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Abstract 

 

As a solid-state lighting source with high luminance and long life-time, the gallium nitride/ indium 

gallium nitride (GaN/InGaN) light-emitting diode (LED) is considered as a promising technology 

for many applications, including opto-genetic neuromodulation, micro-indicators and self-

emissive micro-displays. The biggest technical challenge with conventional GaN/InGaN LEDs is 

the so-called efficiency droop, which is mainly attributed to three reasons: Auger recombination, 

low hole injection and carrier overflow. On the contrary, the substantial carrier loss due to 

Shockley–Read–Hall (SRH) surface recombination is usually ignored in conventional 

GaN/InGaN LEDs. However, when the size of the GaN/InGaN LEDs shrinks down to a few 

micrometers, the increased surface area to volume ratio leads to a high carrier surface 

recombination rate, which significantly degrades the efficiency performance of GaN/InGaN 

micro-LEDs (μ-LEDs). In this case, the surface recombination velocity (SRV), which reflects the 

impact of surface recombination rate, becomes the most critical parameter affecting the device 

performance.  

 

This thesis investigates the surface recombination impacts on the efficiency performance of size-

dependent GaN/InGaN μ-LEDs. In this work, the simulation tool APSYS crosslight is employed 

to simulate GaN-based μ-LEDs by setting the SRV to 3× 104 cm/s at room temperature. The 

simulation results show that the internal quantum efficiency of μ-LEDs decreases from 53% to 4% 

when the size shrinks down from 100μm to 5μm. The simulation results are then confirmed with 

the temperature-dependent experimental data measured on 50×50 μm2 μ-LEDs. Further 

investigation shows GaN/InGaN μ-LEDs with n-doped quantum barriers significantly improved 

the efficiency of LEDs in common working current density range.  

 

Based on the modeling results, a new design of GaN/InGaN μ-LEDs with n-doped quantum 

barriers are proposed to improve the efficiency in GaN/InGaN μ-LEDs with small sizes (<10μm 

in dimension). For GaN/InGaN μ-LEDs with n-doped quantum barriers, calculation shows that 

the SRH recombination rate (surface recombination) in the n-GaN is much smaller than the p-

GaN. By considering the tradeoff between balance of electron-hole injection and suppressing 

surface recombination, an optimized 5×5 μm2 GaN/InGaN μ-LEDs with n-doped quantum 

barriers and single quantum well design is presented. The estimated efficiency of the new design 

is two times higher than that in conventional intrinsic multiple quantum wells based μ-LEDs. 
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Chapter 1 Introduction 

1.1 Background and Motivation 

In 1961, Dr. James R. Biard and Gary Pittman, who were employees at Texas Instruments, 

accidentally discovered near-infrared light emission from an Esaki diode they had constructed on 

a gallium arsenide (GaAs) semi-insulating substrate. These two inventors filed a patent titled 

"Semiconductor Radiant Diode", which consist of a zinc-diffused p–n junction GaAs light-

emitting diode (LED) with a spaced cathode contact on the tin-doped N-type regrowth layer to 

allow high-efficiency emission under forward bias. This should be the first practical LED in the 

world (shown in Figure 1.1).[1]. Afterwards the red,[2] yellow [3] and blue [4] LEDs were invented 

in the 1970s. Fairchild Optoelectronics was the first commercial and successful firm to produce 

most low-cost LEDs.[3] With the advance of technology, 40 years after, LEDs of different colors, 

especially white light, have gradually replaced the incandescent light sources used in various 

lighting application and LED displays.  

 

Figure 1.1 Diagram of the first practical LED. [1] 
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The LED display includes an array of LEDs as pixels and each pixel is an individual LED device. 

As the pursuit for resolution and brightness of video equipment increases, it was necessary to scale 

down the LED displays and optimize the efficiency to adapt to ongoing demands. Liquid crystal 

displays (LCDs), organic LEDs (OLEDs) and micro LEDs (μ-LEDs), are three mainstream 

technologies for micro-display in future. Compared to the LCDs and OLEDs, the μ-LED displays 

have lots of advantages on luminance, response time, life-time and contrast ratio. It promises to 

be the best new-generation display technology with great potential, but production still faces many 

challenges. Despite the high cost of fabrication, the major challenge of the μ-LEDs remains the 

efficiency droop. For LEDs with bigger sizes, the efficiency droop describes the phenomenon 

when the efficiency starts to decrease as the injected current density becomes higher. This problem 

can be mainly attributed to three reasons: Auger recombination, [5,6] carrier overflow [7,8] and low 

hole injection. [9,10] Moreover, in μ-LEDs, when the size shrinks down to a few micrometers, the 

high surface areas to volumes ratio leads to a high surface recombination, which plays a critical 

role in the efficiency performance of the gallium nitride/ indium gallium nitride (GaN/InGaN) 

based μ-LEDs. [11-13] This thesis is aimed at improving the efficiency of blue light GaN/InGaN μ-

LEDs by analyzing how surface recombination impacts on the efficiency performance of size-

dependent GaN/InGaN μ-LEDs, and further proposes some high-efficiency LED designs.  

1.2 Literature Review 

1.2.1 Light-Emitting Diode 

LEDs are semiconductor light material sources that combine a P-type semiconductor layer with 

high hole concentration to a N-type semiconductor layer with high electron concentration. 

Applying a sufficient forward voltage leads the electrons and holes to recombine at the P-N 

junction, resulting in a near bandgap radiation. The early LED structures were mainly 

homojunction semiconductor structures (shown in Figure 1.2).  

 
Figure 1.2 Diagram of the homojunction LED structure. 
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Although it is much easier to fabricate homojunction semiconductor structures, most researchers 

still adopt the heterojunction semiconductor structure as LED structures. There are two advantages 

of using heterojunction structures. [14] One advantage is that it increases the carrier injection 

efficiency by using the quantum well (QW) structure (shown in Figure 1.3), which is a special 

kind of heterojunction structure. The electrons and holes in the QW are confined in a one-

dimension or quasi-two-dimensional space and lead to the discrete energy levels. This quantum 

confinement effect, due to the thin QW layers, generates a very high injection efficiency in LEDs. 

Another advantage is the clever use of wide-bandgap materials. The wide-bandgap quantum 

barriers are transparent to the photons generated in the narrow-bandgap QW layers and reduces 

the photon reabsorption. The light emitted from the QW layers can go in an arbitrary direction. 

Therefore, a common separate LED with hemispherical- dome shape is made on the top, which 

acts as a lens to focus the light upwards.  

 

 
Figure 1.3 Diagram of the heterojunction LED band structure (Take GaN/InGaN as an example). 

1.2.2 Materials for different colors LEDs 

 

The energy bandgap of the semiconductor materials determines the wavelength of the emitted 

light. For a homojunction structure LED, the wavelength is given by: 

𝜆0 =
1.24

𝐸𝑔𝑎𝑝
[𝜇𝑚]                             (1.1), 

For a QW structure with the same emitted material, the electrons and holes recombine from the 

subbands and the emission is blue shifted, which means the wavelength of the emitted light is 

shorter than the λ0. For achieving different color, we need different materials with different energy 

band gaps as emitted materials. Table 1 shows the inorganic semiconductor materials and the 

luminescent color of the respective LEDs: [3] 
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Color  Wavelength Range Semiconductor Material 

Infrared  >760 nm GaAs, AlGaAs 

Red 610-760 nm AlGaAs, GaAsP, AlGaInP 

Amber/Yellow 570-610 nm GaAsP, AlGaInP, GaP 

Green 500-570 nm InGaN, AlGaInP, GaP, AlGaP 

Blue 450-500 nm ZnSe, InGaN, SiC 

Violet 380-450 nm InGaN 

ultraviolet <380 nm C (diamond), AlN, AlGaN, AlGaInN 

Table 1.1 The different semiconductor materials for different colors of LEDs 

 

Besides these colors, the white LEDs has become more important and has replaced the colored 

LEDs for lighting application and LED displays. Since white light is not monochromatic, there 

are two methods to generate white LED. One method is the combination of three monochromatic 

LEDs (red, green and blue LEDs). The spectrum of this kind of white LEDs includes three narrow 

bands, which results in bad color rendering. Therefore, the popular method nowadays is coating 

one or few layers of the fluorescent agent to convert the blue or violet light monochromatic LEDs 

to red, green or yellow colors. The combination of these colors with remaining blue or violet light 

appears as white to the human eyes. [4] As we mentioned earlier, before 1972, researchers have 

already made red, yellow and blue LEDs. However, the luminance of initial blue LEDs made of 

p-GaN (Mg-doped GaN) was too weak for practical use. Therefore, until Dr. Nakamura Shuji 

made the high luminance blue InGaN based LED, [15,16] there were no commercial blue or white 

LEDs in the world. The high efficiency and low cost of InGaN based LEDs is the reason why it 

remained the most valued LEDs.   

1.2.3 LED-backlit Liquid Crystal Display 

 

After the third industrial revolution, almost every invention was inseparable from modern 

computers. Most of the modern computers carry output devices, like monitors or cellphone screens. 

Before the popularity of the OLED displays, most screens were the LCD type. The structure of an 

LCD is shown in Figure 1.4. The liquid crystal layer sits between two polarizers in a twisted phase 

and can reorient the light from the first polarizer so it can pass through the second polarizer. When 

an electric field is applied to the liquid crystal layer through the electrode, the LC layer untwists 

and becomes perpendicular to the polarizers. In this situation, the LC layer cannot reorient the 

light from the first polarizer, which will be blocked by the second polarizer. This way, each pixel 

of LCD can be turned on or off, and because the colors of LCD are generated by color filters, a 

white light source is generally needed.  
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Figure 1.4 Diagram of the liquid crystal display structure. 

