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Statement of Contributions

• Chapter 1 is an introduction to the rest of the thesis with no novel material.

• Chapters 2 leans heavily on the results of Samshubhro Bandyopadhyay, P. Oscar
Boykin, Vwani Roychowdhury, and Farrokh Vatan from their paper, A new proof for
the existence of mutually unbiased bases [1].

• Chapter 3 provides a construction of a partition of Pauli operators framed in new
terminology. A key fact which is used is taken from Joel V. Brawley and Timothy
C. Teitloff’s paper, Similarity to symmetric matrices over finite fields [3].

• Chapter 4 makes use of only basic concepts relating to the complexity of graph col-
oring. The idea to compare the partitioning problem to graph coloring was originally
brought up by my advisor, Michele Mosca.

• The language in Chapter 5 is my own. It was thanks to the advice and guidance
of Scott Genin that I recognized the application of these results to the variational
quantum eigensolver.

• Chapter 6 is a conclusion to the rest of the paper, and the proposed future directions
are a result of discussions between myself, Michele Mosca, and Scott Genin.
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Abstract

Measuring the expectation value of Pauli operators on prepared quantum states is a
fundamental task in the variational quantum eigensolver. Simultaneously measuring sets
of operators allows for fewer measurements and an overall speedup of the measurement
process. In this thesis, we look both at the task of partitioning all Pauli operators of a
fixed length and of partitioning a random subset of these Pauli operators. We first show
how Singer cycles can be used to optimally partition the set of all Pauli operators, giving
some insight to the structure underlying many constructions of mutually unbiased bases.
Thereafter, we show how graph coloring algorithms promise to provide speedups linear
with respect to the lengths of the operators over currently-implemented techniques in the
measurement step of the variational quantum eigensolver.
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Chapter 1

Introduction

Our motivation for partitioning Pauli operators was, and remains, the speedup of the
measurement step of the variational quantum eigensolver [10]. The variational quantum
eigensolver may be a contender for a useful, near-term, quantum speedup, so the effort
to optimize the measurement process is a popular topic of investigation [11, 5]. Before
jumping into this practical problem and discussing how our results could apply to near-
term experiments, we will first investigate the theory of Pauli partitioning,

The first problem we tackle is that of partitioning the entire set of Pauli operators of a
fixed dimension and length. Upon recognizing the connection between these partitions and
the mutually unbiased bases problem, we chose to generalize our results for qudit operators.
We likewise investigate the more practical problem of partitioning an arbitrary set of Pauli
operators in the language of qudit operators for the sake of completeness. Since we have
made this effort to generalize our results, we will need to begin by establishing notation
for the remainder of the thesis.

Definition 1 We shall use the following generalization of the Pauli matrices, which are
often referred to as the shift and clock operators, respectively. For a prime, q, we define
the following q × q unitary matrices:

Xq =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ; Zq =


1 0 . . . 0
0 ωq . . . 0
...

...
. . .

...
0 0 . . . ωq−1q

 ,

where ωq = e2πi/q. For q = 2, these are the 2× 2 Pauli matrices. 2
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Definition 2 Let Pq denote the generalized Pauli group (ignoring phases) over Z/qZ. I.e.,
Pq =

{
X i
qZ

j
q : i, j ∈ Z/qZ

}
.

Similarly, let Pnq = {
⊗n

i=1 Pi : Pi ∈ Pq} be the set of generalized length-n Pauli opera-
tors (still ignoring phases) over Z/qZ. 2

In Chapter 2, we begin to tackle the problem of partitioning Pnq into sets in which
all operators pairwise commute. We establish notation and basic results that lead to our
construction in Chapter 3. We make use of facts about Singer cycles in GLn(q) to prove
the existence of a partition of Pnq into the fewest possible number of parts, and give some
applications of this result to already-known instances of the open problem of mutually
unbiased bases.

We switch gears in Chapter 4 where we tackle the problem of partitioning a set of
arbitrary-length Pauli operators and prove that this problem is NP-hard for worst-case
sets. In Chapter 5, we discuss a particular application of this result and show the efficiency
of using graph coloring algorithms to optimize the measurement step of the variational
quantum eigensolver as imagined on a universal quantum computer. In Chapter 6, we
conclude by comparing our algorithm to the algorithm in use at OTI Lumionics, showing
an expected improvement by a factor which grows linearly with respect to the length of
the Pauli operators.
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Chapter 2

Partitioning Pnq : Foundations

Bandyopadhyay, Boykin, Roychowdhury and Vatan [1] give a similar summary of the
following results. Much of the notation and many of the previously-known results in this
section are based on this thesis. We cite this thesis explicitly when our wording is especially
similar to theirs.

Definition 3 A set of Pauli operators is commuting if each pair of Pauli operators in
the set pairwise commutes. 2

Before we attempt to partition Pnq into commuting sets, it is important to put bounds
on the problem and to figure how many parts we might expect to be optimal.

Proposition 1
∣∣Pnq ∣∣ = q2n. 2

Proof Since |Pq| = q2, we have q2 unique choices for each Pi in our tensor product
definition of Pnq . Thus, there are (q2)

n
= q2n unique operators in Pnq . �

Proposition 2 The maximum number of pairwise commuting operators in Pnq is qn. 2

Proof Let A1, . . . , Ak be a set of pairwise commuting operators in Pnq . Since these are
pairwise commuting operators, there exists some unitary, U , such that UAjU

† is diagonal,
for all j ∈ {1, . . . , k} [9].

