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Abstract 

Many biogeochemical reactions controlling surface water and groundwater quality, as well as 

greenhouse gas emissions and carbon turnover rates, are catalyzed by microorganisms. Representing the 

thermodynamic (or bioenergetic) constraints on the reduction-oxidation reactions carried out by 

microorganisms in the subsurface is essential to understand and predict how microbial activity affects 

the environmental fate and transport of chemicals. While organic compounds are often considered to be 

the primary electron donors (EDs) in the subsurface, many microorganisms use inorganic EDs and are 

capable of autotrophic carbon fixation. Furthermore, many microorganisms and communities are likely 

capable of mixotrophy, switching between heterotrophic and autotrophic metabolisms according to the 

environmental conditions and energetic substrates available to them. The potential for switching 

between metabolisms has important implications for representing microbially-mediated reaction kinetics 

in environmental models. In this thesis, I integrate existing bioenergetic and kinetic formulations into a 

general modeling framework that accounts for the switching between metabolisms driven by either an 

organic ED, an inorganic ED, or both. 

 In Chapter 2, I introduce a conceptual model for mixotrophic growth. The conceptual model 

combines the carbon and energy balances of a cell by accounting for the allocation of an organic ED 

between incorporation into biomass growth and the generation of energy in catabolism. I select 

experimental datasets from the literature in which mixotrophic growth of pure culture organisms is 

assessed in chemostats. These experiments employ biochemical methods that allow one to estimate the 

contributions of the possible end-member metabolisms under variable supply rates of organic and 

inorganic EDs. Using the conceptual model, I develop a quantitative modeling framework that explicitly 

accounts for the substrate utilization kinetics and the energetics of the catabolic and anabolic reactions. I 

then compare the model predictions to the experimental data.   
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While in Chapter 2 datasets collected in controlled laboratory settings are considered, in Chapter 

3 I apply my modeling framework for mixotrophic growth to a lake sediment geochemistry dataset. I 

focus on the activity of a nitrate reducing, acetate and iron(II) oxidizing mixotrophic microbial 

community in the suboxic zone of the lake sediment. I demonstrate the application of the modeling 

framework to this natural system, based on the reported concentration profiles of the relevant EDs (i.e., 

acetate and iron(II)), electron acceptors (EAs) (i.e., nitrate), and other reactants and products to calculate 

the depth distributions of the energetic and kinetic constraints in the model calculations. The predicted 

fractions of the metabolic end-members are in general agreement with the relative distributions of the 

different microbial functional groups reported in the original study. I also assess the sensitivity of the 

model’s predictions on the kinetic parameter values used to simulate the net utilization rates of the two 

EDs. The results of the analysis provide new insights into the role of mixotrophy in the coupled cycling 

of nitrogen, iron(II), and dissolved inorganic carbon in the nitrate-reducing zone of lake sediments. 

The conceptual model and modeling framework presented in this thesis can be used to account 

for mixotrophic activity in environmental reactive transport models. That is, in the future, this modeling 

framework could be incorporated into models that simulate the interactions of mixotrophy with other 

geochemical, geomicrobial, and transport processes. The work presented in this thesis is thus a valuable 

step towards building realistic theoretical representations of microbial activity in earth’s near surface 

environments. 
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Chapter 1  

General Introduction 

1.1 Chemosynthetic microbial activity in the terrestrial subsurface 

In the dark terrestrial subsurface, life and biogeochemical activity is dominated by 

chemosynthetic prokaryotic microorganisms which derive their energy from the oxidation of 

electron donors during chemical reduction-oxidation reactions (Whitman et al., 1998; Newman 

and Banfield, 2002). These environments include aquifers, wetland and hydric soils, peatlands, 

and aquatic sediments. Globally, the terrestrial subsurface reservoir contains one fifth of the 

earth’s organic carbon, and the production of carbon dioxide by soil respiration is an important 

flux in the carbon balance of terrestrial ecosystems (Anantharaman et al., 2016). Microbial 

activity and its associated chemical transformations in these environments controls the 

speciation, toxicity, and mobility of important nutrients and contaminants (Hunter et al., 1998; 

Thullner et al., 2007), including for example perchlorate (Hubbard et al., 2014), nitrate (Rivett et 

al., 2008), uranium (Williams et al., 2011), and trace metals (Torres et al., 2015). Through the 

hydrological connections between the subsurface and surface water ecosystems, subsurface 

microbial activity has the potential to mediate nutrient fluxes that fuel harmful algal blooms, as 

well as other water quality issues (Bouwman et al., 2013).  The subsurface is also connected to 

the atmosphere via the soil interface, and many microbial activities produce greenhouse gases 

such as nitrous oxide (N2O), carbon dioxide (CH4), and carbon dioxide (CO2) (Long et al., 

2016). In short, the activity of subsurface microorganisms contributes many societally-relevant 

ecosystem functions. 

1.2 Chemosynthetic microbial metabolisms  

During growth, microorganisms carry out two distinct reduction-oxidation (redox) reactions: 

they couple a reaction for the creation of biomass (the anabolic reaction) to the reaction from 
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which they derive energy (the catabolic reaction). The energy produced during the catabolic 

redox reaction is required by microorganisms to survive and grow. Redox reactions are those 

which involve the exchange of electrons between a reduced chemical species (the electron 

donor) and an oxidized species (the electron acceptor). The overall reaction, or the metabolic 

reaction, represents the combination of the catabolic and anabolic reactions. 

Microbial metabolic reactions can be classified based on the identities of the electron 

donor (ED) and carbon source. In chemosynthetic microbial growth reactions, the ED is used as 

both an energy source by its reaction with an electron acceptor in catabolism, and for energy 

conservation in the anabolic redox reaction. Organoheterotrophic metabolisms use organic 

compounds for both energy generation (i.e., as an electron donor) and as a carbon source. 

Lithoheterotrophic metabolisms use organic carbon compounds as their carbon source, while 

using an inorganic compound as their catabolic energy source. Lithoautotrophic metabolisms 

also use an inorganic energy source, while using inorganic carbon (e.g., CO2) as their carbon 

source. Figure 1-1 is a flow chart that shows the classification and relatedness of these different 

types of metabolisms. Chemotrophic metabolisms are also distinguished from phototrophic 

metabolisms in Figure 1-1. 

The organic compounds that are commonly used as EDs and/or carbon sources in the 

subsurface include short chain organic acids (e.g., propionate, lactate, or citrate) generated by the 

hydrolysis or fermentation of plant-derived polymeric organic molecules (Roden and Jin, 2011). 

Inorganic compounds that are commonly used as EDs in the subsurface include methane (CH4), 

ammonia (NH4
+), nitrite (NO2

-), sulfide (S2-), thiosulfate (S2O3
2-), iron(II) (Fe2+), and dihydrogen 

(H2). These reduced inorganic compounds are generated by many different processes. For 

example, weathering of the mineral pyrite produces S2- (Bosch and Meckenstock, 2012), and the 
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breakdown of organic matter by fermentation and nitrogen fixation by rhizobacterium produce 

H2 (Lovley and Chapelle, 1995; Miltner et al., 2005; Piché-Choquette and Constant, 2019). 

Microbial reduction of oxidized forms of the electron donor is also an important source of 

reduced compounds, such as iron(III) reduction producing Fe2+ (Weber et al., 2006; Schmidt et 

al., 2010; Berg et al., 2016). Anthropogenic input of NH4
+ or S0 via fertilizers is also possible 

(Lawrence et al., 1988; He et al., 2007). In the deep subsurface, additional processes can 

generate reduced inorganic compounds, including the serpentization of igneous rocks (e.g., H2) 

and Fischer-Tropsch type reactions (e.g., CH4) (Sherwood-Lollar et al., 2008; Kieft, 2016). 

The most common electron acceptors in anoxic subsurface environments are nitrate 

(NO3
-), sulfate (SO4

2-), iron(III) (Fe3+), manganese(IV) (Mn4+) and carbon dioxide (CO2) (Bethke 

et al., 2011; Burgin et al., 2011). These electron acceptors can be used by both organotrophic 

and lithotrophic catabolic reactions. Microbial activity significantly influences the cycling of the 

common redox-active elements carbon (C), nitrogen (N), iron (Fe), sulfur (S), and manganese 

(Mn) in subsurface environments, which is evident given the use of different forms of these 

elements as both electron acceptors and electron donors. The extent of coupling between these 

elements can be captured by writing out the metabolic reactions that are occurring in any given 

environment. This microbial control of the cycling of these redox-active elements is well 

discussed in the biogeochemical literature (e.g., Burgin et al., 2011), and is a major theme of this 

thesis. 
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Figure 1-1. Classification of microbial metabolisms based on the combination of the electron 

donor (ED) used for energy generation in the catabolic reaction and energy conservation in the 

anabolic reaction and the carbon source used for biomass. 
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 1.2.1 Bioenergetics: How chemical energy limits microbial activity 

Through the exchange of electrons between the electron donor and electron acceptor during 

metabolism, chemicals are transformed to new forms such that the system has a lower chemical 

potential. The energy lost by the chemicals in the system due to the reaction is then gained by the 

organism catalyzing the reaction using an electron transport chain, and stored intracellularly as 

ATP (Bethke, 2008). Thus, microorganisms are open systems, exchanging energy and matter 

with their surroundings, and are not in thermodynamic equilibrium with the surroundings 

(Kleerebezem and Van Loosdrecht, 2010). 

Non-equilibrium thermodynamics can be applied to quantify the chemical energy that is 

gained by microbial catabolic, anabolic and metabolic reactions and therefore how microbial 

activity is limited by the chemical energy available in a given environment. It is the Gibbs 

energy of a redox reaction (∆𝐺𝑟) that describes the distance of a reaction from thermodynamic 

equilibrium and therefore also the potential energy that can be gained from that reaction 

(Kleerebezem and Van Loosdrecht, 2010). For example, the Gibbs energy derived from the 

oxidation of an organic compound to CO2 coupled to the reduction of an electron acceptor such 

as O2 depends on the oxidation state of the carbon atoms in the organic compound (Figure 1-2). 

The higher the oxidation state of carbon for those compounds, the more electrons are released by 

the oxidation of those carbon atoms to the oxidation state of CO2 (the oxidation state of CO2 is 

4), and therefore the more Gibbs energy is released. 

For an energy-yielding, thermodynamically favourable reaction, the change in Gibbs 

energy between products and reactants is negative (Figure 1-2). To calculate ∆𝐺𝑟, the standard 

state Gibbs energy of reaction, ∆𝐺𝑟
° [kJ mol-1], is calculated from the Gibbs energies of 

formations of the reactants and products using equation 1-1: 
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 ∆𝐺𝑟
° = ∑ ∆𝐺°

𝑓,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − ∑ ∆𝐺°
𝑓,𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 (1-1) 

 

To calculate the non-standard state Gibbs energy of reaction (∆𝐺𝑟𝑥𝑛 [kJ mol-1]), the reaction 

quotient (Q) is used: 

 ∆𝐺𝑟 = ∆𝐺𝑟
° + 𝑅𝑇𝑙𝑛𝑄 (1-2) 

The reaction quotient is calculated using the actual chemical activities of the products and 

reactants of the reaction, and thus accounts for the deviation of the system from its corresponding 

standard state. 

 

 
Figure 1-2. Relationship between the nominal oxidation state of the carbon atoms in an organic 

compound and the Gibbs energy released by the oxidation of that compound coupled to the 

reduction of the electron acceptor O2.  Figure adapted from LaRowe and Van Cappellen (2011). 
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1.3 Mixotrophy 

Organisms that are metabolically flexible and capable of switching between organoheterotrophy, 

lithoheterotrophy and lithoautotrophy are called facultative chemolithoautotrophs or, 

alternatively, mixotrophs (Rittenberg, 1972; Kelly, 1981). These microorganisms possess the 

genes to carry out all three metabolisms, and can regulate which metabolism they use according 

to which one is most optimal under the given conditions (Rittenberg, 1972). This metabolic 

flexibility has been recognized in pure cultures for some time and is likely also a community-

level attribute in a variety of environments. 

Recognition of the widespread capacity for metabolic flexibility across many genera of 

bacteria and archaea is growing, especially with the increased use of omics techniques for 

analyzing laboratory cultures and environmental samples (Long, Williams, Hubbard, & Banfield, 

2016). For example, the bacteria Leptothrix ochracea, one of the first lithotrophic organisms 

discovered by Winogradsky, was previously thought to be a strict lithoautotroph. When grown in 

an enrichment culture with different concentrations of iron(II), L. ochracea was able to 

assimilate both organic and inorganic carbon, revealing that it is capable of mixotrophy 

(Rittenberg, 1972; Fleming et al., 2018). 

1.3.1 Environmental occurrence and controls on mixotrophy 

In the environment, mixotrophy can be identified using metagenomic methods by the coincident 

occurrence of genes for carbon fixation and genes for assimilating organic compounds (Probst et 

al., 2017), by stable isotope probing (Bellini et al., 2018), by tracing natural carbon isotope 

fractionation (Probst et al., 2018), or by Most Probable Number (MPN) approaches that employ 

mixotroph-specific media (Hauck et al., 2001; Melton et al., 2014). 
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The geochemical controls on the relative abundance of autotrophs versus heterotrophs 

have been discussed for some field studies, and for a variety of experimental and modeling 

studies.  Many chemostat studies using either pure, enrichment, or mixed cultures have assessed 

the regulation of metabolic flexibility as a function of the changing supply ratios of an organic 

and inorganic ED by monitoring changes in enzyme production and cell physiology (Shively et 

al., 2002). These experiments have collectively demonstrated that the relative utilization rates of 

inorganic versus organic electron donors determines whether or not autotrophy is induced 

(Dijkhuizen and Harder, 1984; Gommers et al., 1988; Gottschal, 1993). In the presence of an 

organic compound that could be used for heterotrophic growth, autotrophy is only possible if 

there is a sufficient excess of the inorganic electron donor available (Dijkhuizen and Harder, 

1984). Wegner et al. (2018) highlighted that the limited occurrence of nitrification and annamox, 

two lithoautotrophic metabolisms, in aquifer hotspots was constrained by the limited availability 

of inorganic electron donors. Most field studies, however, have focused on the occurrence and 

relative abundances of autotrophic and heterotrophic metabolisms in subsurface systems rather 

than relating them to the geochemical controls.   

1.4 Representing microbial activity in biogeochemical models 

Reactive transport models (RTMs) represent the coupling of geomicrobial, geochemical, and 

transport processes to predict the transformations of chemical species over time and space in the 

environment (Hunter et al., 1998; Mayer et al., 2002; Brookfield et al., 2006; Li et al., 2017). 

Many geochemical reactions are catalyzed by microorganisms, and for this reason, much 

attention has been given to representing them in RTMs (Arora et al., 2015). Major progress has 

been made with implementing bioenergetics-based methods to describe how chemical energy 

limits chemosynthetic growth and reaction rates. Here, I summarize how bioenergetics is used in 
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RTMs by introducing how microbially-controlled reaction rates are represented in RTMs and 

then how bioenergetics can be integrated into these rate expressions to improve their realism. 

1.4.1 Bioenergetics and the microbial growth yield 

The motivation for applying bioenergetic methods in environmental models is to represent the 

regulating role of the 𝛥𝐺𝑟 of the net metabolic reaction, 𝛥𝐺𝑚𝑒𝑡. In doing so, one can predict how 

a group of microorganisms allocates the energy-yielding substrate they consume to growth 

relative to energy generated via the catabolic reaction, that is, the efficiency of growth. This is 

very relevant in biogeochemical models where the goal is to represent the turnover of substrate 

via catabolism as well as the growth of biomass, the catalyst of these reactions. 

The 𝛥𝐺𝑚𝑒𝑡 is calculated using the catabolic and anabolic Gibbs energies (i.e., 𝛥𝐺𝑐𝑎𝑡 and 

𝛥𝐺𝑎𝑛). It is the growth yield parameter, which describes the fraction of ED consumed that is 

used for biomass, and therefore represents the growth efficiency. The growth yield couples 

anabolism and catabolism via an energy balance, which accounts for the allocation of the energy 

in the ED substrate to either biomass (or reducing equivalents used to build biosynthetic 

molecules) or to generating energy via catabolism to build biomass. This is shown schematically 

in Figure 1-3 and mathematically in Eq. 1-3 (see Smeaton and Van Cappellen, 2018 for more 

details): 

 𝛥𝐺𝑚𝑒𝑡 =
1 − 𝑌𝑣

𝑌
∆𝐺𝑐𝑎𝑡 + ∆𝐺𝑎𝑛 (1-3) 

where 𝑣 is a stoichiometric coefficient that is used to non-dimensionalize Y from its usual units 

of, say, [C-mol biomass (mol ED)-1], 𝛥𝐺𝑐𝑎𝑡 is in units of [kJ (mol ED)-1], ∆𝐺𝑎𝑛 is in units of [kJ 

(C-mol biomass)-1], and 𝛥𝐺𝑚𝑒𝑡 is in units of [kJ (C-mol biomass)-1]. 
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The energy balance described in Eq. 1-3 can be rearranged to express the growth yield (𝑌) as a 

function of all three Gibbs energies (Smeaton and Van Cappellen, 2018): 

 𝑌 =
𝛥𝐺𝑐𝑎𝑡

𝛥𝐺𝑚𝑒𝑡 +  ∆𝐺𝑐𝑎𝑡𝜈 −  ∆𝐺𝑎𝑛
 (1-4) 

 

Using this energy balance relationship, bioenergetics methods have focused on predicting 

the growth yields of specific microbial metabolisms by calculating 𝛥𝐺𝑐𝑎𝑡 and 𝛥𝐺𝑎𝑛 for these 

metabolisms using the chemical activities of the reactants and products (i.e., using Eq. 1-1 and 1-

2), and then predicting the value of 𝛥𝐺𝑚𝑒𝑡 to calculate 𝑌. This has been done by approximating 

the value of 𝛥𝐺𝑚𝑒𝑡 based on typically observed values (Heijnen and van Dijken, 1992; Tijhuis et 

al., 1993), or recently, using a semi-empirical relationship relating 𝛥𝐺𝑐𝑎𝑡 to 𝛥𝐺𝑚𝑒𝑡 for different 

metabolic groups (Smeaton and Van Cappellen, 2018). Alternatively, 𝑌 can be predicted directly 

using linear free energy relationships (Roden and Jin, 2011), or by applying optimization 

methods (Vallino, 2010; Algar and Vallino, 2014). 
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Figure 1-3. Conceptual diagram illustrating the significance of the growth yield, Y. The diagram 

shows the allocation of an ED substrate to be oxidized by catabolism, or allocated to biomass. 
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1.4.2 Geomicrobial kinetics 

Monod-type kinetics (also called Michaelis-Menten kinetics) are the standard formulations used 

in RTMs to represent microbial reaction rates (Regnier et al., 2005; Arora et al., 2015). Monod-

type kinetics relate the specific growth rate (𝜇 [time-1]) to the concentration of a growth-

controlling substrate (𝐶𝐸𝐷 [mol ED l-1]) via two parameters, the maximum specific growth rate 

(𝜇𝑚𝑎𝑥 [time-1]), and the half-saturation constant (𝐾𝐸𝐷 [mol ED l-1]): 

 𝜇 = 𝜇𝑚𝑎𝑥 ∗
𝐶𝐸𝐷

𝐶𝐸𝐷 + 𝐾𝐸𝐷
 (1-5) 

 

Eq. 1-5 describes how the specific growth rate saturates at some ED substrate concentration, with 

the two parameters describing the maximum specific growth rate possible (𝜇𝑚𝑎𝑥) and the 

concentration at which 𝜇 begins to saturate (𝐾𝐸𝐷). Equation 1-5 is the basis for relating 

geochemical conditions to microbially-controlled reaction rates. Two formulations are used to 

represent the influence of microbial biomass, the catalyst for these reactions, on the actual 

production or consumption rates (i.e., “turnover” rates) of growth-controlling substrates (e.g., 

𝑟𝐸𝐷 [mol ED (L time)-1]). 

