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Abstract 

 Anthropogenic contaminants have been on the rise worldwide due to global 

industrialization. The world is now faced with the consequences of the pollution caused by the 

exposure of man-made chemicals in the environment. Testing of foodstuff for these pollutants has 

become extremely important as various fields of science continuously demonstrate the dangers 

posed by such contaminants to environmental, and, ultimately human health. Pesticides and 

machining oils contaminating soil and river water are of particular note as their use is widespread 

and they have a tendency to bioaccumulate in adipose tissue. Moreover, bioaccumulated 

compounds may be further biomagnified up the food chain until they are consumed by humans. 

Currently, methods for screening bioaccumulants in fatty foods are time-consuming and resource-

intensive resulting in significant environmental waste. Hence, this thesis presents the development 

of eco-friendly methods to test for pesticides and polychlorinated n-alkanes (PCAs) using solid 

phase microextraction (SPME) techniques in fatty food matrices.   

The determination of pesticides was performed from soymilk samples using matrix-

compatible polydimethylsiloxane (PDMS) overcoated divinylbenzene/PDMS (DVB/PDMS) 

SPME fibers on GC-MS instrumentation. Targets for a  broad-spectrum representation of 

commonly used pesticides included trifuralin, dimethoate, diazinon, malathion, chlorpyrifos, 

thiabendazole, phosalone, λ-cyhalothrin, α-β-cyfluthrin, and esfenvalerate. The method exhibited 

good figures of merit indicated by low limits of detection at 1ppb for all but trifuralin at 2.5ppb, 

well below maximum residue levels set by both the Canadian and United States government 

agencies raging from 0.01 to 8 ppm. The linear range for each compound spanned from the limits 

of detection up to 1000ppb. Validation of the method was accomplished according to the FDA 
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guidelines; precision and accuracy from back-calculated results reached targets within 70 – 130% 

of known values with less than 20% RSD. In two other milk brands sampled, Chlorpyrifos and 

Malathion were each found below MRL for both Canada and the USA, however Dimethoate was 

found at 742 and 745 ppb in each respectively.  

PCAs are another example of potent environmental bioaccumulants. Many industrial oils find 

their way into natural waterways and bioaccumulate in fatty tissues such as fish livers which are 

harvested to produce oil supplements used for their omega-3 and omega-6 fatty acid content. 

Screening PCAs from cod liver oil difficult due to the hydrophobic properties of the matrix; a 

hydrophilic lipophilic balance particle (HLB/PDMS) coated aluminum thin film solid phase 

microextraction (TF-SPME) blade was used for the extraction. Eight PCA standards ranging from 

chlorodecane to 1,1,1,3,14,15 - hexachloropentadecane were used as proxies for this work 

encompassing short and medium chain PCAs with varying degrees of chlorination. Previously 

unreported Kovats retention indices for two PCAs: 1,1,1,3 – tetrachlorodecane and 1,2,9,10 – 

tetrachlorodecane were found to be 1649 and 1786, respectively. Calibration of the method was 

performed with a linear range of 0.075 to 0.75ppm on a conventional GC-MS with electron impact 

ionization and a single quadrupole. Method limits of quantitation (MLOQ) were determined by 

multiplying the standard deviation of the lowest calibration point by 10, then dividing by the slope; 

the MLOQ ranged from 0.217 to 0.07ppm. Standard addition was performed in a second oil to 

validate method recovery; quantities of PCAs in the second oil were below MLOQ for each 

compound found. Spiked samples of the second oil had good inter-matrix accuracy for many 

analytes as the slopes of the two curves were comparable. Four compounds were found at 

concentrations above MLOQ in other oil brands sampled, the highest at 1.228ppm. The method 

fits the testing range quoted by the Stockholm Convention on POP, ranging between 0.7-5.5 ppm.57 
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Overall this thesis presents two inexpensive methods with reusable materials for sampling 

persistent organic pollutants in fatty food matrices and can serve as a benchmark for modification 

for future use in other foodstuffs.  
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1. Chapter 1: Introduction 

1.1. Sample Preparation  

Sample preparation is normally an enrichment process which removes matrix components are 

removed from a sample, ensuring that the cleanest, and most compatible extract is introduced into 

the instrument.1 This process generally involves an extraction step to either collect the analyte of 

interest out of the matrix, or remove components that could interfere with analyte detection from 

the sample. Further concentration or enrichment steps ensure that the analytes are present at a 

suitable concentration to be detected by the instrument.  This improves the signal to noise ratio, or 

sensitivity, of the method to the target analytes and prevents the instrument from accumulating 

debris from dirty samples. 

In most cases, sample preparation is often the most time-consuming step before analysis.2 

Common sample preparation methods include preparative chromatography, solid phase 

extractions (SPE), Soxhlet extraction, and QuEChERS (portmanteau for quick, easy, cheap, 

effective, rugged, and safe).3–6 These methods can be expensive due to the large quantity of 

materials and specialized instrumentation required. Many of these methods involve large volumes 

of solvents requiring sample concentration steps as the unmodified extractant is too dilute to detect. 

This often takes large amounts of time and can introduce significant error. Sample preparation 

always involves a tradeoff between reduction of co-extractants and reducing the total steps 

required, as each modification can introduce error. 
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1.1.1. Solid Phase Microextraction (SPME) 

Solid phase microextraction (SPME) is a versatile, reusable sampling technique that combines 

sampling and sample preparation such as preconcentration and cleanup into a single step and can 

often be adapted to multiple instruments.1 The commercial fiber design used in this work includes 

a 1cm, 100µm diameter coating on a silica support, housed in a protective needle that is fixed into 

a plunger device.1 The most common absorptive coating used for gas chromatography (GC) is 

polydimethylsiloxane (PDMS) due to it’s thermal stability and extraction capabilities. Other 

adsorptive polymers can be used as well, such as divinylbenzene (DVB) or carboxen (Car) which 

are suspended in PDMS and adhered to the support. 

 

Fundamentally, two modes of sampling can be used for a typical GC fiber: direct  immersion 

(DI) and headspace (HS) extraction.1,7,8 The needle is introduced into the sample in the DI format, 

and the fiber is exposed to the matrix.9 Alternatively, if 

the matrix is complex and DI sampling could result in 

significant interferences due to fiber fouling or 

contaminant coextraction, HS extraction is an effective 

alternative sampling format. HS extractions are 

particularly suited for volatile analytes capable of 

partitioning into the headspace, denoted by a large 

Henry’s constant.10 In this method, the fiber is exposed 

Figure 1: A diagram of the typical commercially available SPME device 

Coating 

Sample 

Septum Piercing Needle 

Figure 2: Two sampling modes of fiber SPME, 

direct immersion (DI) shown on the left and 

headspace extraction (HS) shown on the right.  
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in the gas phase above the sample, facilitating extraction of the volatile compounds while avoiding 

contact with the matrix.  

Analyte partition between the sample and the coating on the fiber governs SPME.1,8  When 

the fiber is exposed to the sample matrix, analytes move from the matrix into the coating; 

subsequently, the extracted analytes can be desorbed using heat or solvent.1 The partitioning of the 

analytes occurs either by absorption or adsorption onto the fiber depending on the type of sorbent 

used; absorption occurring when using liquid like coatings and adsorption occurring onto active 

sites of solid materials.7 The most common fiber type, made with absorptive PDMS, is used for 

volatiles and non-polar semi-volatiles.11  

An extraction phase specifically designed for direct immersion in complex matrices is a 

PDMS/DVB/PDMS fiber.12 DVB particles are suspended in PDMS and the mixture is fixated onto 

the support, making a regular PDMS/DVB fiber; afterwards, an additional layer of PDMS is 

deposited on top of the DVB functioning as a semipermeable protective layer.12 The main benefit 

of the additional PDMS is ensuring a smooth surface on the outermost portion of the fiber 

preventing the matrix adhesion seen on the rougher, non-overcoated, DVB surface. For this reason 

it is significantly easier to clean than PDMS/DVB alone, resulting in a longer life span and more 

accurate results.12  

Alternatively, to improve headspace extraction for samples in the laboratory, vacuum can be 

introduced to the system. While the equilibrium concentrations are independent of the total 

pressure of the system, for some analytes a change in pressure may impact the rate of extraction.13  
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A device used more frequently on-site rather than the typical SPME fiber is the thin film 

membrane (TFM). Thin film membrane extraction (TFME) functions the same as an SPME fiber, 

but due its larger surface area it can extract more analyte, increasing sample enrichment. The 

commercially available TFM are supported on carbon mesh which is coated with the selected 

polymer on both sides. Membranes can be cut to custom sizes, however standard ones are 0.45 cm 

by 2.00 cm, which optimally fit into empty sorbent tubes made for thermal desorption, as well as 

the GerstelTM thermal desorption unit sample tubes. 

1.1.2. Solid Phase Extraction (SPE) 

Solid phase extraction is a sample preparation technique often used for separating target 

analytes from complex matrices and to concentrate the analytes into a small volume of solvent 

compatible with the analysing instrumentation of choice.14 The use of this technique may be 

necessary, for example, with a large volume of wastewater which is to be analysed for trace 

amounts of hormones.15 The analytes in this example are very dilute while the matrix contains 

many other components which can interfere with the analysis and damage the instrument.14 The 

general workflow requires the entire sample to be miscible in solvents and the target analytes must 

have an affinity to an extraction phase. The sample is run into a cartridge prepared with a solid 

phase extractant; this is usually powdered silica previously treated with a hydrophobic organic 

compound serving as the functionalized extraction phase. This cartridge can then be rinsed to 

remove undesired components of the matrix and then the analytes are eluted using a small volume 

of solvent. Using this method, a large volume sample can be reduced to only a few millilitres of 

elution solvent, preconcentrating the target analytes into an instrument-compatible solvent.  
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Due to the simplistic workflow as well as the preconcentration and sample cleanup SPE offers 

it is a popular choice for trace analysis. While SPE has its place in an analytical chemist’s toolbox, 

the purpose of this thesis is to develop methods using SPME which can provide the same benefits 

of sample cleanup and preconcentration while also being reusable and permitting thermal – and 

therefore solventless – desorptions. 

1.1.3. Gel Permeation Chromatography (GPC) and Size Exclusion Chromatography  

Another common choice for separating nonpolar compounds is size exclusion 

chromatography involving hydrophobic packing material, termed gel permeation chromatography 

or GPC.14 Unlike other types of chromatography or sample preparation, there is no extraction 

phase the analytes bind to; the process of separation happens solely due to molecular size. 

Components that are much larger than the pores will elute with the mobile phase, since they are 

not retained in the pores, while very small particles will be the last to elute since they fit into all 

pores and will therefore have the longest path length. Between these two extremes, particles of 

similar size to the pores will be separated by size; this can be particularly useful when working 

with mixtures of compounds which have similar physio-chemical properties but differ by chain 

length or molecular weight. GPC is often used as one step in the sample cleanup for extracting 

PCAs from complex matrices for this reason; removal of other components of the matrix is 

simplified and groups of PCAs can be separated based on chain length.  

Unfortunately, like other forms of preparative chromatography, this technique is rather 

solvent-heavy, in that large volumes must be used for each sample, and the sample becomes diluted 
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through the elution process. To combat this, SPE is often used following this technique to further 

separate and preconcentrate the samples.  

1.1.4. QuEChERS 

Currently, the most common method for pesticide detection is QuEChERS, an acronym of 

“Quick Easy Cheap Effective Rugged Safe”16. As the gold standard of analytical testing for 

complex matrices, it was designed to account for a wide range of complications that arise from 

non-optimal samples. All samples are weighed in order to avoid inconsistencies in volume due to 

differences in density or the propensity of foaming. Solvent is used to dilute the sample; this can 

reduce issues with viscosity and can act as a liquid-liquid extraction (LLE) or cause precipitation 

of interfering components. Desiccant salts and buffers are added to remove water from the sample 

and adjust the pH to a neutral level. The sample is centrifuged, and the supernatant is then mixed 

with a sorbent to purify it further, then an internal standard can be added, and the sample is 

introduced to the analytical instrumentation. This process nearly guarantees all aspects of any 

sample become normalized and safe to injection into an instrument, however the process is very 

analyst-dependent, and the large number of steps makes the method prone to errors. Furthermore, 

it is difficult to automate due to the equipment required, preventing error reduction using 

automation. Reducing these steps for the same result is therefore the target of this work, facilitated 

using SPME 
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1.2. Instrumentation 

1.2.1. Gas Chromatography  

Gas Chromatography (GC) is an analytical technique used to separate mixtures of volatile 

compounds.17 A GC instrument consists of 4 main parts: a heated injector, a column, a housing 

oven, and a detector. The injector is heated generally to a temperature 50°C above the boiling point 

of the target analytes, allowing the sample to vaporize and be quickly introduced into the column 

with a stream of inert gas.14 This inert gas is known as the carrier gas, and functions as the mobile 

phase in the separation. Common carrier gases include helium, hydrogen and nitrogen, where 

helium is the most popular. Once the analytes have been transported to the column containing the 

stationary phase, they are separated via their physiochemical properties and relative affinities for 

the stationary phase. The stationary phase is often comprised of a thin cross-linked polymer 

resulting in analyte separation by polarity or boiling point.17 To aid in this separation, the column 

is temperature-controlled by the column oven. The temperature may be kept at a ertain level above 

the boiling point of the target analytes or it may be ramped over time. This ramp allows for better 

separation of closely eluting compounds. On the other hand, with analytes that are widely 

separated in their elution, ramping the temperature will accelerate the elution of the tardier analyte 

and thus improve throughput. After elution, the separated analytes travel to the detector at the end 

of the column providing retention time and peak area. 

