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Abstract

Visual data contains rich information about the operating environment of an intelligent
robotic system. Extracting this information allows intelligent systems to reason and decide
their future actions. Erroneous visual information, therefore, can lead to poor decisions,
causing accidents and casualties, especially in a safety-critical application such as auto-
mated driving. One way to prevent this is by measuring the level of uncertainty in the
visual information interpretation, so that the system knows the reliability degree of the
extracted information.

Deep neural networks are now being used in many vision tasks due to their superior
accuracy compared to traditional machine learning methods. However, their estimated
uncertainties have been shown to be unreliable. To mitigate this issue, researchers have
developed methods and tools to apply Bayesian modeling to deep neural networks. This
results in a class of models known as Bayesian neural networks, whose uncertainty estimates
are more reliable and informative. In this thesis, we make the following contributions in
the context of Bayesian Neural Network applied to vision tasks. In particular:

• We improve the understanding of visual uncertainty estimates from Bayesian deep
models. Specifically, we study the behavior of Bayesian deep models applied to road-
scene image segmentation under different factors, such as varying weather, depth,
and occlusion levels.

• We show the importance of model calibration technique in the context of autonomous
driving, which strengthens the reliability of the estimated uncertainty. We demon-
strate its effectiveness in a simple object localization task.

• We address the high run-time cost of the current Bayesian deep learning techniques.
We develop a distillation technique based on the Dirichlet distribution, which allows
us to estimate the uncertainties in real-time.1

1We found several similar published works on arXiv [60, 11] at around the same time we were working
on this idea.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in deep neural networks (DNNs) have created breakthroughs in many
fields such as computer vision [50, 55], natural language processing [79, 16] and control [64,
54]. Unlike traditional machine learning methods, whose performance relies on the quality
of engineered features, deep models are able to progressively build and extract features
automatically. This property makes deep models more adaptive to various challenging
tasks. For example, consider the human recognition task in computer vision- specifying
and engineering the features can be challenging. By building deep models, we let the
systems automatically figure out the rules and features by observing the data.

There is a price for the adaptive property, however: we do not understand what is
happening inside the model. The model may give us an erroneous prediction because it
is based on an incorrect rule. In a safety-critical application such as automated driving,
this can cause injuries or loss of life. In fact, detection failure in perception system is the
main reason behind recent reported self-driving accidents [1, 80, 37] (all involved a loss of
human life). Addressing this problem turns out to be extremely challenging, researchers
are currently focusing on two aspects of DNNs that can help us mitigate this problem:
robustness and reliability.

Although DNNs have been reported to be surpassing human-level performance (in terms
of accuracy) in vision tasks [32, 33], they are not robust compared to the human vision
[47]. By robustness, we mean the ability of the model to predict accurately in different
operating conditions, such as low-light, blurring, and noisy images. Despite being adaptive,
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DNN’s performance still depends on the data distribution and thus, changing the operating
conditions will degrade the performance. This robustness property is very desirable for any
perception system in autonomous driving [88], since the outdoor environment naturally
possesses multiple variations that could negatively affect the visual data. This thesis,
however, does not tempt to address this problem.

The second property is that the model should be reliable and able to tell how likely its
prediction is going to be correct. This can be done by incorporating uncertainty estimation
into the model. Recently, the field of Bayesian Deep Learning (BDL) has been actively
creating tools and methods to apply the Bayesian framework to DNNs, so that the obtained
uncertainty estimates are much more informative. Specifically, the resulted class of models,
known as Bayesian neural networks (BNNs), has three characteristics:

• It can be used in small-data scenarios since Bayesian modelling is a well-established
approach to prevent over-fitting in machine learning.

• It allows us to estimate two different types of uncertainty, namely aleatoric (data)
and epistemic (model) uncertainty. Each of them corresponds to a different source
of uncertainty.

• It gives us a good heuristic for data collection in order to improve model’s perfor-
mance.

The aleatoric uncertainty represents the intrinsic uncertainty in our data, and it cannot
be reduced even if we have an infinite amount of such data [39]. Noise, lack of visual
information and occlusions in the images are a few of several factors that increase the
aleatoric uncertainty in our data. For example, if the object is completely occluded, then
it would be impossible for the model to classify correctly all the time and the model reflects
this by outputting a high aleatoric uncertainty. The epistemic uncertainty, on the other
hand, represents the weakness of our model due to the insufficiency of data. Data in the
high-density regions will have a lower epistemic uncertainty than those in the low-density
one. Furthermore, unlike aleatoric uncertainty, epistemic uncertainty can be reduced by
collecting more data. For example, if our training dataset lacks pedestrian images, then
the model will not generalize well for the pedestrian class and output a high epistemic
uncertainty when it encounters such images. Once we show the model more pedestrian
data, the model generalizes better and reduces its epistemic uncertainty. As this thesis
focuses on BNNs, the main objective is to explore and understand the behavior of these
two types of uncertainty so that we can have a deeper understanding of how we should
apply and expect them to behave in our perception system.
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Remarks (Practical applications of uncertainty measures). As mentioned, uncertainty
estimates (or measures) can allow us to avoid hazardous situations in safety-critical
systems. In the case of image segmentation, for example, segmented regions with high
uncertainty estimates (either aleatoric and epistemic) indicate that there is a high
chance that the predictions are inaccurate and the system should try to avoid the
potential risk arises from those regions. Besides this, other applications of uncertainty
measures are:

• Active learning: in this task, the model interactively chooses (or queries) the
data points and asks the user to label them. In many cases, labeling is a costly
and laborious process, and active learning aims to reduce the amount of labeled
data without sacrificing the performance. There are many querying strategies
for active learning and in general, they should outperform the random strat-
egy (choose any data point randomly). Gal, et al. [24] and Mackowiak, et al.
[59] show that iteratively choosing data with high uncertainty measure saves a
significant amount of labeled data while keeping the performance intact.

• Sensor and model fusion: with visual uncertainty estimates, we can combine the
ocular information with other sensory or model’s information to obtain more pre-
cise information. Ganti and Waslander [25] leverage BNN’s uncertainty estimates
to improve the feature selection process for their visual simultaneous localization
and mapping (SLAM) algorithm. Fang, et al. [19] combine visual uncertainty
from spatial and temporal estimation model in their video visual saliency detec-
tion algorithm. By this way, they achieved a significantly better result than other
methods.

• Model improvement: in many situations, we would like to ensure that the model
has received a sufficient amount of data and reached a maximum performance.
Later in Chapter 3, our experiment shows that the epistemic uncertainty estimate
can potentially be used to help us with this task.

1.2 Overview

Researchers have started to work on BNNs in the late 1980s [14, 82, 58, 67, 4] and developed
various methods and models before the 2000s. For instance, in his thesis, N.Radford
[67] showed the relationship between BNNs and Gaussian processes, and introduced a

3



Hamiltonian Monte-Carlo (HMC) method for Bayesian inference in BNNs. D. Mackay [58]
also developed methods and derived several theoretical results for BNNs. Many of these
methods, however, are computational-expensive for many practical problems.

Recent advances in BNNs [85, 23, 43] and computing resources allow us to apply
Bayesian modelling to complex deep architectures for challenging vision tasks, such as
image semantic segmentation and object detection. Specifically in road-scene semantic
segmentation, the work by A.Kendall and Y.Gal [39] has shown the benefits of BNNs in
terms of accuracy and reliability. However, the experiments in these works do not inves-
tigate the effects of uncertainty influence factors [12], which are factors influencing the
perceptual uncertainty, on the uncertainty estimates. A possible reason could be the lack
of datasets with real-world images with varying influence factors and the associated factor
labels. Yet understanding how the uncertainty estimates behave under these factors is
needed for assuring the system performance. This thesis aims to narrow this gap, study-
ing those effects on uncertainty by using the ProcSy synthetic dataset. Besides, we also
introduce and suggest several improvements in calibration and distillation techniques for
BNNs. This thesis is structured as follow:

• Chapter 2 provides a necessary background. Specifically, we describe the Bayesian
approach for deep models, different types of uncertainty estimates and their associ-
ated metrics.

• Chapter 3 studies how different influence factors, such as occlusion, depth, and in-
clement weather, affects the uncertainty estimates in the image segmentation task.
We study this by using the ProcSy synthetic dataset [44]. Surprisingly, we find that
the estimated aleatoric uncertainty from Bayesian deep models can be reduced with
more training data. This chapter is adapted from B.Phan, et al. [71].

• Chapter 4 discusses the topic of model calibration, which is a desirable property for
decision-making under uncertainty. We also show how to apply calibration techniques
in the single object classification and localization task. This chapter is adapted from
B.Phan, et al. [72].

• Chapter 5 introduces a distillation method for estimating the epistemic uncertainty in
real-time. This chapter is my unpublished independent work. After having finished
the experiment for this chapter, we found several similar published works on arXiv
[60, 11], published at around the same time we were working on this project.

• Chapter 6 provides a conclusion and several future directions.