Moreover, since we are dealing with commuting Pauli operations, we may choose this
unitary carefully such that

{
UAjU

† : j ∈ {1, . . . , k}
}
⊆
{⊗n

`=1X
0
qZ

j`
q : j` ∈ Z/qZ

}
. In

fact, we can efficiently construct such an operator from the generalized Clifford group,
which we prove in the Diagonalization Algorithm.
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Since
∣∣{⊗n

`=1X
0
qZ

j`
q : j` ∈ Z/qZ

}∣∣ = qn, this gives an upper bound on the maximum
number of pairwise commuting operators in Pnq . �

Proposition 3 The minimum number of parts in a partition of Pnq into commuting sets
is qn + 1. 2

Proof We first note that 1qn =
⊗n

`=1X
0
qZ

0
q commutes with all operators. Thus, the

number of non-identity operators in Pnq is q2n − 1 and the maximum number of non-
identity pairwise-commuting operators in Pnq is qn − 1. The difference of squares formula
gives us:

q2n − 1

qn − 1
= qn + 1,

which is a lower bound on the number of parts in a partition of Pnq into commuting sets.�

Definition 4 We shall call a partition of Pnq into commuting sets a minimal partition
if it has exactly qn + 1 parts. 2

We now introduce the symplectic representation of Pauli operators to simplify our
statements.

Definition 5 For the Pauli operator, Xx1
q Z

z1
q ⊗ Xx2

q Z
z2
q ⊗ . . . Xxn

q Zzn
q ∈ Pnq , we call the

vector,
(
x1 x2 . . . xn z1 z2 . . . zn

)
∈ (Z/qZ)2n, its symplectic form. We shall

switch between the normal and symplectic representations as necessary throughout the
rest of the thesis. 2

Since we are attempting to partition Pnq into commuting sets, it is natural to first ask
what it means for two Pauli operators to be commuting in our symplectic notation. This
is captured by the symplectic inner product, which we define below.

Definition 6 For two Pauli operators,
(
xi zi

)
and

(
xj zj

)
, the symplectic inner

product is defined as follows:(
xi zi

)
�
(
xj zj

)
= xi · zj − zi · xj . 2

Lemma 1
(
xi zi

)
,
(
xj zj

)
∈ Pnq commute ⇐⇒

(
xi zi

)
�
(
xj zj

)
≡ 0 (mod q).2

Proof This is simple to show using the fact that ZqXq = ωqXqZq. �
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Lemma 2 For all a ∈ Z/qZ, we have:(
xi zi

)
�
(
xj zj

)
≡ 0 (mod q) =⇒ a

(
xi zi

)
�
(
xj zj

)
≡ 0 (mod q).

2

Proof Follows directly from the definition of the symplectic inner product and a bit of
algebra. �

Lemma 3(
xi zi

)
�
(
xj zj

)
≡ 0 (mod q) and

(
xk zk

)
�
(
xj zj

)
≡ 0 (mod q)

=⇒
((

xi zi

)
+
(
xi zi

))
�
(
xj zj

)
≡ 0 (mod q).

2

Proof Again, follows directly from the definition of the symplectic inner product and a
bit of algebra. �

Lemma 2 and Lemma 3 give us an important piece of information. We see that any
operator in the span of a set of commuting operators will commute with the whole set. In
other words, any set of qn pairwise-commuting Pauli operators must be equal to its own
span, or else we could extend to have a larger commuting set. With this realization, we
may identify each part by a basis of its operators.

Given a minimal partition of Pnq into the qn + 1 parts, C0, . . . , Cqn , we might wish to
have a succinct way of writing down our partition. Since each part in a minimal partition
must have qn − 1 non-identity Pauli operators, we can identify each part by n linearly
independent operators. Letting the symplectic representation of these operators be the
rows of a matrix, we may write each part as Ci =

(
Bi Ai

)
, where Bi and Ai are in

(Z/qZ)n×n.

Using our Diagonalization Algorithm, we know that we may conjugate all the operators
by a Clifford group element such that one of the parts is diagonal. WLOG, we shall
henceforth assume that C0 =

(
0n 1n

)
.

Under this assumption, if any other part contains two operators with equal X compo-
nent, then their difference (which is in the span so must also be in the same part) will be
in part 0. Thus, we observe that all possible X components must appear in every other
part of our partition. This allows us to write our partition as follows:

C0 =
(

0n 1n
)
, C1 =

(
1n A1

)
, . . . , Cqn =

(
1n Aqn

)
.

Now, we ask which conditions these matrices, Ai, must satisfy in a minimal partition.
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Proposition 4 In order to have a minimal partition, the following conditions must hold:

1. Ai is symmetric, for all i ∈ {1, . . . , qn}

2. Ai − Aj is invertible, for all i 6= j. 2

Proof

1. The symplectic inner product of the ath row and the bth row of Ci is Ai(a, b)−Ai(b, a)
(where these are the (a, b) and (b, a) entries of Ai, respectively). Since this difference
is zero for any commuting operators, we must have Ai(a, b) = Ai(b, a), for all i, a, b.
In other words, Ai is symmetric, for all i.

2. We require that the parts, Ci, of our partition be disjoint. With this notation,
this is equivalent to requiring the span of the rows of Ai to be disjoint from the
span of the rows of Aj, for all i 6= j. This is equivalent to the requirement that
vAi − vAj 6≡ 0 (mod q), for all non-zero v ∈ (Z/qZ)n and for all i 6= j. In other
words, Ai − Aj must be invertible. �
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Chapter 3

Partitioning Pnq : Singer Cycles and
Mutually Unbiased Bases

To begin our new results, we start with an assumption which, in lieu of the X-ization
Algorithm, is without loss of generality. We assume that C1 =

(
1n 0n

)
. This forces

A2, . . . , Aqn to be invertible.

