast. The fresh supply chain is expected to grow by 13.9% by 2020.

Thus, it is very important to reduce wastage, increase profits, and improve the customer

service level.

The blood supply chain is unlike any other supply chain because blood cannot be

manufactured. It is vitally important to health care, and volatile, since blood and its

components are perishable. Every unit of blood wastage not only leads to economic losses,

but also the effort of the blood donor is dissipated. According to the Canadian Blood

Services review, the wastage of blood was down to around 6% in 2017-2018, but there is

still scope for improvement. There needs to be better optimization of the inventory and

distribution of blood.
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4.3 Relevant Literature

In the literature on the IRP, whether for single or multiple products, the shelf life is

always assumed to be infinite. This is a major drawback when the product is perishable.

Perishable products have a fixed lifetime, and the product will have no value after its

shelf life has expired. The major difficulty with the management of perishable products

is that the problem size is usually large. This is because any typical retail chain has over

10,000 distinct products with many different shelf lives. Also, a big retail chain would have

a large number of geographically dispersed stores with various requirements. Hence, the

application of an IRP, where the VMI system is incorporated, is essential for this situation.

Overall, these factors make the PIRP complex.

The problem statement for the perishable IRP is the same as for the standard IRP,

except that the products have a limited shelf life after which they have no value. In the

deterministic case, shortages are not allowed. Moreover, thanks to complete knowledge

about the demands, nothing would deteriorate. This implies that the objective of the

PIRP remains the same as a standard IRP. Overall profit of the supply chain is maximized,

taking account of the inventory holding costs and routing costs.

In the literature, the perishability of products is handled in two ways. The first dis-

tinguishes the PIRP and the IRP by defining the maximum quantity delivered to stores.

While in the IRP, maximum delivery quantity depends only on the storage capacity and

the on-hand inventory at a customer’s site, maximum delivery quantity in the PIRP is

restricted not only by those two parameters but also by the maximum shelf life of the

product. The second way in which perishability can be handled is by maximizing the

profit of the supplier. In this case, the objective function has another component of profit

which depends on the price at which the product is sold. Constraints are treated in the
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same manner as in the IRP, with an additional restriction on the product shelf life. As

the product deteriorates its price also reduces. This is because an older product cannot be

sold at the same price as a new one. The latter approach to handling perishability is used

in this thesis.

In the PIRP, delivery frequency plays a big role. Less frequent deliveries reduce the

routing costs, but leave behind products with shorter remaining shelf lives until the follow-

ing delivery. Those items are subject to not only holding cost and deterioration, but will

have undesirable freshness from the customers’ perspective. Moreover, demand for those

products may be adversely affected by their age, perhaps implying a selling price that

decreases as the product deteriorates. If deliveries are executed more frequently, freshness

of products and consequently customer satisfaction increases. However, higher routing

and holding costs are then imposed on the system. Therefore, finding the right trade-off

between costs and freshness is crucial.

Hemmelmayr et al. (2009) were the first ones to introduce the concept of VMI to

perishable products with known demands. The authors investigate a problem on the

delivery of blood products from a blood bank to hospitals using a small fleet of homogeneous

uncapacitated vehicles. The objective is to minimize total routing costs during a finite

planning horizon; no inventory costs are taken into account. As stockouts may result in

loss of life, hospitals actually prefer to have high inventory, even if this results in greater

costs. No out-date costs are considered as a deterministic setting is used. Inventory is

handled via constraints on minimum and maximum levels with respect to the spoilage

period and the product usage.

Hemmelmayr et al. (2009) develop and evaluate two delivery strategies. The first

retains the concept of regions and the use of fixed routes, but utilizes integer programming

techniques to optimally decide on delivery days. The integer programming-based approach
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employs a scheme in which the set of hospitals is divided into four regions; hospitals in

each of those are served by a single vehicle using a fixed route, which simply skips those

hospitals that do not require delivery. Only a two-week period is considered and these

delivery decisions are made daily. The concept of “shortcutting” is used in the integer

programming model to provide flexibility. It implies that a TSP solution covering all

vertices is at hand. This solution is exploited to construct another TSP solution where

a subset of vertices is served. In the solution, they simply cut arc (i, j) if either node

i or node j is not served in the corresponding period. The remaining partial paths are

connected to make a complete TSP solution. The second approach is based on viewing the

problem as a Periodic Vehicle Routing Problem (PVRP), with constraints on route length

but with none on capacity. They allow each hospital to have a set of visit frequencies

and a set of associated (periodic) visit combinations. Visit combinations that lead to

an infeasible delivery pattern are deleted. They develop a variable neighbourhood search

(VNS) algorithm to solve this variant of the PVRP. The two techniques used by the authors

provide considerable transportation savings over the traditional RMI.

Le et al. (2013) propose a mathematical model for the PIRP employing the concept

of a feasible route. A feasible route is one that starts from the depot, visits a subset of

customers at most once, and then returns to the depot. This differs from the popular

notion of a feasible route in the VRP, which is defined there as a route for which the sum

of demands of customers on the route is less than vehicle capacity. The approach of Le

et al. (2013) is a path-flow formulation; transportation costs as well as constraints depend

on the route and not the vehicle. The upper bound on inventory at the retailer is the

summation of demands over all time periods following the current period. This does not

allow discarding of products. They utilize a column-generation based heuristic algorithm

to solve the problem. The pricing problem there can be utilized to solve small to medium
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instances and forms the basis of a branch-price-and-cut algorithm.

Diabat et al. (2016) address the same problem as Le et al. (2013), minimizing only the

transportation costs. They employ a Tabu Search (TS) based heuristic for the Periodic

Distribution Inventory Problem. Diabat et al. (2016) construct the feasible visit combina-

tions at the beginning, deciding when each retailer will be visited over the time horizon.

They formulate the TS algorithm such that the route is designed first. It is then run in a

way that the vehicle-capacity constraint violation is minimized. This requires them to add

a penalty cost when that capacity is violated. The results by the TS algorithm out-perform

the column-generation based heuristic of Le et al. (2013) in all large instances for shelf life

of 2 periods, which the latter authors found more difficult to solve.

Mirzaei and Seifi (2015) formulate a PIRP in which end-customer demand is a decreas-

ing function of inventory age. A portion of demand is considered as lost sales if inventory

is not as fresh as it could be. Since the demand is known, the model is deterministic. The

model is a Mixed Integer NonLinear Program (MINLP) that is linearized by the authors.

The objective is to minimize the total cost of routing, lost sales, and holding inventories.

The mathematical model is solved to optimality for small to medium sized problems. The

authors develop a hybrid Simulated Annealing (SA) and TS heuristic for solving larger

problem instances.

There are a few papers which consider the component of price in the objective function

of profit maximization. The price of the product, and in turn the profit, usually decreases

as the product gradually deteriorates with age. The present research focuses on profit

maximization which is briefly discussed below.

Coelho and Laporte (2014) were one of the first to consider a profit maximization

objective for a PIRP. Here inventory holding cost and selling price are age-dependent. The
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supplier has the choice to deliver fresh or aged products, and each case yields different

holding costs and distinct revenues. The objective function maximizes the total sales

revenue, minus inventory and routing costs. The sale of products of different ages would

decide the revenue. Three different selling-priority policies are investigated: (a) Fresh First

policy (FF), (b) Old First policy (OF), (c) Optimized Priority policy (OP). The OP policy

lets the model determine which items to sell at any given time period in order to maximize

profit. This means that depending on the parameter settings, one may prefer to spoil some

items and sell the fresher ones that generate higher revenues.

FF and OF policies sound similar to, but differ from the traditional First in First Out

(FIFO) and Last in First Out (LIFO) policies that are common in inventory management.

Under a FIFO policy, the first product delivered will be the first to be sold. This coincides

with the OF policy when deliveries from suppliers to retailers are of fresh items. However,

in this case, where the supplier delivers products of different ages, the sequence of deliveries

does not necessarily coincide with the lengths of time the products have spent in inventory.

Coelho and Laporte (2014) formulate this IRP for perishables as an MILP, and devise an

exact branch-and-cut algorithm for the solution of various models.

Another profit maximization model is given by Alvarez et al. (2018), where a fixed shelf

life of the products is considered; sales revenue varies with the quality of those products.

Their problem is the same as the one proposed by Coelho and Laporte (2014). Four new

reformulations of the original model are proposed. The first variation adds new decision

variables with respect to transportation; the new variables relate the quantity delivered

to those demands covered by the delivered quantity. In the second reformulation, decision

variables do not involve the product age. Instead, age is considered in terms of demands

covered in the following periods by the products delivered in the present time period. For

the third and fourth formulations, Alvarez et al. (2018) remove the vehicle index from each
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of the first two formulations respectively. All four formulations are solved using the branch-

and-cut algorithm. A hybrid heuristic is also proposed to solve the four variations. Results

show that the formulations without the vehicle index (i.e. numbers 3 and 4) provide better

and faster solutions as compared to the traditional arc-based formulations.

The Production Routing Problem (PRP), another very common subject where per-

ishability is applied, adds a component of production in the IRP. Yantong et al. (2016)

extend the work of Coelho and Laporte (2014) by adding that production component to the

inventory and transportation cost in a profit-maximization objective. Inventory capacity

at the depot is not considered, but there is a corresponding holding cost there. Product

quality is managed throughout the supply chain; the item’s selling price changes with each

period, as the quality of the product decreases. Selling price is a linear function of product

quality, with the price decreasing considerably as the product deteriorates. Yantong et al.

(2016) use CPLEX to solve the model on randomly generated instances and different qual-

ity degradation rates, concluding that due to the problem complexity, CPLEX is only able

to solve small instances. The present research remarks that Li et al. (2016) add inventory

capacity at the depot to the model of Yantong et al. (2016) to make it more realistic.

Shaabani and Kamalabadi (2016) develop a PRP for multiple perishable products.

Perishability is modeled in the same way as in Le et al. (2013), with the upper bound on

inventory being the total demands of the following time periods. Qiu et al. (2019), in the

most recent paper on the subject of perishable PRP, treat both the deterioration rates and

inventory holding costs as age-dependent. Those authors apply the proposed model to the

production and distribution operations of a food company operating in Nanjing, China.
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4.4 Description

The deterministic PIRP described in this thesis is based on the model by Coelho and

Laporte (2014) with a profit maximization objective. A finite time horizon is assumed

with a one-to-many structure. There is one central depot; multiple retailers would be

visited in a single trip, but they can be visited only once. Demand is deterministic and is

constant across periods. The transportation fleet is homogeneous and is fixed in size.

The model differs from a standard IRP in that it uses the concept of consignment

inventory. Consignment inventory can be explained by means of Figure 1.1. The supplier

in this case can be the manufacturer that produces the product. The supplier delivers the

product to the retailer (retailers) as soon as the item is produced, and hence the supplier

holds no inventory. There is thus no holding cost at the depot. The supplier owns the

product (which in this case can be called the consignment) until the time it is sold. The

retailers keep all the inventory, but the corresponding holding costs at the retailers are

charged to the supplier. When the retailer sells the product to the customer, the customer

pays for the product, and that money is transferred to the supplier.

This type of inventory policy benefits both entities, as they each share the risks as well

as the rewards. The supplier saves the cost of holding inventory at the depot. Also, the

supplier benefits from keeping all inventory at the retailers, since they are closer to the

customer. The retailer, on the other hand, does not have to pay for keeping the product

in inventory. The job of the retailer is to sell the product. Also, the retailers don’t have

to worry about restocking the product as the supplier, who knows the inventory level at

each retailer, will keep the retailer well stocked. This cost-sharing among the supplier and

retailers helps to better streamline the supply chain.