4



Chapter 2

Background

We begin this chapter with a brief overview of the parameter estimation problem. We will
describe two different approaches to this problem, from the frequentist and Bayesian point
of view. Then we describe methods to incorporate uncertainty estimation into deep models
in both Bayesian and non-Bayesian case. We finalize the chapter with a section about the
Kullback–Leibler divergence.

2.1 The Parameter Estimation Problem

The field of machine learning centers around the problem of parameter estimation. Given
a training dataset, we define a model, use a learning algorithm to estimate the model’s
parameters so that it would generalize well for unseen data. In this section, instead of
focusing on a particular machine learning problem, we show a general way to do modeling
for parameter estimation problems. In Chapter 1.1, we say that Bayesian modeling is
useful for small-data scenarios, which can raise a doubt to people who have been practicing
classical modeling (frequentist). The main goal of this section is to show that the Bayesian
approach is a better candidate for the problem of our interest.

We first give an overview of two approaches, namely Bayesian and classical (frequentist)
inference, to the parameter estimation problem. Then, we give an example of why we
should choose Bayesian modeling for this problem.
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2.1.1 Statistical Modeling

Consider that we have an independent and identically distributed (i.i.d) dataset D =
{x1, x2, x3, ..., xN} and a generative process: p(x|θ) (given or assumed), we would like to
estimate the parameter θ. We note that in this thesis, unless specified otherwise, we will
assume that the dataset we are dealing with are i.i.d.

Frequentism considers θ as a parameter and addresses this problem by constructing an
unbiased estimator θ̂ for θ and build also a confidence interval for this estimator. When
N is large, then this estimator is very close to the true parameter. For a 95% confidence
interval, it means that if we repeat this experiment many times, 95% of these confidence
intervals will contain the true value. For small N , this interval tends to be large (since the
variance of the estimator is high when N is low).

Bayesianism considers θ as a random variable and addresses this estimation problem as
follow. We begin by defining a reasonable prior p(θ), and then apply the Bayes theorem
and the probability marginalization rule to find the posterior p(θ|D):

p(θ|D) =
p(θ)p(D|θ)
p(D)

(Bayes’ theorem)

=
p(θ)p(D|θ)∫
p(θ)p(D|θ)dθ

(Marginalization)

(2.1)

The credible interval is then constructed based on p(θ|D). A 95% credible interval means
that there is a 95% probability that the true parameter lies within this interval. When
the number of data N increases, the posterior will also converge to a true parameter.
Otherwise, the credible interval will be large when N is small.

2.1.2 Why being Bayesian but not Frequentist?

So far, we have seen that the estimation from Bayesian and frequentist approaches have
similar characteristics. For a small amount of data, the confidence and credible interval
tend to be large whereas with large N , it converges to the true value. Also, on many
occasions, their results are similar [84]. So what makes Bayesian special? It turns out that
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the subtle difference in definition between confidence interval and the credible interval is
one of the reasons.

We use an example shown in [84, 36] to motivate the need for Bayesian modeling. In
this example, we consider a device that is guaranteed to operate without failure before
the time θ. After the time θ, the device will be randomly malfunctioning according to an
exponential distribution. This can be modeled by considering the following model p(x|θ)
where x is the living life time of a device:

p(x|θ) =

{
exp(θ − x), if x > θ

0, otherwise
(2.2)

Suppose now that we have several samples of failure data D = {10, 12, 15} from these
devices, we would like to estimate the parameter θ. Intuitively, from this data, we know
that θ < 10 based on the definition (θ is the same for all devices). However, by using the
frequentist’s approach, we end up having a 95% confidence interval as [10.2, 12.2] for the
unbiased estimator. On the other hand, the Bayesian’s approach gives us the 95% credible
interval as [9.0, 10.0] (see [36] for more details of the solution). While the Bayesian’s
perspective agrees with our knowledge, the frequentist’s does not, so is the frequentist’s
view wrong?

Actually, frequentists are not wrong. In their point of view, 95% of such intervals will
contain the true parameter θ, while the Bayesian’s result says that this interval is 95%
likely to contain the true θ. By saying “such intervals”, it means the following: suppose
that for 100 days, each day we collect three samples and compute the confidence interval
for each day (based on those three samples), then around 95 of these intervals will contain
the true θ. This means that the frequentist bound does not give us the information that we
are interested in, the observed samples do not give us much detail about the parameters.
If the amount of samples increases a lot more, their estimations will undoubtedly converge
to a true θ[66], but for now, this is not our concern. This example motivates the use of
Bayesian modeling in parameter estimation problems. We illustrate this in Figure 2.1.
The estimated Bayesian 95% credible interval contains the information where our true
parameter is likely to lie in, while frequentist 95% confidence interval does not.

Remarks We note that in this section, we use the term “confidence” and “credible”
interval to differentiate the concept between Frequenism and Bayesianism. The rest of
this thesis will use the term “confidence interval” to describe the Bayesian interpreta-
tion.
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Figure 2.1: Interpretation for the example in Section.2.1.2. The top diagram shows
the Bayesian credible interval and the bottom diagram shows the frequentist confidence
interval.

.

2.2 Non-Bayesian Uncertainty Estimation

From now on, we will turn our focus to the supervised learning setting in DNN. In this
section, we review methods for estimating the uncertainties for the traditional deep learning
model. This type of uncertainty is often regarded as aleatoric uncertainty in the Bayesian
context, which can be interpreted as an irreducible noise in the data. We note that none
of the methods in this section is Bayesian and the examples assume that we have a lot of
training data (so that there is no difference between being Bayesian and non-Bayesian).
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2.2.1 Supervised-learning task

In a classification task, we are given a dataset D = {X,Y}. We are given the input
data X = {x1,x2, ...,xN} and the associated labels Y = {y1,y2, ...,yN}, where each
yj belongs to one of the K classes {1, 2, ..., K}. For regression, the associated labels
Y = {y1,y2, ...,yN} are real values.

For the non-Bayesian (or frequentist) approach, the model’s weights are deterministic
and we aim to find it by optimizing some objective function. The objective function
function, in most of the cases, is derived based on the principle of maximum likelihood. At
test time, given a new input x̂, we need our model to output an estimated value ŷ. When
uncertainty is considered, we wish to capture the predictive probability p(ŷ|x̂).

2.2.2 Classification

In the classification task, we usually build a DNN with a softmax activation at the output
layer and train the model by optimizing the softmax likelihood. At test time, the softmax
probability can then be used as an estimate of p(ŷ|x̂). Specifically, for each training pair
(xi,yi), the function fmω (xi) gives a logit value for class m. The softmax likelihood for this
pair is:

p(yi|xi) =
exp (fyi

ω (xi))∑
exp(fmω (xi)

(2.3)

The negative log-likelihood (or cross-entropy) loss can then be defined as:

L(ω) = −
∑
i

log p(yi|xi) = −
∑
i

log
exp (fyi

ω (xi))∑
exp(fmω (xi)

(2.4)

Remarks In computer vision, data uncertainty can occur due to the lack of visual
information. If we are given a completely dark image and asked to infer about the
object in that image, we would have no clue. For the neural network, ideally, such
images will be projected close to the decision boundary. As we will see in the next
section, occlusion and depth are also sources of this aleatoric uncertainty.

2.2.3 Regression

In the regression task, we usually build and train a model to predict solely the labels given
an input. However, in many cases, there is noise in the labels and its level varies differently

9



according to the input (as shown in the leftmost figure in Figure.2.2). So given input data,
we might want to predict the amount of uncertainty in the labels. Nix, D.A. and Weigend,
A.S [68] show that this can be done by assuming:

yi = fω(xi) + ε(xi), where ε(xi) ∼ N (0, σ2
ω(xi)) (2.5)

This means that the labels is a sum of a function fω(xi) and an input-dependent noise
ε(xi). The likelihood and log likelihood for each training data point {xi,yi} are:

p(yi|xi;ω) = N (fω(xi), σ
2
ω(xi)) =

1

σω(xi)
√

2π
exp

[
−(yi − fω(xi))

2

2σ2(xi)

]
(2.6)

log p(yi|xi;ω) =
−(yi − fω(xi))

2

2σ2
ω(xi)

− 1

2
log σ2

ω(xi) (2.7)

With this log likelihood function, we can formulate the loss function as follow:

L(ω) =
N∑
i

(yi − fω(xi))
2

2σ2
ω(xi)

+
1

2
log σ2

ω(xi) (2.8)

In neural network models, we add an additional output onto the final hidden layer to
predict the variance (or log variance due to numerical issue). We illustrate the result in
Figure 2.2.

2.3 Bayesian Neural Networks

With BNN models, instead of getting a single prediction from a learned set of weight
values, we obtain the prediction by taking into account the outputs of multiple models,
whose weight values are derived under the Bayesian framework. In regions that have a
large amount of data, the predictions of these models are consistent with each other; on
the other hand, in regions that lack data, this consistency does not tend to hold. Since
deep models contain a large number of weights, applying the Bayesian framework to a deep
model is computationally intractable; therefore, to obtain different sets of weight values,
we need to use Bayesian approximation techniques.