In the first formulation, the concentration of biomass (𝑋 [C-mol l-1]) is explicitly included 

in the equation as a factor which impacts the rate of the reaction. The inverse of the growth yield 

(𝑌 [C-mol biomass (mol ED)-1]) is used to represent the biomass-specific moles of substrate 

turnover, effectively converting the units of biomass concentration to units of ED concentration 

(Eq. 1-6): 

 𝑟𝐸𝐷 = 𝑋 ∗
𝜇𝑚𝑎𝑥

𝑌

𝐶𝐸𝐷

𝐶𝐸𝐷 + 𝐾𝐸𝐷
 (1-6) 

where 𝑟𝐸𝐷 is the rate of ED substrate utilization [mol ED (L time)-1].  



13 

 

In the second formulation, an implicit maximum rate, 𝑟𝑚𝑎𝑥 (in units of [mol ED (L time)-

1]), is used instead (Eq. 1-7): 

 𝑟𝐸𝐷 = 𝑟𝑚𝑎𝑥 ∗
𝐶𝐸𝐷

𝐶𝐸𝐷 + 𝐾𝐸𝐷
 (1-7) 

 

In low energy environments, reaction rates have the potential to be thermodynamically 

limited. This occurs when the energy yield from the Gibbs energy of metabolism is insufficient 

to generate ATP to be used for growth. Therefore, there is an energetic threshold such that when 

the Gibbs energy is below this threshold, growth is inhibited. In RTMs, representing this limit is 

accomplished using the thermodynamic potential factor, 𝐹𝑇 (Arora et al., 2015). One formulation 

for this factor is (LaRowe et al., 2012) : 

 𝐹𝑇 =
1

𝑒(
∆𝐺𝑚𝑒𝑡+𝐹∆Ψ

𝑅𝑇
) + 1

 (1-8) 

where F is the Faraday constant, [96485.34 coulomb mol-1], ∆Ψ is the potential across a cell 

membrane [mV], R is the gas constant [8.314 J (K mol)-1], and T is the temperature in Kelvin. 

This 𝐹𝑇 term can be appended to Eq. 1-6 or 1-7 as a thermodynamic factor impacting the 

reaction rate. The thermodynamic potential factor is thus the second way that the Gibbs energy 

of metabolism enters into the representation of bioenergetic controls on growth and reaction rates 

in geomicrobial kinetics models. 
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Figure 1-4. Hypothetical specific growth rates versus the ED substrate concentration for three 

different combinations of Monod-type kinetic parameters.  Lines 1 and 2 share the same 𝐾𝐸𝐷 

value, while lines 1 and 3 share the same 𝜇𝑚𝑎𝑥 value, with line 3 corresponding to the smallest 

𝐾𝐸𝐷 value and line 2 to the highest 𝜇𝑚𝑎𝑥 value. 
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1.5 Biogeochemical implications of mixotrophy  

Typically, carbon cycling in subsurface environments is assumed to be unidirectional, with 

microbial “soil respiration” degrading the organic carbon previously fixed by terrestrial plants 

and microorganisms to inorganic carbon, which can be returned to the atmosphere as carbon 

dioxide (CO2). Under this assumption, subsurface microbial growth and activity is assumed to be 

organoheterotrophic. There is growing evidence in many environments that indicates that 

lithoautotrophic and mixotrophic metabolisms play a prominent role in subsurface ecosystems in 

terms of their relative abundance and contribution to ecosystem function (Kellermann et al., 

2012; Griebler and Avramov, 2015; Jewell et al., 2016). With this metabolic capacity, subsurface 

prokaryotic communities are not only catalysts of carbon degradation, but are capable of 

inorganic carbon fixation and therefore they close the carbon cycle in the subsurface (Hutchins et 

al., 2016). 

Figure 1-5 illustrates the implications of mixotrophy for biogeochemical reaction 

dynamics. This conceptual diagram is largely informed by pure culture experiments that studied 

the metabolic flexibility of mixotrophs. The changes in carbon cycle fluxes, biomass assimilation 

of organic carbon, and electron acceptor turnover rates are shown as a function of the relative 

proportions of the organic and inorganic ED substrates that a mixotrophic organism consumes. 

With increasing relative utilization of the inorganic compound, autotrophic activity does not 

occur immediately, but instead begins at some threshold (as discussed in section 1.3.1). Prior to 

this threshold, microbial activity is heterotrophic (i.e., uses only organic carbon for biomass 

synthesis). This sustained heterotrophic activity is matched by an increased assimilation of the 

organic compound for biomass C compared to growth on the organic compound alone. 

Consequently, the rate of inorganic C production decreases because the inorganic ED is being 
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oxidized for energy generation rather than the organic ED. At some point following the onset of 

autotrophic activity, there is a net consumption of inorganic C. 

Mixotrophy impacts the overall turnover rate of electron acceptors such as nitrate, sulfate 

and iron(III) due to the different energetic efficiencies of autotrophic and heterotrophic 

metabolisms. Heterotrophic metabolisms require less energy to form organic biosynthetic 

molecules from existing organic compounds compared to autotrophic metabolisms which must 

fix inorganic C into organic molecules (Heijnen and van Dijken, 1992). Per unit of biomass 

produced, autotrophic metabolisms therefore need to run their catabolic reaction more times 

relative to heterotrophic metabolisms, making growth less efficient in terms of the total energy-

yielding substrate (i.e., electron donor or electron acceptor) that is consumed. Consequently, the 

biomass-specific electron acceptor turnover rates by autotrophic metabolisms are higher, that is, 

the amount of the electron acceptor consumed by catabolism per amount of biomass formed is 

higher. The overall turnover rates, however, are lower due to the impact of the less efficient 

growth of autotrophs on the overall turnover rate (i.e., 𝑟𝑚𝑎𝑥 in Eq. 1-7 is the overall turnover rate, 

and can be compared to Eq. 1-6 to see the three parameters that are lumped into 𝑟𝑚𝑎𝑥, including 

the growth yield Y, which represents the growth efficiency) (Koenig and Liu, 2001; Watson et 

al., 2003; Cardoso et al., 2006; Handley et al., 2013). 
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Figure 1-5. Conceptual diagram illustrating the implications of mixotrophic metabolisms for the 

biogeochemical cycling of redox-active compounds. EA = electron acceptor substrate and ED = 

electron donor substrate. 
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1.5.1 Accounting for mixotrophy in environmental models (RTMs) 

Newman and Banfield (2002) summarize the major questions motivating research that seeks to 

improve representation of geomicrobial reactions using models: 

“How do organisms self-organize in response to changes in their environment 

(both biological and chemical)? In turn, how does their organization affect the 

chemistry of their environment? What are the metabolic and genetic networks 

that link the members of the community to one another? And how robust are 

these networks in the face of environmental perturbations?” 

Mixotrophy involves important changes to the chemistry of an environment compared to 

organotrophy. In turn, the availability of alternative EDs in the environment determines whether 

mixotrophy is energetically desirable (Figure 1-5). This thesis seeks to build a modeling 

framework based on the “metabolic network” involved, in order to be able to represent the 

chemical controls on the metabolic flexibility of mixotrophy. This modeling framework can then 

be used to predict the response of mixotrophy to changes in environmental conditions, and to 

predict the turnover of environmentally-relevant chemicals. 

Progress has been made in RTMs by using bioenergetics to more accurately represent 

growth yields and energetic limitations of reaction kinetics (i.e., the FT term) (Arora et al., 2015). 

A major challenge remaining in RTMs is accounting for when reactions are energetically 

favourable (∆𝐺𝑐𝑎𝑡 < 0 , ∆𝐺𝑚𝑒𝑡 < 0, and 𝐹𝑇  >  0), but are not occurring, because some reaction 

is even more favourable. In a sense, this challenge represents a form of competition between 

multiple reactions for EA reduction, ED oxidation, or carbon source utilization reactions.  

Modelling frameworks that integrate thermodynamic (i.e., bioenergetic) and kinetic 

constraints using the formulations outlined in sections 1.4.1 and 1.4.2 have been successful in 
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more systematically representing switching between types of metabolisms other than those 

involved in mixotrophy. For example, Algar and Vallino (2014) used a bioenergetic-kinetic 

approach to predict the competition between nitrate reducing processes. Payn et al. (2014) used a 

bioenergetic-kinetic approach to represent the different energetic efficiencies (i.e., growth yields) 

of autotrophic and heterotrophic metabolisms. However, these authors did not explicitly 

represent the progressive switching between all the metabolisms involved in mixotrophy. 

1.6 Thesis objectives  

The overall objective of this thesis is to describe the competition between heterotrophic versus 

autotrophic, and organotrophic versus lithotrophic metabolic activities in metabolically flexible 

chemotrophic microbial communities using a combined bioenergetic and kinetic approach. This 

approach is compatible with the formulations and level of detail typically implemented in 

reactive transport models. The specific objectives of the thesis are to (1) develop a conceptual 

model of mixotrophic growth informed by experimental datasets that describes the constraints on 

energy and carbon allocation among end member metabolisms, (2) apply this conceptual model 

into a bioenergetic-kinetic modeling framework that incorporates the existing Gibbs Energy 

Dynamic Yield Method (GEDYM, Smeaton and Van Cappellen, 2018) bioenergetics framework 

to predict the relative abundances of heterotrophy and autotrophy at steady state in experimental 

chemostat systems, and (3) apply the framework to predict the relative contribution of 

autotrophic and heterotrophic metabolisms to iron, nitrogen, and carbon cycling in a lake 

sediment. 
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Chapter 2  

Mathematically representing chemosynthetic mixotrophy in 

biogeochemical models 

2.1 Introduction 

Chemosynthetic microorganisms play major roles in biogeochemical elemental cycling, thereby 

influencing nutrient and metal cycling and greenhouse gas fluxes (Long et al., 2016). Outside the 

photic zone, organic compounds are typically assumed to be the primary carbon sources and 

electron donors (EDs) supporting microbial activity. That is, the metabolic activity of 

chemosynthetic communities is often closely regulated (or limited) by the supply and energy 

content of low molecular weight organic acids (e.g. acetate) (Gottschal and Dijkhuizen, 1988; 

Vallino et al., 1996). In addition to serving as energy substrates, these organic compounds can 

also provide the carbon atoms needed for the synthesis of new biomass. Alternatively, inorganic 

carbon sources, most often CO2, can be used for growth by autotrophic microorganisms.  Carbon 

in CO2, however, has an oxidation state greater than that of carbon in biomass, making it 

energetically costlier to incorporate into biomass. 

Although chemoorganotrophs are usually assumed to dominate non-photosynthetic 

microbial communities, there is growing evidence of the significance of chemolithoautotrophy, 

sometimes called dark carbon fixation, in the biogeochemical reaction systems controlling the 

cycling of elements such as iron and sulfur  (Alfreider et al., 2003; Kellermann et al., 2012; 

Griebler and Avramov, 2015; Herrmann et al., 2015; Francois et al., 2016; Jewell et al., 2016). 

The corresponding chemolithoautotrophic metabolisms incorporate CO2 into biomass using a 

variety of fixation pathways (Sato and Atomi, 2010), while acquiring energy from the oxidation 

of an inorganic ED, for example, methane (CH4), ammonium (NH4
+), nitrite (NO2

-), sulfide (S2-), 

thiosulfate (S2O3
2-), and dihydrogen (H2). These inorganic compounds are generated by 
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processes such as mineral weathering (Yabusaki et al., 2017; Dwivedi et al., 2018) and organic 

matter fermentation (Lovley and Chapelle, 1995).  The inclusion of autotrophic metabolisms in 

reactive transport models of subsurface environments has demonstratably improved the 

predictions of reaction rates associated with carbon, sulfur, iron and nitrogen cycling (Arora et 

al., 2017; Yabusaki et al., 2017; Dwivedi et al., 2018). In environments where low 

concentrations of organic and inorganic electron EDs are available, the microbial community is 

likely to simultaneously utilize more than one carbon source, including CO2, for growth, and 

more than one ED for energy generation. That is, these environments may support mixotrophic 

or facultative chemolithoautotrophic communities (Rittenberg, 1972; Matin, 1978; Dijkhuizen 

and Harder, 1984). 

The chemical and biological controls on mixotrophic metabolisms have been fairly well 

studied in pure cultures by measurement of enzyme production, substrate utilization rates (e.g., 

carbon fixation rates), and biomass concentrations, as examples. These experiments have 

demonstrated that during growth on mixtures of organic and inorganic ED substrates, growth is 

enhanced compared to growth on the organic substrate alone. This growth is related to the 

enhanced incorporation of the organic ED substrate into biomass. Accordingly, there is a 

threshold for the onset of autotrophy, where autotrophy is only possible once the relative rate of 

utilization of the inorganic ED is in sufficient excess that the metabolism is organic carbon-

limited (Dijkhuizen and Harder, 1984). This behaviour highlights the importance of the 

competition between heterotrophic and autotrophic modes of metabolism during mixotrophic 

growth. 

The regulation of metabolic functions and rates is closely linked to the generation and use 

of catabolic energy by cells, which forms the field of research known as bioenergetics. There are 
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only a few studies in which bioenergetic models have been applied in environmental simulations 

to account for the thermodynamic limitations on biogeochemical reaction rates (Payn et al., 

2014; Arora et al., 2015). The potential co-occurrence of autotrophic and heterotrophic 

metabolisms as a function of (variable) environmental conditions needs to be acknowledged and 

more systematically represented in a bioenergetics framework. While it is possible to quantify 

the thermodynamic driving forces of metabolic reactions, many reactions may be 

thermodynamically favourable at the same time, but they may not all occur, because cells and 

communities strive to optimize the allocation of limiting resources, whether an electron donor or 

acceptor, an essential nutrient, or even habitat space (Arora et al., 2015). In other words, we 

cannot assume that a community uses only organic carbon compounds for energy production and 

biomass growth, or that a given combination of carbon sources and energy substrates remains 

unchanging over time.  

In this chapter, I develop a bioenergetics-based mathematical framework for representing 

mixotrophy in biogeochemical reaction systems. The derivation of this framework is inspired by 

recent work on the prediction of dynamic growth yields of microorganisms, the so-called Gibbs 

Energy Dynamic Yield method (Smeaton and Van Cappellen, 2018). It takes into account kinetic 

and thermodynamic constraints on the rates of the possible metabolic end members, under 

imposed chemo-static conditions. 

2.2 Conceptual model 

Chemosynthetic mixotrophic growth can be conceptualized as the combination of a set of three 

metabolic end member (MEM) reactions occurring simultaneously (Wood and Kelly, 1980; 

Gottschal and Thingstad, 1982; Perez and Matin, 1982; Lee et al., 1985; Von Stockar et al., 

2011). These end member reactions represent unique combinations of an ED (and energy source) 

and carbon source used for growth. They are: organoheterotrophy (OH), lithoautotrophy (LA), 
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and lithoheterotrophy (LH). As section 2.2 described, OH uses organic carbon substrates as both 

an energy and carbon source, and LA uses inorganic substrates as an energy source and inorganic 

carbon for its carbon. LH, then uses an inorganic substrate for its energy, while using an organic 

carbon source.  

The relative rates of these MEMs undertaken by a population of organisms at any time 

during growth on a mixture of an organic ED and inorganic ED are regulated by the relative 

utilization rates of the two EDs (𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 and 𝑟𝑜𝑟𝑔 𝐸𝐷). The relative expression of the three 

MEMs can be described as a fraction of the total mixotrophic biomass, 𝑥𝑖𝑘, where 𝑖 is either 𝑜 or 

𝑙 and used to represent organotrophy or lithotrophy, respectively, and 𝑘 is either ℎ or 𝑎 to 

represent heterotrophy or autotrophy, respectively. These MEM fractions can be related to 

𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 and 𝑟𝑜𝑟𝑔 𝐸𝐷 using expressions for the energy and carbon balances of the population. 

Figure 2-1 illustrates the conceptual model, showing the relationship between the utilization rates 

of the two EDs and the carbon and energy balances. 
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Figure 2-1. Illustration of conceptual model of mixotrophic growth.  The diagram shows how 

electron equivalents from the organic and inorganic electron donors are either allocated for use 

as a carbon source (incorporation into biomass) or for generating energy for biosynthesis or 

energy conservation in the anabolic reaction. 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 is the fraction of organic carbon assimilated 

into biomass, while 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

is the fraction of organic carbon dissimilated (i.e., oxidized for energy 

during catabolism). The various fractions referred to in the text are labelled for clarification and 

to demonstrate how they are related to each other. The carbon and energy balance fractions are 

noted by symbols 𝑓ℎ and 𝑓𝑎 for fractions of heterotrophy and autotrophy, respectively, and 𝜙𝑜  

and 𝜙𝑙 for the fractions of organotrophy and lithotrophy, respectively. The metabolic end 

member (MEM) fractions are noted using 𝑥, with subscripts “oh” referring to 

organoheterotrophy, “lh” for lithoheterotrophy, and “la” for lithoautotrophy.  



25 

 

2.2.1 Carbon and energy balances 

Here, I outline the energy and carbon balance expressions for mixotrophic growth which 

describe the allocation of the two EDs and two carbon sources to the energy-requiring processes 

of biosynthesis and energy conservation, plus the carbon requirement for biosynthesis. The 

energy balance fractions represent the proportions of the overall metabolism that use the organic 

(i.e., organotrophy) and inorganic (i.e., lithotrophy) EDs for energy, while the carbon balance 

fractions represent the proportion of the biomass that is formed using organic (i.e., heterotrophy) 

and inorganic (i.e., autotrophy) carbon. 

To compare the ED utilization rates in terms of the energy available, it is necessary to 

convert the rates from units of mole of ED to units of moles of electron equivalents (eeq). 

Electron equivalents represent the number of electrons (e-) released during complete oxidation of 

the ED. For example, during the oxidation half reaction of thiosulfate (𝑆2𝑂3
2−), 8 e- are released: 

 𝑆2𝑂3
2− →  2𝑆𝑂4

2− +  8𝑒− (2-1) 

An eeq factor (𝑛𝑒𝑒𝑞
𝐸𝐷 ) [mol eeq (mol ED)-1] can be used to convert ED utilization rate units. For 

example, 𝑟𝑜𝑟𝑔 𝐸𝐷 [mol org ED (L time)-1] can be converted to 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞 [mol org eeq (L time)-1] 

using Eq. 2-2. These two notations for distinguishing rates in units of mol ED and mol eeq will 

be used throughout this thesis. 