 

Before the invention of practical white LEDs, the cold-cathode fluorescent lamps (CCFLs) were 

used as the light source in LCDs. However, with the emergence of the high-efficiency white LEDs, 

CCFLs were gradually replaced as the light source in LCD. For a better distinction, the LCDs 

using white LEDs or red, green and blue (RGB) LEDs as the light source is called LED-backlit 

LCD. There are two types of LED-backlit LCDs based on the different arrangement of the LED. 

One type is called direct back-lit arrangement, where the LEDs are arrayed directly behind the 

screen as back-light source. The other type is called edge-lit LED arrangement, where the LEDs 

averagely sit at the edge of a screen with a special reflector (light guide) to reflect the light evenly 

to the screen. These two types of LED-backlit LCD have different advantages. The former has 

wider color gamut while the latter has less thickness. LED-backlit LCDs are widely used in TVs, 

computer screens and large high definition displays. 

 

1.2.4 Organic LED 

LED-backlit LCD using LEDs as backlight source is strictly not an LED displays. Nowadays, 
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OLEDs are used in small and high-resolution LED displays such as cellphone screens. The 

structure of an OLED is shown in Figure 1.5.  

 

Figure 1.5 The diagram of OLED structure. 

 

The main advantages of OLEDs compared to the traditional LEDs are, easy to fabricate large area 

of the device, mechanically flexibility and low cost. Besides this, the emission of OLEDs is 

broader, and the quality of the white light is better. However, the efficiency and lifetime of OLEDs 

are much lower than those of the traditional LEDs. Therefore, the history of performance 

improvement is about the history of OLEDs development. The internal quantum efficiency (IQE) 

of OLEDs can be given: 

𝜂𝐼𝑄𝐸 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠
= 𝜂𝑒/ℎ ∙ 𝜂𝑃𝐿 ∙ 𝜂𝑒𝑥𝑐𝑖               (1.2), 

where ηIQE, ηe/h, ηPL, and ηexci are the IQE, the charge balance factor, quantum yield, and fraction 

of excitons capable of radiative relaxation, respectively. Therefore, if we want to improve the 

efficiency performance of OLEDs, we need to improve the three product terms.  

 

First, in other to improve the charge balance factor ηe/h, we need to optimize the structures of the 

OLEDs. The earliest observation of electroluminescence (EL) in organic semiconductor was in 

the 1950s by André Bernanose et al. [17-20] In the 1960s and 70s, the structure of the early OLEDs 

consists of a single layer OLED (shown in Figure 1.6). [21,22] In 1987, two employees, Ching W. 

Tang, and Steven Van Slyke, working at Eastman Kodak made the first practical OLED, which 

was a bilayer OLED (shown in Figure 1.7). [23] The bilayer structure balances the different 

mobilities of the electrons and holes in the organic semiconductor materials. It also lowers the 

injection barriers of the electrons and holes of the organic semiconductor materials. Based on the 

property of the excitons in the organic semiconductor, we could keep optimizing the bilayer 

structure (shown in Fig 1.8). [24] This structure prohibits the exciton from diffusing to the 

electrodes and extinguishing because it confines the exciton within the narrow-gap materials.  
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Figure 1.6 The structure of the single layer OLED, where HOMO level is the highest occupied molecular orbit and 

LUMO level is the lowest unoccupied molecular orbit. 

 

 

Figure 1.7 The structure of the bilayer OLED. One of the ETL and HTL is the electroluminescent layer. 
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Figure 1.8 The structure of the optimized bilayer OLED. The energy gap of electroluminescent material is smaller 

than the energy gap of ETL or HTL. 

 

Secondly, to improve the ηPL and ηexci, we need to optimize the emitters of the OLEDs. For every 

OLEDs, the injected electrons and holes form 25% singlets and 75% triplets (shown in Figure 

1.9). Without the spin-orbital coupling, only the singlets can radiatively decay. Therefore, all first-

generation OLEDs used fluorescent emitters (singlet emitters), [24] the IQE limit is 25%. To take 

advantage of the triplets, phosphorescent emitters (triplet emitters) were used. In the molecules of 

the triplet emitters, there must be some heavy metal atoms (shown in Figure 1.10) [25,26]. The 

orbital magnetic field produced by these larger atomic nuclei is stronger enough to invert the spin 

of the electron due to those interactions and allow the triplet-singlet transition to occur. This made 

the IQE limit of the second-generation OLEDs to achieve a 100%. However, the too long triplet 

decay time is a major disadvantage of the second-generation OLEDs. In addition to the radiative 

recombination, there are two electronic transitions for the triplet decay: triplet-triplet annihilation 

and triplet-polaron annihilation. The too long triplet lifetime increases the fraction of the 

annihilation and decreases the efficiency (efficiency roll-off). Therefore, to avoid this issue, 

researchers invented a third generation OLEDs. The third-generation OLEDs still uses the singlet 

emitters (delay fluorescent emitters). [27-29] The new mechanism called thermal activated delay 

fluorescence (TADF), could eliminate the efficiency roll-off issue (shown in Figure 1.11). Because 

the energy gap between singlet excited state S1 and triplet excited state T1 is very small, it is 

therefore easy to raise triplet-singlet electronic transition without heavy metal atoms. Although 

the blue OLEDs with TADF emitters have met a breakthrough on external quantum efficiency 

(EQE) in 2014 by Adachi et al., [28,29] the efficiency performance still has a lot of room to improve.  
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Figure 1.9 Diagram of the ground singlet state S0, first singlet excited state S1 and first triplet excited state. The π is 

the bonding molecular orbit and π* is the antibonding molecular orbit. 

  

 

Figure 1.10 Two typical phosphorescent emitters from [25, 26]. 
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Figure 1.11 Diagram of TADF process. The requirement for TADF process is that the energy gap ΔEST between 

first singlet S1 and first triplet T1 should almost equal 0. This increases the possibilities of reverse intersystem 

crossing (RISC) process. 

 

1.2.5 Micro-LEDs 

 

Although OLEDs have been widely used on cellphone screens and other small displays, due to 

their intrinsic bad efficiency performance and short lifetime, most technology companies like 

Apple still think that OLEDs will not be the best choice of screens for the future. Presently, μ-

LEDs displays are considered as the new generation displays. The μ-LEDs technology scales the 

LEDs we see today to lengths of tens of microns or even microns and integrates the RGB colors 

LEDs on the same substrate as a μ-display. Compared to the OLEDs displays and LCD, μ-LEDs 

displays have the highest luminance, fastest speed, and highest contrast. However, there are still 

some drawbacks to the μ-LEDs technology which should be tackled before they become widely 

used.  

 

First, it is very difficult to integrate the RGB three colors LEDs on the same substrate. From 

section 1.2.2, we stated that different color LEDs need different luminescent semiconductor 

materials. One way to surmount this is by integrating the RGB three colors LEDs on Si substrates. 
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There are some technologies to transfer the GaAs based and GaN based LEDs onto a Si substrate, 
[30,31] but the costs are exorbitantly high. Another way is integrating RGB LEDs on the flexible 

substrate. This follows the development of the displays, but it may not possibly win the OLEDs 

due to the compatibility problems.  

 

Figure 1.12 Structure of GaN/InGaN μ-LEDs in microns dimension. The GaN/InGaN μ-LEDs form an array by 

etching process from [32]. 

 

The other drawback with the μ-LEDs is the efficiency performance, which is due to the surface 

recombination effect. During the early 21st century, some researchers fabricated GaN-based μ-

LEDs in microns dimension (shown in Figure 1.12), but the efficiency was lower than 1.5%. [32-

36] The reason for the low efficiency is due to the high surface recombination of the μ-LEDs. With 

the development of new technology, present researchers have fabricated some better μ-LEDs 

structures to suppress the surface recombination. One fabrication method called side-wall 

passivation is shown in Figure 1.13. Dupré et al. [37] applied this method and successfully 

fabricated an 8μm μ-LED within 873 x 500 pixels matrix with 16% EQE. Another method is the 

long thermal annealing of the device after etching. Tian et al. [38] used this fabrication technology 

and successfully fabricated a 6μm μ-LED with 10% EQE. These two technologies have their 

advantages and disadvantages, and none of them could be used for mass production currently. 

Therefore, this thesis provides some new LED designs to suppress the surface recombination and 

improve the efficiency performance.   

 



12 

 

 

Figure 1.13 Steps of the sidewall passivation process from [37]. 

 

1.3 Research Objective 

According to previous researches, quantum efficiency of GaN/InGaN significantly drops as size 

shrinks down. In this thesis, the research goal is to investigate the mechanism which dominates 

the size-dependent efficiency performance of GaN/InGaN μ-LEDs and find a way to effectively 

improve the quantum efficiency of GaN/InGaN μ-LEDs by analyzing the simulation and 

experimental results. 

 

1.4 Thesis Overview 

 

This thesis focuses on simulation and analysis of the GaN based μ-LEDs, especially smaller 

micron sizes (<10μm). Moreover, the new design is introduced to improve the efficiency 

performance of μ-LEDs in microns dimension. 