We begin this section by describing the general Bayesian approach in machine learning.
Then we introduce the dropout method [23] for Bayesian approximation and end with a
literature review of Bayesian approximation techniques.
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Figure 2.2: A simple example for heteroscedastic regression. In the leftmost figure, the
blue dots are our training data which are produced by adding adaptive Gaussian noise
to the function (green line). The middle figure shows the estimated mean (red line) and
95% confidence interval (orange region). The rightmost figure shows the estimated and
ground-truth variance. We can see that the model is able to predict the variance accurately.

2.3.1 Bayesian Modeling for Machine Learning

While the non-Bayesian approach treats the model’s weight ω as deterministic variables, the
Bayesian approach considers them as random variables and thus assigns a prior distribution
over these weight values:

ω ∼ p(ω) (2.9)

This prior distribution is updated when new data is given. When we have a dataset
D = {X,Y}, then the posterior is:

p(ω|X,Y) =
p(Y|X, ω)p(ω)

p(Y|X)
(2.10)

For both classification and regression tasks, given the weight values ω, we can always
estimate the likelihood p(y|x, ω). This can be done by using a softmax classifier (in clas-
sification) or heteroscedastic regression (in regression). Therefore, the term p(Y|X, ω) is
easy to calculate. For the denominator in the Equation 2.10, we have:

p(Y|X) =

∫
p(Y|X, ω)p(ω)dω (2.11)

In the case of DNNs, the integral in the Equation 2.11 does not have any closed-form
solution. Indeed, to the best of our knowledge, the closed-form solution only exists in the
case of Bayesian linear regression. Thus, it is also intractable to calculate the posterior
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p(ω|X,Y) according to the Equation 2.10. Therefore, the predictive distribution for a test
input x̂:

p(ŷ|x̂,X,Y) =

∫
p(ŷ|x̂, ω)p(ω|X,Y)dω (2.12)

is also intractable. We note that any attempt to use the Monte-Carlo (MC) approximation
method for computing the predictive distribution requires knowledge of p(ω|X,Y) (so
that we can draw samples from it). Therefore, estimating or approximating the posterior
p(ω|X,Y) is a major task for Bayesian machine learning research. Next, we will introduce
one practical way to approximate the posterior by using the dropout method. For a more
general understanding of the approximation technique in Bayesian machine learning, we
suggest the readers to the work by Y.Gal [22].

2.3.2 Bayesian Neural Networks with MC-dropout

One approach to obtain an approximated BNN model from an existing DNN architecture
is by inserting dropout layers and training the new model with dropout training [23]. After
we have trained our model with dropout, if we keep the dropout layers activated, we are
sampling from a distribution qθ(ω), which is an approximation of the posterior p(ω|X,Y)
that we have shown above. For more details about this method, we refer the reader to
consult the original work by Gal, Yarin, and Zoubin Ghahramani [23].

At test time, specifically, for a given input, we perform multiple forward predictions
in the network while keeping the dropout layers active. In other words, we remove a
percentage of randomly-selected units (i.e., set the weight values of their connections to 0)
from the trained model in order to obtain a sample prediction for the given input; then we
repeat this process T times and calculate the average prediction. This technique at test
time is referred to as Monte-Carlo (MC) dropout.

In classification We use p(ŷ = k|x̂, ωi) to denote the probability that the label ŷ of the
test input x̂ is the kth class, which is given by a model (trained with dropout on X,Y)
with a set of sampled weight values ωi as its softmax output. Then, we wish to capture
the mean probability p(ŷ = k|x̂) for a test point x̂, which can be calculated as:

p(ŷ = k|x̂) ≈ 1

T

T∑
i=1

p(ŷ = k|x̂, ωi) (2.13)
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where T is the number of MC-dropout samples and ωi is a set of weight values for each
MC-dropout sample. We note that calculating the probability for every class will give us
a categorical distribution over classes for the input x̂.

In regression Similar to the case of classification, for each sampled model, we obtain
a Gaussian distribution N (µi, σ

2
i |x̂). The mean distribution p(ŷ|x̂) can be obtained as

follow:

p(ŷ|x̂) ≈ 1

T

T∑
i=1

N (µi, σ
2
i |x̂) (2.14)

In practice [39, 69], we can further approximate p(ŷ|x̂) with a Gaussian distribution:

p(ŷ|x̂) ≈ N (µ̂, σ̂2|x̂) (2.15)

where µ̂ = 1
T

∑T
i=1 µi and σ̂2 = 1

T

∑T
i=1 σ

2
i + 1

T

∑T
i=1 µ

2
i − µ̂2.

2.3.3 Other methods

For the rest of this thesis, unless specified, we will use MC-Dropout as a method to estimate
the model uncertainty. We outline here several methods that can be used as an alternative
for MC-Dropout.

In their work, Blundell, et al.[6] introduce a method to estimate the weight uncertainty
by using the backpropagation algorithm. The idea is to parameterize each weight value by
a mean and standard deviation of a Gaussian distribution. Each mean and standard devi-
ation is then learned by using the backpropagation algorithm. At test time, we sample the
weight values and compute the uncertainty estimates. Unlike MC-Dropout, this method
requires a twice amount of weight parameters.

Teye, et al.[81] show that training deep models with batch-normalization layer can also
be considered as training a Bayesian Neural Network. This approach is very interesting
because it eliminates the need for dropout layers (and tuning the dropout rate), however,
this method requires accessing the training dataset at test time, which means that we need
additional space (and possibly time) to access the data.

Lakshminarayanan, et.al [52] provide a simple method for obtaining the model uncer-
tainty by training different deep models with the same architecture but different initializa-
tion. In their experiment, by using 5 deep networks, they can achieve good accuracy and
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uncertainty estimates in terms of outlier detection. We note that except for the ensemble
idea (similar to MC-Dropout), this method has yet to be shown to have any connection to
Bayesian modeling in terms of parameter estimation.

2.4 Bayesian Uncertainty Quantification

In this section, we describe the two types of uncertainty (aleatoric and epistemic), and how
to extract measures of these types of uncertainty from a BNN’s predictions.

2.4.1 Types of uncertainty

Aleatoric uncertainty represents the irreducible noise in the data and cannot be reduced
even when we gather more data [39]. For example, in the binary classification problem
where we have a large amount of data, the data that lie within the intersection region of
the two class distributions will have higher aleatoric uncertainty than the data in either
distribution but outside the intersection.

Epistemic uncertainty captures the model’s lack of knowledge due to the limitation
in the training data (such as bias, scarcity, novelty, etc.) [22]. It can be reduced by
gathering more training data. Bayesian modeling allows us to quantify both types of
uncertainty. Although approaches exist for estimating aleatoric uncertainty with non-
Bayesian approaches [39] (as we have shown earlier), they cannot be used to estimate
epistemic uncertainty. Furthermore, non-Bayesian models tend to perform poorly and give
overconfident predictions in regions that lack data [22]. Bayesian approaches to neural
networks, on the other hand, allow us to capture the epistemic uncertainty [39] and, thus,
BNN models tend to give predictions with high uncertainty in low-density regions. Unlike
aleatoric uncertainty, this uncertainty can be reduced by increasing the amount of data.
We illustrate these properties of the two uncertainties in a regression task in Figure 2.3.

2.4.2 Uncertainty Estimation - Classification

There are three metrics that we will use in the experiments, namely: predictive entropy
H(ŷ|x̂) (captures total uncertainty), mutual information MI(ŷ|x̂) (captures epistemic un-
certainty), and aleatoric entropy AE(ŷ|x̂) (captures aleatoric uncertainty). These uncer-
tainty estimates can be calculated as follows [15, 65].
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Figure 2.3: A simple example for BNN regression. The dark line is a sampled model
mean while the blue region is the confidence interval region for the distribution p(y|x). In
the dense but noisy data region in the left (A), the sampled models from p(θ|D) stay close
together (low epistemic uncertainty) and the aleatoric uncertainty is high. The middle
region B shows high density and a little noisy region, which is reflected in the epistemic
uncertainty (the drawn model stays close to each other) and low aleatoric uncertainty. The
right region C shows a sparse data region. The sampled models are very different and the
uncertainty estimate overall is high. This figure was created using the tool in this website:
http://mlg.eng.cam.ac.uk/yarin/blog 2248.html

Predictive Entropy captures the total amount of uncertainty (epistemic and aleatoric)
and is equal to the sum of mutual information and aleatoric entropy. It is calculated as
the entropy of the mean categorical distribution:
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H(ŷ|x̂) = MI(ŷ|x̂) + AE(ŷ|x̂)

= −
∑
k

p(ŷ = k|x̂) log p(ŷ = k|x̂) (2.16)

Aleatoric Entropy captures the aleatoric uncertainty and is calculated by averaging the
entropy of each sampled categorical distribution. This type of uncertainty should converge
to the predictive uncertainty when the amount of training data increases.

AE(ŷ|x̂) = − 1

T

∑
k,i

p(ŷ = k|x̂, ωi) log p(ŷ = k|x̂, ωi) (2.17)

Mutual Information captures the epistemic uncertainty and is calculated as:

MI(ŷ|x̂) = H(ŷ|x̂)− AE(ŷ|x̂) (2.18)

Intuitively, it measures the disagreement between different sampled models and should
converge to 0 when the amount of data increases.