Gas chromatography is often chosen over other chromatographic methods due to the ease of 

use and upkeep of the equipment. While it does require the target analytes to be volatile or 

semivolatile, and thermally stable up to 300°C, it is very useful if compounds are not soluble in 

liquid chromatography systems. 
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1.2.2. Detectors 

Many detectors are available for gas chromatography. Electron capture detectors (ECD) are 

very sensitive to halogenated compounds and can be beneficial to the detection of chlorinated 

environmental pollutants. A mass spectrometer (MS) can be used to obtain additional mass 

analysis and identification if separation by GC is difficult. Different mass spectrometer types 

include the quadrupole (single or triple), time of flight (ToF) and ion trap, among others. The 

method of ionization used for analytes exiting the GC column depend on the mass analyser used. 

Hard and soft ionization methods impact the fragmentation in the MS differently based on the 

amount of energy transferred to the ions. 

The ECD has been used extensively in literature; it is particularly sensitive to highly 

electronegative compounds such as halogens, nitriles, organometallics, and oxygen-containing 

compounds.6,14,18 A beta emitter produces electrons that collide with a makeup gas; this forms 

more free electrons until sufficient amounts are created to produce a measurable current after 

colliding with an anode on the opposite side of the detector producing a current.19 The changes in 

current due to collisions with other molecules lead to analyte detection and quantification. This 

makes the ECD a good choice for the detection of halogens, as they will be detected easily due to 

their electronegativity. A limitation observed when using an ECD is that contaminants in the 

matrix could also produce conflicting peaks resulting in complex chromatograms.  Furthermore, 

the ECD does not offer identification, therefore all target analytes must be determined solely by 

retention time in the chromatogram.  
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In contrast to an ECD, the MS is an analyzer that can provide ion mass information in addition 

to measuring retention time and peak area.17 The MS generally consists of three parts, the 

ionization source, the mass analyzer and a detector.14 Ionization sources can be grouped into two 

types – hard and soft; hard ionization sources generate electrons which impact the molecules and 

cause them to ionize and later fragment.14 Soft ionization methods are used if extensive 

fragmentation should be avoided; in those methods the energy of the colliding particle is reduced 

such that fragmentation is limited. Ideal ionization sources vary greatly depending on the type of 

analyte being studied the method of introduction into the MS, and the mass analyser. Two methods 

of sample introduction exist – batch, which involves direct introduction of the sample to the MS, 

and chromatographic, where the sample undergoes separation prior to introduction to the MS.20  

When using chromatographic methods, a common ionization source is electron impact 

ionization (EI), a hard ionization source; here a heated filament expels electrons into the stream of 

incoming separated analytes.17 This ionization type can be paired with a single quadrupole mass 

analyser. Ions travel to the quadrupole and are directed by the combined radio frequency voltage 

and direct offset voltage applied to the poles. Separation within the mass analyser is based on mass 

to charge ratio, as ions of a certain mass will have a given velocity, and the movement of the 

molecule, governed by the applied fields, will be dependent on the charge. Due to this process, 

only those ions for which the user selects will make it through the mass analyser to the detector. 

A common detector for these instruments is an electron multiplier (EM); acting similarly to the 

previously used photomultiplier tubes, it involves ions striking a dynode resulting in a cascade of 

electrons being sent to a current-to-voltage converting amplifier allowing a computer readout.21 

Advancements to the EM detector, such as a continuous dynode or multiple channel EMs have 
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improved the electronic amplification; this is particularly important for higher sensitivity mass 

spectrometry devices such as a Time of Flight Mass Spectrometer (ToF-MS).21 

1.2.3. Automation  

As stated previously, sample preparation and analysis are often extremely time consuming; 

more sample handling also increases chances of introducing error. To improve this, automation is 

often used to remove the human aspect from the analysis. Autosamplers can be used for many 

steps in sample preparation such as adding standards or derivatization agents, heating and stirring, 

cleaning of equipment, and consistent sampling using a variety of tools. The benefits of using one 

can be seen clearly by improved results, and higher throughput with more samples being 

processed. For gas chromatography, a prominent name for autosamplers is CTC Analytics with 

their PAL Autosamplers.  

Automatic samplers have improved significantly over the past twenty years from the first gas 

and liquid chromatography PAL System Autosampler Platform in 1998.22 Improvements in motor 

stability, materials, and computer technology have changed the capabilities and consistency of 

autosamplers. New models now have more options such as automatically changing tools (e.g. from 

a syringe to an SPME device), advanced cleaning procedures, and improved injection systems. 

Gerstel, another prominent manufacturer of autosamplers for GC, developed a thermal desorption 

unit (TDU) and a cooled injection system (CIS). These allow for the thermal desorption of 

irregularly sized items. A thermally stable item can be placed into a thermal desorption tube for 

transfer into the TDU where it is heated to similar desorption temperatures as a regular GC would 

use, ranging from 200°C to 280°C. As the TDU is heating, a cooled injection system sits below 
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and focuses the desorbed sample into a cryogenically cooled analyte plug. Once desorption is 

complete, the CIS rapidly heats, and the analytes are introduced into the column. This cryo-trap is 

necessary, because larger items placed in the TDU tubes will require a longer desorption time; 

however, significant band broadening would be seen without using this cooling trap. Furthermore, 

when not using atypically sized items, an injector head can be mounted onto the CIS, allowing it 

to act effectively like a regular injector. The benefit to the CIS injector style is that it operates on 

a spring-loaded o-ring piece that moves out of the way as a sample is injected. This type of system 

replaces disposable septa. 

1.3. Applications 

1.3.1. Pesticides in Soymilk 

Soymilk is the most popular plant based dairy alternative milk product used to replace regular 

milk consumption. Similar to dairy milk, it is a stable emulsion of oil, water and proteins and is 

often fortified with vitamins, minerals and emulsifying agents, in addition to containing natural 

fibers and sugars occurring in plant matter. In the context of sample preparation, soymilk is a 

challenging matrix considering the type and number of analytical procedures typically needed to 

isolate the compounds of interest in clean extracts while also avoiding interfering co-extracted 

components. Since the sample matrix is an emulsion, the analytical techniques must be designed 

to consider contaminants that can exist in both the hydrophobic and hydrophilic phases. 

In literature, various methods have been reported for contaminants analysis of soybeans, 

however, only few reports are devoted to pesticides residue analysis in soymilk products. The 
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sample preparation techniques of choice for soy milk analysis are usually QuEChERS (Quick, 

Easy, Cheap, Effective, Rugged and Safe)23–25, solid phase extraction (SPE)26.  

1.3.2. Polychlorinated n-Alkanes in Cod Oil 

Polychlorinated n-alkanes (PCAs) have been an environmental concern in North America 

since 1993, when the Government of Canada added the class of compounds to the Priority 

Substances List.27 Due to their high boiling points and thermal stability, this class of compounds 

was used in industry as a machining lubricant and as an additive in plasticizers and flame 

retardants.27 Environment Canada has emphasized monitoring these compounds since they were 

classified by the International Agency for Research on Cancer (IARC) as potentially carcinogenic 

to humans. They are also classified as a severe marine pollutant by the International Maritime 

Organization (IMO) due to their propensity to bioaccumulate in fish.28 

Sample preparation methods for extracting these compounds from various samples must be 

improved and expanded on. The most common combination of techniques includes liquid-liquid 

extraction, fat hydrolysis using an acid wash, GPC and Florisil or silica columns.18,29–32The most 

notable matrices of interest are fish and fish oil products as well as breastmilk, as bioaccumulation 

of PCAs in these foodstuffs place them into the human food chain.5,29,31,33 Having an extremely 

high fat content, these samples have very complex matrices; therefore, a single technique is rarely 

used standalone. Often many separation techniques are needed to ensure adequate matrix removal, 

without which instrumentation may become damaged and chromatographic separation of analytes 

compromised. 
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The complex matrices also result in significant background noise due to other hydrophobic 

components that are likely to co-extract. These include fatty acids, cholesterol, retinoids and 

vitamins, all of which can compete for extraction space on sorbents and hinder separation. Other 

pollutants such as alkanes or heavier aromatic compounds such as polycyclic aromatic 

hydrocarbons may also be present and co-extract due to having similar properties. Reduction of 

the background is critical for accurate and sensitive quantitation; to optimize cleanup, many 

researchers use a combination of some or all of the aforementioned techniques to isolate the PCAs 

from other coextractants.18,29–32While this generally ensures sufficient sensitivity in detection, it 

also generates significant amounts of waste, has long turnaround times, and introduces error with 

each step that is added to the process. 

1.4. Thesis Objective 

The objective of these projects is to develop new methods of detecting anthropogenic 

compounds in fatty matrices made for human consumption, notably soymilk and fish oil products. 

Current methods for pesticide and polychlorinated n-alkane (PCA) detection in food products are 

time consuming, multi step – therefore error prone, and have significant negative environmental 

impacts due to solvent and acid use. New methods are therefore being investigated in order to 

transfer commercial testing to more sustainable practices. SPME should meet this requirement for 

a cleaner, cheaper, reusable and more eco-friendly analytical method. The objective of this thesis 

is the development of these methods targeting future implementation at the industrial level. 
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2. Chapter 2: Analysis of Pesticides from Soymilk Using Direct Immersion SPME 

Preamble 

A portion of this chapter has been previously presented to the University of Waterloo as an 

Honours Research Project and is included as background to support the finalized methods and 

validation results that are part of this thesis. A portion of the written material contained in this 

chapter also appears in a manuscript in preparation entitled “Direct immersion SPME in soymilk 

for pesticide analysis at trace levels by means of a matrix compatible coating”; some material is 

co-authored by Emanuela Gionfriddo. 

2.1. Introduction  

The targeted pesticide group for soymilk analysis includes trifuralin, dimethoate, diazinon, 

malathion, chlorpyrifos, thiabendazole, phosalone, λ-cyhalothrin, α-β-cyfluthrin, and 

esfenvalerate. Seen from the logP values in Figure 3, the compounds comprise both hydrophobic 

and hydrophilic substances, and in this respect are representative of industrially applied pesticides. 
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Figure 3:Pesticides used in this study and their structure, logP and molecular weight ( abbr. MW, g/mol), in the order 

of boiling point. 

Maximum residue levels (MRLs) regulated for contaminants in food are usually applied to 

raw materials and not always to their derivatives; 

in this case, soybeans as opposed to the milk, 

tofu or miso. Values shown in Table 1 are for 

whole beans; the Health Canada guidelines state 

that if a residue limit is not explicitly given, the 

value for industry must be less than 

0.1ppm.27,34,35 

As stated in the introduction, current 

methods heavily rely on using QuEChERS and SPE to perform cleanup and concentration; the 

goals of this work is to reduce the waste associated with those methods by applying a 

microextraction technique.  

 
USA CAN 

Chlorpyrifos 0.3 NA 

Cyfluthrin  0.03 NA 

Diazinon NA NA 

Dimethoate 0.05 NA 

Esfenvalerate  0.05 NA 

Lambda-

Cyhalothrin  

0.01 0.2 

Malathion 8 NA 

Phosalone NA NA 

Thiabendazole 0.1 NA 

Trifluralin 0.05 0.05 

 

Table 1: MRL values for the target analytes for both 

Canada and USA in ppm. 
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2.2. Experimental  

2.2.1. Reagents and Supplies 

The pesticides trifuralin, dimethoate, 

diazinon, malathion, chlorpyrifos, thiabendazole, 

phosalone, λ-cyhalothrin, α-β-cyfluthrin, and 

esfenvalerate were Pestanal grade and purchased 

from Sigma Aldrich (Oakville, ON, Canada). 

Internal standards Diazinon D10, Thiabendazole 

D4 and Malathion D6 were purchased from Sigma 

Aldrich (Oakville, ON, Canada). Pure standards 

were kept in dark conditions and refrigerated in 

their original packaging at 4°C. Stock solutions of each compound were prepared at concentrations 

ranging from 1ppb to 1000ppm using the solvent specified in Table 2. 

 Solutions were stored in the dark and chilled to -30°C. Working mixtures were prepared in 

methanol, monthly or more often as needed, and kept in dark conditions and refrigerated to -30°C. 

HPLC grade solvents methanol, ethanol, acetone, dichloromethane and acetonitrile as well as 

sodium chloride salt, were purchased from Sigma Aldrich (Oakville, ON, Canada). Water was 

purified using Milli-Q systems (Etobicoke, ON, Canada). 