 

Chapter 2 introduces the internal quantum efficiency model with different radiative processes, 

including the wanted radiative recombination, unwanted auger recombination, and Shockley-

Read-Hall (SRH) recombination. The IQE model explains and summarized three main reasons to 
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which the efficiency droop problem at higher injected current density can be attributed when the 

GaN based LEDs are in bigger sizes. However, when the size shrinks down, the IQE model also 

explains that the high surface recombination, which arises due to different etching processes, can 

significantly decrease the efficiency of the GaN-based μ-LEDs. The simulated model is set up 

using Crosslight APSYS software, and the results show that by setting the surface recombination 

rate with reasonable parameters, the peak IQE value of μ-LEDs decreases from 53% to 4% when 

the size shrinks down from 100μm to 5μm.  

 

Chapter 3 describes the temperature-dependent measured efficiency performance on 50×50 μm2 

GaN based μ-LEDs, and showed great agreement with the simulation results, proving the 

reliability of the simulation. The unusual efficiency performance of the GaN based LEDs at low 

temperature can be attributed to the property of Indium and the high ionized energy of GaN: Mg. 

 

Chapter 4 introduces a new LED design with n-doped quantum barriers in the active region. 

According to previous research, the GaN-based LED with p-doped quantum barriers is a common 

strategy to relieve the efficiency droop problem by balancing the hole and electron concentration. 

However, when the size of GaN-based μ-LEDs shrinks down, this strategy becomes invalid. But 

with the GaN-based μ-LED with n-doped quantum barriers, the shrinking causes the IQE to 

increase. The reason is that the SRH recombination rate (surface recombination) in n-GaN is much 

smaller than in p-GaN. Under the tradeoff between electron-hole injection balance and non-

radiative SRH recombination, the 5×5 μm2 GaN-based μ-LEDs with n-doped quantum barrier and 

optimal doping concentration exhibit more than 100% efficiency improvement at 20A·cm-1 

compared to a conventional intrinsic multiple quantum wells (MQWs) based design. 

 

 

In summary, a comprehensive study of GaN based μ-LEDs, which entails the theoretical principles, 

model derivation, reliable simulation, analysis of test results and innovative construction, is 

reported in this thesis. Besides, this thesis also exhibits how surface recombination impacts on the 

efficiency performance of size-dependent GaN based μ-LEDs. The new LED structures proposed 

in this study can suppress the surface recombination and significantly improve the efficiency of 

the 5×5 μm2 GaN based μ-LEDs.   
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Chapter 2 Impact of Different Recombination on 

Efficiency Performance of Size-Dependent 

GaN/InGaN μ-LEDs 

 

2.1 Internal Quantum Efficiency Model of GaN/InGaN LEDs 

with different carrier recombination mechanisms 

2.1.1 Radiative Recombination 

In semiconductors, carrier generation and recombination are the most common processes to 

generate or eliminate free carriers, including electrons and holes. As shown in Figure 2.1, almost 

all the solids have similar electronic band structures which include conduction band, band gap and 

valence band structures, respectively. The bands below the valence band (including valence band) 

are almost filled and the bands above the conduction band (including conduction band) are almost 

empty. Only electrons in bands above the conduction bands can freely move and contribute to the 

electric current. Therefore, the phenomenon where electrons in the bands below the valence bands 

receive energy by heat-up or electric field and reach the conduction band is called carrier 

generation. The reverse process is called carrier recombination.  

 
Figure 2.1 The electronic band structure of solid materials. 
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Normally, the carrier generation and recombination processes can be classified based on the 

interaction with photons, phonons, other electrons or other holes during the processes. Therefore, 

the carrier generation and recombination processes involving photons are called photon absorption 

and radiative recombination. The wavelength of the emitted photon is determined by the bandgap 

energy of the semiconductor materials. In LED, this recombination process is what we need. 

Therefore, by using heterojunction QW structures and semiconductor materials with direct band 

gaps (shown in Figure 2.2), the radiative recombination process can play a major role in LEDs.  

 

 

Figure 2.2 Diagram of (a) direct bandgap and (b) indirect bandgap of a semiconductor. 

 

The radiative recombination rate Rrad is calculated by: 

𝑅𝑟𝑎𝑑 = Bnp, [39]                          (2.1) 

Where n and p are the concentrations of free electrons and holes and B is a constant so-called 

radiative capture probability or radiative coefficient for a given semiconductor. 

 

2.1.2 Auger Recombination 

The carrier generation and recombination processes involving high energy electrons are called 

impact ionization effect and Auger recombination (Auger effect). In the impact ionization effect, 

some high energy electrons collide with atoms in the semiconductor materials and transfer energy 

to the electrons in lower energy orbitals. These newly excited electrons jump to the higher energy 

orbitals and create electron/hole pairs. On the other hand, in Auger recombination (shown in 

Figure 2.3), instead of emitting photons, the released energy from electron/hole pairs 

recombination is transferred to some second electrons. The excited electrons collide with atoms 

of the semiconductor materials and relax back in the low energy orbitals. The Auger recombination 
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process also occurs with excited or high energy holes, which depends on or involved free carriers. 

Because the Auger recombination requires energy exchange between carriers, the probability of 

this process increases when the carrier density increases. The Auger recombination RA rate can be 

given by: 

𝑅𝐴 = 𝐶𝑛𝑛2𝑝 + 𝐶𝑝𝑝2𝑛, (4) [39]                     (2.2) 

Where Cn and Cp are constants called Auger capture probabilities or Auger coefficients for a given 

semiconductor.  

 

  

Figure 2.3 The views of the Auger effect. 

2.1.3 Shockley-Read-Hall Recombination 

Both the radiative recombination and the Auger recombination are a band to band one-step 

recombination processes. There is another two-step recombination process named SRH 

recombination (shown in Figure 2.4). This recombination process occurs due to the presence of 

defects in the semiconductor materials. The crystal defects or impurities modify the band 

structures and introduce trap levels in the forbidden band between the conduction band and 

valence band. The free electrons in the conduction band can relax back and be trapped in the trap 

levels. After a short period, the electrons in the trap levels relax back to the valence band with 

emission of photons or phonons. The SRH recombination rate can be given by [40]  

𝑅𝑆𝑅𝐻 =
𝑛𝑝−𝑛𝑖

2

𝜏𝑝(𝑛+𝑛1)+𝜏𝑛(𝑝+𝑝1)
,                      (2.3) 
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Where ni is the intrinsic carrier concentration of the given materials, τp and τn are the 

recombination lifetime for holes and electrons respectively. The parameters n1 and p1 depend on 

the trap level Et and are given by 

𝑛1 = 𝑁𝑐exp (
−𝐸𝑐+𝐸𝑡

𝑘𝑇
),                         (2.4) 

𝑝1 = 𝑁𝑣exp (
−𝐸𝑡+𝐸𝑣

𝑘𝑇
),                         (2.5) 

Where Nc and Nv are the carrier effective density of states for electrons and holes respectively, k 

is the Boltzmann constant and T is the temperature. 

 

Figure 2.4 The view of SRH recombination (trap-assisted recombination), Et is the energy level of the traps. 

 

2.1.4 Internal Quantum Efficiency Model 

Normally, the EQE of LED is a product of two parts: the IQE and the extraction efficiency (ηc). 

Generally, the extraction efficiency can be considered as a constant when the injection current 

changes. Moreover, in μ-LEDs, the extraction efficiency which accounts for the photon lost is 

close to 1 due to the small volumes of μ-LEDs. Therefore, we considered the IQE as the key 

parameter to address the efficiency droop problem. 

 

As mentioned above, the injected electrons and holes can have three types of recombination in the 

QWs or outside of the QWs. Therefore, we can define ηIQE as a fraction of the injected current 

which can generate photon: 

𝜂𝐼𝑄𝐸 =
𝐼𝑟𝑎𝑑

𝐼𝑡𝑜𝑡𝑎𝑙
.                                (2.6) 

The total injected current Itotal can be divided into 4 parts, Irad, IAuger, ISRH and Ileak (shown in Figure 
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2.5). The leakage current Ileak includes all the recombination process outside the QWs and we can 

define the injection efficiency ηinj as  

𝜂𝑖𝑛𝑗 =
𝐼𝑡𝑜𝑎𝑙−𝐼𝑙𝑒𝑎𝑘

𝐼𝑡𝑜𝑡𝑎𝑙
,                             (2.7) 

and the Eq. 2.7 can transform to  

𝜂𝐼𝑄𝐸 =
𝜂𝑖𝑛𝑗𝐼𝑟𝑎𝑑

𝐼𝑟𝑎𝑑+𝐼𝑆𝑅𝐻+𝐼𝐴𝑢𝑔𝑒𝑟
.                         (2.8) 

To more simplify Eq. 2.8, the simple ABC model is introduced as [41] 

𝜂𝐼𝑄𝐸 =
𝜂𝑖𝑛𝑗𝐵𝑁2

𝐴𝑁+𝐵𝑁2+𝐶𝑁3.                           (2.9) 

The ABC model in Eq. 2.9 is based on Eq. 2.1, 2.2 and 2.3, where N is the carrier density in QWs 

and A, B, C are the SRH recombination coefficient, the radiative coefficient, and the Auger 

coefficient, respectively. With the ABC model researchers can now analyze the initial reasons for 

the efficiency droop in GaN-based μ-LEDs. 