Now that we are working with invertible matrices, we use the following notation.

Definition 7 Let GLn(q) be the set of all invertible, n× n matrices over Z/qZ. 2

We now seek a set of qn − 1 symmetric matrices in GLn(q) such that the difference
between any of our matrices is still in GLn(q). Luckily, Singer cycles provide a simple
construction for a set of this size in GLn(q), so we shall investigate whether we can use
Singer cycles to construct a set satisfying the conditions.

Definition 8 A Singer cycle is an element, M ∈ GLn(q), of multiplicative order qn−1.2

The following proof has been shown many times before, but we shall investigate it in
detail to gain some insight for our problem.

Proposition 5 For all primes, q, and for all positive integers, n, there exists a Singer
cycle in GLn(q). 2

Proof Let f(x) be a primitive polynomial of degree n over GF(q)[x]. Without loss of
generality, we may define GF(qn) = GF(q)[x]/f(x).
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A key fact about primitive polynomials is that f(x) -
(
xk − 1

)
, for all 0 < k < qn − 1.

In other words, the polynomial x is a generator for our choice of GF(qn).

We shall represent polynomials in GF(qn) as vectors in (Z/qZ)n in the following way:

p(x) = a0x
0 + a1x

1 + . . .+ an−1x
n−1 → vp =

(
a0 a1 . . . an−1

)>
.

Let Cf be the companion matrix of f(x):

Cf =


0 0 . . . 0
1 0 . . . 0
0 1 . . . 0 vxn−f(x)
...

...
. . .

...
0 0 . . . 1

 .

Multiplying a polynomial by x is equivalent to multiplying its corresponding vector
representation on the left by Cf . Since x is a generator of GF(qn), it has multiplicative
order qn − 1, and thus, so does Cf .

Since the first entry of vxn−f(x) is non-zero, Cf ∈ GLn(q), so Cf is a Singer cycle. �

We have now seen that a companion matrix for a primitive polynomial of degree n over
GF(q) will always be a Singer cycle. Next, we show that any similar matrix is also a Singer
cycle.

Proposition 6 Let C be a Singer cycle in GLn(q) and let A be an arbitrary element of
GLn(q). Then ACA−1 is also a Singer cycle in GLn(q). 2

Proof Since A,C ∈ GLn(q), it is clear that ACA−1 ∈ GLn(q). Thus, all we need to show
is that this matrix has multiplicative order qn − 1.

Assume that (ACA−1)
i

= (ACA−1)
j

for some i, j. Then we have:

0n =
(
ACA−1

)i − (ACA−1)j
= ACiA−1 − ACjA−1

= A
(
Ci − Cj

)
A−1

which implies that Ci = Cj. By our choice of C, this only occurs when i ≡ j (mod qn−1).
In other words, any similar matrix has multiplicative order qn − 1, making it a Singer
cycle. �

8



With this, we rely on a Theorem from [3] to get us closer to our goal.

Theorem 1 If f(x) is primitive, then Cf is similar (over GLn(q)) to a symmetric matrix.2

We first observe that if a matrix, A, is symmetric, then Ak = (A>)k = (Ak)>, so any
power of A is also symmetric. Since a Singer cycles gives rise to a set of qn − 1 distinct
matrices in GLn(q), a symmetric Singer cycle generates a set which satisfies condition (i)
of Proposition 4. However, in order to prove that we may construct a minimal partition,
we still need to show that the second condition is satisfied by the powers of our symmetric
Singer cycle. Luckily, this is the case, as we show below.

Proposition 7 Let Cf be the companion matrix of a primitive polynomial of degree n over
GF(q)[x]; let A ∈ GLn(q). Then ACfA

−1 satisfies condition 2 in Proposition 4. 2

Proof We must show that (ACfA
−1)

i − (ACfA
−1)

j ∈ GLn(q).

Rewriting the above expression, we get: (ACfA
−1)

i − (ACfA
−1)

j
= A

(
Ci
f − C

j
f

)
A−1.

As mentioned previously, left multiplying by Cf is equivalent to multiplying the corre-
sponding polynomial by x. Similarly, left multiplying by Ci

f is equivalent to multiplying
the corresponding polynomial by xi.

Since x is a generator of GF(qn), we observe that there exists some k ∈ {0, . . . , qn− 1}
such that xk = xi − xj (whenever i 6≡ j (mod qn − 1)). Thus, Ci

f − C
j
f = Ck

f , and we have

(ACfA
−1)

i − (ACfA
−1)

j
= ACk

fA
−1, which is invertible. �

Putting everything together, we have shown that we may find a symmetric Singer cycle
in GLn(q), and that the powers of this Singer cycle will satisfy the two conditions for
A2, . . . , Aqn to produce a minimal partition of Pnq . Thus, we have shown, by construction,
that a minimal partition of Pnq exists for all primes, q, and all positive integers, n. We
shall now show how this result applies to the problem of mutually unbiased bases.

Definition 9 Let B1 = {|φ1 〉 , . . . ,|φd 〉} and B2 = {|ψ1 〉 , . . . ,|ψd 〉} be two orthonormal
bases of Cd. We say that B1 and B2 are mutually unbiased bases if:

for all i, j ∈ {1, . . . , d}, |〈φi||ψj 〉| =
1√
d
.

2

We note that it has been proven that, for a given dimension, d, any set of pairwise
mutually unbiased bases has size at most d+ 1. In fact, it has also been shown previously
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that this maximal number of mutually unbiased bases can be attained in prime-power
dimensions, d = qn. Theorem 2 will give a simple proof of this result using our new proof
of the existence of a minimal partition of Pnq .