2.4.3 Uncertainty Estimation - Regression

In the case of regression, variance can be used as a measure of uncertainty. We can extract
the uncertainty as follows [15]:

Epistemic Variance is calculated by measuring the variance of the mean over the pre-
dicted samples.

σ̂2 =
1

T

T∑
i=1

µ2
i − µ̂2 (2.19)

Aleatoric Variance is calculated by measuring the mean of the predicted variances.

σ̂2 =
1

T

T∑
i=1

σ2
i (2.20)
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Predictive (Total) Variance is calculated by summing both aleatoric and epistemic
variance.

σ̂2 =
1

T

T∑
i=1

σ2
i +

1

T

T∑
i=1

µ2
i − µ̂2 (2.21)

2.5 Kullback–Leibler Divergence

Figure 2.4: An example that illustrates the asymmetry property of the KL divergence.
Figure 2.2(a) shows the solution for arg minq DKL(p||q). Figure 2.2(b) shows the solution
for arg minq .DKL(q||p)

.

We end this chapter with a definition of Kullback–Leibler (KL) divergence, a mea-
surement of how two distributions are different from each other. Given two probability
distribution p(x) and q(x), the KL divergence is defined as:

DKL(p||q) =

∫ ∞
−∞

p(x) log
(p(x)

q(x)

)
dx (2.22)

One property of this quantity is that it is always non-negative, that is:

DKL(p||q) ≥ 0 (2.23)
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It is equal to 0 if and only if p = q almost everywhere. This can be interpreted as a distance
between the two distributions. However, we note that unlike normal distance metric, it is
asymmetric:

DKL(p||q) 6= DKL(q||p) (2.24)

This implies that if we have a distribution p and we want to fit a distribution q(x) = Zθ(x)
that is ”close” to p, then:

arg min
θ

DKL(Zθ(x)||p) 6= arg min
θ

DKL(p||Zθ(x)) (2.25)

This can be illustrated through the example in Figure 2.4. In this example, p(x) is a
Gaussian mixture model and we want to find q(x) = N (µ, σ2) such that it is “similar” to
p(x). We can see that if we optimize based on the arg minq DKL(p||q) objective, q(x) fits
one mode of the mixture distribution. On the other hand, the result based on the other
objective tends to fit the whole coverage of p(x).
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Chapter 3

Bayesian Uncertainty Quantification
with Synthetic Data

Image semantic segmentation systems based on deep learning are prone to making erro-
neous predictions for images affected by uncertainty influence factors such as occlusions
or inclement weather. Bayesian deep learning applies the Bayesian framework to deep
models and allows estimating so-called epistemic and aleatoric uncertainties as part of the
prediction. Such estimates can indicate the likelihood of prediction errors due to the influ-
ence factors. However, because of lack of suitable experimental data, the effectiveness of
Bayesian uncertainty estimation when segmenting images with varying levels of influence
factors has not yet been systematically studied.

In this chapter, we propose using a synthetic dataset to address this gap. We conduct
two sets of experiments to investigate the influence of distance, occlusion, clouds, rain, and
puddles on the estimated uncertainty in the segmentation of road scenes. The experiments
confirm the expected correlation between the influence factors, the estimated uncertainty,
and accuracy. Contrary to expectation, we also find that the estimated aleatoric uncer-
tainty from Bayesian deep models can be reduced with more training data. We hope that
these findings will help improve methods for assuring machine-learning-based systems.

3.1 Introduction

Deep neural network (DNN) models, although having achieved many state-of-the-art re-
sults on a variety of tasks in computer vision [33, 73, 8], are not perfect as their performance
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much depends on the input images. Since errors in prediction due to the input character-
istics are inevitable, several uncertainty metrics have been proposed as failure indicators
for potentially faulty predictions [23, 17, 30]. Before deploying these metrics as failure
indicators into safety-critical applications such as autonomous driving (AD) and medical
diagnosis, their behaviour should be studied extensively under different scenarios in order
to improve safety assurance.

Image semantic segmentation systems based on deep learning are prone to making
erroneous predictions for images affected by uncertainty influence factors such as occlusions
or inclement weather. Bayesian deep learning applies the Bayesian framework to deep
models and allows estimating so-called epistemic and aleatoric uncertainties as part of
the prediction. Such estimates can indicate the likelihood of prediction errors due to
the influence factors. Aleatoric uncertainty represents the irreducible source of errors in
the data (e.g., noise), and thus cannot be reduced by providing more data. In contrast,
epistemic uncertainty represents the model’s “lack of knowledge” about the problem and
can be reduced with more training data (more details in Sec. 2.4.1). Inputs with high
aleatoric uncertainty can be thought as inherently ambiguous, whereas inputs with high
epistemic uncertainty can be viewed as “unexpected”, i.e., far from the training dataset.
However, because of lack of experimental data, the effectiveness of Bayesian uncertainty
estimation when segmenting images with varying levels of influence factors has not yet
been systematically studied.

In this chapter, we propose using synthetic data to investigate and study the effects
of selected factors on BNN’s uncertainty in the task of image semantic segmentation. In
particular, we consider scene-specific factors: depth, occlusion, clouds, rain, and puddles.
These factors can lead to ambiguous inputs, e.g., due to reduced information about the
underlying objects in the scene because of their far distance or high occlusion level, but
also unexpected inputs because of changed appearance, e.g., due to rain or puddles, if not
trained for. We perform two sets of experiments, with the following results:

1. We study and quantify the uncertainty estimates of a state-of-the-art BNN under
different levels of occlusion and depth for vehicles. As expected, we find a correla-
tion between the influence factors, the estimated uncertainty, and accuracy, which is
desirable for a failure indicator. Contrary to expectation, we find that the estimated
aleatoric uncertainty from a BNN can change with more training data.

2. We explore and report on the behavior of BNN’s uncertainty estimates under differ-
ent weather effects. We find that cloud level has much more significant impact on
the uncertainty estimates than rain and puddles—which correlates with the higher
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negative impact of clouds on the network performance than that of rain or puddles,
as previously reported for the same dataset and network [44].

The chapter is structured as follows. Section 3.2 briefly describes the ProcSy dataset,
which we use in this research. Section 3.3 describes the modification in the Deeplab v3+
architecture so that we can estimate the uncertainties in the image segmentation task.
Section 3.4 presents two experiments using ProcSy to study the effects of influence factor
variations on the uncertainty estimates. Finally, we conclude the chapter and suggest
future research directions in Section 3.5.

3.2 The ProcSy Dataset

This section briefly describes the ProcSy synthetic dataset, which we have developed in
previous work [44], and use for our experiments. Being synthetically generated, ProcSy
holds several benefits for studying uncertainty estimation. Section 3.2.1 explains these
benefits in detail. Section 3.2.2 summarizes the content of the ProcSy dataset.

3.2.1 Why Synthetic Data?

In the context of autonomous driving, factors such as depth, amount of occlusion, and
weather effects can produce ambiguous and unexpected inputs to the model. Studying
effects of these factors with a real-world dataset is difficult, although this is desirable.
Current segmentation datasets with weather effects such as Raincouver [83] have a limited
quantity of data to work with. Raincouver, for instance, is meant to be used as an adden-
dum to an existing dataset such as Cityscapes rather than by itself, as it only contains 326
finely annotated images.

Berkeley Deep Drive [87] is a more recent dataset that shows more promise in the
quantity of data availability (5683 finely annotated images). However, this dataset suf-
fers from labeling inconsistency issues. These limitations make the currently available
real-world segmentation datasets impractical for model uncertainty analysis. Using these
datasets to supplement a high-quality segmentation dataset such as Cityscapes [10] (which
has no weather effects) is also problematic, since there is a qualitative difference among
the datasets.

It is also very often the case that data acquired in the real world is not repeatable
under different conditions. For instance, a scene captured in ideal conditions may not be
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reproducible during a day with heavy rain, because a car that was originally parked in
the scene is no longer there. This sort of logistical issues can prove to be very expensive
to overcome in generating a real-world dataset. It is also not an easy task to annotate
effects such as amount of occlusion in a real-world dataset. On the other hand, synthetic
data rendered by recent computer graphics technology can provide various influence factor
effects with minimal labour cost. Due to these reasons, in this chapter, we use our ProcSy
synthetic dataset to analyze the effect of influence factors on the uncertainty estimates of
a model.

3.2.2 Dataset Summary

Our ProcSy dataset is comprised of road scenes captured from a virtual render of a 3 km2

map region of urban Canada. From this environment, 11,000 scene frames were curated to
contain no visible artifacts such as clipping of the camera through vehicles and pedestrians.
These curated frames were then split into 8000 training frames, 2000 validation frames,
and 1000 test frames.

For each frame of the ProcSy dataset, along with the base RGB image, we have gener-
ated corresponding ground truth annotation labels, depth map data, and occlusion maps
of the different vehicle types present in the scene.