 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞 = 𝑟𝑜𝑟𝑔 𝐸𝐷 ∗ 𝑛𝑒𝑒𝑞
𝐸𝐷  (2-2) 

The total rate of ED utilization of the inorganic and organic substrates for processes 

requiring electron donation in both catabolism and anabolism (𝑟𝑒𝑒𝑞)[mol eeq (L time)-1] is the 

sum of the rates of consumption of the two EDs where the organic ED utilization rate is 

multiplied by the electron equivalents fraction of the organic ED dissimilated, 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

: 
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 𝑟𝑒𝑒𝑞 =  𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

∗ 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞 +  𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞 (2-3) 

 

The fraction of the total metabolic reaction that is organotrophic (𝜙𝑜𝑟𝑔
𝑚𝑒𝑡) and lithotrophic (𝜙𝑙𝑖𝑡ℎ𝑜

𝑚𝑒𝑡 ) 

can be calculated using each of the terms on the right side of Eq. 2-3 as the numerator and the 

total eeq utilization rate for energy production as the denominator: 

 𝜙𝑜𝑟𝑔 =
𝑓𝑑𝑖𝑠𝑠𝑖𝑚

𝑜𝑟𝑔
∗ 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞

𝑟𝑒𝑒𝑞
 (2-4) 

 𝜙𝑙𝑖𝑡ℎ𝑜 =
𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞

𝑟𝑒𝑒𝑞
 (2-5) 

 

The carbon balance fractions are calculated using units of C-mol rather than units of mol eeq, as 

with the energy balance fractions. The total biomass production rate (𝑟𝑥) [C-mol biomass (L 

time)-1] reflects the use of organic (i.e., heterotrophic) and inorganic (i.e., autotrophic) carbon to 

build biomass and can therefore be expressed as the sum of the two rates of consumption of these 

carbon sources: 

 𝑟𝑥 = 𝑟𝑥,ℎ𝑒𝑡 + 𝑟𝑥,𝑎𝑢𝑡𝑜 (2-6) 

whereby the total rate of heterotrophic microbial growth (i.e., the OH and LH MEMs) (𝑟𝑥,ℎ𝑒𝑡) 

[C-mol biomass (L time)-1] is: 

 𝑟ℎ𝑒𝑡,𝑥 = 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

∗ 𝑟𝑜𝑟𝑔 𝐸𝐷 ∗ 𝑛𝐶
𝑜𝑟𝑔 𝐸𝐷

 (2-7) 

where 𝑛𝐶
𝑜𝑟𝑔

 is the number of moles of carbon in one mole of organic substrate, and is used to 

convert the organic ED utilization units to C-mol units, and  𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 is the fraction of the organic 

substrate assimilated for biomass synthesis (and is equal to 1-𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

).  
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All inorganic carbon uptake is allocated to biomass synthesis and, given the 1:1 ratio of 

carbon in CO2 and in a C-mol of biomass, the rate of biomass production attributed to autotrophy 

(𝑟𝑥,𝑎𝑢𝑡𝑜) [C-mol biomass (L h)-1] is equal to the rate of carbon dioxide uptake (𝑟𝐶𝑂2
) [C-mol (L 

h)-1]:   

 𝑟𝑥,𝑎𝑢𝑡𝑜 = 𝑟𝐶𝑂2
 (2-8) 

The fraction of the total metabolism that is heterotrophic (𝑓ℎ) and autotrophic (𝑓𝑎) is described 

using:  

 𝑓ℎ =
𝑟𝑥,ℎ𝑒𝑡

𝑟𝑥
 (2-9) 

 𝑓𝑎 =
𝑟𝑥,𝑎𝑢𝑡𝑜

𝑟𝑥
 (2-10) 

   

These metabolic carbon and energy balance fractions can be used to calculate the relative 

proportions of the MEMs. These MEM fractions represent the fraction of biomass, and therefore 

also total metabolic activity, that uses that MEM reaction. Given that there are three MEMs 

representing the unique combination of a carbon and energy source, the fraction of each MEM 

will be the product of a metabolic energy balance fraction (𝜙𝑖
𝑚𝑒𝑡) and a carbon balance fraction 

(𝑓𝑘): 

 𝑥𝑖𝑘 = 𝜙𝑖
𝑚𝑒𝑡 ∗ 𝑓𝑘 (2-11) 

2.2.2 Representing energetic constraints: Defining reaction stoichiometries  

To apply this conceptual framework using a bioenergetic-kinetic approach, and represent the 

energetic constraints on each MEM, the Gibbs Energy Dynamic Yield Method (GEDYM) is 

used. This method uses the Gibbs energies of the anabolic (i.e., biomass forming) and catabolic 

(i.e., energy generating) reactions that make up the metabolic reaction to predict how they are 
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combined to yield the metabolic reaction. The details of deriving catabolic and anabolic reactions 

are described by Smeaton and Van Cappellen (2018). By calculating the bioenergetics-predicted 

metabolic reaction stoichiometry, the specific turnover rates of reactants and products can be 

calculated for each MEM. 

As examples, the catabolic and anabolic reactions during lithoheterotrophic growth using 

thiosulfate (𝑆2𝑂3
2−) as an ED/ energy source, oxygen (𝑂2) as an electron acceptor, and acetate 

(𝐶2𝐻3𝑂2
−) as a carbon source are outlined here. The catabolic reaction describing the oxidation 

of 𝑆2𝑂3
2− 𝑡𝑜 𝑆𝑂4

2− coupled to the reduction of 𝑂2 to 𝐻2𝑂, called lithotrophy would be: 

 𝑆2𝑂3
2−  +  2𝑂2  + 𝐻2𝑂 →  2𝑆𝑂4

2− +  2𝐻+ (2-12) 

 

For the anabolic reactions describing the formation of biomass, the generic formula, 

𝐶𝐻1.8𝑂0.5𝑁0.2, is used to represent one carbon mole of biomass. The anabolic reaction here 

involves the reduction of 𝐶2𝐻3𝑂2 to the oxidation state of biomass coupled to the oxidation of 

𝑆2𝑂3
2− 𝑡𝑜 𝑆𝑂4

2−: 

 

0.15𝑆2𝑂3
−2   +  0.5𝐶2𝐻3𝑂2

− +  0.2𝑁𝐻4
+ +  0.27𝐻2𝑂 → 

0.3𝑆𝑂4
−2 +  0.05𝐻𝐶𝑂3

−  +  0.06𝐻+  + 𝐶𝐻1.8𝑂0.5𝑁0.2 
(2-13) 

 

These reactions can be used to calculate the standard state Gibbs energies, ∆𝐺𝑎𝑛
°  and ∆𝐺𝑐𝑎𝑡

°  

(using Eq. 1-1, and Eq. A-16 (Appendix A) to correct for temperature), and subsequently ∆𝐺𝑎𝑛 

and ∆𝐺𝑐𝑎𝑡 (using Eq. 1-2) given the chemical activities in the environment being simulated. 

  Smeaton and Van Cappellen (2018) present the principle equation of the GEDYM that is 

used to calculate growth yields and the energetic limitations to metabolic reactions. Its derivation 
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is reproduced in Appendix A. The method uses linear regressions specific to different metabolic 

groups with different energetic costs. Here, I use the linear regression parameters from the fit to 

the “majority of metabolisms” for heterotrophic metabolisms (i.e., for the OH and LH MEMs). 

For autotrophic metabolisms, I use an unpublished linear regression that is meant to represent the 

energetic costs of reverse electron transport and inorganic carbon fixation. Reverse electron 

transport is used by many lithoautotrophs to generate the reducing equivalents necessary to 

reduce CO2 to the oxidation state of biomass. The linear regression parameters for these two 

metabolic groups are given in Table A-4 (Appendix A). In addition to being able to calculate the 

growth yield (Y) for a metabolism given the energy available from the specific chemical 

activities in a given environment, the maximum potential growth yield can also be calculated 

using bioenergetics. The calculation for this maximum potential growth yield (𝑌𝑚𝑎𝑥) is also 

described in Appendix A. 

MEM-specific rates of reactant or product turnover, including growth rates, can be 

calculated using these MEM-specific growth yields. The anabolic and catabolic reactions can be 

added together to yield the metabolic reaction using the energy balance relationship described by 

Eq. 1-3. This metabolic reaction describes the stoichiometric coefficients in front of all reactants 

and products and thus facilitates the conversion of ED utilization rates to the rate of interest. For 

example, to account for the total potential MEM-specific turnover rate of a substrate S (𝑟𝑆,𝑀𝐸𝑀), 

the general equation 2-14 can be used: 

 𝑟𝑆,𝑀𝐸𝑀 = 𝑟𝐸𝐷 ∗
𝑛𝑆

𝑚𝑒𝑡

𝑛𝐸𝐷
𝑚𝑒𝑡 (2-14) 

where 𝑛𝑆
𝑚𝑒𝑡 is the stoichiometric coefficient in front of a substrate, S in the metabolic reaction 

for that MEM [mol S (C-mol biomass)-1], and 𝑛𝐸𝐷
𝑚𝑒𝑡 is the stoichiometric coefficient in front of 

the ED in the metabolic reaction [mol ED (C-mol biomass)-1]. 
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To account for the limitation of MEM turnover rates by their competition with other 

MEMs, I scale the total potential MEM-specific rate by energy balance or carbon balance 

fractions. For the OH MEM, the total potential rate is scaled by 𝜙𝑜, the fraction of organotrophy, 

to represent the fact that not all the 𝑟𝑜𝑟𝑔 𝐸𝐷 consumed is used for organotrophic growth: 

 𝑟𝑆,𝑂𝐻 = 𝜙𝑜 ∗ 𝑟𝑜𝑟𝑔 𝐸𝐷 ∗
𝑛𝑆

𝑚𝑒𝑡

𝑛𝐸𝐷
𝑚𝑒𝑡 (2-15) 

where 𝑟𝑆,𝑂𝐻 is the OH-specific turnover rate of substrate S. 

For LH, and LA, the two lithotrophic metabolisms, all of the inorganic ED consumed is used for 

donating electrons, so to describe the partitioning of the ED to either of the two MEMs, the 

carbon balance fractions (𝑓𝑘) can be used to scale the total potential rates of each MEM: 

 𝑟𝑆,𝑀𝐸𝑀 = 𝑓𝑘 ∗ 𝑟𝐸𝐷 ∗
𝑛𝑆

𝑚𝑒𝑡

𝑛𝐸𝐷
𝑚𝑒𝑡 (2-16) 

Therefore, for LH, Eq. A-28 becomes: 

 𝑟𝑆,𝐿𝐻 = 𝑓ℎ ∗ 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 ∗
𝑛𝑆

𝑚𝑒𝑡

𝑛𝐸𝐷
𝑚𝑒𝑡 (2-17) 

And for LA, Eq. A-28 becomes: 

 𝑟𝑆,𝐿𝐴 = 𝑓𝑎 ∗ 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 ∗
𝑛𝑆

𝑚𝑒𝑡

𝑛𝐸𝐷
𝑚𝑒𝑡 (2-18) 

To calculate MEM-specific growth rates (i.e., 𝑟𝑥,𝑂𝐻, 𝑟𝑥,𝐿𝐻, and 𝑟𝑥,𝐿𝐴) , the same equations can be 

used, with 
𝑛𝑆

𝑚𝑒𝑡

𝑛𝐸𝐷
𝑚𝑒𝑡 replaced by 𝑌𝑖𝑘, the potential growth yield (in units of [C-mol biomass (mol ED)-

1] for that specific MEM. The total mixotrophic substrate turnover rate or growth rate can then be 

calculated as the sum of these MEM-specific rates: 

 𝑟𝑥 = 𝜙𝑜 ∗ 𝑟𝑜𝑟𝑔 𝐸𝐷 ∗ 𝑌𝑜ℎ + 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 ∗ (𝑓ℎ ∗ 𝑌𝑙ℎ + 𝑓𝑎 ∗ 𝑌𝑙𝑎) (2-19) 
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To validate my modeling framework for predicting the relative abundances of the MEMs 

expressed as a function of the relative utilization of the two EDs, I collected data from chemostat 

studies identified in the literature which directly traced the fraction of the organic ED/ carbon 

source assimilated (𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

), enabling the calculation of the MEM fractions using the conceptual 

model illustrated in Figure 2-1. 

2.3 Literature experimental data compilation 

Chemostats are ideal experimental systems to study mixotrophy, because they allow organisms 

to grow under stable, steady state conditions, simulating environmental conditions. 

Consequently, organisms grow in a constant physiological state, such that growth yields and 

kinetic parameters (such as 𝑟𝑥) are more precise and reproducible than those extracted from batch 

experiments (Kovarova-Kovar and Egli, 1998). Moreover, the supply rates of different ED and 

carbon source mixtures can be tightly controlled in chemostats. 

In chemostats, sterile growth medium is supplied at a constant volumetric flow rate (F) to 

a culture vessel containing microorganisms (e.g., Esteve-Núñez et al., 2005). Biomass-

containing effluent is removed from the vessel at the same flow rate to maintain a constant 

culture volume (V). The residence time of the cells in the reactor is given by the dilution rate (D) 

[time-1] (Herbert et al, 1956) (Eq. 2-20). At steady state, the specific growth rate of the 

organisms, µ, is equal to 𝐷.  

 𝐷 =  
𝐹

𝑉
 (2-20) 

 

Literature chemostat studies were chosen that used biochemical techniques (e.g., isotopic 

labelling, tracking CO2 gas production, and measurement of specific CO2 fixation rates) to track 
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the proportion of organic substrate assimilated and used for biosynthetic molecules (𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

) 

versus the fraction dissimilated for biomass synthesis and energy conservation (𝑓𝑑𝑖𝑠𝑠𝑖𝑚 
𝑜𝑟𝑔

). These 

studies also reported measurements that could be used to calculate 𝑟𝑜𝑟𝑔 𝐸𝐷, 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷, and 𝑟𝑥. 

While studies that fit all the above criteria are sparse, these data enable fully constraining the 

energy and carbon balances described in section 2.2.1 to calculate the fraction of each MEM. 

Three published chemostat studies which investigated mixotrophic pure cultures grown on 

mixtures of organic and inorganic EDs were identified. Table 2 summarizes the experimental 

conditions of each study.  

Briefly, all chosen studies used O2 as the sole electron acceptor. Study 1 examined 

mixotrophic growth of Paracoccus versutus (formerly known as Thiobacillus A2 and 

Thiobacillus versutus) (Katayama et al., 1995) on the organic ED acetate and the inorganic ED 

thiosulfate (Gottschal and Kuenen, 1980). The catabolic and anabolic reactions for study 1 are in 

Table A-1 (Appendix A). In study 2, Pseudomonas oxalaticus was grown on mixtures of acetate 

and formate.  While formate is an organic compound, it is treated as an “inorganic” substrate for 

the purposes of this synthesis since P. oxalaticus is unable to use formate as a C source for 

biomass, and its growth on formate is therefore exclusively autotrophic (Dijkhuizen et al., 

1977b). In other words, no formate is assimilated for forming biomass, which is the same for 

lithoautotrophic growth using a true inorganic compound such as H2. While some papers have 

called autotrophic growth where formate or other one carbon acids such as methanol are used as 

the ED either organoautotrophic or methylotrophic (Dijkhuizen and Harder, 1984; Bowien et al., 

1996), it is herein referred to as lithoautotrophic. Studies 2 and 3 are nearly identical (i.e., same 

organism, inorganic ED and electron acceptor), with the only difference being that in study 3 the 



33 

 

organic ED substrate is oxalate. The anabolic and catabolic reactions corresponding to studies 2 

and 3 are found in Appendix A, Tables A-2 and A-3. 
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Table 2-1. Description of experimental datasets available that examined mixotrophic growth on variable ratios of organic and 

inorganic ED substrate. 

Study 

no. 
Reference Organism 

Temperature 

(○C) 

Organic 

ED 

Inorganic 

ED 

Electron 

acceptor 

Specific 

growth rate 

(h
-1

) 

% Autotrophy 

determined by 

1 
(Gottschal and Kuenen, 

1980) 

Paracoccus 

versutus 
28 Acetate Thiosulfate Oxygen 0.05 

Acetate 

assimilation (gas 

production and 
14

C-labelling) 

2 
(Dijkhuizen et al., 

1980) 

Pseudomonas 

oxalaticus 
28 Acetate Formate Oxygen 0.1 

Cell-specific 

carbon fixation 

rate 

3 
(Dijkhuizen and 

Harder, 1979) 

Pseudomonas 

oxalaticus 
28 Oxalate Formate Oxygen 0.1 

Cell-specific 

carbon fixation 

rate 
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2.3.1 Calculating the net ED utilization and growth rates 

The concentrations of ED substrates supplied (𝐶𝐸𝐷
𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑

) [mol ED (L)-1] and the steady state 

residual concentrations (𝐶𝐸𝐷
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) [mol ED (L)-1] of ED substrates in the chemostat studies are 

used to calculate the net rates of organic and inorganic ED utilization (𝑟𝐸𝐷 ) [mol ED (L time)-1] 

using Eq. 2-21. As described in Eq. 2-2, this rate can be converted to units of mol eeq using the 

eeq factor, 𝑛𝑒𝑒𝑞
𝐸𝐷 . 

 𝑟𝐸𝐷  = 𝐷 ∙ (𝐶𝐸𝐷
𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 − 𝐶𝐸𝐷

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) (2-21) 

For the studies considered here, the residual concentrations were reported as not detectable, so 

that the ED utilization rates are equivalent to rate of ED supply at the chemostat inlet. For 

energetic calculations, the residual concentrations of the EDs were estimated using calculations 

that are outlined in Appendix A. 

The total biomass concentrations (𝑋𝑡𝑜𝑡) measured at the outlet of the chemostat and 

reported in the studies in either [g of biomass C (L)-1] or [g of dry weight biomass (L)-1] were 

converted to units of [C-mol biomass (L)-1] by multiplying them by the molecular weight of 

carbon (12.01 g (mol)-1) or the average molecular weight of biomass (24.6 g (C-mol biomass)-1 

(Smeaton and Van Cappellen, 2018)), respectively. The total biomass production rate (𝑟𝑥) [C-

mol biomass (L time)-1] was determined using: 

 𝑟𝑥 = 𝑋𝑡𝑜𝑡 ∗ 𝐷 (2-22) 

2.3.2 Calculating the MEM fractions 

In the selected studies, two different approaches were used to monitor inorganic carbon fixation 

activity versus heterotrophic organic carbon use. In study 1, 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 was measured directly by 
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either tracing the CO2 produced by organic substrate oxidation or by tracing the carbon allocated 

to biomass using an isotopic label (Gottschal and Kuenen, 1980). Along with the calculated 

growth rates and ED substrate utilization rates (described in section 2.31), this enabled the 

calculation of the carbon and energy balances as described in section 2.2.1, and therefore the 

calculation of the MEM fractions (using Eq. 2-9). 

While 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 was not directly measured in studies 2 and 3, the carbon fixation rate was 

measured and could be used to determine the fractions of autotrophy (𝑓𝑎) and heterotrophy (𝑓ℎ). 

This is accomplished by comparing the biomass production (𝑟𝑡𝑜𝑡 𝑥100
) and carbon fixation 

(𝑟𝐶𝑂2100
) rates under 100% autotrophic conditions (i.e., no added organic carbon) to the biomass 

production (𝑟𝑡𝑜𝑡 𝑥) and carbon fixation (𝑟𝐶𝑂2) rates of chemostat experiments containing organic 

carbon using: 

 
𝑓𝑎

𝑓𝑎100

=

𝑟𝐶𝑂2

𝑟𝑥
𝑟𝐶𝑂2100

𝑟𝑥100

 (2-23) 

At 100% autotrophy, 𝑓𝑎100
 = 1, therefore: 

 𝑓𝑎 =
𝑟𝐶𝑂2/ 𝑟𝑥

𝑟𝐶𝑂2100
/ 𝑟𝑥100

 
 (2-24) 

The fraction of heterotrophy, 𝑓ℎ can thus be determined given that 𝑓ℎ = 1 −  𝑓𝑎. 

Given that biomass-specific carbon fixation rates were reported in studies 2 and 3 (i.e., per units 

biomass; [nmol-CO2 min-1 mg dry weight-1]), this effectively accounts for normalizing the rate 

by biomass, and thus Eq. 2-25 was used: 

 𝑓𝑎 =
𝑞𝐶𝑂2

𝑞𝐶𝑂2100

 (2-25) 
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where 𝑞𝐶𝑂2 is the specific rate of CO2 fixation for the conditions of interest, and 𝑞𝐶𝑂2100
 is the 

specific rate of CO2 fixation for the 100% autotrophy conditions, both in units of nmol-CO2 min-

1 mg dry weight-1. After the fraction of autotrophy is calculated, the fraction of the organic 

substrate assimilated can be calculated by rearranging Eq. 2-7, and 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

can also be calculated 

since it is equal to 1 – 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

. The carbon and energy balances and MEM fractions can then be 

calculated as described in section 2.2.1. 