The following proof is adapted from a proof of the inner product between stabilizer
states given in [4].

Theorem 2 If there is a minimal partition of Pnq , then there is a set of qn + 1 mutually
unbiased bases of dimension qn. 2

Proof Let C0, . . . , Cqn be a minimal partition of Pnq . Let C ′i = Ci
⋃
1qn .

As proved in the Diagonalization Algorithm and X-ization Algorithm for any i 6= j ∈
{0, . . . , qn}, there exists a Clifford group operation, U , such that

{
UPi,aU

† : Pi,a ∈ Ci
}
⊆{⊗n

`=1X
0
qZ

j`
q : j` ∈ Z/qZ

}
and

{
UPj,aU

† : Pj,a ∈ Cj
}
⊆
{⊗n

`=1X
k`
q Z

0
q : k` ∈ Z/qZ

}
. Since

|C ′i| = qn = |C ′j|, we see that the subsets are actually equivalences.

Writing this another way, we may order the elements of C ′i such that:

UPi,aU
† =

n⊗
`=1

X0
qZ

a`
q =⇒ Pi,a = U †

(
n⊗
`=1

X0
qZ

a`
q

)
U

where a` is the `th entry in the q-ary representation of a. Writing U =
(
|ψi,0 〉 |ψi,1 〉 . . . |ψi,qn−1 〉

)
,

we see that these states are eigenvectors for each Pauli operator in C ′i. We may similarly
order the elements of C ′j such that:

UPj,bU
† =

n⊗
`=1

Xb`
q Z

0
q =⇒ Pj,b = U †

(
n⊗
`=1

Xb`
q Z

0
q

)
U.

We let Fq be the quantum fourier transform over Z/qZ and use the identity from
the Diagonalization Algorithm to write: F⊗nq

(
Xa`
q Z

0
q

)
(F⊗nq )† = X0

qZ
a`
q . This allows us to

rewrite the above expression as:

F⊗nq UPj,bU
†(F⊗nq )† =

n⊗
`=1

X0
qZ

b`
q =⇒ Pj,b = U †(F⊗nq )†

(
n⊗
`=1

X0
qZ

b`
q

)
F⊗nq U.

In other words, F⊗nq U =
(
|ψj,0 〉 |ψj,1 〉 . . . |ψj,qn−1 〉

)
are the eigenvectors for each Pauli

operator in C ′j.
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Another way to write these eigenvectors is to identify them by their column in the
matrices, U and F⊗nq U . By definition, we have: |ψi,a 〉 = U |a〉 (where |a〉 is the vector with
a single 1 in the ath entry). Similarly, |ψj,b 〉 = F⊗nq U |b〉.

Since these states are eigenvectors of a unitary operator, they form an orthonormal
basis. If we can show that the inner product between any two eigenvectors from separate
parts of our partition satisfy the condition for being mutually unbiased, we will have given
a construction for a set of mutually unbiased bases from a minimal partition. We check
this below:

| 〈ψi,a||ψj,b 〉 | = | 〈a |U †F⊗nq U |b〉 |.

In other words, we are picking out the a, b entry of F⊗nq with a unitary change of basis.
Since Fq is the quantum Fourier transform over Z/qZ, every entry of F⊗nq has modulus
1/
√
qn, and this modulus will be preserved by our change of basis. This satisfies the

condition for mutually unbiased bases, so by taking the eigenvectors corresponding to each
part of our partition, we will construct a set of qn + 1 mutually unbiased bases in Cqn . �

The problem of partitioning Pauli operators has given us a nice theoretical result with
respect to the open problem of finding mutually unbiased bases. However, there is still more
that can be accomplished by solving the more-general problem of partitioning a subset of
Pauli operators. We begin with those results in the next chapter.
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Chapter 4

Partitioning Arbitrary Sets of Pauli
Operators

From our previous results, we know that we may partition Pnq into qn+1 commuting parts.
However, given an arbitrary set of Pauli operators, this bound provides an upper bound.
How many parts might we expect to be optimal, and how might we go about finding
such an optimal partition? Letting P∗q denote the set of Pauli operators of dimension q
and arbitrary length (where commutation between two operators is decided on the set of
qudits restricted to the smaller-length operator), we shall formalize this problem and show
its equivalence to graph coloring. We begin by defining some notation for our reductions
and the relevant problems.

Definition 10 An algorithm, A, polytime reduces to another algorithm, B, (A ≤P B) if
there exists a polytime algorithm which solves A given an oracle for solving B. 2

Definition 11 A is polytime equivalent to B (A ≡P B) if A ≤P B and B ≤P A. 2

Definition 12 A partition of S ⊆ P∗q into k commuting parts is a k-partition of S. 2

Definition 13 We define the k-partitioning problem (kPart) as follows:

Given: S ⊆ P∗q and k ∈ Z≥1

Question: does there exists a k-partition of S? 2

Definition 14 A k-coloring of a simple, undirected graph, G, is a partition of the vertices
of G into k co-cliques. 2
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Definition 15 We define the k-coloring (kColor) problem as follows:

Given: a simple, undirected graph, G, and k ∈ Z≥1

Question: does there exists a k-partition of S? 2

Proposition 8 kPart ≡P kColor 2

Proof We shall prove the reduction in both directions.

• kPart ≤P kColor: let OC be an oracle for kColor .

Given a set, S ⊆ P∗q , and an integer, k ∈ Z≥1, we construct a graph, G = (V,E),
(we’ll call this the anticommutation graph) by letting:

– V = S
– E = {PiPj : Pi, Pj ∈ S and Pi does not commute with Pj}.