We generate weather variations in the categories of rain, puddle, and cloud coverage.
For each of these factors, we consider five different intensity levels. These are 0%, 25%,
50%, 75%, and 100%. Figure 3.1 shows an example frame with different intensity levels
for each of the three weather factors. For our training set of 8000 images, we first consider
three equal subsets for the weather categories. Within each subset, we further divide into
intensity levels and render RGB images reflecting variations in these subsets. This allows
us to carry out experiments without having to generate every combination of influence
factor variations.

3.3 Bayesian Neural Networks for Image Segmenta-

tion

Semantic segmentation is a task that assigns a class label to each pixel of an image. For
autonomous driving, the image segmentation system enables the vehicle to perceive the
visual state of the world. Since deep convolutional architectures consider this task as
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Figure 3.1: Weather variations visualizing intensity level differences in the three weather
categories — rain, cloud, and puddle; ground truth, depth map, and occlusion map for one
vehicle type are also shown along with the base RGB image
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classifying each pixel independently using the same network [57], the BNN approach can
be applied to this family of architectures to estimate the uncertainty per pixel.

For the experiments in this chapter, we use Deeplab v3+ [9], one of the state-of-the-
art models for segmentation, with ResNet 50 backbone architecture [33]. We inserted
dropout layers with rate of 0.5 at four blocks in the middle of the backbone (specifically,
at the end of the 8th till 11th block). The basis for this setup is based on the studies by
Kendall et al. [38] and Mukhoti et al. [65], from which they empirically determined that
inserting dropout layers in the middle flow yields a better predictive performance than for
other positions in a network. Figure 3.2 shows examples of the three uncertainty types
estimated by a BNN.

3.4 Experiments with Synthetic Data

In this section, we perform two experiments with two set of influence factors. The first
experiment involves the amount of depth and occlusion as factors, whereas the second
experiment involves different weather effects, specifically: clouds, rain, and puddles. The
reason why we treat them separately is that occluded and distant objects necessarily occur
in the training set, whereas the latter factors do not.

We train two Bayesian Deeplab v3+ models: model A with 3000 clean images and
model B with 8000 clean images. We note that the set of 3000 clean images is a subset
of the set of 8000 images. Model A and model B are trained with 75, 000 and 180, 000
iterations, respectively, with a batch size of 16 and crop size of 512x512. The uncertainty
estimates are calculated based on 50 MC-dropout samples.

3.4.1 Occlusion and Depth

In this experiment, we study how different variations of occlusions and depth factors af-
fect the uncertainty estimates. We test and measure the uncertainty estimates (aleatoric,
epistemic, and predictive) of model A and B using a test set consisting of 270 clean images
containing a total of 1,200 vehicles. The amount of occlusion for each vehicle is determined
by calculating the fraction of the number of occluded pixels over the total number of the
vehicle’s pixels. We then assign this occlusion level to each visible pixel of the vehicle. For
each model, we partition the pixels into subsets based on amount of occlusion and distance
(each discretized into five intervals of 20%). Then we calculate the mean accuracy and
uncertainty estimates for the model predictions of the pixels in each subset. Finally, we

24



Figure 3.2: Illustration for different types of uncertainty estimates in semantic segmenta-
tion. (a),(b),(c) show the input image, ground truth and prediction, respectively. (d),(e),(f)
show the estimated aleatoric, epistemic and predictive uncertainty from our model. It can
be visually observed that the aleatoric uncertainty is high at the class boundary (e.g., the
tree). On the other hand, the epistemic uncertainty estimates are high only at several
specific regions, such as the cluster in the middle of (e). This model is trained with 3000
clean images (model A in Section 3.4).

25



use cubic spline interpolation to obtain a contour plot. The results are shown in Figure
3.3.

According to the definition of aleatoric and epistemic uncertainty, we expect that model
B’s epistemic uncertainty estimates should be lower than model A’s, whereas the aleatoric
estimates of the two models should stay similar. Based on the results in Figure 3.3, we
make the following observations:

1. Model B has higher accuracy and lower epistemic uncertainty than model A in gen-
eral. This fits with expectations since model B is trained with more data than model
A.

2. The predictive uncertainty can be observed to be correlated well with the accuracy,
which is a desirable characteristic for a failure indicator. The Pearson correlation
coefficient between predictive uncertainty and accuracy for model A is −0.89 and for
model B is −0.90.

3. For both models A and B, the aleatoric estimates increase for objects that are more
occluded and further away from the camera as expected. The same behavior can also
be observed for the predictive uncertainty estimates.

4. There is a difference between the aleatoric estimates of the two models, which is
surprising. Specifically, the difference between aleatoric estimates seems to increase
with the epistemic difference. To validate this observation, we plot in Figure 3.4
the difference between those two uncertainty estimates according to the amount of
occlusion and depth, then we calculate the Pearson correlation coefficient of these
quantities. The results reflect this observation as the Pearson coefficient, which values
is 0.579, implies that there is a relation between the two quantities.

We hypothesize that the reason why we observe the aleatoric uncertainty estimate
changing when more training data is provided is that the estimate is only reliable where we
have sufficient data. For regions with a sufficient amount of data, the decision boundary
of model A and B are similar to each other. Thus, adding more data would not likely
change the estimated aleatoric uncertainty (unless the data we already have is biased). On
the other hand, the decision boundaries in regions that lack data tend to be inconsistent
making the aleatoric estimate unreliable.

Finally, we note that for model B, high aleatoric estimates still occur for regions that
have relatively low epistemic uncertainty, such as the middle top region in Figure 3.3f,g
where the objects are occluded around 50% and far away from the camera. This suggests
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Figure 3.3: The two rows show the accuracy, aleatoric, epistemic and predictive uncer-
tainty estimates according to level of depth and occlusion of model A and B, respectively.
Each color bar reflects the metric values of the plots in the corresponding column.

Figure 3.4: (a) shows the difference between the estimated mutual information for model
B and A according to occlusion and depth. (b) shows the equivalent difference for aleatoric
entropy.(c) shows the relational plot between the two differences. Each blue dot represents
the difference between the aleatoric and epistemic estimates in a certain subset of occlusion
and depth. The black line, which shows the relation between the two variables, is fitted
by using linear regression.
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that depth and occlusion are sources of aleatoric uncertainty in the image segmentation
task.

To ensure perceptual performance in safety-critical application, developers must make
sure that the training data satisfies the scenario coverage condition properly [12]. This
experiment and analysis suggests that we can use the measure of epistemic uncertainty to
determine the optimal amount of data to collect for occlusion and depth factors. Specifi-
cally, we should collect enough data to make the epistemic uncertainty map blue.

Extended Results We show the extension of this experiment in Figure 3.5. We note that
the model’s name in this extension results is different from the previous one (e.g, results in
Figure 3.3). Model A, B, C, D is trained on 500, 3000, 8000 and 131000 images respectively.
Similar to the previous results, the aleatoric and epistemic uncertainty estimates decrease
as we increase the amount of training data. It is also more clear to see the interesting
trend in the aleatoric estimates, where the uncertainty estimates keep being higher for
more distant and occluded vehicles.

3.4.2 Weather

In this experiment, we study how the uncertainty estimates vary with respect to different
intensity levels of weather effects, namely: clouds, rain, and puddles. We expect that as we
increase the effect’s intensity, the BNN model should have worse performance and output
higher uncertainty estimates. This is because high intensity effects will introduce more
artifacts that would cause misclassification in the model, thus the uncertainty estimate
should increase to indicate this.

For each model and effect, we calculate the mIoU (mean Intersection over Union) and
the mean aleatoric, epistemic, and predictive uncertainty estimates per pixel at every
intensity level. Each effect’s intensity level contains 150 images. The reason why we
compare the performance of model A and B is that we want to observe how the uncertainty
estimates change when we train with more in-distribution data. The results are shown in
Figure 3.6.

In terms of mIoU (Figure 3.6d), we see that model B, which is trained with more in-
distribution data, has better performance than model A when there is no factor involved.
Further, model B’s mIoU is higher than model A’s for different intensity levels of rain
and puddles. However, surprisingly for cloudiness, there is a sharp degradation in terms
of mIoU for model B. Critically, at the 100% cloud intensity level, model A outperforms
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Figure 3.5: Each row shows the accuracy, aleatoric, epistemic and predictive uncertainty
estimates according to level of depth and occlusion of the models.
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Figure 3.6: (a-d) show the estimated aleatoric, epistemic, and predictive uncertainties and
mIoU values for different variations of weather, factors respectively. The x-axes represent
different intensity levels.
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model B (although with just a small margin). We find that in 100% cloud conditions, the
two models fail to predict the following classes: pole, traffic lights, sky, bicycle, car and
truck.

In terms of uncertainty, the three types of uncertainty estimates, in general, increase
with the intensity levels for every factor. This behavior meets our expectation for the
uncertainty and it applies to both model A and B. We notice that for clouds, there is a
small decrease for the 50% to 100% levels, which requires further investigation.