The model of the PIRP treats the inventory and transportation costs of a single per-
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Figure 4.1: Aging process of the inventory at a retailer

Shelf life = 2 periods; time horizon = 3

ishable product with a discount factor. The revenue from that product differs with age,

as in Coelho and Laporte (2014). The difference is the way this profit maximization is

handled. A fresh product is delivered to the retailers every period. The product deterio-

rates over time when in inventory. As it deteriorates, the supplier who owns the product

has to reduce its selling price (giving a discount) in order to maximize profit. Thus, this

model uses the Optimized Priority Policy (OP) described in Coelho and Laporte (2014),

where the product is sold in a way that maximizes the system profit, considering all other

cost elements. The selling price and discount factor of the fresh product are known and

constant. The discount factor is the percentage by which the item’s selling price is reduced

as the product shelf life decreases with each period it is not sold and kept in inventory.

The holding cost is not dependent on the product’s age. The shelf life of the product can

be any number of periods (one or more), but is constant over the course of the problem.

The product expires after its lifetime and is removed from stock. All inventory is held

at the retailer’s end based on the holding capacity there. The product’s decay affects only

the unit price which the supplier receives.
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To keep track of decay of the products in stock, another subscript is added to the

original inventory variable. I ti is replaced by I t,t
′

i . This represents the usage of the product,

where t denotes the time period that the product is delivered to retailer i and t′ indicates

the period in which the product is used or sold. To illustrate the aging process and how the

discount is applied during the planning horizon, the inventory is described in Figure 4.1.

There the product shelf-life is taken as 2 periods and a time horizon of 3 is considered for

a particular retailer. In the figure, qt (t ∈ (1, 2, 3)) is the quantity delivered to the retailer

in time period t; d denotes the retailer demand in each time period, and is constant across

periods.

As an example, we consider a product whose price is $100 and for which the discount

factor is 20 (in %). This means that in any time period, a fresh product will sell at the

price of $100 (I t,t for t ∈ (0, 1, 2, 3)). As the product gets one period older, it is sold at a

discount of 20%, hence it is sold at $80 (I t,t+1 for t ∈ (0, 1, 2, 3)). As the shelf-life of the

product is 2, if the product is sold after 2 time periods, it will get a further discount of

$20 (20% of the original price), and will finally be sold at $60 (I t,t+2 for t ∈ (0, 1, 2, 3)).

After this, the product would be removed from inventory. Thus, the price of the product

is constant and the discount rate is also constant (20% of the original price per period) as

the product ages.

The objective of the PIRP is to maximize the overall revenue of the supplier. This

involves the addition of a term involving sales revenue to the original objective function

of the IRP. Thus, the objective function maximizes the profit of the supplier, which is the

sales revenue minus the routing and inventory holding costs.
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4.5 Mathematical Model

The model here adds the component of perishability to the IRP model described in Chapter

3. This includes modifying the objective function and changing the constraints to include

the product aging process in accounting for inventory. Since the model focuses on the

concept of consignment inventory, the constraint (3.2) i.e. the inventory balance constraint

at the depot, is removed. The rest of the formulation remains the same.

4.5.1 Notation

Only the notations that are changed or added to the earlier model are mentioned.

Parameters

• P denotes the price of the product

• θ denotes the discount factor (%)

• n denotes the lifetime of the product

• Ii0 denotes the initial inventory at the retailer location i

Sets

• F = {0, ..., o} is the set of the time periods starting from the time period 0 to the

time periods until which the shelf life of the product is valid (M + n). Here n is the

shelf life of the product
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Decision Variables

• I t,t
′

i : Inventory delivered in time period t and used or sold in time period t′ (t′ ≥ t)

to retailer i

4.5.2 Formulation

maximize
{∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
i )

−
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(4.1)

subject to

dti =
n∑

t1=0

I t−t1,ti i ∈ V ′ t ∈ T (4.2)

∑
k∈K

qkti =
n∑

t1=0

I t,t+t1i i ∈ V ′ t ∈ T (4.3)

n∑
t1=0

I0,0+t1i = Ii0 i ∈ V ′ (4.4)

t∑
t1=t−n+1

t1+n∑
t2=t+1

I t1,t2i ≤ Ci i ∈ V ′ t ∈ T (4.5)

∑
k∈K

qkti ≤ Ci −
t∑

t1=t−n+1

t1+n∑
t2=t+1

I t1−1,t2−1i i ∈ V ′ t ∈ T (4.6)

I t,t1i = 0 i ∈ V ′, t ∈ T, t1 ∈ F, t1 > p (4.7)

I t,t
′

i ≥ 0 i ∈ V ′ t ∈ T (4.8)∑
i∈V ′

qkti ≤ Q k ∈ K t ∈ T (4.9)

∑
k∈K

qkti ≤ Ci
∑
j∈V ′

∑
k∈K

xktij i ∈ V ′ t ∈ T (4.10)
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qkti ≤ Ciy
kt
i i ∈ V ′ k ∈ K t ∈ T (4.11)∑

j∈V

xktij =
∑
j∈V

xktji = ykti i ∈ V k ∈ K t ∈ T (4.12)

Ukt
j ≥ Ukt

i + qktj +Qxktij −Q i, j ∈ V ′ k ∈ K t ∈ T (4.13)∑
j∈V ′

xkt0j ≤ 1 k ∈ K t ∈ T (4.14)

∑
k∈K

ykti ≤ 1 i ∈ V ′ t ∈ T (4.15)

qkti ≥ 0 i ∈ V ′ k ∈ K t ∈ T (4.16)

xktij ∈ {0, 1} i, j ∈ V ′ k ∈ K t ∈ T (4.17)

ykti ∈ {0, 1} i ∈ V k ∈ K t ∈ T (4.18)

Ukt
i ≥ 0 i ∈ V ′ k ∈ K t ∈ T (4.19)

The objective function (4.1) maximizes the net profit of the supplier. The first term

denotes the revenue, based on the price at which the product is sold by the retailer. The

inventory holding costs and the routing costs are subtracted from the price term, and

are the same as in the IRP. The standard inventory balance constraints are replaced by

constraints (4.2) and (4.3); the inventory balance constraint for the supplier’s depot is

removed. Constraint (4.2) states that demand can be satisfied only by a product that is

fresh or has been in inventory for the previous n time periods, n being the shelf-life of the

item. Constraint (4.3) is for the supply, stating that product delivered to the retailer can

only be used to satisfy the demand of the current period and the next n periods. Constraint

(4.4) is very important to verify that the initial inventory is used (and thus will contribute

to the profit of the supplier). Constraint (4.5) maintains the retailer’s inventory capacity

based on the product age, and makes sure that no stock of an expired product is kept.

Constraint (4.6) verifies that the ML inventory policy is maintained even as the product
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decays. Constraint (4.7) ensures that inventory is zero at the end of the time horizon.

Constraint (4.8) guarantees that inventory is nonnegative. Constraints (4.9)-(4.19) for the

PIRP are the same as Constraints (3.7)-(3.17) for the IRP.

4.6 Results

This section compares the results of the PIRP model with those of the IRP model.

4.6.1 Instances

The instances used here are derived from the single vehicle IRP instances of Archetti et al.

(2007), where single-vehicle algorithms for the IRP were evaluated. Those instances contain

three time periods and up to 50 customers, and six time periods and at most 30 customers.

They are divided into four classes based on inventory holding cost and planning horizon

length: H3, H6, L3, and L6. The H3 and H6 (L3 and L6) classes contain instances with

high (low) holding costs, whereas the H3/L3 and H6/L6 classes have three and six time

periods, respectively. There are five instances for each combination. All instances involve a

single vehicle, multi-vehicle algorithms have been evaluated by simply dividing the original

vehicle capacity by the number of desired vehicles. Details regarding these instances can

be found at https://www.leandro-coelho.com/instances/inventory-routing/

For the results in this section, the class H3 is used (high cost and 3 time periods). The

naming of each instance as given by Archetti et al. (2007) is of the form: “absjnm”, which

is instance j with m retailers. “abs” and “n” in the instance name hold no significance,

but we use the same naming convention in accordance with that given by Archetti et al.
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(2007). Similarly, the instance numbers go from 1 to 5, and the number of retailers goes

from 05 to 50 (in intervals of 5). In total, that makes 150 instances.

For the first test, the models were run on all 150 instances of H3, but that led to many

instances timing out. So, in the results shown, only instances with up to 20 retailers (20

instances) are exhibited.

4.6.2 Parameters

The tests were done keeping the number of vehicles (k) as 2, and with the product shelf

life of 2 periods. The selling price of the product (P ) is taken as 100, and the discount

factor (θ) is 20%.

The model for the PIRP has a maximization objective, while the IRP objective is

minimization. To make the models comparable, our model for PIRP is made analogous to

IRP by taking the discount factor (θ) as 0. In this case then each product is sold at price

P , irrespective of when the product is delivered and when it is sold. For the results below,

we are thus comparing PIRP with θ = 0 (analogous to IRP) to PIRP (θ ¿ 0).

4.6.3 Computational experiments

Both models are run on the CPLEX solver. The default algorithm of CPLEX is branch-

and-cut. The time limit is set to 3 hours.

Comparison between the two models is shown in Table 4.1. It can be seen that, adding

the component of perishability to the IRP does not significantly affect the problem. In

some cases, PIRP even performs better than the standard IRP. For instance, in abs5n15,
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Data Set IRP PIRP Gap

Obj BB Gap(%) Time(s) Obj BB Gap(%) Time(s) Diff

abs1n05 56.44 56.45 0.01 0.28 47.20 47.20 0 0.06 0

abs1n10 187.94 187.96 0.01 967 162.17 162.19 0.01 987 0

abs1n15 245.22 245.24 0.01 233 212.11 212.13 0.01 5662 0

abs1n20 316.42 316.87 0.14 TO 272.55 272.90 0.13 TO -8

abs2n05 46.18 46.18 0 0.1 36.73 36.73 0 0.1 0

abs2n10 160.49 160.50 0.01 7645 140.15 140.17 0.01 238 0

abs2n15 234.17 234.41 0.1 TO 203.54 203.69 0.07 TO -43

abs2n20 309.80 309.97 0.05 TO 265.05 265.29 0.09 TO 44

abs3n05 88.62 88.63 0.01 2.45 79.40 79.41 0.01 0.69 0

abs3n10 135.01 135.02 0.01 52.5 113.37 113.38 0.01 82.4 0

abs3n15 250.25 250.28 0.01 2184 213.33 213.35 0.01 447 0

abs3n20 303.82 303.85 0.01 1829 256.44 256.55 0.05 TO 80

abs4n05 51.98 51.98 0.01 0.73 47.20 47.20 0 0.85 0

abs4n10 161.78 161.80 0.01 580 141.75 141.77 0.01 199 0

abs4n15 212.75 213.00 0.12 TO 186.32 186.53 0.12 TO 0

abs4n20 295.63 296.71 0.36 TO 261.95 262.54 0.22 TO -64

abs5n05 68.85 68.86 0.01 2.45 57.86 57.87 0.01 0.6 0

abs5n10 189.48 189.50 0.01 91.9 165.56 165.57 0.01 24.8 0

abs5n15 201.39 201.69 0.15 TO 179.85 179.86 0.01 7987 -1400

abs5n20 342.72 343.53 0.24 TO 297.50 298.36 0.29 TO 17

Table 4.1: IRP vs PIRP (Vehicles=2; Shelf-life=2)

Obj, BB refer to the Objective Value and Best Lower Bound respectively (both in 1000s); TO

refers to Time Out; Gap Diff refers to the difference in Gaps between PIRP and IRP (in %)
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Figure 4.2: Aging process of inventory IRP vs PIRP at retailer 5 of data set abs5n05

(shelf-life = 2; time-periods = 3)

the PIRP solves to optimality whereas IRP does not. In the case of IRP there is no discount

factor; hence its objective function value is always greater than that for PIRP.