2.3.3 Comparing data-derived and GEDYM-predicted growth yields  

Given the importance of the value of 𝑌 for accurately predicting substrate turnover rates (e.g., 

Fig. 1-3) (Smeaton and Van Cappellen, 2018), I sought to (1) derive the experimental observed 𝑌 

values for each MEM (i.e., 𝑌𝑖𝑘), and use these values to (2) validate the use of a bioenergetics-

based 𝑌 prediction method (GEDYM).  

To determine 𝑌𝑖𝑘 from the literature experimental data, we assume that all three MEMs 

(OH, LA and LH) were present in the chemostats. In cases when only the organic ED substrate is 

used (i.e., 100% OH) or only the inorganic ED is used (i.e., 100% LA), these growth yields (𝑌𝑖𝑘, 

either 𝑌𝑜ℎ or 𝑌𝑙𝑎 [C-mol biomass (mol ED)-1]) are calculated using: 

 𝑌𝑖𝑘 =
𝑟𝑥

𝑟𝐸𝐷
 (2-26) 

We assume that these represent the value of 𝑌𝑜ℎ and 𝑌𝑙𝑎 for the other ED mixture scenarios. 

Since the total mixotrophic growth rate is the sum of the MEM-specific growth rates (Eq. 2-19), 

this relationship can be rearranged to solve for 𝑌𝑙ℎ when all the other values are known, which is 

possible using the datasets considered here, since I assume that the values of 𝑌𝑜ℎ and 𝑌𝑙𝑎 are 

fixed at the values that I calculated using Eq. 2-25 above: 
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 𝑌𝑙ℎ =
𝑟𝑥 − 𝜙𝑜 ∙ 𝑟𝑜𝑟𝑔 𝐸𝐷 ∙ 𝑌𝑜ℎ − 𝑓𝑎 ∙ 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 ∙ 𝑌𝑙𝑎

𝑓ℎ ∙ 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷
 (2-27) 

To calculate the total observed Y values in units of C-mol biomass/ mol-O2, Eq. 2-28 was 

used. The electron acceptor, O2, is used as the denominator for the units of the growth yield since 

it is the one shared substrate among all three MEMs. The term 𝑟𝑥 ∙ 𝑛𝑒𝑒𝑞
𝑥  is substracted from the 

total moles of eeq generated by the two EDs to represent the moles of eeq that are allocated to 

biomass synthesis rather than catabolism. 𝑛𝑒𝑒𝑞
𝑥  is 4.2 mol eeq (C-mol biomass)-1. 𝑛𝑒𝑒𝑞

𝑂2  (4 mol eeq 

(mol O2)
-1) is then used to convert the units from eeq to mol O2. 

 𝑌𝑖𝑘 =
𝑟𝑥

(𝑟𝑜𝑟𝑔 𝐸𝐷 + 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 − 𝑟𝑥 ∗ 𝑛𝑒𝑒𝑞
𝑥 ) ∗ 𝑛𝑒𝑒𝑞

𝑂2
 (2-28) 

where the units of 𝑟𝑜𝑟𝑔 𝐸𝐷 and 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 are [mol e-eq ED (L time)-1]. 

All data-derived 𝑌 values are herein referred to as observed 𝑌 values. Appendix A and 

section 2.2.2 describe how the GEDYM is used to predict growth yields from chemical activities. 

Appendix A also describes how I calculated the residual concentrations of the reactants and 

products, from which their chemical activities could be calculated by modeling each growth 

medium using PHREEQC (Parkhurst and Appelo, 2013). The total GEDYM-predicted growth 

yield was calculated by multiplying each of the MEM-specific predicted growth yields (in units 

of C-mol biomass (mol O2)
-1) by the fraction of that MEM (𝑥𝑖𝑘) observed (i.e., calculated using 

Eq.2-11). 

Figure 2-3 shows parity plots of the observed versus predicted 𝑌 values for all three 

MEMs, and for the total 𝑌 values. The 𝑌 values in the parity plots for the OH and LA MEMs lay 

close to the 1:1 line; thereby demonstrating that GEDYM can be applied to represent these two 

MEMs. This demonstrates that the GEDYM linear regression parameters used for autotrophy 

accurately capture the energetic costs involved during autotrophy, including reverse electron 
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transport. However, the parity plot for the LH MEM shows that GEDYM is less accurate. A 

potential reason for the discrepancy is that the steady state concentrations of the reactants and 

products in the chemostats are not actually known but are instead estimated. The GEDYM is 

sensitive to these steady state concentrations since they affect the reaction quotient and therefore 

represent the distance of the metabolic growth reaction from equilibrium. Another potential 

reason for the lack of agreement is due to possible experimental errors. The total mixotrophic 

growth yields are predicted relatively well using the GEDYM (Figure 2-2), with some deviation 

from the 1:1 parity line which can be attributed in part to experimental error. 

2.3.4 Bioenergetic controls on Y values  

The MEM-specific growth yields, 𝑌𝑖𝑘, were calculated using the GEDYM and plotted as a 

function of the relative utilization rate of the inorganic ED (in units of eeqs, as a fraction of the 

total eeqs consumed from both EDs) (Figure 2-3). The total observed growth yields in units of C-

mol/ mol O2 were calculated using Eq. 2-28. Figure 2-3 demonstrates the implications of the 

competition between autotrophy and heterotrophy for the total mixotrophic growth yield, and 

therefore for the turnover of substrates by mixotrophy. Heterotrophic growth yields are greater 

than autotrophic growth yields, and the transition between the OH MEM and LA MEM at 

relative rates of the inorganic ED consumed of 0 and 1, respectively, is not linear. Instead, the 

existence of two phases of mixotrophic growth (i.e., heterotrophy and autotrophy, or energy-

limited and organic carbon-limited) leads to a trend in the total growth yield that deviates from 

being linear, due to the presence of three rather than two MEMs. Figure A-4 shows the trends in 

the Gibbs energies of catabolism, anabolism, and metabolism that were used to calculate these 

growth yields. These figures demonstrate the need to account for all three MEMs to describe the 

energetics and metabolic behaviour of mixotrophic growth.  
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Figure 2-2. Parity plots of observed and predicted yields in C-mol biomass/ mol ED for the 3 

individual MEMs as indicated by subplot header (where LA= lithoautotrophy, LH= 

lithoheterotrophy, OH= organoheterotrophy), and for the total yield calculated as the sum of the 

three predicted yields, in units of C-mol biomass/ mol O2. 
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Figure 2-3. Total calculated mixotrophic growth yield, Y, and MEM-specific growth yields 

versus the fraction of inorganic electron equivalents consumed , 𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞 (𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞⁄ +

𝑟𝑜𝑟𝑔 𝑒𝑒𝑞). The identities of study 1, 2 and 3 are described in the text and in table 2-1. 
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2.3.5 Trends in the data-derived MEM fractions, fh, fa and forg
assim 

Figure 2-4-A shows the trends in the MEM fractions (𝑥𝑖𝑘), and therefore also the fractions of 

heterotrophy and autotrophy (𝑓ℎ and 𝑓𝑎, since 𝑓ℎ = 𝑥𝑜ℎ + 𝑥𝑙ℎ and 𝑓𝑎  =  𝑥𝑙𝑎) as a function of the 

relative utilization rate of the inorganic ED. Figure 2-4-B shows the fraction of the organic ED 

assimilated, demonstrating the relationship between the fraction of the organic ED assimilated 

and the fraction of heterotrophy (which is also described mathematically by Eqs. 2-5 and 2-7). 

Effectively, it shows that autotrophic activity (indicated by the relative fraction of the LA MEM 

in panel A) occurs at some threshold rather than at the point that the inorganic ED is first 

consumed. This is due to the extended occurrence of heterotrophy which is facilitated by the LH 

MEM, and is reflected in the increased assimilation of the organic ED. 

In the biotechnology literature, this behaviour has been described by identifying two 

phases of growth. The phase when the metabolism is still 100% heterotrophic has been called the 

energy-limited phase of mixotrophic growth (Gommers et al., 1988). Correspondingly, the phase 

of growth when autotrophy is occurring is the organic carbon-limited phase. These two phases of 

growth are classified in the same way as the limitations to growth on single organic ED 

substrates (Linton and Stephenson, 1978; Vallino et al., 1996). In the geomicrobiology literature, 

this behaviour has been called the “energetic advantage” of mixotrophic growth, since the supply 

of the auxiliary ED helps to overcome the energetic limitations of growth on the single organic 

substrate alone (Gottschal and Kuenen, 1980; Muehe et al., 2009; Chakraborty et al., 2011). 

2.3.6 Bioenergetic controls on the upper and lower bounds to forg
assim 

For all three studies, the relative fractions of the three MEMs (and 𝑓ℎ, 𝑓𝑎, and 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

) are 

regulated in similar ways by the relative utilization rates of the organic and inorganic EDs 

(Figure 2-4). This validates the conceptual model outlined in section 2.3. The observed fractions 
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of the MEMs do differ among the three studies, however. Specifically, the onset of autotrophy 

occurs at different eeq fractions of the inorganic ED consumed. This is attributed to the 

differences in the oxidation state of the organic EDs. Organic ED substrates for which the 

oxidation state of the carbon atoms is further from that of biomass carbon atoms (e.g., oxalate) 

are considered more energy-limited than those with an oxidation state closer to that of biomass 

(e.g., acetate). These more energy-limited compounds require more energy to reduce the carbon 

atoms to the oxidation state of biomass carbon. They are therefore less advantageous to use as 

carbon sources, and the onset of autotrophy during mixotrophic growth on mixtures of that 

organic ED and some inorganic ED occurs at values of lower eeq fractions of the inorganic ED 

consumed, 𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞 (𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞⁄ + 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞) (compare study 3, which used oxalate as an organic 

ED and carbon source, to studies 1 and 2, which used acetate). 

100% assimilation of the organic substrate is never reached (Figure 2-3-B), which 

demonstrates that there is an upper limit to the fraction that can be assimilated. This theoretical 

maximum yield (𝑌𝑚𝑎𝑥) is the yield calculated when ∆𝐺𝑚𝑒𝑡 is set to zero (Smeaton and Van 

Cappellen, 2018) (Appendix A). The values of 𝑌 and 𝑌𝑚𝑎𝑥 for the organoheterotrophic 

metabolism, calculated as described in Appendix A using GEDYM, are shown in the figure to 

demonstrate that these are the bounds on the fraction of the organic substrate assimilated. The 

organoheterotrophic 𝑌 is the lower bound for 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 since these variables are equal during 

organoheterotrophic growth on a single carbon substrate (when 𝑌 is in units of mol eeq biomass 

(mol eeq ED)-1). 
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Figure 2-4. Data-derived fractions of three MEMs observed (xik), fh and forg

assim as a function of 

the fraction of inorganic electron equivalents consumed, 𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞 (𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞⁄ + 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞). Panel 

A: Fractions of the three MEMs observed (𝑥𝑖𝑘) and fraction of heterotrophy observed (i.e., 𝑓ℎ, 

the sum of the OH and LH MEMs). Panel B: Calculated fraction of the organic ED assimilated 

(𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

, dark green line and points), with GEDYM-predicted 𝑌 and 𝑌𝑚𝑎𝑥 of the OH MEM 

indicated (black dashed lines, with upper line being 𝑌𝑚𝑎𝑥). The identities of studies 1, 2 and 3 

are specified in section 2.4 of the text. 
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2.4 Applying the conceptual model: A modeling framework for mixotrophy 

A system of governing equations to predict the MEM fractions was developed using the 

conceptual framework built in the preceding sections. The system of equations relates the MEM 

fractions, 𝑥𝑜ℎ, 𝑥𝑙ℎ and 𝑥𝑙𝑎, and the fraction of the organic ED/ carbon source dissimilated, 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 

to the utilization rates of the EDs (𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞 and 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞), and the GEDYM-predicted growth 

yields of the three MEMs (𝑌𝑖𝑘) for a steady state chemostat system. The equations effectively 

represent the kinetic (i.e., ED utilization rates) and thermodynamic (i.e., growth yields) 

constraints on the expression of the three MEMs. The purpose of developing this modeling 

framework is that it can be implemented in larger kinetic reaction models where the MEM 

fractions can be calculated at each time step as a function of the changing utilization rates of the 

two EDs, changes in the growth yields, and/ or other limitations. The inputs are the net 

utilization rates of the two ED substrates, and the chemical environment-specific growth yields 

of the three MEMs. 

2.4.1 System of equations 

The first constraint describes how the three MEM fractions must sum to unity: 

 𝑥𝑜ℎ + 𝑥𝑙ℎ + 𝑥𝑙𝑎 = 1 (2-29) 

The second constraint is derived from the energy balance expression for the fraction of 

lithotrophy. It specifies that the two lithotrophic MEMs, 𝑥𝑙ℎ and 𝑥𝑙𝑎, must combine to equal the 

fraction of the total metabolic reaction that is lithotrophic (𝜙𝑙𝑖𝑡ℎ𝑜
𝑚𝑒𝑡 ) by imposing:  

 𝜙𝑙𝑖𝑡ℎ𝑜
𝑚𝑒𝑡 = 𝑥𝑙ℎ + 𝑥𝑙𝑎 (2-30) 

This can be expressed in terms of ED utilization rates and MEM fractions only by substituting 

Eqs. 2-5 and 2-3 into Eq. 2-30: 



46 

 

 
𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞

𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞 + 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞 ∗ 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔 = 𝑥𝑙ℎ + 𝑥𝑙𝑎 (2-31) 

 

The third constraint is derived from the carbon balance and describes the relationship 

between the two MEM fractions that use organic carbon (i.e., the two heterotrophic fractions, 

𝑥𝑜ℎ and 𝑥𝑙ℎ) and the fraction of the organic ED assimilated. Eq. 2-7 can be rearranged with 

substitution of a rearranged Eq. 2-9 to relate 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 to  𝑓ℎ, the total growth rate, and the 

utilization rate of the organic ED/ carbon source: 

 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

= 𝑓ℎ ∙
𝑟𝑥

𝑟𝑜𝑟𝑔 𝐸𝐷 ∙ 𝑛𝐶
𝑜𝑟𝑔 𝐸𝐷 (2-32) 

The fraction of heterotrophy is equal to the sum of the two heterotrophic MEM fractions: 

 𝑓ℎ = 𝑥𝑜ℎ + 𝑥𝑙ℎ (2-33) 

while the total growth rate can be expressed in terms of the three MEM growth yields (𝑌𝑖𝑘) (Eq. 

2-19) and the two ED utilization rates (𝑟𝐸𝐷), as in Eq. 2-19. Substituting Eqs. 2-33 and 2-19 into 

2-32 and replacing 𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 with 1- 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 gives the third constraint: 

1 − 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

= (𝑥𝑜ℎ + 𝑥𝑙ℎ) ∙
(𝜙𝑜 ∙ 𝑟𝑜𝑟𝑔 𝐸𝐷 ∙ 𝑌𝑜ℎ + 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷 ∙ (𝑓ℎ ∙ 𝑌𝑙ℎ + 𝑓𝑎 ∙ 𝑌𝑙𝑎)

𝑟𝑜𝑟𝑔 𝐸𝐷 ∙ 𝑛𝐶
𝑜𝑟𝑔 𝐸𝐷  (2-34) 

The fourth and final constraint is taken from the expression for calculating 𝑥𝑜ℎ (from the general 

Eq. 2-11). Eq. 2-26 substituted for 𝑓ℎ, while 𝜙𝑜is expressed in terms of the two ED utilization 

rates, 𝑟𝑜𝑟𝑔 𝐸𝐷
𝑚𝑒𝑡   and 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷

𝑚𝑒𝑡 , and 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

, as in the energy balance expression for 𝜙𝑜 (Eq. 2-3 and 

Eq. 2-4), giving the final constraint: 

 𝑥𝑜ℎ = (𝑥𝑜ℎ + 𝑥𝑙ℎ) ∙ [
𝑓𝑑𝑖𝑠𝑠𝑖𝑚

𝑜𝑟𝑔
∙ 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞

𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

∙ 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞 + 𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞

] (2-35) 
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These constraints (Eqs. 2-29, 2-31, 2-34, 2-35) describe how energy is allocated within 

mixotrophic populations as a function of the utilization rates of the two EDs and the growth 

yields of the three MEMs on their respective EDs. 

In addition to the constraints, the solver used to implement the system of equations 

allows for the specification of lower and upper bounds to the unknown variables. These bounds 

describe the range of values that the solver guesses for, and therefore represent the range of 

values that are possible for that variable. Values of 0 and 1 are imposed as the lower and upper 

bounds, respectively, of the variables 𝑥𝑜ℎ, 𝑥𝑙ℎ, and 𝑥𝑙𝑎. As discussed in section 2.3.6, the lower 

and upper bounds for the value of 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 can be described using the values of 𝑌𝑜ℎ and 𝑌𝑚𝑎𝑥 of 

the OH MEM calculated using the GEDYM. Therefore, for the variable 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

, the lower and 

upper bounds specified are 1-𝑌𝑚𝑎𝑥 and 1-𝑌𝑜ℎ. These values can both be calculated using the 

GEDYM for the specific chemical conditions and organic compound. 

2.4.2 Implementation 

The ability of the four constraints, or the non-linear system of governing equations, to accurately 

predict MEM fractions (𝑥𝑜ℎ, 𝑥𝑙ℎ, and 𝑥𝑙𝑎) and the fraction of the organic ED/carbon source 

assimilated (𝑓𝑎𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

) were tested using the three compiled literature datasets. During computation 

(see Section 2.4.3 for more details), 𝑥𝑜ℎ, 𝑥𝑙ℎ, 𝑥𝑙𝑎 and 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 are the only unknowns and the rest 

of the parameters are calculated as described in the previous sections. Accordingly, the values of 

the net ED utilization rates (𝑟𝑜𝑟𝑔 𝐸𝐷 and 𝑟𝑖𝑛𝑜𝑟𝑔 𝐸𝐷) were determined using Eq. 2-21.  

The values of 𝑌𝑜ℎ, 𝑌𝑙ℎ, and 𝑌𝑙𝑎, and the upper and lower bounds of 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 were provided to the 

system of equations by predicting them using GEDYM (as described in section 2.2.2 and 

Appendix A). 
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2.4.3 Implementation: Matlab 

I used the fmincon solver in Matlab to apply the system of equations to the datasets described in 

section 2.4. fmincon is a general constrained optimization algorithm available in the MATLAB 

Optimization Toolbox (MathWorks, 2016). Typically, this solver is used to minimize an 

objective function that is a function of the variables being solved for, given some constraints on 

the variables. In this case, it was used to solve for the non-linear system of equations, and thus no 

objective function was needed since the number of constraints is equal to the number of variables 

and the system of equations is completely defined. In this way, the root finding algorithms built 

into fmincon were used to solve the system of equations. fmincon uses the Newton-Raphson 

method as a first approach to solving the system of equations. If the Newton-Raphson method 

does not work, it uses a Conjugate Gradient step method instead (MathWorks, 2016). This local 

optimization method was implemented within a global search algorithm, which is also available 

in the MATLAB Optimization Toolbox (MathWorks, 2016). The global search algorithm uses a 

stochastic method to generate many starting points from which to run fmincon to identify which 

of the local solutions is the global solution (MathWorks, 2016).  

2.4.4 Comparing actual versus predicted MEMs 

Figures 2-5, 2-6, and 2-7 are parity plots comparing the observed versus the predicted MEM 

fractions (i.e.,xik). Agreement between the data is compared using the root mean squared error 

(RMSE) which is calculated using: 

 𝑅𝑀𝑆𝐸 =  √
1

𝑁
∗ ∑(𝑥𝑖𝑘,𝑝𝑟𝑒𝑑 − 𝑥𝑖𝑘,𝑜𝑏𝑠)2

𝑁

1

   (2-36) 
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where 𝑥𝑖𝑘,𝑝𝑟𝑒𝑑 is the value of 𝑥𝑖𝑘 predicted by the modeling framework and 𝑥𝑖𝑘,𝑜𝑏𝑠 is the value of 

𝑥𝑖𝑘 “observed” in the experimental dataset (calculated using Eq. 2-11), and N is the number of 

observations/ predictions. 