SPME fibers PDMS/DVB (65 μm) and PDMS (100 μm) were purchased from Millipore 

Sigma (Bellefonte, PA, USA). Matrix compatible PDMS/DVB/PDMS fibers were initially 

prepared in the laboratory according to the procedure described by Souza-Silva et. al and 

Compound Solvent 

Trifuralin Acetonitrile 

Dimethoate Acetonitrile 

Diazinon Acetonitrile 

Diazinon D10 Acetonitrile 

Malathion Acetonitrile 

Malathion D6 Acetonitrile 

Chlorpyrifos Acetonitrile 

Thiabendazole Methanol 

Thiabendazole D4 Methanol 

Phosalone Acetonitrile 

λ-Cyhalothrin  Methanol 

Cyfluthrin  Dichloromethane 

Esfenvalerate Methanol 

 

Table 2: Solvents used for each pesticide to 

ensure solvation at storage temperatures. 
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subsequently purchased from Millipore Sigma (Bellefonte, PA, USA) upon their release into the 

market.12  

Unsweetened organic soymilk was purchased from local markets in Waterloo (ON, Canada) 

and treated as follows: all milk was stored in the dark under refrigeration at 4°C and kept from 

freezing when not in use. Soymilk was divided in aliquots for transfer, in order to avoid warming 

and cooling cycles which might damage the texture integrity of the milk. Milk cartons were 

replaced upon reaching the expiry date on the package. All solutions were equilibrated to room 

temperature prior to handling. 

2.2.2. Instrumentation 

For coating lifetime evaluation and initial optimization, a Varian 3800/4000 GC-IT/MS 

(Mississauga, ON, Canada) equipped with a splitless/split injector and an ion trap MS detector was 

used for all analyses. A Combi-Pal autosampler was used and controlled by Cycle Composer 

Software (version1.4.0). MS operational conditions were: EI at 70 eV; ion source temperature, 

240°C; transfer line temperature, 260°C. The ion trap was operated in full scan mode within an 

m/z range of 35-450.  

For the method development, a Pegasus III 4D GC-ToF/MS (LECO, Saint Joseph, MI, USA) 

was used. The instrument was controlled by ChromaTOF software from LECO. The GC-ToF/MS 

was equipped with an MPS autosampler (Gerstel Inc., Linthicum, MD, USA) for automated SPME 

sampling and desorption. The autosampler was controlled by Maestro software (Gerstel Inc. 

Linthicum, MD, USA). MS operational conditions were: electron ionization (EI) at 70 eV; ion 
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source temperature, 200°C; transfer line temperature 25°C, the mass range acquired was 35-600 

m/z.  

For method validation, an Agilent 7890-5977A GC-MS (Agilent Technologies Santa Clara, 

CA, United States) was used. The instrument was equipped with MPS Robotic Pro autosampler 

(Gerstel Inc., Linthicum, MD, USA). The mass spectrometer was operated in selected ion 

monitoring (SIM) mode. The transfer line temperature was 250°C, MS source 230°C, and MS 

quadrupole 150°C, electron ionization (EI) was performed at 70 eV. The instrument was controlled 

by MassHunter workstation software (Agilent Technologies Santa Clara, CA, United States) with 

embedded Maestro software ( Gerstel Inc., Linthicum, MD, USA)   

Gas chromatographic method parameters for all the instruments used were: starting oven 

temperature of 80°C, held for 2 minutes, ramp at 6°C/min to 280°C and held for 4 minutes, 

resulting in a 40 min run time. The carrier gas was helium, with a flow rate of 1.5 ml/min. 

Chromatographic separation was carried out using ultra-high purity helium provided by Praxair 

(Danbury, CT, USA) and a HP-5MS capillary column (30mx 0.25mm x0.25μm) (Agilent 

Technologies Santa Clara, CA, United States). 

2.2.3. Previous Work  

Linear range of the instrument was determined by a liquid injection calibration; the range 

injected was 1ng to 100ng. 
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Figure 4:Instrumental calibration for all compounds performed on GC-MS in SIM mode. 
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amount of matrix attachment to the fiber thus increasing its lifetime. 12 In other studies, the matrix 

in question was heavily populated with fiber and sugars that burn quickly in a GC injector port 

resulting in permanent adhesion of the caramelized sugars onto the fiber.12 A similar concern exists 

with soymilk, due to the complexity of the matrix, particularly the fat and protein content. A 

maillard reaction on either the fiber on the sides of the injector port liner would cause a permanent 

elevated background or reduce extraction efficiency, resulting in skewed data. 

To begin optimization, a commonly used technique to improve extraction is the addition of 

salt. In complex matrices, this can help increase the amount extracted by the fiber by increasing 

the ionic strength of the solution. At the same time, higher ionic strength promotes partitioning of 

nonpolar analytes into the fiber as they become less soluble in the solution as more salt is added. 

For the soymilk samples, it can be seen from Figure 6 that the addition of salt had statistically no 

effect on the extraction. This may be due to the complexity of the matrix, as the analytes may also 

partition into the suspended fat before the fiber is introduced.  

 

Figure 6:Results from addition of sodium chloride salt to the soymilk matrix in 5, 10, and 20 percent by weight.  
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 Since salting out the analytes was not effective, and possibly due to the fatty nature of the 

matrix, the addition of solvent was also tested in order to promote extraction from the suspended 

fat in the matrix. Each sample was diluted by half with a mixture of water and solvent, ranging 

from zero to 100% solvent. These samples were vortexed for 10 minutes at 1500 rpm after dilution 

to ensure thorough mixing. 

 

Figure 7:The effects of different concentrations of methanol on the extraction performance of the system; 

concentrations of methanol ranging from 0% (or 100% water) to 100% methanol.  

Results show that for the compounds with lower log P, the addition of solvent made no impact 
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providing no hindrance to others. The optimal concentration was found to be 30%, as it was the 

highest concentration at which the emulsion would remain stable. At 50% solvent, coagulation 

occurred within 20 hours of dilution, disallowing overnight sampling. Using 100% solvent resulted 

in immediate coagulation of the sample, hindering extraction for many compounds. Different 

solvents were tested at 30%, as seen in figure 8. 
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Figure 8:Solvent addition was tested over different solvents after 30% was determined to be the optimal concentration 

in the dilution mixture, n=3, performed on GC-MS in SIM mode. 

For the majority of analytes, acetone had a positive effect on extraction, compared to other 

solvents, and did not cause a lapse in precision. Furthermore, of the four solvents sampled, acetone 

is safer for use and for the environment when compared to ACN or methanol. It was therefore 

chosen as the optimal solvent moving forward. 

An extraction time profile was done using the abovementioned optimized parameters. This 

determines the linear range for extraction of each analyte as well as the equilibration point. 

Sampling at equilibrium obviates the need to precisely control extraction time. In contrast, if an 

extraction is performed in the linear regime, the smallest deviation in the extraction time may prove 

to have a big difference in amount extracted. 
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Figure 9:Extraction time profiles for each of the compounds, n=3, performed on GC-MS in SIM mode. 

The results of the extraction time profiles show that the analytes will not reach equilibrium 

until well into the 3 hours mark. This is not a reasonable turnaround time for a sample, as such a 

compromise must be made, and some analytes must be sampled in the linear regime. This is no 

longer as much of a concern as in the past due to the advent of GC-SPME amenable autosamplers. 

The difference in extraction time from one sample to the next once the system is automated is near 

negligible, even in a linear regime of an extraction time profile. 

2.2.4. Finalized Methods 

Organic and unsweetened soymilk was stored at +4°C. Prior analysis, the soymilk was brought 

to room temperature and weighed in batches daily for spiking and sample distribution. Each sample 

contained 4.5g of soymilk, weighed and spiked using 45ul of the working solution. For method 

validation 45ul deuterated internal standards solution were also spiked into the sample. The spiked 

soymilk was placed to vortex in a benchtop mixer at room temperature and 1500rpm for 1 hour. 

The solution was then mixed with 4.5g of an acetone: water solution (3:7 v:v). The vials were 

capped and placed into a benchtop mixer and vortexed again at 1500rpm for 10 minutes. The 

prepared samples were then placed into the autosampler Gerstel MPS Robotic (Gerstel Inc. 

Linthicum, MD, USA) for extraction.  
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The extraction of each sample took place for 40 minutes at 40°C and 500 rpm stirring after a 

1 min sample incubation at the same pre-sets. Extraction was followed by a rinsing step of 10 sec 

in an acetone: water solution (1:9 v:v) at 500 rpm. The desorption was carried out for 15 min at 

270 °C and a wash step was included afterwards in an acetone: water solution (1:1 v:v) for 1 min 

at 40°C at 500 rpm. At the desorption conditions used no analyte carry over was found. For the 

fiber lifetime assessment, batches of 10 samples were prepared according to the procedure 

described above. Prior to and after extraction of each sample batch, quality control analyses were 

carried out in order to establish instrumental signal stability by extraction of the targeted analytes 

spiked in water with a PDMS 100 µm SPME fiber. After analysis of each batch of samples the 

SPME fibers (PDMS/DVB/PDMS and PDMS/DVB) were inspected under a microscope and 

cleaned with a Kimwipe soaked with acetone. 

2.3. Validation Results and Discussion 

The finalized procedure was used to perform a matrix-matched calibration using organic 

unsweetened soymilk. Previous matrix blanks showed no residue in the original soymilk used for 

this study. The results shown here have been corrected with the internal standard diazinon D10. 
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Figure 10:Matrix matched calibration of all standards, each corrected with diazinon D10, n=3, performed on GC-

MS using SIM mode. 

The same procedure was used for the validation; where three different concentrations were 

used to validate the method. Inter-and intra-day reproducibility was shown to be good for all 

compounds based on published method development guidelines.  

Table 3: Inter- and Intra day validation accuracy results using the optimized procedure outlined above, using three 

levels of validation 15, 75 and 200 ppb, n=4. Accuracy was back calculated from the method and compared to known 

values as a percentage. 

Compounds Accuracy (%) Day 1 Accuracy (%) Day 2  Accuracy (%) Day 3 

Level (ppb): 15 75 200 15 75 200 15 75 200 

Trifuralin 88 94 103 80 91 92 74 58 77 

Dimethoate 94 72 96 102 89 114 128 120 118 

Diazinon 99 102 109 107 102 102 102 119 130 

Malathion 111 78 81 117 85 82 119 100 106 

Chlorpyrifos 87 94 102 96 94 91 85 93 99 

Thiabendazole 106 129 81 81 90 119 82 121 124 

Phosalone 118 104 104 116 105 111 123 122 124 

Cyhalothrin 111 99 80 101 74 77 87 80 71 

Cyfluthrin 114 97 88 89 77 94 89 89 95 

Esfenvalerate 89 78 79 104 74 124 97 99 112 
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Table 4: Precision results for the Inter- and intra day validation, using three levels of validation 15, 75 and 200 ppb,  

n=4. Percent relative standard deviation was used to assess method precision.  

Compounds Precision (%) Day 1 Precision (%) Day 2 Precision (%) Day 3 

Level (ppb) 15 75 200 15 75 200 15 75 200 

Trifuralin 2 4 5 2 2 5 8 4 12 

Dimethoate 14 6 3 6 15 16 1 11 23 

Diazinon 6 1 2 8 1 2 9 3 3 

Malathion 6 1 2 6 2 2 5 4 3 

Chlorpyrifos 2 3 2 6 4 6 11 5 5 

Thiabendazole 13 28 16 4 16 15 11 12 3 

Phosalone 18 4 2 12 4 8 13 11 8 

Cyhalothrin 4 14 4 13 7 5 11 21 9 

Cyfluthrin 9 13 2 15 8 10 11 19 25 

Esfenvalerate 9 14 3 16 9 10 13 10 11 

 

The validation accuracy results shown have been back calculated using the calibration curves 

shown in Figure 10. The results were then compared against the known value spiked into each 

sample, resulting in an accuracy value; values of 100% demonstrate exact back calculation and are 

accepted to a range between 70 and 130%.36 The precision values shown are the relative standard 

deviations for the results of the validation. The linear range of each compound is listed in Table 5. 

Finally, two different unknown, non-spiked commercial soymilk samples were tested using 

this method shown in Table 5. Five compounds were found, Dimethoate, Malathion, Chlorpyrifos., 

Phosalone and Cyfluthrin. While the values of most pesticides are below MRLs for the soybeans, 

the value for dimethoate in one sample exceeds both the Canadian MRL (100ppb) and the U.S. 

value (50ppb).34,37 

Table 5: Unknown Sample results, U.S. maximum residue levels, and linear range. 

Concentration/  

Compound 

Sample 1 

Concentration 

(ppb) 

Sample 2 

Concentration 

(ppb) 

U.S. MRL 

(ppb) 

Method Linear 

Range 
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Trifuralin BQL BQL 50 1-1000 

Dimethoate 118.86 6.5 50 1-1000 

Diazinon  BQL  BQL N/A 1-1000 

Malathion 27.38 28.2 8000 1-1000 

Chlorpyrifos 7.40 7.7 300 1-1000 

Thiabendazole  BQL BQL  20 1-1000 

Phosalone  40.13 33.6 N/A 2.5-1000 

Cyhalothrin  BQL BQL  10 1-1000 

Cyfluthrin 20.50 BQL  30 1-1000 

Esfenvalerate  BQL BQL 50 1-1000 

 

2.4.  Conclusions 

Soymilk pesticide analysis is a time-consuming process in industry when using QuEChERS 

or SPE procedures followed by a chromatography step. In contrast, the method developed and 

validated here shows a turnaround time of an hour and a half per sample, with the entire extraction, 

rinsing, desorption and washing process done by a compact autosampler. The samples, after 

dilution with the solvent mixture, were shown to be shelf stable at room temperature for 72 hours, 

allowing for streamlined preparations to optimize the workflow. Overall, this method meets the 

thresholds of MRLs imposed by both Canadian and American regulatory agencies while being an 

eco-friendly and cost-effective alternative to traditional sample preparation technologies.  