Comparing two different models does not give us insights on the impact of the com-

ponent of perishability. How does the declining selling price of the product affect the

inventory, routes, and product usage?

For these insights, tests on some of the small instances which solve in reasonable time

are done. Four instances with 5 retailers each (abs1n05, abs2n05, abs4n05, abs5n05), and

one instance with 10 retailers (abs3n10) are solved. Recall that Figure 4.1 showed the usage

of inventory and the quantity delivered at the beginning of each time period, depending

on the initial inventory and the retailer’s demand.

The aging process of inventory of IRP vs PIRP for retailer 5 in one of the instances

(abs2n05) is represented in Figure 4.2. Explanation concerning the remaining retailers in

this instance is given in Table 4.2.

In Figure 4.2, the initial inventory at the retailer is 12; demand in each time period is

12. The insights obtained from Figure 4.2 are as follows:
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1. For IRP, since it does not matter how long the product is kept in inventory, it is seen

that the delivery is done only once in time period 2

2. For PIRP, the product loses value when it is kept in inventory. So, two deliveries are

made, in periods 2 and 3 to maximize the profit

3. For both cases, the initial inventory is used first, before any delivery of the product.

This is also because constraint (4.4) makes sure that initial inventory never goes to

waste

For the data set in consideration (abs2n05), retailer 5 was chosen because it is the

only retailer where the initial inventory can satisfy one period’s demand. For the other 4

retailers, the initial inventory is double the retailer’s demand, and hence can satisfy two

periods of demand. This means, for the other retailers (1,2,3,and 4), delivery is required

in only a single time period.

Retailer Demand In IRP PIRP

Inv TP Vehicle Quantity TP Vehicle Quantity

1 31 62 2 1 31 3 1 31

2 60 120 2 1 60 3 1 60

3 17 34 3 1 17 3 2 17

4 38 76 3 1 38 3 2 38

5 12 12 2 1 24 2,3 1 12,12

Table 4.2: IRP vs PIRP analysis for abs2n05 (Vehicles = 2; Capacity = 118.5)

Table 4.2 shows the values of the Initial Inventory and Demands for each of the five

retailers. Comparison is done between IRP and PIRP as to when the quantity is delivered,

which vehicle is used, and how much is delivered. From the table, it is very clear that in
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this case, since the IRP does not account for perishability, only a single vehicle is used for

delivery each period. For the IRP, it does not matter when the product is delivered. For

PIRP, the product is delivered only when it is required, and hence in the third time period,

two vehicles are used for delivery.

Retailer Demand In IRP PIRP

Inv TP Vehicle Quantity TP Vehicle Quantity

1 65 130 3 1 65 3 2 65

2 35 70 2 2 35 3 2 35

3 58 58 2 1 116 2,3 2,1 58,58

4 24 48 2 2 24 3 2 24

5 11 11 2 2 22 2,3 2 11,11

Table 4.3: IRP vs PIRP analysis for abs1n05 (Vehicles = 2; Capacity = 144.5)

Retailer Demand In IRP PIRP

Inv TP Vehicle Quantity TP Vehicle Quantity

1 53 53 2,3 1 53,53 2,3 2 53,53

2 21 21 2 1 42 2 1 21,21

3 24 24 2,3 1 24,24 2,3 1 24,24

4 67 67 2 2 134 2,3 2 67,67

5 14 28 3 1 14 3 2 14

Table 4.4: IRP vs PIRP analysis for abs4n05 (Vehicles = 2; Capacity = 134)

The results, for instances abs1n05, abs4n05, abs5n05, and abs3n10, are displayed in

Tables 4.3-4.6, respectively.
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Retailer Demand In IRP PIRP

Inv TP Vehicle Quantity TP Vehicle Quantity

1 19 38 3 1 19 3 1 19

2 47 94 3 1 47 3 1 47

3 72 144 3 1 72 3 2 72

4 81 81 2 2 162 2,3 1,2 81,81

5 15 30 3 1 15 3 1 15

Table 4.5: IRP vs PIRP analysis for abs5n05 (Vehicles = 2; Capacity = 175.5)

Retailer Demand In IRP PIRP

Inv TP Vehicle Quantity TP Vehicle Quantity

1 63 126 3 1 63 3 2 63

2 22 22 2 1 44 2,3 1 22,22

3 58 116 3 1 58 3 1 58

4 26 52 3 1 26 3 2 26

5 18 18 2,3 1 18,18 2,3 1 18,18

6 99 99 2 1 198 2,3 1 99,99

7 39 78 2 1 39 3 1 39

8 21 21 2 1 42 2,3 1 21,21

9 32 64 3 1 32 3 2 32

10 80 160 3 1 80 3 2 80

Table 4.6: IRP vs PIRP analysis for abs3n10 (Vehicles = 2; Capacity = 343.5)

Results are very similar to what was obtained initially while solving the first instance

(Table 4.2). However, there are some differences.
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In Table 4.3, since the vehicle capacity is 114.5, and quantity delivered to retailer 3 in

time period 2 is 116, the second vehicle needs to be used to deliver the remaining demands

during that period. It should be noted that, rather than delivering a quantity of 58 in

each of periods 2 and 3 (as in the case of PIRP), a delivery of 116 is made in period 2.

This means that the savings in routing costs for retailer 3 is more than the corresponding

increase in holding costs.

Another interesting case, for instance abs4n05 is displayed in Table 4.4. Here, even for

the IRP, retailers 1 and 3 receive deliveries twice during the time horizon. This leads to a

conclusion that additional saving in the inventory holding cost more than compensates for

an extra expenditure on transportation cost for these retailers i.e. it is cheaper to deliver

twice, than keep the product in inventory for an extra time period.

Only one case of 10 retailers is discussed here. The results, as shown in Table 4.6, are

comparable with results for instances having five retailers.

Although only five instances have been gathered in the above-mentioned results, the val-

ues for retailer demands, initial inventory, and vehicle capacity change with every instance.

Due to this variation, we were able to get the interesting insights of this subsection, as to

how introducing perishability to the IRP transforms the way in which the model behaves,

and the inventory is handled.

4.7 Benders Decomposition

An exact algorithm based on Benders Decomposition is used to solve the PIRP. Introduced

by Benders (1962), this algorithm aims to solve Mixed Integer Programming (MIP) models

by distinguishing two different types of variables (continuous and integer). In Benders
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decomposition, the original problem is partitioned into a master problem and a number of

subproblems, which are typically easier to solve than the original problem. By using linear

programming duality, all variables that belong to the subproblems are projected out; the

master problem contains the remaining variables and an artificial variable that represents

a lower bound on the total cost of the subproblems. The resulting model is solved by

a cutting plane algorithm in which, at each iteration, the values of the master problem

variables are determined first and the subproblems are solved with these variables fixed.

If the subproblems are feasible and bounded, an optimality cut is added to the master

problem. Otherwise, a feasibility cut is added. An upper bound can be computed from

feasible subproblems, and a lower bound is obtained if the master problem is solved to

optimality. The process continues until an optimal solution is found or the optimality gap

is smaller than a given threshold (Adulyasak et al. (2015)).

When the algorithm was first introduced, Benders (1962) mentioned that the algorithm

is fairly successful in problems which have a structure that can be naturally partitioned into

two mutually exclusive problems. The problem in this thesis is ideal to solve using Benders

Decomposition. The problem can naturally be partitioned into the inventory problem and

the transportation problem.

In order that there be a natural partition into the master problem and subproblems, it

is required that the two types of variables be mutually exclusive. The integer variables go

into the master problem, and the continuous variables go into the subproblem. For that

reason, the formulation described in Section 4.5.2 needs to be modified. In the current

formulation, the continuous variables are I t,t
′

i , qkti , Ukt
i . On the other hand, the integer

variables are xktij and ykti . The goal of the new formulation is to separate the variables that

concern inventory from the variables that concern routing. Thus, variables I t,t
′

i and qkti

need to be separated from the variables Ukt
i , xktij and ykti . Also, the variable that is used to
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avoid subtours, Ukt
i , is continuous and needs to be made an integer.

The new formulation that incorporates all the above described changes, and also makes

the original formulation more compact, is mentioned below.

4.7.1 Benders Reformulation

The variable ykti is removed to render the formulation more compact; the variable xktij now

incorporates the depot as well.

maximize
{∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
i )

−
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(4.20)

subject to (4.2)− (4.8), (4.15), and,

qkti ≤ Ci
∑
j∈V

xktij i ∈ V ′ t ∈ T, k ∈ K (4.21)

∑
k∈K

∑
j∈V

xktij ≤ 1 i ∈ V ′ t ∈ T (4.22)

∑
j∈V

xktij =
∑
j∈V

xktji i ∈ V t ∈ T k ∈ K (4.23)

Ukt
j ≥ Ukt

i + 1−M(1− xktij ) i, j ∈ V ′ t ∈ T k ∈ K (4.24)

xktij ∈ {0, 1} i, j ∈ V t ∈ T k ∈ K (4.25)

Ukt
i = {0, 1, 2, ...} i ∈ V ′ k ∈ K t ∈ T (4.26)

The objective function (4.20) remains the same as (4.1). Constraints (4.10)-(4.12),

(4.14)-(4.15), and (4.17)-(4.19) are replaced by constraints (4.21)-(4.23) and (4.25). Con-

straint (4.24) replaces constraint (4.13) as the subtour elimination constraint. It states
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that, only when there is a route from node i to node j (i, j ∈ V ′) will the value of Ukt
i get

updated. Finally, constraint (4.26) replaces constraint (4.19), where Ukt
i is now no longer

continuous.

This reformulation ensures that the problem is naturally distinguished into the master

problem and subproblems. It also makes it more compact than the original formulation.

The variables that correspond to the routing part of the IRP are now all integers. Therefore,

they become part of the master problem. Correspondingly, the variables that take care of

the inventory part of the IRP are all continuous, and hence are part of the subproblems.

4.7.2 Results

Instances

The instances used here are the same as the ones studied previously. Please refer to the

details in Section 4.6.1. Only instances with up to 20 retailers are included in the results.

Parameter values

Values of the parameters employed for results in Table 4.7 below are the same as those

mentioned in Section 4.6.2

Computational experiments

The instances are run using CPLEX-based branch-and-cut (BC), and on CPLEX with

Benders Decomposition (BD), with the time limit set to 3 hours.

For applying the Benders Decomposition Algorithm, the variables (xktij , and Ukt
i )

that concern the routing went to the Master problem, and the variables concerning
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inventory (I t,t
′

i , qkti ) were put in one subproblem. With CPLEX, there are several

ways in which the Benders Decomposition algorithm can be used. Each has a different

Benders strategy, giving CPLEX more or less freedom to solve the model. All three

strategies (1, 2, and 3) were tested, but strategy 2 (CPLEX works on the annotations

provided, and will decompose them further) gave better results and hence was em-

ployed to get the results. More information on the Benders strategies can be found on

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.

help/CPLEX/UsrMan/topics/discr_optim/benders/parameterBenders.html.

Results for implementation of the model with the branch-and-cut (BC) algorithm, in

comparison with the Benders decomposition (BD) algorithm, are described in Table 4.7.