We also make two following observations. First, for model B, we see that the epistemic
uncertainty corresponds to the mIoU better than the other two uncertainties. Specifically,
at every intensity level for each effects, the ascending order for epistemic estimates are
rain, puddle and cloud, which corresponds to the descending of that order in mIoU. For
model A, on the other hand, all the uncertainties reflect the mIoU well. Second, there is
an inconsistency in terms of the difference between model A and B’s uncertainty estimates
for all the factors. For example, at 100% intensity level for rain and puddle, model B has
lower epistemic uncertainty estimates than model A, yet it is higher in the case of cloudy
images. This is unexpected since we assumed that training with more in-distribution data
can only make the epistemic uncertainty lower or intact. This observation requires further
investigation.

Extended Results We show the extension of this experiment in Figure 3.7 and 3.8
(simplified version of Figure 3.7). We note that the models name in this extension results
is different from the previous one (e.g, results in Figure 3.6). Model A, B, C, D is trained on
500, 3000, 8000 and 131000 images respectively (similar to the previous extended results).

In the original experiment, we observe that the epistemic uncertainty corresponds to
the mIoU better than the other two uncertainties. We would like to see if this still holds
with other amount of training data. For both model A and D, we see that the epistemic un-
certainty still reflects the mIoU well. However, we observe that for model D, the epistemic
estimates at 50% puddle is lower than that at 75% puddle while the mIoU is decreasing.
Finally, similar to model B (trained with 3000 images), all the uncertainty estimates of
model A (trained with 500 images) corresponds well with the mIoU, while it is not the
case for model C and D.
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Figure 3.7: (a-d) show the estimated aleatoric, epistemic, and predictive uncertainties and
mIoU values for different variations of weather, factors respectively. The x-axes represent
different intensity levels.
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Figure 3.8: Simplified version of Figure 3.7, where we only show the behavior of model A
and D.
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3.5 Conclusions and Future Work

Reliable uncertainty estimation of ML predictions is important for the safe use of ML-based
components. In this chapter, we use the ProcSy dataset to study the effects of different
influence factors, namely: depth, occlusion, rain, clouds and puddles, on the uncertainty
estimates of the BNN model for image segmentation.

In the experiments with occlusion and depth factors, our results show that the aleatoric
uncertainty estimates is dependent on the epistemic uncertainty estimates. When given
enough data, the epistemic uncertainty estimates reduce but the aleatoric estimates re-
main high for distant and occluded objects. Furthermore, we find that cloud affects the
uncertainty estimates and mIoU values of the BNN more profoundly than rain and puddle,
even when we have more in-distribution training data.

As we have mentioned in Sec. 3.4a, the experiment results suggest one potential appli-
cation that requires further investigation: the possibility to use the epistemic uncertainty
estimates to find an optimal amount of data for the occlusion and depth factors. Further-
more, it would be beneficial to extend this work to understanding the risk potential of these
factors. Finally, while this chapter studies how the influence factors affect the Bayesian
uncertainties, future work should address how we can use this synthetic framework to
evaluate the reliability of other uncertainty estimation methods.
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Chapter 4

Model Calibration

Until this point, we have described methods to extract uncertainty estimates from deep
models. However, how we can verify that the predictive uncertainty estimates are reliable
or not has not yet been mentioned. Calibration is a concept that enables us to address
this question.

In this chapter, we will discuss the concept of uncertainty calibration in classification
and regression. We give a miscalibration example of DNNs and describe the calibration
method. Finally, we demonstrate how these methods mitigate the miscalibration issue
through the object localization task. Our case study shows that BNNs can be miscalibrated.

4.1 Motivation

In safety-critical systems such as self-driving cars, it is desirable to have an object detec-
tion system that provides accurate predictions and reliable, or well-calibrated, associated
uncertainties. The uncertainties in this case come from two sources: the bounding box
regressor and the object classifier. For the bounding box regressor, a p% confidence inter-
val for each coordinate (estimated from the calibrated uncertainties) should contain the
true value p% of the time. Similarly, in classification, calibration means that predictions
with p% confidence are accurate p% of the time. Miscalibration, in either case, can lead to
dangerous situations in autonomous driving. For instance, if the detection model indicates
the 95% confidence interval that the location of a pedestrian is within the sidewalk, but
it is actually a 50% confidence interval, then the vehicle may make hazardous movements.
Model-recalibration, therefore, is one of the important procedure to make sure that our
predictive uncertainty estimate is reliable.
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4.2 Definitions and Methods

In this section, we describe the definition of model calibration and the recalibration meth-
ods, which are introduced in the work of C. Guo, et.al [30] (for classification) and V.
Kuleshov, et.al [51] (for regression). Besides, we also suggest one minor improvement for
the regression calibration algorithm suggested by V. Kuleshov.

4.2.1 Classification

In a classification problem, we are given the dataset D = {X, Y } where xi ∈ X is the
input and yi ∈ Y is the corresponding label (within K classes). As mentioned in Chapter
2, for an arbitary input xi, a deep classification model (Bayesian or non-Bayesian) f(x)
trained on D gives a predictive probability vector Pi = {pi1, pi2, ..., piK} that indicates how
likely the input xi belongs to a certain class. This probability vector can then be used to
express the level of uncertainty through the entropy metric. This means that to evaluate
the uncertainty estimates, instead of working with the entropy metric, we can work directly
with the probability vector.

Calibration In the context of classification, calibration means that the expected confi-
dence probability should match the corresponding actual accuracy. That is:

P(yi = k|pik) = pik for every class k (4.1)

This condition, however, is hard to achieve in the case of muti-class classification. A more
relaxed and practical condition which we will follow is:

P(yi = k|pik) = pik where k = arg max
m

pim (4.2)

This means that we only consider the calibration for the predicted class probability.

Calibration Methods Guo, et al. [30] suggest that using temperature scaling is the
simplest way to calibrate a model. Assume that the model has a softmax activation at
the output layer, temperature scaling is a procedure that divides the logits vector by a
hyper-parameter T . Denote the logit value for class k as σk. After temperature scaling,
the predictive probability for class k is:
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P(yi = k|pik) =
expσk/T∑
j expσj/T

(4.3)

The hyper-parameter T should be chosen such that it minimizes the cross entropy loss on
the calibration set (similar to the validation set but we use this one for calibration only).
We note that using this method does not affect the model’s accuracy since temperature
scaling does not change the ranking of output probabilities.

Reliability Diagram A reliability diagram (Figure 4.1) shows the relationship between
the confidence (x-axis) and accuracy (the y-axis). To plot the reliability diagram, we collect
the confidence measures in the test set and partition the measures into M bins. We then
calculate the accuracy for each bin and plot as a bar as shown. The model is calibrated
when the bars follow the diagonal line (the blue line in Figure 4.1).

Figure 4.1: Model calibration example: reliability diagram before (left figure) and after
calibration (right figure).

We illustrate this through a small classification experiment using the CIFAR-10 dataset.
We train a VGG-16 classification network for this task. Figure 4.1 shows the reliability
diagram on test set before (left figure) and after calibration with temperature scaling (right
figure). As we can see, without calibration, the probability given by the model does not
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reflect the actual outcome. For instance, when the model predicts a class with a confidence
probability 0.8, the actual accuracy is only 0.4. This is a very misleading probability and
should not be relied on for any safety-critical task. On the other hand, temperature scaling
makes the confidence level align well with the actual accuracy and thus makes the model
reliable.

4.2.2 Regression

In the regression problem, we are given the dataset D = {X, Y } where xi ∈ X is the
input and yi ∈ Y is the corresponding label that takes a continuous value. Similar to
classification, for input xi, our model gives the probability distribution, which we assume
to be Gaussian, p(yi|xi) = N (µ̂i, σ̂

2
i |xi). We denote the associated cumulative distribution

function Pyi|xi(z) = Φxi(z|µ̂i, σ̂2
i ). For real value z ∈ R, Pyi|xi(z) is the probability that

the label y is in the (−∞, z] interval. Conversely, for a probability value q, we obtain the
output z of the inverse CDF: P−1yi|xi(q) = z, which means that the interval (−∞, z] is a

100q% interval for yi.

Calibration Let Iyi|xi(q) := I[yi ≤ P−1yi|xi(q)] be an indicator function that verifies the

condition in the brackets. Then Pyi|xi(z) is calibrated when:

E[Iyi|xi(q)] = q (4.4)

This implies that we expect to see the 100q% confidence interval to cover 100q% of the
label data. Calibrating a regression model means that we adjust Pyi|xi(z) such that (4.4)
holds. To obtain a reliable uncertainty estimate, we carry out two steps: validating the
uncertainty estimate (our suggestion) and calibrating it (based on [51]).

Validating the Uncertainty Estimates In regression, higher estimated variance should
correspond to higher expected square error. However, in practice, if the model lacks ex-
pressiveness or does not converge, the resulting uncertainty estimates may not be valid
and the calibration process will not give desired results. Thus, we suggest using scatter
plot (representing the variance σ̂2

i and square error (yi− ŷi)2) as a visualization method to
validate this attribute of the uncertainty estimate before calibrating it.