 

 

Figure 2.5 View of the total current from [41], where A, B, C are the current for SRH recombination, radiative 

recombination, and Auger recombination, respectively. 
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2.2 Major Mechanisms of Efficiency Droop Phenomenon in 

GaN/InGaN LEDs 

 

As a solid-state lighting source with high luminance and long life-time, the gallium nitride 

(GaN)/indium gallium nitride (InGaN) micro light-emitting diodes (μ-LEDs) is considered a 

promising technology for many applications, including as light source for optogenetic neuron 

stimulation, [42,43] micro-indicators [44] and self-emissive micro-displays. [45,46] However, since blue 

LEDs are required for making any kind of white LEDs, the GaN/InGaN LEDs can be considered 

the most important LEDs compared to all other material-based LEDs. Although blue GaN/InGaN 

LEDs have made some significant progress, there are still some problems which should be 

addressed. The biggest challenge with the GaN/InGaN LEDs is so-called efficiency droop. It 

describes a phenomenon in which the IQE (EQE) decreases gradually as the injected current 

increase. The efficiency droop phenomenon has been attributed to three main cause: Auger 

recombination, low hole injection and carrier overflow.  

 

2.2.1 Efficiency Droop in GaN/InGaN LEDs: Auger Effect 

 

As we mentioned in section 2.1.2, the probability of Auger recombination increases when the 

carrier density increases. At low injection current level, the Auger recombination process can 

usually be ignored; but at high injection current level, Auger recombination starts to dominate the 

recombination processes. Therefore, we can simplify Eq. 2.9 into  

𝜂𝐼𝑄𝐸 =
𝜂𝑖𝑛𝑗𝐵

𝐶𝑁
.                             (2.10) 

According to Eq. 2.10, we see that considering ηinj, B and C as constants, ηIQE and N (injected 

current) are inversely proportional. In 2013, Iveland et al. [47] claimed that they have proven that 

Auger recombination is the dominant mechanism for efficiency droop by a direct measurement. 

They collected high energetic electrons generated by Auger recombination emitted from the QW 

regions with the Faraday cup (shown in Figure 2.6). The presence of the Auger electrons is 

exhibited by high energy peaks in the electron energy distribution curves. The authors discovered 

that the Auger electron current peaks are simultaneously well correlated with the observed 

efficiency droop. This measured results indeed confirmed that Auger recombination process 

induces the efficiency droop phenomenon in GaN/InGaN LEDs, but it cannot prove whether 

Auger recombination is the only cause.     
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Figure 2.6 (a) The experiment to collect high energetic electrons generated by Auger recombination emitted from 

the QW regions with the Faraday cup in [47]; (b) the energy distribution curves for different injection currents from 

[47]. When current increases, high energy peaks which appear around 2 eV represent the generation of 

hot carriers by Auger effect.  

 

2.2.2 Efficiency Droop in GaN/InGaN LEDs: Carrier 

Overflow  

 

Although heterojunction QW structure is a very efficient structure to harvest injected current that 

recombines in selected semiconductor materials, a portion of the injected carriers still bypass the 

QW structure. The built-in electronic polarization in GaN/InGaN LEDs due to the absence of 

centrosymmetry in the wurtzite crystal structure aggravates the carrier overflow problem. [48] The 

built-in electric field F is obtained by Gauss’s law: 

F =
𝑞𝜎𝑠

𝜀𝑠
,                                 (2.11) 

Where q is the elementary charge, σs is the sheet density of fixed sheet charge at heterojunction 

and εs is the semiconductor dielectric constant. The IQE of GaN/InGaN LEDs are very sensitive 

to the built-in electric field F due to the quantum-confined Stark effect. The internal polarization 

field and the junction field of state-of-art GaN/InGaN LEDs which grow on an n-type Ga-polar c-

plane GaN substrate have inverse directions (shown in Figure 2.7). When the forward-bias current 

injects into the LEDs, the electrons are accelerated by the built-in electric field and overflow the 
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QW regions. Our rough calculation estimates that half of the efficiency droop is due to the 

polarization electric field.  

 

 

Figure 2.7 The view showing the direction of the polarization field and junction field in GaN/InGaN LED. [50] 

 

To control the polarization effect, the researchers have added an extra AlGaN layer in-between the 

p-type regions and QW regions, which is called the electron blocking layer (EBL). [49] This layer 

with appropriate Al composition can block the electrons which overflow through the QW regions 

and improve the efficiency performance of the GaN/InGaN LEDs. The P-I-N LED structure with 

EBL is the standard LED structure which we currently use. This year, Dr. Turski with his 

teammates proposed that GaN/InGaN LEDs with bottom tunnel junction can control the 

polarization effect and improve the efficiency performance of GaN/InGaN LEDs at high injection 

current density. [50] The bottom tunnel junction structure (shown in Figure 2.8) can make the 

polarization electric field and junction field with the same direction but keep the high-quality n-

type GaN substrate. The injected electrons in the forward-bias current are slowed down by the 

polarization electric field which eliminates the carrier overflow problem. 
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Figure 2.8 The structure of GaN/InGaN LEDs with bottom tunnel junction structure. [50] 

2.2.3 Efficiency Droop in GaN/InGaN LEDs: Hole 

Transportation Problem 

GaN/InGaN LEDs are bipolar devices and require both holes and electrons to be effectively 

injected and uniformly distributed in the QWs active regions. Therefore, a high-efficiency 

GaN/InGaN LEDs prefer balanced holes and electrons distribution in the QWs. However, the 

mobilities of the holes and electrons in GaN/InGaN have a large difference. The maximum 

electron mobility μmax,e in GaN is around 1000 cm2V-1s-1 while the maximum hole mobility μmax,h 

in GaN is around 170 cm2V-1s-1. [51] Following the carrier density increase, the electron and hole 

mobility decreases and got close to the minimum value. The minimum electron mobility μmin,e in 

GaN is around 55 cm2V-1s-1 and the minimum hole mobility μmin,h in GaN is around 3 cm2V-1s-1. 

Therefore, the recombination center where the doping concentration of electrons can balance the 

doping concentration of holes would be near the p-type layer. This phenomenon reduces the 

efficiency performance and would be more serious when the injected current increase.  

 

There are some methods to improve hole transport in GaN/InGaN LEDs. One of the popular 

methods is p-doped quantum barriers. [52] The p-doped quantum barriers increase the injection 

efficiency of holes in the QWs active region. Adjusting the barriers thickness or the EBL thickness 

can also improve the hole transport. [53] However, due to the large difference between the hole and 

electron mobilities, the imbalance between electrons and holes in GaN cannot be fully eliminated 

without the introduction of other materials. 
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2.2.4 Efficiency Droop in GaN/InGaN μ-LEDs: Surface 

Recombination 

To show how surface recombination affects the IQE, we initially began with a derivation of Eq. 

2.9, the IQE ABC model. To indicate that ηIQE is a function of carrier density N, we calculated the 

maximum value of ηIQE by computing the derivate of Eq. 2.9. When dηIQE/dN = 0, ηIQE reaches 

the maximum value. Therefore, we deduced that the peak position of carrier density is given by 

𝑁𝑝𝑒𝑎𝑘 = √𝐴/𝐶,                                (2.12) 

and the maximum value of ηIQE is given as 

𝜂𝐼𝑄𝐸,𝑚𝑎𝑥 =
𝜂𝑖𝑛𝑗𝐵√𝐴

2𝐴√𝐶+𝐵√𝐴
.                           (2.13) 

According to Eq. 2.13, we can see that if SRH recombination coefficient A increases, the 

maximum value of ηIQE decreases. Previous researchers show that, although there are a large 

number of threading dislocations (TDs) in the InGaN active regions, the IQE of GaN/InGaN LEDs 

is higher than every other III-V compound semiconductor-based LEDs. [54] Also compared to other 

III-V compound semiconductor-based LEDs, the GaN/InGaN LEDs are less sensitive to the bulk 

defects. 

 

Besides, the surface recombination which is also a kind of SRH recombination can usually be 

ignored in GaN/InGaN LEDs. Also observed is that almost all the etching procedure, such as 

plasma etch for defining the shape of micro-LED mesas or wet etching, will severely disrupt the 

crystal lattice and produce surface recombination defects. Recombination defects near the surface 

will deplete the carriers in this region and draw carriers from the surrounding regions, resulting in 

lateral leakage current and drastic efficiency drop. The most important parameter which is the 

surface recombination velocity (SRV) reflects the impact of the surface recombination on 

efficiency. SRV describes how fast the carriers drift toward the recombination surface. The other 

related parameter to the SRV is the diffusion length of the electrons and holes. Both parameters 

play important roles in determining the device efficiency. The SRV in GaN is typically around 

1×102 cm/s to 1×105 cm/s. [55] The reason that the surface recombination in GaN/InGaN LEDs 

can be ignored is that the SRV in GaN and InGaN is much smaller than those of other III-V 

compound semiconductors. However, when the size of μ-LEDs shrinks down to a few 

micrometers, the efficiency performance of GaN/InGaN μ-LEDs suffers a high surface 

recombination rate. [56-58]  

 

The reason that the surface recombination plays a key role in the efficiency performance of micro-

level μ-LEDs is due to the high surface area to volume ratio. Normally, to calculate the leakage 

current due to the surface recombination on the side-wall, only the lateral current was counted. 

Therefore, only the side-walls surface area to volume ratio was calculated. For a GaN/InGaN LED 
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with 100μm×100μm×2μm mesa, the side-wall surface area to volume ratio equals 0.04. However, 

for a GaN/InGaN μ-LED with 5μm×5μm×2μm mesa, the side wall surface area to volume ratio 

equals 0.8. That is 20 times higher than the former LED. With a similar surface defect density, the 

SRH recombination coefficient should be 20 times higher as well. 
 