Those results indicate that the BC algorithm performs better than the BD algorithm for

all instances. For small instances, with 5 or 10 retailers, both BC and BD algorithms

were able to solve them to optimality, but significantly greater time is taken by the BD

algorithm. When the algorithms are run on larger instances, they both time out. Even in

those cases, the gaps generated by the BD algorithm are much larger than those generated

by BC. The lowest difference is 40%. Apart from that, the differences for the remaining

instances are more than 50%, with the number going as high as 93% for two instances.

These results for the PIRP clearly imply that the BC dominates the BD algorithm.

4.8 Conclusion

This chapter has discussed the addition of a perishability component to the deterministic

IRP. The BD algorithm was also introduced. This was utilized as an alternative to solve

the model. However, it did not give the anticipated results.

In terms of formulation, the biggest drawback is that the PIRP model still considers
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Data Set BC BD Gap

Obj BB Gap(%) Time(s) Obj BB Gap(%) Time(s) Diff

abs1n05 47.20 47.20 0 0.06 47.20 47.21 0.01 0.13 0

abs1n10 162.17 162.19 0.01 987 162.17 162.19 0.01 4176 0

abs1n15 212.11 212.13 0.01 5662 212.11 212.40 0.14 TO 93

abs1n20 272.55 272.90 0.13 TO 272.11 273.23 0.41 TO 68

abs2n05 36.73 36.73 0 0.1 36.73 36.73 0 0.29 0

abs2n10 140.15 140.17 0.01 238 140.15 140.17 0.01 3381 0

abs2n15 203.54 203.69 0.07 TO 203.47 203.91 0.21 TO 67

abs2n20 265.05 265.29 0.09 TO 264.98 265.46 0.18 TO 50

abs3n05 79.40 79.41 0.01 0.69 79.40 79.41 0.01 3.65 0

abs3n10 113.37 113.38 0.01 82.4 113.37 113.38 0.01 217 0

abs3n15 213.33 213.35 0.01 447 213.33 213.35 0.01 2986 0

abs3n20 256.44 256.55 0.05 TO 256.44 257.02 0.23 TO 78

abs4n05 47.20 47.20 0 0.85 47.20 47.21 0.01 16.3 0

abs4n10 141.75 141.77 0.01 199 141.75 141.77 0.01 8997 0

abs4n15 186.32 186.53 0.12 TO 186.30 186.68 0.2 TO 40

abs4n20 261.95 262.54 0.22 TO 261.50 263.25 0.67 TO 67

abs5n05 57.86 57.87 0.01 0.6 57.86 57.87 0.01 0.85 0

abs5n10 165.56 165.57 0.01 24.8 165.56 165.57 0.01 238 0

abs5n15 179.85 179.86 0.01 7987 179.85 180.11 0.15 TO 93

abs5n20 297.50 298.36 0.29 TO 297.10 298.87 0.59 TO 51

Table 4.7: PIRP: BC vs BD (Vehicles=2; Shelf-life=2)

Obj, BB refer to the Objective Value and Best Lower Bound respectively (both in 1000s); TO

refers to Time Out; Gap Diff refers to the difference in Gaps between BC and BD (in %)
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demand to be known and constant. Any industry that deals with perishable products,

in reality, can never know the demands beforehand. The demand realization is usually

different than the predicted demand. Thus, this uncertainty or randomness in demand

needs to be captured. Chapter 5 considers stochastic demands, rather than deterministic,

for the PIRP.
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Chapter 5

Stochastic IRP

5.1 Introduction

This chapter introduces randomness in demand to the perishable IRP. The problem will

henceforth be called the stochastic perishable IRP (SPIRP). This chapter will include a

description of the problem, followed by the relevant literature for this topic. Then, the

mathematical model for this problem is formulated. Results of the solution algorithm for

the model are shown next, and then the conclusion and restrictions are noted.

5.2 Importance

Up until this chapter, the demand was always known and hence there was nonnegative

inventory at the retailer. The randomness in demand was not considered. When demand

is not known with certainty, there can be excess inventory or less inventory when the

demand is actually realized at the retailer’s end. If demand is lower than predicted, the
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excess inventory at the retailer will go to waste. With no salvage value, the supplier will

face losses. The other case is when the demand is higher than predicted, leading to a

stockout. Demand for the product cannot be fulfilled at that time and the extra demand

becomes lost sales. This will also lead to losses, since the customer whose demand was

not met would most likely go to a rival store/chain to get the product. This lower service

level implies a loss in customer satisfaction. Thus, it is very important to consider the

case of stochastic demands and make sure that the loss of revenue is minimized by better

optimization of the supply chain.

Food wastage is an important issue for supply chain managers to take into considera-

tion. The report by Second Harvest and Value Chain Management International describes

the extent of this loss (Nikkel et al. (2019)). The report provides the amount of losses

that occurred in Canada in previous years and how each entity of the food retail supply

chain contributed to this loss. The statistics show that food losses and wastage during pro-

cessing, distribution, and retail are 2.25, 0.55, and 1.31 Million Tonnes respectively. The

corresponding monetary values of these food losses are 9.78, 2.41, and 5.7 Billion Dollars.

These are staggering numbers.

A major cause of food loss is that products are not getting sold at the retail stores.

The loss at the supplier is due to inaccurate forecasts of demand. If demand is lower, the

stores are left with extra inventory. On the other hand, if the demand is higher, there are

penalties and financial losses due to stockout. Thus, to keep the customer satisfied and to

avoid penalties, excess inventory is kept at the stores and this leads to wastage of food.

Also, to maintain a high customer service level, the stores try to keep the food shelves

close to 100% full. This also results in food wastage. This food loss and wastage can be

avoided to a large extent if the demand is correctly predicted. Thus, the application of

stochastic demands when it comes to perishable products is of utmost importance, as the
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assumption of deterministic demands could never replicate the real life scenario.

5.3 Relevant Literature

Adding randomness in demand to the IRP is not a trivial task. This is because in any

deterministic problem, all demands and the corresponding inventories are known to the

vendor/supplier at the beginning of the time horizon. Thus, routing the available vehicles

becomes easy when the time horizon is finite and defined. In the case of stochastic demand,

the supplier does not have this demand information before making the routing decisions.

Because demands can be either greater or lesser than the predicted demands, not all routing

decisions can be taken at the beginning. Instead, a two stage process is required. At the

start of each time period, the routes are determined, then when the vehicle reaches each

retailer, actual demands are realized (can be more or less than previously anticipated).

This new inventory is reported to the supplier and then decisions are made again.

Two set of decisions are required. The first pertains to the routing of vehicles, that is

which customers should be visited by each. This decision is made regardless of the actual

retailer demand. The second set of decisions concerns the inventory and quantity delivered.

These decisions can be made once the actual demands are known. The objective of the

stochastic version remains the same as that of the deterministic problem, with the addition

of the component to account for randomness of demand.

There are two types of stochastic decision processes. This includes a two-stage process

and a multi-stage process, as given by Adulyasak et al. (2015). The first stage, i.e. routing,

is the same in both processes. The difference is when the actual demand is realized. In the

two-stage problem, the demands for the entire planning horizon become known once the

first-stage decisions are made. In the multistage problem, the demands for a given stage
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become known only after the decisions for the previous stage have been made. This thesis

discusses only the two-stage stochastic process, and applies it to the perishable IRP.

The concept of uncertainty in demand was first added to the IRP by Federgruen and

Zipkin (1984). In their model, only one period is considered; the depot is capacitated, unlike

standard IRP models. The objective minimizes routing costs, shortage, and inventory

carrying costs. This in turn depends on the demand, the product delivered, and the initial

inventory at the depot. Since it is only a one period problem, a two-stage stochastic demand

process is followed. Actual demand is realized when the vehicle reaches the retailer. The

component of demand uncertainty is considered only in the objective function and not in

the constraints. The inventory holding and storage costs are proportional to the inventory

left at the end of the time horizon. To solve the model, the problem is decomposed into an

Inventory Allocation (IA) problem and the Travelling Salesman Problem (TSP) for each

vehicle. The TSPs are solved using Generalized Benders Decomposition. The instances

are generated taking the demand as normally distributed. The authors conclude that

incorporation of demand uncertainty provides considerable savings when compared to a

deterministic VRP. Their model, as discussed above, builds the foundation on which other

papers with demand randomness are based.

Jaillet et al. (2002) solve a version of the IRP for the distribution of heating oil. De-

mands of the customers are not known with certainty but follow a given probability dis-

tribution. This problem differs from the standard IRP in the sense that there are satellite

centres where the vehicles can fill up before delivering to a customer. Demand at each

customer varies daily, so the time period is one day. The objective of the problem is to

minimize the annual delivery costs by deciding which customers to serve over each route

based on their expected demands. When the realized demand is higher and there is a

stockout, a direct delivery is initiated from the depot and a penalty is associated with this
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emergency delivery. The problem has a time horizon of two weeks and follows a rolling

horizon framework developed by Bard et al. (1998). VRP heuristics are used to solve the

problem whose solution is approximated as periodic over an annual time horizon.

Geiger and Sevaux (2011) provide an interesting take on the stochastic IRP in order

to make the demand similar to any real industry. The problem is solved over a very

long time horizon, with only the demand for the first time period known with certainty.

The demand over the next several periods is uncertain but is within 10% of the demand

approximated initially. Vehicles in their problem can perform several routes in one time

period (which is unlike an IRP). Geiger and Sevaux (2011) proposed several policies based

on delivery frequencies for each customer. They provide the Pareto front approximation

of such policies. The delivery is made when required, thus minimizing the carrying costs.

The new policies however, make significant changes in routing costs compared to an OU

inventory policy, where the routing costs are minimum but inventory carrying costs are

considerable. The authors are able to solve problems with a time horizon of up to 240

periods using VRP heuristics.

Bertazzi et al. (2013) present a stochastic IRP with OU inventory policy. There is

a penalty cost associated with any negative inventory and there is no backlogging. The

OU inventory policy is the same as the one introduced by Bertazzi et al. (2002) for the

deterministic IRP. A Dynamic Programming (DP) model is used to solve the stochastic

IRP. A hybrid rollout algorithm enables solution of the DP formulation. The rollout al-

gorithm discussed here requires a cost-to-go approximation for which they solve a Mixed

Integer Linear Programming (MILP) Model using BC. They use the MILP model as formu-

lated in Archetti et al. (2007) for the deterministic context, taking demand as its average

value in the stochastic case. Bertazzi et al. (2013) conclude that the stochastic problem is

significantly more difficult to solve than the problem with no demand uncertainty.
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Coelho et al. (2014) propose a dynamic and stochastic IRP. They introduce dynamic

demands to an otherwise static literature of IRP. Dynamic demands potentially can change

each period and hence decisions on inventory and routing have to be made in every time

period. Demand forecasts are added to the model to make the demands less erratic by

approximating the future demand. In the case of a stockout, direct deliveries are made to

the retailer. In the model, the cost of direct deliveries depends on the distance as well as

the volume of goods to be delivered. The use of transshipments also helps in keeping the

customer service level high. The model is solved in the context of a rolling horizon frame-

work using heuristics. Coelho and Laporte (2014) conclude that adding the component of

dynamic and stochastic demands makes the model much more difficult than the one with

deterministic demands. However, adding demand forecasts and transshipments to the new

model helps in reducing the solution cost.