 The solutions predict the MEM fractions relatively well, with a maximum RMSE of 0.16 

when predicting the 3 MEM fractions, and of 0.30 when predicting the fraction of the organic 

ED dissimilated (forg
dissim) One reason for the deviation from the parity line between the observed 

and predicted fractions is the experimental error that is likely to occur during the measurement 

methods used to trace the carbon fixation activities. This error would be further propagated when 

these measurements were used to calculate the data-derived carbon and energy balance fractions, 

and subsequently, the MEM fractions. 

The deviation from the parity line that is observed for the values of xik is matched by 

deviation of the forg
dissim value from the parity line. This is because the accuracy of the prediction 

of the values of xik depends on the accuracy of predicting forg
dissim, which is evident in the 

governing equations. The value of forg
dissim controls to what extent heterotrophy or organotrophy 

occurs and therefore plays a role in predicting OH and LH, and LA indirectly since the value of 

LA is codependent on the value of LH predicted (Eq. 2-31). The predicted values of xla are 

systematically overpredicted for study 1 and underpredicted for study 3, which can be attributed 

to the inaccurate prediction of the value of forg
dissim (Figures 2-4 and 2-7). This is also matched by 

the deviation of another MEM fraction other than xla, either xlh or xoh, from the parity line, since 

the MEM fraction values predicted are not independent of each other. The predictions of the 

growth yields, which are used in Eq. 2-34 of the governing equations, and therefore of the MEM 

fractions, could be improved by more accurate geochemical data for the steady state conditions 

in the chemostats, since energetics calculations using the GEDYM are very sensitive to the 

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/10/root-mean-square-error.png
https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/10/root-mean-square-error.png
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geochemical conditions used as inputs (Smeaton and Van Cappellen, 2018). The system of 

governing equations could be simplified from four to three equations by eliminating the explicit 

representation of forg
dissim, and instead rearranging the existing equations such that forg

dissim is 

implicitly included in the system of equations. 

 

 

 

 

Figure 2-5. Predicted versus observed fractions of three end member metabolisms (xik) and 

fraction of the organic ED substrate assimilated (fassim
org) during growth of Paracoccus versutus 

on mixtures of acetate and thiosulfate. Representing data from Gottschal and Kuenen (1980) 

(study 1). 
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Figure 2-6. Predicted versus observed fractions of three end member metabolisms (xik) and 

fraction of the organic ED substrate assimilated (fassim
org) during growth of Pseudomonas 

oxalaticus on mixtures of acetate and formate,, calculated from data from Dijkhuizen et al. 

(1980) (study 2) 
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Figure 2-7. Predicted versus observed fractions of three end member metabolisms (xik) and 

fraction of the organic ED substrate assimilated (fassim
org) during growth of Pseudomonas 

oxalaticus on mixtures of oxalate and formate , calculated from data from Dijkhuizen and 

Harder (1979) (study 3) 
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2.5 Discussion  

2.5.1 Combined kinetic and energetic constraints regulate metabolic flexibility 

The ability of the system of equations to predict the relative abundances of the 3 MEMs and 

𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

 demonstrates that it is the combination of thermodynamic (e.g., bioenergetic) and kinetic 

constraints that regulates the combination of MEMs expressed under different ED supply 

scenarios. The role of the 2 ED utilization rates (𝑟𝐸𝐷) in regulating the relative proportions of the 

3 MEMs is evident in the carbon and energy balance expressions that represent the constraints on 

the metabolism. The utilization rates of either one of or both of the 2 EDs are present in all 4 

equations. These equations work to predict the MEM fractions because the “energy available” to 

an organism is primarily determined by the utilization rate of EDs, the kinetic constraints. The 

system of equations describes how each of the 2 ED substrates are required by 2 MEMs, and 

therefore how their utilization rates constrain whether these MEMs are possible. The second 

control on the “energy available” is the energetic constraints of the growth substrates, which are 

represented by the growth yields of the 3 MEMs, and the upper and lower bounds provided to the 

solver for predicting the value of 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

. The equations also represent the dual role of the 

organic compound as an ED and carbon source using the 𝑓𝑑𝑖𝑠𝑠𝑖𝑚
𝑜𝑟𝑔

variable. 

2.5.2 Implications for predicting carbon and energy cycling 

The system of equations predicts the expression of autotrophy versus heterotrophy, two 

metabolic regimes with distinct energetic costs and growth efficiencies (i.e. growth yields). This 

has significant implications for the prediction of  reaction rates for carbon and other elements 

associated with energy cycling in subsurface environments (Jin and Bethke, 2003). 

The ability of this system of equations to predict the fractions of MEMs in ED-limited 

chemostats where mixed organic and inorganic EDs are present and consumed at low 
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concentrations explains the pervasiveness of autotrophy in aquifer and other terrestrial 

subsurface environments. The occurrence of autotrophy in these environments demonstrates that 

subsurface communities do not necessarily rely on carbon produced at the surface by 

photosynthesis for their energy or carbon (Griebler and Lueders, 2009; Probst et al., 2014; 

Emerson et al., 2016). For example, inorganic carbon trends and fluxes in the Colorado River 

aquifer were best reproduced when lithoautotrophy was included in the model (Arora et al., 

2017).  

Therefore, predicting the occurrence of autotrophy and heterotrophy for whole 

communities in real environments using the system of equations proposed here has the potential 

to improve the representation of soil carbon cycling in models (Wieder et al., 2015; Bradford et 

al., 2016; Buchkowski et al., 2017; Li et al., 2017). Figures 2-3 and 1-5 highlight the 

significance of the LH MEM in controlling whether carbon dioxide fixation occurs, and to what 

extent, when an inorganic ED is being oxidized that can be used by lithotrophic MEMs (and 

when there is coincident utilization of an organic ED). LH is likely under underrepresented in 

current models and should be considered when representing lithotrophy in environmental 

models.  

Autotrophic biomass-specific nitrate reduction rates can be ten times slower than those of 

heterotrophic denitrification (based on implicit maximum rate (i.e., 𝑟𝑚𝑎𝑥 in Eq. 1-7) parameters 

collected by Handley et al. (2013)) due to the differences in growth yields between the 

heterotrophic and autotrophic MEMs (Figure 2-3). Consequently, omitting lithoautotrophic and 

lithoheterotrophic processes from a community’s microbial reaction network would fail to 

account for potential denitrification pathways and could either over- or under- predict nitrate 

reduction rates. For example, including chemolithoautotrophic metabolic reactions in 
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geochemical models of the Colorado River aquifer is essential for predicting “hot spots” and hot 

moments” of nitrate removal (Dwivedi et al., 2018). In section 3.3.4 of Chapter 3, I also 

demonstrate the sensitivity of nitrate cycling rates to the relative abundance of autotrophic 

activity. 

Including these lithotrophic MEMs in reaction networks is not only important for 

predicting the turnover rates of electron acceptors, but also for predicting the oxidative cycling of 

reduced geochemical species (i.e., EDs). ED oxidation reactions regenerate oxidized species 

which can be used as electron acceptors, closing the redox cycling of redox active elements such 

as C, N, Fe and S. For example, Yabusaki et al.(2017) showed that including 

chemolithoautotrophic pathways improved the predictions of S and Fe cycling in a Colorado 

River aquifer model. 

While in this chapter I have only demonstrated the applicability of this framework at the 

population scale, I believe that the same kinetic and energetic constraints could potentially be 

applied at the community scale. At this scale, the goal of applying this framework would be to 

predict the relative functional abundances of metabolisms and their contributions to geochemical 

rates rather than specific biological species. This is also the typical goal in trait-based and 

dynamic energy allocation approaches, which this framework is similar to (Arora et al., 2015). 

However, I acknowledge that representing community scale microbial processes is an ongoing 

challenge due to the need to account for facilitative, predative and competitive interactions (Hug 

and Co, 2018). 

2.6 Conclusions 

In this chapter, I present a modeling framework for predicting the competition between, and 

relative contributions of, autotrophic and heterotrophic metabolisms. Literature data collected 

from ED-limited chemostat studies were used to validate a system of governing equations that is 
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used to calculate the fractions of MEMs. With these equations, I show mathematically how the 

relative utilization rates of the organic and inorganic ED regulate the combination of MEMs 

expressed by the microorganisms grown in the chemostat experiments. Moreover, I show that the 

threshold at which inorganic carbon fixation (i.e., autotrophy) is initiated is dependent on the 

energy contents of the two EDs. These findings highlight the key role of the ED supply rates in 

regulating autotrophy and heterotrophy in natural geomicrobial systems, as a direct consequence 

of the distinct energetic costs of the two end-member metabolisms. The occurrence of 

mixotrophy in the environment has important implications for the turnover of redox-active 

elements including N, S, Fe, Mn, H and especially C, since the relative utilization rates of 

organic versus inorganic EDs directly impacts carbon fixation versus mineralization. 
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Chapter 3  

Application of a bioenergetic-kinetic model: Predicting mixotrophic 

nitrate-dependent iron oxidation in a lake sediment 

3.1 Introduction 

Lake sediments are a large reactive interface and reservoir, acting as either a source or sink of 

carbon, nutrients (e.g., phosphorus and silicon), and metals (e.g., arsenic and selenium) to the 

overlying water column (Hunter et al., 1998; Pace and Prairie, 2005; Couture et al., 2010; 

Omoregie et al., 2013; Liu et al., 2015; Orihel et al., 2017). Sediment biogeochemistry is 

characterized by distinct vertical stratification of redox processes with depth from the sediment-

water interface (SWI) (Van Cappellen et al., 1993; Thullner et al., 2007). Consequently, 

characterizing both the abiotic and biotic reactions occurring in sediments is essential for 

predicting the fate of carbon, nutrients and metals. 

Iron (Fe) and nitrogen (N) are especially prominent in lake sediment energy cycling since 

manganese and sulfur concentrations are quite low, especially in Lake Constance, for which the 

sediment geochemistry is used in this chapter to predict the occurrence of a mixotrophic 

metabolism (Melton et al., 2014). Nitrate and ferric iron (Fe(III)) are used as terminal electron 

acceptors for microbial respiration of organic carbon compounds in the absence of oxygen. 

While these reduction reactions link both the iron Fe and N cycles to the carbon cycle in 

sediments, the Fe and N cycles are directly linked by microbially mediated iron(II) (Fe2+) 

oxidation coupled to nitrate (NO3
-) reduction, also called nitrate dependent iron oxidation 

(NDFO). This lithotrophic catabolic reaction is given by reaction 3-1: 

 𝐹𝑒2+ + 0.2𝑁𝑂3
− + 1.4𝐻2𝑂 →  𝐹𝑒(𝑂𝐻)2

+ + 0.1𝑁2 + 0.8𝐻+ (3-1) 

NDFO closes the Fe cycle in dark anoxic sediments where Fe2+ oxidation using oxygen (O2) or 

by phototrophic iron oxidizers is not possible (Roden 2012). 
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Found in sediments and groundwater at neutral pH, NDFO bacteria and archaea are well 

studied (Straub et al., 1996). These organisms are suspected to be mixotrophs that are capable of 

coupling NO3
- reduction to the oxidation of either Fe2+ or an organic ED substrate as their energy 

source, and of using both inorganic and organic carbon sources (Bryce et al., 2018; Jamieson et 

al., 2018). The proposed ED, EA, and C sources that would be used by the MEM reactions 

during NDFO-driven mixotrophy are summarized in Table 3-1. However, the exact 

mechanism(s) responsible for the net NDFO process observed in laboratory cultures, sediments 

and groundwater remains unknown. It is unclear if Fe2+ oxidation is abiotic or biotic (Bryce et 

al., 2018; Jamieson et al., 2018). Furthermore, should NDFO be a lithotrophic metabolism where 

Fe2+ oxidation is biotic, it is unknown if all strains can grow autotrophically (Bryce et al., 2018). 
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Table 3-1. Summary of electron donor, electron acceptor, and carbon source used by each 

metabolic end member reaction (MEM) during potential mixotrophic NDFO. 

  

MEM 

reaction 

Electron acceptor (EA) Electron donor (ED) Carbon source 

OH 
Nitrate (NO3

-) 
Acetate (C2H3O2

-) 
C2H3O2

- 

LH 
NO3

- Iron(II) (Fe2+) C2H3O2
- 

LA 
NO3

- Fe2+ Inorganic carbon 

(HCO3
-) 
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Evidence of the capacity for lithoheterotrophy during NDFO includes enhanced growth 

of pure cultures grown with NO3
- as their EA on mixtures of Fe2+ and an organic ED substrate 

such as acetate (e.g., Muehe et al., 2009) over those grown on the organic ED alone (Muehe et 

al., 2009; Chakraborty et al., 2011; Bryce et al., 2018).  However, mechanisms that could 

explain this enhanced growth that do not involve enzyme-catalyzed Fe2+ oxidation have been 

proposed. One proposed mechanism is that the enzymatic reduction of NO3
- reduction to nitrite 

(NO2
-) using an organic ED/ C source (organoheterotrophy) induces chemodenitrification, the 

abiotic reduction of NO2
- by Fe2+ oxidation.  Chemodenitrification could confer an energetic 

advantage to NDFO organisms by acting as a detoxification mechanism for dealing with nitrite 

(Carlson et al., 2013). Enhanced growth could also be explained by a high demand for nutrient 

iron in some organisms (Klueglein and Kappler, 2013). 

Various studies have demonstrated that certain NDFO organisms may be unable to carry 

out NDFO-driven lithoautotrophy (Byrne-Bailey et al., 2012; Ishii et al., 2016), while studies of 

other organisms have demonstrated the opposite (Hallbeck and Pedersen, 1991; Straub et al., 

1996; Oshiki et al., 2013). The capacity for NDFO-driven lithoautotrophy is likely present in 

whole communities of organisms, since it has been demonstrated in sediment incubations and 

enrichment cultures (Blöthe and Roden, 2009; Laufer et al., 2016). These two unknown aspects 

of NDFO (i.e., the relative contributions of biotic versus abiotic and heterotrophic versus 

autotrophic reactions) are related, since organoheterotrophy-driven NO3
- reduction to NO2

- and 

subsequent Fe2+-driven chemodenitrification means that populations growing via that mechanism 

are not capable of either lithotrophic MEMs (neither lithoheterotrophy nor lithoautotrophy). 

To investigate the bioenergetic constraints on the potential mixotrophic biotic 

contribution to NDFO, I apply the modeling framework developed for mixotrophy in Chapter 2, 
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representing the competition between NO3
- reducing, Fe2+- or acetate- oxidizing autotrophic and 

heterotrophic metabolisms in lake sediments. I apply it to literature geochemical and microbial 

datasets collected in the profundal sediments of Lake Constance (Schulz and Conrad, 1995; 

Melton et al., 2014). NDFO is identified as a likely mixotrophic metabolism occurring in these 

sediments (Hauck et al., 2001; Muehe et al., 2009; Melton et al., 2012; Melton et al., 2014). 

3.1.2 Lake Constance background 

Lake Constance is a large (over 500 km2) freshwater lake located at the border of Switzerland, 

Germany, and Austria at an elevation of 385 m above sea level (Altermatt et al., 2014). L. 

Constance is a monomictic lake, experiencing stratified conditions between the months of May 

and September, and fully mixed conditions otherwise (Wahl and Peeters, 2014). The depth of 

water in the profundal zone of L. Constance ranges from 60-254 m, with a mean depth of 100 m 

(Hauck et al., 2001; Wahl and Peeters, 2014). The sediment geochemistry in L. Constance is 

quite well characterized. In terms of electron accepting half reactions, there are prominent O2-, 

NO3
--, iron(III)-, and CO2- reducing zones at different depths in L. Constance sediments (Schulz 

and Conrad, 1995; Schulz and Conrad, 1996; Melton et al., 2014). In terms of electron donors, 

Fe2+, NH4
+, and organic acids are commonly used (with the organic acids also being used as 

carbon sources) (Melton et al., 2014).  

3.2 Methods 

3.2.1 Geochemical dataset compilation and synthesis 

 Reported high resolution in situ porewater profiles of O2, NO3
-, ammonium (NH4

+), and pH in 

Lake Constance from Fig. 2 in Melton et al. (2014) were digitized using WebPlotDigitizer 

(Rohatgi, 2019). Concentrations of poorly crystalline (0.5 M HCl extractions) and crystalline 

solid phase Fe2+ and Fe3+ (6 M HCl extractions) with depth were digitized from Fig. 3, MPN 

counts were taken from Table 1, and functional gene copy numbers were digitized from Fig. 8 in 
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Melton et. al (2014a). The digitized geochemical data was interpolated to a resolution of 0.1 mm 

using an interpolation tool in Matlab (MathWorks, 2016). Porewater acetate concentrations were 

estimated to be constant at 7 μM at all depths, based on Fig. 2 in Schulz and Conrad (1995). The 

MPN enumeration data collected from Melton et al. is given in Table 3-2. They used two types 

of media, one that selected for heterotrophic NDFO organisms, and another that selected for 

autotrophic NDFO organisms. I therefore used these enumerations to approximate the potential 

relative abundance of heterotrophic and autotrophic activity with depth in the sediment. 

Porewater aqueous Fe2+ concentrations were approximated by modeling the sediment 

geochemistry in PHREEQC (Parkhurst and Appelo, 2013), where aqueous Fe2+ was in 

equilibrium with solid phase siderite, the predominant iron(II) mineral in Lake Constance 

sediments (Schink and Benz, 1999) (Figure 3-1, panel A). The solid phase siderite concentrations 

used in PHREEQC (Parkhurst and Appelo, 2013) were the poorly crystalline solid phase iron(II) 

concentrations taken from Melton et al. (2014). The activities of the other reactants and products 

of the catabolic and anabolic reactions (given in Table B-1 in Appendix B) were also estimated 

using PHREEQC (Figure B-1, appendix B). 

  Figure 3-1, panel A shows the dissolved Fe2+ and acetate concentration profiles, while 

Figure 3-1, panel B shows the dissolved NO3
- and O2 concentration profiles and the predicted 

zone of NO3
- reduction. The additional geochemical data (HCO3

-, NH4
+, NO3

-, extractable-

poorly crystalline iron(III) and iron(II) concentrations, and pH) used for modeling the sediment 

are shown in Figure B-1 in appendix B. The microbiological qPCR data digitized from Melton et 

al. (2014) are plotted in Figure B-2.  
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3.2.2 Applying the bioenergetic-kinetic modeling framework 

As outlined in Section 3.2, while the exact mechanisms of NDFO are not fully known or agreed 

upon, for the purposes of this chapter, I assume that NDFO is a mixotrophic metabolism that can 

be represented using the three metabolic end member (MEM) modeling framework introduced in 

Chapter 2. The presence of Gallionella spp., an Fe2+ oxidizing bacteria that is capable of 

mixotrophic NDFO, in the lake sediments of Lake Constance demonstrates the potential 

metabolic capacity of the microbial community for facultative chemolithoautotrophy (Hallbeck 

and Pedersen, 1991; Melton et al., 2014). Chemodenitrification (i.e., abiotic NO2
- reduction by 

Fe2+) is not included in this modeling exercise because the goal of this Chapter is to demonstrate 

the application of the modeling framework developed in Chapter 2 to an environmental system. 