The surface recombination rate is given by: 

𝑅𝑠 =
𝑛𝑝−𝑛𝑖

2

𝑝+𝑛+2𝑛𝑖cosh (
𝐸𝑖−𝐸𝑠𝑡

𝑘𝑇
)

𝑁𝑠𝑡𝑣𝑡ℎ𝜎,                      (2.14) 

where p and n are the hole and electron concentrations at the surface region, Est is the energy level 

of the surface defect, Nst is the density of the surface defect, vth is the thermal velocity, and σ is 

the capture cross-section of the surface defect. The parameter SRV vs is given by: 

𝑣𝑠 = 𝑁𝑠𝑡𝑣𝑡ℎ𝜎.                              (2.15) 

The Eq. 2.14 is almost identical to the Eq. 2.3, the SRH recombination rate expression. The only 

difference is that the parameter Nst in Eq. 2.14 is a 2D parameter. To easily evaluate a reasonable 

value of SRV, a simple equation is given as: [59,60] 

𝑣𝑠 = 𝐴′ × 𝐷,                               (2.16) 

where A’ is the SRH surface recombination coefficient and D is the diameter of the device mesa. 

The reasonable parameter A’ for a top-down etched μ-LED without the use of expensive sidewall 

passivation treatment can be found in reference [61]. The calculated SRV at room temperature 

(300 K) is between 2×104 cm/s to 3×104 cm/s. Here, we set the SRV as 3×104 cm/s at room 

temperature and the simulation tool APSYS is employed to simulate GaN/InGaN μ-LEDs. 



25 

 

2.3 3D Modeling of GaN/InGaN LEDs in Crosslight APSYS 

APSYS, Advanced Physical Models of Semiconductor Devices, is based on the 2D/3D finite 

element analysis of the electrical, optical and thermal properties of modern semiconductor devices. 
[62] To simulate the MQW GaN/InGaN LEDs, some models in APSYS are used. The most 

important ones are the drift-diffusion model and self-consistent MQW model. The running steps 

to construct the LED structure and to finish the simulation are also given in chapter 2.3.3. 

 

2.3.1 Drift-Diffusion Model in Semiconductor 

The Poisson’s equation is the basic equation to describe the behavior of semiconductor device: 

∇ ∙ ∇ϕ = −
𝑞

𝜀
(𝑝 − 𝑛 + 𝑁𝐷

+ − 𝑁𝐴
− + 𝜌𝑝 − 𝜌𝑛),                 (2.16) 

Where Φ is the electrostatic potential; 𝑁𝐷
+ and 𝑁𝐴

− are the ionized donors and acceptors; ρp and 

ρn are the fixed charge from traps. The other basic equations are the current continuity equations 

for the electrons and holes: 

∇ ∙
𝐽𝑛

𝑞
=

𝜕𝑛

𝜕𝑡
−

𝜕𝑁𝐷
+

𝜕𝑡
+

𝜕𝜌𝑛

∂t
+ 𝑅,                      (2.17) 

∇ ∙
𝐽𝑝

𝑞
=

𝜕𝑁𝐴
−

𝜕𝑡
−

𝜕𝑝

𝜕𝑡
−

𝜕𝜌𝑝

𝜕𝑡
− 𝑅,                      (2.18) 

Where Jn and Jp are the electron and hole current density; R is the recombination rate for electrons 

and holes including all the recombination types mentioned earlier in this work. 

 

Int chapter 3, we will check the reliability of the simulation result by measuring the temperature-

dependent performance of GaN/InGaN μ-LEDs. For the accuracy of the simulated temperature-

dependent performance, incomplete ionization of the dopants model is also used in the simulation. 

The possibilities of occupancy for electron and hole shallow traps (dopants), which describes the 

degree of incomplete ionization, are given by: [59] 

𝑓𝐷 =
1

1+𝑔𝑑
−1exp (

𝐸𝐷−𝐸𝑓𝑛
𝑘𝑇

)
,                        (2.19) 

𝑓𝐴 =
1

1+𝑔𝑎
−1exp (

𝐸𝐴−𝐸𝑓𝑝

𝑘𝑇
)

,                        (2.20) 

where Efn and Efp are the quasi-Fermi level of electrons and holes; ED and EA are the energy level 

of the shallow donors and acceptors; degeneracy levels gd and ga are automatically set to 2 and 4. 

2.3.2 Self-Consistent MQW Model in GaN/InGaN LEDs 

MQW models are one of the most complex models used in APSYS. To reach the accurate density 
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profiles and potential distribution in MQW structure, there are a few steps required to finish the 

calculation.  

 

Firstly, we assumed that the MQW structure in LEDs is a flat-band condition at equilibrium. We 

also confined the carrier density within the well. The local electron density n is given as [59] 

n(𝑥, 𝑦, 𝑧) =
1

𝑑𝑤
∑ 𝜌𝑗

0𝑘𝑇

𝑗

ln [1 + 𝑒𝑥𝑝 [
𝐸𝑓𝑛

(𝑥, 𝑦, 𝑧) − 𝐸𝑗(𝑥, 𝑦, 𝑧)

𝑘𝑇
]] ,    𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙 

 = 0,   outside the well                                 (2.21) 

where Ej is the confined energy level in QWs; dw is the thickness of QWs; 𝜌𝑗
0 is the density of 

the states of QWs. Eq. 2.21 gives the initial density profiles and potential distribution. 

 

Secondly, still at equilibrium, we use the self-consistent model with the calculated potential from 

the first step. The electron density n in the self-consistent model is given as [59] 

n(x, y, z) = ∑ 𝑔𝑛
𝑗 (𝑦, 𝑧)𝜌𝑗

0𝑘𝑇𝑙𝑛 [1 + exp [
𝐸𝑓𝑛

(𝑥,𝑦,𝑧)−𝐸𝑗

𝑘𝑇
]]𝑗 ,                (2.22) 

Where we assumed that the QW is parallel to the x-axis and 𝑔𝑛
𝑗
(𝑦, 𝑧) is the electron wave 

function. The electron wave function and confined energy level Ej are obtained from the 

previous calculation at different bias. Eq. 2.22 gives the new density profiles and potential 

distribution.  

 

Thirdly, by iterating the second step, the self-consistent numerical results of the density profiles 

and potential distribution are finally achieved. Once we achieved the self-consistent results, we 

increased the voltage bias and repeated the three steps above. By repeating these three steps 

hundreds or thousands of times, we finally obtained the simulation results. 

 

2.3.3 Running Steps for APSYS    

1. We constructed the “*.layer” file by setting detailed different information layers in the growth 

direction. 

2. We run the “*.layer” to generate the “*.geo” files and run the “*.geo” to generate the mesh 

file. 

3. We run the manual designed “*.sol” file by main equation solver and obtained the simulation 

results. 
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2.4 Simulated Results of GaN/InGaN μ-LEDs with Different 

Sizes   

2.4.1 Simulated LED Structures and Parameters 

To investigate the impact of surface recombination on the efficiency of size-dependent 

GaN/InGaN based μ-LEDs, simulations for the LED structures described below were carried out 

with APSYS modeling software. To simulate the IQE and EQE of GaN/InGaN μ-LEDs, we select 

few square-shaped devices with varying edge sizes of 5, 10, 50, and 100 μm. The LED structure 

is shown in Figure 2.9. The GaN/InGaN MQWs LEDs are grown on (0001) sapphire substrates 

with emission wavelength of 440 nm. The bottom layer of this device is made of 0.5-μm-thick n-

type GaN with Silicon doping concentration of 1×1018 cm-3 and the top p-type GaN layer is made 

of 0.2-μm-thick layer with Mg-doping concentration of 1×1018 cm-3. The QWs in the active region 

include 6 pairs of undoped 3-nm-thick In0.18Ga0.82N QW layers with 40-nm-thick undoped GaN 

barriers in the middle of the QWs. Between the active region and the p-type GaN layer, a Mg-

doped Al0.15Ga0.85N layer is deposited as an EBL. The Ti/Au metal layers are sputter coated as a 

p- or n-ohmic contacts. The parameters used in this simulation work and their dependency on 

device operating temperature are summarized in Table 2.1 which includes SRV, screening 

coefficient of polarization effect s, [62] radiative recombination coefficient B, [41] bulk SRH lifetime 

τn and τp, 
[80,81] and Auger coefficient C. [82] The electron and hole mobility values are highly 

dependent on the carrier density and device temperature which can be found in technical manual 

of APSYS. [62] After a few errors and trials, we set the value of most important parameter SRV as 

3×104 cm/s for our simulation work, because it reasonably agrees with our experimental data for 

a 50×50 μm2 μ-LED. 

 

Name Value (at room temperature) Temperature dependency 

B 1×10-11 cm3 s-1 B∝T-1 

τn   46 ps  τ∝T-0.5 

τp 12 ns τ∝T-0.5 

C 10−34 cm6 s −1 C∝T0.5 

s 0.5 Independent 

SRV 3×104 cm s-1 SRV∝T0.5 

Table 2.1 The list of parameters and their corresponding values used in simulation along with their dependency on 

temperature. All these values are related to room temperature. 
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Figure 2.9 Structure of the simulated GaN/InGaN μ-LEDs. 

2.4.2 Size-dependent Efficiency Performance 

 

Figure 2.10 IQE as a function of current density (in log scale) curves of 4 different size μ-LEDs at room 

temperature. 