We observe that a k-coloring of G is a partition of its vertices into co-cliques. In other
words, each part is a commuting set of Pauli operators. Therefore, a k-partition of
S exists if and only if a k-coloring of G exists.

Therefore, the output of OC(G, k) is a solution to kPart.

• kColor ≤P kPart: let OP be an oracle for kPart .

Given a graph, G = (V,E), and an integer, k ∈ Z≥1, we first define the adjacency
matrix of G to be the matrix, AG, such that:

AG(u, v) =

{
1 uv ∈ E
0 uv 6∈ E

We then construct a set S ⊆ P∗q by letting:

– S =
(
1n ALTG

)
,

where ALTG is the lower triangular portion of the adjacency matrix of G. Indexing
our set of Pauli operators by the vertices of G, we observe that Pu commutes with
Pv if and only if uv 6∈ G.

We observe that a k-partition of S is a partition of the Pauli operators into commuting
sets. In other words, each part is a co-clique of the vertices of G. Therefore, a k-
coloring of G exists if and only if a k-partition of S exists.

Therefore, the output of OP (S, k) is a solution to kColor . �
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It has long been known that kColor (for k ≥ 3) is NP-complete with respect to |V (G)|.
Since the number of vertices in G is the same as the number of Pauli operators in our
set, S, in both directions of our above equivalence, this immediately gives us the following
result.

Theorem 3 kPart (for k ≥ 3) is NP-complete with respect to |S|. 2

Using a similar reduction to above, we may show that the following problem is NP-hard.

Definition 16 Given S ⊆ P∗q , the Pauli partitioning problem is to return a partition
of S into the fewest number of commuting parts. 2

In fact, this problem is exactly equivalent to coloring the corresponding anticommuta-
tion graph with the fewest colors. As such, we can say a few things about the expected
number of parts in a partition of a randomly chosen set of Paulis from P∗q .

Proposition 9 For almost all sets, S ⊆ P∗q , such that all the operators in S are linearly
independent, the number of parts in a minimal partition of S is:(

1

2
+ o(1)

)
(log2(q) + o(1))

|S|
log2(|S|) 2

Proof Let m be the largest length of any Pauli operator in S.

For any two randomly-chosen Pauli operators, Pi, Pj ∈ Pmq \ 1qm , the probability that
Pi commutes with Pj is (q2m−1 − 2)/(q2m − 1). If we choose a single non-identity qubit of
Pi, then Pj may take any values on the remaining m − 1 qubits (i.e. q2m−2 possibilities),
but must take any one of q values on the last qubit to make the symplectic inner product
0 (i.e. q2m−1 possibilities), and we subtract 2 for the identity operator and for Pi, itself.

Choosing an ordering on our set, S = {P1, . . . , P|S|}, we define the following matrix:

C(i, j) = Pi � Pj,

and observe that we may always find a Clifford group operation which acts by conjugation
on our set transforming it into: (

1|S| 0n−|S| CLT 0n−|S|
)
.

This is because the symplectic inner product between any pair of operators is preserved in
our new formulation. Thus, for any operator outside of S, whether it commutes with Pi is
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determined solely by the power of the X term on its ith qubit. Since the powers on each
qubit are chosen independently, the probabilities are independent.

This implies that the anticommutation graph is a random graph on |S| vertices with
edge-probability 1− (q2m−1−2)/(q2m−1). Using the result from [2], the minimum number
of colors necessary to color G is expected to be:(

1

2
+ o(1)

)
log2

 1

1−
(

1− q2m−1−2
q2m−1

)
 |S|

log2(|S|)

=

(
1

2
+ o(1)

)
log2

(
q2m − 1

q2m−1 − 2

)
|S|

log2(|S|)

=

(
1

2
+ o(1)

)
(log2(q) + o(1))

|S|
log2(|S|)

�

In the last proposition, we have clearly required the assumption that the operators in
our set were linearly independent. However, we conjecture that the value found above
remains an upper bound for an arbitrary set, S.

Conjecture 1 For almost all sets, S ⊆ P∗q , the number of parts in a minimal partition of
S is bounded above by: (

1

2
+ o(1)

)
(log2(q) + o(1))

|S|
log2(|S|)

Proof First, we give evidence for why we might expect our assumption about linear
independence to be satisfied for a randomly-chosen set.

The probability that there are no linearly dependent subsets of a set, S, of length-m,
q-ary Pauli operators is:

|S|−1∏
i=0

(
1− qi−2m

)
= (q−2m; q)|S|,

where (a; q)k is the q-Pochhammer symbol.

For values of |S| ≤ 2m, this probability is bounded below by a fixed value which
depends on q. For q = 2, it is bounded by ≈ 0.288788 and for larger values of q, this value
tends towards 1.

In other words, for any value of q, this size requirement is enough to ensure our graph
is random with probability greater than 1/4.
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However, when |S| > 2m, we must rely on a different argument which gives a heuristic
for why the number of partitions should actually be lower than if there were not linear
dependence.

In instances where we have linear dependence in our Pauli operators, by Lemmas 2
and 3, we see that we get larger co-cliques than would be expected in a random graph. If
our set has some linear dependent subsets, then we should expect the same total number of
edges, but larger cliques and cocliques, which should admit a coloring with fewer colors.�

Having established these expectations, we shall now dive into some applications of these
partitions and shall observe the improvements we have made to the measurement step of
the variational quantum eigensolver.
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Chapter 5

Measurement in the Variational
Quantum Eigensolver

The variational quantum eigensolver is a quantum-classical hybrid algorithm used for find-
ing the ground state energy of a molecule [10]. With applications ranging from quantum
chemistry to combinatorial optimization and a low cost in quantum resources, the vari-
ational quantum eigensolver is a great candidate for near-term applications of quantum
computers.