Gruler et al. (2018) employ a combination of simulation and metaheuristic to solve the

stochastic IRP. The objective is to minimize the routing and inventory costs over a finite

time horizon using an ML inventory policy. Since the model follows stochastic demand,

there is a penalty cost associated with any excess inventory. In case of a stockout, a

direct delivery is made, and the penalty is twice the routing cost from the depot to the

retailer. Different replenishment inventory policies and the corresponding routing costs are

calculated; the policy with the lowest expected cost is applied in the model. Gruler et al.

(2018) use simulation to study several different scenarios and a Variable Neighbourhood

Search (VNS) metaheuristic is applied to solve each scenario.

Although it is very important to include demand uncertainty in the perishable IRP, the

difficulty of adding stochastic demands makes the model hard to solve. Thus, the literature

on this problem is scarce. The first research paper that considered perishable products

in a stochastic IRP environment was Federgruen et al. (1986). They extend the model
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given in Federgruen and Zipkin (1984), adding a fixed product shelf-life to the stochastic

IRP. Two types of delivery patterns are employed. The first considers direct deliveries

to the retailer. That transforms the problem to an IA problem only, with transportation

costs being constant. The second is the standard stochastic IRP problem, with the first

stage deciding the inventory allocation and based on that, the routes are determined.

The objective minimizes the sum of out-of-date costs until the product perishes, plus the

shortage, routing, and inventory holding costs. The old and new products are treated as

two different items over the course of the problem. The other delivery strategy is solved

by modifying the algorithm used in Federgruen and Zipkin (1984) for multiple products

(in this case, fresh and old products). The model requires a little extra time to solve with

the addition of the component of perishability.

Hemmelmayr et al. (2010) propose a stochastic IRP model for blood which is an impor-

tant perishable product. Their model is an extension of Hemmelmayr et al. (2009) where

demands are deterministic. To generate several demand realizations, they use external

sampling which converts the two-stage stochastic problem to a deterministic problem for

each scenario. A single uncapacitated vehicle with a fixed route duration is employed. The

demand scenarios are constructed in such a way that the probability of spoilage occurrence

is at-most 5%. Since the product being considered is blood, it is crucial that there are no

stockouts which is what their model aims to ensure.

Four recourse actions are considered to prevent stockouts. Those include: (1) changing

the quantities of planned deliveries (2) introducing out-and-back emergency deliveries (di-

rect deliveries) to hospitals that are likely to experience a shortage based on the inventory

at the beginning of the day (3) introducing a single emergency delivery route for each

day. The route visits all hospitals that are likely to run out of product on that day (4)

introducing emergency deliveries into the regularly planned delivery routes
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The cost of each recourse is calculated as the average cost over all0 scenarios. The

objective is to minimize delivery costs plus recourse action costs. The LP and the VNS

approaches used in Hemmelmayr et al. (2009) are extended to incorporate each scenario

for all four recourse actions.

Crama et al. (2018) conducted a recent study on the stochastic PIRP. This work con-

siders a single perishable product, homogeneous vehicles, and a route-based formulation

with a fixed route duration. There is a fixed cost for the usage of vehicles and also a

variable transportation cost. There is an acquisition cost and the revenue associated with

the product, but no inventory holding cost is charged. The objective function is profit

maximization including acquisition costs, routing costs, and of course revenue. The prod-

uct has a fixed shelf life and a FIFO policy is applied (the oldest item is sold first). A

predefined Target Service Level (TSL) is also defined.

Four solution approaches are utilized. These include Expected Value (EV) method,

deliver Up to Level (UL) method with a high service level, a decomposition scheme, and a

decomposition-integration method. The use of expected demand changes the problem into

a deterministic one; delivery is done only if inventory is less than the expected demand for

that period. The delivery aims to satisfy demands for a fixed number of time periods and

once the quantity is decided, the VRP is used to determine the routes. The UL method

employs the concept of TSL, where it replaces the EV function with the probability that the

satisfied demand is not less than the TSL. The next approach, decomposition, decomposes

the UL formulation for each store, with the cost of each considered independently. Finally,

the last method integrates the individual costs at each store. Each approach improves

on the previous one with respect to the routing cost. The conclusion drawn is that even

though routing forms a small part of the IRP, improving the routing cost factors quite a

bit into the overall profit of the system.

54



In the past few years, the topic of sustainable IRP has gained prominence. The sus-

tainable IRP includes perishability, but it is usually combined with wastage disposal and

transportation emissions. However, a study on the sustainable IRP is out of the scope

of this research. Readers are referred to Soysal et al. (2019) for a survey on the latest

sustainable IRP literature.

The last publication that is reviewed here is Adulyasak et al. (2015). In this research

paper, the authors solve the two-stage and multistage stochastic PRP with multiple ve-

hicles over a discrete and finite time horizon. The PRP, is a generalization of the IRP

with the addition of a production component. Those authors use a finite set of scenarios

with different demands to incorporate demand uncertainty; the scenarios each have equal

probability. The objective minimizes the fixed cost of production plus the routing costs

(which are independent of demand). In addition to the preceding costs, the objective func-

tion to be minimized includes the penalty cost for lost sales, the production variable cost,

and the inventory holding cost. All these costs depend on the particular scenario. Hence,

each scenario has a probability and an associated cost which is to be summed over all the

scenarios.

In the model of Adulyasak et al. (2015), both the two-stage and the multistage models

have the same first stage. The first stage includes scheduling the production and routing.

Those enable determination of the production and delivery quantities. Then, depending

on the type of the model, when the actual demand is realized, the penalty and the in-

ventory holding costs are calculated. The authors use a Benders decomposition algorithm

to partition the original problem into a master problem and a set of sub-problems. The

master problem contains all decisions that do not depend on the scenario; there is one

sub-problem for each scenario. First the master problem is solved, and then, using the val-

ues of the routing variables, each sub-problem is solved. Benders Branch-and-Cut (BBC)
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Figure 5.1: Two-Stage Stochastic Demand Process

which is a Benders reformulation in a BC framework, is employed. Scenarios are generated

via Monte Carlo simulation, with demands ranging over a specific set of values based on

the demands in the data set. The BBC for the two stage problem is improved using cuts.

As the instances get larger and the number of scenarios increases, BBC improves on the

solution given by BC.

The research paper by Adulyasak et al. (2015) is described at the end because the

model employed in this thesis is closely related to their model. The model used here is

next described and formulated.

5.4 Description

The stochastic PIRP in the present research is a demand-scenario-based model. The two-

stage stochastic decision process used in this model is illustrated in Figure 5.1. In the first

stage, decisions on the delivery routes and the allocation of the retailers to the vehicles

are made. These decisions can be made regardless of the demand realizations. When the

vehicle reaches the particular retailer, the actual demands for the remaining periods in

the time horizon are realized. With those actual demand realizations, the second stage
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decisions regarding inventory and delivery quantity are made. That quantity delivered to

the retailer depends on the retailer’s holding capacity and demand. Since the quantity

is delivered after demand realization, no excess amount will be delivered to any retailer.

However, there can be a shortage when not enough stock is available to satisfy demand

there.

The two-stage model is an extension of the previous model with deterministic demands;

demand is now a random variable whose distribution is assumed to be known. This demand

uncertainty is incorporated via a finite number of scenarios, each having a different demand.

In a real-life case, there may be an infinite number of scenarios having equal probability.

For running this model, a finite sample of those scenarios that account for uncertainty is

applied. Naturally, the probability of any scenario would not be known, and since this

probability is difficult to find, the probability of each scenario is taken as equal.

The resultant problem is more versatile than the one with known demands. With

respect to each demand scenario, when the demand is known, the problem becomes de-

terministic. This means that Figure 4.1 can be used in the same way, for each demand

scenario.

5.5 Mathematical Model

The model and formulation for the SPIRP are based on the two-stage model given in

Adulyasak et al. (2015). The objective of the SPIRP remains the same as that of the

PIRP, maximizing the profit of the supplier (i.e. maximizing the sales revenue minus the

routing and inventory holding costs).

The SPIRP model minimizes the routing cost in the first stage, and maximizes the
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expected profit in the second stage. The formulation remains the same as that of the PIRP

with a subscript for scenario added to the demand, inventory, and the quantity delivered

in each period. To account for stochastic demands and to maintain the model feasibility,

there are variables to handle shortage and excess inventory. In the objective function the

portion representing the price-maximization and holding cost needs to be summed over all

scenarios and weighted by the probability of each scenario to get the expected profit. The

routing part of the objective and all the routing constraints remain the same as they are

independent of the scenario under consideration.

5.5.1 Notation

The notations changed for the SPIRP are mentioned below.

Sets

• S = {1, ..., l} represents the set of scenarios

Parameters

• ρs denotes the probability of scenario s (ρs = 1/|S|)

• dtsi is the demand at retailer i in time period t for scenario s

• qktsi stands for the quantity delivered to retailer i by vehicle k in time period t for

scenario s

• wtsi represents the shortage at retailer i in time period t for scenario s

• etsi indicate excess inventory at the retailer i in time period t for scenario s
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• Isi0 denotes the initial inventory at retailer i for scenario s

Decision Variables

• I t,t
′

si is the inventory delivered in time period t, and used in time period t′ (t′ ≥ t), at

retailer i for scenario s

Since the initial inventory is independent of the scenario considered and depends only on

the retailer, it is assumed that Isi0 = Ii0 at each retailer i for any scenario s.

5.5.2 Formulation

maximize
{∑
s∈S

ρs

(∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si )

)
−
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(5.1)

subject to

dtsi =
n∑

t1=0

I t−t1,tsi + wtsi s ∈ S i ∈ V ′ t ∈ T (5.2)

∑
k∈K

qktsi =
n∑

t1=0

I t,t+t1si + etsi s ∈ S i ∈ V ′ t ∈ T (5.3)

t∑
t1=t−n+1

t1+n∑
t2=t+1

I t1,t2si ≤ Ci s ∈ S i ∈ V ′ t ∈ T (5.4)

I t,t1si = 0 s ∈ S, i ∈ V ′, t ∈ T, t1 ∈ F, t1 > p (5.5)

I t,t
′

si ≥ 0 i ∈ V ′ t ∈ T (5.6)

n∑
t1=0

I0,0+t1si = Isi0 s ∈ S i ∈ V ′ (5.7)
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∑
k∈K

qktsi ≤ Ci −
t∑

t1=t−n+1

t1+n∑
t2=t+1

I t1−1,t2−1si s ∈ S i ∈ V ′ t ∈ T (5.8)

∑
i∈V ′

qktsi ≤ Q s ∈ S k ∈ K t ∈ T (5.9)

qktsi ≤ Ci
∑
j∈V

xktij s ∈ S i ∈ V ′ k ∈ K t ∈ T (5.10)

∑
j∈V

xktij =
∑
j∈V

xktji i ∈ V k ∈ K t ∈ T (5.11)

Ukt
j ≥ Ukt

i + 1−M(1− xktij ) i, j ∈ V ′ k ∈ K t ∈ T (5.12)∑
j∈V

xktij ≤ 1 i ∈ V ′ k ∈ K t ∈ T (5.13)

qktsi ≥ 0 s ∈ S i ∈ V ′ k ∈ K t ∈ T (5.14)

etsi ≥ 0 s ∈ S i ∈ V t ∈ T (5.15)

wtsi ≥ 0 s ∈ S i ∈ V t ∈ T (5.16)

xktij ∈ {0, 1} i, j ∈ V k ∈ K t ∈ T (5.17)

Ukt
i = {0, 1, 2, ...} i ∈ V ′ k ∈ K t ∈ T (5.18)

The objective function (5.1) maximizes the expected profit of the supplier minus the

routing costs. The terms for supplier revenue and inventory holding costs are dependent on

scenario, so the expected profit is the summation of the values over all scenarios weighted

by the known probability of each scenario. The term for routing is the same as that in the

PIRP. The inventory balance constraints, (5.2) and (5.3), include the variables for excess

inventory and shortage of inventory, to take care of stochastic demands for different demand

scenarios. Constraints (5.4)-(5.9) are the same as constraints (4.4)-(4.9) with the addition

of a subscript for each scenario s. Constraint (5.10) is the same as constraint (4.21) with the

addition of subscript s. Constraints (5.11)-(5.13) are the same as constraints (4.22)-(4.24)
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corresponding to the new formulation. Constraints (5.14)-(5.18) maintain integrality and

non-negativity for the variables.