 

Figure 2.10 shows the simulation results of the size-dependent efficiency performance of 

GaN/InGaN μ-LEDs at room temperature. The simulation results clearly showed that the IQE 

value significantly decreases as the device size shrinks, e. g., the peak IQE values drop from 54% 

for the 100×100 μm2 and 47% for the 50×50 μm2, 15% for the 10×10 μm2 and around 5% for the 

5×5 μm2. This simulation results proved that the impact of surface recombination increases when 

the size decreases. Observation from Figure 2.10 indicates that as the size shrinks down, the peak 

positions of the IQE curves shift to the higher current density, e. g., the peak IQE positions shifted 

from around 10 A•cm-2 for the 100×100 μm2 and 15 A•cm-2 for the 50×50 μm2, 56 A•cm-2 for the 
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10×10 μm2 and larger than 100 A•cm-2 for the 5×5 μm2. This can be explained by Eq. 2.12. As 

mentioned earlier, the impact of surface recombination increases as the size shrinks down, which 

also means the SRH recombination coefficient A increases. If we assume the Auger coefficient C 

as a constant, the peak position N=(A/C)0.5 increases following the increase in A. That is why the 

peak position shifted towards the higher current density. This also indicates that efficiency droop 

at higher injection current density is no longer accounts for the reduction of the efficiency 

performance of GaN/InGaN μ-LEDs when the size shrinks down to 5×5 μm2. The new factor 

accounting for the efficiency droop of the micron size GaN/InGaN μ-LEDs at higher injection 

current density is the low maximum value of the IQE limited by the high surface recombination 

rate.  

2.4.3 Size-dependent J-V Characteristic 

 

Figure 2.11 J-V curve of 4 different size μ-LEDs at room temperature. 

 

Figure 2.11 shows four curves of GaN/InGaN μ-LEDs with different sizes at room temperature. 

The simulation results show that the driven voltage increases at the same current density when the 

size shrinks down. This phenomenon is also attributed to the high surface recombination in small 

size GaN/InGaN μ-LEDs. The high-density surface defects drift the free electrons and holes, thus, 

reduces the mean free path of electrons and holes in the injected current direction and increasing 

the resistivity of the device. Figure 2.11 shows the ideal IV curve of the devices with uniform 

current spreading. In reality, the ununiform current spreading of the devices with larger size results 

in higher resistance and larger voltage bias. 
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2.5 Conclusion 

In this chapter, the impact of surface recombination on the efficiency of size-dependent 

GaN/InGaN μ-LEDs is investigated. The IQE model is introduced to analyze the mechanism that 

can affect the efficiency of GaN/InGaN μ-LEDs. Except for the Auger recombination, carrier 

overflow, and hole transportation, surface recombination plays the most important role in the 

efficiency performance when the size of GaN/InGaN μ-LEDs shrinks down to a few microns. By 

setting up the parameters and structures of GaN/InGaN μ-LEDs in simulation tool APSYS, the 

simulation results corroborate this assertion and show that the IQE value decreases from 54% for 

100×100 μm2 devices to 5% for 5×5 μm2 devices. The simulation results also exhibit that the IQE 

peak position shifts from 10 A•cm-2 for 100×100 μm2 devices to >100 A•cm-2 for the 5×5 μm2 

devices. These simulation results provide a great reference to the new design of 5×5 μm2 

GaN/InGaN μ-LEDs for efficiency improvement. 
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Chapter 3 Simulation Reliability Confirmation: 

Temperature-dependent Efficiency Performance 

of GaN-Based μ-LEDs 

3.1 Temperature-dependent Measurement   

To verify the reliability of the simulation, our simulation results were compared to and confirmed 

by the experimental data measured from a 50×50 μm2 μ-LED. The structure of the device is as 

shown in Figure 2.9. The detailed parameters of the device are the same as the information 

provided in section 2.4.1. The temperature-dependent efficiency performance and J-V 

characteristic are measured and compared with the simulation results.  

 

3.1.1 Simulated and Measured J-V Characteristic 

 
Figure 3.1 The measured curve compared to the simulated curve at different temperatures. 

 

The temperature-dependent current-voltage characteristic curves of the device are plotted in 

Figure 3.1, which shows an excellent agreement between the simulation data in solid lines and 

experimental data in different symbols from 80 K to 300 K.  
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3.1.2 Simulated and Measured J-IQE (EQE) Characteristic  

 
Figure 3.2 The measured EQE compared to the simulated IQE (a) current-density-dependent (in log-scale) 

efficiency at different temperatures (the measured current density range is from 0.4 to 20 A/cm2); (b) temperature-

dependent efficiency at 2A/cm2. 

 

Figure 3.2(a) shows the simulated and measured IQE (EQE) plots as a function of current density 

at different operating temperatures. We find a good agreement between the experimental data and 

the simulation result at 300 K and a reasonable agreement at low temperature from 80 K to 140 K 

with some deviation. The small discrepancies can be attributed to two reasons. Firstly, the 

simulated model in APSYS does not include the indium segregation phenomenon in the active 

region of a GaN/InGaN μ-LED. [63] Secondly, the p- or n-contacts in APSYS are considered as 

ohmic contacts and ignored the contact resistances. Figure 3.2(b) shows the measured relative 

EQE at different temperatures from 20 K up to 300 K at 2 A/cm2 bias current density. As expected, 

when the temperature decreases from 300 K to 140 K, the relative EQE increases which is 

attributed to the reduction of non-radiative recombination fraction in the active region. However, 

when the temperature drops below 120 K, the EQE starts decreasing significantly.  
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3.2 Mechanisms for Degraded Performance of GaN/InGaN μ-

LEDs at low temperature 

The EQE deterioration at low temperature only occurs in GaN/InGaN μ-LEDs. For other optical 

devices, the efficiency performance at low temperature is well enhanced due to the reduction of 

non-radiative recombination fraction in the active region. Two mechanisms could account for this 

phenomenon: the fluctuation of Indium composition in the QWs and the high activation energy of 

Mg-acceptor Mg-doped p-type GaN.  

3.2.1 The Fluctuation of Indium Composition in QWs 

The fluctuation of indium composition was indicated by the blue- and red-shift in the EL spectrum 

of InGaN/GaN LEDs when the temperature decreases from 300 K to 5 K (shown in Figure 3.3). 

[64-67] Because indium tends to segregate into 2 - 3 nm clusters randomly, the optical emission 

efficiency of the LEDs suffers from this indium non-uniform distribution in the InGaN QW due 

to the carrier injection overflow. Thus, the efficiency degradation becomes more severe at low 

temperatures. [63,68] However, many other researchers believed that the indium cluster problem 

could be a good thing for the efficiency performance of GaN/InGaN μ-LEDs, as it allows defect-

insensitive luminescence in InGaN QWs and LEDs regardless of the very high dislocation 

densities. Therefore, the properties of Indium may not be the major mechanism that account for 

the efficiency of GaN/InGaN μ-LEDs at low temperature. 

 
Figure 3.3 Values of peak energy shift as a function of temperature in different colors GaN/InGaN LEDs from [64]. 
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3.2.2 High Activation Energy of Mg Acceptors Mg-doped p-

type GaN and AlGaN  

The major reason for the performance of GaN/InGaN μ-LEDs at low temperature is the the high 

activation energy of Mg acceptors in GaN (~0.15 eV) and AlGaN (~0.25 eV), [69-72]] which 

significantly decreases the activated acceptor concentration at lower temperature and results in 

rare activated acceptors and poor hole transportation in p-type region. As a result, the total device 

resistance increases which eventually leads to higher bias voltage requirement at same applied 

current density shown in Figure 3.1. On the other hand, the activation energy of Si donors (~0.02 

eV) in GaN is comparatively low, [83] which results in abundance of activated donors and leads to 

good electron transportation at low temperature. This big number difference between holes and 

electrons shifts the recombination balance zone from QW’s region to the p-type region and 

degrades IQE. This carrier imbalance is responsible for efficiency droop as well at high bias 

current density and low device temperature as shown in Figure 3.2.  

 

Figure 3.4 Activation energies of Mg acceptors in Mg-doped AlGaN, GaN, and InGaN as a function of the band-gap 

energies from reference [70-72]. 
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3.3 Conclusion 

The measured and simulated temperature-dependent efficiency performance of GaN/InGaN μ-

LED exhibited good agreement with each other and proved the reliability of our simulation 

methods in this thesis. The major mechanism that explained the large degradation of the EQE 

below 150 K is the high activation energy (>0.15 eV) of the Mg acceptor in Mg-doped GaN and 

AlGaN, which is much higher than the activation energy (<0.02 eV) of the Si donor in Si-doped 

GaN. The big difference in carrier transportation of electrons and holes in GaN at low temperature 

results in the substantial efficiency drop. 
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Chapter 4 GaN-Based μ-LEDs with N-doped 

Quantum Barriers 

4.1 μ-LEDs with Doped Quantum Barriers 

4.1.1 The Structure of GaN/InGaN μ-LEDs with Doped 

Quantum Barriers 

The common LED structure in Figure 2.9 has MQWs and quantum barriers. Normally, the GaN 

quantum barriers are undoped. However, sometimes researchers use doped GaN as the quantum 

barrier layers. It has been discovered that the GaN/InGaN μ-LEDs with doped quantum barriers 

can improve the efficiency performance at some working current density compared to the μ-LEDs 

with un-doped quantum barriers. Figure 4.1 shows the GaN/InGaN μ-LEDs with doped quantum 

barriers. 