Calibration Method The main idea of the calibration method proposed by Kuleshov,
et al. [51] is as follows: suppose that our model is mis-calibrated and gives E[Iyi|xi(q)] = rq,
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where rq 6= q. This means that the 100q% confidence interval covers 100rq% of actual data.
In other words, the 100q% interval is actually a 100rq% interval. So when the model gives
us a CDF Pyi|xi(z) and we query the 100q% interval based on this CDF, the interval is
actually a 100rq% interval.

Based on the above idea and supposing that we have a calibration set C = {X, Y }),
the calibration process is as follows:

1. Iterating over all data pairs (xi, yi), we build a list of features U = {Pyi|xi(yi)}Ni=1. We
then build a list of corresponding labels V = {|[yt|Pyt|xt(yt) < Pyi|xi(yi)]

N
t=1|/N}Ni=1

(| . | is a cardinality of a set). Each value Vi shows how many actual labels are actually
contained within the interval defined by Ui.

2. We train a regression model R on U ,V , using isotonic regression.

3. At test time, the probability for the confidence interval given by R ◦ Py|x(z) is cali-
brated.

Reliability Diagram In regression, the reliability diagram shows the relation between
the expected confidence interval and the actual confidence interval. Similar to classification,
perfect calibration corresponds to the identity line.

We illustrate in Figure 4.2 how calibration works in the case of regression. The original
function is a sine function with an additive heteroscedastic Laplacian noise. We fit this
data using a neural network with a Gaussian loss function described in Section 2.2. Since
our assumption about the noise is incorrect (Gaussian versus Laplacian), the expected
confidence interval does not match the actual confidence interval (as shown in the reliability
diagram). By using the described calibration technique, we are able to adjust the confidence
interval so that our expectation matches the reality.

4.3 Case study: Calibrating Uncertainties in Object

Localization Task

In this section, we address the miscalibration issue for the 2D single object classification
and localization (SOCL) task and demonstrate its applicability on the Oxford-IIIT Pet
Dataset ([70]). Although recent works by [62] and [21] have shown the benefits of modeling
uncertainty for detection accuracy in 2D open-set conditions and the 3D Lidar object
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Figure 4.2: A simple example for calibration in heteroscedastic regression. The original
function and data is shown in the leftmost figure. In the middle figure, we use heteroscedas-
tic regression to fit the data, show the fitted function and the 95% expected confidence
interval based on the Gaussian assumption. The rightmost shows the reliability diagram
and how calibration fixes the problem.

detection task, respectively, neither of them has analyzed or focused on the reliability of
the estimated localization uncertainties in terms of calibration. We show, experimentally,
that the resulting calibrated model obtains more reliable uncertainty estimates.

We focus on the localization uncertainty estimates since our experiment shows that,
while BNNs produce a calibrated classification uncertainty (similar to McClure and Kriegesko-
rte’s results [61]), the estimated localization uncertainty is not calibrated. Specifically, our
contributions are: (1) we show that the estimated localization uncertainties for the bound-
ing box coordinates from the BNN model are not calibrated; (2) we adapt Kuleshov’s et
al method [51] for calibrating regression models and show improvements in this setting.

The remainder of this section is structured as follows. Subsection 4.3.1 gives the neces-
sary background for the SOCL task. Subsection 4.3.2 describes the calibration procedure
for localization. Subsection 4.3.3 shows experimental results demonstrating the method is
effective.

4.3.1 Background: SOCL Task with Uncertainty Estimation

The goal of the SOCL task is to obtain a model that is able to predict the bounding box
and class of an object in a given image. For an image dataset X = {x1,x2, ...,xN}, the
associated labels are Y = {y1,y2, ...,yN}, where each yk = [ck,bk] consists of a one-hot
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encoded class ck and the bounding box coordinates bk = {b1k, b2k, b3k, b4k}. We define
a DNN fW(x) = ŷ with weights W such that it predicts both the class probability and
coordinates.

Incorporating Uncertainty Based on Kendall and Gal [40]’s method, we incorpo-
rate the aleatoric and epistemic uncertainties into the model by optimizing the weights
W with heteroscedastic loss and dropout training ([78]). At test time, we sample the
predictions with MC-dropout and calculate the predictive mean and uncertainties. This
results in a BNN model f̄W(x) = [ȳ, σ̄2], where ȳ = [c̄, b̄] is the predictive mean (c̄ is
a predicted class probability) and σ̄2 = {σ̄2

1, σ̄
2
2, σ̄

2
3, σ̄

2
4} is the predictive variance (sum of

the epistemic and aleatoric variance) of the coordinates, assuming that they are mutu-
ally independent 1. Similarly to [52], we estimate the probability p(bi|x) as a Gaussian:
p(bi|x) = N (b̄i, σ̄

2
i ), for i ∈ 1, 2, 3, 4.

4.3.2 Calibration for Bounding Box Regressor

For each p(bi|x), similar to Section 4.3.1, we define its CDF and inverse CDF as Pbi|x(z)
and P−1bi|x(q) respectively.

Calibrating the SOCL BNN We adapt the regression calibration method in Section
4.2.2 for the case of bounding box estimation. Given an uncalibrated probabilistic model
f̄W(x) for the SOCL task with Pbi|x(z) = Φ(z|b̄i, σ̄2

i ) for each coordinate and a calibration

dataset X̂, Ŷ, the calibration process trains a calibration model Ri whose input is Pbi|x(z)

such that P̂bi|x(z) = Ri ◦ Pbi|x(z) = Ri ◦ Φ(z|b̄i, σ̄2
i ) is calibrated. After obtaining Ri, we

replace Pbi|x(z) by P̂bi|x(z) for localization uncertainty estimation.

We use [xmin, ymin, xmax, ymax] for encoding the coordinates in our experiments, where
xmin,ymin is the top left and xmax, ymax is the bottom right corner of the bounding box. To
estimate the 100q% confidence interval around the mean, we determine the upper bound
and lower bound for each bi by calculating P̂−1bi|x(r+ q/2) and P̂−1bi|x(r− q/2) accordingly for

each coordinate, where r = P̂bi|x(b̄i). These bounds define a confidence interval as a region
in which the bounding box can occur (see blue region in Figure 4.3d). Since this bound
requires r + q/2 < 1 and r − q/2 > 0, one can instead use the median by setting r = 0.5.

1This assumption gives an overapproximation of the bounding box extents, which is sufficient for
obstacle avoidance.
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Figure 4.3: Reliability diagram and an example. Figure 4.3(a): reliability diagram for
localization uncertainties before calibration. Figure 4.3(b): reliability diagram for local-
ization uncertainties after calibration. Figure 4.3(c): reliability diagram for classification
with MC-dropout and weight scaling. Figure 4.3(d) shows an example of bounding box lo-
calization with calibrated 95% confidence interval (blue region) centered around the mean
(red). The ground truth is colored in pink

4.3.3 Experiments

In the following setting, we experimentally show the miscalibration problem of localization
uncertainty of our model and the improvement after applying the calibration method on the
model’s output. For the completeness of the task, we also show the result for classification.

We use the Oxford-IIIT Pet Dataset ([70]), which consists of 3,686 annotated images in
2 classes depicting cats and dogs, for this task. The bounding box for localization covers the
face of the pet. The dataset is split into 2:0.9:0.9 ratio for training, validation/calibration
and testing respectively. For the model, the VGG-16 architecture ([76]) is used as a base
network. The trained model obtained 94.85% classification accuracy and 14.03% localiza-
tion error with 0.5 IOU threshold, based on the Imagenet evaluation method ([13]).We
validated the uncertainty estimates (epistemic and aleatoric) and fit the calibration model
Ri for each coordinate as described in Section 3.

Results Figure 4.3a -4.3c show the reliability diagrams for localization and classification
uncertainties on the test set. Each reliability diagram shows the mapping between the
expected confidence interval (from the model) and the actual one (i.e., how many labels
are actually within that interval). Perfect calibration corresponds to the diagonal line
in the diagram. Quantitatively, the calibration quality is evaluated by using the mean
squared error (MSE) between the diagonal line and the calibration curve (calculated over

42



all buckets). Models with lower MSE are better calibrated.

Figure 4.3a and 4.3b show the reliability diagram for bounding box coordinates before
and after calibration respectively. Consider the curve for xmax in Figure 4.3a, we can see
that the expected 40% confidence interval corresponds to the 20% actual interval. In this
case, the model has underestimated the uncertainty. On the other hand, the expected
60% confidence interval corresponds to the 80% actual interval, which implies that the
model has overestimated the uncertainty in this range. After calibration, the estimated
uncertainties are reliable, e.g, the expected 20% confidence interval contains approximately
20% of the true outcome. The calibration process reduces the average MSE from 2.7E-02
to 2.7E-04 for the four coordinates.

We also observed that, in Figure 4.3c, MC-dropout produces a calibrated classification
confidence with MSE of 3.0E-03, compared to that of 1.6E-02 with the original weight
scaling method for network trained with dropout ([78]), in which we scale the weights
according to the dropout rate (instead of randomly setting the weight values to 0 like
MC-dropout) at test time, and show the resulting softmax probabilities.