The way this two-stage stochastic model is constructed, variable etsi should always take

the value of zero if the model is feasible. However, the variable wtsi can have positive values

when there is a shortage. This happens when the realized demand is only partially met

once the vehicle visits the particular retailer. This formulation reduces to that of the PIRP

when there is just a single scenario and demand shortage is forced to be zero.

5.6 Results

5.6.1 Instances

The instances here are the same as those discussed in Section 4.6.1.

5.6.2 Parameters

The parameter values for the price of the product and discount are the same as the ones

used in Section 4.7.2.

5.6.3 Scenario Generation

In addition, a set of scenarios is required for the stochastic PIRP. Those scenarios are

generated via Monte Carlo simulation as in Adulyasak et al. (2015). For the results, 1000

scenarios are randomly generated, with demands varying by 0-40% from the ones given in

the data set. Demand varies only in a positive direction, to avoid the case with negative
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inventory. This is because a negative inventory would render Constraint (5.7) infeasible,

and not all the initial inventory will be used. Since the instances are equally likely, the

probability of each scenario (ρs) is taken as 1/1000 i.e. 0.001. The scenarios are generated

in a way that each retailer’s demand varies with the same percentage as the scenarios

change. This means that if the demand at retailer 1 in scenario 1 is 5 and that at retailer

2 is 10, for the second scenario, the corresponding demands would be 5 ∗ (1 + x) and

10 ∗ (1 + x). x being the percentage variation in demand.

5.6.4 Computational Experiments

Each instance is run on 1000 scenarios using both the CPLEX- based branch-and-cut and

the Benders Decomposition algorithm. The Benders annotations and parameters employed

for CPLEX are the same as in Section 4.7.2. The change made for the stochastic case is

that each scenario has a separate subproblem. This means that the inventory variables go

into 1000 subproblems, one for each demand scenario. The master problem remains the

same.

Results obtained by running the stochastic model on branch-and-cut and Benders de-

composition are shown in Table 5.1. Comparing the results of BC and BD from Table 5.1,

it is clear that even for the stochastic version of the PIRP, the BC is better than the BD

for all 20 instances. Even for the smallest instances with only five retailers, BC is able to

solve each of those in times less than 100 seconds; the BD algorithm can solve only two

of them and requires 7833 and 6568 seconds, respectively. That is an increase of 99% over

the time taken by BC to solve the same instances. Now consider the percentage change in

the gaps as seen in the last column of Table 5.1. There is a huge difference between the

gaps generated by the two algorithms. The minimum difference is 51% for abs1n10, and
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Data Set BC BD Gap

Obj BB Gap(%) Time(s) Obj BB Gap(%) Time(s) Diff

abs1n05 58.41 58.47 0.1 5.87 58.41 58.47 0.1 7833 0

abs1n10 200.02 201.12 0.55 TO 194.77 196.94 1.12 TO 51

abs1n15 261.72 262.32 0.23 TO 259.32 263.72 1.7 TO 86

abs1n20 335.76 338.37 0.78 TO 332.00 339.66 2.31 TO 66

abs2n05 46.01 46.05 0.1 5.27 46.01 46.05 0.1 6568 0

abs2n10 171.63 172.95 0.77 TO 169.63 174.50 2.87 TO 73

abs2n15 250.48 251.76 0.51 TO 248.18 252.96 1.92 TO 73

abs2n20 326.77 329.46 0.82 TO 325.26 330.96 1.75 TO 53

abs3n05 96.38 96.48 0.1 53.8 96.38 97.58 1.24 TO 92

abs3n10 140.46 140.78 0.23 TO 139.89 142.11 1.59 TO 86

abs3n15 263.79 264.78 0.37 TO 261.62 266.31 1.79 TO 79

abs3n20 317.39 319.69 0.72 TO 314.73 321.54 2.16 TO 67

abs4n05 57.11 57.17 0.1 20.0 57.11 57.63 0.91 TO 89

abs4n10 173.70 174.65 0.55 TO 171.64 176.02 2.55 TO 78

abs4n15 228.32 229.96 0.72 TO 224.44 231.44 3.12 TO 77

abs4n20 320.23 322.54 0.72 TO 317.06 324.33 2.29 TO 69

abs5n05 71.49 71.56 0.1 122 71.49 71.79 0.42 TO 76

abs5n10 203.80 204.02 0.11 TO 202.47 205.53 1.51 TO 93

abs5n15 219.24 220.72 0.67 TO 217.34 222.04 2.16 TO 69

abs5n20 365.37 368.92 0.97 TO 362.17 370.55 2.31 TO 58

Table 5.1: SPIRP: BC vs BD (Vehicles=2; Shelf-life=2)

Obj, BB refer to the Objective Value and Best Lower Bound respectively (both in 1000s); TO

refers to Time Out; Gap Diff refers to the difference in Gaps between BC and BD (in %)
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the maximum goes as high as 93% for abs5n10. There is no clear trend as to whether the

BD algorithm performs better as the instances get larger.

The conclusion for the results is that BD does not work as well as BC even for the case

with stochastic demands, where there is a subproblem for each scenario.

5.7 Conclusion

This chapter has introduced randomness in demand to the PIRP. Adding uncertainty

through the use of several demand scenarios makes the model similar to a real life problem.

This however comes at the cost of requiring a very large number of scenarios. That is

demanding computationally, as seen from the results. It can be overcome by using robust

optimization, which can capture the same amount of uncertainty but employing fewer

scenarios, and can thus be solved in less time. Chapter 6 considers robust optimization of

the SPIRP.
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Chapter 6

Robust Stochastic IRP

6.1 Introduction

This chapter formulates the earlier SPIRP in a robust optimization framework. The im-

portance of using robust optimization to solve the problem described in this thesis will

be discussed. The notations and the corresponding robust formulation of the SPIRP are

introduced.

6.2 Importance

Robust optimization has traditionally been applied to model the case of uncertainty where

some infesibility of the problem has to be avoided. When the data are uncertain, the prob-

ability of a model having an infeasible solution increases. The usage of robust optimization

to solve such a problem decreases this probability to an extent. That comes at a cost of

65



obtaining suboptimal values for the uncertain variables. This suboptimality is preferred to

the problem being infeasible.

Bertsimas and Sim (2004) define a “robust problem” as one which is immune to uncer-

tainty. The level of conservativeness defines the likelihood of the problem being infeasible.

Making the problem conservative will result in suboptimal solutions most of the time. On

the other hand, removing the conservativeness from the uncertain variables will lead to

many constraints being infeasible. Thus, a trade-off is required. The importance of ro-

bustness lies in the fact that the degree of conservativeness can be controlled. Therefore,

depending on how infeasible the problem is, the level of protection can be chosen.

This makes it non-trivial to introduce robustness to any problem. For the problem

developed in Chapter 5, many scenarios were needed to make the model account for the

demand uncertainty of perishable products. Robust optimization of the model seems like a

viable option to solve the difficulty of generating a large number of scenarios. The challenge

here is to make sure that the robust model developed in this chapter covers the required

uncertainty through the use of a small number of scenarios. This is to be done, keeping

in mind that the model should not become too conservative. Thus, a new method of

incorporating robustness is applied here. This is different from traditional ways in which

robustness has been used. Based on the literature reviewed for this thesis, the present

study is the first that aims to examine the use of robust optimization in the context of a

scenario-based stochastic IRP for perishable products.

6.3 Relevant Literature

Due to the importance of robust optimization in cases where particular parameters are

uncertain, there has been much focus on this subject. Robust Optimization has been
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applied to many different types of problems and formulations.

In the first study in this case, Soyster (1973) considers linear programming problems

with uncertain parameters. The author uses robust optimization to define the feasible

region in terms of sets instead of inequalities. The uncertain parameters are equal to

their worst-case values in the uncertainty set. This leads to only feasible solutions, no

matter what values the parameters finally take. This optimization approach is conservative;

optimality is given up to a large extent, in order to ensure robustness.

To overcome this problem of overconservativeness, El Ghaoui and Lebret (1997), and

El Ghaoui et al. (1998) ensured that the parameters were feasible with “high probability”,

rather than the probability of feasibility being 1. During the same time period, the difficulty

encountered in the work of Soyster (1973) was being solved by Ben-Tal and Nemirovski

(1998, 1999, 2000). All the research papers mentioned solve the issue of overconserva-

tiveness by making sure that not all uncertain parameters take their worst-case values

simultaneously. Ben-Tal and Nemirovski (2000) in particular use the techniques derived

by El Ghaoui and Lebret (1997), El Ghaoui et al. (1998), and Ben-Tal and Nemirovski

(1998, 1999) to solve over 90 LP models, in order to prove that their approach improves on

that of Soyster (1973). They do so and get nearly-optimal solutions at a much lower cost.

The major issue with the above-mentioned papers is that, although they overcome the

difficulty of overconservativeness, the resulting model is quadratic as opposed to a linear

model in the case of Soyster (1973). This leads to more computational time to solve the

model.

Bertsimas and Sim (2004) present a model that takes care of both the above-mentioned

restrictions of robust optimization. The new approach retains the advantages of the linear

framework of Soyster (1973), along with solving the problem of overconservativeness. A

new parameter is introduced to adjust the robustness of the method depending on the
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conservativeness of the solution. This parameter, called the “budget-of-uncertainty”, is

denoted in the paper by Γi (where i refers to the constraint). That parameter makes sure

that only some of the constraint coefficients change from the original problem, and then

the model is deterministically feasible. The parameter (Γi) allows flexibility in the sense

that, even when the number of coefficients changes more than expected, the constraints

are feasible with high probability. This means that the problem remains linear and is not

too conservative.

Bertsimas and Sim (2004) illustrate the use of Γi by running experiments on three

different problems with data uncertainty. Through the results of these experiments, Bert-

simas and Sim (2004) prove that as the uncertainty in the problems increases, their method

becomes more attractive. This approach to robust optimization is one of the most suc-

cessful; most of the subsequent research has been based on this method. Their model is

known as the “budget-of-uncertainty” model.

Bertsimas and Thiele (2006) were the first to apply robust optimization to the field

of inventory management. They use the budget-of-uncertainty approach of Bertsimas and

Sim (2004) to solve a stochastic inventory management problem with the distribution of

demand unknown. Bertsimas and Thiele (2006) optimize the inventory of a single product

at one retailer in two ways, i.e. with and without bounds on the capacity at the retailer.

They formulate the robust counterpart of the formulation with and without fixed costs.

With no fixed costs, the result is an LP model, and in the case of fixed costs it is an MIP

model. The authors conclude that if the parameters of the robust optimization are chosen

appropriately, both the feasibility and the performance of the problem at hand can be

maintained.