We shall first introduce the problem in more specificity, then we shall discuss the
measurement scheme which has been used in past implementations of the algorithm. We
shall compare this measurement scheme to one which we derive from our previous discussion
of k-partitions, showing the benefits of the latter approach.

Definition 17 The variational quantum eigensolver solves the following problem:

Given: H =
∑

k ckPk, a Hamiltonian written as a sum over Pauli operators

Goal: approximate the smallest eigenvalue, λ, of H. 2

To begin our analysis, we see that, if we were able to initialize the eigenstate, |ψ 〉, such
that H |ψ 〉 = λ|ψ 〉, and if we could measure 〈ψ |H |ψ 〉 = 〈ψ |λ|ψ 〉 = λ, then we could
complete our goal. However, there are two problems with this:

1. How do we produce |ψ 〉?

2. How do we measure 〈ψ |H |ψ 〉?
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The first of the above problems is arguably dealt with by a classical optimization
algorithm. Preparing an initial state, |ψ0 〉, and measuring 〈ψ0 |H |ψ0 〉, we plug our results
into a classical optimizer which returns a new state, |ψ1 〉. Continuing this process, we

improve our state until we construct some ˜|ψ 〉 such that | 〈̃ψ |H ˜|ψ 〉−λ| ≤ ε, for some desired
precision. The efficiency of this process and the ongoing search for improved algorithms is
discussed by McClean, Romero, Babbush, and Aspuru-Guzik [8].

The second problem, however, seemingly requires us to simulate our Hamiltonian, H,
which may be very difficult. To get around this, we observe that expectation values are
linear, so we have:

〈ψ |H |ψ 〉 =
〈
ψ
∣∣∣∑ ckPk

∣∣∣ψ〉 =
∑

ck 〈ψ |Pk |ψ 〉 .

Measuring 〈ψ |Pk |ψ 〉 is as simple as transforming Pk into a diagonal Pauli operator and
measuring in the computational basis. Therefore, we are able to accomplish this step
efficiently.

While the algorithm we have outlined above looks feasible at first glance, it is still not
practical for many near-term quantum devices. The first issue is the length of these Pauli
operators (which determines the number of qubits in the system). For many interesting
molecules, the number of qubits required is already out of the reach of near-term quantum
devices.

The second issue, however, is the sheer number of runs required to make the algorithm
work. Considering we require this many measurements (and this many initializations of
|ψi 〉), in each quantum step of our algorithm, it is important to try to cut down on the
number of measurements required.

To do so, we observe that we may simultaneously measure any set of Pauli operators
which are simultaneously diagonalizable. As shown in our Diagonalization Algorithm, we
are able to simultaneously diagonalize any commuting set of Pauli operators. This shows
that partitioning our Pauli operators into commuting parts may provide a time save for
the variational quantum eigensolver.

This is a topic which has been investigated in previous literature, and we describe the
“greedy algorithm” which has been used in previous implementations of the variational
quantum eigensolver.

Definition 18 Given two Pauli operators,
(
x1 z1

)
and

(
x2 z2

)
, we say that:

•
(
x1 z1

)
is a subset of

(
x2 z2

)
if x1(i) ∈ {0,x2(i)} and z1(i) ∈ {0, z2(i)}
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•
(
x1 z1

)
is a superset of

(
x2 z2

)
if x2(i) ∈ {0,x1(i)} and z2(i) ∈ {0, z1(i)} 2

Definition 19 Given a set of Pauli operators, S, the greedy algorithm partitions the
operators into commuting sets as follows:

1. choose an ordering of the elements of S

2. for each P (considered in order), we do the following:

• if there exists a part which contains a superset of P , then add P to that part

• if there exists a part which contains only subsets of P , then add P to that part

• otherwise, create a new part consisting only of P . 2

This notion of subsets and supersets is a little difficult to compare to our above algo-
rithm, so we generalize it slightly. We define bitwise commutation as follows.

Definition 20 Given two Pauli operators,
(
x1 z1

)
and

(
x2 z2

)
, we say that these

operators bitwise commute if
(
x1(i) z1(i)

)
�
(
x2(i) z2(i)

)
≡ 0 (mod q), for all i. 2

It is fairly easy to check that, if an operator is either a subset or a superset of another
operator, then they bitwise commute. Furthermore, if two operators bitwise commute,
then they commute in the usual sense. As such, it should be clear that an algorithm
which uses a less-strict requirement for adding an operator to a part should result in fewer
parts. To see just how much of an improvement we can expect from using the general
notion of commutation, though, we shall compare it to an algorithm which uses bitwise
commutation.

As we did before, we could generate a graph which represents anti-bitwise-commutation
between the Pauli operators in our set. Analyzing an optimal coloring of this graph gives
us an expected number of parts in a partition.

Conjecture 2 Given S ⊆ P∗q , we expect the number of parts in a minimal partition of S
(with respect to bitwise commutation) to be bounded below by:(

1

2
+ o(1)

)
m(log2(q)− o(1))

|S|
log2(|S|)

,

where m is the length of the largest Pauli operator in S.
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Proof We shall first look at the probability that any two operators, Pi and Pj, chosen from
Pmq will bitwise commute. This requires that each bit should commute, which happens with
probability (q3 + q2 − q)/q4. Thus, the probability that these operators bitwise commute
is ((q3 + q2 − q)m − q2m)/(q4)m.