 

Figure 4.1 Structure of MQW GaN/InGaN μ-LEDs with doped quantum barriers. 

4.1.2 GaN/InGaN μ-LEDs with P-doped Quantum Barriers 

As mentioned in section 2.2.3, the hole transportation problem in GaN/InGaN limits the efficiency 

performance of GaN/InGaN μ-LEDs at higher injected current density. One of the popular 

methods for eliminating this problem is using p-doped quantum barriers. Han et al., [73] Xie et al. 
[74] and Ji et al. [75] respectively proved that p-doped quantum barriers can affect the hole transport 
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and distribution. Figure 4.2 exhibits the distribution of the holes in the QW active regions of 

GaN/InGaN μ-LEDs with and without p-doped quantum barriers. The hole distribution in the 

GaN/InGaN μ-LEDs with p-doped quantum barriers is more uniform, hence, the recombination 

center moves to the n-type layer.  

 

Figure 4.2 The hole distribution in the QW active regions of GaN/InGaN μ-LEDs with and without p-doped 

quantum barriers. The grey regions are the QWs. 

 

4.1.3 GaN/InGaN μ-LEDs with N-doped Quantum Barriers 

Due to the hole transportation drawback, most previous researches did not indicate any cases of 

GaN/InGaN LEDs with n-doped quantum barriers. Shi et al. [76,77] exhibited a kind of high-speed 

GaN/InGaN LEDs with n-doped quantum barriers. Otsuji et al. [78] and Takahashi et al. [79] also 

showed that GaN/InGaN LEDs with n-doped InGaN electron reservoir layers (ERL) have better 

performance at low temperature. Though none of these discoveries were related to efficiency 

performance. 

 

In this work, we presented that GaN/InGaN μ-LED with n-doped quantum barriers can improve 

the efficiency of GaN/InGaN μ-LEDs in microns dimension (<10um). Although the hole 

transportation problem still exists at the micron levels GaN/InGaN μ-LEDs, this could be 

explained by analyzing the mechanism of the SRH recombination. The rate of the SRH 
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recombination is given in Eq. 2.3 we can slightly modify the expression of Eq. 2.3 into: 

𝑅𝑆𝑅𝐻 =
𝑛𝑝−𝑛𝑖

2

𝜏𝑝
𝑛

𝑓𝑛
+𝜏𝑛

𝑝

1−𝑓𝑝

,                            (4.1) 

Where fn and fp is the trap occupation probabilities (p for holes and n for electrons). With the 

same doping concentration, the SRH recombination rate in GaN/InGaN LEDs with n-doped or 

p-doped barriers are simplified to:  

𝑅𝑆𝑅𝐻
𝑛 =

𝑝0𝑓𝑛

𝜏𝑝
,                                  (4.2) 

𝑅𝑆𝑅𝐻
𝑝

=
𝑛0(1−𝑓𝑝)

𝜏𝑛
,                               (4.3) 

Where n0 and p0 are the electron and hole concentrations in the intrinsic GaN barrier layers and 

are approximately equal to each other. Since the trap occupation probabilities 𝑓𝑛 in Eq. 4.2 and 

1 − 𝑓𝑝  in Eq. 4.3 roughly equals to each other as well, the SRH recombination rate is therefore 

inversely proportional to the SRH lifetime (𝜏𝑝 or 𝜏𝑛). In GaN, 𝜏𝑝 (about 7ns) [80] is much larger 

than 𝜏𝑛 (about 0.1ns). [81] Therefore, the SRH recombination rate 𝑅𝑆𝑅𝐻
𝑛  in devices with n-doped 

barriers is much smaller than those with p-doped barriers. For μ-LEDs with small dimension, the 

surface recombination, which is a kind of SRH recombination, becomes dominant in the efficiency 

performance because of the high surface areas to volumes ratio. Therefore, smaller 𝑅𝑆𝑅𝐻
𝑛  is the 

reason why GaN/InGaN μ-LEDs with n-doped barriers performs better than devices with undoped 

or p-doped barriers in small dimensions (less than 10um). 

 

4.2 Simulation Results of GaN/InGaN μ-LEDs with Different 

Sizes and Different Doping Profile in Quantum Barriers 

4.2.1 Efficiency Performance 

Figure 4.3 shows the simulated IQE results of μ-LEDs with different dimensions (100×100, 50×50, 

10×10, 5×5 μm2) and quantum barriers with different doping profiles (intrinsic, p-doped at 5×1017 

cm-3, n-doped at 5×1017 cm-3) at room temperature. The simulation results clearly showed that the 

IQE value significantly decreases as the device size shrinks, e. g., the peak IQE values drop from 

49%-57% for 100×100 μm2 (Fig. 4.3 (a)) to 2%-8% for 5×5 μm2 (Fig. 4.3 (d)). Moreover, the IQE 

is strongly affected by doping profiles. As expected, larger-size devices with p-doped barrier 

layers (Fig. 4.3 (a) (b)) exhibit better performance in most of the common operation current 

density range (1 A/cm2 to 50 A/cm2) in comparison to counterparts with n-doped or intrinsic 

barriers. When the sizes shrink down to 10×10 μm2 or below (Fig. 4.3 (c) and (d)), devices with 

n-doped barriers perform much better. The IQE value increase from 3.2%-4.5% for 5×5 μm2 with 

undoped quantum barriers (Figure 4.3 (d) blue line) to 7.9%-6.5% for 5×5 μm2 with undoped 
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quantum barriers (Figure 4.3 (d) red line).  

 
Figure 4.3 IQE as a function of current density (in log scale) curves of 4 different size μ-LEDs at room temperature 

with different doping profile (n-type or p-type doping concentration 5×1017 cm-3) of barriers, (a) 100×100 μm2 μ-

LED, (b) 50×50 μm2 μ-LED, (c) 10×10 μm2 μ-LED, and (d) 5×5 μm2 μ-LED. 
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4.2.2 Spatial SRH Recombination and Radiative 

Recombination Profiles 

 

Figure 4.4 The simulated spatial distribution of SRH recombination profiles of a 5×5 μm2 μ-LED at room 

temperature for 20A/cm2 current density with undoped barriers at (a) surface, (b) center, with n-doped barriers at (c) 

surface, (d) center of the device. 

 

The simulated spatial distribution of SRH recombination profiles are shown in Figure 4.4 for both 

n-doped (lower two plots) and undoped barriers (upper two plots). We find that the SRH 

recombination rate is substantially decreased both in surface and in center of the device with n-

doped barriers. For example, SRH recombination rate drop approximately 40% in first QW from 

1.18×1028 cm-3 s-1 (Figure 4.4(a)) to 6.91×1027 cm-3 s-1 (Figure 4.4(c)).  

 

To understand the influence of number of QWs on device performance, we simulate the spatial 

radiative recombination rate by considering n-doped and undoped barriers. Figure 4.5 shows the 
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simulated spatial distribution of radiative recombination profiles of a 5×5 μm2 GaN/InGaN μ-

LED with undoped or n-doped barriers. We find that most of the radiative recombination occurs 

in the first QW near EBL in the center of the device, similar to that for SRH recombination case 

shown in Figure 4.4. The n-doped barriers can slightly increase the radiative recombination rate 

in the first QW in the center from 1.56×1027 cm3 s-1 (Figure 4.5(b)) to 2.36×1027 cm3 s-1 (Figure 

4.5(d)), and decrease in other QWs. 

 

 

Figure 4.5 The simulated spatial distribution of radiative recombination profiles of a 5×5 μm2 μ-LED at room 

temperature for 20A/cm2 current density with undoped barriers at (a) surface, (b) center, with n-doped barriers at (c) 

surface, (d) center of the device. 

 

To easily understand, here we use the IQE model (Eq. 2.8) and safely neglect the Auger term. The 

IQE in QWs is given by:  

𝜂𝐼𝑄𝐸,𝑄𝑊𝑠 ≈
𝑅𝑟𝑎𝑑

𝑅𝑆𝑅𝐻+𝑅𝑟𝑎𝑑
.                            (4.4) 

In Table 4.1, we show the IQE in the surface and center of different QW regions in a 5×5 μm2 

GaN/InGaN μ-LED with undoped and n-doped quantum barriers. We can see that the IQE in the 
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center of the first QW with undoped barriers or n-doped barriers is much higher than the IQE in 

the center of the other QWs. In the surface of the QWs with undoped barriers or n-doped barriers, 

the IQE is almost 0%. Therefore, 5×5 μm2 GaN/InGaN μ-LEDs with only one QW should have 

the better performance compared to the MQWs structure. 

 

Position IQE in the 

surface of QWs 

with undoped 

barriers 

IQE in the center 

of QWs with 

undoped barriers 

IQE in the 

surface of 

QWs with n-

doped barriers 

IQE in the 

center of QWs 

with n-doped 

barriers 

1st QW 0.0% 43.8% 0.0% 80.2% 

2nd QW 0.0% 11.5% 0.2% 62.0% 

3rd QW 0.0% 4.2% 0.3% 61.2% 

4th QW 0.0% 2.4% 0.3% 61.3% 

5th QW 0.0% 0.9% 0.3% 61.3% 

6th QW 0.0% 1.5% 0.5% 61.3% 

Table 4.1 The IQE in the surface and center of different QW regions in a 5×5 μm2 GaN/InGaN μ-LED with 

undoped and n-doped quantum barriers 

 

4.2.3 Efficiency Optimization for 5× 5 μm2 GaN/InGaN μ-

LEDs 

Although, n-doped barriers are capable of improving the efficiency of GaN/InGaN μ-LEDs, it will 

aggravate the unbalanced electron-hole injection problem and push the recombination zone close 

to the p-GaN region. As a consequence, high doping concentration in the n-doped barriers will 

cause the efficiency droop problem. However, this problem can be carefully avoided by tuning 

the doping concentration in the n-doped barriers which is a tradeoff between balancing the 

electron/holes injection and suppressing the non-radiative SRH recombination. Figure 5 shows 

the simulated IQE of a 5×5 μm2 μ-LED with varying n-type doping concentration in the barriers. 