Further work has been done on robust optimization in the field of inventory manage-

ment; some of these papers are described below. Bienstock and ÖZbay (2008) propose a
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Benders decomposition algorithm to find the base stock robust policy for a single echelon

inventory problem, where the base stock policy is used to obtain the retailer OU inventory

level. See and Sim (2010) consider a single-echelon inventory management problem with

nonzero lead times where uncertain demand is characterized by the mean, support, co-

variance, and directional deviations. These authors formulate the problem as a stochastic

optimization model, and approximate it using robust optimization which leads to a non-

linear model. See and Sim (2010) conclude that the budget-of-uncertainty model performs

less efficiently in their case, when the characteristics of demand are known as a result of

forecasting. Even though the resulting model is a non-linear one, they conclude that it can

be solved in polynomial time.

Robust optimization was introduced to the subject of IRP by Solyalı et al. (2012),

who employ the budget-of-uncertainty model to solve the IRP with uncertain demand.

Robustness is applied since the distribution of demand is not known. The unmet demand

is backlogged and has a penalty associated with it. When demand is lower than expected,

the remaining stock goes into inventory and can be used for satisfying demand for the

next time period. There is a fixed cost related to vehicle dispatching. The objective in

this case is to minimize the sum of routing, vehicle dispatching, holding, and backlogging

costs. Robustness is applied to the model such that even under the worst case scenario

of demand, the vehicle capacity is not violated. The nominal formulation and the robust

counterpart are solved using branch-and-cut. Solyalı et al. (2012) conclude that the use of

robust optimization for the IRP with backlogging protects the problem under uncertainty

with only a slightly higher cost than the nominal formulation.

Rahbari et al. (2017) apply robust optimization in the context of the perishable IRP

with lost sales. They build on the model developed by Mirzaei and Seifi (2015), and

consider multiple products. Demand is a linearly or exponentially decreasing function of
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the product’s age. The authors employ the budget-of-uncertainty model for the robust

optimization with two uncertain parameters, namely, the demands and the travel times

between nodes. Based on the travel times, the cost of travel between nodes becomes

uncertain. The robust model is solved using GAMS. Rahbari et al. (2017) conclude that,

for smaller instances, the robust approach is worse than the deterministic model. However,

when simulation is performed and large size instances of IRP are considered, the robust

model works better than the deterministic one.

6.4 Description

According to Bertsimas et al. (2018), “The strength of a robust optimization lies in choosing

the right uncertainty set of possible realizations of the uncertain parameters. If the set

is chosen correctly, the robust approach will help in optimizing against the worst-case

realizations within the chosen set. Computational experience suggests that with well-

chosen sets, robust models yield tractable optimization problems whose solutions perform

as well or better than other approaches. With poorly chosen sets, however, robust models

may be overly-conservative or computationally intractable”.

As can be seen from Chapter 5, SPIRP requires many scenarios to highlight the un-

certainty of the data for perishable products. The assumption in the previous chapter was

that each scenario is equally probable. This assumption was made because obtaining the

true probability of each scenario is difficult. With a large number of scenarios used, taking

probabilities as equal is not a bad assumption. However, seldom would this occur in the

real world. These limitations of the SPIRP need to be countered to make the problem sim-

ilar to a real-world case. Robust optimization applied to the SPIRP is a viable alternative

to those model limitations.
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The works of Solyalı et al. (2012) and Rahbari et al. (2017), both of which apply the

budget-of-uncertainty approach to the IRP, had demand as one of the uncertain parame-

ters. This led to uncertainty in the objective function as well as in the constraints of the

formulation. Robust optimization was employed to make sure that the error resulting from

the worst-case scenario of demand is minimized.

In this thesis, the probabilities in the model of SPIRP are unknown, and the robust

optimization approach of Bertsimas and Sim (2004) is used to model that uncertainty. This

model will be the robust counterpart of the SPIRP. The motivation behind making the

model robust is to be able to overcome the limitations of the preceding stochastic model.

Through the use of robust optimization, a small number of scenarios can be used even

when the correct probability is not estimated accurately. Secondly, the solutions obtained

from solving the robust model are analogous to solving the stochastic model with a larger

number of scenarios.

The model described in this chapter is the same as the one for the stochastic PIRP.

There is a finite number of demand scenarios, and parameters pertaining to robustness

are added to the model. The uncertainty parameter considered here is the probability of

each scenario (ρs). This means that the component of uncertainty is only in the objective

function, not in the constraints.

The goal of any robust formulation is to protect the model against the worst-case

scenario of its uncertain parameters. This results in maximizing the deviation of the

uncertain parameter from the nominal value, so as to make this parameter take its worst-

case value. This also protects the model against parameter values that makes it infeasible.

SPIRP has a maximization objective, and to make the problem robust and protect the

problem from worst case values of ρs, the deviation is minimized in the maximization

objective, utilizing a maximin approach.
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6.5 Mathematical Model

As mentioned, the Robust SPIRP model is formed by adding the robust parameters as

described in Bertsimas and Sim (2004) to the earlier model. That robust counterpart

enables protection from the extreme scenarios that lead to undesirable values of profit.

The robust formulation is therefore constructed by reformulating the objective function of

the SPIRP, with the corresponding addition of robust constraints.

6.5.1 Notations and Robust Formulation

The robust formulation is constructed using five steps. We could have gone directly to the

final formulation whose objective function is in equation (6.1). However, five steps enable

a presentation of greater clarity in showing how we obtained the robust extension of the

SPIRP.

At each step, robust parameters are added to the the SPIRP objective (5.1). The

associated notation is now described further.

First Step

For the first step, the nominal objective (5.1) is minimized over the uncertain parameter,

ρs.

maximize
{

min
ρs

[∑
s∈S

ρs(
∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))

]
−
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(6.1)
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subject to (5.2)− (5.18)

The objective (6.1) minimizes the effect of extreme scenarios on supplier’s profit. Min-

imization of the objective function over ρs will force extreme scenarios to take low proba-

bilities.

Second Step

The notations introduced are:

• ρs is the nominal value of ρs

• ρ̂s is the maximum deviation from the nominal value

The new formulation is:

maximize
{∑
s∈S

ρs(
∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))−

min
ρ̂s

[∑
s∈S

ρ̂s

∣∣∣(∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))

∣∣∣]
−
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(6.2)

subject to (5.2)− (5.18),

The objective function (6.2) replaces the original probability of each scenario by the

nominal value and the deviation from the nominal value. ρs will take values in the range

[ρs − ρ̂s, ρs + ρ̂s]. Both the parameters ρs and ρ̂s are constants, and the probabilities
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over all scenarios in the robust formulation will sum to 1. In the objective function, the

scenarios which lead to undesirable values for profit are removed by minimizing the impact

of those scenarios on the overall profit. The expression is minimized over the deviation ρ̂s

to optimize against the worst-case scenario.

Third Step

Further notations introduced here are:

• Γ is the budget-of-uncertainty parameter

• ηs is the decision variable to decide whether the probability of scenario s goes to its

worst-case value or not.

The formulation is:

maximize
{∑
s∈S

ρs(
∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))

−min
ηs

[∑
s∈S

ρ̂sηs
∣∣(∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi

−
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))

∣∣]−∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(6.3)

subject to (5.2)− (5.18), and,∑
s∈S

ηs ≤ Γ (6.4)

0 ≤ ηs ≤ 1 s ∈ S (6.5)
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The benefit of making the model robust diminishes if all the values of uncertain pa-

rameters are allowed to go to their worst case. In this robust model, if every scenario is

allowed to take those values, the objective function value would be extremely low. This

would mean that the model is overconservative.

To allow for a degree of control to avoid overconservativess, the budget-of-uncertainty

parameter (Γ) is added to the formulation. Also, since there is a finite number of scenarios,

a probability should be specified as to how many scenarios go to their worst case, so as to

manage the conservativeness of the model. This parameter allows only a fixed number of

scenarios to take their worst case values. It is essential to note that Γ is a constant since

the parameter of uncertainty (ρs) only concerns the objective function.

In the objective function (6.3), a decision concerning whether any scenario goes to

its worst case is added for each scenario. The constraint (6.4) specifies that the number

of scenarios going to their worst-case values does not exceed the budget-of-uncertainty

parameter. Constraint (6.5) defines the bounds on ηs.

Fourth Step

The strong duality theorem, as given by Bertsimas and Sim (2004), is used to obtain the

dual of the previous formulation.

The notations used are:

• g is the dual variable for constraint (6.4)

• fs is the dual variable for constraint (6.5)
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The dual of the original formulation is:

maximize
{∑
s∈S

ρs(
∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))

+ max
[∑
s∈S

fs + Γg
]
−
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(6.6)

subject to (5.2)− (5.18), (6.4)− (6.5), and,

fs + g ≤ −ρ̂s
∣∣(∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi

−
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))

∣∣ s ∈ S (6.7)

fs ≤ 0 s ∈ S (6.8)

g ≤ 0 (6.9)

The objective function (6.6), and constraints (6.7)-(6.9) give the dual of the minimiza-

tion portion of (6.3)-(6.5).

Final Robust Formulation

The final formulation combines the two maximization functions in the objective function

(6.6), and removes the absolute value function from constraint (6.7) by adding a new

parameter vs.

The final robust formulation is given as:

maximize
{∑
s∈S

ρs(
∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))
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+
∑
s∈S

fs + Γg −
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

cijx
kt
ij

}
(6.10)

subject to

− fs − g ≥ ρ̂vs ∀s ∈ S (6.11)

vs ≥ (
∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si )) (6.12)

vs ≥ −(
∑
i∈V ′

∑
t∈M

t+n∑
τ=t

P (1− θ(τ − t))I t,τsi −
∑
i∈V ′

∑
t∈M

t∑
t1=t−n+1

t1+n∑
t2=t+1

hi(I
t1,t2
si ))

(6.13)

dtsi =
n∑

t1=0

I t−t1,tsi + wtsi s ∈ S i ∈ V ′ t ∈ T (6.14)

∑
k∈K

qktsi =
n∑

t1=0

I t,t+t1si + etsi s ∈ S i ∈ V ′ t ∈ T (6.15)

t∑
t1=t−n+1

t1+n∑
t2=t+1

I t1,t2si ≤ Ci s ∈ S i ∈ V ′ t ∈ T (6.16)

I t,t1si = 0 s ∈ S i ∈ V ′ t ∈ T t1 ∈ F t1 > p (6.17)

I t,t
′

si ≥ 0 i ∈ V ′ t ∈ T (6.18)

n∑
t1=0

I0,0+t1si = Isi0 s ∈ S i ∈ V ′ (6.19)

∑
k∈K

qktsi ≤ Ci −
t∑

t1=t−n+1

t1+n∑
t2=t+1

I t1−1,t2−1si s ∈ S i ∈ V ′ t ∈ T (6.20)

∑
i∈V ′

qktsi ≤ Q s ∈ S k ∈ K t ∈ T (6.21)

qktsi ≤ Ci
∑
j∈V

xktij s ∈ S i ∈ V ′ k ∈ K t ∈ T (6.22)

∑
j∈V

xktij =
∑
j∈V

xktji i ∈ V k ∈ K t ∈ T (6.23)
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Ukt
j ≥ Ukt

i + 1−M(1− xktij ) i, j ∈ V ′ k ∈ K t ∈ T (6.24)∑
j∈V

xktij ≤ 1 i ∈ V ′ k ∈ K t ∈ T (6.25)

qktsi ≥ 0 s ∈ S i ∈ V ′ k ∈ K t ∈ T (6.26)

etsi ≥ 0 s ∈ S i ∈ V t ∈ T (6.27)

wtsi ≥ 0 s ∈ S i ∈ V t ∈ T (6.28)

xktij ∈ {0, 1} i, j ∈ V k ∈ K t ∈ T (6.29)

Ukt
i = {0, 1, 2, ...} i ∈ V ′ k ∈ K t ∈ T (6.30)

fs ≤ 0 s ∈ S (6.31)

g ≤ 0 (6.32)

The objective function (6.10) is the final objective function obtained from the set of

formulations defined above. Constraint (6.7) is replaced by constraints (6.11)-(6.13) and

the absolute value is removed. Constraints (6.14)-(6.30) for the Robust Stochastic PIRP

are the same as constraints (5.2)-(5.18) for the SPIRP. Constraints (6.31)-(6.32) limit the

values that the dual variables can take.