3. Chapter 3: Polychlorinated n-Alkane Determination from Cod Liver Oil 

Preamble 

Previous research in section 3.2 was performed by Emanuela Gionfriddo and Abir Khaled and 

is included in this thesis as background to support the development of experimental design. Work 

performed by both contributors was considered for project advancement and further plans were 

developed based on the obtained results. 
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Vacuum SPME experimental design was done under the guidance of Emanuela Gionfriddo. 

Classical TFME carbon mesh membranes were made in-house and supplied by Jonathan Grandy. 

MAA-co-EGDMA particles, both magnetic and non-magnetic, as well as HLB particles, were 

synthesized by Varoon Singh; procedures for magnetic particle use were also provided by Varoon 

Singh. Procedures for membrane coating were provided by Jonathan Grandy. A portion of the 

laboratory experiments done for the calibration were performed by Ginny Galpin under the 

supervision of the author of this thesis.  

3.1. Introduction  

The primary goal of this project was to find a clean, quick and reusable method to sample 

PCAs from cod oil. Currently, sampling involves many preparatory steps involving long wait 

times, with some methods lasting up to days due to evaporation steps; many also use disposable 

cartridges and large volumes of both sample and solvents.29 

 

 

 

 

 Figure 11: A single 10ppm 1ul liquid injection of a commercially available short chain PCA standard 

mixture; GC-ECD 
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A key difficulty in this study is the sample itself. PCAs can be separated into three groups, 

short, medium, and long chain, and the members of each group will vary in chlorination level and 

therefore by mass. An example of a clean stock PCA mixture is shown below in Figure 11.  

The low resolution illustrates the difficulty in separating the PCAs from each other. They are 

made by reacting chlorine gas with alkanes of varying chain lengths, resulting in the formation of 

a mixture. To obtain individual standards, they must be distilled and fractionated, making the 

individual standards both rare and expensive. No method in the literature has been able to 

chromatographically separate the PCAs within their groupings; as such, the generally accepted 

method of assessing the response for these compounds is a total baseline-to-baseline integration 

of the merged peak seen in Figure 11. In addition to the poorly resolved standards, the matrix itself 

is cod liver oil which is primarily made up of organic components that dissolve these hydrophobic 

analytes very well. The effective and clean extraction of these compounds will require a careful 

selection of techniques to avoid coextracting the cod liver oil and its components.  
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3.2. Previous Research 

3.2.1. Fiber SPME 

Preliminary research for this project began with sampling PCA mixtures from pure water 

using SPME. PDMS and PDMS/DVB/PDMS coatings were chosen for their matrix compatibility 

and hydrophobic nature. Two classes of PCAs were chosen for this test, short chain (C10-C13) and 

medium chain (C14-C17) PCAs. They were spiked to 60 ng/mL and 300 ng/mL respectively into 

9ml of ultrapure water. As 

seen in Figure 12, both fiber 

types demonstrated 

comparable extraction rates, 

however the PDMS fiber 

displayed greater 

reproducibility; and for this 

reason, it was chosen for 

subsequent experiments.  

Another fiber of hydrophobic nature, C18/PAN was also tested. It is not compatible with the 

thermal desorption used in GC, so the fiber was desorbed in solvent and the solution was injected 

directly. Neither mixture of compounds could be seen in the chromatographs using multiple 

desorption solutions, therefore, experiments returned to the PDMS coating with thermal 

desorption. 

Figure 12: Comparison of PDMS versus PDMS/DVB/PDMS fiber coatings 

for extraction capabilities of medium chain PCAs and short chain PCAs 

spiked in water at 300 ng/mL and 60 ng/mL respectively. 
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The detection range of the GC-ECD was found using liquid syringe injections of standard 

solutions within the range of 0.25 µg/L to 300 µg/L and were followed by a calibration plot using 

DI-SPME using PDMS with a PCA mixture in water.  

 

Figure 13: Calibration plot of medium chain PCAs in water extracted with DI-SPME.  

*Note the loss of linearity in the expanded version in the insert. This was due to the 

hydrophobicity of the analytes which caused adhesion to the vial surface at high concentrations. 

The calibration showed significant deviation from linearity above 50 µg/L, likely due to the 

immiscibility of the analytes in water at high concentrations. Similar tests were successfully done 

with short chain and long chain PCAs with similar results. Sensitivity of the ECD to the PCAs 

using DI-SPME from water was markedly better than that of the MS instruments previously tested, 

as such, the ECD was used moving forward.  

To prepare for the fish oil sample matrix, a complex, and dirty sample, cleaning steps were 

initially tested to ensure adequate retention of analytes while still using pure water as the matrix. 
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Rinsing was done in 5, 15 and 30 second intervals using pure water, 9:1 and 1:1 ratios of acetone 

and water, as well as the same ratios of isopropanol and water. The results can be seen in Figure 

14 below; the rinse solutions providing the smallest loss in analytes are water and 1:1 acetone and 

water mixtures over all three time intervals. Due to the hydrophobic nature of the oil matrix, the 

water alone will likely not provide sufficient cleaning, and therefore the acetone-water mixture at 

1:1 was chosen moving forward. 

 

Figure 14: Five rinsing solutions were tested with three time intervals of 5, 15 and 30s. Solutions were water, 9:1 or 

1:1 solutions of acetone (Ac) or propanol (Pr) and water.  

Following the rinsing optimization, a similar DI-SPME test was done in oil, samples (7g) of 

medium chain PCAs were spiked to 10mg/mL (shown by the blue line in Figure 15 below). The 

spiked sample was compared to a fiber blank (green), a clean oil sample (magenta), and the result 

of the DI-SPME test of 5 µg/L water sample with the same PCA mixture (red) as seen in Figure 

15. Similar tests were also done using different oils and individual standards instead of PCA 
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mixtures. All iterations showed similar results: while water extractions showed clear peaks with 

low background, the oil samples displayed extremely high background, limiting sensitivity and 

peak identification.  

 

Figure 15: DI-SPME sampling of 10mg/L medium PCA spiked cod liver oil (blue), oil blank (magenta), 5 µg/L water 

sample with the same PCA mixture (red) and a fiber blank (green). Performed using GC-ECD. 

The extremely high background noise obtained from the oil samples is likely due to 

contamination of the oil with other halogenated, oxygenated or nitrogen-containing compounds 

for which the ECD is particularly sensitive. Due to this, modifications to the matrix or the use of 

a different detector may be necessary to obtain acceptable sensitivity. Considering that PDMS has 

been selected as the most appropriate extraction material for the fiber, different matrix 

modification methodologies that are compatible with PDMS were explored.  

3.2.2. Matrix Modification Using Saponification  

Saponification was first tested with three methods. In the first (1) method, 0.2g of oil were 

dissolved 5ml of an acetone-hexane mixture of 2:8 ratio and then saponified with 5ml of 1% (w/v) 

Pink – oil blank 

Green – fiber blank  

Blue – 10000µg/L PCA in oil 
Red – 15µg/L PCA in water 
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sodium hydroxide solution for 10 minutes under 80°C with agitation. After cooling, the 

supernatant was taken and dried, then reconstituted in water and sampled using DI-SPME. The 

second method (2) involved similar steps but involved 1g oil, 8ml of the same sodium hydroxide 

solution and no addition of organic phase. The aqueous phase was collected and neutralized, 

sodium chloride was added to induce a salting out effect. In the third method (3) 0.6g of oil were 

dissolved in 5ml hexane, and then saponified using an ethanolic 1% sodium hydroxide solution. 

The third method did not show phase separation, therefore the PCAs could not be isolated. None 

of the methods showed significant background noise reduction, and only method 2 isolated one of 

the three representative standards.  

Another method tested was lipid hydrolysis using sulfuric acid. This involved the use of 0.3g 

oil dissolved in 5ml cyclohexane to which 1ml concentrated acid was added. After stirring, the 

phases were allowed to separate, and the upper organic phase was collected and treated again with 

the acid. The organic phase was collected and evaporated at 45°C under nitrogen, and reconstituted 

with water, then sampled using DI-SPME. The extraction was done for 1 hour after a 5-minute 

incubation, with all steps occurring at 60°C. While this method was effective at reducing the 

background noise and allowing some improved detection of the PCAs, it was not reproducible and 

could not be reliably used. 

As the attempted methods have yet to provide a solution to all three issues of sensitivity, noise 

and reproducibility, different approaches are pursued.   
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3.3. Calculations and Fundamentals 

3.3.1. Partition Coefficients 

Due to the high number of congeners of PCAs and the difficulty in their separation using 

chromatographic methods, a representative set of individual standards was selected based on those 

used by Yuan et al. for their use in PCA signal deconvolution using a ToF-MS.38 The selected 

standards range from short chain polychlorinated alkanes to medium chain, and are listed in the 

table below. The use of individual standards was used to develop the method with a simplified 

system into which complexity can be built as the development progresses. 

Table 6: Representative individual PCA standards to be used for development 

PCA Name Molecular 

Formula 

Monoisotopic 

Mass (g/mol) 

Chlorine 

% (wt) 

log 

P 

Henry’s Constant 

(atm m3 mol-1) 

1-chlorodecane C10H21Cl1 176.1332 19 5.7 2.26×10-2‡ 

1,10-dichlorodecane C10H20Cl2 210.0942 33 5.6 6.69×10-3‡ 

1,2,5,6,9,10- 

hexachlorodecane 
C10H16Cl6 345.9380 60 4.8 2.08×10-5† 

1,1,1,3,10,11-

hexachloroundecane 
C11H18Cl6 359.9540 58 6.6 1.22×10-5† 

1,1,1,3-tetrachlorodecane C10H18Cl4 278.0162 50 6.5 5.67×10-4† 

1,2,9,10-tetrachlorodecane C10H18Cl4 278.0162 50 5.20 9.25×10-5† 

1,1,1,3,12,13-

hexachlorotridecane 
C13H22Cl6 387.9853 54 7.9 1.10×10-5† 

1,2,13,14-

tetrachlorotetradecane 
C14H26Cl4 334.0789 41 7.4 9.34×10-6† 

37,39 

 Having obtained the standards, their log Kow, or log P values were found; this value is 

generally used to estimate the interactions the analytes have with the fiber when sampling from an 

aqueous matrix. In this estimation, the octanol phase is equated with the fiber extraction phase, 

while water serves as a proxy for the matrix. In the case of this project however, since the matrix 

is not aqueous, the log Kow was used to determine the log Koa which is the log of the partition 

Predicted values obtained from: †US Environmental Protection Agency ‡Royal Society of Chemistry 
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coefficient between octanol and air, this would estimate the ability of the analytes to partition into 

the headspace from the oil. To do this, the Henry’s constant was found for each compound and the 

following formula was employed. 

Equation 1 

𝐾𝑜𝑎  =
𝐾𝑜𝑤(𝑅𝑇)

𝐻
 

 Where Koa and Kow are the partition coefficients for octanol-air and octanol-water, 

respectively, R is the ideal gas constant, T is temperature – room temperature was used in the 

calculation, and H is the Henry’s constant for the specific analyte. This provided the results in the 

following table.  

Table 7: calculated octanol-air partition coefficients, and vapour pressures for the selected analytes 

PCA Name 
log Koa 

Vapour Pressure    

(25°C) (atm) 

1-chlorodecane 5.7 9.84×10-3‡ 

1,10-dichlorodecane 6.2 1.11×10-2‡ 

1,2,5,6,9,10- hexachlorodecane 7.9 7.50×10-3† 

1,1,1,3,10,11-hexachloroundecane 9.9 3.72×10-4† 

1,1,1,3-tetrachlorodecane 7.2 7.94×10-6† 

1,2,9,10-tetrachlorodecane 7.4 1.76×10-5† 

1,1,1,3,12,13-hexachlorotridecane 11.2 5.48×10-5† 

1,2,13,14-tetrachlorotetradecane 10.8 1.29×10-4† 

37,39 

 The vapour pressures were used to better predict how the analytes would interact with the 

oil-air barrier. The vapour pressure of the oil was also experimentally determined by increasing 

the temperature of a vial sealed with oil and measuring the pressure in the system. Two data points 

were then used in Equation 2 to obtain the enthalpy of vaporization. All data point combinations 

were used, and the values averaged, with an RSD of 7%.  