The optimum doping concentration is estimated to be 5×1017 cm-3 in the barriers which exhibits 

the overall highest IQE in the range of bias current density. 
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Figure 4.6 The IQE as a function of current density. (in log scale) curves of GaN/InGaN μ-LEDs with different n-

doping concentrations in quantum barriers at room temperature. 

 

To finally optimize the efficiency performance of the 5×5 μm2 μ-LED, a series of 5×5 μm2 μ-

LEDs with a single, 3 and 6 QWs and n-doped barriers were simulated. Compared to devices with 

MQWs, the single QW LED (shown in Figure 4.8) has the lowest surface area to volume ratio and 

exhibits the best performance due to the minimized surface recombination. The simulation results 

as shown in Fig. 4.7 revealed that the optimized design can improve the IQE by more than 100% 

in comparison to a convention design with intrinsic MQWs active regions in working current 

density range. At 1 A/cm2, the IQE reaches 11% which is close to the commercial requirement of 

the GaN/InGaN μ-LEDs (15%).  
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Figure 4.7 The current-density-dependent (in log sc•le) efficiency performance between the optimized μ-LED (1, 3, 

6 QWs with 5×1017 cm-3 n-doped barriers) and conventional μ-LED (6 QWs with intrinsic barriers) of the 5×5 μm2 

GaN/InGaN μ-LEDs. 

 

Figure 4.8 Structure of a single QW GaN/InGaN μ-LEDs with n-doped quantum barriers. 
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4.2.4 Simulated J-V Characteristic of 5×5 μm2 GaN/InGaN 

μ-LEDs with Different Doping Profiles in Quantum Barriers 

 
Figure 4.9 The j-V curve of the 5×5 μm2 GaN/InGaN μ-LED with different doping profile (intrinsic, p-doped at 

5×1017 cm-3, n-doped at 5×1017 cm-3) in quantum barriers. 

 

Figure 4.9 shows the j-V curve of the 5×5 μm2 GaN/InGaN μ-LED with different doping profile 

(intrinsic, p-doped at 5×1017 cm-3, n-doped at 5×1017 cm-3) in quantum barriers. From the figure, 

we can observe that the turn-on voltage of GaN/InGaN μ-LED with n-doped quantum barriers is 

smaller than the turn-on voltage of GaN/InGaN μ-LED with undoped or p-doped barriers. To 

easily understand, the IV characteristic of a general p-n junction is given by: 

I = 𝐼𝑠(𝑒𝑞𝑉/𝑘𝑇 − 1),                          (4.5) 

where q is the charge of an electron, k is the Boltzmann constant and T is the temperature of the 

device. Is is called the reverse saturation current of the diode and given by: 

𝐼𝑠 = 𝐴𝑞𝑛𝑖
2 (

𝐷𝑝

𝑁𝐷𝑤𝑛
+

𝐷𝑛

𝑁𝐴𝑤𝑝
),                      (4.6) 

where A is the cross-section of the device, ni is the intrinsic carrier concentration, Dp,n are the 

diffusion coefficient of electrons and holes, ND,A are the concentration of acceptors and donors, 

and wn,p are the effective width of the n-layer and p-layer. In a p+/n junction (NA >> ND): 

𝐼𝑠 = 𝐴𝑞𝑛𝑖
2 (

𝐷𝑝

𝑁𝐷𝑤𝑛
).                          (4.7) 

In an n+/p junction (ND >> NA): 

𝐼𝑠 = 𝐴𝑞𝑛𝑖
2 (

𝐷𝑛

𝑁𝐴𝑤𝑝
).                          (4.8) 

According to Einstein relation, the diffusion coefficient is proportional to the mobility. Because 

the hole mobility is much smaller than electron mobility in GaN, Dp is much smaller than Dn. 

Therefore, Is in device with p-doped barriers is smaller than Is in device with n-doped barriers. To 
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reach the same current with smaller Is, higher voltage bias is required. That is why the turn-on 

voltage of GaN/InGaN μ-LED with n-doped quantum barriers is smaller than the turn-on voltage 

of GaN/InGaN μ-LED with undoped or p-doped barriers.   
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4.3 Conclusion 

In summary, the size-dependent efficiency performance of GaN/InGaN μ-LEDs with different 

doping file in quantum barriers has been investigated by simulation. The analysis shows that 

GaN/InGaN μ-LEDs with p-doped quantum barriers have better performance when the size is 

larger than 50μm due to the compensation for hole transportation. It was also shown that when the 

size shrinks down below 10μm, GaN/InGaN μ-LEDs with n-doped quantum barriers exhibited 

better efficiency performance compared to the undoped quantum barriers and p-doped quantum 

barriers. The IQE improvement of devices with n-doped quantum barriers is more than 100% 

compared to the IQE of devices with undoped quantum barriers. The doping concentration and in 

n-doped quantum barriers and the number of quantum wells of GaN/InGaN μ-LEDs can be 

optimized with a tradeoff between balancing electron/holes transportation and suppressing the 

non-radiative SRH recombination. Our simulation results showed that a device designed with n-

doped barriers and single QW structure can significantly improve the IQE of a 5× 5 μm2 

GaN/InGaN μ-LEDs by more than 100% compared to the conventional MQW LEDs with intrinsic 

active regions. The 11% IQE value of 5×5 μm2 GaN/InGaN μ-LEDs at 1A•cm-2 is very close to 

15%, which is the satisfied IQE value for commercial use.   
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Chapter 5 Conclusion and Future Work 

This thesis reports a comprehensive study on GaN/InGaN μ-LEDs. The APSYS simulation 

software is used to simulate the efficiency performance and other electric characterization of 

GaN/InGaN μ-LEDs. The mechanisms that affect the efficiency performance of the GaN/InGaN 

μ-LEDs are explained. In small size (<10m) GaN/InGaN μ-LEDs, the surface recombination rate 

begins to play a critical role in the efficiency of the GaN/InGaN μ-LEDs due to the high surface 

area to volume ratio of the device.  

 

Simulation results are compared with the experimental data measured from a 50×50 μm2 μ-LED. 

The measured results and simulated results show close trends with each other. The phenomenon 

when the EQE (IQE) dramatically decreases at low temperature can be attributed to the high 

activation energy of Mg acceptor in the Mg-doped active region. 

 

To suppress the surface recombination effect and improve the efficiency performance of the 

GaN/InGaN μ-LEDs, a novel LED structure with n-doped quantum barriers is demonstrated. 

According to earlier research work, the p-doped quantum barriers have been proven to enhance 

the hole transportation in GaN/InGaN μ-LEDs and alleviate the efficiency droop problem. 

However, based on the new model presented in this thesis, the SRH recombination (surface 

recombination) in n-doped layer is much smaller than that in p-doped layer. Therefore, 

GaN/InGaN μ-LEDs with n-doped quantum barriers can effectively suppress the surface 

recombination and improve the quantum efficiency. By optimizing the doping concentration of 

the n-doped barriers with a tradeoff between balancing electron and holes injection and 

suppressing the non-radiative SRH recombination, a designed 5×5 μm2 GaN/InGaN μ-LED 

structure with a single QW and n-doped barriers is presented. The simulation results show that the 

new design exhibits a more than 100% efficiency improvement at 20A·cm-2 compared to the 

conventional intrinsic MQWs based design. 

 

In conclusion, a comprehensive study of GaN/InGaN μ-LEDs is reported in this thesis, in which, 

new devise work mechanism, simulation and experimental results are presented. A newly designed 

GaN/InGaN μ-LED with n-doped quantum barriers is demonstrated. 

 

There are some clear future works: 

 

1. Further examination on working mechanism of GaN/InGaN μ-LED with n-doped quantum 

barriers should be conducted. Based on the n-doped quantum barriers, device will be grown, 

fabricated, and tested.  

 

2. The efficiency drop of the GaN/InGaN μ-LED at low temperature needs to be further 
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investigated. The positive charge induced by temperature dependent polarization effect, is 

expected to replace the Mg acceptors in p-type GaN/InGaN.  

 

 

3. For GaN/InGaN LEDs with larger sizes, some inherent drawbacks are required to be addressed. 

For example, the carrier overflow drawbacks can be surmounted by using a bottom tunnel 

junction structure to reverse the p- and n-GaN layer. For GaN/InGaN LEDS with very small 

size, the EQE value could be improved to almost 15% and made available at cost-effective 

value.  

 

4. The value of SRV typically ranges from 105 to 107 cm/s in red LEDs, like GaAsP based LED. 

It is much higher than the value in GaN/InGaN LEDs, which causes a more significant 

efficiency drop in red μ-LEDs. In future, we plan to investigate the effect of doping profile in 

QW barriers of μ-LEDs with different materials.  
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