The anti-bitwise-commutation graph will therefore have edge probability 1− (q3 + q2−
q)m/(q4)m, although the edge probabilities will likely not be independent. If they were
independent, we would find the number of parts to be:

(
1

2
+ o(1)

)
log2

 1

1−
(

1− (q3+q2−q)m
(q4)m

)
 |S|

log2(|S|)

=

(
1

2
+ o(1)

)
log2

(
(q4)m

(q3 + q2 − q)m

)
|S|

log2(|S|)

=

(
1

2
+ o(1)

)
m log2

(
q4

q3 + q2 − q

)
|S|

log2(|S|)

=

(
1

2
+ o(1)

)
m (log2(q)− o(1))

|S|
log2(|S|)

.

Without the independence of these edge probabilities, however, it is difficult to give a
concrete lower bound on the number of colors we should expect using bitwise commuta-
tion. �

Running with our conjectures, however, we compare this to Conjecture 1 and observe
that the expected number of parts is roughly m times more using bitwise commutation
rather than general commutation. Since the greedy algorithm considers a partition require-
ment which is even stronger than bitwise commutation, graph coloring algorithms would
greatly improve upon existing partitioning techniques.

We have seen these conjectured results borne out on small examples, and are excited
to continue testing their validity on larger Hamiltonians.
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Chapter 6

Conclusion and Open Problems

In this thesis, we have covered a lot of ground with regard to partitioning Pauli operators.
In particular, we have shown that minimal partitions of Pnq always exist, leading to a
proof of the existence of a set of qn + 1 mutually unbiased bases in Cqn . Moreover, we
have shown that the problem of partitioning Pauli operators is equivalent in complexity to
the problem of coloring graphs, and that implementing graph coloring algorithms should
significantly reduce the number of measurements required in each quantum step of the
variational quantum eigensolver. We provide some launching off points for future research
for interested readers.

First, we believe this to be the first construction of mutually unbiased bases from
Singer cycles. While this construction has not led to the discovery of any new mutually
unbiased bases, we hope it may prove useful for investigations into the still-open problem
of mutually unbiased bases over composite (non-prime power) dimensions. In particular,
we are interested to see whether all mutually unbiased bases over prime powers may be
constructed from Singer cycles, and the lack of the existence of Singer cycles over non-
prime power dimensions may provide insight into why maximal sets of mutually unbiased
bases may not exist.

Second, another approach to speeding up the variational quantum eigensolver would
be to find a similar matrix with a more simple expression as a sum over Pauli operators.
For instance, if one could efficiently calculate the diagonalization of H (i.e. write a matrix
similar to H as a sum over all diagonal Pauli matrices), then all measurements could be
performed simultaneously, saving a significant amount of time. This, or similar approaches,
would allow for significantly faster and more reliable computations. The variational quan-
tum state diagonalization [7] algorithm does exactly this, but it already requires more
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quantum resources than the variational quantum eigensolver. Perhaps a hybrid algorithm
which mostly diagonalizes H before applying the variational quantum eigensolver could
require fewer quantum resources.

Third, while we showed the equivalence between partitioning Pauli operators and color-
ing graphs, we did not make mention of specific graph coloring algorithms. This is because,
as was mentioned many a time through Chapters 4 and 5, the graphs are not truly ran-
dom. In fact, for most applications, the set of Pauli operators, itself, will not be random,
since it will be the output of an algorithm for mapping a Hamiltonian onto qubits (e.g.
the Bravyi-Kitaev transformation, or perhaps the Jordan-Wigner transformation). With
more insight into the structure of the molecule, the outputs of these transformations, or
the relations between the Pauli terms, a specific coloring algorithm could be chosen or
designed for each application. In special cases, one could imagine that optimal colorings
could be calculated efficiently.
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Diagonalization Algorithm

We define the operators which act by conjugation on q-ary Pauli gates as follows:

Fq : Xq 7→ Zq

Zq 7→ X−1q

Rq : Xq 7→ XqZq

Zq 7→ Zq

SUMq : 1qXq 7→ 1qXq

Xq1q 7→ XqXq

1qZq 7→ Z−1q Zq

Zq1q 7→ Zq1q.[6]

We shall use without proof the fact that these gates generate the generalized Clifford group,
the set of operators which permutes the elements of Pq. We shall give an inductive proof
which can be used as an iterative algorithm to construct the specific Clifford gate which
simultaneously diagonalizes a set of commuting Pauli operators.

Lemma 4 Let C be a set of commuting Pauli operators. There exists a Clifford gate, G,
such that GCG† = {GPG† : P ∈ C} ⊆

{⊗n
i=1X

0
qZ

ji
q : ji ∈ Z/qZ

}
. 2

Proof We shall prove this by induction on the length of the Pauli operators, n.

• n = 1: If C ⊆ Pq is not diagonalized, then there exists some operator, P ∈ C, with a
non-zero X-component. We shall write P = Xa

qZ
b
q for some a 6≡ 0 (mod q). Let:

G1 = Ra−1(q−b)
q
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where a−1 is the multiplicative inverse of a over Z/qZ.

By our conjugation rules above, we observe that:

G1PG
†
1 = Xa

qZ
b
qZ

a(a−1(q−b))
q = Xa

qZ
b
qZ

q−b
q = Xa

qZ
q
q = Xa

q .

We have successfully removed the Z-component of this Pauli operator, but we want
to remove the X-component, so we let G = FqG1. Again, following our conjugation
rules, we observe that:

GPG† = FqG1PG
†
1F
†
q = FqX

a
qF
†
q = Za

q .