Predicted values obtained from: †US Environmental Protection Agency ‡Royal Society of Chemistry 
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Equation 2 

∆𝐻𝑣𝑎𝑝 = 𝑙𝑛 (
𝑃1

𝑃2
) 𝑅 (

1

𝑇2
−

1

𝑇1
)

−1

 

The enthalpy of vaporization was calculated with a result of 0.176 m3 atm/mol. This was 

then used to determine the vapour pressure using the same equation. Assuming a value of 150°C 

as the distillation temperature, as provided by a purification laboratory, and assuming a similar 

distillation setup is used to that described in Dinamarca et al. with a vacuum of 2×10-2 mmHg, the 

vapour pressure of the oil used was determined to be 3.33×10-6 atm.40 This is less than even the 

lowest vapour pressure of any of the standards, suggesting that headspace SPME extraction could 

be effective for this project. 

3.3.2. Solubility Parameters 

Furthermore, the solubility parameter was calculated using the summation method 

recommended by Dunkel: 

Equation 3 

𝛿 = (
∑ ∆ℎ𝑖𝑖

𝑉
−

𝑅𝑇

𝑉
)

1
2

 

using published tables for ∆ℎ𝑖 values for contributions from each atom or group.41  

For the oil, assuming it was largely long chain fatty acids, the solubility parameter was 

found to be 8.5 (cal/cm3)1/2. Literature values of the solubility constant for PDMS were found to 

be on average 15.1 (cal/cm3)1/2.42 
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The value of the oil was found to be about half that of the PDMS fiber, suggesting that the 

fiber will not swell due to interactions with the oil. Furthermore, literature reports indicate that 

fiber swelling is pronounced with solvents whose solubility constants are close to those of the 

fibers; on the other hand, if the difference between the two constants is greater than 4 values or 

more the solvents are known to not cause damage to the fiber.43 

3.3.3. Vacuum SPME 

Since Henry’s Constants are only affected by high pressures exceeding 500 kPa, partial 

pressures and concentrations at equilibrium are effectively independent of total pressure for 

systems at or below atmospheric pressure. Thus, the total amount of analyte extracted by the fiber 

in an experiment with varying sample vessel pressure will remain constant. While introducing 

vacuum will not lead to more analyte being extracted, the benefit of using vacuum assisted SPME 

is changing the rate of the extraction. In HS-SPME, the analyte partitions first from the sample 

phase to the headspace phase, and then from gas phase into the coating. The partition between the 

sample and the gas phase is considered rate-limiting.  

The tendency of an organic solute to partition into the headspace is governed by its 

vaporization pressure and solubility in the matrix. Provided that the propensity of the analyte to 

move to the headspace is greater than its solubility in the matrix, vacuum SPME can improve the 

rate of that transfer, effectively reducing the time required to reach equilibrium. 
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3.4. Experimental  

3.4.1. Reagents and Supplies 

Individual standards of chlorinated alkanes chlorodecane and 1, 10-dichlorodecane were 

purchased as from Sigma Aldrich (Oakville, ON, Canada). 1,1,1,3-Tetrachlorodecane , 1,2,9,10-

Tetrachlorodecane, 1,1,1,3,10,11-Hexachloroundecane, 1,2,13,14-Tetrachlorotetradecane, 

1,1,1,3,12,13-Hexachlorotridecane, and 1,1,1,3,14,15-Hexachloropentadecane were procured 

from Caledon Laboratories (Georgetown, ON, Canada) as a custom order to the highest purities 

possible (ranging from 96% to 99%)  in isooctane. The highest available concentrations were 

procured at 1000ppm for 1,2,13,14-Tetrachlorotetradecane and 1,1,1,3,14,15-

Hexachloropentadecane and 100ppm for the remaining 4. Standards were transferred from glass 

ampules to silanized 2mL amber vials and kept refrigerated in the dark at 4°C. Working solutions 

were prepared in concentrations ranging from 10ppb to 10ppm in isooctane and stored with the 

standards. ISO 17034 Chloroparaffin C10-C13, 55,5% Cl 100 µg/mL in Cyclohexane from Dr. 

EhrenstorferTM brand were purchased from LGC (Manchester, NH, USA) and were kept 

refrigerated at 4°C in their original container. Working solutions were prepared in 2ml amber 

silanized vials.  

HPLC grade solvents acetone, dichloromethane, toluene and isooctane as well as sulfuric acid 

and a silanizing solution of 5% dimethyldichlorosilane in toluene were purchased from Millipore 

Sigma (Oakville, ON, Canada).  

Membrane holders and thermal desorption tubes were obtained from Gerstel. (Linthicum, 

MD, USA).  
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SPME fibers PDMS/DVB/PDMS OC (100 μm) and HLB/PDMS (100 μm) as well as DVB 

particles (5µm) were purchased from Supelco (Bellefonte, PA, USA).  

 HLB and MAA-co-EGDMA were synthesized, and the latter was made magnetic, in-house 

by Dr. Singh as described elsewhere.44 Heavy duty aluminum foil and aluminum sheeting (0.2mm 

thickness) was purchased from local markets. 500 and 800 grit sandpaper sheets were purchased 

from local hardware stores. DVB and HLB membranes were made in-house using carbon mesh 

support by Dr. Jonathan Grandy, following the procedure published previously.45 MAA-co-

EGDMA membranes were made following the previously published procedure by Grandy et. al. 

however the carbon mesh support was substituted for heavy duty aluminum foil; the same 

procedure was performed for HLB membranes using the foil support.  

HLB, DVB and PDMS membranes were made in-house following the previously described 

method with substituting sanded thick aluminum sheeting in place of the carbon mesh. The rolled 

aluminum was straightened then sanded using 800 grit sandpaper using an orbital motion, then 

rinsed and wiped down using aliquots of each methanol, acetone and hexane, in the order written. 

Sheets were allowed to air dry, then were coated as described by Grandy et. al. previously. 

The carbon fiber mesh weave (Panex 30) was provided by Zoltec Co. (Bridgeton, MO, USA). 

Liquid nitrogen was supplied by Praxair (Kitchener, ON, Canada); while ultrapure helium as 

supplied by Air Liquide Canada via VitalAire Canada Inc. (Mississauga, ON, Canada).  

Unflavoured free flowing cod liver oil was used for sampling and was purchased locally from 

a health food market in Waterloo, Ontario. Additional cod liver oil, unflavoured types in both free 
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flowing form and capsules, as well as flavoured mixed fish oil were purchased from health food 

stores and pharmacies in Waterloo, Ontario.  

3.4.2. Instrumentation 

Gas chromatography was selected for this project due to the properties of the target analytes. 

The analytes are semivolatile and thermally stable, but more importantly, they are not amenable 

to reverse phase liquid chromatography, barring that technique from use. Early in this work, a GC-

ECD, Varian 3800, was used for this project due to the chlorine on the compounds as it is a 

selective detector for electrophilic compounds. Nitrogen was used as the makeup gas, set to 25 

mL/min, with the detector temperature set to 300°C. 

While it is selective for halogenated compounds, it was also extremely sensitive to other 

components in the matrix which were not trivial to remove. To facilitate cleanup and 

preconcentration of the analytes, unconventional sampling methods were tested, many of which 

were not compatible with regular GC injectors. For these unconventional methods, a thermal 

desorption unit (TDU) was needed to house the samplers. This unit was permanently fixed to a 

GC-MS in the laboratory; as such, the project was moved to a single quadrupole GC-MS using an 

EI source.  

Upon switching to the GC-MS, the primary goal was to demonstrate using scan mode that the 

developed method had a low baseline from effective sample cleanup. The added selectivity of the 

mass analyser allowed for further method development using individual representative standards 

in selected ion mode. Ultimately, the target of such research would be to combine it with detection 

and deconvolution methods as described by Yuan and colleagues, or high resolution mass 
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spectrometry methods as described by Thomas and colleagues for comprehensive PCA detection 

from various matrices.31,38 

Mass spectrometer methods were made in both SIM and Scan modes. Scan methods had a 

solvent delay of 3.6 minutes, the quadrupole temperature was set to 150°C and the ion source 

temperature was 230°C. Masses were scanned between m/z 40 to 550. SIM methods contained 9 

groups with ions selected based on the presence within the target analyte peaks and absence in 

blank oil samples. Ion groups were as follows: group 1, start time 4.5 minutes, contained 

chlorodecane and 1,10-dichlorodecane, ion m/z 91; group 2, start time 6.38 minutes, contained 

1,1,1,3-tetrachlorodecane, ions m/z 135 and 187; group 3, start time 7.6 minutes, contained 

1,2,9,10-tetrachlorodecane, ion m/z 139; group 4, start time 8.3 minutes, contained 1,1,1,3,10,11-

hexachloroundecane, ions m/z 253 and 255; group 5, start time 9.1 minutes, contained 1,2,13,14-

tetrachlorotetradecane, ions m/z 103, 139, 141 and 355; group 6, start time 9.6 minutes, contained 

1,1,1,3,12,13-hexachlorotridecane, ion m/z 245; group 7, start time 10.0, considered mass 

spectrometer off time, ion m/z 301, no response at this m/z; group 8, start time 10.2 minutes, 

contained 1,1,1,3,14,15-hexachloropentadecane, ions m/z 109, 185, 187. Group 9 with a start time 

of 10.7 minutes was used to elute remaining oil components from the column at high temperature, 

selecting ion m/z 301 as a blank mass. 

The oven method for this project used a starting column oven temperature of 50°C, followed 

by a 25°C/min ramp up to 300, at which it was held for 2 minutes. Such a high temperature was 

important in order to fully clean the column in case of any oil matrix being introduced into it. Run 

in splitless, the Gerstel Cooled Injection System (CIS) was set to -80°C for an initial time of 0.4 

min followed by a 12.00°C/min ramp to 270°C where it was held for 5 minutes. Liquid nitrogen 
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was used as a coolant for the CIS. Prior to this, the desorption took place in TDU mounted on the 

top of the CIS. The TDU desorbs the membrane, starting at a temperature of 50°C for a hold time 

of 0.5min and ramps to 250°C at 700°C/min. This was held for 1 minute at the final temperature, 

at which point the CIS rapidly increased in temperature to inject the cryo-cooled analyte plug. The 

TDU transfer temperature was kept at 250°C to maintain the seals and drive out moisture and 

prevent it from contaminating the system. The CIS module was operated in solvent vent mode, 

with a pressure of 14.88 psi, both the vent flow and purge flow were 80 mL/min; the purge began 

after 5.4 minutes to effectively run the instrument in a splitless mode. Total column flow was 1.5 

mL/min. The same GC method was used with the Varian GC-ECD, with the regular injector set to 

270°C. 

3.4.3. Methods 

Cod liver oil was kept sealed in its original green-tinted container, covered in foil and 

refrigerated at 4°C to prevent oxidation. The oil was warmed to room temperature, weighed out 

and spiked in batches, reducing transfer error due to oil viscosity. Spiked oil was vortexed at 

1500rpm for 1 hour at room temperature to thoroughly distribute the spiked compounds and 

allowed to equilibrate for an additional hour. 

Four individual standards were obtained at higher concentrations. These included 

chlorodecane, and 1,10-dichlorodecane, obtained in pure form, as well as 1,2,13,14-

tetrachlorotetradecane and 1,1,1,3,14,15-hexachloropentadecane obtained at 1000ppm in 1mL 

quantities in isooctane. These four compounds encompass the short chain, low chlorine content 

PCAs as well as medium chain high chlorine content PCAs, with two standards in between the 
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extremes. Optimization using these four was assumed to be applicable to the remainder of the 

selected individual standards as they fit within the window set by the lowest and highest molecular 

weight standard. The use of these 4 standards for optimization, over the use of all 8, was done 

primarily due to costs, as each standard was expensive and could only be purchased at a lower 

concentration in single millilitre quantities. Working solutions of this mixture were labelled as 

Mix-4, while those of the full set were labelled Mix-8. This full set was used primarily for 

calibration and validation; due to the limited amount of each standard. 

3.4.3.1. Vacuum with HS SPME 

Fiber SPME was revisited in order to test the headspace vacuum SPME system. Previous 

studies had only used direct immersion SPME and had generated a significant amount of noise in 

the sample due to the oil and other co-extractants. Often, these co-extractants are avoided in 

complex matrices by avoiding the matrix altogether and using headspace analysis.  

As the compounds are sufficiently volatile for use in gas chromatography, introducing vacuum 

could accelerate the kinetics of the headspace extraction. Since the PCAs are high molecular 

weight compounds, this was seen as a potential benefit, as they would have long equilibration 

times.  