4.4 Calibration and the need for Bayesian Modelling

At this point, one may ask a valid question: given the existence of calibration technique,
does Bayesian modelling matter since what we can do is to train a non-Bayesian uncertainty
estimation model and calibrate it to fit this purpose?

We argue that Bayesian modelling is still relevant and should be used in parallel to the
calibration process. This is because, in the calibration process, we use only the inlier data
to calibrate the model. This means that the reliability curve only holds for the inlier data.
For the outlier data, such as the images with weather effects in Chapter 4, the calibration
property does not necessarily hold. We suggest the following procedure that combines
Bayesian modelling and calibration:

• Train a BNN and choose a threshold ε value for the epistemic uncertainty. If the
epistemic estimates (mutual information) is lower than ε, then we decide that input
is an inlier data.

• Collect all the inlier data and calibrate the model based on the predictive probability
vector of these data.
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• At test time, we use the calibrated probability values for the inlier input to measure
the potential risk and make decisions accordingly. For data that has high epistemic
estimate, we should rely on other treatments.

4.5 Conclusion

In this chapter, we consider the reliability of estimated localization uncertainty for the
2D SOCL task in terms of calibration. Our experiment shows that without calibration,
the estimated localization uncertainties are misleading. We adapted an existing method
for calibrating regression to the uncertainty estimates of bounding box coordinates. The
result shows that the new uncertainty estimates are well-calibrated.

In future work, we would like to extend this work to the general 2D and 3D multiple
object detection task and use a more complex dataset such as KITTI ([26]). Furthermore,
we want to address the calibration problem in the case the coordinates are not mutually
independent.
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Chapter 5

Real-Time Uncertainty Estimation
with Dirichlet Distillation

In the field of autonomous driving, it is desirable to have a BNN-based computer vision
system functioning during real-world operation. However, as we have seen so far, BNNs re-
quire multiple samples (around 50 to 100) at test time in order to estimate the uncertainty.
This prevents the use of any complicated BNN in real-time applications. In this chapter,
we introduce a distillation technique, focusing on the case of classification, to handle this
issue. This technique allows us to estimate the uncertainty (both epistemic and aleatoric)
without the need for dropout sampling. The general idea is to train a student network that
learns from the BNN’s output to estimate the uncertainty. Our experimental result shows
that the student network are able to generalize and provide good epistemic estimates for
both in-distribution and out of distribution data.

5.1 Method

Problem Formulation Let us suppose that we are given the dataset D = {X, Y }
where xi ∈ X is the input, yi ∈ Y is the corresponding label (within K classes) and a
BNN model M(x) is “trained” on D. We also assume that model M is very complex
such that the closed-form solution for the posterior is not achievable and Monte Carlo
sampling is required to estimate this posterior. Specifically, given an input xt at test time,
modelM, through the sampling process, outputs multiple categorical distribution samples
pt1, pt2, ..., ptT . As shown before in Chapter 2, from these samples, we can estimate the
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corresponding epistemic and aleatoric uncertainty. Due to the real-time constraint, we
would like to obtain these uncertainty estimates without the sampling process.

Approach In a distillation technique, we want to train a model S(x) such that from the
output S(xt), we are able to derive the class prediction, aleatoric and epistemic uncertainty
estimates that are similar to those of M(xt). We sketch the insight for the method as
follows. For each input xt, model M provides a distribution over the class probability
vector. We denote this distribution as PM(pt|xt), from which we are able to estimate the
uncertainties. The closed form of this distribution is unknown to us, and we can only
sample from this distribution (i.e. MC Dropout). The core idea is that we train the model
S(x) to output a closed form distribution PS(pt|xt) such that the two distributions are
close to each other by minimizing the KL divergence between the two distributions. Since
the two distributions must share the same support, in other words, they must both output
categorical distribution samples, we use the Dirichlet distribution to represent PS(pt|xt).
Since the number of parameters of the Dirichlet distribution is the same as the number of
classes and all of them are positive, we can use the network architecture of M for S and
adding the softplus activation at the logit layer (since we are trying to fit positive numbers)
to output these parameters.

5.1.1 Loss Function

Let ω be the training parameters for the model S. To train model S, for each input data
x, we would like to minimize the KL divergence between the two distributions PM(p|x)
and PS(p|x, ω).

DKL(PM(p|x)||PS(p|x, ω)) =

∫
PM(p|x) log

PM(p|x)

PS(p|x, ω)
dp

=

∫
PM(p|x) logPM(p|x)dp︸ ︷︷ ︸−

∫
PM(p|x) logPS(p|x, ω)dp

= constant − EPM(p|x)[logPS(p|x, ω)]

(5.1)

Although we do not know the closed-form of PM(p|x), we can collect samples from it
(i.e., by using MC-Dropout), and thus we can approximate the expectation term in the
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Equation 5.1 using Monte-Carlo sampling:

DKL(PM(p|x)||PS(p|x, ω)) ≈ constant− 1

N

N∑
n=1

logPS(pn|x, ω)

where pn ∼ PM(p|x)

(5.2)

Optimizing the KL divergence is equivalent to optimizing the expectation term. We define
our loss function for each data point L(x, ω) as follow:

L(x, ω) = − 1

N

N∑
n=1

logPS(pn|x, ω) where pn ∼ PM(p|x) (5.3)

By minimizing this loss function, we obtain a student model S that is able to approxi-
mate the predictive probability of a teacher model M.

5.1.2 Extracting the uncertainties

We now describe the method to extract different types of uncertainties from the stu-
dent network S. Given an input x, the student network outputs a Dirichlet distribution
PS(p|x, ω) = Dir(α1, ..., αK |x).

Epistemic Uncertainty For the teacher network M, we can use the mutual informa-
tion metric to capture the epistemic uncertainty. Another way to capture the epistemic
uncertainty is by calculating the variance of the probability samples. L. Smith and Y. Gal
[77] proved that the latter one is an approximation of the mutual information metric. For
each pi, the variance is:

Var[pi] =
zk(1− zk)

Z
(5.4)

where:
Z = 1 +

∑
k

αk and zk =
αk∑
k αk

Then, the epistemic uncertainty from the student network S for an input x can be estimated
as follow:

MI(x) ≈ 1

K × Z

K∑
k=1

zk(1− zk) (5.5)
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Predictive Uncertainty The predictive entropy can be estimated by using the the mean
probability vector of the distribution.

H(x) = − 1

K

K∑
k=1

zk log(zk) (5.6)

Aleatoric Uncertainty Finally, the aleatoric uncertainty can be estimated by:

AE(x) = H(x)−MI(x) (5.7)

5.2 Experiment

In this experiment, we show and compare the student network’s uncertainty estimation to
those of the teacher network. We use the CIFAR-10 dataset [49], which contains 60,000
32x32 RGB images in 10 classes, for training. We implement the VGG-16 architecture
[76] for both student and teacher networks (with dropout layers). For testing, we use the
CIFAR-10 and CIFAR-100 test dataset. The purpose of the CIFAR-100 dataset at testing
time is to compare the estimated uncertainty for data came from out-of-distribution.

In Figure.5.1, we compare the difference between two network’s uncertainty estimates on
two different scenarios: in-distribution data (CIFAR-10 test data) and out-of-distribution
data (CIFAR-100). Column-wise, we observe that the distribution between the student and
teacher network for CIFAR-100 is flatter than the ones for CIFAR-10. Since the CIFAR-100
dataset can be considered as an outlier data, the estimated epistemic uncertainty should
be, on average, higher than that for CIFAR-10 dataset. We also see that for both datasets,
the student network tends to give lower epistemic estimation than the teacher network.
For the aleatoric and predictive uncertainty, however, the teacher network’s estimations
are lower than the student’s.
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Figure 5.1: Comparison in uncertainty estimation between the student and teacher net-
works. The first row shows the estimations in CIFAR-10 dataset and the second row shows
the estimations in CIFAR-100 dataset. For completeness, we also compute the mean-
square error (MSE) for the estimations by the two networks (data point by data point
basis). For CIFAR-10, the MSE for mutual information, aleatoric and predictive uncer-
tainty estimates are 4.02e-05, 2.09e-01, 2.11e-0.1 respectively. Similarly, for CIFAR-100,
the values are: 2.12e-04, 7.01e-01, 7.08e-01.
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Chapter 6

Conclusion

In this thesis, we review the concept of Bayesian neural networks and its usefulness in
uncertainty modeling. We study the behavior of the uncertainty estimates from BNN in
the context of road-scene image segmentation and introduce several improvements in terms
of calibration and model distillation. In particular:

• We use the ProcSy synthetic data to investigate the effects of several selected factors
on BNN’s uncertainty in the task of image semantic segmentation.

• We show that the estimated localization uncertainties by BNN are not calibrated and
how calibration technique can mitigate this problem.

• We develop a distillation technique based on Dirichlet distribution that allows us to
estimate the epistemic uncertainty in real-time.

In the future work, we would like to extend the distillation method and apply it to
the image segmentation task. Also, our current experiments do not include any time-
series problem in computer vision such as tracking. We believe that applying uncertainty
estimation in this task is an interesting problem that should be studied in the future.
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