The 3 anabolic and 2 catabolic reaction stoichiometries assumed to be carried out during 

mixotrophic NDFO are given in Table B-1 (Appendix B). The NO3
- reduction half reaction was 

assumed to be denitrification (i.e., NO3
- is reduced to N2) rather than dissimilatory nitrate 

reduction to ammonium (DNRA). While DNRA via organic C or iron (II) oxidation is possible 

(Robertson et al., 2016; Robertson and Thamdrup, 2017), and even autotrophically (Robertson 

and Thamdrup, 2017), most studies of NDFO metabolisms focus on NO3
- reduction via 

denitrification to N2 (e.g., Jamieson et al., 2018). I chose to focus on denitrification since it is 

one end member electron accepting reaction and the motivation of this research is to account for 

account for the competition between autotrophy and heterotrophy coupled to some fixed electron 

acceptor reduction reaction. Goethite (FeOOH) is the assumed iron(III) mineral produced by 

𝐹𝑒2+ oxidation because it is considered to be one of the more common minerals produced 

(Chakraborty and Picardal, 2013). Many other mineral and amorphous Fe(III) oxide products 

may be produced by microbial oxidation, including goethite, magnetite, lepidocrocite, and green 
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rust or other amorphous ferric oxides (Vollrath, 2012; Seto, 2014; Jamieson et al., 2018). The 

growth yields and the Gibbs energies of catabolism, anabolism and metabolism were calculated 

as outlined in Chapter 2 (section 2.3.2 and Appendix A) for the 3 end member metabolisms using 

the chemical activities of the reactants and products computed in PHREEQC (Figure B-5). 

I used the digitized concentration profiles from Figure 3-1 A and implicit Monod-type 

kinetic equations to determine Fe2+ and acetate oxidation rates. Since both oxidation reactions 

were coupled to NO3
- reduction, limitation by NO3

- and inhibition by O2 was accounted for with 

multiplicative Monod limitation and inhibition factors for these processes. Acetate oxidation 

rates (𝑅𝑎𝑐 [mol acetate (L d)-1]) were determined using Eq. 3-2:  

 𝑅𝑎𝑐 = 𝑟𝑎𝑐
𝑚𝑎𝑥

𝐶𝑎𝑐

𝐶𝑎𝑐 + 𝐾𝑎𝑐
∙

𝐶𝑁𝑂3
−

𝐶𝑁𝑂3
− + 𝐾𝑁𝑂3

−
∙

𝐾𝑂2

𝑖𝑛

𝐶𝑂2
+ 𝐾𝑂2

𝑖𝑛
 (3-2) 

where 𝐶𝑎𝑐 is the concentration of acetate [mol acetate (L)-1], 𝑟𝑎𝑐
𝑚𝑎𝑥 is the implicit maximum rate 

of acetate oxidation [mol acetate (L d)-1], 𝐾𝑎𝑐 is the half-saturation constant of acetate [mol 

acetate (L)-1], 𝐶𝑁𝑂3
− is the concentration of NO3

- [mol NO3
- (L)-1], 𝐾𝑁𝑂3

− is the half-saturation 

constant of NO3
- [mol NO3

- (L)-1], 𝐶𝑂2
 is the concentration of O2 [mol O2 (L)-1], and 𝐾𝑂2

𝑖𝑛 is the 

inhibition constant for oxygen [mol O2 (L)-1]. 

Iron(II) oxidation rates were estimated using Eq. 3-3: 

 𝑅𝐹𝑒2+ = 𝑟𝐹𝑒2+
𝑚𝑎𝑥 𝐶𝐹𝑒2+

𝐶𝐹𝑒2+ + 𝐾𝐹𝑒2+
∙

𝐶𝑁𝑂3
−

𝐶𝑁𝑂3
− + 𝐾𝑁𝑂3

−
∙

𝐾𝑂2

𝑖𝑛

𝐶𝑂2
+ 𝐾𝑂2

𝑖𝑛
 (3-3) 

where 𝐶𝐹𝑒2+ is the concentration of Fe2+ [mol Fe2+ (L)-1], 𝑟𝐹𝑒2+
𝑚𝑎𝑥 is the implicit maximum rate of 

acetate oxidation [mol Fe2+ (L d)-1], and 𝐾𝐹𝑒2+ is the half-saturation constant of acetate [mol Fe2+ 

(L)-1]. 

The parameters used in Eq. 3-2 and 3-3 were taken from the literature and are 

summarized in Table 3-3. Figure 2-1 (panel C) shows the predicted Fe2+ and acetate oxidation 
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rates with depth. Fig. B-3 compares calculated Fe2+ oxidation rates to the observed numbers of 

sediment Gallionella spp. gene copy numbers, and to the concentration of poorly crystalline Fe 

(III) (0.5 M HCl-extractable) in the sediment. 

Using the MEM reaction stoichiometries described in Table B-1 (Appendix B) and ED 

utilization rates estimated using Eq. 3-2 and 3-3, the modeling framework described in Chapter 2 

was applied to the assembled dataset to predict the relative rate of the mixotrophic MEMs 

associated with NDFO occurring in the NO3
- reducing zone of the sediment. Steady state 

conditions were assumed, such that a kinetic model representing the evolution of sediment 

chemistry over time was not needed. In other words, I assume that there is no net change in the 

concentrations of the energetic and nutrient substrates (e.g., Fe2+, NO3
-, acetate, NH4

+) in the 

sediments because the sum of the fluxes supplying them (via a combination of geochemical and 

transport processes) are equal to the sum of the fluxes that are removing them. 

To calculate the MEM-specific rates of NO3
- reduction and dissolved inorganic C (DIC) 

consumption/ production, the stoichiometries of the metabolic reactions of each MEM were 

calculated from the GEDYM-predicted growth yields. The ratio of these metabolic 

stoichiometric coefficients was then used to convert the ED (i.e., Fe2+ or acetate) oxidation rates 

to units of NO3
- reduction or DIC consumption/ production using the equations described in 

section 2.2.2. The sum of these MEM-specific rates thus represents the net mixotrophic rate of 

NO3
- reduction or DIC consumption/ production. 
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Table 3-2. Most Probable Number data from Melton et al. (2014) 

Sediment 

depth (mm) 

Autotrophic Fe2+ 

oxidizing, NO3
- reducing 

Heterotrophic, Fe2+ 

oxidizing, NO3
- reducing 

% Heterotrophy 

estimated 

 Cells (103) / g dry weight sediment  

0-1 23.8 263 91 

8-9 15.1 716 98 

19-20 146 199 58 
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Table 3-3. Monod kinetic parameters used to calculate the rates of iron oxidation and acetate 

oxidation in the sediments. 

Parameter Description Literature value Units Source 

𝒓
𝑭𝒆𝟐+
𝒎𝒂𝒙  

Maximum iron (II) oxidation rate  

(∆𝐹𝑒(𝐼𝐼) measured during 

incubation of lake sediment 

slurry, pH 7) 

1.4 ∗ 10−4 M d-1 [1] 

𝑲𝑭𝒆𝟐+ 
Half-saturation of iron (II) 

during iron(II) oxidation 
1 ∗ 10−5 M [2] 

𝒓𝒂𝒄
𝒎𝒂𝒙 

Maximum acetate oxidation rate 

(aerobic) 
1.2 ∗ 10−5 M d-1 [3] 

𝑲𝒂𝒄 
Half-saturation constant of 

acetate during acetate oxidation 
2 ∗ 10−5 M [3] 

𝑲𝑵𝑶𝟑
− 

Half-saturation of nitrate in 

denitrification 
1.1 ∗ 10−4 M [4] 

𝑲𝑶𝟐

𝒊𝒏  
Inhibition constant for oxygen 1.6 ∗ 10−8 M [4] 

1: (Kopf et al., 2013); 2: (Arora et al., 2017); 3: (Yabusaki et al., 2017); 4: (Arora et al., 2016) 
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Figure 3-1. Depth profiles of concentration data taken from Melton et al. (2014) and predicted 

rates. Depth profile A: Concentrations of porewater Fe2+ and acetate with depth. Depth profile 

B: Concentrations of porewater NO3
- and O2 with depth. Depth profile C: Acetate and Fe2+ 

utilization rates calculated using Monod kinetics with depth. In panels B and C, the zone where 

nitrate reduction is occurring is noted by the gray shading. Data taken from Melton et al. (2014) 

and Schulz and Conrad (1995). 
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3.2.3 Sensitivity analysis 

To test the sensitivity of the MEM fractions and C, N and Fe rates predicted to the values of 

𝑟𝐸𝐷
𝑚𝑎𝑥 provided to the kinetic constraints (i.e., Eq. 3-2 and 3-3) in the modeling framework, I 

varied the values of 𝑟𝐹𝑒2+
𝑚𝑎𝑥 and 𝑟𝐴𝑐

𝑚𝑎𝑥 within defined ranges. For 𝑟𝐹𝑒2+
𝑚𝑎𝑥, this range was 1.4*10-5 to 

1.4*10-3 mol Fe2+ (L d)-1, while for 𝑟𝐴𝑐
𝑚𝑎𝑥, this range was 1.2*10-7 to 1.2*10-3 mol acetate (L d)-1. 

To demonstrate the sensitivity of the simulated nitrate reduction, Fe2+ oxidation, and net 

inorganic C consumption/ production rates to the fraction of autotrophy (fa) simulated, I grouped 

the data according to the range of fa values that the predicted fa occupies. I limited the sensitivity 

analysis to depths where nitrate reduction was not inhibited by oxygen, since this would 

confound the interpretation of the influence of fa on the predicted rates. I used the grouped data 

to fit linear regressions and Monod-type kinetic parameters to the data, which is not possible 

using continuous data. I use this analysis to consider the impact on the fraction of autotrophic 

activity on the nitrate reduction rates predicted for the same geochemical conditions (Figure 3-4). 

I used the grouped data to calculate the value of 𝑟𝑁𝑂3
−

𝑚𝑎𝑥, the maximum implicit nitrate reduction 

rate, for each range of fa, by fixing the value of 𝐾𝑁𝑂3
− at 1.1*10-4 (which is the value derived 

from the literature, see Table 3-3). I also used the fa-grouped data to analyze the impact of 

variable proportions of autotrophic activity on the ratios of coupling between the rates of DIC 

consumption/ production, NO3
- reduction, and Fe2+ oxidation (Figure 3-5). 

3.3 Results and Discussion 

3.3.1 Nitrate, inorganic carbon, and iron(II) turnover rates predicted 

The NO3
- reducing zone of the sediment occurs between 3 and 18 mm below the sediment-water 

interface (SWI), based on the Monod-type kinetics-predicted rates that incorporated a NO3
- 

limitation and O2 inhibition factor (Figure 3-1 B and C). Above this zone, O2 would be the 
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electron acceptor used for oxidizing EDs, although that is not explicitly represented in the model 

considered here, while below this zone, iron(III) reduction would be the electron accepting half 

reaction (Melton et al., 2014). The peak Fe2+ oxidation, NO3
- reduction, and acetate oxidation 

rates occur at around 8-10 mm below the SWI (Figure 3-1 A, Figure 3-3). Calculated NO3
- 

reduction rates compare relatively well to the relative abundances of the copy numbers of NO3
- 

reduction related genes (nirK, nirS and narG) (Appendix B, Figure B-4). The Fe2+ oxidation rates 

predicted with depth in the sediment correlate well with the concentration of amorphous iron(III) 

oxides, but not very well with the relative abundance of Gallionella spp. gene copy numbers 

(Appendix B, Figure B-3). The net DIC consumption/ production rate calculated indicates that 

mixotrophic NDFO is a net producer of DIC given the chemical conditions in the NO3
- reducing 

zone of the sediments. Although the fraction of LA (which consumes DIC) predicted is relatively 

high compared to the fraction of OH predicted, the growth yield, and therefore also the DIC 

fixation activity, of the LA MEM predicted is very low. 

3.3.2 MEM fractions predicted 

The predicted MEM fractions fall into two distinct groups based on the depth in the sediment and 

therefore the geochemical controls. At depths between 0 and 4 mm below the sediment water 

interface (SWI), organoheterotrophy (i.e., ED= acetate, EA= NO3
-) is the only predicted NO3

--

reducing MEM (Figure 3-2 A). At these depths, oxygen is still present (Fig. 2-3 B), which 

consumes any Fe2+ by abiotic oxidation and outcompetes microbial iron oxidation. Thus, the 

only remaining ED (acetate)/ EA (NO3
-) couple is predicted to be occurring, albeit at very low 

rates due to inhibition of NO3
- reduction by oxygen (in terms of the NO3

- reduction rate, Figure 

3-3). Thus, the fraction of heterotrophy predicted at these depths is 1, which is in good 

agreement with the fraction of heterotrophy calculated using the MPN counts (Figure 3-1-B). At 
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depths greater than 4 mm, conditions are suboxic, NO3
- reduction is not inhibited, and iron 

oxidation is not outcompeted. Therefore, NDFO-driven Fe2+ oxidation and acetate consumption 

(oxidation and incorporation into biomass) are both predicted to be occurring at these depths 

based on their concentrations in the sediment and the kinetic parameters used to predict 

utilization rates. The predicted percentages of organoheterotrophy (OH), lithoheterotrophy (LH), 

and lithoautotrophy (LA) in this NO3
--reducing zone are relatively constant, and are predicted to 

be 3-4%, 37-40%, and 53-58%, respectively, and the predicted percentage of heterotrophy is thus 

40-44%. 

The predicted fraction of heterotrophy (𝑓ℎ) at a depth of 20 mm below the SWI is in 

relatively close agreement with the observed values (Figure 3-2B). However, there is a large 

discrepancy between predicted and observed values at 9 mm, at which the predicted fraction of 

heterotrophy (40%) is much lower than the observed value (100%). Possible reasons for the 

discrepancy between predicted and observed fractions of heterotrophy at 9 mm may be due to 

either the over-interpretation of the meaning of MPN counts, or an unaccounted-for reaction 

(biotic or abiotic) in both the conceptual and mathematical model. MPN counts are not 

necessarily representative of the in situ rates of processes occurring in the sediment (Regnier et 

al., 2005). In other words, MPN counts quantify the capacity of the total population for function 

(e.g,, denitrification), but that total population may not be actively carrying out that process in 

situ. Moreover, unculturable microorganisms missed by the MPN method remain unaccounted 

for, which potentially biases the assessment towards only culturable microorganisms (Lloyd et 

al., 2018). To overcome these limitations, in situ autotrophic activity could be detected by 

measuring in-situ enzyme activities of rubisco (one of the enzymes responsible for carbon 
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fixation, e.g., Kellermann et al. (2012)), by omics methods (e.g., Probst et al. (2017)), or by 

stable isotope fractionation (e.g., Preuß et al. (1989)).  
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Figure 3-2. Fractions of all 3 MEMs predicted with depth (left panel), and fraction of 

heterotrophy (fh) predicted (dotted line) and observed ((fh obs via MPN counts, pink symbols) with 

depth (right panel). 
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Figure 3-3. Total NO3
- reduction rate (indicated by bar length), and MEM-specific NO3

- 

reduction rate (colour of bar segments) predicted with depth in the sediment. MEM-specific NO3
- 

rates were calculated as described in section 3.3.3. 
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3.3.3 Implications of mixotrophy for predicting NO3
- reduction rates  

In this section, I use the sensitivity analysis described in section 3.2.3 to demonstrate the 

implications of the relative abundance of autotrophic metabolisms for the overall rate of turnover 

of electron acceptor substrates (i.e., NO3
- in this case), which was also discussed in section 2.5.2 

in Chapter 2. In the absence of the sensitivity analysis, the predicted relative proportion of 

autotrophy and heterotrophy does not change significantly with depth in the sediment (Figure 3-2 

A). 

The contribution of OH and LH to total NO3
- reduction rates (Figure 3-3) is greater than 

their contribution to predicted MEM biomass fractions (Figure 3-2 A). This reflects the higher 

overall turnover rates of NO3
- by these two heterotrophic metabolisms. These higher turnover 

rates are due to the higher growth yields compared to autotrophic metabolisms (Figure B-4 A). 

While autotrophic metabolisms have higher biomass-specific turnover rates (i.e., the inverse of 

their growth yields are greater than those of heterotrophic metabolisms), they accumulate less 

biomass because of their lower growth yields. Collectively, this results in lower overall turnover 

rates of metabolites (Koenig and Liu, 2001; Cardoso et al., 2006; Handley et al., 2013). As 

section 2.5.2 in Chapter 2 highlighted, the consequence of the different MEM-specific turnover 

rates is that mixotrophic activity has the potential to impact the predicted turnover rates of not 

only C, but all redox-active elements that are used by microbial metabolisms. 

The impact of the simulated variable mixtures of autotrophic and heterotrophic activity 

on NO3
- reduction rates is shown in Figure 3-4 A. For the same NO3

- concentration, simulated 

NO3
- reduction rates decrease with increasing autotrophy. The curves shown in Figure 3-4 were 

fit using Monod-type kinetics. As section 3.2.3 describes, the 𝐾𝑁𝑂3
− values were held constant, 

while the implicit maximum rate parameter, 𝑟𝑁𝑂3
−

𝑚𝑎𝑥, was used to fit the curves to the groups of 
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data. The 𝑟𝑁𝑂3
−

𝑚𝑎𝑥 parameters fit to the 𝑓𝑎-grouped rates decreased with increasing 𝑓𝑎. The overall 

trend is clear in Figure 3-4 B, with 𝑟𝑁𝑂3
−

𝑚𝑎𝑥 decreasing from 171 to 85 µM d-1 as 𝑓𝑎 increased from 

0.1-0.2 to 0.9-1. This trend in the value of the implicit kinetic parameter was generated indirectly 

by combining the predicted rates of iron oxidation and acetate oxidation using the GEDYM-

predicted metabolic reaction stoichiometries to convert the rates to units of [mol NO3
- (L d)-1]. 

3.3.4 Implications of mixotrophy for the coupling of C, N and Fe cycles 

Figure 3-5 shows the changing ratios between N, Fe and DIC turnover rates as a function of the 

fraction of autotrophy using the results of the sensitivity analysis described in section 3.2.3. The 

data from the simulations were again grouped by ranges of the fraction of autotrophy predicted, 

and linear curves were fit to the grouped data. There are three trends as 𝑓𝑎 increases and the 

overall metabolic reaction stoichiometry for mixotrophic growth changes: the ratio of NO3
- 

reduced to Fe2+ oxidized decreases, the ratio of net DIC consumed to Fe2+ oxidized increases, 

and the ratio of net DIC fixed to NO3
- reduced increases (Figure 3-5). Both the DIC:Fe(II) and 

DIC:N ratios increase from negative values, which indicate net DIC production, and approach 

positive values with increasing 𝑓𝑎. Thus, the predicted NO3
- consumption rates do not always 

correlate with net DIC production, as would be the assumption if organoheterotrophy was the 

only NO3
- reducing metabolism. Furthermore, the ratio of DIC fixed/ produced to NO3

- reduced 

varies as a function of autotrophic activity. The rate of DIC turnover to Fe2+ oxidation is also not 

constant with variable autotrophic activity. These figures emphasize the need to account for 

competing autotrophic and heterotrophic, and organotrophic and lithotrophic reactions to be able 

to predict the coupling between the elements used for energy cycling by those metabolisms. 

  



77 

 

 

Figure 3-4. Simulated NO3
- reduction rates and predicted implicit maximum rates.   