A vacuum cap was designed by Dr. Gionfriddo and Mr. Dvorski in Science Technical Services 

(STS). This allows for a gastight fitting of an SPME fiber into a sample vial after it has been 

evacuated.  
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Figure 16: Miniert valves, modified with Teflon and a self-sealing pressure o-ring, fitted with a thermogreen septum 

to facilitate injection 

To test the method, without using the costly PCA mixtures, a set of polyaromatic hydrocarbon 

(PAH) standards was used as a stand-in for the PCAs. The logP values of the PAH, especially of 

the heavier ones such as Pyrene resemble those of the PCAs. 
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Table 8:PAHs used as a stand-in set of analytes, their molecular weight, formula an their logP 

 Molecular 

Formula 

Molecular 

Weight 

(g/mol) 

logP 

Naphthalene (NAP) C10H18 128 3.45 

Acenaphthylene (ACY) C12H8 152 4.26 

Acephenanthrene (ACE) C16H10 204 5.50 

Fluorene (FLE) C13H10 166 4.16 

Phenanthrene (PHE) C14H10 178 4.68 

Anthracene (ANT) C14H10 178 4.68 

Fluoranthene (FLT) C16H10 202 5.17 

Pyrene (PY) C16H10 202 5.17 

Benz[a]anthracene (B(a)A) C18H12 228 5.91 

Chrysene (CHR) C18H12 228 5.91 

To test the theory of vacuum HS-SPME, the PAHs were spiked at 1ppm into water; after 

equilibrating for 30 minutes under 600rpm stirring, the samples were transferred to 20 mL vials to 

facilitate vacuuming. These vials were fitted with the modified miniert valves as seen in Figure 16 

and vacuum was applied via a syringe through the thermogreen septum for 10 minutes while 

stirring at 600 rpm at room temperature. After vacuum was removed, the vial headspace was 

allowed to re-equilibrate with the sample for 10 minutes, followed by extraction using HS-SPME 

for 30 minutes. The same setup was used for non-vacuumed samples for comparison, the only 

difference was the lack of vacuum time; all else remained constant.  
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Figure 17:Comparison of vacuum SPME versus regular headspace SPME using PAHs in water. Samples were spiked 

to1ppm and processed with either regular HS-SPME, shown in blue, (10 min incubation, 30 min extraction at room 

temperature) or Vac-HS-SPME (10 min evacuation, 10 min incubation, 30 min extraction at room temperature) in 

grey. 

Figure 17 demonstrates that, at constant extraction time, the application of vacuum increased 

the amounts of PAHs extracted. With these results, the same procedure was done with oil samples, 

adjusting the incubation time to 30 minutes from 10 minutes to improve the amount extracted. 

Vacuum and extraction time remained the same. 4g were used per vial for the spiked oil and the 

same comparison was made.  
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Upon applying vacuum to the vial, bubble 

formation occurred on the surface. This was 

hypothesized to be dissolved air in the oil that was 

bubbling out. Care was taken to watch for this foam 

to dissipate prior to removal of the vacuum line. This 

occurred around 7-8 minutes of the 10-minute 

vacuum application time. Figure 19 shows the results 

from the oil samples. 

 

Figure 19: Sampling of PAH's in cod oil at 1ppm by HS-SPME (30 min incubation, 30 min extraction) and Vac-HS-

SPME (10 min evacuation, 30 min incubation, 30 min extraction), GC-MS SIM mode, n=3, SD shown by error bars. 
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of the vial. 
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Noting that the vacuum SPME significantly improves the extraction capabilities of the system, 

a comparison was done at high temperatures with the oil to promote the partitioning of the heaviest 

PAHs to the headspace. It can be seen in Figure 20 that Pyrene is barely present in regular HS-

SPME testing even at 85°C, while it doubles in extraction amount when the sample is vacuumed. 

As expected, all analytes show improved extraction at higher temperatures, however the vacuum 

results show a significant improvement in the extraction of the heaviest analytes – this was the 

effect sought after for application to the PCAs. 

 

Figure 20:The temperature profile for regular HS-SPME with a 30 min incubation and 30 minute extraction, 

demonstrating the improvement in extraction ability at higher temperature, yet still insufficient to extract the heaviest 

compounds in the mixture. GC-MS, SIM mode, n=3, SD shown on graph. 
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Figure 21: temperature profile for vacuumed HS-SPME with a 10-minute vacuum followed by 30 min incubation and 

30-minute extraction. Not only are the heavier compounds extracted at a lower temperature, the amount extracted for 

each is nearly twice that obtained without vacuum. GC-MS, SIM mode, n=3, SD shown on graph. 

The same method was applied to the PCAs in oil and analysed using the GC-ECD. It was 

noticed that upon using the vacuum method on the short chain PCAs, the sensitivity of the method 

decreased when comparing to that of a non-vacuumed trial. It is hypothesized that this may be due 

to the PCA’s transitioning to the headspace and then being removed by the vacuum prior to 

sampling. Alternatively, this occurrence may be due to the vacuum pulling other VOC’s out of the 

solution, causing a higher background, and thus making it more difficult to view the target 

compounds. In either case, the non-vacuumed sampled showed a clearer response to the PCA’s, 

which can be seen below, as the non-vacuum sample (pink) shows the characteristic pattern of 

PCA’s, while the vacuumed sample (red) response is barely distinguishable from the oil blank 

(blue). For reference, the fiber blank is in green at the bottom; this confirms the oil is causing the 

high background.  

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

NAP ACY ACE FLE PHE ANT FLT PY B(a)A CHR

p
ea

k
 a

re
a

Vac-HS-SPME Temperaure Profile

25C 35C 45C 55C 65C 75C 85C 95C



55 

 

Figure 22: 5ppm PCA mixture spiked oil samples, tested with the vacuum method (red) and the non-vacuum method 

(pink); oil blank (blue) and fiber blank (green) for reference, performed on GC-ECD. 

To confirm that the poor response of the PCAs was not due to a lack of fiber affinity, and 

that the method works using other matrices, the same tests were redone in water. 10 ppb samples 

of PCAs in water were sampled 

using the same method as 

described previously. The 

vacuum sample (red) showed 

significantly higher response 

than the non-vacuum (blue) for 

the PCAs, even at the very low 

concentration.  

Figure 23: Samples of 10ppb PCAs spiked in water, tested with vacuum (red) 

and non-vacuum (blue) methods; fiber blank (green) for reference, performed 

on GC-ECD. 

Pink – 5ppm PCA mix in cod oil, not vacuumed 

Red – 5ppm PCA mix in cod oil, vacuumed 
Green – fiber blank  

Blue – oil blank 
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This set of data confirms the responses that were seen using PAHs, demonstrating the 

method with vacuum HS SPME may not by compatible with the PCAs in an oily matrix in which 

the PCAs are so heavily soluble. It appears that the vacuum SPME method is not specific to the 

PCAs within the oil, but also draws out other interfering species into the headspace which results 

in significant noise.  

Since the headspace analysis was met with significant noise from VOC’s in the oil, and the 

target compounds are only semi-volatile, it may be possible for direct immersion SPME to show 

better results. This issue of a complex matrix is seemingly further exacerbated in headspace, as the 

oil blank is significantly higher than the fiber blank alone, nearing the upper end of the detector 

capabilities. It is possible there are simply too many co-extracting volatile components in cod oil 

which must be avoided.  

 

Figure 24: Oil blank when sampled with headspace SPME, performed on GC-ECD 
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Looking back on previous work done with DI SPME for this project, Figure 14 from 

section 3.2.1 showed a significantly lower baseline for the oil (around 200 mVolts) when compared 

to the responses using HS SPME (around 350 mVolts). For this reason, it may be worth revisiting 

the DI SPME approach for this matrix. 

 

Figure 25: Figure 14 from section 3.2.1 – comparison of different oils for their noise response by direct immersion 

SPME; the blue line is the same oil as used for the headspace analysis, showing a much lower baseline. Performed 

on GC-ECD. 

3.4.3.2. Direct Immersion SPME 

A PDMS fiber was used to perform a 30-minute extraction as a starting point for 

optimization at 400 rpm via vortex and 50°C for a 100ppb sample in oil. It was noted that the fiber 

was under considerable strain due to the viscosity of the oil, as the vortex motion caused the SPME 

holder device to begin to unscrew. The holder was secured for the duration of the extraction 

however a different extraction phase may be brought into consideration to prevent breakages. This 

fiber was first rinsed in a 50% acetone water solution for 10 seconds in order to wash the oil off 
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the fiber prior to desorption. The desorption was performed at 270°C for 10 minutes and followed 

by a 1-minute wash in pure acetone to further strip away any residual matrix components on the 

fiber to prepare for the next use. Both the rinsing and washing steps were also done at 400 rpm. 

The use of this washing procedure has been suggested in prior works using fatty matrices such as 

avocado, and has been shown to extend the lifetime of PDMS coated fibers.46 Unfortunately, the 

rinsing and washing procedures did not prove as effective as expected for this matrix. Microscope 

images of the fiber were taken after desorption to assess any damages, and it was clear that residual 

oil remained on the fiber through both the rinsing and washing, as seen in Figure 26. Furthermore, 

due to the viscosity of the oil, upon fiber withdrawal back into the protective needle, the oil also 

collected inside the needle, causing subsequent exposure and withdrawals to dirty the fiber, even 

after rinsing and washing. This can be seen in Figure 26 where the oil is caught on the metal part 

of the fiber support. This also led to contamination of the instrument liner. These experiments were 

also analysed using a GC-MS to rule out the ECD responding selectively to co-extractants and 

contaminants. In GC-MS, no peaks were isolated at the proper retention times in the ion-extracted 

chromatograms.  

Figure 26: PDMS fiber after 30 minutes extraction in oil, followed by 10 second rinse in 50% acetone, desorption 

for 10 minutes and wash in 100% acetone for 1 minute. 
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Hypotheses for lack of identification include too short of an extraction time, too small of an 

extraction surface, analyte loss during rising, and shifting in retention time due to the oil. This shift 

in retention time is further discussed below. 

To assess method sensitivity and excess extraction time, the experiment was redone using 

a 1 ppm spike in oil and extracted overnight at room temperature. The fiber was rinsed in acetone 

at 400rpm for 1 minute at room temperature. When viewed under a microscope, the fiber remained 

coated with oil, and was therefore rinsed again with the same parameters. Target peaks were not 

seen in either TIC or extracted ion mode. The washing acetone was taken and injected into a GC-

FID to confirm analytes were not being stripped away. No peaks were found at the target retention 

times to suggest that they were extracted into the solvent. 

Based on literature by Holadova et. al. solvent can be added to promote extraction from 

oils.47 This may work similarly to dilution or salt additions for aqueous media. In this case for DI 

sampling it would also serve double purpose as it would also decrease the viscosity of the matrix, 

reducing strain on the fiber. Table 9 shows some parameters of commonly used solvents to 

determine their eligibility for use with the oil. Solvents that are compatible with the fiber and will 

solubilize the PCAs were considered eligible, regardless of miscibility. If immiscible, the solvent 

could be used to form a suspension, similar to the soymilk sample from chapter 2, which would be 

both less viscous and may allow for the analytes to partition into the solvent phase to be in an 

effective free concentration.  
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Table 9:Assessment of common solvents for use in diluting the oil for sampling.  

 Solvent Miscibility48 PCA 

Solubility 

Fiber 

Compatibility 

Density 

g/ml 

Eligibility 

Acetonitrile    0.786  

Acetic Anhydride    1.08  

Diacetin    1.17  

DMSO    1.100  

Ethylacetoacetate    1.02  

Ethylene glycol    1.113  

Glycerol  ~ ~ 1.26  

Methyl alcohol    0.792  

IPA    0.786  

Acetone   ~ -  

Acetophenone    -  

Diphenyl ether    -  

Ethyl acetate    -  

Toluene    -  

Acetonitrile (ACN) DMSO, 

toluene, and ethyl acetate were each 

used as matrix modifiers. 4mL of 

solvent were added to each sample of 4g 

spiked oil.  

Figure 27 illustrates the results 

from the addition of ACN, 

demonstrating some but still insufficient 

background reduction, as the target PCA 

mixture was indistinguishable from 

noise. ACN belongs to the immiscible 

group of solvents and is less dense than 

the oil, so formed an additional phase 

between the oil and the headspace. 

Figure 28: Results of DMSO addition 

Figure 27: Chromatographic results of DI sampling using 

4ml ACN with 4g of spiked cod oil. 
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Agitation resulted in the formation of 

an emulsion that settled back within 5 

minutes.  

Figure 28 shows the results of 

adding DMSO, which also belonged to 

the immiscible group, but has a higher 

density compared to the oil, and formed 

a layer underneath. The solvent 

addition here did not appear to cause 

any beneficial effects to the target 

region.  

Figure 29 and Figure 30 show the results of adding ethyl acetate and toluene, both belonging 

to the miscible group. The solvents showed significant noise reduction effects, however with that, 

they also removed the ability to extract the target analytes. These solvents will be avoided or used 

with extreme care in future work. 

Figure 29: Results of Ethyl Acetate addition 2ml(red) 4ml(blue) 

Figure 30: Results of Toluene addition 
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Sampling in cod oil alone 

was adjusted to use the upper 

extremes of optimizable 

parameters in order to test 

whether further optimization 

would be fruitful. An overnight 

extraction was performed at 

65°C and 500rpm. Upon retrieval of the SPME device the next day, it was found that the prolonged 

agitation in the same position resulted in erosion of the protective needle due to friction against 

the vial cap, seen in Figure 31. This created a hole in the in the needle, which caused issues upon 

desorption, as the carrier gas at the inlet would be able to escape. These issues lead to the use of a 

different extraction phase configuration – thin film membrane extraction (TFME). 