6.6 Conclusion

This chapter has introduced a new way, robust optimization was used to formulate the

SPIRP. The benefits of using robust optimization will be quantified next. Chapter 7 will

display the results of a comparison between deterministic PIRP, stochastic PIRP, and

robust stochastic PIRP.
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Chapter 7

Results

7.1 Instances

The instances studied here are based on Archetti et al. (2007). Section 4.6.1 contains more

information on those instances.

7.2 Parameter values

Parameters for scenario generation and price are the same as the ones mentioned in Section

5.6.2. For the robust version of the SPIRP, the budget-of-uncertainty parameter (Γ) is

taken as 5. For SPIRP (Section 5.6.2), the probability taken was “1/|S|”(|S| being the

number of scenarios in consideration), which means no robustness. To add robustness to

the model, a deviation segment needs to be defined for the probability of each scenario of

the SPIRP.
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Tests were done to to see what probability deviation segment would make the model

robust, while not adding too much conservativeness to the model. Probabilities varying

from 1/(1.2 ∗ |RS|) to 1/(2 ∗ |RS|) (|RS| refers to the number of robust scenarios in this

case) were employed for the tests. When the value was taken as half the original probability,

the objective function value of the robust model came out to be 0. This meant that the

model is very robust and is not able to produce any results. A probability of 1/(1.2∗ |RS|)

made the model too conservative, as it was too close to the original probability. Finally,

the value of 1/(1.5 ∗ |RS|) was chosen as the appropriate probability that made the model

robust, but not too conservative. The value of the deviation (ρ̂s) depends on Γ and ρs.

This is done to make sure that the probabilities, when optimized, will always sum up to 1.

7.3 Computational Experiments

The following algorithm is used to generate the result tables:

1. A set of 10,000 demand scenarios is generated from the demand in each instance

2. For each data set, the deterministic model is solved and the routes are generated

3. Similarly, the stochastic model and the robust model are solved, and the routes are

generated

4. The time and the corresponding objective values while solving all three of them with

the original demands of the data set are recorded

5. The deterministic model is run for all 10,000 demand scenarios, once each for the

routes generated in the first run by the deterministic, stochastic, and robust models

80



6. Min, max, and mean of the objective values over all the scenarios are calculated for

each model

7. Also, the last 3 columns of the table, comparing the stochastic with the deterministic,

the robust with the deterministic, and the stochastic with the robust, are calculated

each time the model is run.

Within the algorithm mentioned above, the results are obtained for the deterministic,

the stochastic, and the robust models. The deterministic model is the same as the one

generated using the new formulation, used for calculating the final results in Chapter

4 (Section 4.7.2). The stochastic model is the one in Section 5.6, applying the SPIRP

formulation on 1000 demand scenarios. The model for the Robust Stochastic case is created

with the final robust formulation in Chapter 6. Results are obtained by varying the number

of scenarios of the robust model, from 10-100 for each of the 20 instances. The scenarios

used for the robust model are from a random subset of the 1000 demand scenarios employed

in running the stochastic model.

Here is the insight behind using a subset of the stochastic demand scenarios for the

robust model, and varying the demand scenarios for the robust for each instance. This

enables a fair comparison between the robust model and the stochastic model. Also, the

number of scenarios for the robust varies from 1% to 10% of the number of scenarios taken

for the stochastic model. This is done to test the effectiveness of the robust model over a

considerably lower number of scenarios than the stochastic.

Results for the 20 instances run on the algorithm mentioned above, with a varying

number of robust scenarios (S in each table), are presented in Tables 7.1 - 7.20.

To see the significance of changing the number of robust scenarios on the means of the

robust formulation, regression was done. The plot for regression is shown in Figure 7.1.
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7.4 Computational Results

While comparing the values corresponding to the column ‘Min’ in the tables for the stochas-

tic and the robust models, it is observed that the minimum profit values for the robust are

higher than those for the stochastic. This makes it clear that the robust model removes

extreme scenarios that affected the overall profit from the stochastic model and hence is

better. Also, the maximum profit values for the robust model are less than those for the

stochastic model. This implies that the overall variation among values is significantly less

for the robust model than those for the stochastic model.

From the values generated in the tables, the column ‘Mean’ for each of the three

models is tabulated. This value refers to the average profit generated for each model

over 10,000 scenarios. For each of the 20 instances, it is observed that the mean profit for

the deterministic model is the lowest, and the one for the stochastic model is highest. The

mean profit for the robust model lies somewhere in between. This is due to the fact that the

deterministic model does not capture any uncertainty in demand, the stochastic captures

the most uncertainty, and finally the robust captures a significant amount of uncertainty,

though not as much as the stochastic one.

The columns, “Stochastic > Deterministic” (column 17) and “Robust > Deterministic”

(column 18) from each table convey the same message, as obtained by comparing the

average profit values. Averaging over all instances, the value in column 17 is almost 95%,

with the lowest being 87% for abs3n05 (Table 7.9). Even for column 18, the average is

close to 95%. Thus, the results clearly indicate that the robust model covers a sizable

amount of uncertainty when compared to the stochastic model, even though the number

of scenarios generated for the robust model is considerably less than the number for the

stochastic model.
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Figure 7.1: Line of Best Fit for Robust Scenario Number vs Robust Mean

S num is the robust scenario number varying from (10-100). Means are all normalized

values of the actual values

The results also project that, as the number of retailers increases, and the problem

becomes more difficult, the robust keeps improving. The last column of Table 7.1 shows

that the stochastic model is better than the robust for 100% of the scenarios. As the

scenarios get more complicated, this percentage decreases to around 80% in Table 7.4,

which is an instance with 20 retailers. There is a similar kind of trend for other sets of

instances as well. For instances with larger costs (Tables 7.17-7.20), the figures start from

85% and go down to as little as 14%. One such case, in Table 7.19, for scenarios 60 and

70, the stochastic model is better than the robust for only around 15% of the scenarios.

When regression is performed as shown in Figure 7.1, the P-value generated is ‘1.836E-

18 ’, which is extremely small, confirming that number of scenarios is actually significant

when compared to mean profits for the robust model.
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Chapter 8

Conclusion

8.1 Review of the thesis

This thesis has studied the perishable Inventory Routing Problem (IRP) focusing on mak-

ing decisions for inventory and transportation together. Chapter 2 discussed the literature

for the inventory routing problem, and how it involves incorporating the concept of vendor

managed inventory into the traditional vehicle routing problem. The several variations of

the inventory routing problem, and the algorithms used to solve those variations, along

with the assumptions made in the literature, are mentioned.

In Chapter 3, the version of the standard IRP employed in this thesis is stated. The

IRP problem discussed here is a one-to-many problem with multiple homogeneous vehicles,

and applies the ML inventory policy. The notations and the formulation of the IRP are

given. The limitation of the standard IRP, for a product having an infinite shelf life, is

mentioned.

Chapter 4 outlines the limitations of standard IRP. It introduces perishability to the
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IRP (PIRP). The importance of the IRP with perishable products is discussed in terms

of the food retail, and the blood industries. The concept of consignment inventory is

introduced in the PIRP framework. The objective of the PIRP is to maximize the profit of

the supplier for deterministic demands. The model considers a single product with a fixed

shelf life, building on the IRP model presented in Chapter 3. The product perishes with a

constant decay factor, and that decay affects the profit of the supplier. The product price

is fixed; there is a constant discount that is applied to the price of the product each period

that it is in inventory. Once the product shelf-life is reached, the item is discarded from

inventory. The formulation with a profit maximization is defined. Results for comparison

of the PIRP model with the standard IRP are generated. The results show better usage

of inventory at the retailers as the product deteriorates, versus a product that does not

deteriorate. However, the PIRP model discussed does not consider uncertainty in demand,

which is usually the case in a real-life problem. This limitation is resolved in Chapter 5.

In Chapter 5, the stochastic PIRP is introduced (SPIRP). The demands are no longer

known, and the problem is thus complex. Demand uncertainty is added to the PIRP

using a finite set of demand scenarios, and the formulation is modified to incorporate

uncertainty. The demand scenarios are generated based on the data set in consideration,

and are equally probable. Results of running the scenario-based SPIRP on the CPLEX

based branch-and-cut, and Benders decomposition algorithms, are generated. Analysis of

the results shows that Benders takes more time, and generates worse gaps than the branch-

and-cut algorithm. SPIRP resembles a real-life problem, but a huge number of demand

scenarios need to be generated to be able to appropriately capture the demand uncertainty.

Chapter 6 provides a better and innovative way to handle this limitation of SPIRP.

Chapter 6 applies the concept of robust optimization to the SPIRP. The importance

of applying robust optimization to a problem with uncertain parameters is discussed. The
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limitation of SPIRP is that obtaining the true probability of each scenario is difficult, and

hence a large number of equally-likely scenarios have to be generated. This limitation is

resolved by making the SPIRP model robust. Applying robustness to the scenario-based

model of SPIRP is non-trivial due to the underlying assumption of equiprobable scenarios.

The “budget-of-uncertainty” approach is applied to the SPIRP, and the resultant model is

robust. The model has been constructed in such a way that the probability of each scenario

is uncertain. This method of applying robust optimization to the model is innovative.

The purpose of this robust model is to capture the uncertainty in demand using fewer

scenarios than the stochastic model while simultaneously making sure that the model is

not too conservative in nature, and that not many scenarios assume their worst-case values.

This is done by adding an appropriate deviation segment to the probability of the SPIRP

scenario, and fixing the robustness parameter that controls the conservativeness of the

model. Chapter 7 gives the results that demonstrate the effectiveness of the robust model.

In Chapter 7, the results are obtained using an algorithm that compares the three

above-mentioned models. It tests the amount of demand uncertainty that each accounts

for. This is done by running each of them on a huge number of demand scenarios, and

calculating the average profit values over all the scenarios. The results demonstrate that

since the deterministic model accounts for no demand uncertainty it has the lowest average

profit values. The stochastic model which accounts for the most demand uncertainty has

the highest average profit values. The robust model using a smaller number of scenarios,

accounts for much of the demand uncertainty; the average profit values for this model

are between the deterministic and stochastic. The results also demonstrate that as the

instances get tougher, the robust model gets better. Moreover, increasing the number of

scenarios of the robust model has a significant relation to the resultant average profit of

that model.
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8.2 Future Research

Each of the three models discussed in this thesis impose assumptions on the perishable

IRP in a real-life problem. The assumption is that only a single product is taken. VMI is

generally applied to the case of several Stock Keeping Unit (SKUs) each managed by the

given vendor on behalf of one or more retailers served by that supplier. When there are two

or more perishable SKUs, keeping track of the ages of multiple products simultaneously is

required. Assuming that can be done, there may be opportunities for coordinated inventory

control within the context of the PIRP.

Another area to explore is the possible modeling of the SPIRP problem in a differ-

ent way. The goal would be that Benders could then better exploit the structure of the

problem.
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