A: Simulated NO3
- reduction rates shown as a function of sediment NO3

- concentration (x-axis) 

and fraction of autotrophy (colour of points and curves). Curves represent Monod-type curves fit 

to data points by the fraction of autotrophy, where 𝐾𝑁𝑂3
− is fixed at 1.1*10-4 M. The method used 

to generate the simulated data is described in section 3.2.3. B: Values of implicit rate constant, 

𝑟𝑁𝑂3
−

𝑚𝑎𝑥, fit to data in panel A, shown as a function of the fraction of autotrophy.   
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Figure 3-5.Predicted ratios of coupling of NO3
-:Fe2+, DIC: Fe2+, and DIC:NO3

- as a function of the fraction 

of autotrophic activity. The method for generating the “simulated rates” that were used to calculate 

these simulated ratios is described in section 3.2.3. The calculated ratios of coupling for each 

simulated fraction of autotrophy are the semi-transparent points, while the solid lines and points 

represent the ratios calculated when the simulated rate data is grouped by the fraction of 

autotrophy. 
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3.3.5 Limitations of the modeling approach 

 For the purposes of demonstrating the application of the modeling framework developed 

in Chapter 2, the scope of sediment biogeochemical processes that are represented is limited 

compared to what occurs in natural sediments. Many other microbially controlled reactions that 

impact C, Fe, and N cycling directly and indirectly occur in sediments including NH4
+ oxidation, 

sulfide oxidation, and/ or acetate (or other organic acid) oxidation, coupled to iron(III) reduction, 

sulfate reduction, and/ or O2 reduction. The C, N and Fe balances calculated represent only the 

processes that are predicted to be occurring in the NO3
- reducing zone of the sediment. In Lake 

Constance, mixotrophic NH4
+ oxidation coupled to iron(III) reduction is likely present below the 

zone of NO3
- reduction (Melton et al., 2014). In the oxic zone of the sediment, microaerophilic 

mixotrophic or autotrophic metabolisms such as sulfide oxidation are possible, as are 

photoautotrophic metabolisms such as phototrophic iron oxidation (Geelhoed et al., 2009; 

Melton et al., 2012). Mineral precipitation and dissolution reactions (e.g., pyrite dissolution and 

precipitation) or abiotic reactions (e.g. chemodenitrification, sulfide oxidation by O2) are also not 

represented.  

Other limitations to the modeling approach are related to the lack of fundamental 

knowledge regarding the energetics and stoichiometries of microbial Fe2+ oxidation and NO3
- 

reduction reactions. A largely unknown aspect of the bioenergetics of Fe2+ oxidation is what 

chemical species of Fe2+ organisms interact with in terms of both the Fe2+ species used as the 

reactant and the Fe3+ species generated as the oxidation product (Bird et al., 2011). The 

speciation of Fe2+ and Fe3+ can impact both the kinetic and the energetic constraints. In aqueous 

solutions, Fe2+ can be present as free Fe2+ ions, or in carbonate or hydroxide complexes (Whitney 

King, 1998; Jolivet et al., 2004). In lake sediments, Fe2+ could be chelated by organic acids such 
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as citrate and humic acids, which are present at low concentrations (Peng et al., 2019) . The 

presence of chelators could inhibit or accelerate microbial iron oxidation rates (Peng et al., 2018; 

Peng et al., 2019). Fe2+ is also present in minerals that are accessible by microbial oxidation 

(Shelobolina et al., 2012). The speciation of Fe2+ and Fe3+ impact the Gibbs energy available 

from the Fe2+ oxidation reaction and can therefore impact the bioenergetics-predicted growth 

yields of lithoheterotrophy and lithoautotrophy (Bird et al., 2011). Similarly, the relative 

proportions of DNRA versus denitrification during NO3
- reduction used in bioenergetic 

calculations would impact the catabolic energy yields of both the organotrophic and lithotrophic 

reactions and could impact the predicted outcome of competition between the three MEMs. 

3.4 Conclusions 

Applying the modeling framework developed in Chapter 2 to high resolution sediment 

geochemical data that are available for Lake Constance predicts that there is simultaneous iron 

and acetate oxidation, and auto- and hetero- trophy occurring in the NO3
- reducing zone. These 

predictions agree with MPN data and the presence of Gallionella spp. in the sediment. I also 

showed how the NO3
- reduction rate depends on the fraction of autotrophic NO3

- reducers, using 

the GEDYM-predicted MEM-specific metabolic reaction stoichiometries. This reinforces the 

fact that the competition between heterotrophic and autotrophic metabolisms impacts not only C 

cycling, but also the cycling of N in the sediments. The stoichiometries of how the Fe2+ 

oxidation, NO3
- reduction, and DIC turnover rates are coupled depends on the fraction of 

autotrophic versus heterotrophic activity, demonstrating the importance of accounting for 

mixotrophy in models of real environments. In this chapter, therefore, I have demonstrated the 

utility of the modeling framework developed in Chapter 2 for better constraining chemical 

reaction rates in subsurface environments like lake sediments. 
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This modeling framework could be incorporated into models that simulate the 

interactions of mixotrophy with other sediment processes to be able to predict the response of 

NDFO-driven mixotrophy to changes in geochemical conditions. Some examples of 

environmental forcings that could impact the balance of heterotrophic and autotrophic nitrate 

reducing MEMs, and therefore also the relative net turnover rates of N, Fe, and C could include: 

seasonal changes in the discharge of Fe2+-rich groundwater through the sediment, for example. If 

implemented in an advection-diffusion-reaction (i.e., reactive transport) model, the role of the 

cycling of other elements could also be incorporated. For example, an influx of sulfide to the 

sediment could increase Fe2+ removal by iron sulfide mineral precipitation and decrease Fe(III) 

reduction rates by increasing the bioavailable sulfur pool in the sediment and increasing the 

extent of the zone of sulfate reduction. This modeling framework accounts for the role of 

potential mixotrophic biotic activity in the net process of NDFO. The framework could thus 

serve as the basis for predicting the biotic contribution in a modeling effort that aims to elucidate 

the relative roles of mixotrophic Fe2+ oxidation and abiotic chemodenitrification. 
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Chapter 4  

Conclusions and Perspectives 

4.1 Summary of key findings 

In terrestrial subsurface environments, the turnover of many geochemical species is regulated by 

microorganisms (i.e., bacteria and archaea). These organisms are chemosynthetic, relying on 

reduction-oxidation reactions rather than photosynthetic reactions for their growth. Subsurface 

microbial activity is therefore limited by the chemical energy available in the energetic substrates 

that are present. Many organisms inhabiting the subsurface possess the capacity to switch 

between heterotrophic (i.e., the source of biomass carbon is organic carbon compounds) and 

autotrophic (i.e., the source of biomass carbon is inorganic carbon) modes of metabolism. In 

addition to directly impacting the balance between the mineralization of organic carbon to 

inorganic carbon and the fixation of inorganic carbon into biomass, autotrophic and 

heterotrophic metabolisms have different energetic costs that impact the net turnover rates of 

other elements in addition to carbon. Therefore, representing this metabolic flexibility is essential 

for predicting the functions carries out by microbial activities in the subsurface.  

This thesis outlines the development and demonstrates the application of a modeling 

framework for predicting the metabolic flexibility observed in chemosynthetic mixotrophs. This 

modeling framework consists of a deterministic system of governing equations that describes the 

allocation of the carbon and energy in a microbial system during growth on a mixture of an 

organic ED/ carbon source and an inorganic ED. The equations incorporate the utilization rates 

of the EDs and the growth yields of the different metabolisms that are co-occurring during 

mixotrophy. These can also be described as the “kinetic and energetic constraints,” respectively. 

The growth yields of each of the potential metabolisms are calculated a priori for the 

geochemical conditions using the bioenergetic-based Gibbs Energy Dynamic Yield Method. 
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These “end member metabolisms” represent the potential unique combinations of the two carbon 

source and two energy sources that are possible in chemosynthetic mixotrophs.  

In Chapter 2, the system of governing equations describing mixotrophy is developed and 

validated using literature datasets of chemostat experiments where the incorporation of the 

organic carbon source into biomass carbon was tracked using biochemical methods. Along with 

measurements of the biomass growth rate and the utilization rates of the two EDs, this enabled 

the calculation of the observed relative abundances of autotrophic and heterotrophic 

metabolisms. The system of governing equations describing mixotrophic growth were developed 

and validated using these experimental results. Application of the calculation method yields 

relatively good agreement between the observed and predicted relative abundances of the 

metabolisms.  

In Chapter 3, the modeling framework was applied to a geochemical dataset collected 

from the profundal sediments of Lake Constance, taken from Melton et al. (2014). The results of 

applying the modeling framework to this dataset were consistent with the relative numbers of 

different metabolic groups in the sediment that were determined by Most Probable Number 

enumerations, data which were also collected by Melton et al. (2014). This dataset was also used 

to explore the impact of mixotrophic metabolisms on the coupling of the C, N and Fe cycles, by 

demonstrating the variability of the ratios of their turnover rates with changing relative 

abundances of autotrophic and heterotrophic metabolisms. The impact of variable fractions of 

autotrophy on the kinetic parameters describing nitrate (i.e., electron acceptor) turnover was also 

explored using this dataset. 

 

4.2 Research perspectives and future directions 
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This thesis reinforces that it is the combined kinetic and energetic limitations to microbial 

activity that control the relative functional abundances of microbial groups in the subsurface. 

Since these energetic limitations are determined by the combination of electron donor and 

acceptor used for the catabolic reaction, it is the supply (via the interaction of the generation and 

transport of these substrates) of energetic substrates that determines the energetic efficiency of 

microbial growth and activity. The widespread occurrence of autotrophy in subsurface 

environments is justified by the modeling framework, which mathematically describes when a 

chemosynthetic microbial system becomes organic carbon-limited. Thus, it predicts ecological 

niches of heterotrophic and autotrophic metabolisms.  

The experimental datasets used in Chapter 2 were collected in controlled chemostat 

systems that monitored the organic carbon assimilated into biomass and enzyme activities in 

addition to traditional geomicrobial metrics such as biomass and chemical species. Similarly, the 

field dataset used in chapter 3 collected genomic data, MPN data, and geochemical data. 

Targeted experiments and field studies like these which combine geomicrobial measurements 

with tools for tracking microbial physiology, activity, and energetics are critical to building and 

validating bioenergetics-based modeling frameworks. These include tools such as calorimetry 

(e.g., Von Stockar et al. 2011; Robador et al. 2018), stable isotope probing (e.g., Glaubitz et al. 

2009), tracing the incorporation and fractionation of natural abundance isotopes (e.g., Vlasceanu, 

Popa, and Kinkle 1997; Probst et al. 2018)), omics techniques (e.g., Dyksma et al. 2016; Kusian 

and Bowien 1997; Li et al. 2017). Other tools for tracking microbial physiology and activity 

could include autofluorescence as a proxy for intracellular redox activity (Yang et al. 2012), or 

spectral induced polarization (Mellage et al. 2018). 
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With the modeling framework outlined in this thesis able to describe chemostat and lake 

sediment systems that are at steady state (i.e., the supply rates of EDs is unchanging), the 

sensitivity of mixotrophy to environmental perturbations can be tested. To do this, the modeling 

framework could be implemented in a kinetic reaction model. 

4.2.1 Implementation of the modeling framework into a kinetic reaction model 

Implementing the modeling framework into a truly kinetic reaction model that describes the 

evolution of a system over time (i.e., a numerical model that solves a system of governing 

differential equations that describe the rates of turnover of relevant geochemical species) is the 

logical next step. Doing so may provide new insights into the dynamic environmental controls on 

mixotrophy. In addition to the overarching kinetic and energetic controls (i.e., the relative 

utilization rates of the 2 EDs and the oxidation state of the organic carbon source) on mixotrophy 

that the modeling framework demonstrates, other environmental forcings could impact the 

balance between autotrophy and heterotrophy. These could include changes in chemical 

variables such as pH and pCO2, or changes in temperature. I will briefly outline how the impact 

of these environmental variables could be accounted for below.  

4.2.2 Accounting for changes in chemical variables 

Both the energetic and kinetic constraints in the mixotrophic modeling framework could respond 

to changes in chemical variables like pH or pCO2. pH modifies the chemical speciation, and 

therefore the chemical activity of substrates, which can modify the amount of the bioavailable 

fraction of a substrate (i.e., the kinetic constraint), while also modifying the Gibbs energy of 

redox reactions (i.e., the energetic constraints) (Jin and Kirk, 2018a; Jin and Kirk, 2018b). For 

example, bioenergetic-kinetic modeling approaches have been used to demonstrate how pH 

controls the balance between the use of iron(III) and methane (Marquart et al., 2018), and sulfate 
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and iron(III) (Kirk et al., 2016) as electron acceptors coupled to organic carbon oxidation. In the 

case of mixotrophy, the influence of pH depends on the identity of the mixture of organic ED/ 

carbon source and inorganic substrates being used by the metabolism. pH is likely to modify the 

energetics constraints on mixotrophy when protons are present as a product in one and reactant 

in the other of the two catabolic reactions. Both autotrophic and heterotrophic anabolic reactions 

typically use protons as reactants (see reactions in Appendix A), but that is also dependent on the 

ED oxidation reaction required to balance the anabolic reaction.  

The impact of pCO2 on the competition between autotrophy and heterotrophy could be 

important, since one anabolic reaction requires dissolved inorganic carbon species (i.e., CO2, 

HCO3
-, and/ or H2CO3) as reactants, while the other generates them as products. The sensitivity 

of any reaction to changes in the activity of a reactant or product does depend on the 

stoichiometric coefficient in front of that reactant/product (Jin and Kirk, 2018a). At low pCO2 

levels, limitation of autotrophy by the availability of inorganic carbon limitation could be an 

important constraint, which could be accounted for by incorporating a kinetic limitation factor 

for inorganic carbon. 

4.2.3 Accounting for changes in temperature 

Temperature would impact the kinetic parameters 𝜇 𝑚𝑎𝑥 and 𝐾𝑠 (Ratkowsky et al., 1982; Price 

and Sowers, 2004; Schaum et al., 2018). The response of 𝜇𝑚𝑎𝑥 to changes in temperature is 

proposed to be an asymmetric curve (Price and Sowers, 2004). There is some temperature at 

which the maximum specific growth rate is at a maximum, and this temperature lies somewhere 

in the range of temperatures at which the organism can grow. Alternatively, temperature 

sensitivity can be represented using an Arrhenius-inspired Q10 factor that is used to modify 𝜇𝑚𝑎𝑥 

(Dale et al., 2006). Interestingly, the metabolic theory of ecology posits that the 𝜇𝑚𝑎𝑥 of 
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photosynthetic autotrophic metabolisms are less sensitive to temperature than heterotrophic 

metabolisms, and therefore that systems will become more heterotrophic with increasing 

temperature (Allen et al., 2005).  

The sensitivity of the Gibbs energies of metabolism and therefore also growth yields to 

temperature can be accounted for using the van’t Hoff equation (Dale et al., 2006). According to 

the van’t Hoff equation, exothermic reactions which produce heat to in the forward direction 

should become less energy-yielding with increased temperature. Both chemoautotrophic and 

chemoheterotrophic metabolisms are typically exothermic, although chemoheterotrophic 

metabolisms tend to be more exothermic. Changes in temperature could therefore impact the 

energetic constraints on autotrophic and heterotrophic metabolisms to different extents. 

4.2.5 The potential to predict “the priming effect” in soils 

A kinetic-bioenergetic framework could be used to describe the “priming” of organic ED 

substrates in the presence of other organic ED substrates. The “priming effect” describes the 

enhanced degradation of a less “labile” ED in the presence of another, more labile ED (Guenet et 

al., 2010). The concept of “lability” effectively describes the amount of chemical energy released 

by the oxidation of an organic ED, and thus its favourability to be used for microbial 

metabolism. Lability is therefore related to the degree of reduction of an organic ED. The degree 

of lability is also related to the energetic costs of breaking the substrate down for energy use 

(e.g., cellulose and other polymers are considered less labile). In addition to the enhanced 

degradation of the less labile ED, the priming effect is also associated with increased microbial 

growth efficiency using the more labile ED. The priming effect has been proposed as a key 

mechanism for soil C retention in biomass and potential storage (Fontaine, Mariotti, & Abbadie, 

2003; Qiao et al., 2014) The relative lability of the two ED substrates could be represented using 
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bioenergetics, making the bioenergetic-kinetic modeling framework an ideal framework for 

representing the priming effect. 
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Appendix A: Supplementary Information for Chapter 2 
 

Defining the reaction stoichiometries of the anabolic and catabolic MEM reactions for all 3 

literature chemostat studies 

 

Table A-1. Catabolic and anabolic end member reaction stoichiometries for experiments carried 

out in Gottschal and Kuenen, 1979 (“study 1”). The organic ED is acetate (𝐶2𝐻3𝑂2
−), while the 

inorganic ED is thiosulfate (𝑆2𝑂3
−2). 

Reaction 

No. 

Name Reaction stoichiometry Thermodynamic 

parameters 

Catabolic reactions ∆Gr
°′ 

(kJ (mol ED)-1) 

A-1 Organotrophy 0.125𝐶2𝐻3𝑂2
−  +  0.25𝑂2 →  0.25𝐻𝐶𝑂3

− +  0.125𝐻+ -852.78 

A-2 Lithotrophy 𝑆2𝑂3
2−  +  2𝑂2  +  𝐻2𝑂 →  2𝑆𝑂4

2− +  2𝐻+ -773.2 

Anabolic reactions ∆Gr
°′ 

(kJ mol-C-1) 

A-3 Organohetero-

trophy 

0.53𝐶2𝐻3𝑂2
−  +  0.2𝑁𝐻4

+  +  0.28𝐻+ →  

0.05𝐻𝐶𝑂3
−  +  0.4𝐻2𝑂 +  𝐶𝐻1.8𝑂0.5𝑁0.2   

31.2 

 

A-4 Lithohetero-

trophy 

0.15𝑆2𝑂3
2−   +  0.5𝐶2𝐻3𝑂2

− +  0.2𝑁𝐻4
+ +  0.27𝐻2𝑂 →  

0.3𝑆𝑂4
−2 +  0.05𝐻𝐶𝑂3

−  +  0.06𝐻+  + 𝐶𝐻1.8𝑂0.5𝑁0.2   

31.9 

 

A-5 Lithoauto-

trophy 

𝐻𝐶𝑂3−  +  0.53𝑆2𝑂3
2−  +  0.2𝑁𝐻4

+ +  0.13𝐻2𝑂 →  

𝐶𝐻1.8𝑂0.5𝑁0.2  +  1.05𝑆𝑂4
−2 +  0.25𝐻+ 

46.5 
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Table A-2. Catabolic and anabolic end member reaction stoichiometries for experiments carried 

out in Dijkhuizen & Harder, 1979 (“study 2”). The organic ED is oxalate (𝐶2𝑂4
2−), while the 

inorganic ED is formate (𝐶𝐻𝑂2
−). 

Reaction 

No. 

Name Reaction stoichiometry Thermodynamic 

parameters 

Catabolic reactions ∆Gr
°′ 

(kJ (mol ED)-1) 

A-6 Organotrophy 0.5𝐶2𝑂4
2−  +  0.25𝑂2  +  0.5 𝐻2𝑂 →  𝐻𝐶𝑂3

− -847.7 

A-7 Lithotrophy 0.5𝐶𝐻𝑂2
−  +  0.25𝑂2 → 0.5𝐻𝐶𝑂3

− -283.9 

Anabolic reactions ∆Gr
°′ 

(kJ (C-mol)-1) 

A-8 Organohetero-

trophy 

2.1𝐶2𝑂4
2−  +  0.2𝑁𝐻4

+  +  1.7𝐻2𝑂 +  0.8𝐻+ → 

   3.2𝐻𝐶𝑂3
−  +  𝐶𝐻1.8𝑂0.5𝑁0.2 

31.21 

A-9 Lithohetero-

trophy 

1.6𝐶𝐻𝑂2
−  +  0.5𝐶2𝑂4

2−  +  0.2𝑁𝐻4
+  +  0.1𝐻2𝑂 +  0.8𝐻+ → 

 1.6𝐻𝐶𝑂3
−  +  𝐶𝐻1.8𝑂0.5𝑁0.2  

24.9 

A-10 Lithoauto-

trophy 

2.1𝐶𝐻𝑂2
− +  0.2𝑁𝐻4

+ +  0.8𝐻+ →  

𝐶𝐻1.8𝑂0.5𝑁0.2   +  1.1𝐻𝐶𝑂3
−  +  0.4𝐻2𝑂  

-101.5 

 

  



101 

 

Table A-3. Catabolic and anabolic end member reaction stoichiometries for experiments carried 

out in Dijkhuizen, van der Werf, & Harder, 1980 (“study 3”). The organic ED is acetate 

(𝐶2𝐻3𝑂2
−), while the inorganic ED is formate (𝐶𝐻𝑂2

−). 