3.4.3.3. Classical TFME  

As fiber direct immersion was shown by previous work to have poor cleanup and recovery, 

and new approaches ended with damaged fibers, classical thin film membrane extraction was tried 

since the membranes are more robust and do not have a breakable protective housing. Standard 

commercially available DVB-PDMS membranes were used. Due to the size of the membranes, the 

Gerstel TDU was needed; as such this work was limited to the GC-MS on which this inlet was 

mounted. Once the project was transferred to a GC-MS, the target of the project was to find a 

method that reduces the background in scan mode; however once a low baseline was achieved, 

individual analytes could be used with a SIM method, resulting in an overall more sensitive 

method.  

Figure 31: Fiber protective needle, eroded due to continuous friction against 

the vial cap. The image on the right shows where the metal was eroded to the 

point of breaking through the needle.  
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Enough oil was required per sample to completely cover the membrane supported in a cotter 

pin clip, as irregularities in coverage would lead to poor reproducibility. As such, 6 grams of oil 

were used per sample, spiked to 1ppm using the 4 individual standards which were purchased at 

higher concentrations, specifically chlorodecane, 1,10-dichlorodeccane, 1,2,13,14-

tetrachlorotetradecane and 1,1,1,3,14,15-hexachloropentadecane. As seen previously in Table 9 

acetone was one of few commonly used solvents that is miscible with the cod oil, it was therefore 

used as a washing solution for the membranes prior to desorption. Rising was performed in 7ml of 

acetone, enough to cover the membranes, and vortexed at 1500rpm for 10s as a starting point. Due 

to evidence of oil still present in the membranes after 10s, longer washings were attempted. 

Cooling the acetone by placing it in an ice bath prior to longer washing periods, up to 30 seconds, 

was also tested in order to prevent analyte desorption into the washing solution. Membranes were 

blotted dry and placed into Gerstel TDU tubes fitted with a glass ball stopper and thermally 

extracted for 1 minute at 250°C with the TDU/CIS system. Remaining instrument parameters were 

as described in the instrumentation section. 

While extraction of target compounds may have been improved, selectivity was poor due to 

the porous nature of the support resulting in very busy chromatograms. Being a carbon fiber mesh, 

the membrane effectively acted as a fabric which wicked the 

oil and retained it through multiple washings. This resulted in 

high background, even using a GC-MS as opposed to the 

ECD. As removing the oil was difficult, there was also some 

concern over contamination of the injection system and 

column. While preventative maintenance was done regularly 

Figure 32: Degrading edge of carbon 

mesh supported PDMS membrane 
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and instrument blanks consistently returned to baseline, evidence of oil deposit inside the 

replaceable CIS liner were a cause for concern.  

Furthermore, after only two extractions, the membranes began to degrade. As the same result 

was not seen when using the silica fiber support, it was hypothesized that this was likely due to 

the oil being present within the membrane support after the first sampling since it could not be 

effectively washed away. The constant exposure could have had a solubilizing or softening effect 

on the PDMS. To move away from this support and increase extraction phase surface area further, 

magnetic microspheres were used instead. 

3.4.3.4. Magnetic Microspheres 

Magnetic microspheres made with methacrylic acid – co – ethylene glycol dimethacrylate 

(MAA-co-EGDMA) were used for the functional groups this coating provided. We reasoned that 

the alkane portion of the PCAs would interact with the carbon chains within the coating, the esters 

in the structure could provide noncovalent halogen-oxygen bonding for the chlorine found on the 

ends of the PCAs.49 

 

 

 

Figure 33: Methacrylic acid - co - ethylene 

glycol dimethacrylate coating composition 
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The microspheres were suspended in a transfer solution miscible with the target matrix and 

transferred by pipette; in this case, the solvent used was acetone. 500 µL of a 5µg/µl suspension 

was added to obtain 500 µg of particles per extraction. The sample containing 4g cod oil was then 

vortexed to allow for suspension of the particles in the oil, then after 10 minutes the microspheres 

were pulled to the bottom of the vial to concentrate them prior to isolating them on a metal blade. 

This was necessary since the oil was so viscous that the magnetic field around the blade itself was 

insufficient to collect particles out of the suspension in an practical time. 

 

 

 

 

 Particles were collected using a blade exposed to a magnetic field for 5 minutes. The blade 

was then placed into a 2ml vial containing 1.5ml acetone to facilitate cleaning. A 2s vortex of the 

vial removed the particles from the blade and dispersed them throughout the cleaning solvent. A 

fresh blade was used to recover the particles and the blade was placed into a fritted TDU tube 

packed with glass wool for thermal extraction. The same parameters for the CIS and TDU were 

used as for the TFME. 

 

 

Figure 34: Image 1 shows the suspension of particles in cod oil after vortexing; this remained in 

suspension for 10 minutes as the particles extracted the analyte. Image 2 and 3 demonstrate the 

process for recollection of the particles to one location to facilitate collection with a blade. 
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As seen in Figure 35, the background noise in the chromatogram due to co-extracted 

components or insufficiently washed oil is reduced significantly when using the microspheres. 

Unfortunately however, limited improvement was seen in the extraction of analytes when spiked. 

The signal to noise ratio increased from 1:1, or indistinguishable, using the carbon mesh 

membranes to approximately 2:1 using the microspheres. While the particles were no longer 

extracting as many other components of the oil, the extraction of the analytes suffered alongside 

this reduction in background. It was considered that this may have been due to losses in particles 

during the collection and washing process. Due to the viscosity of the oil, not all particles used for 

the extraction could be collected by the magnet. Further losses of particles occurred during the 

washing step due to re-dispersion of the particles in acetone in order to remove trapped oil. As a 

solution, the same particles were made into unsupported membranes using PDMS. 

 

Figure 35: A comparison of chromatography results from carbon mesh supported extractions 

(blue) in comparison to extractions performed with the magnetic microspheres (black) from non-

spiked oil matrix. Performed on GC-MS, full scan. 
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3.4.3.5. Unsupported and Foil Supported TFME 

These had the same benefit as the magnetic microspheres – no porous support to collect oil, 

but also had the advantage of being easy to remove from the oil, with no losses of particles to the 

matrix. Spread coating methods were followed as described by Grandy and colleagues, however 

instead of coating onto a carbon mesh support, the membranes were spread onto a Teflon sheet.50 

After curing, these membranes could be easily peeled off the Teflon and secured onto needle pins 

for ease of use. 

Extraction using these membranes followed the procedure described for TFME, however 

rinsing was reduced to 3 seconds in 1.5mL acetone. Similarly to what was seen with the 

microspheres, the background of the chromatograms from these membranes was near baseline, 

and the signal to noise ratio improved tenfold. Since the sorbent was embedded in the membranes, 

it was much easier to remove residual oil 

without losses of particles or much analyte. A 

total ion chromatogram is shown in Figure 36 

demonstrating the reduced background 

obtained using the membranes; this is largely 

due to ease of cleaning the membranes before 

analysis. Furthermore, the membranes allow a significantly larger number of the particles to be 

exposed to the sample and no particles are lost upon retrieval of the membrane nor during rinsing. 

Table 10 shows a comparison between the peak areas obtained using both methods from cod oil 

Figure 36: Total ion chromatogram comparison for 

microspheres (in blue) and unsupported membranes using 

the same particle sorbent (in black). 
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samples spiked with Mix-4. The ratio column demonstrates the impact of the membrane, with up 

to a 64-fold improvement in amount extracted over microspheres.  

Table 10: Comparison of peak areas for a concentrated 10ppm sample of Mix-4 in cod liver oil by both unsupported 

membranes and microsphere particles of the same chemical composition. 

Compound Unsupported 

Membrane 

Average (%RSD) 

Microsphere  

Average (%RSD) 

Ratio 

chlorodecane 2781107 (6) 43534 (4) 64 

1,10-dichlorodecane 2388791 (11) 82562 (20) 29 

1,2,13,14-tetrachlorotetradecane 2008510 (9) 141188 (18) 14 

1,1,1,3,14,15-Hexachloropentadecane 66029 (12) 10739 (18) 6 

Unfortunately, unsupported membranes are extremely fragile and prone to breaking, tearing 

away from the support pin, and moving with the flow caused by vortexing of the sample. All of 

these issues were exacerbated by the viscosity of the oil as well as the rinsing and washing 

requirements, adding more manual handling to the workflow. To combat the last issue, the 

membranes were sonicated at the lowest setting available on a Branson 3800 sonicator instead of 

vortexing. Even with careful handling, membranes degraded quickly with use.  

In order to prevent breakage, a newer version was made more durable by spread coating the 

membrane slurry onto a sheet of thick aluminum foil instead of Teflon. This was much easier to 

handle, as it was coated single-sided and therefore no longer adhered to surfaces and could be 

easily manipulated with tweezers without ripping. The aluminum backing also provided enough 

support that the membrane no longer needed a pin to hold its shape without folding and reducing 

exposed surface area. 

Foil-supported HLB membranes were made in the same way to compare the coatings as this 

is an effective adsorbent commonly used for lipophilic compounds in complex aqueous matrices.50 
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The only sample compounds tested were chlorodecane and 1,10-dichlorodecane; each was used at 

10ppm. 

 

 

 

 

 

 

Figure 37 shows the significant increase in uptake of the analyte by the HLB coating when 

compared to the MAA-co-EGDMA. As such, the HLB coating was selected in subsequent 

experiments. 

3.4.3.6. Aluminum Blade TFME 

To further improve robustness over the previous membranes on foil, membranes were made 

on a thicker sheet of sanded aluminum support. It was important to use a sheet of soft metal since 

membranes must be trimmed to size after coating, and difficulties in cutting could cause problems 

such as coating stripping, cutting irregularities and contamination. The 0.2mm thick sheet could 

be cut with relative ease using a sharp pair of regular scissors. This did not show any evidence of 

membrane stripping or other damage to the coating. Membranes were cut to strips 4.5mm wide 
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Figure 37: Membrane effectiveness comparison using 10ppm spiked cod oil samples. HLB and 

MAA-co-EGDMA membranes were used for extraction as described in section 3.4.3.3 
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and 20.00mm long in order to optimally fit into the TDU tubes. The greater robustness of the 

support allowed coating on both sides. The same procedure was used as described by Grandy et. 

al..45 

 

 

 

 

 

 

 

HLB was the target coating for this project, however DVB and pure PDMS membranes were also 

made using this support for comparison.50 Using these new coatings, the concentration could be 

reduced by 2 orders of magnitude, from 10ppm to 100ppb with good recovery, as shown in Figure 

38.  

It was noted that PDMS on its own was not an effective extraction phase for the target 

analytes, and HLB extracted over two times more than DVB.  
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Figure 38: Comparison of DVB, HLB and PDMS membrane coatings on 0.2mm aluminum sheeting 

using 100ppb oil samples.  
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Furthermore, scans of oil samples 

were performed using both the foil and 

the 0.2mm support to compare the 

background obtained. Both 

demonstrated similar levels of 

background co-extractants from the 

oil. HLB (on solid support) and MAA-

co-EGDMA (on foil) are depicted in Figure 39.  

3.5. Results and Discussion 

3.5.1. Kovats Retention Index  

An alkane ladder gas generating 

vial with incrementally increasing n-

alkanes previously made by Jonathan 

Grandy was sampled using a thin 

film membrane.51 The same PCA 

method was used to desorb the ladder in order to calculate retention indices for compounds that fit 

within the ladder windows. Table 11 shows the retention times taken from Figure 40 used for 

retention index calculations. 

Table 11: Retention times of the alkane ladder peaks compared to the number of carbons in the alkane. 

Number of Carbons 7 8 9 10 11 12 13 

Retention Time 1.546 1.829 2.487 3.097 3.725 4.337 4.923 

Number of Carbons 14 15 16 17 18 19 20 

Retention Time 5.474 5.989 6.493 6.955 7.822 8.225 8.644 

Figure 39: Full scan response of MAA-co-EGDMA membrane on 

foil (black) and HLB on solid aluminum (blue) 

Figure 40: Alkane ladder, sampled using an aluminum supported HLB 

coated blade from a gas generating vial previously prepared by 

Jonathan Grandy. 
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Table 12 below shows the retention times of each compound, with a known and calculated 

retention index available for each compound that fit within the ladder. 

Table 12: Kovats retention indices for each compound, with their retention times and boiling points 

‡Boiling points obtained from the US Environmental Protection Agency are calculated estimates. 

3.5.2. Optimization 

Optimization of the SPME device and coating type led to a significant decrease in co-extracted 

background and resulting difficulties in sample detection. As depicted in Figure 41, a comparison 

of the methods in decreasing order of background matrix effects shows the improvements in 

method optimization from carbon mesh supported membranes to coated thermally stable 

aluminum blades. 

Compound Retention 

Index 

Retention 

Times 

Calculated 

Retention Index 

Boiling 

Point (°C) 

isooctane  69152 1.54 698 9953 

chlorodecane 126454 4.728 1267 22355 

1,10-dichlorodecane 154556 6.276 1557 25137‡ 

1,1,1,3-tetrachlorodecane  6.51 1649 31737‡ 

1,2,9,10-tetrachlorodecane  7.701 1786 28937‡ 

1,1,1,3,10,11-hexachloroundecane  9.022  36037‡ 

1,2,13,14-tetrachlorotetradecane  9.402  36137‡ 

1,1,1,3,12,13-hexachlorotridecane  9.788  35937‡ 

1,1,1,3,14,15-hexachloropentadecane  10.520  unknown 
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Figure 41: Comparison of non-spiked oil as a background from each style of sampling performed in scan mode. 