Thus, we have successfully diagonalized a single element of C. However, since conju-
gation by Clifford gates preserves commutation relations, we know that GCG† must
still pairwise commute. Since there exists an operator with no X-component on the
one and only qudit, all operators in GCG† must have no X-component. Thus, we
have successfully diagonalized the set.

• n > 1: Assume we are able to successfully diagonalize any commuting set of Pauli
operators on n − 1 qudits. If C ⊆ Pnq is not already diagonalized, there exists some
operator, P ∈ C, with a nonzero X-component. Let H1 be a SUMq gate from a qudit
with a nonzero X-component to the first qudit in our tensor product, we may now
assume that H1PH

†
1 = Xa

qZ
b
q ⊗ P1 for some a 6≡ 0 (mod q) and some P ′ ∈ Pn−1q .

We take advantage of our above proof and left-multiply our H1 by the gate which
acts only on the first qudit and diagonalizes it as in our base case (let’s call this gate
H2). This leaves us with: H2H1PH

†
1H
†
2 = Za

q ⊗ P2.

Next, P2 may have some qudits with a nonzero Z-component. Let H3 be a series of
SUMq gates from these qudits to the first qudit, applying the gate as many times as is

necessary to cancel out the Z-component. This leaves us with: H3H2H1PH
†
1H
†
2H
†
3 =

Za
q ⊗ P3.

P3 has no Z-component, but my have some qudits with a nonzero X-component. We
address this by letting H4 be the (n−1)-fold Fq gate applied to the last n−1 qudits,

leaving us with: H4H3H2H1PH
†
1H
†
2H
†
3H
†
4 = Za

q ⊗ P4.

P4 has no X-component, but may have some qudits with nonzero Z-component.
Using the same strategy as in constructing H3, we use SUMq gates to cancel out this

Z-component, finally leaving us with: H5H4H3H2H1PH
†
1H
†
2H
†
3H
†
4H
†
5 = Za

q ⊗ 1qn−1 .

Letting G1 denote this product of Clifford gates we have constructed, we observe
that every operator in G1CG†1 must commute with Za

q ⊗ 1qn−1 . This means that

every operator in G1CG†1 must have no X-component in the first qudit.
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Restricting ourselves to Clifford group operations on the last n−1 qudits, we already
know by our inductive hypothesis that there exists a Clifford gate, G2, which simul-
taneously diagonalizes the remaining n − 1 qudits of G1CG†1, without affecting the
first qudit.

In conclusion, every operator in G2G1CG†1G2 has no X-component on every qudit.
Thus, G = G2G1 is a Clifford gate which diagonalizes C. �
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X-ization Algorithm

If we have used the Diagonalization Algorithm to diagonalize one of the parts of a minimal
partition, every Pauli operator in the remaining non-diagonal parts will have non-zero X
component. We shall provide an algorithm which uses only SUMq and Rq gates to remove
the Z component of one of these parts without disturbing the already-diagonalized part.
This will allow us to assume that, WLOG, a minimal partition contains both

(
0n 1n

)
and

(
1n 0n

)
.

Lemma 5 Let C be a set of commuting Pauli operators which each has non-zero X com-
ponent. There exists a Clifford gate, G, composed of only SUMq and Rq gates, such that
GCG† = {GPG† : P ∈ C} ⊆

{⊗n
i=1X

ji
q Z

0
q : ji ∈ Z/qZ

}
. 2

Proof We first notice that, by using only SUMq and Rq gates, we cannot transform a
matrix with non-zero X component into one which has a zero X component, and vice
versa. This is because Rq does not change the X component and SUMq cannot take X i

qX
j
q

to X0
qX

0
q , for any i, j which are not both 0.

Having noticed this, we begin by a proof by induction, similar to the previous step.

• n = 1: Since C ⊆ Pq has a non-zero X-component, we observe that any two Pauli
operators, P1 = Xa

qZ
b
q , P2 = Xc

qZ
d
q ∈ C must satisfy ad− bc ≡ 0 (mod q) (since they

commute). Therefore, applying R−a
−1b

q results in:

– R−a
−1b

q Xa
qZ

b
q = Xa

qZ
b
qZ

a(−a−1b)
q = Xa

qZ
b
qZ
−b
q = Xa

qZ
0
q

– R−a
−1b

q Xc
qZ

d
q = Xc

qZ
d
qZ

c(−a−1b)
q = Xc

qZ
d−a−1cb
q = Xc

qZ
(ad−cb)(a−1)
q = Xc

qZ
0
q .

In other words, the same operator (which is well-defined since a 6= 0) transforms all
of these matrices into matrices with no Z component, as required.
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• n > 1: Assume we are able to successfully cancel out the Z component of any set of
Paulis satisfying our conditions on n− 1 qudits.

Choosing an operator, P =
(
x z

)
, with non-zero X component, we note that there

exists a sequence of SUMq gates, U1, such that U1PU
†
1 =

(
−z z

)
. Applying Rq to

this, we see that RqU1PU
†
1R
†
q =

(
−z 0

)
. We similarly notice that there exists a se-

quence of SUMq gates, U2, such that U2RqU1PU
†
1R
†
qU
†
2 =

(
1 0 . . . 0 0 0 . . . 0

)
.

Thus, we have mapped P to
(

1 0 . . . 0 0 0 . . . 0
)
. Since every operator in

C must still commute with this vector, we observe that every operator must have
Z0
q in the first qubit. Having done this, we may restrict our attention to the last

n − 1 qubits and the operators which have non-zero X-component on this set. By
induction, we may remove the Z component of these operators. Combining these
results, we end up with a set of gates which removes the Z component of all of C, as
required. �
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