Reaction 

No. 

Name Reaction stoichiometry Thermodynamic 

parameters 

Catabolic reactions ∆Gr
°′ 

(kJ (mol ED)-1) 

A-11 Organotrophy 0.125𝐶2𝐻3𝑂2
−  +  0.25𝑂2

→  0.25𝐻𝐶𝑂3
−  +  0.125𝐻+ 

-847.7 

A-12 Lithotrophy 0.5𝐶𝐻𝑂2
−  +  0.25𝑂2 →  0.5𝐻𝐶𝑂3

− -283.9 

Anabolic reactions ∆Gr
°′ 

(kJ (C-mol)-1) 

A-13 Organohetero-

trophy 

0.53𝐶2𝐻3𝑂2
−  +  0.2𝑁𝐻4

+ +  + 0.28𝐻+ →  

0.05𝐻𝐶𝑂3
−  +  0.4𝐻2𝑂 +  𝐶𝐻1.8𝑂0.5𝑁0.2  

31.2 

A-14 Lithohetero-

trophy 

0.1𝐶𝐻𝑂2
−  +  0.5𝐶2𝐻3𝑂2

−  +  0.2𝑁𝐻4
+ +  0.3𝐻+ →  

0.1𝐻𝐶𝑂3
−  +  0.4𝐻2𝑂 + 𝐶𝐻1.8𝑂0.5𝑁0.2   

24.9 

A-15 Lithoauto-

trophy 

2.1𝐶𝐻𝑂2
− +  0.2𝑁𝐻4

+ +  0.8𝐻+ →  

𝐶𝐻1.8𝑂0.5𝑁0.2   +  1.1𝐻𝐶𝑂3
−  +  0.4𝐻2𝑂  

-101.5 
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Correcting Gibbs energies for non-standard temperatures 

 

Gibbs energies of catabolism (∆𝐺𝑐𝑎𝑡
° ) and anabolism ( ∆𝐺𝑎𝑛

° ) under standard state 

conditions are corrected for temperature using the Gibbs-Helmholtz equation (Smeaton and Van 

Cappellen, 2018): 

 ∆𝐺𝑟
°

𝑇
= ∆𝐺𝑟  298

° ∙ (
𝑇

298.15
) + ∆𝐻𝑟 298

° ∙ (
298.15 − 𝑇

298.15
) (A-16) 

where T is the temperature (K) and ∆𝐻298
°  is the standard enthalpy change at 298.15 K.   

To account for the deviation of the growth medium (i.e., chemical environment) from 

standard state conditions, Gibbs energies of catabolism (∆𝐺𝑐𝑎𝑡) and anabolism (∆𝐺𝑎𝑛) under 

non-standard state conditions were determined using Eq. 1-2 (where ∆𝐺𝑟
°

𝑇
 in place of ∆𝐺𝑟

°). 

Meanwhile, the activities of the products and reactants are corrected for temperature in 

PHREEQC using the temperature correction methods built into the program (Parkhurst and 

Appelo, 2013). These corrected activities are used to calculate the reaction quotient in Eq. 1-2. 
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GEDYM theoretical background and derivation 

 

The Gibbs Energy Dissipation Method (GEDM) is an example of a 𝑌 prediction method 

which relates the cellular energy balance to 𝑌 using (Heijnen and Van Dijken, 1992): 

 𝑌 =
∆𝐺𝑐𝑎𝑡

∆𝐺𝑚𝑒𝑡 + 𝜈∆𝐺𝑐𝑎𝑡 − ∆𝐺𝑎𝑛
  (A-17) 

The Gibbs Energy Dynamic Yield Method (GEDYM) builds on the GEDM by explicitly 

accounting for the deviation of the experimental/environmental conditions from standard-state 

conditions to improve 𝑌 prediction (Smeaton and Van Cappellen, 2018).  GEDYM relies on 

empirical linear relationships between the Gibbs energies of the catabolism and metabolism 

under standard and non-standard state conditions, expressed as:   

(
𝛥𝐺𝑚𝑒𝑡 

𝛥𝐺 𝑚𝑒𝑡
0⁄ − 1) = 𝑚 (

𝛥𝐺𝑐𝑎𝑡 

𝛥𝐺 𝑐𝑎𝑡
0⁄ − 1) + 𝑏 (A-18) 

where m and b are the slope and y-intercept, respectively. When Eqs. A-17 and A-18 are 

combined, Y (C-mol biomass (mol eeq) -1) is predicted using:   

 𝑌 =
𝛼∆𝐺𝑐𝑎𝑡

°2 − 𝛽∆𝐺𝑐𝑎𝑡
° ∆𝐺𝑐𝑎𝑡

𝛼𝜈∆𝐺𝑐𝑎𝑡
°2 − ∆𝐺𝑐𝑎𝑡

° (𝛽𝜈∆𝐺𝑐𝑎𝑡 + 𝛼∆𝐺𝑎𝑛
° + ∆𝐺𝑎𝑛) + 𝑚∆𝐺𝑐𝑎𝑡∆𝐺𝑎𝑛

°
∙

1

𝑛𝑒𝑒𝑞
∙ (A-19) 

where 

 

 

𝛼 = 𝑚 − 𝑏 − 1 (A-20) 

and 

 𝛽 = 𝑚 − 1 (A-21) 
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The empirical parameters, 𝑚, 𝑏, 𝛼, and 𝛽 used in Eq. A-19 for heterotrophic and autotrophic 

metabolisms are summarized in Table A-4: 

Table A-4. Empirical GEDYM parameters used to calculate yield values for heterotrophic and 

autotrophic metabolisms 

Metabolism 𝒎 𝒃 𝜶 𝜷 

Heterotrophic metabolisms 

("Majority of metabolisms" from: Smeaton and 

Van Cappellen, 2018) 

0.9306 −0.0690 −0.0004 −0.0694 

Autotrophic metabolisms 1.0168 -0.0117 0.0285 0.0168 

 

 

 

Figure A-1. Example of linear regressions used by GEDYM, with ∆𝐺𝑚𝑒𝑡 ∆𝐺𝑚𝑒𝑡
°⁄ − 1 plotted 

versus ∆𝐺𝑐𝑎𝑡 ∆𝐺𝑐𝑎𝑡
°⁄ − 1. Green, dotted line represents the linear regression used for 

autotrophic metabolisms, while the blue line represents that used for heterotrophic metabolisms. 
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Maximum theoretical growth yield (𝒀𝒎𝒂𝒙) 

A maximum theoretical growth yield (𝑌𝑚𝑎𝑥) can be determined which corresponds to the 𝑌 value 

when ∆𝐺𝑚𝑒𝑡 = 0, yet the catabolic reaction remains thermodynamically favorable (i.e.,  𝛥𝐺𝑐𝑎𝑡 <

0): 

 𝑌𝑚𝑎𝑥  =
𝛥𝐺𝑐𝑎𝑡

 ∆𝐺𝑐𝑎𝑡𝜈 − ∆𝐺𝑎𝑛
 (A-22) 

Knowledge of this theoretical maximum growth yield can be used in models to prevent a 

metabolic reaction from occurring when it is not thermodynamically possible. When 𝛥𝐺𝑚𝑒𝑡 

calculated using the GEDYM is greater than 0,  𝑌 is set to 𝑌𝑚𝑎𝑥, and the reaction is not permitted 

to occur until the geochemical conditions changes such that 𝛥𝐺𝑚𝑒𝑡 value becomes 

thermodynamically favourable (i.e., 𝛥𝐺𝑚𝑒𝑡< 0) (Smeaton and Van Cappellen, 2018). 
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Calculating steady state concentrations in the chemostat  

The net utilization rates of the two ED substrates and biomass concentration in the chemostat are 

known and can be used to calculate the steady state ED concentration using Monod kinetics: 

 𝑟𝐸𝐷
𝑚𝑒𝑡 =

𝑋

𝑌
𝜇𝑚𝑎𝑥(

𝐶𝐸𝐷

𝐶𝐸𝐷 + 𝐾𝐸𝐷
) (A-23) 

Re-arranging reaction A16 gives reaction A17, which expresses the steady state concentration of 

the ED as a function of the ED utilization rate: 

 𝐶𝐸𝐷 =
𝑟𝐸𝐷

𝑚𝑒𝑡 ∙ 𝑌 ∙ 𝐾𝐸𝐷

𝑓𝐸𝐷
𝑒𝑒𝑞 ∙ 𝑋 ∙ 𝜇𝑚𝑎𝑥 − 𝑟𝐸𝐷

𝑚𝑒𝑡 ∙ 𝑌
 (A-24) 

 

The values of 𝜇𝑚𝑎𝑥 and 𝐾𝐸𝐷 used for the EDs used in all three studies are summarized in 

Table A5. Mixotroph-specific 𝜇𝑚𝑎𝑥 and 𝐾𝐸𝐷 parameters can be calculated from the parameters 

of obligate organisms using the relationship proposed by Gottschal and Thingstad (1982). The 

𝜇𝑚𝑎𝑥 values are 25% lower, while the 𝐾𝐸𝐷 values are also around 25% lower for mixotrophs 

(i.e., facultative organisms) compared to the value for organisms capable of growing only on the 

single ED (i.e., obligate organisms). This how the parameters for the growth of P. versutus on 

thiosulfate and acetate were calculated. 

Most of the 𝜇𝑚𝑎𝑥 and 𝐾𝐸𝐷 values in Table A5 were taken from studies where mixotrophs 

were grown on the single substrates, so these adjustments to the parameters were not required. 

The calculation of these parameters is described in the next section.  

The ED utilization rates and steady state ED concentrations in all three studies are summarized 

in Figure A-2. 
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Table A-5. Monod kinetic parameters calculated for the growth of P. versutus on acetate and 

thiosulfate and P. oxalaticus on acetate, oxalate and formate 

Substrate (Organism) 𝝁𝒎𝒂𝒙 

(h-1) 

𝑲𝑬𝑫 

 

Source 

Acetate (P. versutus) 0.145 1 µM [1] 

Thiosulfate (P. versutus) 0.085 1 µM [1] 

Acetate (P. oxalaticus) 0.432 1.4 mM [2], fitted 

Oxalate (P. oxalaticus) 0.095 0.71 mM [2], fitted 

Formate (P. oxalaticus) 0.208 9.3∗ 10−2 mM [2], fitted 

1: (Gottschal and Thingstad, 1982), 2: (Dijkhuizen et al., 1980) 

 

Figure A-2. ED utilization rates (top panel) and steady state concentration of the two EDs 

(bottom panel) as a function of the fraction of inorganic electron equivalents consumed for all 

three studies.  
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Calculating the kinetic parameters for the growth of P. oxalaticus on formate, oxalate and 

acetate 

To calculate the values of the maximum specific growth rate (𝜇𝑚𝑎𝑥) and the half-

saturation constant (𝐾𝑠) kinetic parameters for the growth of P. oxalaticus on the electron donor 

(ED) substrates formate, acetate and oxalate, experimental data for these organisms growing in 

batch culture was used. 

The data used came from Dijkhuizen et al. (1980). In this study, P. oxalaticus was grown 

on mixtures of two EDs. The optical density of the cells was measured over time, along with the 

residual concentration of each ED in the culture. Given these data, the specific growth rate can 

be calculated and related to the residual ED concentration. 

In batch culture, specific growth rates are higher, and growth on two substrates is diauxic, 

meaning that each ED is used one at a time for growth rather than simultaneously. I therefore 

identified phases where the ED of interest was being used for growth and used those data for 

calculating the kinetic parameters since I was interested in the kinetic parameters that 

represented growth on single ED substrates. 

The specific growth rate of the cells in batch culture was calculated using the method 

described in Smeaton and Van Cappellen (2018). Briefly, the doubling time (𝑡𝑑) of the culture at 

any point during its growth in batch phase was calculated using Eq. A-25: 

 𝑡𝑑 =
0.301(𝑡2 − 𝑡1)

log 𝑋2 − log 𝑋1
 (A-25) 

where 𝑋1 and 𝑋2 are cell concentrations (as optical density) measured at times 𝑡1 and 𝑡2, 

respectively. Using the doubling time, the specific growth rate (μ) was calculated using Eq. A-

26: 

 𝜇 =
ln 2

𝑡𝑑
 (A-26) 

To calculate the parameters 𝜇𝑚𝑎𝑥 and 𝐾𝑠, the Monod-type equation was fit to the data using a 

non-linear least squares fitting procedure, using the method and base script outlined by Huitema 
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and Horsman (2018). Figure A-3 shows the plots of the specific growth rate with residual 

concentration, and the line of best fit generated using the calculated parameters. Table A-5 

summarizes the fitting parameters that were calculated. 

 

 

Figure A-3. Specific growth rate of P. oxalaticus as a function of the steady state (i.e., residual) 

acetate, formate, and oxalate concentrations during growth in batch culture. Lines shows the 

line of best fit calculated using the fitted kinetic parameters. Note that the y-axes have different 

scales, while the scale for all three x-axes is the same. 
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Accounting for biochemical maintenance energies when calculating growth yields using the 

GEDYM 

The steady state concentrations calculated as described above are used to predict the growth yields 

using the GEDYM framework. Growth yields calculated using the GEDYM represent the growth 

yield before non-growth energetic costs (also called maintenance energy) are accounted for.  

For Pseudomonas oxalaticus, some of these costs are known given the detailed biochemistry of 

the catabolic reactions and experimental evidence: 

▪ During growth on oxalate, 50% of the ATP generated by its oxidation is used for active 

utilization of oxalate into the cell (Dijkhuizen et al., 1977b; Dijkhuizen et al., 1977a). This 

was accounted for by multiplying the GEDYM-calculated yield value by 0.5. 

▪ During growth on formate, 25% of the ATP generated by its oxidation is used for its 

transport into the cell (Dijkhuizen et al., 1977b). This was accounted for by multiplying the 

GEDYM-calculated yield value by 0.75. 

▪ To match GEDYM predicted yields and observed yields during growth of P. oxalaticus on 

acetate, a factor of 0.5 was required, indicating that 50% of the acetate used for energy is 

allocated to non-growth costs. 
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Trends in Gibbs energies during the transition between MEMs 

 

Figure A-4. Total calculated and MEM specific Gibbs energy of catabolism, ∆𝐺𝑐𝑎𝑡 (A) Gibbs 

energy of anabolism, ∆𝐺𝑎𝑛 (B), and Gibbs energy of metabolism, ∆𝐺𝑚𝑒𝑡 (C), versus fraction of 

inorganic electron equivalents consumed, 𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞 (𝑟𝑖𝑛𝑜𝑟𝑔 𝑒𝑒𝑞⁄ + 𝑟𝑜𝑟𝑔 𝑒𝑒𝑞).  
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Appendix B: Supplementary Information for Chapter 3 
 

Digitized geochemical and microbiological data 

These geochemical and microbiological (16S rRNA gene copy number) data were not shown in 

the main text to save space but were used for the bioenergetic calculations and are therefore 

shown here in Figures B-1 and B-2 for reference.  

 

Figure B-1. Depth profiles of pH, ammonium (NH4
+), and solid phase Fe(II) and Fe(III) taken 

from Melton et al. (2014). Bicarbonate (HCO3
-) and Fe(II) concentrations were calculated using 

the geochemical data, as described in chapter 3 of the text.  
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Estimating the geochemical concentrations not available in Melton et al. (2014) needed for 

bioenergetic calculations 

 

As with acetate, the dissolved inorganic carbon in the sediment was assumed to be constant at 

6.3 mM with depth, based on the information available for Lake Constance (Melton et al., 2012). 

I entered this into my PHREEQC code to calculate the activity of bicarbonate (HCO3
-) for the 

given geochemical conditions. The predicted depth profile of HCO3
- concentrations is shown in 

Figure B-1. The concentration of N2 in sediments is often around 1 mM (Adams and Baudo, 

2001). N2 concentration data were not available for Lake Constance, but I assumed that this 

would also be the case in those sediments. The activity of goethite was assumed to be 1, since it 

is a solid. The temperature of the profundal sediments of Lake Constance is 4°C throughout the 

year (Schulz and Conrad, 1996; Schulz, 2002). This temperature was used to adjust Gibbs 

energies for non standard temperature (using Eq. A-16) and to adjust the chemical activities 

computed in PHREEQC and subsequently used to calculate the reaction quotient in Eq. 1-2. 
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Digitized microbiological data 

 

Figure B-2. Depth profiles of 16S rRNA gene copy numbers of genes involved in nitrate 

reduction (nirK, nirS, narG) (panel A) and iron (II) oxidation (Gallionella spp., noted in legend 

as “Gall.”) (panel B) as a function of depth in the sediment taken from Melton et al. (2014). The 

furthest right panel (panel C) shows the relative gene abundances calculated from these gene 

copy number data. 

 

“Relative gene abundances” shown in Figure B-2, B-3 and B-4 were calculated by normalizing 

the copy numbers at each depth by the copy numbers measured at the greatest depth (50 mm, 

these data are not shown here).  
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Figure B-3. Calculated iron oxidation rates versus relative gene abundance of Gallionella (A) 

and amount of poorly crystalline Fe(III) (B) measured by Melton et al. (2014). 

 

 

Figure B-4. Nitrate reduction rate calculated versus relative gene abundance of functional genes 

relevant to nitrate reduction. “Relative gene abundances” were calculated by normalizing the 

measured gene copy numbers at each depth to the copy number at the greatest depth measured. 
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Growth yields and Gibbs energies of metabolism calculated with depth in the sediment 

Table B-1. Catabolic and anabolic end member reaction stoichiometries assumed for nitrate-

dependent iron oxidation by mixotrophic organisms such as Gallionella spp. 

 

Reaction 

No. 

Name Reaction stoichiometry Thermodynamic 

parameters 

Catabolic reactions ∆Gr
°′ 

(kJ (mol ED)-1) 

3-3 Organotrophy 𝐶2𝐻3𝑂2
− +  1.6𝑁𝑂3

− +  0.6𝐻+  →  

2𝐻𝐶𝑂3
− +  0.8𝐻2𝑂 +  0.8𝑁2 

-816.2 

3-4 Lithotrophy 𝐹𝑒+2 + 0.2𝑁𝑂3
− + 1.4𝐻2𝑂 →   

𝐹𝑒𝑂(𝑂𝐻) + 0.1𝑁2 + 1.8𝐻+ 
-49.5 

Anabolic reactions ∆Gr
°′ 

(kJ (C-mol)-1) 

3-5 Organohetero-

trophy 

0.53𝐶2𝐻3𝑂2
−  +  0.2𝑁𝐻4

+ +  + 0.28𝐻+ →  

0.05𝐻𝐶𝑂3
−  +  0.4𝐻2𝑂 +  𝐶𝐻1.8𝑂0.5𝑁0.2  

18.6 

3-6 Lithohetero-

trophy 

0.2𝐹𝑒2+ +  0.2𝑁𝐻4
+ +  0.5𝐶2𝐻3𝑂2

−  →  

𝐶𝐻1.8𝑂0.5𝑁0.2   + 0.2𝐹𝑒𝑂(𝑂𝐻) + 0.1𝐻2𝑂 +  0.1𝐻+   
29.0 

3-7 Lithoauto-

trophy 

4.2𝐹𝑒2+ +  0.2𝑁𝐻4
+ +  𝐻𝐶𝑂3

− +  5.9𝐻2𝑂 →  

𝐶𝐻1.8𝑂0.5𝑁0.2   + 4.2𝐹𝑒𝑂(𝑂𝐻) + 7.6𝐻+   
239.1 
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Figure B-5. Trends in calculated growth yields, and Gibbs energies of metabolism, catabolism 

and anabolism with depth in the sediment for all 3 MEMs. LH = lithoheterotrophy, LA = 

lithoautotrophy and OH = organoheterotrophy. 

 