Carbon mesh in green, microspheres in red, unsupported membranes in black, and aluminum sheet supported 

membranes in blue. 

As the blades have been most successful, they were used to 

complete the project and the protocol for their use was optimized 

further. As blades were more durable, Gerstel membrane clips were 

used to secure them in place to the top of the caps of each vial. This 

required an increase in volume to 8.5g as the membrane was now suspended, instead of seated 

against the bottom of the vial. The clips are shown in Figure 42 alongside the membrane. 

Primarily, the effects of temperature were investigated using this extraction phase, as 

generally an increased temperature leads to a larger amount of analyte extracted. Previous research 

with the PAHs also suggests that the increase in temperature would be especially effective for such 

hydrophobic compounds in a complex matrix. Chlorodecane and 1,10-dichlorodecane were used 

to spike the oil to 100ppb and the extraction was performed at 500rpm for 1 hour; four temperatures 

were tested, 35°C, 50°C, 65°C and 80°C. A 2s rinse was performed in 1.8mL acetone and the 

membranes were blotted dry prior to return to the TDU tube. 

Figure 42: Gerstel clip (left) 

and the 0.2mm aluminum 

supported membrane (right) 
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Figure 43: Temperature profiles of 2 compounds 

As expected, an increase in temperature improved analyte recovery. Large errors associated 

with the highest temperature point, 80°C, were thought to be due to fluctuations in the heater block 

system of the autosampler, 65°C was therefore used moving forward. 

Upon the change to a more durable and rigid coating support, larger agitation speeds could be 

used. Increasing the agitation speed improves extraction by reducing the boundary layer, however 

this is not effective if the support moves with the flow of the matrix.  
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Figure 44: Effects of stirring rate and solvent addition on the efficiency of the extractions. 
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It was found that the stirring rate made no significant difference when the upper limit of the 

autosampler agitator was tested against the average rate. To preserve the lifetime of the 

membranes, the average rate was used. 

The addition of solvent had previously been used in complex matrices to improve extraction 

efficiency, evidenced both in Chapter 2 listed above as well as previously in literature.47 The use 

of acetone at 45% volume was used as it is miscible with the matrix. The sample with added solvent 

was incubated in a vortex at 1500 rpm for 1 minute to combine the solvent; as results from the 

extraction were so poor, replicates were not performed to avoid wasting oil stock. 

The extraction time was testing using oil spiked with 100ppb mix-4 in order to determine if 

the heaviest compound was reaching equilibrium. Oil was spiked in a batch for all trials in order 

to prevent errors from pipetting influencing the standard deviations. Times of 30, 45, 60, 90 and 

120 minutes per extraction were used at 65°C. Post extraction, membranes were blotted dry to 

remove oil and rinsed for 2s in acetone then blotted dry again using a fresh kimwipe.  
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Figure 45: Extraction time profiles for mix-4 standards in cod liver oil. Optimal time shown in each is 90 min. 

Extraction time profiles shown in Figure 45 show a plateau is reached by all compounds by 

90 minutes. The equilibrium time was taken for this project as the extraction is not governed by 

an autosampler, as such human error is more prevalent and can be reduced by working at or beyond 

equilibrium times. Since extractions are performed on a multi-position vortex-heater block, 

throughput can be instead improved by extracting 6 samples simultaneously, then placing them 

onto the TDU sampling tray to be sampled automatically in a sequence.  

The finalized method uses 8.5g oil per sample and extraction at 65°C for 90 minutes at 500 

rpm in a vortex-heater block. Membranes are blotted dry then agitated in 1.8mL acetone for 2s to 

strip away surface level oil and blotted dry with a kimwipe. The desorption was automated as 

escribed in the instrumentation section.  

3.5.3. Calibration and Validation 

The instrument was calibrated using on membrane liquid injection, which permitted the use 

of the same TDU system as for regular sampling rather than replacing it for the septumless head 
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injector for needle injections. Membranes had 1 µL of standard solution deposited onto them at 

varying concentrations, then desorbed as normal. Membranes were recapped into the tubes 

immediately after spiking to prevent losses due to evaporation. 
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Figure 46: Instrument calibration made by on-membrane liquid injections 

 

The method was calibrated using the mix-8 standard mixture; samples were spiked to form a 

calibration curve with the following points: 0.75, 0.5, 0.25, 0.1, 0.075 in ppm. 
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Figure 47:Matrix-matched calibration in cod liver oil A (blue) with selected standard addition points from Oil B 

acting as validation points (orange); grey is a blank of Oil B as a true unknown, non-spiked sample. 

Samples of other oils were processed using the same procedure. A standard addition was 

performed with Oil B to validate the matrix calibration. Fortunately for the consumers of Oil B, 

but unfortunate for the purpose of validation, no significant levels of any of the target contaminants 

were found. Table 13 shows the results from both the calculation using the matrix matched 

calibration curve as well as the back-calculated values from the standard addition shown in in 

Figure 48. 
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Figure 48: Standard addition curves using Oil B, for compounds where peaks were detected in the blank, the curve 

was extrapolated to show the intercept. Performed on GC-MS, showing response on a SIM method. 
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Table 13: Comparison of calculated values of Oil B blanks and standard addition using Oil B 

Compound 

Calculated 

from Oil B 

blank (ppm) 

Standard 

Addition 

(ppm) 

MLOQ 

(ppm) 

%RSD 

chlorodecane - 0 0.069 - 

1,10-dichlorodecane - 0 0.183 - 

1,1,1,3-tetrachlorodecane 0 0.074 0.196 7 

1,2,9,10-tetrachlorodecane 0.019 0.020 0.161 5 

1,1,1,3,10,11-hexachloroundecane - 0 0.193 - 

1,2,13,14-tetrachlorotetradecane 0.012 0.041 0.154 2 

1,1,1,3,12,13-hexachlorotridecane - 0 0.086 - 

1,1,1,3,14,15-hexachloropentadecane 0.182 0.178 0.217 12 

The method’s limit of quantitation (MLOQ) was calculated as ten times the standard deviation 

of the lowest point divided by slope. It was found that the quantities of the three compounds which 

were detected in the native oil samples were below MLOQ. In order to validate the method, points 

from the standard addition were used as shown in the calibration curves in Figure 47 in orange. 

Table 14: Comparison of slopes for the matrix-matched calibration against the slopes of the standard addition 

Compound 

Slope of 

Calibration  

Slope of Standard 

Addition 

chlorodecane 11843748 9677291 

1,10-dichlorodecane 15244774 9587209 

1,1,1,3-tetrachlorodecane 193842 119714 

1,2,9,10-tetrachlorodecane 381747 345234 

1,1,1,3,10,11-hexachloroundecane 126895 95312 

1,2,13,14-tetrachlorotetradecane 2850679 4130857 

1,1,1,3,12,13-hexachlorotridecane 40644 41160 

1,1,1,3,14,15-hexachloropentadecane 216434 196560 

Three other oils were sampled; detected compounds were recorded and back-calculated using 

the matrix-matched calibration curve; results are summarized in Table 15. 1,1,1,3-

tetrachlorodecane was found in two oils, 1,2,9,10-tetrachlorodecane was found in oil E and 

1,1,1,3,14,15-hexachloropentadecane was found in oil C, all above the MLOQ. 
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Table 15: Samples of other oil blanks, values were calculated using the matrix-matched calibration. 

Compound Oil B 
% 

RSD 
Oil C 

% 

RSD  
Oil D 

% 

RSD 
Oil E 

% 

RSD  

chlorodecane              

1,10-dichlorodecane   2 0.011         

1,1,1,3-tetrachlorodecane 0 5 0.045 7 0.487 8 0.286 6 

1,2,9,10-tetrachlorodecane 0.019    5    1.228 13 

1,1,1,3,10,11-hexachloroundecane              

1,2,13,14-tetrachlorotetradecane 0.012 24 0.147 2 0.446 10     

1,1,1,3,12,13-hexachlorotridecane              

1,1,1,3,14,15-hexachloropentadecane 0.182 11 0.472 12        

 

3.6.  Conclusions and Recommendations 

Overall, this method allowed for the detection of individual standards representing the range 

of short and medium chain polychlorinated alkanes at varying levels of chlorination by weight 

between 0.069 – 0.22ppm MLOQ. The method reduced sampling time to 90 minutes, with a 

chromatography time of 12 minutes, plus desorption at 5 minutes, totalling approximately two 

hours per batch of samples, much of which does not require analyst attention. This can be 

compared to current methods that require an estimate of 3 hours per sample involving tedious GPC 

an SPE cleanup, without considering the time required for GC-MS acquisition.29 Apart from 

1,2,9,10-tetrachlorodecane, detected amounts were below the lowest observed effect concentration 

(LOEC) found by the Stockholm Convention on POP, ranging between 0.7-5.5 ppm.57 MLOQs 

were comparable to those obtained for deconvolution of short chain PCAs by Bogdal et. al. using 

bulk PCA standards on APCI-qTOF-HRMS where LODs ranged from 0.1-1.2ppm. While the 

instrumentation used in that study was significantly more powerful than the single quadrupole MS 

used here, Bogdal et. al. used bulk PCA mixtures, adding complexity to the system. 
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Recommended next steps for this project are to apply the same method in scan mode to a 

broad spectrum PCA sample. This would be more representative of true samples found in the 

environment, which can range in chain length and chlorination degree. Isolation of individual 

PCAs is not often done, in favour of determining total concentration. 

A limitation on the throughput for this method is the number of positions on commercial 

heater-agitator blocks; only 6 positions are available and the chromatography methods per 6 

samples do not exceed preparation time. This can be remedied by the use of a multi-position 

sampler brush to further improve efficiency.1 

Furthermore, this sampling method could be combined with previously assessed 

deconvolution methods performed with high resolution mass spectrometry for more 

comprehensive PCA detection.38 As demonstrated by Yuan et. al. characterization and 

quantification of PCAs in large groups was made possible from clean matrices. Further application 

of both these novel methods could improve environmental detection well beyond the current 

limitations. 

4. Chapter 4: Summary  

Industrialization worldwide has resulted in the rise of anthropogenic contaminants found in 

the environment leading to contamination of the food chain. Screening has become increasingly 

important to determine if foodstuffs have been contaminated or if cleaning procedures are 

effective. This thesis offers two inexpensive and reusable methods to perform that screening in 

very complex fatty food matrices.  
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Pesticides were extracted from soymilk using a PDMS/DVB/PDMS overcoated fiber that has 

been previously shown to be matrix compatible. This allowed for the direct immersion of the fiber 

into the sample to facilitate the extraction of semivolatile compounds. The resulting loaded fiber 

was then rinsed and desorbed thermally into a GC-MS for separation and detection. Limits of 

detection using this method were well below the MRLs published by both the Canadian and 

American environmental agencies, reaching the 1 ppb level; it was validated according to the FDA 

Bioanalytical Method Validation Guidance for Industry. The method was validated well below 

maximum residue levels set by both the Canadian and United States government agencies raging 

from 0.01 to 8 ppm. Precision and accuracy from back-calculated results reached targets within 70 

– 130% of known values with less than 20% RSD. Of other brands sampled, Chlorpyrifos and 

Malathion were each found below MRL. Dimethoate was found 742 and 745 ppb in another 

soymilk. This method, while demonstrated on soymilk, has the potential to be applied to broader 

applications of foodstuffs, as allowed by the matrix-compatible fiber. 

A method was developed to test for individual PCAs representing components of a broad band 

of both medium and short chain PCAs of varying chlorine content. This was accomplished by 

using an HLB coated aluminum blade extracting via direct immersion in the oil, followed by a 

rinse before thermal desorption and analysis by GC-MS. The method demonstrated linearity and 

MLOQ up to 0.2ppm levels, showing promise for further applications. Calibration of the method 

was performed with a linear range of 0.075 to 0.75ppm with MLOQ ranging from 0.217 to 

0.069ppm. The method fit within the targeted testing range for the lowest observed effect 

concentration (LOEC) dictated by the Stockholm Convention on POP, ranging between 0.7-5.5 

ppm.57 A second oil was used to validate the method; quantities of PCAs assessed by standard 
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addition in the second oil were below MLOQ for each compound found. Inter-matrix accuracy for 

many analytes was demonstrated by comparing the slopes of the two curves. Other oil brands were 

sampled; four compounds were found at concentrations above MLOQ, the highest at 1.228ppm. 

Kovats retention indices for two PCAs: 1,1,1,3 – tetrachlorodecane and 1,2,9,10 – 

tetrachlorodecane were found to be 1649 and 1786 respectively. 

In summary, both methods developed in this thesis have been effective in cleanup and 

preconcentration of environmental pollutants. The methods are inexpensive, and reusable, 

allowing for screening of the pesticides and PCAs respectively, while limiting the impact they 

impart on the environment.  
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